Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Anomaly Detection"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"\n",
"from scipy.stats import multivariate_normal\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from sklearn.metrics import precision_recall_fscore_support\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.metrics import f1_score\n",
"from sklearn.metrics.pairwise import euclidean_distances\n",
"\n",
"from sklearn.cluster import KMeans\n",
"\n",
"import matplotlib.gridspec as gridspec\n",
"\n",
"from tqdm.notebook import tqdm\n",
"import ipywidgets as widgets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise 1 - Multivariate Gaussian distribution\n",
"You watched the video tutorial by Andrew Ng on anomaly detection using the multivariate Gaussian distribution. There is a data set on ILIAS containing credit card transactions made available by a European bank in September 2013 on [Kaggle](https://www.kaggle.com/mlg-ulb/creditcardfraud). Not surprisingly, the data set is anonymized, i.e. a PCA transformation was executed on all features (each feature therefore is a linear combination of the original but unknown features). The only exceptions are amount and time (milliseconds since first transaction). Finally, there is a class feature to indicate whether the transaction is fraudulent (value: 1) or genuine (value: 0). Implement fraud detection using the statistical approach introduced by Andrew Ng."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import YouTubeVideo\n",
"YouTubeVideo('g2YBWQnqOpw')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Quality Assessment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"df = pd.read_csv('creditcard.csv')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Check for null values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.isnull().any().any()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Split fraudulent data from genuine data\n",
"We start by separating the genuine data from the fraudulent data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"# genuine = ...\n",
"# anomalies = ...\n",
"# print(\"Genuine Transactions:\", genuine.shape[0])\n",
"# print(\"Anomalous Transaction:\", anomalies.shape[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"genuine = df[df.Class == 0]\n",
"anomalies = df[df.Class == 1]\n",
"print(\"Genuine Transactions:\", genuine.shape[0])\n",
"print(\"Anomalous Transaction:\", anomalies.shape[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Amount feature\n",
"Fortunately, that *Amount* feature has not been anonymized with the PCA transformation. So let's take a look at the *Amount* feature and see if we can find a pattern."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"genuine.Amount.loc[genuine.Amount < 500].hist(bins=100)\n",
"print(\"Mean\", genuine.Amount.mean())\n",
"print(\"Median\", genuine.Amount.median())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"anomalies.Amount.loc[anomalies.Amount < 500].hist(bins=100)\n",
"print(\"Mean\", anomalies.Amount.mean())\n",
"print(\"Median\", anomalies.Amount.median())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Interestingly the median is lower but the mean is higher for the fraudulent transactions. This suggests there are some high value oriented criminals and some that focus on withdrawals \"below the radar\" to avoid detection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feature Engineering"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Distribution of the features\n",
"We want to model our anomaly detection by fitting a multivariate gaussian distribution. Therefore it makes sense to plot the distribution of our features. We plot the genuine and the fraudulent transactions separately."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"feature_cols = genuine.drop(columns=[\"Class\"]).columns\n",
"plt.figure(figsize=(12, len(feature_cols)*4))\n",
"gs = gridspec.GridSpec(len(feature_cols), 2)\n",
"\n",
"for i, col in enumerate(tqdm(feature_cols)):\n",
" ax = plt.subplot(gs[i])\n",
" sns.distplot(genuine[col], color='g',label='Genuine')\n",
" sns.distplot(anomalies[col], color='r',label='Anomaly')\n",
" ax.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Based on the plots we made, drop the features that might not be useful."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"# features_to_drop = [...]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"features_to_drop = ['Time', 'V8', 'V13', 'V15', 'V20', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* We can see that the distribution of the fraudulent transaction (class=1) is matching with the genuine transactions (class=0) for the following features:\n",
" * *V8*, *V13*, *V15*, *V20*, *V22*, *V23*, *V24*, *V25*, *V26*, *V27*, *V28*\n",
" * Therefore they might not be useful in finding fradulent transactions. \n",
"* The variable *Time* is also not a useful variable since it contains the seconds elapsed between the transaction for that record and the first transaction in the dataset. The data is in increasing order, which can lead to a singular covariance matrix. Also it is not normally distributed."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's drop these features in our splitted dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"genuine = genuine.drop(features_to_drop, axis=1)\n",
"anomalies = anomalies.drop(features_to_drop, axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Split the data\n",
"We split the targets from the features"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"genuine_X = genuine.drop(columns=[\"Class\"]).values\n",
"genuine_y = genuine.Class.values\n",
"\n",
"anomalies_X = anomalies.drop(columns=[\"Class\"]).values\n",
"anomalies_y = anomalies.Class.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we use 60% of the *genuine* data as the training set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(genuine_X, genuine_y, test_size=0.4, random_state=42)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And add the anomalies to the test set"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Add anomalies to the test set\n",
"X_test = np.concatenate([X_test, anomalies_X])\n",
"y_test = np.concatenate([y_test, anomalies_y])\n",
"\n",
"print(X_test.shape)\n",
"print(y_test.shape)\n",
"print(\"Number of anomalies:\", y_test.sum())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*(Note that because we further split the data we don't have to shuffle it)*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can further split the test data into a test set and a validation set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.5, random_state=42)\n",
"print(X_test.shape)\n",
"print(y_test.shape)\n",
"print(\"Number of anomalies y_test:\", y_test.sum())\n",
"print(X_val.shape)\n",
"print(y_val.shape)\n",
"print(\"Number of anomalies y_val:\", y_val.sum())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Normalization\n",
"Now that we have splitted our data, we can normalize it by applying z-normalization.\n",
"\n",
"> Normalize the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"# scaler = ...\n",
"# X_train = ...\n",
"# X_test = ...\n",
"# X_val = ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)\n",
"X_val = scaler.transform(X_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Baseline model\n",
"To get an idea on how good our model performs, let's implement a dummy predictor. Our dummy model should mark each transaction as genuine\n",
"\n",
"> Implement the dummy predictor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"lines_to_next_cell": 2,
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"def dummy_predict(X):\n",
" # START YOUR CODE\n",
" pass\n",
" # END YOUR CODE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"def dummy_predict(X):\n",
" return np.zeros(X.shape[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Now predict on the test set and calculate the accuracy by using the Scikit-Learn function [accuracy_score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"# Calculate the accuracy on the test set"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"y_pred = dummy_predict(X_test)\n",
"accuracy_score(y_pred, y_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wow, such a high accuracy! It seems like our work is done and we can spend the rest of our day drinking coffee!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Okay, let's be honest there must be a mistake. \n",
"\n",
"> Let's check how many fraudulent and genuine data we have."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"# Calculate the percentage of fraudulent data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"print(df.Class.value_counts())\n",
"print(\"Percentage of fraudulent data:\", 100*df.Class.value_counts()[1] /len(df))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It looks like our dataset is highly imbalanced! We could create a balanced test set and then calculate the accuracy. But there must be another way... Let's plot the confusion matrix first."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def plot_confusion_matrix(cm):\n",
" fig, (ax1) = plt.subplots(ncols=1, figsize=(5,5))\n",
" sns.heatmap(cm, \n",
" xticklabels=['Genuine', 'Fraud'],\n",
" yticklabels=['Genuine', 'Fraud'],\n",
" annot=True,ax=ax1,\n",
" linewidths=.2,linecolor=\"Darkblue\", cmap=\"Blues\")\n",
" plt.title('Confusion Matrix', fontsize=14)\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cm = confusion_matrix(y_test, y_pred)\n",
