diff --git a/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb b/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb
index b0cc622f242b765db361893bbb9de759278edf0b..9cdf02f0917847c92cc0ffd517e2c4ad46007f48 100644
--- a/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb	
+++ b/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb	
@@ -30,9 +30,6 @@
      "output_type": "stream",
      "text": [
       "2.7.1\n",
-      "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n",
-      "170500096/170498071 [==============================] - 9s 0us/step\n",
-      "170508288/170498071 [==============================] - 9s 0us/step\n",
       "Train: X=(50000, 32, 32, 3), y=(50000, 1)\n",
       "Test: X=(10000, 32, 32, 3), y=(10000, 1)\n",
       "(50000, 1)\n",
diff --git a/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb b/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb
index 9c6d283ea7dc2c4be703d3614526752b4f27052d..9d41c32101ce9d260d19d1823c8bb30c6398633f 100644
--- a/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb
+++ b/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb
@@ -80,7 +80,7 @@
     {
      "data": {
       "text/plain": [
-       "<matplotlib.collections.PathCollection at 0x7fec50d77050>"
+       "<matplotlib.collections.PathCollection at 0x7fd13651a050>"
       ]
      },
      "execution_count": 5,
@@ -105,6 +105,13 @@
     "%matplotlib inline\n",
     "plt.scatter(range(100), np.sin(0.1 * np.array(range(100))))"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {
diff --git a/notebooks/Preliminaries_Numpy_Pandas/Examples script/stinkbug4.JPG b/notebooks/Preliminaries_Numpy_Pandas/Examples script/stinkbug4.JPG
deleted file mode 100644
index eb88408c8e21bc0f89bb4706c7b25be747d589d0..0000000000000000000000000000000000000000
Binary files a/notebooks/Preliminaries_Numpy_Pandas/Examples script/stinkbug4.JPG and /dev/null differ
diff --git a/notebooks/Preliminaries_Numpy_Pandas/Examples script/Preliminaries_Numpy_Pandas.ipynb b/notebooks/Preliminaries_Numpy_Pandas/Jupyter Notebook - Introduction Numpy and Pandas.ipynb
similarity index 72%
rename from notebooks/Preliminaries_Numpy_Pandas/Examples script/Preliminaries_Numpy_Pandas.ipynb
rename to notebooks/Preliminaries_Numpy_Pandas/Jupyter Notebook - Introduction Numpy and Pandas.ipynb
index e4fc5e596d4e5dd193d47cf1befbdff73f29fffb..2a163231de03aff6cb3e3bf193a7d72f88f29b2f 100644
--- a/notebooks/Preliminaries_Numpy_Pandas/Examples script/Preliminaries_Numpy_Pandas.ipynb	
+++ b/notebooks/Preliminaries_Numpy_Pandas/Jupyter Notebook - Introduction Numpy and Pandas.ipynb	
@@ -11,7 +11,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 42,
    "metadata": {},
    "outputs": [
     {
@@ -45,7 +45,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 43,
    "metadata": {},
    "outputs": [
     {
@@ -87,7 +87,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 44,
    "metadata": {},
    "outputs": [
     {
@@ -115,7 +115,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 45,
    "metadata": {},
    "outputs": [
     {
@@ -171,7 +171,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 46,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -221,7 +221,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 47,
    "metadata": {},
    "outputs": [
     {
@@ -230,7 +230,7 @@
        "array(5)"
       ]
      },
-     "execution_count": 21,
+     "execution_count": 47,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -252,7 +252,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 48,
    "metadata": {},
    "outputs": [
     {
@@ -261,7 +261,7 @@
        "0"
       ]
      },
-     "execution_count": 22,
+     "execution_count": 48,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -280,7 +280,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 49,
    "metadata": {},
    "outputs": [
     {
@@ -289,7 +289,7 @@
        "()"
       ]
      },
-     "execution_count": 23,
+     "execution_count": 49,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -311,7 +311,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": 50,
    "metadata": {},
    "outputs": [
     {
@@ -320,7 +320,7 @@
        "numpy.int64"
       ]
      },
-     "execution_count": 24,
+     "execution_count": 50,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -355,7 +355,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 51,
    "metadata": {},
    "outputs": [
     {
@@ -364,7 +364,7 @@
        "array([1, 2, 3])"
       ]
      },
-     "execution_count": 25,
+     "execution_count": 51,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -384,7 +384,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 52,
    "metadata": {},
    "outputs": [
     {
@@ -393,7 +393,7 @@
        "(3,)"
       ]
      },
-     "execution_count": 26,
+     "execution_count": 52,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -411,7 +411,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 53,
    "metadata": {},
    "outputs": [
     {
@@ -420,7 +420,7 @@
        "1"
       ]
      },
-     "execution_count": 27,
