diff --git a/notebooks/Block_0/Checking_Correct_Installation.ipynb b/notebooks/Block_0/Checking_Correct_Installation.ipynb index da8803f9e6bb92d63f7199416e47fd5225435c21..7e8f12fa4799a07ff9292dad5e8392e44b28fb85 100644 --- a/notebooks/Block_0/Checking_Correct_Installation.ipynb +++ b/notebooks/Block_0/Checking_Correct_Installation.ipynb @@ -32,23 +32,23 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'2.1.0'" + "'2.4.1'" ] }, - "execution_count": 2, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import tensorflow as tf\n", - "tf.__version__ #Should work and give 2.1.0" + "tf.__version__ #Should work and give 2.4.1" ] }, { @@ -80,7 +80,7 @@ { "data": { "text/plain": [ - "<matplotlib.collections.PathCollection at 0x7fb7d492ebd0>" + "<matplotlib.collections.PathCollection at 0x7ff7a900c990>" ] }, "execution_count": 4, @@ -105,6 +105,13 @@ "%matplotlib inline\n", "plt.scatter(range(100), np.sin(0.1 * np.array(range(100))))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb b/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb index ce2bb78b87ba4652d57442c3bbf0448f18a0d259..5531ef06fac284253dc86ce2d91048412fdc2e92 100644 --- a/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb +++ b/notebooks/Block_0/Exercise Sheet - Basics Numpy.ipynb @@ -451,9 +451,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:root]", + "display_name": "Python 3", "language": "python", - "name": "conda-root-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -465,7 +465,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/notebooks/Block_0/Solution - Basics Numpy.ipynb b/notebooks/Block_0/Solution - Basics Numpy.ipynb index 1aa12bc3f0023ea3cb638a0d1c411759f2489081..c3aa33038665da7dda83520ad0f954e5b76780e4 100644 --- a/notebooks/Block_0/Solution - Basics Numpy.ipynb +++ b/notebooks/Block_0/Solution - Basics Numpy.ipynb @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -249,7 +249,7 @@ "Jun 25 21 23 27" ] }, - "execution_count": 11, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -272,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -310,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -404,7 +404,7 @@ "Jun 25 21 23 27" ] }, - "execution_count": 13, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -434,7 +434,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -468,7 +468,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -555,7 +555,7 @@ "Jun 25 21 23 27" ] }, - "execution_count": 15, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -566,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -653,7 +653,7 @@ "Jan 2 5 -3 4" ] }, - "execution_count": 16, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -671,7 +671,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -1190,7 +1190,7 @@ "59 60 3690 19 Van" ] }, - "execution_count": 18, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -1217,7 +1217,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1296,7 +1296,7 @@ "5 6 2285 26 Small" ] }, - "execution_count": 19, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -1308,7 +1308,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -1387,7 +1387,7 @@ "4 5 2440 32 Small" ] }, - "execution_count": 20, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1409,7 +1409,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1443,7 +1443,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 14, "metadata": {}, "outputs": [ { diff --git a/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb b/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb index 8e955cfc0890f6dd93460d1a5852abec7c7a5e30..e3f58f29162a80e614f21183e6830ee9377a1ca5 100644 --- a/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb +++ b/notebooks/Block_5/Jupyter Notebook Block 5 - Object Detection and Segmentation.ipynb @@ -31,20 +31,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "Found 2 image links\n", - "Saved 2 images\n", - "Found 2 image links\n", - "Saved 2 images\n", - "Found 2 image links\n", - "Saved 2 images\n", - "Found 2 image links\n", - "ERROR - Could not save https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/1990_Venice_Film_Festival_Robert_De_Niro.jpg/1200px-1990_Venice_Film_Festival_Robert_De_Niro.jpg - cannot identify image file <_io.BytesIO object at 0x7f4f951b6b30>\n", - "Saved 1 images\n", - "Found 2 image links\n", - "Saved 2 images\n", - "Found 2 image links\n", - "ERROR - Could not save https://upload.wikimedia.org/wikipedia/commons/1/15/Sandra_Bullock_in_July_2013.jpg - cannot identify image file <_io.BytesIO object at 0x7f4f950e8410>\n", - "Saved 1 images\n", "Found 2 image links\n", "Saved 2 images\n", "Found 2 image links\n", @@ -58,7 +44,8 @@ "from Image_crawling import Image_crawling\n", "\n", "# Specifiy the queries\n", - "queries = [\"brad pitt\",\"johnny depp\", \"leonardo dicaprio\", \"robert de niro\", \"angelina jolie\", \"sandra bullock\", \"catherine deneuve\", \"marion cotillard\"]\n", + "#queries = [\"brad pitt\",\"johnny depp\", \"leonardo dicaprio\", \"robert de niro\", \"angelina jolie\", \"sandra bullock\", \"catherine deneuve\", \"marion cotillard\"]\n", + "queries = [\"Bart Simpson\",\"Homer Simpson\"]\n", "limit = 2\n", "download_folder = \"./brandnew_images/train/\"\n", "waittime = 0.1 # Time to wait between actions, depends on the number of pictures you want to crawl. More pictures means you need to wait longer for them to load. \n", @@ -255,13 +242,25 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": { "colab": {}, "colab_type": "code", "id": "UuJV4JBKGhJO" }, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'Sequential' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-2-e37eef5858cc>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mnum_classes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m8\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mmodel_scratch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSequential\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mmodel_scratch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mConv2D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_shape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimage_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mmodel_scratch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mActivation\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'relu'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'Sequential' is not defined" + ] + } + ], "source": [ "batch_size = 20\n", "num_train_images = 480\n",