Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
A HSLU deep Learning
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Adrian Zenklusen
A HSLU deep Learning
Commits
bd4db564
Commit
bd4db564
authored
2 years ago
by
Mirko Birbaumer
Browse files
Options
Downloads
Patches
Plain Diff
changed numpy notebook
parent
17473749
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/Block_0/Examples script/Preliminaries_3_Numpy.ipynb
+1
-1
1 addition, 1 deletion
...books/Block_0/Examples script/Preliminaries_3_Numpy.ipynb
with
1 addition
and
1 deletion
notebooks/Block_0/Examples script/Preliminaries_3_Numpy.ipynb
+
1
−
1
View file @
bd4db564
...
@@ -5,7 +5,7 @@
...
@@ -5,7 +5,7 @@
"metadata": {},
"metadata": {},
"source": [
"source": [
"## 3.2 Funktions, Conditionals, and Iteration in Python\n",
"## 3.2 Funktions, Conditionals, and Iteration in Python\n",
"Let us create a Python function, and call it from a loop."
"Let us create a Python function, and call it from a loop.
very good
"
]
]
},
},
{
{
...
...
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## 3.2 Funktions, Conditionals, and Iteration in Python
## 3.2 Funktions, Conditionals, and Iteration in Python
Let us create a Python function, and call it from a loop.
Let us create a Python function, and call it from a loop.
very good
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
def
HelloWorldXY
(
x
,
y
):
def
HelloWorldXY
(
x
,
y
):
if
(
x
<
10
):
if
(
x
<
10
):
print
(
"
Hello World, x was < 10
"
)
print
(
"
Hello World, x was < 10
"
)
elif
(
x
<
20
):
elif
(
x
<
20
):
print
(
"
Hello World, x was >= 10 but < 20
"
)
print
(
"
Hello World, x was >= 10 but < 20
"
)
else
:
else
:
print
(
"
Hello World, x was >= 20
"
)
print
(
"
Hello World, x was >= 20
"
)
return
x
+
y
return
x
+
y
for
i
in
range
(
8
,
25
,
5
):
# i=8, 13, 18, 23 (start, stop, step)
for
i
in
range
(
8
,
25
,
5
):
# i=8, 13, 18, 23 (start, stop, step)
print
(
"
\n
--- Now running with i: {}
"
.
format
(
i
))
print
(
"
\n
--- Now running with i: {}
"
.
format
(
i
))
r
=
HelloWorldXY
(
i
,
i
)
r
=
HelloWorldXY
(
i
,
i
)
print
(
"
Result from HelloWorld: {}
"
.
format
(
r
))
print
(
"
Result from HelloWorld: {}
"
.
format
(
r
))
```
```
%% Output
%% Output
--- Now running with i: 8
--- Now running with i: 8
Hello World, x was < 10
Hello World, x was < 10
Result from HelloWorld: 16
Result from HelloWorld: 16
--- Now running with i: 13
--- Now running with i: 13
Hello World, x was >= 10 but < 20
Hello World, x was >= 10 but < 20
Result from HelloWorld: 26
Result from HelloWorld: 26
--- Now running with i: 18
--- Now running with i: 18
Hello World, x was >= 10 but < 20
Hello World, x was >= 10 but < 20
Result from HelloWorld: 36
Result from HelloWorld: 36
--- Now running with i: 23
--- Now running with i: 23
Hello World, x was >= 20
Hello World, x was >= 20
Result from HelloWorld: 46
Result from HelloWorld: 46
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
If you want a loop starting at 0 to 2 (exclusive) you could do any of the following:
If you want a loop starting at 0 to 2 (exclusive) you could do any of the following:
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
print
(
"
Iterate over the items. `range(2)` is like a list [0,1].
"
)
print
(
"
Iterate over the items. `range(2)` is like a list [0,1].
"
)
for
i
in
range
(
2
):
for
i
in
range
(
2
):
print
(
i
)
print
(
i
)
print
(
"
Iterate over an actual list.
"
)
print
(
"
Iterate over an actual list.
"
)
for
i
in
[
0
,
1
]:
for
i
in
[
0
,
1
]:
print
(
i
)
print
(
i
)
print
(
"
While works
"
)
print
(
"
While works
"
)
i
=
0
i
=
0
while
i
<
2
:
while
i
<
2
:
print
(
i
)
print
(
i
)
i
+=
1
i
+=
1
print
(
"
Python supports standard key words like continue and break
"
)
print
(
"
Python supports standard key words like continue and break
"
)
while
True
:
while
True
:
print
(
"
Entered while
"
)
print
(
"
Entered while
"
)
break
break
print
(
"
while broken
"
)
print
(
"
while broken
"
)
```
```
%% Output
%% Output
Iterate over the items. `range(2)` is like a list [0,1].
Iterate over the items. `range(2)` is like a list [0,1].
0
0
1
1
Iterate over an actual list.
Iterate over an actual list.
0
0
1
1
While works
While works
0
0
1
1
Python supports standard key words like continue and break
Python supports standard key words like continue and break
Entered while
Entered while
while broken
while broken
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## 3.3 Data in Numpy
## 3.3 Data in Numpy
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
import
numpy
as
np
import
numpy
as
np
# Scalar
# Scalar
s
=
np
.
array
(
5
)
s
=
np
.
array
(
5
)
# Vector
# Vector
v
=
np
.
array
([
1
,
2
,
10
])
v
=
np
.
array
([
1
,
2
,
10
])
# Matrix
# Matrix
m
=
np
.
array
([[
1
,
2
,
3
],
m
=
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
],
[
4
,
5
,
6
],
[
7
,
8
,
9
]])
[
7
,
8
,
9
]])
# Tensor:
# Tensor:
t
=
np
.
array
([[[[
1
],[
2
]],
[[
3
],[
4
]],
[[
5
],[
6
]]],
t
=
np
.
array
([[[[
1
],[
2
]],
[[
3
],[
4
]],
[[
5
],[
6
]]],
[[[
7
],[
8
]],
[[
9
],[
10
]],
[[
11
],[
12
]]],
[[[
7
],[
8
]],
[[
9
],[
10
]],
[[
11
],[
12
]]],
[[[
13
],[
14
]],
[[
15
],[
16
]],
[[
17
],[
17
]]]])
[[[
13
],[
14
]],
[[
15
],[
16
]],
[[
17
],[
17
]]]])
# Shape
# Shape
print
(
"
Shape scaler
"
,
s
.
shape
,
"
\n
Shape vector
"
,
v
.
shape
,
"
\n
Shape matrix
"
,
m
.
shape
,
"
\n
Shape tensor
"
,
t
.
shape
)
print
(
"
Shape scaler
"
,
s
.
shape
,
"
\n
Shape vector
"
,
v
.
shape
,
"
\n
Shape matrix
"
,
m
.
shape
,
"
\n
Shape tensor
"
,
t
.
shape
)
# Type
# Type
print
(
"
Type scalar or array
"
,
type
(
s
),
"
\n
Type after addition with integer
"
,
type
(
s
+
3
))
print
(
"
Type scalar or array
"
,
type
(
s
),
"
\n
Type after addition with integer
"
,
type
(
s
+
3
))
# Slicing
# Slicing
print
(
"
v[1:] =
"
,
v
[
1
:],
"
\n
m[1:][2:] =
\n
"
,
m
[
1
:,
1
:])
print
(
"
v[1:] =
"
,
v
[
1
:],
"
\n
m[1:][2:] =
\n
"
,
m
[
1
:,
1
:])
# Reshape arrays
# Reshape arrays
x
=
v
.
reshape
(
1
,
3
)
x
=
v
.
reshape
(
1
,
3
)
y
=
v
[
None
,
:]
y
=
v
[
None
,
:]
print
(
v
,
x
,
y
)
print
(
v
,
x
,
y
)
print
(
v
.
shape
,
x
.
shape
,
y
.
shape
)
print
(
v
.
shape
,
x
.
shape
,
y
.
shape
)
```
```
%% Output
%% Output
Shape scaler ()
Shape scaler ()
Shape vector (3,)
Shape vector (3,)
Shape matrix (3, 3)
Shape matrix (3, 3)
Shape tensor (3, 3, 2, 1)
Shape tensor (3, 3, 2, 1)
Type scalar or array <class 'numpy.ndarray'>
Type scalar or array <class 'numpy.ndarray'>
Type after addition with integer <class 'numpy.int64'>
Type after addition with integer <class 'numpy.int64'>
v[1:] = [ 2 10]
v[1:] = [ 2 10]
m[1:][2:] =
m[1:][2:] =
[[5 6]
[[5 6]
[8 9]]
[8 9]]
[ 1 2 10] [[ 1 2 10]] [[ 1 2 10]]
[ 1 2 10] [[ 1 2 10]] [[ 1 2 10]]
(3,) (1, 3) (1, 3)
(3,) (1, 3) (1, 3)
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## 3.4 Element-wise Operations
## 3.4 Element-wise Operations
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# The Python way:
# The Python way:
values
=
[
1
,
2
,
3
,
4
,
5
]
values
=
[
1
,
2
,
3
,
4
,
5
]
for
i
in
range
(
len
(
values
)):
for
i
in
range
(
len
(
values
)):
values
[
i
]
+=
5
values
[
i
]
+=
5
print
(
values
)
print
(
values
)
# The Numpy way:
# The Numpy way:
values
=
np
.
array
([
1
,
2
,
3
,
4
,
5
])
values
=
np
.
array
([
1
,
2
,
3
,
4
,
5
])
values
+=
5
values
+=
5
print
(
values
)
print
(
values
)
# Multiplication
# Multiplication
x
=
np
.
multiply
(
values
,
5
)
x
=
np
.
multiply
(
values
,
5
)
y
=
values
*
5
y
=
values
*
5
print
(
x
,
"
\n
"
,
y
,
"
\n
"
)
print
(
x
,
"
\n
"
,
y
,
"
\n
"
)
# Element wise matrix operations
# Element wise matrix operations
a
=
np
.
array
([[
1
,
3
],[
5
,
7
]])
a
=
np
.
array
([[
1
,
3
],[
5
,
7
]])
b
=
np
.
array
([[
2
,
4
],[
6
,
8
]])
b
=
np
.
array
([[
2
,
4
],[
6
,
8
]])
print
(
"
a =
\n
"
,
a
,
"
\n
b =
\n
"
,
b
)
print
(
"
a =
\n
"
,
a
,
"
\n
b =
\n
"
,
b
)
print
(
"
a + b =
\n
"
,
a
+
b
)
print
(
"
a + b =
\n
"
,
a
+
b
)
print
(
"
a * b =
\n
"
,
a
*
b
)
print
(
"
a * b =
\n
"
,
a
*
b
)
# Shape mismatch:
# Shape mismatch:
print
(
"
a * values =
\n
"
,
a
*
values
)
print
(
"
a * values =
\n
"
,
a
*
values
)
```
```
%% Output
%% Output
[6, 7, 8, 9, 10]
[6, 7, 8, 9, 10]
[ 6 7 8 9 10]
[ 6 7 8 9 10]
[30 35 40 45 50]
[30 35 40 45 50]
[30 35 40 45 50]
[30 35 40 45 50]
a =
a =
[[1 3]
[[1 3]
[5 7]]
[5 7]]
b =
b =
[[2 4]
[[2 4]
[6 8]]
[6 8]]
a + b =
a + b =
[[ 3 7]
[[ 3 7]
[11 15]]
[11 15]]
a * b =
a * b =
[[ 2 12]
[[ 2 12]
[30 56]]
[30 56]]
---------------------------------------------------------------------------
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ValueError Traceback (most recent call last)
<ipython-input-4-7ddd6b5f4e75> in <module>
<ipython-input-4-7ddd6b5f4e75> in <module>
24 print("a * b =\n", a * b)
24 print("a * b =\n", a * b)
25 # Shape mismatch:
25 # Shape mismatch:
---> 26 print("a * values =\n", a * values)
---> 26 print("a * values =\n", a * values)
ValueError: operands could not be broadcast together with shapes (2,2) (5,)
ValueError: operands could not be broadcast together with shapes (2,2) (5,)
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## Numpy Matrix Multiplication
## Numpy Matrix Multiplication
Recap element-wise multiplication:
Recap element-wise multiplication:
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Elementwise recap:
# Elementwise recap:
m
=
np
.
array
([[
1
,
2
,
3
],[
4
,
5
,
6
]])
m
=
np
.
array
([[
1
,
2
,
3
],[
4
,
5
,
6
]])
# Scalar multiplication
# Scalar multiplication
n
=
m
*
0.25
n
=
m
*
0.25
# Python Elementwise matrix multiplication
# Python Elementwise matrix multiplication
x
=
m
*
n
x
=
m
*
n
# Numpy Elementwise matrix multiplication
# Numpy Elementwise matrix multiplication
y
=
np
.
multiply
(
m
,
n
)
y
=
np
.
multiply
(
m
,
n
)
print
(
"
m =
\n
"
,
m
,
"
\n
n =
\n
"
,
n
)
print
(
"
m =
\n
"
,
m
,
"
\n
n =
\n
"
,
n
)
print
(
"
x =
\n
"
,
x
,
"
\n
y =
\n
"
,
y
)
print
(
"
x =
\n
"
,
x
,
"
\n
y =
\n
"
,
y
)
```
```
%% Output
%% Output
m =
m =
[[1 2 3]
[[1 2 3]
[4 5 6]]
[4 5 6]]
n =
n =
[[0.25 0.5 0.75]
[[0.25 0.5 0.75]
[1. 1.25 1.5 ]]
[1. 1.25 1.5 ]]
x =
x =
[[0.25 1. 2.25]
[[0.25 1. 2.25]
[4. 6.25 9. ]]
[4. 6.25 9. ]]
y =
y =
[[0.25 1. 2.25]
[[0.25 1. 2.25]
[4. 6.25 9. ]]
[4. 6.25 9. ]]
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
Matrix Product:
Matrix Product:
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
"""
Using np.matmul
"""
"""
Using np.matmul
"""
a
=
np
.
array
([[
1
,
2
,
3
,
4
],[
5
,
6
,
7
,
8
]])
a
=
np
.
array
([[
1
,
2
,
3
,
4
],[
5
,
6
,
7
,
8
]])
b
=
np
.
array
([[
1
,
2
,
3
],[
4
,
5
,
6
],[
7
,
8
,
9
],[
10
,
11
,
12
]])
b
=
np
.
array
([[
1
,
2
,
3
],[
4
,
5
,
6
],[
7
,
8
,
9
],[
10
,
11
,
12
]])
print
(
"
a =
\n
"
,
a
,
"
\n
a.shape =
\n
"
,
a
.
shape
,
"
\n
b =
\n
"
,
b
,
"
\n
b.shape =
\n
"
,
b
.
shape
)
print
(
"
a =
\n
"
,
a
,
"
\n
a.shape =
\n
"
,
a
.
shape
,
"
\n
b =
\n
"
,
b
,
"
\n
b.shape =
\n
"
,
b
.
shape
)
# Matrix product
# Matrix product
c
=
np
.
matmul
(
a
,
b
)
c
=
np
.
matmul
(
a
,
b
)
print
(
"
c =
\n
"
,
c
,
"
\n
c.shape =
\n
"
,
c
.
shape
)
print
(
"
c =
\n
"
,
c
,
"
\n
c.shape =
\n
"
,
c
.
shape
)
# Dimension mismatch:
# Dimension mismatch:
# print(np.matmul(b, a))
# print(np.matmul(b, a))
"""
Using np.dot
"""
"""
Using np.dot
"""
d
=
np
.
dot
(
a
,
b
)
d
=
np
.
dot
(
a
,
b
)
print
(
"
d =
\n
"
,
d
,
"
\n
d.shape =
\n
"
,
d
.
shape
)
print
(
"
d =
\n
"
,
d
,
"
\n
d.shape =
\n
"
,
d
.
shape
)
```
```
%% Output
%% Output
a =
a =
[[1 2 3 4]
[[1 2 3 4]
[5 6 7 8]]
[5 6 7 8]]
a.shape =
a.shape =
(2, 4)
(2, 4)
b =
b =
[[ 1 2 3]
[[ 1 2 3]
[ 4 5 6]
[ 4 5 6]
[ 7 8 9]
[ 7 8 9]
[10 11 12]]
[10 11 12]]
b.shape =
b.shape =
(4, 3)
(4, 3)
c =
c =
[[ 70 80 90]
[[ 70 80 90]
[158 184 210]]
[158 184 210]]
c.shape =
c.shape =
(2, 3)
(2, 3)
d =
d =
[[ 70 80 90]
[[ 70 80 90]
[158 184 210]]
[158 184 210]]
d.shape =
d.shape =
(2, 3)
(2, 3)
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## Transpose
## Transpose
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
m
=
np
.
array
([[
1
,
2
,
3
,
4
],
[
5
,
6
,
7
,
8
],
[
9
,
10
,
11
,
12
]])
m
=
np
.
array
([[
1
,
2
,
3
,
4
],
[
5
,
6
,
7
,
8
],
[
9
,
10
,
11
,
12
]])
print
(
"
m =
\n
"
,
m
,
"
\n
m.T =
\n
"
,
m
.
T
)
print
(
"
m =
\n
"
,
m
,
"
\n
m.T =
\n
"
,
m
.
T
)
# note how the transposed matrix is not a copy of the original:
# note how the transposed matrix is not a copy of the original:
m_t
=
m
.
T
m_t
=
m
.
T
m_t
[
3
][
1
]
=
200
m_t
[
3
][
1
]
=
200
print
(
"
m =
\n
"
,
m
,
"
\n
m_t =
\n
"
,
m_t
)
print
(
"
m =
\n
"
,
m
,
"
\n
m_t =
\n
"
,
m_t
)
print
(
"
entries [3][1], [1][3], respectively are edited in both matrices
"
)
print
(
"
entries [3][1], [1][3], respectively are edited in both matrices
"
)
```
```
%% Output
%% Output
m =
m =
[[ 1 2 3 4]
[[ 1 2 3 4]
[ 5 6 7 8]
[ 5 6 7 8]
[ 9 10 11 12]]
[ 9 10 11 12]]
m.T =
m.T =
[[ 1 5 9]
[[ 1 5 9]
[ 2 6 10]
[ 2 6 10]
[ 3 7 11]
[ 3 7 11]
[ 4 8 12]]
[ 4 8 12]]
m =
m =
[[ 1 2 3 4]
[[ 1 2 3 4]
[ 5 6 7 200]
[ 5 6 7 200]
[ 9 10 11 12]]
[ 9 10 11 12]]
m_t =
m_t =
[[ 1 5 9]
[[ 1 5 9]
[ 2 6 10]
[ 2 6 10]
[ 3 7 11]
[ 3 7 11]
[ 4 200 12]]
[ 4 200 12]]
entries [3][1], [1][3], respectively are edited in both matrices
entries [3][1], [1][3], respectively are edited in both matrices
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## A real use case
## A real use case
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
inputs
=
np
.
array
([[
-
0.27
,
0.45
,
0.64
,
0.31
]])
inputs
=
np
.
array
([[
-
0.27
,
0.45
,
0.64
,
0.31
]])
print
(
inputs
,
inputs
.
shape
)
print
(
inputs
,
inputs
.
shape
)
weights
=
np
.
array
([[
0.02
,
0.001
,
-
0.03
,
0.036
],
weights
=
np
.
array
([[
0.02
,
0.001
,
-
0.03
,
0.036
],
[
0.04
,
-
0.003
,
0.025
,
0.009
],
[
0.04
,
-
0.003
,
0.025
,
0.009
],
[
0.012
,
-
0.045
,
0.28
,
-
0.067
]])
[
0.012
,
-
0.045
,
0.28
,
-
0.067
]])
print
(
weights
,
weights
.
shape
)
print
(
weights
,
weights
.
shape
)
print
(
"
Matrix multiplication gives:
\n
"
,
np
.
matmul
(
inputs
,
weights
.
T
),
"
\n
or, equivalently:
\n
"
,
np
.
matmul
(
weights
,
inputs
.
T
))
print
(
"
Matrix multiplication gives:
\n
"
,
np
.
matmul
(
inputs
,
weights
.
T
),
"
\n
or, equivalently:
\n
"
,
np
.
matmul
(
weights
,
inputs
.
T
))
```
```
%% Output
%% Output
[[-0.27 0.45 0.64 0.31]] (1, 4)
[[-0.27 0.45 0.64 0.31]] (1, 4)
[[ 0.02 0.001 -0.03 0.036]
[[ 0.02 0.001 -0.03 0.036]
[ 0.04 -0.003 0.025 0.009]
[ 0.04 -0.003 0.025 0.009]
[ 0.012 -0.045 0.28 -0.067]] (3, 4)
[ 0.012 -0.045 0.28 -0.067]] (3, 4)
Matrix multiplication gives:
Matrix multiplication gives:
[[-0.01299 0.00664 0.13494]]
[[-0.01299 0.00664 0.13494]]
or, equivalently:
or, equivalently:
[[-0.01299]
[[-0.01299]
[ 0.00664]
[ 0.00664]
[ 0.13494]]
[ 0.13494]]
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## Some more useful Numpy methods
## Some more useful Numpy methods
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
print
(
"
\n
Showing some basic math on arrays
"
)
print
(
"
\n
Showing some basic math on arrays
"
)
b
=
np
.
array
([
0
,
1
,
4
,
3
,
2
])
b
=
np
.
array
([
0
,
1
,
4
,
3
,
2
])
print
(
"
Max: {}
"
.
format
(
np
.
max
(
b
)))
print
(
"
Max: {}
"
.
format
(
np
.
max
(
b
)))
print
(
"
Average: {}
"
.
format
(
np
.
average
(
b
)))
print
(
"
Average: {}
"
.
format
(
np
.
average
(
b
)))
print
(
"
Max index: {}
"
.
format
(
np
.
argmax
(
b
)))
print
(
"
Max index: {}
"
.
format
(
np
.
argmax
(
b
)))
print
(
"
\n
Use numpy to create a [3,3] dimension array with random number
"
)
print
(
"
\n
Use numpy to create a [3,3] dimension array with random number
"
)
c
=
np
.
random
.
rand
(
3
,
3
)
c
=
np
.
random
.
rand
(
3
,
3
)
print
(
c
)
print
(
c
)
```
```
%% Output
%% Output
Showing some basic math on arrays
Showing some basic math on arrays
Max: 4
Max: 4
Average: 2.0
Average: 2.0
Max index: 2
Max index: 2
Use numpy to create a [3,3] dimension array with random number
Use numpy to create a [3,3] dimension array with random number
[[0.92371879 0.58999086 0.76979433]
[[0.92371879 0.58999086 0.76979433]
[0.48733651 0.44698554 0.91494542]
[0.48733651 0.44698554 0.91494542]
[0.59130531 0.69632003 0.32785335]]
[0.59130531 0.69632003 0.32785335]]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment