Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
S2S AI Competition Scoring Image
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tasko Olevski
S2S AI Competition Scoring Image
Commits
dbb8d845
Commit
dbb8d845
authored
3 years ago
by
Aaron Spring
Browse files
Options
Downloads
Patches
Plain Diff
use average RPS for RPSS
parent
d9f38b9e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!5
use average RPS for RPSS
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scoring/scoring_script.py
+14
-15
14 additions, 15 deletions
scoring/scoring_script.py
with
14 additions
and
15 deletions
scoring/scoring_script.py
+
14
−
15
View file @
dbb8d845
...
...
@@ -11,7 +11,7 @@ def assert_predictions_2020(preds_test, exclude='week'):
from
xarray.testing
import
assert_equal
# doesnt care about attrs but checks coords
if
isinstance
(
exclude
,
str
):
exclude
=
[
exclude
]
# is dataset
assert
isinstance
(
preds_test
,
xr
.
Dataset
)
...
...
@@ -19,12 +19,12 @@ def assert_predictions_2020(preds_test, exclude='week'):
if
'
data_vars
'
not
in
exclude
:
assert
'
tp
'
in
preds_test
.
data_vars
assert
'
t2m
'
in
preds_test
.
data_vars
## coords
# ignore week coord if not dim
if
'
week
'
in
exclude
and
'
week
'
in
preds_test
.
coords
and
'
week
'
not
in
preds_test
.
dims
:
preds_test
=
preds_test
.
drop
(
'
week
'
)
# forecast_time
if
'
forecast_time
'
not
in
exclude
:
d
=
pd
.
date_range
(
start
=
'
2020-01-02
'
,
freq
=
'
7D
'
,
periods
=
53
)
...
...
@@ -52,13 +52,13 @@ def assert_predictions_2020(preds_test, exclude='week'):
lead
=
[
pd
.
Timedelta
(
f
'
{
i
}
d
'
)
for
i
in
[
14
,
28
]]
lead_time
=
xr
.
DataArray
(
lead
,
dims
=
'
lead_time
'
,
coords
=
{
'
lead_time
'
:
lead
},
name
=
'
lead_time
'
)
assert_equal
(
lead_time
,
preds_test
[
'
lead_time
'
])
# category
if
'
category
'
not
in
exclude
:
cat
=
np
.
array
([
'
below normal
'
,
'
near normal
'
,
'
above normal
'
],
dtype
=
'
<U12
'
)
category
=
xr
.
DataArray
(
cat
,
dims
=
'
category
'
,
coords
=
{
'
category
'
:
cat
},
name
=
'
category
'
)
assert_equal
(
category
,
preds_test
[
'
category
'
])
# size
if
'
size
'
not
in
exclude
:
from
dask.utils
import
format_bytes
...
...
@@ -66,7 +66,7 @@ def assert_predictions_2020(preds_test, exclude='week'):
# todo: refine for dtypes
assert
size_in_MB
>
30
assert
size_in_MB
<
250
# no other dims
if
'
dims
'
in
exclude
:
assert
set
(
preds_test
.
dims
)
-
{
'
category
'
,
'
forecast_time
'
,
'
latitude
'
,
'
lead_time
'
,
'
longitude
'
}
==
set
()
...
...
@@ -97,20 +97,19 @@ if __name__ == "__main__":
# climatology forecast rps
rps_clim
=
xs
.
rps
(
obs_p
,
clim_p
,
category_edges
=
None
,
dim
=
[],
input_distributions
=
'
p
'
).
compute
()
# submission rpss wrt climatology
rpss
=
(
1
-
rps_ML
/
rps_clim
)
## RPSS
# penalize # https://renkulab.io/gitlab/aaron.spring/s2s-ai-challenge-template/-/issues/7
expect
=
obs_p
.
sum
(
'
category
'
)
expect
=
expect
.
where
(
expect
>
0.98
).
where
(
expect
<
1.02
)
# should be True if not all NaN
# https://renkulab.io/gitlab/aaron.spring/s2s-ai-challenge-template/-/issues/7
# penalize
penalize
=
obs_p
.
where
(
fct_p
!=
1
,
other
=-
10
).
mean
(
'
category
'
)
rpss
=
rpss
.
where
(
penalize
!=
0
,
other
=-
10
)
# https://renkulab.io/gitlab/aaron.spring/s2s-ai-challenge-template/-/issues/50
rps_ML
=
rps_ML
.
where
(
expect
,
other
=
2
)
# assign RPS=2 where value was expected but NaN found
# following Weigel 2007: https://doi.org/10.1175/MWR3280.1
rpss
=
1
-
(
rps_ML
.
groupby
(
'
forecast_time.year
'
).
mean
()
/
rps_clim
.
groupby
(
'
forecast_time.year
'
).
mean
())
# clip
rpss
=
rpss
.
clip
(
-
10
,
1
)
# average over all forecasts
rpss
=
rpss
.
mean
(
'
forecast_time
'
)
# weighted area mean
weights
=
np
.
cos
(
np
.
deg2rad
(
np
.
abs
(
rpss
.
latitude
)))
# spatially weighted score averaged over lead_times and variables to one single value
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment