diff --git a/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb b/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb index b0cc622f242b765db361893bbb9de759278edf0b..9cdf02f0917847c92cc0ffd517e2c4ad46007f48 100644 --- a/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb +++ b/notebooks/Convolutional_Neural_Networks/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb @@ -30,9 +30,6 @@ "output_type": "stream", "text": [ "2.7.1\n", - "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n", - "170500096/170498071 [==============================] - 9s 0us/step\n", - "170508288/170498071 [==============================] - 9s 0us/step\n", "Train: X=(50000, 32, 32, 3), y=(50000, 1)\n", "Test: X=(10000, 32, 32, 3), y=(10000, 1)\n", "(50000, 1)\n", diff --git a/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb b/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb index 9c6d283ea7dc2c4be703d3614526752b4f27052d..9d41c32101ce9d260d19d1823c8bb30c6398633f 100644 --- a/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb +++ b/notebooks/Preliminaries_Numpy_Pandas/Checking_Correct_Installation.ipynb @@ -80,7 +80,7 @@ { "data": { "text/plain": [ - "<matplotlib.collections.PathCollection at 0x7fec50d77050>" + "<matplotlib.collections.PathCollection at 0x7fd13651a050>" ] }, "execution_count": 5, @@ -105,6 +105,13 @@ "%matplotlib inline\n", "plt.scatter(range(100), np.sin(0.1 * np.array(range(100))))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/notebooks/Preliminaries_Numpy_Pandas/Examples script/stinkbug4.JPG b/notebooks/Preliminaries_Numpy_Pandas/Examples script/stinkbug4.JPG deleted file mode 100644 index eb88408c8e21bc0f89bb4706c7b25be747d589d0..0000000000000000000000000000000000000000 Binary files a/notebooks/Preliminaries_Numpy_Pandas/Examples script/stinkbug4.JPG and /dev/null differ diff --git a/notebooks/Preliminaries_Numpy_Pandas/Examples script/Preliminaries_Numpy_Pandas.ipynb b/notebooks/Preliminaries_Numpy_Pandas/Jupyter Notebook - Introduction Numpy and Pandas.ipynb similarity index 72% rename from notebooks/Preliminaries_Numpy_Pandas/Examples script/Preliminaries_Numpy_Pandas.ipynb rename to notebooks/Preliminaries_Numpy_Pandas/Jupyter Notebook - Introduction Numpy and Pandas.ipynb index e4fc5e596d4e5dd193d47cf1befbdff73f29fffb..2a163231de03aff6cb3e3bf193a7d72f88f29b2f 100644 --- a/notebooks/Preliminaries_Numpy_Pandas/Examples script/Preliminaries_Numpy_Pandas.ipynb +++ b/notebooks/Preliminaries_Numpy_Pandas/Jupyter Notebook - Introduction Numpy and Pandas.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -87,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -115,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -171,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -221,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -230,7 +230,7 @@ "array(5)" ] }, - "execution_count": 21, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -252,7 +252,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -261,7 +261,7 @@ "0" ] }, - "execution_count": 22, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -280,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -289,7 +289,7 @@ "()" ] }, - "execution_count": 23, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -311,7 +311,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -320,7 +320,7 @@ "numpy.int64" ] }, - "execution_count": 24, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -355,7 +355,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 51, "metadata": {}, "outputs": [ { @@ -364,7 +364,7 @@ "array([1, 2, 3])" ] }, - "execution_count": 25, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -384,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -393,7 +393,7 @@ "(3,)" ] }, - "execution_count": 26, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -411,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -420,7 +420,7 @@ "1" ] }, - "execution_count": 27, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -442,7 +442,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -451,7 +451,7 @@ "2" ] }, - "execution_count": 28, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -470,7 +470,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -479,7 +479,7 @@ "array([2, 3])" ] }, - "execution_count": 29, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -511,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -522,7 +522,7 @@ " [7, 8, 9]])" ] }, - "execution_count": 30, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -542,7 +542,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -551,7 +551,7 @@ "2" ] }, - "execution_count": 31, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -569,7 +569,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -578,7 +578,7 @@ "(3, 3)" ] }, - "execution_count": 32, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -597,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -606,7 +606,7 @@ "6" ] }, - "execution_count": 33, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -627,7 +627,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -663,7 +663,7 @@ " [17]]]])" ] }, - "execution_count": 34, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -683,7 +683,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -692,7 +692,7 @@ "(3, 3, 2, 1)" ] }, - "execution_count": 35, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -703,7 +703,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -712,7 +712,7 @@ "4" ] }, - "execution_count": 36, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -730,7 +730,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -739,7 +739,7 @@ "16" ] }, - "execution_count": 37, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -763,7 +763,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -772,7 +772,7 @@ "(4,)" ] }, - "execution_count": 38, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -792,7 +792,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 65, "metadata": {}, "outputs": [ { @@ -801,7 +801,7 @@ "array([[1, 2, 3, 4]])" ] }, - "execution_count": 39, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } @@ -821,7 +821,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -833,7 +833,7 @@ " [4]])" ] }, - "execution_count": 40, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -857,7 +857,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -866,7 +866,7 @@ "array([[1, 2, 3, 4]])" ] }, - "execution_count": 41, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -878,7 +878,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -887,7 +887,7 @@ "(1, 4)" ] }, - "execution_count": 42, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -898,7 +898,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -910,7 +910,7 @@ " [4]])" ] }, - "execution_count": 43, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -922,7 +922,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -931,7 +931,7 @@ "(4, 1)" ] }, - "execution_count": 44, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -963,24 +963,27 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.03 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" + "0.00015544891357421875\n", + "[6, 7, 8, 9, 10]\n" ] } ], "source": [ - "%%timeit\n", + "import time\n", + "start = time.time()\n", "values = [1,2,3,4,5]\n", "for i in range(len(values)):\n", " values[i] += 5\n", - " \n", - "values" + "end = time.time()\n", + "print(end - start) \n", + "print(values)" ] }, { @@ -1007,22 +1010,25 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3.44 µs ± 427 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" + "0.00020384788513183594\n", + "[ 6 7 8 9 10]\n" ] } ], "source": [ - "%%timeit\n", + "start = time.time()\n", "values = [1,2,3,4,5]\n", "values = np.array(values) + 5\n", - "values" + "end = time.time()\n", + "print(end - start) \n", + "print(values)" ] }, { @@ -1035,23 +1041,26 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 73, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3.78 µs ± 381 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" + "0.00024271011352539062\n", + "[ 6 7 8 9 10]\n" ] } ], "source": [ - "%%timeit\n", + "start = time.time()\n", "values = [1,2,3,4,5]\n", "values = np.array(values)\n", "values += 5\n", - "values" + "end = time.time()\n", + "print(end - start) \n", + "print(values)" ] }, { @@ -1064,7 +1073,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -1073,7 +1082,7 @@ "array([ 5, 10, 15, 20])" ] }, - "execution_count": 48, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -1085,7 +1094,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -1094,7 +1103,7 @@ "array([ 5, 10, 15, 20])" ] }, - "execution_count": 49, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -1118,7 +1127,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -1129,7 +1138,7 @@ " [0, 0, 0]])" ] }, - "execution_count": 50, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -1160,7 +1169,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 77, "metadata": {}, "outputs": [ { @@ -1170,7 +1179,7 @@ " [5, 7]])" ] }, - "execution_count": 51, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -1182,7 +1191,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 78, "metadata": {}, "outputs": [ { @@ -1192,7 +1201,7 @@ " [6, 8]])" ] }, - "execution_count": 52, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -1204,7 +1213,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 79, "metadata": {}, "outputs": [ { @@ -1214,7 +1223,7 @@ " [11, 15]])" ] }, - "execution_count": 53, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -1232,7 +1241,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -1242,7 +1251,7 @@ " [5, 7]])" ] }, - "execution_count": 54, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -1254,7 +1263,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -1265,7 +1274,7 @@ " [1, 8, 7]])" ] }, - "execution_count": 55, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -1277,7 +1286,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -1286,7 +1295,7 @@ "(2, 2)" ] }, - "execution_count": 56, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -1297,7 +1306,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -1306,7 +1315,7 @@ "(3, 3)" ] }, - "execution_count": 57, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -1317,7 +1326,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -1327,7 +1336,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-58-e81e582b6fa9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m<ipython-input-84-e81e582b6fa9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,2) (3,3) " ] } @@ -1338,9 +1347,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 85, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m = np.array([[1,2,3],[4,5,6]])\n", "m" @@ -1348,9 +1369,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.25, 0.5 , 0.75],\n", + " [1. , 1.25, 1.5 ]])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "n = m * 0.25\n", "n" @@ -1358,18 +1391,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.25, 1. , 2.25],\n", + " [4. , 6.25, 9. ]])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m * n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 88, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.25, 1. , 2.25],\n", + " [4. , 6.25, 9. ]])" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.multiply(m, n)" ] @@ -1385,9 +1442,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 89, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3, 4],\n", + " [5, 6, 7, 8]])" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "a = np.array([[1,2,3,4],[5,6,7,8]])\n", "a" @@ -1395,18 +1464,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 90, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 4)" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "a.