From a267aa99602ef3e22cbc9ed59b2ee65f3beb1cf6 Mon Sep 17 00:00:00 2001 From: Jeffrey Post <jeffrey.post@etu.unige.ch> Date: Sun, 20 Dec 2020 14:05:53 +0000 Subject: [PATCH] update stigma imputation --- data/new/imputation_output/imputed.xlsx | Bin 30512 -> 31094 bytes notebooks/data/2_compile/compile.ipynb | 196 +- .../data/3_imputation/missing_values.ipynb | 944 +-- .../data/3_imputation/stigma/stigma.ipynb | 5631 ++++++----------- 4 files changed, 2511 insertions(+), 4260 deletions(-) diff --git a/data/new/imputation_output/imputed.xlsx b/data/new/imputation_output/imputed.xlsx index 075ebcbd8993facfa1a89c0f6dab0eca1d368c01..d633d42b4139d1136fef3548d98411c540783bc8 100644 GIT binary patch delta 27347 zcmV*QKwrPG?g94l0S!<~0|XQR000O8M`e_e4Xg=AWt35RV;!vNk-{c_%Dr`xO&p>w z7Z4|qkeCGG7CGKl(X>%w)b8zR%hrM5#xedsf3}qhqrooGQ|clmt|_mE(6rfL+=?S} zGyoZo6kIMxq8-D1mxAN*nGO&gzPkf~mhuJyvGa}{Ou`~AMsZepT$J%6HM77YP(y)Q z&Y(&KSC%P-{Aa_QEaZ@X>xJt3zU<dCH*Tch_3`0(UcRW?%&tWew(@8&k>f7e>7sZV znhL%ZtMlxy0{PWA!SE^4R$P*o_3hp6URW))ER-&^+$n7~+NjOj<oeNn6^72&`}!Zo zi@;X!>)-4rP)h>@6aWAK2mnWAlu?;noFfnh005jP000vJ004Ni=K(AR4o78_QO(i= zES6^g0HslrAqXIUS$7;awk-Tty!z#PI_boWysJ;ImF7GTRYkJ&M%%Q-uO-n}lH0fM zufG5-i4_r<D6@};^01Mam;!+fYy|%P$J57uetP@x@cFy{^Zwn3PyhY5x1T@%_P@UW z{?kuyAKu@8>Yjdk_)sjrJbiqB|GE6<$6vqy^xMaW`=6hGAA0}pd)xQ%`}g;cAO7}_ zzd!%K%a8x~`_u2A-#vbKxcvCtr{CYdzyJ8}A0FO4{qf&_Gk^Q~Kdv8tef#<Oe|-Os zzyEgs>%-#V^Xj+qK>5$_zrE+@$M+8(K0Q8t`0nGwFaQ0w(fqG*o&S91InB-E!ylhE z{{6dJoFAWmp8i??<LKxA{###j_3-ZDr_c2z_vIh|df0h*_pZLH<mG>VdF|g`K3kvM z{P(Y~-+!)wlEEMEKRxU`y}Nz<`SaWV{#*XrcRxS;a{v3g&(}|X96o$0Rd~tb?)~Tc zfBgO9(;we`ti}Du-+!wA^8EGZ;+N!)A8KVSK7TBK*2nU_&;QtY`u)S_kN^Jr_n%8v z>i_!wr!Now(0*|B>7jf2rTgirJbwSv!*8|N6K~mRzh&=V4<EbV?jL{dO1pQT9{$h7 zD|XwjxPAQPq5JXS{`2F9U%UVR_fMZ6e|dcPxx1Zs)82pdrn8AR?Qf}^55IkU`ds=# zdHlJ5bkij}Xusv);lsnn`*+<h4<A22zI*)q@9yLM=ZA^+9Jb$ccK`8XEl8>1#}D1_ zA4*G2R?pGvUo%xV$L-gg|Nj2R(&*29r~9Lz<WtvAyyfK8Z!r^ZIeqn8?8IBn{_0!i zGjjgAS4`#NqWy~f$B&;r*N)cx`0vhy$riqUeBCRiTKB5`ijxmdf4qD6`PYZ;{>L&l zcjM9SVlpe&|G|5v^0R2a=ZD|_-Tm_M>3#R<?bC1ne0cb+)bbyXpWn`BZ23QV;ZzP+ z?H3+@8)(W{`g3{l<1gLY-#`6$|KaEEZQ;em@@O)jH~;h3PUZIYua9hR3kQ|be|-FZ z^v~x`GnLD`|NM1Rxm#};q8{!)bRWK9sl4U)GJgJc|M7DfNk4VB-FfBKcaQ(~;pd5$ zzxf}%{H*=*aSIVYGvUXFpB^6nRq5yO=%)MpP|!G4spA%Io_p6+jgDIw`t0FD_tWFY zpMHP;)8nV<l5HXAue|ZcQ<-8t*Vp5JPmjO-$+Cq=etsw~E?n|y>eX8q8(;m$+o$g5 z$4~daetdZN6O(^zF#6Q%x6t_M<L8G;xzmlXg}uK$JXz~oD0}?rr-x6Uy3bGD`-h(& z@24}cg|GP?llj;}*0<j(w$68_Ua*Cy&$c|ig`oF~Yw+%&dt2OqIzl}C{^{X=?bEx- zUbuy%$6u#rPU99{zJ0iVSNhT8ho8%Ubny7$aq1mgh<UtTPCd1Si$DHerhZe;Z6V;D zw`BnR{CGb#86UTh?%D63-aWpbdT<NN?mxZzXLtSZ?(x@YFJRn4s;dw8zx-0Bxc8L@ zTJPDyr5B$ogS1|-g*6wyfBe^f!<08PZsEnpPft@%ZK1!Pp8lA6Y75I9tns1mi_iDX z@w49?Kilq=AAWs$cR%I#+2<#!m;JAQ7}vSKfB&ydhi=oHy8*4cn^qg@Ja*H(2k#!b zjOKkXcQ$ymAHds97twsUX%2yNeza-!iJv~+G^f}N{l*^#)1E*^6BqM;6u#62w4QBR z2g8+cjumVM_yf~kP=zEkUxL|kMy@u^PM*F7vsC9|(;OWaV+rQa`9^iFpy7s&%s0?7 zzWJ(Ks*xe~)QRq>i<*$AC#*M9^qtMN59Zr1rhS8Hb03D(8$a0Kk~5Te9HC=muJIAD z=Nxy@5x_U3uJ=AB=lx)RoT26!0g5qm9~}XUk-r2`44Io`1Sn?LM9T=kw7tBHkxBh@ zJf^<XHy|+rHsc`W25>q-=LqohzRRXJHim3%%A6Lk8Vo~ZM11no08baYz~kKr2p#$^ z7#D5KZnBoIsoVBL^e*<?vVdFP8Q=S8tl?yU--41qKkPY&0NtK{j5pZshAZF;SSQHo z;9`<ZXVae_O!DaL_kl9qH_CKv*Z<+e<J6?$2e-)vWqcyW+%)IT^$n=(Zl-m@4SVz@ z>ihd(?uL+=Kq0}v<ImxyIrUAP9c`u!Uf6Wg90eICn`WChBd3s0>Q-lv%Ov~>ueOZ; z3wU+lvFLKsJaAKgUeUwUp|9!F^z;JEk)K{t+f$9Mpu!`+{01s~=t86IZlM^iGd<P+ z9p!Xj+^-#uHLg!_`1VUJ@&*$-<VYSfN2mtnEkK*)AqT)Vlxc@^HpOUiNWEpM0JQmD z=oa8sNRS6Vz+0gbAxXjr7X|PpJ#_?#>0|&PmO`_|M*tju4+|sU&C0kk0_0qQMXZw> z=W{Haz?=w`D)1ZufPu>l_zSM|EKYHS&v(P%UFa=;2C-PCr{3f~4ctV4Nt3&hr0{0X zOa<616OinaFY`t&J784U5Ie5n$=?@LPVmm&`6L^@GX0vqKf{Lp8younj14_-6mj9E zaf@@a3onX);!EOp#Fqqf@fjSo=>a5=N$26Fxo~02={VX<TZU%J%JHT-T1MB&rdfUF z(@pchqre$dXwRiMhe8f)z5p}z=1Va4%+XhnZK11cFpI0d*ff`+m-@*P%rZ$|L5&KN z-ay;Ymv5n1rVC|aPweM$=qR&jV!zD<g*HrZ*?;?grOdp+#BK=Xi!Oih6nUT-H&Yj% zKs-cjG4VJ6V1w^c8TVX_<x6Q${)1W`WY`CY6^7x=0LGlmrAB~QnFKQJ0LG*h$D>y7 z91&GYj{vJAiytH4$_gq+K$a`x!w`nT4mOvzW3mC5c_#%0oH_my0IdukZV=8xv@q2{ zNy^NBklP8sW_2C|Xe)h6oID&$x%2?HLM+@3z98<e6Wc4(uj%_Q^#jBfz7bpa&xkD` zVNfx5HqEK?#`b*ydzmQ35U53VH`99Q`FjCDPUigpBg#;m{CRFV2v9lP_J;u>&TFQd zW?h*(4%l<)<tLkFN6(%@A%#EAAY)Po=K=eFJQEwd+;W$_q;FHHuc-d%>1!;OxOtE@ znOH30X&K>HP;Mdgn@w{r^W)GLC(5PJM_z5b-Ap=kE|UF@dWK1sQmnC~*%*uO)+ZO8 z^TR+5_68F>7qad1SGHrCBP<EcQ48>Z2w*F2Ua5jY<Hap0-|U6v0Bt-v0oc6q#6C5D zC%+v47Gzi$0by233JA;U<Ux1P72}h3cNqa?x&<%-%nHl76z$i)nFauJPV)+&W0C^M z6<>M?Tv1ol5Q+18O=Xc@1;}%yN6VrnB<RF<T~Qy-t+l%G1_2~1tzQ86*Lm-i>DToA z8HX-@<GuKw@m@r%QmyYq7-mABLtSrwDPs~(*>*QmMxmm;O>-Gm3G@3A+J;v)A(I1- z=!cu;!X`~`ZZmBN4ESR(%c9N+l!8!j3b_nih%?G172<r;Y=t>4=;f5}OEOb4UV+*2 zFm?^!_FWu?;6gIJDIlRQEg)^`tSwWZLK(e{eWL1GMjU^9_O6e0KP%b9)Cm25$8|$2 ze;RLx@_vT;4OHdO6;?=Lu!X{m3~aYh^x{c`f%gm{m$me~ny|*+S?H)w!JAM$23`bt zLp|B~LXm0kLqSZ>v^tK^--KQOow5@>B07C%OpeK#GQ1Z@RfrNAt{3ML5h`1T)J23S zH|<{5B1XWdO!!8CWv(5tvD^uNAkDh8dV<}9Nt5b<c?NLm%f!gLq5twDqzR>(AWi5D zOq$T+%RH4U1yEZYPoBYzj9YOH!LIWQz^CnGVH7Y~GRR%#2CGsy^b7X>I!C@T{hGc% z;~S=L9GSL6|9<@E<A?k2_U|X-eSSzd#&YaT0w^;*CTvS~3OCJ8))@AG6AUUz7Of5v zc4`iuNq~qpLqa(O$;V)pK${cDh^#uDLLFMJr8CGU@BP86dFOA_D4D*5&k{F6)l2-s zHJD|Ib^&JDG+aWn%R1C*)0{&y(BcM4C_U&FGSXRIh`NKSEu-2%)w{+%*4q%hdHJQW z;|-=Z#tdZ&Fyz9CKJuD>>o`&!^Ee97(om-nu$4>y&BmvY%a<hXVwX@V+kVi0W$|F# z$6h8(1xRz!|3`ot514>0+4L9zTS<03MgZ5Kc|S!E$f758<uDXd%h3+ri!*gjX=S4i zs)?<Dx4Q7e-DkX_aYD!sa2M1w2jCf<1T3+G3bj#hcSCc^0pNpwRmd+)m*zNSf1G5x z`Sg>)G3(jy1JmViOqc&hOqVz7mUsC!jsI2rn3SWp*@c4rEFmwOiIZsto$PI<_2PT& zXB=^e03pjVOdmo%Qkwub)AB;bF&c&bHqAQFokA`NHD{1V86D0y%~sYeFE-5*(sv0D z69HyK5)E3{@Tj<dwF@xUxrz6KbEQ8NM}#;2pmtoDa3<%6XnUUrb_X|;#?qc?2sXLc zJL`F8{sxL(I*v&>`5LPd495iALMQ8T;B|~Us14H%nKx|K0Dv-f1Q&C04vPO-JUqj3 zes8efmee&^C41w`_?wg};qAWjrPzIOu?G`<l0`8<Y7$<51*{Im=SzJqFZ4s7oXpmD z5%n@;0zR!Sb^<_kiDEpU)@O1&#HNurQtaTemI~%5ZwF+?+>U7loJyeB2uLlH`IrZ1 zdzW+R%@RdQX(fsjYK?gm3ROA}$2*Sz-ZFFYTrU9M5W6PLA(%NgOYF(=sTK8f*-FHr zqUWmkg3Z5wPNMVar%9B)KSQF!HxeDTk?8Lqex5os^uw^(rZRWg*)+>Ues|LvHA)m7 zW<PPj7NQRyK)&e3hXZyLYTY9+i-&r=X)aUK<^c<M6_@`MGRZ7>2H#1|@0@R@l||1B zYy~RMB|b})aRnuig}G}mi#NL1G$-9d+%y+DBbcmz;AvUvy@992e7k9`0pc7UgKbk# z!t94#Z1eEM^DmJfrG5zv^{&hrh5VrJYj`05%gc`S2*@h#wli_)V+he^2}azdZ*g7_ zXc|JYPtP|A1&}98l80DJ;x!^7IHSkZoy2Q|9?@R>83BD0ONM7u!`8XF`rhZ{q*#Ez zsnt<`gb8yWWV<-p#>^8J0CK2tUu7OzJln~{*NE+!vJ`?hFUAEzp-k1vlroC13vgw> zaMdybREtw5Ta3dT^Xwi?^5Jay)nxiLeSc<)(e&R4vHa_Q$cXjHmp&}R?GD(fC3eA> z+T^kai8WknAM66Q1I&on55XQ}*f>JFtjQmLgME-$^a(ys)QGhx+=%aPd%5RWPzL7( zR-+s~q?{1MuJCC-Nr6_`>s)}nIDf77UP9t5i)Jgdx6dlxU=0#rZ^7z1JMds|N3~WQ zLt;<recM)9Ir;PIYRs{uEdHR$vY&_<&{Gcx#0f79k?4v;AB~GcA<<xXMSetN2HBZ^ zANLqeJjfy(%XC-PTM_(1oz#uxm<7IHSRC=VC3s*w;m*|dA~A0gIzFBeOv>v_bc6HW zMk_}zuwf?X6hFtFB0@ITC0EW5!ZvSllCP=ix#bYXxs%YXCG~DA4kahxPux)V(skJ{ z3H~~V&Ob0iqVrim7TpkS+amIC|Nh~B<I|+V!4Jl44!h!6?0{X&yI|Ind3$J=<5~M) z@4GPYfOUWw<Rge+4T8oauzMK{j=`RM+snkP2$h=FxNrt$UUoajSMydRTBQ~*>C+sm zgO$Lmv0&AWnFYR_19GqdWMyK76)eFKH)t1M<Q9t_yU6Rhci6=WK^014j>KMnwt4ul z{POZD_sPw`)Ly)bkxL*a5V?=aF@3~X>`Yzr?W2i(A2<$rM92l1DUEy7V7ej6ZPGj- zj{wZ=x$=mBWX3q6jw+5P+O=#5!5XO5$~r<)$l#0zht$_|U%9w%PFGzqv9=<Dl#lg{ zmjuEtN`9`mU0jXQwmjJ#uX#9saE0S-49xF{T=y-Rtioc>yBetHZRS%5BVyS;S643Y zlpr2LB(DpOUqL;=RA<-I96I~JIK42-S(x)gU-WNGTL7oYp&%UKxLfZS(okRywb-*b zk_YTghS+^$X>?0r9ux<VT9$0V8f7W@2=gk7fyahqMB03cS&?J?_%b$spMg0iiGRh{ zi(`CYNN0pkeSlpyfUodzJ>8GZCbQWE*n@1fEzvH=uvS?7z8&ggNE)Omio+Eb49}DA zFiGfQ=EbHpbxWU<NyE2aYOFWXi8201NEa$c_O3_7q?bMD5kWbGdNgJTLkhXfFl3_& zF*<Rq13~I_@fT4#AvA-3z?=v|C2Z=VF1HC6g1|Wu<_Zb6h+2)OTL3U3KnvxWocdU* z*M~toMMUc)zam_PU#S7IL>wbxYe=z#zv4Ia2<k%mfh^u~N0vh)lt8k1Lj~0Xl4efW zW|lr@ADE+0%EFur`l5wn+G03O`Xu=fJ}C)yj)Dbakm$TUu$OLs<wNOx{a{=Tu8@^n zlpgT|hbkRF3O$K-2=*xZct?ihF35h2&&%@H34UJ!2~N>2t955!&oqji<I}vo$?YU7 zxG09xR4%&0mkB#wqrG4?XYX_DZSIFiFI!-(iVL>HPC`S+3hP|l=Nqsm-}E_dxq}o3 zQ@9g~mb)^Irm9?jb4PSOMq9V5j2kQ${|%)M<ne5x*_9IF~f{JzmMB3K4>SD~E? z_vV;fGQBHagNg>=*JMu=!L8>Z5tC6vSP_z0Rn-ua+m3=DLd`^25OyZn8^!!)4XMQn zkw_ry%T=c*mzhvK>SM*JM8JA=^%1jNGl<w=J2{hhMaa>AGm;2Yqw|^tBiSisQvVgk zL^}&Gj)+jJF->1l`3lCIePE6;DGPIq`J$I&+JZSdZ||psi+?a6|DfBRpzy+E2_hGI zX2g)fhwvk*<XE0T9Y6}+aX7^93zm-zNn40_NeUr+n9`7P1wDTXb_w=4<LtEt`g8o2 z1Sei_UN{_oi0YEXR?*z^>#xx+-s1wBQnI(isuuoT;rk_K=mzUbcC~K}iiFhA38q2P zrU@J`v4#|XVQUkUo97M9G??D|l$bQfk!z4g#~-)~ln9|a6_+K%zAs*DjKO<}4#L;z zK#Ay6J-~6F6G%)DHmd07;PVp>Bn~Y+P9yyE?9qsS_)F@QpKdDwLa@x_29t81t*QUy z#0bHuNLb3S&>v(sbsCC;FchU5L}3syu5rOI7B6~9y;gQ4SCl|^EJ@Es$!|^|XSuUG zO@4C^>>N&p&8|5MbL97;sbkurI<w@5@)sNiYfwBxqJB2bRf9U&GHD$`==;bgarYo` z<-%Zp>XGzd`WoKF#0UZ;ov3;p7!sopzY&BvVpE;*$dEV&pD4j{iWJ)kW=2+$PO&tS z*)z<n=)#`k`-K}W!0zPxm-u~h*RJsEJW5{k$60Lv?Gwwc@bN6cvY2^MIlIBe5#qeX z=Q|g9pXHAGiZy(WdTmg7#DwA&_GOH8G26g@D@t!DwJo0XFgVj2V`SNO90^3~9Re^k zVixQ}-A)?3FFvjr;vmsBh{>u87+nprw8>2<4j?G2OkfD9xVcrNKy=dfxf?58Qa==l z0fMy>CID?B6bQPiD!L*Pb9=@)5-w#&VnkpT_AJw+6k;B%b>i9~N~aEFVz&|UB&nf) z3F%dCEm;dium;zu;3}3`gjN{{8t_9Sv-*xCi=*^8r?WFlpK}k)(kEqMjy_+cc}!cI zXXoj|uan0x4G2KU;IspFK0&(+R^^pFe7pEG`v%n^%!K<0`VbQ6atL;1z9Y<m>?j_C zUC%O{;P-{OPSMV^h~g<sicopXh)^?svWk6)-xc5C3hgovy~g*;0g;6v<q*D|1MPgW zl4_L+5v;i_HO>Vse8$Hqxh$5~;MS0$bkog!N8a&%Ly2?7OF4ucNuWjPk#wm<c>udf zY0D5@_I-$<4-@=Iuah&BoFNgU!}`}<KLp)i+a!b#)YVe};KUXrbfhUp1gRZ=bwUw> z64QDn?K32AeWAeA%M9V1hYL<XxKs{Ag`+aFQU?-hzwbl@9I;tEUJc_xNhet{Ms!wD zJ|RJD74f8RsGJj9j&njfI~S98Y1}m)m{#85EX<MMi}sFbi|@>nAV{c4C*1+Nt%q@| z7<@=ICXWW@T}T_-2PF0&aVXt?C0T1@8cghSrbgR0s3##z32GIxRC>tYqE2&!l^|!l zj=`=<;V13vonrQ6rT5H`@CfU*f?fFP0?bafur9F)W$J&0*<*nod|Cwxxb9@T5jsUX zsCZ>a*~C11W^V8`YE4#Mp;d}!Zlfvh%*6|mvF8>msjAFT@4dqmWw4chWso(s^S01g zOr5`+%KREaD`X1Ipyw2Spmq{AK&%d>qhw!vLGOKxa{Us5wQA`OIoXtJ4z0}l5v{h6 z!|+^`Qsp7YHYdVWj<q0M2R*fNNF81yXQ3u^pA-Q*u`Ssa;TjRKRu@wdvUPUf58k;U zmLW`*R?itCx-<(3gjh*`EU1^e(GbGLbvAAuWFtXZh3OE}K`D|zUB>R#ED2FvCV|Sh zsJ|l_`ikCHFz);VGmJZ%1!UY84ItAN0eWWK?{**FKmGLa{`2Ec-(5fa_WO_T9)Fr- zVba$TS2QF1B=84>N`ztdz^)yBAMAxc6Ayg{hU7{3$`5>l%w>;%Fb5)ka*QRA__-6T zA))9~gYqV<d<W(&#}v=;Te8=6fpsA}JC|FYzv9*w2bEe|R&AlI5__~XBuXMKDzuf< z<qful<nI>qUn`Tt_wOKyD`QON^~<$ky%V?!M3!wab$Yo5r23{jW{%ul)ib3ssAmcy zHMuLKXsS|BVeue;L)<Pmi7wWnHq}H(EHsL47a{_4-sYJ?1xy^=M8qqDQXf&@v_0gE zh{&mnv9QieaV^r2hEQ148}&{hu{P)hHK>p%V4{qmvYLUg99+lR93ui#m%s^_ooF5` zsTYfm`-(xK8=R=JBLQt+!8yfzGb^-n5A0s=Oj9LgVa_>!eNp-`ZK<EvQ6<VMsKYuS zu&X~{vNdJ8Dgx2Fka){IaC-&?HR@VbnOvKc%OqI#KtaBw9vWaig<?=44)Jl>6g<ML zNT}N}mP?MBkbsgb?4ov$?0CY<Wk>WJizc)43o5#($zt|o(eR2}Sk7?5`(^A~fZdBX zzr@NF_hf~CcD_rJyHxH=?-*>XH{<bf(_1b|=IaITur12C*Yg+Gkfe+m24aKcYzd|g zc%h^cDM-J_AdYa<80!)7IFz|%OvObi8S@hVig0vF8GGDyRPO-VMi(&=ce?2@BJ?zf z6rra}-Uz+8Wfv2nsCT`Nh{Y*Ab?nW>RShu~SM>RRR|M5Du}%vRo9c;DZsn9EVzXY* zt|780x1_!&No46RCw5@2kQI0EEf<kc1#|TI_!XnCAk?`BW(k$DFynjL7o{NERtnmA z`uy<S&;Q@izn&gHK1`9Q1$`L_TG>In43WEF_i_Sk5A9Uv`xbR41{2dfMh-A9vKn*< z_9%3JbcA`481`eZ3s-_wW0g+9F2~Hy>?;&a&atGj7JtF5#-T!J7j$2t-ANcNmQ|+o z3oNVS{4LQgKKu%6n!Qf2ZabBUMX3Q7l;RExQ@jf!A+^*G9sa?~xs;mDWJ=@^BzF^H zdze94SRWCDLzzdpA)8=^SR5tY8>QDVb24Io#sB2|astF*)PeVqpujb9#NAtNrNl3! zE!2t7QZ75CKElL_1uj#C6he&xt5Vxsc!Z|cOVtpYx;ct<W9tP0Or6{SqI9q=!GiG1 z#7P}kmc>_$2d;%1Dx~g=+BtcjouivcuAF~hT0m&cS(tG??Ta3eZR-K;eSZ7+^xNZq z{Ul8qgeWh|qFq@M1U%^BJ$zWMI@kw$uUeu9kU;NZIK<CO9L$kLjSg9o1$&kQBqv}W z+80uvVrFH17T+a#JqNom(*@QgpDv+qvmy{aEdJg#*qtoCFEDR%kZ6hZETZ-+Y$u5% zy8(L|+A%}aB?r%8Wp|jJE_mMUTXWBU!?Py5GE1pRLr-@9MyxK4dO_5AJxY(Ts|$6m zisSmBcgc%}9@buHlgb_=UQS?Q<|KRw+fola9=35X9#KaZQ6TJ$x-)sgs8w2|BFdpl z{6qnEEG=(BiZ00Y$OufiW(0vL;Xa7WT)LXLtccD!y-zj;FE^eLN_`hn=u78+ml#?e zvt!C-CMP*xa<`7Xeg3qNCZ)69m|jA6Z)lKFHCj7MP|L$<>U`w`YtF))oB1LGWZN=8 zP3i>w4GGWQ0lRd<T`(6MHA9IYu@}(nTM}R4fQ19htn7vyTG9&P<yb6?Fu*a`w+KI; zVB)U1d~u37m!(=T557qq=hP&B;(dY)hAgdJf?WotE6k~cW?tjtqIR}GJ4YE=5<KC+ zBJNKdm&+~Gc0Qpd<SyMistGTvx@+o@{gy}~PX0}P@6V-M(Rs%VC<`Gvy{aA{JcmE! z&Fb|gLsB)kSAlgzv`(BP-RImhB_Lem#8H(tDn`Pqsv2Mp^cFJ2s2=)%8WEQ&<1!*L zt5|_`!48ExQk)=J$j_Ab32#&Hlhu@1hGRr{)}>upxW!EPPOj@Dh<1Dj?YN|VESr}r zPQV34oKAY6bLu{`H2TU1)|`bo5A;P2$hPHxnlwrhHsXPz8UziRyB6g@m^VSsLXW7> z%Z<;xi;3Bjb>KrwdL_+&i@_`jaPZ~PSQuHMIsv<^)56Pjofc$V__zudgLx5DMZ~?k z#5$7bTQtjHbZt=~r86PsGGoobWy26$SkfP1p#yxG3`;ApdnwBew`bcGg^zXhrVu7d z_+0H^%#+dsduObzp6I|Q7~XK=kfSU7XzR>fZc`d5cM>2(9Y&phQ0OtXD^8Nju@JLQ zD&&s!CNBPnP~5VXG9obTgnS-;Po>)q+vCQFSX9D6Eb3%%L@?%dPZ<%NR(D+ypT5TC z<ZrQJ5^u}ZBZoP$bi$UDb=l;^u8}5=a^eS4Ct3;%>iV*tzvSL5p+b~E?*qeXn24&i zbGkmWT=~ie*7I3^K(2fd0<vu(pe9$MVh8IXfZ3NhP`#HXTVJ{otM=|f+APtkdtle# zw|%gi&YAL^Z0hnsl&zuzOf2h*hhUEqk8_0OmW`QXEKF>Y@Cjx{A}mfV%BIl3at7u> z)>_XoFYR&e0>33VzQh(~UWI~G55_v<%Xkr@toB@E;^&ipmc>VRb!AA-<t{K=W$bfR z5513lEX>S@MIo_^^)f?WoT<UZx{Ss23k51(tS|nSvth_Sajf7C_QB%iJl_=SoH5Su z#VEI!jZX4;hc!^odGU_f+M@PKnS!L8oGmHKmwD0s4W+gzx)hTQrmqhO8*irmue#<O ztaqids*F&76j{(8s2i&P3jMIJ>L$VYJoHwE!CkKPs`g#)n)Jzu3$sTbb}1LiFKuL8 zw!%a>4wT88y0WC1BYJ&Qjhy+THXcU=e^6ifghvNC3xi*9Dzt$0S2|Z|udjbf1QK>c z_EZt_>c>J}Lm9&x3k^5|lu4J~REC+UyCp)?qyoi%?XzT1h~@$%n4oFY3+m;P6+5Ru zG)vR3d|*AF1*GX0$s*g9EIPRVaa!Kig3g9?rX8^B;?OSGH8yh(-!H*F`xYfKa^!Av zz&Vg`BU0%QFE-$4B5T2*a-w=fU>~+E|28#Q&hT9tsS9?A1HQnw3;Ut~3)3$t3(?cp z*ice`%?r$$tW7N0&SzY>=n`!N_V&e8w^*3sPO<9d9acuEO2<jon1tD~VH`)Wsu1${ z1H(eSRVePz^`TGw5M!T{oG~DfsWu*=OfL#Wm}Ncff+!m%bZV)0=>ZnZ!xZxY5M|mt zBGTg2PAPnX$7Mv9s|Rv|b@|U<k>{ht!h2YM8X-QYjVhES;<N~eiNhxdIXNMNh$~)5 zZXjYr{K-Pmi1;hxG;=Qk(CV4iub`VCm+^;b+I!^#YtF(P?Y&41*|yZsJnf;BkkTGW z{W#ZGIfUX^c+VF&?Ly)*XY?*rA@|<<;Mk?ugT(bFf#R)1?`<CHp%`XIRNpYx52mkw za@#{yQe&bdnH_OkA)6A-dW1O>`!U#gN$mu`E_=SGU>C)QGcXUbu6~a8woLW~B(}1- zc!_p7b8v<Bdavc+$}kdqGJ)rd*OoM0Tu3FQDSyVESCJOj231{s$YB`j(S1hb66?FJ zIF)W?YU`W8@&PMMT&5|u%63?rit`kI>CHEgxSmcQd<~H>vG<nmjJSowH0Iv5jB7M@ z!KLyIABxBCk`sYkN?lyp;;z(1A=?kV?0${dM#VKZu3lH%S1AV>Y7y`Cv~(TdidSCz zPcMT%qQ8*g5bD~Lt5Sy=<_oAP&eq_HYaLzAAxPLNqQ3_9_CDtntc_-3RT-LpDHU(X z^)ZFMDsadNTY`T-l;nM`W6Dr`cDV@+E2QtLD8Dtu$G4?wl-o&4$oJ)?y$jAbSqB-9 z84<c$3n<XVXULnnw@~A@9w><g7}3~)4_A%noLF~i8$EcWk)n>k>eT}BBJ#9IJzy(| zA}=+fkUa8%^xPGJNMep}sNE-joZC5Rq*<1K<pb;aEFjCjXersYmeRrf`yXdkpi#Gk zkEUAG!4TgTMN62o_Q39BTE1^lZ^j1RPCLL12vHq^J+@bhk1#v3=nSut9i|gYf-+PY zr<hea=6eSAER}I?Ng{^tJ7c@V3}ai#t}SF=n)(_mM<{;*cD>+fiG6{8Wp}ag5^r{c zc4_BZ%zZZ`T@I$|A2`JtdmEE0cE#;6!B8E#|A)x3Qw}a@3dxSmi0IO-?GfQ+HKqsg zC0;XvYs<CjBSB4%nPLNIl=LxInX(>%S&o)sfz{1NjMYf(LV5Aezm)i>!;5+#jXlDA zR2)fxkSmj9Js*RzQo?nA^gLJCk~*zih_<2xvN>==y;Q{+?3^so!PyMk%|0-mO|u<k zVUF!ybc}3U$LQeg{fB9?BZ(DiupNsEBeKQXmNeP}yOF~+`<ApgICA^|6Ua9HA=vdM z;v=x@iMeC2XIWo5!S729#VJ;RdZ?sEA}3;UYXG^xugfy?C6=Cl*^R`O=;3S3x`Y`m z!0yDmUZPzFixrlA;zSJC#reOLu9^9a%N-`Eo)O2jt}SY@*j!JUeEVg_BjJ{flc8Bu z?Z**2mkQMiy7Y7?)Isce=X(=fFgeLK7J_Yy2;;cNshdY;5Qy7OZ6YeCF7|A7%<+gp zrOqJ861CU$#}m$fjdCRPR8?g{m_DoCntIKS%g$<C5;VF@+eQSfc%q2edN;BxGb3{A zO+<1_3uBwVg5cF1X#}sX`;tzVNX%myCvIr5b9zJv(~9wTuYF+6S(xL<7Xc&N7BHIU zND#YFT|cnL=aY5?zs?PLa6C)ig~Uz>YtNE6iui{pjFB>bFJByBc4c?=(2}|eUx*EM zuXnM4J-3hepI~NW&HNOrgV~dGNQ6C6#ihB+dVz_VNTJMfbs08_9CW(IQV7j2&@Mc% zw4~@FR0?@-kIpw(Ym%8;Y?4&3xsZ)eC~tX%<>M)9>W9FpJ<qz|aOy8QMPHP3b*q&0 zax`)X%AnDIoruXA*z3yd!41K?dhet#D?mcW^gT|%41%zXdXX5SGN}|F!cqmZ#v>jX zIFks>2{AteqxkQq+>1E}h(|Zn!N;26&tJLyn)|fwmNo!6A|gZS0ux#bB;_{YOw#Bh zr=Ad*Mz)wngl4G|T|K3tgS+Alb!Lej`U=QbaOEq1A6Ro1W+Hgqi#CyKYZJ|Kr9)*0 z(If(Ul>5xUtTXC8u=5W4zC-DYdK!zk(UE!yb0cO?2I?csp9C}<gMG_&^CysaTaXau zT;OyD_AO^0&+%oljCMge<7HK>1=$J3J|KrcudxyPZb;sn>h~CH*~wbq%VYwv#FwcT ziuF=|rrV*Oy(vDH&7LDzZ?N1l#NKlE8G;BiFaUDTYE*0LrnZcqRdw7C)(M-xp~P-5 zg~q%wp&x3PFf%8$oGAT~T|#cr9?H}|))V;Udr<~1LaRodB3vi*UJ<cDwE_{aNzbqx zZYeM#RxVc|z-|$iIN{th{ZfSNl-r33szyV9pWX21ulSu@m%^vmQ<zV=rhDa6PNIB@ z{Xcgc)iNSnO%;`ALdCCigKyRNiiR4FN*HelZ?c*D6|;YxU0?ganzJzDiMkgxBiB|l zI(hi;?`d{L-4cmF0=sO-?c(Edu451EPS|<hp-KjyPdEU(O5YuVJ;>(F5!z*c=opKC zC;2-8yU^AtnCaOwd{$h*bIhAu--1P#qp6qpZE@?b@b$9Lehv00MPGnDNfhuBtIoAA zaKXew+ug*9lTLL@ebSpD&VKohS}<iFX1~0q?zpMFP=5JVG)nEh?PES)r!AYAnC&f# ztq9B-=-e9AcBION7;Nl^;)n;i(hE_48+G7E*s6}_h`7zFVu-*k-g1-I5XQPIF(Qtg zM68bp<cX85h~(UFxkZ$}$J~kFt}>3!<dA)z`owDDBO=|aL?U8cHW(4=HHKG?g<f&- z^a?euW7(-D#H-4}k~_TUG~hQnQLI2{Pp$I0Sq9siyrAXowGXU03v=B1B6s9}+Hyzp z+}e_+*#T=AUh54(&!_(eC-Hr|kT?iU?}1%|+V>p_Xz=-~1F%mh9pU#S2I&aDFXz6G z!JgZb;uFk_koGCqC;V2>sBz72okL>XF2$_KBHSg~<y6lV*9&V1V!i4uYM4D4XP4NC z+8Tf>Y=knI8)ChyEA%$GEF?^SN<Tv~CJrt~mpsGv7OSCn|E#NUhbfAmWB91Tn)>KA z^2OAfH>g>?=X%`Ifky<Z*Db#t?!vYYh13dGCysR>UMECx5wLnKH-2o(TmjLmiwxr- z!&~G9F*|zh1_7*55hH?j%W3ivA?!qQdOYLiFe&E3tv=g9F8@RjPple$5R7GI7*V7v z=?LSxAFS*OO;CN|#`FSVo%BYTCG~E}GGbY$I|$#YC1N+HZ!}A^uY6$5S(sZQei1}+ zZ9$}Yq9xT4s*N46>m~QQU@xO=3vGLtSOo3%@ncnlRLGXpk%Vkf6^5x66hb(@7OYt| zI8V4LIQj_R&gL^PYXr`JIoi9;>jriIl<R@FP_bDhGgn}DGHJO6y9(?ssGdc)9_&f> z@K$J-P_-Lu3#qJIEPv@qgIqp}RZx19WwE5SL%kPQ*gU3Cd{LVVLs9BCl-kFtoHUr? zCB~|3AhZctRNYyG-qd|*SP7*OQ<+G(oQe<Q^u9E1QaQQ86~Y65@jf?-#N%Ry+M=7| zA-9p7Nx=+F+&PN9P-h+p$<%L=M8X=<O<ja&JwI2~>wA|%buENBA@LM*LVpqBgsj)& z!*;$duQ;_#dl0drjf8EXUd*_p-Yth&5wd3Dl5cFzsm0$pt)p4qeB}dc&cd97`XY|x z+Tuv351*bszn#2)=G%crhxlzfVApG$cEPT)(|c$a#nFA|Y4BnZB+P)U1s;Mu$oA_I zW`JXL!K#5RC-`-)om0v^hw9?n+xMQII}~h@{ZkMvk)x#eDdtIP1XejhyUZCDVBd1X z<Ps9A1nLTNYMR6E4Su<OcH$Njcb<=5-eGGN7iHiOB<_xX8EzltqoR~L&}kOoQc|gr z*j{X7x$Iy>G^Wa>z3F?O3)_p<970p>Rz_sXTHrqQT_Mr75ZZ{i)T^zJ$S#pbgj<a~ zLg1^E1cK9Pbt61$*liw?cYprs5-udxZDj<goD)WX)_q<HZ$g+3g}58HUyaw)`NY9P z)P_#(ZeP-W8$^q6MG3qc8o(bBtdncIbNWN4i;HRMoPA(#F-@J6g*obc5iD|T!J-y* z2JBx#oggE^9e5WXmwDqJ*mVnL-=WY(Z+L(I08<Ei9fEyAvB;5*iLB`c?5{Qtd8qOP zRr8D*{{#~MR~amQRgxR}5Q@_iIUM|yN@wg)ueb7lE{DN$LC-KF!f)sFGTCT_deG3M zrWn!{){<<aUW46AKUm=Fhvp<<iG8Z=yR0B_mdo95&@PLDw^(h@SB$byFBYy0S(zJW z?NIP#%Vlbmx?TtBQ~GwNnoue<U8#KIL!sd8P3b7QrAqQdy2J~w3thcft#`JrK8quO z0FHWp^pp^+Yn%w-p&i;cBAj!-&2L539yu_>gM%*kw$VQ#qN7G)oiZ}y94S^%c-EHu z`lkjfLEGp#U4*e*bVo1_UFzdJmm#VLTcuZ8T#UVzotSY!LyU;_F6j*tzm8zGdi^P) zxp<A7$**vJ1^doEFvq@>g}DXa7u_V+)=g@Eu`j4M2={`r2Qx2dap(zCd|1}j_Z^B` zRCQNoUR2l61zz}q-W%gcxrEQlfPJWkqHS{C_ra#jhl@`jabez6!(x+5Lt*K<TgJ=_ z-|k}XOfWgtJB}i6L!4no+S|J4SnoWbTwtZ>PAfdkB-~a~x<<PkJY7(iVAdtAEZJ9o zCDAB}0R{n`iFhVbcZof-=p7`9GFMwupR7|VpQ0@u#5033%VO%{KxSK4mVNJSR22s7 z&g$$T7<I#bL_GSTy2>e7Qzn5%0*(=%PA?)ufO--891)?z*4<N5&e=k&*o$>N7#dsU z2N~PC91IDjc$LJPlvinh^FuxS>q75;Bq$9*IZ3O~w!*3?#@0DwS_{BXH)U3m8Z~`Q zy;KC65w%0Nx%NDvOvuAFFBl+<jqbVL&?q7v^;aOjf?{VMn4{RgCR*fPM2lQowCMEl z$A^#8szom0up|d>KvzSThDo_Y4&K1)1xfp0H}&X^tPMj7ajg!)9)#$R&@K~y^kcB| zjrAw^bx|@prTo+5XIOi3-tZhVCptx2YVQ*4a+>=J%z9?{8toF5L;^4p8Vq*vJXct; z63uzTb~!WyxvNW8vTsT$d|;)zwIkJ*!RKVY{mP*kObx+CJpUU<Y&;GBA#CYAU<9tA zvo?5N{Lo~hD%C^ciQ7dHYe89m3&A!K@QYYWW?MXOv-6IKyeYW`&air)l%FPPBNm;m ztRotIjSjXZhCJjlRp#nOXii<bM#U4-gu>OeJGpiZ5um4L-~&e8L4>HC+A4)t2p3{^ z7l#!gIwfi3<`jxff4H9J!dE`9<}A!{;fth^YfBonxRCTkSg--@WkidAWyCQ<^41&P zJ=ulCLDr%6!0u#zyN@61cm{odc5xpM9qPC+E0X?^L>PgTh=jDBa8*f!5tL3Nj6lDp zeQ@9$^P-!kDCofzeThZY;9V$*oc_7SlE?&U;Yb5U4w}N}#jjd5+vx_ZTSBUDu_kgA zd=<)s+!hjXd>U)*NW|rT>u%YXU#3h<T~DKKiZlpkf{Kk0X0xeA1mI9|Uz}Q-ysua4 zF#Qk!Q<q~^vki7g^#q5IC)J%OHDJz_?Gcbk`r(L(G!jWL9#Kygx}*_>83{p|biehK z`?6e2iV3O;aPouio%2RS+|Rk^YgiE^5Q2o_lrbXcW+`B!__(fr!T*R<*_cG2R!JGr z0Hh&T_IFp**`<5mPzy>o`wG!l5auf%SaTNU)@NVzja*yb=<NR8{U48$d<ha3a;TK_ zVuT<`LPH1=?BYM{qrJF}l;FUTiidcPpuHj!*dws(?McUAuMz=`vH8T2OpEM=Vrhgh zNtZ@KazUa+E_1<ux6AqcOU|7H;gTqe?0<q?MxF&$m7H8!qFtU}p<Q-&Z_qB&m0N7; zE(N}n`wlC(IErTexak@aZ$HF>slV)Ue$@xm2qLO0x$gxFBaZio$g5Wpn8K4obuE)9 z86XV3E>$89w{1xxDwEwJ2#D{t+g4?vTobFZ09d`*8!K*qLN%AW*_Pv@An~JWQwUn` zyV!eI98MpT+ygnDb7Jlnh+#f3FkW)E(Vlh1wH@nyh;moah-j|o;ezWYygx*BnHhUO z#8`Tn@G7>Oukwh-i-PWof#STi*~r2RqTQ-v{T1#LTy}dj&9bu(jJMM)JDUYyS^uJp z<lD+f^DOIsNvVd<y?9hI;T2ji8$DFI#lDaBE@wGb>QTpnad`;#D1-YE*n<Q~9fN(# zF}V}WE_KCIDh$W+VpYlra}IX(L_NuzaQrS;H47kt-Sa^gw2FMv0;@@aJ(gHFX{HrE z-*z=`_+`9!i<#|062T*`jCwShXcm%`@t`fj%c;MA$pk*H;PRj}Vq3Nk5RVALAdA%_ zqR`rUQ+o_1rZRqsVh&=`>dGjBGPh6sj{5?zCg*PHC*vWtoviB;#AMkP0UOkhN03Ss z5Tew|($<JLt(r!4eZJmnRsYGviitHh7xXzMRvv!5_=O1EGU<_*Ab3?kZbbCfI8M0} zocecvl;vDXAPN%*T3Ac{!kd0h!f1{+=O38i&G{@KZ@y?A`L^a!gEv6}LfpF@u=76f zE<P<D#U4H_dprC1e5Z=g2be;9nnSRs_GI)35=UXKW3Xr08#=+_h=AcK*mXS@%tKq- z_Z$-|i$YfPz$g}lN1rRKRvDeHu_WdBT<=+b8_L|=3><s9z-n!~_)E;#7Of;q+}>)t z!LA^8q2Gc%bh+nqDR)?@uJlKaUtB|y%C^qO8Y@(2bO?NS{SBv1&K1YT`xJ(Lkd3Gj zzpujLKQNwnfZSoYB%87;&Q!fAQ6%s2ZOUN?-`JMD9QPSravvHu5PuKBti%5i<4<mX ze8DEx&CL@^Ae;)-r!|5Qu4iBB>D|yrW2~GQMhH8VPb3fvr9$T~Q%yOFgD{R|de)30 z;_jugM+^WJ7^EI8r%JJnCnN>2iYFq6{49yh(d+C3bM#7Cn4{Mh*(2YUJ!;S^2tQD5 z?ReDUP_GoEL4=(5=<TvQ3ije($c=`72lxgFzdZ!I-Z6ay_8?vS*ppfa-%*M+Ado-B z{HZHSYA?Lti=W@3!GPbAmtA6BWp()qTT52Ludy|%>*(rHN*8lK@J7r65=Yb3Ej(*- zF4U2DBwu1H`OXbh>MlB;t>Jn2iksA=Sh&bk?IXiyBX2NqsX=dtWS_6-Osw~ReT#YS zD%CN;QWaNSVkTIWd+CSZQqDPL8%;>8&Gd$nn=%r|Y<xC#HCMFZM(Pj}zKd<F0k;TQ zTZJl0y}2?is>f`EU`Y!~2^MN>A{YtrrMrg+;G_q64hccB986<`EC+KABuJNs06Be% zInYT9qPQ;V_90h!aXWYs-a|-#N7=6$5yr9rj2$4T@B+ekJEwAoQBEbfuL(}YKCGOI z5=j%BO7cSLvd#$>&2sAO19O}@n+4?57lk9=RyZo0I?bpcTOo%GcfhV1_@0C}T2tCR zNbH4w_dRNC#DNFA15X+)eDD<PTO6DtESfCL9;00rsZYS}WO?osi_4{dJ$p@F&#{?g zYIA{h@oz6Nueu0Ky+D?Mq26WfaDlIvYkZbi6*6qDz#e2`a)aGW;;nC~m-dDubMCN& z&!U4Y(LmjA+sZGcHn7Di8?4-by4Xv4NJ^C;fK^ZET4VY=lwS#=L|jgY3++*UgeXaS zNQsi<eVBz1ib|8v;Ce=X6z$5R2)=EL)d)qsdv`=I*0VFYF7AH$5zfTkE{xeUBNRj7 zAJ4f#IMzVLWOLo+7q)~hQTj~pWA+oAiSLUs1?P?25xAs2T|?WQjT4K$n68i2WzTXj z6k%(7>1JPXJ3&{cGer8z2iBa0xjoYt$s^yEJenm^(AW^o1~5;5@F<9QXj~H5gE)Ts z9tAaGFE?>R3M*`P=vjBAx$+C85o$a}`?lRv$eAoOo?_XVMIqbmK#_AutPx2Um=g)E zxCFZlN>})}1}uSH)shxiP>I!CqFvS}R+v3`{)RhQtBG&%V`XSz@$oyX%|iMdnz;6? z1Jfi_OpJUglk^dPzdmtv6ceboh>$FV>TPv#3#BF(j5?q2Iz4%^#{d)kz%9LNJmCHz zu}IYalvQyIk`to%{6s7gqNzQdA5ZCX&E=pGky_<UTo^*=Lo`V*WW&Ttu~3ytu{1n+ zJur$N5Mo8aB;iw3RO8$)xhu;}F_b`5dT*$&h~NGdp08kk&R0IL<}A#)pf8F?zO8sP z%bX~KBdfZoPmxWqeXIiGL)|7|9wjXf*+C^?5LboqO>c8O&n~2j(ivIAgbpxovf2wu zDH1$$<Voj698l2qkfop#u<O+or}%!Z*fXjt=E|1n$psZ$_e;UfJP8UhB8q)YpO(wM z(JqszCDx07NWHGGUS+rThC5N+lgh~(`@A>FJPAFj8*F4LBP?#{>dr3{CCR*OM)sCp z)-s~xU#^Aus%E57M+h)E0Yi2rN>afp2rRBa$(IXpVwIM}otR`0gSv<_?o<B|nk2C$ zrAcfOQ7FRlwC^$;j~S&(nj}}m^?S-SBC-mY;VPtmQf45v&karl5)qga@=1tIejJe* zQ)gnHFFZoEj4=E<#A*$~;8!48qplDyxi<@0vd))~C8+~(3w_1tE6DPd53D&0b8hB~ zK#^|?6wQ)lQv_rO%ypH^x!(FA4rWN~@9%mN&EPB6z#jE_Z;!ec5^Dr`kuwE{_<0dQ zKLUGyka6pn?JQ3Oc0ELS3U<93>J0N|>ct`jltWBq{=qZ0b9`Cus>@PpzwdKzxXWK) z&4}#JCD`@OQtAU{X!vp0m@#RE1?HuEtgurbUCDKHJaJuOmDVc`y&Veu*km~E3Y*7w z$&_AL>##QxJaYqyQ@tm_<<esZZ<1$<xy62e*#$ZBd5486Bd#opt*P_&RXg5iA9|BR zOnei_8%l15dNyI`d+X})P9AYaYC)d9BaA1mHbr}x6qm0IedUDUCqjFnjrGosJ?b%> zT|~0c+qe<SPA?rlqymd7FMeSv)(9F^#fcEkdOCbO<yughC4r>U)}{9jxgH?l&mo|H zC!>v^M+nVAZu>GX6eR}y!c_b&v|5?}%V8KoLJqB&%#!=CGA&_3-BJ<>;x~MS<|~-? zl@F{r3v+Jii%yYm>lB?m{onidKR*8N-ybIVHetVIc?Pg+!0#^FWk(d=t|IneFC#s> zs0a9ZnVcSiearnbN0?Yn#DFe}Osh|Suq?8KeG2x8Xx@aKy}cbu3Q4jZ3e_U?N^MGS zzrvh~{?awrgG?M2SdVgMeu*{NJ_WMEkIB~T4Zcibh@hyx>oYHz++k^L7i2J8d(>>% zB3@6aJ!mt?ZrTXR^_uz-Az0>-x-&|uH_<y^Lx_4CdeQ1dL{6NlK~N?=>WZj;oKOio z;119}VT!NQTfwmnmE94UPS<@AniHpQ2%CC}718NUXNq6Z`@xpk9G_|)5uL1#HD1s_ zA<RibR+PYQ1gI}Fe@=lAEwfsQ^+k}DIk<>ZE~y{Ok<b+-kbP3bW|=T5UCt>Jon5?{ zrpws}-keR-<zJIB@-I?GzAa^cw1qB7AV|WAGPa9^=#p@a5N5`HNZ8y5`%vZEWXZNI zy>sZ>iYiB#L)EVLEFaR``h?7gi+hSMllw@)oZIYvj^7g2y8yeBxVcMwUfk&`YI^2O zc)NUkL0@Oaq-LkLuei}&y=7EeThuO$gc77c@Zu8OwYUU#cc(bCxJ!`W?p~xg6fYDg z6bVqIc(GF4-L<qg=bZa~_q#VgvPag~dncJ=kG1BSkIX!Sua+M_ojLamYRjcsbPOas zJqi-n+*PexcPB%6L@nr(&9>={U75Wz`&eYNp2)P=!)540Lg?y%PU>7CeWw&%w1)Nw z>>&qiiaLEz_DUXBITV%{qw$)^K$fFAi7|nOAlkUtJCb$drjsQhrU3hE<e4)PSNM#i z#XHLnfjDjNg=SG=<wB63!nql6^*jV#hhGZUE9Kyi4m?BO^u4TrV9i<V0GPu)Asaws zVQ;>?qFMU9@{uL<U5B)0ZiRF%6hx>jy+Z!}xfpgFl*Emr<qclBs4|uQ)O4ieAlD|; zC(+~-A5M~l%R=F&y_v#SN+aD*2Q3gMen9P#7by%i(=S!$@l>U^x1`#p*z0hu=`gjN z<wowWw1s}y#5~3xbZ%7_N-R#tUvB?ox#<)11M^5$Kh$+<6-TybP?>p_sWt(qbeM~y z|Fp#kG=_SB(Fk0-KBLvz#TOjo&e;+C22wKWi<};b@5oTjL{gWyvWfN&`!%lZ`8e%T zXw_JgZf#__TZ%cov63wdz~CYU)kxnSC;*P&;!pwL0$G#bwWDI+aHj%|DMrz(oF{|} zdYsnc%!J~qg|GTKt+R9`VMqpM{#9)&dqt?H)D?g|GmB?31JFJ#(0L_7%~XB<UrCv7 z<(0WjEW{+Ms;>~)O8|TvgnnE;w%eJzr6w3L7R2mEf?w-%MHQkt_xcXi$wJ87K@1uS z=sa-$%z&!kkc~}&uC3?j&&y;;CQPOrSyDOKEB4LqNZ3FO#1>poO~j^*8Gz>F-HBjI z>tvxV3b4DpQdEglZtsuV^`ouJZ)-f~AQs4e;N|*ejk%DC!4sIVa>Z>KLt-O*v+Gm` zr%R;QuXy)@4p{i^7KG_67BA4$0D-=hw)-2?4=%Bx@8{kJ$-y@o<=FA0jT$f=6B~e9 zFV(4&Ne4DPtQQs{#DU}0_p|}1>CAbx#><wfHO)|ceF{)zvvsV{k55JuHB@)-<-|iA za~;==0ah{M7=r`{jvXR3$wwGF&6+0qkC+nfN*?~<y#HXbSW--`QdwvThw_}Yn&t#v zg9G|8uishtQg*BXFu10KLeDVGz#+oX=k8f5jzoM-+6_-pAcDcGi68&F8_dVZN$f?J za_;+3v(j^orckl_!m!*))q*#x+ZDXr@lJ~jJ^8};WLoky&c9m$lpKx5HT*vOB~C|# zS?hY&3}8;!LlCW@ssJ>tbWiCFlZ}6lz}5R@t5?bR)fzdwbvIkJP^2(PgL4YT3J39s zmtaf59i>l22|;eLfVU#~sMtidWHc)T?yQAiPu~e6cz|RH<W9tqDoUhr(X6nFcQFYu z-vfwJ8>ZWDF2!<>=rzaqN3tqZo>Qz386=#+Wy|#qGk87x2~hF^3QM^aJB%7CP@Bm- zSRQZzx61jz@ylP#E(bBs?4-}K+02`K;R!q1T<>{i!0Je#5^fHsREQy>(kOgS(_>Aj zBsDE?^F1fOo*t!VNOE+Bvm$2^xg5azx}(HSpCyu8#okl)>0h#qRB3Q36Xsk0(yL($ zY6<ljc9v!6xe{?JAK&Q<?LU^&E1~_=<F!=*R`f?B6jN7p?~!iVhY6BVlp-5fENIGc zCF)Upn1;>Nn||XbkuT4%?-`02z3-L^Bo?Quky>5Ft`qIQR&F2(U??Zo|1i7^;<Ah! z%nm-tmr`bb%akFak}^;@XYj%PwRhr~Wu8m*P=X-|)Po8wo|Rs5(}DE;*~rJ?)ri@y zLj_o7JsDlymrjcq_Kr<ds~vBZi^i8vAoudXieX)o8kcyr22LWnv3&@Kb?s=di9th7 zjX~xJFMEaF>X%{w#5={rU|}D2*eJiP@8Y8U9VPs`Z)sdR7)cS#zGM_*C;M5Aathls zO>!>~I-6ZTF6qV}e1K_hm9%Ki9}Y30cX+=jB@way1$F)}D}8!XwQ8wnZewLl{t!R9 zG3Uv7yttz2u4T6`Em1U$5f`276S6H!+W0UoO(f(1@7Ol&XU5k^xYi<GUC7unyKZCs z_wdpfS-C>1Hd}=U3JWgJ1FRruO1?33V32|!G>?ICi|k~x5dq|~x~q)8HzjQ8ugPl6 zAU}35|Dp1?`gJl%JMY!Kmr5Zs41Cm5bwt?RnNgN(?W}q-)=)R8eJOe75X(@)qOt#R zX))gR{4tF8+W-?v+j%8<O}^pE1!)I)GSJ`$SPG_o?---p4Ra7%e;t#7=PhX#K6qIJ ztpq+RNQR!rD+^VwMEo#-X_VDplaYV%?32F;o)m6+jMJo{)pSUO6wf%sC@v^rb3&R~ zgGcol^=gKm-5T`vQV5$fWVG__t%-cpPwcZ~5Eaoa&C&i9*5i0FO@}d5anJp6R(6)G zb1nQv9o(O2^wdPlSYVF+{&VCT#`_rPBeI>EbsVA|`qRlo!4OAy6*|u4%txQ0YAUa* zXB~;ky%(#d!h8#_XE;E+&|9=5(fh*29XQSMS-z{Pn4@hm8vzZ~5-q0dPQF|oWayR) z+(Vt5J8KLV%@>{sQ4@C^`)Hf7{3XRwPbei`ys7e~*=3tsz%`34+b|pi9n^xx%bc1$ z4BYyp)aHN^Z<Z&8a(Lg6uC(~%HG;1J<)pF>b3YC6N~H;C<o&gIskALJ9H@`S2r3o1 zqYrH$I-U>ejsQ>y_@Zci1yB1nlm5p549-hQ$yN0$lBT3Y<<0&MO96aHH?ZuTK0bVA zz3>kIAyV@rR>_7DeZ(wBbp$lfL^Flp>@1m0d0}`{SC|Q$fcIW|5zDh#au0orKXO9C z&5K*D1ObC!22W#PzAY>!jtozW0{ksLjdpnx?iRIp*IVCCbc{Y%0u-|s>0KGQWc}t* zbt{Tk9_~qxwQwQ|EN>a`HVBIrcJ%Pr(r&(c)&$(pDuEQU478MBpP*M$VttuYejeI( zVQ;x=yHx7Tj7;B-$^Ww4Y31tbERUNIZ}_ohWtKInSjYaUVxmnA6q5%1FwT|Q3@Ome z{~{63ov*nsT}FgE1Mk7}F8{?`>kku+y{7{CS#6TJsB#Y`p4^h-cBmm#5+9VptuD|G zVRXOw>w{%~t39U74MLALWtC}fZtPGu6!*^#rNeVoJV%J~b_`GTo?gZb7r##Dsv3G2 zx^q`D(<hEYh;HD(#%y(1Pn0lGk<n>BLY?%)jOD4)$ki-a!tpe_*%M=yQ4U3^F3k}^ z=P8Nnzz$-%=LGMbwxH{qr7q!C5r7UY`9!IxEQc6Ycezt^q4GaF626D{CVZmd_YIfJ zw^XW=!-#n6OkDWJ$S4a*l2gShdy%zsLOER7=Ie_toK~zho!xB2<|W(M>X)L-s!Mf& zNvrS3<HJ$?+2<~Drajhbaxzo<^3mXd>h_pjEtSKOQ4T)}P)a7akb|=_dH%kNOkz=} zlymIu2MUbdDX1bn%t{+amZByO2{Jj#36ELK7b*^09}_zf+6jXIf~t}_3n1?IZ`>aO zwI-#R)w#h48I=sg$fJ@e5iiMnVFQ$G9tp-vDHl5AOzY1Bj(DJipjyw|HY-07Wi-(I zlf)?^lDIvZ9_CwEo3%zfSlR@VCGFG8$<d5u*A10&K(O&AFpjtOMDzXcu8?%TrEStK z5=d_&VD1(4j_iv&aLP8Cg&`z!b}mzNAVFF0{noI}qYttVQ&@7gA;LzWN-nqFVrvX* zn#|(G124J94Ha93oD+VmcVxl#t(8h0@pM!Va$tQ9f;8cHR?2C#YCUl{9)n&ZT5m_< z2Yu~8saXNf&}s>t!U^7w*swZzSzbRfvu;`=^2_7nsF1Zk(=DA+sN#ZA$!t06=<ZXW ztO*6RI2)vy)8iwCue+I@9H80<msn9<Pdgo`(0`}*9*L*ML!CZc7bliZo~fQ)&UC)k z$HVcw<oeJ4b~p~8dO?U(wz@Ml#X!_M6N(Yi=Ow<tY%SoHNGGD#={EA5Nl?cuO&vY| zS#TAvR5y`k-0^&zcNbB3N>DP&@no}*4TPAq?mZ?y;Yw-{Fjn`RcQYX0$QULdeQ&O9 zME9ZJ8VHfPh}l%cw6dd+f^kbX%JiQlO>vt2COwXDw9pIZB9Jp0ucdk!rco^<4V7{v zuu|pM(X&W1O41C^&~(YVA|r@zZ$b*xj}&FEe#^Gv{z=h>ZP9k)n3(V9MQoX9o4q-U zu@2Wt=c4jR#3#-@3G8aOg<@Z*)!UJ#_aNyUZ=Sc&TFco%ktxxKQngGNJHI>xi0O3I zThBb_Gq`A_MJL{hx!i4lrfW)TW1#b8#y3p53y`8JOYk<vZb>cHa&VGNjEAbP?B~bo zx5^H{2`m)Bu9+&jwE>}Y4ma5vDr(~tv)^ACyzPt}<^9OQ7GmyOyJZ!jX!`(;Ulad> zR{*c%dYD>w0?A-XkAlq@v5x|f92yAilWE}nW2~CuT=M>d`YNg_l&1R<kB_ErQy~Yc zwJ-AGi3aS8;zRpeXH>Gbck^dE^RkuMK^QLoSQPjhDUS(+LrHbxCd=3~)GQm4?cmA= zt8dh{S$2=`F}mv>9QTRXxz7}J;_p7Nqtwi@xuR;=v#3y1{}W06Rk6<rjB6uhJtPk+ zeEdPbdHN7OnNrgR_2usDh-6L(?{_E1R)AYMX;jJsY~N|{4$Jh%L|v}q4fu=hcFq`5 z&Eepu0c;%DL8YztIpt{)uZ6GmamJJO#ERX_ET(?K7%`N^spY8}NYx1VWA!TdV{b9? zY(`j1lw4Xd@(MCX9+cBP`$b#$|D!!4<t1<_i#L6ogYs#lgZPDE4D_u0n%-yOxlHAO zsr<r*fGqQgyR=ZFey{!6O^xQl0WZ3dc()uJ+oT7cv_~|qF6-{gQZ_sFZM5FHY@gIz z60<%Ecu1m8t}uIVk1eG)Mr=9-o1v9}j{du;LlIY1ugF`~?%P~F0JnwNzJJR;j)ei^ zA<Ot9RLI$Bef5Dt<#N@q=%|^Ehk+@%jaqxOucF3;;R#0X6Cx}cYnQ0Aw1KnRGS>H! zHn3Zc%*1Qc9HdTT;BUn@TKxmmSM@qDIc7L^Hhpf#-&9`gop7`Ood{FEF<#L-$PCUE zL8qaJO7$jd=7hMb?3XxQoK3xc(~k5z;qTel&}kDP?RUBizj<Y}#q;gNIjarEdbZ>6 z&lLsfU{(v~SY|`QgN4GKK_~z6GtGJwui<U78WEh*8gkZwz3g3>T}>PkP3S%qv(GWj zptimBOH{=^6V2#rp9|(`&YzFNmXpmDo+!5*3*+y#)tanDdQ=2)CV3k0w=wNlhi#!< zsr6IrsR|1&m317wR4xV$z`FR*CE<a+^z21?m!0JRRMU&dIFcc(#>EHg>_QA45{vJ+ zNiwspjh_w=T5=N9+71&h%o5vk_9n)(MnuOQ_Wab|y~Oxa+nJUbIIy19K7DDoM}9c| ztSL0NELIl4(3v?n)AVbd9#!Ys3Pc8tRF^sHw?ubM|BMu)(~wpR)U7R&sT;aQ-nj@R zZ#(g^*3wOlCQHvHb1zuF>H=wfY#9Ni9(z?1HksxMGM=R$y&>DK+jz*5c9M07m%zP! z)STSM?3>|k^KYmi{G0b!h_@Y1034X9;sC@ezu{>Mz$^_=u4J0<Sf=>da~TG`2_jB; zYvC1OZBl7}alWy!@Z_8Bg%wWPJlTlqV`Q{~){>3ZAs$qa?MCmUGWUsR*JS2sU0kDa zxNUA81fFLjNxHDzoO*9*wf(MGC&;`Nqjy|8anDejOq+9xmCh>Lfn<b=z2km)!GVO@ zGweJ2#8{ehR&zT_U|R53^42k^_5jCCKc2tQAr4#n)$^2xYW3P%Er#N4i<|j@qDz2s znWj+y3O<j$Uik}YgNED*7Q$>{TY7Xk1z53GDh<3?o-qL^)39Jok9iYtd(rsoN<nrN zo{Qh=oJe!6{Zw}CH~Pyg>unR<_R%Vx?UQK6JjvQskjfr4sKBEizsU%CZ-(Ltd~eno zJfe}(k^-FV>`slc`H-CcDYV#@%tY{GZN*KLNTaFhAEE{V)mC4L@2USWpso}xz))+G z%gVvjD*rz0*gT5<lwvB{uChSO_EN=9)Jme^7-@uW?w3^>vmHHDuup*aqTNjZiy;&= zQ+#(tN^F#%WBhRws5<fcH%$ydn<ys)K}&>59gr4XxPX2JwjY*@*V2<&saX<pU2lB= z0O4QI)3dYbF98jXR$F=qtGsYN_EU{rWcx*ed~<G(l)_C%XyC)o(~eRCqSe1|<mw3& zw|(_7(c=#^`!N^(;I{QGiIGuri3VU+fY-ToS_zBE<5iA<S{h8qH!|o=NVf`SW{Q81 zKM42c)F)b#?(dg}{{*8$%4-*ZyE7$nF*rO6bkh6SCQ6Od@x!*WoleG}h{!P67N!ZM z^YOIx|4?ehbGa6#Hi1B6Ft8KH1JeclL^Yg7hjxzxp?`GpdP;58$pNsqQXHV(GP|QF zOuwFn`Xo$h2t{QC6Yn8+S>9lecOC~O4W_pUk~kF6h-Pf#?csTFq02S&)#p86)r%j# zLR8u8q}b{xAO5^twoQK`zFK>rQIKhT78%ZubUw5&p@iV?EzMPt+g!Q9F=uWd@OhY^ zNO<jwh)4?0Dg!HJ?%mU@Rc^Y)0&~7ZhkPOEM6@54j!9-&HuyT)Ny$SH;92bc8bNRB zG4YZ8UA=ngH^gu&{L=w_wh|K6ADQA8hsAT(AE_DG!>5j;YaK;y3VgO^BZ0INak>~8 zsIfr^WA@odCL9mOJvI;_nY2glIF}1zY8&)5HeDoKL#~Bq9fupqZQS<0+wr;#k%jUA zB^V(7TTR<|$6B}kN!)h?5;S6KKC|kL>;!BTZyBh#kKDsN*=tqFIj8DbQ620zJNs*L z3<c1v@TPf;i_KtDh#gR35fQNk1m=pE`gM-70&KrYTL-Rt7H$pR3*3Bp8!f~9AU{>B z<Nw7SzMPUyyO=q*2U+~VCpUq>AM{+<lM<<3_Ei)uhr%B5V`D+?Rlb{vF|vi%Nzu9+ zhhXhHeJ)U~>SU-T?zHC}P^wlN9oQEz@iQvG1(6%X7eOcVO2=a&;<@RSb-bldYw1*d z@QI>|DMrt0`GK~?WM$@T22NTi-3O>^lJ1z`iP)p@w0}Z_;57K)SwQFftW6Rt<)WCg zXkB8IIfF0(<Ef0qfuKmi91N|?zMFzgnznKkoQtENU}D2UQ@4-=jj=C(0G?cIT9uaB zM(3~c29Lys`;|hs&`92&P4#bH95ry?%``6D3)N0pwbWu#F570cqC92c#gVJ7NU(XT z4Bm=IWB;-mH0lm_P=kuQ{(Oa}{7y41X*k+l<$E$vICFv&<Q0jf<E8gB+J%R`<{?4% z;soBEZfNU6_c?RN0fuG5O^xe_y>Um6ugB>m%dC!(uLH%W0?SdSzTNqA_?C4xZpQaT zkw6X+zQzSjP!h|FRHNjf14_e{_)PQ?WhQ?-URs3ZidKI_jwLi4UF$?X*&i<aTwp|n zAPN4XLcr|-p2FMK)#K5X-di~c$%}%@NxywTWb2krTxnUb3(jZ>+@^6KqhXt(9tH{w z5i)!t&lrD4(IAB!o+T0Cq3jXmQ;fxrb?k-Kb~kfiLCBMGrYAxsCQ9OvZM&typ74&Y z%^O;eFkCo+qMYzP8-|;`rZuo^SQxw4Ca=crRtoC-^|FGpvxkdvMAqU4UdPQG^f^9v z(CV~tcN7WXoa?C8-F(+!o>*|i>SU|s&S=y*OiW$o_Hk_INE-Hn<^eW=bUTY-kKgJS z=Q<y~XF0El%=lZWP#ZT|N~HqhkBf>_B2XJND^b=2wdY&a&Xxg{t#r~`&pEyWl})>v z1VuJf+ngXY9wp-?L1aPCl~vu=yIzM8#Xo`-tA=Z48~TJ&C`<JANz1RI<(Dw}Ax(3Y zHx5AGfD*&B;c4#$;l4tnxZwX{IoQLD$QU4#n-?2f!