diff --git a/src/python/extractMPs.py b/src/python/extractMPs.py
index e80f9257c9b22dcb45c98604cd3be67a850ebb49..4906815393b8856c88db90083b2bd2786c268a64 100644
--- a/src/python/extractMPs.py
+++ b/src/python/extractMPs.py
@@ -25,6 +25,7 @@ class MPs_Extractor(object):
     # input:
     # - df_year: dataframe for a year
     # output:
+    # TODO: update
     # - list_names:
     #      contains:
     #        - list of last names that appear only once and cannot be split
@@ -43,11 +44,10 @@ class MPs_Extractor(object):
         str_simple = 'simple'
         str_double = 'double'
         str_comp = 'comp'
-        str_canton2 = 'canton'
+        str_canton = 'canton'
 
     	# function to split lastname and save meaningful part(s) to list
-        def split_lastname(df_year, lastname, uniqueID, tpl_canton, str_completeName, bln_unique = True):
-            str_canton = 'tobedeleted'
+        def split_lastname(df_year, lastname, uniqueID, str_completeName, bln_unique = True):
     	    # if last name is a composite name, e.g. 'von Arx' and 'de Stoppani'
             lastname_split = lastname.split()
             if len(lastname_split) > 1:
@@ -58,10 +58,8 @@ class MPs_Extractor(object):
                         df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'completeName'] = str_completeName
                         if bln_unique:
                             df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_comp
-                            list_names.append((str_comp, item, lastname, uniqueID) + tpl_canton)
                         else:
-                            df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_canton2
-                            list_names.append((str_canton2, item, str_canton, uniqueID) + tpl_canton)
+                            df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_canton
             else:
         		# if last name is a double name, e.g. 'Meier-Müller'
                 lastname_split2 = lastname.replace('-', ' ').split()
@@ -72,72 +70,44 @@ class MPs_Extractor(object):
                     # set nametype
                     if bln_unique:
                         df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_double
-                        list_names.append((str_double, lastname, lastname, uniqueID) + tpl_canton)
                     else:
-                        df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_canton2
-                        list_names.append((str_canton2, lastname, str_canton, uniqueID) + tpl_canton)
+                        df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_canton
+
                     # duplicate this entry three times
                     df_tripled = df_year[df_year['uniqueIndex'] == uniqueID]
-                    print(df_tripled)
                     df_tripled = pd.concat([df_tripled]*3, ignore_index = True)
-                    print(df_tripled)
 
-                    # set short name
+                    # set short name without -
                     i = 0
                     df_tripled.loc[i, 'shortName'] = ''.join(lastname.split('-'))
+                    # and for each separate name
                     for item in lastname_split2:
                         i += 1
                         df_tripled.loc[i, 'shortName'] = item
 
-                    print(df_tripled)
+                    # concatenate with yearly dataframe
                     df_year = pd.concat([df_year, df_tripled], ignore_index = True)
 
-        		    # write each part of double name into corresponding list
-                    for item in lastname_split2:
-                        if bln_unique:
-                            list_names.append((str_double, item, lastname, uniqueID) + tpl_canton)
-                        else:
-                            list_names.append((str_canton2, item, str_canton, uniqueID) + tpl_canton)
-                    # TODO: how to add double names to dataframe? create another entry???
-        		    # write double name into list
-#                    list_names.append((str_double, lastname, lastname, uniqueID) + tpl_canton)
-        		    # write double name without space into list
-                    list_names.append((str_double, ''.join(lastname.split('-')), lastname, uniqueID) + tpl_canton)
                 else:
                     df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'shortName'] = lastname
                     df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'completeName'] = str_completeName
                     if bln_unique:
                         df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_simple
-                        list_names.append((str_simple, lastname, lastname, uniqueID) + tpl_canton)
                     else:
-                        df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_canton2
-                        list_names.append((str_canton2, lastname, str_canton, uniqueID) + tpl_canton)
+                        df_year.loc[(df_year['uniqueIndex'] == uniqueID), 'nameType'] = str_canton
 
             return df_year
 
-        # function to get canton and citizenship for uniqueID
-        def get_canton(df_year, uniqueID):
-            str_cantonname = df_year['CantonName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_cantonabbr = df_year['CantonAbbreviation'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_citizenship = df_year['Citizenship'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_firstname = df_year['FirstName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_addInfo = df_year['additionalInfo'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-
-            return (str_cantonname, str_cantonabbr, str_citizenship, str_firstname, str_addInfo)
-
         def _get_complete_name(df_year, uniqueID):
-            str_lastName = df_year['LastName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_firstName = df_year['FirstName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_cantonName = df_year['CantonName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_cantonAbbr = df_year['CantonAbbreviation'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
-            str_canton = '(' + ' '.join((str_cantonName, str_cantonAbbr)) + ')'
-            str_completeName = ' '.join((str_lastName, str_firstName, str_canton))
+            _str_lastName = df_year['LastName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
+            _str_firstName = df_year['FirstName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
+            _str_cantonName = df_year['CantonName'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
+            _str_cantonAbbr = df_year['CantonAbbreviation'].loc[df_year['uniqueIndex']==uniqueID].iloc[0]
+            _str_canton = '(' + ' '.join((_str_cantonName, _str_cantonAbbr)) + ')'
+            str_completeName = ' '.join((_str_lastName, _str_firstName, _str_canton))
 
             return str_completeName
 
-    	# create empty lists for last names
-        list_names = []
-
     	# for every last name
         for lastname in df_year['LastName'].drop_duplicates():
 	    #print('name', lastname, type(lastname))
@@ -151,14 +121,11 @@ class MPs_Extractor(object):
         		# extract unique index
                 uniqueID = df_temp.iloc[0]['uniqueIndex']
 
-                # get canton information for that uniqueID
-                tpl_canton = get_canton(df_year, uniqueID)
-
                 # get complete name
                 str_completeName = _get_complete_name(df_year, uniqueID)
 
         		# write complete name to list of last names
-                df_year = split_lastname(df_year, lastname, uniqueID, tpl_canton, str_completeName, bln_unique = True)
+                df_year = split_lastname(df_year, lastname, uniqueID, str_completeName, bln_unique = True)
 
     	    # if there are several people with the same last name
             else:
@@ -167,16 +134,13 @@ class MPs_Extractor(object):
         		    # extract unique index
                     uniqueID = df_temp.loc[idx]['uniqueIndex']
 
-                    # get canton information for that uniqueID
-                    tpl_canton = get_canton(df_year, uniqueID)
-
                     # get complete name
                     str_completeName = _get_complete_name(df_year, uniqueID)
 
         		    # write the lastname to the list
-                    df_year = split_lastname(df_year, lastname, uniqueID, tpl_canton, str_completeName, bln_unique = False)
+                    df_year = split_lastname(df_year, lastname, uniqueID, str_completeName, bln_unique = False)
 
-        return list_names, df_year
+        return df_year
 
     def extract(self):
         # read excel file and save first sheet to a dataframe
@@ -222,14 +186,14 @@ class MPs_Extractor(object):
 
             # extract every MP that was active in that year
             # (every MP of a year joined before the end of the and left after the beginning of the year)
-            _df_year = _df_after1890[pd.to_datetime(_df_after1890['DateJoining']) <= datetime.datetime(year, 12, 31, 0, 0)]
-            _df_year = _df_year[pd.to_datetime(_df_year['DateLeaving']) >= datetime.datetime(year, 1, 1, 0, 0)]
-            print(year, _df_year.shape)
+            df_year = _df_after1890[pd.to_datetime(_df_after1890['DateJoining']) <= datetime.datetime(year, 12, 31, 0, 0)]
+            df_year = df_year[pd.to_datetime(df_year['DateLeaving']) >= datetime.datetime(year, 1, 1, 0, 0)]
+            print(year, df_year.shape)
 
             # generate new column for name type and short and complete name
-            _df_year = _df_year.assign(nameType='')
-            _df_year = _df_year.assign(shortName='')
-            _df_year = _df_year.assign(completeName='')
+            df_year = df_year.assign(nameType='')
+            df_year = df_year.assign(shortName='')
+            df_year = df_year.assign(completeName='')
 
             # write df_year to a yearly csv file
         #    str_year = str(year)
@@ -237,15 +201,13 @@ class MPs_Extractor(object):
 
             # create a pandas dataframe from list of names
             # !!! list contains errors, see definition of function
-            _list_lastnames, _df_year = self.get_list_of_lastnames(_df_year, _df_after1890)
-            df_lastnames = pd.DataFrame(_list_lastnames, columns = ('type', 'name_short', 'name_correct', 'uniqueIndex', 'CantonName', 'CantonAbbreviation', 'Citizenship', 'FirstName', 'additionalInfo'))
-            print(df_lastnames)
-            print(_df_year)
+            df_year = self.get_list_of_lastnames(df_year, _df_after1890)
+            print(df_year)
 
             # dump dictionary of last names to a pickle file
 #           path = pathlib.
             with open(self.output_folder_dict + str(year) + "_lastnames.pickle", 'wb') as f:
-                pickle.dump(df_lastnames, f)
+                pickle.dump(df_year, f)
 
 
 # years of interest
@@ -256,21 +218,3 @@ df_addInfo = pd.read_csv(input_file_addInfo)
 
 mps_extractor = MPs_Extractor(years, input_file, output_file_csv, output_folder_dict, df_addInfo)
 mps_extractor.extract()
-
-
-#%%
-import pandas as pd
-input_file_addInfo = './data/politicians/MPs_additionalInfo.csv'
-df_addInfo = pd.read_csv(input_file_addInfo)
-df_addInfo
-df_new = df_addInfo[df_addInfo['LastName']=='Blumer']
-df_new = pd.concat([df_new]*3, ignore_index=True)
-df_new
-
-
-df_new.loc[0, 'Additional'] = 'first'
-df_new.loc[1, 'Additional'] = 'second'
-df_new.loc[2, 'Additional'] = 'both'
-df_new
-
-pd.concat([df_addInfo, df_new], ignore_index = True)