Skip to content
Snippets Groups Projects
Jupyter Notebook Block 1 - Introduction to Image Classification.ipynb 49.6 KiB
Newer Older
Mirko Birbaumer's avatar
Mirko Birbaumer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "df630e55-57dd-470a-849b-f1bc90ac719e"
    }
   },
   "source": [
    "# 1. Importing and Visualization of CIFAR-10 Dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "409a1ab7-fe1d-4430-b904-7694020a6223"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "# function to import CIFAR-10 data set\n",
    "def unpickle(file):\n",
    "    import pickle\n",
    "    with open(file, 'rb') as fo:\n",
    "        dict = pickle.load(fo, encoding='bytes')\n",
    "    return dict\n",
    "data_batch_1 = unpickle(\"./data/data_batch_1\")\n",
    "data_batch_2 = unpickle(\"./data/data_batch_2\")\n",
    "data_batch_3 = unpickle(\"./data/data_batch_3\")\n",
    "data_batch_4 = unpickle(\"./data/data_batch_4\")\n",
    "data_batch_5 = unpickle(\"./data/data_batch_5\")\n",
    "test_batch = unpickle(\"./data/test_batch\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "ce2be501-0be3-4750-8207-dfc00d7db01a"
    }
   },
   "source": [
    "What is the data structure of e.g. data_batch_1 ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "f77bd9ec-de3b-4c56-b08d-4a65f0780408"
    }
   },
   "outputs": [],
   "source": [
    "type(data_batch_1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "09a5b60b-dcbb-4f97-ab57-e4611c253e2e"
    }
   },
   "source": [
    "What are the keys of e.g. data_batch_1 ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "c874a7c9-de0c-4ccd-a0f1-8f8a3265a0b6"
    }
   },
   "outputs": [],
   "source": [
    "data_batch_1.keys()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "a7f910e7-0b11-453b-84d5-df6ac88ac6dd"
    }
   },
   "source": [
    "What is the data structure of data_batch_1[b'data'] ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "fe299a35-c930-4078-97b7-c9b67f42ec42"
    }
   },
   "outputs": [],
   "source": [
    "type(data_batch_1[b'data'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "3f978c4f-50d0-4f00-9f19-bf8744e505a3"
    }
   },
   "source": [
    "What is the data structure of data_batch_1[b'labels'] ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "46a97575-36c0-4920-a8dc-762e94239b7e"
    }
   },
   "outputs": [],
   "source": [
    "type(data_batch_1[b'labels'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "2fd19982-c318-4303-8042-7a5a6998d175"
    }
   },
   "source": [
    "What is the shape of data_batch_1[b'data'] ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "b012720d-81f8-455d-8ce7-bfca64a842c8"
    }
   },
   "outputs": [],
   "source": [
    "data_batch_1[b'data'].shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "378aeda2-a547-435e-b28b-09ceb0074a53"
    }
   },
   "source": [
    "What is the size of data_batch_1[b'labels'] ?\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "49c776cb-c8aa-461b-a0da-4f4d38342e2e"
    }
   },
   "outputs": [],
   "source": [
    "len(data_batch_1[b'labels'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "02ca495c-e6d2-48d4-9bc2-2295272d5f6f"
    }
   },
   "source": [
    "What are the first 10 elements of data_batch_1[b'labels'] ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "438920f4-774e-4e94-9b7c-30a2106d163c"
    }
   },
   "outputs": [],
   "source": [
    "data_batch_1[b'labels'][:10]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "1e599fcd-a46c-4750-94f8-1cf4ad8fb342"
    }
   },
   "source": [
    "What is the data type of data_batch_1[b'data'] ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "7617a699-c3d5-434f-97a5-3443489ac9db"
    }
   },
   "outputs": [],
   "source": [
    "data_batch_1[b'data'].dtype"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "067d850d-0411-4af6-8714-a79b310ca8c1"
    }
   },
   "source": [
    "Let us concatenate the batch training data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "942f351b-b771-4375-8df2-eec28391a576"
    }
   },
   "outputs": [],
   "source": [
    "X_train=np.concatenate([data_batch_1[b'data'], \n",
    "                         data_batch_2[b'data'], \n",
    "                         data_batch_3[b'data'], \n",
    "                         data_batch_4[b'data'], \n",
    "                         data_batch_5[b'data']], \n",
    "                         axis = 0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "b289f0b9-b3ab-480b-9ae6-76a893980efe"