+     "execution_count": 53,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -442,7 +442,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 54,
    "metadata": {},
    "outputs": [
     {
@@ -451,7 +451,7 @@
        "2"
       ]
      },
-     "execution_count": 28,
+     "execution_count": 54,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -470,7 +470,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 55,
    "metadata": {},
    "outputs": [
     {
@@ -479,7 +479,7 @@
        "array([2, 3])"
       ]
      },
-     "execution_count": 29,
+     "execution_count": 55,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -511,7 +511,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 56,
    "metadata": {},
    "outputs": [
     {
@@ -522,7 +522,7 @@
        "       [7, 8, 9]])"
       ]
      },
-     "execution_count": 30,
+     "execution_count": 56,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -542,7 +542,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 57,
    "metadata": {},
    "outputs": [
     {
@@ -551,7 +551,7 @@
        "2"
       ]
      },
-     "execution_count": 31,
+     "execution_count": 57,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -569,7 +569,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": 58,
    "metadata": {},
    "outputs": [
     {
@@ -578,7 +578,7 @@
        "(3, 3)"
       ]
      },
-     "execution_count": 32,
+     "execution_count": 58,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -597,7 +597,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
+   "execution_count": 59,
    "metadata": {},
    "outputs": [
     {
@@ -606,7 +606,7 @@
        "6"
       ]
      },
-     "execution_count": 33,
+     "execution_count": 59,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -627,7 +627,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
+   "execution_count": 60,
    "metadata": {},
    "outputs": [
     {
@@ -663,7 +663,7 @@
        "         [17]]]])"
       ]
      },
-     "execution_count": 34,
+     "execution_count": 60,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -683,7 +683,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 35,
+   "execution_count": 61,
    "metadata": {},
    "outputs": [
     {
@@ -692,7 +692,7 @@
        "(3, 3, 2, 1)"
       ]
      },
-     "execution_count": 35,
+     "execution_count": 61,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -703,7 +703,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 36,
+   "execution_count": 62,
    "metadata": {},
    "outputs": [
     {
@@ -712,7 +712,7 @@
        "4"
       ]
      },
-     "execution_count": 36,
+     "execution_count": 62,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -730,7 +730,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 37,
+   "execution_count": 63,
    "metadata": {},
    "outputs": [
     {
@@ -739,7 +739,7 @@
        "16"
       ]
      },
-     "execution_count": 37,
+     "execution_count": 63,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -763,7 +763,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 38,
+   "execution_count": 64,
    "metadata": {},
    "outputs": [
     {
@@ -772,7 +772,7 @@
        "(4,)"
       ]
      },
-     "execution_count": 38,
+     "execution_count": 64,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -792,7 +792,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 39,
+   "execution_count": 65,
    "metadata": {},
    "outputs": [
     {
@@ -801,7 +801,7 @@
        "array([[1, 2, 3, 4]])"
       ]
      },
-     "execution_count": 39,
+     "execution_count": 65,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -821,7 +821,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 40,
+   "execution_count": 66,
    "metadata": {},
    "outputs": [
     {
@@ -833,7 +833,7 @@
        "       [4]])"
       ]
      },
-     "execution_count": 40,
+     "execution_count": 66,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -857,7 +857,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 41,
+   "execution_count": 67,
    "metadata": {},
    "outputs": [
     {
@@ -866,7 +866,7 @@
        "array([[1, 2, 3, 4]])"
       ]
      },
-     "execution_count": 41,
+     "execution_count": 67,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -878,7 +878,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 42,
+   "execution_count": 68,
    "metadata": {},
    "outputs": [
     {
@@ -887,7 +887,7 @@
        "(1, 4)"
       ]
      },
-     "execution_count": 42,
+     "execution_count": 68,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -898,7 +898,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 43,
+   "execution_count": 69,
    "metadata": {},
    "outputs": [
     {
@@ -910,7 +910,7 @@
        "       [4]])"
       ]
      },
-     "execution_count": 43,
+     "execution_count": 69,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -922,7 +922,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 44,
+   "execution_count": 70,
    "metadata": {},
    "outputs": [
     {
@@ -931,7 +931,7 @@
        "(4, 1)"
       ]
      },
-     "execution_count": 44,
+     "execution_count": 70,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -963,24 +963,27 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 45,
+   "execution_count": 71,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "1.03 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n"
+      "0.00015544891357421875\n",
+      "[6, 7, 8, 9, 10]\n"
      ]
     }
    ],
    "source": [
-    "%%timeit\n",
+    "import time\n",
+    "start = time.time()\n",
     "values = [1,2,3,4,5]\n",
     "for i in range(len(values)):\n",
     "    values[i] += 5\n",
-    "    \n",
-    "values"
+    "end = time.time()\n",
+    "print(end - start)    \n",
+    "print(values)"
    ]
   },
   {
@@ -1007,22 +1010,25 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": 72,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "3.44 µs ± 427 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
+      "0.00020384788513183594\n",
+      "[ 6  7  8  9 10]\n"
      ]
     }
    ],
    "source": [
-    "%%timeit\n",
+    "start = time.time()\n",
     "values = [1,2,3,4,5]\n",
     "values = np.array(values) + 5\n",
-    "values"
+    "end = time.time()\n",
+    "print(end - start) \n",
+    "print(values)"
    ]
   },
   {
@@ -1035,23 +1041,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": 73,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "3.78 µs ± 381 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
+      "0.00024271011352539062\n",
+      "[ 6  7  8  9 10]\n"
      ]
     }
    ],
    "source": [
-    "%%timeit\n",
+    "start = time.time()\n",
     "values = [1,2,3,4,5]\n",
     "values = np.array(values)\n",
     "values += 5\n",
-    "values"
+    "end = time.time()\n",
+    "print(end - start) \n",
+    "print(values)"
    ]
   },
   {
@@ -1064,7 +1073,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 48,
+   "execution_count": 74,
    "metadata": {},
    "outputs": [
     {
@@ -1073,7 +1082,7 @@
        "array([ 5, 10, 15, 20])"
       ]
      },
-     "execution_count": 48,
+     "execution_count": 74,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1085,7 +1094,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 49,
+   "execution_count": 75,
    "metadata": {},
    "outputs": [
     {
@@ -1094,7 +1103,7 @@
        "array([ 5, 10, 15, 20])"
       ]
      },
-     "execution_count": 49,
+     "execution_count": 75,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1118,7 +1127,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 50,
+   "execution_count": 76,
    "metadata": {},
    "outputs": [
     {
@@ -1129,7 +1138,7 @@
        "       [0, 0, 0]])"
       ]
      },
-     "execution_count": 50,
+     "execution_count": 76,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1160,7 +1169,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 51,
+   "execution_count": 77,
    "metadata": {},
    "outputs": [
     {
@@ -1170,7 +1179,7 @@
        "       [5, 7]])"
       ]
      },
-     "execution_count": 51,
+     "execution_count": 77,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1182,7 +1191,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 52,
+   "execution_count": 78,
    "metadata": {},
    "outputs": [
     {
@@ -1192,7 +1201,7 @@
        "       [6, 8]])"
       ]
      },
-     "execution_count": 52,
+     "execution_count": 78,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1204,7 +1213,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 53,
+   "execution_count": 79,
    "metadata": {},
    "outputs": [
     {
@@ -1214,7 +1223,7 @@
        "       [11, 15]])"
       ]
      },
-     "execution_count": 53,
+     "execution_count": 79,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1232,7 +1241,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 54,
+   "execution_count": 80,
    "metadata": {},
    "outputs": [
     {
@@ -1242,7 +1251,7 @@
        "       [5, 7]])"
       ]
      },
-     "execution_count": 54,
+     "execution_count": 80,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1254,7 +1263,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 55,
+   "execution_count": 81,
    "metadata": {},
    "outputs": [
     {
@@ -1265,7 +1274,7 @@
        "       [1, 8, 7]])"
       ]
      },
-     "execution_count": 55,
+     "execution_count": 81,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1277,7 +1286,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 56,
+   "execution_count": 82,
    "metadata": {},
    "outputs": [
     {
@@ -1286,7 +1295,7 @@
        "(2, 2)"
       ]
      },
-     "execution_count": 56,
+     "execution_count": 82,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1297,7 +1306,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 57,
+   "execution_count": 83,
    "metadata": {},
    "outputs": [
     {
@@ -1306,7 +1315,7 @@
        "(3, 3)"
       ]
      },
-     "execution_count": 57,
+     "execution_count": 83,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1317,7 +1326,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 58,
+   "execution_count": 84,
    "metadata": {},
    "outputs": [
     {
@@ -1327,7 +1336,7 @@
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-58-e81e582b6fa9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;32m<ipython-input-84-e81e582b6fa9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
       "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,2) (3,3) "
      ]
     }
@@ -1338,9 +1347,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 85,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[1, 2, 3],\n",
+       "       [4, 5, 6]])"
+      ]
+     },
+     "execution_count": 85,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "m = np.array([[1,2,3],[4,5,6]])\n",
     "m"
@@ -1348,9 +1369,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 86,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[0.25, 0.5 , 0.75],\n",
+       "       [1.  , 1.25, 1.5 ]])"
+      ]
+     },
+     "execution_count": 86,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "n = m * 0.25\n",
     "n"
@@ -1358,18 +1391,42 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 87,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[0.25, 1.  , 2.25],\n",
+       "       [4.  , 6.25, 9.  ]])"
+      ]
+     },
+     "execution_count": 87,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "m * n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 88,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[0.25, 1.  , 2.25],\n",
+       "       [4.  , 6.25, 9.  ]])"
+      ]
+     },
+     "execution_count": 88,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "np.multiply(m, n)"
    ]
@@ -1385,9 +1442,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 89,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[1, 2, 3, 4],\n",
+       "       [5, 6, 7, 8]])"
+      ]
+     },
+     "execution_count": 89,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "a = np.array([[1,2,3,4],[5,6,7,8]])\n",
     "a"
@@ -1395,18 +1464,43 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 90,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(2, 4)"
+      ]
+     },
+     "execution_count": 90,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "a.shape"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 91,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 1,  2,  3],\n",
+       "       [ 4,  5,  6],\n",
+       "       [ 7,  8,  9],\n",
+       "       [10, 11, 12]])"
+      ]
+     },
+     "execution_count": 91,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "b = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])\n",
     "b"
@@ -1414,18 +1508,41 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 92,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(4, 3)"
+      ]
+     },
+     "execution_count": 92,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "b.shape"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 93,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 70,  80,  90],\n",
+       "       [158, 184, 210]])"
+      ]
+     },
+     "execution_count": 93,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "c = np.matmul(a, b)\n",
     "c"
@@ -1433,9 +1550,20 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 94,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(2, 3)"
+      ]
+     },
+     "execution_count": 94,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "c.shape"
    ]
@@ -1449,9 +1577,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 95,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "ValueError",
+     "evalue": "matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-95-af3b88aa2232>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[0;31mValueError\u001b[0m: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)"
+     ]
+    }
+   ],
    "source": [
     "np.matmul(b, a)"
    ]
@@ -1470,9 +1610,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 96,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[1, 2],\n",
+       "       [3, 4]])"
+      ]
+     },
+     "execution_count": 96,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "a = np.array([[1,2],[3,4]])\n",
     "a"
@@ -1480,27 +1632,63 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 97,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 7, 10],\n",
+       "       [15, 22]])"
+      ]
+     },
+     "execution_count": 97,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "np.dot(a,a)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 98,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 7, 10],\n",
+       "       [15, 22]])"
+      ]
+     },
+     "execution_count": 98,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "a.dot(a)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 99,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 7, 10],\n",
+       "       [15, 22]])"
+      ]
+     },
+     "execution_count": 99,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "np.matmul(a,a)"
    ]
@@ -1527,9 +1715,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 100,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 1,  2,  3,  4],\n",
+       "       [ 5,  6,  7,  8],\n",
+       "       [ 9, 10, 11, 12]])"
+      ]
+     },
+     "execution_count": 100,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "m = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])\n",