"plot_confusion_matrix(cm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that we have a lot of *True Positives* and only few *True Negatives*. This is due to the class imbalance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Precision, Recall and F1 Score\n",
"For a skewed data set, we often use other metrics like [Precision](https://en.wikipedia.org/wiki/Precision_and_recall), [Recall](https://en.wikipedia.org/wiki/Precision_and_recall) or the harmonic mean of both, called [F1 Score](https://en.wikipedia.org/wiki/F1_score). Scikit-Learn provides the function [precision_recall_fscore_support](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html) which calculates all these metrics at once."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average=\"binary\")\n",
"print(\"Precision:\", precision)\n",
"print(\"Recall\", recall)\n",
"print(\"F1\", f1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now it's clear that our dummy anomaly detection model performs really bad! So let's stick to those metrics."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fit the multivariate gaussian distribution\n",
"Now that we have splitted our data set into a training, test and cross validation set, we can train our anomaly detection model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Complete the `fit` function which calculate the *mean* and the *covariance* matrix from the training set and then fits a multivariate gaussian distribution. Use the [multivariate_normal](https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html) function from SciPy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"lines_to_next_cell": 2,
"solution2": "shown",
"solution2_first": true
},
"outputs": [],
"source": [
"def fit(X):\n",
" pass\n",
" # START YOUR CODE HERE\n",
" #return gauss\n",
" # END YOUR CODE HERE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "shown"
},
"outputs": [],
"source": [
"def fit(X):\n",
" mu = np.mean(X, axis=0)\n",
" cov = np.cov(X.T)\n",
" gauss = multivariate_normal(mean=mu, cov=cov)\n",
" return gauss"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gauss = fit(X_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict anomalies\n",
"Let's use our fitted gaussian distribution to predict anomalies. \n",
"\n",
"> Use the `pdf` method of the gauss model to calculate the densities. Then mark all elements which are below the threshold `epsilon` as an anomaly. We use the value 10<sup>-20</sup> as the threshold."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"def predict(X, gauss, eps):\n",
" # START YOUR CODE\n",
" pass\n",
" # END YOUR CODE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"def predict(X, gauss, eps):\n",
" densities = gauss.pdf(X)\n",
" y_pred = densities < eps\n",
" return y_pred"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eps = 1e-20\n",
"y_pred = predict(X_test, gauss, eps)\n",
"precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average=\"binary\")\n",
"print(\"Precision:\", precision)\n",
"print(\"Recall\", recall)\n",
"print(\"F1\", f1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cm = confusion_matrix(y_test, y_pred)\n",
"plot_confusion_matrix(cm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* We have a relatively high recall value, which means that our model does detect most of the anomalies. \n",
"* The low precision value however indicates that we have a lot of *False Positives*. *False Positives* are the genuine transaction which were classified as frauds. \n",
"* This might be a good model if for example the model is only used to determine if the user has to enter an extra verification code. However if those cards would be blocked, this would be really bad."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Hyperparameter tuning\n",
"Our threshold `eps` is the hyperparameter we would like to tune. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But first we take a look at our densities"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"densities = gauss.pdf(X_val)\n",
"print(\"Min density:\", densities.min())\n",
"print(\"Max density:\", densities.max())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The values of our densities seem to be rather small! Luckily when we are dealing with probabilities we can always apply a logarithmic transformation as it is a strictly monotonic function. Scipy already privdes an implementation `logpdf`. \n",
"Let's check the values of our log transformed densities."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"densities = gauss.logpdf(X_val)\n",
"print(\"Min density:\", densities.min())\n",
"print(\"Max density:\", densities.max())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These values look much better. However in order to reuse our existing code we need to redefine our `predict` function. \n",
"\n",
"> Reimplement the `predict` function but this time use `logpdf` instead of the `pdf` function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"def predict(X, gauss, eps):\n",
" # YOUR CODE\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"def predict(X, gauss, eps):\n",
" densities = gauss.logpdf(X)\n",
" y_pred = densities < eps\n",
" return y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Fit our threshold by sorting\n",
"We can try to find the optimal threshold by sorting our densities and then picking the density with the index of the number of anomalies on our validation set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"expected_anomalies = y_val.sum()\n",
"sorted_densities = np.sort(gauss.logpdf(X_val))\n",
"best_eps = (sorted_densities[expected_anomalies] + \n",
" 0.5 * (sorted_densities[expected_anomalies + 1] - \n",
" sorted_densities[expected_anomalies]))\n",
"\n",
"\n",
"y_pred = predict(X_val, gauss, best_eps)\n",
"f1 = f1_score(y_val, y_pred, average=\"binary\")\n",
"print(\"Best epsilon {} with f1 score {}\".format(best_eps, f1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wow this worked out very well on our validation set! Let's check if we can still improve our result by applying a grid search approach."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Grid Search Approach"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We calculate the densities for each anomaly and assume that the maximum epsilon is equal to the maximum density. We take $-500$ as our minimum `epsilon` for now."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"densities.min()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_anomalies = anomalies.drop(columns=[\"Class\"]).values\n",
"densities = gauss.logpdf(X_val)\n",
"\n",
"max_eps = densities.max()\n",
"print(\"Maximum epsilon:\", max_eps)\n",
"\n",
"min_eps = -500\n",
"print(\"Minimum epsilon:\", min_eps)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This means the optimal value of `epsilon` lies between -500 and -16. Let's try to find it by using a grid search approach.\n",
"> Loop through the list of epsilons and calculate for each epsilon the *precision*, *recall* and *f1* score. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden",
"solution2_first": true
},
"outputs": [],
"source": [
"f1_scores = []\n",
"recall_scores = []\n",
"precision_scores = []\n",
"\n",
"epsilons = np.linspace(min_eps, max_eps, num=1000)\n",
"\n",
"# START YOUR CODE\n",
"#for eps in tqdm(epsilons):\n",
"\n",
"#best_eps = epsilons[np.argmax(f1_scores)]\n",
"#best_f1 = np.max(f1_scores)\n",
"\n",
"#print(\"Best epsilon {} with f1 score {}\".format(best_eps, best_f1))\n",
"# END YOUR CODE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"solution2": "hidden"
},
"outputs": [],
"source": [
"f1_scores = []\n",
"recall_scores = []\n",
"precision_scores = []\n",
"\n",
"epsilons = np.linspace(min_eps, max_eps, num=1000)\n",
"densities = gauss.logpdf(X_val)\n",
"for eps in tqdm(epsilons):\n",
" y_pred = densities < eps\n",
" precision, recall, f1, _ = precision_recall_fscore_support(y_val, y_pred, average=\"binary\")\n",
" precision_scores.append(precision)\n",
" recall_scores.append(recall)\n",
" f1_scores.append(f1)\n",
" \n",
"best_eps_gridsearch = epsilons[np.argmax(f1_scores)]\n",
"best_f1 = np.max(f1_scores)\n",
"\n",
"print(\"Best epsilon {} with f1 score {}\".format(best_eps_gridsearch, best_f1))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Visualization\n",
"Let's visualize the *F1*, *Precision* and *Recall* curves"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots(figsize=(10,8))\n",
"ax.plot(epsilons, f1_scores, label=\"f1\")\n",
"ax.plot(epsilons, precision_scores, label=\"precision\")\n",
"ax.plot(epsilons, recall_scores, label=\"recall\")\n",
"ax.plot(best_eps, best_f1, marker=\"o\")\n",
"ax.set_xlabel(\"Epsilon\")\n",
"ax.set_ylabel(\"Score\")\n",
"ax.legend()\n",
"ax.set_xlim(max_eps, min_eps)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Evaluate the model on the test set"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we have selected an epsilon, we can check how good our model performs on the test set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred = predict(X_test, gauss, best_eps)\n",
"precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average=\"binary\")\n",
"print(\"Precision:\", precision)\n",
"print(\"Recall\", recall)\n",
"print(\"F1\", f1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We plot the confusion matrix again"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cm = confusion_matrix(y_test, y_pred)\n",
"plot_confusion_matrix(cm)"
]
}
],
"metadata": {
"jupytext": {
"text_representation": {
"extension": ".py",
"format_name": "percent",
"format_version": "1.2",
"jupytext_version": "0.8.6"
}
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"