%t`G)bAz4R4>_?DZZV;)n!wm z1nxq8?0a+w-qH4##}HXi3~e*%9&$yFn}`;+j7Dr|Yf_yU<<?cRi(fbq_-7(QkJBR= zU*<Vep~-v%h=iCk>RZxssTQ9%0tn6C=!{&Pqb+uS^WvQ5q@Ts)W2$Y?)MyU(i|?Qw z#m@7^JQYGElWR-@D~CgYD$OvA)nX_EJI0#9SF9#MkV%{+c~rgfh3p!6QJiP3EXG=T z;&Ezk<=zb_SUvVRw2!`1^!|lEa;b)f0^Z|gn@&dA%!eeVYkY4}rKn+8$oa%eflH-d z>Wbrb@KV@44dDR%d3}rMgBio|IYUW0hYG;<*HIQZiz6(P@|5VtLrYr9K^=NfGAwLV zIC!wi&w;2l@IU-RDBtt%**}N3;Y{iq1Ad@g2>Q@r=3@u*_vPs_8ZBLc9Z2xAUzv~X z{fvN1hyT5!kM(Or`h(1vB9obN@m4{MW{dw>l(CkVsS5IK{EqOr*$AP<>j$0y^_g4Y zil%PnFyRv89N~?fx}>BAC^1uTn9tIkX}DQ-yZ$0Aqk5obyz=#7=s*INSk5o$v`y|E zY5r;Y!wgMD+?|7$<*T|)wfR~71!YYGIN*Ms_T<AP-~`#4&RNO$DqLbzo+Vtz>kuy~ z;Q2PjZw|{&9{%ANPDk^jNVK#x-h)!`FEIuU+-82z5m2tjAP%#I60tJ#rEgXOOoqh8 zkHaWcga~WonF)uowRzb@d{){8%A)0UjQkk<^3>1fH$evQnd<i872`SzR|hH0gKMG6 zuY6;bEx6+sEVfod-&MK7#j80MTY?^M9OD#pG$L>>93VI7J?emQ{oC%_^Bd(Xj2|=w z4yhFD<nTUmKp-LX2}CSqjgoZXpGDJqsifM^vdB=e!Jev(e&*=0;io}x()=edHaA<- zV7!}qL15AQgEO*EW|&c_S<n$;&d<Po*DLW&__GOnh{f){SYOW;*>&nqH?`pL&0B^e zpj+~a&|V3;&oHP~Dp`W2cLjc+PzOUvU3_{R>>C~FFbjd^Qr!09&<aS<t%pCB#k8*+ zS>cj_{A3k+9q(^rV)9d7K&BYHjX~b}kH2C**OIrEM9Dutuo>?g(%9Z()p%D(*Imsp zL!^MRxdSvf454<?<yMbde>je6GNf8hTpbED(RshK?6c!?GGe&?35$2!@to*SK+QD= z`)Zqb*xx{p3bxgGfpjHex_|ISW%S4y#TpMI$1#48Z<|M>Dq7k|_yc{s50iSS0Aj<2 zBJ;w-4P##Ggln8nsg@J{_IvjM8w2q$ZM<=xDs(t`is8+S+k%6^ThF>z?j8sR)(z@( zy~l1&@T{qF*I*v&2j(tV4h^BMry_z|Pd0Q6JcA;tR4twE-?Y@9-&oxwJmH$=tF@!^ z7|4ivTCC`=J+a0yu>%V=88hj_H1+jBkdymr5ORmwuNNCEwIAmqev)Sc^xADtGP?}; zihwphWQNJu)oon6pDyVu8F-qMuj%R-C@|g4aDAJB7k-1NDzumDA6H!CNE-rY^+L4N z`JstehbO`n+h$qiKN!lfo{Lxp2g<xwxBIS*vLf8Eb428F?H*iqlTsJ{rBHTcae0VV zbF|M|8f$W-eC#TOiI9Eq#jq3i{gmy}vUU>j%S%02<y#S8iQ4*)4RjaC$4px}Y^j0Y z91#90<43Aa&{y`}aAB3k3*jE~%^j}KQ2(j`PM#+ZbHMn!aMx=8Z$0bFjvuMHc$z+6 zu+_)wrwqLWQ!URFx8Lthl*t3(l=>a%FG~c#%mv5mh8PMn+J_vSsD=sz=v+;b2gsNJ zo5a32!9|C_y+ptSjo35cOBwWOW*tD)YUgV@sdSM5n5MXY><KO2D^RIc!+Y5TD9(wB zlY(p=t8TJA3MR%wAK_sFokOHbNxQ^aBC9E;(se5f%EGrSMnUJ-8!6Tene-)W$~5Ay zkd1}noHy8*Eu_=`%f~$xEeH{hlzXLgI!#fDz4DZ~!zhm6ZO^LOmY=;n2|m*j=`Ym4 z6r8UJZfU{_&>e~8Gdfkc05p#55ENpe_?NUO`*-2`0t4nQVG#+XA-BD7U`Wzn_OaRe zo-ME&fOu|9!;Iee)f3cYaKC~4!r0<$I+1z0<#@+Tt!mM!^XfRdH=6%l<FazC$R4Hz zn(LR1rE`w?4Np@XhK>QSt<xL-0wbBUkK}n70pvOmwnO1w>Z;@;#QLL-mxjxkC&G}j z!v`-j*L!_>0i+=lH__yyazh<qm|R@xPe1n)&4bD&94h?+NwYGAsCPWdsZd&J4yXrn zzBCd^dx?)Oo0Hm3YqvwlxL}H>EI&8jHI>2ZAETd4V4L@)nepY9&V+ajn@S34r@#)m z8#Zo>zP$e(H7KVAI6&K^w6ZU+DwHOy$uisFn;AFLkA38>sKQewLOFN*4!6)(b6D&b zSk)i(&|`%e|K?aQlwlZw6s`%`WZHSeA+i)|Q<fm}&fdwfge&}GUdNvP;Yh?HeQGn> z*xSi=rRMx*qrM<|+n>@aR!^&jwQGI!v&7sinB6G!25L?aErDHutz(2j?Al1|JeA0E z6QoS)vOBQRp7R-DBK7N+Re8QT&hE$R_*<U&o7z56f~R%Am;jj(tl%u8-Sz04G@eo{ zK5d*#h|-YKLQu8Ab@1WrmG>*@c^6Q<dc$k!FY2;+G?oMK618{K<(hs2u$I_ghU#yv z7d%cPz|febDjoyi@`#yc8d39nltgFW4l`TjUWTDiD?>~KQhgV4b8IXPr{@a^S^;y{ zBkq{3%`s2L?70XTr}_r^0IaP;Cl2j|xDS=WOYe;!|2yd@>Dm8X);2Mj{|_%ioq*Lr zP4VxlQrTo*r4Yf0r)Kb3*e^`_vk%=@9?%&8A2$dS5I{yJ<pz6|;kd`M*ph&UFqsgU z%>yG`CU!))f((A@i4G@>RTKQqn7U(FW&rHOktdboE^=aZ&~)MFZ7t)ob+|H`Z{+{X zk9qxjcV77y$6fiH=L($icDP3+R|a<hV^FK@xY2r3(mTw2MR&u1c_K?x4DU;IFx16g zmf7HwZjoBI{?H5eX9f5tmvY*=XE-f!P|wE^F}iOp_~Ip|TkcJ^0+I+f#Yo>0#v5xM z**0~BVZQ3rzK|!CQ>MO6pr3+lI|VPqEn2%P4R9fz(E|z}lb$itL4P?>$(=#PDyB-= zflI6BZ(XwW^;SZ*gXL;2z}GoV5xP!}QdWTbjCqJLBl={Omt;>(I$3d$gQ!@q^)MrZ z^D~+eNz#`Pkw<m9C1T=L)UIsL+`#(~3`GBcy9M&;+$7pCKcr|3InB>V3YH6^faJc3 z*}-%e8S8hVS{+4pdy+}~*yz>~(ztRP>`%NKN8!QY3G_HrL3wB=_|$Dk(5I|g`Ygji zeD*d-7rW_du^E5<yQap9S&j+OQ@JSD3_~Ve^CjZ1D%D@jOfUDUHLZ-8!^|sT+zABM zpBCE>3%}8l+$|IJev{5K3(0q2qG4r9YFQ_rJCZScC!8ff<$-lD%IyeZDb$YM)_RrN z$$_6xOs4mZ^6SFFQ_q{fI|%+G(NGSHPb9ztj`rPlg6mF_-jeBy@o{qB>+E?FF|nAL z=`?d@_LyP;osAwaLD@!+XTMB~7{UdRBKeO%dFgejZpN~*+)FC7!57_^Y)yXgM~P}f zi>qVe_y`Rfru|8n8CUG;aI!bMxmRdzCILzG@8Bgfv_9NiLW&4+6{zA6#;ykAWMu)A zQ9A_-REqF35n3dfAsjEv5RFB8@rlp~>9hQkEP#9N-3opxz&5qUxWtS&qJ-9F@DFjk z@j~+=PuBoA;+XU!!C|!vy}I&qrQuq8{#TfgQm*_0w3@A!K>4E)a5f{g`1SPYE(wZ; zeajZrr|v06{*N<4bWkp~Ny>KzLG;!dnS=6xq6HNRP%y*}C{f#|3jA7=J|CUE&s!o- z%Bl;CovKP=nydPF2geYwW+HKdQ?+N3Vc-+YeU_5~@(3#>g3ss;g3E>bijAE9v8^Nf zo7b-yphc?uHnQY}fZeeszMrgzAbv5{ChbY&S8>I<F!3i#DA(yb8?9E<@ubh{(f4R0 zr&@HMa7H(Hh!rNxi$cxzMiHCL=T(FNpSQoDvVw37E&ILG9=<12Q;LD*!VT<5cA2f? z_0k=Wh@{*71d4NKy?L}{b8OQY$A@<qvGEFIGTp__K;gYIww|)vi~`?P?COSEh(`$F zYJsRlHjf!ARHKZUH)JKCnuJoaZd1Fim)7tIX3ah^U;8<F-AU^G7Q-imq^)axz*6;9 z(%2kCz6ccf4NzWMmWYRh(q^8VZ5lJJi$-bQ^9t0RZc>v|c<V?6Z=g~o2laFW|8bP% zuHA~VoX?2>O;dPLl59}yTwlldwc(En(UsO_tfeSJlLbT0vl_@rL8}A{<21eA@kAa+ zwRTZc9D0rHI~F?71V^kbZQnG~bB1nBe46)6KEa>?{ih!WD?Q=v2(0&wDZ*fp?~%?t zV|i1~m1^y;-`_3j^nN*v9n}m^Ey@`5Ftf%kj6t+UmAZ)#x*d|$L&;w3Zztx_vAUA? z@<i;=bvP#*bAd~T78(KHnqa2UM6Xzk&!F()PAeQOmtl$|uG&R(eV;zC222LV#zJ!) z!{_924}1=YjJ16_d~u@9)vkLkJ?DMa80{5H)HpwfuI9Eh?D`c_I``(~X#r-e_IH5= zNl;Q#FrmYWl}pC4yvdjOk|;H-ui@v(PCPVF-3V5K6HnaLW>4kn2k+>)4{|<KDwS5F zKr=3aW6;JZ&oVvAyoTw_2!=<I>ZR@b9Q2-Jgfm2dcQjYk+eodx0_8W44;5dn7c+z{ zsNdeES2t8o?h+~wU*hXWa&u8dkCdx0bYzf&-XA_)uA^hPSWNo{BUdIym@X&L6m|AN z*}t<8cXt$K3FSf89iqJLTafDVEx<`0CYx1*ogJ>XD}}1OyzGxiKHY9sxF_Qsx%{^G z1sBL6@1Knu<&E^jQ3CNM&q<GsUPKYJw(mVurWoprBX~pmly-}Fo7>h}+c+eTLg}16 zVnpu(vVz%X-H-e_gA$8aSA(d#V=L~UT5X*qDL!L~Y$|o?KVmIK*-lEkDH#J)i1alg zLF8{%yC{sHc7;Y#75+0(I<Dp?bYLOtKi4)`bh8ILdBE=_o*hG}8AH4kpG`cNiB!7e zJ|bI@&oRkt<FF3<_C9xi#F18X9s^Td6odEN8c!LCGu*c|`{nrq%>eRZBn_XSzP906 zM+n9K*tDK%U1bH{YE2nzi9<)HTaes&YJW)!{^`I5gQU;Jl&Pynh0Kmrdn=Bc``%85 zuC%f~YQ)n+$<syjZ!h-G347$FTR97s_M6N+m!HJa%Og=VW}&8?dLF^K3+HrvJ*vb3 zh)q72)sOnPT+$HdlUOfd^J_0C&_~?IA10h}zl2aOEKty^(=<sv5`JZH9ye^kpYv81 z(4hV*#h1>d%df+=Jw|xw&ADqT)Rz}lXrXF4)VJqM9FaTq-pq0*zN-_^MHOspwKJA< zk0?!!y2qatP1SuJIMw+ODmPD+CPqEFwr!~V9HqVG{gW4*l(JG&6zc}%5BST!HT}~? z#^Q}YAknAcKP(a)f(vl*(t8eZ(KrW+<$Ps&Yn@3z0#Ln{!hd`#8pvjaJ7sGLFT*TJ zh*75Qa`--G0VxG{mw_=E@NptnUUUOrmgJ3Qj0<Fm)mQU5@t<c+d&<JHUIBbDU=FXS zb|`RqtTtD(#m2Nfe+xqq>j-qhZbReG??1CYqoXIg?uyR-UfivnLW706{@x#LMQf}* z-(Npm%|6+aJ?|VGT*>$wRl~mq-`#Hf*>nASak`N`d1K-1bum0_u@>@_JgM<jT=Fsa zp_f{N`tQT<ROoNX|GPKQo1cCrA5oBy{IQUbUba-f9Y#S#^d(C7bld&s*kbB#hWziq z7mw|K2R?Yp{WoyrCHjAQI;C@Y3sV2n&nWl*X?29?cJ%Kn6nQuu=1uqSIsd2U5egFN z|D1q0hK2#t2fdm8{kk)6a+EpObZj5;e?PMNkc-xNAR$?J*t&RfasKnJse+6`i2DDv zn9|~4Nsiz{MnYmj{2AQ;|6P$YJ<~&dDF3}ru@5=QjaPcN4>Qd_zxFo1gN6uk%>wFw XjhX)EvQXp|?{qX@h8J|c{|x;vy3$qO delta 26754 zcmY&fRa6~elf>PEI~R9%cL>2DL4x}wxH}WvU2br<;Dq4ruEE_2PH<oTfA?jd=A4<A znL1rvUsv_q{)4VLgGN_VgoVR}f`USVau@VYK(9c4zo;j{I@cT}^w0rE?QSzMl(Giw zAQfpTQ|xfPT~9rkS-A-H)<$|(J;Xqg!TY!8B`v0FlvWAVyer&A4SlpK>jJ6H;n*=l zXc>{j+1igX89jaknfuphh!?~gHvzf0rs%OcB;&+#CTCV=?pnl|DX-K#NnIc{>DaHa zAXH@SRK})ztKQ_XT`b^K>Bi6KdNe|jM8VT<RZMmCpdqG0udt#DjR~!=8TH09K^$Ef zej{?u>sC8pj7nL}_h0=m+wkbWGyl8zxgrKxHVeZlk8Lf5GA(|Gf@Ar&FNZ>AcefM+ zQMpx{3!QU0|L^nF)ATc`u@Io3GU=h9aNa@rwFk|LfbkzhkXFezRV|>PnB<Z`NFZRv zos@ru<(bLQ<!U3P+_9?N(vmfNa6j$DzOGDoxtR5pI%+*pWc^o;KWse>7uC<HeP43b zQTP0xjzcn_fU&NPH_zw$YSr_zb8+Af@b`P$niYS&J-a&CcwM;L03I*bUaCEES_U`H z#Bqlw<0ydkC;iu(9rpJ}r#mlefT}9y%j2uh?A_Lr(K)%;^JxwMJUS3iygl3vZisgR z_m05jWvgoE+vD-t;9FZW@OD2a{>t}!dJHsq-|wv*l)PQMh`+tAtg+vXK208PjKJ<0 zb-vwZ=aBoizg_&@y6p9!I0s$_H~w98{-b+&7}HEU4to+8Yrj7@|K<Ytd-^_Wzd-s` z-|qE{Y~0>nUk4{|Xg&7gfQ|FjPQYm6%hA8i&bC{J$(%~nj^~5w>J8v1K%<-DOl<93 zq@&a8{_j;Q@XY#h+M06)bUeMh9Fz}=W1M%^kBDnK-JM;ny}#V$W!$;g{Qm3Jx%fQb z`S_@LrFa>J`TJLD4j_*ISNdW705}tQecieme0zR*nk-_v5%+uBfgo<wQ|JRN=j6bd zzb{MN#*62hp51Mqp8K-H($n3`;8|m9SWXMq*;>id8~0`8+AXs^xqrvGe^ckv^TihA z?CtGk_8=^W;tV*lr(3VTGiv|qx~=@ACv?#3KtUl+V89Rui2t^4u|Pa+BwYoX-aPL* zo*rIz4#Ms*bKYkC+MayHFSC1ZeN@iH{43BIMV~M7o?fJh%7)K$+g^D!{apU|k1w5f zzN#U-D0sApN2d55Jw`N=c0RK9_UWk@zTk6Trp|UgranYwwx8i?{uXfPG=1CJDVh8- z-9qs?i|+3X1hX67MV3vs+jef>_wG=fp97D39j#A!W8(&fCv5cP&NoJFRzJl?Z++IE zUvth5;^I2pbJj&)Z>yi4Ha@YxU0yt_`SxqQB@w91Ij;F{O*cjqj}?ih5Qsmowm-eh zVtP>cAFbo*>sR3?-L$>tbh`g+;0OFHeY81B>tA<(-V#8Rar`qY|J%!P@i&iFi^!JF zrzyXCOT|6bPRPSmV{2T_sM2Fu>)#2ch7RDq^G;m3?fLZWaIfSPa=<F_931>!UTwg= zM@UX@zuVnIhtAIDl6}@ik-Mrg@^L+^$Lm+=yPe)a3gGQ#Fidrpbp>Y1$Z02Tu&&Sh zs2T{Ppzwdfu|SP~b~Q58ui2gbQ{D*T>v)Xwh+9*|%sKOa@C4pUlwU7lrb`Sv;RjU7 z#Wu8uvdDv34_{8Vh7C7hmL3Kv&c*$X#Khe@*Wa!k`3(YCJ;%>~R1D(RbUe)0y0r`6 z1hNYFwd`H8LbV&|2i@JRwQeK)A=<vYQw8qM$v0HLZQ;jHbShP5{=?VrXzuhex<1_M zRke^3^1Q#`xQS)$%B<GXRJH5g&hoIJdVY4~|6MwvCvks$r+QA|pXKd{dUPh<@uuzZ zPM<Bv-#Op)z=mT?5Aiqs)Sn)1Vh-(As6*L6)yFCCZhSR^*VoI9J5597b(jpy9Duwe zdpR&tT<n$e<`4dba8rL+2Ybf~KjMV1%chcEtJw3u`&auBfLm4dv%|y28>y|;+v`iG zk&q>Oe;J8-%ag`8UxT;~-1F|%LAE?kioUE%j6KAQ+dNbTF<-{pY?}^GM)!mqF>l7$ zJd!5@0A1&nkcqfCjsBu&qTu?v2yi8B!kMTE3j6TdQ+M!(@<TrXh)+LZ6k^J(Y80T; z;_{$D%EE63Z@SSe=TT*{IS|{oz`<4Z@RQ^yf%CdhhD2k!TYe^Z1w#8cK{NZbwZfk2 z7iFP&KDdZ!&$BKkthSXY$%%dEiLml3^$SnXWlZgH7V5MRKZbkm*06CTB~Tk{S<~NT z1fzK!5k?clNVig-iWX|^?M0+V_t#pC%HW8EE}@&Rm*Es)r`|M+Xl%Bb4gJM9P<5cM z&!SuFrHd|cTI|7^W3u-A**FM!Smkz$meE2S!Ag2^$2~-Ia?_gtf!mRjW8D-M@Lx<Q zGw0aO4z?kk3&^<Zx24ZL05*NGnXN{1$dvMTPwt?xPWdJ3?GRsHdwc&RZpHWsE<l#T zE-s1$+!`DRd(KAdv@BmmAF-`(#ll;s=|kliIR2eD-)oRQ72~lQrrxO3{3{X&U#IBA z%^1QH4De3;nkB_rkW1aRT;rD0TP`}uL%`lojk!lFs)XVvn^Rl@0YDhf*O3F+-md6m z<oA0EQ(I;SBxWA4<27qjnr{xJ#ndY=mHo{Fx17-%{?;<<rY2EHL)@mJ_G+JDY`8`C zzSqWBsGC$qP@)YFu5)00|J`iZg*#R$L8|I+>;TUI2Qw_!#Axi0Uq+;)lt-?_^0*&v z#UYT5&$XD5;6)oW3@n-A=dl@7DCQZ%P?Nj<{9%Ovd%e1kn(V%FSaFWt35PbFTvSA& zK_O2L#W6(bR`gM_Kidfj?H3DqVpLVdLz9JZZlGIfDlGeI$KnCp&yy@=(>3N%hr=gs zor4aOtf%vu322xPGwrzcPD<`uvXajd&$0IbAhu&aMKf<Gc)+~d^Ik(gzG{zy#W0l> zhyBamVUYk~L)H$&^u|NgFjBtZQuA;sTh9q0hE&%V!*pgJ73(&-3!-KRUBHYLmC@nL z$cDrGcNnFwuFFt54n@VVcX1lxkgF?wFq)rPGrsjleSRp|jvW<Ojj&DmY=!;HJ}Z7h z0lQKC-zdl+4xsF>yNqyi=GfP#2L(%FKrq^7CCy+IS&&b1{f{9@=!Z@>W)<4vkCYS* z1RQ2X5d^#%PNM!cu(g$3xyA+TugE&5gzl<n9SelfItzco7oDl@LN0eSK4Z&?Ptx5J zEWlqFyMO?+BV8>w5frd>3j(wzGch#=@kH_}U(IhA5<q0gDEhRzcmBVaO}@a^>~(gh zzMUJ7Qj@B2dx(@C5f<Dq;w#rM)_gnbU^$klz7t93h`19SBQSHCI!HL^l0LXtr10i3 zULW^moEQB?jTI&C^sHg~cL@hvnA^+vS?O_etYCuMwtE!4`~==F<Ex*-i>j)T$*(@y zpr6A)oe8|^=yQ9hJF31>CvM4NNL|BkGuLUlQQ>HQ_R-iZ^m_Zn_-|;_Y7u&W>bGst zC-73-dpV**mtXKvSMpzrRgJo%)uW>o)S^SbFWej3^~*=~%X8P><L+g&=Mw%PQB^gz zQ!z2l8A#f|z~8qp95ObQ`-(!B`bQepZ)$uM*lFl6=ipw;nl!e8?~BAwtA4X0g(~>< zRl7z=t_<~Pe~7oaFg<c2cMZ=k<wcHRDnhTB3SGI<uD(s~DqeYtz4(5?<TPb(SmcSw zfyFoI_r*r{R|&;J!wu-#V{fyd%5bwx&&F2vQH1XFcE~oDL!$CIA|ctjd$4!3hy_Il zfJ@K>7BXWW^`1oVgEL)n5)9RfPtB2F73JSf{-zKk;KRrVgMM)B{PPYz!WzUbY3rHZ z66io+G$FKOOYCE`ily<gH(FO^FRyptmlIkC<^HD_@7hvVBprr(9#4EoSByt5=rx&E zk~qkt8`2Xx$y;TVs$ATpvqKp6r{wcIU~s)o0`_)-`^1ZkVxndc@MRsXN%pkfJv@j= zo_}B$$7WGa!(wAa0QVr5T{+@;KQk{1PP|KE4_6>403Wa?)Cjj^xbkq~fk(DZ_6n83 zN!bzd{MvZmC6{$VYtEseJ7ZBZ8pu{znd2+7Gr0z1N&N5^=Lj*BnB%jyme@or@B*Qb zlm*YhF$HpQF!h9u2!*XUDfqE<kPW%{K{b36T55!QVqrF!59hs2&fO&tem-WnANfb} z_!{j((3xkviVb?YG{U4f>saZ`Kr8aXal+WENk&Q?xgc<2St|EoY^Z~;p)i>UuPbrI zQnwOhqYdn7{D8Gg8R`vZ8et*`ghmb(Pa$9DZ5axMc>n7rX-kh=GejwxA-K@(5j*ro zMsI?tJ;`O0WTAIwCUjq-``U?1zY%TH6p9~-uqGiZ)cYhua=6T89rLHXvDB>nvKxJ} zlgFd2e`fB$rJX40JgT5yFJDlT;)(~kxJX@w$d(!JML8%cX)4EK_|x7PfPSsr_SP2n zl}-XK)l&A2`v<Y=4`V&&chPCcC;ep3QKf$DA1DX%Nh}=kXZev5NR)-+@i%&8gptG* zN0A+jA8&z9n5EtM5V?<hRz~|X2a4ct9a+XPJcslm&2ylc69(t)6;13oBqv&UY0RI( zk;SjK_FBBB7S50)Z&A?%&=rKpjvuxWMdf*g)<a}>rlR*3eRSs|HtKU6`6wNOP)2cm zk#5569N%wV#nPg{FB?X>VG9R*O_a@)BJ2M*nY&=2dHGzVL$$@WX#&$2>@Fki2_F}! z*b<CUYk=0SXu`pnzU}*A#_3>bd%o`{e}7)VWR-Q_BUTWriYW`gB!k}Muj_i!I=yI~ z#fry(S<8(0X`Xgc@0jE;CXWOMI7`Ky7R)&Tj~=ZP_J$ES)H+`3hpBBku$+Eunf|f0 zlXv_SXgrKTr_0Q2RWr@t*(}{|I!X|gGOv2v>OQ@0Q3toe(}IjVP^O3auHHv^+mskl z!G`(HqvZ7AL2Uq81y`XvA;V&+jFCmnOx;J!GBiJjQHEx981}LXI76vwPBAG6X4Z~Y z(Awh^?-pw1kIvsRtSPFMY7^aGh@yWB=&nw&<3BERJ9Rws2+Z7BbvZpF#P0ApKEL#; zYA$g&3_z&qY!b5|rn>&;9mxpj6~SRktt3vthrNhu?B2lTR(PaTK`T`4eTqDLzlG$| zn80^!rzh3i#At_-i>$@xiKWrHIy|q~0*TY+E~_$bwmkScJ$HE1OG*fPzk1x6VPw+I zgE6}5D8dP^2<vtRWSdxXoReOFum2O_f?B_!C634oc8&Vq1D%n;py5al#Fpw0UdB2q z7?IpMT24UXsak4Q_mgpA-}&iGV-p(~Obn@2o#fwwVNtzB#;k?(El5XgMv^B8MN}ga zPp{Vv8~fpq_?7(WEoKpXtYsn2Pq7SmQMS{~PvfWyC|bBLJ&eo{L)V9ZtA3l8Y438% z_nzc4j(#HP`wItaL0~_J9q5Grrl@i?Ajq*~pae**+CJQvKcM>o`#cVZohJGZgKyZo zM@f_47`YEIhOBAaB?(tNYY{_uE37GYO~ny)J|s{Cu8u0zNHp8VQUv%WTby%>se;4W z863mT?OO}27S$RWT~6c_Y6{ZhBMi1@GgZH92!7TN6p0?cG?d(;Y1Ot#ZoImzszn?& zb^s*433LB5ugNp~72qMP@YG=E;e1(QHxVzzD3~mdtx811oLl<_4#%;_`I>(kbtk&0 z_H2KSxK2C?PBV<{x+2fOQLO{VTEH`t<ba<8LkkBIZNHxr7|Z#rI)BQE(@k5pr<hlk zs<>iIQ}9~DirhHQM3%$Gax|vH!WJJiqyy4zm$&N-H9G&*<f50T+>)ghw#bo6uyy6= zB%K|;9ztLMGSC6V56PhiCXh^rG3H8-hU4Aw%i!QJ?hAkKg|iBtsxjg&)jE7FUCwEq zK3Dv$<hqCd?$RL?^N_AP=*ILLYP@jmHFdoF!YxWIQ(%(x=%K3Q7^i{N{Wq}-X`t+S z8{RLS+OP)4(+IcF`?<CcGFzf809BV%Gk}qb6l9Yeb?z9X%&zh_^a}c^Bbk%UujrsK zYPi3UVidb!p5;r_u@prR-wdB<J}AWGwGTGSBN^y!6+_EA7Y#$T;t^yY&25v1Egtk2 zp&LhY;OY8fh-Ag{F*FFC@uxr}1F+DLhdfYg;Kri>9i*8}YHE~}qj5Q2aTZ`|LMF?j zF=01Mu==+Ft%kErX&hpE+>rYV*%y>DY}<*K#HwDQW#vbjsgT`Dj=m&vBg=H2EI`P` zzg{?M#Oe(bs#0AH?R*;`(ylo2<;N9e&XR5@pQs`Zi1Ko+ZsH8B54sD=8c?$nAVk>J z+Mj&sp8A9L(l$ULVZ9^{ZyoQq20#DBeLog~su>(at0g-#b7{dM2JaM!O%+*90J-%A z;iFCXLN#apGTh!t&x-A(Q=Fq6YR~*usm50J(Z<$)BQ}*Nd^ulXsfX+U(Gbp|Cj4A# z+b&;ELlJTWeb{J3T+x`{2M|h8hofXs%l8r4%?ztM$Q6+K=^oq_P!y<IJb+5%zy&yI z=-@&X57X&S^kB6q4*DLRVLrF8l)+#U$pOI+NGR|PYHWK+tO)Vb5?QCAxKC;=3lGzZ z^AwYTDB0jDnCuH*CutfHT%%l~WNogYx{{HvOx8G`CAI?>{-BIQ0i^pn+LpCWw*i8- zg-m0Dag#Ev(ivq%5ixys-DTfF2l2#M-Vuf?BtO)9TDzCmi#ndW1y5lAnKmT^`C;S+ zTYe=A6d8(GG6k_ABvNc$)iJw8Z$MxlaFR#qmKld|l+~^7c_?W92@DS~asB48c4ND= zfbr9Yy;QiLjt(Nz1WIMF0+Xi7w?!(|6u^c$W;sziKIs3p*BaYGNVMX&iBUMDW;L|u zhyJ8AR)q86R-VeQU{1@6p#zFVK@_$u<yW;$2xdQ^<nCW{8L<};+;~hfQEO5qYn=}5 zoRE1A$U5mt;=rrv=V5$AJbgIIT#R`H%exIqNcB@DRBZ?;fPxBTZHI!iO06_aK7w0w z;!t7TSXqHXADK*$+fiY`xbvibya5<vlXjBdc_zG)QLFlU_%dTc3C%&<O7yL@_k_!c z5&AWrr@&JeDY*vT{>4Swm<9M(^GRE4hG~NzH`MQlY+jfbBxy<x4)8#q#5Im{+ecis z&;@x!wZO&)0Q2(6v<%fYW2OO3#;Ch25cUK6)D=Alk{h8}WoSbz-s_-%v>~_<()+EH zJ*^+7U$pZTWpDeQ)rq0VoB8CM<N|Mpk*PyfZS^k0gQY}l6mfMINWPCTI|$c4ug^$8 zwQsw3meG_nY`s}WUlLmINHY6r-I0J{EI<g)p*O4pV8^gxQ2a=*&UY`A#W4Mt9LaX> z0v%D=Es5t$;OpOW*IO2HV9g^w-Zl&d)X9#L>{ummSdQzR!pl@GO95vSp6)VF^`AB0 zNe&r22-0&2h)aF@`Iy#E6F+OjLTi7Ph(nIBkxj6RZL|3OOE|{X1@nYdWgykQ3B_gT zcI=J|s7E%kOh8W~63}v$Fhq<fpp1n~<1<H3EE`i(1f8PG*r`1rL_Mj^FJ)hSyUnxJ zMZF?EHU?3_U*3P`qT*3_!&lQ`^p2At4~9J<WTqw&p<g5}J7Lt)I+UBdc;PzFF`FE@ zW50OX1siNHcp<cH$7vq0s*BZ<pirn{t3{>&1m2Z4q@>XOB)%QY#0+8Kh0K<lXj?1L zy4)i(Vh`rqYV}KmhEE+uGZuTgS7LJfx4ivQ9GG?=UxYZQVwm6`bX2|M4kG8!%m`_H zEg&Sqw?VuOo`0*x4q6_NH)69?oj!JWmik?4@z#f4>(s{MsweIYSK*;Y7=N0=a{ZD9 zNKNBv`Us{CbL<s@3M}x!EH=4^(!?>fJt={fLMb-k-qb@#)ci-}v|oQVX8rRt4GQi| zn$wpCgV(=Q$06zAk{l2kzw`GjK=(iVHQC{|9-Fd^S@L?m7&Q;vg6f0kx;got$!SYa z7)k7N?|vzFi)hYENJlEZ$s0eFAPvMbSFzS0I7fTHImhga51ga2W#wi{VhV~9{>!~0 zJkPZ<_jrKmWG;VIOdh4WLfK$v#8#}xq#3SIo7lDbQ;y~VQnvH|W)J>&^6JpU8hSTi zpC_X}3kmb{9eYkiDG9#gLAw3m5FSWzNvkj*@>79Gk;0ZqabVL&Jiz~2Xc+jgi-P=t z__mY$ciwbNaSR7Iu%#RsLBQz@F_H(~qYJ9wj5<9x_<Q!qee^Vu_66&$)Rfo2EIa|I z_4D_js#9UgSh`-8v*1mV8KhxTROMe>?Z`bQkf@;6VmYPEtMS^_lT6k1D#uw*<8+MB za*i;^$zTrYj1QLNTi+L?c^m=6-ML@Lwd}XrTFF{EHST$iU@O#<Er>M1X!LB{@NI)? zh4&NeKM)cI%xIvk33;GCqX>Zx!LW%CO!JH)MPs=~;9L^f;%vYn#}5SD-9WhmP=m9h zYk(O;`K@9F`Ru^vZ2H$pKl(7=T-;O8DsRIdS4JAE(0t-<Im0N!ol+pVc@npRG*N-~ zN0P2ZO%hWhQM-K*?Z|PU{=URc8|xoj#S(ViFe7OdcqS7<9?Wy}n53~AaD|!MzJB<C zAVJ`2W6;1?%(M|69HyUI%Ou%a(_ihJ%8!_(OHWlk<%RZ^$_J^bDsKtUge-j2JVX}F zk_pNZK(p19wy4)B$jAi1b#ABY;!b}M%mQt_vTGv_QyFow7U4wMUFx$MbED@)x<f({ zPVu0o^QEm!Z32RB4dxvpOFp7d<2`;GtnQk9K(xGYZ9oYxne5|{&PdxwR_$DAf4jLH zjPuB$@P9r#dTrbQJl`&MXa=xPqdXHN&_E>St)K<iHqrQUzH=a`?Yr5o*QqgRAFTrp zW&<=j1wSwGLol`m9^1h^T9oGAhYNItkW?AqsVKEh<gbYFW1^OQS76U{^a>)fysb9_ z9(8A`|I*{71<Uy@+ymK+*3T=(jPj<n`*C4nckvM&x7H$7AydFfm_rv)AA|C#Oh-t} z2u*$M)0!Hs+ZUiDaXD9o_M)V4;<{?nC}zsZu(-*99D7YxcBC)@OM?(sv_KkF$vQ(b zVpl6YKODdM;-gT$y@k)nFgQVzfYK!AOZtkyz%)U)YaMC~-(OdWNoxssN)rLQ!HN%Q z6&hIgk(PuCYetEYTzguEwFAdxRR21Ml*x@)T~OvN-Bo}C^2PS$v;oPVJ()%iW0KtU z?<yD;G=!1cK{p(AOctucJ0NfP`BZ9)72<s=xiw<AL1H!1H&ZflJ?@A+M$8+WJ&k>& zP$|$ixW{52;FhphLv8zm#t^G9?xcyTGMbd9XLJwr4=sZZ_1NWG%T$u-jXD20_MQ}* zPslkW%??0zrjNZx5!M!o;vIPxkdv%h)c)bW%0CIsJ!e|BifKAn?1RkIEq`ZsdZNBV z!YR=dWB%3HI&J}$NeLz-LTMTtN1U8F4H~R-MyvJYFEUkuk((y3gy|tKk0od8Sv)+W zTF%OrGv^VFX_1+oZ3pwT*X*5ODXTl2je(;yf#;Rd@%~X3a<@yW9RHB-B&f`X1$IAi z6ny!lt|b}-6LM5nmAsq6kA}w$Y9H;J(*j%Kf@-g{UHsq;Cqy}-AfH2sI;TahmVWT% zj8E(wJe~VLzTv<5``&wsdzp#U<bI?X!WglDS%q&-vMmu!*33C4p;03Y!#ZHyggT~L z0eHedm@s^(6;Z*i6ao72ScSw;t}xCDWkS5wn`;8SsUvI;f^o!y8@c+nci4Mc+bXq{ zb)-h7daMf$A<mbb3yZTSoPn--2vmGUo?4mpZQTR7lg9CcpJ$|_fJ-svl;US;%KCt9 z_rN`LW(MJPq8LY(avI^{ZcH;>HW|@Gpm2ect*$@veCTEm1{@|yzb?%Mf0h7W-nhyc zZWO*^AA>lnQ7A-7W}?%F011(}?zo2ux=CM(E&h9r!CJ2@nzXx~lKf%^zbHV2ryy*> z?cF~zp{%codMz<CmN0d~QdLqNmg8rfzHiz4<%bjLIJZrV^{@F8KmWUn`<31`fCd2r z473?VI)_N)rsam+U6|yxZy<VAqop9KNq9YAUS47A)o~2bQ2G>sR1;O4(Eio>d0ZfC zY4NFC8fYwV$D^KPni)A)y*qneHWwyNb5#=d7TUfMZb|j&c(=dSvEz1VrgaxUae8MF z^eGieSJB=>f40cvC)VorP4?jdhcpfAe5WMt#^|-81RAiLic8P*$q`*frDVSSiJhy| zPH6kVN_g!cKKoLrjv(@IckQ3uj@|~cU3kV8wS`=+Bd<+Py-HJZUUh7=OPu~1X`+X` z^{TVIDm@;h=42Rj&3xM_uHzn&^h2`2G7FyR?b)Zpr~D;s*AX1&@UjY^yYQ>x{L)lL zi7G0UhTu+U9z<t>cN{e0{>^gQ%1t09s@m819XS`QoZ)Xu85PA5QC--S-6O&v0`wJl zC(cAmR}5Tt(+^Lf3{nEqCs6Mu1XfrmA**M`A1vkYu0qKmo0&P|t*Yir$3R{P>u0RE zs)+Zgh-RA~CMU?&%K-SUZ<(c7QP#(0xV0nI^jk&{@hlf*$nYZlCIVL1D|p$S`Z`!Y zswFSmv2Mj%k$A}gd17mu-J!sv!0<U3Pc2;X*fqT)ZeQ?Kq36qaD`5e4V*7{=_t#^Y znO(7k>}kYtUL_j)`bw&#_HW)|^Agn=QY3SvrP1zXzBELvzbt_@lH+lm8tPDFxR6Js zhnNe#8<M=<P#EvP><jpX;jBpW9QaUp4t0gSA;*6BCOmLqQpXM{;y8<3$G-q{ZIcNP zU%E<8yP0%4Iqd1k``Dpx65QKWk~1g>vYQrD!RX!(o7fa&?@h<&b_%Op?h1vWBGw#% z!o<vc=a6u>&JRFgUpUnSk!<av+ad&!I~s+Xxd-^sO#fs^P1{G=9dM;wqC|5?>tNxv z*h%)}5ip@JqH~!b-c?z49^YAVr`j?zXcr7r#}d=Vi<XS%aU}KLC^7Gyf~4@}&};ln zpV10>VN$kqOk|EP^T&3RW-7p-IaDGd+Ob1{_b~WO?g*R+I!$sD@1*+0M;BYu39MfD zeByLp%ogPOTCk1$wV>*TE8Xnd@h348-UWltQz^taNgeRU3c*Ysapr8M$8cySyE`)b zRALmu&DYzJu6noAkct)T0BQJZ7zW!t8JeGI)VXQ!z1m_mY1J@+Tij+b*4*<v-B@L` z0*w@XDO5mdoo-Aw9E8RTAV8r<zFdWEmWw_mDeQLaF6N@V^Gkzmqq&ndQ6>_H^NQzy z!1L*=$i&ug<{|$Y)FDFF7uZVW)R1By6+0xFFA|N*+G*@lVV6+hZH6;JUm=Zr+R|^o zp>!^<Mw^aJ{;l+LDWqzG5~g5kqbSBK#_+PcB>}*43X#^P{ArKhFQ7t$T~X_prX4vU zlce7rJtQ{E>t1-Oab0Y9r4!`w<L^DfQ+_cg*B@+km5;t^ZZ`39ee-{ku-f@eSeD0S z1V1mQ1=hIno+zVbYpV%f-3@*gVk`{YZ;v<G<u436@(IMo4+>XZ(2Z?RP{3ksH^en? zsnY<A*wx6=(mBp+-4=B&`fmy-PC$2Uvn-o*&uaO=hk1b`xvH0ZyBH$njq(DYF_)m- z&`p90XN26pxO*tKD{nLvh&~x>N<5x!Qo}#4O_>_J)OmPZH!kr?yc9&MGNC^k!+0c& z6+>+J$4EsdSkB(7cH9>a%OmH(RVhRDU=uhCvtIrTOM{h9E(}^|PdA9SLE0hjFv_>Q zMb{81?9zOKUXa*!54VtdR@p~0afL_0uo#7YXtLvPP#|=UJfHcl6|dNIBG_Rtg}Wq4 zs1k7(n%&V8kZ5mcI%m#r((kNty;-cdh%vNshqY#G7Wveh$xm_;J(H3ewQBldpc4q? zu!?8uw)gL~%v-1B@i=)bvH2l=sF|$e%f)43LCri{PCh-BSnQjd5`*(xQfQFgAK><* zhl@i-7s0B&p2LkPB3VDsoM!=7hu@7+4G1BOML|t8v4I;2UzF$Km|CYngd4AHLMzKV zBZ^VIwc{c-N(&~^nSLA*iY<Sddj{y@sXNmK>fZ}=>wSD!=EjV*zS<l!BmTF_Pz-G+ zo%S=3Ouu4~WZ<Ish7GqWfJE%`tDLZ>6|X*hF4+L3ppjM~?_>s~>PaVN0#iB-*0z2C zq8$~dK+3Ug1~VJn=gU?@L?sR*c<w;9v#{rT1Gg)s<A}1Y-q1X$w!W_=288v<Vf<rL zV{^KLJh!1w3!X<RU!=X@;j`jh(G{hy8U30}vp|#w{UJR*Ebu7%78%?`wWk8f{7naE z<}K_T+)a!^Z<Jb5RH~TL>}agmG0?#xptm}rqfct&;A~0=?@lT=6?%aml2smD>=$60 z^h`*D6Z|PG?{SJzAV*HT8;}TV`N~e$P(-hIj;2nh!F9Xswd_wA<#lU$Xkmt_+}X8y z7=&7MjM%Oe#nQ<_dOR1*7cC1N2sJ<sIg|eD#2s9hPZr{iX4h%RhUc4hH<&jj)y{>L z3$s{topxuY-UCi5G~E2G=6ku_0=ZGIC_Hah`@_;yU#(2~Bo=d{3UoVCZBDzW*TAeH zB1CBzCCjasbbyD|7!P&J{t*$(b5DmNSY^_iN+989!<^9NdC77Ds0X2vf5)}WDNS(% z5S4_ATq;C=LA{P3@?CwAfC7piIPKDNf?AD$A4@25a_B1UJRi3~VvIA^9HgfKt0T_d z8z7v>OJ7H~?|4{ffDoJ)_<WJAMyT!qwK_2=(=48(b_l29XJKu2pooH1CJ`0;)@Y>; zo6~OrEoU*5IY?ed&%_5Fqd<L!E8RRcjx=UI!=8pJb+(=N@atSoFnrPRE>3?N|94CR z&KD=2RTkH<>|c2nX^exoi}t&_GzD&dDV^o6xQK~^ZfV!q0OEzzm1^#^bW8PZC@{_C z2ahx<VxnK>DyBhmqVgo=(_=TEQpDf1K2wJf%nPOaz|C*!Wd;Av@4v*`c!<n7IMYe| zG;*WO%mi|hvYC-A!sl>_7DO!J*5P}S5X&0i`q@L8Dyn(%gRg(0yR{W_R!#1Ng2z}G zVVJ$|#rD_f2@v2Lf1T(jt%TjCFVY2*sO*O1+|KC^?W~L>4C9q(kYo1TAw!jEj96-; zpii8LllXPESJ2;p4`8pki8knimBBPJnWNRWLUv}hzeL&N!mFq~#Sx?g5mdj(edew$ zsOzRGiV&qRUne%l=5#ADyT2Xvl&hy^$EHZ)$UBH00gA3mObybXk^Hb))?2&>+bA@W zdue$ZSa$)hI7R*>xhbqhTH5?CDr?h=8e?t71=wd$3|K3zrw>1D3XqV}e+El}i}`R_ ziH?3Vr=)8Z_!v)FsHaYY`y*sBDi<b(D#>h{o>A)cMdxKl=hk$#!?3lSZM*tn$Sh-- z4vf>yf#?0-n6~e34AlKtrP=bT&=nMt4EhMYRs23xp$;r3!iv1vy<D~dgDrf_E!wnu zxJ_6g2Ipl%544sxh72b9rT;~LKgh#d5RtDjE89OhB_Zns=L92EZhHy~+!yOWZkugp zBBucUwW=8sL{%oHy@=9%K|5lRXhgJ4{2?<KXlX22w>jZ08$-uXIElvV5wvyi3fY2- z(VLO}K9&vn<IsFffRM$0UEwXHpu{Hf7O(IPL3G(X#_zX<wees}f}PJA1ANjHvQHc; zhe)n2LOU-?B^MJsX?l@{;2!)Wn!W<h7&5jXkDODxs!mih0yyr*k>RFzAZgC1x#))* z@D-DR1R-sj>P27=Vdf8&f+#pODD%j?Zd9eky#EU3cqyIdi>Xt`*B$2X7b*Wiikq_P zHjQVnLBYi`V2X-4Ab#(=$k5&w(ERTU@}Y-5?+q$DX=OgD&0jL*-CbdGNxGf^H%U+d z)bS3@S5Jf}4yY~N=~0!Lfxe30Hi$X^rH00dGRwBLh;~p|Tq$hgj%UcfZ3jW_rq@w; zg0{Pe5DT{&sTj4lgr|PATJnGuO4>omUki)&Y2pq#esb)EFt$)-R_TR$8k#oVBvKVP z=0~C~F>OUNY;#y!Fki~5FG~WWcwBop<eiZfWt-VipGL$DCr^XM^v$b?e?;5@Lfur6 zbjK+L7_5BXum`tN5ekMsA)xD?;A;h&RVmLF$z){xBdnF6B`hUieSTnOqrNN3rTvCd zKzmo8Py5Z|DA<{t)uU8o7Y%ZsV((gcravu%O;Z?Fp)eue`SrwTaAHBM3qjO_3Y_ER zZku6saR1s16xZSq@zN9`?m8m@4N-B5TD{~$mB!~CvXNn32LT}Mf#1^cK7!b~x%w&= zu{B;Aoo4Z<3|ZfQWQ+D&_4^3-whX(GFS;tUw{<y0$@@oCL(ngn;}NYNv3J!?EwvZj z8vODQ@yS=RsoXOe=FtBZk_>P>?V-mQD@{!LKcxP-q;-;b*b}ZPt$%R`yzgC4Ye^|h ze>d6&=9|pdY|a-pP#f?eI7qdJa(Om)Ay@JpR>WGCUndZq@-cdm6WcqvX5@xgR+PXK zoi2Xz^^lX!9$Jx6RC!57rF`%~iw3Wzh}N*2`8xZZP#*|c)Vr39`GSv~FFd;47EpgR z!R}oUjEgeKb|wDS{fKY@kYqVB<|e3~b}Z|9E@!mW?ED`eyB?JK%vNMXuDX_}l$W5b zZ!!mPPk-nW`cPtTg!CA4cw+7nZ?rokyaXggVbpMqbO&ufYO>+|jWkl@B(j%Bm&_`n zLI044==D{MRcpr`vLsDJ3w9+<m&uY914n7^P&F4!I*(EST^-Rh8Ew#plxX9CB!gpC zMU*u0U{{&`!eZEqCWl-5`6T_Mt^xldV!w??8)Fo0qz@OI3KAv!8bZ0w<DP+Tf7pJR zki+zPbn4M{yj|GM!gWVi%4x|A$&?Pg&bt{^)B>(p(SioIv<SvyE;Z1i;guIW(1Y8F z!{Vn+8_fX)t9m15(t(HMFtcz<yg#nP(bzIk_##^;N$8{Qtn+IOKl467Lab-KWRhaN zyN42!wZ8?+RUYHk@04Zf3Cp)}qvrqbgtpS`XL(d>SDfvIMazYD6hjt&EW6VRV&?{r z{<y8FnJPWq8Dy$1f?}M$MT)1=Meb$b&~p?3m_8<vGLgGzI|^WSWc8PT=HpYjlRen0 zQ)jsq&k)5L`b<(r^aEE%0(Vh%N0wR&{qeJ1;^hVT^$PS&JFA>n3V+$xyvQcWHOpeR z=7N*9Y+v-EL}({&*$U~&;fz-K>3$Z>I9;?8?HqdZFET7G6P1^KE(UvRdYGBeCrd^H zPK36RoUvNx1KX5%+2m(fRhMFzk-^obA<LiR9^wZ-&M?(V;Xvf`@sE07l(}y8et6e} zU4!tH>n#(%G+eFAIppv9<hHB8P#;EZQhjb;Y~?^Oc0k3z?o7ubW>GMr?L>-k{n7ND z2od~^!adf_3Ln|%q3hiUJx~#wy<X%4lqZK@N(Lv->8gzzBnT)C=P`zE(z6ZXnfWit zM?#vNH?U(AR4D{%WG=fKnS)kG1rK1DyS6Goa~JVu&q8+-$aC2Rx|gS?%w>}-&S686 zv^91g(`o!86XFm8%D$?zm4BxlYFx!^3hen*)I5-mF^+sg+_|bk-qhWbwZn1-pvPKX zGRk4>nz$)BdK8lCV3VO0xgZHiy(AZ4#HcSlaep<dI9$Z^J5R(kOr)OX*}KPO)pS3* zRq%kvUy0TyI@NF>GmO{Y_879~^+!ZE62zJksC4H~w~A3xHgmn5G+I**>GAfBLSPE6 zFwcdzB7u<XDbBE54o;c-(KD6-irztL>y@S7f0_0E<W4``<vS*2o*4e;OH5!zv8boA zL-oZ3gCNJ+)iy(}BqWMFMc(nl5UY-`$EB0*{%L@IoX{;Rm&`RRMIwbUazL?kyz0fF zj_E@D>6hF-2Aki;b_}yhPGdOdKS*~5Tha$@HR`6XQ>>yTaaK}4b#LE)0gjGo7)MIf zJaG?&3LwKybXrP1KIw3xkVScC9WQui>aR7sVzygvD7-&U!4-LqiF%FI>TD#g{EK#~ zjnZ6e%zRZ!IuULc^Hi$CsTp;puI<Cq{r9ImERu?cadkE2-SrKd`j^5MTdKD|amBzj zDJynL{o|Z&^g8qR;10=IfN9v@t@8uAr)}7v1<(HWqk|Jyg00+)tmn6>@r8y{tNMf7 zZY6qKqD1NlvfUg)w9Z%69Y14R9z?ux9eYk`ZgOQSX&gOu%%z<nZ60f+h2z9^5akMZ zRL-GX=82V!T>D=+bSI3m6~zx}&7VE1{>R(_adtTO^;5WM+JuS$fO%j7E|`+X44Wdg z^3+e!oHl^F0h7g9^6-_(SCSpIRwlojkqT5z@YE6+SAg#4(9AWclh$#DNFp9xRvpdg z{0(_+Ic7SzV_-hr8!tE01V;PQQ`<F~PZoW+%L%q<PjCs*=apbFZ3YO>2rVOA0mH{2 zgkfxt5A?c$BFZw*faK}O=Q(aB``nN5DGRLD=0#GKk}Vy%Cc0eeAsZThd0KR)@&wX% zaLQY9>C}bG;uKKmqM;Xq%x=CF@CUJraa@sG)T@*eDCT(yQ6`Upb9UyF6imIAV3JGw zTZmADDseq*ms$u=;fo!yQA$aCKP|5|*A~}(-OxkclPY*W|0odZNh*Ntbou+_HVhKi zku}+ut<`a6i6d#-RjQt(ddaSlT$HZ@J==_w@9^RU-&02OSKblQC#5vAm1IGBOz~A9 zbAPP%13j?<JM=o@8ibY@O@TdNA<FI~$hQ=ku8tFxw(mg@u9;xdFjqfyN*;88+8cLy z+*9BpbyG43sMg-mSe&6T)3XTbd7s1VCdT_Bn=1RXOEtq?V7-I~4+ZM`_VT({$nYBe z($|pAb$7E-h@~tGzRG4FtLtO>M@zpyTKyfA8ahR4D76<IRMO35uIHVGL$t7%!u!Le zU$X+0#bhd=2j@;aztXFplBXe}OS}HJfNhkG9g~9`Fq)B%vx!m;e7v#l;aJX}v$Lz0 z(=IR{$MPlCB;56v;~6h&{Z;A(6O_B2P7I@pdDNQcmR=_P(K7^!?5NHY0?yI&6>^Uy zKiD0g<C$vzuPKFbnEmihSk)4ER~h^6U>FAWvnG$7+3kh&q58#EwZ&1ssrLg1i~QZC z89>JFiK)icv7RT3{UKC@Y9j$mn%fdTHDPwfw4@s{Z_R@dUs7MNGg-stO&Sr5vpP+% z_!-?aB=uwDC|-k%mbjuK98DrKat;AMc#X8gCf**IwWB-x<Bg?kw{)qUB+@9Od}HcI zxsGgUzXuDEzL`9oK1FP3XqjB&4?MOQUjR8+QpHn)e{@0%t?E@#@~~*C3kSvNYDAGn z)Y|mtP8-NcQ1kkEr086c<d*eAk`sqlfjqi3@s_yuu*4RBlE!f6Et-X}QE~4*roX6s zJ4VQR6*C)Oz#?S;9U|@|eS6j(MV8^?l$1(O7laco$WmF=Y^GAiUo)7!xUO(AiUDr$ z!1wQ?qkc$p){K=i*$Ul)V7m`+H`q%<2-6=}D2uI&eA8b=8;K|>9zQw)Q0(>pEr3Bx z)uHP<fZfK_^=6Z(y4xTPXfp(6$Nqw1u`Flv=8=f886*3OVZ_7r*8?0N*Z)wfvSbRd zslzi_1NDnjXx&o^4=U8yCf_?5Kwq-J0Qo(Hj^Rcix)IUVjlssY&XL36g&NXGZ)5zI zoj%+s?SSVZ^zqZ#UDrVPXy)`kCdC&u3C9YRJbl}=X|ybRl6*3I;WO#-XiL;N(vB6| z70M8I<&*fp?xX&ZMJF8F@(N2mY*0X;Tv_ZCIO|yI+|~)tAYAgt&O{Rja16i9AwO|| zdN!iw0K`XGaiu$tAO35|xmc+JOED>yat7y1!K4c?RMj1!tAuN7+rrNiB_S+fN@}v> zC1uc`l8#RN9XBPGvZ5H`pT!c=ga58}r!=~=TrYBkbren)@=KVs4tz1d7>=kMwMw-i z?*&PukrOJ^H7*c-cl6Q#A82RxT3LC}M&hws^c?LMk-Py%UuO3rB?>E$HpR>bRK&r0 zXKn5$j3KfTm)y@yKB<e!*tE4h1H&AZmk$j|p5yF0qF*X(4+?5d9j$bFBi&GCkNi%Q z&$QTHV!oeQn|;v`c4S#$tRae-8YOp@W9BJl7Bjt&4llC|;mS1yOx9{-3Y1PW=i1m2 z=HdRZdM9F9pP09%C@HyXP8+v-Z-NW4#e%fHnQJl?WNC?Iwb-3ydOaqo<DlBuP5gC< zPA_GUqgI`^Pf2Gf_&dKS*BqOc42h7vibO$bg-&O;b@GRn<(JRlMvT0|9Q(fg?!DpW zJh<y;IFvv~cBz4Y*d>gihZ8q~9DE~V%$(G#WIx{y&D2d;7RvP@${{l!qUP^ClE#0L zb`>VfVrvDZVmx4+*DT>L7mI^MdwWn4)bPf=`id|9I7h58X-=k~RXF8&^7)mHD(~|T z+S>^qFjp+%XOpw6imkWEeTmmAb&xn~{o_J4fFL}F@3%_`bm=i@kSXbLU)d2pamHq% zU#5P_n8xhg)OW%{%^ztI-MLGNdqiKsQH>Y2Wt;w!t7A0(CU;mn?M<J^HSH^%p~iXs z%War-L`33Ql*cmbmB1Eo9z?{bC1)Vlgoai+6g&OEvz30Lj-%$s8P$yhjh<ff#ZZjP zv|I6TvaaSE5V}`$#;}KB)5x`u(DEsk24fRWo9uQ&h9NdXwp8#W)6W<~xD3T*@j<D1 zXE|9I{RGYw=BSb^>@(JpDhziB=$yRWK!rxqP$VdzWEs{ssITNbqpp55_`VwTN-k*n zYcu}K33TlNPDPGTf(&2JQ_cMYD=G9ntJl)|dJ~@?!0uFU9`qO~{|mFqkniv~0lk;@ z@*=ud?cC$K1BARYjxsnj|2c9!E{Mc7=GmgD5Sr}t(3?UdfNu1&(88i0ylv=uA1A!{ zK=!X3hg`?Q3P^#{*{1gkf*E~6Lf^KskP))C+_8Z2C2LB9^rcNZ>qMzrK|))j(lThP zQlN_%h>yJe#uOEJ9&@_JLDSBSy-~b$1#UN?sz>}S5qCW0T|iewn)on;&#H`7Cp*d; z57KG?6bk!@51rwZo9ydv#pd+MxP?r7rF}4*LzAaNEi~~dHc%iH7$^`K8eV8fX&wq> zXo4FW(q~&xwNI)&!J<DQ#(@a=^+lq|mu>-YvUARYfy^2sKcggaHNrYu$a?f)O@EC% zlQf~9YB`Tbqly;EAQQ+(+@kpu@8G0_zsR%1Dk{}{LP`;|I+DGF%m>l)c}#D~-r^Yk zxktLU4KXw}aI;FSm$<de+pv&!cpp#o^t2Z7xEQM>&n(8BV!qMU4)Yfly>tbzk=Ozz z<LxH=SE+v-R@_-q$T!tA{XP;)tOd|Ak;6-E8vcAJwj_MyNi~X4kZH}_{Jm80h=hiH z8q)*f9OW3uWn@C?`ED~nJ%UF&ecx~jDquWfEhCDlwTvxn*?HWP$NKQw;G%|6PP0PN zZ@SPM%%+C4V}P5FE#8bQ(RUYuHTn;*iyvK0Ev(@kXkGWJ60X&$!kmj!NxTf_v+<tJ ztCkZEkfrBlc=%t1&>XSaCR?CePm@&u1z|ZuW2t_pQL_U7z#M89uzkWvqmW`Jppr(W zR&zi6@lw!ChFbYyRaokw;p$Uq+R1B{@d^=D-tuWv6gNW!wAg_TPQ;fc0IGRR0CL|n z@b+C_@V&RGMcC-)>EGhb>xg>2rl(Z!_VM4>a{cBYxk2#x1rm~fToa;WvCgN(m#ay} z^BkyFHJ3GocDtUULH#O}<ZGd?I_(`RH3`nc;qmaXHSSStlx_V7eH<2i8~@5^zD-Iq z9C!aL1IGNS=~J1ldgw9^*kwkieof=AplCn$oAPnt`g#QCFQv`o-!mJS{&9ucIHJ%% z|2OS%*($0OeDJcHawO>WT3gx=p5_1YFE8KyH7C3EEL|NLA^fFp@G21#q2O|{&l;af ztWq!7(%x=KxjkjfG#*A%ct1Eyo(j|Wehdie!pMbVUZVV%1oY*zkY2`wA0tKM*2%h{ zIk%T?!fi~F`F!&0msq6Q5GV;fMy4Gif(s~<IfHJ?R~=0mWq_p2jC@dzI4Q(dNDMyh zYC?zq{TL`KJ)P3cbv%e(b^!iSZ4xwolf{09UjRx-YKsnJ?HntU?(fux`IquVKFD*b ziv}-vH!`qq0O0Y|oPQ}YoDYjw)1)FYg_9)ta|&rweWWD(SSTJDAVAZT9CT{Ep$Lgv z{Dk)*f-mgpF4#xr5US?=SKOz%w(t%O7$igr;(fRn%w;-pmDHtSLEf)c=;oW`&G}xk z_xg~E92j5>M0+96!n=B4q<oEcarfV960E*RV;BT}M>tz<RV&EX?!-HG(`Y-OA^FwA z<|Lg6ZF_H$)Jc$En_7gqqGMOV${=B@0pU3WOegR|?MgE8ELI(Y@iyL@$U`@lIhqw4 zQxBh8rUeMvINRWadj~KK7&*Tlf8)9zS|K~o(Yd!`Bh^S88esg{#lhEB#cW#?-Gkl9 z>rM%z(t3wW6MvGnP)tEtnSMx*Hlp{~f6@~+rK&B?HP987)jt1hjAikO3?fx3Z(k<h zQFnzBsf!T$(uaQQm?mw3d7N6`XzIrF`qjFP2r;{Gy{-x}XI{&)k+JPDvWAt05D(dL z82S|Q6>85SLHOGL<e2n)O=g!Ft=4e0Mji#|ouwxJm%H#zUA^|xhj?NZnX3DcGB6pT z2JNt<&3yfVZ%=z}je?A5$GyT1M{&AQcaF4AcJu;t2-afoU`daj$;S~>18m8U!{wF} z?82!P<0$zua|L2Fm-81S9qEV664(E=EnUQRx!q!IG!HVxUN_#u0nhu5&J9&5z*?rr zTmw4ZM&yKTWN-7sdR5^*i2av<a0%kQx2^(tpzkO;H7X0s5=df>(q_}lHp-SR=esY} zB5!_OqbgZMy}Sxpo*tZ#wbI{Hh>m6+TnkJyM7A6INu8@*dok%0Eu7b1NkyXi(jpN9 zM%m3E$8*CfsFF7el6E#vIXi?8aJev@epi>ksN}+3c<Sa(H`b*-f~Ij*Z{HoA_mK_l z09};Q$E$ti{xro<u<!V8gsV-H)xgwi(qFoHlW@o8N%4Ozo+H!Y8IKslsZ&;-lsR^l z)<s_G@UW=V5<z$+{YsC+x95`10EZvZ`*AydT1<JZ6GxxMkZ!+bOi@Dv7<SWFhZc;L z>E&t9{i{8iDUo^AIIHu%&ABpb&GKw>B6OB!F!+1Pt-+YmY5wC!l^&-AB&}_Y4?Iex z=H{MHplW~SSs7Ae^nPp%gN$9X0N&4RE`x;x<2Z7q(f7sl_gu|P*nMT_YgYHH0rf8N zdJ&?nT?hS`9ff&T62Xn5zyjpjEmWG=-TNsWvC?Z2@%HOe_9}_(7p$3hbgk97Mozb8 z>Gcmd$FyZ;mtH;&q}u1KDOHEM?4ywbOCSt~iTjs`Mbbl|_I=nJLDvHQ6of^LIWGcZ z8gHV!oL(4grIcxj)6b3==tYm=93e{Pu3Z->SUtx#7kJ9fTvB))Ks9F-IOQzjd>u~s zUgyCT9x1P;1|gRV2?Ki}X{sq--I-3mV|!Z7A8JN!*iL3P(|ApCC9`FBWZY?YEO7G# z)&=zO%MaLYD~)$ym=kP$y4eb|jub>>!LR$b;`FgeqP_Mw{8>5{TT-kxEm8zM^?X~< zQ3gc06ekhYUE!<`h+3w=Hix2;1?jtotJFB7VV8i&X{9g6c!}gDoWO+Zo3qZoj>yg( z+0Q6NIIrYWKKHk$q&iJxh4lks2{B9WtNhY#4mCI<+d~ZNk_qXvUDwVPf&bIiSqHV% zb!{JlyITnEP&`<nI6;FKcMS!Ky99R$QXGnvLW`H;Uc9(lf#OAq6o<B7?)!P(@0)k# z%RgskXP@kuJ!ekVUhDc@OO}s=w$#XfO^I$<#B@Y;b2<ka#=xnev$RdIdKl9%xdaF; zUc(JJ7c7F0-Ubxpi74~DB#aGiwWl9RZ05CV(&reyqk%4b4e*E97Pe-iPkfFENe%&( z`IRuRf-zl}jvYje`QiAdhOk^d<Eh<ro@RL0T@E|PO0DILm{d%I6EXM2Jg2~<;AX*| zYC%W9DH?5UKfb_&;|I`Y#h4RH8CES;eEY_Q;sD(0F%J$?mTB)LXX?;4aze^-Z2R|G z&(a$EE-|-I7a=DH?&=tnoY}ab0GkJx1k>;`P&Kf8==`$*BmG|3FZ^90l7hKm8nK45 z@{(*uL-;-JUL(D6gqiI}gCb7ZyE|gZyvWz}ZmZzWV$1XTlwUe^64+b}4LVNnk@}l? z0=QeI=a1};a?<GxVc&|P-Vzd%7uE_qU=hv%{F1s|Ym2NKShUV|gHT?{(vxJ<7Y{s1 zI-q^m%Tke^()d?*z83WaiJ#&=)CKUua`fcHuP`Ah<c64a9@I8_xx$UcalYL7$*}kB zjtL=D^BEni<{5Sb&E6LVGY0C;QA#P&OmOdgXI&YBz6-AbF|VAv)qhT+xx}Eq<C!~a z8WOx3=+Ch{V7{_^dcXMMj{ByJswB3>ABZIqU8abj_8YeY^V7nXzr#72u^j9M7gfS~ z0eg*D{^*|eLsFP+iY0HY&;njbVhA4K7g&GWCFMSG!jSV9V`0QE9ak{CbHdp%hTF76 zO}0M2UK1zW@I>6=;w}Y;FjPbPSa+hagOllAb%-auv#M-yOX=Kg9}>-?NaSG~W+D$( z=`85(6D25AElP0F&L4VBo+2@;axAZNmRBhw&i`k{l$$Pu0eYs#nNda5*zm?fKWa|2 z%=Jh|39?h2J=+Q_0R~Er=+g6khHo?%JTzo76moS}u!=V_(a6MXi$~`Pa)B{mt*U@j z;nmZu-%&{hQfUN@%cWEIai?Zx>P`Bpn~V(>6-gK_RFKD0w-xKbT0?n@Cf60)!O35N z%EN427AnvdqKU2{ys;vltQ>LwazJCP(Hu25Uf5fVj}p`&duaJcpd?8ep0R%?>NL6X zh5wd;LoU<bK>Q8bUQ$p;5hqtp)B+0&Mj1P)XpWGF&@0k1jDz2iQmU8V`pIH3gvSGz ztG0p(5T>KI;(a&jcOTrmVhXH(*==5d_B?$aFnk!_atBt7Tb-9L;rWwd;OS-Co{iv! zCQoGVY&nCvZiapm@FZr>!<A+iww4Dw2mJ&vn-4XFZlYQ3tn}<nlqG?~?~kF*x-Bh% z_WqDhv!_yEp7*t6CRyuP;SPIOjA!+(H#DbeTHL9XEty;tu@-dfP1SOK+B41EAx&I( z?T1In`i(LP_7vn(RbgAyqK2=zhc0Gs%igtV#w}-+e<OXa=E<%y3WquC{fG@sN!WLB zdw58`$D*8Da&xEH*FMhe7;0&A-q*o{(Ty1R$sUdMuje(QgA&Am1a(+Qov;fQ_(bk| zV8FdL&1N!J;-Bz3|8KV=?}>w?(<H)3U$Mn9@+Z!*=W>(p+h35Veaqt2JGA&F6m5YJ zFVm}TF4!*mer!(=3{N?`^|Zx$nR><xX+W1i#=cUgY-7>6F3}4acnXWl3#11g$=~!A z=h*`-3o>RX95dX`7}+k17F-lo=?mH;6i=*QVITdfbII4ekU2ZTez&Dvg!t5vWb#aJ ziS`4d77_umg~C+XZ#>+Y;{0OwKa5@>gX2FGChsgD8ANvkaCvuyqxX_!%NEz?Fw(RW zMSaHTe6mHW>x(V21|AdJU>$z9h`VY>GouhG7{ZE0NJCYMd)0O?IdezhNRXi1`i=hk z6qQ_Z`ZPfY8#nKiNC!%KWUe<-8JX+dI23kDcFRCYh<C;}I4@xCCKw~CA--}WPQpP& z*!(#P>nu8Oz<~jS)dH)^0r74L^t`FpSH<Fiq^Fu7Xj;hQ8gU$}_e-vToe;NVg^VM5 zz~+k>MWk8WGN0TDYafz>knjAw&TLs?W|O_hm^%AniId9k5_7NcSEu%x6_y{nhtUJC z(?