diff --git a/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb b/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb
index 3698ac8cd45e3eeab252ccb8c8ba4069d770bf16..30e328353280edb9f065e13aaf9e43fb3a74083a 100644
--- a/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb	
+++ b/notebooks/Block_4/Jupyter Notebook Block 4 - Convolutional Neural Networks.ipynb	
@@ -4,7 +4,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Part 1 - Convolutional Neural Networks for CIFAR-10\n",
+    "# Part 1.1 - Convolutional Neural Networks for CIFAR-10\n",
     "\n",
     "\n",
     "In this notebook chapter, we'll build, train and optimize a neural network to classify images of the CIFAR-10 dataset using convolutional neural networks.\n",
@@ -14,7 +14,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 98,
+   "execution_count": 26,
    "metadata": {},
    "outputs": [
     {
@@ -22,9 +22,6 @@
      "output_type": "stream",
      "text": [
       "2.7.1\n",
-      "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n",
-      "170500096/170498071 [==============================] - 7s 0us/step\n",
-      "170508288/170498071 [==============================] - 7s 0us/step\n",
       "Train: X=(50000, 32, 32, 3), y=(50000, 1)\n",
       "Test: X=(10000, 32, 32, 3), y=(10000, 1)\n",
       "(50000, 1)\n",
@@ -82,7 +79,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 99,
+   "execution_count": 27,
    "metadata": {},
    "outputs": [
     {
@@ -122,7 +119,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 100,
+   "execution_count": 28,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -201,7 +198,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 101,
+   "execution_count": 29,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -260,7 +257,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 102,
+   "execution_count": 30,
    "metadata": {},
    "outputs": [
     {
@@ -271,16 +268,16 @@
       "_________________________________________________________________\n",
       " Layer (type)                Output Shape              Param #   \n",
       "=================================================================\n",
-      " conv2d_4 (Conv2D)           (None, 32, 32, 32)        896       \n",
+      " conv2d_8 (Conv2D)           (None, 32, 32, 32)        896       \n",
       "                                                                 \n",
-      " batch_normalization_4 (Batc  (None, 32, 32, 32)       128       \n",
+      " batch_normalization_8 (Batc  (None, 32, 32, 32)       128       \n",
       " hNormalization)                                                 \n",
       "                                                                 \n",
       " activation (Activation)     (None, 32, 32, 32)        0         \n",
       "                                                                 \n",
-      " conv2d_5 (Conv2D)           (None, 30, 30, 32)        9248      \n",
+      " conv2d_9 (Conv2D)           (None, 30, 30, 32)        9248      \n",
       "                                                                 \n",
-      " batch_normalization_5 (Batc  (None, 30, 30, 32)       128       \n",
+      " batch_normalization_9 (Batc  (None, 30, 30, 32)       128       \n",
       " hNormalization)                                                 \n",
       "                                                                 \n",
       " activation_1 (Activation)   (None, 30, 30, 32)        0         \n",
@@ -290,17 +287,17 @@
       "                                                                 \n",
       " dropout (Dropout)           (None, 15, 15, 32)        0         \n",
       "                                                                 \n",
-      " conv2d_6 (Conv2D)           (None, 15, 15, 64)        18496     \n",
+      " conv2d_10 (Conv2D)          (None, 15, 15, 64)        18496     \n",
       "                                                                 \n",
-      " batch_normalization_6 (Batc  (None, 15, 15, 64)       256       \n",
-      " hNormalization)                                                 \n",
+      " batch_normalization_10 (Bat  (None, 15, 15, 64)       256       \n",
+      " chNormalization)                                                \n",
       "                                                                 \n",
       " activation_2 (Activation)   (None, 15, 15, 64)        0         \n",
       "                                                                 \n",
-      " conv2d_7 (Conv2D)           (None, 13, 13, 64)        36928     \n",
+      " conv2d_11 (Conv2D)          (None, 13, 13, 64)        36928     \n",
       "                                                                 \n",
-      " batch_normalization_7 (Batc  (None, 13, 13, 64)       256       \n",
-      " hNormalization)                                                 \n",
+      " batch_normalization_11 (Bat  (None, 13, 13, 64)       256       \n",
+      " chNormalization)                                                \n",
       "                                                                 \n",
       " activation_3 (Activation)   (None, 13, 13, 64)        0         \n",
       "                                                                 \n",
@@ -313,8 +310,8 @@
       "                                                                 \n",
       " dense (Dense)               (None, 512)               1180160   \n",
       "                                                                 \n",
-      " batch_normalization_8 (Batc  (None, 512)              2048      \n",
-      " hNormalization)                                                 \n",
+      " batch_normalization_12 (Bat  (None, 512)              2048      \n",
+      " chNormalization)                                                \n",
       "                                                                 \n",
       " activation_4 (Activation)   (None, 512)               0         \n",
       "                                                                 \n",
@@ -322,8 +319,8 @@
       "                                                                 \n",
       " dense_1 (Dense)             (None, 10)                5130      \n",
       "                                                                 \n",
-      " batch_normalization_9 (Batc  (None, 10)               40        \n",
-      " hNormalization)                                                 \n",
+      " batch_normalization_13 (Bat  (None, 10)               40        \n",
+      " chNormalization)                                                \n",
       "                                                                 \n",
       " activation_5 (Activation)   (None, 10)                0         \n",
       "                                                                 \n",
@@ -764,7 +761,7 @@
     "id": "FE7KNzPPVrVV"
    },
    "source": [
-    "# Part 2 - Dogs vs Cats Image Classification : Visualizing what ConvNets learn?"
+    "# Part 1.2 - Dogs vs Cats Image Classification : Visualizing what ConvNets learn?"
    ]
   },
   {