diff --git a/notebooks/Linear Regression/LR_7_1.ipynb b/notebooks/Linear Regression/LR_7_1.ipynb
index 035b0ad2962c43391f815021e5512a7ebbdc7b22..7e8c8bbeb39ccd355efd03b13479325456074aba 100644
--- a/notebooks/Linear Regression/LR_7_1.ipynb	
+++ b/notebooks/Linear Regression/LR_7_1.ipynb	
@@ -10,18 +10,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 15,
    "id": "6645d58f-73f2-4bb4-ae9f-17a0b334a652",
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "import arviz as az\n",
     "import matplotlib.pyplot as plt\n",
@@ -35,7 +27,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 16,
    "id": "a76946c6-bb24-4032-9b40-35a2303dec27",
    "metadata": {},
    "outputs": [
@@ -63,8 +55,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
-   "id": "97ef4d21-6ffb-4b9e-a973-94c6815600b3",
+   "execution_count": 17,
+   "id": "305f1c77-27b3-4c5f-ac93-24d87111d0af",
    "metadata": {},
    "outputs": [
     {
@@ -74,7 +66,7 @@
       "Auto-assigning NUTS sampler...\n",
       "Initializing NUTS using jitter+adapt_diag...\n",
       "Multiprocess sampling (4 chains in 4 jobs)\n",
-      "NUTS: [sigma, Intercept, TV, Zeitung, Radio]\n"
+      "NUTS: [sigma, Intercept, TV]\n"
      ]
     },
     {
@@ -106,86 +98,90 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 5 seconds.\n"
+      "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 4 seconds.\n"
      ]
     }
    ],
    "source": [
     "import bambi as bmb\n",
-    "model_trz = bmb.Model(\"Verkauf ~ TV + Zeitung + Radio\", werbung)\n",
-    "idata_trz = model_trz.fit(random_seed=123)"
+    "model_t = bmb.Model(\"Verkauf ~ TV\", werbung)\n",
+    "idata_t = model_t.fit(random_seed=123)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
-   "id": "27f1854b-e66e-432e-aa61-66b928e73f16",
+   "execution_count": 18,
+   "id": "b1e588a7-0840-4b8b-a41d-523901096600",
    "metadata": {},
    "outputs": [],
    "source": [
     "# Extract posterior means of coefficients\n",
-    "beta_0 = idata_trz.posterior[\"Intercept\"].mean().item()\n",
-    "beta_tv = idata_trz.posterior[\"TV\"].mean().item()\n",
-    "beta_zeitung = idata_trz.posterior[\"Zeitung\"].mean().item()\n",
-    "beta_radio = idata_trz.posterior[\"Radio\"].mean().item()\n",
+    "beta_0 = idata_t.posterior[\"Intercept\"].mean().item()\n",
+    "beta_tv = idata_t.posterior[\"TV\"].mean().item()\n",
+    "\n",
     "\n",
     "# Compute predictions (Å·)\n",
-    "y_pred = beta_0 + beta_tv * werbung[\"TV\"] + beta_zeitung * werbung[\"Zeitung\"] + beta_radio * werbung[\"Radio\"]"
+    "y_pred = beta_0 + beta_tv * werbung[\"TV\"] \n",
+    "\n",
+    "# Actual y values\n",
+    "y_obs = werbung[\"Verkauf\"].values"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
-   "id": "45172e19-c1df-48ed-a524-cb8408a603e4",
+   "execution_count": 19,
+   "id": "8313a376-068f-4a41-84e8-e0cfc2d6fcb2",
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "R²: 0.8972105391174441\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
-    "# Actual y values\n",
-    "y_obs = werbung[\"Verkauf\"].values\n",
+    "# Compute residual sum of squares (RSS)\n",
     "\n",
-    "# Compute total sum of squares (TSS) and residual sum of squares (RSS)\n",
-    "ss_total = np.sum((y_obs - np.mean(y_obs))**2)\n",
-    "ss_residual = np.sum((y_obs - y_pred) ** 2)\n",
-    "\n",
-    "# Compute R²\n",
-    "r2 = 1 - (ss_residual / ss_total)\n",
-    "print(\"R²:\", r2)"
+    "ss_residual = np.sum((y_obs - y_pred) ** 2)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
-   "id": "e078416c-69fb-4504-8798-983486f039e8",
+   "execution_count": 20,
+   "id": "63d5da55-b5e9-4177-bc6e-29d71a969382",
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "RSE: 1.6855111856055986\n"
+      "RSE: 3.258656512155862\n"
      ]
     }
    ],
    "source": [
     "n = len(y_obs)  # Number of observations\n",
-    "p = 3  # Number of predictors (TV, Zeitung, Radio)\n",
+    "p = 1  # Number of predictors (TV, Zeitung, Radio)\n",
     "\n",
     "rse = np.sqrt(ss_residual / (n - p - 1))\n",
     "print(\"RSE:\", rse)"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "0bf3b298-2779-4cab-a454-ca5a266db0b7",
+   "metadata": {},
+   "source": [
+    "Der RSE Wert für das einfache lineare Regressionsmodell mit der Prädiktorvariablen beträgt also 3.26. Das heisst, dass die eigentlichen Verkäufe in den 200 Märkten durchschnittlich $ 3260 $ Einheiten von der wahren Regressionsgeraden abweichen. \n",
+    "Wäre also unser Modell korrekt und wären die an sich unbekannten Koeffizienten $\\beta_0$ und $\\beta_1$ exakt bekannt, würde jede Vorhersage des Verkaufs auf der Basis des TV-Werbeausgaben im Durchschnitt 3260 Einheiten abweichen. \n",
+    "\n",
+    "Ob nun 3260 Einheiten Abweichung von der Vorhersage viel ist oder nicht, hängt vom Problemkontext ab. In diesem Beispiel ist der Mittelwert von `Verkauf` etwa $14000$ Einheiten und damit macht der prozentuale Fehler\n",
+    "\\begin{equation*}\n",
+    "\\dfrac{3.260}{14.000}\n",
+    "\\approx 0.23\n",
+    "=23\\%\n",
+    "\\end{equation*} \n",
+    "aus."
+   ]
+  },
   {
    "cell_type": "code",
-   "execution_count": 8,
-   "id": "fd86c259-21a6-4ebc-a2c9-6d7165f6a13a",
+   "execution_count": 21,
+   "id": "97ef4d21-6ffb-4b9e-a973-94c6815600b3",
    "metadata": {},
    "outputs": [
     {
@@ -233,64 +229,52 @@
    ],
    "source": [
     "import bambi as bmb\n",
-    "model_tr = bmb.Model(\"Verkauf ~ TV + Radio\", werbung)\n",
-    "idata_tr = model_trz.fit(random_seed=123)"
+    "model_trz = bmb.Model(\"Verkauf ~ TV + Zeitung + Radio\", werbung)\n",
+    "idata_trz = model_trz.fit(random_seed=123)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
-   "id": "125cbdce-ae89-456c-945b-b603d8cf3d7d",
+   "execution_count": 22,
+   "id": "27f1854b-e66e-432e-aa61-66b928e73f16",
    "metadata": {},
    "outputs": [],
    "source": [
     "# Extract posterior means of coefficients\n",
     "beta_0 = idata_trz.posterior[\"Intercept\"].mean().item()\n",
     "beta_tv = idata_trz.posterior[\"TV\"].mean().item()\n",
+    "beta_zeitung = idata_trz.posterior[\"Zeitung\"].mean().item()\n",
     "beta_radio = idata_trz.posterior[\"Radio\"].mean().item()\n",
     "\n",
     "# Compute predictions (Å·)\n",
-    "y_pred = beta_0 + beta_tv * werbung[\"TV\"] + beta_radio * werbung[\"Radio\"]"
+    "y_pred = beta_0 + beta_tv * werbung[\"TV\"] + beta_zeitung * werbung[\"Zeitung\"] + beta_radio * werbung[\"Radio\"]"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
-   "id": "4990d7e2-8761-469b-aca8-7dc283fd8c99",
+   "execution_count": 23,
+   "id": "45172e19-c1df-48ed-a524-cb8408a603e4",
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "R²: 0.897153312886268\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "# Actual y values\n",
     "y_obs = werbung[\"Verkauf\"].values\n",
     "\n",
     "# Compute total sum of squares (TSS) and residual sum of squares (RSS)\n",
-    "ss_total = np.sum((y_obs - np.mean(y_obs))**2)\n",
-    "ss_residual = np.sum((y_obs - y_pred) ** 2)\n",
-    "\n",
-    "# Compute R²\n",
-    "r2 = 1 - (ss_residual / ss_total)\n",
-    "print(\"R²:\", r2)"
+    "ss_residual = np.sum((y_obs - y_pred) ** 2)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
-   "id": "d28de8da-8beb-49bb-93af-4e03eb2340b4",
+   "execution_count": 24,
+   "id": "e078416c-69fb-4504-8798-983486f039e8",
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "RSE: 1.6859803097292891\n"
+      "RSE: 1.6855111856055986\n"
      ]
     }
    ],
@@ -301,14 +285,6 @@
     "rse = np.sqrt(ss_residual / (n - p - 1))\n",
     "print(\"RSE:\", rse)"
    ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "4092c15c-bc63-4a8b-8f0a-6e4aee6a2240",
-   "metadata": {},
-   "outputs": [],
-   "source": []
   }
  ],
  "metadata": {