-_Es>-YLBzF-J%UTCTC=WqBMqO-PdlpEz-mwYZBQ%^(T}`WCd2Zkzjx08GwKlva zc;5~+r|Cim{P>n$lbZLT#r?#~^s1T|5-E3w@Yd;f)XwG*;;xT50`+TqJ!--*NzPf+ zfNrOUww@Fy3&K(Tjf>;3Y@kG>uMXz(c||iE$}YRdc%`6%3~{cexpv7PZ*yo{*VCJp za!cXcT$kYi7CLRx%YFK@7JbU4DI~gLGRhDyU&Q+hB$hMS2bTT^E4j$+8fsZ_Ho3!o zA|!=Ix{!N%VtW%ZZ=$s|E}jML>YjHpKJQ%}E#g2ZaYDsMMB;9+cjZV~QW_pS8{rXC z$3-044I>phG(KH{@BuxRprVnOK5th}coB*`wbUrkczgM4)-i67p|8}M9b{=);*>V| zb!C~}6zw7H$=6w$wEL9Tsw>SG^V%0~{&#G(`r0Ic8Dh|xadv;(>Dh!cv8e81_oS*u za_n;wRbnk0n1ASYmd!H(jNsFYud!0>fRF(YYf0H1z=vVx35+XM_8S@qFW(l0uP{Lv z9z!#ogJwV&RMWsci^Ifb>g1W@nrXxN!r+mj?DEt`k&aS8x^61BI0@&`0nEW6+!cu{ zS(R~*pC(HGn!OX{hvF>*ju^b={O!8jcc>#T%Bp^dNQHK2=lIwXmAC6Oo~51kF6G+! zHcIv;s6UM{jX1y3o8!fYc1gkk0mS%{Llsb2#!GpXX;}Wt1N^nI(d#>pm6G;eotaau z(kG^SiV+`5^Tq=1p8hGk#~I)w1oJXb{b0SgGjV8Q6Vhqz!%)pioDL*x{jFN~n5FLa z-Ki{X9>1UWCTEm!cr2VOL7irND`IwhYYW?yD>WIwNF9UuvzP{g(F#{6l0`?6`@QSV zSau5C<u1Npv(PIzS7ZVS&nufJY?PCy6Lh)v7ISI#G6ZYXY7e~kIipRU;aWm9v90>} zJWw%^b)eiVY%>hgDR4#V_p7uz+1?ebePYB1frHf-8Dn>%RT_Ax;eTX(IgtONERA?J zU7QX?yPER*w->+6Q4QdlrNg9+bAH&DDi1xqXL$8;r}myNZWPyh4Gpyqz)lmIA^9Ua z_%iIypOC>T4ryoakifVc|CszEuFUI>8D&X!T32nMRyHCWuUc!Uu4EN)hf-@yom|n; zh81|!XeTC3jMS~(#%JM6#&k^3N}#kz$Mwi(Yk3c>?X9jlx_-FVwkfxHV2wsmq@V9q zWSU6m(7q<<FNsphx<Jx%DjtrUV`mqa3nQ>|M5`+JDFbXKCNmS3X^u(DIvNRPjewtr zKpT|FUiOzHiE_6gV5MY!nx)2zl7_R0F(C)<zA<}3SeYi8*0jpPUzUx$q7J;%c`v_` zTyEYCU46qXA~@cawabKY0Cc~U<~lTm&4H5OpHh_qQjRZkr@^zc)+A&IUk|x+0^-MK zNAcI6tGF}eMkvzBf9!gJAhLOSq{ksnz~Z#ZarY$_K!@PO>zfvvUEN~u?o4-o0$8%! zy)!bLNDI?)is(}QNg$^{u4ib8FcQKDKVb*21w==~2cbq0Qe1t&=J_U^#a2^RZ1Ua4 zLZ8Str=6`~tXiFeUg{>TK6sf4kAe4rN5?OcB5AK<I8J!GV(F3ve()_5nmSn?y;O+! zaPX0jvB~c%h6=1Cy|ruVrJg_(;Iy?NczN-A(&C4xB3O-1z(i_Q9R_WhjWU8{z}B!O z_mLa|XJDljDQj!5%8;YRuKkMq7Q|IH@hWAUVsy~MG`(VMpAUG%*qkvV4&_hlx2*93 zc)fO*{*MyI3wAfozq9rvL;z+5P)gh?L{P{nFzO)6-n|I^J<!JB$#~VdD$@%n^^7$_ z#mTd<`W?-1guPqFxGXq=F`-rYXIvlw?zSmk858m@o`^F`Saxg0nls8G9i{UlZ&xdN z+iUGw?G1;wX14D~^0t9{jkH0?eSv(rV59|tyDoPZSw0VaUCS#9rTN=>N451RFZ>}* zP#ZPAZw%&pMC{nq@m>-bQjL71RQeqg45$Zie~Ai@!(tn{48~xYRb3I|v34wQqz+9F zf9W*tQO(vCu?`_7ex_jSHLaHDXY_ofgXw+)dpJmX2PgXRp<siZTBSlLJbalUA)NDV zuPnO;DgFRSZf~zKeRdtS_%Ob3VmMNYAZ&@z+k39TMz*Ri^oyE03@pzmz&MKHs2-M+ zoe>nS!jfZ^X)&4oGR&yo;&2YWjni20#R70)>AsBjGNq57I2_F_#-``efYU%zXjiV< zP&h58MPBYiDKy&CnDUuix4oYiMsykaa$Q6IeR|NzJD|@Bk!>HPVdt~9UHapN`=TjF z(YuCiF(sMf!u45{+rc)qFVnG1S3@bDn=g(dt4>TqD~+$NF-akE^C6>fBE^Q7kdyk* zHoJ_LGA&L1`$5#gR+k98kr1eOLV9lQ4CVFqUedmJ8j}ieYECF`Co8Hv2??I6MC?0p z+|AcZcjGA;s!<sxxPFgT@}g*@0vqDsD7^z+7X=6z#Yi2sm8=M>>*`7TG1WmW$`dkq z2AT}%>k$|R2*<+fLagA(?HcHDT+NxTNOsy{a1T}q#*eeV4Hav;C%%!LylZ7Zob+CS zOhQoD?kW!u8+?Bl#`a)O$Z|llVTxS$-q94<5m&|1kl*P2I?dwCQdv2T(^eSKEL#Fw z;6cKk{%5w45M$<iadul*&||pR8-q%%kcJz<A#uXyjn#>u61dT_58qW4Ea+^OQ|j;1 za^$rOTT(M-ExA}y_NtiC!K5nX7Us*APwVNXvy&UG0_11YOTSbZ*r14nC6>W%2A+?} zH5%d(sS_8IF4_H}30XRIf@d{#su}EK>GTuxT;Uw6RWnm1RWZItu8>dP_H{~WoH4f} zhSE!@Cd8YUoZ&RdCWf&z1S?13ta+Z%lf;FI%|uEQ_pXkn`;|#qyh(ymO40MMH8!p{ zVVe|G#8>4s#=T^@HS(}3)Vy1AFO8hRj}ol^4d>IPg@>a=y~Z#9eEH4qcg9gd&Iz=W zL?UjD!!39=9HzEGcj9gpn5>GG9r{V{1{nL46XA@To`t^wxIEW?NV+vTr)*u4)=|77 zrqtD5#N`6d@lDl!4N9m*XB+|c<e4LRsfO>6^eHi)N6z4ak;jzoH8Sq<?DS3cT%l@Z z;;mM+N=lk;D?A>~qEZcPVaqK_fWO<nfjcayOJn$E?cbD4(Ck6w%07zyt=Mj^kgkx^ zg)<80Z520(z#@St2xKvDLqEx&Qq1AtOY^>CQ)he>Zl-f;@sB}YLU(CvpKJns7Y}38 z9GLo9iv87~p43|D6HT(7ip`8D-k+TA;0g6S2B6amNSrOWFM3q8bW})%H-Gk}UOW4B zW`1#x$uasQ(jSOri-%zu8R7?zI#TArryWY1m>5X~1^zJUL~SwD(~mgq(vMtgUjLRY zz`}<s+V&e#MRZoXo9>$8ak^X|;Re%iEPAOAylJx9F3`c==2i7_Ty}|<6IZ@R2a2v} z@aa6G^N6Nnn_D5pGM_X;>JCtTi;Re*{sHbq42i8v4Ob1)g2pD3J74%FCJcwcV@;fT z5U!6hWia%!;x<puxX%=1V=x<x)1pJDGiAA;+~uO5>J+O{43@GcVMCbbO7ToIj*W<c zOtj>#yiO}x8?zA5RR1|uljuj#yZ2zuLa{~6gLDSAX6~{sC^N{r{duqogK(<5z^o}r zZAodsN@i`IF1Q!KFV9N0?{5uvAo=;9{2=zN1}oXBq7ZKsnlwPweN|3^1?0}5(%eTs z^5(CL3~>n-3uqzvi@hxUZhZ)<r^q`NBp&>}>`2%ae`JtYORl=3!Esq?6fA+<h;*hm zQFlJtL8IZFNKEo0f7@-22JPGIy$N8DayLBLQ$nM=@4;_U-2ok*V(ECV|1;~#`6It_ zk|4kF3`FAH*JZi()YxW`zS88Omn<KGaYrAwCsbRve^R=Rz+4Q@P$ACwDh>)kzw{g< z6t`KHW5}h`f#D+4TNF*L%iRp%vfo?*Zqj>{9hn*eJJZ8yL}kKxJFL^zrx=F_up|AU z)pQGh?ywxiT)iFsN^M3O)xI0>4b=Db*+2S$fAE0AA{uM?e3A+bZzzNsp%ym87xyN{ zg=iPj`05rdo!UJeeIc16K>>j!VP<S~%F!w2-+gLDXKTvtE3|ecz_<vz7e-c{aVB+Y zS1vdm_1gz(bCxI2<?)!7j7!ZpKOrBAxhxS;%LrH<9Qh7o{SnhN%hBy;6Z!V|nOpj1 z`o8Pe<l=4qe)$^G#=WF2rg)M{wIkk=m4!^8>3Vx#uC^KJL{e|b+vnGje`fQ4&JbSj ze@e=#<XH_?p{xB#SJm?1w``vW2nUvO?ZLtzdRH^(&bXg0M4TP27UN?>hs;asV>1$a z>5nS4;lN_06#LgNlOi#3hSJo=x>WUL`Gb3JwOHk%B!;q$%Y*j*$z82Cd=pmEfawi1 zAqZ(e=tl^Ps0>C~5Nx5I3h_JKny?DjWr~eZK3{8xxM$LjHGF>TbXNJUsd^-};igdz z3Dg<)6qOo14GOyy44@Qw?cA5Ly3qIhA$5lHqXk8$3ZKysc3c*fm}SX2BiwM*T8H{i z_0woyH6Q0bg+|gjj;)$l5sJ8(;-XV9Akd+<GHWm1&g^DhGL_9x6esp!O5RKc%AE7g z)3{D+n9;?VJFsud<gzG*)!OghBld|yWlTyvsqMjoT%<0u9H<hdxg?a@i-wLi#=>y& zZ!~nuCiYF^s))!b!GU^v%`ni_66;7G75Z*YmWnJPo<<l*w;q<Iki+7Wi_!L9l4o5Q zPXqR;w@Eg|A7dy+{Sz5NA#9+7aZx?$M%Lo2`1tFyv@w9lV9`|n%@0#RSnp3p5B6B2 z?B<WnVf}$-9#Q-m1dB+i{R;eCqHpXKgppAG@pZCraPBzQ0cZBNbv&0O`t{GFuv%@t z&>y6Gjm<_4r0&d&BeoaL3iVtB_K<`kqVC#;odn0F)UNo~mH2|Bn*fHN@-}1X1UF`f z8e7<<rn6%aK8u4Jm}K%-1#3^pvbH$><N|I=h&O3ecFCP$sMLoaQB-hjbiu)@qu+Xm z@A*TEpNE%c<k6y{(Qwo^K-Dv6AklgEh>D_Y)TDORc+po;yaYUDpOt6{Uaw_wHZVI? zb3kdjt5eND=D+n?6&gI-tL5?+%4F`cWZ9DfbzC-K)VX!N991pss@kX)n$=DZIV$Nn zw&A(aQ~%k;{sUpSs|IXt=o!OLnb6M1pSyo9zWip5k$30@VV|JeZ4hgb45TyFV|nrf zEIy)+;tloAr(hY`^qVTiU`}MCbW^PmJ?}rT7e1qwRMEWCl;txD1;z!J5u{Ep;`m3k zYn&v?n^S|nTjNZ(^_QeK?X!&(BBYUfIyVXA;ecWPW_^SQiWxmNRHp>|4gEqf9r?H> zYX`i`c8L<Y#<a*_CC1(~jKy(vWhNy{b_I2e5s{h6v>J8lD#_gy70@{fNlyqXAAd?% z#d497$BcACP!(T0m7*A1u4XZ*%nKd~Mr2j?sH_Vp7<)-L4+B-p|1gs~2(Fe!jhoeT z@i+l*YR=%hnZ&$}MRZ@2BfueJ@fQjDIev3OCVS*QzBxOA#ziMk+l>>n#L<89q7vB` zxghqYQR`+K`g)AG{CcDfM|4A_isdiw5N`vJa`6XusG}<pZcu#WCegsNKC>TKMzWq* z;YK#5&1m`sl&_UpUmBr{q8WcG(q>5CFN$c@xP_m(Yr&cZKm}gr=#(X<)Rf=%G|H3f zD9-}pJtbb5g`0^LE>;qg#S?)`NslD9!L~1^^l3SD%?iP|A-=Mq1h{D=Q;218i}Q*F zFZpmK=FqgDT^*`bnyTESPn;HAsse3HS8|i=Gvd)S1QR-EkV#l-;EW0+DD#UJSmk<v z5<c(!UG2;F&3^Sr(OmDZ)XB4)ezbY^6ZJ^%x9uqZopiG~e@Frw3XVC;ol3$-CL!?4 zF<;J={plYVYEp%`b)r?5S@}Pf>`uoT>GoBu9r}=lFB0`gCj{}hi(Do4W@9^p)E+6# zaJv&H2PQ<)h*j?`N4Sxj$mW+N9#SNg46pA;c!aqTFI^Gu%I)I0gcUR(T}%ofsizsj zf5;H(NxfVN*8sNHAO@CFGhciD`b$!(gwIq)$TC+EFRxtfE-O!FqG9LIzWU7{krCz5 z+xEWw+i%qV*PY+#y~Bskv%JT*;+eY6d7XC?ldzx~6Eq#N87R}eCyH4NzVd=;@ac|+ z!5M6YOTHeBS$b`z@?l|MfuS4eDeraOjjS+W>Ja7*JT92oX2*7(J}hm|hxtIR_{zR5 z2<uoXB>#D$*l=+{^xsNcKeq)*PrXQiaH4YAMXs-@8(6ITEC<MYc2}s%n)iq+Uo<`! zf2;WE9&7Twabp{<aIIzVepI|GTr=mI->X2tLl%!jO5rtbpK!UkH5jdGBbzoYLKgcE zQE@LLPoDzfqhxcOA_|igW{s_;%Tv46Z=7!P6co7v^y<m;Yk=<o$vr;x7@|IA>Z$(N zeydiyR%&@!c)O^&-s7mR#H^~W;X%PG_82qhgGSoPxHYO}bzT|DYt<zII3`4v0B;Fp zimEL*y*(v)LGe^<Js%p2;aWQ+R}mOcdtCSfLwg3`bH<uMGUmXMr!7g(RVMd($5QTB zCRBTN>&BWX_rteFwy~pyY7Stdr=u+q<!znVWaxcbx$Lv*q&nClsfBmnCrG%}S(2Gd zJf;Ov&~WJVKw+@bhXVN|_$2$vg_*9z=3isoU<K}j7%*W-y7{Weghk#nYRA4;`;GBS z|Dtgc(MaQn1}OGin9fLN_D*AAoCZ;_1-1>8e>Jh9O8=3OpS~+FT3ZH3OlII=G<O8R z!+DXb%$Q2L8IVMg8InvE+;fr`A+Boolcw8(d3Y+ozcPrg{sEpYfoda(S^<_~we&n| zYW6WSG6J28+$!-LeFx&Ex_%g?4faB6Lznw7JJ!b}CV0u01KD1@*+`d64FRWF#yyl* zp~Da&6<pMA5kG2ZSxGS_=AhQkIOAgMO2dy9UeOSMKO{mZKj6fO)7vo9K*5K5;jl8> z$Gn*&%8yaQ_i+6rc^g=LRC^k%36NP_lP4H&AUPt)oMJ5YU9D72&15G5H!iQViV|g; zJyc}M(CWXzv)QPlS`Jc!<z&TpE(!C+7&E6DE~$3f5m=>;WMtNs7_ml1(Os}#NZ(@G z-B)2~oP9?=*t3j^`FKy=j1MHz{MV90b?Qc=a2#oV@-jxvbeWKtiR`1oodf&OPL#F* z7qbYXNSj*bS(pGweiNsl*8L>pF@^1<ayyNDsg56SNhpW{!&W@%^~drjTa{33cET4O zf5nz#wZi$XE(j>Ojw!$V8s{Zn35-*D*V4zBR9ex|#YDHXi^sQB_Dd9>;>>;r&sCS7 z75+6y3Jp7cobux+EK{|Mqfs4I&cBoHp=bso!X#3bruOqIj$aS4TN%x~xMud4ETt0n z&(2~dovHJ+X$Q6y;&(n>Z2s6~dNEodN~}1ZxbfhRM?bkK5oL~G!?~}#+5ZS05dRTa zO0=BkDzG<8*Z~o7#!sXWT+evAbvTBHJ}C{t8L=O#xJbxTf`Vlv*A+?JL%gQpq@D9+ zF7@tZM4UE-2a{I4@YUh;_i-jZW<(VBVF7ZZBmz)9jejEDrvS@_j4h4yMy2fJvMDpk z7*GucWldC5Yr`w^w=Qm_L|iMq2O`ctZ^v}#wh_47*Pt%<<eF!c^gL&N@VFhLI$irP zMNKj{@eY^BLTT@GxUV|*>QX(0?O3~e+^9$Mjw!dRnaZTNsS{`9wD*Aqg}y&)9@DpY zws(i>ZwKE8k#(Mwmwq<sIsi=gFt?(eE@+jr+eCs@8BSl`=v+oL8F`ZFd~%U|2Y`yg z@X1zBcKcXnHmGfb8BSn&a0Ks^F!!^&<!x`dM_#L`0NH!be9>Y8Dx!Snde-Z!hPHRf z4rVUUTWu2QOnu48nX&PRJ>>aq+z_?zGB=jJIRLh?@%!P+)#)|KA*o`3AM=H>JJL1o z0sH9e1%g&?EhN)V)03|rKvp8si(rzt!mBQ>ra}@j15c^Q&^reHKvrG7z7loz>e0y2 z$YZppR|^MhS!^c%oG)NYJm~FSV;61{W4DA;O?}3r!*`MHwvg9;6K=0h-+rs-8!S?w z5UorNp(2aD{07;*UG}VukN&$`6L7<iAypz_%I7P)lYF|no>XBLAZ`w<W+=U|Sbx^! zj2ZxT7E7B9pK4iwhYAA&bjdk*mbPAkjBBPysy>BrUzJ-hL}%5gPXu$n5Xy6de|<-> z3=-T(TIBs93R}0O@jr9D)cu*>G-XQl+h|@(Hmj-W_8LIB(e?Ff&z*GBZOO4h7g8~? ze3DlUon`FFyG1W8?9LrpUBSBi0bWE_6F_s0>;=mX{Z3YJ-g?nE$}`1M3hPBNgrus> z`j=aE{dMW?o(;%^5gvx!X()ACc_eK;N}B~5(j&+Mk6wBA4)&9!P}W*?MlyK-J_9j< zWij(!jYVbPUgDG!hzq-0V2!bDyu!KUy~U}nPh`7$h0G6Vc0$_Raghjgtfm%)ShW(G zrLa3~niSm5w4Ue9AK(1Jx1*_ml4(GfE!Kp9#&mJ%>jfU?kfW~8gI28X?6No6@BhNy zkj2y8VO}pyKWky-+*6=u`c}tQ3mR0@RVjKiquZinkXD7c_jl;*`uh3)H2hxYFiOG! z_jySeYY_OLI9PRT-`q>=F~QX`$3N>zK3u$M*_s<Jngw$Ki~6QeJ5sVDGrwq~JwxSW zZ*#qE@>SoXruRNC&Xx-AoaCDvRHN11XTrf>i|&_0aU$9cjQz)xot90XauiH1@Z-_5 z7-yV5;!c@Si*(yP={m#y3}@-B4k;%;y3&*^U+o2w5Eq)|YxO1N!}F%!ZnrE6W;UY? z6ob3OpNBWA7}n@a`mt=wjz~Wch<^Sl-=O}vkGZU1XC1POz7mr#9#6Ja%OR&!syX9o ztZVPX-~`44656vL##-&F;1XzMe+Wn&vJfDNF%Sgu@^i(}z1HbYYJNX%NR#ZgEfm-! zEyoR(F6)zng}$zoQka@Ci3k#S$*E3kTn2AXs_cshs?;>~NWBUH+%^lW7t3jG(_c)D zeADzunQ@@JbzsQ(($xbACwt4~Zj%pqA0CABSqTsj=cZIlxXioy=n<rCgl2yuX8~H6 z7Ip&}C>IndJVogHk;HpMyz-BlNPGHji#X=KMc?%t2t=aa6{(+=cX1^S7WK}|tl+1t z?&qYt?PTuJo^#jM^|lO1Gt&ArzBV2nnZz@wk1@V-SY5GuH7f@by4a$+U(g1n=?>$N zP1yyP@9?8`C{j`Qbu5!Xp{jvScMqIat_tj4#!Cd<G@J#N)N~||aM~pKSmQVQNBbg* zi(B+p+Zt^^1<=v^Kq;O$9Bv_0c#cXt^PHrKOBXS3R^FTNXTSR-`DrHnE<t1;=QP)4 z(H229NjLecRkAcS#vy!74lfR-V3QWNhBHNxb~uh;7)wJq4YXZoG+F6gY+v%E05k;h zSkxMX&TBR$Qgv(h_bENIhJIh{BGX%`za+c*IIuqcNfL13oY$o2)NOJO=Q;OAMyyir zxX16)rmmhhK<j?pd|zVt8G2`%Zo<L*J%*Y4a;ZN0EMi@A8Z*o+!t#d2Bjf!0J*t81 zPcJ0AjgYVoCnykKMJG(*U2?IqhRm`1jc~;&Gg*nFwXqTwWEl0^l;kG7W6|XGM5s22 zBHw2OZlAVm>fM7Z1CpcRd*g?|y;**-`E#MS7e2I=Oy+he6{fR&eQUe@EtVh7O&6C@ zQ+Y6$st)oV(_twkg%lZn%c5#Nkz9n1##Jg03?{Gi<x#;e>((V6tNTn-c&flXKM`P) z!?6Y*;Cy1mvE6;ajG08KL|I>Zyd+hd?9mRfxtd^du&O-d(dP(0S~RzeYnINGv~knN zDkgE2T^`N#P|B?-pIQskRa4+rBi+-q1D_jhW<$i(tZoy!O|xbeGxy2`&ScxF5<hH% z(k9pPo%Rcnm3v`vr2M{j=4!k%V|84T7X%H_qw*td$QLk29eEQ7C)!IYjjz-ckH0~Y znF>X6KrSA9q;Q=w0XCkIjGPC-v9+(4WSq}T5l98n^#^Vcwuf2+muEg!NP)FJq{@N$ zad&K;VFk0cp1p+DtZ8tCHm1a1KX?v{e8cm82=`Hsi_mDYp^4LNSa(A^l>#d#z^vh? zIj%;bXMWCOdG4$Jca|HMOs!cBp?Ry}6;9VNicJ#@pWsz7E>VG&vL30dd!(iv(J++L z#g9bM6_VUo>!>`z`O9G%H4_spTgIxSI`wDl&3+z7+W5%ga64Nfrg`W1MwW=-houPC z4e3$4Z+W6oH#PV&%P%4wAf@qC*_OIG^<k&GSKg`_*lX$*X%VTl5^AtXy_TqQ3E*3a zXN7PpOt|{N$1tOZ@yCqSP8sMk*Nk5$VV(Q)x3#cwfr<_BqG-Ph`^Mu&<O#gw)8k!3 ztr#fPKa6dcdY^bVPrtPnsD}7KGLqq{i88EhbaIW}!zS5{)NhF&;qOTa9B?|oqEj5K zl!`JYhroC99WYjgQ{1mvdy2SaL8VWpK^Aw<;0?b9yO76BFZkl}z2{wUvZt~3`qm={ z=cHJrw1~a|lD<;u!bV5Q)YGX1Tf~h!l1nIfl!Y?o?G%flpCJsyGm_4n$8GCChm~)) zBe&h5W|;Atv*RjFLk%GV88f0H?$Tu*K#X3NBAKXjED_mTyBYR3Us%dsW<}cxeEGEr zk3cBmlw;%Yl7>ZHaDC)jTMlbweL0u2!s}%Vd3?4tg_eS8!Y-q#)F-B421s`hgb~vH zQy?5(;eLuw*@OrB!T$#Qx68;sEl}S3F~9@v&VO_;(96I>pRRFO;i17#!Il;V&oA6I zyE=Lvf2{R%_WZr~`aKMce7s=)p6$2!XYbdJn^tP5rS$pm&M^E%$nM*}ME|Rw%%|^e z3jj1^`<RS2&;5U{pGv*VQU4tP`0V~W@WV&xKLdh(lK-#uPKJ-4=)coy{b*4~GRFLv z8UA+@8UPA4vOUfJe8R$UGVuI4r2m;?yXJ3N13*Cuz(YYH_@4>LYZz*ZD+-Fg3%{3l zfQ!8spTDb%wmK?+9PR%$|H*Lorv*5;XC(X6{JVCQKdp?G$G`XZxp_L<xVbt1f9}#L v;T83%LoV=$ih=_CUklcGW{~)RG8h8z|NT9_09rtnSB8238|J$AKNJ5C<%@aT diff --git a/notebooks/data/2_compile/compile.ipynb b/notebooks/data/2_compile/compile.ipynb index c9f697f..e1e04f3 100644 --- a/notebooks/data/2_compile/compile.ipynb +++ b/notebooks/data/2_compile/compile.ipynb @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 86, "metadata": {}, "outputs": [], "source": [ @@ -102,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -122,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -164,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -416,7 +416,7 @@ "28 Zimbabwe ZWE ZIM" ] }, - "execution_count": 8, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -427,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 93, "metadata": {}, "outputs": [], "source": [ @@ -452,7 +452,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -469,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -771,7 +771,7 @@ "[83 rows x 14 columns]" ] }, - "execution_count": 11, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -782,7 +782,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 96, "metadata": {}, "outputs": [], "source": [ @@ -791,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ @@ -800,7 +800,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -817,7 +817,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 99, "metadata": {}, "outputs": [], "source": [ @@ -831,7 +831,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -840,7 +840,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -849,7 +849,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -2158,7 +2158,7 @@ "[48 rows x 27 columns]" ] }, - "execution_count": 18, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -2169,7 +2169,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ @@ -2180,7 +2180,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -2189,7 +2189,7 @@ "array(['AGO', '2015'], dtype=object)" ] }, - "execution_count": 20, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -2200,7 +2200,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -2210,7 +2210,7 @@ "Name: 2015, dtype: object" ] }, - "execution_count": 21, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -2221,7 +2221,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 106, "metadata": {}, "outputs": [], "source": [ @@ -2230,7 +2230,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 107, "metadata": {}, "outputs": [ { @@ -2330,7 +2330,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -2535,7 +2535,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -2559,7 +2559,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -2569,7 +2569,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 111, "metadata": {}, "outputs": [ { @@ -2955,7 +2955,7 @@ "[83 rows x 44 columns]" ] }, - "execution_count": 27, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } @@ -2975,7 +2975,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 112, "metadata": {}, "outputs": [], "source": [ @@ -2984,7 +2984,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -2994,7 +2994,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ @@ -3003,7 +3003,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -3190,7 +3190,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 116, "metadata": {}, "outputs": [], "source": [ @@ -3203,7 +3203,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ @@ -3213,7 +3213,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -3599,7 +3599,7 @@ "[83 rows x 45 columns]" ] }, - "execution_count": 34, + "execution_count": 118, "metadata": {}, "output_type": "execute_result" } @@ -3619,7 +3619,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ @@ -3628,7 +3628,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ @@ -3638,7 +3638,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -3647,7 +3647,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -3834,7 +3834,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 123, "metadata": {}, "outputs": [], "source": [ @@ -3847,7 +3847,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 124, "metadata": {}, "outputs": [], "source": [ @@ -3857,7 +3857,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 125, "metadata": {}, "outputs": [ { @@ -4243,7 +4243,7 @@ "[83 rows x 46 columns]" ] }, - "execution_count": 41, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } @@ -4284,7 +4284,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 126, "metadata": {}, "outputs": [], "source": [ @@ -4293,7 +4293,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 127, "metadata": {}, "outputs": [], "source": [ @@ -4308,7 +4308,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 129, "metadata": {}, "outputs": [], "source": [ @@ -4318,7 +4318,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 130, "metadata": {}, "outputs": [], "source": [ @@ -4328,7 +4328,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 131, "metadata": {}, "outputs": [ { @@ -4337,7 +4337,7 @@ "True" ] }, - "execution_count": 47, + "execution_count": 131, "metadata": {}, "output_type": "execute_result" } @@ -4349,7 +4349,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ @@ -4359,7 +4359,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 133, "metadata": {}, "outputs": [], "source": [ @@ -4368,7 +4368,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -4377,7 +4377,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 135, "metadata": {}, "outputs": [ { @@ -4404,7 +4404,7 @@ "dtype: bool" ] }, - "execution_count": 51, + "execution_count": 135, "metadata": {}, "output_type": "execute_result" } @@ -4416,7 +4416,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 136, "metadata": {}, "outputs": [], "source": [ @@ -4427,7 +4427,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 137, "metadata": {}, "outputs": [], "source": [ @@ -4436,7 +4436,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 138, "metadata": {}, "outputs": [], "source": [ @@ -4445,7 +4445,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 139, "metadata": {}, "outputs": [], "source": [ @@ -4455,7 +4455,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 140, "metadata": {}, "outputs": [ { @@ -4634,7 +4634,7 @@ "[87 rows x 7 columns]" ] }, - "execution_count": 56, + "execution_count": 140, "metadata": {}, "output_type": "execute_result" } @@ -4645,7 +4645,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 141, "metadata": {}, "outputs": [ { @@ -4824,7 +4824,7 @@ "[87 rows x 7 columns]" ] }, - "execution_count": 57, + "execution_count": 141, "metadata": {}, "output_type": "execute_result" } @@ -4842,7 +4842,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 142, "metadata": {}, "outputs": [], "source": [ @@ -4861,7 +4861,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 143, "metadata": {}, "outputs": [], "source": [ @@ -4871,7 +4871,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 144, "metadata": {}, "outputs": [], "source": [ @@ -4882,7 +4882,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 145, "metadata": {}, "outputs": [], "source": [ @@ -4899,7 +4899,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 146, "metadata": {}, "outputs": [], "source": [ @@ -4908,7 +4908,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 147, "metadata": {}, "outputs": [], "source": [ @@ -4925,7 +4925,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 148, "metadata": {}, "outputs": [], "source": [ @@ -4934,7 +4934,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 149, "metadata": {}, "outputs": [], "source": [ @@ -4943,7 +4943,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 150, "metadata": {}, "outputs": [ { @@ -5122,7 +5122,7 @@ "[116 rows x 7 columns]" ] }, - "execution_count": 66, + "execution_count": 150, "metadata": {}, "output_type": "execute_result" } @@ -5140,7 +5140,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 151, "metadata": {}, "outputs": [], "source": [ @@ -5159,7 +5159,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 152, "metadata": {}, "outputs": [], "source": [ @@ -5179,7 +5179,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 153, "metadata": {}, "outputs": [], "source": [ @@ -5188,7 +5188,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 154, "metadata": {}, "outputs": [], "source": [ @@ -5206,7 +5206,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 155, "metadata": {}, "outputs": [], "source": [ @@ -5215,7 +5215,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 156, "metadata": {}, "outputs": [], "source": [ @@ -5225,7 +5225,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 157, "metadata": {}, "outputs": [ { @@ -5424,7 +5424,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 158, "metadata": {}, "outputs": [], "source": [ @@ -5444,7 +5444,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 159, "metadata": {}, "outputs": [ { @@ -5535,7 +5535,7 @@ " 9.4282507593079]" ] }, - "execution_count": 75, + "execution_count": 159, "metadata": {}, "output_type": "execute_result" } @@ -5546,7 +5546,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 160, "metadata": {}, "outputs": [], "source": [ @@ -5563,7 +5563,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 161, "metadata": {}, "outputs": [ { @@ -5949,7 +5949,7 @@ "[83 rows x 51 columns]" ] }, - "execution_count": 77, + "execution_count": 161, "metadata": {}, "output_type": "execute_result" } @@ -5960,7 +5960,17 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 163, + "metadata": {}, + "outputs": [], + "source": [ + "# First want to convert Survey year to int instead str\n", + "fin_df.Survey = fin_df.Survey.astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 164, "metadata": {}, "outputs": [], "source": [ @@ -5975,7 +5985,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 165, "metadata": {}, "outputs": [], "source": [ diff --git a/notebooks/data/3_imputation/missing_values.ipynb b/notebooks/data/3_imputation/missing_values.ipynb index 362818e..3bcc4b0 100644 --- a/notebooks/data/3_imputation/missing_values.ipynb +++ b/notebooks/data/3_imputation/missing_values.ipynb @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -457,7 +457,7 @@ "[83 rows x 51 columns]" ] }, - "execution_count": 3, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -482,7 +482,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -533,6 +533,7 @@ "Age 0\n", "Wealth.index.Gini 0\n", "ART 0\n", + "rural 0\n", "Christian 0\n", "Muslim 0\n", "Folk.Religion 0\n", @@ -541,7 +542,7 @@ "dtype: int64" ] }, - "execution_count": 5, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -565,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -600,11 +601,11 @@ " <th>Married.or.in.union.M</th>\n", " <th>Number.of.co.wives.0</th>\n", " <th>...</th>\n", - " <th>iso</th>\n", " <th>cow</th>\n", " <th>Age</th>\n", " <th>Wealth.index.Gini</th>\n", " <th>ART</th>\n", + " <th>rural</th>\n", " <th>Christian</th>\n", " <th>Muslim</th>\n", " <th>Folk.Religion</th>\n", @@ -1335,7 +1336,7 @@ " </tr>\n", " </tbody>\n", "</table>\n", - "<p>29 rows × 49 columns</p>\n", + "<p>29 rows × 50 columns</p>\n", "</div>" ], "text/plain": [ @@ -1467,69 +1468,69 @@ "Zambia 0 0 \n", "Zimbabwe 0 0 \n", "\n", - " Number.of.co.wives.0 ... iso cow Age \\\n", - "Country ... \n", - "Angola 0 ... 0 0 0 \n", - "Benin 0 ... 0 0 0 \n", - "Burkina Faso 0 ... 0 0 0 \n", - "Burundi 0 ... 0 0 0 \n", - "Cameroon 0 ... 0 0 0 \n", - "Chad 0 ... 0 0 0 \n", - "Congo 0 ... 0 0 0 \n", - "Congo Democratic Republic 0 ... 0 0 0 \n", - "Cote d'Ivoire 0 ... 0 0 0 \n", - "Ethiopia 0 ... 0 0 0 \n", - "Gabon 0 ... 0 0 0 \n", - "Gambia 0 ... 0 0 0 \n", - "Ghana 0 ... 0 0 0 \n", - "Kenya 0 ... 0 0 0 \n", - "Lesotho 2 ... 0 0 0 \n", - "Liberia 0 ... 0 0 0 \n", - "Malawi 0 ... 0 0 0 \n", - "Mali 0 ... 0 0 0 \n", - "Mozambique 0 ... 0 0 0 \n", - "Namibia 0 ... 0 0 0 \n", - "Niger 0 ... 0 0 0 \n", - "Nigeria 0 ... 0 0 0 \n", - "Rwanda 1 ... 0 0 0 \n", - "Senegal 0 ... 0 0 0 \n", - "Sierra Leone 0 ... 0 0 0 \n", - "Togo 0 ... 0 0 0 \n", - "Uganda 0 ... 0 0 0 \n", - "Zambia 0 ... 0 0 0 \n", - "Zimbabwe 0 ... 0 0 0 \n", + " Number.of.co.wives.0 ... cow Age \\\n", + "Country ... \n", + "Angola 0 ... 0 0 \n", + "Benin 0 ... 0 0 \n", + "Burkina Faso 0 ... 0 0 \n", + "Burundi 0 ... 0 0 \n", + "Cameroon 0 ... 0 0 \n", + "Chad 0 ... 0 0 \n", + "Congo 0 ... 0 0 \n", + "Congo Democratic Republic 0 ... 0 0 \n", + "Cote d'Ivoire 0 ... 0 0 \n", + "Ethiopia 0 ... 0 0 \n", + "Gabon 0 ... 0 0 \n", + "Gambia 0 ... 0 0 \n", + "Ghana 0 ... 0 0 \n", + "Kenya 0 ... 0 0 \n", + "Lesotho 2 ... 0 0 \n", + "Liberia 0 ... 0 0 \n", + "Malawi 0 ... 0 0 \n", + "Mali 0 ... 0 0 \n", + "Mozambique 0 ... 0 0 \n", + "Namibia 0 ... 0 0 \n", + "Niger 0 ... 0 0 \n", + "Nigeria 0 ... 0 0 \n", + "Rwanda 1 ... 0 0 \n", + "Senegal 0 ... 0 0 \n", + "Sierra Leone 0 ... 0 0 \n", + "Togo 0 ... 0 0 \n", + "Uganda 0 ... 0 0 \n", + "Zambia 0 ... 0 0 \n", + "Zimbabwe 0 ... 0 0 \n", "\n", - " Wealth.index.Gini ART Christian Muslim \\\n", - "Country \n", - "Angola 0 0 0 0 \n", - "Benin 0 0 0 0 \n", - "Burkina Faso 0 0 0 0 \n", - "Burundi 0 0 0 0 \n", - "Cameroon 0 0 0 0 \n", - "Chad 0 0 0 0 \n", - "Congo 0 0 0 0 \n", - "Congo Democratic Republic 0 0 0 0 \n", - "Cote d'Ivoire 0 0 0 0 \n", - "Ethiopia 0 0 0 0 \n", - "Gabon 0 0 0 0 \n", - "Gambia 0 0 0 0 \n", - "Ghana 0 0 0 0 \n", - "Kenya 0 0 0 0 \n", - "Lesotho 0 0 0 0 \n", - "Liberia 0 0 0 0 \n", - "Malawi 0 0 0 0 \n", - "Mali 0 0 0 0 \n", - "Mozambique 0 0 0 0 \n", - "Namibia 0 0 0 0 \n", - "Niger 0 0 0 0 \n", - "Nigeria 0 0 0 0 \n", - "Rwanda 0 0 0 0 \n", - "Senegal 0 0 0 0 \n", - "Sierra Leone 0 0 0 0 \n", - "Togo 0 0 0 0 \n", - "Uganda 0 0 0 0 \n", - "Zambia 0 0 0 0 \n", - "Zimbabwe 0 0 0 0 \n", + " Wealth.index.Gini ART rural Christian Muslim \\\n", + "Country \n", + "Angola 0 0 0 0 0 \n", + "Benin 0 0 0 0 0 \n", + "Burkina Faso 0 0 0 0 0 \n", + "Burundi 0 0 0 0 0 \n", + "Cameroon 0 0 0 0 0 \n", + "Chad 0 0 0 0 0 \n", + "Congo 0 0 0 0 0 \n", + "Congo Democratic Republic 0 0 0 0 0 \n", + "Cote d'Ivoire 0 0 0 0 0 \n", + "Ethiopia 0 0 0 0 0 \n", + "Gabon 0 0 0 0 0 \n", + "Gambia 0 0 0 0 0 \n", + "Ghana 0 0 0 0 0 \n", + "Kenya 0 0 0 0 0 \n", + "Lesotho 0 0 0 0 0 \n", + "Liberia 0 0 0 0 0 \n", + "Malawi 0 0 0 0 0 \n", + "Mali 0 0 0 0 0 \n", + "Mozambique 0 0 0 0 0 \n", + "Namibia 0 0 0 0 0 \n", + "Niger 0 0 0 0 0 \n", + "Nigeria 0 0 0 0 0 \n", + "Rwanda 0 0 0 0 0 \n", + "Senegal 0 0 0 0 0 \n", + "Sierra Leone 0 0 0 0 0 \n", + "Togo 0 0 0 0 0 \n", + "Uganda 0 0 0 0 0 \n", + "Zambia 0 0 0 0 0 \n", + "Zimbabwe 0 0 0 0 0 \n", "\n", " Folk.Religion Unaffiliated.Religion \\\n", "Country \n", @@ -1595,10 +1596,10 @@ "Zambia 0 \n", "Zimbabwe 0 \n", "\n", - "[29 rows x 49 columns]" + "[29 rows x 50 columns]" ] }, - "execution_count": 64, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1617,7 +1618,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -1627,7 +1628,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1774,7 +1775,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -1789,7 +1790,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1849,7 +1850,7 @@ "dtype: int64" ] }, - "execution_count": 5, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1864,7 +1865,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -1875,14 +1876,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "### OPTIONAL: write to excel here to be used for other analysis on imputing values with other indicators\n", "\n", - "with pd.ExcelWriter('../../../data/new/compilation_output/all80.xlsx') as writer:\n", - " final.set_index('Country').to_excel(writer, sheet_name='Data')" + "# THIS IS POTENTIALLY ALREADY DONE IN compile.ipynb\n", + "\n", + "#with pd.ExcelWriter('../../../data/new/compilation_output/all80.xlsx') as writer:\n", + "# final.set_index('Country').to_excel(writer, sheet_name='Data')" ] }, { @@ -3175,7 +3178,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -4687,231 +4690,258 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[IterativeImputer] Completing matrix with shape (80, 45)\n", - "[IterativeImputer] Ending imputation round 1/100, elapsed time 0.30\n", - "[IterativeImputer] Change: 124.53052568017625, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 2/100, elapsed time 0.47\n", - "[IterativeImputer] Change: 38.39019261056212, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 3/100, elapsed time 0.64\n", - "[IterativeImputer] Change: 19.652341751231234, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 4/100, elapsed time 0.78\n", - "[IterativeImputer] Change: 13.738608929781773, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 5/100, elapsed time 0.93\n", - "[IterativeImputer] Change: 10.00254973286469, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 6/100, elapsed time 1.07\n", - "[IterativeImputer] Change: 7.491791004698872, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 7/100, elapsed time 1.23\n", - "[IterativeImputer] Change: 6.149493079571304, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 8/100, elapsed time 1.37\n", - "[IterativeImputer] Change: 5.0265335264563635, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 9/100, elapsed time 1.51\n", - "[IterativeImputer] Change: 4.079816393728263, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 10/100, elapsed time 1.66\n", - "[IterativeImputer] Change: 3.2955230281205377, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 11/100, elapsed time 1.83\n", - "[IterativeImputer] Change: 2.6531408017948523, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 12/100, elapsed time 2.02\n", - "[IterativeImputer] Change: 2.131024779369074, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 13/100, elapsed time 2.18\n", - "[IterativeImputer] Change: 1.7088442522010763, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 14/100, elapsed time 2.35\n", - "[IterativeImputer] Change: 1.3686712516834332, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 15/100, elapsed time 2.53\n", - "[IterativeImputer] Change: 1.1085691518822682, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 16/100, elapsed time 2.74\n", - "[IterativeImputer] Change: 0.9273227643680355, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 17/100, elapsed time 2.94\n", - "[IterativeImputer] Change: 0.7840986417848026, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 18/100, elapsed time 3.10\n", - "[IterativeImputer] Change: 0.6652511883795067, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 19/100, elapsed time 3.27\n", - "[IterativeImputer] Change: 0.5663866358246219, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 20/100, elapsed time 3.43\n", - "[IterativeImputer] Change: 0.48392766326372544, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 21/100, elapsed time 3.59\n", - "[IterativeImputer] Change: 0.41493198036017354, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 22/100, elapsed time 3.76\n", - "[IterativeImputer] Change: 0.3569922942200568, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 23/100, elapsed time 3.91\n", - "[IterativeImputer] Change: 0.30814601610941744, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 24/100, elapsed time 4.05\n", - "[IterativeImputer] Change: 0.26679527852843066, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 25/100, elapsed time 4.20\n", - "[IterativeImputer] Change: 0.23163959112321164, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 26/100, elapsed time 4.36\n", - "[IterativeImputer] Change: 0.20162004810053108, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 27/100, elapsed time 4.51\n", - "[IterativeImputer] Change: 0.17893220189640463, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 28/100, elapsed time 4.65\n", - "[IterativeImputer] Change: 0.1776953248166549, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 29/100, elapsed time 4.79\n", - "[IterativeImputer] Change: 0.17647258077051547, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 30/100, elapsed time 4.94\n", - "[IterativeImputer] Change: 0.17526290749527623, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 31/100, elapsed time 5.09\n", - "[IterativeImputer] Change: 0.17406539830957532, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 32/100, elapsed time 5.24\n", - "[IterativeImputer] Change: 0.17287927912154588, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 33/100, elapsed time 5.39\n", - "[IterativeImputer] Change: 0.1717038899775982, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 34/100, elapsed time 5.54\n", - "[IterativeImputer] Change: 0.17053866808079232, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 35/100, elapsed time 5.69\n", - "[IterativeImputer] Change: 0.16938313183158005, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 36/100, elapsed time 5.85\n", - "[IterativeImputer] Change: 0.16823686962081408, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 37/100, elapsed time 6.00\n", - "[IterativeImputer] Change: 0.16709952774842485, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 38/100, elapsed time 6.16\n", - "[IterativeImputer] Change: 0.1659708032262477, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 39/100, elapsed time 6.46\n", - "[IterativeImputer] Change: 0.16485043397569674, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 40/100, elapsed time 6.64\n", - "[IterativeImputer] Change: 0.16373819256606476, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 41/100, elapsed time 6.80\n", - "[IterativeImputer] Change: 0.16262445123184996, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 42/100, elapsed time 6.94\n", - "[IterativeImputer] Change: 0.16153187901659868, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 43/100, elapsed time 7.08\n", - "[IterativeImputer] Change: 0.16044539582471473, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 44/100, elapsed time 7.22\n", - "[IterativeImputer] Change: 0.15936536878665936, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 45/100, elapsed time 7.38\n", - "[IterativeImputer] Change: 0.15829201533867496, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 46/100, elapsed time 7.53\n", - "[IterativeImputer] Change: 0.1572255282060787, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 47/100, elapsed time 7.69\n", - "[IterativeImputer] Change: 0.15616599811911358, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 48/100, elapsed time 7.87\n", - "[IterativeImputer] Change: 0.15511344125448373, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 49/100, elapsed time 8.05\n", - "[IterativeImputer] Change: 0.1540678332138743, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 50/100, elapsed time 8.22\n", - "[IterativeImputer] Change: 0.15302912855016906, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 51/100, elapsed time 8.37\n", - "[IterativeImputer] Change: 0.15199727381188843, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 52/100, elapsed time 8.61\n", - "[IterativeImputer] Change: 0.15097221251747553, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 53/100, elapsed time 8.80\n", - "[IterativeImputer] Change: 0.14995389030878037, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 54/100, elapsed time 8.98\n", - "[IterativeImputer] Change: 0.1489422529596596, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 55/100, elapsed time 9.13\n", - "[IterativeImputer] Change: 0.14793724999143323, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 56/100, elapsed time 9.28\n", - "[IterativeImputer] Change: 0.14693883204231295, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 57/100, elapsed time 9.43\n", - "[IterativeImputer] Change: 0.14594695257242324, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 58/100, elapsed time 9.57\n", - "[IterativeImputer] Change: 0.14496156668668408, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 59/100, elapsed time 9.78\n", - "[IterativeImputer] Change: 0.14398263065175948, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 60/100, elapsed time 9.97\n", - "[IterativeImputer] Change: 0.14301010158905736, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 61/100, elapsed time 10.11\n", - "[IterativeImputer] Change: 0.14204393911015448, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 62/100, elapsed time 10.27\n", - "[IterativeImputer] Change: 0.14108410200706759, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 63/100, elapsed time 10.44\n", - "[IterativeImputer] Change: 0.1401305509019254, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 64/100, elapsed time 10.60\n", - "[IterativeImputer] Change: 0.13918324774552993, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 65/100, elapsed time 10.75\n", - "[IterativeImputer] Change: 0.13824215301939394, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 66/100, elapsed time 10.89\n", - "[IterativeImputer] Change: 0.13730649748694554, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 67/100, elapsed time 11.03\n", - "[IterativeImputer] Change: 0.13637922116311102, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 68/100, elapsed time 11.17\n", - "[IterativeImputer] Change: 0.13545617118147107, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 69/100, elapsed time 11.40\n", - "[IterativeImputer] Change: 0.13453949619273392, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 70/100, elapsed time 11.64\n", - "[IterativeImputer] Change: 0.13362880439201835, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 71/100, elapsed time 11.86\n", - "[IterativeImputer] Change: 0.1327241203302988, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 72/100, elapsed time 12.10\n", - "[IterativeImputer] Change: 0.13182540274403975, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 73/100, elapsed time 12.29\n", - "[IterativeImputer] Change: 0.1309326117863016, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 74/100, elapsed time 12.49\n", - "[IterativeImputer] Change: 0.13004570995837206, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 75/100, elapsed time 12.71\n", - "[IterativeImputer] Change: 0.1294592050201906, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 76/100, elapsed time 12.95\n", - "[IterativeImputer] Change: 0.1284315871708951, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 77/100, elapsed time 13.22\n", - "[IterativeImputer] Change: 0.12745877210789563, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 78/100, elapsed time 13.44\n", - "[IterativeImputer] Change: 0.12657350718702867, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 79/100, elapsed time 13.64\n", - "[IterativeImputer] Change: 0.1257061319147405, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 80/100, elapsed time 13.81\n", - "[IterativeImputer] Change: 0.12485067852239287, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 81/100, elapsed time 13.96\n", - "[IterativeImputer] Change: 0.12400285295546039, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 82/100, elapsed time 14.14\n", - "[IterativeImputer] Change: 0.12316126122357086, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 83/100, elapsed time 14.31\n", - "[IterativeImputer] Change: 0.12232547682936246, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 84/100, elapsed time 14.48\n", - "[IterativeImputer] Change: 0.12149533477530869, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 85/100, elapsed time 14.63\n", - "[IterativeImputer] Change: 0.12067074857721204, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 86/100, elapsed time 14.78\n", - "[IterativeImputer] Change: 0.11985165885082362, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 87/100, elapsed time 14.94\n", - "[IterativeImputer] Change: 0.11903801920764041, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 88/100, elapsed time 15.11\n", - "[IterativeImputer] Change: 0.1182297886906726, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 89/100, elapsed time 15.28\n", - "[IterativeImputer] Change: 0.11742693042044158, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 90/100, elapsed time 15.45\n", - "[IterativeImputer] Change: 0.11662940889500942, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 91/100, elapsed time 15.61\n", - "[IterativeImputer] Change: 0.1158371894036594, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 92/100, elapsed time 15.78\n", - "[IterativeImputer] Change: 0.11505023912861345, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 93/100, elapsed time 15.94\n", - "[IterativeImputer] Change: 0.11426852439874789, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 94/100, elapsed time 16.09\n", - "[IterativeImputer] Change: 0.11349201262476628, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 95/100, elapsed time 16.26\n", - "[IterativeImputer] Change: 0.11272067067819948, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 96/100, elapsed time 16.41\n", - "[IterativeImputer] Change: 0.11195446701555886, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 97/100, elapsed time 16.56\n", - "[IterativeImputer] Change: 0.11119336897368202, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 98/100, elapsed time 16.74\n", - "[IterativeImputer] Change: 0.11043734479815134, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 99/100, elapsed time 17.02\n", - "[IterativeImputer] Change: 0.1096863626705115, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 100/100, elapsed time 17.17\n", - "[IterativeImputer] Change: 0.10894039130090002, scaled tolerance: 0.09966888445530192 \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/conda/lib/python3.7/site-packages/sklearn/impute/_iterative.py:670: ConvergenceWarning: [IterativeImputer] Early stopping criterion not reached.\n", - " \" reached.\", ConvergenceWarning)\n" + "[IterativeImputer] Completing matrix with shape (80, 46)\n", + "[IterativeImputer] Ending imputation round 1/150, elapsed time 0.23\n", + "[IterativeImputer] Change: 125.18682627906755, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 2/150, elapsed time 0.42\n", + "[IterativeImputer] Change: 44.85827026941598, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 3/150, elapsed time 0.59\n", + "[IterativeImputer] Change: 22.473058683206716, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 4/150, elapsed time 0.74\n", + "[IterativeImputer] Change: 13.804946161135923, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 5/150, elapsed time 0.95\n", + "[IterativeImputer] Change: 9.961735788481086, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 6/150, elapsed time 1.12\n", + "[IterativeImputer] Change: 8.243527374799775, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 7/150, elapsed time 1.27\n", + "[IterativeImputer] Change: 6.896941939997013, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 8/150, elapsed time 1.43\n", + "[IterativeImputer] Change: 5.802978157212242, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 9/150, elapsed time 1.62\n", + "[IterativeImputer] Change: 4.9488947715428155, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 10/150, elapsed time 1.77\n", + "[IterativeImputer] Change: 4.2213219389912116, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 11/150, elapsed time 1.93\n", + "[IterativeImputer] Change: 3.6032749947541096, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 12/150, elapsed time 2.09\n", + "[IterativeImputer] Change: 3.0813587808647056, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 13/150, elapsed time 2.25\n", + "[IterativeImputer] Change: 2.6457206573821432, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 14/150, elapsed time 2.41\n", + "[IterativeImputer] Change: 2.278647281607002, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 15/150, elapsed time 2.70\n", + "[IterativeImputer] Change: 1.9684146274892287, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 16/150, elapsed time 3.01\n", + "[IterativeImputer] Change: 1.7059175108321054, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 17/150, elapsed time 3.33\n", + "[IterativeImputer] Change: 1.4833286877785505, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 18/150, elapsed time 3.72\n", + "[IterativeImputer] Change: 1.2940343841380881, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 19/150, elapsed time 4.00\n", + "[IterativeImputer] Change: 1.1325077547885058, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 20/150, elapsed time 4.29\n", + "[IterativeImputer] Change: 0.994162588118709, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 21/150, elapsed time 4.58\n", + "[IterativeImputer] Change: 0.8752090747294166, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 22/150, elapsed time 4.82\n", + "[IterativeImputer] Change: 0.7725220649379234, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 23/150, elapsed time 5.00\n", + "[IterativeImputer] Change: 0.683525856586361, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 24/150, elapsed time 5.15\n", + "[IterativeImputer] Change: 0.6060961399189161, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 25/150, elapsed time 5.30\n", + "[IterativeImputer] Change: 0.5384780203675951, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 26/150, elapsed time 5.47\n", + "[IterativeImputer] Change: 0.4792183008483285, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 27/150, elapsed time 5.62\n", + "[IterativeImputer] Change: 0.4271099960776188, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 28/150, elapsed time 5.77\n", + "[IterativeImputer] Change: 0.3811471154865044, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 29/150, elapsed time 5.94\n", + "[IterativeImputer] Change: 0.34048794223255185, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 30/150, elapsed time 6.13\n", + "[IterativeImputer] Change: 0.304425272316715, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 31/150, elapsed time 6.29\n", + "[IterativeImputer] Change: 0.27236231639180897, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 32/150, elapsed time 6.46\n", + "[IterativeImputer] Change: 0.24379318714202003, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 33/150, elapsed time 6.61\n", + "[IterativeImputer] Change: 0.21828753534524326, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 34/150, elapsed time 6.77\n", + "[IterativeImputer] Change: 0.19547696875517429, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 35/150, elapsed time 6.95\n", + "[IterativeImputer] Change: 0.17993627221536523, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 36/150, elapsed time 7.11\n", + "[IterativeImputer] Change: 0.17856174447905693, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 37/150, elapsed time 7.26\n", + "[IterativeImputer] Change: 0.17721777531301708, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 38/150, elapsed time 7.52\n", + "[IterativeImputer] Change: 0.17594188273754363, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 39/150, elapsed time 7.67\n", + "[IterativeImputer] Change: 0.17467638299706967, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 40/150, elapsed time 7.83\n", + "[IterativeImputer] Change: 0.17342091191072084, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 41/150, elapsed time 7.98\n", + "[IterativeImputer] Change: 0.17217515531305722, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 42/150, elapsed time 8.15\n", + "[IterativeImputer] Change: 0.17093884332976234, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 43/150, elapsed time 8.31\n", + "[IterativeImputer] Change: 0.16971174225014735, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 44/150, elapsed time 8.47\n", + "[IterativeImputer] Change: 0.168493650738327, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 45/150, elapsed time 8.63\n", + "[IterativeImputer] Change: 0.16728439102199055, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 46/150, elapsed time 8.79\n", + "[IterativeImputer] Change: 0.16608380901084335, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 47/150, elapsed time 8.96\n", + "[IterativeImputer] Change: 0.16489176791438648, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 48/150, elapsed time 9.12\n", + "[IterativeImputer] Change: 0.16369676550423906, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 49/150, elapsed time 9.28\n", + "[IterativeImputer] Change: 0.16252688647221875, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 50/150, elapsed time 9.43\n", + "[IterativeImputer] Change: 0.16136278020431333, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 51/150, elapsed time 9.61\n", + "[IterativeImputer] Change: 0.1602053296093114, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 52/150, elapsed time 9.80\n", + "[IterativeImputer] Change: 0.15905512969094815, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 53/150, elapsed time 9.98\n", + "[IterativeImputer] Change: 0.15791249410193564, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 54/150, elapsed time 10.24\n", + "[IterativeImputer] Change: 0.15677756022668055, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 55/150, elapsed time 10.47\n", + "[IterativeImputer] Change: 0.15565036946333072, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 56/150, elapsed time 10.67\n", + "[IterativeImputer] Change: 0.15453091134115676, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 57/150, elapsed time 10.86\n", + "[IterativeImputer] Change: 0.1534191521315118, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 58/150, elapsed time 11.17\n", + "[IterativeImputer] Change: 0.15231504676106944, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 59/150, elapsed time 11.49\n", + "[IterativeImputer] Change: 0.15121854550770858, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 60/150, elapsed time 11.82\n", + "[IterativeImputer] Change: 0.15012959696703432, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 61/150, elapsed time 12.00\n", + "[IterativeImputer] Change: 0.14904815166628765, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 62/150, elapsed time 12.15\n", + "[IterativeImputer] Change: 0.14797415960285382, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 63/150, elapsed time 12.31\n", + "[IterativeImputer] Change: 0.14690757301869062, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 64/150, elapsed time 12.46\n", + "[IterativeImputer] Change: 0.1458579286771946, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 65/150, elapsed time 12.62\n", + "[IterativeImputer] Change: 0.14482015609582982, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 66/150, elapsed time 12.78\n", + "[IterativeImputer] Change: 0.14378445409293344, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 67/150, elapsed time 12.96\n", + "[IterativeImputer] Change: 0.14276649122383084, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 68/150, elapsed time 13.12\n", + "[IterativeImputer] Change: 0.1417528769766515, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 69/150, elapsed time 13.27\n", + "[IterativeImputer] Change: 0.1407450238406644, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 70/150, elapsed time 13.43\n", + "[IterativeImputer] Change: 0.1397438473852679, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 71/150, elapsed time 13.59\n", + "[IterativeImputer] Change: 0.1387492924006435, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 72/150, elapsed time 13.74\n", + "[IterativeImputer] Change: 0.1377614242657132, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 73/150, elapsed time 13.89\n", + "[IterativeImputer] Change: 0.1367802587558461, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 74/150, elapsed time 14.05\n", + "[IterativeImputer] Change: 0.13580577078911477, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 75/150, elapsed time 14.21\n", + "[IterativeImputer] Change: 0.13483791938269962, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 76/150, elapsed time 14.39\n", + "[IterativeImputer] Change: 0.13387665991137804, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 77/150, elapsed time 14.61\n", + "[IterativeImputer] Change: 0.1329219613080706, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 78/150, elapsed time 14.81\n", + "[IterativeImputer] Change: 0.13197375296794606, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 79/150, elapsed time 14.98\n", + "[IterativeImputer] Change: 0.13103198737154154, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 80/150, elapsed time 15.14\n", + "[IterativeImputer] Change: 0.13009666452261792, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 81/150, elapsed time 15.30\n", + "[IterativeImputer] Change: 0.12916770576649456, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 82/150, elapsed time 15.45\n", + "[IterativeImputer] Change: 0.1282450722947887, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 83/150, elapsed time 15.62\n", + "[IterativeImputer] Change: 0.12732872742550244, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 84/150, elapsed time 15.77\n", + "[IterativeImputer] Change: 0.12641863317658525, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 85/150, elapsed time 15.93\n", + "[IterativeImputer] Change: 0.12551475134054635, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 86/150, elapsed time 16.14\n", + "[IterativeImputer] Change: 0.12461704318044142, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 87/150, elapsed time 16.30\n", + "[IterativeImputer] Change: 0.12372546911558246, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 88/150, elapsed time 16.46\n", + "[IterativeImputer] Change: 0.12283999154338526, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 89/150, elapsed time 16.62\n", + "[IterativeImputer] Change: 0.12196057064482002, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 90/150, elapsed time 16.78\n", + "[IterativeImputer] Change: 0.12108716951362414, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 91/150, elapsed time 16.96\n", + "[IterativeImputer] Change: 0.12021975032233384, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 92/150, elapsed time 17.11\n", + "[IterativeImputer] Change: 0.1193582757952743, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 93/150, elapsed time 17.26\n", + "[IterativeImputer] Change: 0.11850164459549128, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 94/150, elapsed time 17.42\n", + "[IterativeImputer] Change: 0.11765370341623821, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 95/150, elapsed time 17.61\n", + "[IterativeImputer] Change: 0.11680882576877094, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 96/150, elapsed time 17.77\n", + "[IterativeImputer] Change: 0.11597091918977703, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 97/150, elapsed time 17.92\n", + "[IterativeImputer] Change: 0.11513875055161765, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 98/150, elapsed time 18.08\n", + "[IterativeImputer] Change: 0.11431227987631365, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 99/150, elapsed time 18.24\n", + "[IterativeImputer] Change: 0.11349146466458354, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 100/150, elapsed time 18.39\n", + "[IterativeImputer] Change: 0.11267627464540869, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 101/150, elapsed time 18.57\n", + "[IterativeImputer] Change: 0.11186668605894279, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 102/150, elapsed time 18.77\n", + "[IterativeImputer] Change: 0.11106267143689091, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 103/150, elapsed time 18.92\n", + "[IterativeImputer] Change: 0.11026420050558183, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 104/150, elapsed time 19.10\n", + "[IterativeImputer] Change: 0.10947124200725222, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 105/150, elapsed time 19.25\n", + "[IterativeImputer] Change: 0.1086837621646281, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 106/150, elapsed time 19.42\n", + "[IterativeImputer] Change: 0.10790172748436866, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 107/150, elapsed time 19.57\n", + "[IterativeImputer] Change: 0.10712510489206484, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 108/150, elapsed time 19.77\n", + "[IterativeImputer] Change: 0.10635386003606123, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 109/150, elapsed time 19.95\n", + "[IterativeImputer] Change: 0.10558795898444262, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 110/150, elapsed time 20.13\n", + "[IterativeImputer] Change: 0.10482736861632524, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 111/150, elapsed time 20.35\n", + "[IterativeImputer] Change: 0.1040720552987402, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 112/150, elapsed time 20.56\n", + "[IterativeImputer] Change: 0.10332198545617738, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 113/150, elapsed time 20.86\n", + "[IterativeImputer] Change: 0.10257712609907738, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 114/150, elapsed time 21.30\n", + "[IterativeImputer] Change: 0.10183744429655739, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 115/150, elapsed time 21.49\n", + "[IterativeImputer] Change: 0.10110290713382286, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 116/150, elapsed time 21.71\n", + "[IterativeImputer] Change: 0.10037348135044155, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 117/150, elapsed time 21.96\n", + "[IterativeImputer] Change: 0.09964913554273064, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Early stopping criterion reached.\n" ] }, { "data": { "text/plain": [ - "IterativeImputer(max_iter=100, random_state=0, verbose=2)" + "IterativeImputer(max_iter=150, random_state=0, verbose=2)" ] }, - "execution_count": 59, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -4920,7 +4950,7 @@ "# Iterations do not converge unless a high number of max_iter is set\n", "# Here set max_iter = 100\n", "\n", - "imp_iter=IterativeImputer(missing_values=np.nan, random_state=0, max_iter=100, verbose=2, tol=0.001)\n", + "imp_iter=IterativeImputer(missing_values=np.nan, random_state=0, max_iter=150, verbose=2, tol=0.001)\n", "\n", "# Fit the imputer with whole dataset df which includes missing values\n", "imp_iter.fit(df)\n", @@ -4931,15 +4961,131 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[IterativeImputer] Completing matrix with shape (80, 45)\n", - "[IterativeImputer] Ending imputation round 1/1, elapsed time 0.01\n" + "[IterativeImputer] Completing matrix with shape (80, 46)\n", + "[IterativeImputer] Ending imputation round 1/117, elapsed time 0.01\n", + "[IterativeImputer] Ending imputation round 2/117, elapsed time 0.02\n", + "[IterativeImputer] Ending imputation round 3/117, elapsed time 0.03\n", + "[IterativeImputer] Ending imputation round 4/117, elapsed time 0.04\n", + "[IterativeImputer] Ending imputation round 5/117, elapsed time 0.04\n", + "[IterativeImputer] Ending imputation round 6/117, elapsed time 0.05\n", + "[IterativeImputer] Ending imputation round 7/117, elapsed time 0.06\n", + "[IterativeImputer] Ending imputation round 8/117, elapsed time 0.07\n", + "[IterativeImputer] Ending imputation round 9/117, elapsed time 0.08\n", + "[IterativeImputer] Ending imputation round 10/117, elapsed time 0.08\n", + "[IterativeImputer] Ending imputation round 11/117, elapsed time 0.09\n", + "[IterativeImputer] Ending imputation round 12/117, elapsed time 0.10\n", + "[IterativeImputer] Ending imputation round 13/117, elapsed time 0.11\n", + "[IterativeImputer] Ending imputation round 14/117, elapsed time 0.12\n", + "[IterativeImputer] Ending imputation round 15/117, elapsed time 0.13\n", + "[IterativeImputer] Ending imputation round 16/117, elapsed time 0.14\n", + "[IterativeImputer] Ending imputation round 17/117, elapsed time 0.15\n", + "[IterativeImputer] Ending imputation round 18/117, elapsed time 0.16\n", + "[IterativeImputer] Ending imputation round 19/117, elapsed time 0.16\n", + "[IterativeImputer] Ending imputation round 20/117, elapsed time 0.17\n", + "[IterativeImputer] Ending imputation round 21/117, elapsed time 0.18\n", + "[IterativeImputer] Ending imputation round 22/117, elapsed time 0.19\n", + "[IterativeImputer] Ending imputation round 23/117, elapsed time 0.19\n", + "[IterativeImputer] Ending imputation round 24/117, elapsed time 0.20\n", + "[IterativeImputer] Ending imputation round 25/117, elapsed time 0.21\n", + "[IterativeImputer] Ending imputation round 26/117, elapsed time 0.22\n", + "[IterativeImputer] Ending imputation round 27/117, elapsed time 0.22\n", + "[IterativeImputer] Ending imputation round 28/117, elapsed time 0.23\n", + "[IterativeImputer] Ending imputation round 29/117, elapsed time 0.24\n", + "[IterativeImputer] Ending imputation round 30/117, elapsed time 0.24\n", + "[IterativeImputer] Ending imputation round 31/117, elapsed time 0.25\n", + "[IterativeImputer] Ending imputation round 32/117, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 33/117, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 34/117, elapsed time 0.27\n", + "[IterativeImputer] Ending imputation round 35/117, elapsed time 0.28\n", + "[IterativeImputer] Ending imputation round 36/117, elapsed time 0.28\n", + "[IterativeImputer] Ending imputation round 37/117, elapsed time 0.29\n", + "[IterativeImputer] Ending imputation round 38/117, elapsed time 0.30\n", + "[IterativeImputer] Ending imputation round 39/117, elapsed time 0.30\n", + "[IterativeImputer] Ending imputation round 40/117, elapsed time 0.31\n", + "[IterativeImputer] Ending imputation round 41/117, elapsed time 0.32\n", + "[IterativeImputer] Ending imputation round 42/117, elapsed time 0.32\n", + "[IterativeImputer] Ending imputation round 43/117, elapsed time 0.33\n", + "[IterativeImputer] Ending imputation round 44/117, elapsed time 0.34\n", + "[IterativeImputer] Ending imputation round 45/117, elapsed time 0.34\n", + "[IterativeImputer] Ending imputation round 46/117, elapsed time 0.35\n", + "[IterativeImputer] Ending imputation round 47/117, elapsed time 0.36\n", + "[IterativeImputer] Ending imputation round 48/117, elapsed time 0.36\n", + "[IterativeImputer] Ending imputation round 49/117, elapsed time 0.37\n", + "[IterativeImputer] Ending imputation round 50/117, elapsed time 0.38\n", + "[IterativeImputer] Ending imputation round 51/117, elapsed time 0.38\n", + "[IterativeImputer] Ending imputation round 52/117, elapsed time 0.39\n", + "[IterativeImputer] Ending imputation round 53/117, elapsed time 0.39\n", + "[IterativeImputer] Ending imputation round 54/117, elapsed time 0.40\n", + "[IterativeImputer] Ending imputation round 55/117, elapsed time 0.41\n", + "[IterativeImputer] Ending imputation round 56/117, elapsed time 0.42\n", + "[IterativeImputer] Ending imputation round 57/117, elapsed time 0.42\n", + "[IterativeImputer] Ending imputation round 58/117, elapsed time 0.43\n", + "[IterativeImputer] Ending imputation round 59/117, elapsed time 0.44\n", + "[IterativeImputer] Ending imputation round 60/117, elapsed time 0.44\n", + "[IterativeImputer] Ending imputation round 61/117, elapsed time 0.45\n", + "[IterativeImputer] Ending imputation round 62/117, elapsed time 0.45\n", + "[IterativeImputer] Ending imputation round 63/117, elapsed time 0.46\n", + "[IterativeImputer] Ending imputation round 64/117, elapsed time 0.47\n", + "[IterativeImputer] Ending imputation round 65/117, elapsed time 0.47\n", + "[IterativeImputer] Ending imputation round 66/117, elapsed time 0.48\n", + "[IterativeImputer] Ending imputation round 67/117, elapsed time 0.49\n", + "[IterativeImputer] Ending imputation round 68/117, elapsed time 0.49\n", + "[IterativeImputer] Ending imputation round 69/117, elapsed time 0.50\n", + "[IterativeImputer] Ending imputation round 70/117, elapsed time 0.51\n", + "[IterativeImputer] Ending imputation round 71/117, elapsed time 0.51\n", + "[IterativeImputer] Ending imputation round 72/117, elapsed time 0.52\n", + "[IterativeImputer] Ending imputation round 73/117, elapsed time 0.53\n", + "[IterativeImputer] Ending imputation round 74/117, elapsed time 0.53\n", + "[IterativeImputer] Ending imputation round 75/117, elapsed time 0.54\n", + "[IterativeImputer] Ending imputation round 76/117, elapsed time 0.55\n", + "[IterativeImputer] Ending imputation round 77/117, elapsed time 0.55\n", + "[IterativeImputer] Ending imputation round 78/117, elapsed time 0.56\n", + "[IterativeImputer] Ending imputation round 79/117, elapsed time 0.57\n", + "[IterativeImputer] Ending imputation round 80/117, elapsed time 0.57\n", + "[IterativeImputer] Ending imputation round 81/117, elapsed time 0.58\n", + "[IterativeImputer] Ending imputation round 82/117, elapsed time 0.59\n", + "[IterativeImputer] Ending imputation round 83/117, elapsed time 0.59\n", + "[IterativeImputer] Ending imputation round 84/117, elapsed time 0.60\n", + "[IterativeImputer] Ending imputation round 85/117, elapsed time 0.61\n", + "[IterativeImputer] Ending imputation round 86/117, elapsed time 0.61\n", + "[IterativeImputer] Ending imputation round 87/117, elapsed time 0.62\n", + "[IterativeImputer] Ending imputation round 88/117, elapsed time 0.63\n", + "[IterativeImputer] Ending imputation round 89/117, elapsed time 0.63\n", + "[IterativeImputer] Ending imputation round 90/117, elapsed time 0.64\n", + "[IterativeImputer] Ending imputation round 91/117, elapsed time 0.65\n", + "[IterativeImputer] Ending imputation round 92/117, elapsed time 0.65\n", + "[IterativeImputer] Ending imputation round 93/117, elapsed time 0.66\n", + "[IterativeImputer] Ending imputation round 94/117, elapsed time 0.67\n", + "[IterativeImputer] Ending imputation round 95/117, elapsed time 0.68\n", + "[IterativeImputer] Ending imputation round 96/117, elapsed time 0.68\n", + "[IterativeImputer] Ending imputation round 97/117, elapsed time 0.69\n", + "[IterativeImputer] Ending imputation round 98/117, elapsed time 0.70\n", + "[IterativeImputer] Ending imputation round 99/117, elapsed time 0.70\n", + "[IterativeImputer] Ending imputation round 100/117, elapsed time 0.71\n", + "[IterativeImputer] Ending imputation round 101/117, elapsed time 0.72\n", + "[IterativeImputer] Ending imputation round 102/117, elapsed time 0.72\n", + "[IterativeImputer] Ending imputation round 103/117, elapsed time 0.73\n", + "[IterativeImputer] Ending imputation round 104/117, elapsed time 0.74\n", + "[IterativeImputer] Ending imputation round 105/117, elapsed time 0.74\n", + "[IterativeImputer] Ending imputation round 106/117, elapsed time 0.75\n", + "[IterativeImputer] Ending imputation round 107/117, elapsed time 0.76\n", + "[IterativeImputer] Ending imputation round 108/117, elapsed time 0.76\n", + "[IterativeImputer] Ending imputation round 109/117, elapsed time 0.77\n", + "[IterativeImputer] Ending imputation round 110/117, elapsed time 0.78\n", + "[IterativeImputer] Ending imputation round 111/117, elapsed time 0.78\n", + "[IterativeImputer] Ending imputation round 112/117, elapsed time 0.79\n", + "[IterativeImputer] Ending imputation round 113/117, elapsed time 0.80\n", + "[IterativeImputer] Ending imputation round 114/117, elapsed time 0.80\n", + "[IterativeImputer] Ending imputation round 115/117, elapsed time 0.81\n", + "[IterativeImputer] Ending imputation round 116/117, elapsed time 0.82\n", + "[IterativeImputer] Ending imputation round 117/117, elapsed time 0.83\n" ] } ], @@ -4950,7 +5096,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -4985,11 +5131,11 @@ " <th>Number.of.co.wives.0</th>\n", " <th>Number.of.co.wives.1</th>\n", " <th>...</th>\n", - " <th>Men.who.work</th>\n", " <th>Female.headed.household</th>\n", " <th>Age</th>\n", " <th>Wealth.index.Gini</th>\n", " <th>ART</th>\n", + " <th>rural</th>\n", " <th>Christian</th>\n", " <th>Muslim</th>\n", " <th>Folk.Religion</th>\n", @@ -5025,21 +5171,21 @@ " <tr>\n", " <th>mean</th>\n", " <td>22.58500</td>\n", - " <td>9.286806</td>\n", - " <td>52.194881</td>\n", - " <td>36.052688</td>\n", - " <td>1.313955</td>\n", + " <td>8.484185</td>\n", + " <td>52.467057</td>\n", + " <td>36.714238</td>\n", + " <td>1.294802</td>\n", " <td>18.076250</td>\n", " <td>63.950000</td>\n", " <td>50.662500</td>\n", - " <td>74.765134</td>\n", - " <td>16.860882</td>\n", + " <td>75.108408</td>\n", + " <td>16.648145</td>\n", " <td>...</td>\n", - " <td>73.686250</td>\n", " <td>26.983750</td>\n", " <td>41.491601</td>\n", " <td>43.232500</td>\n", " <td>23.550000</td>\n", + " <td>64.949713</td>\n", " <td>57.407097</td>\n", " <td>30.214108</td>\n", " <td>10.017895</td>\n", @@ -5049,21 +5195,21 @@ " <tr>\n", " <th>std</th>\n", " <td>11.78725</td>\n", - " <td>7.181694</td>\n", - " <td>17.633323</td>\n", - " <td>14.274430</td>\n", - " <td>1.735631</td>\n", + " <td>7.212518</td>\n", + " <td>17.644762</td>\n", + " <td>14.613531</td>\n", + " <td>1.730684</td>\n", " <td>3.275078</td>\n", " <td>10.402592</td>\n", " <td>7.860386</td>\n", - " <td>11.022924</td>\n", - " <td>9.195470</td>\n", + " <td>11.379009</td>\n", + " <td>9.491825</td>\n", " <td>...</td>\n", - " <td>12.047929</td>\n", " <td>7.821707</td>\n", " <td>2.920565</td>\n", " <td>7.276906</td>\n", " <td>22.027543</td>\n", + " <td>15.865107</td>\n", " <td>31.193733</td>\n", " <td>32.491338</td>\n", " <td>8.920809</td>\n", @@ -5073,7 +5219,7 @@ " <tr>\n", " <th>min</th>\n", " <td>5.40000</td>\n", - " <td>0.800000</td>\n", + " <td>-3.378643</td>\n", " <td>12.600000</td>\n", " <td>12.500000</td>\n", " <td>0.059700</td>\n", @@ -5081,13 +5227,13 @@ " <td>34.000000</td>\n", " <td>28.800000</td>\n", " <td>51.600000</td>\n", - " <td>0.100000</td>\n", + " <td>-0.701617</td>\n", " <td>...</td>\n", - " <td>32.100000</td>\n", " <td>9.300000</td>\n", " <td>33.977901</td>\n", " <td>29.800000</td>\n", " <td>0.000000</td>\n", + " <td>13.366000</td>\n", " <td>2.407287</td>\n", " <td>0.050000</td>\n", " <td>0.000000</td>\n", @@ -5097,7 +5243,7 @@ " <tr>\n", " <th>25%</th>\n", " <td>13.85000</td>\n", - " <td>4.250000</td>\n", + " <td>3.375000</td>\n", " <td>40.950000</td>\n", " <td>25.075000</td>\n", " <td>0.369750</td>\n", @@ -5105,13 +5251,13 @@ " <td>58.000000</td>\n", " <td>47.575000</td>\n", " <td>66.350000</td>\n", - " <td>9.375000</td>\n", + " <td>9.275000</td>\n", " <td>...</td>\n", - " <td>64.850000</td>\n", " <td>22.575000</td>\n", " <td>39.162131</td>\n", " <td>39.125000</td>\n", " <td>2.750000</td>\n", + " <td>54.115750</td>\n", " <td>38.235000</td>\n", " <td>3.873658</td>\n", " <td>4.080000</td>\n", @@ -5121,9 +5267,9 @@ " <tr>\n", " <th>50%</th>\n", " <td>19.60000</td>\n", - " <td>7.850000</td>\n", - " <td>51.400000</td>\n", - " <td>35.100000</td>\n", + " <td>6.300000</td>\n", + " <td>53.350000</td>\n", + " <td>36.250000</td>\n", " <td>0.755600</td>\n", " <td>18.000000</td>\n", " <td>64.100000</td>\n", @@ -5131,11 +5277,11 @@ " <td>75.200000</td>\n", " <td>15.300000</td>\n", " <td>...</td>\n", - " <td>76.150000</td>\n", " <td>26.600000</td>\n", " <td>42.070331</td>\n", " <td>42.800000</td>\n", " <td>19.500000</td>\n", + " <td>62.522500</td>\n", " <td>63.070000</td>\n", " <td>15.700000</td>\n", " <td>6.765000</td>\n", @@ -5145,21 +5291,21 @@ " <tr>\n", " <th>75%</th>\n", " <td>30.00000</td>\n", - " <td>12.824685</td>\n", + " <td>10.882315</td>\n", " <td>64.300000</td>\n", - " <td>44.250000</td>\n", - " <td>1.376875</td>\n", + " <td>45.888648</td>\n", + " <td>1.322186</td>\n", " <td>20.425000</td>\n", " <td>70.025000</td>\n", " <td>56.575000</td>\n", - " <td>84.825000</td>\n", + " <td>85.275000</td>\n", " <td>25.650000</td>\n", " <td>...</td>\n", - " <td>82.050000</td>\n", " <td>31.825000</td>\n", " <td>43.606013</td>\n", " <td>46.525000</td>\n", " <td>40.500000</td>\n", + " <td>79.290000</td>\n", " <td>85.062500</td>\n", " <td>50.200000</td>\n", " <td>13.337500</td>\n", @@ -5176,14 +5322,14 @@ " <td>26.900000</td>\n", " <td>88.500000</td>\n", " <td>65.200000</td>\n", - " <td>93.200000</td>\n", + " <td>94.289900</td>\n", " <td>32.700000</td>\n", " <td>...</td>\n", - " <td>94.000000</td>\n", " <td>44.600000</td>\n", " <td>48.491879</td>\n", " <td>65.800000</td>\n", " <td>79.000000</td>\n", + " <td>89.358000</td>\n", " <td>97.555386</td>\n", " <td>96.379726</td>\n", " <td>37.430000</td>\n", @@ -5192,59 +5338,59 @@ " </tr>\n", " </tbody>\n", "</table>\n", - "<p>8 rows × 45 columns</p>\n", + "<p>8 rows × 46 columns</p>\n", "</div>" ], "text/plain": [ " Use.of.contraception Ever.paid.for.sex Wife.beating.justified.W \\\n", "count 80.00000 80.000000 80.000000 \n", - "mean 22.58500 9.286806 52.194881 \n", - "std 11.78725 7.181694 17.633323 \n", - "min 5.40000 0.800000 12.600000 \n", - "25% 13.85000 4.250000 40.950000 \n", - "50% 19.60000 7.850000 51.400000 \n", - "75% 30.00000 12.824685 64.300000 \n", + "mean 22.58500 8.484185 52.467057 \n", + "std 11.78725 7.212518 17.644762 \n", + "min 5.40000 -3.378643 12.600000 \n", + "25% 13.85000 3.375000 40.950000 \n", + "50% 19.60000 6.300000 53.350000 \n", + "75% 30.00000 10.882315 64.300000 \n", "max 50.20000 35.000000 88.800000 \n", "\n", " Wife.beating.justified.M Unprotected.paid.sex General.fertility.rate \\\n", "count 80.000000 80.000000 80.000000 \n", - "mean 36.052688 1.313955 18.076250 \n", - "std 14.274430 1.735631 3.275078 \n", + "mean 36.714238 1.294802 18.076250 \n", + "std 14.613531 1.730684 3.275078 \n", "min 12.500000 0.059700 11.800000 \n", "25% 25.075000 0.369750 15.750000 \n", - "50% 35.100000 0.755600 18.000000 \n", - "75% 44.250000 1.376875 20.425000 \n", + "50% 36.250000 0.755600 18.000000 \n", + "75% 45.888648 1.322186 20.425000 \n", "max 74.800000 9.286600 26.900000 \n", "\n", " Married.or.in.union.W Married.or.in.union.M Number.of.co.wives.0 \\\n", "count 80.000000 80.000000 80.000000 \n", - "mean 63.950000 50.662500 74.765134 \n", - "std 10.402592 7.860386 11.022924 \n", + "mean 63.950000 50.662500 75.108408 \n", + "std 10.402592 7.860386 11.379009 \n", "min 34.000000 28.800000 51.600000 \n", "25% 58.000000 47.575000 66.350000 \n", "50% 64.100000 50.800000 75.200000 \n", - "75% 70.025000 56.575000 84.825000 \n", - "max 88.500000 65.200000 93.200000 \n", + "75% 70.025000 56.575000 85.275000 \n", + "max 88.500000 65.200000 94.289900 \n", "\n", - " Number.of.co.wives.1 ... Men.who.work Female.headed.household \\\n", - "count 80.000000 ... 80.000000 80.000000 \n", - "mean 16.860882 ... 73.686250 26.983750 \n", - "std 9.195470 ... 12.047929 7.821707 \n", - "min 0.100000 ... 32.100000 9.300000 \n", - "25% 9.375000 ... 64.850000 22.575000 \n", - "50% 15.300000 ... 76.150000 26.600000 \n", - "75% 25.650000 ... 82.050000 31.825000 \n", - "max 32.700000 ... 94.000000 44.600000 \n", + " Number.of.co.wives.1 ... Female.headed.household Age \\\n", + "count 80.000000 ... 80.000000 80.000000 \n", + "mean 16.648145 ... 26.983750 41.491601 \n", + "std 9.491825 ... 7.821707 2.920565 \n", + "min -0.701617 ... 9.300000 33.977901 \n", + "25% 9.275000 ... 22.575000 39.162131 \n", + "50% 15.300000 ... 26.600000 42.070331 \n", + "75% 25.650000 ... 31.825000 43.606013 \n", + "max 32.700000 ... 44.600000 48.491879 \n", "\n", - " Age Wealth.index.Gini ART Christian Muslim \\\n", - "count 80.000000 80.000000 80.000000 80.000000 80.000000 \n", - "mean 41.491601 43.232500 23.550000 57.407097 30.214108 \n", - "std 2.920565 7.276906 22.027543 31.193733 32.491338 \n", - "min 33.977901 29.800000 0.000000 2.407287 0.050000 \n", - "25% 39.162131 39.125000 2.750000 38.235000 3.873658 \n", - "50% 42.070331 42.800000 19.500000 63.070000 15.700000 \n", - "75% 43.606013 46.525000 40.500000 85.062500 50.200000 \n", - "max 48.491879 65.800000 79.000000 97.555386 96.379726 \n", + " Wealth.index.Gini ART rural Christian Muslim \\\n", + "count 80.000000 80.000000 80.000000 80.000000 80.000000 \n", + "mean 43.232500 23.550000 64.949713 57.407097 30.214108 \n", + "std 7.276906 22.027543 15.865107 31.193733 32.491338 \n", + "min 29.800000 0.000000 13.366000 2.407287 0.050000 \n", + "25% 39.125000 2.750000 54.115750 38.235000 3.873658 \n", + "50% 42.800000 19.500000 62.522500 63.070000 15.700000 \n", + "75% 46.525000 40.500000 79.290000 85.062500 50.200000 \n", + "max 65.800000 79.000000 89.358000 97.555386 96.379726 \n", "\n", " Folk.Religion Unaffiliated.Religion Other.Religion \n", "count 80.000000 80.000000 80.000000 \n", @@ -5256,10 +5402,10 @@ "75% 13.337500 1.432500 1.410000 \n", "max 37.430000 7.875895 7.690000 \n", "\n", - "[8 rows x 45 columns]" + "[8 rows x 46 columns]" ] }, - "execution_count": 51, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -5271,7 +5417,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -5306,11 +5452,11 @@ " <th>Number.of.co.wives.0</th>\n", " <th>Number.of.co.wives.1</th>\n", " <th>...</th>\n", - " <th>Men.who.work</th>\n", " <th>Female.headed.household</th>\n", " <th>Age</th>\n", " <th>Wealth.index.Gini</th>\n", " <th>ART</th>\n", + " <th>rural</th>\n", " <th>Christian</th>\n", " <th>Muslim</th>\n", " <th>Folk.Religion</th>\n", @@ -5356,11 +5502,11 @@ " <td>74.643590</td>\n", " <td>17.091026</td>\n", " <td>...</td>\n", - " <td>73.686250</td>\n", " <td>26.983750</td>\n", " <td>41.491601</td>\n", " <td>43.232500</td>\n", " <td>23.550000</td>\n", + " <td>64.949713</td>\n", " <td>57.407097</td>\n", " <td>30.214108</td>\n", " <td>10.017895</td>\n", @@ -5380,11 +5526,11 @@ " <td>11.138299</td>\n", " <td>9.191684</td>\n", " <td>...</td>\n", - " <td>12.047929</td>\n", " <td>7.821707</td>\n", " <td>2.920565</td>\n", " <td>7.276906</td>\n", " <td>22.027543</td>\n", + " <td>15.865107</td>\n", " <td>31.193733</td>\n", " <td>32.491338</td>\n", " <td>8.920809</td>\n", @@ -5404,11 +5550,11 @@ " <td>51.600000</td>\n", " <td>0.100000</td>\n", " <td>...</td>\n", - " <td>32.100000</td>\n", " <td>9.300000</td>\n", " <td>33.977901</td>\n", " <td>29.800000</td>\n", " <td>0.000000</td>\n", + " <td>13.366000</td>\n", " <td>2.407287</td>\n", " <td>0.050000</td>\n", " <td>0.000000</td>\n", @@ -5428,11 +5574,11 @@ " <td>65.650000</td>\n", " <td>9.475000</td>\n", " <td>...</td>\n", - " <td>64.850000</td>\n", " <td>22.575000</td>\n", " <td>39.162131</td>\n", " <td>39.125000</td>\n", " <td>2.750000</td>\n", + " <td>54.115750</td>\n", " <td>38.235000</td>\n", " <td>3.873658</td>\n", " <td>4.080000</td>\n", @@ -5452,11 +5598,11 @@ " <td>74.700000</td>\n", " <td>15.950000</td>\n", " <td>...</td>\n", - " <td>76.150000</td>\n", " <td>26.600000</td>\n", " <td>42.070331</td>\n", " <td>42.800000</td>\n", " <td>19.500000</td>\n", + " <td>62.522500</td>\n", " <td>63.070000</td>\n", " <td>15.700000</td>\n", " <td>6.765000</td>\n", @@ -5476,11 +5622,11 @@ " <td>84.875000</td>\n", " <td>25.750000</td>\n", " <td>...</td>\n", - " <td>82.050000</td>\n", " <td>31.825000</td>\n", " <td>43.606013</td>\n", " <td>46.525000</td>\n", " <td>40.500000</td>\n", + " <td>79.290000</td>\n", " <td>85.062500</td>\n", " <td>50.200000</td>\n", " <td>13.337500</td>\n", @@ -5500,11 +5646,11 @@ " <td>93.200000</td>\n", " <td>32.700000</td>\n", " <td>...</td>\n", - " <td>94.000000</td>\n", " <td>44.600000</td>\n", " <td>48.491879</td>\n", " <td>65.800000</td>\n", " <td>79.000000</td>\n", + " <td>89.358000</td>\n", " <td>97.555386</td>\n", " <td>96.379726</td>\n", " <td>37.430000</td>\n", @@ -5513,7 +5659,7 @@ " </tr>\n", " </tbody>\n", "</table>\n", - "<p>8 rows × 45 columns</p>\n", + "<p>8 rows × 46 columns</p>\n", "</div>" ], "text/plain": [ @@ -5547,25 +5693,25 @@ "75% 70.025000 56.575000 84.875000 \n", "max 88.500000 65.200000 93.200000 \n", "\n", - " Number.of.co.wives.1 ... Men.who.work Female.headed.household \\\n", - "count 78.000000 ... 80.000000 80.000000 \n", - "mean 17.091026 ... 73.686250 26.983750 \n", - "std 9.191684 ... 12.047929 7.821707 \n", - "min 0.100000 ... 32.100000 9.300000 \n", - "25% 9.475000 ... 64.850000 22.575000 \n", - "50% 15.950000 ... 76.150000 26.600000 \n", - "75% 25.750000 ... 82.050000 31.825000 \n", - "max 32.700000 ... 94.000000 44.600000 \n", + " Number.of.co.wives.1 ... Female.headed.household Age \\\n", + "count 78.000000 ... 80.000000 80.000000 \n", + "mean 17.091026 ... 26.983750 41.491601 \n", + "std 9.191684 ... 7.821707 2.920565 \n", + "min 0.100000 ... 9.300000 33.977901 \n", + "25% 9.475000 ... 22.575000 39.162131 \n", + "50% 15.950000 ... 26.600000 42.070331 \n", + "75% 25.750000 ... 31.825000 43.606013 \n", + "max 32.700000 ... 44.600000 48.491879 \n", "\n", - " Age Wealth.index.Gini ART Christian Muslim \\\n", - "count 80.000000 80.000000 80.000000 80.000000 80.000000 \n", - "mean 41.491601 43.232500 23.550000 57.407097 30.214108 \n", - "std 2.920565 7.276906 22.027543 31.193733 32.491338 \n", - "min 33.977901 29.800000 0.000000 2.407287 0.050000 \n", - "25% 39.162131 39.125000 2.750000 38.235000 3.873658 \n", - "50% 42.070331 42.800000 19.500000 63.070000 15.700000 \n", - "75% 43.606013 46.525000 40.500000 85.062500 50.200000 \n", - "max 48.491879 65.800000 79.000000 97.555386 96.379726 \n", + " Wealth.index.Gini ART rural Christian Muslim \\\n", + "count 80.000000 80.000000 80.000000 80.000000 80.000000 \n", + "mean 43.232500 23.550000 64.949713 57.407097 30.214108 \n", + "std 7.276906 22.027543 15.865107 31.193733 32.491338 \n", + "min 29.800000 0.000000 13.366000 2.407287 0.050000 \n", + "25% 39.125000 2.750000 54.115750 38.235000 3.873658 \n", + "50% 42.800000 19.500000 62.522500 63.070000 15.700000 \n", + "75% 46.525000 40.500000 79.290000 85.062500 50.200000 \n", + "max 65.800000 79.000000 89.358000 97.555386 96.379726 \n", "\n", " Folk.Religion Unaffiliated.Religion Other.Religion \n", "count 80.000000 80.000000 80.000000 \n", @@ -5577,10 +5723,10 @@ "75% 13.337500 1.432500 1.410000 \n", "max 37.430000 7.875895 7.690000 \n", "\n", - "[8 rows x 45 columns]" + "[8 rows x 46 columns]" ] }, - "execution_count": 52, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -6275,7 +6421,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -6291,7 +6437,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ diff --git a/notebooks/data/3_imputation/stigma/stigma.ipynb b/notebooks/data/3_imputation/stigma/stigma.ipynb index 2041fa3..27d7bbc 100644 --- a/notebooks/data/3_imputation/stigma/stigma.ipynb +++ b/notebooks/data/3_imputation/stigma/stigma.ipynb @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 218, "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 222, "metadata": {}, "outputs": [], "source": [ @@ -98,18 +98,18 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 223, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Buy.from.shopkeeper.with.AIDS.W 13\n", - "Buy.from.shopkeeper.with.AIDS.M 13\n", + "Buy.from.shopkeeper.with.AIDS.W 10\n", + "Buy.from.shopkeeper.with.AIDS.M 10\n", "dtype: int64" ] }, - "execution_count": 168, + "execution_count": 223, "metadata": {}, "output_type": "execute_result" } @@ -119,252 +119,121 @@ "final_stigma.isna().sum()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## II. From stigma related dataset from STATCompiler" + ] + }, + { + "cell_type": "code", + "execution_count": 295, + "metadata": {}, + "outputs": [], + "source": [ + "# Read stigma data from STATcompiler\n", + "\n", + "# This dataset contains DHS surveys and a few (9) AIS surveys as well which help the imputation here\n", + "\n", + "stigma=pd.read_csv('../../../../data/new/other_indicators/stigma/STATcompilerExport20201128_165311.csv')\n", + "stigma=stigma[stigma.Survey.str[:4].astype(int)>1999]\n", + "stigma=stigma.set_index(['Country', 'Survey'])" + ] + }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 298, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>Country</th>\n", - " <th>Survey</th>\n", - " <th>Use.of.contraception</th>\n", - " <th>Ever.paid.for.sex</th>\n", - " <th>Wife.beating.justified.W</th>\n", - " <th>Wife.beating.justified.M</th>\n", - " <th>Unprotected.paid.sex</th>\n", - " <th>General.fertility.rate</th>\n", - " <th>Married.or.in.union.W</th>\n", - " <th>Married.or.in.union.M</th>\n", - " <th>...</th>\n", - " <th>cow</th>\n", - " <th>Age</th>\n", - " <th>Wealth.index.Gini</th>\n", - " <th>ART</th>\n", - " <th>rural</th>\n", - " <th>Christian</th>\n", - " <th>Muslim</th>\n", - " <th>Folk.Religion</th>\n", - " <th>Unaffiliated.Religion</th>\n", - " <th>Other.Religion</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>56</th>\n", - " <td>Rwanda</td>\n", - " <td>2014</td>\n", - " <td>30.9</td>\n", - " <td>4.3</td>\n", - " <td>41.4</td>\n", - " <td>17.1</td>\n", - " <td>0.4176</td>\n", - " <td>14.2</td>\n", - " <td>51.7</td>\n", - " <td>50.1</td>\n", - " <td>...</td>\n", - " <td>RWA</td>\n", - " <td>39.782609</td>\n", - " <td>45.1</td>\n", - " <td>65</td>\n", - " <td>83.033</td>\n", - " <td>89.45</td>\n", - " <td>4.60</td>\n", - " <td>4.08</td>\n", - " <td>0.35</td>\n", - " <td>1.51</td>\n", - " </tr>\n", - " <tr>\n", - " <th>57</th>\n", - " <td>Rwanda</td>\n", - " <td>2010</td>\n", - " <td>28.6</td>\n", - " <td>4.3</td>\n", - " <td>56.2</td>\n", - " <td>24.7</td>\n", - " <td>1.0790</td>\n", - " <td>15.1</td>\n", - " <td>50.5</td>\n", - " <td>47.5</td>\n", - " <td>...</td>\n", - " <td>RWA</td>\n", - " <td>42.951542</td>\n", - " <td>47.2</td>\n", - " <td>42</td>\n", - " <td>83.066</td>\n", - " <td>89.45</td>\n", - " <td>4.60</td>\n", - " <td>4.08</td>\n", - " <td>0.35</td>\n", - " <td>1.51</td>\n", - " </tr>\n", - " <tr>\n", - " <th>58</th>\n", - " <td>Rwanda</td>\n", - " <td>2007</td>\n", - " <td>23.9</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>17.9</td>\n", - " <td>53.2</td>\n", - " <td>49.5</td>\n", - " <td>...</td>\n", - " <td>RWA</td>\n", - " <td>42.334096</td>\n", - " <td>52.0</td>\n", - " <td>22</td>\n", - " <td>83.079</td>\n", - " <td>89.69</td>\n", - " <td>5.00</td>\n", - " <td>4.11</td>\n", - " <td>0.25</td>\n", - " <td>0.95</td>\n", - " </tr>\n", - " <tr>\n", - " <th>59</th>\n", - " <td>Rwanda</td>\n", - " <td>2005</td>\n", - " <td>9.6</td>\n", - " <td>0.8</td>\n", - " <td>48.0</td>\n", - " <td>29.5</td>\n", - " <td>0.2000</td>\n", - " <td>19.0</td>\n", - " <td>48.7</td>\n", - " <td>48.2</td>\n", - " <td>...</td>\n", - " <td>RWA</td>\n", - " <td>45.637584</td>\n", - " <td>52.0</td>\n", - " <td>9</td>\n", - " <td>83.088</td>\n", - " <td>89.69</td>\n", - " <td>5.00</td>\n", - " <td>4.11</td>\n", - " <td>0.25</td>\n", - " <td>0.95</td>\n", - " </tr>\n", - " <tr>\n", - " <th>60</th>\n", - " <td>Rwanda</td>\n", - " <td>2000</td>\n", - " <td>7.4</td>\n", - " <td>2.6</td>\n", - " <td>63.3</td>\n", - " <td>48.0</td>\n", - " <td>0.2072</td>\n", - " <td>18.0</td>\n", - " <td>48.5</td>\n", - " <td>49.3</td>\n", - " <td>...</td>\n", - " <td>RWA</td>\n", - " <td>45.667447</td>\n", - " <td>48.5</td>\n", - " <td>0</td>\n", - " <td>85.074</td>\n", - " <td>87.68</td>\n", - " <td>4.25</td>\n", - " <td>4.20</td>\n", - " <td>0.20</td>\n", - " <td>3.67</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>5 rows × 51 columns</p>\n", - "</div>" - ], "text/plain": [ - " Country Survey Use.of.contraception Ever.paid.for.sex \\\n", - "56 Rwanda 2014 30.9 4.3 \n", - "57 Rwanda 2010 28.6 4.3 \n", - "58 Rwanda 2007 23.9 NaN \n", - "59 Rwanda 2005 9.6 0.8 \n", - "60 Rwanda 2000 7.4 2.6 \n", - "\n", - " Wife.beating.justified.W Wife.beating.justified.M Unprotected.paid.sex \\\n", - "56 41.4 17.1 0.4176 \n", - "57 56.2 24.7 1.0790 \n", - "58 NaN NaN NaN \n", - "59 48.0 29.5 0.2000 \n", - "60 63.3 48.0 0.2072 \n", - "\n", - " General.fertility.rate Married.or.in.union.W Married.or.in.union.M ... \\\n", - "56 14.2 51.7 50.1 ... \n", - "57 15.1 50.5 47.5 ... \n", - "58 17.9 53.2 49.5 ... \n", - "59 19.0 48.7 48.2 ... \n", - "60 18.0 48.5 49.3 ... \n", - "\n", - " cow Age Wealth.index.Gini ART rural Christian Muslim \\\n", - "56 RWA 39.782609 45.1 65 83.033 89.45 4.60 \n", - "57 RWA 42.951542 47.2 42 83.066 89.45 4.60 \n", - "58 RWA 42.334096 52.0 22 83.079 89.69 5.00 \n", - "59 RWA 45.637584 52.0 9 83.088 89.69 5.00 \n", - "60 RWA 45.667447 48.5 0 85.074 87.68 4.25 \n", - "\n", - " Folk.Religion Unaffiliated.Religion Other.Religion \n", - "56 4.08 0.35 1.51 \n", - "57 4.08 0.35 1.51 \n", - "58 4.11 0.25 0.95 \n", - "59 4.11 0.25 0.95 \n", - "60 4.20 0.20 3.67 \n", - "\n", - "[5 rows x 51 columns]" + "Accepting attitudes - Willing to care for family member sick with AIDS (1) [Women]Total 15-49 13\n", + "Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49 12\n", + "Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Women]Total 15-49 20\n", + "Accepting attitudes - Not secretive about family member's HIV status (4) [Women]Total 15-49 14\n", + "Accepting attitudes towards those living with HIV - Composite of 4 components [Women]Total 15-49 27\n", + "Accepting attitudes - Willing to care for family member sick with AIDS (1) [Men]Total 15-49 14\n", + "Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49 12\n", + "Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Men]Total 15-49 20\n", + "Accepting attitudes - Not secretive about family member's HIV status (4) [Men]Total 15-49 14\n", + "Accepting attitudes towards those living with HIV - Composite of 4 components [Men]Total 15-49 27\n", + "Adult support of education on condom use for prevention of HIV/AIDS among young womenTotal 18-49 20\n", + "Adult support of education on condom use for prevention of HIV/AIDS among young menTotal 18-49 26\n", + "dtype: int64" ] }, - "execution_count": 171, + "execution_count": 298, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "final.reset_index()[final.reset_index().Country == 'Rwanda']" + "# Sum all missing values for these indicators across all countries/surveys\n", + "# NOTE: count for shopkeeper differs from above as there are extra unusued surveys here\n", + "\n", + "# Gabon 2000 is present in \"final\" but is missing here\n", + "# Uganda 2011 has two surveys here but only one is present in \"final\"\n", + "stigma.