Skip to content
Snippets Groups Projects
Play.ipynb 2.49 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Read in JHU CSSE data\n",
    "\n",
    "I will switch to [xarray](http://xarray.pydata.org/en/stable/), but ATM, it's easier like this..."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def read_jhu_covid_df(name):\n",
    "    filename = f\"../data/covid-19_jhu-csse/time_series_19-covid-{name}.csv\"\n",
    "    df = pd.read_csv(filename)\n",
    "    df = df.set_index(['Province/State', 'Country/Region', 'Lat', 'Long'])\n",
    "    df.columns = pd.to_datetime(df.columns)\n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "confirmed_df = read_jhu_covid_df(\"Confirmed\")\n",
    "deaths_df = read_jhu_covid_df(\"Deaths\")\n",
    "recovered_df = read_jhu_covid_df(\"Recovered\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def summarize_df(df, name):\n",
    "    ser = df.groupby(level='Country/Region').sum().iloc[:,-1].sort_values(ascending=False)\n",
    "    ser.name = f\"Total {name}\"\n",
    "    return ser"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "confirmed_ser = summarize_df(confirmed_df, \"Confirmed\")\n",
    "deaths_ser = summarize_df(deaths_df, \"Deaths\")\n",
    "recovered_ser = summarize_df(recovered_df, \"Recovered\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Read in World Bank data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "import zipfile\n",
    "zf = zipfile.ZipFile(\"../data/worldbank/SP.POP.TOTL.zip\")\n",
    "pop_df = pd.read_csv(zf.open(\"API_SP.POP.TOTL_DS2_en_csv_v2_821007.csv\"), skiprows=4)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}