Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • learn-renku/teaching-on-renku/autograde
  • fotis.georgatos/autograde
2 results
Show changes
{
"title": "demo notebook test",
"checksum": "598b9a96d5c04cf88f5b26771572a62544e80369535855044fb4583c3bb78878",
"team_members": [
{
"first_name": "Alice",
"last_name": "Foo",
"student_id": 12345
},
{
"first_name": "Bob",
"last_name": "Bar",
"student_id": 54321
}
],
"artifacts": [
"bar.txt",
"figures/fig_cell_4_clean_1.png",
"figures/fig_cell_9_1.png",
"figures/fig_cell_9_2.png",
"fnord.txt",
"plot.png"
],
"excluded_artifacts": [
"foo.txt"
],
"unit_test_results": [
{
"id": "239eadbc01bcd3892b5c01a86b007dca86eeb0b2daa51ad5a580a1ddc079e040",
"label": "test square",
"target": [
"square"
],
"score": 1.0,
"score_max": 1.0,
"messages": [
"\u2705 passed"
],
"stdout": "FOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO\n",
"stderr": ""
},
{
"id": "f03691ea9f44d6018fd43ef2a106e527843f5984f9eb44c49aeecb48d1266454",
"label": "test cube",
"target": [
"cube"
],
"score": 2.5,
"score_max": 2.5,
"messages": [
"well done \ud83d\udc4c"
],
"stdout": "",
"stderr": "cube\n"
},
{
"id": "35797fb23f082ed01f8a12050bfd0343e28ceca91cd00ef3be38a144563ec0a2",
"label": "test abs_cube",
"target": [
"abs_cube"
],
"score": 2.0,
"score_max": 3.0,
"messages": [
"\u00af\\_(\u30c4)_/\u00af partially passed"
],
"stdout": "",
"stderr": ""
},
{
"id": "7e0e6ff3545a0510d5ab9a1d7ac6ab2c14609d3843d57cc04638f321423ac3c5",
"label": "test constant",
"target": [
"SOME_CONSTANT"
],
"score": 1.0,
"score_max": 2.0,
"messages": [
"at least you declared it \ud83e\udd74"
],
"stdout": "",
"stderr": ""
},
{
"id": "90f0231eef0abe9f9b28e3be1315d27a1ef89297c6009d92d7b1f24a165f4673",
"label": "test square & cube",
"target": [
"square",
"cube"
],
"score": 1.0,
"score_max": 1.0,
"messages": [
"\u2705 passed"
],
"stdout": "",
"stderr": ""
},
{
"id": "85f2e61341ca4bfbdda86b328c3704ff3983d49c786b51b176dd558979e59122",
"label": "test failure",
"target": [
"fail"
],
"score": 0,
"score_max": 1.5,
"messages": [
"\u274c ValueError: \"no chance, this function crashes so badly\""
],
"stdout": "",
"stderr": "Test failed:\nTraceback (most recent call last):\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 48, in __call__\n result = self._test_function(*targets, *args, **kwargs)\n File \"/home/jovyan/work/jupyter-autograde/demo/test.py\", line 65, in test_fail\n fail()\n File \"/tmp/tmp5crfyffw\", line 13, in fail\n raise ValueError('no chance, this function crashes so badly')\nValueError: no chance, this function crashes so badly\n"
},
{
"id": "95cf4e22dcc910d0384c63a600fe79d886e3f23f4c6bb6eb8fdc616180793d9d",
"label": "test negative score",
"target": [
"fail"
],
"score": -0.5,
"score_max": 1.0,
"messages": [
"\u00af\\_(\u30c4)_/\u00af partially passed"
],
"stdout": "",
"stderr": ""
},
{
"id": "511d0ac725daadf807d17cfbe7fa0da1a4a446ad85f737f5ca94fb51bc393c4b",
"label": "test import filter",
"target": [
"illegal_import"
],
"score": 0.5,
"score_max": 0.5,
"messages": [
"\u2705 passed"
],
"stdout": "",
"stderr": ""
},
{
"id": "53bca0ce4cd4c8c8c4e1792086e8bd79bc049eb7f61e660bebf485dd8668e84c",
"label": "test global timeout",
"target": [
"sleep"
],
"score": 0,
"score_max": 1,
"messages": [
"\u274c TimeoutError: \"code execution took longer than 0.100s to terminate\""
],
"stdout": "",
"stderr": "Test failed:\nTraceback (most recent call last):\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 48, in __call__\n result = self._test_function(*targets, *args, **kwargs)\n File \"/opt/conda/lib/python3.9/contextlib.py\", line 122, in __exit__\n if type is None:\n File \"/opt/conda/lib/python3.9/contextlib.py\", line 122, in __exit__\n if type is None:\n File \"/opt/conda/lib/python3.9/site-packages/autograde/util.py\", line 202, in _localtrace\n raise TimeoutError(f'code execution took longer than {timeout:.3f}s to terminate')\nTimeoutError: code execution took longer than 0.100s to terminate\n"
},
{
"id": "6d1546e07fd32d5d0eab09ea89abc6b5de7f3660236b5486ca83d7c0d44364ee",
"label": "test local timeout",
"target": [
"sleep"
],
"score": 0,
"score_max": 1,
"messages": [
"\u274c TimeoutError: \"code execution took longer than 0.060s to terminate\""
],
"stdout": "",
"stderr": "Test failed:\nTraceback (most recent call last):\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 48, in __call__\n result = self._test_function(*targets, *args, **kwargs)\n File \"/opt/conda/lib/python3.9/contextlib.py\", line 122, in __exit__\n if type is None:\n File \"/opt/conda/lib/python3.9/contextlib.py\", line 122, in __exit__\n if type is None:\n File \"/opt/conda/lib/python3.9/site-packages/autograde/util.py\", line 202, in _localtrace\n raise TimeoutError(f'code execution took longer than {timeout:.3f}s to terminate')\nTimeoutError: code execution took longer than 0.060s to terminate\n"
},
{
"id": "ce7ad25b6af8ed05fc10dd726b893fd12abe5408a20d5e2b5aaa36977bbb8e18",
"label": "inspect source",
"target": [
"square"
],
"score": 1.0,
"score_max": 1.0,
"messages": [
"\u2705 passed"
],
"stdout": "def square(x: float) -> float:\n return x ** 2\n\n",
"stderr": ""
},
{
"id": "81b637d8fcd2c6da6359e6963113a1170de795e4b725b84d1e0b4cfd9ec58ce9",
"label": "Bob",
"target": [
"__COMMENTS__"
],
"score": NaN,
"score_max": 4,
"messages": [
"[MATCH 1]:\n**A1:** The answer, my friend, is blowin' in the wind. The answer is blowin' in the wind.\n\n"
],
"stdout": "",
"stderr": ""
},
{
"id": "a0ec927b1044a5e945fbd9cf4370b4be1bc1ebc93bca51bc37f02a8814196bde",
"label": "Douglas",
"target": [
"__COMMENTS__"
],
"score": NaN,
"score_max": 1,
"messages": [
"[MATCH 1]:\n**A2:** 42 (forty-two)\n\n"
],
"stdout": "",
"stderr": ""
},
{
"id": "a03b221c6c6eae7122ca51695d456d5222e524889136394944b2f9763b483615",
"label": "???",
"target": [
"__COMMENTS__"
],
"score": 0,
"score_max": 2.5,
"messages": [
"\u274c AssertionError: \"no matching comments found\""
],
"stdout": "",
"stderr": "Test failed:\nTraceback (most recent call last):\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 48, in __call__\n result = self._test_function(*targets, *args, **kwargs)\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 140, in search_comment\n assert len(comments) > 0, 'no matching comments found'\nAssertionError: no matching comments found\n"
},
{
"id": "f81f712816b4a576cd12ecf67c0e85267a22109f5ffef8c50576ac85ccf4e048",
"label": "plot PNG",
"target": [
"__ARTIFACTS__"
],
"score": NaN,
"score_max": 1,
"messages": [
""
],
"stdout": "",
"stderr": ""
},
{
"id": "affcf4c8d293c17fcb845deb7f4bb1aff6697426d75bf28a2bf7403067646673",
"label": "file not found",
"target": [
"__ARTIFACTS__"
],
"score": 0,
"score_max": 1,
"messages": [
"\u274c FileNotFoundError: \"[Errno 2] No such file or directory: 'artifacts/does_not_exist.png'\""
],
"stdout": "",
"stderr": "Test failed:\nTraceback (most recent call last):\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 48, in __call__\n result = self._test_function(*targets, *args, **kwargs)\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_test.py\", line 174, in load_plot\n return math.nan, prefix + base64.b64encode(artifacts[target]).decode('utf8')\n File \"/opt/conda/lib/python3.9/site-packages/autograde/notebook_executor.py\", line 39, in __getitem__\n with self._root.joinpath(path).open(mode='rb') as f:\n File \"/opt/conda/lib/python3.9/pathlib.py\", line 1242, in open\n return io.open(self, mode, buffering, encoding, errors, newline,\n File \"/opt/conda/lib/python3.9/pathlib.py\", line 1110, in _opener\n return self._accessor.open(self, flags, mode)\nFileNotFoundError: [Errno 2] No such file or directory: 'artifacts/does_not_exist.png'\n"
},
{
"id": "d376512f3901b0a8347d0221155af8c527795b23b9b884d8d25484149ea0da47",
"label": "raw artifact",
"target": [
"__ARTIFACTS__"
],
"score": 1.0,
"score_max": 1.0,
"messages": [
"the following was read from a file: \"let's leave some artifacts in the system\""
],
"stdout": "",
"stderr": ""
},
{
"id": "a814e91177667827d91ab4d1c8abe0e3a11471d8299afb274eafdc5b99355309",
"label": "special variables",
"target": [
"__CONTEXT__",
"__TEAM_MEMBERS__",
"__COMMENTS__"
],
"score": 1.0,
"score_max": 1.0,
"messages": [
"\u2705 passed"
],
"stdout": "Hello Alice\nHello Bob\n\nthe tested notebook has 20 comments\n",
"stderr": ""
}
],
"applied_patches": [],
"version": "0.2.13",
"timestamp": "2021-11-10T13:23:06"
}
\ No newline at end of file