Skip to content
Snippets Groups Projects
Commit 40fa9e02 authored by Rok Roškar's avatar Rok Roškar
Browse files

chore: apply black

parent be2f8827
No related branches found
No related tags found
1 merge request!110feat: add NYTime data
......@@ -104,4 +104,4 @@ def _correct_trentino(df):
ItalyRegionalCaseConverter._register()
ItalyNationalCaseConverter._register()
\ No newline at end of file
ItalyNationalCaseConverter._register()
......@@ -52,20 +52,29 @@ class JhuCsseGlobalCaseConverter(CaseConverterImpl):
"Slovakia": "Slovak Republic",
"Saint Martin": "St. Martin (French part)",
"Syria": "Syrian Arab Republic",
'Taiwan*': 'Taiwan',
"Taiwan*": "Taiwan",
"Venezuela": "Venezuela, RB",
"US": "United States",
}
df = df.replace(region_jhu_wb_map)
# add in missing data from Harvard worldmap
missing_countries = pd.unique(df.loc[df["region_label"].isin(pop_df["Country Name"]) == False, "region_label"])
worldmap_df = pd.read_csv(self.atlas_folder / "worldmap" / "country_centroids.csv")
worldmap_df = worldmap_df[['name', 'sov_a3', 'pop_est']]
worldmap_df = worldmap_df.rename({"name": "Country Name",
"sov_a3": "Country Code",
"pop_est": "2018"}, axis=1)
worldmap_df = worldmap_df.loc[worldmap_df["Country Name"].isin(missing_countries)]
missing_countries = pd.unique(
df.loc[
df["region_label"].isin(pop_df["Country Name"]) == False, "region_label"
]
)
worldmap_df = pd.read_csv(
self.atlas_folder / "worldmap" / "country_centroids.csv"
)
worldmap_df = worldmap_df[["name", "sov_a3", "pop_est"]]
worldmap_df = worldmap_df.rename(
{"name": "Country Name", "sov_a3": "Country Code", "pop_est": "2018"},
axis=1,
)
worldmap_df = worldmap_df.loc[
worldmap_df["Country Name"].isin(missing_countries)
]
pop_df = pop_df.append(worldmap_df)
pop_ser = pop_df.set_index("Country Code")["2018"]
......@@ -74,12 +83,12 @@ class JhuCsseGlobalCaseConverter(CaseConverterImpl):
for i, r in pop_df[["Country Name", "Country Code"]].iterrows()
}
df["country"] = df["region_label"].replace(country_code_map)
df['country_label'] = df['region_label']
df["country_label"] = df["region_label"]
merged = df.loc[df["country"].isin(pop_ser.index)].copy()
merged["population"] = merged.apply(lambda r: pop_ser.loc[r["country"]], axis=1)
merged['region_iso'] = merged['country']
merged['tested'] = np.nan
merged["region_iso"] = merged["country"]
merged["tested"] = np.nan
return self._set_common_columns(merged)
def read_ser(self, path, name):
......
......@@ -31,7 +31,11 @@ region_populations = [
{"region_iso": "ES-IB", "region_label": "Baleares", "population": "1150839"},
{"region_iso": "ES-CN", "region_label": "Canarias", "population": "2127685"},
{"region_iso": "ES-CB", "region_label": "Cantabria", "population": "580229"},
{"region_iso": "ES-CM", "region_label": "Castilla-La Mancha", "population": "2106331"},
{
"region_iso": "ES-CM",
"region_label": "Castilla-La Mancha",
"population": "2106331",
},
{"region_iso": "ES-CL", "region_label": "Castilla y León", "population": "2418694"},
{"region_iso": "ES-CT", "region_label": "Cataluña", "population": "7619494"},
{"region_iso": "ES-CE", "region_label": "Ceuta", "population": "84777"},
......@@ -67,7 +71,7 @@ class SpainCaseConverter(CaseConverter):
# calculate incidence rates
merged = df_conv.merge(pd.DataFrame(region_populations))
merged['country'] = 'ESP'
merged["country"] = "ESP"
return self._set_common_columns(merged)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment