diff --git a/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb b/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb index 3698ac8cd45e3eeab252ccb8c8ba4069d770bf16..30e328353280edb9f065e13aaf9e43fb3a74083a 100644 --- a/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb +++ b/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Part 1 - Convolutional Neural Networks for CIFAR-10\n", + "# Part 1.1 - Convolutional Neural Networks for CIFAR-10\n", "\n", "\n", "In this notebook chapter, we'll build, train and optimize a neural network to classify images of the CIFAR-10 dataset using convolutional neural networks.\n", @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -22,9 +22,6 @@ "output_type": "stream", "text": [ "2.7.1\n", - "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n", - "170500096/170498071 [==============================] - 7s 0us/step\n", - "170508288/170498071 [==============================] - 7s 0us/step\n", "Train: X=(50000, 32, 32, 3), y=(50000, 1)\n", "Test: X=(10000, 32, 32, 3), y=(10000, 1)\n", "(50000, 1)\n", @@ -82,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -122,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -260,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -271,16 +268,16 @@ "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", - " conv2d_4 (Conv2D) (None, 32, 32, 32) 896 \n", + " conv2d_8 (Conv2D) (None, 32, 32, 32) 896 \n", " \n", - " batch_normalization_4 (Batc (None, 32, 32, 32) 128 \n", + " batch_normalization_8 (Batc (None, 32, 32, 32) 128 \n", " hNormalization) \n", " \n", " activation (Activation) (None, 32, 32, 32) 0 \n", " \n", - " conv2d_5 (Conv2D) (None, 30, 30, 32) 9248 \n", + " conv2d_9 (Conv2D) (None, 30, 30, 32) 9248 \n", " \n", - " batch_normalization_5 (Batc (None, 30, 30, 32) 128 \n", + " batch_normalization_9 (Batc (None, 30, 30, 32) 128 \n", " hNormalization) \n", " \n", " activation_1 (Activation) (None, 30, 30, 32) 0 \n", @@ -290,17 +287,17 @@ " \n", " dropout (Dropout) (None, 15, 15, 32) 0 \n", " \n", - " conv2d_6 (Conv2D) (None, 15, 15, 64) 18496 \n", + " conv2d_10 (Conv2D) (None, 15, 15, 64) 18496 \n", " \n", - " batch_normalization_6 (Batc (None, 15, 15, 64) 256 \n", - " hNormalization) \n", + " batch_normalization_10 (Bat (None, 15, 15, 64) 256 \n", + " chNormalization) \n", " \n", " activation_2 (Activation) (None, 15, 15, 64) 0 \n", " \n", - " conv2d_7 (Conv2D) (None, 13, 13, 64) 36928 \n", + " conv2d_11 (Conv2D) (None, 13, 13, 64) 36928 \n", " \n", - " batch_normalization_7 (Batc (None, 13, 13, 64) 256 \n", - " hNormalization) \n", + " batch_normalization_11 (Bat (None, 13, 13, 64) 256 \n", + " chNormalization) \n", " \n", " activation_3 (Activation) (None, 13, 13, 64) 0 \n", " \n", @@ -313,8 +310,8 @@ " \n", " dense (Dense) (None, 512) 1180160 \n", " \n", - " batch_normalization_8 (Batc (None, 512) 2048 \n", - " hNormalization) \n", + " batch_normalization_12 (Bat (None, 512) 2048 \n", + " chNormalization) \n", " \n", " activation_4 (Activation) (None, 512) 0 \n", " \n", @@ -322,8 +319,8 @@ " \n", " dense_1 (Dense) (None, 10) 5130 \n", " \n", - " batch_normalization_9 (Batc (None, 10) 40 \n", - " hNormalization) \n", + " batch_normalization_13 (Bat (None, 10) 40 \n", + " chNormalization) \n", " \n", " activation_5 (Activation) (None, 10) 0 \n", " \n", @@ -764,7 +761,7 @@ "id": "FE7KNzPPVrVV" }, "source": [ - "# Part 2 - Dogs vs Cats Image Classification : Visualizing what ConvNets learn?" + "# Part 1.2 - Dogs vs Cats Image Classification : Visualizing what ConvNets learn?" ] }, {