     "m"
@@ -1537,9 +1738,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 101,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[ 1,  5,  9],\n",
+       "       [ 2,  6, 10],\n",
+       "       [ 3,  7, 11],\n",
+       "       [ 4,  8, 12]])"
+      ]
+     },
+     "execution_count": 101,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "m.T"
    ]
@@ -1560,9 +1775,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 102,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[  1,   5,   9],\n",
+       "       [  2,   6,  10],\n",
+       "       [  3,   7,  11],\n",
+       "       [  4, 200,  12]])"
+      ]
+     },
+     "execution_count": 102,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "m_t = m.T\n",
     "m_t[3][1] = 200\n",
@@ -1571,9 +1800,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 103,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[  1,   2,   3,   4],\n",
+       "       [  5,   6,   7, 200],\n",
+       "       [  9,  10,  11,  12]])"
+      ]
+     },
+     "execution_count": 103,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "m"
    ]
@@ -1606,9 +1848,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 104,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "FileNotFoundError",
+     "evalue": "[Errno 2] No such file or directory: 'stinkbug4.JPG'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-104-3d285766ff57>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mmpimg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmpimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'stinkbug4.JPG'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/opt/conda/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36mimread\u001b[0;34m(fname, format)\u001b[0m\n\u001b[1;32m   1484\u001b[0m                     \u001b[0mresponse\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresponse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1485\u001b[0m                 \u001b[0;32mreturn\u001b[0m \u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresponse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1486\u001b[0;31m     \u001b[0;32mwith\u001b[0m \u001b[0mimg_open\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1487\u001b[0m         return (_pil_png_to_float_array(image)\n\u001b[1;32m   1488\u001b[0m                 \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mPIL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPngImagePlugin\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPngImageFile\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;32m/opt/conda/lib/python3.7/site-packages/PIL/Image.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m   2889\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2890\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2891\u001b[0;31m         \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2892\u001b[0m         \u001b[0mexclusive_fp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2893\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'stinkbug4.JPG'"
+     ]
+    }
+   ],
    "source": [
     "%matplotlib inline \n",
     "\n",
@@ -1630,9 +1886,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 105,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "ModuleNotFoundError",
+     "evalue": "No module named 'skimage'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-105-16d8c7ff678e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mskimage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mskimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrescale\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrescale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m.2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdelete\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'skimage'"
+     ]
+    }
+   ],
    "source": [
     "import skimage\n",
     "from skimage.transform import rescale\n",
@@ -1674,9 +1942,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 106,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[-0.27  0.45  0.64  0.31]] (1, 4)\n",
+      "[[ 0.02   0.001 -0.03   0.036]\n",
+      " [ 0.04  -0.003  0.025  0.009]\n",
+      " [ 0.012 -0.045  0.28  -0.067]] (3, 4)\n",
+      "Matrix multiplication gives:\n",
+      " [[-0.01299  0.00664  0.13494]] \n",
+      "or, equivalently:\n",
+      " [[-0.01299]\n",
+      " [ 0.00664]\n",
+      " [ 0.13494]]\n"
+     ]
+    }
+   ],
    "source": [
     "inputs = np.array([[-0.27, 0.45, 0.64, 0.31]])\n",
     "print(inputs, inputs.shape)\n",
@@ -1698,9 +1983,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 107,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "Showing some basic math on arrays\n",
+      "Max: 4\n",
+      "Average: 2.0\n",
+      "Max index: 2\n",
+      "\n",
+      "Use numpy to create a [3,3] dimension array with random number\n",
+      "[[0.55382541 0.36160037 0.68662274]\n",
+      " [0.35028249 0.09885074 0.38463975]\n",
+      " [0.10113939 0.74698869 0.02460112]]\n"
+     ]
+    }
+   ],
    "source": [
     "print(\"\\nShowing some basic math on arrays\")\n",
     "\n",
@@ -1737,9 +2039,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 108,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0     1\n",
+      "1     5\n",
+      "2     9\n",
+      "3    15\n",
+      "4    20\n",
+      "5    25\n",
+      "6    25\n",
+      "dtype: int64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1759,9 +2076,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 109,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "9\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1780,9 +2105,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 110,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "jan     1\n",
+      "feb     5\n",
+      "mar     9\n",
+      "apr    15\n",
+      "mai    20\n",
+      "jun    25\n",
+      "jul    25\n",
+      "dtype: int64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1804,9 +2144,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 111,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "9\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1826,9 +2174,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 112,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "     Luzern  Basel  Zuerich\n",
+      "jan       1      3        8\n",
+      "feb       5      4        6\n",
+      "mar       9     12       10\n",
+      "apr      15     16       17\n",
+      "mai      20     18       23\n",
+      "jun      25     23       22\n",
+      "jul      25     32       24\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1855,9 +2218,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 113,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Index(['Luzern', 'Basel', 'Zuerich'], dtype='object')\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1883,9 +2254,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 114,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "jan     1\n",
+      "feb     5\n",
+      "mar     9\n",
+      "apr    15\n",
+      "mai    20\n",
+      "jun    25\n",
+      "jul    25\n",
+      "Name: Luzern, dtype: int64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1909,9 +2295,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 115,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "jan     1\n",
+      "feb     5\n",
+      "mar     9\n",
+      "apr    15\n",
+      "mai    20\n",
+      "jun    25\n",
+      "jul    25\n",
+      "Name: Luzern, dtype: int64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1935,9 +2336,20 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 116,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "mai    20\n",
+      "jun    25\n",
+      "jul    25\n",
+      "Name: Luzern, dtype: int64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1961,9 +2373,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 117,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "     Basel  Zuerich\n",
+      "mai     18       23\n",
+      "jul     32       24\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -1987,9 +2409,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 118,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "23\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -2024,9 +2454,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 119,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Index(['jan', 'feb', 'mar', 'apr', 'mai', 'jun', 'jul'], dtype='object')\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -2046,9 +2484,17 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 120,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "14.285714285714286\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -2075,9 +2521,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 121,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "jan     4.000000\n",
+      "feb     5.000000\n",
+      "mar    10.333333\n",
+      "apr    16.000000\n",
+      "mai    20.333333\n",
+      "jun    23.333333\n",
+      "jul    27.000000\n",
+      "dtype: float64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
@@ -2101,9 +2562,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 122,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "jan     1\n",
+      "feb     4\n",
+      "mar     9\n",
+      "apr    15\n",
+      "mai    18\n",
+      "jun    22\n",
+      "jul    24\n",
+      "dtype: int64\n"
+     ]
+    }
+   ],
    "source": [
     "import pandas as pd\n",
     "from pandas import Series, DataFrame\n",
diff --git a/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb b/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb
index c3aa33038665da7dda83520ad0f954e5b76780e4..eb5eeee0d80d33a74dc2e00550e8de595ba42b66 100644
--- a/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb	
+++ b/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb	
@@ -1481,6 +1481,13 @@
     "avg_kg = t_kg.mean()\n",
     "print(\"\\nAverage Kilometer per liter is: \\n{}\".format(round(avg_kml, 2)), \"\\nAverage weight in kilogram is: \\n{}\".format(round(avg_kg,2)))"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {