diff --git a/notebooks/Block_0/Checking_Correct_Installation.ipynb b/notebooks/Block_0/Checking_Correct_Installation.ipynb
index da8803f9e6bb92d63f7199416e47fd5225435c21..7e8f12fa4799a07ff9292dad5e8392e44b28fb85 100644
--- a/notebooks/Block_0/Checking_Correct_Installation.ipynb
+++ b/notebooks/Block_0/Checking_Correct_Installation.ipynb
@@ -32,23 +32,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "'2.1.0'"
+       "'2.4.1'"
       ]
      },
-     "execution_count": 2,
+     "execution_count": 5,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "import tensorflow as tf\n",
-    "tf.__version__ #Should work and give 2.1.0"
+    "tf.__version__ #Should work and give 2.4.1"
    ]
   },
   {
@@ -80,7 +80,7 @@
     {
      "data": {
       "text/plain": [
-       "<matplotlib.collections.PathCollection at 0x7fb7d492ebd0>"
+       "<matplotlib.collections.PathCollection at 0x7ff7a900c990>"
       ]
      },
      "execution_count": 4,
@@ -105,6 +105,13 @@
     "%matplotlib inline\n",
     "plt.scatter(range(100), np.sin(0.1 * np.array(range(100))))"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {
diff --git a/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb b/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb
index ce2bb78b87ba4652d57442c3bbf0448f18a0d259..5531ef06fac284253dc86ce2d91048412fdc2e92 100644
--- a/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb	
+++ b/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb	
@@ -451,9 +451,9 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python [conda env:root]",
+   "display_name": "Python 3",
    "language": "python",
-   "name": "conda-root-py"
+   "name": "python3"
   },
   "language_info": {
    "codemirror_mode": {
@@ -465,7 +465,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.3"
+   "version": "3.7.6"
   }
  },
  "nbformat": 4,
diff --git a/notebooks/Block_0/Solution - Basics Numpy.ipynb b/notebooks/Block_0/Solution - Basics Numpy.ipynb
index 1aa12bc3f0023ea3cb638a0d1c411759f2489081..c3aa33038665da7dda83520ad0f954e5b76780e4 100644
--- a/notebooks/Block_0/Solution - Basics Numpy.ipynb	
+++ b/notebooks/Block_0/Solution - Basics Numpy.ipynb	
@@ -162,7 +162,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -249,7 +249,7 @@
        "Jun      25     21    23      27"
       ]
      },
-     "execution_count": 11,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -272,7 +272,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
@@ -310,7 +310,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
@@ -404,7 +404,7 @@
        "Jun      25    21    23      27"
       ]
      },
-     "execution_count": 13,
+     "execution_count": 6,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -434,7 +434,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
@@ -468,7 +468,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
@@ -555,7 +555,7 @@
        "Jun      25    21    23      27"
       ]
      },
-     "execution_count": 15,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -566,7 +566,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -653,7 +653,7 @@
        "Jan       2     5    -3       4"
       ]
      },
-     "execution_count": 16,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -671,7 +671,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
@@ -1190,7 +1190,7 @@
        "59  60    3690   19      Van"
       ]
      },
-     "execution_count": 18,
+     "execution_count": 10,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1217,7 +1217,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [
     {
@@ -1296,7 +1296,7 @@
        "5  6    2285   26  Small"
       ]
      },
-     "execution_count": 19,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1308,7 +1308,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
@@ -1387,7 +1387,7 @@
        "4  5    2440   32  Small"
       ]
      },
-     "execution_count": 20,
+     "execution_count": 12,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1409,7 +1409,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [
     {
@@ -1443,7 +1443,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [
     {
diff --git a/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb b/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb
index 8e955cfc0890f6dd93460d1a5852abec7c7a5e30..e3f58f29162a80e614f21183e6830ee9377a1ca5 100644
--- a/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb	
+++ b/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb	
@@ -31,20 +31,6 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Found 2 image links\n",
-      "Saved 2 images\n",
-      "Found 2 image links\n",
-      "Saved 2 images\n",
-      "Found 2 image links\n",
-      "Saved 2 images\n",
-      "Found 2 image links\n",
-      "ERROR - Could not save https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/1990_Venice_Film_Festival_Robert_De_Niro.jpg/1200px-1990_Venice_Film_Festival_Robert_De_Niro.jpg - cannot identify image file <_io.BytesIO object at 0x7f4f951b6b30>\n",
-      "Saved 1 images\n",
-      "Found 2 image links\n",
-      "Saved 2 images\n",
-      "Found 2 image links\n",
-      "ERROR - Could not save https://upload.wikimedia.org/wikipedia/commons/1/15/Sandra_Bullock_in_July_2013.jpg - cannot identify image file <_io.BytesIO object at 0x7f4f950e8410>\n",
-      "Saved 1 images\n",
       "Found 2 image links\n",
       "Saved 2 images\n",
       "Found 2 image links\n",
@@ -58,7 +44,8 @@
     "from Image_crawling import Image_crawling\n",
     "\n",
     "# Specifiy the queries\n",
-    "queries = [\"brad pitt\",\"johnny depp\", \"leonardo dicaprio\", \"robert de niro\", \"angelina jolie\", \"sandra bullock\", \"catherine deneuve\", \"marion cotillard\"]\n",
+    "#queries = [\"brad pitt\",\"johnny depp\", \"leonardo dicaprio\", \"robert de niro\", \"angelina jolie\", \"sandra bullock\", \"catherine deneuve\", \"marion cotillard\"]\n",
+    "queries = [\"Bart Simpson\",\"Homer Simpson\"]\n",
     "limit = 2\n",
     "download_folder = \"./brandnew_images/train/\"\n",
     "waittime = 0.1  # Time to wait between actions, depends on the number of pictures you want to crawl. More pictures means you need to wait longer for them to load. \n",
@@ -255,13 +242,25 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 2,
    "metadata": {
     "colab": {},
     "colab_type": "code",
     "id": "UuJV4JBKGhJO"
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'Sequential' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m<ipython-input-2-e37eef5858cc>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mnum_classes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m8\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mmodel_scratch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSequential\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m \u001b[0mmodel_scratch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mConv2D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_shape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimage_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0mmodel_scratch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mActivation\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'relu'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'Sequential' is not defined"
+     ]
+    }
+   ],
    "source": [
     "batch_size = 20\n",
     "num_train_images = 480\n",