From 1aaa5efbbff7d98ba18827df4a5135e872f747be Mon Sep 17 00:00:00 2001
From: Mirko Birbaumer <mirko.birbaumer@hslu.ch>
Date: Wed, 10 Mar 2021 21:24:49 +0000
Subject: [PATCH] changed google drive path

---
 ...ining and Optimizing Neural Networks.ipynb | 245 +++++++++---------
 1 file changed, 127 insertions(+), 118 deletions(-)

diff --git a/notebooks/Block_3/Jupyter Notebook Block 3 - Training and Optimizing Neural Networks.ipynb b/notebooks/Block_3/Jupyter Notebook Block 3 - Training and Optimizing Neural Networks.ipynb
index bdd2141..cca495e 100644
--- a/notebooks/Block_3/Jupyter Notebook Block 3 - Training and Optimizing Neural Networks.ipynb	
+++ b/notebooks/Block_3/Jupyter Notebook Block 3 - Training and Optimizing Neural Networks.ipynb	
@@ -81,7 +81,16 @@
    "metadata": {
     "id": "7MqDQO0KCaWS"
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n",
+      "170500096/170498071 [==============================] - 6s 0us/step\n"
+     ]
+    }
+   ],
    "source": [
     "from tensorflow.keras.datasets import cifar10\n",
     "from tensorflow.keras.utils import to_categorical\n",
@@ -176,7 +185,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 6,
    "metadata": {
     "id": "MaOTZxFzi48X"
    },
@@ -208,7 +217,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 7,
    "metadata": {
     "id": "ywVIEcXDvXW_"
    },
@@ -261,7 +270,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 8,
    "metadata": {
     "id": "ug3dTdldvXXI"
    },
@@ -302,7 +311,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 9,
    "metadata": {
     "id": "J3zk7RjDvXXQ"
    },
@@ -365,7 +374,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 10,
    "metadata": {
     "id": "HQhzU-zkvXXZ"
    },
@@ -393,14 +402,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 11,
    "metadata": {
     "id": "ULyOuowNvXXj"
    },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABRgElEQVR4nO29W4xs13ke+K1du+6Xrur7ufIcWaRIyfQloT0O4iCODSNC8iADCRR7MIEMCNDLBLAxeZDgl0wGE0Dz4uQhQAYEbJgBDNvCyIaEiceOYMhIDASyaFmiRB5KJEUenlvfu6q77pe95qGq9/ft0unThzzNZlf1/wEE16netffa619r1/7+9f/f77z3MBgMBsPsIfiwO2AwGAyG9wd7gBsMBsOMwh7gBoPBMKOwB7jBYDDMKOwBbjAYDDMKe4AbDAbDjOKJHuDOuU86577vnHvTOfeF0+qU4cOF2XV+YbadL7j3GwfunEsB+AGAXwZwF8A3Afya9/610+ue4axhdp1fmG3nD+ETfPdnAbzpvf8hADjn/hDApwAcOxmy2dCX8hkAgAd/OKKI7X5/FLdTqVTcds4lzjUcDXmc/C2TTvNcQx4zGkVxW3+zjvsBm77eEYJUkrSkQg7hSK4XRdFD217uNRXwXJH0I5Kx0TEAkn11eHgfj7uno34MRx5R5B/+5fdh1yBwPky5SfvhpO648fSY7iuPG404FwL5PJBzjWRsXSDHSD+0fay9ZH78SB8fY47o7aVkjmTkev3BgNeWc4ap5DLU6+kYZDKcC4Hc69E8aHb66PWGx9kVeI+2tfV6PtYrAAyGfsd7vzJ9zJM8wK8AuCP/vgvgf5o+yDn3OQCfA4BCPo1//AvPAACGMnj9Pif27XcbcbtUrsbtdDppiHpjN26XZWJfv3yZHdrkMfuHHV5vwIEZDtgPHe9MNsN7kOtmS7lEPxaXltmn/b243Ww243a724vbo1Y3bi/kCjw+Yj86EY+vVavSv+RDJh3QfAljy7l0crTbbQDA9i7H+yF4z3ZNBcDK0nghFgoFPeahfdUHqvZ1/CX+bb9ej9v5IBu3S3KuRrcdt1NF2qaQk+NLpbhdrS3G7b3dnbjda9IuQHLp9Xt96R+bYZr9yMj8rJXzcfvq2lLcfvf+/bh9KA++6gKPAYCBzM/mYT1uP3V9gdfL8MEXTh5Kf/6XP8AJONG2tl7P33oFgPub/dt4CJ7kAf5Y8N6/COBFAFiqFjyG447XipX4mKjITg8GHP68HNNqthLnLRa4SH7sxtW4vVTld4byoFi5xPPeufsgbnfaNNDSEhd3o1HnMR0eM+SYAgAql7mQvPQp9PqLzgl/eMiHQVomxHqlGrfrMpmioTw8pn6p2wP2Sx8m/R4nVCBvBJlJ27lHPsAfC2rXbCbwR+ceyVtmJG+PLssHqi7CVFrfWJB4la1VinG7Kg/h3oGMT5vjU8xwPKtFtnWuVLK015bYPvLJB3g+z4W/trYat3d3uejzBR5z7eol3pM8WdbX+cBIy/FvvHM3bmczyTezxUXO4QpvGyu1WtxWRnLY4ng8KWy9nr/1+ig8ySbmPQDX5N9XJ58ZZhtm1/mF2XbO8CQP8G8CeNo5d9M5lwHwqwC+ejrdMnyIMLvOL8y2c4b37ULx3g+dc/8KwJ8DSAH4Xe/9q4/6TuACFNNjGlLKkR7XG/SjVSukmbkiu1fMVxPnWhRfU22R1HIwou/MQ31TPCaXJ4XbuL8Vty9f5h7BYpV0aX+/HrfdKDlkC0LDhh3ytfwCqeHiEnnwPWFFhRz9dk8/c4PHbG6z/S7pYzS1B5It0C0RhDzx8hLvVSm/n+xbHrfhMz7mvdvVOYdM+sg9w3eCpTWOZ7NNSh2J22QwTPrAA6GdV66ssy3neuN1+npXwyqPuXaF5xnKJqbcr9prpUYb+RTtDQC1Gs9bLHGupgL2d/0yXSt58cE26vtxe+BJqXWeXh/IJiZZ/eTf/Fs2xfUQ9eiSqizQHx71x/Q/cI9+H3uvtrX1ej7W66PwRD5w7/2fAvjTJzmH4fzB7Dq/MNvOFywT02AwGGYUH3gUisJHEYaTkKxOU+hLmtQiLTvy2RIpS/swSbUb+wdx+55sNS/USJEWqqR93S53ijXudm2lJp+Tuq6u8vOFioTGDZI7w9GIO9bXL5Py9/qkgz2hhpfWfjxua+hSocB7XRG6WcmV4/b9rY3EtWuyC9/pcod7fYXUMiPuik57TFfvbbE/p4EwlUJtQkHzQlHX1zkeG9ukmfkcafe+UEYAuLzK72Rz7LuOz/UbDD3TEMFBn3MkC86pbIbtloRm3bjGyBGfpntifG1+pydRAon5EjByQeeXzrtOj9dr7O/K8bzeyirpOwAUyvSppB2PC/scA10/R2vKR8mwtSeFrdfzsV4nV8fDYG/gBoPBMKOwB7jBYDDMKM7UhRJ5j+6Ekm0Ldc5KVlmmSgoRHdTjdi6bpJkaSKFprQ82uEu9sswMt0Co6GGDdC5XIAVvHDB6ICe0W1OHo06Sams2WFky8NIhOzgcktqmJQutIJmD20K3lhcY3ZAWWhkhee3lS6SALdlR10SXomRGlifuhvBt3udpIAxDrK6OaaBmmPWFJl66QndFMc8+ZaeSFa6sr8XtQZ+RKzo+FYkY0PGM+pJ0IeMfCNVutxhBoSl7QT7Zj564PrpCr3PiWjmUaIxSmXYaDmmn7R26TXIZzjWdv/1+0qV1cJ/uJk3Y6dd53p5kQx7ZNTrl+ra2Xs/Heh3jPh4GewM3GAyGGYU9wA0Gg2FGcaYulFQqheJkx/awwx3WrlCWrTuknBrwvyi6GAAQLLDrQ6FkPmC7JboJ+Qx/q3IZ7iCPBqQ5kWh09IW66u5+GCapdkayMLb3Ntk/4YyhKKLtbNMtsH9ACr4gboWOCuuA45SeuvbeHqn2QNTeBoeSNCNjoxEip40A4zHqddnfUY/jPwiE/nfYv+l7auxRYMoJBfWS8PPuXeqI1CpMaCmGkkzTJb3WMcjmRYNiSDfEYMqN4VR5TubFSCIidB4pNdd5l5UEmGyGFLyY5/zIiU4MAOzv7Umb91HJcz04cT0dranUY2hnvBfYej3/69XewA0Gg2FGYQ9wg8FgmFHYA9xgMBhmFGfqAx+NIjQm/p58mb7LtIQl9Tbo4xr1+PvSFWF1AAglvCdMS4aa+MUGffGphTzXYo3hSt5L5pP4+Vot+qUykjnY6Wl2FOCyUqigT99bT0LaDvZFlDjHe83m6ONKiSny4qcbaPWTqTCxevMwbodS2SQUMX0Vl3ITR637kSo4TwYHH58zK3rbXjSWh+Jv7koI1VKBmWsAkJZKM+mA5+r0OD46bj0R3+9J9l5WsvGy4kN1Ga3Iwu8Wckkxq77Yr1JlBl0+z2s7CXU7OGSo20CKNbi0iD1JvzHg+afnts77bJrheAvL1BYfSBjh0ZoaPaKq0PuBrVeci/X6KNgbuMFgMMwo7AFuMBgMM4ozdaH0hwPcm2Qwra0x464gWsqFHCnjSMoTdTrJMK9iSkKL5HdIKVa1SuqVgdSdkwSpvGQ+jYaSwSWl9LQwankxmWHWlHJWYZ59WlhmSNV+xNC43AJdBk0JsyuLQNDlFWYt3r7LgimjQVIgaFHCtnryt3yW/W23pGbkUWjcI/TA3xeci8+tRWALkknWcaSrlTI/Hx0mqTYcp+RlqZc42BY6OeBcKGVpqG6DFLV2me4GpdeK1Uucg93D5PxKifsmI26QvLhaOm1eLyfl3AJx09Sl1uZAS8lJGFmnI2W4ACCS7D+h7WlZJx0Je9zcGofDaVjkacDW6zlZr4+AvYEbDAbDjMIe4AaDwTCjOFMXShimsDKhNNUyqZAmkK0skbJsbzJT6ikRQwKAnuwub+6TIg96srsvur66ix6JFnOnw0yyfldom2SIdSW7UCk+AORTpNp7UsrppvT3ulz7oEXavdcSCihsK1eki+P6VboC3niXfR2fS/ortPHBPmliU3a+j0qp9aeo3ZOiPxji3c1xxqCXnfdSl26Tck3cKRKlUQmT2WbXr5JG6ziEcutLRdLXxaJUnJcSZ10RsHrt/h0eL6XSuk3R524lxySd4nn7PXF3CI2OHCduSqqMdw+ZsTeQgIbeiH1aqzFTcXmB9wwAtw5YMm5liX+TyyXWTzQYr6kwPG2RMluv52G9Pgr2Bm4wGAwzCnuAGwwGw4zibMWsghQWymNK1jxg4kNedtqXZde3dUCu1mqKjjOAobgBKqIR3GpRX7gtZaCurkjEQV9KOuW5fS0x/ghF+9eHsrveTvYjl2XfBx1GAbz1+ptx+4Xnno7bWwcUKkrJDnwkVG9ri2JNoZho0E1GGdQPSbf6smu/s8c+tkRoZ3mSCHLKstHwngJHOzvcwS+2SGWXJXIko0kQ5WQiT6dVj9uH6tYQNpkSYauujOeazJ1Xb3H8yyIoVRaBIMkBwpJQXwBwQ0YoDCUpJS8V5Bsd9iMnySP3HtBlg4iuh0qNCUHdNt0Iw0EyCqUg2uQLZbqLdiTKpiNugqM1lQpOWczK1uu5WK+Pgr2BGwwGw4zixAe4c+53nXNbzrnvyWeLzrmvOefemPy/9qhzGM4fzK7zC7PtxcHjuFB+D8B/BPCf5bMvAPgL7/0XnXNfmPz78yedKEilkC+OKdn2bj3+vN0j1VhdIW24fvNG3G7Uk1QoFD2GrugYZCWJolzkbvLGA5YkCkEqtFhl5EJOIgkg2g2ZIum0VjUHgOGI36nWSPvevU1a1RRq+PwnfjJuf+vV1+N2T+h4ICW5KgWeXythA0DqkFEeXlwUS2XSybTn2K4vj8fjndu7AAa/h1Oyaxim4nMPO6SJFemH9i8l2g/T96TunVZbdE6kurhqej//CVYNv3+fNu52pWK5JKEMpSp5BM6hoiQXAUC/JZrSXjQwAtqpucOoj7q4fmoLnHeHErkwHHGe5mT+DobJCBid95G8Y+02mCQSie7J4vL4/gKGh/weTsG2tl7Px3oFgO+Ctlec+Abuvf9vAPamPv4UgJcm7ZcA/MpJ5zGcL5hd5xdm24uD97uJuea9fzBpbwBYO+5A59znAHwOAEqF7HGHGc4H3pddc6JAaDi3eCzb2nqdLTxxFIr33jvnjo1r8N6/COBFAFislnxjEpmQkZ3o0YgU5IFUe35aKFlpKlphJJH0jQPuyOcLpCOZkMfUpaq2l+/2IDvFsovfqDMIvwxS6HY7ubPcleiIqpSREpaIjQfcaS8VeIwTapgSGUnVlChJUsH9nQdQZCV54ebHPhq3I3ETtEUH5EhuNBWcnCDwXuxaWyj4SnZ8L89/7GZ8TKHIew0kgeL+O6Srw2FSC6VUZkLF/gH/lnIiCSshKQdC1XWc+4nADn73QCIBIqGrLdHIAIDDukR5CLUfyXzxTrRNRLeiKi6UQpFLLExLdElF3TLJZRhFXA9vvP1O3HYhH6iZrMzVyZp6XDnZR9nW1uv5W6+PwvuNQtl0zl0CgMn/t0443jAbMLvOL8y2c4j3+wD/KoDPTNqfAfCV0+mO4UOG2XV+YbadQ5zoQnHO/QGAXwCw7Jy7C+DfAPgigC855z4L4DaATz/OxVzgkM6MaWB0DDkfjUhl74iGxXTlbq1o0RU5zlBkQEeyO7wicpFe9ClbPe44t0SHYORJ24YRj/GjqSETTYP6Pul8V7JEtrfqcTsrO+e5rOy6H4guR0/0F3b5eXqqasxHb16N2yqNWpfK7iWpbHIkpZlyp2vXlAPKE0pfKpJqZ0R2tLrIaIWC0NjdbVbqBoDvvPJa3B5EUpk8S0q+XKI+yJ13OUe2t/hS2R2SRqtdIK4OlSnd30vqVmiR+l6X86tYIo1eXqnGbSdCJV1JWlF53Y5UIvKi+zEcTNH8Hv82EndKoZiMlDnC0ZpyE9fYadnW1uv5WK+PwokPcO/9rx3zp1868eyGcwuz6/zCbHtxYJmYBoPBMKM4Uy0UH3n0JxoOumufkaKzKc9daSc7zg7JHdm+aEEo9coVJDlDdA9SQrGefpY7wGmp8NE8lEKx+0zSOGiS4uzvJhMDmk32Y29XqLrsTC+ukP476cf9e4zGaLV4D3sNXjsI+Pk//eQLiWs7KRqsVVLK60x22N0npVuqjvuRyfwQp4lMJh3Lh2q0wZIUo02JdkRmlZ9fWVtJnOu//Nl/jduRVKZZXKDf5f49jvmlJdp4scZx3n9AO21tMClkcYk0uFQiza/J5wBQKdHls1AjnS+VJQFHkkTeeJ1jmgolkUTkUntttvsikZpKJd+jHMRtItofI4nE0aLLR2vBH+fneJ+w9Xo+1usY38bDYG/gBoPBMKOwB7jBYDDMKM7YhTLCqDsOVHeigVCQCitOIg+WaqTX/WRmBoJQguolMaWrxVRFWGNpkRT57/zU83G7KrKVoSOFu3+HO+pf/8s/i9vPvvBMoh9DqbLS2OdudFekJJ++Siq0JVVLHmwx4iKQ31IXSAHYiPeTyyUTcNyAlKwvBXYzZSYfZIXuDo6iHU5ZThaekQJ6vZTsqPclgSYX8j68JLcAwEjsH8g4JN40JPHhxz5C6U/VPHnqrlwvR5q+IG6WMMV+PNh4N9GPf/QPfj5uX752LW4PPSl4fZu23Nsi9d3aY/RAOkUbra9WeQvi7ojEpQAAtQr7uLtPGVcv87zXFpdEf0zzfZQ8z5PC1us5Wa+PgL2BGwwGw4zCHuAGg8EwozhTF0o2k8bNa+sAgEOtPFFlgsKwQ4qzIpoSwynJzXRaqIbsFPfzpB0LJVZAubLGcy3K7u5ilZ9v36vH7a5UP1mv8JinLlcT/YiEkrWlUK0mf6xWSR+rC6Sfr37/dtwuSOWWutBjLe56eMj+AUA41F1/ugk26zyuJdoKhxM3Rk+zVE4BvX4Pb789vpeyaGAcHNDGizmJoJBohWGYFMIqis37omNxaY2RK9mAkQXPPHM9budkZz/IcDyzcu2ClNQJxIXipyq3qP0HNV5v5UqV35eKxR+58RSvl+e5Gk1qemREUjUtUTmDqYo8Yci/DWUehXmuEy8aMuW18efZv+V8Og3Yej0f6/VRsDdwg8FgmFHYA9xgMBhmFGfqQgkckJuwk0B2svNpUtmUI63JyO9LqZCUp/QSSlEXjQmISma1UonbxSJ3rDNyva0HlHzc3ajH7bbQmhuXr8Tt6+vVRD90V7slRXz7sqstm8wYed7H1WtSEeQeKapqYTzzcUZZdDqkVwBQkd38IEVT7onEakc0HrqTCjfRKSd8RJGPq+eMxGY90QRZXmdijMpndqbcBzdu3Ijbr/xtXBEMaYlcuXqF47a+pslCjMKQzXxkJApF54FGoaCdpPxq/50NzhEf0MaFPL+v561WJNKhxaQSLxV5CnlScJdO6ob0xcVVFTnTkYzBgqyfo2I0j6ES/J5g6/V8rNdHwd7ADQaDYUZhD3CDwWCYUdgD3GAwGGYUZ+oDB4AwNfZBLVcpEDQaiLCPZGxVRLgmDJO/NV0RxylLmNim+JNu32Z2VjRaj9vuVQoPvS4iRNcuMRSsKhmCq6vsRyo17WiU6uA1+vAyaRX8oc/vUMKEnr5JX92t178Rtxu7FMcZif5xqpKsch1IH7sdhpV58fP1xKcWTEL2tCTZacDBxefW6+VkDLo99i+Xl6y8fjJ7UO9Xx6ElIVlP3/xY3C5ItptWNa8t0WZ98bOPxA+tIlKrq7QdAGxssB93N+nH/h/f/pu4/eyzH+Hxm5x3d+6yzNgAvG8NgUuLYFUuR38vAAxlDfQ6knEpZiuKXnb9McLN3i9svX746/VRsDdwg8FgmFHYA9xgMBhmFGfsQvFxhlZGqpQrhdAsNC8ZWwn+CMANSTXKJdFo9qSpr7xC/d67D0gzq2+Q4u406rxEmjTx+UuMJapdYSiR6loDQPOAFKskGWOhVMzOadieZNBdu8TrLRZJ+z52nZXZq3n+xqbDZLhZJPSwIBljT4XsR6smYUn9MX1Mp5PVsp8U6XQal1fH9DKXYX+LUlarUGRfhyP2KR0mx7Oap811HHR8dNzKUp19oURXRDfg8ZmI/VDd6HxZjikl6e69Tc6Xd3Zo41df59jdfyDCVnXJ3Oyz/RM/wTJaZckCHTYlRGyq7JcXUae8ZJdqdqOT9cPPT1+lzNbrh79ex3gDD4O9gRsMBsOMwh7gBoPBMKM4UxdKFHn0JtEI+wfcfQ4dKVVWIiQOdikEtFBM7tRnZJfbS0XwQEo/wfO8TRFGGkol7bpkUX3ne6/G7b975efidkG0kN1Uupur8Bq5LCnPUCMfIn4eStZdWtqXr3KHu7pK2h059m8wJULlhPYViixtNRR96UgyvjrDI/p4yil7cPCTcc9L5qDaKJNjXzsHpKWDqSiUqggR/czPsNRUIUNaq+Om46njDMmYzGU5BpHYK5sVMasouRQyMo90XjRbkjk61Gw8zq+suBuCgP3zjteLUrzvhpRmA4CGZAimpTxbryeV1yWq42hNfRAZtrZez8N6PR72Bm4wGAwzihMf4M65a865rzvnXnPOveqc+43J54vOua85596Y/L920rkM5wdm1/mE2fVi4XFcKEMA/9p7/y3nXBnA3zjnvgbg1wH8hff+i865LwD4AoDPP+pEzgGpya71ppaK8lJWS8RttDp3FCSrl9cq3AU+qJNq9IakOUOpat7pkn7WD0lZD0ak8wcN0tKiCCD1WlKeq5DcWfayu54JSBsj6Xunq3SQv5n70o/9ppR36pP2La5U47abovkt0bAeDBldEYbUaz445Nj0J+JS0TjK4dTsGnkfn1uvFyzQndLeo737UgG8WEhWgw+lPNXedj1u98SFouN2dUQxKy/jnClxDDNCXVtiL539vSnhILW/ViPveol0SYnbRBNB8jyxVi8fCv3PSYTOfifpQrm3zfJsHrI2PO/JiXBXIRdOPhtfBrZe4/Y8rNdH4cQ3cO/9A+/9tybtQwC3AFwB8CkAL00OewnAr5x4NcO5gdl1PmF2vVh4Tz5w59wNAD8N4BsA1rz3R0GxGwDWjvnO55xzLzvnXm53T/5FMZw9ntSuuoFnOD+w9Tr/eOwoFOdcCcCXAfym9/7AyY6699475x66Be69fxHAiwCwXM37rclOdeRIbfqy++yl3FbKSVTBPne4AaDZI30ayO58VoL7uz1+f3+PlGfngPTlzY17cfvj1/ndnOhkdFukTqNhcle73+e1i6LL0TwkVfvhm9R46I/Yp++JrkNb6HVbAh0Ge+xrOp38va0ssL8729TrSEvCwFCSQjYnY59ICDkFu9bKeX907mvrpM4HTdLBwYj2Wl6hNvhBI7nTPhgIvZYx0QCL773+ZtzWOZIRm33ko6wkH5Q51zpN3vtIqO+gl3RjqP33ROvitXdps4+uMxJhuUJbhMt0CzWbNObuoB630xIZ05CSXACwpxXnvVQ/lzJcGcd10myNx2kg0Qy2XseYh/X6KDzWG7hzLo3xZPh97/0fH53fOXdp8vdLALYe51yG8wOz63zC7Hpx8DhRKA7A7wC45b3/bfnTVwF8ZtL+DICvnH73DB8UzK7zCbPrxcLjuFD+PoB/CeC7zrlvTz77LQBfBPAl59xnAdwG8OnHueAwGtOFLdE0yFWkLJZEDHih+tFBkuJu7ZCqFKUCeUmkORtSFX1LdvZ3W9wNLixwB3hpkdTXS9mvTZEK/aMv/0miHyrN+txzz8btulDIrR1e+9oNBv1/9/Uf8EQZqejtSVe7svMdppN0MBApzzDDxIC337kjn3Ns3rkz/rw3GACnaNfeYBCfOyOSmcM++37jBt0NzRYjCeqHSRfKcEAKmTomekTHLS3H3HmH0SKry5xT1Rqrnd+69Xrc1jJf/+Kf/cNEP3Ki0aHzotDgvNgWuhwJ/c9k2Kf6AedXs8v52JKxCTLJSInugOdSzRNNMNk7qMft1QXaGLZe5269PgonPsC993+F41P3funEKxjOJcyu8wmz68WCZWIaDAbDjOJMtVBGkUezN94p70lYQSgylHu73H1OiY7BUWWQIxSzomkg1bp1J35jYzNuO90RliSIy1dY+aNSIsW5e4e73fdb3O/5wZuUtgSAXofneuW799mnPBM7Dtt0E4Ql7kQPRRPioMH7doEkRMjGfkUSY4Ck+0EjSyLHe92Wat1HO9wqV3oa8N7H59brLYjeg/ZVJUgjTVQB0JSxSshkRKSmlQK/80CkXv/6W4wSKBdo+25HwgSkIktWKgO9cuuHUFwuUoelIvKnl6/w8+23OEec0GWdd089xaicUcRj1E3SajJJBgCGIsU60vsW+VNdP0dranTKWii2Xs/Hen0U7A3cYDAYZhT2ADcYDIYZxZm6ULwLMAzHtHplnbu4eZGe3NoWScqSFIGd+qnJy+51ucLipN9/9a24HYiE5cJiNW6nZNO+VCR1CjwjHXYleeOtTdKw4mIyge2yJHBkMqSJGxukcdsHTGLY2OEOuSqpBjnuZPd6pE7DITmZn4rYSEs1mrbQvqKMGzKi9xCM+/fOZlL340kRptNYWhm7FhYkSiAv47EjxWsLIjk76CXlZHtCqUMxelbGpy+FiXU8u0Mev1xh5MlTz9Dt0e8zWqEhCSJv3U5S7eyaSMKKy6BSZD+CS4zGWChU4/bhXj1uv/kW5+PHPnEzbvdE16Q/Siby6GtVq8n7u7nMaxTyEvkw0XHx7nTfx2y9no/1CgD4YdLNFvfjoZ8aDAaD4dzDHuAGg8EwozhTF4oLUgiLY7owGnF3vSy0qFwgBW8dksoEEj0AANUid+QHA3KbVpfU5Olnn4vbt968FbfzJUZHrNVI556TYqgq6xiF5HD5RaE1AIZOBH/k57CyynNl9kiLWrIL7grsR0aqfUQSfhFmSLXT6amIDUlwyIlbQsM3dqSIb3MSjTEaJcfySTEaRWi0xuM1iuiiuHaJEQNZ6V+rSxdIqZiUk3VpGR+JZMhI9RQ34P212jw+U+A46/j3A5EHTdNe+UX2KQqTdlX7P/fMR/j9e1K8WOVFD6ht8ZzMu9vvcN7pPHWy9Kb1YCKZSOViSdpcJ02N6pmMoVZ8OQ3Yej0f6/VRsDdwg8FgmFHYA9xgMBhmFGfqQhkMh9jcHOsMuIi7qlo0Y22VEQMHddK2wzopKgD0OqRrjQHbl0TOtFQkfSpLe3W9ys8lmaOUI0VqSSSByns2DpO7wWvr7G+7Qy2HhSpdA040EGSTGjmhYciQlmYlmkACLhCGyd/bjHzHBTRlTwu0el6wWBrTtiB1skzle0GQCuJzj0SzRPsRptk/6XYiqWdytriV0uPSD3f7dCNeQ8e5WOXYNg40Aob0enODcyoMSc0BYElkXEsSEVHOc05elnm09YD6GTrvdD42RE9EVE2Rmkp8r1YZQVOpsr8NodebW0x68cG47wNJDjkN2Ho9H+v1UbA3cIPBYJhR2APcYDAYZhT2ADcYDIYZxZn6wMPAoVoYXzKdpp+vJWWnipJhdvUKQ5SCqwztAYD6PsO5Kmn6wlBgyNhu/e24/fxzl+K2E8UZJ9lcm3eZwZWRsLK795mlFfikdvOA0tYIU/xbu08/XDon10szNC6bk3CnhWrc3t+t85wZfjeKkrUnM+Kra3fZEc1mLC/Qt3ukRxQEx6mNvj8EgUN+4hgNpPSWlp3KjuifLUgWm0PynrKipQ0pk6Wa3h3xJffSvIaOs46/2kXt1WvTFnc7yQI1y9evx+2+zIuCVCLLV7h81qqcX1vbnHfLtSpPKpl1B9KRT1xl+TcAiKTqe6vFtaHrZFnGYzAZwvCU7Wrr9Xys10fB3sANBoNhRmEPcIPBYJhRnKkLJZUKUKtMaIhUyY5E97bdItUKRCu6VElSsnKFITaXFljlfG/nQdzWEKxigbfqBqTz/S4p2aDHPmUkc2x9nXSusSMcDMDm/W1eo0ZqmJbr5fNsByBdqov2b1+0hrtC55zEMWllcQAIRVc5K1XOwyz7kUopHW9N+nDKLhQ4ZCfujmKRdhmNeK8pcMy138NhkmZ6T3ruJQyrcSD0U8YtlPHUce6JaNWgzWu39mm/bJrzY2GZLoLxHzmGA6lyHmYlO1RcQV7CJHXeZYU2Ly5TWMk3GGbngmT4X+eAa6Dd4v3lZGwDnQuT9ZNKne77mK3X87FeHwV7AzcYDIYZhT3ADQaDYUZxtnrgkUdvkoKmGXFlaUPEexxIpwOX3JLNZklfwzQznGo10rOCiBiFnlQoneG5igUR2WkJPRPBp3KZWVqL5aS+sEowD2SHvBuRVi3d5Pd3JWNMIyuCPMcgI1S43SSN6nWTdLAvAsXlMu+j05H7FneJm1C1DyIKpTQ5d1qup46BfJ6U+vBQynClkoI/WcmuK0gmWkY/lzFvSzXxS+sUnerI1XMlXju9Jm4PybIbIDm2A42aqXBOpkUPXD1RA6HLq2u0RTZidITO02yWffIybwCgWGQkQkGEo5Dicm232z/S9qdcUs3W6/lYr4+CvYEbDAbDjOLEB7hzLuec+2vn3Hecc6865/7t5PObzrlvOOfedM79kXMuc9K5DOcHZtf5hNn1YuFxXCg9AL/ovW8659IA/so59/8B+N8A/Hvv/R865/5vAJ8F8J8efSoHN9m9rTcoMtNqkb4sSiB7UVRzUlM9jUak3h3Rze1L8ki6wDmaEwreaVDcqCQ7+4MuaVivR1ozElpTKiQ7khFquHdAypTPScSA9Km2IBRQKHi3TWEdlevOCN3sCG0GgEB0hDWypCCDNRJXgJtED0yOPDW7OgCZybkDuV5G+uGkf9rvKEqKVOn9qjhTJOOTk+/reKpnKJ8VrW8p21Yq83OdKx3RFQcAL5EPoVRUz2Q4j5oSJZBfIO1u9/jdtkRNZLy4U2Rsgik1K5naaLU5Pnt7FMwaSPRONnM0Bx1g63Xu1uujcOIbuB/jqLfpyX8ewC8C+H8mn78E4FdOvJrh3MDsOp8wu14sPJYP3DmXcs59G8AWgK8BeAtA3fu42utdAFeO+e7nnHMvO+de1thcw4eP07Pr6cqYGp4Mtl4vDh4rCsV7PwLwU865KoA/AfDs417Ae/8igBcBoFop+FZzTCsetosOAA2hSEvLbDs3lewg1HK1zN3hvT3qIJRXqjxGSjEN2qROqtHb7PHzkSQlIMFkkpR/Z5fX64qur+8KRXL8zigiVVcKXpcxcKKZsVRl5fOKVPMGgJSU0NJN/4HsqIcSHRFOkgeOkkBOy64rtZIvTNwMQ9F18HKvoYh7V0VHQsdD+wYAu+Iy8KIrUdWICKks7keqNSFUVKIzogHtVSmRHk+zVZ1tOi/SA16vLfNokOLnW/t0Nxxu1+P24iK1qLcOGT2TLyTfo7znstzd4Rw5kPmiUSGFwngMj9xRtl71yrO/Xh+F9xSF4r2vA/g6gL8HoOqcO7rCVQD33su5DOcHZtf5hNl1/vE4USgrk19yOOfyAH4ZwC2MJ8Y/nxz2GQBf+YD6aPgAYHadT5hdLxacP2Gn0zn3ExhveqQwfuB/yXv/fzjnPgLgDwEsAvhbAP+Ln85I+NFzbQNoAdh51HFzimWcn/t+CsAv4XTtehvn6x7PCufpns2up4fzds9Pee9Xpj888QF+2nDOvey9f+FML3oOcBHu+yLc4zQuwj1fhHucxqzcs2ViGgwGw4zCHuAGg8Ewo/gwHuAvfgjXPA+4CPd9Ee5xGhfhni/CPU5jJu75zH3gBoPBYDgdmAvFYDAYZhT2ADcYDIYZxZk+wJ1zn3TOfX8iafmFs7z2WcE5d80593Xn3GsTOc/fmHy+6Jz7mnPujcn/ax92X08LF8GuwMWzrdn1/Nv1zHzgbqxL+QOMM8PuAvgmgF/z3r92Jh04IzjnLgG45L3/lnOuDOBvMFZ++3UAe977L04WQ817//kPr6eng4tiV+Bi2dbsOht2Pcs38J8F8Kb3/od+XHr8DwF86gyvfybw3j/w3n9r0j7EOI35Csb3+tLksHmS87wQdgUunG3NrjNg17N8gF8BcEf+fayk5bzAOXcDwE8D+AaANe/9g8mfNgCsHfe9GcOFsytwIWxrdp0Bu9om5gcE51wJwJcB/Kb3/kD/5sd+K4vfnFGYbecTs2jXs3yA3wNwTf49t5KWk1JWXwbw+977P558vDnxtR353LaO+/6M4cLYFbhQtjW7zoBdz/IB/k0AT0+Kq2YA/CqAr57h9c8EzjkH4HcA3PLe/7b86asYy3gC8yXneSHsClw425pdZ8CuZ5qJ6Zz7JwD+A8ZSl7/rvf93Z3bxM4Jz7ucB/HcA3wXLgfwWxj61LwG4jrFE56e993sPPcmM4SLYFbh4tjW7nn+7Wiq9wWAwzChsE9NgMBhmFPYANxgMhhnFEz3AL0qq7UWD2XV+YbadL7xvH/j7SbXNZkNfymcAAF5CKqOI7X5/FLdTqZReL3Gu4WjI4+RvmXSa5xrymNEoitt6y8fd//T1jhCkkr95qTCM2yO5XhRFD217uddUwHNF0o9IxkbHYDoM1eHhfTzuno76MRx5RJF/6JfNrpNrz5ldgfdu2yBwPky5Sfvh73rHjaf/kZBpHjcacS4E8nkg5xrJ2LpAjpF+aPtYe8n8+JE+PsYc0dtLyRzJyPX6gwGvLecMUzxm+no6BpkM50Ig96rzYK/R2XlYTcxw+oP3gDjVFgCcc0eptscu9FI+g3/8C88AAIYyyP0+B+D2uw0eX67G7XQ6OYHqjd24XZYBuH75cty+u8lj9g87vN6ARh0O2A+dc5lsJm7rFM2Wcol+LC4ts0/73KBuNptxu91l7dhRqxu3F3IFHh+xH52Ix9eqVelfcjKmA5pPHyYDOZdOmna7DQDY3uV4PwRmV8ylXYH3aNsw5bCyNP7hLBR4T/qA077qA1X7Ov4S/7Zfr8ftfJCN2yU5V6PbjtupIm1TyMnxpVLcrtYW4/beLmsR95q0C5D8qez3+tI/NsM0+5GR+Vkr5+P21bWluP3u/ftx+1BeVKoLPAYABjI/m4f1uP3U9QVeL8MXlVB+JP7gK9+5jYfgSVwoj5Vq65z7nHPuZefcy93+cPrPhvMHs+v84kTbql2VQRnOJ57kDfyx4L1/EZPyREvVgsdw/CtUK1biY6IiJ8pgwJ/CvBzTarYS5y0W+Gv4Yzeuxu2lKr8zlDeClUs87527D+J2p81f6KUl/oo3GnUe0+ExQ74YAAAql/mL6aVPoVeqzTejw0P+6qflTW29Uo3bdXnLi4byljBF+doD9kvfGvo9vukFQtUzk7ZzJ76pnQiz6/zbNZsJ/NG5R+ImiIT+uyzfiJX1pNLqIkLCF1GrFON2Vd6iewcyPm2OTzHD8awW2da5UsnSXlti+8gn38Dzeb7Nr62txu3dXbKsfIHHXLt6ifck7+/r62RoaTn+jXfuxu1sJuleWlzkHK7wtrFSo0qtupQOWxyP4/Akb+AXKtX2AsHsOr8w284ZnuQBfmFSbS8YzK7zC7PtnOF9u1C890Pn3L8C8Odgqu2rj/pO4AIU02MKVMqRRtUb3OCqVkhHckV2r5ivJs61KJtAtUVSkMGIm1oeumnEY3J5UvON+9SnuXyZm7yLVVK1/f163Haj5JAtCI0bdsjD8wukS4tL5Ev3hFkWctxQe/qZGzxmc5vtd+kWiKY2/LMF0tcg5ImXl3ivSg39JEDhuMiB8TFmV2D+7Do+7r3Z1jmHTPrIPcN3vaU1jmezTRdYJG6TwTC5LxKIm+jKlXW25VxvvP6DuL0aVnnMNbrpg6FEocj9qr1WarSRT9HeAFCr8bzFEudqKmB/1y/TtZKXTe9GfT9uDzxdPDpPrw8kCoVencm/+bdsiush6tElVVnghmbUPz6CJj7niUc8At77PwXwp09yDsP5g9l1fmG2nS9YJqbBYDDMKD7wKBSFjyIMJ7GXnabQ0jQpY1p2brMl0pf2YZKSNfapt35PQggWaqRSC1VSpG6XO7oaYL+2UpPPSXFWV/n5QkViYAfJ3fVoxN3565dJDXt90vyeUP5Laz8etzWmuFDgva6IG6GSK8ft+1sbiWvXJLqi0+Vu+/oKaWlGaG2nPXZD3Ntif04DZtf5tGuYSqE2cRnlxUWxvs7x2NimWyifo1tgX1w8AHB5ld/J5th3HZ/rNxjrrzHeAwlTzYJzKpthu9XmXLlxjZEjPk33xPja/E5PonoS8yWg60Lnl867To/Xa+zvyvG83soqXTkAUCjTp5J2PC7scwx0/Qw1Tv0Y2Bu4wWAwzCjsAW4wGAwzijN1oUTeozuhBdtCsbKSPpqpkl5FB/W4ncsm6YhuuKvexIMNRh+sLDOVNRDKctggTc8VSNUaB9xlzgk904y0qJOkZJqbW5ZU23TIDg6HpGRpSQ8vSIrwttDo5QXugqeFtkVIXnv5EmlpSyIlNCGiKCnQ5QktDd/mfZ4GzK7zadcwDLG6OnbbaEp/X9w6l67QXVHMs0/ZVNIldWWd9YAHfUau6PhUJMJHxzPqS5KUjH8grrF2ixFPmhYf5JP96InroyvusJy4Vg4leqpUpp2GQ9ppe4duk1yGc03nb7+fdGkd3Ke7SRN2+nWetyfyE2VxIx0HewM3GAyGGYU9wA0Gg2FGcaYulFQqheJkJ/6ww8SMrlDRrTukJhogvyj6CQAQLLDrQ6HaPmC7JZoI+Qx/q3IZ7vqOBqQvkWg59IXieKGPYZikZBmJ1t/e22T/hEuFIkO5s036uH9AqrYg9LOjinfgOKWnrr23R0o2EBnWwaEkV8jYaCTBacLsOp92BYBgUiKy12V/Rz2O/yAQ+t9h/6bvqbFHhUAnLiMvCT/v3qWOSK3ChJZiKMk0XbqJdAyyedGMGdINMZhyYziV+pV5MZIIJp1H6krTeZeVhLVshi6zYp7zIyc6MQCwv7cnbd5HJc/14MT1VFTFymNgb+AGg8Ewo7AHuMFgMMwo7AFuMBgMM4oz9YGPRhEaEz9evkwfV1rCzXob9I+Nevx96UrFEwAIJcwoTEsmk/i1Bn3xlYY812KNYWjeS0ab+G9bLfrzMpJh1unxGABwWalIIuIzPQl9OtgXsekc7zWbo+8yJabIi/91oGXJpnSj683DuB1KybFQqoioCJGbOPTcj5S7ejKYXTGXdnXw8TmzorftRRN9KP7mroQ8LhWYaQoAaSkVlg54rk6P46Pj1pNqRz3JhsxK9mxWfNUuoyXV+N1CLilm1Rf7VarMeM3neW0noakHhwxNHUi1HZcWcTbpNwY8//Tc1nmfTTNkcmGZ2uIDCSNsyJ7HcbA3cIPBYJhR2APcYDAYZhRn6kLpDwe4N8m8WltjZlZBNHcLOVKLkZSd6nSS4UDFlISMye+QUudqlZQ6AykIK4lvecloGw0lM09q3GrF8vJiMnOwKWWPwjz7tLDM0KD9iCFUuQVSy6aEY5VF+OnyCrPbbt9lwZTRICn8tCjheD35Wz7L/rZbUhz2KITqBN3o9wqz63zaFc7F5/bi8ilIhmDH0Z1SKfPz0WHSfQDHR81lKVA92Ba3z4BzoZSloboNupRql+luUHeYYvUS52D3MDm/UuK+yYgbJC+ulk6b18tJObdA3DR1KZY80FJyEvbZ6UyJUUWSrStul7Ssk46EPW5uMXz1ONgbuMFgMMwo7AFuMBgMM4ozdaGEYQorE6paLZOaqO7NyhKp6PYmKcRTIpoDAD2JGtjcJ5UaiIZuV/SaNToiEs3eTocZgv2u0HHJ/OtKFppSQQDIp0jJ9qRE103p73W59kGL9GyvJdReWHSuSCp8/Sop4xvvsq/jc0l/xR3wYJ/0vykRDUclt/pTlP1JYXadT7v2B0O8uznOGPQSKVPq0m1Srok7RaI0KmEyO/T6Vbq9dBxCufWlIt1Ni0WpOC8lzroiYPXa/Ts8XkqldZuiz91Kjkk6xfP2e+LuELdX5DhxU2nOi+4hM2wHEoDUG7FPazVmaC4v8J4B4NYBS8atLPFvcrnE+okG6tZLasYfwd7ADQaDYUZhD3CDwWCYUZytmFWQwkJ5TAuaBwyQz8uO7LLs5rcOyC1aTdH7BTAUulgR7edWi7rRbSlPdHVFdqb7Uqorz51oyd1AKJrOPpSoiXayH7ks+z7oMAj/rdffjNsvPPd03N46oKBNSiIrIqHwW1sU9QnFRIMuzw8A9UPS6L5EY+zssY8tEVBaniQM+NPN9zC7Yj7t6j0FyXZ2GHFTbNH1tCyRIxlNWionE3k6rXrcPlS3hgTOpETYqivjuSZz59VbHP+yCEqVRdBLcoCwJK4qAHBDRnwMJdEmLxXkGx32IyfJXvce0GWDiK6OSo0JQd023X7DQTIKpSDa5Atluot2JMqmI269ozX1KNgbuMFgMMwoTnyAO+d+1zm35Zz7nny26Jz7mnPujcn/a486h+H8wew6vzDbXhw8jgvl9wD8RwD/WT77AoC/8N5/0Tn3hcm/P3/SiYJUCvnimBZs79bjz9s9UsjVFVKe6zdvxO1GPUlxQ9HZ6Iq+QVaC7ctFRglsPLjP74JUZrHKHe6c7DhDNDkyRdIurX4NAMMRv1Otkc6/e5t0uSmU//lP/GTc/tarr8ftntC2QEo3VQo8v1bwBoDUIaMBvFDZpTJpX9pzbNeXx+Pxzu1dAIPfg9k1bs+PXQGc0poNw1R87mGHNL8i/dD+pUSrZfqe1L3TaovOyYD2UE3v5z/x43H7/n3auNvliVYlaWw44nhE4BwqSnIRAPRbogHvRbMmoJ2aO9Tqrovrp7bAeXcokUbDEedpTubvYJiMgNF5H8m7826DSV3RiP1bXOb9HYcT38C99/8NwN7Ux58C8NKk/RKAXznxSoZzBbPr/MJse3Hwfjcx17z3DybtDQDH/lQ45z4H4HMAUCpkjzvMcD5gdp1fPJZt1a45USA0nE88cRSK9947547d//bevwjgRQBYrJZ8Y7KDnZEIg9GI1PKBVKl+WihHaWpXeyQZEo0D7tzmC6R3mZDH1KVaupfv9iARAAHpXKPOZIAySLXa7WTEQFd20atSHkzYPzYeMIKiVOAxTih/SuRBVSukJMki93ceQJGVpJSbH/to3I6ETrZFL2I0oWep4GTNDLMr2/NkV+DRtlW71hYKvpId38vzH7sZH1Mo8l4DSXi6/w7dS8NhUgulVGYC1P4B/5ZyIgkrISkH4lrTce4nAjv43QOJ3InEvdQSTRsAOKxLlIe44kYyX7wTbRMpwVYVF0qhyEdnmJbokoq6ZZKP1yjienjj7Xfitgv5ApTJylyVaJ/j8H6jUDadc5cAYPL/rROON8wGzK7zC7PtHOL9PsC/CuAzk/ZnAHzldLpj+JBhdp1fmG3nECe6UJxzfwDgFwAsO+fuAvg3AL4I4EvOuc8CuA3g049zMRc4pDNjuhAdQ85HI1KeO6J1MF3hWSuVdEW2MRS5yJHs+q+IDKgX3dFWj5EELdGXGHnSqGHEY/xoashEq6K+T9rXlWyC7a163M5KREQuK9EUB6Lf0BNdjV1+np6qLvLRm1fjtkpo1qUCeEkq1hxJpKac2RWYT7sCp2fblAPKE0pfKtI1lhH50+oio4sK4sHZ3d5OnOs7r7wWtwcR+57L0oW2XKI+yJ13OUe2t0gWukO6KNQuEFeHygrv7yV1ZrRIfa/L+VUs0XWxvFKN206ESrqSZKbyuh2pRORFp2c4mHLL9fi3kbhTCsVkpMwRjtbUo3DiA9x7/2vH/OmXTjy74dzC7Dq/MNteHFgmpsFgMMwozlQLxUce/Umuv+7uZqQ4acoz2sDJzrADA9wBxOcBkpQ6V5AgftGzSAl1fvpZ7uynpXJL81AKiu4zmP+gSeq6v5tM+Gg22Y+9XaF0EnGwuEKa6KQf9+9x177V4j3sNXjtIODn//STLySu7aS4rFa/Ka8ziWV3nxRyqTruRybzQ5wmzK7zaddMJh3L/Wp00JIUj06J1ktmlZ9fWVtJnOu//Nl/jduRVKZZXKDf5f49jvmlJdp4scZx3n9AO21tMMFncYluq1KJroeafA4AlRJdPgs1ut9KZUnAkaSuN17nmKZCSfwSeeNem+2+SBqnUsn3Ywdxm4hWz0gicbTosq6F42Bv4AaDwTCjsAe4wWAwzCjO2IUywqg7TkBwom1RkEocTnaol2qkYf1kBD+CUJIlJIGhq0VyRYBhaZFU6u/81PNxuypypKEjbbt/h7vgX//LP4vbz77wTKIfQ6nG0dhnlEFXJEKfvkoKuCXVaB5scWc+kN9SF0hh34j3k8slEzXcgFS7L4VYM2UmWmTFjTE42hU/bdlRs+tc2hWekT16vZREwPQlgSYX8j68JLcAwEjsH8g4JN4gJVHpxz5CqV7VPHnqrlwvR7fHgrhZwhT78WDj3UQ//tE/+Pm4ffnatbg99HRX1Ldpy70tuqq29hhJlU7RRuurVd6CRKdE4gIEgFqFfdzdp+yyl3nea4sLsX9yhSV7AzcYDIYZhT3ADQaDYUZxpi6UbCaNm9fWAQCHWlGkykD2YYcUZEW0B4ZT0ozptFBIiQDo50nDFkqslHFljedarJalzc+379XjdleqZKxXeMxTl6uJfkRCtdtS0FSTBFarpJPVBboVXv3+7bhdkAofdaFRWrT38JD9A4BwqNEcpJObdR7XEs2Mwwnd7Wk2wynA7Dqfdu31e3j77fG9lEWz5uCANl7MSQSFRBcNw6QQVlFs3hfdmUtrjFzJBoz+eOaZ63E7J5E4QYbjmZVrF6SkTiAuFD9VaUntP6jxeitXqvy+VCz+yI2neL08z9VoUoMnIxKyaYnKGUxV5AlD/m0o8yjMc5140ZApr2mCz/fwMNgbuMFgMMwo7AFuMBgMM4ozdaEEDshNWGcgEQr5NClPypGuZuT3pVRIyo562XKvixYBRCWzWmFR0GKRkQgZud7WA0p57m7U43Zb6OqNy1fi9vX1aqIfGq3QEvnHvkQrSPAARp73cfWaVHq5R1qqmgnPfJy78Z0OaTMAVGT3OkjRlHsixdkR7Y7upBJKdJxgyfuE2XU+7RpFPq6eMxKb9UQTZHmdiTEqd9uZch/cuHEjbr/yt3QHpCVy5eoVjtv6miYLMZpDgmGQkSgUnQcahYJ20kWn9t/Z4BzxAW1cyPP7et5qRSKTWkwC81KRp5Cni8elk1omfXFxVUV+eCRjsCDrJ5MM5Hko7A3cYDAYZhT2ADcYDIYZhT3ADQaDYUZxpj5wAAhTYz/ScpVCMqOBCMBIJl5FBInCMPlb0xWhl7KEE22Kn/D2bWbdRaP1uO1epUDN6yJWc+0SQ4aqkkm2usp+pFLJrDmIGNNijb7ZTFqFnOjLPZTwr6dv0gd76/VvxO3GLkWPRqJrnaokK30H0sduh+FHXvy3PfGVBpPQLi1ddVowu86fXR1cfG69Xk7GoNtj/3J5yaLtJ7MQ9X51HFoSQvn0zY/F7YJkp5al9FltiTbri599JH5oFZFaXaXtAGBjg/24u0k/9v/49t/E7Wef/QiP3+S8u3OXZQEH4H1ryGpaBKtyOfrPAWAoa6DXkYxLMVtR9O3rkuV6HOwN3GAwGGYU9gA3GAyGGcUZu1B8nHmXkWrWSg01W8lLJl6CZwBwQ1K6ckm0fD3pzCuvUJf57gPSkeobpEI7jTovkSZ9ef4Sw3xqVxgipvrHANA8IHUuSSZgKJXQcxreJZlW1y7xeotFUsOPXWcF72qev7HpMBmWFAntL0gm4FMh+9GqSbhZf+wWSKeTVdCfHGbXebRrOp3G5dWxOyiXYX+LUgavUGRfhyP2KR0mx7Oap811HHR8dNzKUp19oURXRDfg8ZmI/VCd93xZjikl3VP3Njlf3tmhjV99nWN3/4EIW9Ulc7PP9k/8BMvelSULdNiUbNipMn1eRNjykl2q2chO1s90lvLDYG/gBoPBMKOwB7jBYDDMKM7UhRJFHr3JrvX+AXd3Q0fakJWd9INdCsYsFJM7uhmJXvBSOTqQkl7wPG9TBHSGUiG9Ltlx3/neq3H77175ubhdEI1rF0xR/gqvkcsycmGoO+QRPw8lOyst7ctXGblQXSU9ixz7N5gSK3JC5wtFlmgaig5xJJl8neERZTzdaAWz63zaFXDwk3HPS+ag2iiTY187B3QjDaaiUKoiHPYzP8PScIUM3Qo6bjqeOs6QjMlclmMQib2yWRGzipKPuIzMI50XzZZkjg41e5bzKyvujSBg/7zj9aIU77shpdkAoCEZvWkpz9br0VUylCisnkT4HIcT38Cdc9ecc193zr3mnHvVOfcbk88XnXNfc869Mfl/7aRzGc4PzK7zCbPrxcLjuFCGAP619/7jAH4OwP/qnPs4gC8A+Avv/dMA/mLyb8PswOw6nzC7XiCc6ELx3j8A8GDSPnTO3QJwBcCnAPzC5LCXAPwlgM8/6lzOAanJ7vSmlhTyotoiokVaxTkKklWuaxXuNB/UuZvcG5LaDKX6dadLmlI/JLU5GJGmHDRIX4oilNNrSRmnQjJiwEvURCagOyCSvne6SvP5m7kv/dhvStmuPinZ4ko1brspOtgSrePBkLvwYUgd4YNDjk1/IkIUeW92hdkVJ9g18j4+t14vWKA7pb1He/eHdEMUC8lq8KGUUdvbrsftnrhQdNyujihm5WWcMyWOYUZcTS2xlz7Veu2ke0rtf/8eo5m6XiJdUuI20cStPE/canEeDMVdl5MInf1O0oVyb5vl2TxkbXjekxPhrkLuZA/3e9rEdM7dAPDTAL4BYG0yWQBgA8DaMd/5nHPuZefcy+3uyWExhrOH2XU+8aR2Vf+v4XzisR/gzrkSgC8D+E3v/YH+zY8DHB+qZem9f9F7/4L3/oXH+UUxnC3MrvOJ07BrLpt+2CGGc4THWnnOuTTGk+H3vfd/PPl40zl3yXv/wDl3CcDWSecZDEfYmkQgRI5Uoy9RBV7KMqWc7D7vM3IBAJo90uKB7OJmJWmj2+P39/dIZXcOSEvf3LgXtz9+nd/NiZ5Ct0UqNBomd/r7Ujm6KPoNzUPSqh++Se2O/oh9+p7odbSFhrVlQ3ywx76m08nf28oC+7uzTV2HtCSCDCV5YHMy9kcJAmZXs+ujMBwO43NfW6er66BJd8pgRHstr1Ab/KCR1DgfDMQdJmOiuVDfe/3NuK1zJCM2+8hHWUk+KHOudZq010hcVYNe0o2h9t8TTZbX3qXNPrrOyKHlCm0RLtMt1GzSmLuDetxOS2RMQ0roAcCeVpz37IeWzcs4rpNm6+QSeY8TheIA/A6AW97735Y/fRXAZybtzwD4yolXM5wbmF3nE2bXi4XHeQP/+wD+JYDvOue+PfnstwB8EcCXnHOfBXAbwKc/kB4aPiiYXecTZtcLhMeJQvkrHJ8h8Evv9YLDaHyqLdGqyFWkfJLsLHvRAogOklRoa4f0pyiVqksi4diQ6tlbsgO82+Iuf2GBO/tLi6RIXspDbYqk5B99+U8S/VAJz+eeezZu18U1sLXDa1+7wWSO777+A54oI5XaPalhV3bmw3TSDIHIU4YZJny8/c4d+Zxj886d8ee9wcDsCrPrSegNBvG5MyJxO+yz7zdu0N3QbDHyp36YdKEMB/SVpI6JHtFxS8sxd95htMjqMudUtbYYt2/dej1ua1m+f/HP/mGiHznR1NF5UWhwXmyLeysSd11GapzVDzi/ml3Ox5aMTZBJRjZ1BzyXap5ootLeQT1ury7QxsfBUukNBoNhRmEPcIPBYJhRnGn81yjyaPbGgeo92X4ORV50b5dRBSnRpziq+HKEooQ45aSq80D0IjY2NuO2051+CZa/fIUVXSolUqS7dxjFcL/FDfsfvEnJUgDodXiuV757n33KMwHgsE06GZa4qz0UrY+DBu/bBZLoIgEbFUmgAJI0VaUnI8d73ZYq3EeRCypreRowu86nXb338bn1eguiz6J9VcngSBNVADRlrBKyNhFdDpUCv/NApF7/+luMECkXaPtuR8J6pIJSVioDvXLrh1BcLlKHpSJyxZev8PPttzhHnLi3dN499RSjckYRj1E3SauZiN7EUKSTR3rfIles6+doTT0K9gZuMBgMMwp7gBsMBsOM4kxdKN4FGIZj+rWyzh3gvEiKbm2L1GhJioVO/dTkJSqhXGHh0u+/+lbcDkT2cmGxGrdTsrlbKpISB5474rsS5P/WJul1cTGZgXxZAv0zGVKyjQ3S8+0DBvBv7DDyQRU3gxx3rHs90qjhkJTMT+3sp6VqSVsoalHGDRnR8QjG/Xtn8+QEgfcCs+t82jVMp7G0MnYtLEhUT17GY0eKTRdEcnYwRf974gILxehZGZ++FCbW8ewOefxyhZEnTz1Dt0e/zyiShiR0vXU76RrLrokkrLj4KkX2I7jESJeFQjVuH+7V4/abb3E+fuwTN+N2T3RN+qNkIo++LreavL+by7xGIS+RSu1TSOQxGAwGw/mEPcANBoNhRnGmLhQXpBAWxzRwNOIubFnobrlAqtY6JAUJZJcZAKpF7twOBqRnrS4p59PPPhe3b715K27nS9xFX6uRpj8nRW5VPjMKyc3zi0mBn6ETJT75Oays8lyZPdLdlkQ3uAL7kZEKJJFs04cZUrJ0empnXxJXckJfdZt/R4q9Nie79qNRciyfFGbX+bTraBSh0RqP1yiii+LaJUb4ZKV/rS5dIKViUk7WpWV8JPIoI9WO3ID312rz+EyB46zj3w9EzjdNe+UX2acoTNpV7f/cMx/h9+9J8WKVAz6gFs1zMu9uv8N5p/PUySN1Wg8mkolULpakzXXS1KieqTF8GOwN3GAwGGYU9gA3GAyGGcWZulAGwyE2N8f6ES5ikLsWQ1lb5c7yQZ1U5rBOKgMAvQ5peGPA9iWRvSwVSZ/K0l5dr/JzCfov5Uh9W7LjrDKQjcNkcP7aOvvb7lATYaFK+uNE20KCD5ATeo0MaVRWEjZkYx5hmPy9zch3XEBT9rTwrucFi6UxtQxSSQnXJ4XZdT7tGqSC+Nwj0SzRfoRp9k+6nUjqmZwtbqX0uPTD3T7diNfQcS5WObaNA42AoTtsc4NzKgzpSgOAJZFxLUkEUznPOXlZ5tHWA+rd6LzT+dgQ/R9RIUZqSpGmWmUETaXK/jbEHba5xWQhHyT7/jDYG7jBYDDMKOwBbjAYDDMKe4AbDAbDjOJMfeBh4FAtjC+ZTtMf1JLyREXJRLp6haE2wVWGEgFAfZ9hP5U0fZwoMLRot/523H7+uUtx24mSkJMsvc27zNrKSPjR3fvMvgt8UuN3QAlkhCn+rd2nfzWdk+ulGUKVzUkY20I1bu/v1nnODL8bRckisxnxDba77IhmvZUX6Ec70skJguPkot8fzK7zadcgcMhPNjICKZWnZeKyIzp9C5JV6ZC8p6xoaUPKmqmmd0d8yb00r6HjrOOvdlF79dq0xd1OsnLc8vXrcbsv86Lg+J18hY/FtSrn19Y2591yrcqTBpxTB9KRT1xl+TcAiLzooLe4NnSdLMt4DB6jprS9gRsMBsOMwh7gBoPBMKM4UxdKKhWgVpnQS0e6F4mOcbtFCh2IpnCpkqTa5QqzrS4tsBr23s6DuK2hOsUCb9UNSPv6XVK1QY99ykhG4Po6aVRjR7gagM3727xGjZQ/LdfL59kOQBpcF43lvmhId4UmOolPcy5JkUPRy85KNewwy36kUkrbWpM+nC7VNrvOp10DOGQn7o5ikXYZjXivKXDMtd/DYZL/e083gZewycaBuItk3EIZTx3nnohWDdq8dmuf9sumOT8WlumSGP+RYzhoSVm7rGSHiivIS5ikzrusuLkWlymE5hsMYXSBxBQC6BxwDbRbvL+cjG2gc+Ex9N3tDdxgMBhmFPYANxgMhhnF2eqBRx69SaqSZk6VpQ0ReXEg7Qpckk5ks6Q5YZqpXbUaaXdBxG5CT8qSzvBcxYKIJ7WEdoswULnM7LvFclI3WpLrMJDIh25Eurx0k9/flUxA3YEP8hyDjOzSt5sUt+l1kzS/L8LT5TLvo9OR+xZa7Sb08bSjFcyu82nXIHAoTc6dluupYyCfpwvs8FDK5qWSAl1ZyYYtlOgyyOjnMubtfWaVXlqn6FRHrp4r8drpNXF7SHLnAMmxHWjUTIVzMi164OqJGohLY3WNtshGjDzReZrNsk/eJ/W8i0VGDhVEwAopPobb7fZD28fhxDdw51zOOffXzrnvOOdedc7928nnN51z33DOvemc+yPnXOakcxnOD8yu8wmz68XC47hQegB+0Xv/kwB+CsAnnXM/B+D/AvDvvfcfBbAP4LMfWC8NHwTMrvMJs+sFwokuFD8udX2k5pOe/OcB/CKA/3ny+UsA/ncA/+nRZ3Nwk135eoPiQa0WaemiJCgURQ0pNdXTaESK1pHq1H1JMkgX+JKRE6rWaVAEpyQ7wIMuuVevR7o6Ek5VKiQ7khHKv3dAupbPyc6y9Km2INReqFq3TcEklXXOCD3rTFGqQPShNQKhIIM1EsroJrvaDmZXwOyKE+zqAGQm5w7kehnph5P+ab+jKClSpfc7GPJckYxPTr6v46meoXxWtL6lbFupzM91rnREVxwAvEQqhVm6QTIZzqNmi+6t/ALdZO0ev9uWKKeMF3eKjE0wpWYlUxutNsdnb4+CWQOJ3slmksllD8NjbWI651LOuW8D2ALwNQBvAah7HxeVuwvgyjHf/Zxz7mXn3MsaAmT48GF2nU+cnl2HDzvEcI7wWA9w7/3Ie/9TAK4C+FkAzz7uBbz3L3rvX/Dev5DNpE/+guHMYHadT5yeXc80xsHwPvCeLOS9rzvnvg7g7wGoOufCya/6VQD3Tvp+FEVoNcd08bjd1oZQ36Vltp2bCooXCrJa5q7/3h61D8orVR4jJbYGbVJi1V5u9vj5SJJNkAiUSFLDnV1erys6yb4r1NfxO6OIlE6pWl3GwIm2wlKVFbIrlaQ+cCpgHzWYYyCREqHsooeTpJBgKnHE7AqYXX8UgXMoTNwMQ9Fh8XKvoYh7V0X3Rcdjum+74jLwogNT1QgmeSnwI9WGEddRxMGJBrRXpUT3y3QujM42nRfpAa/Xlnk0SPHzrX26Bw+363F7cZHa8VuHjJ7JF5Lvx97zcbu7wzlyIPNFo7gKheQYPgyPE4Wy4pyrTtp5AL8M4BaArwP455PDPgPgKydezXBuYHadT5hdLxYe5w38EoCX3HiXKgDwJe/9/+ucew3AHzrn/k8Afwvgdz7AfhpOH2bX+YTZ9QLB+cfItz+1izm3DaAFYOekY+cQyzg/9/2U937l5MMeDxO73sb5usezwnm6Z7Pr6eG83fNDbXumD3AAcM697L1/4Uwveg5wEe77ItzjNC7CPV+Ee5zGrNyzaaEYDAbDjMIe4AaDwTCj+DAe4C9+CNc8D7gI930R7nEaF+GeL8I9TmMm7vnMfeAGg8FgOB2YC8VgMBhmFPYANxgMhhnFmT7AnXOfdM59f6JJ/IWzvPZZwTl3zTn3defcaxM95t+YfL7onPuac+6Nyf9rH3ZfTwsXwa7AxbOt2fX82/XMfOCTzLAfYJzaexfANwH8mvf+tTPpwBnBOXcJwCXv/becc2UAfwPgVwD8OoA97/0XJ4uh5r3//IfX09PBRbErcLFsa3adDbue5Rv4zwJ403v/Qz8uUf2HAD51htc/E3jvH3jvvzVpH2KsQ3EF43t9aXLYSxhPkHnAhbArcOFsa3adAbue5QP8CoA78u9jNYnnBc65GwB+GsA3AKx57x9M/rQBYO24780YLpxdgQthW7PrDNjVNjE/IDjnSgC+DOA3vfcH+rdJ1RSL35xRmG3nE7No17N8gN8DcE3+/ViaxLMI51wa44nw+977P558vDnxtR353LaO+/6M4cLYFbhQtjW7zoBdz/IB/k0AT7txdewMgF8F8NUzvP6ZwDnnMJbqvOW9/23501cx1mEG5kuP+ULYFbhwtjW7zoBdz1pO9p8A+A8AUgB+13v/787s4mcE59zPA/jvAL4Llnn5LYx9al8CcB1jic5Pe+/3HnqSGcNFsCtw8Wxrdj3/drVUeoPBYJhR2CamwWAwzCjsAW4wGAwzCnuAGwwGw4zCHuAGg8Ewo7AHuMFgMMwo7AFuMBgMMwp7gBsMBsOM4v8HgNOfN7ktXTcAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABDzUlEQVR4nO29W4xl13nf+f/O/V6n7lV9Y5MWKdKKFHtG9jiIgzgWjBEyDxKQQLEGCWhAAF8SwMbkQYRfMhlMAM2Lk4cAGRCwYAYwLAsjBxImHjuCICMxEMii7iKbEkmRzb7Vpavq1OXcL2sezqn9/+9S14Xd1afrVH0/gODqU/vsvfb69t5n/9f6LhZCgOM4jjN5JJ50BxzHcZyHwx/gjuM4E4o/wB3HcSYUf4A7juNMKP4AdxzHmVD8Ae44jjOhPNID3Mw+aWY/MbO3zezl0+qU82Rxu55f3LbnC3tYP3AzSwL4KYDfAnAbwLcBfDaE8Mbpdc8ZN27X84vb9vyReoTv/iqAt0MIPwMAM/sSgE8BOPRiSCQspJI2aj/45d/MHvh5wMEfGm7X7/d5DPk8IfvqDwb8ZkK2kX5oO5ni0PR7vag96HM/P9fHQ34M9Zz09JJJHi8jx+t0uzy27DOVjJtLj6djkMkko3ZCztVGY7PX7KDd7j14oN2uP9/H82FX4APa1u16NuwKAJvbzfshhPmDfX2UB/hlALfk37cB/E8HNzKzlwC8BADJBDA/mwYAFAoF3SZqpxPskhqoO6BRhl/i37ZqtaidT2Sjdkn2td1qRO1kMRe1CznZvlSK2tXpmai9uXE/arf3WrFu6CXQaXekf2ym0uxHJs1+T5fzUfvK4mzUfv/u3ai926Ghq1PcBgC6XV6ce7u1qP3UtSkeL5NmP0YX3V/+1U9xBG5XnEu7Aiewrdv17NkVAP7kqz+4iQfwKA/wExFCeAXAKwCQzSRCJjn8tenLr9ZAfo0sSwP1urwIkmn+Sg035IhPV4pRuypGbe/s8RgNGquY4cVYLbJdLNBAlSwHcq3Bi2AQ4hdEPs+La3FxIWpvbGxymwK3uXplmeckl9PS0lzUTsv2b713O2pnM/G3nZmZCvvL08b89HTU1jec3TrH41Fxu7pdAbcr8GTt+iiLmHcAXJV/Xxl95kw2btfzi9v2nPEoD/BvA3jWzJ42swyA3wbwtdPplvMEcbueX9y254yHnkIJIfTM7F8A+EsASQBfDCG8ftR3zAyZkbQymRObXeTc/F6jHrUHIsO6vficWkIWBC5fXmJb9vXWm5wTXEhVuc3Vy9xPTxZFROZNiTybn6b0CUlKOACYnuZ+iyVKw2SC/V26RKmWz2ai9nZtK2p3AyXj9Awl1bWuLIpQJY7+zb9lk5RxgzYlbmWK82uDznAOLmGH/267XYecN7sCH9y2btezYdejeKQ58BDCnwP480fZh3P2cLueX9y25wuPxHQcx5lQHrsXSuxgySSmp4byJi+SZ2mJkmplfT1q53OUGVuySgwAlxb4nWyO0q1QoOS5dv1S1FaXo26HcikLrqJnM2zXG3Rjun6VK9EhTbkzPDa/0263o/biPGVVKkEp1GpxZXmqSgnXbPN421sbsj2PN79AaQgAhTI1Wtq4XarDMWjucb+9kdtUGBwvzT4Ible3K+B2HW5/+nY9Cn8DdxzHmVD8Ae44jjOhjHcKJZXCwsJw1Xkgcq/TorP98mXKn2KeK8jZZDww4PLSYtTudrgSvr62ErUrU5QwaQlXHXQoTdIpCdNNcpW4Ud/mwcQfP5GP96MtUqrVoSTLiVTb3ea+SmXKsF6PMmr9PmVYLkP5qKG8Hdk/AOzcpXzVAIBOjfttdxiAUR7J0sEp10F1u7pdAbcr8HjsehT+Bu44jjOh+APccRxnQhnrFAoAJDCUYu1WM/qs36Yk6yZETjQptdKpuBTa3mTCGgO/EySA4P3bzEswXaGDfDElzvktOuerBM3mJdtYj7Kme0AWmSTwGUguiL5kIstleDzNplOXnA3ZHKVaNsPV/GKeUisneScAYGtzU9o8j0qeK+omUrZYrQIAkgfk7WngdmXT7ep2BU7Prkfhb+CO4zgTij/AHcdxJhR/gDuO40woY50DNwTYaFIpK/l7Q6CLUk/mr1pNuvzMFsqxfaWlckU6wX012zylbI7RY+1WW9qMrspWxPVJ5r4soxU++N1CLp4cpyMuTpUqk8rn8zy2SdTVzu5O1O5K8ndLcx4tJ/1Gl/tv1eO5jftt/v5m03TBmppjruKuuCVt7w7nKPtHVCl5GNyublfA7TraKGqell2Pwt/AHcdxJhR/gDuO40wo43UjNENy5MYTBvTPKUjEUdMozyplft7fjcsRGLt+6RKT4HTXxe+nSylVylLytLZ3o/b0JcqXev3BkmVhmVFkrd24W1JS5GBGZFVepFuzwePlpDxUQmRfTWr3dbU0VZ/tZvNAcpuBJAUSGZeWHMZNcaNaXVsFEHezOhXcrm5XuF2Bx2PXo/A3cMdxnAnFH+CO4zgTylinUDrdHt5fHUYgBYmiKrUow8rTIs9k1beSkpVeANeuzEbtXJEr3CnmmMFskZFQM0WpYC0lk1qSEOeNu7e4vZReau1Jvt96vFRUOsn9dtoinyRabWCUTsk0h7y1y6Q5XS7go91nnxanGfE1N8VzBoAbOyxBNT/Lv8nhUC1TAg66w5XvVIpRYKeB29XtCrhdgcdj1yEreBD+Bu44jjOh+APccRxnQhnrFEoIQKs3lF/37zO5TbHORDlzshKdke7ly/HAgGa9FrV3VSZJPt6kJMpp7TCRzOIU9/X6jbejdlkS1JSlhJTEFGD2ClfBAcB6XEHuieN+XipSbzfZj5yUnbpzjxIQA0qnyjQDDFpS9bvXja9qFyTX8VSZ8vO+rNo3JQnRVHkoyZKJ00165HZ1uwJuV+Dx2PUo/A3ccRxnQjn2AW5mXzSzNTP7sXw2Y2ZfN7O3Rv+fPmofztnD7Xp+cdteHE4yhfJHAP49gP8on70M4BshhC+Y2cujf3/+2IOlkliaG+b57TUpGyplypQgkiyZ5u+LVq8GhvJun3pD8iZ0KVM0R/BHP/K3ovbdu3ejdqvFHS0sMgCg12dQxADUV0UJVgCATp0r8qlAGZdMUIbt3ad3QE2k5PQUcx7v1tmPXp/SK5fhsbu9+Ir6taevSx85Vhvbd/i55MeYmRueX2KYc/iP4HaN2ufIrsAp2dbtejbsehTHvoGHEP4rgM0DH38KwKuj9qsAPn3skZwzhdv1/OK2vTg87CLmYgjh3qi9AuDQnwozewnASwCQk4xmzpnE7Xp+OZFt3a6TxSN7oYQQgpkdWg47hPAKgFcAYHqqECrZoWT66IefjrYpFLmanEjyorn7Hkss9Xrx3AqlMqthb+3wb0mTFJOyxL1ToxP+yr21qN2JLRTzuzu7lIyDQHlWr+/pF7Bbk1XjIiVWH/xOMMmVICWdqiLJCkWaIpWW1eqKyry4uQYDBk689e57UdtSXOHOZLmv7ZH3wEnSjrpdz6ddgaNt63Y9e3Y9iof1Qlk1s2UAGP1/7ZjtncnA7Xp+cdueQx72Af41AC+O2i8C+OrpdMd5wrhdzy9u23PIsVMoZvYnAH4DwJyZ3QbwrwB8AcCXzexzAG4C+MxJDpY0oDySCKUiV4czkk6xOkPH+4I4+W+sr8f29YMfvhG1uwP+DuWydPqfKzHfwK336YS/vsaXj1aPkqe2RdkGkU6Bygdbm5K8AYAWvW63qO+KJUqhuflq1DZJfNCSNJSarrMplU0CeIBeN54utNXm3/oizwrF+Mr7PunMUKpZwtyuOJ92HfbldGzrdj0bdj2KYx/gIYTPHvKnTxy7d+fM4nY9v7htLw4eiek4jjOhjDUXSiaTxlOXh6vR/QHlyOw0pVNSKndkFvj55cX52L7+81/8l6g9kEoXM1PUcXfvcBV3eZbSa2aasm3rHuXP2goDBmZmueJcKlHKTMvnAFApUUJOTTO4rVQWh/4Gj/HWmz+L2skUpWi9TTnXbrDdaVFqJZPx31uDyLA8gyv6srKvRVw7ozwLKv9OA7er2xVwuwKPx65H4W/gjuM4E4o/wB3HcSaU8RY1DkAYLRFnM5QNyRR/RzrikJ9LUV4FcZYHgL6sZCcS3FfsF0nyI/zCM89Gbc2h8NRtOV6OMmpKZFsqyX7cW3k/1o9/8Pd+PWpfuno1avcC5U9tncVJN9e4Kr62ySCDdJJBGEsLVZ6CyOJBT5bXAUxX2MeNrZ2oHRLsb7vBfvQ7QxkcBvH9PDJuV7cr3K7A47HrUfgbuOM4zoTiD3DHcZwJZaxTKO1OG+++exMAUJaKHTs7lCYzOVmRlfwEvVQ8sU5R8hJ0GtxueZEr4dkEV5Ofe+5a1M5JIEIiw8oaWTl2QUp0JESShYYEDwBoSTWN7jSPN3+5yu9LBdRnrj/F4+W5r+09Jo/LSErKtKzydw9U+Eil+LeeBCWk8gwMCJKTorw4/Dz7vZs4TdyublfA7Qo8HrsO+TEehL+BO47jTCj+AHccx5lQxjqFMhiEqBpHX3472pJjYG6JjvYDWZVuHpAj169fj9o//B7lRVpWwq9c5ur10qIGH3B1WBbXkZFV7WKRgQS6qo1GfGW4UatF7fsr96J2SHA1uZDn93W/1QpXrLfrLBobpMJHIU/JaOl4boSOJHaoFpjisy9jMFWUVJUjxwBZ9D4V3K5uV8DtOvzu6dv1KPwN3HEcZ0LxB7jjOM6E4g9wx3GcCWWsc+AGQ2LkXtRucT4ol+bEVqtNN5pcnpNAyU48qqnfpqvP9garSNd3a1H72ac/HLULOc4zlaWU0vQs56w6Mm/Xl3ktTUqzsFCJ9WNlhf24vcp5sf/+/e9E7eeff4bbr9IV6dbtlajdBc97psr+pSUBTi7H+TgA6KU4Pu2mRHDJFGBxjgl7ahI1d5q4Xd2ugNsVGL9d/Q3ccRxnQvEHuOM4zoQy1imUdDqNSwuXAQC5DH87ilm6zhSK1BO9PmVbOhXvajVP96APX2PF65kiJdbVZcqRslR7nipR2rQS3D4zYD+2tyjz8mXZpiR+TADurFLmvHe/HrVff5MuSnfvSaKcmkSCddj+2MeusK8SVdbbkxpQ/fgYhEC3prxEq/V6HBuTquH8/HTzRrtd3a6A2xV4XHY9HH8DdxzHmVD8Ae44jjOhjDcfOAxhVD06L5FIGckvnMlROjV3uNLbPbCqXa1w5fdXfmUhahcylClpiYRKSbs/YC5fSARWLsvhGFQoZbJZSY4ziA9ZRqph/+DHr0ftvbpEovWY/KfVZrRaVuRSIsH+BePxBkme97aUegKA7Tr7npZyT+02pVdPyjK1Rx4Dg1MuveV2dbsCblfg8dj1KPwN3HEcZ0I59gFuZlfN7Jtm9oaZvW5mvzv6fMbMvm5mb43+P33cvpyzg9v1fOJ2vVicZAqlB+BfhhC+a2ZlAN8xs68D+B0A3wghfMHMXgbwMoDPH7WjQQjojBLh7OxyBTgxRXnW2GSpoU6PsqZYiFeXTklZps31WtRuiyTb2qWEudJncpzQoizKlCh/MgnKwXpPVpNllNoN+RxAURLq3L1zO2q3gqycJ0WGSRBEMs8d1+uUXr22BE3Iiv9WMy7J7qyz3FOAZL4JPCeTRECFXGr02fAwcLty/27Xn8PtejbsehTHvoGHEO6FEL47au8CuAHgMoBPAXh1tNmrAD597NGcM4Pb9Xzidr1YfKA5cDO7DuCXAXwLwGIIYd95cgXA4iHfecnMXjOz13RBwDk7uF3PJ27X88+JvVDMrATgKwB+L4SwY7LyGkIIZvbAJfAQwisAXgGA6XI+rG4MSxFdXZqPttnZozzr9rkKOzfPXMM729wGALpd/rstEkYX4n/85ttRO2lcyc5IroRnPsTK1Iky5U9zjyvD/Q7PtduOy6Kc7GtTcjy88f7PovaHli7znCqcekzNUWbu7VF+bnRrUTstK+3bUrEaADa1gnVgPwyUiRnjTbhXH45TV6plu11Hx3W77v/N7XrG7HoUJ3oDN7M0hhfDH4cQ/mz08aqZLY/+vgxg7ST7cs4Obtfzidv14nASLxQD8IcAboQQ/kD+9DUAL47aLwL46ul3z3lcuF3PJ27Xi8VJplD+LoB/BuBHZvb90We/D+ALAL5sZp8DcBPAZ47bUbvbxXu3bgEAMmmuwvY6lDnXr1O+7NXpyF7bjUuyXpfaK3nIavSP3vxp1E7LNrfe4+rzwhxXu6vTM1H7xo03o3aQHBP/5B/9/Vg/coGyanaG7cI2pdD6JqXaoC3SUGom1XZYgXqvxUCCuoxNIhMv0dTqcl+aQ0EDHzZ3alF7YYo5IuB2dbseg9v1TNn1gRz7AA8h/DWAw6rtfeLYIzhnErfr+cTterHwSEzHcZwJZay5UEII6I1SKq5LdeipYi5qq/RKSUrKgTq+A9hrSGCB/AyFASVMpcDv3JPUkX/zXa44lwurUbvV1EralDVZqTTywxs/g3KpyLwOlRJl0aXL/Hz9nTtR29J8OVpZ4bGfeoqr/P0Bt1HZVd9j0AQA9KSUR1/Pu1qO2m1Z5t9r90fbnm7ODLer2xVwuwKPx65H4W/gjuM4E4o/wB3HcSaUsU6hpNJpzM4PpcrUFFdx8xlKmfs1FhEtSArL7gE50ZaghVSav0PZHFd+O1LodOU+99vqcfu5Cleyn3qOMqrT4ar09g5Xpd+5ycKmAJBdlBSTgcEElSL7kVjmyvlUoRq1dzdrUfvtd96J2h/+yNNRuy15Ejr9eGCA/vzW93h+T8/xGIU8+9Ea5YUIdrq/225XtyvgdgUej12Pwt/AHcdxJhR/gDuO40woY51C6fcH2K4PV5f7A0qeq8tLUTsrMqzeoqQqFePpKS0teR+SXLnNZMVZvsvfp3qD22cKTB1ZWeAKcCfBPvXSlFf5GfZpkKIEA+JpNl947hl+/44UQ5U0mVs797n98y9E7Zvv3eD2XTk3MdHB/BID+f0tF0vSZgrMPfUSGI2hJeIeAo+K29XtCrhdgcdj16PwN3DHcZwJxR/gjuM4E8pYp1ASyQSKpaG86UsOhHaX0iuVZpcyVBaxIIHR3qJWUrdLD/AgWgMew1KUmsUqV323d3RFnXkIVlcoo1KpSmy/s5IWsjRTjdrlPGXYpSV+vnaPVTlKRcq7ZUnXub1di9odKkMkDwRIV6tcka9U2d/tLa7Cr64x+CAkhn3v9mSnp4Db1e0KuF2Bx2PXo/A3cMdxnAnFH+CO4zgTij/AHcdxJpTxzoEnDPnCcA4rYZzLakiJpWyfk0gFidIyxOvzZSU3L6RMkuYIbsrcVDvNY6RznHdrdBgtlUryeF2mNka7Qben2814IZO5a9eiduc2o74KUrEqX+EwL1aXo/ba+rvcz3SVO01wrm1HOvKRKywnBQCDIHmV65wzrEu5pzkZj+5oCFOJw7KNPhxuV7cr4HYFHo9dj8LfwB3HcSYUf4A7juNMKOOdQoEhO5JPxSKjpfp9RjIlQUmWSlES9npxPRECZUdI8Xdoe4cypSE5jFPgMfJ5nnZbkuB0Gzx2fYtSKJumy8/UHCXO8I/Mjdyt0xUplZVoM5GWQdyu1JUoK65SM3OL3H6bLlGWiLuJNXcYPdao8/xyMrYJqUaOUW7nZPJ0f7fdrm5XwO0KPB67HoW/gTuO40wo/gB3HMeZUMbuhVIaSZi01F1VoZHPM3HN7i4lRzIZT9STzVEKFUqUIBn9XH6eGlubUXt5iUlsmnL0XInHTi+KjJJgsS5kuRtAV1fhK0xQk5b8wlpitisSaWGRiXmyA65kp9IMVctm2acQ4vmBi0VGahUkIQ6SNGuj0fi5djjl0ltuV7cr4HYFHo9dj8LfwB3HcSaUYx/gZpYzs78xsx+Y2etm9q9Hnz9tZt8ys7fN7E/NLHPcvpyzg9v1fOJ2vVicZAqlDeA3Qwh7ZpYG8Ndm9v8B+N8A/NsQwpfM7P8G8DkA/+GoHRmAzGhlNSFSJiMSwkS/JKR89WAQT3qTEdmiSXwGjb2onZPvT09R/mi8Qz4ruYOlDFSpzM87ErjQlDzFABC6sgqfpazKZCgN9+rM8ZufYo7fRpvfbbR4jEwQeSZjkziQHacvKrXe4PhsbjIBT1e8AbKZfZlogNvV7ep2Zf/OtF0P59g38DBkf5TTo/8CgN8E8P+MPn8VwKePPZpzZnC7nk/crheLE82Bm1nSzL4PYA3A1wG8A6AWQlQV9DaAy4d89yUze83MXmt3eg/axHlCuF3PJ27Xi8OJvFBCCH0Av2RmVQD/CcDzJz1ACOEVAK8AwPx0KRRGsqUnVarDQCpWS7Lg6lQ1avcHcSmkDu8bIkGClH6qSo7gslTSDqJlGi1epCar+IMucyhUSpRzB33r9RLfa3PFO93l8RoNft5N8vO1rZ2ovbtei9ozM6y2vbbL1fh8If57GwLNt3Gfsm9HJKDmSS4UhmO4L2/drm7Xg7hdz55dj+IDeaGEEGoAvgng7wComtl+j64AuPNB9uWcHdyu5xO36/nnJF4o86NfcphZHsBvAbiB4YXxj0ebvQjgq4+pj85jwO16PnG7XiwsHBNvb2Yfw3DRI4nhA//LIYT/w8yeAfAlADMAvgfgn4aDnus/v691AHUA94/a7pwyh7Nz3k8B+ARO1643cbbOcVycpXN2u54eZ+2cnwohzB/88NgH+GljZq+FED4+1oOeAS7CeV+EczzIRTjni3COB5mUc/ZITMdxnAnFH+CO4zgTypN4gL/yBI55FrgI530RzvEgF+GcL8I5HmQiznnsc+CO4zjO6eBTKI7jOBOKP8Adx3EmlLE+wM3sk2b2k1FKy5fHeexxYWZXzeybZvbGKJ3n744+nzGzr5vZW6P/Tz/pvp4WF8GuwMWzrdv17Nt1bHPgZpYE8FMMI8NuA/g2gM+GEN4YSwfGhJktA1gOIXzXzMoAvoNh5rffAbAZQvjC6GaYDiF8/sn19HS4KHYFLpZt3a6TYddxvoH/KoC3Qwg/C8MS1V8C8KkxHn8shBDuhRC+O2rvYhjGfBnDc311tNl5Sud5IewKXDjbul0nwK7jfIBfBnBL/n1oSsvzgpldB/DLAL4FYDGEcG/0pxUAi0+qX6fMhbMrcCFs63adALv6IuZjwsxKAL4C4PdCCDv6tzCct3L/zQnFbXs+mUS7jvMBfgfAVfn3uU1pOSpl9RUAfxxC+LPRx6ujubb9Obe1w74/YVwYuwIXyrZu1wmw6zgf4N8G8OyouGoGwG8D+NoYjz8WzMwA/CGAGyGEP5A/fQ3DNJ7A+UrneSHsClw427pdJ8CuY43ENLN/CODfYZjq8oshhH8ztoOPCTP7dQD/DcCPAOxXLv19DOfUvgzgGoYpOj8TQth84E4mjItgV+Di2dbtevbt6qH0juM4E4ovYjqO40wo/gB3HMeZUB7pAX5RQm0vGm7X84vb9nzx0HPgDxNqm0hYSCVt1H7wb8dwQfjnCT/ngsnt+v0+jyGfJ2Rf/cEgaltCtpF+aDuZSkXtfq8XtQd97ufn+njIWOo56eklkzxeRo7X6XZ5bNlnKsltDh5PxyCTSUbthJyrjcZmr9lBu9174EA/jF2z2VQo5TPDPomdBgO2Ox32L5lk/w7au9fnWCflb5l0mvsSe/TFHjr8J7GFkkjGr8dD7S/XkbaDnGtSrqOB9GMgY6NjcNC92HDIPXDIOe33o9cPGAzCg7+MD25bv1/Pxv0KAJvbzfsPqomZOvjBByAKtQUAM9sPtT30Rk8lDfOzwxuxUCiwozJK6QS7pAbqDmiU4Zf4t61aLWrnE9moXZJ9bbcaUTtZzEXtQk62L5WidnV6JmpvbrC2aXuvFeuGXgKddkf6x2YqzX5k0uz3dDkfta8szkbt9+/ejdq78uCrTnEbAOh2eXHu7dai9lPXpni8DB98qdFF95d/9VMcwQe2aymfwf/8G88BAHpy83Q6vLBvvr/N7cvVqJ1Oxx8Mte2NqF2WC/vapUtR+/Yqt9nabfJ4Mh69rlwvYqRMNhO19dGTLeWgzMzOsU9bdDzY29uL2o0WawL367wupnK8tvfkum0OuP10tSr9iz9k9B7QHwm9B/Rh0GgMr+31DY73IXwg2/r9ejbuVwD4k6/+4CYewKNMoZwo1NbMXjKz18zsNX0jc84sH9iurU7v4J+ds8mxtvX7dbJ4lDfwExFCeAWj8kTZTCJkRtKxL7JjIHLCsvyF1beoZFolJ2LaZrpSjNpV+VVu7/BtadDgr20xw7eJapHtYoG/sJUsfwnXGvwVH4T4L3o+z7eDxcWFqL2xwbe2fIHbXL2yzHOS94GlJb7xpWX7t967HbWzmbhcnZmpsL88bcxPM+ulStTdOsfjUVG7zlYLAb3h28V0kX0aFHl+3S77kZdt6nv12H7VBr9w/UrUnq3yOz1505tf5n5v3b4XtZtis9lZvp1tb9e4TZPb9PjCBwCoXKL9g/QpFXQKhdfw7i6vr7S8gS9VqlG7Jm/vg568/R2Q8o0u+6Vvg5023+ATMgWzf0+ZHfsGfix+v07W/foob+AXKtT2AuF2Pb+4bc8Zj/IAvzChthcMt+v5xW17znjoKZQQQs/M/gWAvwRDbV8/6jtmhkx6X+7xt2N2kYurew1K6oHIsG4vPs+aENl5+fIS27Kvt97kYt1CqsptrnLaL9GTVW2ReVMiz+anKX1CkhIOAKanud9iidIwmWB/ly5RquVlEW27thW1u4GScXqGkupaV1a1qRJH/+bfsknKuEGbErcyxQWSQWco/xN2+O/2w9g1YQkU08NxKeU4BrVtLlxWK+xfrsjLrpivxvY1I4t7Og7dPhcrA3QxkNvk8pxyWbnLvEOXLvGamKnSfltbtaht/fitoPbvNTm/kp/itTAzSx18R2YMCjna+NnnrnOb1XW23+d0z+CAI0e2wGmJRIo7npvluarkDyPHk8M8QrjdB7Ot369n4349ikeaAw8h/DmAP3+UfThnD7fr+cVte77wSEzHcZwJ5bF7ocQOlkxieiRB8yJ5lpYoqVbWKTPzOcqMLZGMAHBpgd/J5ijdCgVKnmvX6TusPqNdcXvLgnI1m2G73qBsvn6VK9EhTbkzPDa/0xYvgcV5yqpUglKo1eLK8lSVEq7Z5vG2tzZkex5vfoHSEAAKZWq0tHG7VIdj0Nzjfnsjv9cwOF6afRDCYBDtW4+XT3Ns0rIiny2xf43duNTe3mIe/TviGjI1zetFx03HUwMnYuOfpHRdWODnUxXxbe7GvSYGfXpdXLvEa63doY3bMpWzvPi3orb6iuv1OC/TQ5VcOWrfXVuJHXtavGaaLXpRLM1zuiEj0xXNxnB66c4a+3Ma+P16Nu7Xo/A3cMdxnAnFH+CO4zgTyninUFIpLCwMZaCGCHdEJi5fpvwp5ilxs8m4xL28xPqi3Q5XwtdFjlbEYyAtYdmDjgRdpCTPgkjtRp0eFBpmm8jH+9EWKdUSeZ0TqbYr3hilMmVYr0cZtX6fMiyXoXxUx4JOJy6Rd+5SvmoAQKfG/bYlnL08kqWDU84BPwgBrZHcWxfpnJWw4ExVxn+nFrVz2bjM1PPVft5boVfJ/BxDlBMiRXe3Of2SK3AMt3foPZAT2a2RhoNmXGprzHVZQqj1eun1eA3r9VWQ0G+9Huem6N2QFjk+QPzYc8ucbqiLB4wGuhQltH3frql3eZ6ngd+vZ+N+PQp/A3ccx5lQ/AHuOI4zoYx1CgUAEqOSc+0WAzP6bUqybkLkRJNSK52KS6HtTWYcM5GgQQII3r/NvATTFTrIF1PinN+i7FTJns1LDooeZU33gCwyTR0quSD64hGRy/B4Ks3rkrMhKwEw2QwleDFPqZWTvBMAsLW5KW2eRyXPFXUTKVsceUEkD8jbRyWZTEb73m3Sri2ZYli7RcmpgQ8zkhcDABJTHLee2CMk2NZxy2c4/jrO/S6vCbVLR6SreuOkDlxfGYnCWN9cZf9EI6ckvej9dV6rWzuU4FMyrdDUTIbgOB28tjc3KbW7kl63uytBMzI26iFy2vj9yuaTul+Pwt/AHcdxJhR/gDuO40wo/gB3HMeZUMY6B24IsNGkUlby9wbJsdyT+auWuFDNFhi5BgBpKT2UTnBfzTZPKZvj3GBbqqe0JboqK9F4WZn7soyWaOJ3C7l4cpyOuDhVqoygy+d5bBNXt51durp1pXqHpSXZk/QbXe6/JVVfAKDf5u9vNk0XrKk55iruilvS9mgOtX9EmamHod8fRPvOlzl3mRY3wvYKz1X7ffCcUuI+lkpLhJrMV3Y7Mgee4r5mpuleGIJEKsq8fL3OedqMRA4229wGACwrlWYkqVBb7L2zJUnEczxXve6ScovlZV69q+XmDrh11vZ2o3ZKSsmlpDqMJpfav6fs58qYPRp+v56N+/Uo/A3ccRxnQvEHuOM4zoQyXjdCs6hit1bxLkjEUdMozyplft7fjcsRGLt+SQredtdFRnYppUpZSp7WNiXq9CXKF5XXysIyo8hau3G3pKTIwYzIqrxIt2aDx8tJeaiEyL6aFF/tamkqcSNrNg8ktxlI9J/IuLTkMG6KG9Xq2tAdTt2sToNOr4s7o4i6xUWOVUH6UchRMvalnFizGR/PYlJcAeX9QqdEqlVOlWQghX4loDEvkYr9nkRcSu1irURfnolHhO5JOatUnn2amqPL19aArnG5KU4Z7ImbXVkSel2aZ9TizdsshNPvxhN6zYibZVv+ls+yv426FP3dd407Jh/4B8bv1zNxvx6Fv4E7juNMKP4AdxzHmVDGOoXS6fbw/uowAinIynupRRlWnhZ5Jqu+lVQ82uzaFcroXFGi4xjwh9ki5etMUSpYS8mkliTEeePuLW4vpZdae5Lvtx6Xu+kk99tpi3wSGT0wSqekVBlv7TJirysODe0++7Q4zYivuSmeMwDc2GEJqvlZ/k0Oh2qZEnDQHU4TpFKnnfQoifnRFIQeTwM+52c5xbC+Smn4lCRDAoC2eIOsblEidyU3ckvycKvXy0ByMTebtFmnJdMsEtHZkuhClfgAkE9Sam9K6bWnpb/X5Ng7dcruzbpM2cjlotfptSucCnjrfbloAezINRZkmufeFqd19sRTZb+UWufAVMyj4vfr2bhfh8Rzxu/jb+CO4zgTij/AHcdxJpSxTqGEwARH9+9zBb9Yp5Sdk5XojAZBlOOBAc16LWrvqkyShfikJMpp7TCRzKJ4DLx+4+2oXZYENWVJECQxBZgV6QsA1uMKck8c9/NSkXq7yX7kJHjkzj1KQAwonSrTDDBoSdXvXje+ql2QXMdTZcrP+7Jq35RpgqnyUJIlE6eczCqRjPa9t8PAh7ystM/JmNd3ePz6nuRxBtCTaYCK5PSu15kPvCFlp67Mi8dBR0qw5TnOEpODlOTqDinxhmnE+5HLsu/dJr123nmT18vHX3g2aq/J9ZUUj5mBTM2srTFZU0qu7W4r7hVU26X9OuJlc3+TfaxLYqy5USDIKad59/sVZ+N+PQp/A3ccx5lQjn2Am9kXzWzNzH4sn82Y2dfN7K3R/6eP2odz9nC7nl/ctheHk0yh/BGAfw/gP8pnLwP4RgjhC2b28ujfnz/2YKkkluaGK/e9JmVDpSyyViRZUnI/aPVqIC4X6w3JmyDVxTVH8Ec/wqrhd+/ejdqtllQslyCUnlQlH4D6qijBCgDQqUtO6SA5MBKUYXv36fVREyk5PUUvhl3xXOj1Kb1ykk+k24uvqF97+rr0kWO1sc0gkYHkPZmZG55fYuge8kc4Jbsmkknki0O5t75Riz5vtDmGC/OUstrv7Vp86iIl59uSvBVZCaIoFzluK/doyxRo+5kqPRdy4kkAybWSKfKa0qrmANDr8zvVaV4X79/kNMieTOV89CN/O2p/9/U3o3Zb5HhCSnJVCtz/wWs7uUub6f0wK/dJOnBs9++p925G3hd/hFOwrd+vZ+N+PYpj38BDCP8VwOaBjz8F4NVR+1UAnz72SM6Zwu16fnHbXhwedhFzMYRwb9ReAXDoT4WZvQTgJQDISUYz50zyUHYtFbKHbeacHU5kW79fJ4tH9kIJIQQzO3T9O4TwCoBXAGB6qhAq2aFk+uiHn462KRS5mpyQAIq771Gu9nrx3AqlMgMqtnb4t6RJiklZ4t4Rqb5yjx4NndhCMb+7I54AA5GrdcmRAQC7NVk1FmnfB78TTHIlSEmnqkiyQpGmSKVltbqiMi9ursGAkvytd9+L2pbiAzWT5b62R94DJ0kn+0HsOlMthf19Z8RzpN9n/+5J9fFnRUqWDngr9CXyZXuHY5svULZnUtymtsEXzSDfbcv4Q7xutmsM8iiDY9toxD1BWuIdUZWyb3q96HVUKnAbk6mcpKR91RwwJQkCunv/HpSsBBs9/eEPRe2BTBM0JA/Ivj2TiZPlQjnKtn6/nr379Sge1gtl1cyWAWD0/7VjtncmA7fr+cVtew552Af41wC8OGq/COCrp9Md5wnjdj2/uG3PIcdOoZjZnwD4DQBzZnYbwL8C8AUAXzazzwG4CeAzJzlY0oDySCKUipTaGUmnWJ2ht0JBFOHGOit1A8APfvhG1O4OpDJ5lpJ8rsR8A7fepxP++hpfPlo9Sp7alnhEiHTSNKVbm/G8FVr0ut2iviuWKIXm5qtR2yTxQUuCVjRdZ1MqmwTJ+9HrHpD5bf6tL/KsUIyvvO+TzgylmiXsVO1qCYv2PThk0qXfp5S9JTksDlbu1go0LUnHmZI0oH3x5piX9K5BDFVvcwzrkjekHzjmvYGMc//ArSA5SPS6aEmUyPpaLWpnxdMllxUvmR3Jy9GWfCkb/Dx9oGrMh56+ErU1NWpNKruXpBLRfurb5Oh+OS3b+v16Nu7Xozj2AR5C+Owhf/rEsXt3zixu1/OL2/bi4JGYjuM4E8pYc6FkMukofah6G8xKMdqk5I7ILPDzy4vzsX3957/4L1F7IJUuZqao4+7e4Sru8iyl18w0ZdvWPcqftRUGDMzMUgaXSpQy0/I5AFRKlJBT05TzpbI49EuQyFtv/ixqJ1MSSCLpUtsNtjuSIjWZjP/eGkSGSe6PvqzsaxHXzijPQjhsnuMhCYMQ7VtX7TNSdDYZ2D+TFX9D3COmI7kgdKokV5DgDMlTkpQpkWefp8dGWiry7O1KodgtBmns7HFKYmsjHsizt8d+bG6IVBdPkpl5Xkcm/bh7h94Y9TrPYXObx04k+Pn/8smPx45tUjRYqxqVlxictLHFqYHZ6rAfmQyvrdPA79ezcb8ehb+BO47jTCj+AHccx5lQxlvUONBTIKvyWlbUO+KQn0tRXgVxlgeAvqxkJxLcV+wXSQIffuEZpv7UHApP3Zbj5SijpkS2pZLsx72V92P9+Ad/79ej9qWrV6N2L1D+1NZZgWZzjdJ3bZOeGekkZfPSQpWnINMdA5lSAIDpCvu4scU0rkECOtoNmZLoDGVwGMT386iEQR/91jCwxCRnSUEqrJjYa3aa8roTj8xAIiVBMHIeLS1+LIk1Zmcokf+HX/po1K5KmtmUUY7fvUXvhm/+1V9E7ec//lysHz2psrK9xWukJalfn73C8V+TKkP31uhxkZAr0uQ67Q94PrlcPADHurwWOlJgN1NmAI3eP919b4dTTifr9+vZuF+Pwt/AHcdxJhR/gDuO40woY51CaXfaePfdmwCAsuTA2NmhNJnJyYqseCv0UvHEOkXJS9CRPBbLi1wJzya4mvzcc9eidk5W9hMZeitk5dgFKdGREEkWDlRuaUk1je40jzd/ucrvSwXUZ64/xePlua/tPeb0yEhKyrSs8ncPVPhIpfi3ngQlpPIMDAiSk6K8OPw8+72bOE2ymTSevroEANjVSjFV9qPXpLScF9v1DqTcTKdlakA8Ozp52niqxAoolxe5r5lqWdr8fP1OLWqrvZYq3OapS9VYPwYyhdKQQrUa/LFQ5TRBdYrTRa//hONbkMotNZHHWox5d5f9A4BUT710eC2s1rhdXXKh7I6mMdoapXIK+P16Nu7XIT/Gg/A3cMdxnAnFH+CO4zgTylinUAaDEFXj6MtvR1tyDMwt0dFe02c2D8iR69evR+0ffo/yIi0r4Vcuc/V6aVGDD7g6LIvryMiqdrFIzwVd1UYjLvkbImvvrzAtaEhQLhfy/L7ut1oRT4c6g0qCVPgo5CkZLR3PjdARyVyVdKZ9GYMp8QTZL0ZzwqyjJyZhQG5/33K8fJoHShr7lxHblwrxdLJBXClqkmMCkv20WmGxVx3PjBxv7R5tsbFSi9pqr+uXLkfta0vVWD/UC6UuaT074oUiTiHoB57HlatSwecOpxs0F8Zzv0gvi2aT0yEAUBEDJZK8RTclxWpTcrK0RvfU4JQDtPx+PRv361H4G7jjOM6E4g9wx3GcCcUf4I7jOBPKWOfADYbEyL2oLXN4OXEda7XpRpPLS1ReJx7V1Jd8z9sbTBJUF5esZ5/+cNQuSLSbVjWfnuWcVUfm7foyr6VJaRYWOP8KACsr7MftVc6L/ffvfydqP//8M9x+lfOYt26zzFgXPG91gUtLApxcjvNxANCTqMV2UyK4ZAqwKPmyaxI1d9qkksP5wbkqj9fvSmIf6WtFEk2lUvF3iJYk8CmLm9iqzP/evMloykF/KWrb60w89KYkIbq6TFewqkQILiywH8nkwYUBqQ4+TZtn5FpNBtp+V9z6nn2ac+s33vxW1NbrVK/fZCVewT0hfWw1eV0EmZfX+2f/ntKSZKeB369n/371N3DHcZwJxR/gjuM4E8pYp1DS6TQuLQzlZS7D346ilNUqFKknen3KtnQq3tVqnu5BH77GitczRUqsq8uUI2Wp9jxVorRpJbh9ZsB+aN7ofFm2KcXl7p1Vypz37lNGv/4mXZTu3pNEOTWJBOuw/bGPsYxWWaLKensSXXeg7FeQpE55iVbT6EaTquH8/PSzHu3vOyPHU8mvUWhBIixj+hGA9Xi+5ZLkaA6UqT/8IfNt377HMay+RYl7f7vGQ6R5HXx0me5b05fp+qd5rQFgb4e2LEmEZ0oq3OfUbU8i6PS60+tRr9Nqntd/OhV3NxvIdE5BIjyfSrEf9WlxI+wMp3vS6Xh1+0fF79ezcr8ejr+BO47jTCj+AHccx5lQxpsPHIYwKrmVl0ikjHgiZHKUTs0dytLugVXtqiQi+pVfYampQoYyJS2RUClp9wdSxksisHJZDsegQimTzUpynEF8yDJSQuwHP349au/VJRKtp9F4jFbLilxKJNi/YDzeIMnz3pZSTwCwLRGCaSn31G5L5XXx6miPPAYeR8Te/r63drhqnzIZQ/GQ2NlgIqCpYnylXq+FIBXBEzLOCNzvniRG6knl+5pEPapd/sfLvxa1C5K73A6Ep5rYP5fl9dJTzwe5jvT60uvu0hV6pFQXKLsHxv51DyShMpmmKRRZeqsn+aUHEqHZ7O1PBZxyiK3fr2fifj2KY9/AzeyqmX3TzN4ws9fN7HdHn8+Y2dfN7K3R/6eP25dzdnC7nk/crheLk0yh9AD8yxDCLwL4NQD/3Mx+EcDLAL4RQngWwDdG/3YmB7fr+cTteoE4dgolhHAPwL1Re9fMbgC4DOBTAH5jtNmrAP4KwOeP2tcgBHRGiXB2drkCnJiiPGtsstRQRyqAFwvx6tIpKcu0uV6L2m2RZFu7lDBX+kyOEyQhUaZE+ZMR6VoXbwgdpXYjLneLklBHq5G3gqycJ0WGaSBInjvW6uU9kf85WfHfasYl2Z11lnsKkMw3gedkkgiokEuNPjtdu5oByZHXwaqWigrSJ0lGpdW5B4l49fLpCj0Idmq8Rto9jkNPqpo3W5SfNbH3Tp/yc2ebslTt1a5Lea5C3BMkiP0zCdpyIH1vtnT6hu9Cet1t7Uk5tg7tMjNfjdp2QObXJYd1t0fvilSK+aH1/tm/pwYh+P0KnLv79Sg+0CKmmV0H8MsAvgVgcXSxAMAKgMVDvvOSmb1mZq/pfJJzdnhUuzZax7s7OePH79fzz4kf4GZWAvAVAL8XQtjRv4Whg+MDV8ZCCK+EED4eQvh4Lpt+0CbOE+Q07HqSNwVnvPj9ejE40Z1nZmkML4Y/DiH82ejjVTNbDiHcM7NlAGvH7afX62F15IFwdYnSeWeP8qzbp9ydm2eu4Z3teM7kblfktUgYdbD48ZtvR+2kcSU7I7kSnvkQK1MnypQ/zT2+VfZF+nbbcVmUk31tSo6HN95nLo4PLdETYa7CtaPUHGXm3h7l50a3FrXTstK+LSW5AGBTK1gHqX4uZbgyxreovfpwnLojb4bTsmu318fayK4D4xh2xFskSLkttQW26JECAHttnlNXVuezEozTavP7W5ucori/w/F/e+VO1P7Fa/yu2qtVpy37vbgHR0cqghclL8feLq+1n73NnCydPvv0Y8nD0pBrsyGODt1N9jWdjr9HVabY3/vrzNeRlgCfngSF7N9T+4Effr+er/v1KE7ihWIA/hDAjRDCH8ifvgbgxVH7RQBfPfZozpnB7Xo+cbteLE7yBv53AfwzAD8ys++PPvt9AF8A8GUz+xyAmwA+81h66Dwu3K7nE7frBeIkXih/jcMjBD7xQQ7W7nbx3q2h7MxIysxehzLn+nXKl706PQlqu3FJ1utSeyUPWY3+0Zs/jdpp2ebWe1x9Xpjjand1mtXOb9x4M2prma9/8o/+fqwfOcnRMTvDdmGbUmhd5PJA5H9GaibVduhhsNdiIEFdxiaRiXtKtLrcl+ZQ0MCHzZ1a1F6YoofHadoVAHqD4a7WJAdJriJlsWT8g+R4GOzEJe7afY5VUSqQlyQ157ZURV+Tlf2NOr03ClMcT7VLkLJfq5Iq9E+/8p9i/dDUrC+88HzUrsmUz9p9HvvqdQbp6HWHDI/dC7RfSzwuUum4GRKSdjSVYSDPu+/dks85Nvv3VLvb9fsV5/N+PQwPpXccx5lQ/AHuOI4zoYzV/yuEEK2er0t16CnJ96DSS1OQDtTxHcBeQwILNE3GgBKmUuB37knqyL/5Llecy4XVqN1qaiVtypqsVBr54Y2fQblUZF6HiqQ/vXSZn6+/Q48IE7m8ssJjP/UUV/n7A26jsqu+F/MGQ09Ssfb1vCX9aVuW+ffa/dG2p5sLpT8I0b71eClJG7u5QW+RpOQd2a/ks09RXNdyUq27K3lAdNxMPTgkCOLSZVbqqZRov9u3aIu7dTpi/PRtpqIFgHaT+/rhj+6yT3kGduzKNZgq0VuhJzlcdrZ53paQACZxxKlIYAwQvwc0pejAeK56/+zfU5qu9DTw+/Vs3K9H4W/gjuM4E4o/wB3HcSaUsU6hpNJpzM4PpcqUeAnkM5Qy96V4bUFSWHYPyIm2SOqUyOhsTgJJpNDpyn3ut9Xj9nMVrmQ/9RxlVKfDVeltCRB552ZcamcXJcWkTBlUiuxHYpkr51OFatTe3axF7bffeSdqf/gjT0fttuRJ6PTjgQH681vf4/k9PcdjFPLi+TDKCxHsdH+3gyXQSw1l9fwSV/bzkip2bV1SyJakCOyBruTF26RcYUHan7zO8UlIOtOpmWrUTsqifanIqY5EoKfDhgRvvLNKWxZn4pHllySAIyPX58oKp13Wd2gPvb40k2pCrsd2m/K416PUDgc8NtJSjaYhUw9FGTdkJD9LYti/91aPD/z4IPj9ejbu16PwN3DHcZwJxR/gjuM4E8pYp1D6/QG260NJ2B9Q8lxdpsdAVmRYvUVJVSrG01NampLMxJMhI9VTrMvfp3qD22cKlJ+VBa4AdxKSHjRNeZWfYZ8GqXiCH02z+cJzz/D7d6QYqqYX3WFuixeefyFq33zvBrfvyrmJiQ7mlxjI72+5WJI2pw/21EtgNIZa8eU0sEQy2ne/z3PVfpQL7F99l9IyId4DAFAt0h46DvUWz+NZGbcbb3Pc8iV6RyxOc/rlBSlerPYapDjnkp+J27VnkmFRXnP0esls8jqqi9eKFdiPjFSWGYj7RSpDqZ1OH/DYkICknNwP6r5xX4r47o28Mfr9+Fg+Kn6/no379Sj8DdxxHGdC8Qe44zjOhDLWKZREMoFiaShv+pIDoS2FYlNpdilDZRELEhjtLWoldbv0g2Vka8BjmOSaKFYpcbd3dEWd8np1hTIqlaI0B4BZSQtZEo+Icp4y7NISP1+7x/wZpSLl3bKk69yWfCKS1RTJAxkuqlWuyFeq7O+2yOvVNQYfhMSw710JDjkNur0eVleH52UDBi9okZvFBXoM7NQ4Nrs1ji0AtJucXtnusq3jo+NWlvaCjHNZgjlKOU5p1MWTQNN7bu/Ggy4Wl9jfRpO5LqaqlLV6HYlTCXIybaIXcVa8f8ThAqlU/D0qI9+xBK97vU/6gQfcv6cSyXhq3kfF79ezcb8ehb+BO47jTCj+AHccx5lQ/AHuOI4zoYx3DjxhyI8mRhNSekvLTmX7nEQqSJSWIV5gNSu5eSFlkjRHcFPmptppHiOd47xbo8N50FSSx+sytTHaDbo93W7GK1HNXbsWtTu3GfVVkCrs+QqHebG6HLXX1t/lfqar3GmCc2070pGPXGE5KQAYSNX3ep1zhnUp9zQn49EdDWEqcVi66IcjlTBUC8NzTKd5PO1HUSLMrlymC1XiCl3EAKC2RXeuSppz1yjQ/hs1jttHX+B4mmSIMom+XBW7ZMSt7PZd2jIR4rmb1f56Xej1oteRpWnvbE7cE6eqUXtro8Z9ZvjdwSB+bWdkzrfRYkc0mrE8xfnR/fxHiVO2q9+vZ+N+PQp/A3ccx5lQ/AHuOI4zoYx3CgWG7Eg+FYuMlur3KQ2ToCRLST7oXi+uJ0Kg7AjihrW9I/JTchinwGPk8+KaJUlwug0eu75FKZRNUxJPzVHiDP9Imd+VKueprESbibQM4nalrkRZkc0zc0ysFLbpEmWJuPtfc4fTDY06zy8nY5swkdWj3M7J5On+bieTCUxXRucixxtIfupGnX1NSK7oUiU+hVKusO/LU6xyvnn/XtTWcSsWOJ7W5fh0WpTg3Tb7lJFIz6UlyuPt+6LBAazeXecxpmnjtBxPr6OEXF81ue46khu8JfLfxO/QLD71odd9Vqqcp+RaSyZVjtdHfTjlKRS/X8/E/XoU/gbuOI4zofgD3HEcZ0IZuxdKaSRh0iL3VGjk85TUu7tShisZT/iTlei6QokSJKOfy89TQ6qJLy8xiU1Tjp4r8djpRZFREizWRVxqd3UVvkLvirTkF1Zl2xWJtLBIOZ8dcCU7lZbovSz7FEI8P3CxSE+EgiTEQZJmbTQaP9cOp1xSLQwC2qMQNI2IK0sbkrzHQDmdsHhfslmOm47D9DSnUwqSxCgVKEXTGe6rWJCkWHWZTpGET+UyoypnyvF84JoyvSvj3hpwGmT2aX5/QyI81bMikecYZGTqqrHHpEXtVvya6khC8XKZ59FsynnLRWWje+pxeKH4/frk79ejOPYN3MxyZvY3ZvYDM3vdzP716POnzexbZva2mf2pmWWO25dzdnC7nk/crheLk0yhtAH8ZgjhbwP4JQCfNLNfA/B/Afi3IYQPAdgC8LnH1kvnceB2PZ+4XS8Qx06hhGGp6/1sPunRfwHAbwL4X0efvwrgfwfwH47alwHIjFZWEyJlMiIhTPRLQvIfDwbxpDcZkS2anGnQYOKhnHx/eoryR5VmPiu5g6UMVKnMzzsSuNCUPMUAEMTzISUV1TMZSsO9OuVyfoqyu9HmdxviNZEJIs9kbBIHsuP0RaXWGxyfzU0m4OmKN0A2sy8T7VTtChhs5G1R22ZSqHqd0w0zEnhSlCxXyQNX4EBOqilVx9UG6QJtnxMJ3txmcqOSrOx3Wxybdpvj0ZdrrVSIdyQjUzmbO5Th+Zx4DEif9Prqiplacj1qum69fpsHpLJe9+pZUpDB6sv9Y6N7yuD3K3Ae79fDOdEippklzez7ANYAfB3AOwBqIURF5W4DuHzId18ys9fM7LV2p/egTZwnxOnZ9QQhY87Y8Pv14nCiB3gIoR9C+CUAVwD8KoDnT3qAEMIrIYSPhxA+ns2Mdc3UOYbTs2v6+C84Y8Pv14vDB7JQCKFmZt8E8HcAVM0sNfpVvwLgznHfT5ihMJItPcnrEAZSsVqSBVclj0R/EJdC6vC+IRIkSF6JqnpEyEMm9DXXhEhR8c4YdJlDoVKinDvoW6/vKHttSu10l8drNPh5N8nP17Y43bC7XovaMzPMRb22y9X4fCH+exsCzbdxn7JvRySgeoUUCsMxPChvH9Wug8EA9b3hNMBhq+jbMqUxO8e2WfwtrynScqFMb47NTdqjPF/lNlI6rSvjrDm11S59CSJCzJbxMbm/weO1JP91aMmUhvE7en2qBK/JGJjkzJitsvJ5pRLP+5yUknfqpNMVD5iUXP+pUbBP4kBAkN+v5+N+PYqTeKHMm1l11M4D+C0ANwB8E8A/Hm32IoCvHns058zgdj2fuF0vFid5A18G8KoNV6kSAL4cQvh/zewNAF8ys/8TwPcA/OFj7Kdz+rhdzydu1wuEhRPE25/awczWAdQB3D9u23PIHM7OeT8VQpg/frOTMbLrTZytcxwXZ+mc3a6nx1k75wfadqwPcAAws9dCCB8f60HPABfhvC/COR7kIpzzRTjHg0zKOXsuFMdxnAnFH+CO4zgTypN4gL/yBI55FrgI530RzvEgF+GcL8I5HmQiznnsc+CO4zjO6eBTKI7jOBOKP8Adx3EmlLE+wM3sk2b2k1FO4pfHeexxYWZXzeybZvbGKB/z744+nzGzr5vZW6P/Tz/pvp4WF8GuwMWzrdv17Nt1bHPgo8iwn2IY2nsbwLcBfDaE8MZYOjAmzGwZwHII4btmVgbwHQCfBvA7ADZDCF8Y3QzTIYTPP7meng4Xxa7AxbKt23Uy7DrON/BfBfB2COFnYVii+ksAPjXG44+FEMK9EMJ3R+1dDPNQXMbwXF8dbfYqhhfIeeBC2BW4cLZ1u06AXcf5AL8M4Jb8+9CcxOcFM7sO4JcBfAvAYgjh3uhPKwAWD/vehHHh7ApcCNu6XSfArr6I+ZgwsxKArwD4vRDCjv5tVDXF/TcnFLft+WQS7TrOB/gdAFfl3yfKSTyJmFkawwvhj0MIfzb6eHU017Y/57Z22PcnjAtjV+BC2dbtOgF2HecD/NsAnrVhdewMgN8G8LUxHn8smJlhmKrzRgjhD+RPX8MwDzNwvvIxXwi7AhfOtm7XCbDruNPJ/kMA/w5AEsAXQwj/ZmwHHxNm9usA/huAH4FlXn4fwzm1LwO4hmGKzs+EEDYfuJMJ4yLYFbh4tnW7nn27eii94zjOhOKLmI7jOBOKP8Adx3EmFH+AO47jTCj+AHccx5lQ/AHuOI4zofgD3HEcZ0LxB7jjOM6E8v8DLspleQRP6OkAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 6 Axes>"
       ]
@@ -437,14 +446,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 12,
    "metadata": {
     "id": "sgKu8QervXXr"
    },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABnfklEQVR4nO29WYxs2XWeufYZY8yInG/eoQaSxbFNUTKbsltuwJBgQDBgUA+GIBlt0IAAvrQBCe0HEXpxu9EG2C+yHwy4UYAElQHBMtFSQ4QhwybUtC15oFgcxKGKZBWrWFV3yjkyY44z7H6IyFjficqszFs3KutG5v6BQu0beeJMa68TZ/17rX8Za604ODg4OCwevPf7BBwcHBwc3h3cA9zBwcFhQeEe4A4ODg4LCvcAd3BwcFhQuAe4g4ODw4LCPcAdHBwcFhSP9QA3xvyiMeaHxphXjTFfmNdJOby/cHa9unC2vVow7zYP3Bjji8iPRORvichdEfm6iPyqtfal+Z2ew2XD2fXqwtn26iF4jO9+RkRetda+JiJijPkDEfmsiJw5GTzPWG/yzu+J0c+NjrM8n46NZ04di4j4nq9jX8c5vs+xzU//oSr8gOEQPKcw1NsU+MWghX/jrrJMjy1G/+AVrkM/z1PdvvBdgNcpImKMnguvg+O8MB7vdzBMZZRkxRuqeGS7liLfVkvj+xCEoZ6vd3qAl2bZdDx7rTQTzz3DH/gdXmsY6P0JMM7l9Hvj4/4ZmZlfuNdZnslp4PwaDUbTccrzw245hzm/vJn75GFuG/oG7pvl3J5cUpLmkuX5WXYVeUTbXsRf8zP8h+c93pde4+w8nu6L11eYz3Lq52f5a3BBfy0em8fTe+v5eAbhePTXHPbm/Xi7v/Ke6PgivnvUGexZa9dnz/txHuC3ROQt/PuuiPzs7EbGmM+LyOdFRDwj0qiPT7zsRdNtqp6exvGgp9+txNNxuaTbi4hUq9XpuNFoTMejoTpS97g9HacjPjROHwscrFzW421trkzHq81a4Txu3tC/jVL9vHXc1esweoxaXa81S4fT8aCl4+NDflcnYB3XKSISRHqOSarHGCXJqePeoC8iIv/9u/fkHfDIdq2UAvnFz9wWEZHNjQ0931qNX5gOdw9a03Gro/YWEeknGcbqGO2+2rV1rN9JE/18c7U5HW+s6b3qZXi4JmqkalyejoMZV1he0n0dd4+mY4sf4163Px2/8eqb0/F+S+2X44fExxwuRfpDVylXCseu4b4FgW53dNSajhPcj2zyMHlj+1jOwbm2LfirJ9JsjOdfbPQ86K+DEc4j0rkal9R3RUSqFb3XS0tqGz7Ujo/0Pid9nbd8kKWYz5xTUazndGNzeTqe9Vf6sgWD3Omq/yWpXlO1xhdFnY/91mA67rZ0HgyHup+lRrNwbPqrwK9Hqc7JBOMB9vVv//MP3pBT8DgP8AvBWvu8iDwvIhIGxnqTX8QUbzWp1YuJfD0lPpTSmTc1GpIP7TjWidMP8HDAA5y/jOWybp/lup+lpdJ0vLq2NB17gqe0iLT7nenY4uWn19UfD74NGqPH6PXU4fptNZbNdHsv0H2mM0FEr6vX1x/qhOr1dUKdPLRFRErx2An5hvFuQbsu1yLbn7yBPtzemW7DH8dmQ+/h+kpzOp59Sz881vvJtypjdPIftVrTcaen96CCH/UaLrEUqy1zwVzBW1Aw896ajXS/eDaIH+uDrHOs5yGBGieq4AuhnreHB1+5pA80nreISBTpnCw8tAc657P09CjkcUG7RqFn48lDJ8XbSWJ1fobwpRQPnzQvzjE+mEYjPOTwMPfhJ6nR7Rm0Vmt634zRY5Tw47i6qnOtFBXnV3eg8ysM9Dv01xzRHn9A+wP11wEe+NmQkbAey868gfdHar8hnl/9wen+elbkRzzOIuY9EbmDf9+efOaw2HB2vbpwtr1ieJwH+NdF5DljzLNm/Hr0KyLy5fmclsP7CGfXqwtn2yuGd02hWGtTY8w/FJF/LyK+iPyutfb77/Qd4xk5CcmGfXBOiDtIoYzAERe4ajk7JKtUlE/kgkViNDTBIWRjc3U6DrBgEZd0ozjGYpct/ublVs+r0wF3DWqAixyhr+HyaKCcHzm4ZmNNt0f43+po+CcictzRkM5ioY786tqyhpPRZIHR9w/lLLwbu46/N753/YFex87u3nRM+62sKEe50tTzG5+b3rf9ll4fF6M2VzTsjrBoamGL3rHaO67pnIhgvxJC3NnFrgFC7W6idErd12OvbyifGsNOPVAdx0cIicl0IDQvz3Dgx6BNRvCTHOsDtPcJdXEelfKotjWekWgyl4agKVNQcFU4Ux/b5GnRX0mvJKAP6McxqKORp/fcA1Wyttacjitl8ux6vEpF762R4nlwUfK409LztVyYxfZ4RKYj8vVKWVYrOocrFeXc26Ayx8dTmmYw0O/HsVI5FVBBMfxYZEdOw2Nx4NbaPxGRP3mcfTg8eXB2vbpwtr1acJWYDg4ODguK9zwLhTDGTMOCXk/Di1SwmoyVeh9ZArMhGXNwERVJhPFyRemKINNQrY4Mk41VroIz51bDvHQE+mU2hRVx8QjnGCNlKMZqt8X2oafnEYf6uTHIY0UYFWVFc9VyDSF5vBC0AimGkxV15tDPA8bzpFQa0wADrKL3kRu9t38wHZNOWV9XukhEpFFnCh3T1WC/en06XjpS2urB9v507CEFMUT6zjO3NZWWeeBJWsyaYEpeH6lyAhprfVXpt3oVWSUhKRu9/8xf8iO1/YO9PSGGPQ2vsxFpEwXTId+rpixGzNQGpLaYYZKS/vROzyCbPccA2UUlvELWYXuDrKpyTfe7ua70W6mk93aE7bNEx55XvDcpfGsESsqHj1ZC9SsDaiUQ/TwK9NniISU6RPpkkhcz1kjRkto8y1/5+Vlwb+AODg4OCwr3AHdwcHBYUFwuhSJmWnkVoSAiQyjDIoEIif0DUBoiInGgYWoN9EGEQHN5Q8PzDiorq01QD/i819PwOEcSfZ7qsU1UpB9ShOcs1BDQFCwvz1BdZQTbILQr43rKJVJKGnaLiMSh/v6GBapEv+8j2+Gk8sycUeL+bhH6oawvj6mJ/SOlMXp9pTcGoFMODlvT8Wx20dbW5nRMWmIZNhvgnvMedg91lX99WWmWZYTggUHGEopI7j7U8xYR8ZAZEOSYe6BaBm29vjjUcw0raqdKrPN0iHl+9+H2dNxraTaSiAhrYFgtyEyOs0rK547JcSLMySEyjVLc/yjU8WhUzMCIQSvVQTOwvnoNGUkVzO1yTedwXGZhDYte1EYW1AVpC5FikY4Y+DL8NUQxoC34K+QA8OgsoVirhHsQouhIRCTG4UgPFuQnAo6L1eenwb2BOzg4OCwo3APcwcHBYUFxqRQKwayJ3NOQp7Gkq7s5QiRvWMwSuLWFDIAIwlYQAipoKCD0ypBV0EmRDYMQlVku1TKyRaLiLRugeIHZHcOE2Sa6rzJooVubSvE8zDWkLofQAAHFMJgpDPBYDIJiAmbD9EfUkxmHmXn++FoohDUiJ7J1qw21C+9HG1oTQ2SUtGfErMqgE+7cvj0dh75eawmZPG2E2qtLGrKuL0OoCvOrDZqshSIZK8VshRqE1GKEyEd7u9Nxn6p8OKegquc6RMGGh2uIYeNarZht0EchEKZk0W6Y2yfaPuY9pFIizHuDrLFVFmKhoM4fFO/nzQ3NHmlWkUWEwhfSHRmoyhT7TTLQJvAN+i6Fs0oz/jqEHgkVFlOIcw7hMyXc1HUUkPnMqkH2WoAip26v6K859lWu6n2zOA8WNvWRjXQW3Bu4g4ODw4LCPcAdHBwcFhTuAe7g4OCwoLhUDtxaO03JYzJeA6LrT9/Zmo4HEH/xZtKBViHeHzIFDwJWaUE0R/mkHA0WcvB5HtKKquDmllD5J7aY9uZD6D4ERdlqQ/AdDQhipBalotvUasq5hhCgNuC5u4NiKiX+JF6BL0P3FAo2ndwbM+ffbavVeQFSFJtoikA+/Kjdmo5nGyUNhnqNbaQbLkGkzCAFa21Zj7H94MF03Gkrl+5jexRoShgq3xj5xXWBZWh0Z1a/72G+jPLT9bnbaADBRiI+0sVu3FIhrFqzKGZFDvwQzSG2dzTVkeJLUw52ziS4tVbyk4YZ2PfKkvrG7dua9ilIt81nqhBXV5UD96CbX8KaEMW0U/irxT0n711odlJWe9Vr0O83xQnme7pmFWId4qgLPf22+muElFCLau5KGY9O3Bs2sjjeKVbYehD+CkuYOzlTkfWauMZ1FtwbuIODg8OCwj3AHRwcHBYUl1yJacU7SddCZNNE6h81flcQWqYzlZglVMqlPU0z6g80zBkm+jlpCVbExRSuwe9Z6KMVFggfOyPS40Ff2kfYaNGSSywqKEHTZFaviRVYTdACuweq3c0KsfF39BwN9svmuWwUm2fj+2HnnEaY23yqA15mBSPom6U6dcnZi7CocU6N7gpeL0ZDpdPCUPe1u6+0wk/evDsdM4xeWdbUxkZD51oNOu+30CtRRGTIKr9A77tX1evbhkBXoSk1Bag8tg5EqJzqsRvNYku1GHO4g/TLJrZjh8F0khrnzTmN0BgRf7JTtr5rglKswN7lZT0/9ioVKVZQjtoUPDvdXwOULSZI0Yx82AJzPgxO/9xkRSrHy/Q6AlAz+VD9NUv1XD2keGborWowT5ehb3+EngDU8h9/B/vC8y9AmmqO801HxXt4GtwbuIODg8OCwj3AHRwcHBYUl0qh+EEgK5PVaP5y3NzQlewSdIePjjRE9d7W8krDsBCr2qzIMljh9jCulDTUYwfwUZc6zOgeDyGmWrkoMGNziO5Af7zT0UyEEcLrHJVaFYSi9bp+d0BtY9Aypbi4Ku0hbGTolaPSkSvnU5GfOXSlJ9Isk4OjsX52s046TENIZi40q/p5NtNSLULXeGvZdk+32cXq/ovf+iG2V9skI/0CNdiXQNGtNpSio6CaiEi3r/TWT7a172+I0J7d9ULMKQ9ZCRb3mlV2nL+0t4hIBK3wDVQw3gDNxiSP48PxvX/joYbv80AYBLJ5Y0NERBKIOt26cWM6LuN+HMNfs5lWZqTKIng/KT76KzvUl0qorAQtMeyA5kKFZX/Qmo7rlSLtmGeshlT7twP9DokLUre1htq4Vtfv0qfZR6A0I3xn4K/MuEmGeh3013yG/jkN7g3cwcHBYUHhHuAODg4OC4pLpVCiKJQ7d8YCRQk0hStIfrepBjCBZbZCUfSIxSg+luRLEMmqN1R8ZoQVbh9FG1miq/wMa2rVpp43aJJSWFzqP4IY0952azqulDXsayK89pHdkiJEah1ptslwpCG1QSOuajxjLnYEh0iTQUEFNbVr1fH9CMO3ZJ5IklQebI/FuFhowQ7bpG3KVehBR0VaKBlC2Ac26w51vwdttZOPrIQa7k8ccH7o/Ux7Sm3dPVJhquFMS7VDPbSsgcYIQz0Pz9fz6MJmgaf33ELoiMxVCg7EzBSppWgJFkbUh9Zt2K7r5kTYLXzpvswTYRTK1s1JYR3oHx/pLqQuoNlWbEMnIhnSzjIUIUW4qAbEopgFFHjM8NFWdwb7rNX0uxF6CsRB8d5mKHjb21YBuRIyvJZAlQShUjY5ioI68DfSYVmG51pcpFBYeTfo63MjZfs40KQ10JFnwb2BOzg4OCwozn2AG2N+1xizY4z5Hj5bMcZ8xRjzyuT/y++0D4cnD86uVxfOttcHF6FQfk9E/oWI/Ct89gUR+VNr7ReNMV+Y/Ps3z9uRMUb8kyKOHK2wsEJdRrZJFW2qZvtuJwjjmsj+KLMrPfQX3nrzJ9NxFEArGnrBcQ3dxKExLqwhmtFCicooGhhoqBdjFZ1yDwmKAQZY2S9oCiP8L9VQvJHNZI9QXxgt5gLcG9JTJ5G6P/7e78mc7JrnuXQnutdctac0B/UsBolmS+Qz7xDUFMlytc1RW+/VG68pVcD7/Oztjek4HWqofXNT54EBj/HmPc2aeAgmTURk89bN6bhUhg6LgYZFpmFwCVROq6XzOYzQSgzFRT7s3R8U6cEBisBYXOYZ0FAojKlN9DpAbfyezMG21lrJ7Zg6obbJEBRdBRRIPeZ9KlIXQ5iZ/lqFvzeWlQa5f08NEuAxFYNSCpHNVIqVbkB9nJi86K9hGcU4Pb2fbN8YwTYJKN3B4HR/ZYJcHVrks+5KzfnYg19CB6mG788wa6fi3Ddwa+1/FpGDmY8/KyIvTMYviMgvnX8ohycJzq5XF8621wfvdhFz01p7Iv32UEQ2z9rQGPN5Efm8iEilfH6TTof3Fe/KroF/1lYOTxAuZFvatez89YnHY2ehWGutMWaW4eDfnxeR50VEGktl2+6MQ9scq9oNFC4wZLyxpiFxq6chsYhIH6u9yzWdaCuQHR2gZZaHBP7AQ9d27yzNBciDQl4ynpV4DPU7q6tYCUc2DFfdfbbeYostZFBEkD8tx9R4KMZU/T7CQVAoQ3SDjzzob0xVR8801xSPYtdqObT1pXFRkgf6ZntXV/mDQNvHCe7/KCkeIoCOBaPf3oHaP4XM8Ac+qG3Xbt3Q0Pypm3em4xsbqnOCDniyffyt6djvtwrnQe2PNrrPe77O25VVpUQCT20ZeRrOnxTZiIjEJWh3gNoKZ72wqxeeQGp0hIyPnEVOw/E26WzMfgbeybYFf22Ubbc/poOYbdKIQW0iU2xtWW1cGhVpoW6imRpNtJxrltT3UxiHejJhCW0SoUHCArlSRcfHx2qvUlgs5LHIHKL9YhT08TbicIVnRQR/DanfU/DXIsHR5/MI+if9np5v7L/dX98J7zYLZdsYsyUiMvn/zrvcj8OTBWfXqwtn2yuId/sA/7KIfG4y/pyI/PF8TsfhfYaz69WFs+0VxLkUijHmX4vI3xSRNWPMXRH5xyLyRRH5kjHm10TkDRH55Yse8CQLIEaRB9VNqXkSl7BCjcwREZHsSMOtFCFIhqXbGEUzWECW1UhDpx4S8ocjJORj1b2H0GfkFymUO+ggdAMFHwm+s7Otkqdd6Kqw2KeODJgKKCUwIDJLNXegAWNx3c1yczqmzsZgUlxh7XztGoaB3NgaU6oGMqI1FuwwGwZhbZYU9R6iEvRJhihW2dD7vIrsg09+6gPT8bNPK+V2B51ieugO/sZ9nSuf+MRHp+O4+mbhPA5BmwQhMo1ofmbZoNgrRmbGMvQ2Rrg3o65O+tQUMyXQSEr6kC8m54GEFBnk4+vLJ7H/vGxrRCSYXCQztIR0JOm+CrSHoiJ/PmqpDZIuNFuYcQWtkB4yRFbXlEJhxs4Qc5t6JMzuGs0UFLGDEKm1DPTNNvy1h+5I1GGpIzusgs99+usM5dkW+iu6CcX6PEqQ4TN77qfh3Ae4tfZXz/jTL5y7d4cnFs6uVxfOttcHrhLTwcHBYUFxuR15jJFoQmtk+O1IQQVkCM9GA802GGIVW0QkxQp0hFXgG5tagPEATW4ZpR61mFWA3zBoKCQI3zfWmtPxra2nCufx8Y9/RI99Q0OyBNTMt7/x3em43dMT6Q40Q8EHVxLjekrIepkNyUipDBE2elgtz/H9dmd8Ttaen4XyKDDGTJsZW9AN7EBD6qgNGdDAKxJDgz40QlJkDKDY4ec+8zPT8cee05B4ZRlhPrJCLObXchMNn5EJsL6uGUQiIj+5p3PnwY5m0yTI/jjYU12VpaqGwWXQbEEJDZW7ej0G4fRs8kiArAsLDSDqZDCHZHhC1825I8/4LMf2ydDJJkfm0BCpQoOuzudBOuuv+h1mbaysrE/H+7sqExwig+PwgIVReGSh2XQKf12Dpsqsv37sY/DXLaU8c1Az3/j6d6bjDvy1N9TzoL+WCv6KTl4z9iC9MhhBmwkZT0P4eLd3vjywewN3cHBwWFC4B7iDg4PDguJSKZQ0zWRnf0yLhAgHs4GGKX5VV3d7iIjT2e4UKYe6rwfbGob1EX6mfQ1/dtBItQa5VRZarDaUDqljdf1nf+ZThdO4uXVLt2vqanQCeqSPRqf37qts7P1t6EtAu8M3+nmA39jAL5qLHXoSZHP0sXI+gCSrUifzpVBEVBI1Rxw/QhHKcRsSuShs8gpCMyIjyLXWIN27uqbh7gee0WyTWzea03EZmS4jgUSxr3PKBHqfmygWaXWKXXE8FHKJRccUX+fL9q5Wqw/RVSWu6ncPW0oDkiosQefnqKVzQkRkhCbYEboalVjxg0K4SmNcRMUm0vNAkmTyYCKRHJWQfgMKJYTkabePbkWzNB0olBSPne0dvYcjUAYJmjkfdyGPXEN3HtBTaxvauLqKbtj/46c+WTiN27e0wKvgr2ia3fso/BV6OQ/21K79vtJnPvjZEOlBzNAZnzAbJKM70xD+Cq2kbKaB+mlwb+AODg4OCwr3AHdwcHBYUFwqhTJKUrn7YFzBu9LU0KuMTIkkh05GhkIXrPKLiBx3NOzMEv0d6seQ+0ThxHJVw7vttm6z0lD9ho985Nnp+MZGczoeQodl/97dwnnE0IJIBtqkOCphlRqNdPt9DbVbh0rrVKqQho2x4t9HIU5WNNchugF1QQsdozlzD8UOdqKzmefzp1DyCS2Tkx5BJkgPWQIZKlXisBj2ex4KVyLdFzvhUBSNx7AIWQ2KuGLk69RStUW5zMyI4rvM/TdVsvZn/opmvdRXNWvilddfn47ffOu16XjvITv9KIVFTZw+KKV+r5iGEsa4bqaoYD4niX7encyDi4Tcj4I0S2X/cEwhNNGUugQqbwS51VGq/rrcKPrrIbofsTylHpILhV/W1X77fbXT+oru9yMffmY63kAW0aindMjhg2KXorJh5gq0UFAnWK6gcTKyu46QDcPtS7BXju48o7xY9Nfq6t/66DBFf+2ywfEFmo+7N3AHBweHBYV7gDs4ODgsKC6VQvGNSG1CD6w1NCRbQubJEBoUrSMNhVoHxSyBw2MNNXwPIU9H6Y7bG7rfT/4V1b0o1TTDxEPi/eaGhmGrKAoJjIZanRZEVUTkYPvhdLzfak3Hr/zk1el4aUn3++prKgJ3/4FmzHzwAxqapygoQoKN9IfFTJwWND62IVs6QJbACKv/WToOtdP8/NDsUWBEi4oi6EIYCIcM0SbFogrFzmShUMeCpSAWVML9h3rfajU93kpd6ZEg0O2HWOU30N6AErBkwyL9sLGsBUKNZWS9PPOMbrOFTKVvq81eRpGZh5Cdyrk9ZF6Vy0XNi6WqUnGBBy2Oksbt949Vr+NoInf8to5NjwnfM9Kc6NncXNcsoKWa+m6vpfPu6Fj9dW9X/UJEpN3Va/TRjWbU1WyOp2/odf/0T31sOo5q6KiEIqmNdfXL1WU0Ihb1t85h8blxgEbGB0d67B+/qRTYEpqhv/q6+uvde0oD0V9zPEYNMqd6w+LcPkRW3A79FW6dYO7kM8VQp8G9gTs4ODgsKNwD3MHBwWFB4R7gDg4ODguKS+XAS3EkH3l23AJrpak803KzOR1n4EAzCL48fKjclYjI4ZFySOVI+cRIyMEqH/XsU+A0cexBCmGdpnKMqyvKx4XoQN0pFTnwQ3Dib4EPfOOBphwd/wBiSEPluJJUb//enu6njDZTYpU7HCZFnvYI96qF9MQUIj8Jqv963ZPO8fMWsxIJJ9wyxcFYjBehas5apAHO8LZ+que7VFeO+fXX9R52DpVrvXlTucg1pAvmKcW99L4tNdByDwJbeV5UHjJITwzAm6NjljQCtdPGSnM6/h6qYoNQ9zMCz15C1WiEzvUiIjmqZ4U617Bxr633oDT5vjHzfR8rRZE89/RYHK5RV39YXYEIFCpkc6SH3oeQnIjI0UOtaCxFek0x1q+o/vT0HV13WEJK4gApw8tNvW+ry8rLB+Chu/QlETk81Hv7Jnjo1+/puP2y8vcJ1ipS+OvBAXX9dRtWFg9mtO6P4a+HsGWS67zNoCvfaTsxKwcHB4crC/cAd3BwcFhQXG4aoefJykSMplnREHIFAjUx0gtTVGaVy8UWTW/c1fSeFJWFS6BHKIC1vKwh4NqKhl7W6HmU0OKMukEeQuiVLd2PiIhX1vDnzV1NS9oFnXJ4iPZcCJHYdX1nT1OMamjXNBjpPnujIn1zhCrNIdIFWX1JcSl/koZmLtLu+hFgRSSbpCZaUD4BUgqjSKmEHLRJPii+Q3ipfufeXa223bmrIflHPqia7//1v3wfJ4K2ciu6n9oSuqgL9Njbej+3D4rhKrNFezsaUm/caU7HKaoQd5DaaAvvRaCUoMA2gr59Y6lYtRj4eu6tg5Z+ByH4JtqB2UkqbBDMV8zK94w0J1WJTfjoMgTgQrRao79GcdGur72h9xCZcrJMOgacWwOV2utn+itamcFffdB4yzeK/mpivUc/2W1Nx3v015b6Iv01g4/JntqP7dX6Q91nPy2mh7Z68FfQmH20TmMlsw2Kz7zT4N7AHRwcHBYU7gHu4ODgsKC4VAolDDxZXx6Hi3Gs4UEFutYpVmd9qyFnA1V2IiKbN1SE6vBQvzNAOLJ0S7cZJqdrCldrCLHQ+T5HqJ2MNPSpVIthTbmst7D1UMPw9pFWyt3f189tnyvwuq86upffe9DSU0KGzTE0zUVE2gip232IeEFgi1WXH/rQWAs5CIuCXI8LY4yEk2wLz2dLNT33Rq05HY86aFM1KtI5XQiN7T3QzIWVFc1K2N1Xe/x///Fb0/H3vvfydPx3/s7/PB1/4hNP67FHGrree13v53/9vgpTiYj0kC20Wlcbr2/ofElQaQd5bqmgkrLd1+wZz9N9GsyvwUhDdhGRallD8vVNzbLpovK2h3FnEppbmW8lZhj4srnaFJFidlEcofUgBNUM6LNqqUjnbN1S++3vQXt7oLZ8ChlFScFflSqp4t5aaKpnmGtpMsD2RX8t4byeeaD7OjhQSvYBMlVkgFaH8Nch/DV+qDSnF+hEOOrp5yIinZFeUwf+OmJyGdqrPfXUDfzhVTkN7g3cwcHBYUFx7gPcGHPHGPNVY8xLxpjvG2N+ffL5ijHmK8aYVyb/Xz5vXw5PDpxdryacXa8XLkKhpCLyj6y13zTG1EXkG8aYr4jIPxCRP7XWftEY8wUR+YKI/OY77cgYI+HJSjkKFFpHrenYS9lOTMeJLSbFP3NnE//SUPstZCvcWoMgFTIv2B2qgSySvo+MDSxrDxE+GlsUqMmh0by6rCHWx25pOPjfv/UDPcZQ91VHIUijoqvubM/1gQ9oGBUGxaKEKNPzjZHlMYDolYdQ3Uzu+eRbc7VrPClM8VG4wvEhOrv7oHWmHdUnODpSWuOp57RdXRkCzGVkaTx4883puPumig19//uvTMc3oe2eDnQ/f/Af/nw6fn2nSE9VY6UxsnXN+PizP39pOl6qITxH6Juhc/3aqj4nu6AHj0E9jNLinNo/0IwWgRhWpwdt6jaoxok42ETMam52HWO87xEyoHZ39T4HOSlBFKnN+OtTN7XlGS/3Teiu31nXe059dtSASR3+OoBP+9CCH/T1czMjliYo8FpbUVr2uRt6fl/79n/TzVG8swTKZqmi55pgn3fu6H4o2jX+t45ZHEZ5fuqrz2rln4Zz38CttQ+std+cjNsi8rKI3BKRz4rIC5PNXhCRXzr3aA5PDJxdryacXa8XHokDN8Y8IyI/LSJfE5FNa+3J6+5DEdk84zufN8a8aIx5sTtITtvE4X3G49p1MHR2fRLxuHbtOX994nHhLBRjTE1E/lBEfsNae0ydEWutNcacKrBhrX1eRJ4XEVlvVuz2zjj8GiFbJIo01KhE0OdGAUYws8JeifVwa9DubqGD0rCjoU2KFlQpEvJHWO026NZOCiUEtdJD+yMREYs2Vp6n1/Rzf+W56fg/fluzI17ZQRu0lmanUBtjd18LWKzRfd68reGZiEilpLRLp9uajpkdUYeOxGiSWUE58HnYdaVZtsft8Yp7HZoZIV4PKqiM6kGHeYhu4CIiG0/p+TZgV2pSDHK1aw0aJMwSWFnBvTnQcP5LX/1P0/Gf/JlmsNSamiUhIvKBDbXH3h6KPA7UNs0Gwuum0kVlZFWFAQpPAi0yo755d1Ckkfr4NzXgB5mG1NSxD05ic9huHnZda5Ttm3fviYhIjkkTwUcr8N0t6MyEM6+GZYivb6wq/dDZ0Wsa9U5vGcdOcSNkchjs0wOFEoJa6XeK/ppjZ76v+/qf/ocPTcd//l2l317bVX9tHyvNxsK0B2ihx4ZxWzP+WsX8pL+SRqw31H/63eK8OA0XegM3Y2X+PxSR37fW/tHk421jzNbk71sisnPW9x2eTDi7Xk04u14fXCQLxYjI74jIy9ba38afviwin5uMPycifzz/03N4r+DsejXh7Hq9cBEK5edE5O+LyHeNMd+efPZbIvJFEfmSMebXROQNEfnl83aUZpkcHLYmY4Zk6GwN+cdapL8v1dpMAQ1+etYbGjLVf+oj0/EadFG2d5Wu2LqhoUkcQ14UEp0VaDwI5Fm/9t+gvSEiL/9AC0B++pPa1b4SoJ3bs0o3ZmFrOj6EHkwVRUQBZEHZQmpnR4uDRETWNjREC1FAUynrd5abeh7eJOKc3K252TXP7bTYadDRsLbq6f2PkHUULytN4s9oZoQltfMIFQ4+YvIhKIYYRTZryAxIcR7/7r8qVfKfEB7fP9Lw+kaqNImISLus5xgYvbdVUndrzem4WdPz8CFr60O7Y4Q5v4a2XcYUaSRmm2S4H9lIv+8HyPaZ0CPeOBNmbnbN8lzaE0lT6pQEAQqYynpOK1XQRZViR/Yy6rXWltSWzU9p6zT664MdvSebG5rJ44OSGh4rvVFdgoYSirX+y3/5TuE8fvTKG9PxZz79YT12VZ87H39aCwCzWGmTIxTkVfHcCKA3NILQy/YOsolEpAndlwj+Wop17jSWdA7LqSRXEec+wK21fy6CMyziF84/hMOTCGfXqwln1+sFV4np4ODgsKC4VC0Ua3VF2XgIOTFmR+5yTcNYb0ZZ0WLlNgqxKr6mVESno8UOL/9Y9T+8UFf2D1pKQ7QONDuCqXFHLd3Pd76jIbiIyMNdLSLaxfc/8owWodxuaFj0AF02olhDqiN8lzKzH7x5ZzpuH8+sO2V6jlWE8Dea0IsAddE+7r/ts3nAMxoSliFpaqBJUUaWTUGrt1QMtfsoUKH9fA8FV8hcuYFu6Sslve63IBX6319T27etHq/qY1KlxXg1Rfccqu/euq3h9SokTyuB3tOsr/MrjPRaPQ/ZT5QQnencUinrfgdtvYcGeh8BsqS8k7E568X73eNEGjdAlkcVssvr6KYVg8LywuIcy1O9jhiZK+Wyjg/gG4MfQx/G03l+e0v9dX9HfY902xGosb/8zg8L57G7r352hGKqD93emo7vgHbcA50Vh83pmF2hPDy/bmyp7k63W6RQJEMXn6p+5+ZTSh0xQ+z42HWld3BwcLiycA9wBwcHhwXF5Xbk8X1Zqo3DhUoZcowoDKhXdDXYg5aAQWNaEZFRRioCugTodNGFTkkXBQDf/J5KM77xllb+9FH48+ZPVLuDcrWeP5MNg8a7Dw7QXLmiGSN3Khoi/dQHb0/Hr+zpNdQh+DDsQidjpPupVYu/t0uQ2TTotjtCMQGLk5YmK/XsWDIPeMaT2uT4pFA86IMwA8Mgo6TQ1FZEqqB/dgcagh4jQ2iUo1MThCQMskV6yGAaRbrPfKj3s4RMgHim+wlOXZZBgUVomDtC56OQRTbMImJxGBiOFPOxDF8QEUlQvGVyHafIvjGh2nuakDLfXtUS+IGsNseUUbmktAnnT7min7MRdAZpWRGRITSO4qiEz9VnOqCV+qCVvvk9pS3fhNZRG4Vwd9/SuXKwr/4Tz9zbUk399R4aiYeRzosNUFif/JD664+gl9OGvw46eh6Z1WympXqRHqzh2ZZD5yQ3pOvUT2rVom+cBvcG7uDg4LCgcA9wBwcHhwXF5VMoS83xP7BizgSAARLhzUjDqGxQXJG1WPkdZuhag5XbAcKwQjYGOtsc95CcH2qo/dpbCKlu6Ar15lZRAyhBOJ9A/rY11IuKrIZ0JXTyWC9BMhPFQsGyUi6ZMHOhmK1AzY1qQ7Mx9nsaxhkP38nHYZs352wFzxMpT0LCALSEBZUwRLNWAz2ZEJkLIiJV/NvfRLEDCrlC0fsTg5doYx7sIhMkS5C9gbl2e0vt2j4sFvKwk4vx9fv7Rxqqe4FmSWUoQMtxvBDZTBEzR/DqFM6kbefI3llr6jFKsYb8O/ut6TidFNnMO7vIeJ6UJhSExZwZkaYcgCrBZYzSor/6yBQbgE45bqtvkGaxyLg57quP9tCFys+VRnrzfms63oRdN24UNW6GyARJ4a8H6MAUWb3/bDC+gerBqsF8XGOxFq6hyPpKFYV7UVXt2hooPWhAp0T5+Y9n9wbu4ODgsKBwD3AHBweHBcWlUihitftEhnA3Q4bCECvRaRZjm6K0YhijYIRyr1ip7/V1Xxky5C261KSWFIWGfTGaHVtkTSQoKhARsQivLVqNbB9o2NdFZ5obCK8trjXGfkoodDCxhuaZKZqLGRwZqKfY1+8z+6bfH4dqvBfzgBEj4UmhTYE2QTZGzmwMdCNJi3FmhsyhBJkMFWiCxBZFPchO6SRqex7bBw1lEeKGaHDL5tQiIvW6Hq890OKPETvpIEaOYeMMtMnKkobKS8jkiMChmKh47CVkdgxh18BX+o2ZINt7rfHAzjkNxYqkE7vlqC5jg/ABmlJn2IZdakREShW9nzmonj7uVRf+muPeUvmW3Y5KKO7yS8zIgkStKWbDSASZWtAxDw+UNhkgo2uF3a0wN8s+/A1ZdFVkPGUzj9eSj4wd6OVE8NcEUsn9frHZ9Wlwb+AODg4OCwr3AHdwcHBYULgHuIODg8OC4lI58Nzm0h1MdKPBVQ+GqMBCdds62mV1OspDiohs3lBRIUGqXH6GNm8K3i0CX2bRlmmAfMZyXdOHBuCqw0ox5avfR4oaOOlBB6lBdQgdoeLPA/9bxTnFrNgCz5fPVIH20YKqc6xpcENcx2FXW4DFk7TFfM4cuMg45UxEZADumV3wWJ0YQRipAl5YRKSPFDp2QvdztbFBR+8Y1aiDRNcwaKYmKljD2zd1n6K89fawVTiPECljPQgldcDZpke6zsE3oRA2G6WYjzXdTx0pZdlMvlmCzuTUIsdQljBH/IkufBi+JfNEludyPKkypI/2kNJLUa41+OtoWORvNza1ApI+CheVEfwhx7pFXIa/QjRskOg2FeiBD7EW5c8UM44gUhZAq72FakoPVd+rWIPywP1XWUmO88uQ3px7xcdrv4/1KGiZs6XeUb81HYfRHLrSOzg4ODg8mXAPcAcHB4cFxaVSKEmayvbeuMKx09WQheMU6YWkU6rQDRYROTzW77ACLMdvkkHbKbYp85AWyBDLQ+VmjB5Qhy2tyuz0ZlJ7QBm0j5TGYKu2Rl1TyRKcR4jwLASt4KON2gC65zYs0jc7h0qPdNA5fXl5fTo2OL/8JJVvzulmVsw0bQ/ZgsIAkFWIlRK6zedF+mAA2kRAmwhSySLMBS/APUyVYuqDhijDrinTVBES37xVrLDNSMXhFJHpJt2hzsEKNLJjChWhUtdapdWSTOd2nhUrbAN0PIc2mPjkUKAtXp1oqvtzrrBNkkQe7Iw7rndQsUz6k1QHqxAb9WKF7QH8tTj7kAqI9FkfaZZ+pNdV0Bzz6K86D46O1F+HaU2IlFWkqNouQxBvqa6pgCiolgC0SYS0UYqoZZhrycyVPtxT/fIBjl07qU4XkQz0Zxid76fuDdzBwcFhQeEe4A4ODg4LikulUEZJKncfPBQREYvwohB2o91WaphtoGGNiIiBaNIIAjUJVqDrEKJh4kVAPeqyxmRBCdkiaWs6rqYa2vU6RQqlikq71XVt97RUVsElXms/IV2kn1MfuobKvBGqxbyZ39tSDIEgtCYbgnoqQTd6OBEYmnO9nlgRObkURPYSgjYpU+yJ92M40zYKFJpBGkvINmzoccbsiBBt23zMDy/Qbdg9PoWGd7tfrLBtHavg2T6oMR/0RsrKw47e88YSqjJHau8QdEEpVMolDIrZBgmuSRBGBz6qWf23ZyiwYnEeSLJMdg/GYT9tZkEvxcgi8kCBBDPZRfTXDNQYKdNaVekOMmt+oMcrI+tIQFdkI6UnKqjg7raL/lqp6DE2NlXoqlZG5TUqtYeozs7grxbCctTA77Jl4swzK0T3+T5sleMeROCIsrRIrZ0G9wbu4ODgsKA49wFujCkZY/7CGPOXxpjvG2P+yeTzZ40xXzPGvGqM+TfGmOi8fTk8OXB2vZpwdr1euAiFMhSRn7fWdowxoYj8uTHm34nI/yYi/8xa+wfGmP9bRH5NRP7leTs7CRYYesUIr32E3SOEELvIuBAR2VjRwgBqDRuEmRTkjUJqMYO6gLgUi30ouFOrKhWzvKyUiYhIjmT7UPQ8ylW9PmY+DBG2pwjVclxrQA1pXNsoKYb5JYTzIcSehujmXqs3p+PepFXbJAlljna1U7GqEJk/pE3YXq1NkZ6ZLBQjDCf1XlVRuNJGmCo4nkexLxTTbCxrqMzDUeirk2vmgohI0kb7MmrPD5BVAkGjzRs6HzugXEKLMB901uGxzonGTKhNcaQE52jRoYuO63sFOmVudjXGiDfJtqAt6a8JW6IhY4pUpojIjQ0tvPNgs9ADtwl/DZHJw7Z0I/gGhc/4KtoArdmEtr6ISI45FeI3rFpDZhRoSxaWcaZmsEsAyjOCT+bprL8iSwqUJ1vzxRDS6s74+2k49w3cjnFCCIaT/6yI/LyI/D+Tz18QkV8692gOTwycXa8mnF2vFy7EgRtjfGPMt0VkR0S+IiI/FpGWtdPXi7sicuuM737eGPOiMeZFLto5vP+Yl10Hw/MXWxwuD/Pz1/lLLjjMFxfKQrHj/kafMsY0ReT/FZGPXvQA1trnReR5EZFaNbYra+MiE64+jxBqFEITZqTYYpECW6FVkMQfQBuc4XiOyZiw5RX0EOoouKkiLMrR0imcWf0vtHZDeLe7vzMdl7E6HyF8TBliZeiizowUUDGDtmZGiIiUarqiHiEjZdhWCsVyhXuipeJNsgjmZdfNlZo90TcpIwQMUJx0Fm1iZtqAhbBfHdfe7er3LSgDjt/a1nZnFazmL6NQIkD4PxwpbdJYLmZNNECVHbSgf4J5VFvCHCFzx+wBhMf8nYuQWdHqFO26hLZ7FZxvYb6wGGumK/08/fUkyyphGzQUs5Eao73zmZqidg9a+8jGiAr+BLqJrclQ3OIhe6e2pPSIQQZSjrkWesUTSTFfWJC0O9iejlloRn9l60a2r6O/ssCHvQlEREos3IO/drpa4LVcVTqtMzy/MOuRslCstS0R+aqI/HURaRozJR1vi8i9R9mXw5MDZ9erCWfXq4+LZKGsT37JxRhTFpG/JSIvy3hi/N3JZp8TkT9+j87R4T2As+vVhLPr9YKx5+hiGGM+KeNFD1/GD/wvWWv/D2PMB0TkD0RkRUS+JSL/i7V2ePaeRIwxuyLSFZG9d9ruimJNnpzrflpEfkHma9c35Mm6xsvCk3TNzq7zw5N2zU9ba9dnPzz3AT5vGGNetNZ++lIP+gTgOlz3dbjGWVyHa74O1ziLRblmV4np4ODgsKBwD3AHBweHBcX78QB//n045pOA63Dd1+EaZ3Edrvk6XOMsFuKaL50Dd3BwcHCYDxyF4uDg4LCgcA9wBwcHhwXFpT7AjTG/aIz54UTS8guXeezLgjHmjjHmq8aYlyZynr8++XzFGPMVY8wrk/8vv9/nOi9cB7uKXD/bOrs++Xa9NA7cjDt//kjGlWF3ReTrIvKr1tqXLuUELgnGmC0R2bLWftMYUxeRb8hY+e0fiMiBtfaLE2dYttb+5vt3pvPBdbGryPWyrbPrYtj1Mt/APyMir1prX7PWjmRcFfbZSzz+pcBa+8Ba+83JuC3jMuZbMr7WFyabXSU5z2thV5FrZ1tn1wWw62U+wG+JyFv495mSllcFxphnROSnReRrIrJprX0w+dNDEdl8v85rzrh2dhW5FrZ1dl0Au7pFzPcIxpiaiPyhiPyGtfaYf7Nj3srlby4onG2vJhbRrpf5AL8nInfw7ysraTlpZfWHIvL71to/mny8PeHaTji3nbO+v2C4NnYVuVa2dXZdALte5gP86yLy3KS5aiQivyIiX77E418KjDFGRH5HRF621v42/vRlGct4ilwtOc9rYVeRa2dbZ9cFsOulVmIaY/62iPxzGUtd/q619p9e2sEvCcaYvyEifyYi3xWRk7YdvyVjTu1LIvKUjCU6f9lae/C+nOSccR3sKnL9bOvs+uTb1ZXSOzg4OCwo3CKmg4ODw4LCPcAdHBwcFhSP9QC/LqW21w3OrlcXzrZXC++aA383pba+79kwePtvRpbn+g+cjm+Mfjxznlb/JAbbeZ7u3/f9U88jyzLsyJ42LByvsH8fBxaRMAim48DXYweBHjvPdV8pjs1zxVAs7ofhb+yMqXLeN/yxsBn+cXIdncFIhqO0eCG6zSPbNQw8G0fj+3DWfOKnHu4n761IcS7wPvD7RmgP3EPsK03SU/dZ2N7zMS7OS/47TXVfNj/j+mx+6ufCuYOx7+k4CoPCV0ZJoueO++l7uh3PIp/MqVGSSZrlp9p1fCqPZtuL+KvBiXgX9Vf66Bn+yu/n8JmzfNTijnB++H7x/OmXhTG2y2Dj7BH91YO/zt6DvDB3zvBXgL5xcNzfO60nZjD7wSNgWmo7OdhJqe07Obo8dasuIiIWJ9dud/SkM/286ofTcYJJLSKSBrpdXI71O5XKdLzUaOgXcDOPW5qjnw7hLDBEBqf1MYlrtXLhPDY3VN9mpVGbjtdX9didnvaO3W+1dV9VPe8Yu00Gg+m4bEv6h5lnRLfX0z/h3DnmJPKC8f389197Vd4Bj2zXOArkkx/ZEJHiwy7LTj+PKI4xjgr7OjrW+zMajrAvdaQAP5q1elXPw9fPD3f2ddzuTsfVptqoVtHvljFvREQqtfp0vLenvW1HXbUN/TEZ6bni+SE+zjWOdB4tYx7d2lwtHPve9sPpuD3Q+Vlf0rmW4fe32z0SEZEf/uTcBIlHsm0YePLU7aW3fX4Efw1yvaaqp/46TEaF72S49rP8tQF/zVK1d+dI50Q64vzSbdLC/IC/1ot2vQF/XcVcWGmqvdvw19aRXmu1xnmr+8yGun0pV3/lD4+ISK/f17+d4a/8wefc+f3/8J035BQ8DoVyoVJbY8znjTEvGmNepEM7PLF4ZLsmqbPrguBc2xb89Yxow+HJweO8gV8I1trnZdKeqBQH9iQs4BtZgBAyyU4PH4OZEJe/uIU350x/oVO8tZfL+sZToEGMfrdU0pCqXte3gV5P3wBW1/SXWkRkfaM5HQ+xXYJfYkTq4iNg8jyExzinFOd0dHw0HbeP9Y17fL56jHJZ3zRI65y8dYvgnnlnRtkXBu3aXKrY1dWVyee6TfFtXO0V4w3cj/T8RERKFbXTsK9vu+lIbVnFNg1EPWL1GKOBvjmV6nqfaNdA1DBxqRhZ8ULSHu/76dcRRThvvJGRsiFdUKTYim9qBUrR6HeMYXh+On32uHibv07CCVIUnF+FN2J5J3/FG2dGf8VbNGivKNLIzBRoS92+VEYkVlO79vsaca3N+OvamkYUA/hrJpiTPHXcZ9/QX3WTVPS8D48Pp+POsZ6HiEi5EPHpfIngo6SX0pk3+NPwOG/g16rU9hrB2fXqwtn2iuFxHuDXptT2msHZ9erC2faK4V1TKNba1BjzD0Xk34uW2n7/vO/pCvHpIdnQaviZIXyJvGJGiUVIzdVd/iJxAX2prGH0EUK4ONLwbHVFw621dV1Y6nQ0nFtiyC4iRvQ8KjU9Rn+oCxbdDq4J4fGgr+c9Qija7Wj4P+zq/j0p0g0Wi3Y5YroRQtF0oItJJwtL77QW8e7sasU7WWHlAl6oBki46g6aKwiwSCsiW1s3puN+R0PQAGkMJxkvIiLWIEME4fVHP/rB6TjLcGzdXEwGemIm5Oc9XF/VsJvhPGk5bt/ucOFLw+ZGTedOjMlZiopuWDpWOiwRtR/pKdIuYTi2vTmHGXtU2xqjmSXZGZQnF5pT+Gs8mwHGrCAurJN2wfk3q3oPjnZ2db8x/VXtQn9tH7em48byjL9ivlTrar9uX2ky+isXGPug9AZIfuhiUXfY0/17ZtZf9Z5keFINcQ8T0CbDUXEh+DQ8Fgdurf0TEfmTx9mHw5MHZ9erC2fbqwVXieng4OCwoHjPs1AIY5CcjnCQeb22EIIj0X620GKkoUbkaZhTr2hIXgs1hKkg7LuzqfnwudFQiOFWqay0SRxqqJblM/noyHcNcYw+KJ4RclqZ7VDC+TGr4KCPPHXkxa+urRSOnWC/e4et6Xg40hCQ+bjeJPskBYUxDxjRUPjMogTQGzkojcGwmFmTWb1vzDEOQ2QJINukg2wTD5RNva50WDZETj9sFPm6zwEyR0REQsTz1frWdGzBDLBghDn5jQbmYF3nVAZbsHinWi6G+esJikcONQspKumctFVkLtjx+Ec/0QyIeWF6hfZ0yjNnVhX8NZrhc7qwQYRsjjqozSrvCf31xsZ0bH3dT3NZbRyX9H5E8Nd81l/x3AiRAdUfkMZgZhr8FdtnGWjfgWaz5JizzbVifn8CGmm3pbYiVULf5X0+C+4N3MHBwWFB4R7gDg4ODguKS6VQrFXdAMviBcTdzZquPq8uaygUzFSF+ZGGOUvLmsS/ttycjiuhhj/lGHRKhBALSfg2QIbIQEPi0UhXn4PZ1XWkNeQokGEOvhdo6MviGx8r3EmCUNTq9iH1VVi/KyKZoNAFoWIIKoHh+UnxSOC3ZJ6wolX+fkEkgjoeCK8jHQ+9ol17Xc08WS5rBodXmC/QqkCxFkvmhwMNRWvQKcgK9tZ9DgaaNSQiklBKAQVeAcNo2C8Moe+Ca80zzB1QDJA1kf5QtxERCVDYsbmhYTg+lhG+4+XjP8zqfjw2rBbckeJjDVETpeqrTfVDf4amM/DX5VXKTzSn42qkvkG6orym25ztr2r7UaK2n6VeWQjkpdA/oaYL/RUUjwd7Y3oU/JWFW2E8668sn9cdlOAPS1U88woUygM5De4N3MHBwWFB4R7gDg4ODguKS6ZQrCSTVVYuUnNcQwL/1ubadMwwQ0Sk39NQowkKxUBNs4wsA0pd7u1DtY0/YeHpEo8JMkpKtWLhSQxag9ofOQSeLFQVyQQZxKJUX4tDDckYRkWzUrYVZGYIVeNQHIFinxO5zrNkdt8tkjSTuzvjbAmGrJQi5Yr6UoMaIsVzqUPTRXqn00JLoNm6iVIfEaiSBIUWVJcLq7pNkEIKeOY8DGiaBCF5itCX9o5LmAdUk0RWlEF4fXSsmUaSFY89Guq8aDSVRqrWQK1RP2MwnhfeeZU8j4jc2ilVAxmWQvZNHWqQN7c0uyuaeTUkRdUE1eJZFDTBX3kpBwf0V/gonl7UailoINWKWigxqC7SZHnC/Z5OrRjQeJSQjZFNFsJ3w5l74COLyGuiOAwXS4rWd1koDg4ODlcX7gHu4ODgsKBwD3AHBweHBcWlcuCeZ6aCTwUOD3zjzc3N6biGFB4/LKabRfHpVZOjjqb/Jenprcyi0un644RBSWgTGtK1arFqjpreFPbxIXrV7unnfYyXYj2PTaRWtXzlR1mZFc9w4K3O6R0+qHntgQM/ITJnhZseF9aKJBOycAReMeny3up9GsKUjaWZ+4lrXIV+8iaExgy0tMsD5bT9HGsHeDdJ0AklXtLtqT8ts/cEf4ohuMXvVMC5c60iPIMv7vXVlkkCobagmG4WIL3Roup0d2dHt8H5mv74fuRzbpjieUYq1dLknKAxj2va2lDeu4p1gCAo+iu1u8sFf1Xb0F8zrDUU/DXVOUVvsHJBf0UVKH2LKZ7H8NFBV7dZQrXnxqrOx8g7nVefXQco+quex1JD+XCv0Dbv/DUN9wbu4ODgsKBwD3AHBweHBcWlUihBEMjq6riyjKlEPTSyvbGuIZkHre2DI9UEFhEZIcSifnZsTu8GTx1nVtP5oBhYAcd0xBBpgJ4thjUGYR9Togwq0TJUdeYQwWFn1G5H7wGr+qIYrdJKxVD76KGG1Kz+K9fQnq3QtHl8rvmcex0GgS83Jq2q2Dprf18FewZIxeyzRdlMP00D8aCgxOmpqXl9cDDM/msgrXIJobM1Ws3YQsUeU/mimdZu1bIKhw2ZzujrsctozkshszTVc2UD4OFIrzWIKJJUTE31YsxbTLfOMfSoexqOl4Mx1VRoxTYHBEEgqxNBpgbC/N6R3rebG0p5moK/6twUEUlABXV7aoNY6K+ohoW/UnTKQ5od/VIofOaTnp2hITA/fSiTFdr/wV9tjmOc6a9ozQd6aLZy+nhbn2Ee/LUEwboMwlYXcVP3Bu7g4OCwoHAPcAcHB4cFxaVSKGEYyMZEnIcVSwEyFHpdDU2o+xzY4m9NH5rJqdExV7JLsR6jgmwHVm3FEK6hrtIQq88pqiRHw2LWSgXVVTlolzrabR0caOhkrX7OCMnjKj8q9rhCvXtQ1HtmiOYhbByClihQRJOw1My5Ys83IvV4kgkBO8XrSpNxRT1DbJgMi523a9RhR7u7LkSueqSteB6omIyt0hIdHGMAui6GwQNbtCvbueUJw3ZUC+I+G1YIIpwvl6FLDi1rJoz4M/awKekGCJYNIWzmK7UWTUS/5p1dFIaBbE6080kxgeGTfk8pIgNa03+bv8KfEvorKhpBEVZQ4Uk/qeC5wey1YQet3XD/khl/paidxTnSXw8P97CNXiznMKskPWRFLS2pvbf39gvHPstfqT9Of/VdFoqDg4PD1YV7gDs4ODgsKC6VQsnSVNqTVkI+Qhks7Evsa4gUIUypREVRGsFqNGR9pYYwpcyCj6aGnPfvvqX7RcFNDsqmjo7V5QDFAKNiyI/cftlraTjZ7upKfZPtvQTXh3vQwPkFENPpowiFOsciIiWEnAb3jYFXlqKr+VSLfb7ZCr5npkVJ7Di+ijCY4SPHd9+4X9wX6DAKm7WOtbUYtIqkjGqJZ59+ejoeoMv46w/u6f5BBVQqaFE2Q6FUK7B5hnAXGSnUKM/6aF0H+6UoFhnhu4aC4DM63rTfCPRPYPS+lapKEQWTe2/MfN/HsiyT9tHEXyOE9qAVOJMq8MnyrL8OkW2CDJMqKMwyUopKKLh6CPtVAp1TeX6Gv4Y49rCoS14GLbdzqHQaC3YaZ/lr6XR/9VHI0x+wMKnYVb7gr57u9yx9e17fWXBv4A4ODg4LinMf4MaY3zXG7BhjvofPVowxXzHGvDL5//I77cPhyYOz69WFs+31wUUolN8TkX8hIv8Kn31BRP7UWvtFY8wXJv/+zYsc8EQDO0N4wKT2BAUwVazUUiNFRCTdRYshcDDraPG0XNMMjgfQFC6hYKeCIooUuiiVmobQPkJXtnGafEuvg/oPWGkvQTPDC/V4vAfHbaUIDPQa2PXeM8VjV5Blk6MgYjTUMI7ayDI53qQ91u/JnOwahaE8feuGiBS1IJhtUq4gawLFSUFaDHG3t7en47fuaug8ROZJFGuIu1RWW476mrHx4N7D6bh1rOHx7ae0UCzN9HNqb4iINKC9kg1RVAIR6gC2P2rrsUNQCQNkaYxQp1KvoghoJtugUlWaYAD9jBKKfyLomqcT6g/JLL8n87CttdPegEjsKBSNpRnnP/1V77OISLardhVf5/EmssOa0O6+f6AZHCUP/hrDXzF3qqA9fNF7m/vFR5yFzXz6K7JhypifHnRqqAV/BErP89gaUf3Nn2kXWIH2UY535yH04zP4O9vYnYVz38Cttf9ZRA5mPv6siLwwGb8gIr907pEcnig4u15dONteH7zbRcxNa+3JK/BDEdk8a0NjzOdF5PMiIqX4UtdMHR4d78qujZkuRQ5PJC5kW+evi4XHtpC11hrG/G//+/Mi8ryIyEqjYusTjYqBYTEGNEQQya6tQWYxKGYJsMUaMy36x63puImu0CMURIQBiwQQIqF/0mBI6gJttIbFsCagZkNZz2kZBRw+qKAUGSA5QqQRwqgQK/4xxpUZLZTeAPK1yNhp4x6uICwtT74ffVuzcM7Co9j15vqSPQn3QmT+VCOleKqQhrUoXLi5oZojIsXr/Yuvf2M6Dnz9kVhu6DYGbcbuvvHGdPxgR0PwgdWQOEEW0ZC6E1KcX2wB1mvr3+olZKdQp6SvVEnag3QxC2DQtovXyU7p42NrBo1ByN9sqi17kLW1U4nVi2ncvJNt3+6vY7sNWPQEus7gtq1CYjUIi34SI1vIgvroHWlxWiOmzCz8IaS/gkKBdkrBX3HP0tGMv4JzCCFxuwJ/pQRzygwRUJ6jodJvEWxZwrg666/IVPLRhq2d6nXUlrT4rVz4/ktyGt5tFsq2MWZLRGTy/51ztndYDDi7Xl04215BvNsH+JdF5HOT8edE5I/nczoO7zOcXa8unG2vIM6lUIwx/1pE/qaIrBlj7orIPxaRL4rIl4wxvyYib4jIL1/kYEmay/29cYFLjG47DOYqCM9aLV3pHQ2LER/1FFB/I2vIVikj+0OQxdBHGF2uIGNgcHp4zdXq0aAYkq0uazbW7adv63UgRLp/VzMiMoafnoZhNWS9sPtJgOKMSqnINR8fa9jO7JYYWTkhikROxp4xc7XrcDSS138ypi+qKL5Zbjb1/BCKUksjCotTkNTFcASboyNTiiyb7rHaY6mi+4qYodPROP8Q2UhlFPLMyojs7ysFk6dqM4swGnVYEqBAxBNkTSA7IopBt+G62SldRCTB3Lv5lM4p6qfce+MtfD4+p2yywbxsm2S5bB+M51hUwdxjphjkm48hM5vM+GtOygfXQX8txTwG/JUZXaApB31SGqpdw+5dw0GRnlpbVsruzu3z/TWF5Kwx6q91+GsIf/Xflb/qDWEGE9jIM3HuA9xa+6tn/OkXzt+9w5MKZ9erC2fb6wNXieng4OCwoLjUPKFRksib98cJ/fWahtp10ClBST/PclAgM5012LnCQq/g+FjDax8xZw+J94c93Vccn34MSq4u1XSb9Ts3CufxgQ9+cDreurU2HUcouvle9P3p+OFOazoupRq2URelguwZ6k54MwUfITrvjBjao5iJIf9JqD1nNVnJMyud7jhrIEXxDjuKBMi+qSAjYTAqnswxuisFKLKqlvWaasge2NrUVfsPf+ip6fiwo9f91rbannwdGyhbb0YzA5RBFFVP/w4KgaplzRxhtgELkIIAtkTYHEPKVESkCt9IQD3c3dbQPoF0sX+igzNnw9JfKygcqoMaCGCXNNPPbV48lzQh9ahz/Sx/7beVjjnTXyHby6Qa+uvajL9+sOCv2qmJ/vrdUP11e1fnDv01hr+Woe1DCdi3+6uOR7jWmNK59NesOCdPg3sDd3BwcFhQuAe4g4ODw4LiUikUY0QmjVukDg2LKrqwUAtgAJpkY7VZ2NfDPQ2xqI7aBB1zgEwCz2IVHKva2/dVb+PmzY3p+PYWVsdLGgp94qMfKpzHRz/6iem43mAoBOELhMHlkh5v77A1HXf7ej0elumrEWUri7+3MVas26AeuHxtIVu5fzQ+nrUXK/i4MIyZdhgZjfRah+iGYiiNiesbzsjzxmVm42jGSAO00Maq2vgTH31mOr59W+3XbOt+1zdUlyOImAWk93P/QLuwiIisrav9n3pGbZ4j1D4+0u+88oNXpuO37qruh8X26QDSsigwaedF2VFqfPTwnRS0RFwGreOddFqa7/uYEZFgovNRxX2roNk0i+jYuHpjtaiVtb2v0q3sXNUs63ifHWxyyKqCfqG/bm2pXemv5Xfw1498RP11CZKweab+aumvP4a/Iiuu14cWCgqxaqDb3uav0JBpd9HJyDvdX/daxQ5cp8G9gTs4ODgsKNwD3MHBwWFBcakUSikK5cNPb4mIyOqqJtTXIJ/ZaSmVkKKo46Uf/riwr24PhTYeVr9Hmg2w0dBw5Nmnb03HTwVsCKsh+40buiq9gvAqHakuQ9LWUFBE5GhbGxYH6E9Squpv4zqa+z54iFD9AI1+IWUbg1KiZGkcFLUVPBRRpFgVH6ILSQK6YipNO2cKJQxC2Vof25XaHSzSiSCMZHzQJm/LVkDRzZ5SKHdW1U53bmu2z3Mf0mIMSrRGESgUZAOE0CbhXfChRyEiUgN11UR3nmVkvXTaOm9buxr+7yLTaJRqgUkF2TNZQRNnpuiFuiOgw0roupRk0BaZ/H/ezarjKJQPTrI4NtbUN6r01wN0SoKfvPSDVwv76vZP91cZ6f1ZW1LbPPv0zen4KTZwrmhh1Bb9dVnPiYVeCbJZRGb9VZ9BBX9dg7/eB62zr9eapTpPS2VmjcGP/WIhjwENlSbwV1BP1EoqSEGfAfcG7uDg4LCgcA9wBwcHhwXFpVIoge/L5vJYIrZe0bBjBTKZG0hqzzMNg994syiBen/7J9NxOdKQswQdEHZ++RiyFcpVPd4AOhfLoE0aDS0GCNG09GC7SKG0dlTUrYsGxPttpUqWl/V42ygquXdPv7u6puExV/ntQMOowagYarf7yGrASn0XMrM9hLX5pChozjkoYjwjwUQ6dgkhbinU94O4RKleFG/MZE6UjJ7vKhr3NpC19IkP35mON9bUZlVkZlQRjo+QzWRATzBLIO0oLSMi0oEkLIvA6stomh3r3GkuMbTfmo6DQ50HzEihHgilSUVELCifw7ZmKwzRvZtNlKeZPxfo4PIoCH1ftlbGdELRX1XmueCvyJ55m7/uqNRvCf4awx7xOv312emY/jqEvzbhr82Cvzan44NtZGeJSGuX/qp06/7x6f76cLs1Hd+7T3/lPIC/Di/mr0P6K2zZG9Jf5Vy4N3AHBweHBYV7gDs4ODgsKNwD3MHBwWFBcbkceODJ2oTvrlHMCsJBeSF1RvkupviJiPzotbvTsQWP2mhoChBTsG5DaKqCtJ/eUL9br0M8iV3D0YeJ1VQiIvt7ylnd29PKqe/96CfTcYpWWkeHmjY1GOi4VkNrN2oQw0L9YTGtaL+t398/QvdzCCgxLUkmFX9ZNl+u1Fo77UafZBD8gWjVEPwo+fp85lRWm1rB91d/SufI7U3lJW9t6jYNcLPVmvKxodXPh+AV++A9A1SyLq/od0VEBkPd7gFSBB8cqKDUM89o9V+C6t4K2sfJkVZlsnK2EiJNNS6mm1G3LUWrsAqqjNNEUyyjSTqpN+c0wiDwZK0xTqGs4d4u4Z6zatHCX0dbxTWFV1/XisaivyqfHsDPzvLX/pn+quN39lfloe/ttabj7/1IOXoKbx21dB4MMHdq6ANb8Feswb3NXzvqr3stXUtD8XIhvdTOVOieBvcG7uDg4LCgcA9wBwcHhwXFpVIonjFSmlQMegwTUdWUoyN3jhCiUiqGQiuoDDuAZq+P8GmpwXZWGtqvNDUcXEfHa4PWSFnGDtJ67JUtTfcTERki5Dl+oKH2wwOkf3WhXc4iRFTTHbb0HlTKOvbQ9nuYFPWBD5m22NPwjFV6FA5KhuNzSvKigNTjIs9z6fbHNAW7redWw1XqX/sIa0vQkx6fI3TNIf3cQGpXhG73PqoTU6TR+QH2Y1i1iC7x2M8wLd6Tzps6p169qylmR0gLfLCtlFnnSO//URv64z7sijZvZdApJizOqf5AKZ96SW9Cgu8MUa0bTyiY8CI9uB4BnvGmndF9OGye6zzMhqf7a7VcfLQ0UXl9uK/VkT7OuQZ/jXGvVuGvHvzVo79C/IpUzMqWUjQiIiOrtmnDX7cPldIYdEF9wOXyDOmdh6S2INpmoAU/6689+qvetzTXe0B/HfWLKZCnwb2BOzg4OCwo3APcwcHBYUFxqRRKkqTycHtczcQquAgtiVaRkRIYiDLlxXDkzi3VAj5G+LMDsZpPPKf60D6q4GroRh6jVVTu63mMRtAHBu8Rl4q3bG1FKYAKjvEQFV99jYglwop1iBSTALRCDSvqvaFmGwyz4qr2Mao0e9DVTlHJR52k3kTkajbz43GRZpnst1oiIpIkerGsjltqqCBUgo7j3aNiZWuK66A4WHeo97ndRVbJUPdbhoBVVBDM0rlTQmd4DxkDkhRvykNknrz0CjrAg+LZ3dU5MuwrhdJo6Nz+wNNKHVR8dC8H3RMEaG8vIhYd0ksQBENHNlmD9vxJqD7vVnlpmsju3tifPNBQpJ5W2A4RdN8sTff0bc3YId20s0N/VZ8uaGw/lr8W7+0q/RW03kNUVPeGeiOjnP6qY9KANbRwo78O0qK/tpGV0sd8o867hRF7yflU57lv4MaYO8aYrxpjXjLGfN8Y8+uTz1eMMV8xxrwy+f/yeftyeHLg7Ho14ex6vXARCiUVkX9krf24iPw1EflfjTEfF5EviMifWmufE5E/nfzbYXHg7Ho14ex6jXAuhWKtfSAiDybjtjHmZRG5JSKfFZG/OdnsBRH5jyLym++0rzTLZP+gNT5wQK1oDZEiSC01q7pN6M+IHvkaFq830IUdLahMis7PCEtDdBYPDKgHD13GKxoi9SFC480IzMShnsdz6HK9Dwrlh3c1W2GjgiIUaJGz+3ilyuwIPfbxsEg3MAzrDk8vlKlBbKi+PD62F+zO1a5Znkt7UuRgQCNVUJzUJ93T02tKRkVqjBrnpEHuoSP7j99Qe3egz/6BD6o2+Pq6UhcjiHuxK32GLJm0XxSUeuP+/en4pDO7iEgZBThlzMEQE6NcUrtGoVIMHkL7HB3HhzOiRzk4rhIzLQoUiW4zmrYhtPP11zSTvf3x3PXpr6BQIlBBzQp8zCvyOTFsuUp/Jb8Ify1FF/FXZL1U9Pze0V8DnYcfRrHQ/h789a3WdLxeaU7HZ/lrGRTPCJk47UHRX0mJFP1VT7K2pP7aWGGQ9IachkfiwI0xz4jIT4vI10RkczJZREQeisjmGd/5vIh8XqSo3ubw5OBx7RpHzq5PIh7XrhXnr088LpyFYoypicgfishvWGsLbS7suEvuqeKH1trnrbWfttZ+Og7dhHjSMA+7snTZ4cmA89frgQu9gRtjQhlPht+31v7R5ONtY8yWtfaBMWZLRHbO3oPiRJN6hHDC8xBaIoPCQ4FDYIrzrY7Cnmef0pcJm+jDxHjQw0CYmiEWTbAy7CHeCgM9NlePmYUw/r6Ga0sI4z5yR8/pzX1NyN9rt/S7CO1TFA6VSihGWkbRCq5HRMRa/Q6zBATZALxrjeY4BAwmdNS87Or7vtQbTRERifEwb6NwAfIshYKILoqcREQCpFoMECIn0PR+654WZ3zrGy9Px0+9pPf82Wefno57PQ1ll1e0WOTZp5TysqNiMc2rr2vmyQ9fUx2PjSUNu9eWmtNxE7ocBtlFPWg957g3DMHZoVykSCMZ+EMOuqLHtmETCsVOUo7mZVcrIif1TRmzSlA0k9b1/AxoSn/WX8t67s/e0ewwi4wPY+CvSOB4VH/tgJbrz/hrCn+tl/U+fxwt3N7ah8ZQBy3jhqf7axyrXZsraK8221It0WMzi8XQX5E21kDm1lm4SBaKEZHfEZGXrbW/jT99WUQ+Nxl/TkT++NyjOTwxcHa9mnB2vV64yBv4z4nI3xeR7xpjvj357LdE5Isi8iVjzK/JmGH/5ffkDB3eKzi7Xk04u14jXCQL5c9FxJzx5194lIP5ni/NpfHKagnFO3Uk59dQGBAjE6TTK4aZLLtYgoTssKfh0w4kG3/8pmYSkG0IsFq+hOIIamy88oquAP/wR68XzoPd65++eWs6/vjTN/T76FL+YE81EGSg55oj5Lz/UIsb0hy6LTeLEp3DVO9J60iPkVuu2qMbvIX05xztmudW+hPJ1kpZ6Y0hinpSZJ5k4FOStJiFEqLAK0TGQQxa4cGuXve3vvHj6fi111Sn5C9efA3H0/Oo1tSuf//v/fx0vBxrWC8i0uoqRdHCuRsUanhocVZCZkaCrIJddG0vQ7+EOhn7h9BOkaIeRuAxE0u38TzKjo7H1s7fXxv1poiIxPDXBqSgz/LXLgqbxudGakD9ddRXG+8dq11//Ib6KxNaAmSk1JGxEYBCefXVN6fjH/xQ54GISHNJnzXP3FJ//Rho2B9sQz54T+eB4Nli8Qx5sH26v27e1sIkEZFRitaMLc1MsyBCQg+FR7ZYCHQa3OqTg4ODw4LCPcAdHBwcFhSXKyfr+1I96TCNmv8A4ZkghO4VOjwXQ20/ZAcb/byXYtUfq77f+YGGUvuHGiJFWA0+QIcOCw2EBw81bL73QEM7EZGVVV0p/tmf0eM10Y1mtab7SjylGEbHGtqHOI+Vhibw7+5pBsTqRrH6mR3dDTIUlpa0iKVe1XC33x3TN/mcO/KIKKUFmRMxvoaDpHUihN1eOFPIg4IP0lspqJa7DxF+YqU/qGhobkBpFKYO/vFDaJzUgkKmnQSw3/Ky7newq9t1ukoTdLt6n7soJBkct/RckTVhMc+Poe0yhv4tMNABwb0ph7qvk85T9vTMwHcN3/elXhtfO7sEhVGJG02HfejYvN1f9Toy6n3AXzP463dBfRy01F/Z1Wj/DH99CH+9e6/or01oofzsX9XjNeivVfor6Fl05wlgv7VlpTZ3dpVunfVXZhTxzbm2pM+EWlUpmF4HdOsZcG/gDg4ODgsK9wB3cHBwWFBcKoUiViTNx2GeRcjfQnPeKhqYMsHdzGihkII5PtZskyE0BiyKD3q7us3hkYZYzWpzOv72N34wHXtGw/8IrWGikm4vInLY02P86K0H0/GHlnVV+zlI3wbHet07oqFhv42GqVgpL5U0m6XXLa7se6AY7tzRohTqn/T7pKHmrDc6gTFGgons6QghcQj9jBAhtAe6yJuxqx+iqw7i9hwr+H00g15aa07H1VUt0mHDYq+stgyMhs27mBMHMkNj4FY16mqPEIUh7PzS6eq++iOlsHqgErqQPM1Bf2V50S4BJGQHKBjpJJCsRcebk29n2Xw7LVkRSSfZI3mu9EyrQ39VuxrIP8uMFoqBzY8gITw4w1/7tA0olJW60hLfelH91Qi1leCvZaVARERa9Nc31V+fW1F//fBtzUgK6a8spOqoLSs1nV93SprZMpjJxKGE9p07Okeof9LrwV/T8/3VvYE7ODg4LCjcA9zBwcFhQXGpFEqW53I8oQGoBUEqIEMifAYp1TokKEVEDLrTcNWfsqUsHkhRzJGUob/g6fZHCK82NpWSWL+hFEhmixkclI/s5Xo7d0ELbSxpaD/0QTEIVrjrDEU106FU0muoV4raCBahdgo9GWv1WilbGk+yB4yZ7++25xmpVMZhq4FkKosufGRg+OiEMkuNlSpqf5tAIhR6JgnkVtc2dAXfK+nnGbbJAr0HEfQ6cmQueDPCTRsb6Pg00qwXf0n3GyFDJAd11DrS7SvoSpQNOWd1+9FMQ2UfkqdsEm3hMzGaAXsTOtHONwlFsiyX9iRzaVTwV90mt2qvFP5aA+0kIpJCt6fgr6D4mEWTJNB6KesBPfjrMYqA1taUkljfgr9K0V8T6Lj00R1rB7TQek39bIjjBRb+ukRKUOdmEMFfq0V/ZfPqxCN1BPoONFIpLmofnQb3Bu7g4OCwoHAPcAcHB4cFxaVSKKMkkfuTpsaDgYYNQ0iFPn1bV3EtVuBtMLuqrb89KbIV+iwgoIYCioUS0CCHbawmg+rwkbnAENzOyGTmCIt3WhqG2bKGkE0UzoS41hXQIx70JVLEwsyqqVaKkqelmq7IH/SVdmE2QOBjv9nY3J43399tY4xEk32GoHUyNHUllcOxDYrURZij4GOE74OaMT6ykyJQJbhvnqDApKcZPiPM+D7oiaVyMeQvl/Q8ltghCaF2E/MlGeoxclABFqIZGbRT8gzjmS7TVTT2pk7QoKvXNCgUY42Pl9n5ZhklaSoPJk2H+/RXSLI+dVtlWHP662wWin+6vw5AzfC+sVhohAbHByhuKdf1/nvIyskCUFKmeG/zEf1VtVdy2H8FlYFBote0DH/1USBHAqyP5wEzdEREKiiw2+/BXwU0TV1tnGbFhsynwb2BOzg4OCwo3APcwcHBYUHhHuAODg4OC4pL5cDTLJPdg3GKFVOGyCrvHak28kpTU8Ra7RlhF3Js4BlNEJ66TRBDSAZpbOlAGaywpLxbkiNtClRWMipyasbqLTyCrrNFh+0yKsNytFGDHlchZcgi3Sit6/4rptiiyYNWdBSggtXXz3m+R0dj/nbeYlaeGClPjmmQOjjs6/oCKy5LJb0fcaXIPYdI8xv0yWmj2z3XAmBjdiNPe7r9cIgZhhS9fl0/H+1r6p9IMQV1tab308s0ba4KnjxByz6DdZJeT7njPsaYHhLHRa50fWUJ2+mGXoxu7lANm1Ywmvlz4Nv7Y411+ijTFXcO9b6t0l9nhZhgJ64LWMxVrs34Z/grWxqG5dP91YdfjWb9FY+8o5b6a5bodtUSUpkxp+ivZforhNPK8NeyKaYBcl2m4K/w4xEEwTroZ3AW3Bu4g4ODw4LCPcAdHBwcFhSXSqEYYySchB4hwg4KHcUQsxKEV2Ym3SzNqDes4VaMdCCGfUEEPWpErLlRSiOqaHjdQ5rPKNeKqiQpVs11oekdB7pdFQI1OXSxeX6lGs4VP6WkUHz8xvZmOrinXVSlIY2tP0J6FELwbnd8z7K8qNX82DAiJ8wJ0ztjhpmFFDG9H3amstWiwrZS0u9nSCOsbmiV7ABJXH4J1BF0xhOExyG6o5My67VahfPwUFHXREppvarVeA93IYpW05S2HEJo7RE04pdBF3l67Gim4i7PdE7t7EH73KDlH6jCk3Zids4VtsaYqY53wV9JGYACY6Wh8Yv+SoqDjlkqKy3ENMKiv4J+8eCvqLruoHv8KEd6Z1KcX90j+Kuv97OODvAZhLdKFT2/uKo2K6RJgvbzQZP0ekV/TToQJhvqeXSH+qzhM6vXPd9P3Ru4g4ODw4LCPcAdHBwcFhSX21LN8ySeiBWl0C7uobKrj8qnBAJB66taxSRSbNFkoVVMASWDVXkKZlVqulreGWkn8yBk2Ka/bQmqO8OoGO5ubuq+Kly9RjXkCCI/IegUZotkoIQShIY9pCvs7GjILiIi0Av2mL2B+xbFGtKFE8EmM+dsBSN6fz2EzgyvGRsORxQfQ9dvESmzOhIUB+kU0jQlrOb7ECdq1lHJN4RwVKbH4z2vLM0IDzFsx+0a4kJWltX2ZU/Po1RrTsf5sdosKqFVF6LrHgSdRES6HdJyOs8HoO9GyJ4aTOZ/Pmc9cM/3pTKpdkyRucTqycERqMZE78GsvwYBRcRQ0YgK60DO8Ne63uduqveT/loCfTZC9XIYFv11Y1PplUpJbZ6f6a+gcZEtwsrgETLLoK/1Nn+1yFQKMLeHeL5EMTrUR0Ua6jSc+wZujCkZY/7CGPOXxpjvG2P+yeTzZ40xXzPGvGqM+TfGmOi8fTk8OXB2vZpwdr1euAiFMhSRn7fW/pSIfEpEftEY89dE5P8SkX9mrf2QiByKyK+9Z2fp8F7A2fVqwtn1GuFcCsWOKxpO0hrCyX9WRH5eRP7e5PMXROR/F5F/+U77yq3IaNJd3ENWSYSsBB8FH9Ty7Q6KLa9CtLMqF7IaoC+MUC3BuN2mHrieR4wwfbmhdEgIcSGGUSIi5QCr1AjX+n1khaDyIYPeb97TcD6CCBTFgjxmpITFY7NQpobV/E5h8Rth2+T7xpi52nXCocwcbeYfoCHY+ouCVyIiGYpgcs4FFEwNUcSSwd4xwvTQqF0tBI0ydLdPcYK0vYiIF/LYul2p0CZOw/EY1V4JskFKKDbJoR2fQNQsncmUKIGKi3HsMnTDC3rnk/vhe/O1a55b6U/En+iXYUx/1ftMfyUtKiISspALNJngnnC6jEA3tI/YzR00J2zWqDNbhNk+RZ8pBWqPcqjb9Qfqr72c/or7DH8toYhr2Ndnk4eivSAqHrvXUyG0io+sJRyPRWBsSXgWLrSIaYzxjTHfFpEdEfmKiPxYRFrW2hNvuCsit8747ueNMS8aY15M51wB6PB4mJddB8PktE0c3ic4f70+uNAD3FqbWWs/JSK3ReQzIvLRix7AWvu8tfbT1tpPB7ONiR3eV8zLrqX4fNlLh8uD89frg0fKQrHWtowxXxWRvy4iTWNMMPlVvy0i9877vucbqUyKVwq6B5go/Jw0STBTGMBsE8pbZygEYeuwElZ9ywi9PIviAxwvQijjIxyfkVaQbk+LZhJfw8YYxQ4WYR+i/0KbqgpD7a6Gc1Hp7JCsj5Vwxp8+rvv08Kyoaf64dhURMd7bM1tYvGPwrpAWsiWK58LO3Z5hRtHp36BmSYGa4Zi0FbNh8Hk0o8kt0NzIMfcKYT4iD9I93J4t3Nh9voqikFKlOLfZtq+HsJ1t6egPJ8uR/owNHt9fPalOdOqZFVLwV1IrPn26eE3F77CF4lkFechAwtjjnEIbvBD0TYD5PypOrwKNkaK9YSlGkQ4mWyGvB/RbzUcRHuZOSP2lGcqTNCIzhgKP2WjQvvHOj4AukoWyboxpTsZlEflbIvKyiHxVRP7uZLPPicgfn3s0hycGzq5XE86u1wsXeQPfEpEXjDG+jB/4X7LW/ltjzEsi8gfGmP9TRL4lIr/zHp6nw/zh7Ho14ex6jWDsvFtZv9PBjNkVka6I7J237RXEmjw51/20tXb9/M0uhold35An6xovC0/SNTu7zg9P2jWfattLfYCLiBhjXrTWfvpSD/oE4Dpc93W4xllch2u+Dtc4i0W5ZrfM7ODg4LCgcA9wBwcHhwXF+/EAf/59OOaTgOtw3dfhGmdxHa75OlzjLBbimi+dA3dwcHBwmA8cheLg4OCwoHAPcAcHB4cFxaU+wI0xv2iM+eFEk/gLl3nsy4Ix5o4x5qvGmJcmesy/Pvl8xRjzFWPMK5P/L7/f5zovXAe7ilw/2zq7Pvl2vTQOfFIZ9iMZl/beFZGvi8ivWmtfupQTuCQYY7ZEZMta+01jTF1EviEivyQi/0BEDqy1X5w4w7K19jffvzOdD66LXUWul22dXRfDrpf5Bv4ZEXnVWvuatXYkIn8gIp+9xONfCqy1D6y135yM2zLWobgl42t9YbLZCzKeIFcB18KuItfOts6uC2DXy3yA3xKRt/DvMzWJrwqMMc+IyE+LyNdEZNNa+2Dyp4cisvl+ndecce3sKnItbOvsugB2dYuY7xGMMTUR+UMR+Q1r7TH/Numa4vI3FxTOtlcTi2jXy3yA3xORO/j3hbWmFw3GmFDGE+H3rbV/NPl4e8K1nXBuO+/X+c0Z18auItfKts6uC2DXy3yAf11EnjPj7tiRiPyKiHz5Eo9/KTDGGBlLdb5srf1t/OnLMtZhFrlaeszXwq4i1862zq4LYNfLlpP92yLyz0XEF5Hftdb+00s7+CXBGPM3ROTPROS7ItM2Ib8lY07tSyLylIwlOn/ZWnvwvpzknHEd7Cpy/Wzr7Prk29WV0js4ODgsKNwipoODg8OCwj3AHRwcHBYU7gHu4ODgsKBwD3AHBweHBYV7gDs4ODgsKNwD3MHBwWFB4R7gDg4ODguK/x8hukgQQPeVuAAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABo8ElEQVR4nO29Waxk2XWeufaZYo4bd8zMyqy5ioMskZRMy5q6Wy3BaNkwQD0YgtVogwYE8KUNSGg/iNCL2402wH6R/WDAjQIkiAYEy0RLhghDboEts2GrYdAcxKFYRRaLxaycM+8cc8QZdj/EubG+c+reypuVUbcy7t0/UKidcU+cs89e++w4699r/ctYa8XBwcHBYfngfdAdcHBwcHB4b3ALuIODg8OSwi3gDg4ODksKt4A7ODg4LCncAu7g4OCwpHALuIODg8OS4rEWcGPMrxhjvm+MedMY89lFdcrhg4Wz6/mFs+35gnmvceDGGF9E3hCRvyUit0TkqyLy69ba1xbXPYezhrPr+YWz7flD8Bjf/WkRedNa+5aIiDHmj0TkUyJy4mQIA99WKqGIiKRpOv/cZif9iOjn7/Y7Ywzb5ti272u7EoZ6jKefsxv8YfNwjEhWuHaa6H0kaPu+Dq0x6uikGe7b6rl8T4/x0OZ3+bmISIYOc3g4HrZwT7PrDUdTmUwT3hTxyHaNQt/Wq+ExfznpEuiTlA2r3+G48yjOlyRJcDzHirb35+3JeDJvx7CX8Yp9LZyLNsC5skztl6XaLr4UnTCHOWelfG39d+DrtTlH4iTWa+fnncaZJGn2boP+SLaNQt/Wcruy7xn+kWZZ+Wv5PRXBvvu4J574pEfcFGyBOcFn1Pj4XPtUtmsc67jFU22nmFOm8PxxPvIeTpgHaJ+8rpXniKK4funn42m6Y63dLB//OAv4VRG5iX/fEpG/eUyHPiMinxERiaJAfuKj10REpN/rz4+JR9N5m7fFxZEL/uzE2vQDHcww0EGuVfT2Vpq1efvZa5f0+Gpl3h5P9Ro0dL2h58myUaEb3cPDeXt/R++p3dqYt4NIr3HY7+o1pmM9vlnX69W0r5WqtqOqHiMiMhrruCWYLPzxSLHAJfFs8fqP/+X78i54ZLvWKoH8t598TkTKD+Hxa4nF5+UFgD9YlVp13o4x4eOJ3vf+zt68XcU411v63dWV9rz9g9femLcf7Krt/Jp+V0SkWW9oP2CDerM1b4/GOheGXbV9EmPenjCHDRaxEPNXRKRWVfttrGg/OIdvP9jWfiSzsfnB23o/J+ChtqVdq5VAfuGvPyciIpNE7dTH89ob6hzm60XgF23fbqg9OrgPjk+GhTfD+AQV2LWC7471GW3UdJzG8XDejkovFg/u3p+3b928N28f9vU+KngWg0Bt0WjoNdrtlXl7NMI86A3m7WSqz55IcXFPYvwNQ+VhLkShjsHr1/fflmPwOAv4qWCtfUVEXhERaTVrtlKdGTI94ZcqmahRuDCXf7FOevuJcYwxOkireOvO8KvcaETzthfo8Q/u60KbxHp8HceLiKQJf62xcKba3wYWoo1I7ymequEj9I8Lhh/o5B2M9O1RRCSzfMvUayexPmAp2lmcT1J7/FvTo4B27bRr9ujtxJ70RnXSW2lSnOQxFzn8GDfaunAaLNQdPLiVSMfAGj2Ph/Vx8/LavF1v63erteKPYzrBDyIe4lpDj9vf3tHjY8487TfnaeGtu/BmV7i0RJj3tYrOt+FYFxn+YIdh9I5zvlfQrmsrNduozPrCBTn0dT7XKjpve0Odn8Nxca7u97TvAxy3Chus4MdqkOq8HY+xIGPOV329duRzfnFAi/Or1dJna+vy+ry9iTf4eAKbYfLwRYx2HeOHnIt2+R278BLKuUAvi+Nc+mE/Do+ziXlbRJ7Gv6/lnzksN5xdzy+cbc8ZHmcB/6qIvGyMed4YE4nI3xeRLy6mWw4fIJxdzy+cbc8Z3jOFYq1NjDH/SET+XER8Efl9a+133+07WZbJoD/jClvgkDK4FiNukMAdIRclUuSoScFk2GSMmnC11/R6Sabf7Q56er0UG2K4HDdIAq9IoTRret7JAP1IQW9Yurt01eCmh9pX4+s1+qBNjFd0qbjZFU/1uCzGd6yO7VNbM5cxDG7JSXgvdo2TVG5tz/jXOlzqGvjHWqRt0ix+iSvlPSZwf/s95XersEE91HZg9LyDiXKRAaiVy1d0b8Jivy+dlig6MCLcLE5IjWGPZeJrX3kPXlPphkPw5OaEDVeRoutcq+r93d/VuUoK5egY7h8ch0e1re95spbzwb2h0gQT0BWkVqLC/lORez7sKQ1yd1v3LSwpijr2fiqgafAwVkChVEAZxSO1dz/WceYel4hIZ1X3Q9qg5cZDtd94oMafgqOvYl/k+i11XEj7EqR2RUo0MHnvwqa1trmHdxIeiwO31v6ZiPzZ45zD4cmDs+v5hbPt+YLLxHRwcHBYUrzvUShElmXzkBsPrlOr1S4cc4QJ3ESGG4kUKRXu7tbr6rrVa+Gxn3uG58Ju8mSMT+miNuQkMC6VoWfjobqMFcaa47xjUETjRN1jnEZ8RKeUt7UT0CYpaJMIbtilDd1pr+VUgl8Oe3hMZJmV4WR2LxOE0B0OdDxDn5EVCM0qh++1MIYWO/o4bwiqJEBETQpXdoLIhUO4xxurOh4B/NhaqC67iEiIfo1AYzF66tpTSsekmEcBaJ0uwsoCmPIoGktEpF5y8/lQ0uQTxC0zFDPIT7yIKBQiDHzZWl8VEZEG6I2Drs7VIcfcP54KEBEZDxmVdXxkzQDzxcv0eg3MnSooyJWmzpW93sG8zfj+/kExtDJAtFaI99cWIr9W67oeMZqmj5DJQBhFp8fQ9kl8crSXd0JcfCXEs1GaF8ee56FHODg4ODg8kXALuIODg8OS4kwpFGszGecuE1NcPbgQzZbuDBfSzofvCIuftxrY6b/61Na8naVwfRMktDC4H4EdhfR37CAncNMDUxyyChJzNjqa6Xqwv6/fj3UHf21L+7fLrC2rY0D3mAkwyVTvQQSJOSLSQLTC1npn3iadEnizcxlTHsvHQ+B7st5piojIGG7+GO71EHTRAbJw261m4VwZXNAKIhkqoMw8UGv1urqZKSiXwzEMi0icAdz/OhIzEq9I0VVCPddR5JRIMXqkiqSuKpK1GLWSWR2DlY7avoZs28lI7Sgi0gRdESJZ5ZDH9YsZwe8HrIhk+TNImoeJaYew5T7GtlJKQqlf1WeDmZzbewfzdlLIyFZ7r25ppNfVK6vzNlUDDibaDy9Vu4SlBMAxnjmDSBcfkUo+onkSUJNNzLXLlzvz9lqilAujlA4P9VoiIodd/XeBAsMzWkU/mJ19EtwbuIODg8OSwi3gDg4ODkuKs41CsSKTXMTFwB2k2hsplFZTXZPDWCkJEZE0GeE4dcPb0DqIQt2lnoJumEJESrDrW1A0o74KhHzSaVHjoQaXeizqIlWgYRGiTfqiCrGa2Kh7xsB+apmk06Lb3Gmpi7Xe0bGK8LN8RJuIiHgLpk6O4HtGVvIonwaEmJJUXdQR6JQbN9WWh6XICSbdNCBctFHXe712pTNvNxt6zM6h6tdUE7V9mIIqQUJKfwB71YpRKBlol6BCFUClViYUP0tA14Fyo8aN7zOqCjo4UXkMkBwTab/abbVxwPPmUSgFlb8FYDqdyo2bs6Sv1dWO9gPPaBtRQ4xUGZRooRQJOOtriEgCjTXoauTQFnRR2jUkaA107owSRuLotVaxHsRhMZJj2NU5MvbUZgmj34z2nfZOjc7h1TW1BbVypoiWiuPiGERV/U4YIFoF4mxMhPNOEVTk3sAdHBwclhRuAXdwcHBYUrgF3MHBwWFJcbZhhJmdC79MKOaCbCyGF250NGQohCi/iMikEG6j3FsLIYV9CFVNkWUZIDSrjgwsVkapgEhmoQcKv4uIBPh+Ai6MCZRNhMolmXJqoN8l8BCqCOGnKUKrWu1iWNFJvLdvjue952GZC6bCPc9IK9eNpsgS2xWGa6KgRlwS/KGutvGg94xO+xb7Gci6G2OPoF3Twa2GOm4TZEBm4Osnk+LeBgXSWLnFg2ATCxDwGGpKsT4Oi2tUEUZYFinrI2xxd6xzmAJpG+tqey/n1oNgsZmYWZpJfzAb0ynur9/XvQNy43Vw4Gud4vNKLj9DKG7M7EaIya22lSOOoQ3OIiYZ9qwi7PWsIfzOlMJUu9AfH4KjpnAei25xLyzJEOYIIToTs2qS3tvWVqdwber8U5Kfz/gK+n7j5sOVft0buIODg8OSwi3gDg4ODkuKM6VQxFqxOYUSMxMToWTM+DKpum1PbapwkEgxs5JCVf0+9L1Z+BWCV7W6ulX1moZEZTg+ReigRZaelxazq4ZDPa5a0YyxFQh0pQhJ66MmJrM4A2SueSgFt7Gl4kvxuHjt0IB2OaHwcoL7TnJ6wi6gpFqhH0EgVzZmpcqGCB+jUJEP9/rSulJj1i9OwQf3d+ftAKFnKy11qSfISB1BNIzvIxHuuwFd8itXlb7pQ/T7h9evF/pRQ9hiq61l2EY9pWmmDP/CNQJwYymEjpKU4Yhqg2lc1JOmCJKxx8+RIAQ9lYc5lnXFHx9mnjHIMNAEwmsj2PvyJc22vHLlSuFMAWyTIjtys6PP3+BQQwT5nGQsUQfapBIiNBFUiY8s7aAkluaBWju4qbrkISktliosFCzW805LlNu8T7ieZ4rPGUWvqN3eaOrcqSLbc2VVnxORY0tiujdwBwcHh2WFW8AdHBwclhRnSqF4xkg9D88YYjfZYvc8QjZZBDcjLOkLB3ClhqBNMtAdFi5MiIgGH99lmIBBWS1qG601IFYzKUahsBRara477YOCa48dbtAXLVQ4X0H2GCMxAlasritFIyJSwd8myBAdg2JIWHoud10XnY/pe2au690oZTQe16cQ2XdRrRgl4MUQkYI4UgOu5Qha32AxBIFJcuWyUiWQkJadPXWbHxwe6PkR+SMiAnZLhl2lddIpIh98ilmpLaugAWMc3xtodMkY879Qv09E6qBvDKJhfETA9Luqcz3I53mCsVsEfN+XdrMjIiLdgVIazFo0oKp6A7VLdUfHTERkBRRahMzkNZQ4e+17Sk/t7iqd0sr7IFKMemlhnK9uqb0PYNc3b94p9CMBndnAhDGsEeBX0EQEEyhBipcx8zYBtSslCoURKhTwC2BXRlXxOTkJ7g3cwcHBYUnhFnAHBweHJcWZUijGiPj5TjpFoHxETayv6670aoPRIsVq8ExqSBLSK6BEUMMqCtQdyRABMNhTV7QNTW3u+O/SHSxFcDRadL0RxYLjphN1DVdW9J5acMPoYlZ8VMtmVfpSkAGrl1MvewBXvSCHvOCSW0dIkkR2d2fURAO0EBM7Om3aUpMpWBleROTKRmfevgt39Adv/nDe9lH+rFZTF7wJIaBGRe29v3+g59xWezcgDlWtFpNprOi1KyyTNYW7O4LQEbXdQSukIKzCSMemYvWc01IyUw3JRhYJNLTfbg+lyPKIjXjBFIrn+9JqzWi7elX7TjplhMioGEJOUYmoS6dKrwyhkX53V+fq/QcHem0kN0WB3leExDQfSXFv/fCteXu3DzrRFt9RNzZRUi9AEthE7+Oo7KOISIIknSr0w0mh+KB3J7He56hEt04RXTRBkqGwjymi0fyHL8/uDdzBwcFhSfHQBdwY8/vGmAfGmFfx2Zox5kvGmB/k/199t3M4PHlwdj2/cLa9ODgNhfIHIvIvReRf47PPishfWGs/Z4z5bP7v337YiTzfl+b6zH2ORN1rD7rYHeh9sCpTCj0EEZHRBFEeiGIJWZILQfUWeiZTRIisIUmDkS01BPzXU3WFRuNi6S2WLKNOhoVbVK8qfdABhdKpK1VSwQ41y1G1oZ/QBzUiIpLC9R4hHMPiPjhuh3m0Tjpz8f9AFmTXJEllO6eZ9kBXrKzo/W1uaCIWq4H7peSTFei533+gf7u3o1EJDdAmoaeubMXT797OdaxFRLZBk/VipVk2L2tUz2gCl1aETJxsbOpaBxlvSaAnTXd+CCqBkSNDUGkx5pEpRaEkrD6PKKLhUG1JqenAnz1TxsxpgD+QBdn2aIb5eK6ubGjCTprqGBqUtAtKJeqoGzPEs3jjLhK3QI01QVdUfER5QBtmgnqI97b1PIepzoNnn3+20I8Ez0yKaJpKVWm9ZgM69j0d82FP1w0vxP0xqg1JQHFcKucG6taDHhPLNE5g72rt4ZTnQ9/ArbX/SUT2Sh9/SkQ+n7c/LyK/+tArOTxRcHY9v3C2vTh4r5uYl6y1d/P2PRG5dNKBxpjPiMhnRETCwFHuTzjek13rFf+kwxyeHJzKtrQri/g6PJl47CgUa60171Lm3Fr7ioi8IiLSblbsUSmiK1tKXcSQAa3V1VWzkN8cjYv0wRilxliGy/BHAi6dMeruriHSpVFImoBWBSIJqk2dyGEpWmETFeAZMQIvWiqIbqlCZzaDPCVLb9WQeULX0y9V+h5hV3sP7l0XrvYYu/9Z7j5mp8jkeRS7dpqRjfNq3DEiR3xIhfqgVqoZXcliBIYBZXTvwY5eT1CWDvRUgiiIwaHa24c8b3cAviHS8/RQUZ1SoSJFrZHxGOXScFgVyT+0DCufVyFf2usqDTRJdE41a6VEHkRgeHgeeoeUREYkTu7y+375pft4vJttadeNTtNOcjqnhuQbRhqFnrajCPREzEQ2kTHmarevdvI8PhvafhZV7LOJUmA/9qGr8zbpkNuIZvFBLEwmRbsKZGMtSqS1VjQ6xRf8cEGnudpSSmPK0nqMIkKCTgVUn4jIGOX8akhC8hEqVkP0VJIer7dCvNdX4vvGmCsiIvn/H7zH8zg8WXB2Pb9wtj2HeK8L+BdF5NN5+9Mi8qeL6Y7DBwxn1/MLZ9tziIdSKMaYfyMivygiG8aYWyLyT0TkcyLyBWPMb8hM5/DXTnMxY4yEeXB6CMlNa6kXgSo6cF1NXNzV9pAItHZJ6Zg+dBAMfp+aSCqxcFmiml77YJ/XpqaBHv+xj3240I/nrz01b4/76jbu7UE7AjKihwN1c9OMMqKMMND7zuBO94ZFt/QOoisOQJsMpkhUwueSR0qkmV2oXX3Pl2Z95i4yOihmlRO4mZT7TJKilGq/q/+eYtwC6I5srmnkQyjqlr78otoiAlUy+r7qYdzdVhpj2FcKpFIraqFkqA6zv6ffCTx1cQPMqeFY+zFBiMj4QG1Zha6GRZhLs6Qfkyb6/TDAvMXnm2uQV873II70NRZl2yRNZSenvq5t6fUK0RsVvAOiGdtiBEVm9Xkfj5TuePO1N+btH//Ic3p/6zomLz379Lz93NOX5+3eEJE/VqO7bt29q5+XqFfa2UMVny50d3xRmzVDHf8A3x3uw66glPb60KiZFNcsRht5sL8PmhSKtdLvFeWjj8NDF3Br7a+f8KdffujZHZ5YOLueXzjbXhy4sBAHBweHJcWZaqH4ni8rzZmrHWLffoTEhcFQXZ4U2g9NuJ8iInUEwq9DWyOCezfoKY1hsLPMHeT79zXSwffVpcqg5fChF16et3/ir3280I+XXrg2b1vsvN/4kSaSUOOh90N11WIkCPmoLkKJ2ymSHlKv+Hvbh4RsH3Kt0wxRLEiOOHJdF1uPR8T3A+mszJJdtnylswTSnQjEkQzyuiUpFBnB7aT2RFbVObKxpnPhyrpe7xMfe2neThBRZGp6DOU6p6Bv+sNiIk8KSssDbTKZUj9D56qBdGgNUUsGehYW56kiyaMUXCQWehiUCV5fV+qoCnf+8KgqzoIrLWVZNtcF4ViNmJCEaC1WoAlMkZKysIcHOvTDzygl8vxVtdNP/cRz8/ZPfFTbCZ5du6Nj82Mf0us99yykZXtFCuXe9n09F2zcQ8IOn8sKkgR7A71v0pkeokW6qCQ0TYphmI26zoUINO4U49Hr6zWGwyK9eBzcG7iDg4PDksIt4A4ODg5LijOWkzUS5ckPKQL7a3AtTaSuRYqknEq16I5c6eiu8woSKoYHoBwS3J7R3eQpdC8SRBsgV0EuIdHowy8+P28/c1kTCUREqkioyLCrfe3prXn7DvQeDg/V9RogsH+l1Zm3Wax4UtCQKAb2Q1FXJnAtezivBe1y+alZodnwu0obLQpZvqveQGUh5EBItaZjEyOawk6LEqhprH1/cFujR9ZXlCa7vKnX+KmPvzhvX7mMaKSBup8v00ag5TK4sYclV/sAFW9efOmvad/xnS4iinbvqmt+6yaiIEC5YMpLBdmrrZbem4hI6OvfYmhjTCEXu713gL4fadwsmhxTpdMHu9vzz4JQk15WoCHCoso+EnRERAy4squXlQK7igLXf/Nv6HP24vOayNNpq/2mkI5OMr1GExo6R0llIiLdgSbtiYiEPp53aBFNMA33DzTqaHf33rzNosaQL5EAiXeVCuZ/VFxeW6jYFSHRjMWL93Z03jFZ6yS4N3AHBweHJYVbwB0cHByWFGdKoWQ2m0tq0pWto5rM05eUojiEdKR4RfdwPEQFDVAOl1H0dHtXI0F2tw/m7Qr0BoQUCiJbOg1oWOype3zvelHfoIsg/iF0R956+/q8/WBHP7+/jR180Ac/uq7921jXa3f76s7t94uB/V3on4ygw5KCWxmCTpnmuhDZacRQHgHWWpnmrv54ov0IG6hkg+ggRtaU8nikhrmwCTrm2lZn3v74R1Ui9GW42i3YrFrVMWg09SIsJptgHO5kxY60Klf02pc0UmL9iia0DIbq7n7nm9+et7fvK2WWIeYnQYLWZKo00nBYTvig3K6656RNDvoaNZHm9MSii1V7npFqXh0oYpQU+ke6oteHVotX1CAhhVJBYtxHX9RxfvF5bV/ZgLwr5kEXcsB+hIQpFBxm5aIAEWAiIl3MkRc+8uPz9qVrGk321g2t/nT9rTfn7R/98Ma8HeHZSyiPHCktU6a0PMwx/m0bkTHNhq5NlXqx4PdxcG/gDg4ODksKt4A7ODg4LCnOlEKx1so01+P0sdPOQIQI1Xmeaunu7J3tYuREjOiMekMTHArSjEgYuXVP3ZQI4Sbra+ry/PhHNNrg2hWNaLDQ9xgc6G68iMioqy7PAcIMvvuG7l5v7zB5R787GEOy9I4eM8bnPna4+4OiW5ogKSUA/YPCHxLAsR71Zy7coimUzGYyziNk4hTyp9BhYZIUaYEwKu60N32NJviZn/7EvL2+olP1xWc1wmerA9qEFY5a0EIZqXsdg7qgns64W4xWOOwhmom0EF552nB364iSoss/2NVIlShCwW1UcUniYnQRzTOGHCqfkxBFhsN8zhtvse9jnudJPacIx9AU6YOuY6HeGKEc5UpLIWgNH5LMTRQFb9TU9n6Aos/QDQkRvROhMDSlVz2D6LVStaPNjs6diBW4EDHyoReVovMQMXX9zbe1H5C+neK+LQo2N5vF5MNqpPOij6inEOsR+94F/XkS3Bu4g4ODw5LCLeAODg4OSwq3gDs4ODgsKc6WAxcrSS5wlIGzRYKZWAggjaENHthiqNVookThjTvKS683waMhvHCTyW4VPeZjH/3QvH1pQ0MEL60rX7W5qrzZ8LDIV06mCKPaUV6LvN02tIYn0DAeD3AujMHBgXLu6winiqrFsKK1lnJs/QnEhnYO5u0AvGg155s9U1KQekykWSb9XNxnghJnly/pHsYK+OkpxMvSks57Aj4xEB2Hl15QXrIOHe6IHDpCBKMIgl6CMnZCnlaPb7WKfGUf2u67KAdn7qi9L2+BNwdvvbaqoYYJ9mpSVK6PsX8xHBW5zhSheZbbFRDG8pJ3ZpQu2q5WRNL8xgzCO4ew0Wik7QS2rIRFha4aEjOnKTNgVfxpB2GSUUX3oJooKxeGyFLGPKqhkjzHL4yKolrG0z5SKCxN1QYhyvxNsH9SRbm/AbK5DfXtUepxWtaiMrpP0u7oWtMFH37Q037sH+rYnAT3Bu7g4OCwpHALuIODg8OS4mzFrDxvLkoVI1uQrtfN2xp29dSmuhzlXxoPnwyQyRai0nStqm7V889qltezz7+g54Fe9npb3ejVln4eQFRr/XIx3CxASbYAYWK37ui5/upbek9v3EA4JGigEGXl6uj3nXt6b1tbxWuvImOz1oK4F7LNYqsu3cZ6lN/PYl3tLMukP5pRDiugsBK4/z1UqB/ATTRlyyJDrVHRfo6Q5RoXNL0xhhX9bujrMRncbj+gKJqef2+/WK5uH6GDd+5o/d/obT3vC89r1vDeHnTsWRcLlA1D1TqglEalUMqU2ZuJZnUa6IRPpzqGWR43au2iczFFjiqjWdjJoLwd7zWxeq+mlNmaIQuVIYWDgc6Lr3/ze/N2tfaxebu5omOVGYYL6vWqDYjVUV97UKQ8dxDa+vauZlxOUZrvKYiiTUZ6H+22fj7A/PCQperh2ZpOi2G/A4SL7u6pXcfQwO8jhDhLH25P9wbu4ODgsKRwC7iDg4PDkuJsxaxSK8PezCVJ4O5NehCiQfZSY6iu2pVNVOEWkdfeuD5vj0bqghzs6nk7Df19+okf68zb1y4r3VCr6fXqqA5eZXYUNtS98u56BaWcXtCM0MBqea87d1Qf+uZtzdC8h6iECqiAAJW+28jqYzSFiMjduxp9cwnRDjVkqzWZ3ZZrIS84WEH8IJhrGttU3cYuSlCFcBNjiFllSdHNrCDVcYzwpFsYw7c2dJyHA6U+nntJKY0qBMsGU42MiRBJQKZj3C3249W3buq176mgWC1QG9y4eTBvG2TgBZGeuFalaJt+t4J2WCu+R7HCfQv9rUKEeopjjqy9+LcxKzYXe6tEOp6Bj/KEoIgMbBeY4nj6qY5PGOoz99rrKjhnQTFMx3ren//5n5q3t7b0eajUdDxiq/Ngf1uv/dbNYgb3t28oddE7ONA/IHP0HvT7h6BcLO61UUdEia/3MwBV2BsUxefGoFQmoO9MoOtOpaaf21OUyHNv4A4ODg5Liocu4MaYp40xXzbGvGaM+a4x5jfzz9eMMV8yxvwg///qw87l8OTA2fV8wtn1YuE0FEoiIv/YWvsNY0xLRL5ujPmSiPxDEfkLa+3njDGfFZHPishvv9uJpnEsN+/MRKUoJNSoaDd6I6USokN1IXpddWNFRA5Q9uigq27LSlPd6xp29+8+ULfok5/86Ly9inJNzZZ+NwS1worxaVISmMFuu8EufAePxz/42z83bw8n2tev/EDdx0PsPguSchK4on6lWHrr2ac0mkZSDfpvIynFh6sXM1togXY1ovZMrNp1iPsQuMQsp1fSPJrriouIpKAieqDTvvK11+btVk3v7ydRru7pp1XDu9FQusKi4vhkpGN7eFAsqfbVb+s1rOgc2cIcOdxXF9mDnT7yYaX71tvaPz9BolHAdpGWmyLCoQlarw8XnElcXk7HhDN6b2F29YyR6vzZZLk0PKNVfXYNjGmykvs/VvsNB/q362/cnrcZwfSf/lLH/0fXlXa8dEkjUv77X1Rq5fJmZ97u7er5/5+vfLPQjQOsL52a0jHf+Kvr83YU6DGNOmihqs5hipfVQmh4Y65VwyLleYDksGms8y0DJZXBxh6ifU7CQ9/ArbV3rbXfyNs9EXldRK6KyKdE5PP5YZ8XkV996NUcnhg4u55POLteLDzSJqYx5jkR+UkR+YqIXLLWHu0s3RORSyd85zMi8hmRYjy1w5ODx7VrvRoed4jDB4zHtmvN2fVJx6kXcGNMU0T+WER+y1rbNYa7pdYaY46NOrfWviIir4iIRKGx3cNZGarNNXVFr2xpleuNFdUICLEL26wxAUMKZZ0OeuqGDSFAEFZR/gpJMzdva2LG1vpz8/YKd4DpvUAbwQ+Lbs3hoZbVstCn+OFbSo9E0H352594ed7u9/W7N/uoPp6paxdDi2E8LWojIJ9FQrh9dAFX28rldPNydh50kBdh185K3ca5y+xBryNBFEkV1cszqxSBNaVyYkGG46CLM9V+vfYtTcCoIwro1i0dzyqSgOoN7dN/9wsfn7evbOoa9q3vvVXox9s31W2PKjonPfSjXtW5sLYCKq4BXXLYIikkduC+bZFH8iCsUoG+S4Cq5j6OSXMBcZ5lEXZdW6nZOLchaROLa4dVUpA6TqODIuU5wVzY2QPdh6r0a52O9h+i6K99T5/vW3fVli+9oDRZ1Wg//u//79V5+xuvFe3aaOlaE3QQ1QNNl0qotlnBerTRhi4RIoJ8T+dgyoi1Ej3YR0nEZkOf8QnoOwstlSQtPhvH4VSvxMaYUGaT4Q+ttX+Sf3zfGHMl//sVEXlw0vcdnkw4u55POLteHJwmCsWIyO+JyOvW2t/Fn74oIp/O258WkT9dfPcc3i84u55POLteLJyGQvl5EfkHIvIdY8w3889+R0Q+JyJfMMb8hoi8LSK/9rATRVEozz89c1tb0JfcWlWX88qGujgNSEH6UtzVvnZV6RG6Z3sHGiVyHUkzodHjd3bVhRv2USW+qW5YBP8nRWRF5hUjBgKjO+f/9t/9h3n769/4vvb1ab2nzY5SRz+FSInLuIf7A233UVap6hVdqjp2vCfQf4ggtxoj6iW0s+PNzNlemF2tzWSaJ2FUI7VrFe41y6hFiKzw/OI9BSgpxVyQnV11Pw960Lup63jeeaCuaPcQyTdIlHn55afm7Yav8+77N9RNFxHZxbzw9vV6UaqPzOUNdf8roFmGQ+hkoBo7SQtKiJY1L6jzE2I8uIfURRKYn9Mj+f8WZ1dRfRU/BGUAaVnSKWMkVZUe14IuyDTRvr/4IU2+kgy2x7TY8LVifC3U+dyHjW5CY+g/fkMjWG7vqeyriEi7i1KMonN1Y1Xt11rVCJ9N2LhVgU4JEnwCH/QUqJVRSSaYUXEWtGwfq7BBRF63X9TnOQ4PXcCttX8pRXqN+OWHXsHhiYSz6/mEs+vFggsLcXBwcFhSnKkWSuD7stGZ7b42ET3QgL5IE4kBVSQ4pKXyFpO+ukYffVmlYh8cqGvyxusarfDmjzQqZGtFKYYPv6AuXKOurlOzqdc+6Kq7G6dF3/Db3/rRvP2d79yYt6mTAe9fnnkW8rDQOemgenbU0oibu7G6UeVK3xyfBna1BVEv/R4qy+zMqKO4JHP5uJglfOTJJIiaQFM8VKX3oJkRRsUpaGNEbYyRyAXKYe2yUlLtTdAYqGTeXNPP44lGp2xva9uf6Jy4s1+MmgjqGnEwfqCU2+GBzrsOJHwpMMMKPuMGQ/FAgfR0UpQlL2rQHeF4JkgamyJa4SiJatFysp7nST1/JgIkpfhoR9AM6kMiddovJkbFic7Djacwbog6SpHEZXxEStV1bNtI9pl0lYr58psaeTLEMESQixYRSVlNCFKzVpk4aSPaZDqhfgkoHjg5FjovgipgWVJInCskb8WgwFZxTxYRYi1I5J4E9wbu4ODgsKRwC7iDg4PDkuJMKRTPiNRz97mJ7D0m6aRwRxLs7k6GxR1dg0ozIVzLTk39pw+/rPTI4X2timMCpUq++arKhiZIHqhE+tu2u3swb3/7W28U+nHrtv7tJtpXX1A52Qz0wf5EXaxBpu54W9R1YsRGiOiSoF7MjKujOHMK1yuDe3cwUld9mBcczk4hU/ko8IwntdyVJj2TIkIhg3arQXRRvaFVTkRE4GnLNIO8KGRnrz2nRaZ9jG0CSdcMEQPtpkabjFG96fsHGnmSlOiHNpJmTFUjHzzMyTEkXSegNA6HSsd4PVZr0cetj0o0vik+hhVf7xtBCVKDzDB5lzSPYLLZYikUY4yEOV3SBWVZxfMagjKoIVIlKCXe0U4hChBPITMcIiGmN1DaqopBqIdqyx60bG4d6PFjjGdUsmuERLw0VRojwvM+hazt3qE+P6aj12YVselEj2GkiW/KlCd0Y0CNZUjYYUCSf4oMZ/cG7uDg4LCkcAu4g4ODw5LijKNQPFlrzXZ4N9Y688+5e97rqav2ANUtjBRdoS3s3EbQRTEoMkwNkq3Oc/rlTG/7R7c1AWDn8ED7Gqg73kBVlHKFj+tv6783L2uSSNhQVy0RRA+gYs29B3qvdyBF+6Gnn9F7YAJMWDRXgKiLEYL+Wci4haSZpJ1X5PEW/bttxebROSmidAJSQZDfZFLIsBStMO4e6FkxVj4KFgdVRGZM9XPKsvZwngqK4lKCxKBaUbtTpHIaPY2oqF3SJLBszBNom1V0Rog+GCPSwUAnhkWCfa9IaY1Ax9SQ6JQkpPiid7YXXGkpyzIZ5sWq4ykiNhJt1/BcNhCd0mwXC3BPPY08maIi0yGS6lIUap5MULQZEWFhC3QYKInqitqvsq+VqjagtSIiYmIdJN5TvaHzc/tAbR9Gen/dsa5HTL6KIZvcAV3XjIo0UohKWUPcn4XmT4Bn0ztF6Sz3Bu7g4OCwpHALuIODg8OS4uwTeXLqhAU7Dw/VjdrZVfdFEFnhldz+BAH2Vy+r+xRA9jKBK+ujiGwCzYVuV92fLtyaOFZ6o4JEoxa0WkREUiTsDKbqYrU8vXaMKjBRqG574Om1fSQujOELV+F2T4uyIZLCPY/gvo5BS0RVjbhp5wWjfX+xv9vGGAlzNz6DS80d/wC0SQj3Pyh5id4EEUkQ1Agq6pqOxmr7bAotDth7BHnerqfjMWWlpfbxtI5IMeJjt6vz8+qm6nIM+qDTMO98JI9M0NcRKEEGjNRrpYQNJHlMQb9Z6HOPMP+PPO0kKU2Qx0RmMxnl1BDd/Cruz8fnLBItfok+wLwPIQrTuaoUx+6ORu9MQUG2IlBj0AySAaOA9PMA549jFEwXkU69M2+nSCIajvV5j0Wfqwl0bSpIJswSVpVCIW5ISjejkhYKKJQEUVUBqCAfNCBln0+CewN3cHBwWFK4BdzBwcFhSeEWcAcHB4clxZly4CLKfe/uambkHsV/wO2RAw/8Ih9UW9vCYcrJhZFyUP2Rcmosz9WHTm+MEMYp+NQRhJRClFjqj7WvIiIbVzbn7Z1tvd4KdLgr4PPG4NRYcuzSpmqDM0RsjNAqSYviOCZRTo7lvSjKNUAGaz3nf08TnvRIMGbOcXvg17lvwUw+hkOuoK8iIg2InAV18OHIgGTB8wlCJmnXJsK5Wshg7SLka3Ln/rxdLYWprreRiYlhX1tHubtY5zA59GSk82WCeWTAC4/Hmr23slos00eRJR/7ISMIfQUQNjvSSFpsHmZ+wvx5rTBkDzxtyBBecMHD0oaNmWqYaxsl56oVHZPVdVWUilP9vE7N8a6KkSUIM61hnFbqyAjdKIaHrjT0Gvfv6d5IvaUc/SH0+Id4/rpj7C0hRLACQTZmkmdpUTTOMEM05HcStBFSGDx8eXZv4A4ODg5LCreAOzg4OCwpzpRCieNE7t+f1VI96KpLPYFba5C9V4VY00YpUy6sIMMwRRgPKIoUv08MYxtP1RWaQIN4CHGczFO31kOsG8WMRIoubntNyzLduaXl3C4/o5l8HrJDn3leQ9LacO14BYZbTkrCPNSkGo71vpsoqVZDBqSGhC1WzGp2zqPK6Np7ltGKJ9q/DOGWlaxIC7XgUjM8y7AcVaz972zpvFjvqPs5SpSiqCL9MgbNkmTav0ZJl7y6pterhKjInmpI4cZ6Z94+OFDXfgT6YAL9aYuMy3ZLNac31nXeiIgcQjd6ivk8AQ04ZRhbTjGkC+dQZD7JaiEoA1AopE1iamSX+sI3RZb5yxDeG5NyAJWQISywgrKHBvajcNSVLR3b3T0dv9nJ9N+bl3TuDBnuiWzbBCX0Ejw3Q+jsr7SRYYm5LZXiWmERYsjnkpSnhzGM4yIFcxzcG7iDg4PDksIt4A4ODg5LijOlUNI0lf1ct3eKCAzSJo267vKvtdXFsaVyYsOpfr+QhQX3czCGtriFMBbLNTHTEe6VR+Eh0B5+rRgNE9SO13v2Au1TBs3j1iaoEmpLY7c7Q0ZdHZXds6xIfdDFyuCzspL9SlPdySMqYOFRKCLzEAiDc7PsF2mbEOMUvkNYS+9jQs3lqVIiFbjdEul5fc5mRGxk1HmH61qDSFmWFaMmpnDbh6CCAotycKG6vgegZjhHghqpONAyVbjjQ9TcE5HEYk7VNGKDpbsyRCBp3xdrV88YqeURUaRNKLjEUnIx+m1KHAqjyCqI4BhDezvBPXmgizzox9dQZoz02wSRHNOh0hu1YoCPhMx4jvU+en21wT7pXQiI+dAMrzfV9hVkyB4OlEqzlWKGbZLp+AxA145BL5JOaZQzdI+BewN3cHBwWFI8dAE3xlSNMf/VGPMtY8x3jTH/NP/8eWPMV4wxbxpj/q0xJnrYuRyeHDi7nk84u14snIZCmYjIL1lr+8aYUET+0hjzH0TkfxGRf26t/SNjzP8pIr8hIv/q3U6UWTunTgyqsK80lVZoN3VH3sJVS0v0wQhCNiwRxiCR3X0VGyokCcClHoF+qUA7WxB076Gvnl8SPWqoyzMaaeRJDa4Qq0vXQMeglrUc9jW6gTrapBSoSy4i0mNZLbh69F5JpxyJWeU0x8LsOuul5blFpBiFwvugGxt4Zbdf/52SEsA9WWiOF2ikE0q4pRgnD1EuIUTK4hKFEqGP6+s67tAfk0pd5+po/8G83cTSmEB/GoFCMka0Qrekid5DIEMYgTJAsla1qtTYnK6YPS8Ls6tnjFTz6K0KqEnauFCpneXAStRYBNqLCSqHQ9w77ETKzeJxmIJetOhHUNHnrY6EqapfjEIJIz1uB7UHLCJGrK+01RRRKAba7FevqQjXAcqutdqdeXuS8AkXSRBZEyGyLcQ87w2U/iG1chIe+gZuZzga5TD/z4rIL4nI/5V//nkR+dWHXs3hiYGz6/mEs+vFwqk4cGOMb4z5pog8EJEvicgPReTA2nkZmVsicvWE737GGPM1Y8zXpvHi448d3jsWZdfxJD7uEIcPCAuz6zQ57hCHJwinikKxMzHgTxhjOiLy70TkI6e9gLX2FRF5RURktVWxR4ksq211QeqIPKFblMBVHk+LQe2HPXW9dvZVg6SCHWsffIrpKpXAsmYeNavh2lWgyeHBN0ymxcXqEIkdzU5n3g7hAgaMHsD3U/SjcN9w53nfZU10UirdEVxOsAE81xGdchSVsSi7bqw17VECD2kTusGMXAihl1J2tRnVkDKqAfQIx4ERLX2UNSOPlFjSKdCKHqHcGeaNiIhnYH8kAgXQqaGOThXRLWmK5BuU4RoOdUH0kDjEyCsREa+gJY9ELkRX9Lvqtod534/K2S3KrpurdVvJqSQmVTFBjslDjDwJSlRjBdTVCKXMKGxjGKmEOUKt+0NEiFSaWDcQdeSBc6k2OoV+WFBjHvRZmghXIZU6Ap2VQndne0frFkwTzOdIqS0rRS3yBOtACu16rnMRqKrsFAl3jxSFYq09EJEvi8jPikjHqDrLNRG5/Sjncnhy4Ox6PuHsev5xmiiUzfyXXIwxNRH5WyLyuswmxt/LD/u0iPzp+9RHh/cBzq7nE86uFwvGlkULygcY8zGZbXr4Mlvwv2Ct/d+MMS+IyB+JyJqI/JWI/E/W2nfdNjXGbIvIQER23u24c4oNeXLu+1kR+WVZrF3flifrHs8KT9I9O7suDk/aPT9rrd0sf/jQBXzRMMZ8zVr7yTO96BOAi3DfF+Eey7gI93wR7rGMZblnl4np4ODgsKRwC7iDg4PDkuKDWMBf+QCu+STgItz3RbjHMi7CPV+EeyxjKe75zDlwBwcHB4fFwFEoDg4ODksKt4A7ODg4LCnOdAE3xvyKMeb7uaTlZ8/y2mcFY8zTxpgvG2Ney+U8fzP/fM0Y8yVjzA/y/68+7FzLgotgV5GLZ1tn1yffrmfGgRtjfBF5Q2aZYbdE5Ksi8uvW2tfOpANnBGPMFRG5Yq39hjGmJSJfl5ny2z8UkT1r7efyh2HVWvvbH1xPF4OLYleRi2VbZ9flsOtZvoH/tIi8aa19y1o7lVlW2KfO8PpnAmvtXWvtN/J2T2ZpzFdldq+fzw87T3KeF8KuIhfOts6uS2DXs1zAr4rITfz7REnL8wJjzHMi8pMi8hURuWStvZv/6Z6IXPqg+rVgXDi7ilwI2zq7LoFd3Sbm+wRjTFNE/lhEfsta2+Xf7Iy3cvGbSwpn2/OJZbTrWS7gt0Xkafz73Epa5qWs/lhE/tBa+yf5x/dzru2Ic3tw0veXDBfGriIXyrbOrktg17NcwL8qIi+bWXHVSET+voh88QyvfyYws4KBvycir1trfxd/+qLMZDxFzpec54Wwq8iFs62z6xLY9UwzMY0xf0dE/oXMpC5/31r7z87s4mcEY8wviMh/FpHviMhRSY3fkRmn9gUReUZmEp2/Zq3d+0A6uWBcBLuKXDzbOrs++XZ1qfQODg4OSwq3ieng4OCwpHALuIODg8OS4rEW8IuSanvR4Ox6fuFse77wnjnw95JqG4WBrVfDd3x+Ug8s/1I6yPf9eTtJk2O/nySp9veE77IdT6fa5neNftvzi795nuehrefKskzbqbaL423xOT5GZ3lt3/AuRILAO/a4ONHxsDiZn/dvPIklTtLiyfQ878Gu/iPZ9d3A8TEGY8txx4njOGbf0dZjCnMFYxNP9btZqbO0qynY+PgxT1OdLxa2L1i7fJFjzvOOvuN6YYD5ZfUaSX7taZxJktpj7Zpf55Fs63nG+se84pX7e/zn5XvVv9HGfMY9Tnwcw2EzPuezdo425rXSpLg28Dk76Vnk93lLnqf/CHk9HMM1x5bGycN8znBtz2j7pGf6oDvZOa4mZlD+4BEwT7XNL3aUanvig16vhvILn3z+HZ9bOX5CFBai0g9Nu92et7f393myOfZ2dcPYxzVW1lbm7dV2a96+c+PWvH1/W8/pVaJ5u9VsFvpRrdXm7XpTzzUajeftQbc3byexGjiFsVMs8h4maRjqRGmUFsmNVb1eNdLj7uK+E6sTolGfjdk3X9f7PAbvya7/zV9/RkRKD+cJK/hJj42IyHSqNq9UqtpuNY790v279+bt0NfxCUK975UVtdn+9u68ffuWfncIu4iI1Bpq12oV7Vpd+1TV/u3v6ZhPBlormPcXT/QHw+Kh9QMuPiIV2LzdqMzblzc68/ZoPJy3dw77IiLyxs2+PASPZFvfE1nLHzPvhMWSnwd4gbEly3Ix4wtXmui8rxldjlL8uI6t2qbS0DFvNtQW7bY+01z4DvcPCv2Ix7h2dvyzaE58/nQduLSmz16A4+/t6bphPT1eRKRa0Tk8Huv6EIXap83NJj7X+fwnf/7G23IMHodCOVWqrTHmM8aYrxljvjaNj39Tdnii8B7smpb/7PBk4qG2pV1PcBgcniA8zhv4qWCtfUXy8kSdVtV6eZgl37rNCc42ftje4eLyV/za0zoH47HSIDX8gq209BfTx11X8FY76OkvpI9f3lano/2YFDvCt6dGQ7//1vaO9jXWNzLP04tndLFOoE0M3Da6VyIi1Uj7Pp6M5u0UgxVgDI7eiBfxXNKurUZkD/uzN4p6Td86QvjfBQcVr+b0PGZ/039PY31L8RK9jxrezLfW1ubt9Y6qfY6ng3m7UtfvJhN9c736tEpbGK/4KNgELj/ec2p1fevbP4RnNdF5RxToM4xCgZbzih6oj4lfCbVfdbwB7uyrJ5HklM0iIoJp1yg0Njqac+gvqRy+jRdppNKPOr5fw7xd2dA3Tg9jtbejHo0RvcZKU72hZl2ft2ZN58R4pM9bOtX2rL96jTY8M47dFFRqp6Oefqetx6809XocjynO0x8Vr12rqS2jSO+jEmifGvD2TmPQx3kDv1CpthcIzq7nF8625wyPs4BfmFTbCwZn1/MLZ9tzhvdMoVhrE2PMPxKRPxdNtf3uu37JmPmmR3EnunBiPVzgXpdcsslU3WuLvZvQqDuzvqIbG626uibDibq+U7jUT11Vl9qHSx1PcO246O4Wdsixy7xSVxerWuWmiLrBQagbVA8eKOXiB6AL4DaHJVe7Alf0oHswb5NCqQT6/XlwxLt4Zu/FrkmayU53No5+X6mcaqRjyA0gtssRDRVsGE+N2n88VkrEYHO7io2veKTHzCSsZzjcV2G5lY66wevrSrnEk+L+TDZBVA84fm5idrFBFvqIKvDgEoc67/p90lx6jF+ya0TapKZzZDDS78cJN71n8+Ck6JAjPKptfc+TVrOet0EpYuOfETojbMwxwkdECg8KN5W3tpQCSyZKOQQYzwibxY0aKJcMtAyOqYHWMbZT6EZU02eGgRBjXDsFPdtZ1TWEa1AY6rWbTaVyLiFooD7Q+SgiElWwyZvpNXyMTbOi84uRbCfhsThwa+2ficifPc45HJ48OLueXzjbni+4TEwHBweHJcX7HoVCJEkqD/ZnfAfda0ZTRIj+8OBChFV1JUVEJp66HcOhcihtuCBgU2TUVzd6FKtrM7XqyrQRqRJw1xy7zCFcNRGRGHHLMXbhn3l6Sz/HNUiPxAir9H39bh3RLHVcLyi5yG3QNL2xute9yaF+JwDFMD0Fh/IeYIyRKLfhaKyuc5xqe4jPdz2lreqVUmw7YvSjKl1hRNYk2q4i0sWDizsBNXY41vnBO2+CDolKUSgRogzSVL81ATVweUspmHas8zMENWZBq91AnoHgei244CIiBvOIkSeHfaX+YjwbUR6V8zAK5VERBIFsbqy/49w15D74iHJaBRU0LUVghKBa2k0dd4Tui60wdl/3Wj08yAb5ZxWfNtIxixMd284qojpExK8cHxkVjZloRHpLn1GuJ5wuPdhljHnONU5EpNlUW1pQLXaMnIAM79SniON0b+AODg4OSwq3gDs4ODgsKc6UQkkzK93hLDqgP9IoASYycEe+BveaAfUixR3dRg2JL4gmqBgmROi5hhN1qcfU0ujq582KusEeU3zTYjTMFAkcTAAIsNtdBf1jCveqv59bm0odhEy+KUQrFC4tIdzrtfV17Qdc/oBUVd6Nsp7L4yLwPdlYmbnFcVOvPUbq+AjtvX2leHqlNHJB1MxqoDYngRbB+a0gK2sFiRaDB4haAW01GSPSAVQMqS0RkTRUOyegyaagUCp1SCwgocggYmM4UGrr2jWVsmhAksErSUlYJLRsYN5Pb2g/sq5SREeUDaOgFgHPM9LIE2SoIZPGOs+Z8FaQGfCLdq2Ac6jhO/2xzoUEVCMTpgSp9B7eOY3Rz6exjsdwqG0TlbSLYv03U+lJETEJKSNlg+e4jwiT6YTH6/krleLyOsHaxCgUUihDUH+ngXsDd3BwcFhSuAXcwcHBYUlxphSK73vSzrUMJojAoMjVIWgMUgypKbpknZXWscetQGOg01I3jIpyvVQTDpIpdrjhJnbh5lMJj26eSDHKw2DXeAr9E36HGi4RaJosUdfc95AwEEX4vPh72xsgugJRGpe2lE7xAvQpT1agetoi4HtG2tXZOMRw/2tQBGyCbhj2dWzLXv9wiOQHUEGbiNTYuNSZt7c2lGLogx6pIHGrDR0VAWU2gqsd1opJExmSyALSAYgWmsRKjyRDStOC9kKYxUpboyaMd3KSRgBlSUNVxVWlaXojvV6YRwCVNVUeF0ZEjrSLPNBWpBGnSKiLM9BLXvF5DT0dhyloiQzPfh/JWkMkLTUjHTcfE2YgOv8LqogRkrDSYkJRwtzAgp20v4F/PKVLpcxCIhXoN2rXMCFLRGQ00v72kHgnMSNPqB4KGukEuDdwBwcHhyWFW8AdHBwclhRuAXdwcHBYUpwtB+4ZWW3NeN8kVU6U4kvUa2Ye0mhUDK+x4KA2GhqS1Wwpr9xug3eFLnAFoXU1hPsxy2uCbEivxmzGkkgPKliRHg+940MPGTJm8TmFu0hlUi97dxeVh0QkDJQjiyd63OoaMjlb0AzP+VtvwT/bvufJal4pZYSwyhh2pY0/8vy1Y48REen2EAKGEMo69hoqnl6jP1Dd6D7GoIbwsVWE7CEiTcYd3UeJTZGTLpRbAxePBLpCuS2W42N4GoXMGN7WwL5KGBWzjAXVeg4PNYOYem5Xn1LhtUxmE6+sF78IHIW9+gg9DcHtpgH4bGral7SsyYg3oeduMO4TGId7OuOh8uEBs7YRRushNDGJ9buhX6yKw/OGFI1jdilWxclEOf7eUNsZRauQLR1xr64kRpUgXHAyRCgsBNxCtE1Y7PtxcG/gDg4ODksKt4A7ODg4LCnOnEJp5RmUBdoEnsYLV7fwBWS0jYolqxJkP7XgSkUomXR4qGWnRnA/Q7htdfhLa9CHzkCz3Lx3d95OS652Ba5XDaGKE/Y3hPgS3C2WzppM1b0es6BrgszBsCjME6DvHiiYJNVr7++pCx7k7t1J1dHfK8IwkCtbGyJSrBLfh8sZF4rGot8lN3FvX4WBunsabthuIhQQrvphV0PPYjjqVYTphbj2pUtafm+AMXvr7euFfjA8tAI6LR4r3TFF+T7SKfxuJnpt36jtyTCMxkXhpy5CaSshrj3V/m5uUfRrNob+gsNDkyyT/W5OX9jj53AE4a5CqbWkOMdYRm1tVUM//aG+Q0KDSiKG50KPPWrq9SYIEaSGd7up589KjGeCbEhSQbWajrPFeTOsJ3WU5usz+5LCVJhTcanMHmnO0AfNyULp4E97/YcWqXZv4A4ODg7LCreAOzg4OCwpzpRCCQNfLq91RERkhBJGCVzcAOI9PrIQpyWX7NZ11VbGxm1BOGrnALQERGba0JleR3moKnbxX//R2/N2DOGZRrOoB54URHToLtO11A5WI35fj0+RqUY3jEXbqyUtcgo5eREyLkG7HOwqJXGU2UhhooXAWknyTFK60asoncXyUHRXTSlKgBl8Bll+RpDNmmFexKyQTnEwzUZdaei4HYCe+OGdO/N2EBbfZeoQIhqNlMqJoRsdeGpjUmmcg1mmbvRgpN/tj0Av2SL1Ua/rM0DxpgBZtWNonMf5s5GVhNYeF2lqZS8vAzdGfyM8cKuJUjlViLCthMXImuYaSwli/kGQqsHMXTyja5fUlmREbtzRNSBAfYAMNMl4WORQjEXU2VRtzCxLgzlM4TfL7GrofgvoumZD77tAjYjIeKDfj0Ad1ms6P5m13ZeH29O9gTs4ODgsKdwC7uDg4LCkOOMoFE9ajVnyCcsqZdjh9kELhKAbqC0tIpINNWJkgiSfnT2IDSXQ8kWyRBOVvtsNdVfv3Hswbw9Ah2ygcnZYlI2WGBRKa7MzbyfqccoUrlPaU0ojY/VstFmSy8+Y4FM0lwcxngQ79f2uJj6AhZBw7rYt9nd7MpnK9es3RESk0VC7roCeWl/XMayDbmBClojIFpJrAqRyvfrqq/O2H+j4NBqdeXsTCUxVzKPugY75zfua+FOpqu0bzSKV4xl1ZQPoXKdIGJlijmSoOM9IgoJgEmgyHwkw07joKtchYsTyahQzO+xpUtdgb3Z/pCIXAc8z0szL9o0hMpZAD3yISAmLebvSLs7VFPTDAalNJN34sHfIcoqgEm7d0WeUYmdtiJ1loCFWmqgqLyK+gK4AvRIhumwUU6hK58X+oY55MkJ0SguJSYjw4vMpIhL5+rc6aL0M9A+f41ajGHV2HNwbuIODg8OS4qELuDHm940xD4wxr+KzNWPMl4wxP8j/v/pu53B48uDsen7hbHtxcBoK5Q9E5F+KyL/GZ58Vkb+w1n7OGPPZ/N+//bATJWkq+wczN6SGiIom3J8mS00h8KRS0jquPqt6Gt/8trrXD7Y1eadeUxf58ibcHIR23Lxxc96+i4iNoKquvIdog3Gp5FFUZd+praGuUA36CB70HvpIzKAe8e6+uvnjqbrdQb24sx/V1XxkIibIWooC7V87pyd8f1tkgXbNskwGedIOq7ZPYyZaQLtmBbrRYVE3mroQo7GO9e6BuuphAC1sD4lRmVIPO/fvzdvbuzqeuxMdzxdeUj2RJAEFIiIW7nxntTNvm1T7G/ug9aC1U6BEkOGTwb1m25QeQ+q1cK6y4nnvQLmxwXB27VQphT+QBdg28D1Zb83c+JqvFBijUDxQVRNQhWFQfF4jJPIMcR/xlOX/dGyvXtGEqz5ox/5Av7uCMnYWOuEp9P7bSMKa/VH7GyDxy8egH/SVKhkNkAiHiJQKtHaoGc4ks2lSpH1XVpXOqWD9uw+Noz70clZWivTPcXjoG7i19j+JyF7p40+JyOfz9udF5FcfeiWHJwrOrucXzrYXB+91E/OStfYov/yeiFw66UBjzGdE5DMixaosDk8k3pNda5HbSlkCnMq2tGu1cqYxDg7vAY9tIWutNcbYd/n7KyLyiojIWqti7z/YEZFSwkdHXYUUXEADxwQlV7sGOmF792DeHo8RkC/q0vWwg1yHJkWvpy7SXle/2wmVyhkOEcBfKtHEylF97Mj7SBiImBQywA4+omdsjDJQSCqoePqj1yjphlA9tI0SYgfewbzd6nS0T7ksrjmFnuyj2LXTjKyXlw5LET0wglZIt69RDOtIXJiWIicyyAzfvretfzDQu0EUiqSgLpBwY7HjP0JiRwa7sGJ8aot6JIIolAw6rlPMrxrsQQnSAfRcQthl/+BAr40IliAsJmj50OHxMcEO+6DvMj2m1Zoluvh+kQY6Ce9m28Lz2q7ZVp5Qs9HSZJoK7Fer63OyA3uxcr1IUe9lUCg/h8icirZ7hzqGD+7f1+/i+Wl1dAyGA+ru6DFRFSX6RGQ61nGvR4iEQxnDxOr3LaiVFujdWp22137wJdUrPWdMNNs70Lk6AO2YQFclleKadxze66vTfWPMFRGR/P8PHnK8w3LA2fX8wtn2HOK9LuBfFJFP5+1Pi8ifLqY7Dh8wnF3PL5xtzyEeSqEYY/6NiPyiiGwYY26JyD8Rkc+JyBeMMb8hIm+LyK+d5mKZtfNqzpST7Q7UNYxQJaPaVPczLiU7dA9Q7QVuRwh3tBZyx1ndlMuXlP5rr+g17rym2hj93oF+N1CKxy8l8jBSYojKIVVKv6Lqz2CKhAhoXQakShoazZKhSrXnFb1eJm7EqJC+1lHXkJEq4yMNFGsXatcwCOXy5pXZNRClEyOLqAJ30oOuibVFXZb+ANQFaBODCkdXL23M24Ho9T7yskYuMJrJvKFywNfv7MzbvS5otZLGDavG7yKKxRdUT2kiGQeZW31UH09H0KLh6xLK13RgbxGR0KgLX4dE8aFRuo9JHkc0je/P7nNRtg0DX66sd2ZdB5XTQGRHHRRKExRBt6t9FRG5fv36vD1B9FUdyVQtUEd722qn/T2NLBsOddy6qFZEmpJPSffwUIgYiUNDo89MA89Js41EKkQRJfb4aJMUz3EMu5aUpwv6Kd2+zgsmC1XAi2aneL9+6AJurf31E/70yw89u8MTC2fX8wtn24sDFz7g4ODgsKQ4Yy0UX5q59shkgggAaA/41A+Aex2nRVd7hKCBJipweEh8uHJJqY+nNtXl/OhHnp+3E4vd/I1n5u0xEjNS7ERPpsWdfh8yrp6n10BShaQpitmCFqpUNJrCIoyhgp15JkpUSuF6KRJl6oUdb20/gPt/lCSQLlh21Bgjfh6RsQktlCrkQcNA7WI87LqnxXtixEiK3fk63Ov1VR3DpzY1meOTP/VhnFdd2TTQ+fHyh16atycJo2RAdYjIBDYrJnJp/3pDdc9DjH8FlBnDlEzAyAWMhynObVb3GY6UcjOgATc39L4HOTVGd38R8HzVLjJIVum0QU9hngegoVbaxQSaV1///rw9RBSKZ3VM9nY1iuX5pzrz9pXLm/P24I7aaYwkmyhUGqqFSJA2qv+IiLSbGk3TQqJMAxWfkrHSYW+/pYl+E0hajxApNoXU7hiVuMr2mEBC28N4MqkxfcRqWe4N3MHBwWFJ4RZwBwcHhyXF2VIofiCd9kxDpxYikgDx6pT7ML66+jYpuiPTGJUruupWXVpVV2prQ129j//EC/P2M9fUJeshoSKq6fF0ZLj5fFDa1bbYjn7uxY/M2ymq6nR7uot+94ZWEXn7bY16QX6IxDGpI3XJKhWlJ0REKnV1vVjg+OYdjbrYh8zpEXViH81LeyisnenciIj4AaKAUGy6iq6PEKXBaIzZv6H3AfqngSiDpy6pjT/5iRfn7Utbqs9EzYyXn0OFHEYVMBKqX0z4uL+tySMvfehj83aM7xz2NVJi564ef++uUgHDCSMU9B7akFttNIoRMBYUVwKarNFWOqCPJKR+Tv8w4WgRSOJEtndm99hAQpIP3RGq83iI3JFS0plQD6hAH7Agufb/xRc1oujSJS10fu2e3rePhaO10sDnev57d5UCERH5uZ/7OT3Xs8/O2ymS/g62VUdnACni+zv67AdIFFtBJBths2IYCgs795AcmEImegC7xqeonOXewB0cHByWFG4Bd3BwcFhSnK1ajRGRfLe+xmgFBK9XqtTSQCSAKf7WhAK9AuwCN7bUzfzQC1fm7ZdfuDxvtxkJUoUr1GYlDh0aVgy6lRU1HjxfXbfLa7rDvXpJowSGwwP9wlS//wDVYRLsXnuQoaSuw3BYdMmyE3RHhkiUCCrqnh85cKfRQnkUZDaTcb7DHtfUJR4jQmHap7QsknVKXmIDVZieuaRU13pLz/s3PqZ02MvPq3vdgixxrab32GhibHHvMcbv9u2ixk3Nf3refhbSphtP6fW6faXGXoOk8e62JghVrLr5CWw0nkA3JyxSHyx4W0XCDmVxdyCvO8ylfBn5tAgkSSLbO7N7HCJ5Z4gQsKdRhDzFMzlhKSgRWVnVZ2M8UuppY02/v1LXcfjQyxoRVgevGlSV5gxBSdRq1CBhGE8xoSgFRWGRWHPpKuRyoYXyzNNqewPpYkrOhoiQYhHqZFqcU9RMMZnOHQvaMUV0Xj0q0VDHwL2BOzg4OCwp3ALu4ODgsKQ4UwrFZlYmOYUwnkAy02cQPZI8kOBTdrXb0GD4+I+9PG9f3VJX78c/pO7P5TWlbGrQnmi01T0bIYA/TY93uye9TqEfvb72cYpqGr5okkAT7l0TBXJXO+q2xXCpggiREpBXTUq70jESC3wfBZxBm3iIfLA5FeR5i034yDIrw/HM9esNQFEgmabR0HFmceZqvbiDH0Pu8+WXnpu3n7/WmbefuaoRTBuIPqjDrmED+hIjFHmGi9qA/syopEdyQJoHtBe8ZVltYU5VWWhZ+zTaPz5ywUfC2XRcTA6b4N9jUmNIIkoEcsW12fUWTY1ZETkKiBlArtVDREnW0j4xOYmRVCIia6hq9NYP3tZzoWDxc88q5XnlMigNzO1qRdsBEttqkLgNEIVih7oGiIiMoNGy90CjTbxIx7mK54/FktdW9f76EyZx6fmbFT3eVoqUVoZFbIJ1IEPB9WSibSb4nAT3Bu7g4OCwpHALuIODg8OSwi3gDg4ODkuKM+XAM5vNSyvVkYGV9KEbXWG1Zwg5lbnSkfJJW1uoNP6Chp5RdKdW0++zqrYY5JJhNEbI0GRZq5V2MRtyAN6bwlHDVDP7nntG+8Q0yHa7o8dP9TwBwiotMhVHoyJXmuJcuwfK7fkJOEpWAJ9nYi423CzNUukOZvcbQ+zrWXCaxtcxJ586ZFamiKQTHfcqOONGSzXcyQ0GCLlL8DrCquipZUgohMLAGTdbRb6xiwzWvcODebtyX8d2bU3nFLWfN9Y11DBBqGKMLNNmrNcbT4qhqVNkX07B/0bMxEWJwaNs4HIJr8dF4AeyupKXa4MWfQvPomGpQzbTYsirl2F+U0wNYbIvv/DUvN1EGGi7qfsTK+s6BlOUbYtjnVMsXba1VRSzuntH+3ETJeC++uq35u2PfPi5efvBjmZi3sPxSayhlCsIbaxieymsFedUDLuOECKYctw6eq5p7DIxHRwcHM4t3ALu4ODgsKQ4UwolzTI5HMxc5sFAw3CuXVWKoRqoezZEduJgWNRrTqbqhlXg3llPM76oxZyh7FoCfW8/ULcmgra3AbXiwSXr9YvVyw/h/t64rS5WFqurtr2truH+rlIdXYhwZZYayRA6qqj7WC/Vc+N9jFGWroYQpclEwxOz3IU3slgKxRgjfp4VF0Q65n1k7E1QEm8MIZ+CUpiIBBCbggy3HPQ0822IMR9CBaxRRWgdQtpSZDoGITTYMQw7pVeZPVRRv3dH6/++dfNH8/YLz2mI2mEXIaS+joEf6EVqmNshKKX+oCikxQzRLNP79hKdFynDbecZmIu1q+d50szpixaE06jNXoXsd1G7vIhVhJF+7CMqQHZ5ozNvX9nUdhO2bCITc4RJESJEtnsI7fimzv+gVnxmbtzR5++H9/X5+/5rN+bt23f0Pg5BTU6nSve99BJ0xXENg7DPwBSvbRkOiSzSFPauIQR1e18p2ZPg3sAdHBwclhRuAXdwcHBYUpxtFEpmZZSXKmvV1BWaJOpCWESkDCE8k5WEenxkg1m4yHeQXXX7HjIdUSLtMjL5WoiGmU702lHIoUEkwagoUPPmTdX0/sFNFenxQQ1cv65usIHgT6ul99BZUZeqhVJrEegbit6IaIk0EZF2Q3evx9Cs7sB1razNskOj8LosEp7nSTWP8mHJuS7sF4L+iUF/lTWTK/A6LYTDbt/VcXj9+3qvg6sa8fGhmuo7B6AukomOU7Wu7nWKTNbhQZEa+9YPrs/bdx4czNstZM3dvAlteFBg4um5KsgcrIFaiVBeLWwU36OGEIIacC4gemoI2iXJ6Z7yWD4urKj+OUt9WWTyjhFZQZrMeEX6oIWs1fpzGhnSaaLkHKLOPFBMMaJWjK9jUwWVk6EkWoQx9xgaI6KppSLyrVdfm7cHfZ1ryVSf1wmoNGZoViK9Hx/jkRjQvhDjExEZgvbKQDKliNhJM70eo2xOwkPfwI0xTxtjvmyMec0Y811jzG/mn68ZY75kjPlB/v/Vh53L4cmBs+v5hLPrxcJpKJRERP6xtfbHRORnROR/Nsb8mIh8VkT+wlr7soj8Rf5vh+WBs+v5hLPrBcJDKRRr7V0RuZu3e8aY10Xkqoh8SkR+MT/s8yLy/4rIb7/buTzfk2ZeFsqAljhAOatKhKrkMfSkS8kOhUSNVF2TG7d1p7gDIZo3sS3+Uz/50Xn7pRefm7cHoG9q2PlOEbSfjovB9d/47vf0PuAxraI8mw93KUAF8k1UVKcwkg9XNGCGiFd0B0O4blWUl/IRXmGgfX7kBhtZrF3FmLnOuw+Xf4xEhATZCiNEoURh8R0igxazATWGymTyl/9FtbfXkFi1va1RBU+BJrt0SYXFbKJGGqHs2p37Gq0jIvL1V9WuxugY2paea29X55pndO589KNK66xCVCvIQKGAootLCThTiKq1EZXQQ4TDRkc/97ycGvvOXbF2vDC7pmkm3d7s2YyQXGYwJ1OrNBkpHmuLc3UCmmAA+oe0yYPdg3l7c02jryoQtWuuItGP9GKiY2ZR2m2CpDEREd/os3HzlpY3TERtPAl03kaBUjOVUNujEZ5LCJ+x3NwhksFERHYhbEaKyZKeEoionYISeyQO3BjznIj8pIh8RUQu5YuAiMg9Ebl0wnc+IyKfERGpVcPjDnH4gOHsej7xuHatO7s+8Th1FIoxpikifywiv2WtLZS5sLPc7GODUK21r1hrP2mt/WQU+scd4vABYhF2rURnuhfucAosxK6hs+uTjlNZyBgTymwy/KG19k/yj+8bY65Ya+8aY66IyIOTz6A4Kk/mYzGfoIQY9cDjyclaABmpBYF/XVfX8tuvqu7wsKvu7o0b6i6vdlQDQRAh8tGPPjdvv/ScanrcvVcs0fT9H2oCQD/WN5ZnoYdBN7hV0/uu1fRzgwSWzOq9jTk2aTECxuK4KiMc4FqyJJvJjz+61KLsaq2VOHcjA1ybSTNBoO0q3GZjivcUMCkLkUfdvs6F73z9zXl7taVjePOWuqiVEJozK3rtv/u3f2beXm9rAtl//bZSJiIib719d95uNZXq8mK1Ux0hM5trsDEigmpIDkuHeq8+5m9Weq/hWxWpMVuBhr6ArsgpuqNoiEXZNU5iufPgvogUNbb7A+17ewVJM1hOjqiXIxS1/RFVMtT5+Z3vqV0z0BIV0DfPv6Cl7ppNHefDQ71erarjbJMi9WqhqX/vng7BrR2lWl7c0sS79ZWOnrei7W5PacBDy/J4OgYH/WIUyt6hUnwW0TGMlAk80jcPp1BOE4ViROT3ROR1a+3v4k9fFJFP5+1Pi8ifPvRqDk8MnF3PJ5xdLxZO8wb+8yLyD0TkO8aYb+af/Y6IfE5EvmCM+Q0ReVtEfu196aHD+wVn1/MJZ9cLhNNEofylvFPa4Ai//MhXPPLfEVFhUVYpjCAbi91k7s6KiAS+/ttgt3YAGdj7N3dxjLqye/tKrYyH6nq1VzRRJoEL1wHV8cNb6lqLiEyQDLK7dzBv11J1r/1NvdfVtobfDuE+WiQY1CA12R/qTnZ/UNzVblTVfbXY5Tdwd4eQoDW5i22tXahdrVix2az/HvQewkJVbXX2PCRPUWdGpGBysWM91607mlzho2xVbUWjTQ7h2ncP1PYNJMr8LCIBalYTSl79kUYkiIjc3VN3d9DV80bQIwk3NSKlCrniMWjAAAld1F4Z9Pv4vKQHg+giQ/ca9FtcSPIoRBctzK5pmsl+rtdTReJdA1ROBdFa01Qpg8GwSF1Mp4jUAGUUI0okvaH0ZDLVMb9/+/68vbWhGiQRkqpu3bw5b6+tawTL3/0ffrbQD5YlbENu2hyoze7vqAaJxbLTqOu83T9EUtX0QO8HX0hKBAdL4vFPFmuNSVDyLzrJjMeexsHBwcFhmeAWcAcHB4clxdlWpbdWJvmusIeA+gpcbR+77gK9ExMUt+pD+GF2qucaD7Q9QNLNU9DMWMXOcoqkmYM9lYPtQQr11g114d68VXS1I0hXhtDT6MFFbkHeNUnVbd+DVKUHWdsAEToD9GNUcksDX13WCsaHUX0ZqsAcJQwwcWAR8IyZx4IHhaQUdYM9nxQPInHqTSGmoEGorUGXfPOaRo80W0yYwhjALpVA3dJbN1Sv5tbboEniYjRMrVBZHvouh2rXtY666qzatLt/MG/HLaVWmJdBKeGgpBtSAzVg8JxM0+Mjkrw8ecQuWibY86Saj4PxdVJZtPcQ3RWiOtIUejciImMkIfmotBR4eh8hzvv2baXMvv+q0iONutIbCRLFLKSVtyDt+93vqfyviEiGSLEOImg2UDRrcP9A7wNRLLv72qfNLZ13pEZ60N2ZlvSbMJ0L4xlgLUuhveJTT/kEuDdwBwcHhyWFW8AdHBwclhRnSqF4nieNfLeemgSBz113BPAjUcKPiu5EALnJCdy1PiQc6211X1e21N1NEfGRws2vQX9hysiWQ3Wh7+6qCy4iEqFwKeUtK3B/+gNW3tEM5v2efj6cwqUGpRTDDStLIxhE71QxhjUksdQQMRAdaTmYh+9uPwqMiHh54MN0Clc5QAUZJB3RdmUwqSHNoIuDhJ+tpzvz9qCn9i5ImCKYqYHEmulQz3l9R22ZlvRImoiUmVR1nDOMeZLqvdKWKRIf9wZKMWSgOPrQ3aG0rIhIBdK7tQjROwbzlvobuQu+6GLVYkRsPi4ZKyVREwQ6QWRNrC2OZwaKiVWKPNz7CMk+PVSYyiCjvLKlz89KW+nIMfRjUhQUf/tWMV+pESo1FiDkqYO1ooaooJqP4tO4xs6uRjmtbEDeGPdACWsRkSlkswXUZqutfRpjPRqfQh3YvYE7ODg4LCncAu7g4OCwpDhjCsVII6dFJnAv6A6yqkgCF7oG10dEJOMmNzzHTPS8jVUUsPXhfmLHOkN0hM2YLKSu0y7cuUtXrgixnWhiyLSjrlQ90P5Sh4XFmVugSgbwP6dDJHnI8doiIsXiuTzvSlW/M4Ka5lF+CJMZFoUju9GNDyDFWUVR3IDRCuNictKop/RDlmnnV9ZR7BqurAH1kWJS9IcH83a7rslTGaVJN1TjpK5DLiIijX2dR2tPqas+6kIKFXomY1bRQTuGVHKBUoJ77JciYCKPMro6ns0a6DCMLTVxFgkrImn+cI3xvDYaagtSIGRwogo4LBHx8VyTQmFCnkUC1BTysDVQDLWOzqMpaDVb1XNGvkaXxFIqLIwcpxefvTZvT24dzNvbQ84vPe9qR+dRHwWcVwzkiiGjOxkVI3EyMJfNtt5HC5LITOpKUpfI4+Dg4HBu4RZwBwcHhyXFmVIoRowE+W70kIVK4dZE0Fyo1NUNC8KiKzTuUzdBXR4P7mcEfQpqMXiZ3vagpy58kup5xqguMkUiDt1/EZFmVc/VQ8QA3evNS+qqD8fqenVCjXoJQRGNpkrZTCC9mY6LEp0tSKlOQCvUQ+0vc3b8PJJgwbEK4vm+NFuze2Eh1hA2ywoREjo2lGQVETEYd7+m7QSu7BD6Gah7LCn0M4ZIHJlU9fgedG2oVUHJUhGRKmw5RgWZrS3V4uj2Nank6rPqXvdidaN76GucKg1RoJeqxSS1wVT5nATTjUENAZKhqnmE1mkquDwKPM+TWv4MotCMTED5ROhHEDI5pTiePsY3wNiGLF4cI/JEdNxCUEc+mJkpBoTU3SHs1QiU/hIRabT0ek1EkK21dN3JJjpHbKJ9XV1F8s5A15MBaLKYpaNKD1oT0VDtJoq6I3KuB+0j8Yo01HFwb+AODg4OSwq3gDs4ODgsKdwC7uDg4LCkOFsO3KhYVaNOgSfw1tHx4VHGFkNymlVkSIED31jVckhjZK4lY23vbR/gTMrhhSjiaiGktQ0N6XEpi3Glqv+edpiV2dGDGCaJ744mytMOB9oeIVvQIsOy0SpyYp1V5dD7+CkeYzwZr+bl3HO6aBJ8pgguIkXem6GiA2QkNsA9djAPREQ6TeUfWXZvzMxd7GEMuwjfQ9jh2rr2g2Fv+yj1NQZ32QyL/PEqwrykgXJwCOX0kaU3QZZdmmq/M8s5pfdArrPaKI7BAKGVzASMQUQzszXONaTT94EDb+Thn+S0DZ9L3JOPfQqxxdBID333IeQUgjdPPL1vD/YwCPWdosSgxTiP8fz0ujrv7qf67IqIVPC8jxF2uhLpNRqXsR8Foaos1n231RWdUwn28ForyrGvrBftajz9G7OMR9gnsdzzsogBPgHuDdzBwcFhSeEWcAcHB4clxZlSKCIyF1JiWGBwgts9hitZrxbD99qgUFaoCQ2XzEOWXoBwv63O5Xl7hFTF1Oi1qa89PFAdYKmUKRQ9b+OqZmTdB01TR+mzDNXEWe5sjH5QV5m0zuZ6MRuVlbh8ZL5lcOdZrimbu4yLFbMSK/M0PANXuRjmpa6hhRucTouZmBnC6zLaD59XIGzWuqRjPulQWElDsyKEmFGQyKLqd7tSfBRqTyk9tbOn5wrwzuMHatcusm17qEZOPXcPlNDqmva7vVK0K+nCKUL2YmSRBseIwS1Y5l18Y6SRZwt7BQoFYlQIl81A3Vmv2BkPYlYMd5xMdHwSzItKhKrtWB9iiGpPIAgWj2DLVmfe7qwWaQwmN6YxaKwK7Iq1JkTI4wT1Bdp1tRnn7ADnNKUxGA6QfY5nNAxBKeq0k+wUBnVv4A4ODg5LCreAOzg4OCwpzp5COQK8A4Mq3DFcxqTgahe/nuKnJ4VIUMyNcA/iP3CFasjQtMgKnMI9ozBSs6PZXLY0YtR4nmB3vtVSt6gBPWMvAp3S1x3yFza15Nt4qn3NoICTgRYQEbm7rdSOQcYZq3VHoJrMUV+9YubfYpC78Rg32pJKRxFEuMKSDjfZnTHsYRENYCM9V1hXg1Crm9E3KWx0ki3TrBjlNKKQGsTB6hBvygxKiw3VNtU6tK+rmqEZgaZZWQUtUBIX8yKdn6nB9VDeKwPNEuf3umgKxYhIJTcI2QAP9GKCi04YTeYX51ilgjmJbNsAz34V9+RbnbchsrMzUHQVRH35MCZF8MQWNbkNKMXWitJYPiibFH3yGWHSYOYusrxx/hiZ4GlaEilj6UjQaZbr3xRrXvpw0bmHvoEbY6rGmP9qjPmWMea7xph/mn/+vDHmK8aYN40x/9YYEz3sXA5PDpxdzyecXS8WTkOhTETkl6y1HxeRT4jIrxhjfkZE/g8R+efW2pdEZF9EfuN966XD+wFn1/MJZ9cLhIdSKHamEnO0xR7m/1kR+SUR+R/zzz8vIv+riPyrdz2XaOVsVtD24KbESVz6Rt7RkkvG6ucGyTUsQWYhrDTCri/dIrpbhVJrcOXrpFxMMVmCpaYYgXEpQsVyuHcs3dX0tH/WokQWysrFCaqSJ0WXrF5ROmYEsa5hX4/rwsUNcqopTdOF2lWMVmkbT3hPoE1Ac4WIaPBKiVEZbENKoPCmgSgGgzlCIS0LCiXD1AkLCWQ6TqZUso8pU1s+ynAZpT5SUFExaJ3VQKOi0hTCaUPt3xh60rfulsr01Tfm7SrF3RrQnWZCyxG1YryF2tWISOS9M2KJSTmmIDKnx1JsS0Qkgz2GKDFYwXNdw7yI+HwXKD8mBEHQK2R0lz4Lk0mRhuB0q9LmuATvr4IIk+mEtBVKHaKvISi2wC8urxzJEfT/J3hmEiTynKZC3qk2MY0xvjHmmyLyQES+JCI/FJEDq6vOLRG5esJ3P2OM+Zox5mvjSXzcIQ4fEBZn18UXiHB471iUXSdTZ9cnHadawK21qbX2EyJyTUR+WkQ+ctoLWGtfsdZ+0lr7yWpJOtThg8Xi7PrB7YU7vBOLsmslcnZ90vFIFrLWHhhjviwiPysiHWNMkP+qXxOR26c7yex/pkCbHF9SzYe/E5RcObreLJNEgsOccDxdG5a/svDZp6Axkgza4NNiOEwAl5zlz+gy+nDDEkRKRHA/GYjgoVp2gPJTfkkTPULkRCWC7kvyzggFEZEkb5ed4se3q3IoTMQSROVE/vGRB6ZEoSTITiI94sOtpd5KDNqrqIeN+4YvmmI8+n1NumiuqWZ76eviGzVOpar0SK+QCIJkNCSndLtKF2R43KhHs7qikSoiRf2Nfhd0GL5TrVbe2TbF97HHtasRfQazgv6JHsM5HAQnLycjJOUNR5r0FOM7Aegilp+LQX+ysHtsEJVT43MIe5doiAkiO4IY44XwtRhzcIIolsN9taWPUm0WdFGMko5lGmmEZKND1CHg+sdonXINhONwmiiUTWNMJ2/XRORvicjrIvJlEfl7+WGfFpE/fejVHJ4YOLueTzi7Xiyc5g38ioh83hjjy2zB/4K19t8bY14TkT8yxvzvIvJXIvJ772M/HRYPZ9fzCWfXCwRjT7PVuaiLGbMtIgMR2XnYsecQG/Lk3Pez1trNRZ0st+vb8mTd41nhSbpnZ9fF4Um752Nte6YLuIiIMeZr1tpPnulFnwBchPu+CPdYxkW454twj2Usyz07LRQHBweHJYVbwB0cHByWFB/EAv7KB3DNJwEX4b4vwj2WcRHu+SLcYxlLcc9nzoE7ODg4OCwGjkJxcHBwWFK4BdzBwcFhSXGmC7gx5leMMd/PNYk/e5bXPisYY542xnzZGPNarsf8m/nna8aYLxljfpD/f/Vh51oWXAS7ilw82zq7Pvl2PTMOPM8Me0Nmqb23ROSrIvLr1trXzqQDZwRjzBURuWKt/YYxpiUiXxeRXxWRfygie9baz+UPw6q19rc/uJ4uBhfFriIXy7bOrsth17N8A/9pEXnTWvuWtXYqIn8kIp86w+ufCay1d62138jbPZnpUFyV2b1+Pj/s8zKbIOcBF8KuIhfOts6uS2DXs1zAr4rITfz7RE3i8wJjzHMi8pMi8hURuWStvZv/6Z6IXPqg+rVgXDi7ilwI2zq7LoFd3Sbm+wRjTFNE/lhEfsta2+Xf8qopLn5zSeFsez6xjHY9ywX8tog8jX+fXkN8yWCMCWU2Ef7QWvsn+cf3c67tiHN78EH1b8G4MHYVuVC2dXZdArue5QL+VRF52cyqY0ci8vdF5ItneP0zgZlVKPg9EXndWvu7+NMXZabDLHK+9JgvhF1FLpxtnV2XwK5nLSf7d0TkX8ishOjvW2v/2Zld/IxgjPkFEfnPIvId0bouvyMzTu0LIvKMzCQ6f81au/eBdHLBuAh2Fbl4tnV2ffLt6lLpHRwcHJYUbhPTwcHBYUnhFnAHBweHJYVbwB0cHByWFG4Bd3BwcFhSuAXcwcHBYUnhFnAHBweHJYVbwB0cHByWFP8/i6icfZ2ekbYAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 6 Axes>"
       ]
@@ -474,14 +483,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 13,
    "metadata": {
     "id": "ebK_OgcIvXX8"
    },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABfmUlEQVR4nO29WYxl2XWmt/YZ7xw3hpwqs8jipMmEWmzTcgstwIJoAUK/UDDahGS4QQEE+OIGJLgfSOil3YYboF/U/dBAGwVIYDUgtJowZZAwZDQIgT3IBiiW2FKTLIpkcShWzhkZ4x3PtP0QN+/69qmIjCFvReaN2D9A1s4b556zz1777HvWv9f6l7HWioeHh4fH8iF43h3w8PDw8Dgb/ALu4eHhsaTwC7iHh4fHksIv4B4eHh5LCr+Ae3h4eCwp/ALu4eHhsaR4pgXcGPPrxpjvGmPeNMZ8dlGd8ni+8Ha9uPC2vVgwZ40DN8aEIvI9Efk1EbktIl8Xkd+y1r6xuO55nDe8XS8uvG0vHqJn+O4visib1tofiogYY/5YRD4uIkdOhiAwNgyftPXl34hBGzD6LytH/9CUZXXo90P8q+QPVWDQ1Hb4pHO1dlkW83ZVHt2PI38M0Sn3ejoGSaTXy/Ic/RYcr8eIiNgKbVvO23GsxwUBx/agPRhlMs0KZ6iBU9u1kca2227M+qEdrthB2M9gDNhmH+vnOuqY+vefoCx1PE5il6POI+LOPZ7rqO+4xxx+Dec+a9+vKh03dv2o7zz5dDTJn2ZXkVPaNklC22rE7/yDc3H0ifda+0rAecxnH+0Cz5kzJhgEPj98jgnnU+seQ9sEeP74nFiMf1lhPjvX4BqC8+P4ouQ33GtHsS69tHeFeUvsj/JNa+2V+ufPsoDfFJG38e/bIvJf1w8yxnxaRD4tIhIEIhurB5dsNpvzY2jQKMDigwWrqGo3BkPu7OzN24nRW+oEOvkG07F+tZXO262Gtjvdzry92l+bt7e2Nuft6f7E6QZNlGfZof0LsTg3Em2v9nQMbmyszttv37s3bw8LNXqvq8ccXE/HZDrZn7dv3erN20miYxCFB2Pzb//99+UpOLVd261UPv6xj4iISFnqGEyy0bxdYaTYpzh2F4gQ9i+m+kNm8CDGQaLHh2pvPiD7ezon8gLn4fMc4wGOaj8kmJMl5l6Bc9V/UOfHFzoGYYQfadx3EGi/6w/6aKTjZi36iMe1wLx48iLw7772w0P7AxxrW9q1mUby33z0lXechC9MnNs5xjCoLeFN3Ec/1XnfaOrz92Bva94u8OMfFDr+CX5QgkTHgz+Ozsth7fesyPVHot1uH9qPbKrjP5yoLUcY8yjSOdgAEZ3j+O2tgXPtHPexcX1DrwF7D/b35TB89fW33zrs82dZwE8Ea+2rIvKqiEgcG5+3f0FAu270O7ac/XiVlS5wBX7QslI/H0/0xzRJ9EEQEUlj/XeAdY0LQin6EBps4zhvyqIPi8GJnLdbPY0U7hrqLAj0JAo8hILfnjDk2zXe8nhS/MDkhV68qF28slyMdIGMAv4Y89oHVzFHvJGeBrTrSrdhi0M8TnqhMRbRozxKEREZqf0T/Gh32q15e2c61GNwKzHeapO2zo+s0jGkx9XEYjwd6HVF9CVGRCQw2l966wY/NjHmY4gf8pI244+/88bv2iPFDxd/+HjYCM/GSfAsm5h3RORl/PvW7DOP5Ya368WFt+0Fw7Ms4F8XkQ8ZY95njElE5DdF5MuL6ZbHc4S368WFt+0Fw5kpFGttYYz5hyLyb0UkFJE/tNZ++2nfCYyRJDq4ZMWNwRxuGtyrcqp8M90zEXHIzNUVdcP6ne68Pd1TDmoffGo71eNXO9put9TF6TXUddocT+dta7QtItICl79y4/q8/fjxYz0vrnHzpWvzdgRX+8a19Xk7aes5f/T2XVzLdUub68rh5RM15ZX+ih6EoR2OZi7qUyKPzmJXaysp53QJXEu4viWohwk44hycpIhIEamdYmejCFQJN2aP2BClixpU4LNJgTibii64kcUNqyfzV0QkjkBpgOs22KByaB1ucKEfeX17J8QeAbjWBNfjpuCT4QieshErcnrblmUlj/dG7/icY9NC35t4DvOpSwt1cR99HBfGGFvQUAmomRXul+G5vPvw/rwdYd4V4LDzqUuhhEa/X4yUrsi56c2HpuJ5dd5azKkwxj5aT/fRhnsuB97A3huXsxbuqddpymnwTBy4tfZPReRPn+UcHi8evF0vLrxtLxZ8JqaHh4fHkuJdj0IhjDHSnLlGDPVZXdXwuDFoE+4s51ndFVJ369qNq/P2S9c0POcnP/rxvJ20QDFc0+OjErvo6NNKszFvX1/X/lWR6/L3V5SuaICCSSLt+xWEDHF3fjRUF6uw6p51e0oD3bxxY96OE9dFjmJ19bIYvizCnVpNdVdtfuAOko5YBA6osYP7ChHGWTAihbG1jL+t0TklozNAr5BCi5t0RRFVgGMMKA1LioLhiKAq6mNSoB8RaJM00WvHDNF0oi70ghkiccYTndtuDL9zabGGobSgbBARIYyZfkLHLDjGq7JWRgiLe4Ip7mnKKBVQR5F1x7Pb4nOmN5/jPkJGnhjQNMhryBlODBslKWkrPSZN3SUuEkQ5IZIkZCw25oKBcYpM6dMo0GfdjXHXm6gH4rSbOl8YFm0wGVpYd04C/wbu4eHhsaTwC7iHh4fHkuJcKZQoDGV9rS8iIkmqrsz6ulIM+yME88Nl3N3ecc51dV2jNhqp+ippor9JN1/WiI9Wizvk6nql2JVOE3Vf9gdKb9y4plmZkrp+KhNRpnCx1tc1G9JUiLrI9Pvtjl5vb6CZg8N97V+ew71q6Q73wbW1HZQ6BgbJooNdzex6Qkksug5qEATSbhy4lB1kt5kB+6Q7/gESMJh5KyISgxorJjqeIdzo1qqOQ+EkxJBm0/OkqdIe3VjpqRKZrGyLiIRImmHGZYQoKdIpTMXOMzVAYDg3EU2B6ItpLVlmzH45jIH+I3CSSt4du1orkh+SyLM/0CiPSUaqCfcauBm2JeiV6USfrQmpBESSWFKmyO4dDEFDISO0AVuUeN66HX0ORUSCQh+acqTzKw4RLVSqbTKBrAWoo2Zb5yCji6agyeoUSgN0zg6yL6egjZuN00Wh+DdwDw8PjyWFX8A9PDw8lhTnS6FEkayvHUR0FPANM7jXvRV1cZkkk9QSedZ7Gv1hK3WFtrc1gSZGgDzV+gKGJRi6q3qebKpunqOqV7n9mCBpIAOFkqZKj4zhLrWg/ZDBTdzZU6qjESsNESOaIs/dSJydnW3tO6iWagwdD+yu97oH7uSCPW0Jw0B6Kwe2SiDWlUzhUoPiIU3SqIlZNfHvaFXd3wD+qIErurWtAkgTzKMUtg+pkIjIlnwK2+fuoJD6cNTpmICDNiOYOF+YBBTinDmSmer0TYkkGENxL9AZLdCGT54T9mERCAIjvc47oyKyidKcMextEVFijLu0xIjkKXEffAaqSseKkVjNhj4zDyAQFcf6uTE6byyomEbD7X85RXJYirmHiKkxKKLCgG4F7Wsg60QNmgprSw8RaiIiEb4/3NR5y3nUXfEUioeHh8elgF/APTw8PJYUfgH38PDwWFKcKwcuYiV4wk8h5MvhA0OG5CgXldY4tclQOeOQAkoILXq8pRzxpKGhOg1wkZNAP6cYUtTQ65HbtrWKGUwMi9DHGBl0KUIYQafKCOI4caLHNMCfMxKpXgFmPNCLD4c6VisdzRwNI97TAb9mFsyVilgxs3ArVhOqILgdIl0NEXSSGlf0KEWWXq+jewFILpUdhJpWCO2iOFiD2Z4YRIYaJthfkNDl4plRahBWxvkVwZjMKKWNyd0zm3SIe8jGtSIhBfj+mKJJyNCkZviT5rPLgTsIg0C6rUM48LZ+Rl6Y2uWhde0aYR5yHjNM1mI5Iu9NDe8p9gtihNVWyPwswaWHtVi+AvsLIXh5zospir9YTNYGir8Yaolzfwb3xtBlEZEc4YbjWmb5EwS1eXgc/Bu4h4eHx5LCL+AeHh4eS4rzFbMSlWB2C+8ivAo/KQzJMTX/METXV5AVlVtQM6y1CZdnOlKXtbWm4UpOAVqnPBQy7mzNJUNYGl0mtstSrzeEBjHDvnL8lkbQfZYcNSZHrrCQLeByphqy1IYe+Bju+aPtA0qJAkKLQFWWMpxlkhaWYXY8SJshaJOwVnSWus50w8fQZH94/5EeD/e1BbebmXmCkC++saTQhY9jlyqwCHu0GUI04fqC3RCLvpYTCE1Vh1+bIXe2rLnTrNaFOcJSZNbJ7i3eca1FIDAijfid73jXUb/VqW2L/m3df+x8pwLXGCdKjVmLrFWGTEIkfZAjc3OiYxU18UxPOe8KfO7q9w8xjzqwfwkBLNbyiyPWz0W/EbbYbusxyRHrmojI1oMH87ZhaTccN56+UzzsafBv4B4eHh5LCr+Ae3h4eCwpzpVCKSsrg/GBi1BhN79JreBQd7XpPga5u6vdRXmijXVQBsjKDKD13YPObtjX88R9daPu37+n16b+NLL6Jvuuu8toE4MMswDZVQWy/BKUX8oh6jQZaTsLUP6NLmytgjsrabd7mrUYQzgoBye1lx3QN8wsXASstZLPtJUnoBgyRG8EDhWgLuPG2hXnXFdmYmciIrs7u/P2eKJRR9kU0SbQO2+1lQ5j5m2FLLsKUz6CeFlaExEqcA1m9gnug1RQRqorU5psCh6pwvEBImDaLXXNRUQmuHaA6B0nqqdeYlBk4VEogTHSPIRCiTHmzRbbeh/l0K2uXiDSbG//cEqkicxI6v8PxzgeFEjS1vEgW8FMz9HYLQnH64V4fzWgUBrM4gUtRJtR44vzo4IR6jUMJtQTjw+P3qns6Yzo38A9PDw8lhR+Affw8PBYUpwrhVKUlTzaPXBpKPDEnew+BIxiJNyspW6UQLuhf8sKdbEM3NQOkgeaEK26dl3d9tuPVVQmwO51pwvRqZx6vS6NEYlSIhY74SESTLjBnTZR7X5Td+qrAvrTcO1xC5I03CD/BkqsrfZ0DEdwV5mrsr56QDVFkUZxLAQmkGhGfZUUNEIaUuC4q9oualXpRxAS2tlWCmVvF4kvOZNmKDqFBC24q0zSIA0RJ0jQqil8Tcf6nQD3kaK6Ol3nQkCVoE2xNGqGMykkiNw51WyBpoF7TWqsgUSzJ5E4TExZBIwRaUTvfMdroe8N0B79FX12yw2XQnn86OG8feeu2rUS/X4S6LzPEY2xu7MzbzsUCtqNJoXr9LosWygiQlajQlJeGzRup6tUECmNKWhfznPSMqS/JhM3AobfSVJX2/8JTmtD/wbu4eHhsaQ4dgE3xvyhMeahMeZb+GzNGPMVY8z3Z/9dfdo5PF48eLteXHjbXh6c5H398yLyL0TkX+Gzz4rIn1lrP2eM+ezs35857kRBYKQ9qyg+3NcSYiVc/hFKmTVCVB+v6foW2PUfwlXBx9IE/3B1Veerhdv+6IFSKKvrWjqNCSIVEiT6a1rKTUSknEALGG53Eqq7tfdY7zVHAkaMSIISERsRd7sRqVKUrkt25ar2JQa9cv+e3hMjTtZmZeiCgxJhn5cF2bUsS9neOYgSGU91DEygbm0DZc3CRKfdZOTeUzFW13trS+9jf19prAyazlO4r9NU2wWilsqKkRxwcXGtPHf7kYEOI4WSR0gkCRnNo23SZAn9eepnUAfduAkf1KohsUP6h679/P70Wp+XBdg2ikJZR1LYvO+Yt52ORv60E72ntRWXIoiQTPXtN74zbxuj8yJFBFobURrUxEd1OxlRDylU2qPRYP/cCJ8UJfXa+BsplAwRNFvbeo0K1ihAh7DUXRiC87SubhI10anzXoLKKfPDNVKOwrFv4Nba/yAiW7WPPy4ir83ar4nIb5zqqh7PHd6uFxfetpcHZ931uGatfRI0fV9Erh11oDHm0yLyaRGRJDnXPVOP0+NMdm03Tqeg5vFccCLb0q7dVnLYIR4vEJ55RbXWWsP6Qu/8+6si8qqISL/XtOu9Ayqkk1ydH+PoKcDNGGwrnRLUZEcTUCr726xUjcgHVjKH7sHbt+/M25MJkmwSda9GI1Rzx+4zNR1EREYTpURaiB4pEYmQ5ZCnBFWyuqru6TTTvjKRgEkedTlZJsfce7ip10OWQQh5yifyEicpqXYau660YnvvwUFkiwXdkMRqVyY5FUgOGReulKoFTTRBpBJLb+UYqxFkdDk8IdxuqucGOIj0Uk391HF3wwARH/DhWbaN0rRBV69RILIpQwX3wlFAdoeZc6w8om2tzrsn0S31uXkUnmZb2vWlKz3bQwnAef9AF3XbauMIY9urydCSkhwheiQKSYfpXKA8zAqiQoaQ2gVj6SQBdbt6bVIjIiIvXb81b69uKAUJhk+27mvEzGBfn90SlAjzqBjBxPkV16RsOeAs2TdBlFRZnE6n6KxRKA+MMTdERGb/fXjM8R7LAW/Xiwtv2wuIsy7gXxaRT87anxSRLy2mOx7PGd6uFxfethcQx1Ioxph/LSK/IiIbxpjbIvKPReRzIvIFY8ynROQtEfnESS4WGiO9WUXxJnapU9Ahna4mAzxuKi3A6BQRkTt3VZpxRInJSF2+1Za6d/fv3Tu0PR6rKzMcwIWDW1vC1d7edveGJmP92zRC1Z8G3EnorRi4ThW31FHdu4J7TFeb+jEiIhNIZY5Zkb2pLidplmr+e20WateiLGV7d392Zp1S7SYqd2Onvco0KaffcXnWThMJFaiIXmLchkjSmY71XJRYbXeg0YGoENJTTXC8rbbr8reaOg9boLGabUY7oAINXoVK9O/xI50vjgwubF/UZWBRCb2ElC0laEtQinZGodiZk75I2zo6MIf0nfOrnOr8r+f/sCIPq+fweTAgGWiz970PtAeY+zESulZWWcVe6ZTdPTdp7Wd/+qfm7esvvTRvF5VScT8BFXfnjq4zE0Sb8BrOMwYurkleRkT2Ed0SQDNlDL6ozE9HoRy7gFtrf+uIP33sVFfyeKHg7Xpx4W17eeAzMT08PDyWFOca15fEkbx8bePgH3BTeqBN0lRpjw780izXJBsRkb94/fV5ezxR16bX1nYqSCrpInqAdMWeut2PHii10gPF02xih7vtukXXIGVL+qfT1e+USDS6/ZO783aB6j4jVBKagA4RfF4LQnGKLbO4bGhAPRRMODg4V13349lh5tEnBhEbjJoxdMVx/V6v75zp5Zc25u0W6AqwZPIAUUcBKychEqGFKAiGrzI6ZTTSBKuoFjHwgff/9Lx99dr1eXulj4Qww7HVPk0GGsH04+Qn+jmqMQ3HKOQ9dZM3WAC6DZonCEHzUM50Np7hgotVl2Upe3v77/iccy1CtE4Mio8yuCIiFWjIEEk6IeSYqTO00lMK7Po1jRbpZnqPKHwkPRwf8/nO3P53sL70u6jGFenYDrdUo6gPmWaHzgSFRUqJ+iq8NxGtnCQiYhEdNhlBsyl215fj4N/APTw8PJYUfgH38PDwWFKcb1FjYySZSWKGcFmbTUqyKi3QTvX3pYWEARGRrEBiSIHkDLgw2UQjFG7+zAfm7Y2Nn523X7qn0S0xtBz62NVOEu3H1pbuSouI/NIv/fK8fePmzXm7MnofOw/1O8Nddem29tSlZpJqa1XpG+u4ym5EQAcJULuQYS3BT+0hOeKJdKs9YcLHSWGMkWjm+lEqto0ooB5oqAR6Ilc2XK2N97ysYQZNfD+DjbsrkHrFPCJV0kCUALVlSOswoKgsXJe/BTef7Q4iplIkiZBOGeHa44HOwf1dnWu7SBAZgFoREZlAvpgStBES0wwrt8wpFJcGelYURSGPIHn8BG1U4aEOyDqqXolxaaGsItWlz3uM4sA9SDiv9vUZ2FhHhAl0cEhBkmriOA0eu4lIOfRvLJLDeit6XK/Layt9k1e4dqU2SkCHVA6N5HKeEySdCYpuj0Eddduudstx8G/gHh4eHksKv4B7eHh4LCnOlULJskzeevttEXHdsCHc/xXscAdMaKhVqmgguYIRAFc2NEqgEyuN8TM/9d55u9fT73ZWIMmKKIZ2m0VH1RV6q3S1OyJsTTdYQei6Ri40A3Uz3/+K9qPxABVnRjvzdgoqJ8Q5i5rUpEG/DJN8oEESoKBva0ZJJMlbskiYIJB05j5niK5gVEEPFYNaqfb16pW+c64b19UepD6Y39BEglCACABGH6RHRJ7QlgnkWUdDd2wtKsJMUIR37ERQ6DxKIGFK+oZzbX1N52aIqAcWuBUR2VPWxYneYaRMHCCRZPYetugolMpamdYK84qIBAEKhyPSYh2VeupSqiXmZ7/fn7cH2xoJxOQdVubqdnTuUIW3wrPRRiJWDK2dAa4lIpJBX2d/T5+/uIlxjmlLvSdSdDkS+CLMqRASylWteHgTtEmJxKYWzhuHtVCzY+DfwD08PDyWFH4B9/Dw8FhSnCuFUlaV7O0f+IdZri7WhLvBV1DxxqgbO65VTLl1S/URvvXN783bKSJGbt5SydqbN7WQcSOhi6TnTFLoeFAmE+5OOHFdw+H29ry9CXfLBtAmgWvf6+kON1Q1ZTDR8xi49t0Uu9KJq9fBRJ4+dq9zuHQWWiNPKpsEp/PSjkVgjDRmRacHiLSw9nDtiCtXtK8bG33nXKuIwGE/EVwkrab+gYk8dH0T0FARjgngokY4517oUmNTcDbDPXXzmQQ1zlA9qq3Xa6bU91CwKHGSMBnGndsszE2dWwrAJgEiOWZ0SlDP9HpGWCtSFO/UQuHzGqLvlOd9WiJPEw/ddq5RLnxO+kik64AeSVPMbVAopK1iRKGsodCyiMj+UNeUHRRLLg0kqS1pI1wPtneoLYx7Gmk/ipo0bAN/yzEP26COnqLgfCj8G7iHh4fHksIv4B4eHh5LCr+Ae3h4eCwpzjcTU4yEs0rzLC+Vxsr7TMHrtlvQHa5lIVqEDg7AQw/3NGvrA+9VQaJuW2+1j0yrtQ1wxyhtVBTaD1bhvn697/Tj7j2N+XrrrhY5+X//UsW2fgohjHfvaV9vQ9PcIjSr21beLgEfmqY1DpxiX8i4TEEed9a0v3szTfUFU+Biq0qmo4NxGOwqXzzuo1Se0YzLl66pMNla3808ayL7Nk0o5KTtUg4P1XJLjmmb1DDDCNsQJnMyG0Vkb0/nwgic7/5jtd/uWzt6PaPXo/jSFCpcW4+RhYvwucHI1brPkeXXwr4MM0KxjSNPqP8FU+AiYpzq6U/AKuqWpfLw/DSabmcMtLsL7GdNhvr8UEO8D3GqFrW3I51TzIy02DeijXtdN4N7hEzMR4935u237qo91td0rm6jKv0QNQkYzhgzNBVhrVEtrDPmDYJPX4F2/bCWlXsc/Bu4h4eHx5LCL+AeHh4eS4pzpVDiOJaXrh6UMWLIUJs6zm2UaEKJrKhGoaw01Y372Vc0pPBqX+mHW9c1841iSivI7JqE2i6tutR7O+qSteDipLUSYLfvq+v15v2deftvvnNn3n77jrqJuxCzsijj9PMfViGsTkPNUo7U3axK9/eWlAGzN0uEfpXwq/N3SQ88DANZ7RyMnUUG3Qo0uVml/Nq6HrPac13cFkLwWhA5o15zYUCn2MNd+CnKe5FaYPheiLA+E7tjO0DJ8+FI5+HDgX5+/76W/BuP1ZZ376uNi0xtNEDG8QTHh5E7t9fWUVWdJeDYX4hIPYk8M4u2axBIp9V9x+cBQt26EBwLMQdt4N4TS86hEp377DODtaO2b4JGChukUPQ8HM8I49Tuu7SjPNTjHu0oJXLv/v15e2dX5879+6p4VpSgOTGfI9CcIcILTY3TillCETSUQX8HdiingX8D9/Dw8FhS+AXcw8PDY0lxrhSKFZFqtmMbQ9glgusFjR6ZgD4oahXZWYbtv/iwRjU0EdFCkaAIUQwF3ZdQd30bpCHaEEaCRk9VuL95KXzDv/7Wt+bt4VCvUWZKs+TI8GvR5URkBZPfSIHsDVz3ag/6wgEGjqWbctBQTzI367riz4o4iuTGlYNSaGuIoOnDDV5dUVe8C0qqlbqUVArRMmZQGmTDoqi5hIaZmNDnxtR2KBS44zFOVK++HuJ6A4zzj+9q5uDjTY1ImWKu7u2iyjiMOYXWPUvldTuY9CISRxBQQrgDxb0qVKivZlTaogvlhWEoq7WSdwd90n50QPGkLf2cdIOISITMQ1KEV0B59qgfD4qCFErAiBTYb4rIForShQ33eWUptId7ate3bitVsrmpa8L+rgpera8z21b7HSISRxANY6UehQIKBdFT1pA2Pp1Wv38D9/Dw8FhSHLuAG2NeNsZ81RjzhjHm28aY35l9vmaM+Yox5vuz/64edy6PFwferhcT3q6XCyehUAoR+UfW2m8YY7oi8pfGmK+IyG+LyJ9Zaz9njPmsiHxWRD7ztBNVlZXh6GCH18DhCwJ1nUY7KHmEY+LI3U22oAxYOXscqmtyHy7uNZTumkBIq7OqiSR0wSu4ZAz+mNYC7dtw7+7c0ciT3Ym6SxsNTRxqoSp2DEGiAaIbJiPdBWeZt60ahfIA9/ekKryIm5QSQos8jZ1d8YXZNYpC2diYJa9UTGpQ+zWh/87kEFaxr/+7gmdqqgLHcO4wcQI0S4J7RTOK9LtkkuKawlcC+mY01GiFH/1YtdSnGdzgEtE+GTrOSuZwm52+WjdZxlpEIaEUGak1i5sqZjcye14WZlcxRuwhymekJkMINIXx4ZSGiEgFmmEFld7bMbT5O/qchI7+P6guUBSs+t5AAliMec7nwj2TyN17GnkyRMKVVPqdHKX2DJdLCGkxiWsCAatx5opZFThXhiiiEnRYXfP/OBz7Bm6tvWet/casvS8i3xGRmyLycRF5bXbYayLyG6e6ssdzhbfrxYS36+XCqThwY8wrIvIREfmaiFyz1t6b/em+iFw74jufNsa8box5fXJIdQ+P549nteto4u36IuJZ7Tqeeru+6DhxFIoxpiMiXxSR37XW7jFI3VprzRFCttbaV0XkVRGRlXZq7zw40Au5eV31ufNcIyUQnCIr2KHe33epiyxTOoFRFymSIr75ne/P2wF8WQs35+WXb8zbLPV07+7deZslua5uuNodCUooTUCvfP8t3dUe91QbY2NFqcc40uiZ3T3oQ+SgRvATO6r9AO6OoWFMU+JLAXQ10vDAbXOicBZg1xsbPVvM+I4xSlbFoFDaI3U594fap/FU3WYRkRxURCVMkFAwQiTCDj5puSmiPCy5GNAvJcazrI1tgqgJanc8eqR6N7ll9Agq0QeYzyGjamAj0A1FUatePqEGOKJYQrVbFJFmOfivQzktwK5XV7vO0OHk2oTeB4+tR40J7NRChImBvncYMyqL/WUHMQagz0ibRJh3pG5EREL0/cFDtSXyvkRy2IO0FaiuElRhgL6SQtmtUZ58RhmNVqDsYb0M23E40Ru4MSaWg8nwR9baP5l9/MAYc2P29xsi8vCo73u8mPB2vZjwdr08OEkUihGRPxCR71hrfx9/+rKIfHLW/qSIfGnx3fN4t+DtejHh7Xq5cBIK5e+KyD8QkW8aY/5q9tnvicjnROQLxphPichbIvKJ406UF4Xce/RIRFxaIoVLfB1VyfcG6tcMR+6u9gRaFZSP5O73+I4mXTQSjf74wXd/NG/3sSPebGikxF1QKNhwlv/+v/tlpx+9ENKoKAfWH6grtANJyggnY6k2lhkbTpFIMFVKojTujnpGMQj8FAdwazPIda51DlzXmUu6MLtWVSV7My2KAlREgYiPbVR2//FtHduyVLpBxNUUoYwvq46vrmtEUQOJGqzKnqFqeIXkiBJ9KkDdFVM3YoAPRgV3d3dHk7IegfbKQINsIJmp21C7tlBKzOJ+pg3XbR6P9XoZxtOKXo8V6ssZzTKjxhZmVyv2nVSIiEymOm4NVFQfIHqKJelERJopqDJQESPMz9FE+VNG+OSgQWJQDCFLzyFKiVxOUePxE6w72yipVlSwDYyfIjKNtzTC+tNg8iGiS7aRAFb/vpNLhygWJ9nnBDh2AbfW/rkcLSH9sVNdzeOFgbfrxYS36+WCz8T08PDwWFKcb0WeIJBkJgeZsUp1rPTGzr66VAmiS8rC3U0eTdSNY9GQAJXsW9jpv7epNMb3fvRo3u73EDGAEBhKElRWj/nm3yj9IiLyvj4qCMGdv3q1P2/vMEqmpdfYRbXz7R3VXGh20Q+4q5Q1FRFBPpLklfbj6lWldcpCXcPRLCOptEe9oJ0NVWVlNJldHyEDFTJPtvd1/LMc7cytBu9IrsIlT+Gqr6FiSqulFAWpo8ebSp+xyhPpthvXNCKIWi0iIlWJBBUnEYiJNWqAIWiPAK5yPgEd0oQ7j3FKEvcxHA5BFyKiJSv12WCEzhNJ3RzRRYtAVVWHVogJkXg3zRlBQT0SV+MmAxVTFnpPY9BYe4hgerS1M283UH6oiwpOTCgq8TCwSlA+dalXJmztonrU7lgpvuud/ry9guSiHJQlKd0M+ksjUDZ7Y3duO3k9iBSLjP4hiQ4NDjoS/g3cw8PDY0nhF3APDw+PJcW5UihijIRPtFlZ/BPFejPIUGZjFBYOXMlNi6QISkmE0ERgRZ/Hu+oKVkbP1V5TN5qJQwUC8kcTde0e7rhu0YpV6uPKmn5/FzvLAiqAe8z9nl77/kPVZfip9Q/M2/GUOgkuhUIqhIkdq311+3aQuDBPGAkW+7tdWSvjWbREgOtlBvou6PsAFIGp7beNhnq/D+5pqHKJLfxOW93oNKlVXJnh8WNQKHCjkU8iH/3bH5q3f+qDLzvfbxi9hgFdwSK5XZgjs4jAANXFQAmmztAEceLaowsKjRTKtGCyl7bzJ1EoxemSQI5DWVayi0K+T9BE2MUYY1sheaq90nO+s7ODxDvOaTxnlEu+DdsHSNC6jnM2EOEzGeF5AyVhC5dCoQbNAHTtbVTqaVzTZymFDDUjYziHLWw0RlWo/WmN8nQCc/QaCZ6TaY3yOQ7+DdzDw8NjSeEXcA8PD48lxflSKGLEzlzs0URdTlZoibGzTL2AlCIp4kaemIg7+tCRyCFvOVEXK8QOeXdDr50VoDpQXLfE9vGwcHfX94dKzdy6dnXe3i535u1qrK7eHgqp3njplXn74QM9zxAJACyKm9f0OtKWUiXdHor+wm3cQwKNDQ7u9ZRyC8fiIArlwF10JDYQvRNB1rYJymA4cSMn8lz7+4Mfa7TQENVTGiiR5BRwdpJOtB0gjCSEZsbaxoN5O47dBIrVVCNdxiN1tdsojr3axxwx+ijt5zt6bTJE6McA54xqT+H6ukbEhIhwoP5GjvZkNkeqBRc1LspCNre23vF5AxVvxmPtx/q6zsdJLYFmDDo0h81YiHkPST137iuFMsEz9vbbarOrV3V+PHygx2egl/6rv/1Bt/OVUmDttraDGM8MaKMW6N3RmFE21D/R43Pcz7RGaZXgellYfAKKttc43ZLs38A9PDw8lhR+Affw8PBYUpwrhRKERtqdmdtCmUxWoYALTl2AsPZTc1TB2zaiBAq4qflQk0dCsDEWFXwquOABhmY0UBfuXu5GoaxfU3eyADfRjZQaSEDTrHX1vEWBikFXdNfeIHQhggt965Ym6IiIhEiAqqD/MNhTl47Dproji+VQrFjJZ/cekq6InAyreTOHJOj+2N2pN6hOMpqCHoFsbwytkVVGpJBaQZIN5Yqn1JlB8s3dB2oLERGLvJ4J9FkCS1pP76/TRpHuQr8cI+KpCT2eKZI8sswdg3v3NSJpbUPPtbKq7WqMykWzuWrMYt/HyrKS/eHwHZ8zWoRJNivQAhrXNOKpjZKBFuRzXRZqm80tFPPe0vHPkcDXX9mctx9SGhYUynvfs+H0o40oqTaS6tKGtiegSsawE2mgtKnjvzfRfvOup7lLaTF/jqaitkwzOZ0Win8D9/Dw8FhS+AXcw8PDY0nhF3APDw+PJcX5cuDGzPWDU4rdIKQmcDhwVqN2OTXq6VoQSkUBLmuCDDxkRlJDmhltJaqJ74H3Nhb8a42jylBFfQRxnATcdautPOjKivKEW9vKVXdZub6rGZqbQ830TBru7+14CKErhDpGkY5BvwdhrNmYRQvOxBRjJJiFf1KynJXFg4DqYNrXmgy3VOBHK5wsRvheawW8d1PDvCKU5DIUdipxv8jUtejfuMZXUts6RMzqjWvKqZoBrhFCMIsVxxkGiizjLu4hMm426niq82iaqf1YZixA2KKt3GdjUbCiQlnEECHACfZhxnjeilottgriTROKi2G/J4YK2ATCUY+39RnYfqTt0GgYITMYkTwpt+/qMSIiV3U7SlqYU92u/mEygdgahLdG4MO7lT6vjBYcYgymNQE+Zoa3u2p/jlX9O8fBv4F7eHh4LCn8Au7h4eGxpDh3CqWdHPg3zLi0CPlKoOHtiBDV3Ey6y02UqopRAiloImwLrtDNmy/N2xVc6ijRPq201G02cP9s7Pr8/FeCfrRacOcRK1WAvggTddsaotdOmiiv5lBHrtBNgv6GkZ7LgBqYoNx2VhPXWRSMCSSehfAFqAgeIUM2ELWxAaVRrxqeQ9zIhKRQ9F6bK6hqTrEujhW1z0DLMQOOIzup9WOMTEJWS7+6rqGcWYDwNmRGCsJiR4PDx7/bVSomjV2htu1tCK8x3BbfL0jTPPHhF5uIKUEQSKPVesfnMeddrBQP6YO0pjmfQ687R99DZ47od8agnvYGet4RBKW6be1bEjGEVMfpweaO04/Wqq4JjHJtIaQwaKv9IqwnI4ST5tDZJ2XJFcHWDDJFOOs65nNV6H0Up3yn9m/gHh4eHksKv4B7eHh4LCnOl0IRI41ZxEiAKIEgZMaltqegDKpauajkENdORKRAVAkrSje6umvM8lwlqBzBDvBKXyNBWGl9b6K74CJuhlkLgltN0DcU7mqgBJiFm1hQ1Ak78HEEKqYWPUKhpBGqsFPAqkD/wvB0WV4nhTFmTl0hKMcRaQqQ/WkhMmZrAl2O08msTmT8JaC3ctAV1AznuJGWGaJ0lrVqL2NdXfFWQ6+dksqBDRqg+zpN6NuLzs0UWcLjobYZCdWolVQz0uU/5mBGKCMf7Cyzte6yPyuCIJRWu/uOzxstndukDUdjjd6wphatxbleMeoMNwiqcTxlRi7Wilivt3pVxeMCrBu7+zvz9iYivUREriZKT0Wg1hiREvX0GU3AxZGOpNBe0tI+BaHOx6CmGldW+v15Rrq4Fain49PRnP4N3MPDw2NJcewCboxpGGP+whjz18aYbxtj/sns8/cZY75mjHnTGPNvjDHJcefyeHHg7Xox4e16uXASCmUqIr9qrR0YY2IR+XNjzP8jIv+ziPwza+0fG2P+DxH5lIj8y6edKAiMtGbuYgX3wmKnPQwZXA/xnpo7Qjpgd3dHjyvVhVlBkkcXbmqBhJ0xdrUNXDtbqA5yF7RHXUu7gts6xC5zXKp7PkJSSI7ScI92NGFjuKWuXm9FIx22RjvzdqPp/t6WhY7B1pYKDO2P1U1sNtRVa8zGYyZ8tTC7GiMSzaiCAG5wC642E7Ry9M/WEmhMhIQMJEOx1DvFiljd2yC5pSoQ+QOvNJ/oOXenOmbZxI3waa7q91NEqJQow8V52w603YSdVppKp1QQNRtRaC13BaM6jIhg6UAkrE0g+pV2DubBTOBtYXatbOWUTJv3KdDxaDch4gUKcVq40VoJSt9ZJNVBo8yZO9R5532nLXwB2u4lopxiRIDZ0I3woXDUdSRl7dxXeurxns7PMNLrpaHO5xyl0yJQcSwXN61lqaWga6mpPhxALC1tymlw7Bu4PcCT1SWe/c+KyK+KyP85+/w1EfmNU13Z47nC2/Viwtv1cuFEHLgxJjTG/JWIPBSRr4jID0Rkx9q5tuZtEbl5xHc/bYx53Rjzer1Kh8fzhbfrxcSi7FqUi5Ud9lg8ThSFYg+2uX/BGNMXkf9LRH7mpBew1r4qIq+KiFxZ7dh6Qs7BQYd/N3iKZgfPYsFrVEgKcmka0CNu/3Aebdcpm5PAKWllD08eoW43S4CxOvdRnxeFu7PPwBzn+8URYzC79pMeLMqua/2WfVLGjUlP0ynoDYz6dKQuY1W4u+6OFk4C7Q9EpDARhNFJJeiwApELJaJ6IlC/cYN0j+tqG9AB1HmnHrVF0lJ8RMQMw3Iqp74aojJq+hcNlHdLGyg3CBpib4qkktm6bGbnX5RdW83YHlamLQNVSK2UAGFHRS1pLAR9EINCIU1GLXkLioIUSgwKxUYMxeHFtJlbdw2ZIupptae68u1dfX72YT/WHWiBkuVz5TyvSFiqr2ukMxmVNYUevA3ceXgcThWFYq3dEZGvisgviUjfKOl4S0TunOrKHi8MvF0vJrxdLz5OEoVyZfZLLsaYpoj8moh8Rw4mxt+fHfZJEfnSu9RHj3cB3q4XE96ulwvGHlPJ2hjz83Kw6RHKwYL/BWvt/2qMeb+I/LGIrInIfxKR/9Fa+84ta/dcj0RkKCKbTzvugmJDXpz7fq+IfEwWa9e35MW6x/PCi3TP3q6Lw4t2z++11l6pf3jsAr5oGGNet9Z+9Fwv+gLgMtz3ZbjHOi7DPV+Ge6xjWe7ZZ2J6eHh4LCn8Au7h4eGxpHgeC/irz+GaLwIuw31fhnus4zLc82W4xzqW4p7PnQP38PDw8FgMPIXi4eHhsaTwC7iHh4fHkuJcF3BjzK8bY747k7T87Hle+7xgjHnZGPNVY8wbMznP35l9vmaM+Yox5vuz/64ed65lwWWwq8jls62364tv13PjwI0xoYh8Tw4yw26LyNdF5LestW+cSwfOCcaYGyJyw1r7DWNMV0T+Ug6U335bRLastZ+bPQyr1trPPL+eLgaXxa4il8u23q7LYdfzfAP/RRF501r7Q2ttJgdZYR8/x+ufC6y196y135i19+UgjfmmHNzra7PDLpKc56Wwq8ils6236xLY9TwX8Jsi8jb+faSk5UWBMeYVEfmIiHxNRK5Za+/N/nRfRK49r34tGJfOriKXwrberktgV7+J+S7BGNMRkS+KyO9aa/f4N3vAW/n4zSWFt+3FxDLa9TwX8Dsi8jL+fWElLWelrL4oIn9krf2T2ccPZlzbE87t4fPq34Jxaewqcqls6+26BHY9zwX86yLyoVlx1UREflNEvnyO1z8XmIOKFX8gIt+x1v4+/vRlOZDxFLlYcp6Xwq4il8623q5LYNdzzcQ0xvw9EfnnciB1+YfW2n96bhc/JxhjfllE/qOIfFNkXnbj9+SAU/uCiLxHDiQ6P2Gt3Tr0JEuGy2BXkctnW2/XF9+uPpXew8PDY0nhNzE9PDw8lhR+Affw8PBYUjzTAn5ZUm0vG7xdLy68bS8WzsyBnyXVNgyNjaPFvPQHRs9jAjNvO/eDdhzHerweLkVRzNtRFM3bgRgcr+2iKp1+RGE4b5dVNW+H4eH3yc+rUvtHKxiDf+kpJcB9iohU1dlsNxhNZZIV5rC/ncWuURjYOA6P+vNTYWq9CCM9D20QBzpuaap2ynK1Hw6XGHbhRSaTsZ4fx1QlBlpEDOYX++F0GM28KPEx+h0ffg2azrzDrjiuNt+ehvG0lCwvD7WryOltG4bBoc+rxWxlX3nfzpiJM1RSWoy1Ofw541x3bBEc3i5LHSf2SU64vh15GDoenKCvEZ7voDa58yP6aDluuCcuCoPRdPOwmphR/YNTYJ5qKyJijHmSanvkgx5HgbxyvfkMl1Q0mnqeONXFOc/yebvCQ3Xz1vV5O8Wzvfl4e97eWNuYtxOj54wibe8M9XgRkf7ayrw9Go/m7W6vrQfhIVzB54MBDGq1HUa6KAUTtWIjaTjXHo8nchZ8+c//5ml/Pr1d41A++N7+mfpS/1Fa21C9oBTjfg32/uAraqfbDx7N2ybUsbre1/5YzI83/kZvgzYa72dOPyKj12sEOmFCvAiUkfb94bbmfQSix9y80pu39/d1fmS5PsBxJ3WuPRwO5u3RaCgnxf/31/ePO+RUto2jQN7zUkdERCzMVOKHaDTWH8Qk0PtOjfuDHnExwo+oxQ9c3Ejm7Uaq7WZDbdFqtbTdVvvtbO/M2+ORjnOZ4QdexP0B5nsSFlTnRQwvFEmiy2UTc6qF9uqK9qmRuMvrJvq4P9Jnt8JYtVod7V6lff33f/Hdt+QQPMvr8IlSbY0xnzbGvG6Meb0sfcTLEuAMdq3qf/Z4MXGsbb1dlwvP8gZ+IlhrX5VZeaJ2K7YrK92FnLfX0/MEif5a833OFDoB17r6yxbG+kOysdGft8upHt9O8KaMt6BrV9ecfkRw54MAbrRVTyCM9XdyiHPt7U7n7ZVVvV6agGbRQ2Q81DcXEZf+OQ3sGakX5xywa7MR2aI628M+HrpeRIw3rypVj6PEm+9kpG+oFdzxqMR4lDr+O1t6fCPW86egzKKunl9EJLR67cihPuBGkz7L9XqNpr4l5pm+2Vt4Yi4NpN89OBBeV+p6XU+D436fEbRrmoS2LA76RsogwnXW+/ocdvB2HNTmw2hvX79f6P2FmOvttt5rO4UHlKqH0mjoMS3MlSHGbIpxNrHbD56r1dJnjjTW7u6uHt/U6/WwhvSxjtGuKx14C02XbWivqDf24JGGk48m+pBzXqQN1zM7DM9i8UuVanuJ4O16ceFte8HwLAv4pUm1vWTwdr248La9YDgzhWKtLYwx/1BE/q1oqu23n3qxKJKNjfWzXrLegXmz1VPXpk23aKquaRyqKzWY6oZTq6VuisnVFQqwITYe6vGmrEVbOHtf+p0iU7qj01PX6RE2TZNQ+5pn6kYNBupuFnva7yJ33cG6i3ZSWHs03XEWu1oROev2xmA4cv5NlzVAQEXV1nsdj5WGstj8NdXh7T1sHqWgUBipUh/LoID7OlXbTKa4BmiFCvRNDGqmKDBB0NcUG9Kj2hgwkipNj3ejD+vPYTitbQMjks424hhVQhpjbV038df62i4wn0VEHuL5a/d0rJugXdptfY6DSt8tQ7xnxolSXU1QDEVfn7FeG5Sqy4xJGxufKSgYblw2Er3X7or2qdXS+w5BuUzGCJwQtt2Lc26vrfbn7Q4otBh0a1Tr+2F4Jg7cWvunIvKnz3IOjxcP3q4XF962Fws+E9PDw8NjSfGuR6EQRkQCWUxo0mSC6IWIrqy6Iylc8NLodfdGSonkSARpIo51jPjWKNXfuaxw44XJRjC5KEHUBJNNkhRxrHCjm3CVHz18oCfNEXvacCMSWqBmTgMmsCwCYRBIr33yaAliNKjFCwdKHwSgpCLE4zK8jbRSp6ljyNjhPNfzNDvqQlvMxRiRTCIi1ur1DCiRHJFA2Ui/n8C1J0VlEEOeNEAFwH0fbbq5BTHih+Pk5OPKhJdFIIoi2Vg/iLpqI7KmhzGM8OylDe23bbh9SdIb8zYpGMZiW0SnxOA+YnAJTF4bYw1YQ/y1RGy79xTH+gGTf3Jce20NEW6YnlU5RRuRQk3YHje0u+/UhJDJWNeBPNNrM4GwCSqvNiUPhX8D9/Dw8FhS+AXcw8PDY0lxrhSKiIhZUFm5KKIOgtImoxEokVRdKWppGPxuTeGGVVZdpAQ7xkynjQN3yJiv0IFrGSKKZQcp1AY0TQIfqUDKb1Xo9doduHM1F3k0demck6JasAZ8EBjptE4eLUF0Gq6fmMbUQkHCh2NvdT9LJGvFjDBBmxRKkqiLmhVql7C25V8gtyaE251jrk0w/imTyRAMwrkTUmsH15tkrh1D9D2MTuBHz6/79CiU0yKKIrmycUChdJBY0wYFUoBW2B9qAkwlroZLiu+QlhDYj5RW4KTiw94Y/+lEo7VIXUiIZKvYfWYmE+gaIXKItBefy+lY74/yRkyyKXGe8ZgRS65dk0jH0DDpCtpHea7fGQyOl1Hwb+AeHh4eSwq/gHt4eHgsKc6dQqlLLJ4VTJaw2LV3JB9BFaytqMrdfjk5/Hi45lFDXdwQURumdF1a7ka3mm18Dn0DRBJkGSXQoN8wUdcpEGg/YPd/UFOm29l2d7lPirNqqByFwBhJzygTfP2Kqy1DhbnRLu4XtgxAY5GSY0QQk2OKglomiChCJEBWozEy6OI0QYPQzac0MO0UhGq/dlfbIdzmnX3VZzGh+xhayt9mNZ2Up2DR1JiInT9D+VSfmWGuc9tgPCpEW40yV7dnC/oibUQINUAlxaBNxnK40iaf1wRRLzk4rxIJU+zTQYcPl54m/YSANUkRTeYovfLZxdwpoZXDiLODc2EuIDGK84JzarCnc+Qo+DdwDw8PjyWFX8A9PDw8lhR+Affw8PBYUpwrB15VleyPpscfeCIoh9RKyTMqj9ZEOBYr4bRGenwH4UDk1R8PNDuOZZIYtiYiEgrCncC3kY91yq4hTEgS8OfgBQex8n+sAhJO66W3Tl5ui1g0U2pEpBGdbW+jt9Z3/t2CoNGDsY4VKxaRxxa0OeZDhGDlECnjkOUOB+7OywnCOuOQ4V/IDkVYZ4PazUZt1kB2KEuOTTbVxiZ0QxgtuOCsOLmNF02BGxExs3GnBniC+ZwgzJHzsYjc58SC52c/J6hMM4UBY4iXMQuXGuwSHh5qGOGZDAM307fE/g9DTWm/JGFILLI18eyOGH5cHr7HEsWuXXneAGPFymHTiXL5xQmWSv8G7uHh4bGk8Au4h4eHx5LiXCmUoqxkc290/IEnORdcoStwz1pw6ZrXENaHsKQUmVptjECnq2E/j7dUUCph+StTq0qPzEqDzCsDN7hCiFMFjfIA+sI9lGIapBoeyOwvFlIVEQmgVXwaROHjM33vKARGzhxG2K5lYnbgOpcoGD2FBng2QdHaCt/v6XjuQUgoAx0yhY0sQr7GEzfsLUe455gZeE1SJaRvQB+ACmDd6QIUG8PekppqETM2w1MIjy04EfPJWfH/B2iiv1fWNQw03EN459hdWhKMD78voLfIgbUgKDXJdBBZtJxhfb02hN1Ik03cMEI+rxSRikOU2mMWL6i1ANRMA5mpIfTDx9CLz2p0qyNghU5ahC8XpMzK4w3q38A9PDw8lhR+Affw8PBYUpxzJqYRK4vx83Z21UWmfrKkSisUq+pSb29DUApZVGGlLtl4oJlPaYRsSLh8nbYr2sTSWyEysnYRQWFB9xioX7FM1RhZlu2OnnOKcl5FrXp5p302CiUIFqsHHhgjreQE9Z8OQbtWebsHWsmg4vmDkQoX7e5qO0nUdeZu/njETEwd/wk4DQ5DWctONYgkYcVy0mw5tMjHEMwqHcErPYa2LEEpxLFbzo1CR6fT+F40h2IktAd27SOKa6OvYxCniMoBO9qoiUi1QQV1oYVOnfEE0WTjSu1x/z7oMNBnza72qZzqnKBdypreWxTotS3mS85MaNBpFd5xDfhMRreMMDenEwpvuc8ZNcdbKPvWAn0aruhz9HZ2V46DfwP38PDwWFL4BdzDw8NjSXGuFEoUBXIVu8vPgnKidEeCnyGW5KIwzAgJAxbu8Yc+8NPz9n9+43vzdquj4lcl3DkK8YiIVFO4VdD1HTxCpAc23ZmYQ++4xA786vr6vP29H7+tx9fc6X7zrBTKYn+3wzCUfu9sdk3SWhQKKJUACRIZqnjfvftw3m5bPX4AgajE0RVX6mI0UHe3u6K27LRcu3Zaav8VUDkJ5tfd2xqphMvJBJELkIp2hLdiRpfU7OronVs3kuFpsAvO5LGVnVML+VjpmUEIWm8P9BTvtXL7EjqJWHpggIGzeH7e/skd/TIorG5L53y7SZE47VOnSc19V1BKQGtUU0Z8oOwhTDMiJQKKyiC5aAtCX+WUYmfunGo3tC+W1C3oPj6baeyjUDw8PDwuLI5dwI0xf2iMeWiM+RY+WzPGfMUY8/3Zf1efdg6PFw/erhcX3raXByehUD4vIv9CRP4VPvusiPyZtfZzxpjPzv79meNOFBgjnWQxERA//f6X523qZ2zeezRvx4iMGJPqgPbEYE9d6j3oT3euaHTDEBEiUeL+5uUTVEVnok2A0m4N7R+ronc66gK2kCCyByqAu+D1sl/748M1k49DeRAJ83lZlF2D4B0UxEkR1BKAUpQvM0jyGWPcxixlFqPE1lSjB/rr6q529hEpgSSuDiJeOk2Xyrn10kvz9vpVaJYXeo1H9zfn7RxURwiXn7QJP48jPgc1CiWnvvTJaRFQKJ+XBdg2CIw0Zrr41COhBv4I0RtZGeC77j21QHe87z235u0SCU33HyrtOMZztdLvz9vUXc8RlVVWSMoBDdeozUs+rwHGPbBInkKy3hSaOgM8bxXonibKxVHavazctc4KqCPMe2qcV4hSu3L9Gr79bTkMx76BW2v/g4hs1T7+uIi8Nmu/JiK/cdx5PF4seLteXHjbXh6cdRPzmrX23qx9X0SuHXWgMebTIvJpEZFmes5h5x6nxZns2qvFxnu8kDiRbWnXVk3mwOPFwzOvqNZaa4w50s+z1r4qIq+KiKyvNG07Xcy+aRe0Sa+vdF6MhIwHDzRaYTzVzzdWdWI+uHd/3t7dQ4mypupwMPmIkQ4iIgUSOKRSiqOPyAWLEmAZEjgmU919znN1zfeQUJSkqOZdo1CC8GzJMycRzTiNXW9sdK09o0htVNP6oKZIaLijzz4juQK2IT3y8q3rekwLEQaIelldVxtlmVJpIiIf+sD75+2Naxvz9nhf3fzvvfGmfg5qpd2iXgpOiiGyFoletUCTColAdKmPxQkjVp5mW9p1rde0T0oDBqHOQybOFQNonoKGqCeLGcisslTYcKjtzUfqNExBdTAhhrlsI1SAtxZjBtrJ1sZkPAT9hmQ9UneF4FwGtEdIKk771AK9J0afyUrcMWBUXBOUXeKUhNRjTmL7s66mD4wxN0REZv99eMzxHssBb9eLC2/bC4izLuBfFpFPztqfFJEvLaY7Hs8Z3q4XF962FxDHUijGmH8tIr8iIhvGmNsi8o9F5HMi8gVjzKdE5C0R+cRJLhZHkVxfW0z0kuMK95ROSeAyff9NrYS9taX0SArpyF7I3Wc9/86Wusr9VVTzqcufrq/iOO2Hwe76gwda3adkFRgkAEQRXSd121JUti5L1+utzlpd3i7WrtZaR+fjNIgi181kBEZQMTMEFcThnsdIBEnRvg7aI0QuR4x5swJNj4cPXZ2Zq2uaTHUd0QB7yiRIB67zAJVUArjjAslalqIpkaQkNc0MJzDnFBqxTyqrL8q2xhiJZ5WW7t67N/88d6qwa2fjSCM+VrpuklmI52bzoUaK7e3tzNvbiAIbFaAYQLmw6o9xKsxrezrRuZgXbqRWWeA4RDMxKqjR0HvqQAOmK7yenjPHc1lgzjIBUEQkw7NfwOYBopNKJBRlmTsnD8OxC7i19reO+NPHjj27xwsLb9eLC2/bywOfienh4eGxpDjXuL4gMNJG8sSzIEGSDnNr+pBmDLBTzCK10zESPt53Y95udDXyZGeMgPqr/Xk7jFy36MMf/oV5e/2q0ik7jzS6ZWf7P+u1S+5q6z0E9JSZGABXa3/gVjNy3PBTwJ4msuEEKIpStra2jz/wEJS1or1BG4VtA+hQgJJiQhMr+HQgw7vaVxfeIliHFAqPn+y7CR8F3PAIrjoTrtagzzJElBMTNiLo7tD9zzEfo1pFniJDxEd08keUxbcXgWYjlZ/7mQ+JiMgb3/nu/PM791QDpkKySgfRPjZ3dVyLsdKZGys6hozYsRjn8Rb0a/Z39HqlPrtdyMk2oX/Swpxot127dtt9/VtHo5D4nUZLx7wEzbm9qXP8HvR4YkjnTlGFx2a1MSj030WGRJ6QCVA6BoF596JQPDw8PDyeM/wC7uHh4bGkOFcKpawqGQwGxx94AjACIMPucBCo28HKJgGSaRrICH3lPUqhJHCvBlPdWWYUyiaoERGR999STZYb79XkkftNdS2/+zc/mrcLyGqm2JkvUdy1AMUxmGg/srEbhWLO6DIvWE1WqqqU/TPatV60t4VogDBm1AYKwsbqLjdAiXRRLafXQ+gJLhFjzNstbY9aruxoPoFEKLJHEkSY9BBp0UIERY6kngaSRSrcwyTW84eB+xjmDb2/NDl5luuiZYKNEXkyvHTzKyTsmPDwJJSgltgVQV/k1s0r8/b169qOIP16dxMVtHDtBnRO2tASIvXACjlF7kZH/fzP/5fz9o2Xbuq5WN1HlOoY7u7M2z/+oT7HU8hT7+yrvQsWb264c3ul15+3OTqkNJm8E9UieQ6DfwP38PDwWFL4BdzDw8NjSXGuFEqe53Lv/oPjDzwBVlY0YiTsazsKWSxWXVFWs1lDws17QHsEKHiacXe9q65aVEsMmOyruxZaTfhYQQLA9av6eQadixYL+iIYY4KkmDDErnbh7mo3GmeL6DlNZMNJUFkrWXa2pCJKw4ocRLTM4XRTnc4EURtkDXoralen+DQifEhbtds6fqOeygeLiEzH6sIPYeNOT+cF+8GEpAx0WAJ6pEJH0pg6Nm6yTopMnugUr1inyPk5EaqqlMEsAoSFnZsdHeccZXhWV3UM1zpuZE27ofP4/e9T6uLqlb4eZPjMaYQIo8kS0J8p2kzq2dtF5NaOUlsiIsVQ6Y4pEoRYXHv9iq4nKSKhJkgOG77y3nl7c1uvsT9EgePcXSuYdBayaDb4FBbXrkstHwb/Bu7h4eGxpPALuIeHh8eS4lwplKqyMp5kxx94AgSRurhXOrp7HSH4vYtd3Gn2k3mb9MbGurpLTmUMDE0HyUFh7gbX7++qxsrD+/fxHchNohqJYDeeg99CwVMW8y0hk1k0XPnYs+ZtLNjTFrEiZa2I7UlR13ugFoRB+Agr27Bd4fg+KJQW5DoZ6RJBurPRQERJx41C2dnXfm1uqi6ODahNg+gBRJjQLDEztOA2JyGpFXdONeKzPZaLtmtVVTKdHDxnfJauXtPx/OGbb+H6eh+9nptAc+OaUiI3bigVsYYIL8EcajOIKCJtRfuhADYCPgZIDnocuf3IUEB4Z1MrKpWVrkvTTJ/pBuSvU1y7jfmSoxJRVir9Oc1d+sZivjARkdpMkuhaURTHa6H4N3APDw+PJYVfwD08PDyWFH4B9/Dw8FhSnCsHbow5exmwGrKp8kOsTt2CqI0tldcabKuYTqcF4Rto//a6/Xl7WrJStJ6/33e50j1Urf766ypadfOW8nx376n+MfWuGygL10JIVAUt5BxhhxGyxURERhDlOg2eUintbDDmHSW0Toq6mBV5ZeOcExmpEJrKJnrMKjjwRopszRay7JApFwTgXGt1PXeRXXf7roa+jnM9196+8qkjcKvNVOcONeYpwhUzs7G2f2DR9yw/ngd9t2BEMxwt5mE20vC7vcdaBm3QhYb3e1zd/w+8ohnP/Z4e10c2ZQL+tzRqD2bhUm+buvkh4knbECkz1t0Z2IZI1v5QbXb7se5zbD5WoaqbN6/iGvqMPt7U9eTR5s68Pc50bOrCd+2mzp0G9kYSTJI41rEpquOXZ/8G7uHh4bGk8Au4h4eHx5LiXCmUKIzl6vq14w88AZqJus5dhCzZUF29Zqyu18vX1ubtDbja3cbh4YKR1fOPUDm7t+G62tO3dubt7/5YXa+f3NHPHz5QF/z979dstRQuvHHcQWTsIYNUatRHUZ0t+9EumEEJTCCNtHX8gYcgrjEvTpYo3GJWqIfpHR31PgSsGgj5CpGxOgUlUYIWaNYyByur7vX9R6oDPUCG5qNHGm7GMl59aEsHEC+LAlIoehP1MMIKf8uy05SqW6xhjTEShwfzvQ1a6GoPoW4Qg7uOTMyrfQ0bFBG5dU0plVXQVb22jnva0HGbBqBTQDFxPIZDpS8T1BlodLWvUculbLf3NTvy8Y7a8scPdubtt350d97+4U+UKuHwjqDNT/Gya1eVJrl5Q0OURUS6oEktyqsJQg+dQvYnCM31b+AeHh4eSwq/gHt4eHgsKc43CiUwEp9C3/hp6ILuSJt6G2OI6zQgNvThn/3pebu/oq5eAlEhRiWkEaNQ9PxxLUsug/DU3YfqajcgjDUZsfo1sjLx8znK1LVjhfMMJZrGhetO59nZslqtXWxJtTAMpdftHX/gIWglNT1w0A82IP2gx/QhQtWBHngPnzdwXoNjKnAuNqtwvGtX6rY/giDSw0fqUu9sq3BRs6Hzjhl7ApEvi3OGiDyISvc9KkO2brVgW50G1qowVxrrc/vSdaUJXrp2a94GGykbG24USoLnPsa5KDJXWkYkTXA8RKAwbiEoqQh1FalLbmqRHAnoqfsQ1vvuD+7M26ORPn94vCVAREsBKo6l7Iyh0Jq71lnOPZg8h/jZENFMoxNkrR/7Bm6MedkY81VjzBvGmG8bY35n9vmaMeYrxpjvz/67ety5PF4ceLteTHi7Xi6chEIpROQfWWt/TkT+joj8T8aYnxORz4rIn1lrPyQifzb7t8fywNv1YsLb9RLhWArFWntPRO7N2vvGmO+IyE0R+biI/MrssNdE5N+JyGeefjK3XNizoODONJJB2E4YGdFBMgA2dytEm1BIKcaOcQ5Xvr4zbPGdh1s7erlIr53AdcpzbU/hKg9Bmzza1uiGqtLjKbgj8mwxB4u0qzFGkvhs1BhFp0REEiSxVFbdaOo9r0H/vcfyY/gu3VqYWGK8s1j8IYzddxmKUz3e0SikChTdEIk8Kei6EAlIrFDPpJwKoUBV7ZmgJjr1oY+DtXaxz6sxEqUHtFQEwaUSD9AApeQm0K7vDtzoj92BRmqsrigFE2V6rhDCbVFTP48oModnZsrojRLl9zCeRY2GaMLOw4E+Z3fv35u3s0rvtRXqHExDRhHp+sCIOFIu+wM3CWuCuRNDoIuJXPsjPcFjJB8ehVNtYhpjXhGRj4jI10Tk2myyiIjcF5FD4wONMZ82xrxujHl9PH1+WWUeR8Pb9WLiWe06mni7vug48QJujOmIyBdF5HettXv8m7XWyhEvhNbaV621H7XWfrSZLiaN3mNx8Ha9mFiEXVsNb9cXHSeKQjHGxHIwGf7IWvsns48fGGNuWGvvGWNuiMjDo89wgLKqZDA6m35HHc3kcD1lagfncFP3kYDxeEfn8yYiDFaw478OreECb5i2crU7AnznNna11xq6R7TR1wiN4RAutRN5oq7eA2iMW1QAjwPXnY7Ds5EodjYui7KriLgZNadAFLsUCu3nVJBDBMDGuiZltRNGKHA6sz9qvxgutBVGNBxNoWzDHhGiGhgh5GRgIAqCR4ymau+sOJwCFBGZIlmlOAWFIgu2a2VFRrMoGlZ3L6CJn6EkHgOKHjzWiCwRkW99V+9jNNJnroeoo1ZTn7lr0AzvtEFJYcqPB3rOnKa3+LxWso90ZgYtodt3VMv/7Ufav+srOtfWu6DuoK9jUV9gNFZb7u65JdWKUqm4AFFuJW5qCA5mb3D8WnmSKBQjIn8gIt+x1v4+/vRlEfnkrP1JEfnSsVfzeGHg7Xox4e16uXCSN/C/KyL/QES+aYz5q9lnvycinxORLxhjPiUib4nIJ96VHnq8W/B2vZjwdr1EOEkUyp/L0dWaPnaaixVFIQ83t44/8ARoNSi5qi5dH3oMO6gWPUV5onsopfT9H92et7tw4V7BbvKDh0qNrK640RYBnOQHj1SSMkcV7kak3xkM1aWbFDvz9gj92wWdYuFexdZ1qeLgbBE9ZVkt1K5Wzl5SraoJs1BONgdFEYBaCZAkJUi+KpxIBB6CBBq40AG1ZWq6Mizbtruvrm9qNFkI8ixOtFAGisFgiIew63iKqKjcpVCy8mwaNyKLfV7LqpTd/YNnKId2R2U5hkzEQQLMlo6ZiMjWtlIU45FSCyUSncZDRqroc9ztqK7KFMlrt29r8g3v+IMfeGne/lsf/oDTj7hSuoN7Nys91Ud6OFL7kXotp9rXaUsXCCbGNZrU8nHtOs5QsR5JeSW3I0ADTjP3+4fBp9J7eHh4LCn8Au7h4eGxpDhXLZSsKOQupFWfBe2WutEb6+r+DBAIvw+XjJoLD1BF5E1IRz68oxvzN65rFfs33/zBvP1rH/uI0w9j1SXrwA3b3tTIhZWWfr4/VPdxa6iB+sjvkXEOlwo0yagWwbPSOlvyzILVZMVaK0V5vLt3GKa1qvQRRE+Y+NJoqBudT0CVILJjAnecgR0J7jiUw2mTsnDpqBD0yj6qLuWgbJpIXuL1xoifjnE/A0jO7g6037ZyGY8w1H5Fp6l0ZM4WCXQUrDWSzypTTaAbk8FmVDsWC82f0KWB2qju/nAbkrx39Vm887bSLC1Iy1agxpjkxIo81EIZZ4w6csdvLdVIkjJXG6ytQt8FGia7DzSaxoIaK0Gdbm7pPTRbuqS22jV9HcyRCc41Bi00LXRsiup4e/o3cA8PD48lhV/APTw8PJYU50qhiLVSLKgczC4KkrZQ1aMy6jLRTSmx65uE1B1RWuIv/+pH87axb+FqqOzzyttOP650tejplQ11z4aPtX8DJC7kSOBg8MHWQHftsdktrY66doyyEBGJsjNGoSyYQ7GVlfFkevyBh6DTcBN5SIME2JFnpBGr6hgkulA7YmdNaat+ovRLhMK0BSMrCpfKYV7S1o6etwm9j6Cr7z85aK/BWMeCiUP7GCO2jXXfo+KwRPvkxqprqjwryqqaP2dOFAoijkIkpJD+qmrUzwQU1SNEhz1Gsss4R2FiVM1aQyJcClla0imjsT4/A0zFH/5EaRkRkbwPLZWJPqMJxrmHoshRqdcOCu1fM9ZopDHWou0dpVxM4M6pGyh0XmFul5DOzaF3FJ6AEfNv4B4eHh5LCr+Ae3h4eCwpzpVCCaNI+mvrCzlXu6du8QhaJQUi+qmSx91y7uw/QlWVAtU0XnnlPfN2Bh2IB4/dBIWmqGxsM9XzroNOSXHet28rBbNxU/VSQkhNWrjzXegs5LWqMWV+tsiPo/M8zoYDjZvR8QcegjXcn4jIFBRKF7Kjo6HaYAK7RpBrvY9EqvUVtUuKSj1prNENOZJpqrJGoYDq24JMcCNSKqCF6ko56LoBIo1QNEYGE/18iMiDQFzRqAR031ROntSzaArFGCPBLNImgT/PKkEGUTlxDGrFuHPTguoaTSH3Cvoo7ajNOhugvRqkSHFOPA5JqnYNEfEyrVXk2Ye+SK+r13g/KJFgC4WPQd1RPnic6zrw0k1NHJpO9PPhWKkiEZGiUF0Vahwzb2u4r/1jwtRR8G/gHh4eHksKv4B7eHh4LCnOlUKprJXpaeQxn4IJXNAuXGRGMYQpCwhTV0Ndk8FIj08gbRkxsgVdLmo/eZT7vLqutMkuols6qVIBe4OdefuK6K70BIVUGajTaeuO+E7pushB2JAzIVjs73ZZlrIDydXTYA3RBiIiqD8sLUQ7jCELSvlVC1f9/kPVuOniRFNQLisraqMHSCp7+Wbf6QedV4OQlCEkSEdIFCOtMxgjoWis/R5hboJxeYdEMSsvJafI41lQgNccRoxEUTz/l15HL2SwgkSRfh5Ind5DxA7CrCy4zRDaJK2+zntWymK1nTjR40e7SIDBpQOjz7SISAscTNRWyqaHpJuViZ4gQJIgC52PQZN1e9rXdkuPmUxcCmQ4VHqFeWMFE6OQaNZuu8/GYfBv4B4eHh5LCr+Ae3h4eCwp/ALu4eHhsaQ4Vw7cGOPoOj8LKILUg4iUQPs5RqVwQaZViJCoHPrcCQSyigClmBA6Ni5copHZkasd5dtWeigVBdGjLFDeeopsvDJXnq/dU562Av9HUSUREWvOxoFXZ9TuPgpFWcrW7s6ZvrsxXHH+vWIwVgiTnEBLuyzBLUI0iRw4TCb37urnva5m1v3wR5p5+9/+ak2kTNR+DejEb+4hwxYZeBNw9CE48H1oQBcou8bwubJelZ77OI2TP6KLFikTYyWY7TEECL01FM3Cs9RCGGBY602GbORyqu0goai62jsrdTyN856JMUTk5xSlzDKIVI1rAnDNDd13ijC/Mly7CaGqFJz2alP3sspK73U40vBVVqtf77v8u0EW8AQbayn23q7fwvNgjre9fwP38PDwWFL4BdzDw8NjSXGuFEoQBNJsnTH0rQYDN4eiNjEomijU36cgVlcoRUZjbpARh4S4CuFpLBe2tevSGMOGulIx+nRtTd0iVvHuNpTuqZBlt4ZwpSbChyYIW6tqIZilPZuAlF1wvJkVK3lxtqzQUU0Eq9mAGBloCYZd5aCbCrjaacCQQhWgKpDlGsfq7m4+foTj3SrqLVBuLcxZE6DEFtzuMSgeut0Ma6Wbnlc6N6OolmHLsnKnGNaFUyhWxM5c/aI6PPyXWuZmDGqlRgtlCKEzOFeM0LwK75MZ+BEUmZcctpwiBNiAWmk1NcOy3XHF0iRB9mw2RVvtx3DIKFbbBJEuECVCSw1ClEP2I3XXunZHM693pzqPpqX2I8S1p+MFVKX38PDw8Hgx4RdwDw8PjyXFOUehiKTpYi4ZhxCD4Q4ydoGNge8FnfAgTPDx4bvg9ACnI7jKU1f0aEgfF7vf6111t/ahD91A9mSBfvRbusM9HqMq9khdqpWOK/x0xipmTmX2hcCKlGekZcZTl0LJC+gsg0Jh4Az1wAU0UhvU2MMdjf7YeaRZotS1Ng7lomWxRESudvVcbWTDBhR1Qtm1CYSqKgvBLEQtDTF3OG06XdeujBKaFicXqFp0Jqa1dp5pHILmYQZk0kjxubaNdfvdwJzLR0qnMIs6hWhVgWC1EGJfYU/7EUIQSiztgmsHLvVD+jCI9Xot3BMjfxhwU+EeSmSQxg21X4A+JcalbyJQKg300TpLiv4jSY5/vz72CGNMwxjzF8aYvzbGfNsY809mn7/PGPM1Y8ybxph/Y0yttx4vNLxdLya8XS8XTkKhTEXkV621f0tEfkFEft0Y83dE5H8XkX9mrf2giGyLyKfetV56vBvwdr2Y8Ha9RDiWz7AHPscTnyee/c+KyK+KyP8w+/w1EflfRORfPu1cxhhJw8Uk8jRbGv1hqsPFYIoCyQBGXSRSFMZQHAfRKfBxc0QSrK26euYWlE0Id7kBbXAL2iS2+uITtDSpZFTSzVd3PHV2sl3qw55R/zkIzGLtGgTSbLWfdsiRSNLU+XeBe3IiOGAPHhMi0ihHUtUIyTQVEiI6KxqhwAiWnT1Xz7wbaQRAjGswIiWFYBYpFGN0LMIwxueYm9AfbzbdMZgiSqM8hXa7lcU+ryJ2rjEeB4dHzZCSKKCbHxm33wmqwzcgIhWBlggR8VHyGqCbYoSKtUFdMBFuAiqT+vIiIhl4R2qckxZqgBaaZlxDoF2O59KA5iowT6e1yKySGulI5IoR3WKQMBWe4PX6RJuYxpjQGPNXIvJQRL4iIj8QkR1r5wE+t0Xk5hHf/bQx5nVjzOvZmQsQeLwbWJRdywVndno8GxZl12nmn9cXHSdawK21pbX2F0Tkloj8ooj8zEkvYK191Vr7UWvtR/kr7PH8sSi7LnxT1OOZsCi7pqfRsvV4LjhVSIi1dscY81UR+SUR6Rtjotmv+i0RuXPc90NjpJ2kxx12InBqRdA8GSFhIG2om9PtanIMI1iGqEzdX1NKwwR6znQdwf8WGikiYgt113rQMDExXSFtxxV0qukuTdQUPI8Ndbz29jWyQkQkyw9PrjgO9USeZ7VrEIbS6hyvXXwY0qarF8GEEerd8G2Qb/wRqComE41xfIRyWxs3bszbg4GO5+7ATZq40lS78r2jDb2bJkqqjTGPqBsS45gA5ceo+d1qu2NgkchTZKexcY1iW4BdOzO7BvDnK9AQw4FSf9Q1j2v+fxvPaJPnQpuaMBnK3XG+5gJNHMyPhrOu6PFVba7TWeR9MBIkKpTScDR4QAsF0OPZgy48y65VNQ+m3dHnepjpd7imJAl114//AT1JFMoVY0x/1m6KyK+JyHdE5Ksi8vdnh31SRL507NU8Xhh4u15MeLteLpzkDfyGiLxmjAnlYMH/grX2/zbGvCEif2yM+d9E5D+JyB+8i/30WDy8XS8mvF0vEcyidTGeejFjHonIUEQ2jzv2AmJDXpz7fq+19sqiTjaz61vyYt3jeeFFumdv18XhRbvnQ217rgu4iIgx5nVr7UfP9aIvAC7DfV+Ge6zjMtzzZbjHOpblnr0WioeHh8eSwi/gHh4eHkuK57GAv/ocrvki4DLc92W4xzouwz1fhnusYynu+dw5cA8PDw+PxcBTKB4eHh5LCr+Ae3h4eCwpznUBN8b8ujHmuzNN4s+e57XPC8aYl40xXzXGvDHTY/6d2edrxpivGGO+P/vv6nHnWhZcBruKXD7beru++HY9Nw58lhn2PTlI7b0tIl8Xkd+y1r5xLh04JxhjbojIDWvtN4wxXRH5SxH5DRH5bRHZstZ+bvYwrFprP/P8eroYXBa7ilwu23q7Loddz/MN/BdF5E1r7Q+ttZmI/LGIfPwcr38usNbes9Z+Y9belwMdiptycK+vzQ57TQ4myEXApbCryKWzrbfrEtj1PBfwmyLyNv59pCbxRYEx5hUR+YiIfE1Erllr783+dF9Erj2vfi0Yl86uIpfCtt6uS2BXv4n5LsEY0xGRL4rI71pr9/i3WdUUH7+5pPC2vZhYRrue5wJ+R0Rexr9PpEm8jDAH9du+KCJ/ZK39k9nHD2Zc2xPO7eHz6t+CcWnsKnKpbOvtugR2Pc8F/Osi8iFzUB07EZHfFJEvn+P1zwXGGCMHUp3fsdb+Pv70ZTnQYRa5WHrMl8KuIpfOtt6uS2DX85aT/Xsi8s/loKDOH1pr/+m5XfycYIz5ZRH5jyLyTRF5UmLk9+SAU/uCiLxHDiQ6P2Gt3XounVwwLoNdRS6fbb1dX3y7+lR6Dw8PjyWF38T08PDwWFL4BdzDw8NjSeEXcA8PD48lhV/APTw8PJYUfgH38PDwWFL4BdzDw8NjSeEXcA8PD48lxf8PNTbfVPadT0oAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABd7ElEQVR4nO29W4ws2XWe+e+IyHtmVdblnDrXZjcvsi2NNaZN0zbsAQwJBgTNeKgHQ7AGY9CAAL6MAQnjBxF68XgwBjgvsh8MeNCABNGAYJkYaUCOIY+GEGjYHsi0WrRsXppkN9n3PvdT17xHxJ6HypPr28m6nEt29cmq/QON3icrMmLHXjt2xvr3Wv9y3ntFRERERCwfkg+7AxERERERT4e4gEdEREQsKeICHhEREbGkiAt4RERExJIiLuARERERS4q4gEdEREQsKZ5pAXfO/Yxz7nvOudedc59fVKciPlxEu55fRNueL7injQN3zqWSvi/pb0h6V9IfSfoF7/13Fte9iLNGtOv5RbTt+UP2DN/9tKTXvfc/lCTn3G9L+oykYydDmjifZdOXfmefO/4jAH9cwmPyojjyLyn+VR7zfZdYO0mSU9sFrlUW5TF9lY77MXS8V8drWztL0yOPz/Pcrj03Bmli3+Gly9K+U6nYMY+u1x9MNBoXxw36U9r1R0/He0rRzjJrT8aT4Dsca45nmtlU5bg5H0wkHGP2c87aeW7XK3H++d4n6dFzgaBteEx6zHfL0uZOMGcxHod/wxwurY/hnP/R++4NRhqN8uPsKj2hbYPn9YRn8Si4uUMSfOBxTwXGJLQf5s5jPKMcW9pl/pkMnn3MC4/743d4DOct7y/jXDtm3ZCkMfpF+x03v7y3e9rvje977y/NH/MsC/h1Se/g3+9K+kvzBznnPifpc5KUpk7Xtho/0uks4cDYjeUlBiAJZ8T2zt6sXZV9v5VUZu0xHtY8te9XGlU7vtGYtTudzqxdr9vnO9vbs/aoNwz6wekxvxjNuo4Hmgtqu2F9vbS2YsdgMbzz4KFduwzHoNPpztr52Hpy0NuZta9fbc/ajebhfX/tD98+sp+PvqIntqt0/dLhvTgMSHdtddZeQ3u9a/d65/1bwXl3YdfRxCb82ub6rN2smW1Szx8oG+cG7Fqr1Wbtu/fu2fnHZstk7klotVp2rqadi0/u9vbDI4/pdOy79ZrNtfEI14Mp1zE2kuRk82IwtDn1cNvGJs3wgzE9/Pf/zXd1Ck617fzzev1yXZLk+eOD+czx4MJXScMfpUbVxqHoj2btnYMDOxWejVbb5m272Zy1m2i3W3bM/r6d5+FDs0tehM9ktWpj22jYubjojyfjWbter8/amxtd+xx9XW3beRoNm2sPMZcl6f27D2btLLN+8Bqcw+Nhf9b+g//wxls6As+ygD8WvPcvS3pZkmrVNObtnxPQrq1Gxa+vdSVJKy37EWw2bTK3WjZJOx1b7MotW5glqbtm369UbJIHb2T4wc4whbOM05lvsfYisLWxZveQ4AVh7kngoh94RHirSpz9EGV4oNFtlaUtVpWqnYhvlcNx+FIwHvXsb0NbWPKJLUZ86OuNw84f8yL3RKBd67XUV6uH91UWHE+8NeNturNiP1zr693gvO2G9ff2u+/b9VKbC822fb/Txtg62Bg/Hp262Sih5zax8ygN34Lb+GFo4kd6ODQbjMZmsy5erPiyN+GPP+xdreOl7NJmcG3vOMlsDLMqvApnn4+Hx3v7s+NPPeJ4vCfpJv59Y/pZxHIj2vX8Itr2nOFZFvA/kvQJ59xLzrmqpL8t6SuL6VbEh4ho1/OLaNtzhqemULz3uXPu70n6fUmppN/w3n/75O+UmkzdE5L4Hq4viX/yfHLhb023Dc4RvJgfGn813h3YueCCd+rGx620wKnBzePx9wfmLnlv7pUk1eHG0WU62N+ftcmBb14yymClZfewinYD/auAW70NDk2S6jU7b3Pd7qNjHrgurZsLWJ1uwnDPYR5PY9csy7Q1vffNrt2fk9my8Ob+9w6MG6zVwilIqqUKLmIysu8nJfYUUhurLLVzjUZmp+HIuMTjNpTd3B5LWdo8Im3C+cmNWw+udUzapILNV/QvL4wa2T+wuXJ4LrPPcdRFge+PR4ft0yLKntS2WZZpfePQnnz6egc2wVbIVYMLJk0mSQ3sO6m05yTFmHCjOqBNsExVwR1zE7qa4NotXKsSjgmfV26a1mvYeyvIT4Mfkc2JKp69BMxwfwj6axDSNwX25B7tR0lSs8k5YueaZKczzs/EgXvvf0/S7z3LOSKeP0S7nl9E254vxEzMiIiIiCXFBx6FQqRpqrWVQ5erhl30wdCoDsZZTxBGlih0J65duzJrX90yl+zuLQtLg3etNkIEO4iUoDteQ8gXoxDGCB9SZn2SpNWu/a0FOub+AxvaNsLK6Gbm2O0unblXWc2OuXzZQj+rVRszSUorCI2s2LgNq+a+JogSaFamIZxusb/baeLUnI5XGsTTWp9KhGYNhhbyNR86kYFyKGoIryp4XlIX5qZOQIMEscCydoH5FVAOobcb9CuMTbfvV6qkBRDji1hKhzBH9mmCfownYbQBqSCOB4NsKohJLh5Fpyy4OEulkunK1a3Da2M8dh9YWO3mmlFmNUTi5GVINQ4HoF1W7Xmo4jnzOcYBj1k1tWMqoFD29o2KK3KbX0l6PDVWlPacTRDVwzjwNLH2aGD0FkMQE9B7Q4SHDhH2qTKkKgvcH6mxIehBj/75E3JOZv049YiIiIiIiOcScQGPiIiIWFKcKYVSrVR0/fpVSSGFst8z96oCP3F/Z3fWvnJpKzhXDbvALezoXr1ulMPNF67O2kHEAbKN6Z4x5ZqB/R+5iWvP7WpXmWk3NjduAwkpDPooJhYRweQPJrc93LFMst6BndPPeVTryER7lMwhSakz9y4d2ufD3iFVFSRiLAjOH9IME9BhCdMymQaOy/fHoastRI8w8qTij0k9Zlo97Md09qxq4zyekCthKv1cFArc1xRzJ83M3lW0E2ZzIEmj8KQEQfeAEkoyREZIqlZBGWDyJEzxxhjk40dRKKenuD85fnSuNJuI1iJlhiiLIg/tOkByEhOKGxNEHSEdNsG9DEE9jcb2OekQ0mQ5abLRXCr9hLIKR0shZIx+Cx46RIiA3h2PIXeByzGKSpLAhqmKf4yRFLSP6LXRIEzwOgrxDTwiIiJiSREX8IiIiIglxZlSKJJmKhaMKrm8hUgL7MA34YJc2Qg1M/LcXPUdUA4p3OVq1c7lKMZDOsUhSQM72YOB0TeB4F01/M0bjOyPpFCo41GO+DmFu8wF7/fNHRyOoCaYgOKZ+7kdDc1N3d5Gf+FCFsbYaDJ19caTUOBnEXhkz5TuMaiAwiOJBdokxZzoUaAEB1pjgrFNMYZVCgEFiTkY50D1EZEEHipycxRKkSNhB7asI2qCkUoMY6HiISMUJphrTCgq596jElAJVHQUkoVyzJHx8PESeZ4UZVmqP40eQWCGmqCOPJ4Z0lnJHPNC2myI75CqGuNBSzHZE9ANpMaY+BMMaMGIknB+kT6skQ5DhAkjf5iMNgmoHFA24ISyis2Jei2MGnPHqFEWGMLxABEwpzMo8Q08IiIiYlkRF/CIiIiIJUVcwCMiIiKWFGfKgR+KWR0SOwwBGkPoiNxXDfzVwZ5lf0lSgvAmD25qu2dhOAeZhS41K8Z3pUEljqMr5FTqCPOZHM3ZHd4I+gSeMLiP2tECOuNjeLQaMjHrQb9Dnpb/HPQgjrRrY9BuWrGA5NG55sulPCu8ZhsFVXC2qysWSslXBXLBaRlmtjIUsAHuucA+QgYBrBpEkw5QHCAQRQNvyhC4MkdY2DBMxUzAszMzkpwqRcGKgtmXmEcZeFAIFbmJtXvDcE8iR2Zmiri0imM2KkswTa+3aLV9Z2MXKPmTy8UYtFBoQ0nI/+Z4XkvYtcKQ0DHD+uzjehs2w7WDKkgOex4ez9tchm2OvQ1mXlNfnZV3gnBICNnl4Mk5j7y4xxW+Hwd8OvYwJiPsjXgUnED/pHs6CvENPCIiImJJERfwiIiIiCXFmVIoiXOqPQrXgVube/g5CDGjKE3mwq52GiaIU+D7E4aS4Xhm9ZXItKpCf/q4QriB5vRcP5iR1YCeeBP19gTKgBmeOeOHAIesPtbO0yQ8nsI55dhct1rVNMA7EBt6RCskJ+iBPw2SJFFrWkP0yiWjTWqo+TlgGCBeG9qVcDwpiNQG9dS6jDBSnKCP0Lr9B3AzMY9q0FQvRkYvTcYohDsO+YcM4ZseGZQ5qJwxbOnhwvsgq88+py75eAB3fBRSWhOIHtWgDd8CldCF5vV+5ZAqZLmxRcDJKZ2GXWbMhEX/2qgB2YVIVTHH5/RBRWSgElqgCarMpGWhZ9CZ9+7dtX7gWWQGN9mlyTjkUDJcw/FPzNAFS8qlKcM6UMH8GnuWvcNapJAaa6KkXob7zkGhTBJohiPT+jjEN/CIiIiIJUVcwCMiIiKWFGcbhSJpPN2tryHzqYrsyQzEh5sc7apJ0qVNqy4+QXVxByqhzmuI7ot9PoY7d4BSX0GfUnNdhwehW1RlZh+0xanDXaJNCoYl0XJWH6dr7+zz+pyLzGsz8mG1Y5En3GkfTzPgFiwHLl+WmkyzQod9u9cBqmqPGL2DaApWE5cUpKWNJ5Ztuwoq4WDfjnnn9p1Zm9EmbZTZa2LujCfmyrdR5quShSXAVCLKgG44KDNWgxthrk4w1yqggfYPLFt21EfdOx/O7TroN9p42LfxmGQo+Tal1hafienV2z8crwre9Vahg97AICQptLbzMLooQxhLFTRnK7VxW0VVeof7vrdn4+aQRVxHpnXCjGrMtaQaLnEpsp+F6JEUdnWcqxSnwrrRG5v9Jn0IzgkCZxmjSKQUY8jMz7xm3y8gtrW2Ojcnj0B8A4+IiIhYUsQFPCIiImJJcaYUyniS6+3bh5XVO52jq1lXEQi/geD61XaorZt7Vho3l6eFSuENuG3rSCop4OLe3rZK7xl2lhs4z2Ri0Qb1eZcMLpOYgAFda+o0s0r5YGyJJ6MDu58ESRBphVRT+HtbRyTCLipYb66ZKzrGNno59QcXrRqdJG5GOdGLZ5TMELvz44LiP+E9rXaNGrtx5fKsfbBvY9VHmasR9J43NkEdoZp4geQPjxCDDCXqGqBcJKlA/kZJESpWTodi08HI+rffQ4nAHgYE1FG7ZTYazkmisySbx9xOcG3eU20a/TRfPuxZURTFbNyb0Cx3iIzKQUkd7Nt9D/OQGsOjpQoy3poV6oFb/w/69jw8uGtJfCyNWA8SXXgBO0+ziWQySR4URYFkmpTl/wqIVvVgHMqEU98e3yXLOa8HXoIeHGFAUqw1q11bFxuNkII5CvENPCIiImJJceoC7pz7DefcXefct/DZunPuq86516b/XzvpHBHPH6Jdzy+ibS8OHodC+U1J/1TSP8dnn5f0B977LzjnPj/996+cdqKy9BpPRW6HCNR3gX+FxBokxkzGoTjuXs/+PUZgSAVu2CoSOOpwP28/2Jm1B4gqYYX5FElErOK+uhrqkhdIwihBGVTg+u7umzs4Gpib6eGqsYoTNVlSls6a29ln6e7LW5uzdhPJSdt378/ag2niyXSX/je1ILtKJq9SBxUx2gN9wxJi0Aaf1+Fmva0c2hi7OxYhtLeLCACUx6O+epGjPB7KtpWsHo+kiTQN59cQ+uyMHKJefc7IB9iigLYPk0LqmI8t6EZP8vA9inrUjNZqNI4et0f69pnN8d/UAmybOqfWlDIkxVAB7YVrKofO93gUUiiFx/OOyJX1rs3bHIlq+/s7szZt3IC2Twk9JZZRYwk9asdL0ggRRQnWIGrJ50j6Yym4AnRdFVFRKWxZoBL9fL5cnVoxCG/hGCbQEjrAWnEcTn0D997/W0kP5z7+jKQvTttflPRzp14p4rlCtOv5RbTtxcHTbmJuee9vTdu3JW0dd6Bz7nOSPidJWbro7bOIBeOp7Np+jM2WiA8dj2Vb2rVWXazkQsTi8cxRKN5777ht/qN/f1nSy5K02q75j79wRZJUr0OfAu7PBNRIit3qWi0Mat/FcXSXmYDTqNlO/wRRIXu7Rml4IREnsWs8KiUlKYgeKOdKw/ehjVFH4H4JCmVc2rWHCDmoIMFkfa2La5hZGnDVGnW7Hyl0o+l2331gL18DStZOI3weJ93jSey6sVL3/f5htML7t8ztGwzp4tp3UyRGNSuhXSfgw+7evj1r37tnVNDuvo3hqLD77vcxthgPSr0WCJMZoOp3PldFfTxiVXqbU9TcqFSQCAKdi86K0UhB+T7QL57ZVHOZVR4RFQWSwHLch8fnxZSCpNTqSTjJtrTr5lrbv3DtMBJoF7RjjhCdPLfnh/TEeE5bJiiFBkrqYM+idw72jSbbfmjJO2NEjrAa4IS6I6AXs6DafNiPQc9OUGMEDCJBCmiYVBD5RenbGuhdJXjuQWpQW0mSGoga49/8MXNye3dHp+Fpo1DuOOeuStL0/3dPOT5iORDten4RbXsO8bQL+FckfXba/qykLy+mOxEfMqJdzy+ibc8hTqVQnHP/QtJfl7TpnHtX0j+Q9AVJX3LO/aKktyT9/ONcrFqt6MWrhy5ZAzvyCeRT79+xF4Mx5DffeT/cke0NjLog9dGqWiD8Liq176Fy/fY26JGaSa/WG9CXKJj8gYo/SPyRpOHAjhuCQmGOQRXRA1UkmHCbukQCU47EnzKIbgj3EEpE7xwguWW/Z25phsrY2fT3OknShdrVuUT1+iEd9M4779h9BLSJ0UWNmo1Z1YXRCkmOcUhBJaDSu8d9T0B17G3vzNr1pl2viuSrjFLC2JOpziVoNev4PqIMgiouDUQcwA1mFMP+HiJmSIeA7Zin5Sa41xFok7Kk5gYolPwRhXL4/0XZtlrJ9MI0mWoXVN7+ns21d957f9Ye4r6TJNR3aUH+uYMolJ1tey5JofSRDDUskLAGG1cQYUIWyoNKGg3D6CIHOqykVmxifWoisZAJV2PQexPYZVIcnQTEiluH18Mcw3wJ7D0OtZZOw6kLuPf+F475008/0ZUinitEu55fRNteHMRMzIiIiIglxZlqoVTSVFc2DgPx26g24ShVWTMXZ4CIja//x1eCc+WFfafTNBokQ3B/0qHLgp1puJ/7cNsSVgrpQCcDlWU6rTBk7vK6JRa02h20IfUKl//hXXMZ9w/MTWTeQ47qNeMhCyqHYV0kVIaIsqkiAiN1dh+PaKFF1zROs1Srq4c2ePV7iFDAPZGhYGJM7yCsMtSArOvWmo3t2pqN7VrfTnx39+jIkwaSmVotO2cV8yuFlkm1Fj4KV7ZuztpdVDVqdcylDooljcyWO/eNZnv9tTdn7T6ickaIoPBzFEoSFN1GIWQGrjACaRp5tWgtlDRx6jYP53uzYmNw5bIl3/x/f2hVkB7uGLVSzeaoAMyF+4WN1ZVNG8816ICkVaNgym2z8QS0KqPMmLzGhKdGM9Qj2Vi36MmVVUtGbbbseikkbofQ4KEtB9BRcTltieS1uaggJu4xWS+j3TLOz7DvRyG+gUdEREQsKeICHhEREbGkONuixombVUepIhqgRDLMShO7/ChmOpzTVvD47SmxC8zIlbUbV2btmzc/Omv3kRiwDS2UZtPcsPYKomSQ87B/EGYo/8VP/dVZ++r16/YdJHn090wO85v/eaYvpB/88N1Zu0AAf6uO6IbM3MofqbgCF63Tsp3z3X2LfCix634wlcZ0j5XK8/hw8nJTOoKVVJhDweLMDURy1CqhXbsY949+1MazAxnRAbQx7u/a3CF1VEd2KGU56bru71uU0mSuYPTHX3hh1r5yzfqx0jW6jjYe9IyKu40ohv1dc8EfPDSKgToXSR7ao4IEE2rheNAmJeVMp59nCy5WrdKrnGoQMWLHI+nFBbwObJ+GS0uF2kLgU65d3Zi1b1y357VEcsydh/Zs1FAVp9UGNQaObjy2sWWVLUn65J/9Sbv29RuzNqWZxxNbQ7ZRRPkAtrx9z57pEpEuKSLRutVQophMGSPIOIYIVNIukpyOQ3wDj4iIiFhSxAU8IiIiYklxphTKZJLr9rQIbadh7k8TdIpHYscIvy+NjrmukjQa2I7uJiJBVhrmp7z04tVZ+2Nwx0egUHrQbKjXSd+Yq0Z35723Q5e/CreogWSAjUvdWXvQsnPtb5vbBvVN3d+B9kNuLhlpgcSHv7eUl00pjcmirBVz49Kp65omi/3d9t7PEm06q93Z5z1UaKmiEO7GOpKnsjDZYWvLIgNoP0aYIF9EqyuQ5aQMK6JK6F7z1ndqoFOgjyOFlNYQrmwT9M8qIqky2Xweg2a5ftVogVrVoiZ2EN2w3zPbS1KK56ECedEMUQklIx+mlFiaLtaupS80nmoCldRngR5MFZogtboZplENE3kuowh5LbOokhdfsPG5dhXSsigQvrKCaCHI6/IZZYLWYGDXvj9HF+YHRi+OYIN2C5FGK4iQQ2HtF25cm7UroEe2d42mGeH4ypyUbQaKqQyKeSPBC3Z1k3n56B9FfAOPiIiIWFLEBTwiIiJiSXGmFEpeFHow1SfxcP9bq+aylJBeHWFL9qWXXgrO9e1vfW/WrqCI6ZUrtqt986YF7V/d6s7a4wklOiERWT86coHSndW5/ITBrrm/92/fmrVLmSvVatswt5FwsAYJ2QF0MnNQD9jwV3tOUpfeIaMouk1z1Qu44CoOXct0wQkfchbdcf26uZlv/PDtWTuH3gPYHm2iELEkXYUbvQkaKnV0M+34zpgFo6FzUmMxaGvz3tugXB5C4laSxogs2IP+TYlqO8Oxuc51JI+wmhNpuSb0f4aw935/TgYW0UWkuxqI7HAZ5+fh8alb7PuY85J7lJgCHZYhChlfunRp1u4hwapAYpkURpRdvWwUE5/XzQ37nBWcUP88oMPq0KshXTEc2DjXynCJG6FY8s59S0IqvfW307XvV1gkHfLPnbZ1qj+yuTKaIHKkCOmbBoq0pxVI0ILyHKIfK3iOj0N8A4+IiIhYUsQFPCIiImJJERfwiIiIiCXFmXLg3ntNphq5BcJlJgX4UfCYyRg6u5NQD3z/oWVC9daMs7r2F4wrv7xhPNXaqoX9MARoAo1eVtVmxWsH8aUrV7tBP27fNk7t/bvGlb7yzW9aPxAal0/snt5/n2XC7H5qNePOWlWEac393FYRqpWD5x2Df8yR/tVaO+QYK9mCM/a8ZmlmBYS4+tCNLlEZvn9g3N7Gj4WlGa9ehsAQbrgBvjOBtnghVKKHWFCB6vMUGCIH3mrbedxciOY2BJR6feM47+zaPT38E7PfBrj8FrjuB/eNJ79/f2fW3kOGYO5DzWpq5TfA7VZQ4p7hpY/mZ7LgvQ0vr3w6pimfS2SOluDDBxCGG/fCsMx81J21X3rBsqK7qza/VyEgV8G8p40ZOlsEz6hdi+Jzm5uWwStJDx6wZBmEqt59z87rbQ5fn5aUk6R7d3Zm7dsQpTvo2z5Yltlca89x2FXs41SpZY5nl8JWFLU7DvENPCIiImJJERfwiIiIiCXFmVIotWpVH7v5EUlSE2FFVVAGY4TDVaDLu94KMyB/4qOW0XgV4Uc34IJvrJoruooSW2kdWXOOVbUZimTXorZ0tRVq9N6+a27YG3d3Zu3vft9CCquvmyBOjsrdw4FlhW1uWv+ubFpWWBPZdX4cutpIEFWOGl016oFTlHsqbOW0WFc7cU71yuG4dGoQKoJdPLLKVhFOdWUjzLC9vG60VxuiXi3Yz6GS/cSBTgFVwlJapJSqCAWrNlFVvh66qzsH9p2dPTvXOw9QTuxts3H9baPPagjx2983KmE0MnvXkKh4/XoYStkBBVADN+BBQ7kSNnwkYrVYjTK5JFFlKpJGeqoCUbU2yuNdhy2LVhjyut42OuEGKMU16HBTyK4SPKOwMUIseygdGOhrt5G9OqcH/mDHHuw7D802P3zH6LAd0LOv/cDsyvJ4tOX6mvXvxjWzZXtOY76EHnxoP2QKO7u/ejXqgUdEREScW8QFPCIiImJJcaYUinNOlWnkBHe1fYJKzjlLEpmb0V3pBuda+a8sg6uemUtXg0hWmiJbDbQBd5lTfBdy4EqhrQwdplll99n1IKLz6ne/O2vffoDST4iagIckJOzJe2RmMTKG1cfnXOQBhHl2oAHO+85RuiufRmbkRUhHPTOclQFbQYZa46MQ0vLIgEQ19w7T7CTVwS1UoSGeUIUKpdCSBBFMOCaBDnqakq7D7j+ZpDmt9Qqoq/sPLeLgtTeMNtlFFEMNY16FSzyE1n2CLM4sQxZhFmaBpsyeReRJickzANU4mUaFFOWi7eqUTm3AaumMpGo3zMYf++iLs/b8c7LRtXusg0JjJFUSaJ9D1Cmxe61RIMqjTQoF48cMXim06zvvmh7/m+9aVmYBgbth39ojUHFJwFch0xfPuuaigkrM2z7Gc4gIO5ba4xw+DvENPCIiImJJceoC7py76Zz7mnPuO865bzvnfmn6+bpz7qvOudem/1877VwRzw+iXc8nol0vFh6HQskl/X3v/Teccx1Jf+yc+6qkvyvpD7z3X3DOfV7S5yX9ykknKkuv3jQ6IAc9UpS2y+/gRmWsTD3X1d2eRQMMEK1y+4HtIF/ZQYQDhH4aiGhpdY7+DSsQ8ZEzuqEfRoK0IK5z5/btWfvNe0ahtFBpvVMzl7MNLeXh0FyybVZaR3XvZK5k1jZokzv37b696GaSVji8j8khTbUwuzqXKKtMqTFQCU7Wdw/apoBbS5fx8N9mywIu8hhRNqlDdW/QWxWW8UK0QpEgkQffpUiZK8IolBpEjA6QoPLu+5bwMcqtf3VoddeCauJ2Hp6zgIjaaC5fI5H1MUNdOlarH0AU/WA6J6cRGgt8Xkvt9Q7nWA7BpVrtaJpy1LcbGcwloRzgsdnvQ7AO4nAUmaOdMnCNVawPEx1tS485X8wNbgPU7Taosdv3LArFe7NfO7W+klatVzE3J9a/Xt/69Chp8RE4Pyletw29+b0DJkAtgELx3t/y3n9j2t6X9Kqk65I+I+mL08O+KOnnTr1axHODaNfziWjXi4Un4sCdcy9K+qSkr0va8t4/2tG5LWnrmO98zjn3inPulcH8q0bEc4FntWt/EO36POJZ7dobTI46JOI5wmNHoTjn2pJ+R9Ive+/3HBMMvPfOuSPTCLz3L0t6WZIurbX8zsGhu0A5jgaC7Rs1oxW2d40iYKKKFCbEVFNrf+8Hb9q1oWG8iqrtHSQZXN4y/Wm6qA8emEtFDeLLm2HURAVJBkwYeevd92ftZmrXvtTuWnvd2p02dSCQ2FRAT2RuiAdIjtlFCTBPs4KGcMVh/3LQC4uw69XNFT+eurAeujZDJNOU0AMfo3u375sbK0nN5tG62tSIaGKsOtCST+FyFqBiJkigYCgPy1pNhuGPEKuwj1FB/vYdi1bY7kH3Avo6q3VLWuF89khGGo2sH/1e6GoPBoh2AP1TQSmz3tCO2esd9m9SLNauVzY7fjSNcKkhsaaP8Sxh73HweXhPDtFCr71hOvEONEi3Y+PWho03L1tiW4K1YjwALRdUebdbm2CcpNCu/QOjLt58yyJSBtCYv7pq1+40ba6xrwP0YxdJX4W39UsKywIyCoW0Cekl709/v36sN3DnXEWHk+G3vPe/O/34jnPu6vTvVyXdPe77Ec8nol3PJ6JdLw4eJwrFSfp1Sa96738Nf/qKpM9O25+V9OXFdy/ig0K06/lEtOvFwuNQKH9V0t+R9E3n3J9MP/tVSV+Q9CXn3C9KekvSz592osmk0K17h9oCLegebFa7dgy0Iw7gTgyHIR/HUlNDB0lLuO0Mox/u2+d9uCydlslNFnCpH2KHurNi7uPf/NlPB/1YySwaq4vjNi7Z53v3zVXbPTBKhHH+TWisZDVzz3rQXOjNaaEU+P1l9IZHwkdWgdbLVOJzGlGwMLsWZand/eDcksJSUQ6JMpS4ffM9o5okaTy2+x2AFspBTzURvbOBauetJt1aoz12dnZm7QQudHfFaI9ux9qS5EpE06C/Y0RX3HtotjxI7XrDuvV7BW53Wdhcq4GW2z8I6Zu8BHWICC0PamCMqIvh1B2fRqEszK6SVEwTsEagLPcO7F5JbWKYlCikPAtEb33nNYuYypGQlILU8aD5NtbNxp2ORZbdRtRXH6XSNqDJ8md//MWgHy5HuTXYIEWCUB8hM3dA8Y2aWIMw/nx20wrKo00sekmSxqCbStC1jLDiczyfCHQUTl3Avff/XjpW/einT71CxHOJaNfziWjXi4WYiRkRERGxpDhTLRQ5yU+pD+p6PNgxV7QCl3+Cijz9uSgBRihQDwMqtbqPHeF775krtLdtLupKh7oo9uUSiRb9ws7zze++EfTjxa65kxVoHbDCtpCgUEOSAOVPt+HmN9tIZkIlmnIU7uz3MCYM0hmMrE9bVyzKpjqt9MJkqUWgLEsdTCMnJoGWA5OI4CYiIoWUlySNUeE7R4LE+++YBgmrObE6eB1VXA56ZuPtbXPZWbj9x//MC7P2J//sx4N+NBI7LxNJuqtG06xgSo72GRXCyuQ8q82DSsXOuQLZY0kaY74NJ6CUUP3GI6nkEVNF+moRKMpyRmMyimSEyTZACGmQGOXCBK1ESN5B1Zr37xnNsHPPKts8vLczazcbHB8kM/VtbEoM9I0b0Emqh8kwa1WjYypIklpft+d1iEr2Q9Bk48Lm186e9bXVRhRd0643mEtS64EGHMFWEyyGfI79Y8g+xzfwiIiIiCVFXMAjIiIilhRnS6HISVM9AIeqJXQNhyiYmlFTIqO+hOShK5FBl8BDsnOvb+0+JCIrcLtXkMhTg5TpBLvjeWH9u7cbJgZ0SnOlNroWZXAZkrUldvAnA6NBmqgsw+SD3T1zK7faVlQ1TUKXbIIKLQXkWlPImdLlH44OxzBNF0yheGk8tduAVUfgAQYuNcamAS0TSeqBNrvzwKiI196wBJo+oiAaSDAp4Yp6hkSAusDQqN6yUGhW/JGkzWZ31h6PLMJhBYWQL0FGdMejSHHP7JJBvpbU1o5Nmx8pvEsJjBL/mEA/aAj67FEUA6vVLAJFUc70djI8fwX8/OHo6GzNNC3n/o027uPhno3J3QdGiezuGI205oy6aKKiUorKRSUKku8gMep1yP9K0gtdFEXOzU5tnKvbtWemD1qI0rkFEnH4vNYbdm+r62FR4xGGZIhrMwlpEkSkhGvNUYhv4BERERFLiriAR0RERCwpzpRCKX2pwdTtr9EVqqAaDdxgFjZ1WeiSJRl39FGhpTBfLYcrxV37BtzgSgcuKnb/+dM2BhWzPwmpnL2efefyhukm7Hhz/3Nolmw/MHdrBZosjRo0HpDM0u8jaWISRqHkkKusNc0Nb3dQ4cXbMftTWdRFV245lAmeRqEgQiQFzcWooQrsXfj5yBpqa9gY9uh/ooJNs2tj3u1aQVlWtZlg3Hp9yBDj0m/fMu2bw5NZczxkpBFdarOZW0PCTtPs2oRGyhgaJyze/dbbbwWXvn7TdKaabbNr7hl5Yucqp9FMbsHvY6WXxtNoiXGJakKUDM7IkyEKBc+nJGWM8MK59mGEEelTRJ601s2uTYwtKSNSngnom91BOL92nM2pQBNpw+4jT+yZTjB3fInC3GsWteJwP3uQHu5uhgW7Wa2H9M0YcxuMTVCR6jjEN/CIiIiIJUVcwCMiIiKWFGecyOPkphEQQ0RQVKEtW4XkIpM/atXwt8bBJW91EIkAvZD+CLoj8EYcKBePyA7k1aiEO3cAfZYxIgkkqbsF1xD0QQ2RFldW7eJrje6szR3nBNVrWnAfKSFbb4Rj8OIqpHAzupaQKkXhY/coUuVIIdGnh0sSVRuHO+4JxtZB3CJNj6a8XBFGMRRIepqMIBEKd7JWNxe+hZ1+1IIOqrUUiICpgn5J66jc4kJ3lTo8LNT8sRdtnLOHNtfuljuz9l6OCis9SyLa2jRqpI6Etfv3rMqPJI1AB1QKFMTG4zrsg16a0lflgqNQnHNyU+rDk9qssBAxJhPa6TyFAslnl9u454g68ijiW4WscKPL6DBI7bIwOh7eMdq9OcrzAPKynZbNnU2UdhrkoIVQOWcf8tarq0aNUfdlNDK7DPqsrhMWgw7oUJitDp2fZiuMjDoK8Q08IiIiYkkRF/CIiIiIJUVcwCMiIiKWFGfKgSdJovYjPhE8VYafEQoHlXOVwgmWGxpP7DYm0JAuEN5TYcYfuDrW6ZygovS4j/454z3rzXDIJsgoHe0b556C8+tAd3ilZRxXD9fOkSnaga51igrg20M7vyRVqjZWg55x8wOETiXgWtut6rRvp1e7fhI455RN9y4cq6jjMkHYJ0NC8/AdokApLraF7NEKwvca2F8YBlrwyNTFBNvbNx6zwBxKYWNJajJqEaFrHVy700Bfu8aJcrtmb8c40VYL3D1CZOVNYEkKtbB72MOg6FGJUNBH+0Ysm7YoPDpjxr0p2pia1RBJq9TCOVZFtnQxMG64QIimw6MFSjoISSy5bwRlMoaK9nn+SbiGdLo21imzl7F/tVq3z+sbKJUHoapKZtfL0I9GHbryfi5cF3sxK6u2DiQpagFUsefxGKJz8Q08IiIiYkkRF/CIiIiIJcXZUijOqT513x3cDmorDaEHncIHr1RD1aM63FqKUPGoMdzMFYgVVRCG5un2ocxbUkIgC+64T+fC3lAqrIIQoAaEyRO48AVczkoDFe7hztdShBGmCB1TmFXmZe5hHdXPqanukAE3mpYDo+u5CDh5pdOQzxShXQz1zEAjNUEjTQZhqNW4sH9PMhvrtIKwNNBTE9BkVM/yEEyCd6wR6KU+vjtfvbyxZq52FdTFCDGYNWTmrUHEqAORskurNqdyUILMRlzvInNWkoPiFp1wD0rpyhXL8kumNv72DxZfp3hGocCWHtmzIW3D9lzYb6BfDluy/F8VmZwIOx2ijF1BWyDUczRAOGLO7OqgGxqijyVKK+a4JzAlarfNFuuw5S4E1RzmWqtu9GdWC8v07Q57+BueE4zhCFmZg+HxFPIjxDfwiIiIiCVFXMAjIiIilhRnS6FIekRkJHATS2Zz0cUpmYkZUigeriyzI2ugKDotc2Eq1NypQkcYdEIGfWe6QmOUQtofhhTKMKe+N7MFzY0eo4RYhqgVupXjIUR9sKPuQK1UsnAM+P0M992HO7m7Z1EQjyqqF8Vixay8PCiBo11qx7JROYS75vSkJxgrZuIy4iaBez2CLnOBTLcCruiEYkGIesmQUZhVw4y9ApEBQ9iDIlTMLm2CJktqNrc9hJ/2eywXZ31qzc3tWsMErAq413TBq7UfjSRacKU8OSdVplnSZSCAhrJ5uCifaT+X7ssyeHyuGcTSAi2aMpTnGLrV4/NmnZXhbWxqzblB4TOEsmZcH6qgAXmuMhA1p2g7olBAn9VboZgVEnRVgv7MsYYIOvZpjEKJiIiIOL84dQF3ztWdc//ROfefnXPfds79w+nnLznnvu6ce9059y+dc9XTzhXx/CDa9Xwi2vVi4XEolJGkn/LeHzjnKpL+vXPuX0v6nyX9Y+/9bzvn/g9Jvyjpn512snTqWjlW6IYLWYEudlkyYSD8rWGl8QK7+21EpKzUQFfA5cnhzk0YzC+4uNj5Dsp2laFryH/28J0UyUVDRDh4lFfrox/bD01HGFXhVMW1d0d2jBRW3C6h5PQQpan2UJ29Os1mmrpsi7OrN41x2ikFDREkD1H/iD60pAw+cglaots1dzRFREuKKJ2UUShok21wLfsH2I2AopHC6B32N2NCUo33ivnJe0DbpZzbdnhNIX1Tb1p0Uo77GINqdM7c7jKkxBZmVyc3c+NZws0xkgq0YRXPWzZHC9GuNYiDMSqLonYZ1oEcx2SY57U1JMPgXTRHtM6YGv9zf2PfKzXSN4yYYUYX5jPmiy+4hpDaCtesUAffPmcJxAzPT61cAIXiD/GIvalM//OSfkrS/zn9/IuSfu7Uq0U8N4h2PZ+Idr1YeCwO3DmXOuf+RNJdSV+V9ANJO94CQt+VdP2Y737OOfeKc+6V4Tg/6pCIDwmLsuso2vW5QnxeLw4eKwrFH4rt/jnnXFfS/yXpTz/uBbz3L0t6WZI2u61TlaipYeFOEK7mX/wx//D+1MvNffkxPj/pVE94zLHt4B6Ov0Cw0++Pbgcfz/9/QXZdX234R2elW5qxDUqCbENWD5NYPNxl0g8NlOBz0OVglEaKkmMV8CNVtEtEHkygRZ4XYSJPjqiLDPRPDREmQUIYRJ2pyu2PcbsZ1JEUIX0jd7RWTTUU9LFrTEuIPUqOW9jzutbyj+69gigdzs+gVBrGdtA36k6SkAekBqiSGuiw7BgtlwS0BCOoKOHOiI0StGgxpjXCPrJTlYCitfYItGitYnM1R4bQEPpLzCur1sIHdsg5Rn10rHkTRKT0eqf/gD5RFIr3fkfS1yT9FUld52byMzckvXfc9yKeb0S7nk9Eu55/PE4UyqXpL7mccw1Jf0PSqzqcGH9rethnJX35A+pjxAeAaNfziWjXiwV3Gs3gnPtJHW56pDpc8L/kvf9fnXMflfTbktYl/SdJ/6P3fnT8mSTn3D1JPUn3TzrunGJTz899f0TST2uxdn1Lz9c9nhWep3uOdl0cnrd7/oj3/tL8h6cu4IuGc+4V7/2nzvSizwEuwn1fhHucx0W454twj/NYlnuOmZgRERERS4q4gEdEREQsKT6MBfzlD+GazwMuwn1fhHucx0W454twj/NYins+cw48IiIiImIxiBRKRERExJIiLuARERERS4ozXcCdcz/jnPveVNLy82d57bOCc+6mc+5rzrnvTOU8f2n6+bpz7qvOudem/1877VzLgotgV+ni2Tba9fm365lx4M65VNL3dZgZ9q6kP5L0C97775xJB84Izrmrkq5677/hnOtI+mMdKr/9XUkPvfdfmD4Ma977X/nweroYXBS7ShfLttGuy2HXs3wD/7Sk1733P/Tej3WYFfaZM7z+mcB7f8t7/41pe1+HaczXdXivX5wedp7kPC+EXaULZ9to1yWw61ku4NclvYN/HytpeV7gnHtR0iclfV3Slvf+1vRPtyVtfVj9WjAunF2lC2HbaNclsGvcxPyA4JxrS/odSb/svQ9K6fhD3irGby4pom3PJ5bRrme5gL8n6Sb+fW4lLaelrH5H0m957393+vGdKdf2iHO7+2H1b8G4MHaVLpRto12XwK5nuYD/kaRPTIurViX9bUlfOcPrnwmcc07Sr0t61Xv/a/jTV3Qo4ymdLznPC2FX6cLZNtp1Cex6ppmYzrmflfRPdCh1+Rve+390Zhc/Izjn/pqkfyfpm7LiLL+qQ07tS5Je0KFE58977x9+KJ1cMC6CXaWLZ9to1+ffrjGVPiIiImJJETcxIyIiIpYUcQGPiIiIWFI80wJ+UVJtLxqiXc8vom3PF56aA3+aVNs0dT7LDn8znJydC8cc1xs/95eiKGftBGdInLVLb8cInzu0k8R+w9I0PfKYoiisHyXOOd9HjCWH1QXXts+TxP6R4dr8fDLJZ+1ybgzSJJu1+ZcS/X003pKUpofn7Q8mGo0LDjv7+sR2TRLn0yd4FeCYux/pxdGzIby/o20fzGWMYYLOZWl25PEcs8O/6cjj2D3OtYzXyMyW48nEvuo4SNYuy1xEtWp95DV0pMUMvf5Eo3F+7FFPattnset8X/m8B88ymgWerfRx7JpwzI+2azFnVz2hXVMMQOUYuwp25X2WZXjtahXPuDt+rI7C9u7w/lE1MbOjDn5MzFJtJck59yjV9tgHPcsS3bjSkjQ3+IndGB/UAgtwsBhL2tndn7XrSXXWbmNRG4ytZmuBwavV7fhmozFrd1ZW7Jhqza61vT1rj3thHVj2dwKjcnIkWEQrFetHq16ZtTe7bXxu/Xv/ntVVHeThGKysrM/aRW7X6/dsbNbXazi+Lkn62h++pRPwxHZNE2lt9aRThj9iHPMUtpfCH7Lc2wNQlHZ/B3u9WbuT2v2NYG+17PNOy663vmZjlue2cO4/tDGTpBKLCe3q8EDXMKc2Vpqz9tamzaO3b1nocFK1YxJnNu4d2PySpBc/YppJ1ZodlyYnr6b/77/7wYl/1xPaNk2k7spRfzEEdm3W8d05uyZPZtcV2HU4gV2btKuN57F23Q7ycUK7js2u/JGv1mDXjl3jyqZN8rdu37HvVuyYFGvRwf6cXV80u9aqdlzyGL+SX/pX3znyoX0WCuWxUm2dc59zzr3inHulLGLEyxLgye0azbosONW20a7LhQ98E9N7/7L3/lPe+08l6WP4ChFLgcCu0aznBtGuy4VnWcAvVKrtBUK06/lFtO05w7Ms4Bcm1faCIdr1/CLa9pzhqTcxvfe5c+7vSfp9Wartt0/5kvLJWFK4yeGdbTpwh9qdsGnTwYZJp2GbCBqOZ83+GNEYOFejapuH7bptirTwOSNByrGd0wu7z5Iq+A43QYeDgd0HqKPuaseOx+baKtrtlt1bgX7fvh9m8VYyO28L36nVbKNmbcU+b003gE7aDHsqu0YsBaJtzx+eJQpF3vvfk/R7C+pLxHOCaNfzi2jb84WYiRkRERGxpHimN/AnRZIkWmkfxoG7IFnFaAkmaTBms5KGcaWXrlhxjK1NiwG99c67dlBmFEp71WI4Ow2LuWZ8aqNudAMTA4Zto2g84jwlaQW0Sbtj591G7HitYTTN6ood4xDbnmE8mh2jU67VEFtbsfNIUqWaHNmeDO2YqkPceeXwvEESQURExNIiPskRERERS4q4gEdEREQsKc6UQqlWK3rh5jVJYQrtECnQHhTKZGTRHxtrloYqSc2mURndNaMlUmfUyovZjVmbOhSpN1qhCkqE6f3UOvjYC9esf5UwnZ30SJEj6iU1aiVFKn2S2DGUuaBmyX7P0n97+zYGZR5qKzRXW7N2o4VU5RoieUb4jX6Ubh8z7CIizgXiG3hERETEkiIu4BERERFLijOlUJzcLKGmicSTSy2oJIJCGfX6s/bltY3gXJOJ/W37gSm+NaFQVkdUSTG2ZKG0hPIYJSKhTjbo7drFEjbDaJi8NPqHaniVzBJ8RgOjQUiVVGtGv/T7dsxBz5KAKondw7z07wTX6/VMyY1aqHnPxnM8OLy/QApzAXBOqmWPP5XKnOp+ISU1mtg4MFiG9Nb1qzYXMsyXu/ds3DptG9u1tiVPrTYtwmdnx6iqNA3HZGXV5lGtZhFMo5GF+Fy9ennWriJZ6+plzFWoWu7tm43aHaO/xsPwPepS166XgzYbj0MlzHm4D4AaO00OJRD/DTV4g+PCvwV/mbUo3cooNR7Pj9NAFvoYUeq5frhjpGJ5vQrmMqWBgzaj4tgnnDPNwrWCyYvsx7NQmvENPCIiImJJERfwiIiIiCVFXMAjIiIilhRnyoH7stCwdyBJmhTGdY5y4/YycEMVj9C6nQdzJ0NVD3C679++PWs368Z3tsBFJvjd2vdWiYW8VKWOzEZwtuNRyJVScItluTwIXGaRpseUS5ugok6tBv4V2ZfZXP2xGqq17O0an8sKQuTQq1NeftFUaZokWkW26mlgxmqlFmaXjiEc1sceyBoyXreuoBIRqrVcumzccbNl16h624+oVlC9CUJkW5ft+MM+GkedF6wgY/avo3JSWZgtR7nx5HXYqIZSaa2OtUf9uVJ5BeYL5qo7xXLucWpzPQESJzWqj79EQFtNlSx8N8yDalW2b1HFs3HzY1ZbwiOE+M5d++7Gltn+UWaxFFbn2WPZw3bIQ6+u2jzKKmb/MebR5Uu2h1Fibdrasr26Ssvmx96B7W00EN486ofX3sBeDG01Gp28t3ES4ht4RERExJIiLuARERERS4qzDSN0TtXa4SURyRe4Lx6uRaMK939Ow7oGV3gMN6deZ3iOuZw9hHBlcAuryKRk2E9YSd5cslZqbpsUCnGttMxFaqBwb5JYPxiGtt+3doEi8RkKntZIMcyF/w0O7Pv5EPRPanTACkS80srhfaephV0uAtVqVdevXzv9wEf9gC3rrZB6YRjo9n2jzW5ctgzbwcjoogLhmhsoOjvp25xooujsGK75yGPeNEJ3t0B4aF4g7BHufwEKrALRsdt37+J4s+WjuS9J+3tG3TH7WJL2UbCbMWrVU0I1Kf62CGRZps317onH8DnprtmxnMOSNEGh4b3tnVn7+taVWbuzwpBZG/OPf8KKCBUo7F1P7BkjJbGOQsS+uhn0owrai5r9RWnfcahPUEW48x4zpA/suy2sIWvrdvy4EVJe2ejokGVNnp7UjG/gEREREUuKuIBHRERELCnOlEKRc0rSQ5c3q5nr65i9RG8CkRnNVhitcHnTdoonzqIEUkS3NECzJIgkqDTs8wL0xmBgUQ+VCiIG2uaqjQ5CGiOpIDsrsXuqJPZ9Riikzo5p0m0fIwMVpeAmCdy5+VQ7eMzOo7xaw6icOqic8tEX3GKjFZyTTg1WQNeHQxvnUnlw2LhABAdO2t+zzNiitGO2++bWHhwczNrtzObL9sCOZ0anyyCcNp7PTiWFBnqqZjZj8t8BXOq0Ym50s2rjz4iL+w+srw/uhxFWK22LtGiidGCt2dJJSOY0858VWZbpCiIvTkMBmqRWCfvSXYceP8oYXkJ00WBotuznoCiaRm8kEMHzMpprjGsPh/Zdb8uBJKnXN6MVJdYNvMpW0ffRyK63v2/ztpqBvsE8uP3+Hbufvh0vSW4E6hYUU7Px+BFc84hv4BERERFLiriAR0RERCwpzpRCGU8KvX37MMmkswIta7hUNYhFrYC6WO+aKylJPjE3KQHvsgI3sl0z32atA8oF57nz0NzXBEJKdbjKk5G5u/PlyLLM+uWQ5OMREcDIGka6+NyuN0QyQFkazSJQMY0WPpe00oQYFiiGzioiYFBqbTyNdlgsgXKI9BRaxoP+aSCyxldDV9uDF0Lwj+pIxKpWzR0f83j0YQhBsNYlO56iSqS8akXYf0Y7tNtICqrYePYHZrMJKLoxQqwoejQemss/gYBVqxEKtXXWTft+f98iUnbunhw9NJ7kJ/79SeHklerkyBaSeiWS64ajkD7oj+3f3ZrNzxy0ZYJnhtFC46G1U9xjFcljVcwP4THJ5mglavavImqshqQu9n0bkV5ZzdasNqhJjz7t9mxE+gch5blxqWvfwb2OophVRERExMXDqQu4c+43nHN3nXPfwmfrzrmvOudem/5/7aRzRDx/iHY9v4i2vTh4HArlNyX9U0n/HJ99XtIfeO+/4Jz7/PTfv3Laicqy0MFUC8ULkRZDVG2HDohvmFsz6DO5QRrumVsFqRKB+VALO73wfHX/vmmFDHrm1nY65mpXKkisgY5vG26QJJUIzi+H1pEK/P8DJOxQi9tj5zzBjnjikPyBaJjJXCIP/91dM3ewCddyBwlM+1PN8GnCx29qQXad5IVuPdg78Rh6iUzkWemuBMdV4cpmzsb26uXurF2AjhkjEmEFERsrH7FyevuFHXP3rmnlVDMb58EgHNvM2ZwsQccU0M+opPZ9V4JO6UMTB3NnHREXB9uImFm3qBNJSjGJ87HZ3xen6IHblP1NLcC2XtI4Py05COX7YK96PUx4Y7SWH9q873TsuEbLflPKbZwLc8JB17+6Zt8l1dRasWeBtpAkQbe9gWihDHPSI8JktWPzYLdn1y4nKI1YIDImt/N0V8MkolrDrvcA1C2jp54Up76Be+//raSHcx9/RtIXp+0vSvq5p+5BxIeCaNfzi2jbi4On3cTc8t7fmrZvS9o67kDn3OckfU6SsvSD2D6LWCCeyq7VymLjjyM+EDyWbWnXeu1s00QinhzPbCHvvXfu+GJO3vuXJb0sSSvtun/p+mFiAAPZc7gjFezOUpIyy0JtheE+dQzsNpjMsNrpztoDlBzb2zNKQym1UIx6GCDZRO7opA4plMKtVRg9Ajd/H6XPkFSSIplpDToSOeREaziG+iqSAq0XjucuXLIetT+miVGlP33b+0ns2mxU/WBysqtNnY7tnZ1Ze30Y0gIdUGgN6LgM+xZl0wdnlkKbJIOMa6dqdMXrrxlt0u1aRAnYDa2vhjSGy23cPUri5bh2gRMMoZOReItWIP02QsRFu23nX18NEzneR2IP5Yc3N8JolXlk2b0T//4IJ9mWdm3UK/7de7tHHTYD59IA2iLrcxoqbVAql5G4QhXiYQ5aCRRmMzXq4sZLprnz6tvvzNoNPG8VZO/UGuG6kZSQlWbUDtagOqKk7t63a5SF3UMGmWBGrPWhxbR5KaQHd2H/VWissH08jo5AetoolDvOuauSNP3/YtWRIj4sRLueX0TbnkM87QL+FUmfnbY/K+nLi+lOxIeMaNfzi2jbc4hTKRTn3L+Q9NclbTrn3pX0DyR9QdKXnHO/KOktST//OBerVTN99Poh9daAvsEEO8u7DxAhgkSJu4W5Z5K0h+iRDNRHikr024g22X54f9be2bZzZS1z02s1c48nCPgX5CW3d8K9oSF2uWsZk03smAzVfTqoIuJSRBggqaQoWeYaiSpzVDOTUnoDcz/3DsydZxTEIy2NJEkXatdKlujGnLs4D/b1Enb2G3NysmPIwFarTIBCosU+kivw+bUtq+hy69atWTsHHZJAanc4tjFrrYSPwgjaKHVEQ/X3bE7ublv7EuiN0cTOVUeyVQ1JS91No2zuQ15VkvZB2TTxnNSyU1ztKb23KNtWslRXINF7FKgn8uC+9buiMPqjhIxyHZFHE1Rg2qOeDJ6Nj3/so7P2vbtGE/UP7BqXr1jExzg3qmJ9M6TGJqh+lOIZ30Mi3Pa9nVl7FUlcPUg2J9jPKxCJcwPRT5MyZKnuv2dzst2xSJnV1ZPH+CScuoB773/hmD/99FNfNeJDR7Tr+UW07cVBzMSMiIiIWFKcaZxQNUt1bbMrSWo2bKe+gI7EBnZkH8K1/M6r3w3OVZTQTGnZ96uo5JG0WHAYiRqlUSIHu7tHft6CfG2tYcPUrIe72uso0MtCuq02pGwRKbH70K5HeUqoyWoA9506EB4yqlIoY8nCqPycOjPFVKNjPpLmWZElTuvNk6cSr9lGYdrOSug+9g5sTB5C++ONt4wWmiBK5zJ0Q2699/6s/fY7Fj3Qc+au9g5sPAtExty/H0ZwTCBQwUSSWs3m1GbNqIAcBbgpj1xCeWcCuuEAVXdYFFeSGm07b4oqPLk/2W6LLladpU4bc/o783CQR35p6xOzdgsFfCVpb8fsN0ZE2O6+fb/Xt+eviwSfO5Boffvtt2ftPqro9Ht4Zpjw5ow6laTRwGzQRBUlVWwudDpI8AElW8c6UIHGUBWyxzkiW+7cC69da4FmTHHfo3kp48dHfAOPiIiIWFLEBTwiIiJiSXGmFEqSJGo3D12jDN4gkzxqK5CaBO3RH4ZSmZR1LVmNo2+RBes3LOj/ypWXZu3dgV1vD1EkTdA31GhwSBLo93eCfvz5T/4Vu8Y1i4JIq0hwODDa5NVvGRX02g/esntA9EUDbnobUQjzLjIlKVtw9ai9koNqGowOx8kt2NmuVSv6KMb6NGTQd2EhaEmaILPjJiILvvx///6sXUWRYgd3uX3NznUd3/3hHYtuyEfmvq+t2/GduSiU61dtvqxfMsondXa91159fdbeQWKZR7LWGBLFziOMyIOua4TRJRMZ/UZqjOc6Cn7BRY3r1Yp+7IWrJ18TU4l2Xe2E1NgYFXkmKOL8e//PV2ftCqLJ8q6NYa1AcXPK+SLJ6CGqcq2to6h3M0x+W7t22dobRr9VUZ3pnR8a/XYAjRwWIe/3YGPo1UwoST1Ht2Zq4DgkhE0ihRIRERFx4RAX8IiIiIglxZlSKJNJrtt3DneU29AboAQsK7dMJuY+1udc7WJkLs+laWSLJDUr5sJ8/GMWVH/juhVn7Y9QuYVStNBNqNeRWAOK5ta74T01kF3Trtg9rW+ZyzhChZzBnkUfTHAP93fMHRyOzR3nDneqMJMnh+vFSj8Pkh3rO0x8MDgczyxd7O92XhR6uD0vfhfCoQ5QB5E72ZwuS8YEEGjLsFBwDdVX2ogM+Ik/8+KsfeOGuf7v3rd51EaVp0bT7H3rvdCwf/4nf9LO9dLNWbsojIJJkAjyvdfs+2GEQnfW9qAOEtjg3v2d4No5IjsOSut7kpwsGkbdlEWgKErtnyJ1yit2kPQy7offS1Cth3NaidmyAr2jGrRQaNebLxhN+c5dozHanaPtevv90K5/6S//N7P2dSbdTOy5/MPsP8za34VdU/C+VUQglZDcTaHFdO/BTnDtHM/vPpKNniUqLL6BR0RERCwp4gIeERERsaQ4Uwolz3Pdm2qdpNBDqMPlmZRH77TfuHEj+Pf3v2sRAJRzvH7VqJKbN03yeAtaHeOxue0FCtDWsGvcAJ1SwvWtzxW/HSAR6MFt0zrwQlHdtg1zBy782hpoFrjj4x1zr1hUtoOiqpLkWByWu9pIkhoj4iSd0lOLdrUn44neQ7LFUQgSeZC4cnUtjFboNsyWB0i6uH7TaIy9+0bXXLtm0SY/9mMfmbU3uhbR0O1CmhQJWrTx6hyttA/NjR3omXQv2ZhfuWzX7qGY7Tu337Drge5poNJLDlpOnVA3ZIyxamYowpye/LhW0pMplifFeDzWW2+/d+IxtGunY/PuKuSRJWkVekAHfZvTtOvBw51Z++YNe45/4idMC4XSuxvrR9u1Druuz2nV792x5LB2A3bdNIruxjVbN4Yj6/e7t9+068Gu9dS+WxSosjUnsTzGc9dGDebT7HoS4ht4RERExJIiLuARERERS4q4gEdEREQsKc6UA/deKqa8EEVfCggBpSij5lDmqBijxJmkPeiG9/cso+qlT39s1t5E1eqNrvFzKTL5cnDgE5TL8siUcwhnu3K1G/Tj9m3r1/v3rBTWK9/+ll17EyI20Pq+dcuO3961+6lU7dptCO7U5qpg1RCKWSALrkA2WAautTnlKBcdRuhcokq1cfqBUxSwa1mE/C/rnCUQb0oKu6cBtJuvXf7xWXtrw+y6dcn0uceyMRyPIQiG8bx5M6wg/uabJr709W+YLb0gLob9kLfeMq641rR7aoODbbAyOwSyxoNQ6x5TUg2Erg1GoZjZPE6ogPdUcC5Rtdo85Si7ZpmjXcxlhYKfT0D/ZxCfG+6bXW9cMbte2bRnN7SrzbkR7Oqwb/TiS5Z5KUlv/NCu8Yev/JdZu/AWrulzG/O33zGBtGabdjUjNRDC6x3tGtoLy5yGtOvwZLuehPgGHhEREbGkiAt4RERExJLiTCmUWrWqj944DBtqIFwsTRFCh3C4eoaSSSuh4M9PfsJCxrYQinbjitEp69D1XUUoGMPvxs6GYDw2N2o0NLe23oSYTjvUR7591zLO3rhrNMj3XrOQwvT7FmLnkbXFknHdVZSQesnc+TbKcBVzLlkJF54CQRldOpR18o9KbmmxYYRZpaKtzSsnHsNwM1bhbrfCKVh6uMIQErpxuTtrX2mZS30DolVdhGi2EUo2RIYfEnXl4f5TqlmSXvuh0Vvf+O6bs3YfolUCZVBMjEr7i3/hhVmbWcaTid3bECFmzKKVpBL0IsWRRqdQKL5cLIWSVSq6tLl14jEJ7Nptw65z+vA5texxTx+5YpTIC2v27L5w1aiPLgTOWgj1zaCVXs3t+aZd291wrn//NdPo/vq3fjBrj1CiUdTNK83ef/Ev2JpTRXgnabneCGGEc1TlGKUjR1hrBsOQQnsSxDfwiIiIiCVFXMAjIiIilhRnSqE455RNy7Un2IUtIHQzAcXgEJGwuRFGCayvWKZWo4JsNQhKJSmyKVmOyiNKAzrASKhSimtXIOubzpW1qsP9/e73vj9r37pv1EoNgj0p6IsEQk6+NGqm9KB14BaXbi5bsGdu+84+y3KBdimYdXrowuXzkR/PCO+9RvNRB3Ngz8e4/nAcuv0jCJhVEdnSWTWhpEFi9zrCfKH2eR9lqqghnVQQ2YR+5JNwTKrQgH/1Ncv6TRD50EKVeIpq9eER+yrpQWu/d8comrlLB1RImlAoSSdi0SXVfOk1HJ+sVU1qrDoGdZeE+v2T3AalUYOYGYStDgqL/NkFXYiqgtqHDncD9EiSYh4gmmwyCPtRx4r3ne/b85rIaJoVRN6stOzh3zvAOoVIsTHosHduWabnOLy0hLWjihJulezp36NP/aZz7qZz7mvOue84577tnPul6efrzrmvOudem/5/7bRzRTw/iHY9n4h2vVh4nKU/l/T3vfc/LukvS/qfnHM/Lunzkv7Ae/8JSX8w/XfE8iDa9Xwi2vUC4VQKxXt/S9KtaXvfOfeqpOuSPiPpr08P+6KkfyPpV046V+lL9YaHLvIQfqNH5e4Ewi5pgqD4OQ99/8D0ewegUN6/a67p+ppFK5CaaSI6pdVBeS5QGjl2/B0EakZzkSBNhBncvWPRJm/cMneQIkYrdetTB6W0htgE39m1f+yn1q5UwgiY3QNzS+8isSlwyZE9kEyd7EleLNSu40mud96/fdIhSrEjnyTUZg/5gxVQJbssWzUySopRGt/94ZuzdqtltmjVbKw+/nGLHiD6faNiWo3wXaYGpuzNt00TmvLYLyDyhiJq9x/YecclqrGjKv39XTvRpAivzQSmisz+qTuZ+srzfKF2HY5H+v4bb554Tepff+S6RazUa+E9dddMz//ejj2747Hdk8P4/JfvGW2VOrO3R5Taiy+awB0Th3YhMPeJj4VRNBVQmPchinZ/2+bv1Q4iY3BPd++ZzQYT++7Y49qYs4UPl1cPOrPiofmfPn1U2BNx4M65FyV9UtLXJW1NJ4sk3ZZ0ZLyRc+5zkj4nSSsIH4t4fvCsdq1Xz3QrJeIx8ax2rVVijMPzjse2kHOuLel3JP2y936Pf/Peex2zh+K9f9l7/ynv/aea9cpRh0R8iFiEXauVxcqYRjw7FmHXZ9lcizgbPNark3OuosPJ8Fve+9+dfnzHOXfVe3/LOXdV0t3jz3CIPC90f2dHklRD2akWEgBSuPy7ewf4bsihFPg3o1i++b3X7DuIaKghWmQFtMmlTXOXSlAoDx8YFVODO37jWrj3kwl6JHDv3rtjetIVbzvZmy1LOsqhmdxE4snDHRuDUW7uYDGndcHIj/3AdTOXzLMM23R3Pp9WL1+UXceTsd6+9f6JxySJ3ZNH2bS11VBrw8Ml7/ehf4I2IzOGt8yVpcbLa98xTe6Nbtf6iuiU/tCojv/+v/t00I9OZpXor2xZ+/Xhzqz9cMfaCdbDS9AM3x3YMT0ksAwniC6aK5UX0E252bVVPfkF6FHwyqLsOskL3d3eOfEY9jXFG/slUCaSVCBaJce97+1ZJFWCyJUeQk+qr9uz8cd/+M1Zu92E7v2INKyd/2/+t38+6MfltiUIXbtqdt0fGQXZGxm98dY7pnGzddXuaRf6NTsDuwcmaBVlSI00kUyosd1f4xS7noTHiUJxkn5d0qve+1/Dn74i6bPT9mclffmpexFx5oh2PZ+Idr1YeJw38L8q6e9I+qZz7k+mn/2qpC9I+pJz7hclvSXp5z+QHkZ8UIh2PZ+Idr1AeJwolH8vHSue8dNPcrFJUejug0OXt7tq7o8DvVFCXnIwgMs5ChMKWBZsAC2CPsI5stRck4d3zEUa47zNhrnwE0Q37O8ZbbiK8lw/+zOfCvrRrZgbtoI6SZuXjWrZvmu77vuo1s17qEMbptEyx6iHezsYhZK6OaiSMaU84VhlmY1BPtVfKEq/ULumaaaVtfUTj3GgULK6UWaDuSyW8baNe4lECNqfiVVMzHjnjn33B2/vzNq5s8iWdsvcYJYu+8a3jHKRpI9fsnFfadkYXt4yCqxa2Of9A8gK37ZopHUcvzuy/k2QRLTfZxKW9NJL12bt4YHd4OCUBKxSbrF2zTKtbmyceAwTeeotG+fRHMM+RNSNo/4QjqtC26QADfLePXt+ehN7Tq5ctiigFvRxenjGXnvHqFBJEsqwba4a1bV/1Q4pUPKtBnnYN99+a9a+8aLZaH/IhDwkERUILZO0Bd2XvT2jYIr8yO2Ix0LcpYiIiIhYUsQFPCIiImJJceZaKMm0mjNd58muuUhM5JkgyWOeQsmgpUI5WnqPdx+aW/vuezt23qH55qurSJog3QDNiwcHdvy3IC0qSS+tgbJBosUGkoiEXfcMeh30c3eQfNDqICEFbp6boxuGA7s2/zTALvrGpvENjWlV+3mZy2dF6b36p2pmWHu/bzbeWA+r0g8hs9moG91Rg2ZNVoU+iDM6bL9ng1BtGe3V2aJWrHWkVrdjBnOPwj4okT/9UaucPkbwxr3bFgHzp378T9nnd9+ctVcLu79R3+bRAPO5uxJq2TYbNg97mKuqtHQiksWHc5buODbmEWxu7/dtzDbWu+FRSNKpI5ktq+LZqMHGSO4b7piNKy1o0aCSfI5onbJiY7aXhxEe+32bXx+9abzJSCYze/t9a7/0wkuz9vYDi7Q6wPwYDUjbgkbd7AbXHiHq6SGib+RqelrEN/CIiIiIJUVcwCMiIiKWFGecA+1MExNu/BCFd6k7kkIONqmGvzXYyA4kKX1p7tZe39ywMSrF1lfMNe9csmiRDIWBgwLH2Fne7ocakasy6mNr0861m8ClA4UyPDB3q1k1F7COHfjt3Z1Ze2Xd9B6yJJQiGCGBgHlOKWioDqqZpFPNBSbVLAJpmmql2znlKOzU4/KjSUi9kMbKoBHBaJpKHVK/cD97fYvySOtIhsGw5dD47KMiUn8Q0lPdyzaG7Me1dTtZp2r2TlI715Wtrl0PVXhWVmw+r9fsmDQLH8OdhzvWrwMbn/KUx7VYsExwmibqrJxc1JgMC6OqSIVJoTZNAnqEz261YfRI5qyd94zSqDZRCQfPeolCxIOe2XgX0WSStHYDEVB7Rt1ebdv3r/wZ6J88eGfWvka7Jtbv9ppFlySYp/v70MGVNByafbqo8nWKEvOJiG/gEREREUuKuIBHRERELCnOlEIpvddw6jKnFXOR6HY4/KZUqqiuk4XB7lCaVRVVT9zEvj9BgVGWM2mgQHKGjf08N7fPIVmkD9nW3WH4m7cnc5HXVi2aYBMSoTkShB7K/KVWze5vtW1JEP3ezqx9sG9JCeM5Td0C522gKm97xcY2hX7KI3dy0a52kjidJlQWJHwgkceVISVVQXRRWYYu6CPkhRknuBfIjjaRDNUforrLHhItoAzcWg3pqT6qHw0RIdQFfbMOKu7+DgpUNyzyJGkgwSSHzOwIVN9+KFFcRdHtS2ugMPzJCR+VBUcXJS7RSu2UCAlQKNVqFR+Hc9XDzpMcUSUJ7+lou7Lm8w3Iu7qENJcdtLFm0r7pnABqCTqMVXEaqKhU4oIp5morNVt4VP7aHdr8mCAaq1oJl9d605LdRpiTz1IhK76BR0RERCwp4gIeERERsaQ44ygUr3IajcBd6jpcjQq0pSkbmqXzUSj275XV7qw96dnOcjFAVAISBsrU3LkicPVIv0CrYg9aK4NQj2T1qmkilPcssaOCxIUtJOZstKyvQ1A8RW593Vw3V6100InJQrf0xy5BwIHVi0C1DIdG/yT+g/m9Tp3Tar1+ylGIKEHCSTKnJT7GvPCQCW62jYpoNG18OIFHcNOvXbEi2GO4+ZcgX5vi26MClYgl5XDz25hfGcRXckRdXIVdq6VRARPcKyk9Vpuq1sDXSZqUZr9ez2iX01xtv+CyxqmTWk8QsZSi3+mcRGoflXdYdLgN6pDJPqxS0+kaJUWN8gKiOCwcXkX02s6BaSBJ0hCSvivQbnGg7hyoIE6wnAWSMSw1UF5VFLouy9BeD3Z2dRTS7OkTsOIbeERERMSSIi7gEREREUuKuIBHRERELCnOlANP0nTGeTnwm6ydmiDsjWF98/DIrOz1jEMaIrtKBcoyscw4rjGAfvgIWW/jPsR3ICLUWQ/DqkpkUw73jONyiX2/VbNhJr82QLbgGJx7ByJL9XZ31r67H/J5FYg69Q6MKx0iWzQBT9hqHo59umDRo8Q5NZ8kuxNVvJMknIJJ3caXnG+K8+8hU7UOTrSDbD/hux58c+FtbFgqbzAJ9xeGSI9LsUfjkfLqM4pO2Vx7gOy/rG786FgMF7T5uL2NUveSdsF7MzSvkp38uJ4SZfjESJxTc46fP+KqsxbtlcxpYHU6xjeX4MrZ3tm2PaQG9kY2kLXoqcEOoa+hbA9jBZrv82OCpGj1Rvbsp8jkLMDX39szW/Qe2NpSRTm3obd9sRQ1CO7fDe16gNDBTtv6WPkgS6pFRERERDyfiAt4RERExJLibCkUSbVpRl5aMbeB4UMjuDUZXMbaXJhaA3rPVbjdTbjUI1Aal6A7nVD8Chl31TVkaKKUEt28iQ9pnRziW3WUdapA09khJIrVuatN/n6ay1gVw5isXYfYjyR59KXZtOs1cG0PumQ8zdx0CxazcpIq6ePTMsyyc3PVv6rIvs0w7h6+cJ8lyBCC1YSrTZGlcVABHhQKRL/mXW2G5LH8WYoydhQQ2wOF1dsx17nasOuNAlcb4mXbYUm1HlztIMyuejJH4ssFcygRzz3iG3hERETEkiIu4BERERFLirMtqSapPvVtHTIMc0ahwBWnAFJlThiGVMt4gjJcyNhsw6XOuC2O6AFWcE8CwSVz5SdjizAYzOlGl9Ay5855HdEf1Bany58gOmKIKIbhGK423eY53eAsEAGzvvcRQbN7YDvnw+mY5XkoIBUREbGcOPUN3DlXd879R+fcf3bOfds59w+nn7/knPu6c+5159y/dM6dFm8U8Rwh2vV8Itr1YuFxKJSRpJ/y3v/Xkv6cpJ9xzv1lSf+7pH/svf+4pG1Jv/iB9TLig0C06/lEtOsFwqkUij/c/n+0rV6Z/ucl/ZSk/2H6+Rcl/S+S/tlp53PTJI4EFEq9ZlQHI0oYeVDO7bDv7FpSC7WGVxsseYUAeUS0TFDCPS9R3R4USg5d3waSMeajFUio9EG1VCYQSoL2cwHN6mFpyQcPt43qyAd27RZ0vh/2d4Jr1xHF4r1db3fHohh29y3C4VH0SZ7nC7drxPOBaNeLhcfaxHTOpc65P5F0V9JXJf1A0o73s7S2dyVdP+a7n3POveKce2U4jtzr84Ro1/OJaNeLg8dawL33hff+z0m6IenTkv70417Ae/+y9/5T3vtP1atnumcacQqiXc8nol0vDp4ojNB7vyPpa5L+iqSuc7Pa8DckvbfYrkWcFaJdzyeiXc8/HicK5ZJzrjttNyT9DUmv6nBi/K3pYZ+V9OUPqI8RHwCiXc8nol0vFh7HR7oq6YvuMHA7kfQl7/2/cs59R9JvO+f+N0n/SdKvf4D9jFg8ol3PJ6JdLxCcX7QG5UkXc+6epJ6k+2d20ecHm3p+7vsj3vtLpx/2eJja9S09X/d4Vnie7jnadXF43u75SNue6QIuSc65V7z3nzrTiz4HuAj3fRHucR4X4Z4vwj3OY1nuOWqhRERERCwp4gIeERERsaT4MBbwlz+Eaz4PuAj3fRHucR4X4Z4vwj3OYynu+cw58IiIiIiIxSBSKBERERFLiriAR0RERCwpznQBd879jHPue1NN4s+f5bXPCs65m865rznnvjPVY/6l6efrzrmvOudem/5/7cPu66JwEewqXTzbRrs+/3Y9Mw58mhn2fR2m9r4r6Y8k/YL3/jtn0oEzgnPuqqSr3vtvOOc6kv5Y0s9J+ruSHnrvvzB9GNa897/y4fV0MbgodpUulm2jXZfDrmf5Bv5pSa9773/ovR9L+m1JnznD658JvPe3vPffmLb3dahDcV2H9/rF6WFf1OEEOQ+4EHaVLpxto12XwK5nuYBfl/QO/n2sJvF5gXPuRUmflPR1SVve+1vTP92WtPVh9WvBuHB2lS6EbaNdl8CucRPzA4Jzri3pdyT9svd+j3+bVk2J8ZtLimjb84lltOtZLuDvSbqJf59bTWLnXEWHE+G3vPe/O/34zpRre8S53f2w+rdgXBi7ShfKttGuS2DXs1zA/0jSJ6bVsauS/rakr5zh9c8EzjmnQ6nOV733v4Y/fUWHOszS+dJjvhB2lS6cbaNdl8CuZy0n+7OS/omkVNJveO//0Zld/IzgnPtrkv6dpG9KKqcf/6oOObUvSXpBhxKdP++9f/ihdHLBuAh2lS6ebaNdn3+7xlT6iIiIiCVF3MSMiIiIWFLEBTwiIiJiSREX8IiIiIglRVzAIyIiIpYUcQGPiIiIWFLEBTwiIiJiSREX8IiIiIglxf8P3ybEQDPlX1wAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 6 Axes>"
       ]
@@ -511,14 +520,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 14,
    "metadata": {
     "id": "V8J5jJgjvXYD"
    },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABnHklEQVR4nO29W4xk2XWeufa5xIl7Rl7qXtVXNklRN2pMU5QljwUJ9gj2zFAPhmAZY9AYAXwZAxLGDyL04vFgDHBeZD8Y8KABCWoDgmXCkiHOQAODIGhYMkY0mxJNsrvJvnfXvfIWmXGPc9nzEFGxvh2d0ZVdFZ1dkbl/oNG7Ik+cs89e++w4699r/ctYa8XDw8PDY/UQfNQd8PDw8PB4OPgF3MPDw2NF4RdwDw8PjxWFX8A9PDw8VhR+Affw8PBYUfgF3MPDw2NF8UgLuDHml4wxPzTGvG6M+dKyOuXx0cLb9fTC2/Z0wTxsHLgxJhSRV0Xkb4rIDRH5loj8qrX25eV1z+Ok4e16euFte/oQPcJ3Pysir1tr3xQRMcb8gYh8XkQWToYoDGwchyIiEgb68h9F4axtC/6g2COPERExgZm1iyLXb+AHKTB6TIDrGdHPLa7B37I8L3g13IPbD/YxQJ/CSIc2z7JZO8u1TQfIGN6PXpvnnL+2YdvIArz3/g66Q+kP00Xf+MB2LcWhrZbjRX9eCmhX69ysfh6aAG3YGN/NrM4VIhB3OGgPZ3DZj0V9laPnoHMaob3dMwW4D6dbVudFnuM+7OSgwSiTcVYsnAnyAW2bxKGtJpN5HITapyDEPeG5wrSVInfvic8vx4H3kWMc0pTPjJ7YFkePulkwzuyfiEiIZ4jPGdcQ2sPiGCNHD22xYCaE77NWyIJzce6wOU6LHWvtufnjH2UBvyIi1/HvGyLy0/MHGWO+KCJfFBGJokCevtYSEZG1RmN2zNZ6a9bOR2NtZ9rePK/Hi4hUqqVZu9/vztrjsX4nifWYZq3KPuk1MNHGaB8cDPR4q5Ngs7nm9CMMUu1TrTxrt1p6T7v7u2jvz9pBVNF2qAvgcNCbtWuJfr7ZajrXjjE3w4ALmX5e4KEvpg/L73z1O/I++MB2rSSR/LefefI9J3Km9UN4elx4+YOaR3qDGRaAjUpt1q5Havs0G83ae8POrM0HPZlb96Jyou1QHxM+6BlfHDjmeOhLJf1uxH5jTg1HOodERJJY52qEBSjL+rN2t3uo9zGaXOM/v3xPHoAH2taxaymUn//JKyIiUm/q2CZrOidLFZ3D/a6Ox6Dv/lBubbb0nkIdn/aBPrudntrp9r29WXt/T202HunCzuc4jmN8rtct1fWZFBHZWN+Ytbs9vXa3o9foD4ezdtrXPsWWL1Nq116h9ssDvbe1Zt25Np+BKNDv80cic35I9PO3b/TekSPwKAv4sWCtfV5EnhcRqZQje/8mYv5K4g31wub6rF0UfFtlW2TQ6+E4vLHil62SqPHKZZ2AFm/BKQZMAm2bQh+WItfJ0Rvq5yIi6y01Uh0GO+i2Z+3hSL+TYNUNMZExH6RR1oXa5jo5omDurYYLON9qivzIdpZOzmUtvYuHA+1arcT2xvbBpB/0QrD4BAs+5/GT4/AdPoh4QJOyLs71GIsrFoByBcfUdUEcHmLM8aRnXdeuJbwgEAYLfWzxI5GqnRpNfdkoJdq/AX6Y+128IIT6YyEiUinrvDWY24Oe2r9zoItMszZ9Zha7YccG7bpWK9nh9E142NYFtZLrfZcrOua2UBuNhu6P0n5bn7lGU+8vzXUc1td13ArBiwde5IJQjxkO9NrDIY6JMFdK7thyrUjxspdmC974M31+SiXt94gvF3iekhLmzdw7S8AtR3y/oFd3DA/PPefD46aIXMO/r04/81hteLueXnjbnjI8ygL+LRF5zhjztDGmJCJ/T0S+upxueXyE8HY9vfC2PWV4aArFWpsZY/6RiPwHEQlF5HettS+933eMqNtfhutbKYFTw2ZHv69ubZqqyygiYiPQAPAcI6PfD9AWcI6SgnLJ1FFpgM/L6g0crsdHkbtZx82d/XYb11OXLMYx1QRcItytHJs2tZpSMRn421Lo/t5aUEw5eTRQRBlce3MMF/th7FpYK71hNr2Gfu5cbcHn79kY4kYf7okc5+Y5pdmSsX5hC2N78bzuVXSG6qY3Kgna6hJH2IcRERmC3up0lR+tVnWOpOB5QwO3HdRdBB4oDdXetZoe3x3NbazCd87Gar/xENx6pPOzPt1vCcO78n74oLYNwkhqa5Nz37t3m3+YNdfAjZOfjmJ3A683UL7ZhHq/CfZ4xqk+73WMz4XzLb1eS22/s620zt17us+Uoh9NPNMiLmXqbKCibVPalRvK3MPAd4V7HkdTb5OvH72x7tIm2HDPXNr4KDwSB26t/RMR+ZNHOYfH4wdv19MLb9vTBZ+J6eHh4bGi+NCjUIggCKRem7gYzTWNDFirkVZQ12sM97iY+63JFrjXYaBtxqL29w9m7SrcuwrCPzqH6uZlCGesIYqhNBfvnGKHnHSHMdq/elVd6mqiLvw6QilTXI8uVQiXPZmLhR+O9XoHHQ0ry0DHMF5eY48fPVqBiMJQttYntA9jaJ0QRn6+oD3/nU5XabPDrkZwiNHvVCMd241zrVl70G/P2kO4xAm+mxQ65hsbW04/3r6ndEQCF1ng5ud0tUXtOt5XWxSJutQh7JeP9X5ylx0Ui/hhzpcDq/OzWddIpWhKRx6HIvvAMJNzVxJcDxSKTXU8S6BCg9h9Tooh6QqEhCIMdzTQgQhANzUaauMSwtcunAeVhrEdD7RPGxstpx87e0q7NGGbEaLLRpn2qYRw1Ixx+JbRKbhvxqOLi0W5HpzzpM/yY1Ao/g3cw8PDY0XhF3APDw+PFcWJUihhGMj62sTVrtfVNbRI0hmNmWSjrkwYz6elqjuSYKfZIsIkH6tLVi7pMXSLKmUkWuB4JpEYuDjGum5NCe5uaPRcZZy3UVUKhpEuZUS01GO44CMkR+Da4VxkfxIdnTRgEK3C6JT70RROGvYSEAZGWtOoASZcOm3h56RZ3HPxOxXMTiZakEIp4RWkgqSZIcawD/e9jESqC5ubs/ZBx03kGfWVXllDslZB2uWyZjYXQ8gi4NpjJIIYJJXcuqtRHYFxM/YiRD6QGihhAqxvIPpjgTzAoyIMjNSnlOEY/aiWEa0FuiGK9P7yOQLBIgqMFF+CDLQYz1KOiTAYqG0YmcFsyAaoxrCqz1UUue+oW2tKWybIko3LetyNkUYt1RElE+DZLQ6R0RvMr03T4838GBwdbcJHgM8r24vg38A9PDw8VhR+Affw8PBYUZwohRJHoZzbaomISAnRJmkf4jEpk1PgGkZuVyPs/DK3ZjxW96daU5eHu/YGpy2gL1JvIei/o+4Lo1AcpTgREYjSpIh6qSFJpNnQ71ehe5HABSQVk+HehgO9n+HY1ZfoDdVVzxgoATezC82YdLr7/7ASwosQBkaaU/rCpU2OVnosFhwzf1yrqlEG5QoEnkhFvH1D+xGR99IxJMNAKo602lv7bhJMGOr1rNVzpUieSmBjJnsx3+pwV8XLBkhmqUAsK8vcOUX6boRIoyaSZiqIhtrfnkS9UGhrGQgCI7Vk0rceEucunVdBKOoV7XT0OR5kbl8qsF8CKgjLgJRAq1Lgi4lUTHgb4XkIQdEYiE5trLvRRXGsNidt0lxXW9YrjKDRc5VrSr8E76oCwX4bUUepUmzz9CAVSl3RVeiqHCPyhPBv4B4eHh4rCr+Ae3h4eKwo/ALu4eHhsaI4UQ5cjIhMOec+Q4PAZWXQ+I1ryonFFVckpkiR9Qi+rYrwvWpVv19CTNoAIWIsHDIG/1RrKWf3xOXLs/ao76bN9dHfIFSOMojIa+n9FawaA7I0QpvBRx2EEc7zinvQlO5Cf3mMcMjCEYuf/H+5DLhIKYrk6oUJ18gsu2JBSNSiYybH6T1GKHJRRgjX2rqG/4Ujvdf9fc2yK3CNAHz2Rl1Frm7fvDVr7+62nX4kaxoi2B/o2KbQZz88VO4z12kgtTI5c/1DgfDN1lQkSkQkzdwwNM7bgJmj4M13wbseTudkvqBazcMiCAIp1ydzegs8bb9PLX49noVPUhRZERFJjI5DgqIoDI2NA33GLcI90xLE2fAs5eDfua/D8MKDru5BiIjEKPLiZPQ2WFyFRVuYPal2Oreu+zMZQp8HI64Pc2GEePLG2L9aVF3sOHm1/g3cw8PDY0XhF3APDw+PFcWJUih5lstBeyIq1YNGcxkZhWAepAQXemPNrQd57xbCx1BDsAwt5hFCkaKSuiyjTN2cfk/bNYQ6PfuxZ7X91NVZuzon0vP2m+/O2lmuLhZLr7UPd3hT2ka4U4a+DuEKHyAMcPsAgk4i0kEZqd4YVMtAP6cueTjNGFuypy0mMJKU4vc/5n3+tQh0OUk5sJ5gePXSrP1D0HJvIbywWUcdxDL0uQMdpxGyJ0VE0o5SAA0DagyZgx0IiKUj6Dij5Fi9iSxhUAy5ozM9F0aIp5Kl5Ejf7IO+icuTeWvmQ1wfEcaYmVBTsqljyNBW1rHM8EyXQpcaKwUUkIMOPkNhUZdyCE1vvmbGCMWr1+s4Xp9jZnqmmRt6O8LzzvJ9ez0dT2Y/cw3abJ2fta9cuIhrMNxZzzkYunQrS6r1ujq/2geob8qiy04JxaPDC/0buIeHh8eKwi/gHh4eHiuKk41CEd11phBTiDJEa8h2OldX97M+V6roABmNttDbsKLHMStzuKN64FGsLlIZFc6feEKpkk994kdn7Y8998SsbTLXLWKW5Y3r97R9Exml0EwuKtgtTyDwM0K1bEQr0HE6HLqCS6RN0gK79tBE76HaenNaJs4uWQ88Hady+/YdEXEja0IKfcGFDvj5XJk4fofZijwuQxREtQyXE5EITFq1GM/xUL/79LNKvwRlV1Bqv6f0CjPzytB2X2sptbKGqJU6qq5nqET/1hvXZ+0hDDtOXfpm4FRb5+fUy0ZG6VREipTAMpBmqdzbmdiVZf5KyIQtF3qvhtyPdZeWIeZhe1fLn21CXCqOkCWJYvJjq8bsj5RmyUB7RRCSy0TtvXlBI5ZERPZuKZ2ZLYiS4iiWQNkMoUlf4BlrrunYNBGdcthzI3EE+vEsHcmnkVTeOCX94ykUDw8Pj1MFv4B7eHh4rChOVg/cBNIoTdyNBG6Oxc5tDS4xtZvX5qI/AkRwjBF0UUYSRQa6g+XVIriam+fU/XnmmlIoVy+qex3DHYwr6jaLiFy8qC7a9r32rD3E7vrOtrqPrEQ/pPuPEmzC8lCoMF/M6QuPQQ30R0wW0mM2zqlrfz9KwSzZ1c7zXPamJeucqvROf1FqauEx7r8bdR3rPhKoNpDUZWF7usQhFM42Wuqmb22oLX/0U8/M2k8M3THpg/aiiNQYZfMiuNef/dxfn7WDkn5397ZGw+zcUeogQxJWpewm8hQLxMYstKkFFMpoKoa17IpqgTGSTMW/UiSHjcDrMLKG0UFsi4hYiIgxca9U1eMM6M9yjIS8WMcj7kMgDYk8QySyWQzEpRaTckTWEQHTRjTNDiieBO+16xWdO31QWH1EBGVo7+wpjWozNxKnQMJPCfd37pyuIaRQRlhDXruufSX8G7iHh4fHiuKBC7gx5neNMfeMMd/HZxvGmK8ZY16b/n/9/c7h8fjB2/X0wtv27OA4FMrvici/FJF/jc++JCJft9Z+2Rjzpem/f/OBF4si2VybzBsLr/FwoDvLBQLvOwfq1qxBe1lEZBNB/K9eR6KMqJtpDJNmsAPMitcoDzXqtWftHehkDHEtapyIiLwLF7mLKuo372jUS6+vrtStW7ozHWHXPUd1+x4SUg776jqN50qhDVHJnnod1He5cIHazZPvBxPthd+TJdnVikgxpbTsoppqsqA81Bxd4Mgks8I3klS2ktasPcS4NRqa7FVYnRNr0Ll48kl1V69dVXqp23f7kQuiYao6XwawR68LLQ4kVV28rEkeQaqRC1cuKy1n7yAawrrJJtScT8dH6/bsH2o/7s8do6P3e7IE24ZhIK3p3KfeOaMjwGI4JcrCOXs3oSHOJLfemBE40O1BIk8T0T6c5+USqtUjMqbXUU2cFKXPRNwSbgkiO9ZByyUoDbcF3ZbrN/X55hjYkElc0DJJ3cgR6+jz6PwiFRehNFwNbZFbchQe+AZurf1PIrI39/HnReSFafsFEfnlB53H4/GCt+vphbft2cHDbmJesNber8p6R0QuLDrQGPNFEfmiiEgDKmsejyUeyq6VUrjoMI/HB8eyLe3arPnn9XHHI0ehWGutMWahuoa19nkReV5E5MJGwxZTKuPillJw6V11B1O4VCFKXjUa7m7yQVtdo7JRV+XWTS2NVUUCxjrcsI8/8/SsfflCa9Ye9/ScBzt6nj60CsZzehPff/VtvfZdpU2GfXWlhmNGzCBsQtqz1tqaPiz7HXW7d3Ht3lxJtXHKXW11J0mtHLb1XBsbk2OOE63wQey6tVa1G62JnCzlYSmNyUSJwh59zPxxjFaggEtW4HNKiqC7B/vtWTsM9BpPP6n0xta6UmONhvsjxGSnMubRqK/jfHOstjnYVUqktoZSeYik2mCSB6JqhiM34aNW0uSwPOM8wtxBqNH96ufhMaOL3s+2tOsTF9ftpY0J5ZSB3uiNSCMh0wh9atZcyvNjH9eIH87iW7c1MufWrTuzdhfPwHgHeil4lkhJJKBT+n19LuK553VrQ6mcA0SeMNkriCEfnKIMXkWf0fYYx0OzpBSgT5H7A0j6jYlp1PwxH1Ds+WGjUO4aYy6JiEz/f+8Bx3usBrxdTy+8bU8hHnYB/6qIfGHa/oKI/PFyuuPxEcPb9fTC2/YU4oEUijHm34jIz4vIljHmhoj8ExH5soh8xRjzayLyjoj8ynEuZoyRcJqk0jlszz4PkI0xStUFMXCvr9+aqxrOm8jVjavAjSyjAvXHn3lq1r50Xl3ZC5saqF+7rJ+Pu6z8oX3q9l3dirFR1+3OnkrL2kxdPVbYznF/Q+ifDCCOYZCEEqFKSRy63EcNWiGHXVR+oY+KKiKjwbQqfWGXatcgCKRavU9HHMMFfN9DUCUF3HodkSBRovOiAI1UCbVNHZ1WTb977ZK60C1IvUqs80BEZERJUiSxBFW1TR00wc6e0mevvP36rP3M01rNqQ054CEiMaLAHZAKIhQCaAYZUAYZNHzsVDI4nFZ2WZZtgyCQejKZY52R9j1G/y6eU4nVVlOjgC6edynPT3zq47N2gqpIO/eUhvr+92dRj/LD11+atbe3UfkI9NsYkSr7e0phGUSIdA9deqoCyWgydOOh2iAsIIuLhMH9tq5Te7AlCyotpABFJAJrVUPUS9WxJRKVjvEsPXABt9b+6oI//eIDz+7x2MLb9fTC2/bswGdienh4eKwoTlQLJc1yuXNv4mpe2ICuAzIUWOR0nOnvS6fL6A2RCLTL5rq6ZM9ttmbtxuaVWXtrU49Zh+u8uaYuVb2mfcqb7y0GLCKS31JXWUQkRtHaUUoXC1EGHWiyQAI2QqJR+0CvfQlufhAoTbLRdN38Q1QX6RTaZkIFK+VoRZDlimZYK5JO3ftFES7zmieLPjfoW6WqkUMJ9UICRCUgsaNRVVv+Nz/xqVn76kV18zega1KD65onrlxxVOi4dZGwU8J3wl2lQd69rm7+Sy+9NWvfuKmft/e1wG6trhN9Y9PV14lAHSboV5aiOg8S3iqtCXURhct9HzPWSjjl4yjD0oFGR1LTuXp+S5+xZ59VXSERkSbnLuSfE9h7C9LMe6BjLm1pAtRNyMG+igiw9r5GkJ2r6zkHc8WVt3coN82IFkSSoMKXNdBWwjM2RrTcoNDnnhTrPgpPi4hstFqzdgdVswIUNa4k0ICZm5NHwb+Be3h4eKwo/ALu4eHhsaI42aLGRSEH0wSGWgVyiuvqXg3H6gq1D9T9GYibaBGLuiBXL2hCxrNPq+u2BZlGQTTHGiIaSk4WISIg1pRmiXBMXHJ/80bQwPjL7788a9+9d3vWvoOd9hqC+8tsg+roIqGoXFH36vI1pQJE3GiAOrRiAshvbqzrvWp1nuVWNc6LXNrTgrQBKBFWiGHbLDhm/vsdJD6YgPSBUhchis5WkPglOSWAkVCBykC5I9fhRheRhrI1aFVA6jeC+//dV344a+/saYRCv4uqSWPt98fXdG5W5lzlvK/0CF11p9gux3M6BotoqoeFMVaCaHLNBBVvBNWfbt7cnrWp3bGx5WqQ3L7bnrXrJX1ee6AZClSw+eTT12btINbxOdcCtXJua9buoiBynKMQ+LarKHD9jvYXzKYMUxRqPoS8NSoRsXbxuQ1QQpDD3kUCWWzcJLW1Ftc5FDFHNE3aBx0zcKNYjoJ/A/fw8PBYUfgF3MPDw2NFceIUSmcqldrusrCtuvSdQ3Wp9vaxg1y4FEoDlXfaB+o61iDAs7muLl050c8Z3UC3z7IqDmiGMiiU0oarb5A/oTvvf+dnfmLWfvVNTepJ6uoCphkKHKeQy11XbaECAf8hqrveu0vZXJH1DXUna6hsUq5TUhfVT+L7n8lSMU5TuX5rQhmxKDHpEbfA8dGfi7gURa2iuiUHiEKqIFoIkhQyhEbHAJK87Y6Ozfaezq8Y11ov6ViKiMSIDBBU4ckgX8vEjNfeeHPWzq1GMaQl7SArTFnIHg/HDpfjEFyHkEMd8WaRYJJN7zWfkxt+VBQiMp5eJ4X+c3sfCTRtREL13p61X3vbTbyr15Xi+5Gnn5y1N1DY+zKSf9bPK3UxRvJbHc99A8kwobT0eCRJsYqOiMjwHX2GKPN82Nd5MRxpn577uCYg5eDcams6X9qHGpnWrJDucQtljzJGtiG6CBEwTCBjAuAi+DdwDw8PjxWFX8A9PDw8VhQnW9Q4CKQ2daUyJCLsQWNgjN3ZblfdxzB05SlrZf13hsKqd+7prvMnP6GuWhN6GFUUyw0TpVDu77iLiBQsiJwxEsB1U5mQ8ZlP6s753//vfnbW/r///L/O2rspirtSzjKEvgec6C1oTdhcjxcRKaG/tbq67RmsyqiOSmVybSYOLANZXsjelPo6zpnf75g4PlqKda2h9o7KrVm7A9nRFFREAE2J2zsaefDKa+/M2pQe/pEfUblTEZE1JJKkmAsxKjJFoDHu3dVrbB/qMU+f0ySU80gyGw61r/f23YSPGAW87yJKowPpVoOorGg6d9IlUyhpVsidvQmNaa0+Jzu7KHCM4s+51c93Om4Czdb51qz91CWdx+tPaFWkzU0k0EA+mJTf+U21SwPRRaFBweGhzhXzPfeeNignO9K1IkA007VrtJlGjvDRj0HJJqCAQyRhhdatyDOCRksK2iTDvaaIcstAFy2CfwP38PDwWFH4BdzDw8NjReEXcA8PD48VxYly4EkSyzNPTTIlIyerTEkuhnbtt1+ctUeulpWMwPeFKEHFat27e+1Ze7OpXHITkYBpBGILXFYQ6tAwtJE63yIi128o9xlDnOqzz6mQ1q17Wirq+7e0hNSgoXzcEFyuASd22NOwp0bVDbljtiDrjUbQPD6ElvX9cE1jlvu7HQSBlGuTfQWWVLNOebUFn1s3hC517l3HJEn03g+6LMGHUl8Q94pgyxRZdm/f0EI0t9/RbNnvfU8FqETcSuHb2/qdX/pbn5m1r27qHksCbfYusg7v7SjPWikhK7anE7rd0eNFRBCxJwe4p8EIFc8RhpgEE241z5ecYZsXsrs/2f8ZIDv0oKPtHsL0MpQ2tHM6TCmyIy//NRUau3JZOe0YQk59ZCSWsN8VgaveaGHvbKD7Zf07GHMInImIFKL92IdW+IVLmtVJLfMxwgtDClvhEYqg09+ARny96u7bpZmOD8Mb2WaGJp+FRfBv4B4eHh4rCr+Ae3h4eKwoTpRCCYyR+tRN2mhADAbZbWGk7shP/Phzs/b3fnDdOVdnoG7xTWQo1sv6/X6P1azhbqX6eYCQvQIBbiaAGFKgIVRf/9M/d/rxp3/2nVn7qac0m7JV1yysT11Q9yxDLFIX593vQIgJIZY13E9g5jL2UAGb1awTuJlI0JT97iRjrDiGa/aBYMxMcChCzJdZ0A4WfC4iUkIYYR360AOEYBUIv8wRqTUcoxo5QiwF4l670Gn/3is3Z+3rN1zxpTE4O4Oq9k89o/MwGChP0ITGfK0OjXiIne23NWNvMNK5cjhww0N7zPxEiKyloBSqxB92Jm5+tuxMzMLMshLfvq400s6O3kcHfd8fooJ72Z1jn/tbn5u1L51XuwYQEWN0awKbMfM2QyZzKdcvhKA2sYSIzdxn5p131H4liFBduah0Zgn2lrGuMzkybxneyXFnGbRK2aVQElBoa40a2rpWkGqczyI9Cv4N3MPDw2NF4RdwDw8PjxXFyVIogZmJ0cSs5EyRl6G6DZvQ5P7ExzSqQ0Rke09dm+9+W9Ot6vCf3n1H3b5rl1R/uVpVlyfI1TUfwG1mptXLL6kw1Ysvvur0493ruuN9a0d3uJ98Sl2yi82Wfr6mO9wDXOM66JFiDDexpPfDcl4iIjl2xUNoJvf72g8wR7I/dX3zbLmutohmj7Iqt1Nh22nLkZ+LiETwo6vIRKtAJKg/okCXzhEMhwQl9AOu794hMmyhEd+6oMJZIiINUHwHB+1Z++Y9ba+FmslZwrxrtUARDPXzISKC9tp6nqjiZtwNRhBjwpwcw27NFjNFJ/da2OVSY6PxWN56e0Iz3bqj5eBSiDq1e0qnBHhenzjnlon7uR//mB5nQDH1dQliRFEZcz0Sve8cz2sKca+80HEuoFc+7LvZkKRuL4P2aoKqTECtMEiKUVE7B0q5jUHvsRJ9GLnvxyVk2NYQHVOrabtS0T7Va6BVF8C/gXt4eHisKB64gBtjrhljvmGMedkY85Ix5tenn28YY75mjHlt+v/1D7+7HsuCt+vphLfr2cJxKJRMRP6xtfYvjDENEfm2MeZrIvIPReTr1tovG2O+JCJfEpHffN8zWRE7FXsxqKA9HkEsCjvwplB3ZL3u/tYUudIPP/Gpp/EHPe72Xd0VfwM6wNjIdnai7yCa5d131T1+622lYn7wqiZ/iIhEibpk5To0gpXhERvrPbWQRGOh/VtBZMwILmOCUmKlyKVQTKy73DmiFfYOlNbpHKg7Xp/qoAeTPizNrkEQzMS0jkOVOLTJnNdfQAwoBR1TYek1lEWLSzoPTBTjcyR6wb0eHurnFUQClFuuznsqOvfiNf1bgQSfQyQUXUKk0f5Qx7+PSubNhq6Z2zs6p558VkXQRETCgBXLtR+jTN32TVSA706T38KoLSLZ0uxqrdIl9aaOVYr5GTSgqb6hLv9PIEFHRKQBlujNd5WS/PoL35m1n4CI1M/+rCZMXbykdGSvyxoB2hygLNmr0CJP55a4T37qE7N27pTRwz1BRC3E8yfQm+e1R0O1EaNQ0pFL3wwRkcQIE4dOgz4+qZVFeOAbuLX2trX2L6btjoi8IiJXROTzIvLC9LAXROSXH3g1j8cG3q6nE96uZwsfaBPTGPOUiPyUiHxTRC5Ya++/jt4RkQsLvvNFEfmiiMha/cGkvMfJ41Ht6haG9nhc8Kh2LccnGuPg8RA4toWMMXUR+UMR+Q1r7SETMKy11hhz5Ba4tfZ5EXleROTyuaYdT8Mibt26NTsmB5WwCY1fJoVU5nZ0t+DWNssaQVBCckwKzeRvf09LXt3dUz2SCvQXuoe6y/zii6/o8feQoFBX11VEZOuSXntcqIs0suqe3YHeM4uiXQDlEkBbuoR+l8vqRpk5h8kg8WiAcJNhQd1h7Uc4ntwrq5svw67NRtmWk4mrad2DtMmPZdE/3A8wJI5OfLmkbm0QIGIHOjplaMPYMei6AtXLqzjPXOKJRXJGv6f2O0iUShiCwlpv1tFWV3vU1Tl15arOlXv3VJd8NJ5ztQd0tbXdQClARuj07kcguQlSj2zXrVbDXr56WUREXn7tB3puPIuXLyu9ca6m17jScN3/H7ylWjNvoTL8Sz9QnaA33tDn8voNlClroHQaVqxnn1Mtmjs7GiVze1vH/LDrRlyxnGIVUR7pWKnGAnRkCfUCapgvl85j/RnoM9Yfqu2HaIuIDEZKmzBai4lAI8tq9XMCUEfgWFEoxphYJpPh9621fzT9+K4x5tL075dE5N6i73s8nvB2PZ3wdj07OE4UihGR3xGRV6y1v40/fVVEvjBtf0FE/nj53fP4sODtejrh7Xq2cBwK5WdF5B+IyPeMMd+ZfvZbIvJlEfmKMebXROQdEfmVB50oTTO5dXviMlGPI4ernY3ULd1EoH00V16oBA+Qv0KMSugcqluUIrrlcKCUyGjYnrXPb6rk7DDXs3YG6tZUN9xIkEzg/kK/IYGWyr276oKzcniSqJvZQmB/BIGPkPoXgcs1Hx7oeQ3umzKWBZI/+geT+57qLSzNrsYYqcT36Rn9nDvyC6NT5jgUlhNjVfsAGjIRkmYs6CJBhE+AEnw5i7ihdF2UIGJgTkfEoC7doKv2uIsyXOcilPVDWMJWQ78bXWI0hrr2G+uouj5yXe0QtNDGemvWbrbU/d/bVbphZ3fy/Wxi66XZtbCZjNMJ3XHlkkZblZBs0kAkz3Pn9J5ac+7/LdCTyHeTC09oKTvKKL/xLiKpILe7dU7Hsw+O7d3bGh0WlJTmLAp33RgblOBDpFG5DClbRMVlORK/sCZkuLbFc1mt6hhUK24yEyf+CEldAyQvDjAX8tyl1o7CAxdwa+2fyeIyhr/4wCt4PJbwdj2d8HY9W/CZmB4eHh4rihONE8rzXA4PJ1EALB5CV7kcKkVh4KJGsUsfjOHaGEQfIGdDMtAsPegmCLQLxtAdGW2j+s1GS6+9q25XHzvJIiKtkrp0OWVxUZKkXEISBPpR4F5T/JayYo5FMkCp7L5YxQj6H8Htq6MiTwqdmTydXHvZVelDY6Qaxe/5fJEyx8KIFBEJcU+Mlikh8mSE3f0QYQmcI5TlTOHOM5gpRKQKkyxERLq7GgURGj1uDdFPIyRzZHCJm4lepAEKZXtXKa8NaOIMrWuP5hb0XaDX0ulqHzPohtSmuiGBWa5do8jI1sbkfgPMZ2oXJQYyvz21y50Rk2RE7uC5GYFuqlQhA4t7rRqMG6RbczwzN7Y18qQPOdkUWjJR6IYuj1AVJ0fSWJzo9XpDPWYE3RZIwEgHlZI4Zx3aL3Dfj0P8u4TosgSRLi3b0vvAOjVhvd4L/wbu4eHhsaLwC7iHh4fHiuJEKRRrrYynbrzBzm0lUapkrYFde6PuEosMi4jkFkHxiFAYwL0epJDihP9DWc4xhFFSq65TZNQNW9tszdp7cK1FRLqQmKw01L0eI3JliF3mrY1zs3ajqvdKSsgyIALymePCjZRoQishQz9yuKsNRKTcTxigDs0yYEQkOcJ9t4sSeRZ8LiIS4B5pc7qjA0QrMCKlhIonJdAplaZGUGQoQFtpqOtqjUvRXVxHFEtKaVpQAwW0bBCZEZYQrQB6b2MD1Apc9vmxG+QaJdU71Pk2GqLaCyIckmk0Tbhku4ZBKM371WKQKDbo67NhhzoePYzhDRQUF3GLMzebeu8GkVsZkt9Mgmo7oM8EekB9RGnksT57KR6T0Vw0TAVrSgmTjwWOR0jMabeVVg0jvcYukvNqVbV9GRLRrMAjIlLGv6OItAuqVWGeRzjXIvg3cA8PD48VhV/APTw8PFYUJ6tWY4yYqVvcqKpb22rojnwAF4nB8r0+d2Rd/Yi4rC5MkTHC5OhqO07SBna1LWQkGc0SIfqjvqaB+iIi9yBBeyHWqj+sG3zhsiYIrTdUO4K714JomAG3u3GidK6STh/UTLWiLn8H+hsBrnGfTgmDJVMoxkjykMJH80VkKCfLKJSAhZqR9ESXM4Wbn6Zw2eG61qC1Q4qmsC6FUq+pnVNEVHT72i4QLVSrUdoXUragB4NIaY9Y4PIXbsJGJKjcUtNno4zivqyKc78C03JjUCZ2jaeRIQa0UClEJE6I8YCNEjzTIiLxQMc3RfjOONF2jOfssKsURZlUF8KIQkRvRNAPoly0GPeZyUDadSDpWnSxvuDh76L6U5tRL32laoM9VPPhXKu6ETCct6SN7+sIzX8/jh78TPk3cA8PD48VhV/APTw8PFYUJ0qhhEEoa1M51kZNKRQLN5gFa0eQmY3nEnlGoBzGqHoi2Ak3dEECBOfjGgk0RKhVGcbcBceF55Jggh76i0SGtfNKpyTYIbcBEmtAj5ShAcIEgzEq9djC5RsGuA/SMVVERPQG2qfyNHJh2a72o+B9c0+Y7AW6ojS3u38fB12N2EihKVGqKx0Sw10d5rSF2xGLhCu6vjlonTGokgqlfVGhhUWXu6jgE+K7eeReO0LUBamL/qHOhQ4iQe6P4ZJrGkuRF9KdRmc06hgDzM/MkLrQDjTrLedcaxWlDjt9pUf47A5BeTJZq4K1otLUfsSwS59jzsLaoTsoeUFaVceQdEWEdSCBRG6M5KkE9mZFsR7ag7GbzGTaOj9jRKE4BY6RhFcBLboI/g3cw8PDY0XhF3APDw+PFYVfwD08PDxWFCfLgYehNKZlxCzIT2qDp8iuyhASWE5c3rONSs4JRIlCcEtjiO5k4BzLDENjKB80vOMKMrbAiY1HLIomUgbf3IQ2ciVi+Jhe47CrJb2of8ywogp4eeqH5/MkJ/7NKtdN8JUMSxrfz9BcNln6YeE4ZD2O4R6BccqLHf1Viy/buTEpHP1yR8B8BpbFKsiNg8tN+2qX7R3VuA6tzqle5nKlcQXZianOnV2IquXoSH3K8VPAazmwcv+GOQaH4N8LhO8Jwggbc+JmCcqXhciyHObYH0LWcXxezztEyHAP87wGQagcIlUxsm2LucpxRUqBNIQQ47CDnt7fHjT3U3w3wr5WA7w1LzeaE74jVz6EUNXoUK/RRvs44b7+DdzDw8NjReEXcA8PD48VxcmKWYlSJ3Q/U6jPHEKUyXUnXD84REbWAO5IhDAxUg4UK6pAJIZuNDwvR8BoDHc1nBOYKZUhuIXjIrjUQ7h9zAKlu2UQcsTsQlIr3aHrIlP0qsA/ehDjIZ2SI0NzJUDug+ZfwADRzV/01YWXes+lF9MrRyFwK8LP2qRW3P5B833+hvBPR9cclCLnbT4Nh1w2M2aMkWQa0jga89roO+4joi723IDu7msl+gxjwlKJCahKA2oyrkDsiVr3DKt1KCzNyGX46eTf+p0hxe5At45I5eB5DyC8RcpmgOvRXvGcAF+tCaoXzziplUXtRfBv4B4eHh4rCr+Ae3h4eKwoTlbMyopkU3dvDNrjEK79PnZ9d/d11z6b22FfW1NN4a1NzfIyiCQxBlECqOHGbKwSRJgYFTIADVExiDRZX3dvCTvNIbW7kSW5yL2my5shu20I14lZWoxOEREZ4NrFAtErRqfcF7xadkm1pYK00jFeL3gnpCsCOXrMRY4e//ecl9EtzoFHf8m5xgL6xYmSAQVYvKcj+BumvXNYcMT9LdmsxgSzSI3Djj6jpG9opBIiT8apKz5HypRzvRiAUhTSTXh2QX8yQ1NQU4CZlJkjaubqgYc4LnHoET0mQnQKRfBoJ5aVcyLFkN2bZa5IGcu5ZU7UjPapXNNItgbK7sl1X1LNw8PD41ThgQu4MaZsjPkvxpj/aox5yRjzT6efP22M+aYx5nVjzL81xhwtUOHxWMLb9XTC2/Vs4TgUykhEfsFa2zXGxCLyZ8aY/1dE/lcR+efW2j8wxvxfIvJrIvKv3u9EhS1m9MBhF8HySMrZ3VfNXSYrBHPauAa64YxCEZYkKkGgJqIrq+4LqQcLNy9AeaoIrtp8cH6Gfxu4axWEtHB3voTfzCH6mi9IZhri/BS6EXFdN5aGo6t+lODV1BNcml0/NCxUunK4hAVfBcXg/AFneV8KZUEUivMdR3iaX5413YQgzK9jRrnYBQlFweJEpeXZ1VrJpnRcxucEY85omgQUSrfvRjyRQuFQRXI0PTXG3O6ANumBHilBD5z1BRgJMj+0pVjXDdIgIQYxZQdjUj+gdUJSYPp8cz3JczeZifTKIqqF9OcACUWL8MA3cDvB/YJx8fQ/KyK/ICL/bvr5CyLyyw+8msdjA2/X0wlv17OFY3HgxpjQGPMdEbknIl8TkTdEpG3trArwDRG5suC7XzTGvGiMeZEpsR4fPbxdTyeWZdfeMD3qEI/HCMeKQrHW5iLyaWNMS0T+vYh88rgXsNY+LyLPi4isNyq23Zm8HJAqaSPyhLQJd4PrdVSrF3dHd9BGxAgSa9ZQjdwggJ/lvwx+w7g7HmGXn0H747ld7R40qBNonhhEjFThnlHegCRkimPobnI3PwzcwH4m+TjunePyv1cv5X60xrLsutWqfUjiKkdTKAuIC+deg2AhxXDkeYK5a/HfxaLIE+fSR+uwFIuiUDgR3id6hN9ZlKj0nu8sya4XN+v2fgLPwsgT6NhnoD3YFpkbQ3Q+RKQYKUyWjBszmgPXjqm3gu416vrcvwcYzxCJUXz2DcY5wjUK9JvHZ/mCCJvQfT9mYiFzkApQLQ7N4pRQ3Jaj8IGiUKy1bRH5hoj8jIi0jDH3V8KrInLzg5zL4/GBt+vphLfr6cdxolDOTX/JxRhTEZG/KSKvyGRi/N3pYV8QkT/+kPro8SHA2/V0wtv1bME8SOfBGPMTMtn0CGWy4H/FWvu/G2OeEZE/EJENEflLEfmfrLXvm7xvjNkWkZ6I7LzfcacUW/L43PeTIvKLsly7viOP1z2eFB6ne/Z2XR4et3t+0lp7bv7DBy7gy4Yx5kVr7WdO9KKPAc7CfZ+Fe5zHWbjns3CP81iVe/aZmB4eHh4rCr+Ae3h4eKwoPooF/PmP4JqPA87CfZ+Fe5zHWbjns3CP81iJez5xDtzDw8PDYznwFIqHh4fHisIv4B4eHh4rihNdwI0xv2SM+eFU0vJLJ3ntk4Ix5pox5hvGmJencp6/Pv18wxjzNWPMa9P/rz/oXKuCs2BXkbNnW2/Xx9+uJ8aBG2NCEXlVJplhN0TkWyLyq9bal0+kAycEY8wlEblkrf0LY0xDRL4tE+W3fygie9baL08fhnVr7W9+dD1dDs6KXUXOlm29XVfDrif5Bv5ZEXndWvumtXYsk6ywz5/g9U8E1trb1tq/mLY7MkljviKTe31hethpkvM8E3YVOXO29XZdAbue5AJ+RUSu498LJS1PC4wxT4nIT4nIN0XkgrX29vRPd0TkwkfVryXjzNlV5EzY1tt1BezqNzE/JBhj6iLyhyLyG9baQ/7NTngrH7+5ovC2PZ1YRbue5AJ+U0Su4d+nVtJyWsrqD0Xk9621fzT9+O6Ua7vPud37qPq3ZJwZu4qcKdt6u66AXU9yAf+WiDxnJsVVSyLy90Tkqyd4/ROBmaj5/46IvGKt/W386asykfEUOV1ynmfCriJnzrberitg1xPNxDTG/G0R+Rcykbr8XWvtPzuxi58QjDE/JyJ/KiLfE5H75TV+Syac2ldE5AmZSHT+irV27yPp5JJxFuwqcvZs6+36+NvVp9J7eHh4rCj8JqaHh4fHisIv4B4eHh4rikdawM9Kqu1Zg7fr6YW37enCQ3PgD5NqG4WBjaNw8v3AzD4Pw/DI44uiOLItIlKg3xZ/M7idwOjvU4EQTrYnG9DT49EnwsjRn4uIWIaGLhjKwhZHHoNLO9fg2ARO/9zf20Xj5vb2vZ3qD1MZjbMjb+ph7FouRbZeTUTEtRMvwHGeu+Bcb63zr6Puoij0X1mGOYI5ERgdG16iKPIjzx/OjW0cRbN2mul3cmdOon+cBgueKeMa/Kjm5N/oC23O7+e59un+mKdZIXleLJysH9S2SSm0tUo8uSd8zvvj+Fu7+FnivCgnpVk7DPX+0izT7+PzIsecWvA8cA2wjl1cW/CZsbY48riczyusEwX6XT6XGdcmfF7MPXsFxirLOQ/1O5z/XBOGo2znqJqY0fwHHwCzVFsREWPM/VTbhQ96HIXy7JUNEREpVdWI9WZz1ubAdLqdWXvQ7zvnGozTWTsfjmftMNcBqMTJrN0vdHKMCv1unMSzdrVS1gtg7J2He+7ZzO3RDzcnxHiE2rH4PMJ5w1DvOylpnypl7VOtVnWuXa/X0UdM7AWLoJm2v/HNN+R98IHtWq8m8t//3I+IiMhoMEA/FBEWxDDC4hq5C+c4V1s6P7r4Ze4Ph7P2zq7Oi8EAtq/o2ESRjk2vr/kZBnOiWYXtReTC1tasfW/3YNZud/V6/aHOo5Q/JNnR84CLhzMG4qJU1XlbbzSO/H6no/fRnz4b79x0ck+Owgeyba0Syy/+7FMi4v44jvHsbW93Z+0003lbq7njORjos/zJZ5+ctVtrOqdvb+/O2tW6ft7r6ZhzEa1VK3rtsc6bcVeftxw/CiIizTVda0ZjnatZrvd0ONLPBT9K56prs3YS6/3t93t6vbLO81HmvnR223ofO7v7+gfck/MSgvXhlVe335Ej8CgUyrFSbY0xXzTGvGiMeTHPi/k/ezx++MB2HY6z+T97PJ54oG1p19E4F4/HG4/yBn4sWGufl2l5okoSz35espH+4vV6+iu+ttaatasV/RV+D4UCN2lYgmuCt/Fxptcoh3qrRaDfHY3w9o43HL4FkwIJA5e2CAv8BuJVapzhvKSLQOvEePvkm3YVbxZ8y2afJpfj23Vx9OfwaMz9ay+iMz4AaNfNtZodTz2fakPfcMZDfZMZwQuJC7yNF+54JrF6ZuWajsMI49nvp2jrIlOp4G0VM3s40jcfizetaqIHbbZaTj/2D3ROdvr6xj8Y6Y9VBm+Pbr5d8Ba16K07Krt2rVR13pdKOh6HeOsejrRPozR9z3UfFrTrxlp5dkLOI9ro4vnWrD0Y6fWTsnoRIiJrTZ3flVpt1k7hDVcqoK3GarM4xDhbHf/9A31jjwzfYnVOxCV3iesN1a586x7A3klT55HAZtW69nsDz6UB3XPnEB4avAIRke199eS28QZ+7cqlWbsMRqCMvr8i23IUHuUN/Eyl2p4heLueXnjbnjI8ygJ+ZlJtzxi8XU8vvG1PGR6aQrHWZsaYfyQi/0E01falB31vRtKDXsuwGdQLdbODdEqeu3xcwV14UBwjUCujgbowdGUTuFsWm2M9bJSGobpREXfE56gcZ/cbfSqD7ihFSgVwP7QU6/CTKqnChQ4camTxHoIT4ACahvx0uzOhNBhVMY+HsWuWZ7J70BYRkWZN76OSqBtdjnU8xtjozOfcTFJURar95CYVo3SuXlWFz15PaZoBNjrH2JSqxDo2my0tsDIEpScicuBsVuq1M1Ali2gT0g0hNm9Jm4Rwj8sVd8OPc8GhTRxKChuoafaePhyFh3pmp8+TwXPVrCtNlqU6v+JIx7/WdO9pNNCxuntXNaHKZUR5wDYhaM7BQG0RRDqnSMOaCJvFoD3yuWeGQQtxCLqupOetVrA5CsomzfT+SmWlU2oJIlL6pPp0c1NEJMI9bWLztllFIEVZ+xSHD6Y6H4kDt9b+iYj8yaOcw+Pxg7fr6YW37emCz8T08PDwWFF86FEohLV2Fpdp4FLncJVHA3VTupHuDJNWEJm47bPvL0iuGDNSBdEmtZK6dyW67Di+Dzql0VCXljvXIi5tQkqkhjjWq1cuaz/gDjJQnzTNwoiSuSB0Jnyw73vYCe9iPLPpMTx2GSiKQvrDyTUZHbGGiJQa3NJKXempgz2NJBAR6XR1t31zc2PWjhtqp42qfp8h9mmqNiadUgVdsd5E9ACopv1DN4a6xxhvRJvkjDwhnca8AcwD5rMEiHKK4SrXMR6TvqvrPRiQNkGEVar9s/ephCUL0xkxEk+XiAi0RIxlg9RdvarXL7lBKJKlGENQeEPYzyBumhEYZVBxcYRorRKilDDPYyQKJXW3I6Mh6Bg8Z08+dVX7gXm0u6/RIkNQtds7Ok8roGLWG/rcdwYuhbJ1SfNwqqByBGsI+xQvSCwk/Bu4h4eHx4rCL+AeHh4eK4oTpVBEdKecbhR3jTMkSgxDdR+j0O1qraq7wIwGcPRTqNmAzwcp6RR1sZiuHST4bUPKtZmLQomQjLO+0Zq1G5QHwG5yCW70CJESYuCWUgtjQXSJiMhhX93G+xEmIiIpxwNedWOa3jyvqfKoCMNQNtYm1EQPSS/3dndm7SZoggYiVcZzdE4OWmm/r+5rI1F7N5qa0kzZig0k42yt6zEVRARloCHevn5n1u4N3WiYMfVPnMgTRPCg65QKoA4II1Ki8tFRR2nq0nJ90GycI6RNCqSzR/bRE7OOwoRCmcxXygP0u0oNUNMjMzqG7Y57T+WyPg+NulIfFmPVH+u9Dod63lZdaZN6ReeBFWiTWKwhiBbJBkrDirhRSJ22/u3O7duz9rMXleookHR0Z1+P72OdShqItlI2RZoVN0Hr2WtK0+RI47dIOOTcqTnyDj+Qo+DfwD08PDxWFH4B9/Dw8FhRnDiFch+U9TQ5pWUhL8kEn8B1hZpI8qF2BM9bLIhOyQt19YZwt1pNde3OX9EEEQMKhBSPiEgUqZtEhuPK5Yuz9kFXIxxS0DEhfz4dKVS93giJEu0uVNJkTpcD91fBDncDqnDleOJmRsdIEPggCMNAGlNKgDKsJVAXIyQU5eAeaqCaREQO9rXk4MGhJnUFjqYFKQZGhegR589rBEu5pO71LuizKiJS9rqgs0Qky47WOXGiTUCHBU4UkYI6JzXQJpQ67vTdCBjSJrQ/516A/lWmUVWBWa5YXFFYGU8jXPKClJK2O1AKtJjPw8ydq+fPQ98HSqSMRhshwqdUYoQWEnNSrhuIxEE4S1LhHHTHhJFi4ZrOkf09nWv9ps6Ryxf0Od49eHvWHkO1dxfUyhgJZxfPtZxrbyIyrRTrXOj19NpcB+wifWrAv4F7eHh4rCj8Au7h4eGxovALuIeHh8eK4mQ5cKNcIXlFVs0wgXJiAeiree651z1aQzxfkKFJOimDqEzOCjIheWT9bTt3XquzpEO3H9WyclkdcFkHe8rlDnPl5yxGvIyMUNKXOwhv6lJIaS7kjhzsOkKZmOVVRphjMm0HS9ADJ4IglPI0OzIM9drcH3Cq0UBPejya03nPtb/lko5tLdGwwBIy30YWma2wa2+AfYcMWvCi9muta2jjbnuOh2bFp5T7E8fQ98b4V6DtXk7U3ocd1YYeDl3+ndfO0LZoVzB3xtNYymXogbuwkk/PGeF6ZWiUD/AcR7DrcN8VTOsdQggq0OOgQSUGvDIzrQtWbULcaIXhuTW1ZQl7WabkPq/djoZARqiqE4Mrf+fGXb0cwkkruL+72+1Zu32g4bKg9OXHfuxTzrXj4Oi9Pos5sr2tGZ6H2ANaBP8G7uHh4bGi8Au4h4eHx4riRCkUI2ZGoThVvIsFdMoCwSsRkfGQolfqatSR5ReRKkCJJ2ZGJmWUTELIVx3ZYqOhul3FXD9GCK+KwAZAItjJLiwj5DFFKFjnQKmc7bbezxBu86Xzm8616xWI9sTvpUpERBK4avXKZAyWHUZYFHYW0lhOdNy6EARjeGeJZdNC9x0ipuATsmRZio69LyNbrT+kCBRKckUI3wPNAll42VjXjLvJNRieqNc+hFCYK2CFcnwVFCVGBmoXtN9wgFDBOU10J+MSmteVSMeNtedH09DUZRMoJgglmT5PY4Qzsu8hbFRCWcDGXJnUDKpj1bLOEUSdSr+HTExouFdD0CaJ2pJKWhWMOS89XwKxC5Gz0Ck3qMdt7yqdFhcUyUIGMYSqesiIzlCUO0ncuW2h5z4c6POwDapkB9Qrizkvgn8D9/Dw8FhR+AXcw8PDY0VxshSKUffdIm0rZ/YR2qRTWJpKxI1KGYi6M2W4TBfWW7M2y3hVUcKqUkNmVoxd4pL2b3tHd5mL1PUNQ8gN1yG4NBzjPjDM6RhZlnCPSTcQCUJxanMuWT2B2w7apAx3fh2Zjo1plfcoWq7ZrYgUU2Jj/1BpggEyaUM4+Oc3lArooFK3iEgL0TStDS15NoBLXYBOoQAZU2FJk2WoaJ+BnggQ1VOruLrRm+t67e2d9qzdR6RRjgziCLQAaRPqeZPWGYJSGM3NKUuhpADzE/RSH5TUeEqhFEsmUfIil3ZnYs8B3P8+omYCzLvLNR2D9XVQHSLSP9B5HKBqvAWN2IRAHcvHMbKsfQCBM1wvqumcohhYPnDpKXK3zCgd9PR6Ywh3rTW1TyEE9WKD6BTQhoNUx+P6zVvOpTersKVVuvYA1NoAYmv5MRJr/Ru4h4eHx4rCL+AeHh4eK4oTplDMrFSSRbVn0ilOtfmCbpfrT1Ae3IJqKeCalpFosb4FcSMkWuSFutSjMUqRcWcZLq4VN4LDYid7Ay4/hYUGiJh553Zbr9dRVzSCa3dxS2mPzZa2K5H7exui/FIdyQDra+rCM2nH3h/DZYcriNrKgMJi8kcN4kQllMiqNdxSeY6AOYS/BHrP/QHKneFmGKkSCqKFcE5HmAr0VBy7dq1Ay3l9Td3ofg8iRF3txxpokwJzlZXJWW6OUR2MNBERQT6ZJIjE6rNCutXv3K+0brrueR4VaZbJre2JZnoCYTI+P2WUL2M5sHCuHNgmkqZYltChRo3e3xqExho1tf2goxEiTMrqjaDVPdDP63Ml1SKca4RIkPqmPmfPXLs0a3/2x1XDe9RX+mzvQK+XoKr8jR2UYBu7a1ZWAn0H6i/GmmKg7d5stPBtl46ZnefITz08PDw8Hns8cAE3xvyuMeaeMeb7+GzDGPM1Y8xr0/+vv985PB4/eLueXnjbnh0ch0L5PRH5lyLyr/HZl0Tk69baLxtjvjT9928+6ERBYKQ6rTmUF0dHnmSgU5hwcu68O98SRInEoBZqSCZgcssA7o8RPSbNWelbqY4BykYlSAKKUF1dxK3WfdBvz9qb0GMIRXe4t5rQejHqmu8dqjv3xLUrs3YDyTrRnN5zBC+VLi7Hs9OF27c3ce+mmsW/J0uyq1grMnWLmaQTwcWNkYxRhy7yfE5RB0kNWYoEL2ik9LFrX0UUUaPG8+p4JnDze6Ha+ICV6Odc/kFfr0HK4Br0oUctUAagOnba7VnbgE4ZUxMdCVpmLjmsCs2UoWW0CY7DwNWnyWH7+7Ox+z1Zgm2jMJCtKYVHbXdqvsekeHr6zHTnyrw9+6RSEZFTJxBN8KLdDqvH67htoGxhE8l2GxdUryhJlK6J5vjCne2bs/aVS0/M2k5SD56fzXW1RfWS6vHcuLs7a791XefsS6+9PWunqT7HIiIWEUW030XQuxstvY/+2J0XR+GBb+DW2v8kIntzH39eRF6Ytl8QkV9+4JU8Hit4u55eeNueHTzsJuYFa+39KqB3ROTCogONMV8UkS+KiCSlcNFhHo8HHsquVVZy9XhccSzb0q5l/7w+9njkKBRrrTXGLIxrsNY+LyLPi4isNyp2fRoYz0rfdHFZvow7tbWq29Xz546OKmECwICliuBKjZA8kMPFRaCDNDbUXUpQMX6t5WpmjBBZkKI8291dbUdwgzeQWMNBC0GntJBUcvGc6p/Ec9ZiYkgPiUD37qkkZQdU0P3IB0b3LMIHsevWet3WphXXWfA+D5wvzJrbu/dm7RakgEVEWptq191dtV9vgPJqhY55SdSNThABw938OETiFpKfsjKSwWBHEbesWWqVZotE52oTlE2G+VxGwk0FRmsjqqaATHCt5NJyKcZqjLmTIbJmrcZEmQ8WVvR+tqVdN9Yqdq05oSMcaeAF7SFkd0cDdzxv3VObP3FZfzsYsZMOUZoMdGYF9E0JlM1F0CY/+Vc+PWtfvfz0rL2/rVSHiMi3/j9NHHvystKyCZLfKCFbhahRo67X/vSPPTtr7+5+V/vK37zUTSIyBhFXoH3rTGBCJbpR4ZalOwoPG4Vy1xhzadIpc0lE7j3geI/VgLfr6YW37SnEwy7gXxWRL0zbXxCRP15Odzw+Yni7nl54255CPJBCMcb8GxH5eRHZMsbcEJF/IiJfFpGvGGN+TUTeEZFfOc7FgsDMKqY/cfX87PMCfncpQZfw85LOVS3JET1yAP0NcSJakDCAa9AVjcukb/Q0G2tKoWxWQJvMudqdFJQNdrJ746Mja0Z7GvnQ72m/G82WXhvJLWFBadG5xAC4evt77Vm726PmBqIdphSDFbNUu8ZRKJe2Jv3vddVFjWIdt9FYXWLSVt0uaS5XujWBbZpWaZAc0SnVRMcqhsaqRYXzMaqwZJgHAQyexC6Pz2QTzqkCc6qE5J8Kop+YIBRW9JgD6HjENUR1zHFjbSSRjWH/eh26HLgPM5dctizbBkEoldqE8jO4Xop5Rz0fA7nbUsV9N0xB292+d2fWroIuDJyEFr1GQD0Y0GSNmo7Hk1c0Oojn3B+7OjPXzmuSzvmWzp1qVfueY+7UoJtUDnXNsdeU2rz38Wuz9u62PtP1qpukloG6tViDCoNnAxQdKzMtwgMXcGvtry740y8+8Owejy28XU8vvG3PDnwmpoeHh8eK4kS1UIIwlNraxCVrItFle1flWqmhUMCNMuK6E0wESlHRhG5YBNcrgf5GuQZ3HFRMOlTqYf+uUiW7cNmfvawumIjItcvqPnX7+p2bdzUMd+8AySMH7Vm7A7phHRKiH3/uyVnbQkY1hc6LiMgYcq0DjEEGF5Du51pjQgtF4W1ZJgIjUpu+Cqxt6s6+QZJTu6NUyQCuYbfn7rQbg6LISP5pIAqpe6A27uO8YUUjM1pI8uj0MU7Y5reozlOuuO7uOFNbUj+F1MxgDBljRJJEsR6zVdGoo+wJjb7odXWuJVVNPBERSW8qxRCOdQwZgUFaJwg+nPewwloZTpOMUkjy8noBKI0E0WBB4M7VOORziQLHqMjE+yuT2sQzvdHQKKUGInFKWMkGfaUph6ApRUTqoEMTzM8IWXEVVHmqgqapG50TBtTWx57VhJ3rt1GpJ51LvEOIygjU67Cv7QyRK3mxhEQeDw8PD4/HE34B9/Dw8FhRnCiFIsZIMA38Z7Heak3pDSaZZKiMEcznHSAp4j41MDkOlVjgwnCffgi3G7ITsgEZ1hRRJKORtn/4zl2nG1tIFGgiSqAMKiiCDGgGick009/Pu9tKp7z0yuuz9lNXlJKIc5dGqkKTol5SlzNu6OdVuIy5TFy4YK7Q66MiCgJpTaujlNAPbLpLEquNOyg+XJqLwBgOdaxKSBKxsHcdFNjAqPvZgG6FEb1epYniz0apjv1DtV1htU8iIiXo34yhVZIh6mI4Bs2C/oVIPKFGzfqG0imXLmvURJuFkkWk0dY+5plSAEWm12ZijVMhfMm4X2kpRpQOk29YLYdS0MFcclEZGkIJdGrOoWpWjHlZhTzyGPRNpap2YZ+276ktX39T9U5MPldpqazPZa3F4sp67YDPboznFYlKYYR+wMa9kdqy3XcpkKQ4OmHRhKjO09Z1YGfPpX+Ogn8D9/Dw8FhR+AXcw8PDY0VxohRKlmWyuztJZgiR7FAYVKpw3BftHt1pEZEqisgmsbYDuCPdfd2NzuF+NhrYiS7rbxjlPoNQ3Z06Ihp6XTcx4J076rptVtqz9kYLWioBdC+grZAkrVl791Bd+HYPRVx7umO/lrgJG0moLtplyO3mhY5BhuSW7lR/w8xJpz4qwiCQVmMSEcCCyaTJBO5nBdEK1rrRH6UANnDkcpFQgeSKd2+puzwE1RFFeh6DSIcKKrSkSA5i4WMRN/Eog25JY0MTONqINDo4UNc3RCLJGMk7VST7MImoFLpzu46ImA6S1EhdjJHYFs2ohOVSKdaK2CmlmYK+K0CbWLZBI0WluecVSV21WO9vDfdaQiJQBK2QPNd77XTas/abb0NfZ09p0XdvqkpAVHEjfD79pNovKasNymXtL6O9SiiPNAb92e4odbe9pza2oIeGqRuJ0zvkHIO8MhL3EOQko/TBiTz+DdzDw8NjReEXcA8PD48Vxckm8hgjyZQGGCOyo1SGLCeSd0aoSGHmCvoyxj1DUL1BAkYFESkxis6WaqBf6joEu7tKh3ThIgVwi1iBRESEUgtlRMN8/ONPaZ9QSeelH7yj/UakBLoq27dVDrbVgBTqJkJmxHVT6XKWWSWlD6rqfoTPkqMWrNiZlG6IiBvjJCIg0Qh0Vqu5JkT9giZnxKCIPvZxlQjtgyppQH72lVfenLV3D5TeaDR1fo0PdX5koHWSkkvljAZKvzUh93kRGjksIswCzocDpT2YWCaIioqhtb02J6nL5KYxKIoxKKn+AMdMI2Pssu1qC8mmyW2MMOGjyGLatZqOTRy6zyurazXwHRZwriPZTqiFAkpqD2Pz0itvzdom0HMWeJj6mT5LIiItUGufbp+btZNNau1A7yjXedHt6Rz+/ss6124gAma7rUmJo8yNgGHtatLDWVfviXZtrPHZuC5Hwb+Be3h4eKwo/ALu4eHhsaLwC7iHh4fHiuJEOXATiJSm3B/1k0ndWZSjOgTfFc5xz9TsLUGIJoD2dqOK7yAMkTraezuoVs/QRgppFRC8mtMD/9Qnn5m1r1xSjfMnnlRudq2h1756VQWNXnlNea0cYWyHCEsa7mt4WrHmlt4aDBByF2l/c4xbliMzdXqIXXK4WWELGU5FeDj+EcqXyZDiY6gY33B5/SuXdNyefFKzFbcuatsa5RYvnFcxMdZwe+3N12btPVSJz1I9JkQV9Ch09cCt1WtkKA+2hvmZb0AnHjwmIjcl4jxFaT5mGe/vu/WHSygx+OzHdH7d3VY+dw2bL53DyRy+s/vgsLMPgtAYqU5tWK/q3gQ1skFtO2Gf4VzmdIySZWWKSHGfCidjWbMQpHurrv0wRvcaDjpqo5zl+3r6/IiIfBea3r/0uedm7X6MNaGt2ZQ/fFmFxd5488as/e2/fGXWvnjt8qw9hBhVZ+iGHOdW7WphvyjDnIL+Fde1RfBv4B4eHh4rCr+Ae3h4eKwoTpRCybNCDtsTd88VoNJjSKdEcMcP9ufEhqgpjOy4EXWxUSW+taVhhIhikx7Kj1VQVuncprrHjbKKEF2Z0wOvQ7e4jnCnWlXdonMb6nJeutCatbfggl9BJmUdIj1Boi5jOXHphgBu6Rj3WgJ1NEAmX3tavizPXZGdR4UVI9k0XG4Ml7jA9KIG+O1bGqJXinRsJ+dSGopUApL8JBtBmxohhVcvapXyu3c0XLPXgVgaQvkCQbhlz6UfdiAu9sknNdyMWYhdZFkaUVvUQfedP6eUUK+rNtqHoFpazLnaeB4omNVq6ljlGM/7WcbL1gWflMqbzMtFVAlF5vj5fNH7NYQORqAJ+J0+hKBC0Hwh5pTFmlBFFucOsq5329p+5YbOAxGR/Xtqp3Twt2btN99Qjfx/++/+ox4Dyu0AIai37mq44MEI/YMgV5i4onF5ps9DgGcjYNYpQlvzY4SF+jdwDw8PjxWFX8A9PDw8VhQnSqEUhZX+NHutSNW131xXeqNRRpfg1bLitYhbGbs/AL2CbVyWFov7iD6AmNLHntFd/q0NpTGkUHcpREbhU1fUJRYRadaV1kiYDYksydaaunoV7Havo0zYWg2iPhDn+s7LGqlyOKcbbRJSKMhGRVVzCjnF0/tetphVmmVyeypSVofIWCnRa7/7jlISg6H2+90bbedcpbK6sm++rbv+n3xWIwaqiCga9NX2O7fenrWfe+qpWXt9Tcftu9/X6JQdaLn3hy6F0kp07vAhiWO1dwEKJsO8q0IgrYwxYADTAPZKA7f0Vo9CVYhqKPqgjiAaVp5mMAZLtqsxIsk0VZKZwnzrsxBlYiZonrv3NKRAFMr8UTO+d6jURw3Z0jWUODvo6rrBKKIR7Le7q3NtvrJ7mCht+eY7t7QfgV771TdU8z8I9blsIGO2VNP27bt6vbWLSnOVEjdyzkAr3+b6DMTIyqSufJotQczKGHPNGPMNY8zLxpiXjDG/Pv18wxjzNWPMa9P/rz/oXB6PD7xdTye8Xc8WjkOhZCLyj621nxKRz4nI/2KM+ZSIfElEvm6tfU5Evj79t8fqwNv1dMLb9QzhgRSKtfa2iNyetjvGmFdE5IqIfF5Efn562Asi8h9F5Dff71yBCaQ8dWEsoia4V2uR4JBA6SasuhEYaY5yYtB4DsC7kNLY2tIXjieeeWLWfvrpj83al89pQP6tt9+etW+/qyXO1iquW3SOyRzYOS9Trxz0SAztcwr8bFq9nwsX1YUuv6U0wm7X1RceaiCDjFIm9eh9ky65X7m+KOxS7ZplhWzvTjpTNPW+D29qlMb+ARMt9LsmdCNivveDd2fty1c0+uPCllIlMbSbq6A6fvxTz87adD4bVf2uQZbNS6+8MWtv37kpRK2kY5ghsunGbY0+GI71XIzsKTBvGamyf4BSZKBfHEUnEalU8V41QFQVPrag9e6XsTPGLNWuRjQhxymjBqqEJRCdMZiLdDrIIHJmlEqghvsQIlJV0EjVvj7f/Z5+HohGsg0G+mz0UOW9FLqRICWsI999Te3fqungbl7SZLso0WuUMO/Cpvbp+tua7NOAkaKau7xGKCuYQczPQACuFOv3rTyYEvtAHLgx5ikR+SkR+aaIXJhOFhGROyJyYcF3vigiXxRxhfw9Hh88ql3rldJRh3h8xHhUuzZRq9bj8cSxo1CMMXUR+UMR+Q1r7SH/Zie7F0cGLVprn7fWfsZa+5kkPtE9U49jYBl2LSfero8blmHXWtm/cD3uONaTZ4yJZTIZft9a+0fTj+8aYy5Za28bYy6JyL3FZ5heLApkc5pQExTQ2e2gHBVKkcV4Y2eZKRGRMSiDHO5ZRH0LaC5UkBTyqeegX3Lt6qxtx/p7liDSoVVX+iWa+80LQVEEuJ6BWxyjsnVeUG8FusVwlft93WkfpcqTjAt1DUVcF34wOtrFNUdkYBTTPy/LrhPV6wmVdP2W2nJvT6kLRglYjE176C4SFUTmrA+RTBXrdy5e08/54xFCO4IVxC04mzxVWzYqn9BjxjoPRETeeF21prf3oS0D83dRaq1S0WtXE5REQ3m83UM9zy70VcoN9003gP3KSAyJItjViThx1+Jl2dWKnZVSKxBVQnqEFIoJgiPbIu6cZCRJn1X3oDl0CNoqgJyJRSJWHT8wPWiwl5Fcl81FchgkWd2E/n8l0Oiy+oYmz/Wg2zOGrn+tpTYLEWmUF3qftZJL+0bQlT8YKbXG9Yu2TOIH/4AeJwrFiMjviMgr1trfxp++KiJfmLa/ICJ//MCreTw28HY9nfB2PVs4zhv4z4rIPxCR7xljvjP97LdE5Msi8hVjzK+JyDsi8isfSg89Pix4u55OeLueIRwnCuXPRBZuh/7iB7lYYa2MptoOlKS8/IRGhZSg75FAcrbXR8iFiGTYpXZ2vJnwY7Cji7yC3qGey2YoTQX3rDekPCgC7eeclgTub1LS4yyqeNuCVa71/tqggX74mkZfvIOq2pQdHY1cPZghdBpy7Oxb9DcqwdWbJvUEJliqXdNxJjduTKROb9xQt1RQeb070GSaMUrU5cbVAfnEk6pn8ld/4adm7eeeURf33BVogmR6C72Ojg9LzG0gMiZA9MblTXVRt3ddu77xpvZ9t63u+SFCf3KrNm4iEqoE17fdUdt3kHQ0RsXy/dsORe0kwSSg5TZQGo4JZBZu+1Kf16KQ8XDST4NMHtIjIfa1RtCoYeKOiMgQlMgg1XONUArN4nkdo6ShQbJQBdRmKDgG9Ea9oeeMrWvXelXHcOOCRjlZ9H2MZJrBCCXOSjrvxni+ay199nI8691Dd81K8FySbpWCz7h+P5qLoDkKPpXew8PDY0XhF3APDw+PFcXJysnmuewfTNyK/Y661C1UYl5rqItTHKg7Hs5VuWYiQwW70WXog1RBwdSgXXAAl/jeHaUrbt/R633/FaU0Kk3I1aauW7OxBZ2TLVSZh75F90DvtVzSHe7vf+/tWfub/+WlWfsHr2vyzoVrV2bt+aoxMSQ7I1BHuUCOFmlS0f3IBbPIw344FNZKf1p9pNLQnfZDRBsMWZUeVNO1NSZCifwPP/OTs/Zf/VGNDNnchHYEolgs3M8KkjTCiNK+qGKPJBlWf7+z7VbF2d1HpaYQiSTD9qw9GqtdY0TJDOCOh0jM2NpSF7wCSiGFNKmIyDbkUFMkhDHWZIAS5+tTamXZVemNMRJONVdSREoM+3rfw7G6/KyS5SqhiFhEXPUwPnycBiO9Bmkh0khNRKNFJf08QIROtaZzKu+7FbSYoEU6tA/aqn2gtu91de5EAeg+VMAqQ4aajGA8FzZdK+s8GoHiy/A8kkIJPYXi4eHhcXrhF3APDw+PFcUJFzUOJZkWR2XA+wjFaNvYua0gQL4UuUHxlJtswmWqVqE3gCiPca6uya3bGkR/b1vd1TYKo772lkpKjguVOH214ro1FyEVW0Kx3Qiu80svvT1r//mfK1VycKj9e+VVrRySQq/j3oF+fumam/0cIkEogDvJZAWn2MtUgtcsuaixCYyUpm5kZ6yRFklDp9fFC9r3TdAYP/2sUkQiIn/nr/34rB1GSKBJQU+BcqOs6lpT6akxdEpjuKtRoePUgXt8b7vt9KNUUYnj0Z7SKxloCl770z/5Y7N2o6b9GKJ4bYHj76BAcTT3GlVFIoqANjuEDkgHiVHD8WQOp9k8cfFoyLJcdqcFoVNEepGpwWPsFOTNCneOpYyUQXRSjAQ7wfh0oZ0zRpLaaAzKDF8tJfrMXDivEUtm143cgoSJHCCRZ4w+NVDAmRWYUhQpbm7pMU7VLES9jJAEJCKSI/JoiEQuFi9qoupScAyq07+Be3h4eKwo/ALu4eHhsaI4UQolCAIpT3eRmazASiIJogcS7PRurqlGiohIBRVvatippwTD2Or399tKiYwGer3tbSTsIHoDwQ1y+1DFGF7vtZ1+lAp1Zf/n//Gvz9pZoFTQn/7n78za3/2eRrdIgGLHTzw9aw8gtbu7d4C2mxjQaKmbn0C6strQzw9R1HicTvpql0yhWJtLmk/61tpARZ6KthtlSOdiN/9zT7tFon/4rlbMuXlbXdwk0XnxN/7GX5m1n34aWjbQ0jCgEyzdf7jElCbd2XHH9q13lDa7sat/u/qESg5fPqf02VpN52OMCKRyXccgBffQR+RUWnPpQcrXDCmvjOgd0im9aQWmZUehWGtlNJV7pQQwmRpWvWJ1HdIk7/k36L4EdNEmxuHtrkaHFaBNWIQ8FrXrhXO6PoxH+t2nn2g5/UjAVxSodpRa7cdaQ2mMaoPSxWrvTHQeZQg9CXDOOHCT1NrQfDrsKbVTKjFBS5/d41jTv4F7eHh4rCj8Au7h4eGxovjohJxBb7AKT5yoG8UCEOGce9gAbVKFbGOAFIIcCR9NBNt3BnrM3i5c0R6qemDHeX9HXZ/vvKFVPEREel2NYnnmsib8fPyyunTNFmgFuEi1NT3elCF9C2rlSbjpb72mCT4ibiJJ0IM07VDvo7mh2iKVaSLBcRIEPgjKSSSffHqy8z+ANkkN0UFX13QM1pAU8sOb7j3dPVDK54cv69/WoP2RQkvjp39a7/XiJZR5RNHrWlWvvdvW42/cbM/aN991k2l2dvRvFy/qGF69qPZrIZom6ynNUoTa16gKPgTjXgYd0kJElYhIDgnUCPSi29bv3C+g/W6kfV4GCivSn8ryMqqkAB1C3R0L6VsTuVKo/HcAyecuKMkKIkkuXTw/a6dIbklQFJyzuIWkvcFI5xAr3IiIVBGhFSIpyI4RFceKUVghmZiToVjyAMlCIda10LpRQewv40vSbHz0H4oHkyj+DdzDw8NjReEXcA8PD48VhV/APTw8PFYUJ8qB26KQdKqvyxCeOrInI+j6NhvKI0fzZaMQvkSxG/4ijYcIVQT3lSOk7cIFzdrqvKFha0Py4cjQbFZc8aUOMvu+9u3vztrh+LlZ24LiunilNWu3R+DLUA4stxT1gRjSFTeUsr2tGaWSofxcWcOgInByo2k43bLDCAMjUpnOpAh7EE3cRwRefhdCTodzPOG9A+3b+SsaWsmsuf/4n3Scb97SkLELF3R8fuRHtGxetECf+/vg2LcuanigiMin8Z0SyrzV0K5gj4XV7jvIsutDozyG1n2FIZZ1t1xgBaJHewe6x9IB10o+PJ7GHYbBgzP3PggKMTKaLhEW/L0Bh20gohaA5x6P3VJmQ4Q9DiFmFRs97hAkMfnwJjJ6kzK0+VHfbgOCc8MhNPDL7jtqjL00mE9yhBdmfZ0jGfZrLJ6lIesFsB4BbBDOmcO1md7sGFw3w6uNz8T08PDwOL3wC7iHh4fHiuJkxazEzrKnNs5pyFeNqjRQXwrggpfmKjQz1IrlqXJ8n1E4BsIyfbhwzHdqoBTTvR11XYtUvxvPsQ8hQqoO4DW+dEszPz+x3pq1K4n2b6ev4Yn9NvpRVyqAJZ2C2A3/u3RVsxgrEStxo4I4xqbfmYS6OS7fEhCYQCrlKQ0ArfUcpdNu4l7vobTYPJlTqyr9EyKG63xFKY57t+/M2t/8tmZu/uiPPTlr93GPHWS9pRk0mceoJF9xaYxzoNbSVN3/EkXDcPxhV+10+4DXw6QAXcSQtM1NvdZ8Xy7gb9Wyho2SWomCyb0umUERCQIxyYQyJD3C7EuWThvhvmWOGovBJzQRMluKS2jr5zkyZsfQPk8QZlwqUfQL5coM1goz944KqmSAeREgBDJn3yFOlaJPEY4fIyuTT5aZq2y3kEJBebYU1HKCcoiL4N/APTw8PFYUfgH38PDwWFGcKIUSx5FcnWa1UQOZu7UhIkrq0AouBXPZg3Dj2t0+2poRx4rZBiXZBnD7Dg+hyxuiXBO8MEaIXLqgGWIiIplRlyeIkVFX1Yy9Lu4pgY/VQ79toRfc7bdn7fUNpRSoFSwiUiBiJ8LuurF6f2OUvEqmSl9L/9U2RqJgYqsytJRtgIy7FJlrPZTDq7pCTjHc6wzupIVbPEBkQICMXJNo+/UbSrOMkR1KJs6Aoomq8y4/aT1UYYerHsfq4sYjzLW22rWPiIYCZQBDTPqRQ+mJtCDcRnqljozNakXHbW9agi0Kl2tZa0UGU4WqEZ4rRmaUcM1KrPdUmsvELOEZIH3EyJkQ36kgszIE0RZHBY7X83QgctVlSTrjCkptQgAuZ8ZyUz+nXj4FwlhWLsK1KWBV4Hg7x2mFUNojhcIwtTGek3LiPhtH4YEWN8aUjTH/xRjzX40xLxlj/un086eNMd80xrxujPm3xpjSg87l8fjA2/V0wtv1bOE4P9kjEfkFa+1PisinReSXjDGfE5H/U0T+ubX2YyKyLyK/9qH10uPDgLfr6YS36xnCAykUO/Eh7ocWxNP/rIj8goj8/ennL4jI/yYi/+r9zhUYkftF4+ldBNTohZt52NOIhlriCv4MUcG6MwAlMlRXiru7EfTDB0i0KCBinMA9q1aRyAFBnCRxh6yAdjeFbA7QpySHTjUC9Z+8qFEkXUSOVEtKlbB0nA3cmI1OX93aQ5SPK2M86baVp26sMWapdi0KK/1piS+W1SI3VikrLVAu6TjNR8QwgoZVx/tIphoiSeTcBRWa2u7AdYag+xjiVyW4wTEqmQeISBBxghqcucoSaWIhogbKZXMdImX4/AB60Iyi6mOuiIhkmZZw66MCPOmUWk3pvnMbLRERicJoyXYtZDS9fgmcZ63CZ4MRJaCXIpfyzGGPAuFh4xSUCJKh0lTtUQOdUkB/fzBoz9pD0HJlUGOZcROKxnieIofGAAXJ2Ch8niEKxRHQY6QL1q/czlEoiEqJ8FwyX4dRKLKsRB5jTGiM+Y6I3BORr4nIGyLStnYW53dDRK4s+O4XjTEvGmNe7A/Tow7x+IiwLLsOvF0fKyzLrmm63HBTj+XjWAu4tTa31n5aRK6KyGdF5JPHvYC19nlr7WestZ+pluMHf8HjxLAsu1a8XR8rLMuu8Vzegcfjhw8UhWKtbRtjviEiPyMiLWNMNP1VvyoiNx/0fSMi0ZQGsAiWz+B353Bxuds9HLpuZg86Ij0I+Pbhmma8BpM54KaUQux8o+J8EOsx1bp+fu2Ja04/bt3TEmlN6C5UBAk00GSJ8LKaQBvc4GFB7oBTbm44UhpBRCRz3Hm4paRNcK7S1DWc98we1a7Wigzv2xDRQiW4sk24/LWnVE9mp63V2UVEhikSlxBpdPuWHtdAYpRJ9HoFNLaZi8F5RB3nKlzf+SrqhWGUCJPLkNjBklzQHx+BCqhCO6eCqAKW1+r1lSoUERnjzTfPlUIZQUNmbU1ptq2N+9SKew+PatcwMLJWm1BAJURdkDZxKtSDJhmN570yHRNjgiPb/b7avtvRMbEY261z+szEKLk4BhXaqOpcGyI6RURkBKoxxnxhhAmjZHJQPDnoEScKBc+ooa7JXCJPaEihHEcXxY2gOQrHiUI5Z4xpTdsVEfmbIvKKiHxDRP7u9LAviMgfP/BqHo8NvF1PJ7xdzxaO8wZ+SUReMMaEMlnwv2Kt/X+MMS+LyB8YY/4PEflLEfmdD7GfHsuHt+vphLfrGYJZdiXr972YMdsi0hORnQcdewqxJY/PfT9prT23rJNN7fqOPF73eFJ4nO7Z23V5eNzu+UjbnugCLiJijHnRWvuZE73oY4CzcN9n4R7ncRbu+Szc4zxW5Z69FoqHh4fHisIv4B4eHh4rio9iAX/+I7jm44CzcN9n4R7ncRbu+Szc4zxW4p5PnAP38PDw8FgOPIXi4eHhsaLwC7iHh4fHiuJEF3BjzC8ZY3441ST+0kle+6RgjLlmjPmGMeblqR7zr08/3zDGfM0Y89r0/+sPOteq4CzYVeTs2dbb9fG364lx4NPMsFdlktp7Q0S+JSK/aq19+UQ6cEIwxlwSkUvW2r8wxjRE5Nsi8ssi8g9FZM9a++Xpw7Burf3Nj66ny8FZsavI2bKtt+tq2PUk38A/KyKvW2vftNaOReQPROTzJ3j9E4G19ra19i+m7Y5MdCiuyOReX5ge9oJMJshpwJmwq8iZs6236wrY9SQX8Csich3/XqhJfFpgjHlKRH5KRL4pIhestbenf7ojIhc+qn4tGWfOriJnwrberitgV7+J+SHBGFMXkT8Ukd+w1h7yb9OqKT5+c0XhbXs6sYp2PckF/KaIUEz7WJrEqwhjTCyTifD71to/mn58d8q13efc7n1U/VsyzoxdRc6Ubb1dV8CuJ7mAf0tEnjOT6tglEfl7IvLVE7z+icAYY2Qi1fmKtfa38aevykSHWeR06TGfCbuKnDnberuugF1PWk72b4vIvxCRUER+11r7z07s4icEY8zPicifisj3ROR+OY/fkgmn9hUReUImEp2/Yq3dO/IkK4azYFeRs2dbb9fH364+ld7Dw8NjReE3MT08PDxWFH4B9/Dw8FhR+AXcw8PDY0XhF3APDw+PFYVfwD08PDxWFH4B9/Dw8FhR+AXcw8PDY0Xx/wODNTEVKJIfvwAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABkKElEQVR4nO29WYwk2XUleJ5tvnt47Bm51MaqIouUKLKb4EjTaoxahDBC/1DANAhpMA0KIFA/04CE6Q8S+unpwTTA+VH3RwM9KECCqgGh1cRQAxINDQSKYo/EkUSyWCJFVpVqYbGW3GL3CF/NbXnz4RZ2z7N0z4jM9PJMj3gHKNQLT3Pb7jNzu8fOPVdprWFhYWFhsXhwHvYOWFhYWFjcH+wN3MLCwmJBYW/gFhYWFgsKewO3sLCwWFDYG7iFhYXFgsLewC0sLCwWFA90A1dK/apS6nWl1FtKqS/NaqcsHi5sXM8vbGzPF9T96sCVUi6ANwD8CoDrAL4H4De01q/Obvcs5g0b1/MLG9vzB+8BvvtpAG9prd8GAKXUHwH4LICpk8HzHB34LgDAUfLwr5TKxxryg5KmST52aBkA8FyX/pJ/ixP5TprSuviHyvjN4j9kPaqwPfnc/Nuh/XAcOaaE9kPrdOI+6TSlsXzuunRuaJ0obJt/fPW045twGFGcIkn05AO8j7i6jtKec+fq+Jwr+nfHGJtJoOO4mATjfKaTHzqmPYxwzFyKVynw+dvGd1xvcnIax7If/BXHlY3wvE0SiTFSXl72ozjXkpTni4x5KT6HKruW+sMIoyiZFlfgHmMb+K6ulMa3iIiOO0lPn3d3Xj5q4r8Fvk+f85dkZcZ8oWvDnP9ynpy7EAs8JxP6DsOhfdXG8nQ/SWjb4P2Q9RTj6nLM+JhoGf4Of73dCfe01uvFfX2QG/gVAO/T39cB/DfFhZRSzwN4HgB8z8FHnlgGAAR+NV8mKAX5ONVxPu71jvNx1Tcv7PWV5Xys6V60d9jJx51BmI9HkQQriSffDPjkeTyxaLteyTxl1XotH9dqMu52ZT+Gg4GMw3Di53F/mI9bjUo+LtXlPKWFeRmOIvl+JONpF9LJTeOdG13cBfccV9cBriyVxvtIN9qhlrFbkRhXKN7VmhwfADQbS/mYb4SdYzmfUX+Uj/m2G9E54AvPC2TutFoSoyce25Lj0XT+AKysNGRdqZzE/f0j2T/aRq0u86Xfl3nbOZJzHYeynkajlY9dj39IgE5PvtPt9+Q46OZVLcs5LJfH5/7/fYnDNhGnxpbjWg5c/Lc/cxkAcGtPjrtD5z+K6IGJfqw8z7xe+aGEf7OvXb6cjyuBXFua5lGpLp/XG+V8HCcSszCU66fqyZzShYumH8m+d0Zy/WlarKpke1Eo2+jS+Lgn24vouPnHLfDNe0W9WsrHlZLEPKAf/xI9OPDnX/3zN9/FBDzIDfxM0Fq/AOAFAKhXfR1kF5P5hCrLu8aTCT3RFp6u+GKtlCVgPFF8nkS0rtj4YZT1VquynoQmRzSSoMcj80JP+rLe5bVV2Scl6w3pSS9O5Qcq1nKTODo4zMdlmsiXtmSd9aWmse12W25q3c7kHwmXfvgq2c3y5u7EuXBP4LgGnqNH2dNMlW5Go1CONaUfzcijceF8DodyHM2lFn0uF0wSxTSWiyeg81atyoUexfTj2OIfXHpwoAfr8Xck5mHIPxj01MZP4FrOc2DcQGTb/Gtaqddl/XRTGS8nK27U5DjK9MNXCmQcBOMbA8/9+wXHdblR1tXKeN0BzSOXbiwxPfC7dI01l8wf5jSRY/TpGvfoJLYack7KdINLUj7/EnvaHAb0MKQ8iVHVl3gDQImefCNP5oui7UWhTIa9rsSv0+3LftDG+ceqVZObdLVs/jAHdHMuebIfgetMHDcLDzeT8CARvwHgGv19NfvMYrFh43p+YWN7zvAgN/DvAXhGKfWkUioA8OsAvj6b3bJ4iLBxPb+wsT1nuG8KRWsdK6X+BYA/BeAC+H2t9St3+45SCuUsraCMGAHxyopS1EpZ0kfmjwBgY3MtHy+3hIoo14U/jol2Yb6415NUqE/jzU15R6CI+WZ+bTQUegIAfEUpE6WZ9ZLsk4KMU36h6UqqFjx1RfY7IeqBXmK5hfd7myutfHx5bSMf94lCCWM57lZG8fzdq7cxDfcTVw2NKOO7I81poqSQAzr/EaWco8ikULwR7TvRKZWKpJMRURpJJMvzPNrcbMk66bx5vuxfyql5gQNPtayrP5A5ohzi8isy1/ilfODInPAdmcNMceiYaRJZDwBUiLMf0flg2sTzSzQOsn2b/AI43+Y9xlZrnceH31uEsczJkhweYqKCLm2uGOtiCobplKWy0Caa4lHyZcVEPWM4JA47lLjwPC8rmXetZVk/ABzSuxSPbn80pdAn6m//SJbne8W1y5fycY3e7zBNEnjmS8ySO5nfrhPdt1RnGknWOw0PxIFrrf8EwJ88yDosHj3YuJ5f2NieL9hKTAsLC4sFxQeuQmEEvodrm+M0vkupUIXetrK+Mk0lnahwrgagtSKKjDgRisMvkZ6aVAKViqSczSalg0PZtvlmn/Wp8iab03cASEOiRGJJdx1Hvt+gtMiQPpE6QpPkDkrWORjSm+9YUjsAqAayX9ohzTzJmhyibPb2tsf7EJt0wYNCA4iz/R+RGqNGnM+IaSFSkUQF5QSrUkKigtaXJSUPO5LW+kStLVO6vExqE07fRxFTNHJuHWWqnAwdsiuxTIki8mm+qIS133J8VaIBQ5K11ojuKeqRIzpux5XlylWh4liu1s84hnSKPv5+kWqN/mA8Ry9tihqqRRRKAjnuEam1qmXz1tJsSDwUndthl6S0dE84ovk8ousqobkb03kql4WGCkoyrjdMJQcrj27siNzz6ICkn32RcfpEdVQCif0SradE82uaugQAqkSJLJHiplbhe9tkbfs02CdwCwsLiwWFvYFbWFhYLCjmSqE4SqGcpaP+ElUfVSVF5arKflfSpaN221jXgKrd/BKJ6kllwG/9E6IrhoPJKWpIb597fUnhfFJTcIXYeMUy5BJcTql3D6WazqwWlnSJlSchVZUM6fOKaxYGKEqZOXVz6BxyAdQoX+/s+6CelAbHRAWNaD9KdJ65Gi4uVNg6tG9lLsoiddITV6SCsk/pbnNZUucaUSv9gZz/iNJxyo6hCoVi/LfmcniHjoPkEWUqL2xUZT+21kTZ9N5778lqSPXCdBsA9IZcuELLBbJeZkum2Q88KDzPw9rGWO21sd7KP79xezsfMxUQxVQYFZvXyTCUGHD1MxfMOTSHEyrY0UxvUdCqRJVUmkIvMW04iGS7AFCl+0OZaBrWe7j0/UurUhlcr2zKd2k9LDbhatJmw1TANKlqG1NsMDpED7aPpPp1GuwTuIWFhcWCwt7ALSwsLBYUc6VQ0iRFv5O9+S9L+jIgQb4mGsInTwk/MNNEdukLR0Q/UGEIm8lwpm6azNBvGCkMFFteUDpYdM+Dx6oZUi6UyTvCMLCj5dkIiNQsNVKtBJTOBY4ZrlZNllsjc6QDoptSObWIs2O9m1vb/cBxVG6o1CdTLpfOZ40oFI9frhcUMWzSVCMlUEAeFg0qfGhUyMNCCz3S7QrFxqoQVniU65J216qmykkTjeU6RHVBttc+kpObUiFPuS7r6nYkDW42qUiDaBa4ZlzZ3CpVMo/YNKkUCEWUFGm9GUE5DkqZuiPWPD9l26wAS+jaKwpiWKHCVCOPE6LJAipU8kn90SQ/oPKIKES63rhY57hnUiixK9uoV2WutchzZhTJMT3xuDgPuGS059D88InqW2K1TcGNkFUlPdqvoyOZq10qFooiU3U2CfYJ3MLCwmJBYW/gFhYWFgsKewO3sLCwWFDMlQOP0xTt7lj2NTykKkQinJtNku2sCg8W1ExjF038UsTcErlksfGNQ5Vv9YrwVMwlOi5VaLIhlCHrMsk9j/j0oCpj9rXWxGWVfNnG6mWpLvTI1zolKV6fuMNhoQrU8El2yEe7IfsximR81BkvP62jzf1CKYVSVmUW0v767EVOlbABcZdJoQJyY13iz0ZHrQZVIRKnfdQW/hAOVQjSmLnIKnnH18oyD4qVvhEZmDn0nqNHvtMOmTJpMjVLqRrVobntEadfJ4nZUddssBHQ+x7tClfOBmsRmVyl2XuEs1Tu3QvSNEWvPz7ecCT7yOfDNToxERdfmGMBSWD5OLjTVlCWc+iWqHqWZKAuxb7VomrsnvDeFdqn46H5fqBHXt+rLY6/8PdrS/L5JTKMc+n44ojlqJM7ig3oHgCYssBOh6StXJlM1dZKnS4PtU/gFhYWFgsKewO3sLCwWFDMlUJxXRe1zJQoINOi7rGkZ2GfqpI8STPKhfZELlEXZqohy1XJZ5m9dVhGl4441aaUmGgTUFrD9AYAjGLyiibZXJl6arIhTtiX5feoku9DW1LlxZ7jXDkYpWaKPCRZ2c7enmybZGkBmWHXs3PoTGhA/EDQUq1YJ6qkTlK5Jx8Xv/PO4UE+rhTke+trrXysyNhMUfqqiJbwKdVOpjBDPtFWhoSSpH9paMoZNck6uc1fnUyTOsdt2jbRG1RdWCNZWYt869ljPCQZLQAEPFfJX5qLRUdE8agTWmFKU+f7RZqmGGTzlaV8Ic35BlUX+jTvSmWT8ixRazNuUcc9NUFySEUt7dhnv3MorQdHx3J/eOaqVOeuroo3/t+/fd3YjzCRdW3vyrr6faE7Ni6R1zfTgBT7cCTHekzVk/v7MrePjoneQ4Eq4eOmecjGaRWqNJ0G+wRuYWFhsaCwN3ALCwuLBcVcKRQoBZVVLfFbeF+ReoMoBjZAalHVHGAqEQ46kk6mlJ712e+5IutqtET9kQwk3S2RgXiZ3oin5AfuVc3UUPmSag+HktJxdRynjxUy3trZ2c/H27vtfHx1Q7yXV1ckHXzrPbP/bDhiz2TZd79ClWFk8nPY2R3v88zNrDR0RhtwZR131a5QSr3y5NV8HBU6speI6wrJK7o7YFqJDZC4O7ikny5RR56SbbOH9IiUAG6hGrJOlF2PTM5iMqFq1mheBOQrT0qXhGivI6JcuFWaA5MaqzFdSHSRQ+3chqBO6I2xcifw38cs4SiFchYPbtfm+HLtchW04jZhxY7s5J2ekuIqTqhFoZJ1+VTxzMoh35XxzrZQILtEh1zZkm2VffN6PTgQuuPwSK6/KJK59g/+wc/J9ig2MdFeQ6o63dsV+vKgLUqTYiUlV5krqqoOSAnXqMn1Wimzl/lPMAn2CdzCwsJiQWFv4BYWFhYLirlSKArASY2CS6nh6rKkoj2iJKDJN3pEbexh+mfXqW0VF6mMSOmSkjKgQ2ZPmtpDuXVJWZpkKJVQYcYoNVUofAI1qWF6fU6RBdXqEv0l6d1tSgfjnqhyNjbET7pU8APvkQrl8FhSwJ0dSemgJa1eztuSzb6Qx88oixp1al9dXs7HPqXgfTo+FAp59vaI1iBlR0qxBHs6e1ToQp/7RK3EIRWhUNFFc4n2LzWVOQGtK0xknzodOc8uKRTq5GnPFM+IUu0RFZG4ZCJdNNKqVeV6GJI6wg9kuYQ99NPxtTBrasx1ndzTOiZDt4RUTF3ev5JQAbpwPqMuqbWI5qyT0qK2JOOEFGHs0++6so1KReiG928LHTIkoyg3MFuqcdvDfl+2wXHa25frZ5OKfbjl23FPjrvPqhq6n6BQiON7cr0zVVKneHOBolanP1/bJ3ALCwuLBcWpN3Cl1O8rpXaUUj+mz1aUUt9QSr2Z/X/5buuwePRg43p+YWN7cXAWCuUPAPx7AP+RPvsSgG9qrb+slPpS9vcXT1tRkiRoZ94VDhVHeCsyl9Y3RXUBbo00MH0FyuRjkXK6Rm+p05TSLRkaKVZKb75HqdA0g5R8mCNq8xaaVA66LMgn32j6Djenbh+2ZT8o/QzJR7vmSJrXPpD1DEzBBo6O5DudPqd3HVpK9u/S1rjYQY1Tsz/AjOLq+z6uXLk83hqlosvka8Mt3xIqXOkMTB8QbicXUAoa0LNGkxRJZfLI4QIhn7qRcxFKrSr+GYFPhRKxmfKnqcyLcoNUDeQtU6Fu4tyezfFJbUBpMLf4Y2+Yim9SY3WioTTRg+zt41LLOJUVl3lyTf0BZhDbNNUIMyqQfW00KWBSuk5iUl0ozzwmpipbVGAXkwLNYw9w2t7hoVAaTBO5RClu07VQc6kNYYHyBLVWLPtybmOiXt+7sZOPm2UpsPNJUeTRvSmJWSkk+92oyVwDgDrRJtzPgGmTxGg3NwM/cK31XwA4KHz8WQAvZuMXAfzaqVuyeKRg43p+YWN7cXC/LzE3tda3svFtAJvTFlRKPQ/geQColOYrO7e4Z9xXXEuBjesC4Eyx5bhWC1pui0cPD3zlaa21Umrq62+t9QsAXgCAVrOqVZa2xFTosk8tkJJUUvAtUmAEFVOQn1IKw2qTmNMcSlkVCfKXqLVViVK1al1SO59SXK3lNCUFw42EbCVD6oAdUld7ncp+JFRw06QLxHPlWJ99nGxmSa1z/aakdgBwTIUoDUrnR+y5QFTAcdauKSl4qkzCvcR1ZbmuNy5l1BfFdUiFVMxylcm2N/FNBQZ3+ObijxYd39oSpaLkhTIkdZFPhRJchJKQX4jjy7jdYdoJcBXTBBLj5TWhhZabkiJ3joQK4jZoDrVjq1HbrgYVAVU8c2777I1BERjQ5xxDN6MenEILr2m4W2yN67Ve1p3jcQwbDaKLKEiKCnl6VCRV98xbC/sExRQDnwq3+n1qf+ZRV3q61lM6bi76S4gq2boshWIbqyaN0Q/fzscVotPevH5btufItT+g65uVTWXizFaIKmRaJ4GpQgHFh912mYIZke9Sv0AbT8L9qlC2lVJb431SWwB2TlneYjFg43p+YWN7DnG/N/CvA/h8Nv48gK/NZncsHjJsXM8vbGzPIU6lUJRS/wnALwFYU0pdB/CvAHwZwFeUUl8A8C6Az51lY47joJyJ1jWlUUxvhFSwc2v7Zj4uBQU7WZdTXPl+RCldmbqslAL2R5DvNok2+blPfCwfr24KRVivt2S7hVO2vysPMn/78t/k4yXuLETd47nQiL0S+PPVJikdAkm7Lm3KfgDAgGxneyFRCZSGseVsrT7eJ9d1ZxpXrXVue5vQtj06phKl1CVSGyw1zRS33RcLTkWdX1qkNqmTquSQOnrrhG05haLgwprhlK7fIaXKAJAmct4fvyYp+YeekS7l6+Qzs31zOx/v7rXzcUzcUUKFaQ6pg0qumWqXScHhk6cLp/BDSq9Hkam0mFVstdaIs+tprSVKMe40w/a6R+RJ1C+oixRRh6wOa5FH0ZAUXsOOxKlckthHQ+rI05BtP3Xt4/n42afk2t1omfcN7s705rtS/NM8lHvFgObIMJTPazTvKk05hi2am+xK3CZl2fjfyFOHCqP6A1mOOz4dFWi9STj1Bq61/o0p//SZU9du8cjCxvX8wsb24sBWYlpYWFgsKOas/9JQ6UnRgfx2lMjjgZPJCjV3LUrV+H27YR1KY02KEVYVNIjSuLTeyseXL4kS5Mo16SDjUWPZ/dviWQIAmjxPHl+T1K25JMe0So16zca0km8llFKViTYpl2S8tmpa6rLF6o9fE88T/Z58fkA2tVcuj21q9cw7tyS5v0lCHYsq9EY+jGSbdaKz1ldMCiUB+VMQnTboClXSopS6WZGCnXcHEptwKNSR5g5MRLN0yddkaclUw2yuSYeXn/2Zn83Hzz33dD6ulmVd1y5L7N9645183D6W49lrC90Wk32pgtkNyCHqyQUrVOTcRhTDfpaapzOOq1LSHWhICpGUFB/cpLtElGW1RpVzAEIqnuMm5n1qllypyHW5sS6WytByrlaaco2uUgGgS8feqsu2L22Y+9Fckm0Molfy8XvvCwW2vb0rm74m20hJjaYdvn/RPKfiG7aUBoAuUTM9ok2Oqak1d/EZFIsGJ8A+gVtYWFgsKOwN3MLCwmJBMV87Wa3hZm/iPbJo5TTYU0JXcFcP7iwDAIrSTJ9SmIRE/9xcln+r1pfFb2V1RVIqj2wyI+qus30gqe/xPhUbABhRMcHqEhV5rFDRBhVBcMGBS2/RfaIVAioS8EH2l9QRBAA+9vRl2g9J1Znm8cmStZlRM+7Z6j3uCScprEeWotxpJB1IXLiR8XBYKKAhCiUmCsyjwpxGo5WPD/ZFSRCQT8btW+Kfsbwsy6esjKF5s1zo+HR5Q4qpnroqKpR6IOqWpZbEr+TSvKOClt5r7+XjsM/da4iGCAoBIT+Z/lCW6xBltn0oqfZRRuNxEcgs4LkuVrNCGL6u2MejQtdoqSLnzFUmfVBpsfUuKTiuSgPhtQ2ZzyvNVj6+dV2Kb+pU0LWxKstwBx9yAkaraRZJrchX8MmfeSIf374u84iYKoMi4u5DEV3HyiHaJDW3x9iZ0vC4S8oTpsHOQojZJ3ALCwuLBYW9gVtYWFgsKOZKofi+h2ub47fLITV1bVQkDSt7VHxDaVG9YE8Z+JNTlYiapPYpHekOhPrY3ZO3zKOQRfRUaOG+m4/fevt6Pl5dNT2ANpckpW40hQpavkRNm8kuNCRLUP6crUnZMjMgGkFp08NkpSVp/xOPS/q5syfHtHWNUrLsdHrem5glHOWgkhXnEFOCAaX/oG402zvtfHxl3VQJxFQJkZJyJaL439wWesQjmizqCXU0iGR+jIgOu0Yp+3MffjIfFz0zum1JqXevS/wTsgDutGXfj3pyTANaZp+a6N4mamtlVeiXSJuFPAGpr2LqRjOkgrVDou5OKJSzeNzcC1zPRSPrquQbSi/yBiLVUbstx1p0WqmQcqhGc/1jz304Hz/7kY/m45joJoeoQ52IYuPyhsTMpQId3r+lunmfcFKJzdOPreXjT35c1EVLRLGSaAkOUV0h2dJGTHmRKu2oa3qZtJk2YR8XWqZMVsIV6tSD29uYBPsEbmFhYbGgsDdwCwsLiwXFXCkURwEn7pFLVbJ0pfSYf1E8SosqgZkKBT6J6imN9og2qdQlVQsoBXzvhrwNfvMtsZH0qENLmdK8NjXhLW+bHg9PXZGCgysrT8m2yfvcow4tnIqC0s8yNXNm746QlAVxYqoVUkq9+6R86EeS3rW75PGRnedZp9qjKMb7GS3C3UW4Aw29qEeFqJ++aUGCMjW57ZPnRp/seWt0rtRIUtF1khisk01tZUlS5aeekAKta5dFNbHSMpvfJqsyP9NQ9uNgRxRJ4a6c/1fffCMfD0eshjnKxx3q3hRTCr5ksjdwSHnEypIjSruHVCQyyAt5MFNEcYxbu2MqaWtdClpG1BiY52pMn3uFLkMOWQhT5yBcWucYyDnf65KSSjHVKLRCzWjsTConsuotFxpGBzQPuXjusceFGn39HaFY+0MqqkrpnkPzXJEdcBgLTcKUyXg5uR5YrdUgqoQVPmFkFnhNgn0Ct7CwsFhQ2Bu4hYWFxYLC3sAtLCwsFhRzN7PSWYsvzxHeqEr8dkrVTg5xqOxBDAAj6vrOFZQOd612hCMLyAyrUmZfXuHaumQwo49le12SPI5SkbABQO9Y+LL/7mOPy3cOhPus1omro99M5uBKLrVEI8/jnW3Zv5s3ZVvj/SUzqzekWu2IjIP6dJ5OvJ2TZLYceBTFuH5rLHMKSC7Wos7wVeJEeyQLO+4XniHIMOjwsE3bIAkXmf80ieL86LMipfzQ0yIR7EeyDW6nt74i3OMaVeQCQOBLVW2vTcZDHYnNwYEcx0Ff5t37793Kxz7kuAche8ELv3n9uswVAKjVhSPu9Nv5+IgMpbokL+wPx+tKZ0yCpxoYZl7jt8n3vlaZzGeXyC+7FJjSSDavW16W90ZxKLLaQVfOQ6/bzsfcKa5alXck3BNAE7/sl1j7Z/LICVhuKDy0T+Wb2uHqV7onjLilHb2ToZ4CfGW5vnl7XVkRvr9NEkPmukcjOR9BoQfCJNgncAsLC4sFhb2BW1hYWCwo5kqhpGmKYUaFxNz2i6oTuYM7J4Rxahr1cLfvFhld1cgoJyIahKVdSSKpVxRLSsX+0G1K028fSlXeXkckiADw9Jak2ts7Qq+stGS9t26JnOhVMjc6ok7mzSa1rKK0jde5f2jKki4/JpTBTTLKOaDWVmFMrecyb+lkxqm26zpoNcd0hKLU8hKZDa2vSfo46ggVkCRmXHcP5JzsHwh9xIqqVoO6gE8xNVslo6krVN0GojRaZDIW+OazjEcp+col0flVlmVH2l2hUPYPZI4cdOn4aN6lIXWSJ3/6ojx065LM52MyKetQC70ujU9s5Wft866UA780psE8JXOKKctKSc5nlc5ztWzKfj3yhq+UhbrqkUf2NlUb/uDHUi1cLQm9xcZwZaqyZIM2lzSrvmve4kZEcuweyPW0S9dPRBJPrjQdDGiu0vbiLvnWD2XsFigQNZJ1DYmWBUkHmSLy/dNvz/YJ3MLCwmJBYW/gFhYWFguKOatQVJ4uDCknbveosovcY2Iyb0q16S/M73sPKG0pc9pBRlA6lZTVVZKSDck86YAoit1DSd+PQ0mJg7qpVqiTquH92/Kmfomy9nd3b+bjP/3G38p6j2S/SZCCgFpTKUpXi12qj+mtuFuh80bLJJRbRvH4nOkzOQ2fHYHv4dqlcbVjiaiH1WWhOlZbRENsSGWkjoQiAMwK2J29b+fjIaWfvPf1pmyj25PzuUyt2hpUsecHVAFMKT+3+QKAmKp7aw2qmiN/6cFl2fbTm7K9v3tNqjLfJ/qs5lD6T5WJ9RpTPMAokuthZVWUPOWAaEAl3z/pds8d12cBpQA/U48EVG3YJNVFg+LFrQp1wQ88pDizkdPbP5VK6BKZff3w1XfycWtDDMiWAlGw+DS3PVfODbd/qwZCTQJAfyBxfeU1UW7tH8q1tXsoaq9eLLEfER0Z03RxqTViSvPILRjwMe3L9AhXZXqGadjpz9f2CdzCwsJiQXHqDVwpdU0p9S2l1KtKqVeUUr+Vfb6ilPqGUurN7P/Lp63L4tGBjev5hI3rxcJZKJQYwL/UWr+slGoA+L5S6hsAfhPAN7XWX1ZKfQnAlwB88a4rSmLsZsoCToP79KY+IpWAQ2lb0WCY1Qu9EVELRLt49Kq4GpBRFaUvna58t9sXBYRHqoQglfWsrJvzvlyVdV2/LQUcy57sx7t7Qq2UqFXUBrfkonSeM+EuFeUMtJki7x+JaqbhyJt9h1IybgnlJuN9VeO0eGZxdZRCPXMpq3HHeFIiLFGX8iYZEkWhWaDleHKMH372iXz8yuviyd3pU7duZ4XGEoujI4nrxgql4E3ZD10iE6FCyh8ZXeOJlCLTpJVlmSO//ImP5OM//cvv5eNRQn7ztN9VMmgyW/8Bxx0paBkMW/l4bUMomxrt+3CYZvupgBnGFTqFzhQZ9YYoY8qk7GgRpVii6zXV5jGliVAou3uiNnlXbPcxHJEijFQ2N/aFklp1n8jHH77dysdLy7LtiAyo3qN2iADwox+9lY//v7/+u3zs0Zz0A2qBSFRvQs+7KYTqCGj5aCTzxi1QWlyYWCa1nEtFbmzg5zqnU2KnPoFrrW9prV/Oxh0ArwG4AuCzAF7MFnsRwK+dujWLRwY2rucTNq4XC/f0ElMp9QSATwL4DoBNrfXJI+dtAJtTvvM8gOcBoFaZ8ztTizPhQeNaKdu4Pop40LhWy6eXcls8XJz5ylNK1QF8FcBva62P+Y231lorVWyilP/bCwBeAICVpbI+eQnMtSQ9UoKMSG3il2UbHSr+AMZpe74cpSYln7pf0xvygHym93alOKbXk1S7QmlNjfy8K4mkZ1xIAACry5JCBrS97jG3TJL1llvyXVZWJL6k6ay4qa3KOpcS0zj6+FC2EVNBUqlGXhVl9mkYnxuHCgdmEde1VlUvZXRJs8F+zbIf7MeeEmWQkuICACJSFG2uk2/4SDrDX78uafE7793IxysNiVlKftk+0SM+KQFSTfSNWyjkofj3uqIkUcYlIzGrU/er/+GffDofD775nXx8q0OFHFREElQLRS+UOg+pFd2NG0LRXXlsKx+fdGTn2M0qrpWMSmyQx7afSvxKRFvViT6LI1PVU6rJPHaUfP+dd4ROiTUV4ZFfzw55g//VD2XOf+ZT0gYNFMtv/9Wr+fiNN4R6A4CjY9n2G2/J3PGogKZ1iQrFaN6yz0+SEtXLRUrUITBOTIXViLzT6zVRFxlxoxtj4M2okEcp5WM8Gf5Qa/3H2cfbSqmt7N+3AOxM+77Fowkb1/MJG9eLg7OoUBSA3wPwmtb6d+mfvg7g89n48wC+Nvvds/igYON6PmHjerFwFgrlHwH45wB+pJT6QfbZ7wD4MoCvKKW+AOBdAJ87bUWpVhjkdqFEgVB6VaccpEKfjyLTMyMkX4KIVCKaFPZ1UkHEtAz7G1TIT2FtXdptvXvjnXzcIDvYlQKF0uCiBuqNxSqIY7KOPOyI0iWmruurq6SmIMSUpvtV86206kpKpsn/QWtOyYkuOUm1x3/OLK6B7+HKpfU7PueX6F1S+7DtaVmbqbYLUi+Q/81qU6ZqvyXp/E//Xh4kj8hHpU30Um9A8a7IOjlddZRpf+qS3XEay7ZfflnS8+vXhdJ4+kmZOx+9LMUmH7smcXV3yQ62LvM8HZqKjZgK0C5dEYvifk/8VphqqlVOqDEAM4yr6zhoZfPbpXlYDqaoJozpacaVbWe5FVqtKlTCzgF3dJf4/YTO8+0bpGbZFRqqTjTsX3z7h/n4vfdM7yIvICqoJlTJrW2hVasrojRz6T2AR74vMdGqDguYmJ4sPB9X6H7kkNW1oVYh6u8s9MipN3Ct9bdhWLcY+MwZtmHxCMLG9XzCxvViwVZiWlhYWCwo5qr/Uo4Lp5qlLZRqpGRB2h9Kmlkh2eHaiqnA6B5LShdSChpSMU6PimBAb4DLlBaVS5LaOY4s/9iV5sRlygXbUTeS79x+X9I+n3wQQkqJ2T01DmVde9tSvOEGRC9VyBshMMPVoi7eLPpXVGzCe+tlnY+48/XsMD7GwYAseY8kxU1JVeBQIUijZCow1sh3pGx0SZHju0a+I63gmXy83JLU99aOzIOtfYlRibveD8iet1A00elKOv/mG+/n4z//1t/k44O2rPf6z0gKfpk6r3xoVdL0iFLlvZGcg+O2aRMcUaelYSgKjGpVzkejIvOrsTQ+bv8MqoV7geMo1LNrpUnUJtWoISFFEVs264JlsSLL3DgilRWpMeJtuX7a5E3S78mcKq8IhfmdH7+ej5+9KnPCpeukvmJSeysbG/l4QEU3A7oHdciOuRaQFw15FMXk2RRR0REXGBYvswrdE2hzMMg7Om2ee/p1ap/ALSwsLBYU9gZuYWFhsaCYK4USxQm298YpIb955ezVoyakDqtFAlP9sUx+raUNKfgI/FY+DqnTDyhlWaLiliiUtK1PKVWJaJZ6hd84m54Z3JiYG6Kk9B6pVpP9U1WiPVJZr09+CCyIiLQcQ6JMJY4vq0U8Ys8GUuWQJeUoOz6dmgqBB0UUxdjeHqtBOtTJKKJUmbsA8bFGo4Kqh851hW02yaazRta5rbpQFCNqGvzTG2IJmpJC5/2bZF9KnjhvvUGmHACOqZvTjZtCb71LqobGSku+/74cN1NmlyuS2j+7Jel8oy/x2isV1EWxxLxKXjtd6l7DNFQ5owycGdvJAjr3FvJJRcJdl4bUhPyAYl8udOSpVCXOR8dCj/g+0RKkIOt25FhZWabo2n3lpxKzrepTsk7adtAwn1FHVETkVeWY1i8L/Xb7psS4psljiC9MqoOKqbCJbwLcuBoASr7Ep8w+T9SdzKFCRPcMVKd9ArewsLBYUNgbuIWFhcWCYq4UiucqrGYFDKyacGjsuvLW9252in3yMAF326ECjHKFxfLyeaveysfJiApxyAKTsyWP0iUnKRSeKFLTUKo3CqlpM9EsRupLdEEpELog5hSV3sDrwltpbvTs0OtrfhPeH0gqetIUN4lNKuZBkSQJDg7HNENkrJuLiDhGcg6WqUExAJQqQjH5ZfnOiBRFitJ5h1QsI6bDBkJDvP5TKQR546eynq11USS887ZQKwDw9k/kO3VqOP3Uc8/l44TmRZiKEuGA3G51KttrEg3YIE4v8kxazg3k+PgcVCqtfOx5k700Zgmtdd6ZqN0RpYxPVrgDKrA7pk44ARW9AECpK3/3aE4npA7TRJnSZYWAaEDuZLNLRXGHR7LtGhnT7NGcAADHp2uUvEoqS1RYdZM6ZY1k3N4XpdESdQlyHeEyw74cWzQyvVBYne8RVcLX42SHmumwT+AWFhYWCwp7A7ewsLBYUMyVQnEclSs6OFPQ9ObWoVS7RCqECnWsAQBteAbI2PNkXS51d4GmwhpSR4AKDFLqeMPFLoosJUfU4BgAXDoSl1L7IdEYMa2XFSAxLeNG1I2EUlHu1lJo3ALueTrZ/cRU++SU1Iwz7lTrvGGyInqkRJRBndQ3taqkuNWqqUIBUV3sfxPGnF5TEQxRK71QaAxWggxI1ZHEsswokZRY++Z+HJN/SnOD6C2Xu9nSvKUJvXMgxTd7FIyr1I2JFSNegdIKyNa4TJ2kNHVXSpScg0F/fEypnq26SGuNUTg+dzHFghuP98judkDnVvfN64SLjAZEM9QC6qBFhVt0G8ClS0J1eXRNL63K510uHIplPIqIzwKQEAVaJgvZISnWmssyP+nSR5ktdSmuISYrrGq0PAAEgcTPuARNq1/cC+wTuIWFhcWCwt7ALSwsLBYU9gZuYWFhsaCYbzNDTV7HhvSJvLpJitfrtWkZHgMBGcNUqP1VUGK+WXitPlW++cQYM6XZG4g0sUat0pabMvYKVYxcLcrexiaTpSeOk5TlhdSlmuSCinzMVYEfM/yCpvDajuHX7Nxt0fuGo5y8ZV2DuO4qdfrmeHOl6LDg855qfqcgY674qzepIzvJSXsD4TtDalfHra3odQQiqmwMlPmOZXlDDKlCkrq5RJUPqXI38Kl1XSzEaURSz15DNt4qy4rKhYq7CnGn5syhqlp6J7DTbgMA4kKV8INCQTqpJzTvO3SeOyMydaK9jQu8vtbUOo/2s1qidxVDam9I7QlZoumShFEzUc6maEciLzw6ljEABI6c235P5kVjVT5f3ZCK2RJZTcVs4jWSfeqRnJEvUX7XM/43+UeWfjokjUyporpoCDYJ9gncwsLCYkFhb+AWFhYWC4q5UihpqnPv7pRSMk4tOAUZDgc0NuVADqXh9Rp1lG7JWJGJERvlMIkQkEyLOQk2qYpp7PuGey+SkNJz2nn28uX0k3Ni/pzPB0spHfqNTXSBbqA0jM2zlEGbsIzwhEKZLYnieT42VzdPNp5/rnn/6PgSSqH7AzOuNW7rTfLQ2DBQpko5Op+aymf7Ia2XKnp9kqZqMheKCuxDpS5U0MG+yAKHEaXzJOsbUOWnJtqrWpJKU4e8yGOKgeOZxk9aE4VGfcrYN9ytCF0XZC3OZl2RmaQa3Uzy1yef9yFNww7JXzV1Z+/3zbjynjVIvqdcNnGTYK6tt2Qb5NteIQMqlyjSbWqJ5pHMdHPd9AMfDchTnajRCvnQJ3TfCEh2qOha7/eENulTDwJulcbSWcCUefK14ZBWkSmUs8hC7RO4hYWFxYLC3sAtLCwsFhRzpVA0tEFHnAaH3s47hTf1THGwcoWpEp9SZDbM4jfkTFe43PKIKRROo0rFdJf2iagBrso08nODLiJagSgG9gE+a1rMyZaLycedr3fWMhQF6Gzd3HGez8eIvJGZNulRVR4AuEQZcNWdoiNconjEdD7ZWEnzOSQDMS6tc8t0ngomZT6pR2qJKCIOiU5ZWhN6hNUza2vSlb61JEZYTIGFkShgVGHbYVeqGBvUcow7uydklFQrj9P/4jXyoEjTFN2MOkmJFuK52idqs9wgSik06b4aUT6DARm9VWSO1BuyDF/T1Zp4qldp+aor4zCic0glyssNsxUjloW+KVP1bapkXV3iiAZ8ryAaj4u8A5dVR2SWFZlmVlNb3nE7RI7hGXz77RO4hYWFxYLi1Bu4UqqslPquUuqHSqlXlFL/Ovv8SaXUd5RSbyml/rNSKjhtXRaPDmxczydsXC8WzkKhhAB+WWvdVUr5AL6tlPp/APwvAP6t1vqPlFL/J4AvAPgPs9y5u1EoI3oDzQUxXMzAnrvsLxwby5OhFKXaCaX8Ea2zKK1nb2qmDDjdVfQtzWvQk4t6fNoPLsQp0ilGCzf2GqbxJDOr7JOZxVVrjSijnNgPnJULXGTDLbWOyGcaMKmIVWpZxkoj3RX6ISEaik2uWEWSkrGVSxQKz49K3byfDSD7VY3JzCqW4/AoTo1V2V6Zqn24IIXb3rEXdVygUBz6c0AGXZWy7MdxR85hkKkdZh5XCPs3on1kRpCLjpZXhK7o90wVyqAnx6GIGugGQhdVA7lIqXMaeiOJxdKSFFgFrNwiatNNSNVRKIaJqP2Z40hsmNYbDmRfuVaoTNeST/ejElEjI1KqhFTsA5hGV9OKepShSJkBhaLHONHJ+Nl/GsAvA/i/ss9fBPBrp27N4pGBjev5hI3rxcKZOHCllKuU+gGAHQDfAPATAG2t87cy1wFcmfLd55VSLymlXhqNZlvqa/FgmFVch4UXVhYPF7OKa2iv10ceZ1Kh6HGvo08opVoA/m8AHznrBrTWLwB4AQCWmpV7Mru9G4XCf/Nb8cQo2CEqgr5uKFJIbcApcURv15mWKaa7rBhhr2H2/uXtFVO6ScdQptTeOAdJgUIhOoa9zDFFueLeQcHMJq4rzao+zjqSM1XCaT7TJiPyFikmiS6lowkV5rhUBOOSdwTIiyYi5RArfPxAlueudByvqLAjIVFrARUXLQVCGdTJ60VTejwcSuock4cLqxDKVATUK3iYaKJ8RvT9Es2pMhUkjU4UKVlaPrPrtVHSvdF4nSlxCZquEy6MYqrw0qaobwCgeyTHkVAxVFChTu3Uhq1B44B88FkpVqZz7ilW6EgwucAKMNuXxWywz3QMXSZ8uWriYT3iuQKiPVRIbfYKFEqjJq3X7rWoZxruSYWitW4D+BaAXwDQUip3lb8K4Ma9rMvi0YGN6/mEjev5x1lUKOvZLzmUUhUAvwLgNYwnxj/LFvs8gK99QPto8QHAxvV8wsb1YkGd1sJHKfVxjF96uBjf8L+itf7flFJPAfgjACsA/hbA/6QNz8iJ69oF0AOwd7flzinW8Ogc9+MAPoPZxvVdPFrHOC88Ssds4zo7PGrH/LjWer344ak38FlDKfWS1vpTc93oI4CLcNwX4RiLuAjHfBGOsYhFOWZbiWlhYWGxoLA3cAsLC4sFxcO4gb/wELb5KOAiHPdFOMYiLsIxX4RjLGIhjnnuHLiFhYWFxWxgKRQLCwuLBYW9gVtYWFgsKOZ6A1dK/apS6vXM0vJL89z2vKCUuqaU+pZS6tXMzvO3ss9XlFLfUEq9mf1/+bR1LQouQlyBixdbG9dHP65z48CVUi6ANzCuDLsO4HsAfkNr/epcdmBOUEptAdjSWr+slGoA+D7Gzm+/CeBAa/3l7GJY1lp/8eHt6WxwUeIKXKzY2rguRlzn+QT+aQBvaa3f1lqPMK4K++wctz8XaK1vaa1fzsYdjMuYr2B8rC9mi50nO88LEVfgwsXWxnUB4jrPG/gVAO/T31MtLc8LlFJPAPgkgO8A2NRa38r+6TaAzYe1XzPGhYsrcCFia+O6AHG1LzE/ICil6gC+CuC3tdZG2xk95q2sfnNBYWN7PrGIcZ3nDfwGgGv097m1tMxaWX0VwB9qrf84+3g749pOOLedh7V/M8aFiStwoWJr47oAcZ3nDfx7AJ5R4+aqAYBfB/D1OW5/LlDjBne/B+A1rfXv0j99HWMbT+B82XleiLgCFy62Nq4LENe5VmIqpf4pgH+HsdXl72ut/83cNj4nKKV+EcBfAvgRpOHM72DMqX0FwGMYW3R+Tmt98FB2csa4CHEFLl5sbVwf/bjaUnoLCwuLBYV9iWlhYWGxoLA3cAsLC4sFxQPdwC9Kqe1Fg43r+YWN7fnCfXPg91Nq6zhKux/EM7+ibajJG1DK+GviMtqQecoyaZJM3bRDy/FaEzqvyqFlaEccxzl1nNC2dZqCMS10U2OabTqOUySpnngS7ieupcDTtaqfbVw+T2k/oojOIcXIMQODJInzsUeTRdF3oliW4VMy7bj5nHMsPM/Lx0khxvx3msp6eXbx1lL6y+X9Nvfk1H0dby+d+m93Q5IC6ZS4AvceWyOu94rC4U2bCxxXPll8zfmeO3ETUcwxok3f5dze61xIUrr+ErqmaZ3T5oHnTt7vIoz7Dl8/dFBxgr1JPTG94gf3gLzUFgCUUieltlMvdNcBWs0H2OK09dIFUy6V8zEHy3VcGsvyfPITTbOAvnvc6cjHhXt5xZEJ7lNYu+EwHzt0EZRKgXy3LPtaq9fzcb0m43b7MB+HPVknACSx7K8RbLrBGT9u2YS6vtvFXXDPca1VffzKLz413g+6eEajUT6+fVvOIVQlHwYlcwp2jvfz8cZSIx+7rpy3W3vtfNwbyrHGIxnzjcH3ZRt+WWKxsrYq2+3S/gE4PpI6jn5/IPtLp5afRrqJ9AdeXpb4KZpgLu1TPOUmAQD9gWzvXh6w2senLnJPsa1VffzKP/7QmbfPKP4I8Vy4cVN21PcpxjQV+l2Z95vLS7JeLefw9v6RLM/zgH4gig90xlyoyFxYXVvLx0dHst7jjuzroCdxKSVyYSX0Q9BNZR6stGQeAOZN3zHmAj+QyHnr9/v5eOdAv4sJeJDn4TOV2iqlnldKvaSUeim1gpdFwD3HNRxNz1AsHimcGlsb18XCgzyBnwla6xeQtSfyPaW97OmXn9TSB5Qy+h6leWoKXTHl8+LTzwnCUH5JU3rSLTmBsVxAv6TDSJ4ylE9P/JSecaoWBLKuMj2ND+gJLBpFE/ejiCIFkO+HkYWMx2oKhXQv4LiutCoTA8hb4f242w+5nkLBeObKJn/Z+HjaRjSNKCUurnPKJvRZqqnvdTrfZdPzfuY5S1zPuKapf6ZMRfhMKzG1MplqjKOUlj99L6ZNleI2FGflmrcxmd7g7xq7cdYzNmXn9ZTxNDzIE/iFKrW9QLBxPb+wsT1neJAb+IUptb1gsHE9v7CxPWe4bwpFax0rpf4FgD+FlNq+crfvOEqhlFEL/GY/SSfTKXejWTx6M+3S295pLwrMFJ5SJD4mGg+GQqF4StYfFF6KJPTSISI6ximX5Pu0f4HPLzSFNuF9HQyFQkmIhyymVLxtI9XjF5eUGrpuRqHcJa28n7gypqkujNOWnC3P5GMy0t2z7szEdU4e33WdfMJ4n3gR3saUz8+MD4hDedDY3tu2Cn/TmK93Q3lC85lPAYsOmPLke8JUOuWuHAovNlkhZM6XyfPRpOLutrkHpy6LeCAOXGv9JwD+ZEb7YvGIwMb1/MLG9nzBVmJaWFhYLCg+cBUKw3UdLDXG2shRJOqKESktmBYwaJZCjsRvjTn18knlYRSJMIUypVBiSLQJaBHPmU6h9CPRZivSmDJtwtrTqcoTgzYhXWgyme4BgDSeojzhoiCXihU+kCqqu2BKinpWWmAqhcLrnfrlM22AVjSN/Jm+2qnLcAp+FsXMHfv6MHUoHxCYDp0iQzLjLZ87dC2lpLM+i0b+bqSFQYNMoSOnFdmYFApRP869X2MPYihon8AtLCwsFhT2Bm5hYWGxoJgrheL5HjY3x+X8TFcMh0JDcMktUyvsfwHAkDVw2XRMtAJ7JTjsp8D0C6UvQyreCRTRHuzDkZj7EVNe5QRcsDNFeUK0ibHtwWQKhVH0ZNGYTAE4VNrr0ric7R//+8wxjTEwGJTpKaOhCppCoZjczOnrmfYPhnqguNxUnuYu35kRPsDozA8FWsCgnqbQYdpQofAcnkyX3m17Ezdwl38zFS1T1C3TVCi0TNHbx9wer2vyIvdKp9gncAsLC4sFhb2BW1hYWCwo5kqhOFAIvPFvhl+v5p836rV8zBQIUxpcfAMAdXLv63R7+bhNLnIh0TRJKrQEr4oTllpJim8UsRg+/c6x6xxwN+WJ0CaG8oSKd3o9cQVMosn2pZzmT/M7AabTJmzFWcoolDt8P+YAZ0oxzB2YWjiBieN7x+RUuXhOTMJmiu+FYSU8xSr2LLYt9/SPi4E7ImywfZOfG6eqUKZQnmfyQrnLvzkGDTLN/2Ty2DGoH9pvd/oWpzEoppeKpVAsLCwsLgTsDdzCwsJiQWFv4BYWFhYLirly4ICGkzE+09qX+R7zisIdFyucSsQrq2U5jEZTOnwcHlA3mwFXcAnfVW8Kl85yv8Md6QzTPpRuLVqZHJUTEO/N0sFA1lUuSwca7pZjcPRTpIPJXTzAmYhTE0yrAJEOAkCjOt4P9z6qxc6OyaZTZ/ZPNqhyluydhRg+Xaelp5CPTuGc8Dky6HHNVb+yTInbyTBPS/xobPC3VHFceLdheNffU6zurxXbPMAV1mqKRJMlgnxjMjpoTZPfTdvwXV6YGB7g6eR3I9Pn6uT1TmvpeOd3Tq9GPQvsE7iFhYXFgsLewC0sLCwWFPOlUJTKU9WphjFsdEPSvyKVEFJhZZUkhaVApIAurat5VaiVVFPnc5+rvCSVDbvS2HQ4EjqkWTa7MiuHKjZ9oXU82o9KRaSD7basN4lI2micAjL+4fS6kLUZ0kGiTQKicipE5TRq4/1wZ12JqZHHjddcZeqoSftXooUKB1UmKeflK1v5uF4V2SnomPYPRTbapq6+y8vL9PlBPuYWdQGd5xLFCADcWKStChKDfiy0V2tF9mmJznn7SOShHD9Ojj3DdM3YNBTrXJ2zGDapbD0zNr7SAE5amN0jg1UJzPMJagJcqxENRa0HqQjbaJN4JhnhFOqhuNuGPFHxeqeYWU25T00b351COX1/LYViYWFhcUFgb+AWFhYWC4q5UiijKMa7t8fKkEpJUqRaRaiHyhTv7LSQHo6UpKbdnqTOaSgpeK0k3y9xhRSlOd2hfDegKskPPfN4Pn4ilm2HQ1MtEg0mm2eVKkIfdLr9fDzoiKIlYYMuMs8yfL6N3TYTQqNdGv1biZQn9ZocU5jlqMX2dA8KBQU/239Wi9TKQkMQC4FK1WiYZayrVpX9XV1bzcdxLGZftRrNncZGPi6X5XxsrK/n4+WmrLNzLPRGqyH75xVVTvT38qosd7Anc2plpSXLV2ldaicfH/ekSrhCNBCbnbHfPAAcHwnNlhpKHMEkJcd2u4tZwlEOan7lzo0TplEMtUrdWE4RK3RpU+anpvgHnnz/yiWJX5PmcERxqVEsd7ZFNcaqrwGZxAFARGovPus+rdenimrjkpuiTuHx3YzizuLyfjejt0mwT+AWFhYWCwp7A7ewsLBYUMyVQtEARplaYdSXt/lHPfED9ygFWV1Zyse1hvlWu0ZvrzWpOXzKQCrUQkzF8oq7N5K0th8KvTEir+8VUjG49Ia6UpP0DAC8hlA2bFUccss4SuNWl0iZYRh0cbGCjA9JZZEW8liDNqHzUS1Lmt+g/d3e2wMAJMlsCz4UAO9kn7k4hmiTMhVJVSrsw2xOwXgk8WgfteX7VSqYksMzlENrK6IQIqEKLm0JFbO6TCqiESljiK4b75eco2Eq8dtYlznJfvWuIxt88rFr+fjW7m4+bq2uyHcjmY9OocUYF4RNbyt35/jdW3IdzQI6TTHKCuDUFDcxY0ayv7ZnUo0c/1Jdxmkqx+rSNRAQDRgmcv6DEtEsW3I+iXlFsyEx6hwLZQkA7UOhp04K2wCgXCYjOzLXc13Z3v5Q5mazRVStL8uzsV5KMQaAIV133CYu5h4DNBdcdTrpYp/ALSwsLBYUp97AlVK/r5TaUUr9mD5bUUp9Qyn1Zvb/5butw+LRg43r+YWN7cXBWSiUPwDw7wH8R/rsSwC+qbX+slLqS9nfXzxtRb7rYmt1nMKGRHvcvC1v7UPyxU4ohVh3zTf1FZ/UDi4Vq5TkkGrUvoy9Sfp7kpJpUgDElBIf77fzcZWKS1LH9K1wyQtlOJAUK6Z0aW1N3siv+VxQJOvRWo7nkIp9ghK1SnPNcNVrkrpF1JaO1TfdPtNFYbbdFJhhXLXWGA1Hd3w+GBA1VprsLaJUgbqgdHJACp8BqQfqRAtFoWyDFQ0dKsQqEefCvus6lBi5jlmg5VHK7ybs40Ht9WL215H11qutfLzaknS+XCf6rUft9I5N9QgrtJzCvJ+Ek9NJHip/gBnFNs3WaXqF0Dmkz5nOOmy3jfVUiGr0aqTA8eQaHZH///6BzKdKTeY9+8/EicR+eUkUPqWSrL/ZEDULAKwsyfWnElmXR9dWjc7/spZrrFWXY6hS4VdQkW2/886NfNwhBRJQKPSjQi6dyud9uoeY6qTJtOepT+Ba678AcFD4+LMAXszGLwL4tdPWY/Fowcb1/MLG9uLgfl9ibmqtb2Xj2wA2py2olHoewPMAUC7Nt3Lf4p5xX3Gt2rguAs4UWyOuZX/SIhaPEB74ytNaa6WmmzBorV8A8AIALDcreqky3mREHiRqvZWPY0rJQkqbB8dmOuKVJKUoL0mas7Um4yq9Td4lNQf7XjQ5XaVt96mYoktpfVAyjDwQJUK7sA1oouXzmEweXFJduB6ffvluoybbWGpJesb+EACQcMEPvdlfX5G383sHchztTO2jlPlmfhLuJa6rzapW+bHIcRwdSHGF4nqKnsRueWXNWG+VCnkSUmCM6FhHXIxB5zwmGVDCKiBO/2kZtg/uh+b8SodMr8g2uGhsQPTNckVS85Ba5bE/ySF5sqREy6Q0hwCzNZ9zT/3VzlYEcrfYGnFdqml44/Se5zYXq7A6he1gO0OhRQGgR/PQH8jxbV0SepFEIYip8qtHVFyNFFZMGypXPj86kvNcMo13oKkoD3Taay15JVAiHxc/keVbrcv5eETXtAOZR888+WQ+fv/WTWPbdaLTOP5Mg+zvyTXD1tO4fYhJuF8VyrZSagsAsv/vnLK8xWLAxvX8wsb2HOJ+b+BfB/D5bPx5AF+bze5YPGTYuJ5f2NieQ5xKoSil/hOAXwKwppS6DuBfAfgygK8opb4A4F0AnzvTxlwHqydv4ult/uZqKx9rsmc97sgb2b0d853MWkOohVaDUuG+0ANHfbKEjSXVq5Dnwhq9QQ58Sbf6S5LajahLULcz3W8iCiUn04Z4gKgASr3SofAKrHpQnApHlKIqszgiILWJo+T7IaXk1Zqk9q1Wa7wt92CmcYVS0LkSSPbdp3PLCoXBQOiKJDQz+WqVPGGooCXsyrGzn8US+WQEvoyHFIs+qQFcOmcJ7ZPnmc8y3CGpf0T0CqXwnGpXaNsBKRrCkCyDaXvcvbxcMpU42uh+fg8USrbsrGIbxTFu74+Lv0zfHRnz56zkqLeExgPMGERU4JKMiAql88CkUo/USDGpiNiuOElJnUL0ZTQy1VFMHDGF1um18zEfE7vDdiO5Xvk6bpTkGluqiZopJC8fAGisCk3T78m9bUjj9XX5TsoytTcnUyin3sC11r8x5Z8+c9p3LR5d2LieX9jYXhzYSkwLCwuLBcVc9V++52JzbZxGcENRn94UK0fSqL1A0gYvNlOhMpmeLLeE7jjx+wAA7hPsk+qlSSqPEvlcrjRFtXKzTSl0j5oax6Y9ZYlognq9lY/DnuzvKJSx0RGEizQot4soVXPc6Sk0F8qwL4fSkhpGlKI2GpVsnbP93Y6SGHvtcaw4/a9Rp6QyKW6i0XR73lIgfyvj/Mj3q1Sg5dGxlAJJqRUpA1JSHnjkseGS/eyQFA0AsLwk6W5ICgePFEx9SqOX6pI6+0r2u0vLVEoyV0ZEp0ShObeH1OyaJ8y0TjEnmfasPW6gNNysIxB3sRpFpKChNN8nSqJKVr0AUEnk75T4keFAjr1Gcz2hoiyfin1INGZ4/ni+xN4jGjYc0bmEadeqaO5w56Q+eZ7EVKAWEc3G6iflkW8OKZCKl9nBodybEqL4EtpGQJ4svnf6dWqfwC0sLCwWFPYGbmFhYbGgmK+drNb5G+i1NSngYBtJ9lbYaMnb3aDwU/Pmm2/m44MDEu6XJU2tVqnZMeUzW2vSxSWmN+Lv3RRp7O6R0CbVmqRqa0umZwbbgg6OhfKJQkmxPI8oG0r/y1S5oCmvHEWSJ3b7ks71B2bBh6YiD4c9RchXxSE7TD9T39ylPue+oNMUw3CQrVs+b/nkA0J2rTF1KyoHptdHjboiHVF6HRPVQgwRHFeWj6nzESuCQOk/p7gVUu5gZJ7bKvmtPPmhx2Sfjtv5+LBHqhLyyOFCrMqxjA/I8ySkQpX9XVknYHqC+AWb2xMYnVuyYTxjCsVzXawsj2No0DfsfzJFMVO8XutkBx31pRjqsctSENqjuX7clrFDFIVPyhPNzBNdP04q++E75i3OJ5VTTJ4uManU1lpyjXf2ZF8TsmymywobS6Ic2Se7Wq3NeKTkZ+LS/cglXshkTE+Pp30Ct7CwsFhQ2Bu4hYWFxYJirhRKHCfYP2gDMG09V2rU7JXUItyctD8wvSpuURNT7mCzukxNT6nQouzI+PYNsXw8aEuKtE9ChPVNoVkqlHZpmKk2d+zYWBflAjmNYtiVFSekMEjIOyIlfwlN1QOeL+dGJYWiBFLy1EkdwR2KuHlubzCmhfSMmxp7npt3uuGmxi7Y70HGS2QtqhNThaIo7Qyoy006Evph1JfzUCIPEpeokoCoKofUCtojVUEkaXrFM6mKgx2ZX+uctlMHJ7aZHQz5c7KZjWkZmgc9UjOxhej4SxKfeknUG2pKJ5yTzx1nts9jjuuh3ljOdkmOY5oahot1OoWCtyubYuu6RNavvQ5RFEx90DXQ7wktUVkmPxGi1Xxqcl5mi2jfnOspdfepkmrmkOitS1tbst8NmV+7x+SDQ9teXpEYsdVuZ9+0nvap0Cml5UbkeZLS/cS9S4PkE9gncAsLC4sFhb2BW1hYWCwo5kqhpFojzNQBTpVSZ0o5w4TfDEu6+9P3bxvrUqQ+4PTXp1Q9GkjqlZSE+uiSB8lem+gNX1Qr/NvW6cjyKUwaY6kl6ZNH++ESreNVaFymAiHyyYgpKY5TUk1QQ+QoMn9vy+XJjZ1B53BARQJHmadHEs9WreA4LhonhSyU5h8eiionJjvYrTXxyQgLBTQxFbg4pCDw6a29R2nm8bHEeInULVXqVqSpG5NP3in7uzInfPIyAUz1zjHF/9kPfTgfv/zqG3IcAzn/JYplQCqbgNNjKl6rl4s2wbKuWp0oNEzGySn37lL0dT9I0xTH/RML4skWspzlR6R+GsYmdTEge9/LV6/kY/YEUfQdl/1umnJdHpJFcZmK/pY3qMExFVI5FfOa6XapOJA6edXKck3s3drOx1sr1MGH6DOHCsuO2rK8TmTbo4FJDx7R/azblznVIWqmQnTdWZyE7RO4hYWFxYLC3sAtLCwsFhT2Bm5hYWGxoJivmZXrYnN5LEuqlbk1ORnlkDSrfSQ8UVBifhpQED7q8StSzeUr4dOfuibVnleviCywR9zU8Efv5uO9TOIIAJ0j4crKFZKhKZM/HoWyj4Met34iIyfiQaOQOncT9+XTNvojWWe3K8fj+aZBkEftnuoVMrAiDvDoUI4pjd2Tg8BMoRROWm9xgWBCzwc9qoyMaaHlFZFeAqa0kqVaK0rkYyWfvbqlYjYiA6TUFe6Y26BVyZiqx3LEwOSh01Qujb1dqfRdo67mLvGgXJ3Ine4Sep9RL8vyl65Re67QNEgbUEWi0VaLoCb4hJ9FdnZvUPJex9jeZBmqyxXH1QL3TIZwzTq9v6oL5xuRtFiR+ZnnyDk4pqprTZ/HjsybkALgxeZ+DEOqhqSK5CCQuA478l6lTv7ePfKuP9qXOdWJZW4HZKqlCnLdIXuik8kWv+daasr2Em0rMS0sLCzOLewN3MLCwmJBMVcKxfNcrK+fVHZJChGRxCillHFAUpsb77xnrGuVWp5trEhKdvmSVHz9wqc+OnE/dg/Jf7cuKTzTNyGZVLWpQ31/ZFaYOVRdNaTWT8dcYVYjL+whtV3jFJCq0NjwKgipspTbdgMoUau3mMyYuCIvGUk6vpq1ufJm7AeuNTAcJXd87pOxGPstH3cknS4VzKxc8gDXVF3Hy/kkx2uR4Zly5PN2V2I2IPqG5W0pS75Ck6rokbwtJenZjfflO165JcfUlmV2R0QXkC/2ta1L+XhjXWRvva7MFQDoUTVyQnSAIeVz7pTy+a55Lh8UWqcYDU/S/skyQhjyQtlv9mwHAJcrFDvtfByQWVdClCDL9Hi9XO3Mhl6HFO+QPPB90w4cI1KtuiRTTSKm5eQa393ezccR90kkii0l2o97G0CbbdCubIrpFbdqay/JHOFr/ywF0/YJ3MLCwmJBYW/gFhYWFguKufuBD6NxDpPETJuQUQ51l/YpNbnUNBUYlzdElfDx567m4w8/I2/3N9dlmYjaQClHtr2yLG99icXAiFLXg0NZ5vaueIYDwLMf/ng+5mrKdkfSp6NDqR7b35a2SkfsD037l1BYKtWW7DdMuKSI6XHndUott7ZEfeNm5j3uGVo13SsmqSJ8T5QdjpFakukRpb4AEPjUmZxUCQFVuZZpmWpD0tpNUiPFKbU1O6bt9SQWh3tCkxyRmgUAelThuU5e1mQJjRu3bsryXap4JcXFpUty/jmFDojGqq60jG17RAVNVwzdmV+7M6bGHACV7HhZTcOt24w2brT9Wq1lrMuDxKxGiiv2E0/SycddIZqlRbF45iNP52PuzLdzW66xvYNbxn7s78o11yX/+GOiTUpUbd2leZC4cg86PpQY70YyrlVlnq+vmF3pNy6LSVaXaLMWK9BIkaKnqH0Yp0ZcKXVNKfUtpdSrSqlXlFK/lX2+opT6hlLqzez/y6ety+LRgY3r+YSN68XCWX6yYwD/Umv9UQA/D+B/Vkp9FMCXAHxTa/0MgG9mf1ssDmxczydsXC8QTqVQtNa3ANzKxh2l1GsArgD4LIBfyhZ7EcB/BfDFu60r1Rr9TC3h0mtYboOmyARqbVVUF9c25Q0+AFzdEhXKP/zZJ/Lx1gYV0NB6Q00pXENS82Eor6UderPP3bZBLa7qV5409uPSihQLbVwV+ga+bOPme1Is9L3vvpyPBwNZb0rpUkxGPqNQ0v9K1XyzXyYP8Bb5JIfUCf24I9/f3hvTOlGczDSuOk0R5QZhpCSglLpCsfApna6WzSnIVExAXuacTTJVsL4qao5Pf+qT+bhWl8+PDiRd/eu/+lY+fuaxD+XjUUFF0zmW9Hp9iZQBpDDZ/ssf5mP2elbUqo3TYJcK1iJqj5cWiogiit+A/OPNtmZ3+nPHM46r77u4vNHKtjF5Gf64S8qdleWGsZyK5Py0qBjKoFDARVxy3DUq4nv6SaEhPvUPP5GPS2WhOXdviXLkz/7svxj78cxjT+XjY4rxzo5QnhRu6EgojR++Kkq4fl9iedRlykxUcE8/IdQuAJSpXeBKXaiWfSpOSkmRkpyhRd49kWZKqScAfBLAdwBsZpMFAG4D2JzyneeVUi8ppV7qD6NJi1g8ZDxoXMNocrWgxcPFg8Z1YK/XRx5nvoErpeoAvgrgt7XWhnBVjx8BJv5Ga61f0Fp/Smv9qWrBNtPi4WMWcS35c30XbnEGzCKuFXu9PvI405WnxjnhVwH8odb6j7OPt5VSW1rrW0qpLQA709eQrwjI2mR1+0JddCkdMaxG2FSiZk6mK1efyMctKuqpVKg9GysfyD/cLVMqekzbIO+BmDxLlhuSnh22TT/wmOiVlFp0Vcuy7Sp1nQ7Ig9j3ZZlhJFSH55Knecx0itl6K47kHO5SIU9MBRHs+9LPlC4n7NCs4uoooJx3vJ/smdEkrxaXzvMaUT+ASRM4pJYZ0fHVKxKPq5eFWrtKhTK+J3Ni1JZzu9GU7V29JulusaP7oCdxJWEBfEe2/crr78i+krfPEdFyXOgyIE8WV8uld3tflDEA0KFCJy4oYkzsSp/NlVnGtTShNmganRKQQqTmm+qZEvn4NErkF0J0WHfEbROFZrtyiWJ8Rcb1igRm0CX/oD2hJC4vC5UGAFcfl5gPSbpybVOWq9P9YUStHN94W1RHFaKEOtRfgH2TvEL7RabN3Krcp8p0f2DffJzh9/MsKhQF4PcAvKa1/l36p68D+Hw2/jyAr52+OYtHBTau5xM2rhcLZ3kC/0cA/jmAHymlfpB99jsAvgzgK0qpLwB4F8DnPpA9tPigYON6PmHjeoFwFhXKtzG9uc9n7mVjcZxgLxPAR+Q9kVL66pONZImoBKdQpHBEXiPhSJQgXBCDkow9l9IZspEsl6lVVyCp3YgKjdSBpMRhobDinZtSKHD7SLLS5z78eD7uUsFOoyEp/Noq2V4Gsh+a9i8kH49BaBo7RPTyMKLvMA3hlSRVq2YpmeM4M42r77u4srFyx+dD2t+lmqS7biKbbVEqOd438idJyd+F9nRtRbbVMuxdJd7Hh5JG98hS9/KqzJXHt1r5OIpNFUqfrIE9sir1yafk8cdFEXH0mtny7wRV8q9JE0qh6Xi4oAQAuj1uo3enx8ydGK8s1XqmcdUa0PpkjpHnyZTlT6yiASAtvNiulCT+TTonMV1nCZ3bHtENXVJS9Yh6ff31t+S75BkU0fX29OOmEmTjklx/Q7q2unWhPko+FSqlMr+2tmTudEbtfFyrC13nE+037JlFag7RQu/vSrFRt0sFfXTNuGfwtrGl9BYWFhYLCnsDt7CwsFhQzFX/FScpDjPxPHdG55TMd8lm1pP0MSJ/AwDYWJHUOwlFGfLMhyRleurpa/m4QRTFYCj0SymgAgyHCnyG1DnnQFK4v3vPfHm/syOp+jJ1GtnbEyWBTiSd5A73g0hSJ5+sYUvUIb1VkRRuUOjgHpFF5/4hdQiht+uKOpKkWco4+74tk9UKZaJNKpQe+6QIqrFSCKYVrkNp+ICO9fhYzm37SObB62/8NB/v7xFtRV141ldFRVKinfY886w0akLTBB5RWkNKz6mo5HvffzMfD2n/QB4iivaDC8Uq5O0CACH5vvjc4WVqZ/jx2HWlgGUW0DpFmBXUGOIi3g+aTWx96xWeDZkCSxKiAmMZN0nB0SUK5bU3pIBmvy3XT6Ll3F65Ip3un10nq+ktU+Xk0TysezIPl1uynKtlG4dtoUEuXxJvk+//3Tv52CdVDXvlODDpr4i60rfJe6c3rQOTtZO1sLCwOL+wN3ALCwuLBcV8S+iUA5WlLWlCBTHUecXhLjWUIjWJSgCA966Ld8F3/+aVfPz0k5JKfew5sZvc3GxNHK+ukZ1sKlRJe0e2/f3X5G33d18zOwO5StK+ARX8XL9O/gaJUB/ra5JutZblu0vka+LTOh1H1Pwlx+QpelRA0Cf1TkB+CnuHkgKO0pNzfobc7B6gFODkChBqtFyV/Qio0TK/XDf8TgA43MiVaI0RFTu8d12UP4eHcg4qRGFxd6WPf0iotKeIQinXZPlB31T41Kk4rETqlrIj8/bqpqgu1psyP5+6IsvXiKIDxTKgIpRLjmmVXK9LOt+7h3J27jAzG6ic0ppmbcqKpx2aa75rVqF4A4nlUiTnvWkUvpASi7yLOh1WYknR05BUSm2iDX/mys/KtlZNlVMc8b2GFG8BNVrmBtVDKgIjf5cWXa8uUYVclaz8Aq9IU7tC24upS5TnyULc6Wca7BO4hYWFxYLC3sAtLCwsFhRzpVCUUnCzLi1lEryz+sOl3xRF2ePAFGDgnbeEykjJfvXoSD7/4Q9l3KjLoTbJL/Iz/+QT+fi5Z8Rq8uYNeTP8tT//63x8IBk7AGBzWcT9aSipEKdSlUDSx5UVSY9Xm7KMx14cRpNUScPigrB/SN07GlQQ06c32XVSWrQyi9WgmNo9ILTWiLIm0JxoJ/xGnQqxFNE9vYFZxMLzwiEKpVwW6mkwEPpsvy1UVYn8Z0bkQ3FlhSyGS6IcKVfkPHATXQAIArJrpabb3MS6RAqaK9eEumuuyTZSolwiKloJSnJsJ52S8m3QaUswhUK50wplxsTYWBGxczCmLAx1kOJrV8Yx0R5aFVUocj43UqGxlEdds/qi8Dkm+y2qt0Gbil46RE0ed4Vaqf/3Yivswiwocnw5SwH5taRa1jUyGklLbCoVobo++tGPyP6lEmOtqTAJ5nVWbcg1eknJfK4SfRcZ6jyO6FuYBPsEbmFhYbGgsDdwCwsLiwXFnCkUoJRlWZreAAfkkxAP6A0wURLtY5O7ICsVbF2VlLVOaQ6/9W3vS5FDdCzpUoeaAe/caOfjb738Rj4+oo3d2jGb34J2S1EP07UVeWO9tN7Kxy6pMRKyfWXNvyYlxogoBlUowWE/jTJRFPxG3aWTcJKezbqQZ0yh3JnqH9O5HRAv4BKFwiknAKxTk+kS0RqjWNF35PP+gJsJS1z7CTWsPZbAaCocUYnEQmnTJjhw5BwOqRCLXG3R6fO2qVku0X1LRN8k5NPT7sjynmMqJXrUqYm9P4yOPLjT+yZNz+KbcnZoAGHmW+MkBjkmI1KCdIki4uIWAHCIykiPhB/pEg0YkPpqOJDzf3hI1yh1r3lz50Y+/vnnpBsWN3kadtmiFgApuYKGbC+m+Xu8L/t31JHzf2NXts3xbpAlckq31H5objslf9iYPJUiUr0kBm1y+pVqn8AtLCwsFhT2Bm5hYWGxoLA3cAsLC4sFxVw5cK1ThFkbsBJ5Arvc0ZsMf8JY+KeikdOlx0W+11gSDjElGU5KvF2ZOWlqmbS7TaYyh+/k4x+/IxJEp0ot23xzP/rcGi4Q3nWZKvl8khTukzf1cMSSNDruoXCr/T5LBWWdAOCyRzP/FBNXGkXE+WYLzZ4DlzZtzM0O+yzNkmNKuXO9U6g2I4ljOZTzE1MLK4OHpncju8ciLzzoC1/5j58TiV9C53bQJe/xgn91meRmu7vCid66JaZqf//29Xzco/nZGVJLrrbwxdWqxDjRErDOsfleJSK/9Js7Yp5mcOA0PjHGKh7DgyLRQHeUtcoz/oXeUyVyfCHt0yAx31lp4ucHI5mTHXp306q05PMjWWaXWqRtH4pcMKjJPeQy+dGPKBbf/vZrxn7s7Ei16IeffUa+Q/eagwNZZkiSwrffF8/3TijzdtCWecft0Uplam8PoH0snHiqZblDij+bnDmO5cAtLCwszi3sDdzCwsJiQTFXCsV1XSxlvrtcfTY4lpQlpBKsmCRfgam0Qm2ZpIdU8ccVYzFVaqVU7VmqEb1BUrKb1IpJU8f4gAxmGlUzLSqT3CyMJG1URA20u3JMo0TSJf+Y2rnR+QiJI0jJ6CYoSCkr5BtdLpEREEm7EkpdnaySM53WVvw+kSQJ9o/ad3wep9RVHnI+iT2Ao820X+/LegLynQ5ciVmP5Hv7tPx2W9LrlNrpgWSZXUpj/+xb35H1HJg0xpNPPJGPb94S86wRnc/tQ0mdj4g2iVJJ7YfHQqtFRDeUKNXeJVoNAIaRrOvWjuk/PwknSxte0rOAcqCDsSzXmDNGyz6JUYPMwW5tSywAQNFcYMUpd6iPaK4zbZI6tD2qan782kY+btXkVvbmT97Ox3/5khjdAcBP3xY58V//zU/ysU/r9ah6ubku1OutA7k/pBC5ckrXa6UicW0WTMoOqDXcYCCxun5L9imlueo6p1dM2ydwCwsLiwWFvYFbWFhYLCjmrELRCMMxrVGhFlm1QNIOl9/ikvlLWEi1h9RyKab2ZyqVtKPXoypGT76/ViYPb+ra7tYk5SnXZPnyIVExdZNCKRGFMiLFCNM3IbU16wyFFhp1p1Unyvpd8lV2Ryb1UXLkHFSparVOaRx3tk7zFH62FEoKYHSinKBV90Zk5MQ9uSg11IlZiRnGQmWUiQ5j3+g2VfL1w8lKl40rUn3JVNxP35XqvZd+IAZBN28IHQIA333pnXycUFu0JfITryxL7NtU8Zca55dMoEhhw0qMpBAOVrQ4bHQ1paXaSYWucqYYX90nUgDDjO9y2cyKxuzlzy3qqiWzVV57n6oSybDMb8k57BHFoKjMuFyVc7BSlvO/viT0S5l26Z3r2/n4aGgqOVYvPzHxOLZvi8IERH9GdD/qk5e4Qc+m1N6OFWdtk5bjCtuDIznWQzLoYnXRWdRipz6BK6XKSqnvKqV+qJR6RSn1r7PPn1RKfUcp9ZZS6j8rpYLT1mXx6MDG9XzCxvVi4SwUSgjgl7XWPwfgEwB+VSn18wD+DwD/Vmv9NIBDAF/4wPbS4oOAjev5hI3rBcKpFIoeP9OfPOP72X8awC8D+B+zz18E8L8C+A93W1ccR2gfZG9cqd1Wg3ycWw1RG3A64hdE7S691U6JWujQW39F1S1BiYp6iDbZpe7QIRUVBGQC1WqQ0qRnKkEub8mb8MMDeptMqaVHRTqK2kmF1K4ppPQqIW/wcoX9i81wHfWFSlityzkchvRGnc5bOUtr0zSdaVzTFOidxIBS+0iTWRT5mh93JEZu4Rki5WOvyxwZhkKPdCjl5M73TSVxXWqQf3hfzvN770t6PSQFUmvjqrEfPtF629uiBNmjrujLZTo+ojoimo+sDNFU2JRqps9MP/ByTc5JbUS+5IaBFe6AcnrQOp5ZXHWqEWd0zkhP2TaZgHnkB95qLsNAQrRlR+iq4YCpCLlmNi5Jod4716WobnVV7g9XN1r5eJ2omA7Rak7NNNXSJIFib/dyS9bbpfnZJ0WQS4U5o5CoSVqmS4ViaWpSWh5tr74kBljLRMFwGzWjpdr7hUYEJ8cw8dMClFKuUuoHAHYAfAPATwC0tc5n4XUAV6Z893ml1EtKqZdGUTppEYuHhNnFdbYueBYPhlnFNZpxZafF7HGmG7jWOtFafwLAVQCfBvCRu3/D+O4LWutPaa0/FfhW9PIoYXZxnW2HH4sHw6zi6vtz1ThY3AfuKUJa67ZS6lsAfgFASynlZb/qVwHcuPu3AUcplLN0kSkRhxQpVOuAAb2e53QHAAKiJZaoW3SN/MAHsaQdLqkdUvZ3phQ3IdqkSd3Eq+uSOtVL4rkAAA4kZVpqUvEPKV065FPdIX/hHilpFHVnZ2XF8lorH0eh2Tk9pffUIZ03slNAQkUQo+zNeZKa+feDxhVKIfUr+fgEAUkDakRDDcjDOzFtuJGSD4jvU0FMl3yjy+SrTFUhDVIlrNGcqFIHcfbw9hsyV5LU/BHyiNaor4jy4fBQaCumiDxS/vikKPJIgcTFXezZ43nm3O5Qd/dBVDhBJ+tijcKJAEjPNq6eq7CSxc3wXmGlhJI5r+j6KaqLrl6p0b/JtTHqUTyIouiHcp6ffEzoBi6AqruyvZD6rm0fCcV2eGQqQTY2hfLkwrtSXdbb67M3E8WVrumElVTEgGmixtKCvIjXtbcntBzPSabJHHW6DuUsKpR1pVQrG1cA/AqA1wB8C8A/yxb7PICvnbo1i0cGNq7nEzauFwtneQLfAvCiUsrF+Ib/Fa31f1FKvQrgj5RS/zuAvwXwex/gflrMHjau5xM2rhcIqph2faAbU2oXQA/A3mnLnkOs4dE57se11uuzWlkW13fxaB3jvPAoHbON6+zwqB3zxNjO9QYOAEqpl7TWn5rrRh8BXITjvgjHWMRFOOaLcIxFLMoxW1mIhYWFxYLC3sAtLCwsFhQP4wb+wkPY5qOAi3DcF+EYi7gIx3wRjrGIhTjmuXPgFhYWFhazgaVQLCwsLBYU9gZuYWFhsaCY6w1cKfWrSqnXM0/iL81z2/OCUuqaUupbSqlXMz/m38o+X1FKfUMp9Wb2/+XT1rUouAhxBS5ebG1cH/24zo0DzyrD3sC4tPc6gO8B+A2t9atz2YE5QSm1BWBLa/2yUqoB4PsAfg3AbwI40Fp/ObsYlrXWX3x4ezobXJS4AhcrtjauixHXeT6BfxrAW1rrt7XWIwB/BOCzc9z+XKC1vqW1fjkbdzD2obiC8bG+mC32IsYT5DzgQsQVuHCxtXFdgLjO8wZ+BcD79PdUT+LzAqXUEwA+CeA7ADa11reyf7oNYPNh7deMceHiClyI2Nq4LkBc7UvMDwhKqTqArwL4ba31Mf9b1g3H6jcXFDa25xOLGNd53sBvALhGf5/Na3oBoZTyMZ4If6i1/uPs4+2Mazvh3HamfX/BcGHiClyo2Nq4LkBc53kD/x6AZ9S4O3YA4NcBfH2O258LlFIKY6vO17TWv0v/9HWMfZiB8+XHfCHiCly42Nq4LkBc520n+08B/DsALoDf11r/m7ltfE5QSv0igL8E8CMgb1HyOxhzal8B8BjGFp2f01ofPJSdnDEuQlyBixdbG9dHP662lN7CwsJiQWFfYlpYWFgsKOwN3MLCwmJBYW/gFhYWFgsKewO3sLCwWFDYG7iFhYXFgsLewC0sLCwWFPYGbmFhYbGg+P8BDztdQ3zcroAAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 6 Axes>"
       ]
@@ -583,7 +592,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 15,
    "metadata": {
     "id": "9ODch-OFCaW4"
    },
@@ -627,7 +636,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 16,
    "metadata": {
     "id": "Lhan11blCaW7"
    },
@@ -651,7 +660,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 17,
    "metadata": {
     "id": "xvwvpA64CaW_"
    },
@@ -662,205 +671,205 @@
      "text": [
       "Train on 4000 samples, validate on 1000 samples\n",
       "Epoch 1/100\n",
-      "4000/4000 [==============================] - 1s 336us/sample - loss: 32.0591 - accuracy: 0.1098 - val_loss: 2.6049 - val_accuracy: 0.1210\n",
+      "4000/4000 [==============================] - 1s 357us/sample - loss: 27.3871 - accuracy: 0.1130 - val_loss: 2.4806 - val_accuracy: 0.1120\n",
       "Epoch 2/100\n",
-      "4000/4000 [==============================] - 1s 242us/sample - loss: 2.4627 - accuracy: 0.1303 - val_loss: 2.4970 - val_accuracy: 0.1250\n",
+      "4000/4000 [==============================] - 1s 233us/sample - loss: 2.4551 - accuracy: 0.1147 - val_loss: 2.3933 - val_accuracy: 0.1030\n",
       "Epoch 3/100\n",
-      "4000/4000 [==============================] - 1s 217us/sample - loss: 2.3391 - accuracy: 0.1408 - val_loss: 2.4184 - val_accuracy: 0.1230\n",
+      "4000/4000 [==============================] - 1s 223us/sample - loss: 2.3458 - accuracy: 0.1165 - val_loss: 2.3613 - val_accuracy: 0.1020\n",
       "Epoch 4/100\n",
-      "4000/4000 [==============================] - 1s 203us/sample - loss: 2.2809 - accuracy: 0.1470 - val_loss: 2.4299 - val_accuracy: 0.1200\n",
+      "4000/4000 [==============================] - 1s 235us/sample - loss: 2.3036 - accuracy: 0.1220 - val_loss: 2.3557 - val_accuracy: 0.1060\n",
       "Epoch 5/100\n",
-      "4000/4000 [==============================] - 1s 197us/sample - loss: 2.2456 - accuracy: 0.1517 - val_loss: 2.4510 - val_accuracy: 0.1300\n",
+      "4000/4000 [==============================] - 1s 202us/sample - loss: 2.2816 - accuracy: 0.1245 - val_loss: 2.3561 - val_accuracy: 0.1020\n",
       "Epoch 6/100\n",
-      "4000/4000 [==============================] - 1s 206us/sample - loss: 2.2230 - accuracy: 0.1608 - val_loss: 2.4369 - val_accuracy: 0.1290\n",
+      "4000/4000 [==============================] - 1s 209us/sample - loss: 2.2711 - accuracy: 0.1245 - val_loss: 2.3513 - val_accuracy: 0.1030\n",
       "Epoch 7/100\n",
-      "4000/4000 [==============================] - 1s 216us/sample - loss: 2.2051 - accuracy: 0.1653 - val_loss: 2.4431 - val_accuracy: 0.1320\n",
+      "4000/4000 [==============================] - 1s 220us/sample - loss: 2.2597 - accuracy: 0.1283 - val_loss: 2.3520 - val_accuracy: 0.1060\n",
       "Epoch 8/100\n",
-      "4000/4000 [==============================] - 1s 208us/sample - loss: 2.1948 - accuracy: 0.1698 - val_loss: 2.4421 - val_accuracy: 0.1290\n",
+      "4000/4000 [==============================] - 1s 256us/sample - loss: 2.2525 - accuracy: 0.1285 - val_loss: 2.3508 - val_accuracy: 0.1070\n",
       "Epoch 9/100\n",
-      "4000/4000 [==============================] - 1s 181us/sample - loss: 2.1828 - accuracy: 0.1727 - val_loss: 2.4505 - val_accuracy: 0.1400\n",
+      "4000/4000 [==============================] - 1s 151us/sample - loss: 2.2482 - accuracy: 0.1310 - val_loss: 2.3506 - val_accuracy: 0.1070\n",
       "Epoch 10/100\n",
-      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.1737 - accuracy: 0.1765 - val_loss: 2.4545 - val_accuracy: 0.1360\n",
+      "4000/4000 [==============================] - 1s 149us/sample - loss: 2.2447 - accuracy: 0.1295 - val_loss: 2.3542 - val_accuracy: 0.1040\n",
       "Epoch 11/100\n",
-      "4000/4000 [==============================] - 1s 211us/sample - loss: 2.1648 - accuracy: 0.1765 - val_loss: 2.4565 - val_accuracy: 0.1380\n",
+      "4000/4000 [==============================] - 1s 206us/sample - loss: 2.2405 - accuracy: 0.1305 - val_loss: 2.3806 - val_accuracy: 0.0930\n",
       "Epoch 12/100\n",
-      "4000/4000 [==============================] - 1s 200us/sample - loss: 2.1627 - accuracy: 0.1768 - val_loss: 2.4567 - val_accuracy: 0.1360\n",
+      "4000/4000 [==============================] - 1s 219us/sample - loss: 2.2372 - accuracy: 0.1330 - val_loss: 2.3543 - val_accuracy: 0.1040\n",
       "Epoch 13/100\n",
-      "4000/4000 [==============================] - 1s 211us/sample - loss: 2.1541 - accuracy: 0.1768 - val_loss: 2.4499 - val_accuracy: 0.1390\n",
+      "4000/4000 [==============================] - 1s 197us/sample - loss: 2.2360 - accuracy: 0.1343 - val_loss: 2.3555 - val_accuracy: 0.1060\n",
       "Epoch 14/100\n",
-      "4000/4000 [==============================] - 1s 205us/sample - loss: 2.1448 - accuracy: 0.1795 - val_loss: 2.4559 - val_accuracy: 0.1360\n",
+      "4000/4000 [==============================] - 1s 204us/sample - loss: 2.2330 - accuracy: 0.1328 - val_loss: 2.3578 - val_accuracy: 0.1060\n",
       "Epoch 15/100\n",
-      "4000/4000 [==============================] - 1s 209us/sample - loss: 2.1447 - accuracy: 0.1765 - val_loss: 2.4612 - val_accuracy: 0.1410\n",
+      "4000/4000 [==============================] - 1s 215us/sample - loss: 2.2312 - accuracy: 0.1328 - val_loss: 2.3562 - val_accuracy: 0.1050\n",
       "Epoch 16/100\n",
-      "4000/4000 [==============================] - 1s 215us/sample - loss: 2.1371 - accuracy: 0.1838 - val_loss: 2.4904 - val_accuracy: 0.1440\n",
+      "4000/4000 [==============================] - 1s 225us/sample - loss: 2.2288 - accuracy: 0.1365 - val_loss: 2.3666 - val_accuracy: 0.1030\n",
       "Epoch 17/100\n",
-      "4000/4000 [==============================] - 1s 197us/sample - loss: 2.1329 - accuracy: 0.1817 - val_loss: 2.4548 - val_accuracy: 0.1450\n",
+      "4000/4000 [==============================] - 1s 227us/sample - loss: 2.2279 - accuracy: 0.1338 - val_loss: 2.3646 - val_accuracy: 0.1020\n",
       "Epoch 18/100\n",
-      "4000/4000 [==============================] - 1s 202us/sample - loss: 2.1291 - accuracy: 0.1822 - val_loss: 2.4721 - val_accuracy: 0.1430\n",
+      "4000/4000 [==============================] - 1s 207us/sample - loss: 2.2267 - accuracy: 0.1338 - val_loss: 2.3673 - val_accuracy: 0.1020\n",
       "Epoch 19/100\n",
-      "4000/4000 [==============================] - 1s 214us/sample - loss: 2.1229 - accuracy: 0.1785 - val_loss: 2.4623 - val_accuracy: 0.1430\n",
+      "4000/4000 [==============================] - 1s 197us/sample - loss: 2.2231 - accuracy: 0.1353 - val_loss: 2.3731 - val_accuracy: 0.1010\n",
       "Epoch 20/100\n",
-      "4000/4000 [==============================] - 1s 207us/sample - loss: 2.1187 - accuracy: 0.1867 - val_loss: 2.4676 - val_accuracy: 0.1450\n",
+      "4000/4000 [==============================] - 1s 203us/sample - loss: 2.2228 - accuracy: 0.1357 - val_loss: 2.3663 - val_accuracy: 0.1010\n",
       "Epoch 21/100\n",
-      "4000/4000 [==============================] - 1s 213us/sample - loss: 2.1123 - accuracy: 0.1873 - val_loss: 2.4532 - val_accuracy: 0.1400\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.2223 - accuracy: 0.1357 - val_loss: 2.3666 - val_accuracy: 0.1040\n",
       "Epoch 22/100\n",
-      "4000/4000 [==============================] - 1s 200us/sample - loss: 2.1082 - accuracy: 0.1855 - val_loss: 2.4709 - val_accuracy: 0.1450\n",
+      "4000/4000 [==============================] - 1s 230us/sample - loss: 2.2178 - accuracy: 0.1370 - val_loss: 2.3703 - val_accuracy: 0.1020\n",
       "Epoch 23/100\n",
-      "4000/4000 [==============================] - 1s 206us/sample - loss: 2.1052 - accuracy: 0.1885 - val_loss: 2.4656 - val_accuracy: 0.1420\n",
+      "4000/4000 [==============================] - 1s 188us/sample - loss: 2.2183 - accuracy: 0.1382 - val_loss: 2.3705 - val_accuracy: 0.1010\n",
       "Epoch 24/100\n",
-      "4000/4000 [==============================] - 1s 214us/sample - loss: 2.0964 - accuracy: 0.1902 - val_loss: 2.4684 - val_accuracy: 0.1410\n",
+      "4000/4000 [==============================] - 1s 196us/sample - loss: 2.2129 - accuracy: 0.1382 - val_loss: 2.3795 - val_accuracy: 0.1040\n",
       "Epoch 25/100\n",
-      "4000/4000 [==============================] - 1s 202us/sample - loss: 2.0932 - accuracy: 0.1893 - val_loss: 2.4824 - val_accuracy: 0.1470\n",
+      "4000/4000 [==============================] - 1s 234us/sample - loss: 2.2138 - accuracy: 0.1402 - val_loss: 2.3733 - val_accuracy: 0.0980\n",
       "Epoch 26/100\n",
-      "4000/4000 [==============================] - 1s 221us/sample - loss: 2.0887 - accuracy: 0.1905 - val_loss: 2.4971 - val_accuracy: 0.1520\n",
+      "4000/4000 [==============================] - 1s 229us/sample - loss: 2.2115 - accuracy: 0.1377 - val_loss: 2.3746 - val_accuracy: 0.1010\n",
       "Epoch 27/100\n",
-      "4000/4000 [==============================] - 1s 206us/sample - loss: 2.0845 - accuracy: 0.1912 - val_loss: 2.4822 - val_accuracy: 0.1420\n",
+      "4000/4000 [==============================] - 1s 213us/sample - loss: 2.2085 - accuracy: 0.1390 - val_loss: 2.3741 - val_accuracy: 0.0970\n",
       "Epoch 28/100\n",
-      "4000/4000 [==============================] - 1s 216us/sample - loss: 2.0772 - accuracy: 0.1885 - val_loss: 2.4994 - val_accuracy: 0.1410\n",
+      "4000/4000 [==============================] - 1s 251us/sample - loss: 2.2038 - accuracy: 0.1388 - val_loss: 2.3826 - val_accuracy: 0.0940\n",
       "Epoch 29/100\n",
-      "4000/4000 [==============================] - 1s 210us/sample - loss: 2.0725 - accuracy: 0.1865 - val_loss: 2.4984 - val_accuracy: 0.1400\n",
+      "4000/4000 [==============================] - 1s 224us/sample - loss: 2.2023 - accuracy: 0.1405 - val_loss: 2.4650 - val_accuracy: 0.0860\n",
       "Epoch 30/100\n",
-      "4000/4000 [==============================] - 1s 200us/sample - loss: 2.0669 - accuracy: 0.1970 - val_loss: 2.4606 - val_accuracy: 0.1660\n",
+      "4000/4000 [==============================] - 1s 208us/sample - loss: 2.2029 - accuracy: 0.1412 - val_loss: 2.3906 - val_accuracy: 0.0990\n",
       "Epoch 31/100\n",
-      "4000/4000 [==============================] - 1s 203us/sample - loss: 2.0635 - accuracy: 0.2170 - val_loss: 2.4638 - val_accuracy: 0.1760\n",
+      "4000/4000 [==============================] - 1s 267us/sample - loss: 2.2023 - accuracy: 0.1390 - val_loss: 2.4188 - val_accuracy: 0.0920\n",
       "Epoch 32/100\n",
-      "4000/4000 [==============================] - 1s 200us/sample - loss: 2.0567 - accuracy: 0.2148 - val_loss: 2.4651 - val_accuracy: 0.1640\n",
+      "4000/4000 [==============================] - 1s 232us/sample - loss: 2.1946 - accuracy: 0.1430 - val_loss: 2.3932 - val_accuracy: 0.0950\n",
       "Epoch 33/100\n",
-      "4000/4000 [==============================] - 1s 202us/sample - loss: 2.0499 - accuracy: 0.2173 - val_loss: 2.4730 - val_accuracy: 0.1700\n",
+      "4000/4000 [==============================] - 1s 210us/sample - loss: 2.2026 - accuracy: 0.1423 - val_loss: 2.3829 - val_accuracy: 0.1020\n",
       "Epoch 34/100\n",
-      "4000/4000 [==============================] - 1s 213us/sample - loss: 2.0497 - accuracy: 0.2167 - val_loss: 2.4756 - val_accuracy: 0.1780\n",
+      "4000/4000 [==============================] - 1s 205us/sample - loss: 2.1927 - accuracy: 0.1462 - val_loss: 2.4008 - val_accuracy: 0.1040\n",
       "Epoch 35/100\n",
-      "4000/4000 [==============================] - 1s 204us/sample - loss: 2.0393 - accuracy: 0.2183 - val_loss: 2.4581 - val_accuracy: 0.1680\n",
+      "4000/4000 [==============================] - 1s 196us/sample - loss: 2.1898 - accuracy: 0.1455 - val_loss: 2.3927 - val_accuracy: 0.1050\n",
       "Epoch 36/100\n",
-      "4000/4000 [==============================] - 1s 202us/sample - loss: 2.0339 - accuracy: 0.2192 - val_loss: 2.4896 - val_accuracy: 0.1820\n",
+      "4000/4000 [==============================] - 1s 221us/sample - loss: 2.1884 - accuracy: 0.1437 - val_loss: 2.4186 - val_accuracy: 0.0950\n",
       "Epoch 37/100\n",
-      "4000/4000 [==============================] - 1s 194us/sample - loss: 2.0280 - accuracy: 0.2202 - val_loss: 2.4688 - val_accuracy: 0.1790\n",
+      "4000/4000 [==============================] - 1s 217us/sample - loss: 2.1771 - accuracy: 0.1417 - val_loss: 2.4002 - val_accuracy: 0.0950\n",
       "Epoch 38/100\n",
-      "4000/4000 [==============================] - 1s 196us/sample - loss: 2.0241 - accuracy: 0.2215 - val_loss: 2.4570 - val_accuracy: 0.1690\n",
+      "4000/4000 [==============================] - 1s 223us/sample - loss: 2.1853 - accuracy: 0.1460 - val_loss: 2.3971 - val_accuracy: 0.0980\n",
       "Epoch 39/100\n",
-      "4000/4000 [==============================] - 1s 212us/sample - loss: 2.0185 - accuracy: 0.2215 - val_loss: 2.4807 - val_accuracy: 0.1850\n",
+      "4000/4000 [==============================] - 1s 220us/sample - loss: 2.1783 - accuracy: 0.1472 - val_loss: 2.4159 - val_accuracy: 0.0880\n",
       "Epoch 40/100\n",
-      "4000/4000 [==============================] - 1s 212us/sample - loss: 2.0132 - accuracy: 0.2247 - val_loss: 2.4588 - val_accuracy: 0.1770\n",
+      "4000/4000 [==============================] - 1s 207us/sample - loss: 2.1756 - accuracy: 0.1460 - val_loss: 2.4068 - val_accuracy: 0.0900\n",
       "Epoch 41/100\n",
-      "4000/4000 [==============================] - 1s 207us/sample - loss: 2.0072 - accuracy: 0.2245 - val_loss: 2.4752 - val_accuracy: 0.1790\n",
+      "4000/4000 [==============================] - 1s 170us/sample - loss: 2.1698 - accuracy: 0.1497 - val_loss: 2.4280 - val_accuracy: 0.0910\n",
       "Epoch 42/100\n",
-      "4000/4000 [==============================] - 1s 209us/sample - loss: 2.0076 - accuracy: 0.2250 - val_loss: 2.4558 - val_accuracy: 0.1710\n",
+      "4000/4000 [==============================] - 1s 192us/sample - loss: 2.1702 - accuracy: 0.1515 - val_loss: 2.4073 - val_accuracy: 0.0910\n",
       "Epoch 43/100\n",
-      "4000/4000 [==============================] - 1s 205us/sample - loss: 1.9985 - accuracy: 0.2280 - val_loss: 2.4717 - val_accuracy: 0.1780\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.1591 - accuracy: 0.1460 - val_loss: 2.3910 - val_accuracy: 0.1010\n",
       "Epoch 44/100\n",
-      "4000/4000 [==============================] - 1s 209us/sample - loss: 1.9943 - accuracy: 0.2275 - val_loss: 2.4712 - val_accuracy: 0.1780\n",
+      "4000/4000 [==============================] - 1s 226us/sample - loss: 2.1559 - accuracy: 0.1620 - val_loss: 2.4127 - val_accuracy: 0.1210\n",
       "Epoch 45/100\n",
-      "4000/4000 [==============================] - 1s 206us/sample - loss: 1.9895 - accuracy: 0.2250 - val_loss: 2.4680 - val_accuracy: 0.1810\n",
+      "4000/4000 [==============================] - 1s 224us/sample - loss: 2.1526 - accuracy: 0.1745 - val_loss: 2.4160 - val_accuracy: 0.1270\n",
       "Epoch 46/100\n",
-      "4000/4000 [==============================] - 1s 197us/sample - loss: 1.9845 - accuracy: 0.2250 - val_loss: 2.4650 - val_accuracy: 0.1820\n",
+      "4000/4000 [==============================] - 1s 192us/sample - loss: 2.1494 - accuracy: 0.1755 - val_loss: 2.3898 - val_accuracy: 0.1130\n",
       "Epoch 47/100\n",
-      "4000/4000 [==============================] - 1s 200us/sample - loss: 1.9797 - accuracy: 0.2315 - val_loss: 2.4638 - val_accuracy: 0.1780\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.1359 - accuracy: 0.1793 - val_loss: 2.4092 - val_accuracy: 0.1530\n",
       "Epoch 48/100\n",
-      "4000/4000 [==============================] - 1s 210us/sample - loss: 1.9768 - accuracy: 0.2272 - val_loss: 2.4857 - val_accuracy: 0.1790\n",
+      "4000/4000 [==============================] - 1s 204us/sample - loss: 2.1405 - accuracy: 0.1750 - val_loss: 2.3939 - val_accuracy: 0.1380\n",
       "Epoch 49/100\n",
-      "4000/4000 [==============================] - 1s 221us/sample - loss: 1.9745 - accuracy: 0.2333 - val_loss: 2.4732 - val_accuracy: 0.1890\n",
+      "4000/4000 [==============================] - 1s 216us/sample - loss: 2.1220 - accuracy: 0.1795 - val_loss: 2.3886 - val_accuracy: 0.1270\n",
       "Epoch 50/100\n",
-      "4000/4000 [==============================] - 1s 216us/sample - loss: 1.9672 - accuracy: 0.2325 - val_loss: 2.4649 - val_accuracy: 0.1900\n",
+      "4000/4000 [==============================] - 1s 220us/sample - loss: 2.1038 - accuracy: 0.1850 - val_loss: 2.4022 - val_accuracy: 0.1480\n",
       "Epoch 51/100\n",
-      "4000/4000 [==============================] - 1s 199us/sample - loss: 1.9634 - accuracy: 0.2342 - val_loss: 2.4743 - val_accuracy: 0.1820\n",
+      "4000/4000 [==============================] - 1s 211us/sample - loss: 2.1201 - accuracy: 0.1822 - val_loss: 2.3981 - val_accuracy: 0.1230\n",
       "Epoch 52/100\n",
-      "4000/4000 [==============================] - 1s 206us/sample - loss: 1.9598 - accuracy: 0.2313 - val_loss: 2.4667 - val_accuracy: 0.1840\n",
+      "4000/4000 [==============================] - 1s 203us/sample - loss: 2.1005 - accuracy: 0.1898 - val_loss: 2.3754 - val_accuracy: 0.1340\n",
       "Epoch 53/100\n",
-      "4000/4000 [==============================] - 1s 193us/sample - loss: 1.9540 - accuracy: 0.2350 - val_loss: 2.4844 - val_accuracy: 0.1770\n",
+      "4000/4000 [==============================] - 1s 262us/sample - loss: 2.1173 - accuracy: 0.1815 - val_loss: 2.4274 - val_accuracy: 0.1130\n",
       "Epoch 54/100\n",
-      "4000/4000 [==============================] - 1s 208us/sample - loss: 1.9459 - accuracy: 0.2377 - val_loss: 2.5062 - val_accuracy: 0.1850\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.1299 - accuracy: 0.1805 - val_loss: 2.3857 - val_accuracy: 0.1510\n",
       "Epoch 55/100\n",
-      "4000/4000 [==============================] - 1s 214us/sample - loss: 1.9433 - accuracy: 0.2352 - val_loss: 2.4971 - val_accuracy: 0.1920\n",
+      "4000/4000 [==============================] - 1s 216us/sample - loss: 2.0866 - accuracy: 0.1982 - val_loss: 2.3986 - val_accuracy: 0.1710\n",
       "Epoch 56/100\n",
-      "4000/4000 [==============================] - 1s 197us/sample - loss: 1.9389 - accuracy: 0.2375 - val_loss: 2.4802 - val_accuracy: 0.1920\n",
+      "4000/4000 [==============================] - 1s 227us/sample - loss: 2.0817 - accuracy: 0.2005 - val_loss: 2.3716 - val_accuracy: 0.1780\n",
       "Epoch 57/100\n",
-      "4000/4000 [==============================] - 1s 185us/sample - loss: 1.9349 - accuracy: 0.2390 - val_loss: 2.4836 - val_accuracy: 0.1900\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.0846 - accuracy: 0.2042 - val_loss: 2.3922 - val_accuracy: 0.1610\n",
       "Epoch 58/100\n",
-      "4000/4000 [==============================] - 1s 194us/sample - loss: 1.9309 - accuracy: 0.2410 - val_loss: 2.5104 - val_accuracy: 0.1860\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.0813 - accuracy: 0.2065 - val_loss: 2.3834 - val_accuracy: 0.1590\n",
       "Epoch 59/100\n",
-      "4000/4000 [==============================] - 1s 190us/sample - loss: 1.9276 - accuracy: 0.2412 - val_loss: 2.5155 - val_accuracy: 0.1980\n",
+      "4000/4000 [==============================] - 1s 192us/sample - loss: 2.0696 - accuracy: 0.2055 - val_loss: 2.3735 - val_accuracy: 0.1700\n",
       "Epoch 60/100\n",
-      "4000/4000 [==============================] - 1s 200us/sample - loss: 1.9193 - accuracy: 0.2435 - val_loss: 2.4981 - val_accuracy: 0.1880\n",
+      "4000/4000 [==============================] - 1s 206us/sample - loss: 2.0706 - accuracy: 0.2085 - val_loss: 2.3950 - val_accuracy: 0.1730\n",
       "Epoch 61/100\n",
-      "4000/4000 [==============================] - 1s 210us/sample - loss: 1.9180 - accuracy: 0.2447 - val_loss: 2.4965 - val_accuracy: 0.1970\n",
+      "4000/4000 [==============================] - 1s 215us/sample - loss: 2.0615 - accuracy: 0.2087 - val_loss: 2.4830 - val_accuracy: 0.1850\n",
       "Epoch 62/100\n",
-      "4000/4000 [==============================] - 1s 201us/sample - loss: 1.9166 - accuracy: 0.2453 - val_loss: 2.4918 - val_accuracy: 0.1960\n",
+      "4000/4000 [==============================] - 1s 220us/sample - loss: 2.0754 - accuracy: 0.2070 - val_loss: 2.4022 - val_accuracy: 0.1690\n",
       "Epoch 63/100\n",
-      "4000/4000 [==============================] - 1s 196us/sample - loss: 1.9064 - accuracy: 0.2470 - val_loss: 2.5148 - val_accuracy: 0.1930\n",
+      "4000/4000 [==============================] - 1s 205us/sample - loss: 2.0596 - accuracy: 0.2107 - val_loss: 2.4050 - val_accuracy: 0.1520\n",
       "Epoch 64/100\n",
-      "4000/4000 [==============================] - 1s 207us/sample - loss: 1.9049 - accuracy: 0.2488 - val_loss: 2.5227 - val_accuracy: 0.1970\n",
+      "4000/4000 [==============================] - 1s 209us/sample - loss: 2.0550 - accuracy: 0.2150 - val_loss: 2.3864 - val_accuracy: 0.1740\n",
       "Epoch 65/100\n",
-      "4000/4000 [==============================] - 1s 205us/sample - loss: 1.9042 - accuracy: 0.2492 - val_loss: 2.4817 - val_accuracy: 0.1990\n",
+      "4000/4000 [==============================] - 1s 222us/sample - loss: 2.0557 - accuracy: 0.2118 - val_loss: 2.3918 - val_accuracy: 0.1690\n",
       "Epoch 66/100\n",
-      "4000/4000 [==============================] - 1s 209us/sample - loss: 1.8979 - accuracy: 0.2505 - val_loss: 2.5074 - val_accuracy: 0.2060\n",
+      "4000/4000 [==============================] - 1s 201us/sample - loss: 2.0439 - accuracy: 0.2130 - val_loss: 2.3940 - val_accuracy: 0.1720\n",
       "Epoch 67/100\n",
-      "4000/4000 [==============================] - 1s 196us/sample - loss: 1.8973 - accuracy: 0.2492 - val_loss: 2.4933 - val_accuracy: 0.2000\n",
+      "4000/4000 [==============================] - 1s 195us/sample - loss: 2.0448 - accuracy: 0.2183 - val_loss: 2.4027 - val_accuracy: 0.1700\n",
       "Epoch 68/100\n",
-      "4000/4000 [==============================] - 1s 221us/sample - loss: 1.8890 - accuracy: 0.2522 - val_loss: 2.4996 - val_accuracy: 0.2040\n",
+      "4000/4000 [==============================] - 1s 219us/sample - loss: 2.0359 - accuracy: 0.2198 - val_loss: 2.3885 - val_accuracy: 0.1780\n",
       "Epoch 69/100\n",
-      "4000/4000 [==============================] - 1s 207us/sample - loss: 1.8850 - accuracy: 0.2525 - val_loss: 2.5005 - val_accuracy: 0.2070\n",
+      "4000/4000 [==============================] - 1s 169us/sample - loss: 2.0426 - accuracy: 0.2150 - val_loss: 2.3964 - val_accuracy: 0.1800\n",
       "Epoch 70/100\n",
-      "4000/4000 [==============================] - 1s 203us/sample - loss: 1.8803 - accuracy: 0.2525 - val_loss: 2.5260 - val_accuracy: 0.2110\n",
+      "4000/4000 [==============================] - 1s 223us/sample - loss: 2.0353 - accuracy: 0.2212 - val_loss: 2.3940 - val_accuracy: 0.1790\n",
       "Epoch 71/100\n",
-      "4000/4000 [==============================] - 1s 219us/sample - loss: 1.8820 - accuracy: 0.2582 - val_loss: 2.5099 - val_accuracy: 0.2030\n",
+      "4000/4000 [==============================] - 1s 181us/sample - loss: 2.0280 - accuracy: 0.2210 - val_loss: 2.3928 - val_accuracy: 0.1840\n",
       "Epoch 72/100\n",
-      "4000/4000 [==============================] - 1s 218us/sample - loss: 1.8753 - accuracy: 0.2580 - val_loss: 2.5089 - val_accuracy: 0.2050\n",
+      "4000/4000 [==============================] - 1s 195us/sample - loss: 2.0289 - accuracy: 0.2218 - val_loss: 2.3878 - val_accuracy: 0.1840\n",
       "Epoch 73/100\n",
-      "4000/4000 [==============================] - 1s 209us/sample - loss: 1.8678 - accuracy: 0.2590 - val_loss: 2.5040 - val_accuracy: 0.2020\n",
+      "4000/4000 [==============================] - 1s 187us/sample - loss: 2.0237 - accuracy: 0.2240 - val_loss: 2.4028 - val_accuracy: 0.1840\n",
       "Epoch 74/100\n",
-      "4000/4000 [==============================] - 1s 213us/sample - loss: 1.8650 - accuracy: 0.2605 - val_loss: 2.5434 - val_accuracy: 0.2080\n",
+      "4000/4000 [==============================] - 1s 205us/sample - loss: 2.0256 - accuracy: 0.2210 - val_loss: 2.4272 - val_accuracy: 0.1880\n",
       "Epoch 75/100\n",
-      "4000/4000 [==============================] - 1s 226us/sample - loss: 1.8651 - accuracy: 0.2562 - val_loss: 2.5385 - val_accuracy: 0.2040\n",
+      "4000/4000 [==============================] - 1s 173us/sample - loss: 2.0258 - accuracy: 0.2243 - val_loss: 2.4007 - val_accuracy: 0.1730\n",
       "Epoch 76/100\n",
-      "4000/4000 [==============================] - 1s 211us/sample - loss: 1.8626 - accuracy: 0.2623 - val_loss: 2.5813 - val_accuracy: 0.2030\n",
+      "4000/4000 [==============================] - 1s 199us/sample - loss: 2.0127 - accuracy: 0.2300 - val_loss: 2.3932 - val_accuracy: 0.1820\n",
       "Epoch 77/100\n",
-      "4000/4000 [==============================] - 1s 209us/sample - loss: 1.8607 - accuracy: 0.2603 - val_loss: 2.5064 - val_accuracy: 0.2020\n",
+      "4000/4000 [==============================] - 1s 211us/sample - loss: 2.0089 - accuracy: 0.2278 - val_loss: 2.3811 - val_accuracy: 0.1750\n",
       "Epoch 78/100\n",
-      "4000/4000 [==============================] - 1s 201us/sample - loss: 1.8557 - accuracy: 0.2677 - val_loss: 2.5273 - val_accuracy: 0.2110\n",
+      "4000/4000 [==============================] - 1s 202us/sample - loss: 2.0142 - accuracy: 0.2307 - val_loss: 2.3694 - val_accuracy: 0.1660\n",
       "Epoch 79/100\n",
-      "4000/4000 [==============================] - 1s 204us/sample - loss: 1.8555 - accuracy: 0.2660 - val_loss: 2.5328 - val_accuracy: 0.2060\n",
+      "4000/4000 [==============================] - 1s 204us/sample - loss: 1.9999 - accuracy: 0.2350 - val_loss: 2.3983 - val_accuracy: 0.1750\n",
       "Epoch 80/100\n",
-      "4000/4000 [==============================] - 1s 220us/sample - loss: 1.8447 - accuracy: 0.2657 - val_loss: 2.5264 - val_accuracy: 0.2170\n",
+      "4000/4000 [==============================] - 1s 219us/sample - loss: 2.0165 - accuracy: 0.2265 - val_loss: 2.4120 - val_accuracy: 0.1770\n",
       "Epoch 81/100\n",
-      "4000/4000 [==============================] - 1s 202us/sample - loss: 1.8411 - accuracy: 0.2668 - val_loss: 2.5486 - val_accuracy: 0.2110\n",
+      "4000/4000 [==============================] - 1s 208us/sample - loss: 2.0099 - accuracy: 0.2338 - val_loss: 2.4254 - val_accuracy: 0.1880\n",
       "Epoch 82/100\n",
-      "4000/4000 [==============================] - 1s 213us/sample - loss: 1.8379 - accuracy: 0.2750 - val_loss: 2.5630 - val_accuracy: 0.2050\n",
+      "4000/4000 [==============================] - 1s 217us/sample - loss: 1.9937 - accuracy: 0.2340 - val_loss: 2.4193 - val_accuracy: 0.1770\n",
       "Epoch 83/100\n",
-      "4000/4000 [==============================] - 1s 212us/sample - loss: 1.8340 - accuracy: 0.2673 - val_loss: 2.5301 - val_accuracy: 0.2090\n",
+      "4000/4000 [==============================] - 1s 218us/sample - loss: 1.9915 - accuracy: 0.2385 - val_loss: 2.4072 - val_accuracy: 0.1740\n",
       "Epoch 84/100\n",
-      "4000/4000 [==============================] - 1s 221us/sample - loss: 1.8321 - accuracy: 0.2780 - val_loss: 2.5446 - val_accuracy: 0.2160\n",
+      "4000/4000 [==============================] - 1s 230us/sample - loss: 1.9964 - accuracy: 0.2348 - val_loss: 2.4355 - val_accuracy: 0.1770\n",
       "Epoch 85/100\n",
-      "4000/4000 [==============================] - 1s 211us/sample - loss: 1.8299 - accuracy: 0.2730 - val_loss: 2.5471 - val_accuracy: 0.2130\n",
+      "4000/4000 [==============================] - 1s 242us/sample - loss: 1.9956 - accuracy: 0.2340 - val_loss: 2.4133 - val_accuracy: 0.1840\n",
       "Epoch 86/100\n",
-      "4000/4000 [==============================] - 1s 195us/sample - loss: 1.8278 - accuracy: 0.2803 - val_loss: 2.5578 - val_accuracy: 0.2150\n",
+      "4000/4000 [==============================] - 1s 224us/sample - loss: 1.9844 - accuracy: 0.2373 - val_loss: 2.4133 - val_accuracy: 0.1850\n",
       "Epoch 87/100\n",
-      "4000/4000 [==============================] - 1s 191us/sample - loss: 1.8199 - accuracy: 0.2853 - val_loss: 2.5574 - val_accuracy: 0.2310\n",
+      "4000/4000 [==============================] - 1s 222us/sample - loss: 1.9883 - accuracy: 0.2390 - val_loss: 2.4464 - val_accuracy: 0.1880\n",
       "Epoch 88/100\n",
-      "4000/4000 [==============================] - 1s 204us/sample - loss: 1.8155 - accuracy: 0.2873 - val_loss: 2.5630 - val_accuracy: 0.2250\n",
+      "4000/4000 [==============================] - 1s 217us/sample - loss: 1.9847 - accuracy: 0.2405 - val_loss: 2.4194 - val_accuracy: 0.1820\n",
       "Epoch 89/100\n",
-      "4000/4000 [==============================] - 1s 225us/sample - loss: 1.8082 - accuracy: 0.2880 - val_loss: 2.5521 - val_accuracy: 0.2260\n",
+      "4000/4000 [==============================] - 1s 219us/sample - loss: 1.9814 - accuracy: 0.2445 - val_loss: 2.5359 - val_accuracy: 0.1970\n",
       "Epoch 90/100\n",
-      "4000/4000 [==============================] - 1s 213us/sample - loss: 1.8135 - accuracy: 0.2878 - val_loss: 2.5800 - val_accuracy: 0.2270\n",
+      "4000/4000 [==============================] - 1s 208us/sample - loss: 1.9751 - accuracy: 0.2455 - val_loss: 2.3937 - val_accuracy: 0.1920\n",
       "Epoch 91/100\n",
-      "4000/4000 [==============================] - 1s 205us/sample - loss: 1.8044 - accuracy: 0.2920 - val_loss: 2.5182 - val_accuracy: 0.2250\n",
+      "4000/4000 [==============================] - 1s 230us/sample - loss: 1.9663 - accuracy: 0.2450 - val_loss: 2.4166 - val_accuracy: 0.1940\n",
       "Epoch 92/100\n",
-      "4000/4000 [==============================] - 1s 216us/sample - loss: 1.7992 - accuracy: 0.2915 - val_loss: 2.5493 - val_accuracy: 0.2290\n",
+      "4000/4000 [==============================] - 1s 212us/sample - loss: 1.9731 - accuracy: 0.2407 - val_loss: 2.4553 - val_accuracy: 0.1970\n",
       "Epoch 93/100\n",
-      "4000/4000 [==============================] - 1s 202us/sample - loss: 1.7937 - accuracy: 0.2928 - val_loss: 2.5567 - val_accuracy: 0.2310\n",
+      "4000/4000 [==============================] - 1s 216us/sample - loss: 1.9593 - accuracy: 0.2530 - val_loss: 2.4430 - val_accuracy: 0.1970\n",
       "Epoch 94/100\n",
-      "4000/4000 [==============================] - 1s 218us/sample - loss: 1.7905 - accuracy: 0.2910 - val_loss: 2.5354 - val_accuracy: 0.2170\n",
+      "4000/4000 [==============================] - 1s 221us/sample - loss: 1.9580 - accuracy: 0.2465 - val_loss: 2.4463 - val_accuracy: 0.1960\n",
       "Epoch 95/100\n",
-      "4000/4000 [==============================] - 1s 228us/sample - loss: 1.7853 - accuracy: 0.2940 - val_loss: 2.5623 - val_accuracy: 0.2200\n",
+      "4000/4000 [==============================] - 1s 211us/sample - loss: 1.9636 - accuracy: 0.2515 - val_loss: 2.4132 - val_accuracy: 0.1940\n",
       "Epoch 96/100\n",
-      "4000/4000 [==============================] - 1s 208us/sample - loss: 1.7873 - accuracy: 0.2975 - val_loss: 2.5742 - val_accuracy: 0.2230\n",
+      "4000/4000 [==============================] - 1s 209us/sample - loss: 1.9650 - accuracy: 0.2495 - val_loss: 2.4247 - val_accuracy: 0.1980\n",
       "Epoch 97/100\n",
-      "4000/4000 [==============================] - 1s 208us/sample - loss: 1.7786 - accuracy: 0.2988 - val_loss: 2.5462 - val_accuracy: 0.2290\n",
+      "4000/4000 [==============================] - 1s 215us/sample - loss: 1.9525 - accuracy: 0.2542 - val_loss: 2.4405 - val_accuracy: 0.2030\n",
       "Epoch 98/100\n",
-      "4000/4000 [==============================] - 1s 210us/sample - loss: 1.7762 - accuracy: 0.3000 - val_loss: 2.5775 - val_accuracy: 0.2270\n",
+      "4000/4000 [==============================] - 1s 197us/sample - loss: 1.9533 - accuracy: 0.2542 - val_loss: 2.4446 - val_accuracy: 0.1980\n",
       "Epoch 99/100\n",
-      "4000/4000 [==============================] - 1s 195us/sample - loss: 1.7740 - accuracy: 0.3007 - val_loss: 2.5623 - val_accuracy: 0.2280\n",
+      "4000/4000 [==============================] - 1s 210us/sample - loss: 1.9489 - accuracy: 0.2558 - val_loss: 2.4594 - val_accuracy: 0.1990\n",
       "Epoch 100/100\n",
-      "4000/4000 [==============================] - 1s 212us/sample - loss: 1.7631 - accuracy: 0.3010 - val_loss: 2.5923 - val_accuracy: 0.2340\n"
+      "4000/4000 [==============================] - 1s 227us/sample - loss: 1.9511 - accuracy: 0.2495 - val_loss: 2.4144 - val_accuracy: 0.1940\n"
      ]
     }
    ],
@@ -4177,7 +4186,7 @@
     "drive.mount('/content/gdrive')\n",
     "\n",
     "# load model : go on your google drive account and get the best model that was saved\n",
-    "model = load_model('/content/gdrive/My Drive/best_model-159.2130584716797.h5')\n",
+    "model = load_model('/content/gdrive/My Drive/best_model-1.939315915107727.h5')\n",
     "model.summary()\n",
     "      \n",
     "\n",
-- 
GitLab