    }
   },
   "source": [
    "Let us concatenate the training labels"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "9b85b9a0-5f2b-4c68-a74f-82f1ec212215"
    }
   },
   "outputs": [],
   "source": [
    "y_train=np.concatenate([data_batch_1[b'labels'] , \n",
    "                data_batch_2[b'labels'],\n",
    "                data_batch_3[b'labels'],\n",
    "                data_batch_4[b'labels'],\n",
    "                data_batch_5[b'labels']], \n",
    "                axis = 0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "d9967582-1305-4b95-948b-e75c46fc49bb"
    }
   },
   "source": [
    "Let us define the test data as X_test"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "5c85918c-f89e-4156-8cdd-ca38d14afbb9"
    }
   },
   "outputs": [],
   "source": [
    "X_test = test_batch[b'data']\n",
    "X_test.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "48754d72-9acd-49cf-b209-737c45047284"
    }
   },
   "source": [
    "Let us cast the test labels as ndarray"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "5f913d95-aa49-4727-8c6f-5630cbf59741"
    }
   },
   "outputs": [],
   "source": [
    "y_test=np.array(test_batch[b'labels']) \n",
    "y_test.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "f4c3aa97-0d97-4e9c-a6b3-f2d2b1f08632"
    }
   },
   "source": [
    "What is the shape of X_train ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "a0eb7a33-19c9-46e4-b471-6f7904389177"
    }
   },
   "outputs": [],
   "source": [
    "X_train.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "81d3c33f-544e-44c8-8260-e89143cc6ef1"
    }
   },
   "source": [
    "What is the shape of Y_train ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "d699e7a7-efc0-421f-bd8d-2d2b34a09516"
    }
   },
   "outputs": [],
   "source": [
    "y_train.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "d0a61e44-a2a9-4dff-9849-5f6a0e232290"
    }
   },
   "source": [
    "Let us visualize an image. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "d817d603-7d37-4ff2-b3d1-e95875b48f8f"
    },
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "plt.imshow(X_train[20].reshape((3,32,32)).transpose((1,2,0)).astype('uint8'))\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "- By means of `reshape` we can convert an array from one shape to another without \n",
    "copying any data. To do this, we pass a tuple indicating the new shape to the `reshape` array instance method. \n",
    "\n",
    "- By default, `NumPy` arrays are created in _row major_ order. Spatially this means, that if we have a two-dimensional array of data, the items in each row of the array are stored in adjacent memory locations. In the case of a three-dimensional array of data, the items along `axis=2` are stored in adjacent order. Since the first 32 entries of the array `X_train[0]` are the red channel values of the first row of the image, etc., we need to pass the tuple $(3,32,32)$ to `reshape`. In conclusion, when __reshaping__ the array, higher order dimensions are traversed _first_ (e.g. axis $ 2 $ before advancing on axis $ 1 $.) \n",
    "\n",
    "- `plt.imshow` needs for each inner list the values representing a pixel. Here, with \n",
    "an RGB image, there are 3 values. We thus need to transpose the array : the RGB values need to be located along `axis=2`. \n",
    "\n",
    "- Using ndarray's `astype` method, we can cast an array from one `dtype` to another. `uint8` represents unsigned 8-bit integer types. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they only render 8 bits/channel? Because that is about all the human eye can see."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "38cf20c0-9404-4f32-91ed-a00e910832f8"
    }
   },
   "source": [
    "We visualize some examples from the dataset.\n",
    "We show a few examples of training images from each class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "ba3743b9-ea50-4201-ad99-5fa47e8b82fb"
    }
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']\n",
    "num_classes = len(classes)\n",
    "samples_per_class = 7\n",
    "\n",
    "\n",
    "\n",
    "for y, cls in enumerate(classes):\n",
    "    idxs = np.flatnonzero(y_train == y)\n",
    "    idxs = np.random.choice(idxs, samples_per_class, replace=False)\n",
    "    for i, idx in enumerate(idxs):\n",
    "        plt_idx = i * num_classes + y + 1\n",
    "        plt.subplot(samples_per_class, num_classes, plt_idx)\n",
    "        plt.imshow(X_train[idx].reshape((3,32,32)).transpose((1,2,0)).astype('uint8'))\n",
    "        plt.axis('off')\n",
    "        if i == 0:\n",
    "            plt.title(cls)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "- When iterating over a sequence we often want to keep track of the index of the \n",
    "current item. Python's built-in function `enumerate` returns a sequence of $i$, value \n",
    "tuples.\n",
    "\n",
    "- `np.flatnonzero` returns indices that are non-zero in the (flattened version of) `y_train == y`, that is, it returns the indices for the elements that are `True`.\n",
    "\n",
    "- `np.random.choice(..., replace=False)` generates a random sample from a given 1-D array without replacement.\n",
    "\n",
    "\n",
    "- The `subplot()` command specifies `numrows`, `numcols`, `fignum` where `fignum` ranges from $ 1 $ to `numrows*numcols`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "ab168c02-9867-455d-815d-c2de707e2f87"
    }
   },
   "source": [
    "# 2. K-Nearest-Neighbour Classifier"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "36557d31-2ba4-416c-8ead-a92fb7446e85"
    }
   },
   "source": [
    " We subsample the data for more efficient code execution in this exercise."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "26316896-3b01-455b-9a0a-87278f088d83"
    }
   },
   "outputs": [],
   "source": [
    "num_training = 5000\n",
    "mask = range(num_training)\n",
    "X_train = X_train[mask]\n",
    "y_train = y_train[mask]\n",
    "\n",
    "num_test = 500\n",
    "mask = range(num_test)\n",
    "X_test = X_test[mask]\n",
    "y_test = y_test[mask]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "27db2b6f-c417-4d15-bff4-8c00d58cb808"
    }
   },
   "source": [
    "We define Class KNearestNeighbor."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "497fbf77-9a17-4b35-a0d8-375972850902"
    }
   },
   "outputs": [],
   "source": [
    "class KNearestNeighbor():\n",
    "  \"\"\" a kNN classifier with L2 distance \"\"\"\n",
    "\n",
    "  def __init__(self):\n",
    "    pass\n",
    "\n",
    "  def train(self, X, y):\n",
    "    \"\"\"\n",
    "    Train the classifier. For k-nearest neighbors this is just \n",
    "    memorizing the training data.\n",
    "\n",
    "    Inputs:\n",
    "    - X: A numpy array of shape (num_train, D) containing the training data\n",
    "      consisting of num_train samples each of dimension D.\n",
    "    - y: A numpy array of shape (N,) containing the training labels, where\n",
    "         y[i] is the label for X[i].\n",
    "    \"\"\"\n",
    "    self.X_train = X.astype('float')\n",
    "    self.y_train = y\n",
    "    \n",
    "  def predict(self, X, k=1, num_loops=0):\n",
    "    \"\"\"\n",
    "    Predict labels for test data using this classifier.\n",
    "\n",
    "    Inputs:\n",
    "    - X: A numpy array of shape (num_test, D) containing test data consisting\n",
    "         of num_test samples each of dimension D.\n",
    "    - k: The number of nearest neighbors that vote for the predicted labels.\n",
    "    - num_loops: Determines which implementation to use to compute distances\n",
    "      between training points and testing points.\n",
    "\n",
    "    Returns:\n",
    "    - y: A numpy array of shape (num_test,) containing predicted labels for the\n",
    "      test data, where y[i] is the predicted label for the test point X[i].  \n",
    "    \"\"\"\n",
    "    if num_loops == 0:\n",
    "      dists = self.compute_distances_no_loops(X)\n",
    "    elif num_loops == 1:\n",
    "      dists = self.compute_distances_one_loop(X)\n",
    "    elif num_loops == 2:\n",
    "      dists = self.compute_distances_two_loops(X)\n",
    "    else:\n",
    "      raise ValueError('Invalid value %d for num_loops' % num_loops)\n",
    "\n",
    "    return self.predict_labels(dists, k=k)\n",
    "\n",
    "  def compute_distances_two_loops(self, X):\n",
    "    \"\"\"\n",
    "    Compute the distance between each test point in X and each \n",
    "    training point in self.X_train using a nested loop over both \n",
    "    the training data and the test data.\n",
    "\n",
    "    Inputs:\n",
    "    - X: A numpy array of shape (num_test, D) containing test data.\n",
    "\n",
    "    Returns:\n",
    "    - dists: A numpy array of shape (num_test, num_train) where \n",
    "      dists[i, j] is the Euclidean distance between the ith test \n",
    "      point and the jth training point.\n",
    "    \"\"\"\n",
    "    num_test = X.shape[0]\n",
    "    num_train = self.X_train.shape[0]\n",
    "    dists = np.zeros((num_test, num_train))\n",
    "    X = X.astype('float')\n",
    "    for i in range(num_test):\n",
    "      for j in range(num_train):\n",
    "          dists[i, j] = np.sqrt(np.sum(np.square(self.X_train[j,:] - X[i,:])))\n",
    "        \n",
    "    return dists\n",
    "\n",
    "  def compute_distances_one_loop(self, X):\n",
    "    \"\"\"\n",
    "    Compute the distance between each test point in X and each training point\n",
    "    in self.X_train using a single loop over the test data.\n",
    "\n",
    "    Input / Output: Same as compute_distances_two_loops\n",
    "    \"\"\"\n",
    "    num_test = X.shape[0]\n",
    "    num_train = self.X_train.shape[0]\n",
    "    dists = np.zeros((num_test, num_train))\n",
    "    X = X.astype('float')\n",
    "    for i in range(num_test):\n",
    "      dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis = 1))\n",
    "      \n",
    "     \n",
    "    return dists\n",
    "\n",
    "  def compute_distances_no_loops(self, X):\n",
    "    \"\"\"\n",
    "    Compute the distance between each test point in X and each training point\n",
    "    in self.X_train using no explicit loops.\n",
    "\n",
    "    Input / Output: Same as compute_distances_two_loops\n",
    "    \"\"\"\n",
    "    num_test = X.shape[0]\n",
    "    num_train = self.X_train.shape[0]\n",
    "    dists = np.zeros((num_test, num_train)) \n",
    "    X=X.astype('float')\n",
    "    \n",
    "    # Most \"elegant\" solution leads however to memory issues\n",
    "    # dists = np.sqrt(np.square((self.X_train[:, np.newaxis, :] - X)).sum(axis=2)).T\n",
    "    # split (p-q)^2 to p^2 + q^2 - 2pq\n",
    "    dists = np.sqrt((X**2).sum(axis=1)[:, np.newaxis] + (self.X_train**2).sum(axis=1) - 2 * X.dot(self.X_train.T))\n",
    "                     \n",
    "    \n",
    "    \n",
    "    return dists\n",
    "\n",
    "  def predict_labels(self, dists, k=1):\n",
    "    \"\"\"\n",
    "    Given a matrix of distances between test points and training points,\n",
    "    predict a label for each test point.\n",
    "\n",
    "    Inputs:\n",
    "    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]\n",
    "      gives the distance betwen the ith test point and the jth training point.\n",
    "\n",
    "    Returns:\n",
    "    - y: A numpy array of shape (num_test,) containing predicted labels for the\n",
    "      test data, where y[i] is the predicted label for the test point X[i].  \n",
    "    \"\"\"\n",
    "    num_test = dists.shape[0]\n",
    "    y_pred = np.zeros(num_test, dtype='float64')\n",
    "    for i in range(num_test):\n",
    "        # A list of length k storing the labels of the k nearest neighbors to\n",
    "        # the ith test point.\n",
    "        closest_y = []\n",
    "        # get the k indices with smallest distances\n",
    "        min_indices = np.argsort(dists[i,:])[:k] \n",
    "        closest_y = np.bincount(self.y_train[min_indices])\n",
    "        # predict the label of the nearest example\n",
    "        y_pred[i] = np.argmax(closest_y)  \n",
    "\n",
    "    return y_pred"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "- Methods within a class are defined in much the same way as functions, that is, using `def`. Every defined class has a _special method_ called `__init__()`  `Python` runs automatically whenever we create a new _instance_ based on the `NearestNeighbor` \n",
    "class. The `self` parameter is required in the method definition, and it must come first \n",
    "before the other parameters. It must be included in the definition because when `Python` \n",
    "calls this `__init__` method later (to create an instance of `NearestNeighbor`), \n",
    "the method call will automatically pass the `self` argument. Every method call associated with a class automatically passes `self`, which is a reference to the instance itself; \n",
    "it gives the individual instance access to the attributes and methods in the class. In summary, when you invoke a class method on an object instance, `Python` \n",
    "arranges for the first argument to be the invoking object instance, which is always \n",
    "assigned to each method's `self` argument.\n",
    "\n",
    "- The two variables `self.X_train` and `self.y_train` each have the prefix `self`. Any variable prefixed with `self` is available to every method in the class, and we will also be able to access these variables through any instance created from the class. `self.X_train = X` takes the value stored in the parameter `X` and stores it in the variable `self.X_train`, which is then attached to the instance being created. The same process happens with `self.y_train = y`. \n",
    "\n",
    "- Variables that are accessible through instances like this are called _attributes_.\n",
    "`np.zeros` produces an array of $ 0 $'s, here the size is `num_test`.\n",
    "\n",
    "- `np.sum` returns the sum of all elements in the array or along an axis. Zero-length \n",
    "arrays have sum $ $ 0.\n",
    "\n",
    "- `np.argmin` returns the index of minimum element.\n",
    "\n",
    "- When Python reads the line `nn = NearestNeighbor()`, it calls the `__init__()` method in `NearestNeighbor()`. The `__init__()` method creates an instance representing this particular nearest neighbor classifier. The `__init__()` method has no explicit return statement, but Python automatically returns an instance representing this nearest neighbor classifier. We store that instance in the variable `nn`. The naming convention is helpful here: we can usually assume that a capitalized name like `NearestNeighbor()` refers to a class, and a lowercase name like `nn` refers to a single instance created from a class.\n",
    "\n",
    "\n",
    "- `np.argsort` returns the indices that would sort an array.\n",
    "\n",
    "- `np.bincount(x)` counts the number of occurrences of each value in an array of non-negative integers. The number of bins (of size 1) is one larger than the largest value in $ x $.\n",
    "\n",
    "- Instead of a loop that contains a _broadcasting_ process with a 2D array \n",
    "\n",
    "`for i in range(num_test):\n",
    "      dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis = 1))`\n",
    "\n",
    "we can speed up this process by broadcasting with a 3D array \n",
    "\n",
    "`dists = np.sqrt(np.square((self.X_train[:, np.newaxis, :] - X)).sum(axis=2))`\n",
    "\n",
    "- The _Broadcasting rule_ states: two arrays are compatible for broadcasting if for each \n",
    "_trailing dimension_ (that is, starting from the end of an array), the axis lengths match or if either of the lengths is 1. In the case of `self._train[:, np.newaxis, :]`, the trailing dimension is $2$ and the axis length $D$. The trailing dimension of `X` is 1 and has axis length $D$. Thus, they match. Broadcasting is then performed over the missing and / or length $ 1 $ dimensions. If we need to add a new axis with length $ 1 $ specifically for broadcasting purposes, `NumPy` arrays offer a special syntax for inserting new axes by indexing. We use the special `np.newaxis` attribute along with full slices to insert the new axis. We may imagine that `num_test` copies of `self.X_train` are tiled up along `axis=1` of `self.X_train[:, np.newaxis, :]`. On the other hand, `num_train` copies of `X` are tiled up on top of each other. First, the subtraction is performed along `axis=2`. Then, it is performed along `axis=1`, and finally over `axis=0`. The resulting shape of the subtraction then is (`num_train`, `num_test`, D). Since this runs into memory issues, we need to rewrite it as follows:\n",
    "\n",
    "`dists = np.sqrt((X**2).sum(axis=1)[:, np.newaxis] + (self.X_train**2).sum(axis=1) - 2 * X.dot(self.X_train.T))`\n",
    "\n",
    "which yields an array with shape (`num_test`, `num_train`, D)\n",
    "\n",
    "- It is important to cast the data files as `float`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "91c8998c-f531-4774-98ca-6c9631050fd3"
    }
   },
   "source": [
    "Create an instance nn from the class KNearestNeighbor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "215be79c-8fe0-4e10-9587-6bea172bb33a"
    }
   },
   "outputs": [],
   "source": [
    "classifier = KNearestNeighbor()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "2f886096-8250-4739-8645-37950f408d41"
    }
   },
   "source": [
    "We call the method `train` of the `KNearestNeighbor` class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "de24c3a8-0860-446e-b974-3e0c334feced"
    }
   },
   "outputs": [],
   "source": [
    "classifier.train(X_train, y_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "d058a8de-3c50-4514-8405-5aff67b26398"
    }
   },
   "source": [
    "We test our implementation with two_loops"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "d87bb3a8-6338-4957-ac73-4c81b87821eb"
    }
   },
   "outputs": [],
   "source": [
    "dists = classifier.compute_distances_two_loops(X_test)\n",
    "dists.shape  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "c1277b26-a267-4dec-ab9d-e44d31cdaa3e"
    }
   },
   "source": [
    "We can visualize the distance matrix: each row is a single test example and its distances to training examples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "ae3a05a2-a3e6-4e65-a59f-0204411f57f9"
    }
   },
   "outputs": [],
   "source": [
    "plt.imshow(dists, interpolation='none')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "7855beeb-d7e2-4ea7-994f-1adfa5a2c886"
    }
   },
   "source": [
    "Let us now predict labels and run the code below: We use $k = 1$ (which is Nearest Neighbor)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "219d7522-e633-4136-aa98-9abe80ca7bf3"
    }
   },
   "outputs": [],
   "source": [
    "y_test_pred = classifier.predict_labels(dists, k=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "f083926f-4bd0-488f-8ba9-e77dc946fac8"
    }
   },
   "source": [
    "We compute and print the fraction of correctly predicted examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "f1ac90b4-5005-4940-9663-0bfd9574dc8c"
    }
   },
   "outputs": [],
   "source": [
    "num_correct = np.sum(y_test_pred == y_test)\n",
    "accuracy = float(num_correct) / num_test\n",
    "print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "7a33b48c-c106-4903-ba68-769ce91ccb8b"
    }
   },
   "source": [
    " Let us now predict labels and run the code below: We use k = 10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "7a4433f3-d7d4-4b7c-bd21-6f6d5272c837"
    }
   },
   "outputs": [],
   "source": [
    "y_test_pred = classifier.predict_labels(dists, k=10)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "8cede653-c157-4396-a534-b4a8741251e2"
    }
   },
   "source": [
    "We compute and print the fraction of correctly predicted examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "nbpresent": {
     "id": "445220c9-4974-41a0-a36c-a309d395490b"
    }
   },
   "outputs": [],
   "source": [
    "num_correct = np.sum(y_test_pred == y_test)\n",
    "accuracy = float(num_correct) / len(y_test_pred)\n",
    "print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Confusion Matrix"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# utility function for plotting confusion matrix\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "from sklearn.metrics import confusion_matrix\n",
    "\n",
    "def plot_confmat(y_true, y_pred):\n",
    "    \"\"\"\n",
    "    Plot the confusion matrix and save to user_files dir\n",
    "    \"\"\"\n",
    "    conf_matrix = confusion_matrix(y_true, y_pred)\n",
    "    fig = plt.figure(figsize=(9,9))\n",
    "    ax = fig.add_subplot(111)\n",
    "    sns.heatmap(conf_matrix,\n",
    "                annot=True,\n",
    "                fmt='.0f')\n",
    "    plt.title('Confusion matrix')\n",
    "    ax.set_xticklabels( classes)\n",
    "    ax.set_yticklabels( classes)\n",
    "    plt.ylabel('True')\n",
    "    plt.xlabel('Predicted')\n",
    "    \n",
    "plot_confmat(y_test, y_test_pred)    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "df615e0b-aeeb-4074-abef-075af4118640"
    }
   },
   "source": [
    "## Algebra and Performance of Distance Matrix Computation\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "nbpresent": {
     "id": "04f92811-3067-4a08-8227-ed55c42fed50"
    }
   },
   "source": [
    "To ensure that our vectorized implementation is correct, we make sure that it\n",
    "agrees with the naive implementation. There are many ways to decide whether\n",
    "two matrices are similar; one of the simplest is the Frobenius norm. In case\n",
    "you haven't seen it before, the Frobenius norm of two matrices is the square\n",
    "root of the squared sum of differences of all elements; in other words, reshape\n",
    "the matrices into vectors and compute the Euclidean distance between them."
   ]