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 198, + "metadata": {}, + "outputs": [], + "source": [ + "# Get multiindex entry\n", + "#stigma.loc[['Uganda'],['2011'], :]" + ] + }, + { + "cell_type": "code", + "execution_count": 199, + "metadata": {}, + "outputs": [], + "source": [ + "# Get multiindex entry\n", + "#final.loc[['Gabon'],['2000'], :]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Three imputation methods" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## II. From stigma related dataset from STATCompiler" + "## I. Using original dataset with all variables\n", + "\n", + "i.e. just reusing missing_values.ipynb" ] }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 299, "metadata": {}, "outputs": [], "source": [ - "# Read stigma data from STATcompiler\n", - "stigma=pd.read_csv('../../../../data/new/other_indicators/stigma/STATcompilerExport20201128_165311.csv')\n", - "stigma.Survey=stigma.Survey.str[:4]\n", - "stigma=stigma[stigma.Survey.astype(int)>1999].reset_index(drop=True)\n", - "stigma=stigma.set_index(['Country', 'Survey'])" + "# Import the excel file previously created\n", + "# NOTE: imputation using all = iua\n", + "\n", + "iua = pd.read_excel('../../../../data/new/imputation_output/imputed.xlsx')\n", + "iua.Survey=iua.Survey.astype(str)\n", + "iua=iua.set_index(['Country', 'Survey'])\n", + "\n", + "# and keep only indicators relating to stigma\n", + "iua = iua[['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M']]" ] }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 300, "metadata": {}, "outputs": [ { @@ -389,396 +258,457 @@ " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", - " <th>Accepting attitudes - Willing to care for family member sick with AIDS (1) [Women]Total 15-49</th>\n", - " <th>Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49</th>\n", - " <th>Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Women]Total 15-49</th>\n", - " <th>Accepting attitudes - Not secretive about family member's HIV status (4) [Women]Total 15-49</th>\n", - " <th>Accepting attitudes towards those living with HIV - Composite of 4 components [Women]Total 15-49</th>\n", - " <th>Accepting attitudes - Willing to care for family member sick with AIDS (1) [Men]Total 15-49</th>\n", - " <th>Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49</th>\n", - " <th>Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Men]Total 15-49</th>\n", - " <th>Accepting attitudes - Not secretive about family member's HIV status (4) [Men]Total 15-49</th>\n", - " <th>Accepting attitudes towards those living with HIV - Composite of 4 components [Men]Total 15-49</th>\n", - " <th>Adult support of education on condom use for prevention of HIV/AIDS among young womenTotal 18-49</th>\n", - " <th>Adult support of education on condom use for prevention of HIV/AIDS among young menTotal 18-49</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.W</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.M</th>\n", " </tr>\n", " <tr>\n", " <th>Country</th>\n", " <th>Survey</th>\n", " <th></th>\n", " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Angola</th>\n", " <th>2015</th>\n", - " <td>NaN</td>\n", - " <td>63.8</td>\n", - " <td>74.6</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>65.4</td>\n", - " <td>76.5</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", + " <td>63.800000</td>\n", + " <td>65.400000</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"4\" valign=\"top\">Benin</th>\n", " <th>2017</th>\n", - " <td>NaN</td>\n", - " <td>26.5</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>31.6</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", + " <td>26.500000</td>\n", + " <td>31.600000</td>\n", " </tr>\n", " <tr>\n", " <th>2011</th>\n", - " <td>57.8</td>\n", - " <td>40.4</td>\n", - " <td>54.3</td>\n", - " <td>41.6</td>\n", - " <td>7.9</td>\n", - " <td>69.5</td>\n", - " <td>44.5</td>\n", - " <td>58.9</td>\n", - " <td>52.2</td>\n", - " <td>15.8</td>\n", - " <td>65.1</td>\n", - " <td>67.3</td>\n", + " <td>40.400000</td>\n", + " <td>44.500000</td>\n", " </tr>\n", " <tr>\n", " <th>2006</th>\n", - " <td>56.4</td>\n", - " <td>27.5</td>\n", - " <td>34.7</td>\n", - " <td>47.8</td>\n", - " <td>10.8</td>\n", - " <td>79.1</td>\n", - " <td>36.7</td>\n", - " <td>51.2</td>\n", - " <td>55.5</td>\n", - " <td>14.1</td>\n", - " <td>61.9</td>\n", - " <td>73.9</td>\n", + " <td>27.500000</td>\n", + " <td>36.700000</td>\n", " </tr>\n", " <tr>\n", " <th>2001</th>\n", - " <td>40.1</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>80.7</td>\n", - " <td>NaN</td>\n", - " <td>47.5</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>75.9</td>\n", - " <td>NaN</td>\n", - " <td>65.9</td>\n", - " <td>67.7</td>\n", + " <td>27.221653</td>\n", + " <td>37.484307</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">Zambia</th>\n", " <th>2007</th>\n", - " <td>95.2</td>\n", - " <td>66.6</td>\n", - " <td>78.2</td>\n", - " <td>47.2</td>\n", - " <td>26.0</td>\n", - " <td>95.2</td>\n", - " <td>72.5</td>\n", - " <td>79.4</td>\n", - " <td>55.2</td>\n", - " <td>33.0</td>\n", - " <td>55.8</td>\n", - " <td>67.7</td>\n", + " <td>66.600000</td>\n", + " <td>72.500000</td>\n", " </tr>\n", " <tr>\n", " <th>2001</th>\n", - " <td>90.2</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>58.2</td>\n", - " <td>NaN</td>\n", - " <td>89.8</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>68.0</td>\n", - " <td>NaN</td>\n", - " <td>56.1</td>\n", - " <td>68.5</td>\n", + " <td>65.095518</td>\n", + " <td>79.651456</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">Zimbabwe</th>\n", " <th>2015</th>\n", - " <td>NaN</td>\n", - " <td>80.1</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>83.1</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", + " <td>80.100000</td>\n", + " <td>83.100000</td>\n", " </tr>\n", " <tr>\n", " <th>2010</th>\n", - " <td>94.7</td>\n", - " <td>77.9</td>\n", - " <td>87.9</td>\n", - " <td>54.8</td>\n", - " <td>39.8</td>\n", - " <td>95.1</td>\n", - " <td>80.3</td>\n", - " <td>83.6</td>\n", - " <td>55.4</td>\n", - " <td>39.0</td>\n", - " <td>37.5</td>\n", - " <td>48.3</td>\n", + " <td>77.900000</td>\n", + " <td>80.300000</td>\n", " </tr>\n", " <tr>\n", " <th>2005</th>\n", - " <td>91.0</td>\n", - " <td>56.8</td>\n", - " <td>71.4</td>\n", - " <td>49.2</td>\n", - " <td>17.1</td>\n", - " <td>70.9</td>\n", - " <td>67.3</td>\n", - " <td>74.6</td>\n", - " <td>45.7</td>\n", - " <td>10.7</td>\n", - " <td>41.4</td>\n", - " <td>48.0</td>\n", + " <td>56.800000</td>\n", + " <td>67.300000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", - "<p>100 rows × 12 columns</p>\n", + "<p>80 rows × 2 columns</p>\n", "</div>" ], "text/plain": [ - " Accepting attitudes - Willing to care for family member sick with AIDS (1) [Women]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 57.8 \n", - " 2006 56.4 \n", - " 2001 40.1 \n", - "... ... \n", - "Zambia 2007 95.2 \n", - " 2001 90.2 \n", - "Zimbabwe 2015 NaN \n", - " 2010 94.7 \n", - " 2005 91.0 \n", - "\n", - " Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 63.8 \n", - "Benin 2017 26.5 \n", - " 2011 40.4 \n", - " 2006 27.5 \n", - " 2001 NaN \n", - "... ... \n", - "Zambia 2007 66.6 \n", - " 2001 NaN \n", - "Zimbabwe 2015 80.1 \n", - " 2010 77.9 \n", - " 2005 56.8 \n", - "\n", - " Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Women]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 74.6 \n", - "Benin 2017 NaN \n", - " 2011 54.3 \n", - " 2006 34.7 \n", - " 2001 NaN \n", - "... ... \n", - "Zambia 2007 78.2 \n", - " 2001 NaN \n", - "Zimbabwe 2015 NaN \n", - " 2010 87.9 \n", - " 2005 71.4 \n", - "\n", - " Accepting attitudes - Not secretive about family member's HIV status (4) [Women]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 41.6 \n", - " 2006 47.8 \n", - " 2001 80.7 \n", - "... ... \n", - "Zambia 2007 47.2 \n", - " 2001 58.2 \n", - "Zimbabwe 2015 NaN \n", - " 2010 54.8 \n", - " 2005 49.2 \n", - "\n", - " Accepting attitudes towards those living with HIV - Composite of 4 components [Women]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 7.9 \n", - " 2006 10.8 \n", - " 2001 NaN \n", - "... ... \n", - "Zambia 2007 26.0 \n", - " 2001 NaN \n", - "Zimbabwe 2015 NaN \n", - " 2010 39.8 \n", - " 2005 17.1 \n", + " Buy.from.shopkeeper.with.AIDS.W \\\n", + "Country Survey \n", + "Angola 2015 63.800000 \n", + "Benin 2017 26.500000 \n", + " 2011 40.400000 \n", + " 2006 27.500000 \n", + " 2001 27.221653 \n", + "... ... \n", + "Zambia 2007 66.600000 \n", + " 2001 65.095518 \n", + "Zimbabwe 2015 80.100000 \n", + " 2010 77.900000 \n", + " 2005 56.800000 \n", "\n", - " Accepting attitudes - Willing to care for family member sick with AIDS (1) [Men]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 69.5 \n", - " 2006 79.1 \n", - " 2001 47.5 \n", - "... ... \n", - "Zambia 2007 95.2 \n", - " 2001 89.8 \n", - "Zimbabwe 2015 NaN \n", - " 2010 95.1 \n", - " 2005 70.9 \n", + " Buy.from.shopkeeper.with.AIDS.M \n", + "Country Survey \n", + "Angola 2015 65.400000 \n", + "Benin 2017 31.600000 \n", + " 2011 44.500000 \n", + " 2006 36.700000 \n", + " 2001 37.484307 \n", + "... ... \n", + "Zambia 2007 72.500000 \n", + " 2001 79.651456 \n", + "Zimbabwe 2015 83.100000 \n", + " 2010 80.300000 \n", + " 2005 67.300000 \n", "\n", - " Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 65.4 \n", - "Benin 2017 31.6 \n", - " 2011 44.5 \n", - " 2006 36.7 \n", - " 2001 NaN \n", - "... ... \n", - "Zambia 2007 72.5 \n", - " 2001 NaN \n", - "Zimbabwe 2015 83.1 \n", - " 2010 80.3 \n", - " 2005 67.3 \n", - "\n", - " Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Men]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 76.5 \n", - "Benin 2017 NaN \n", - " 2011 58.9 \n", - " 2006 51.2 \n", - " 2001 NaN \n", - "... ... \n", - "Zambia 2007 79.4 \n", - " 2001 NaN \n", - "Zimbabwe 2015 NaN \n", - " 2010 83.6 \n", - " 2005 74.6 \n", - "\n", - " Accepting attitudes - Not secretive about family member's HIV status (4) [Men]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 52.2 \n", - " 2006 55.5 \n", - " 2001 75.9 \n", - "... ... \n", - "Zambia 2007 55.2 \n", - " 2001 68.0 \n", - "Zimbabwe 2015 NaN \n", - " 2010 55.4 \n", - " 2005 45.7 \n", - "\n", - " Accepting attitudes towards those living with HIV - Composite of 4 components [Men]Total 15-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 15.8 \n", - " 2006 14.1 \n", - " 2001 NaN \n", - "... ... \n", - "Zambia 2007 33.0 \n", - " 2001 NaN \n", - "Zimbabwe 2015 NaN \n", - " 2010 39.0 \n", - " 2005 10.7 \n", - "\n", - " Adult support of education on condom use for prevention of HIV/AIDS among young womenTotal 18-49 \\\n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 65.1 \n", - " 2006 61.9 \n", - " 2001 65.9 \n", - "... ... \n", - "Zambia 2007 55.8 \n", - " 2001 56.1 \n", - "Zimbabwe 2015 NaN \n", - " 2010 37.5 \n", - " 2005 41.4 \n", - "\n", - " Adult support of education on condom use for prevention of HIV/AIDS among young menTotal 18-49 \n", - "Country Survey \n", - "Angola 2015 NaN \n", - "Benin 2017 NaN \n", - " 2011 67.3 \n", - " 2006 73.9 \n", - " 2001 67.7 \n", - "... ... \n", - "Zambia 2007 67.7 \n", - " 2001 68.5 \n", - "Zimbabwe 2015 NaN \n", - " 2010 48.3 \n", - " 2005 48.0 \n", - "\n", - "[100 rows x 12 columns]" + "[80 rows x 2 columns]" + ] + }, + "execution_count": 300, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "iua" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## II. Using only other variables relating to stigma\n", + "\n", + "Remember there are extra AIS surveys here" + ] + }, + { + "cell_type": "code", + "execution_count": 301, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize imputer\n", + "imp_iter=IterativeImputer(missing_values=np.nan, random_state=0, max_iter=100, verbose=2, tol=0.001)" + ] + }, + { + "cell_type": "code", + "execution_count": 302, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[IterativeImputer] Completing matrix with shape (100, 12)\n", + "[IterativeImputer] Ending imputation round 1/100, elapsed time 0.03\n", + "[IterativeImputer] Change: 72.05508901237684, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 2/100, elapsed time 0.05\n", + "[IterativeImputer] Change: 22.043191612448673, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 3/100, elapsed time 0.08\n", + "[IterativeImputer] Change: 15.84720082639172, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 4/100, elapsed time 0.10\n", + "[IterativeImputer] Change: 13.068010596212027, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 5/100, elapsed time 0.12\n", + "[IterativeImputer] Change: 10.756978879694522, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 6/100, elapsed time 0.14\n", + "[IterativeImputer] Change: 9.280244854430109, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 7/100, elapsed time 0.17\n", + "[IterativeImputer] Change: 8.894024812182757, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 8/100, elapsed time 0.19\n", + "[IterativeImputer] Change: 8.378699766096808, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 9/100, elapsed time 0.21\n", + "[IterativeImputer] Change: 7.810928326836091, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 10/100, elapsed time 0.24\n", + "[IterativeImputer] Change: 7.235365498881194, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 11/100, elapsed time 0.26\n", + "[IterativeImputer] Change: 6.675686776779454, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 12/100, elapsed time 0.28\n", + "[IterativeImputer] Change: 6.143637326147132, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 13/100, elapsed time 0.30\n", + "[IterativeImputer] Change: 5.644352727374351, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 14/100, elapsed time 0.32\n", + "[IterativeImputer] Change: 5.17944326439628, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 15/100, elapsed time 0.34\n", + "[IterativeImputer] Change: 4.748663435537967, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 16/100, elapsed time 0.36\n", + "[IterativeImputer] Change: 4.350807298459316, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 17/100, elapsed time 0.38\n", + "[IterativeImputer] Change: 3.984188016721191, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 18/100, elapsed time 0.40\n", + "[IterativeImputer] Change: 3.646899891367429, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 19/100, elapsed time 0.42\n", + "[IterativeImputer] Change: 3.336965279371661, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 20/100, elapsed time 0.44\n", + "[IterativeImputer] Change: 3.0524189694377064, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 21/100, elapsed time 0.46\n", + "[IterativeImputer] Change: 2.79135707952625, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 22/100, elapsed time 0.48\n", + "[IterativeImputer] Change: 2.564637529995922, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 23/100, elapsed time 0.50\n", + "[IterativeImputer] Change: 2.3661911691912305, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 24/100, elapsed time 0.52\n", + "[IterativeImputer] Change: 2.1827389195696867, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 25/100, elapsed time 0.54\n", + "[IterativeImputer] Change: 2.0131781841273053, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 26/100, elapsed time 0.56\n", + "[IterativeImputer] Change: 1.856483556658599, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 27/100, elapsed time 0.58\n", + "[IterativeImputer] Change: 1.7117015939698472, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 28/100, elapsed time 0.60\n", + "[IterativeImputer] Change: 1.5779461799305476, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 29/100, elapsed time 0.62\n", + "[IterativeImputer] Change: 1.4543942672017636, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 30/100, elapsed time 0.64\n", + "[IterativeImputer] Change: 1.3402818785044346, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 31/100, elapsed time 0.66\n", + "[IterativeImputer] Change: 1.234900308899281, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 32/100, elapsed time 0.68\n", + "[IterativeImputer] Change: 1.137592504239933, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 33/100, elapsed time 0.70\n", + "[IterativeImputer] Change: 1.0477496082124986, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 34/100, elapsed time 0.72\n", + "[IterativeImputer] Change: 0.9648076778663999, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 35/100, elapsed time 0.74\n", + "[IterativeImputer] Change: 0.8882445696291086, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 36/100, elapsed time 0.76\n", + "[IterativeImputer] Change: 0.8175769972207725, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 37/100, elapsed time 0.78\n", + "[IterativeImputer] Change: 0.7523577612454204, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 38/100, elapsed time 0.80\n", + "[IterativeImputer] Change: 0.6921731482639455, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 39/100, elapsed time 0.82\n", + "[IterativeImputer] Change: 0.6366404954318909, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 40/100, elapsed time 0.83\n", + "[IterativeImputer] Change: 0.58540591529602, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 41/100, elapsed time 0.86\n", + "[IterativeImputer] Change: 0.5381421742543289, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 42/100, elapsed time 0.88\n", + "[IterativeImputer] Change: 0.5018145958781943, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 43/100, elapsed time 0.90\n", + "[IterativeImputer] Change: 0.48186515455107326, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 44/100, elapsed time 0.92\n", + "[IterativeImputer] Change: 0.4627570433411279, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 45/100, elapsed time 0.94\n", + "[IterativeImputer] Change: 0.4444523001584457, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 46/100, elapsed time 0.96\n", + "[IterativeImputer] Change: 0.42691463520208117, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 47/100, elapsed time 0.97\n", + "[IterativeImputer] Change: 0.4101094021435614, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 48/100, elapsed time 0.99\n", + "[IterativeImputer] Change: 0.39400355694183986, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 49/100, elapsed time 1.01\n", + "[IterativeImputer] Change: 0.3785656080573787, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 50/100, elapsed time 1.03\n", + "[IterativeImputer] Change: 0.36376556087395784, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 51/100, elapsed time 1.05\n", + "[IterativeImputer] Change: 0.34957485855298387, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 52/100, elapsed time 1.07\n", + "[IterativeImputer] Change: 0.33596632097637524, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 53/100, elapsed time 1.09\n", + "[IterativeImputer] Change: 0.3229140830352648, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 54/100, elapsed time 1.11\n", + "[IterativeImputer] Change: 0.3103935332162351, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 55/100, elapsed time 1.13\n", + "[IterativeImputer] Change: 0.29838125318573105, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 56/100, elapsed time 1.15\n", + "[IterativeImputer] Change: 0.2868549588749687, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 57/100, elapsed time 1.17\n", + "[IterativeImputer] Change: 0.27579344342929346, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 58/100, elapsed time 1.19\n", + "[IterativeImputer] Change: 0.2651765222563611, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 59/100, elapsed time 1.21\n", + "[IterativeImputer] Change: 0.25498498033086037, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 60/100, elapsed time 1.23\n", + "[IterativeImputer] Change: 0.24520052185087593, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 61/100, elapsed time 1.25\n", + "[IterativeImputer] Change: 0.2358057222492036, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 62/100, elapsed time 1.27\n", + "[IterativeImputer] Change: 0.22678398259296983, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 63/100, elapsed time 1.29\n", + "[IterativeImputer] Change: 0.218119486304154, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 64/100, elapsed time 1.31\n", + "[IterativeImputer] Change: 0.20979715814961963, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 65/100, elapsed time 1.33\n", + "[IterativeImputer] Change: 0.20180262544949557, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 66/100, elapsed time 1.35\n", + "[IterativeImputer] Change: 0.19412218138294435, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 67/100, elapsed time 1.37\n", + "[IterativeImputer] Change: 0.18674275033947652, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 68/100, elapsed time 1.39\n", + "[IterativeImputer] Change: 0.17965185519743443, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 69/100, elapsed time 1.42\n", + "[IterativeImputer] Change: 0.17283758644701663, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 70/100, elapsed time 1.44\n", + "[IterativeImputer] Change: 0.1662885730479644, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 71/100, elapsed time 1.46\n", + "[IterativeImputer] Change: 0.1599939549539613, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 72/100, elapsed time 1.48\n", + "[IterativeImputer] Change: 0.15394335718449526, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 73/100, elapsed time 1.50\n", + "[IterativeImputer] Change: 0.14812686537067066, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 74/100, elapsed time 1.52\n", + "[IterativeImputer] Change: 0.14253500268936392, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 75/100, elapsed time 1.54\n", + "[IterativeImputer] Change: 0.13715870810059982, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 76/100, elapsed time 1.56\n", + "[IterativeImputer] Change: 0.13199808519495093, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 77/100, elapsed time 1.58\n", + "[IterativeImputer] Change: 0.1270466644203836, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 78/100, elapsed time 1.60\n", + "[IterativeImputer] Change: 0.12228359026293134, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 79/100, elapsed time 1.62\n", + "[IterativeImputer] Change: 0.11770148929054614, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 80/100, elapsed time 1.64\n", + "[IterativeImputer] Change: 0.11329329329829818, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 81/100, elapsed time 1.66\n", + "[IterativeImputer] Change: 0.10905222536825221, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 82/100, elapsed time 1.68\n", + "[IterativeImputer] Change: 0.10497178668936158, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 83/100, elapsed time 1.70\n", + "[IterativeImputer] Change: 0.10104574404246591, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Ending imputation round 84/100, elapsed time 1.72\n", + "[IterativeImputer] Change: 0.09726811794367762, scaled tolerance: 0.0978 \n", + "[IterativeImputer] Early stopping criterion reached.\n" + ] + }, + { + "data": { + "text/plain": [ + "IterativeImputer(max_iter=100, random_state=0, verbose=2)" ] }, - "execution_count": 157, + "execution_count": 302, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "stigma" + "# Fit the iterative imputer\n", + "imp_iter.fit(stigma)" + ] + }, + { + "cell_type": "code", + "execution_count": 325, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[IterativeImputer] Completing matrix with shape (100, 12)\n", + "[IterativeImputer] Ending imputation round 1/84, elapsed time 0.01\n", + "[IterativeImputer] Ending imputation round 2/84, elapsed time 0.01\n", + "[IterativeImputer] Ending imputation round 3/84, elapsed time 0.01\n", + "[IterativeImputer] Ending imputation round 4/84, elapsed time 0.02\n", + "[IterativeImputer] Ending imputation round 5/84, elapsed time 0.02\n", + "[IterativeImputer] Ending imputation round 6/84, elapsed time 0.03\n", + "[IterativeImputer] Ending imputation round 7/84, elapsed time 0.03\n", + "[IterativeImputer] Ending imputation round 8/84, elapsed time 0.03\n", + "[IterativeImputer] Ending imputation round 9/84, elapsed time 0.04\n", + "[IterativeImputer] Ending imputation round 10/84, elapsed time 0.04\n", + "[IterativeImputer] Ending imputation round 11/84, elapsed time 0.05\n", + "[IterativeImputer] Ending imputation round 12/84, elapsed time 0.05\n", + "[IterativeImputer] Ending imputation round 13/84, elapsed time 0.06\n", + "[IterativeImputer] Ending imputation round 14/84, elapsed time 0.06\n", + "[IterativeImputer] Ending imputation round 15/84, elapsed time 0.06\n", + "[IterativeImputer] Ending imputation round 16/84, elapsed time 0.07\n", + "[IterativeImputer] Ending imputation round 17/84, elapsed time 0.07\n", + "[IterativeImputer] Ending imputation round 18/84, elapsed time 0.07\n", + "[IterativeImputer] Ending imputation round 19/84, elapsed time 0.08\n", + "[IterativeImputer] Ending imputation round 20/84, elapsed time 0.08\n", + "[IterativeImputer] Ending imputation round 21/84, elapsed time 0.08\n", + "[IterativeImputer] Ending imputation round 22/84, elapsed time 0.09\n", + "[IterativeImputer] Ending imputation round 23/84, elapsed time 0.09\n", + "[IterativeImputer] Ending imputation round 24/84, elapsed time 0.09\n", + "[IterativeImputer] Ending imputation round 25/84, elapsed time 0.10\n", + "[IterativeImputer] Ending imputation round 26/84, elapsed time 0.10\n", + "[IterativeImputer] Ending imputation round 27/84, elapsed time 0.10\n", + "[IterativeImputer] Ending imputation round 28/84, elapsed time 0.11\n", + "[IterativeImputer] Ending imputation round 29/84, elapsed time 0.11\n", + "[IterativeImputer] Ending imputation round 30/84, elapsed time 0.11\n", + "[IterativeImputer] Ending imputation round 31/84, elapsed time 0.12\n", + "[IterativeImputer] Ending imputation round 32/84, elapsed time 0.12\n", + "[IterativeImputer] Ending imputation round 33/84, elapsed time 0.12\n", + "[IterativeImputer] Ending imputation round 34/84, elapsed time 0.13\n", + "[IterativeImputer] Ending imputation round 35/84, elapsed time 0.13\n", + "[IterativeImputer] Ending imputation round 36/84, elapsed time 0.13\n", + "[IterativeImputer] Ending imputation round 37/84, elapsed time 0.14\n", + "[IterativeImputer] Ending imputation round 38/84, elapsed time 0.14\n", + "[IterativeImputer] Ending imputation round 39/84, elapsed time 0.14\n", + "[IterativeImputer] Ending imputation round 40/84, elapsed time 0.15\n", + "[IterativeImputer] Ending imputation round 41/84, elapsed time 0.15\n", + "[IterativeImputer] Ending imputation round 42/84, elapsed time 0.15\n", + "[IterativeImputer] Ending imputation round 43/84, elapsed time 0.16\n", + "[IterativeImputer] Ending imputation round 44/84, elapsed time 0.16\n", + "[IterativeImputer] Ending imputation round 45/84, elapsed time 0.16\n", + "[IterativeImputer] Ending imputation round 46/84, elapsed time 0.17\n", + "[IterativeImputer] Ending imputation round 47/84, elapsed time 0.17\n", + "[IterativeImputer] Ending imputation round 48/84, elapsed time 0.17\n", + "[IterativeImputer] Ending imputation round 49/84, elapsed time 0.18\n", + "[IterativeImputer] Ending imputation round 50/84, elapsed time 0.18\n", + "[IterativeImputer] Ending imputation round 51/84, elapsed time 0.18\n", + "[IterativeImputer] Ending imputation round 52/84, elapsed time 0.19\n", + "[IterativeImputer] Ending imputation round 53/84, elapsed time 0.19\n", + "[IterativeImputer] Ending imputation round 54/84, elapsed time 0.19\n", + "[IterativeImputer] Ending imputation round 55/84, elapsed time 0.20\n", + "[IterativeImputer] Ending imputation round 56/84, elapsed time 0.20\n", + "[IterativeImputer] Ending imputation round 57/84, elapsed time 0.20\n", + "[IterativeImputer] Ending imputation round 58/84, elapsed time 0.21\n", + "[IterativeImputer] Ending imputation round 59/84, elapsed time 0.21\n", + "[IterativeImputer] Ending imputation round 60/84, elapsed time 0.21\n", + "[IterativeImputer] Ending imputation round 61/84, elapsed time 0.22\n", + "[IterativeImputer] Ending imputation round 62/84, elapsed time 0.22\n", + "[IterativeImputer] Ending imputation round 63/84, elapsed time 0.22\n", + "[IterativeImputer] Ending imputation round 64/84, elapsed time 0.23\n", + "[IterativeImputer] Ending imputation round 65/84, elapsed time 0.23\n", + "[IterativeImputer] Ending imputation round 66/84, elapsed time 0.23\n", + "[IterativeImputer] Ending imputation round 67/84, elapsed time 0.24\n", + "[IterativeImputer] Ending imputation round 68/84, elapsed time 0.24\n", + "[IterativeImputer] Ending imputation round 69/84, elapsed time 0.24\n", + "[IterativeImputer] Ending imputation round 70/84, elapsed time 0.25\n", + "[IterativeImputer] Ending imputation round 71/84, elapsed time 0.25\n", + "[IterativeImputer] Ending imputation round 72/84, elapsed time 0.25\n", + "[IterativeImputer] Ending imputation round 73/84, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 74/84, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 75/84, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 76/84, elapsed time 0.27\n", + "[IterativeImputer] Ending imputation round 77/84, elapsed time 0.27\n", + "[IterativeImputer] Ending imputation round 78/84, elapsed time 0.27\n", + "[IterativeImputer] Ending imputation round 79/84, elapsed time 0.27\n", + "[IterativeImputer] Ending imputation round 80/84, elapsed time 0.28\n", + "[IterativeImputer] Ending imputation round 81/84, elapsed time 0.28\n", + "[IterativeImputer] Ending imputation round 82/84, elapsed time 0.28\n", + "[IterativeImputer] Ending imputation round 83/84, elapsed time 0.29\n", + "[IterativeImputer] Ending imputation round 84/84, elapsed time 0.29\n" + ] + } + ], + "source": [ + "# Transform resulting dataset\n", + "# NOTE: imputation using only stigma indicators = iuosi\n", + "iuosi = pd.DataFrame(imp_iter.transform(stigma), columns=stigma.columns, index=stigma.index)" + ] + }, + { + "cell_type": "code", + "execution_count": 