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 91, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 2, 3],\n", + " [ 4, 5, 6],\n", + " [ 7, 8, 9],\n", + " [10, 11, 12]])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "b = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])\n", "b" @@ -1414,18 +1508,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 92, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(4, 3)" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "b.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 93, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 70, 80, 90],\n", + " [158, 184, 210]])" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "c = np.matmul(a, b)\n", "c" @@ -1433,9 +1550,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 94, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 3)" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "c.shape" ] @@ -1449,9 +1577,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 95, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ValueError", + "evalue": "matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-95-af3b88aa2232>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mValueError\u001b[0m: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 2 is different from 3)" + ] + } + ], "source": [ "np.matmul(b, a)" ] @@ -1470,9 +1610,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 96, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "a = np.array([[1,2],[3,4]])\n", "a" @@ -1480,27 +1632,63 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 97, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 7, 10],\n", + " [15, 22]])" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.dot(a,a)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 98, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 7, 10],\n", + " [15, 22]])" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "a.dot(a)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 99, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 7, 10],\n", + " [15, 22]])" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.matmul(a,a)" ] @@ -1527,9 +1715,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 100, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 2, 3, 4],\n", + " [ 5, 6, 7, 8],\n", + " [ 9, 10, 11, 12]])" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])\n", "m" @@ -1537,9 +1738,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 101, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 5, 9],\n", + " [ 2, 6, 10],\n", + " [ 3, 7, 11],\n", + " [ 4, 8, 12]])" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m.T" ] @@ -1560,9 +1775,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 102, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 5, 9],\n", + " [ 2, 6, 10],\n", + " [ 3, 7, 11],\n", + " [ 4, 200, 12]])" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m_t = m.T\n", "m_t[3][1] = 200\n", @@ -1571,9 +1800,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 103, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 2, 3, 4],\n", + " [ 5, 6, 7, 200],\n", + " [ 9, 10, 11, 12]])" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m" ] @@ -1606,9 +1848,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 104, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'stinkbug4.JPG'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-104-3d285766ff57>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mmpimg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmpimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'stinkbug4.JPG'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36mimread\u001b[0;34m(fname, format)\u001b[0m\n\u001b[1;32m 1484\u001b[0m \u001b[0mresponse\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mBytesIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresponse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1485\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresponse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1486\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mimg_open\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1487\u001b[0m return (_pil_png_to_float_array(image)\n\u001b[1;32m 1488\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mPIL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPngImagePlugin\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPngImageFile\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.7/site-packages/PIL/Image.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m 2889\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2890\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2891\u001b[0;31m \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2892\u001b[0m \u001b[0mexclusive_fp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2893\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'stinkbug4.JPG'" + ] + } + ], "source": [ "%matplotlib inline \n", "\n", @@ -1630,9 +1886,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 105, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'skimage'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-105-16d8c7ff678e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mskimage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mskimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrescale\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrescale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m.2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdelete\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'skimage'" + ] + } + ], "source": [ "import skimage\n", "from skimage.transform import rescale\n", @@ -1674,9 +1942,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 106, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-0.27 0.45 0.64 0.31]] (1, 4)\n", + "[[ 0.02 0.001 -0.03 0.036]\n", + " [ 0.04 -0.003 0.025 0.009]\n", + " [ 0.012 -0.045 0.28 -0.067]] (3, 4)\n", + "Matrix multiplication gives:\n", + " [[-0.01299 0.00664 0.13494]] \n", + "or, equivalently:\n", + " [[-0.01299]\n", + " [ 0.00664]\n", + " [ 0.13494]]\n" + ] + } + ], "source": [ "inputs = np.array([[-0.27, 0.45, 0.64, 0.31]])\n", "print(inputs, inputs.shape)\n", @@ -1698,9 +1983,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 107, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Showing some basic math on arrays\n", + "Max: 4\n", + "Average: 2.0\n", + "Max index: 2\n", + "\n", + "Use numpy to create a [3,3] dimension array with random number\n", + "[[0.55382541 0.36160037 0.68662274]\n", + " [0.35028249 0.09885074 0.38463975]\n", + " [0.10113939 0.74698869 0.02460112]]\n" + ] + } + ], "source": [ "print(\"\\nShowing some basic math on arrays\")\n", "\n", @@ -1737,9 +2039,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 108, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 1\n", + "1 5\n", + "2 9\n", + "3 15\n", + "4 20\n", + "5 25\n", + "6 25\n", + "dtype: int64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1759,9 +2076,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 109, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1780,9 +2105,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 110, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jan 1\n", + "feb 5\n", + "mar 9\n", + "apr 15\n", + "mai 20\n", + "jun 25\n", + "jul 25\n", + "dtype: int64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1804,9 +2144,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 111, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "9\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1826,9 +2174,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 112, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Luzern Basel Zuerich\n", + "jan 1 3 8\n", + "feb 5 4 6\n", + "mar 9 12 10\n", + "apr 15 16 17\n", + "mai 20 18 23\n", + "jun 25 23 22\n", + "jul 25 32 24\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1855,9 +2218,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 113, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Luzern', 'Basel', 'Zuerich'], dtype='object')\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1883,9 +2254,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 114, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jan 1\n", + "feb 5\n", + "mar 9\n", + "apr 15\n", + "mai 20\n", + "jun 25\n", + "jul 25\n", + "Name: Luzern, dtype: int64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1909,9 +2295,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 115, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jan 1\n", + "feb 5\n", + "mar 9\n", + "apr 15\n", + "mai 20\n", + "jun 25\n", + "jul 25\n", + "Name: Luzern, dtype: int64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1935,9 +2336,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 116, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mai 20\n", + "jun 25\n", + "jul 25\n", + "Name: Luzern, dtype: int64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1961,9 +2373,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 117, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Basel Zuerich\n", + "mai 18 23\n", + "jul 32 24\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -1987,9 +2409,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 118, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -2024,9 +2454,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 119, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['jan', 'feb', 'mar', 'apr', 'mai', 'jun', 'jul'], dtype='object')\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -2046,9 +2484,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 120, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14.285714285714286\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -2075,9 +2521,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 121, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jan 4.000000\n", + "feb 5.000000\n", + "mar 10.333333\n", + "apr 16.000000\n", + "mai 20.333333\n", + "jun 23.333333\n", + "jul 27.000000\n", + "dtype: float64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", @@ -2101,9 +2562,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 122, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jan 1\n", + "feb 4\n", + "mar 9\n", + "apr 15\n", + "mai 18\n", + "jun 22\n", + "jul 24\n", + "dtype: int64\n" + ] + } + ], "source": [ "import pandas as pd\n", "from pandas import Series, DataFrame\n", diff --git a/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb b/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb index c3aa33038665da7dda83520ad0f954e5b76780e4..eb5eeee0d80d33a74dc2e00550e8de595ba42b66 100644 --- a/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb +++ b/notebooks/Preliminaries_Numpy_Pandas/Solution - Basics Numpy.ipynb @@ -1481,6 +1481,13 @@ "avg_kg = t_kg.mean()\n", "print(\"\\nAverage Kilometer per liter is: \\n{}\".format(round(avg_kml, 2)), \"\\nAverage weight in kilogram is: \\n{}\".format(round(avg_kg,2)))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {