Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Anomaly Detection"
]
},
{
"cell_type": "code",
"execution_count": 1,
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"\n",
"from scipy.stats import multivariate_normal\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.metrics import precision_recall_fscore_support\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.metrics import f1_score\n",
"from sklearn.metrics.pairwise import euclidean_distances\n",
"\n",
"from sklearn.cluster import KMeans\n",
"\n",
"import matplotlib.gridspec as gridspec\n",
"\n",
"from tqdm.notebook import tqdm\n",
"import ipywidgets as widgets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise 1 - Multivariate Gaussian distribution\n",
"You watched the video tutorial by Andrew Ng on anomaly detection using the multivariate Gaussian distribution. There is a data set on ILIAS containing credit card transactions made available by a European bank in September 2013 on [Kaggle](https://www.kaggle.com/mlg-ulb/creditcardfraud). Not surprisingly, the data set is anonymized, i.e. a PCA transformation was executed on all features (each feature therefore is a linear combination of the original but unknown features). The only exceptions are amount and time (milliseconds since first transaction). Finally, there is a class feature to indicate whether the transaction is fraudulent (value: 1) or genuine (value: 0). Implement fraud detection using the statistical approach introduced by Andrew Ng."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABQYBAgQDB//EAEgQAAEDAwAHBAcEBggGAwEAAAABAgMEBREGEiExVJLSExdBURQVIjJhcZFygbHBIzM1c6HRBzQ2QkNSguEWYoPC8PE3U7Ik/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECAwT/xAAiEQEBAAICAgEFAQAAAAAAAAAAAQIRAxIhMQQFEyIyQSP/2gAMAwEAAhEDEQA/APn4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pAp4Lh3cXjiaHnf0ju4vHE0PO/pA+oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwZAAwZAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvGk0VrrvRuwWVUaiuVHYxkm4ZGzQslYuWvajkX4KB6AAAAAAAAAAAAAAAAAEBfrlVUV0t8ED0bHM7D0xnO1AJ8GDIAAAAAAAAAAAAAAAAAAAAAAAMAUnTi7Tw10FLSzyRKxuu9WOVNq7k2FeZpBdo/duE6/adn8TvvVovFbc56p1DIqPd7OMLs8CKktFyj96hqE/wCmoHc3S68Rp/WUd9piHrHp5dW++2B/+lU/MgpqWeNq9pBKxE/zNVDk1QLgz+kOqT36KF3ycqHTH/SK3/Fty/6Zf9ijI027PG8D6DH/AEg293v007Pop1x6c2Z/vPlZ82HzJWGipgD61HpZZZN1YifaaqHSy/2l/u3Cn+96IfIYvdPRAPscdwopP1dXA75SIp7JIx257V+Snyu1aO3C6O1oYkYxF2vk2IXO16IUtHh9TLJPIngjla36IBYzJqiI1EREwiGwAAAAAAAAAAADSR7Y43PeuGtTKqbkDpfXeiWdzGr7c66ifLxAiLdQre6K61srfbnVUiz4Y2/yQltD6z0i09g5f0lO7UVPh4HLadILRQW2Cn7Z2Wt9r2F3+Jw2K4U8OlEzaZ6rTVarq7MYXen5gWa+XB9str6mNiPciomFXZtIxdIaysREtNAtQqNRZHquGovkh76Y/sCT7bfxO2yRsitFKkbUaixoq48wOKy359dVSUVXT+j1Uf8Adzv8yQulygtdKs86+OGtTe5fIgqtEZp3TK3ZrR7fjsUxpOiT362U0m2JXIqp57QPVl4vs8fbwWlEiXaiOdtVDust8Zc3PhkjWCpj96NV/Al0TCYKpUolPp3AsWztW+2ieOxf5ASd6vXqqrpY3MascqrrvVfdQ4pb/dHxuqaS1q6kbt1nrtcnng8tLWNkutrY9Mtc/Cp5plC0K1qRK1ERG4xgCvt0qimpI/Rad81ZJsSBvgvxXyPOPSKtpa2OC7USU7JVw16LuPHQmKPtrg/UTWa9Govkm09NO0T1dTO8Umxn7lAsNbUto6SSoc1z0jTOq1MqpCetb9MztYLS1ke9Ee/2lT5Ey6pjp7e2oqHo1jWIrlX5ETHpFPVZdQWuomj3I9VRqKB0WO9+tFlhlh7Gpi95mSN0p/blq+1+aHhYJJJNL618sSwvdGqujznC+ye+lP7ctX2vzQCRvd5ltNTSosDXwTOw56r7u3+RLoqORFTcu0itJ6L02yzIiZfEnaN+7/Y5rZd0/wCFvS3rmSBitd802J+QHvQ3mStvVRRxwt7CBNsmduSZK9obSLDa1qZNslQ5XZXfjw/MsIAAAAAAAAAAAAAAAAAAAAABgGTAEZpLIkWj9a5fGNU+p8j1VPqWmKPfZOxjRVdNK1mz6/kUOltMktRJHI7DWLjLU3gRkbfayZfvJ/1A3wkf9DR2jzl92ZfvaUQWDzehPN0ffrqjpV3Z2NOSrtM0DXuauujfDG0gnNGdFqK7WhtTLNMyXXc1UaqY2Ls8C1WzRu223Cxw9pIn+JJtUh/6PO1S3VCPYrWK9Fbn5bS3oByU/s3Gqb/ysd/BU/I6zki/alT+7Z/3HWSLWQDCrgqMg81kaiZzn5Hl6W3tEYrVTOzJO0XTpBgyVAAAAAAKpcmOuulsFKrFWCmTWdlNi+K/kWsxhM5wmQPH0Sm4eLkQrml9D2TKWupY0a6F/tIxMfFF+qFqMKiLvQCvaSyrV6LJMxq/pNR2MEraExaaVF2L2TfwOvCYxjYZ3AVitY5dOKRyNXHZ78bNynvpVbaiobBW0Sa09O7Oqm9U3lgwmc42mQK3HpfTdinbU07Z9ysRviaWWkqq+8SXitiWFuMQsXfj/wBFk7Nmc6jc+eDYCsaUMc672pWtVUSTbhPihZne6vyCoi70MgVfQtjmPuOs1U/SpvT5m2nLHPtkCNarl7bwT4KWZERNyIgVEXegEJf6Sar0c7KBqukajHaqeON5xW3SOmp7dDSvp5/SImIzs2s3qhaDXUbra2qmfPAFTsXpL9LKqaqgWF8kSuVvgmdXH8D20nY517tStaq4d4J/zIWfCZz4hURfAAqIqKi7lPnlbT1FPcJ7LD+rnma5Pl4fj/A+iLuKtaYZbjpPVXCaNzYok1Y9ZuPgmP4/UCywRNghZExMNY1GoepgyAAAAAAAAAAAAAAAAAAAAAADBkwBB357mzRqutqI3YiblUiKOFsaqrt7t5O3xO1bHEioioutlSLdAkao10mXb9VrcqVKyrmN3JkwjmquMYNF1EejHK9FXdlMGyxNxvd/ADbVRsuXKmMYOSpbG5sqb1duPRzUb/fx8zRWK7Y1zc+S7FA3s1Q6idGjFTCuRr0+GS4FVs8LUube3YmNVcZ8y1EVyRftSo/ds/Fx1kRRV7Z9IK2BE9xjUz8Uzn8SYM43a0PKb9Wepq5MtVC1HHAux7V3tcv8zwn9mRrvJT3j2VLk/wAzc/Q0qm+zk4T26JBNxk0iXMbV80Q3PQ5gAAAAAARV9vDbTTI5G9pNIuI2efxAlSu2Suqqi/XKCaZz4onKjGrub7Sni2u0lhYlTPRwvh3ujb7yJ9Tw0TmbU3y5TsRUbJ7SIu9MuUC3gh7zeVoJI6ami7erl91ngnxU4ZqrSWji9JnhpZYm7XsZvRALKcdPc6WprZqSJ6rND76Y3HOy4zXCzelWtjXTrsRki7EXxRSrW2W8tvda6lhhdVqi9s1y7E2pu2gX4HBS1NRDbFqLq1kUjEVX6m5E8CIhuV7uutNboIIaZFw1029wFmBAWy9VK3D1ddYWxVKpljme647L3do7TSpIrdeV64jZ5qBJmr3IxjnLuRMqVptVpQ6P0hKWn1N/ZeKp9Tpqq26VVojnoqVjHuRyTMlXCtRNmzcBJ2+409ygWalcrmI7VVVTG08b3VVlJRdpQQdtLrImrjOEKpo3LemUMiWyCCSLtFysioi62E+PyLJfLjU22ztqWNj7f2UciplEVd4EjRySy0kUk7NSVzUVzfJT3Oeln7ShinlVG60aOcvgmwr6Xu6XSd6WWnj7Bi4WWXxAtBgrCXy52yqjjvVPGkUi4SWPwJ24VKwW2aphwqsjVzc7lA6wVWlv9zuVOyO30zH1CJmWR2xjfhvPShvdfBdGUF4iYx8mEY9nn4AWYAAAAAAAAAAAAAAAAAAAAAAAEVdU/TMX4FdvVSlPTwq7tEhkkVJnRrhfgmfDwLJdm4a2VfdbsX4EPJ2M+Wo9qI73mvblqlRX7HO+aWoh13PgbHr5V2tqO8MKWiNuY2qqbVQ56ega1qoxYWRoudSJMa3zO3GwoiLnOlLCkmssetIjFkRuVjb4qhG2mslmr30kszqiJzXORz8azcbl2eZOVVOsrXN1GvY5MOY/cpwx0cFEjmwRw0+vsdquVyqnlt3EElbU7SsgyuduSzFdsqI+sardqMRdxYiKrFmTW0quTvJyp/Es5w0trhpa6oq41drzrlyLuT5HcYwmo1ldsmDINsuKX2Z2L5LhfvM1CZaptVpsynzMv2sycbPLcb0y5gZ8sHsc9J+qx5Kp0HWMAAKAAAFTvv6TSy2xye4iIuF3Zz/sWwrulFtqZ1grqFutPTr7viqb9gFhKpo2iN0luyIiIiOXCJ9pT2bpFW1UaQ01smSpXZrPT2Wr5nnoxSVVLeq/0pHK5UTMmFw5c5XCgck8lZ/xrULSRMlmY3DWyLhETVQlXz6RPY5rqGmw5ML7Z5XugrKW6x3e3R9q9ExLGm9f/ENk0qVyaqWqs7Ty1dmQPfRe3VVupJo6trWq+TWREXOEwcNg/tbdfkv4oT9tqKippElqoOweqrhirtRPArUrqmx6SVNWtLLNT1CbFjTPkv5ASWmTlbYJUauNZ7UX5ZOS2TXyO20zaaiplhSNNRVfhVTG8kpGOv8AYpGSwup1l91r96Ki7FIqgu9bZoEoq+gnkSLYx8SZygG0lDeK68UdVU08MSQuTKsf4ZNdIP0uldrif+rwi4Xd7y/yQkaC9VNfVsZFbpooP70kuzB5aUWuerSCsokzUU65x4qm8CfPOp/q0v2F/Arsek9U6NI/VVQtTjGET2ckzQJVzW1PT0a2d6O1kb4Iu5PoBD6C/smb98v/AOUPbTT9hO+20ibPWVej3b0U9BNMqv1mrGmxV3fkS2lLJanR9qsher3KxysRMqgG9we6PRBXMzn0dqfwQ30TYxlgp1aie1lV+K5OuKlSossdNMioj4UaqLvTYV631dw0ca6jq6KSohRyqx8SZAktMWNdYnuciZa9qp9TKuc7Q3WdvWl25+RHVclfpNJFTx0slNRtcjnuk2KpPXODVsdRBC1VxCrWtRNu4Di0Pa1LDEqNRFVzsr57Tg0t2Xm0OTYvab/9TST0UjfFYoWSMcx2s7Y5MLvODSmnmlutqdFE97Wye0rUyie03eBZzJgyAAAAAAAAAAAAAAAAAAAAAAcN3craFyImdZUavwK3E16qrUTLkXBaa+FZ6OSNu1yplPmVqZZKaGsXCskRMp5psKjZaWTG5EX5nm6CdPFec3gtcU1PHJJNO5z2o5V7RfFDV9ohRNk06f8AUUDwfDKvvZd/qOWREZvbg6JLajUVWVc7VTzcqnIyV8tIxHZe7X1c+KoRVq0aVvoDmo3Dkd7S+ZMkbYYVhtzVc1UdIquVFTC/AkgMAyAAMHjUVMNLH2k8rY2eblwgWS26jadMs+Sniz9QieWw4Z9I7U1jk9KRVx/dRVOSqur6SDtXo1sauzhXe18vI53Vvh0vHlj+00m6RffT4nSVqg0gp31OrhyNVuVXfgsTHtkYjmrlq7UU3pzrcAFQAPCqnSmhWRWOfjwamVA9wRvrdnDVHKPW7OGqOUvWptImSM9cM4ao5R64Zw1RyjrTaTMEb64Zw1Ryj1wzhqjlHWm0mYI31wzhqjlHrhnDVHKOtNpMwRvrhnDVHKPXDOGqOUdabSRkjPXDOGqOUeuGcNUco602kzBG+uGcNUco9cM4ao5R1ptJGSM9cM4ao5R64Zw1RyjrTaTMEb64Zw1Ryj1wzhqjlHWm0kZIz1wzhqjlHrhnDVHKOtNpMwRvrhnDVHKPXDOGqOUdabSYIz1wzhqjlHrhnDVHKOtNpMEZ64Zw1Ryj1wzhqjlHWm0mCM9cM4ao5TZl1Y97WejzplcZVo1TaRBgyRQAAAAAAAAAAAABghb7To5ddGr7bFa5fD4E2aSMbIxWPTLV8AKlR17IqVkMyq2SNNVcpvwbSV8Sp+tb9TbSOj9BibNH7bFXGqu9CqVdasf+E5EyqZTKiiZqq9vZuRjtZVTwO/RKmbJN2j9vZNymzxUjI9H6ySFs7p4ka5qOxtVcKWigraOjo44W6rdVMLjxU4ff49+2utTJkjPXMHhlTkn0jiY9I448uX+85cNT7zU5cb6TqnTJBtvrWt9vUc5fBqnXHeKJ0bXSTsY5U2tVdx03GdzekgclxoIbjT9hPnUyi7FwesFVBU57GRH434PYe41jlcbuKu3Qul11WSplVvkmEwcz3QUtS2NIJKuRPZjz7X3lwVMoqLt+BUKp01HXL6LSK2V/sqioq7PgSYzH06cnNnyfvduKdVW4KtVROY9Uy1rNyoWqyz68Sxajo9XajX78FYqHXN1a3XREcrdy+CE1bPSYaqP0iRj9bZ7KYNOSwgwZAGFTJkAa6rfJBqt8kNgBrqt8kGq3yQ2AGuq3yQarfJDYAa6rfJBqt8kNgBrqt8kGq3yQ2AGuq3yQarfJDYAa6rfJBqt8kNgBrqt8kGq3yQ2AGuq3yQarfJDYAa6rfJBqt8kNgBrqt8kGq3yQ2AGuq3yQarfJDYAa6rfJBqt8kNgBrqt8kGqnkhsAMGQAAAAAAAAAAAAAGAMmF3HhU1cFK3M0rWfNcEe+v9KRewma5v8AyORQOWpc5JXse5HYXxXJzSqqsVGq3Cpu2HpLAuVXxOWVqtJaJNf0VuYzP+G1pAuwjlVytTau9cE5Pn0Jmd6NQrtVvz5opw+nfGw5u+WX8rHyeXLj1J/XvTTMljkdGuUSNybsHh2SPgYq7k8DmoXqyifjxVUO2L+rIc+SSZWRxxu/NeK/o0VyNwieB60MzPQ53zM2u9lFVE2HDWzLrdmzx8iSndBT2WKRzUVyr4L5msJ/XWJjRV2UnbnOMfmWIoWj11dTzPSNrUZIu967y+MXWai+aZO+HpuMrnGzeVq4S1cdWkmo3tPdXbsRPAkdILslnt6z6us9Vw1CEo6v05ZJldrK/VVfmaquh1DPUSJJNKusiYRE2Hrb6ORlejNZzmoqO1l8PgSaM2G9N7M7m+aGZVdoMGTaAAAAAADwlqoIHoyWZjHLuRzsKp7AZByXGvhttI6pnRysRUT2Uyu09qaZtTTxzMzqyNRyZ34A9QAAAAAAAADmdW0zapKV07EnXajM7QOkAwBkHBV3Wno62npJUf2k64bqps+87wAAAAAAAAAAAAAAAAAAAAAAAAAAAHPV1DaaFXrjO5M+Z7nHWak6pG5Mo1cgV5bhFLdlhnhc5zm6+uqbFIrSGSOmqIqqj1KerZt1WbFc34luWmh1tbsma2MZxtwVzSe369O+aJjtdiZTVblV+ARM08/pFNFL/wDYxHY+aZPOoYzUc5U3HDbZdSjgjXeyNrV+5DrnlT0d/wAjFWPSV2vRJ54Qr1Qvh5EyyXNKnxaQFWqoqr4GfpOWuXPFn5uP441rTbKN32l/E6UkRlImTkg1m0Tlc1yNyq5VNh5V0y+jtZEiuVU8Npz5J/pXHGeG1vhlulwcjF1Yme+pN1dupqhyRrHqKzbhPH4/E9bFTMprXHqN9uRMvVd+T2qtmrJ4sXavmnidscdR2kR0cqUT44UpUlfF7a+WPBS1UF1iq4I3u9hXtRUzuKzX5ZUU8jPfcqxrndhdv5HnVTSR0y9muq5difA007tJZI7jKtNnLEbqqqeZDWigrKGpTWc10GMKqL9Drpmq/DlO9rcNJfQsEK5Yhq5dSZrvia0z29kiqqJs8VMSyxuXDZGuXyRcmGkgZNI1VY2qu/BudWQAADBkjr7W+gWmefOHauq35ruAqN0hkvdZcq2JVVlIiNZjxwu381LbYKz060QSquXo3Vd80OXRigSnsTGyN9qoy9+fj/sR+i8jqC7V1rkXCI5XM+7/AGwB36ZfsCT7bfxJCz/sik/dN/Aj9Mv2BJ9tv4ntDI+HRdskXvtpstx54A96q826jk7Ooq42P8W7VVPoatvtrcqIldDld20itFbdRVFr9Inijnmkcuu6RNZU2nHSUFI3TKelbBHJAjNbVVMoxcIoFxe9rGq57ka1N6r4Ea7SG0tk1Fro85x4qn1IrSaWStu1HZ43qxkuHSY8d/8AIlWaP2tsHZehxKmMaypt+oEhFLHNGkkT2vYu5zVyh5yVlPFUx00kzWzSJljF3qVmx69q0mqbW16up3JrMRV3bEU00qiln0ioIoZFjkfHqo5PDKqBYmXe3yVforKpjp841Uzv+ZzzUlrdf455JMV+EVrNbfs8jeisNvo+yfHA1Zo9qSrvVfMiqr+3dP8Au0/BQOrSm6spbfJFT1SR1aK3DUX2sZOi03iknpKWN9Yx1S5jUc3O1XY2nFplR03qqWq7Fnb6zE7TG3GTqslqoG2+iqUpY0n7NrtfG3ON4HBpD/aa1fP8yYnvdtppuxmrI2v8U2rj6EDpZE+e926KORY3v9lHp4bd5Lpo3bG0iw+jtc5U/WO2uz55AlY5GSxtfG5HMcmUVFyinj6bTelOpe2Z27W6ysztRPMgNCpZEirKV7lc2CREbnwzn+Rx3GkdXaZyUySuia+NNdW71bhMoBY0vtsdP2CVsXaZxjOzPz3HRV11LRR9pUzsjau5VXeQl8sNAyyzup6dkckLNZrmpt2efmeGjdrjuFGytuDlqlxqRsk2oxE2AWCjuNHXoq0s7Jcb0Ten3HWU+opo7RpdSLSJ2cc6YcxN3kpcAAAAAAAAAAAAAAAAAAAAwpGPcrZ5EXzJM5KymWXD2e8nh5lHmzamTV6ZRdhpG/GxdimZ52QQPmldqsYiuVV8giHrYOzl12Jv8EMLT1EsKtazGfPYR9rudxuV4jlcxjaBzlw3G3CJs2lodPnciInwQzpUXFQypC1j3tRUTC42nVRW6lhbmRO0XOdpu55r2mDHHxY8dtxXLLt4r2mjhc1WpG3UVMK3wISsjgoGI5rGtYr0TON2VJRZMocFY9XKjTWVk8s3UbUVRE9r2x62Grt1kxlfM9Kj2oZE+BwRqsblc1dqnosj3JhXGPuxntGZW1E1RBFTM10RcyrjOEwTkVlpXxMWaN2sqZVudynPYExUSfZJ03je021LtGR2OljdsV6t/wAuTd1phVMNc5v8SQMmlRkdmgR+s9zn/BTujgiiTEbEb9x6gmhgyYMlAAAYKrpW9a+4UdpjXa52s/4f+JktZGss9O27vuSukdO5MYVUwmzGwCOTRh7URG3WrRE2IiKRNyoX6P3WirUqJJmufh737/in0Lxg47nbYLpS+j1Gsjc5RW7FRQI3S9yP0de5u1Fc1U+p7JM+n0UbLE3We2mRUTGfA6am0wVVrbb5Xydk1ERHIqa2zd4HPeZH2rR56UmcxtaxqrtVEzjIFctMFKtGySK9upJXp+lZnCZLDYqC30qvkpqlKmd/vyK7KqcdjtNpntUMkkcU0j26z3OXai+KEfdKWlob5QttC6s6u9tjFyiJkDp0gX0HSmgr5P1OEaq+W/P4lpSWNYklR7ezVM62dmDyraKnr6dYKmNHsX6p8iE/4OotbHpFSkec6msmPwA5rY5LlpjU1sO2CJurreCrhE/mel9/tfavkn4qWCioaegp0hpo0YxPqvzPCqtNPVXGnrpHSJLB7qIqYX57AO9Cr1X9u6f92n4KWg4JLTBJdmXJXSdsxuqiIqav4AcWmKZ0fm+238TssUjX2SiVrkVOyan34Oupp4qqnfBM3WjemHIQ9HorR0dYyoZNO7s3azWOcmEX6AcmkP8AaW0/a/MtBwVlpp6yup6uV0iSU65ajVTC/M7wKtob/Wrr+9T8XGW//IDv3X/ahM220wWySofA6Ryzu1nay5xv3fUJaYPW63PWk7dW6uMpq7sAZvn7Frf3LvwOLRD9gQ/ad+JLVVOyqppKeTKMkarVxvwp5W6gittI2mgVysbnCuXKgQF+/tVa/u/EtJwVdpgrK+nrJHSJJB7qNVML8zvAyAAAAAAAAAAAAAAAAAABgyYAja+PUlRzdmtvK9pXUPbZ0bhVjdI1JMeRZrknssX44I+SNksaxyNRzHJhUVNilSoe3SU0aRKySJWoqIxcpnaS6u+JystdHDGjYoGtRF1k8cKbv12oq7FwB6OcmDhqa+OByN95yrjCHRAvbUSTblXOwhK1io9V8nZPNPkY3PpG8sLMduipuE3ZLqYb8TFI5z4UV6q5V3qpzyt/Q5Oii/UIOW/lY827Y98GyIYQ6YKKon/VxrjzXYhynkdth/rEn2SdI22W+Sle58jkyqYwhJHqwmo64+mQAbaAAAAAAAADBkAAAANJI2SxujkajmOTCoqZRTcAQcmitsc9XMZJHnwY9UQ66Cy0Nvfr08Kdp/ndtd9SRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwZAHJcEzAi+TkI8kq5M0y/BUI1PkVKKh5vaioeuDVyL5AeFLHqW5G+Sr+JwVlM+WH2G5U6pWvbnCuRPgeSNc5/iuzxPDPjWZ9tutzlx6o6WJyRoxUXO7YdFNArGI1V25OpY8eC/QY1EyqLs+B7cphl515efHj17qwU1BTwNarY0V2Eyq7TrwaQu14WPwqazUXCm5JJHQBkFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABC+kzxXyRXSKtMrmxK1dzVVuUX67PvEFVNNe0cj19Hc2RGM8F1VRM/VVAmVMaqeSEdFdP/6XQzNjTEbpMxya2ETei/U8a2qqZbRPM6BI2OjRzFa/Lt6bF8gJfVTyQaqeSEa+ulSKpjqIOzcyBZU1JMqqYXx8FMur50csUFOkishbKqukxsXOz57AJHVb5J9Bqt/yp9CNlu7E7JIkZrSRJL+kfqoiLu+8zWVayWdtTCqsV+oqeaZcgEjqt/yp9Bqt/wAqfQ5K6tbRpGns68rsN1naqbsqqqeTLk6Sl7VjYkVHqxyvlw3KeS42gSIIxLq+SGmdDAj5J3OajdfYipv2+Rie5zxuqcUyObTIiyL2mN6IuzYBKGSLqK9KeWqkRjn9nCx+NbYuVXcngbespIu39Jg1Fjh7ZEa7Wynl8wJIEfRVs1RVPifFG1rWI/WY/W37k3fAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4J7bHUMqmue5PSFauU3tVE2KhltujasGq5yJDE6JE80XG357DuAEbBaWxPYr5lkayN0SN1URNVceXjsMpbHLSOpn1Uj4lajWorU2Ii/xJEAcdRQtnfI5XqnaQrCuE3IviZZRNZI96PXL4mxbvBM7f4nWAI5LZqNhWGZWSRRpFrK1F1mp5oe1TR+kUXo7pXIuz20RM5Rc7jrAHA+gkkRiyVLlljdrMfqJs2YVMeIkoHSdk51QvaxOVUdqJjamNx3gDggtrYfR8SOd2LnOTKb9b/2bSUDZErEV6p6UiIuz3dmDtAHBNbGS9tmRydrG2Ndm7VXea3GhdLFO+LLpHwLEjdxIgCJtUE0EzmpG9kGpt7RjWqrvhqksAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QH1AHy/vHvHDUPI/qHePeOGoeR/UB9QB8v7x7xw1DyP6h3j3jhqHkf1AfUAfL+8e8cNQ8j+od4944ah5H9QFPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//Z\n",
"text/html": [
"\n",
" <iframe\n",
" width=\"400\"\n",
" height=\"300\"\n",
" src=\"https://www.youtube.com/embed/g2YBWQnqOpw\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.YouTubeVideo at 0x7f0702316f10>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import YouTubeVideo\n",
"YouTubeVideo('g2YBWQnqOpw')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Quality Assessment"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Time</th>\n",
" <th>V1</th>\n",
" <th>V2</th>\n",
" <th>V3</th>\n",
" <th>V4</th>\n",
" <th>V5</th>\n",
" <th>V6</th>\n",
" <th>V7</th>\n",
" <th>V8</th>\n",
" <th>V9</th>\n",
" <th>...</th>\n",
" <th>V21</th>\n",
" <th>V22</th>\n",
" <th>V23</th>\n",
" <th>V24</th>\n",
" <th>V25</th>\n",
" <th>V26</th>\n",
" <th>V27</th>\n",
" <th>V28</th>\n",
" <th>Amount</th>\n",
" <th>Class</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>-1.359807</td>\n",
" <td>-0.072781</td>\n",
" <td>2.536347</td>\n",
" <td>1.378155</td>\n",
" <td>-0.338321</td>\n",
" <td>0.462388</td>\n",
" <td>0.239599</td>\n",
" <td>0.098698</td>\n",
" <td>0.363787</td>\n",
" <td>...</td>\n",
" <td>-0.018307</td>\n",
" <td>0.277838</td>\n",
" <td>-0.110474</td>\n",
" <td>0.066928</td>\n",
" <td>0.128539</td>\n",
" <td>-0.189115</td>\n",
" <td>0.133558</td>\n",
" <td>-0.021053</td>\n",
" <td>149.62</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.0</td>\n",
" <td>1.191857</td>\n",
" <td>0.266151</td>\n",
" <td>0.166480</td>\n",
" <td>0.448154</td>\n",
" <td>0.060018</td>\n",
" <td>-0.082361</td>\n",
" <td>-0.078803</td>\n",
" <td>0.085102</td>\n",
" <td>-0.255425</td>\n",
" <td>...</td>\n",
" <td>-0.225775</td>\n",
" <td>-0.638672</td>\n",
" <td>0.101288</td>\n",
" <td>-0.339846</td>\n",
" <td>0.167170</td>\n",
" <td>0.125895</td>\n",
" <td>-0.008983</td>\n",
" <td>0.014724</td>\n",
" <td>2.69</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1.0</td>\n",
" <td>-1.358354</td>\n",
" <td>-1.340163</td>\n",
" <td>1.773209</td>\n",
" <td>0.379780</td>\n",
" <td>-0.503198</td>\n",
" <td>1.800499</td>\n",
" <td>0.791461</td>\n",
Loading
Loading full blame...