326, + "metadata": {}, + "outputs": [], + "source": [ + "iuosi=iuosi.reset_index()[~iuosi.reset_index().Survey.str.contains('AIS')]\n", + "iuosi.Survey=iuosi.Survey.str[:4]\n", + "iuosi=iuosi.set_index(['Country', 'Survey'])\n", + "iuosi=pd.merge(final_stigma.reset_index(), iuosi.reset_index(), how='left').set_index(['Country', 'Survey'])" ] }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 327, "metadata": {}, "outputs": [ { @@ -817,29 +747,29 @@ " <tr>\n", " <th>Angola</th>\n", " <th>2015</th>\n", - " <td>63.8</td>\n", - " <td>65.4</td>\n", + " <td>63.800000</td>\n", + " <td>65.400000</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"4\" valign=\"top\">Benin</th>\n", " <th>2017</th>\n", - " <td>26.5</td>\n", - " <td>31.6</td>\n", + " <td>26.500000</td>\n", + " <td>31.600000</td>\n", " </tr>\n", " <tr>\n", " <th>2011</th>\n", - " <td>40.4</td>\n", - " <td>44.5</td>\n", + " <td>40.400000</td>\n", + " <td>44.500000</td>\n", " </tr>\n", " <tr>\n", " <th>2006</th>\n", - " <td>27.5</td>\n", - " <td>36.7</td>\n", + " <td>27.500000</td>\n", + " <td>36.700000</td>\n", " </tr>\n", " <tr>\n", " <th>2001</th>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", + " <td>10.011642</td>\n", + " <td>24.568959</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", @@ -850,169 +780,507 @@ " <tr>\n", " <th rowspan=\"2\" valign=\"top\">Zambia</th>\n", " <th>2007</th>\n", - " <td>66.6</td>\n", - " <td>72.5</td>\n", + " <td>66.600000</td>\n", + " <td>72.500000</td>\n", " </tr>\n", " <tr>\n", " <th>2001</th>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", + " <td>60.245481</td>\n", + " <td>69.663203</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">Zimbabwe</th>\n", " <th>2015</th>\n", - " <td>80.1</td>\n", - " <td>83.1</td>\n", + " <td>80.100000</td>\n", + " <td>83.100000</td>\n", " </tr>\n", " <tr>\n", " <th>2010</th>\n", - " <td>77.9</td>\n", - " <td>80.3</td>\n", + " <td>77.900000</td>\n", + " <td>80.300000</td>\n", " </tr>\n", " <tr>\n", " <th>2005</th>\n", - " <td>56.8</td>\n", - " <td>67.3</td>\n", + " <td>56.800000</td>\n", + " <td>67.300000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", - "<p>83 rows × 2 columns</p>\n", + "<p>80 rows × 2 columns</p>\n", "</div>" ], "text/plain": [ " Buy.from.shopkeeper.with.AIDS.W \\\n", "Country Survey \n", - "Angola 2015 63.8 \n", - "Benin 2017 26.5 \n", - " 2011 40.4 \n", - " 2006 27.5 \n", - " 2001 NaN \n", + "Angola 2015 63.800000 \n", + "Benin 2017 26.500000 \n", + " 2011 40.400000 \n", + " 2006 27.500000 \n", + " 2001 10.011642 \n", "... ... \n", - "Zambia 2007 66.6 \n", - " 2001 NaN \n", - "Zimbabwe 2015 80.1 \n", - " 2010 77.9 \n", - " 2005 56.8 \n", + "Zambia 2007 66.600000 \n", + " 2001 60.245481 \n", + "Zimbabwe 2015 80.100000 \n", + " 2010 77.900000 \n", + " 2005 56.800000 \n", "\n", " Buy.from.shopkeeper.with.AIDS.M \n", "Country Survey \n", - "Angola 2015 65.4 \n", - "Benin 2017 31.6 \n", - " 2011 44.5 \n", - " 2006 36.7 \n", - " 2001 NaN \n", + "Angola 2015 65.400000 \n", + "Benin 2017 31.600000 \n", + " 2011 44.500000 \n", + " 2006 36.700000 \n", + " 2001 24.568959 \n", "... ... \n", - "Zambia 2007 72.5 \n", - " 2001 NaN \n", - "Zimbabwe 2015 83.1 \n", - " 2010 80.3 \n", - " 2005 67.3 \n", + "Zambia 2007 72.500000 \n", + " 2001 69.663203 \n", + "Zimbabwe 2015 83.100000 \n", + " 2010 80.300000 \n", + " 2005 67.300000 \n", "\n", - "[83 rows x 2 columns]" + "[80 rows x 2 columns]" ] }, - "execution_count": 162, + "execution_count": 327, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "final_stigma" + "# Keep only shopkeeper indicators and rename columns to match\n", + "iuosi = iuosi[['Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49','Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49']]\n", + "iuosi.columns = ['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M']\n", + "iuosi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## III. Using all original variables + stigma related variables" ] }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 338, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Accepting attitudes - Willing to care for family member sick with AIDS (1) [Women]Total 15-49 13\n", - "Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49 12\n", - "Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Women]Total 15-49 20\n", - "Accepting attitudes - Not secretive about family member's HIV status (4) [Women]Total 15-49 14\n", - "Accepting attitudes towards those living with HIV - Composite of 4 components [Women]Total 15-49 27\n", - "Accepting attitudes - Willing to care for family member sick with AIDS (1) [Men]Total 15-49 14\n", - "Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49 12\n", - "Accepting attitudes - Female teacher who is HIV+ but not sick should be allowed to continue teaching in school (3) [Men]Total 15-49 20\n", - "Accepting attitudes - Not secretive about family member's HIV status (4) [Men]Total 15-49 14\n", - "Accepting attitudes towards those living with HIV - Composite of 4 components [Men]Total 15-49 27\n", - "Adult support of education on condom use for prevention of HIV/AIDS among young womenTotal 18-49 20\n", - "Adult support of education on condom use for prevention of HIV/AIDS among young menTotal 18-49 26\n", - "dtype: int64" - ] - }, - "execution_count": 108, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "# Sum all missing values for these indicators across all countries/surveys\n", - "# NOTE: count for shopkeeper differs from above as there are extra unusued surveys here\n", + "# Merge full dataset from compile.ipynb (\"final\") and full stigma realted dataset (\"stigma\") to create one fuller dataset\n", + "# This merge keeps only surveys used in our dataset (left merge)\n", "\n", - "# Gabon 2000 is present in \"final\" but is missing here\n", - "# Uganda 2011 has two surveys here but only one is present in \"final\"\n", - "stigma.isna().sum()" + "# tmp dataset to remove AIS surveys\n", + "tmp=stigma.reset_index()[~stigma.reset_index().Survey.str.contains('AIS')]\n", + "tmp.Survey=tmp.Survey.str[:4]\n", + "tmp=tmp.set_index(['Country', 'Survey'])\n", + "\n", + "# Left merge to keep only 80 surveys we want\n", + "big = pd.merge(final.reset_index(), tmp.reset_index(), how='left').set_index(['Country', 'Survey'])\n", + "\n", + "# Need to drop \"Buy.from.shopkeeper.with.AIDS.W/M\" in \"final\" which also exists in \"stigma\" under orignial indicator name\n", + "big = big.drop(columns=['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M'])\n", + "\n", + "# Also drop descriptive columns used for analysis which don't fit into the imputer\n", + "big = big.drop(columns=['iso', 'cow', 'GY'])" ] }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 339, "metadata": {}, "outputs": [], "source": [ - "# Get multiindex entry\n", - "#stigma.loc[['Uganda'],['2011'], :]" + "# Initialize imputer\n", + "imp_iter=IterativeImputer(missing_values=np.nan, random_state=0, max_iter=130, verbose=2, tol=0.001)" ] }, { "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [], - "source": [ - "# Get multiindex entry\n", - "#final.loc[['Gabon'],['2000'], :]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Three imputation methods" - ] - }, - { - "cell_type": "markdown", + "execution_count": 340, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[IterativeImputer] Completing matrix with shape (80, 56)\n", + "[IterativeImputer] Ending imputation round 1/130, elapsed time 0.28\n", + "[IterativeImputer] Change: 216.0284123442057, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 2/130, elapsed time 0.49\n", + "[IterativeImputer] Change: 55.94107571308534, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 3/130, elapsed time 0.73\n", + "[IterativeImputer] Change: 30.366131262761435, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 4/130, elapsed time 0.97\n", + "[IterativeImputer] Change: 20.859272267576017, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 5/130, elapsed time 1.21\n", + "[IterativeImputer] Change: 14.033952515038443, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 6/130, elapsed time 1.43\n", + "[IterativeImputer] Change: 11.061969287484812, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 7/130, elapsed time 1.66\n", + "[IterativeImputer] Change: 9.608931258978211, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 8/130, elapsed time 1.88\n", + "[IterativeImputer] Change: 8.41588738244301, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 9/130, elapsed time 2.10\n", + "[IterativeImputer] Change: 7.49509066928271, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 10/130, elapsed time 2.33\n", + "[IterativeImputer] Change: 6.776674296193181, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 11/130, elapsed time 2.80\n", + "[IterativeImputer] Change: 6.1733033809501645, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 12/130, elapsed time 3.17\n", + "[IterativeImputer] Change: 5.644960606244883, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 13/130, elapsed time 3.46\n", + "[IterativeImputer] Change: 5.1664080647619, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 14/130, elapsed time 3.88\n", + "[IterativeImputer] Change: 4.734394665239902, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 15/130, elapsed time 4.25\n", + "[IterativeImputer] Change: 4.340415226347417, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 16/130, elapsed time 4.71\n", + "[IterativeImputer] Change: 3.9815447575013545, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 17/130, elapsed time 5.03\n", + "[IterativeImputer] Change: 3.6542560006144003, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 18/130, elapsed time 5.40\n", + "[IterativeImputer] Change: 3.3554662701631908, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 19/130, elapsed time 5.69\n", + "[IterativeImputer] Change: 3.0917268475710404, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 20/130, elapsed time 5.95\n", + "[IterativeImputer] Change: 2.851323642092429, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 21/130, elapsed time 6.34\n", + "[IterativeImputer] Change: 2.631449274414957, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 22/130, elapsed time 6.60\n", + "[IterativeImputer] Change: 2.427271357904964, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 23/130, elapsed time 6.88\n", + "[IterativeImputer] Change: 2.239093167306513, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 24/130, elapsed time 7.12\n", + "[IterativeImputer] Change: 2.065619660348035, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 25/130, elapsed time 7.60\n", + "[IterativeImputer] Change: 1.9057065188080928, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 26/130, elapsed time 7.90\n", + "[IterativeImputer] Change: 1.7583114895720056, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 27/130, elapsed time 8.27\n", + "[IterativeImputer] Change: 1.6224624689150213, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 28/130, elapsed time 8.66\n", + "[IterativeImputer] Change: 1.4972578948746784, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 29/130, elapsed time 9.06\n", + "[IterativeImputer] Change: 1.3818631799017753, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 30/130, elapsed time 9.39\n", + "[IterativeImputer] Change: 1.2755068566937744, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 31/130, elapsed time 9.70\n", + "[IterativeImputer] Change: 1.1774766213490966, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 32/130, elapsed time 9.94\n", + "[IterativeImputer] Change: 1.0871153902747932, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 33/130, elapsed time 10.18\n", + "[IterativeImputer] Change: 1.0038174322515754, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 34/130, elapsed time 10.44\n", + "[IterativeImputer] Change: 0.927024637222581, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 35/130, elapsed time 10.71\n", + "[IterativeImputer] Change: 0.8562035296329913, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 36/130, elapsed time 10.99\n", + "[IterativeImputer] Change: 0.7908906209127242, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 37/130, elapsed time 11.29\n", + "[IterativeImputer] Change: 0.7306993165874823, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 38/130, elapsed time 11.55\n", + "[IterativeImputer] Change: 0.6751869059705252, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 39/130, elapsed time 11.79\n", + "[IterativeImputer] Change: 0.6239832064205684, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 40/130, elapsed time 12.03\n", + "[IterativeImputer] Change: 0.5767493745547562, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 41/130, elapsed time 12.27\n", + "[IterativeImputer] Change: 0.5331734342273368, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 42/130, elapsed time 12.51\n", + "[IterativeImputer] Change: 0.49296794592935334, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 43/130, elapsed time 12.78\n", + "[IterativeImputer] Change: 0.4558681392499344, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 44/130, elapsed time 13.13\n", + "[IterativeImputer] Change: 0.42163019492850773, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 45/130, elapsed time 13.36\n", + "[IterativeImputer] Change: 0.3900296212463735, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 46/130, elapsed time 13.61\n", + "[IterativeImputer] Change: 0.360859731823564, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 47/130, elapsed time 14.05\n", + "[IterativeImputer] Change: 0.33393023275418865, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 48/130, elapsed time 14.47\n", + "[IterativeImputer] Change: 0.3090659169198128, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 49/130, elapsed time 14.72\n", + "[IterativeImputer] Change: 0.2861054597831051, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 50/130, elapsed time 14.93\n", + "[IterativeImputer] Change: 0.26490031069741027, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 51/130, elapsed time 15.15\n", + "[IterativeImputer] Change: 0.24531367220055456, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 52/130, elapsed time 15.38\n", + "[IterativeImputer] Change: 0.227219560991474, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 53/130, elapsed time 15.60\n", + "[IterativeImputer] Change: 0.21078025361181452, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 54/130, elapsed time 15.83\n", + "[IterativeImputer] Change: 0.195908683831146, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 55/130, elapsed time 16.05\n", + "[IterativeImputer] Change: 0.18215778474863598, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 56/130, elapsed time 16.37\n", + "[IterativeImputer] Change: 0.17705070577237467, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 57/130, elapsed time 16.65\n", + "[IterativeImputer] Change: 0.17521608015390475, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 58/130, elapsed time 16.88\n", + "[IterativeImputer] Change: 0.1733890786049582, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 59/130, elapsed time 17.10\n", + "[IterativeImputer] Change: 0.17157629880265746, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 60/130, elapsed time 17.33\n", + "[IterativeImputer] Change: 0.16978447253467416, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 61/130, elapsed time 17.60\n", + "[IterativeImputer] Change: 0.16801390303148295, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 62/130, elapsed time 17.94\n", + "[IterativeImputer] Change: 0.1662635233086112, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 63/130, elapsed time 18.20\n", + "[IterativeImputer] Change: 0.16453245024128074, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 64/130, elapsed time 18.62\n", + "[IterativeImputer] Change: 0.16282008672389153, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 65/130, elapsed time 19.05\n", + "[IterativeImputer] Change: 0.1611260173279771, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 66/130, elapsed time 19.47\n", + "[IterativeImputer] Change: 0.15944992264949806, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 67/130, elapsed time 19.96\n", + "[IterativeImputer] Change: 0.15779153944876664, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 68/130, elapsed time 20.17\n", + "[IterativeImputer] Change: 0.15615063336325608, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 69/130, elapsed time 20.39\n", + "[IterativeImputer] Change: 0.15452698788818486, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 70/130, elapsed time 20.63\n", + "[IterativeImputer] Change: 0.152920396824863, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 71/130, elapsed time 20.85\n", + "[IterativeImputer] Change: 0.15133066435988174, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 72/130, elapsed time 21.07\n", + "[IterativeImputer] Change: 0.14975759916842696, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 73/130, elapsed time 21.30\n", + "[IterativeImputer] Change: 0.1482010151724453, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 74/130, elapsed time 21.54\n", + "[IterativeImputer] Change: 0.1466607305039486, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 75/130, elapsed time 21.76\n", + "[IterativeImputer] Change: 0.14513656803399103, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 76/130, elapsed time 21.98\n", + "[IterativeImputer] Change: 0.14362835359770976, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 77/130, elapsed time 22.20\n", + "[IterativeImputer] Change: 0.14213591608672016, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 78/130, elapsed time 22.42\n", + "[IterativeImputer] Change: 0.14065952938744622, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 79/130, elapsed time 22.67\n", + "[IterativeImputer] Change: 0.13920885693769433, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 80/130, elapsed time 22.89\n", + "[IterativeImputer] Change: 0.1377624869850711, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 81/130, elapsed time 23.22\n", + "[IterativeImputer] Change: 0.13632709567726817, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 82/130, elapsed time 23.46\n", + "[IterativeImputer] Change: 0.13490756229951315, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 83/130, elapsed time 23.71\n", + "[IterativeImputer] Change: 0.1335041906757915, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 84/130, elapsed time 23.96\n", + "[IterativeImputer] Change: 0.13211662230022367, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 85/130, elapsed time 24.18\n", + "[IterativeImputer] Change: 0.1307442541571261, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 86/130, elapsed time 24.41\n", + "[IterativeImputer] Change: 0.12938654359721485, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 87/130, elapsed time 24.65\n", + "[IterativeImputer] Change: 0.12804312832178236, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 88/130, elapsed time 24.88\n", + "[IterativeImputer] Change: 0.12671377165272488, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 89/130, elapsed time 25.10\n", + "[IterativeImputer] Change: 0.12539829656310728, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 90/130, elapsed time 25.32\n", + "[IterativeImputer] Change: 0.12409655313443674, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 91/130, elapsed time 25.55\n", + "[IterativeImputer] Change: 0.12280840002460963, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 92/130, elapsed time 25.77\n", + "[IterativeImputer] Change: 0.12153369774200365, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 93/130, elapsed time 25.99\n", + "[IterativeImputer] Change: 0.12027231028423443, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 94/130, elapsed time 26.21\n", + "[IterativeImputer] Change: 0.1190241011855811, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 95/130, elapsed time 26.54\n", + "[IterativeImputer] Change: 0.11778893607104102, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 96/130, elapsed time 26.81\n", + "[IterativeImputer] Change: 0.11656668007612184, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 97/130, elapsed time 27.03\n", + "[IterativeImputer] Change: 0.11535719831231314, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 98/130, elapsed time 27.26\n", + "[IterativeImputer] Change: 0.11416035938718583, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 99/130, elapsed time 27.47\n", + "[IterativeImputer] Change: 0.11298727793339089, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 100/130, elapsed time 27.70\n", + "[IterativeImputer] Change: 0.11181473273321377, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 101/130, elapsed time 27.94\n", + "[IterativeImputer] Change: 0.11065012936821078, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 102/130, elapsed time 28.47\n", + "[IterativeImputer] Change: 0.10949906091422013, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 103/130, elapsed time 28.89\n", + "[IterativeImputer] Change: 0.10902146711531865, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 104/130, elapsed time 29.29\n", + "[IterativeImputer] Change: 0.1070576429687273, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 105/130, elapsed time 29.76\n", + "[IterativeImputer] Change: 0.10602402590832843, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 106/130, elapsed time 30.23\n", + "[IterativeImputer] Change: 0.10497456812058295, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 107/130, elapsed time 30.45\n", + "[IterativeImputer] Change: 0.10390963221624791, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 108/130, elapsed time 30.73\n", + "[IterativeImputer] Change: 0.10284353382422837, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 109/130, elapsed time 30.98\n", + "[IterativeImputer] Change: 0.10178289857498946, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 110/130, elapsed time 31.32\n", + "[IterativeImputer] Change: 0.10073082304481626, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 111/130, elapsed time 31.75\n", + "[IterativeImputer] Change: 0.09968855444770477, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Ending imputation round 112/130, elapsed time 32.16\n", + "[IterativeImputer] Change: 0.09865657070203346, scaled tolerance: 0.09966888445530192 \n", + "[IterativeImputer] Early stopping criterion reached.\n" + ] + }, + { + "data": { + "text/plain": [ + "IterativeImputer(max_iter=130, random_state=0, verbose=2)" + ] + }, + "execution_count": 340, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "## I. Using original dataset with all variables\n", - "\n", - "i.e. just reusing missing_values.ipyng" + "# Fit the iterative imputer\n", + "imp_iter.fit(big)" ] }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 341, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[IterativeImputer] Completing matrix with shape (80, 56)\n", + "[IterativeImputer] Ending imputation round 1/112, elapsed time 0.01\n", + "[IterativeImputer] Ending imputation round 2/112, elapsed time 0.02\n", + "[IterativeImputer] Ending imputation round 3/112, elapsed time 0.03\n", + "[IterativeImputer] Ending imputation round 4/112, elapsed time 0.04\n", + "[IterativeImputer] Ending imputation round 5/112, elapsed time 0.05\n", + "[IterativeImputer] Ending imputation round 6/112, elapsed time 0.06\n", + "[IterativeImputer] Ending imputation round 7/112, elapsed time 0.07\n", + "[IterativeImputer] Ending imputation round 8/112, elapsed time 0.08\n", + "[IterativeImputer] Ending imputation round 9/112, elapsed time 0.09\n", + "[IterativeImputer] Ending imputation round 10/112, elapsed time 0.10\n", + "[IterativeImputer] Ending imputation round 11/112, elapsed time 0.11\n", + "[IterativeImputer] Ending imputation round 12/112, elapsed time 0.12\n", + "[IterativeImputer] Ending imputation round 13/112, elapsed time 0.13\n", + "[IterativeImputer] Ending imputation round 14/112, elapsed time 0.14\n", + "[IterativeImputer] Ending imputation round 15/112, elapsed time 0.15\n", + "[IterativeImputer] Ending imputation round 16/112, elapsed time 0.16\n", + "[IterativeImputer] Ending imputation round 17/112, elapsed time 0.17\n", + "[IterativeImputer] Ending imputation round 18/112, elapsed time 0.18\n", + "[IterativeImputer] Ending imputation round 19/112, elapsed time 0.18\n", + "[IterativeImputer] Ending imputation round 20/112, elapsed time 0.19\n", + "[IterativeImputer] Ending imputation round 21/112, elapsed time 0.20\n", + "[IterativeImputer] Ending imputation round 22/112, elapsed time 0.22\n", + "[IterativeImputer] Ending imputation round 23/112, elapsed time 0.23\n", + "[IterativeImputer] Ending imputation round 24/112, elapsed time 0.24\n", + "[IterativeImputer] Ending imputation round 25/112, elapsed time 0.25\n", + "[IterativeImputer] Ending imputation round 26/112, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 27/112, elapsed time 0.26\n", + "[IterativeImputer] Ending imputation round 28/112, elapsed time 0.27\n", + "[IterativeImputer] Ending imputation round 29/112, elapsed time 0.28\n", + "[IterativeImputer] Ending imputation round 30/112, elapsed time 0.29\n", + "[IterativeImputer] Ending imputation round 31/112, elapsed time 0.30\n", + "[IterativeImputer] Ending imputation round 32/112, elapsed time 0.30\n", + "[IterativeImputer] Ending imputation round 33/112, elapsed time 0.31\n", + "[IterativeImputer] Ending imputation round 34/112, elapsed time 0.32\n", + "[IterativeImputer] Ending imputation round 35/112, elapsed time 0.33\n", + "[IterativeImputer] Ending imputation round 36/112, elapsed time 0.34\n", + "[IterativeImputer] Ending imputation round 37/112, elapsed time 0.35\n", + "[IterativeImputer] Ending imputation round 38/112, elapsed time 0.35\n", + "[IterativeImputer] Ending imputation round 39/112, elapsed time 0.36\n", + "[IterativeImputer] Ending imputation round 40/112, elapsed time 0.37\n", + "[IterativeImputer] Ending imputation round 41/112, elapsed time 0.38\n", + "[IterativeImputer] Ending imputation round 42/112, elapsed time 0.39\n", + "[IterativeImputer] Ending imputation round 43/112, elapsed time 0.39\n", + "[IterativeImputer] Ending imputation round 44/112, elapsed time 0.40\n", + "[IterativeImputer] Ending imputation round 45/112, elapsed time 0.41\n", + "[IterativeImputer] Ending imputation round 46/112, elapsed time 0.42\n", + "[IterativeImputer] Ending imputation round 47/112, elapsed time 0.43\n", + "[IterativeImputer] Ending imputation round 48/112, elapsed time 0.43\n", + "[IterativeImputer] Ending imputation round 49/112, elapsed time 0.44\n", + "[IterativeImputer] Ending imputation round 50/112, elapsed time 0.45\n", + "[IterativeImputer] Ending imputation round 51/112, elapsed time 0.46\n", + "[IterativeImputer] Ending imputation round 52/112, elapsed time 0.47\n", + "[IterativeImputer] Ending imputation round 53/112, elapsed time 0.47\n", + "[IterativeImputer] Ending imputation round 54/112, elapsed time 0.48\n", + "[IterativeImputer] Ending imputation round 55/112, elapsed time 0.49\n", + "[IterativeImputer] Ending imputation round 56/112, elapsed time 0.50\n", + "[IterativeImputer] Ending imputation round 57/112, elapsed time 0.51\n", + "[IterativeImputer] Ending imputation round 58/112, elapsed time 0.52\n", + "[IterativeImputer] Ending imputation round 59/112, elapsed time 0.52\n", + "[IterativeImputer] Ending imputation round 60/112, elapsed time 0.53\n", + "[IterativeImputer] Ending imputation round 61/112, elapsed time 0.54\n", + "[IterativeImputer] Ending imputation round 62/112, elapsed time 0.55\n", + "[IterativeImputer] Ending imputation round 63/112, elapsed time 0.56\n", + "[IterativeImputer] Ending imputation round 64/112, elapsed time 0.56\n", + "[IterativeImputer] Ending imputation round 65/112, elapsed time 0.57\n", + "[IterativeImputer] Ending imputation round 66/112, elapsed time 0.58\n", + "[IterativeImputer] Ending imputation round 67/112, elapsed time 0.59\n", + "[IterativeImputer] Ending imputation round 68/112, elapsed time 0.60\n", + "[IterativeImputer] Ending imputation round 69/112, elapsed time 0.61\n", + "[IterativeImputer] Ending imputation round 70/112, elapsed time 0.61\n", + "[IterativeImputer] Ending imputation round 71/112, elapsed time 0.62\n", + "[IterativeImputer] Ending imputation round 72/112, elapsed time 0.63\n", + "[IterativeImputer] Ending imputation round 73/112, elapsed time 0.64\n", + "[IterativeImputer] Ending imputation round 74/112, elapsed time 0.65\n", + "[IterativeImputer] Ending imputation round 75/112, elapsed time 0.65\n", + "[IterativeImputer] Ending imputation round 76/112, elapsed time 0.66\n", + "[IterativeImputer] Ending imputation round 77/112, elapsed time 0.67\n", + "[IterativeImputer] Ending imputation round 78/112, elapsed time 0.68\n", + "[IterativeImputer] Ending imputation round 79/112, elapsed time 0.69\n", + "[IterativeImputer] Ending imputation round 80/112, elapsed time 0.69\n", + "[IterativeImputer] Ending imputation round 81/112, elapsed time 0.70\n", + "[IterativeImputer] Ending imputation round 82/112, elapsed time 0.71\n", + "[IterativeImputer] Ending imputation round 83/112, elapsed time 0.72\n", + "[IterativeImputer] Ending imputation round 84/112, elapsed time 0.74\n", + "[IterativeImputer] Ending imputation round 85/112, elapsed time 0.74\n", + "[IterativeImputer] Ending imputation round 86/112, elapsed time 0.75\n", + "[IterativeImputer] Ending imputation round 87/112, elapsed time 0.76\n", + "[IterativeImputer] Ending imputation round 88/112, elapsed time 0.77\n", + "[IterativeImputer] Ending imputation round 89/112, elapsed time 0.78\n", + "[IterativeImputer] Ending imputation round 90/112, elapsed time 0.79\n", + "[IterativeImputer] Ending imputation round 91/112, elapsed time 0.79\n", + "[IterativeImputer] Ending imputation round 92/112, elapsed time 0.80\n", + "[IterativeImputer] Ending imputation round 93/112, elapsed time 0.81\n", + "[IterativeImputer] Ending imputation round 94/112, elapsed time 0.82\n", + "[IterativeImputer] Ending imputation round 95/112, elapsed time 0.83\n", + "[IterativeImputer] Ending imputation round 96/112, elapsed time 0.84\n", + "[IterativeImputer] Ending imputation round 97/112, elapsed time 0.84\n", + "[IterativeImputer] Ending imputation round 98/112, elapsed time 0.85\n", + "[IterativeImputer] Ending imputation round 99/112, elapsed time 0.86\n", + "[IterativeImputer] Ending imputation round 100/112, elapsed time 0.87\n", + "[IterativeImputer] Ending imputation round 101/112, elapsed time 0.88\n", + "[IterativeImputer] Ending imputation round 102/112, elapsed time 0.88\n", + "[IterativeImputer] Ending imputation round 103/112, elapsed time 0.89\n", + "[IterativeImputer] Ending imputation round 104/112, elapsed time 0.90\n", + "[IterativeImputer] Ending imputation round 105/112, elapsed time 0.91\n", + "[IterativeImputer] Ending imputation round 106/112, elapsed time 0.92\n", + "[IterativeImputer] Ending imputation round 107/112, elapsed time 0.93\n", + "[IterativeImputer] Ending imputation round 108/112, elapsed time 0.93\n", + "[IterativeImputer] Ending imputation round 109/112, elapsed time 0.94\n", + "[IterativeImputer] Ending imputation round 110/112, elapsed time 0.95\n", + "[IterativeImputer] Ending imputation round 111/112, elapsed time 0.96\n", + "[IterativeImputer] Ending imputation round 112/112, elapsed time 0.97\n" + ] + } + ], "source": [ - "# Import the excel file previously created\n", - "# NOTE: imputation using all = iua\n", - "\n", - "iua = pd.read_excel('../../../../data/new/imputation_output/imputed.xlsx')\n", - "iua.Survey=iua.Survey.astype(str)\n", - "iua=iua.set_index(['Country', 'Survey'])\n", - "\n", - "# and keep only indicators relating to stigma\n", - "iua = iua[['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M']]" + "# Transform resulting dataset\n", + "# NOTE: imputation using all + stigma indicators = iuasi\n", + "iuasi = pd.DataFrame(imp_iter.transform(big), columns=big.columns, index=big.index)" ] }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 342, "metadata": {}, "outputs": [ { @@ -1072,8 +1340,8 @@ " </tr>\n", " <tr>\n", " <th>2001</th>\n", - " <td>48.303455</td>\n", - " <td>51.821723</td>\n", + " <td>24.303359</td>\n", + " <td>42.846129</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", @@ -1089,8 +1357,8 @@ " </tr>\n", " <tr>\n", " <th>2001</th>\n", - " <td>55.477950</td>\n", - " <td>78.096665</td>\n", + " <td>63.817489</td>\n", + " <td>80.820173</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"3\" valign=\"top\">Zimbabwe</th>\n", @@ -1120,10 +1388,10 @@ "Benin 2017 26.500000 \n", " 2011 40.400000 \n", " 2006 27.500000 \n", - " 2001 48.303455 \n", + " 2001 24.303359 \n", "... ... \n", "Zambia 2007 66.600000 \n", - " 2001 55.477950 \n", + " 2001 63.817489 \n", "Zimbabwe 2015 80.100000 \n", " 2010 77.900000 \n", " 2005 56.800000 \n", @@ -1134,10 +1402,10 @@ "Benin 2017 31.600000 \n", " 2011 44.500000 \n", " 2006 36.700000 \n", - " 2001 51.821723 \n", + " 2001 42.846129 \n", "... ... \n", "Zambia 2007 72.500000 \n", - " 2001 78.096665 \n", + " 2001 80.820173 \n", "Zimbabwe 2015 83.100000 \n", " 2010 80.300000 \n", " 2005 67.300000 \n", @@ -1145,335 +1413,49 @@ "[80 rows x 2 columns]" ] }, - "execution_count": 112, + "execution_count": 342, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "iua" + "# Keep only shopkeeper indicators and rename columns to match\n", + "iuasi = iuasi[['Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49','Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49']]\n", + "iuasi.columns = ['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M']\n", + "iuasi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## II. Using only other variables relating to stigma" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize imputer\n", - "imp_iter=IterativeImputer(missing_values=np.nan, random_state=0, max_iter=100, verbose=2, tol=0.001)" + "## 3. Compare the values from the different imputation methods" ] }, { - "cell_type": "code", - "execution_count": 114, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (100, 12)\n", - "[IterativeImputer] Ending imputation round 1/100, elapsed time 0.03\n", - "[IterativeImputer] Change: 72.05508901237684, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 2/100, elapsed time 0.05\n", - "[IterativeImputer] Change: 22.043191612448673, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 3/100, elapsed time 0.08\n", - "[IterativeImputer] Change: 15.84720082639172, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 4/100, elapsed time 0.10\n", - "[IterativeImputer] Change: 13.068010596212027, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 5/100, elapsed time 0.12\n", - "[IterativeImputer] Change: 10.756978879694522, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 6/100, elapsed time 0.15\n", - "[IterativeImputer] Change: 9.280244854430109, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 7/100, elapsed time 0.17\n", - "[IterativeImputer] Change: 8.894024812182757, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 8/100, elapsed time 0.19\n", - "[IterativeImputer] Change: 8.378699766096808, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 9/100, elapsed time 0.22\n", - "[IterativeImputer] Change: 7.810928326836091, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 10/100, elapsed time 0.25\n", - "[IterativeImputer] Change: 7.235365498881194, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 11/100, elapsed time 0.27\n", - "[IterativeImputer] Change: 6.675686776779454, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 12/100, elapsed time 0.29\n", - "[IterativeImputer] Change: 6.143637326147132, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 13/100, elapsed time 0.31\n", - "[IterativeImputer] Change: 5.644352727374351, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 14/100, elapsed time 0.34\n", - "[IterativeImputer] Change: 5.17944326439628, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 15/100, elapsed time 0.36\n", - "[IterativeImputer] Change: 4.748663435537967, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 16/100, elapsed time 0.38\n", - "[IterativeImputer] Change: 4.350807298459316, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 17/100, elapsed time 0.41\n", - "[IterativeImputer] Change: 3.984188016721191, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 18/100, elapsed time 0.43\n", - "[IterativeImputer] Change: 3.646899891367429, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 19/100, elapsed time 0.45\n", - "[IterativeImputer] Change: 3.336965279371661, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 20/100, elapsed time 0.47\n", - "[IterativeImputer] Change: 3.0524189694377064, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 21/100, elapsed time 0.49\n", - "[IterativeImputer] Change: 2.79135707952625, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 22/100, elapsed time 0.51\n", - "[IterativeImputer] Change: 2.564637529995922, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 23/100, elapsed time 0.53\n", - "[IterativeImputer] Change: 2.3661911691912305, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 24/100, elapsed time 0.55\n", - "[IterativeImputer] Change: 2.1827389195696867, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 25/100, elapsed time 0.57\n", - "[IterativeImputer] Change: 2.0131781841273053, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 26/100, elapsed time 0.59\n", - "[IterativeImputer] Change: 1.856483556658599, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 27/100, elapsed time 0.61\n", - "[IterativeImputer] Change: 1.7117015939698472, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 28/100, elapsed time 0.63\n", - "[IterativeImputer] Change: 1.5779461799305476, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 29/100, elapsed time 0.65\n", - "[IterativeImputer] Change: 1.4543942672017636, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 30/100, elapsed time 0.67\n", - "[IterativeImputer] Change: 1.3402818785044346, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 31/100, elapsed time 0.69\n", - "[IterativeImputer] Change: 1.234900308899281, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 32/100, elapsed time 0.71\n", - "[IterativeImputer] Change: 1.137592504239933, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 33/100, elapsed time 0.73\n", - "[IterativeImputer] Change: 1.0477496082124986, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 34/100, elapsed time 0.75\n", - "[IterativeImputer] Change: 0.9648076778663999, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 35/100, elapsed time 0.77\n", - "[IterativeImputer] Change: 0.8882445696291086, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 36/100, elapsed time 0.79\n", - "[IterativeImputer] Change: 0.8175769972207725, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 37/100, elapsed time 0.81\n", - "[IterativeImputer] Change: 0.7523577612454204, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 38/100, elapsed time 0.83\n", - "[IterativeImputer] Change: 0.6921731482639455, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 39/100, elapsed time 0.86\n", - "[IterativeImputer] Change: 0.6366404954318909, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 40/100, elapsed time 0.88\n", - "[IterativeImputer] Change: 0.58540591529602, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 41/100, elapsed time 0.90\n", - "[IterativeImputer] Change: 0.5381421742543289, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 42/100, elapsed time 0.91\n", - "[IterativeImputer] Change: 0.5018145958781943, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 43/100, elapsed time 0.93\n", - "[IterativeImputer] Change: 0.48186515455107326, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 44/100, elapsed time 0.95\n", - "[IterativeImputer] Change: 0.4627570433411279, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 45/100, elapsed time 0.97\n", - "[IterativeImputer] Change: 0.4444523001584457, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 46/100, elapsed time 1.00\n", - "[IterativeImputer] Change: 0.42691463520208117, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 47/100, elapsed time 1.02\n", - "[IterativeImputer] Change: 0.4101094021435614, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 48/100, elapsed time 1.03\n", - "[IterativeImputer] Change: 0.39400355694183986, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 49/100, elapsed time 1.05\n", - "[IterativeImputer] Change: 0.3785656080573787, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 50/100, elapsed time 1.08\n", - "[IterativeImputer] Change: 0.36376556087395784, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 51/100, elapsed time 1.10\n", - "[IterativeImputer] Change: 0.34957485855298387, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 52/100, elapsed time 1.12\n", - "[IterativeImputer] Change: 0.33596632097637524, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 53/100, elapsed time 1.14\n", - "[IterativeImputer] Change: 0.3229140830352648, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 54/100, elapsed time 1.16\n", - "[IterativeImputer] Change: 0.3103935332162351, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 55/100, elapsed time 1.18\n", - "[IterativeImputer] Change: 0.29838125318573105, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 56/100, elapsed time 1.19\n", - "[IterativeImputer] Change: 0.2868549588749687, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 57/100, elapsed time 1.22\n", - "[IterativeImputer] Change: 0.27579344342929346, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 58/100, elapsed time 1.24\n", - "[IterativeImputer] Change: 0.2651765222563611, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 59/100, elapsed time 1.26\n", - "[IterativeImputer] Change: 0.25498498033086037, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 60/100, elapsed time 1.28\n", - "[IterativeImputer] Change: 0.24520052185087593, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 61/100, elapsed time 1.30\n", - "[IterativeImputer] Change: 0.2358057222492036, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 62/100, elapsed time 1.32\n", - "[IterativeImputer] Change: 0.22678398259296983, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 63/100, elapsed time 1.34\n", - "[IterativeImputer] Change: 0.218119486304154, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 64/100, elapsed time 1.36\n", - "[IterativeImputer] Change: 0.20979715814961963, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 65/100, elapsed time 1.38\n", - "[IterativeImputer] Change: 0.20180262544949557, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 66/100, elapsed time 1.40\n", - "[IterativeImputer] Change: 0.19412218138294435, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 67/100, elapsed time 1.42\n", - "[IterativeImputer] Change: 0.18674275033947652, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 68/100, elapsed time 1.44\n", - "[IterativeImputer] Change: 0.17965185519743443, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 69/100, elapsed time 1.46\n", - "[IterativeImputer] Change: 0.17283758644701663, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 70/100, elapsed time 1.48\n", - "[IterativeImputer] Change: 0.1662885730479644, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 71/100, elapsed time 1.50\n", - "[IterativeImputer] Change: 0.1599939549539613, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 72/100, elapsed time 1.52\n", - "[IterativeImputer] Change: 0.15394335718449526, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 73/100, elapsed time 1.54\n", - "[IterativeImputer] Change: 0.14812686537067066, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 74/100, elapsed time 1.56\n", - "[IterativeImputer] Change: 0.14253500268936392, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 75/100, elapsed time 1.58\n", - "[IterativeImputer] Change: 0.13715870810059982, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 76/100, elapsed time 1.60\n", - "[IterativeImputer] Change: 0.13199808519495093, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 77/100, elapsed time 1.62\n", - "[IterativeImputer] Change: 0.1270466644203836, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 78/100, elapsed time 1.64\n", - "[IterativeImputer] Change: 0.12228359026293134, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 79/100, elapsed time 1.66\n", - "[IterativeImputer] Change: 0.11770148929054614, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 80/100, elapsed time 1.68\n", - "[IterativeImputer] Change: 0.11329329329829818, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 81/100, elapsed time 1.70\n", - "[IterativeImputer] Change: 0.10905222536825221, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 82/100, elapsed time 1.72\n", - "[IterativeImputer] Change: 0.10497178668936158, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 83/100, elapsed time 1.74\n", - "[IterativeImputer] Change: 0.10104574404246591, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Ending imputation round 84/100, elapsed time 1.76\n", - "[IterativeImputer] Change: 0.09726811794367762, scaled tolerance: 0.0978 \n", - "[IterativeImputer] Early stopping criterion reached.\n" - ] - }, - { - "data": { - "text/plain": [ - "IterativeImputer(max_iter=100, random_state=0, verbose=2)" - ] - }, - "execution_count": 114, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "# Fit the iterative imputer\n", - "imp_iter.fit(stigma)" + "### I. Merge the original two indicators (with missing data) with three imputation indicators into one dataframe" ] }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 343, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (100, 12)\n", - "[IterativeImputer] Ending imputation round 1/84, elapsed time 0.00\n", - "[IterativeImputer] Ending imputation round 2/84, elapsed time 0.01\n", - "[IterativeImputer] Ending imputation round 3/84, elapsed time 0.01\n", - "[IterativeImputer] Ending imputation round 4/84, elapsed time 0.01\n", - "[IterativeImputer] Ending imputation round 5/84, elapsed time 0.02\n", - "[IterativeImputer] Ending imputation round 6/84, elapsed time 0.02\n", - "[IterativeImputer] Ending imputation round 7/84, elapsed time 0.02\n", - "[IterativeImputer] Ending imputation round 8/84, elapsed time 0.02\n", - "[IterativeImputer] Ending imputation round 9/84, elapsed time 0.03\n", - "[IterativeImputer] Ending imputation round 10/84, elapsed time 0.03\n", - "[IterativeImputer] Ending imputation round 11/84, elapsed time 0.03\n", - "[IterativeImputer] Ending imputation round 12/84, elapsed time 0.04\n", - "[IterativeImputer] Ending imputation round 13/84, elapsed time 0.04\n", - "[IterativeImputer] Ending imputation round 14/84, elapsed time 0.04\n", - "[IterativeImputer] Ending imputation round 15/84, elapsed time 0.05\n", - "[IterativeImputer] Ending imputation round 16/84, elapsed time 0.05\n", - "[IterativeImputer] Ending imputation round 17/84, elapsed time 0.05\n", - "[IterativeImputer] Ending imputation round 18/84, elapsed time 0.05\n", - "[IterativeImputer] Ending imputation round 19/84, elapsed time 0.06\n", - "[IterativeImputer] Ending imputation round 20/84, elapsed time 0.06\n", - "[IterativeImputer] Ending imputation round 21/84, elapsed time 0.06\n", - "[IterativeImputer] Ending imputation round 22/84, elapsed time 0.07\n", - "[IterativeImputer] Ending imputation round 23/84, elapsed time 0.07\n", - "[IterativeImputer] Ending imputation round 24/84, elapsed time 0.07\n", - "[IterativeImputer] Ending imputation round 25/84, elapsed time 0.07\n", - "[IterativeImputer] Ending imputation round 26/84, elapsed time 0.08\n", - "[IterativeImputer] Ending imputation round 27/84, elapsed time 0.08\n", - "[IterativeImputer] Ending imputation round 28/84, elapsed time 0.08\n", - "[IterativeImputer] Ending imputation round 29/84, elapsed time 0.09\n", - "[IterativeImputer] Ending imputation round 30/84, elapsed time 0.09\n", - "[IterativeImputer] Ending imputation round 31/84, elapsed time 0.09\n", - "[IterativeImputer] Ending imputation round 32/84, elapsed time 0.10\n", - "[IterativeImputer] Ending imputation round 33/84, elapsed time 0.10\n", - "[IterativeImputer] Ending imputation round 34/84, elapsed time 0.10\n", - "[IterativeImputer] Ending imputation round 35/84, elapsed time 0.10\n", - "[IterativeImputer] Ending imputation round 36/84, elapsed time 0.11\n", - "[IterativeImputer] Ending imputation round 37/84, elapsed time 0.11\n", - "[IterativeImputer] Ending imputation round 38/84, elapsed time 0.11\n", - "[IterativeImputer] Ending imputation round 39/84, elapsed time 0.12\n", - "[IterativeImputer] Ending imputation round 40/84, elapsed time 0.12\n", - "[IterativeImputer] Ending imputation round 41/84, elapsed time 0.12\n", - "[IterativeImputer] Ending imputation round 42/84, elapsed time 0.12\n", - "[IterativeImputer] Ending imputation round 43/84, elapsed time 0.13\n", - "[IterativeImputer] Ending imputation round 44/84, elapsed time 0.13\n", - "[IterativeImputer] Ending imputation round 45/84, elapsed time 0.13\n", - "[IterativeImputer] Ending imputation round 46/84, elapsed time 0.14\n", - "[IterativeImputer] Ending imputation round 47/84, elapsed time 0.14\n", - "[IterativeImputer] Ending imputation round 48/84, elapsed time 0.14\n", - "[IterativeImputer] Ending imputation round 49/84, elapsed time 0.14\n", - "[IterativeImputer] Ending imputation round 50/84, elapsed time 0.15\n", - "[IterativeImputer] Ending imputation round 51/84, elapsed time 0.15\n", - "[IterativeImputer] Ending imputation round 52/84, elapsed time 0.15\n", - "[IterativeImputer] Ending imputation round 53/84, elapsed time 0.16\n", - "[IterativeImputer] Ending imputation round 54/84, elapsed time 0.16\n", - "[IterativeImputer] Ending imputation round 55/84, elapsed time 0.16\n", - "[IterativeImputer] Ending imputation round 56/84, elapsed time 0.17\n", - "[IterativeImputer] Ending imputation round 57/84, elapsed time 0.17\n", - "[IterativeImputer] Ending imputation round 58/84, elapsed time 0.17\n", - "[IterativeImputer] Ending imputation round 59/84, elapsed time 0.17\n", - "[IterativeImputer] Ending imputation round 60/84, elapsed time 0.18\n", - "[IterativeImputer] Ending imputation round 61/84, elapsed time 0.18\n", - "[IterativeImputer] Ending imputation round 62/84, elapsed time 0.18\n", - "[IterativeImputer] Ending imputation round 63/84, elapsed time 0.19\n", - "[IterativeImputer] Ending imputation round 64/84, elapsed time 0.19\n", - "[IterativeImputer] Ending imputation round 65/84, elapsed time 0.19\n", - "[IterativeImputer] Ending imputation round 66/84, elapsed time 0.19\n", - "[IterativeImputer] Ending imputation round 67/84, elapsed time 0.20\n", - "[IterativeImputer] Ending imputation round 68/84, elapsed time 0.20\n", - "[IterativeImputer] Ending imputation round 69/84, elapsed time 0.20\n", - "[IterativeImputer] Ending imputation round 70/84, elapsed time 0.21\n", - "[IterativeImputer] Ending imputation round 71/84, elapsed time 0.21\n", - "[IterativeImputer] Ending imputation round 72/84, elapsed time 0.21\n", - "[IterativeImputer] Ending imputation round 73/84, elapsed time 0.21\n", - "[IterativeImputer] Ending imputation round 74/84, elapsed time 0.22\n", - "[IterativeImputer] Ending imputation round 75/84, elapsed time 0.22\n", - "[IterativeImputer] Ending imputation round 76/84, elapsed time 0.22\n", - "[IterativeImputer] Ending imputation round 77/84, elapsed time 0.23\n", - "[IterativeImputer] Ending imputation round 78/84, elapsed time 0.23\n", - "[IterativeImputer] Ending imputation round 79/84, elapsed time 0.23\n", - "[IterativeImputer] Ending imputation round 80/84, elapsed time 0.24\n", - "[IterativeImputer] Ending imputation round 81/84, elapsed time 0.24\n", - "[IterativeImputer] Ending imputation round 82/84, elapsed time 0.24\n", - "[IterativeImputer] Ending imputation round 83/84, elapsed time 0.24\n", - "[IterativeImputer] Ending imputation round 84/84, elapsed time 0.25\n" - ] - } - ], + "outputs": [], "source": [ - "# Transform resulting dataset\n", - "# NOTE: imputation using only stigma indicators = iuosi\n", - "iuosi = pd.DataFrame(imp_iter.transform(stigma), columns=stigma.columns, index=stigma.index)" + "# Merge them\n", + "df = pd.merge(\n", + " pd.merge(\n", + " pd.merge(final_stigma.reset_index(), iua.reset_index(), how='left', on=['Country','Survey'], suffixes=(None, \"_all\")), \n", + " iuosi.reset_index(), how='left', on=['Country','Survey'], suffixes=(None, \"_only_stigma\")), \n", + " iuasi.reset_index(), how='left', on=['Country', 'Survey'], suffixes=(None, \"_all_plus_stigma\"))\n" ] }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 344, "metadata": {}, "outputs": [ { @@ -1497,659 +1479,329 @@ " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", - " <th></th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.W</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.M</th>\n", - " </tr>\n", - " <tr>\n", " <th>Country</th>\n", " <th>Survey</th>\n", - " <th></th>\n", - " <th></th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.W</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.M</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.W_all</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.M_all</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.W_only_stigma</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.M_only_stigma</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma</th>\n", + " <th>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", - " <th>Angola</th>\n", - " <th>2015</th>\n", - " <td>63.800000</td>\n", + " <th>0</th>\n", + " <td>Angola</td>\n", + " <td>2015</td>\n", + " <td>63.8</td>\n", + " <td>65.4</td>\n", + " <td>63.800000</td>\n", + " <td>65.400000</td>\n", + " <td>63.800000</td>\n", + " <td>65.400000</td>\n", + " <td>63.800000</td>\n", " <td>65.400000</td>\n", " </tr>\n", " <tr>\n", - " <th rowspan=\"4\" valign=\"top\">Benin</th>\n", - " <th>2017</th>\n", + " <th>1</th>\n", + " <td>Benin</td>\n", + " <td>2017</td>\n", + " <td>26.5</td>\n", + " <td>31.6</td>\n", + " <td>26.500000</td>\n", + " <td>31.600000</td>\n", + " <td>26.500000</td>\n", + " <td>31.600000</td>\n", " <td>26.500000</td>\n", " <td>31.600000</td>\n", " </tr>\n", " <tr>\n", - " <th>2011</th>\n", + " <th>2</th>\n", + " <td>Benin</td>\n", + " <td>2011</td>\n", + " <td>40.4</td>\n", + " <td>44.5</td>\n", + " <td>40.400000</td>\n", + " <td>44.500000</td>\n", + " <td>40.400000</td>\n", + " <td>44.500000</td>\n", " <td>40.400000</td>\n", " <td>44.500000</td>\n", " </tr>\n", " <tr>\n", - " <th>2006</th>\n", + " <th>3</th>\n", + " <td>Benin</td>\n", + " <td>2006</td>\n", + " <td>27.5</td>\n", + " <td>36.7</td>\n", + " <td>27.500000</td>\n", + " <td>36.700000</td>\n", + " <td>27.500000</td>\n", + " <td>36.700000</td>\n", " <td>27.500000</td>\n", " <td>36.700000</td>\n", " </tr>\n", " <tr>\n", - " <th>2001</th>\n", + " <th>4</th>\n", + " <td>Benin</td>\n", + " <td>2001</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>27.221653</td>\n", + " <td>37.484307</td>\n", " <td>10.011642</td>\n", " <td>24.568959</td>\n", + " <td>24.303359</td>\n", + " <td>42.846129</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", - " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", - " <th rowspan=\"2\" valign=\"top\">Zambia</th>\n", - " <th>2007</th>\n", + " <th>75</th>\n", + " <td>Zambia</td>\n", + " <td>2007</td>\n", + " <td>66.6</td>\n", + " <td>72.5</td>\n", + " <td>66.600000</td>\n", + " <td>72.500000</td>\n", + " <td>66.600000</td>\n", + " <td>72.500000</td>\n", " <td>66.600000</td>\n", " <td>72.500000</td>\n", " </tr>\n", " <tr>\n", - " <th>2001</th>\n", + " <th>76</th>\n", + " <td>Zambia</td>\n", + " <td>2001</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>65.095518</td>\n", + " <td>79.651456</td>\n", " <td>60.245481</td>\n", " <td>69.663203</td>\n", + " <td>63.817489</td>\n", + " <td>80.820173</td>\n", " </tr>\n", " <tr>\n", - " <th rowspan=\"3\" valign=\"top\">Zimbabwe</th>\n", - " <th>2015</th>\n", + " <th>77</th>\n", + " <td>Zimbabwe</td>\n", + " <td>2015</td>\n", + " <td>80.1</td>\n", + " <td>83.1</td>\n", + " <td>80.100000</td>\n", + " <td>83.100000</td>\n", + " <td>80.100000</td>\n", + " <td>83.100000</td>\n", " <td>80.100000</td>\n", " <td>83.100000</td>\n", " </tr>\n", " <tr>\n", - " <th>2010</th>\n", + " <th>78</th>\n", + " <td>Zimbabwe</td>\n", + " <td>2010</td>\n", + " <td>77.9</td>\n", + " <td>80.3</td>\n", + " <td>77.900000</td>\n", + " <td>80.300000</td>\n", + " <td>77.900000</td>\n", + " <td>80.300000</td>\n", " <td>77.900000</td>\n", " <td>80.300000</td>\n", " </tr>\n", " <tr>\n", - " <th>2005</th>\n", + " <th>79</th>\n", + " <td>Zimbabwe</td>\n", + " <td>2005</td>\n", + " <td>56.8</td>\n", + " <td>67.3</td>\n", + " <td>56.800000</td>\n", + " <td>67.300000</td>\n", + " <td>56.800000</td>\n", + " <td>67.300000</td>\n", " <td>56.800000</td>\n", " <td>67.300000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", - "<p>100 rows × 2 columns</p>\n", + "<p>80 rows × 10 columns</p>\n", "</div>" ], "text/plain": [ - " Buy.from.shopkeeper.with.AIDS.W \\\n", - "Country Survey \n", - "Angola 2015 63.800000 \n", - "Benin 2017 26.500000 \n", - " 2011 40.400000 \n", - " 2006 27.500000 \n", - " 2001 10.011642 \n", - "... ... \n", - "Zambia 2007 66.600000 \n", - " 2001 60.245481 \n", - "Zimbabwe 2015 80.100000 \n", - " 2010 77.900000 \n", - " 2005 56.800000 \n", + " Country Survey Buy.from.shopkeeper.with.AIDS.W \\\n", + "0 Angola 2015 63.8 \n", + "1 Benin 2017 26.5 \n", + "2 Benin 2011 40.4 \n", + "3 Benin 2006 27.5 \n", + "4 Benin 2001 NaN \n", + ".. ... ... ... \n", + "75 Zambia 2007 66.6 \n", + "76 Zambia 2001 NaN \n", + "77 Zimbabwe 2015 80.1 \n", + "78 Zimbabwe 2010 77.9 \n", + "79 Zimbabwe 2005 56.8 \n", "\n", - " Buy.from.shopkeeper.with.AIDS.M \n", - "Country Survey \n", - "Angola 2015 65.400000 \n", - "Benin 2017 31.600000 \n", - " 2011 44.500000 \n", - " 2006 36.700000 \n", - " 2001 24.568959 \n", - "... ... \n", - "Zambia 2007 72.500000 \n", - " 2001 69.663203 \n", - "Zimbabwe 2015 83.100000 \n", - " 2010 80.300000 \n", - " 2005 67.300000 \n", + " Buy.from.shopkeeper.with.AIDS.M Buy.from.shopkeeper.with.AIDS.W_all \\\n", + "0 65.4 63.800000 \n", + "1 31.6 26.500000 \n", + "2 44.5 40.400000 \n", + "3 36.7 27.500000 \n", + "4 NaN 27.221653 \n", + ".. ... ... \n", + "75 72.5 66.600000 \n", + "76 NaN 65.095518 \n", + "77 83.1 80.100000 \n", + "78 80.3 77.900000 \n", + "79 67.3 56.800000 \n", + "\n", + " Buy.from.shopkeeper.with.AIDS.M_all \\\n", + "0 65.400000 \n", + "1 31.600000 \n", + "2 44.500000 \n", + "3 36.700000 \n", + "4 37.484307 \n", + ".. ... \n", + "75 72.500000 \n", + "76 79.651456 \n", + "77 83.100000 \n", + "78 80.300000 \n", + "79 67.300000 \n", + "\n", + " Buy.from.shopkeeper.with.AIDS.W_only_stigma \\\n", + "0 63.800000 \n", + "1 26.500000 \n", + "2 40.400000 \n", + "3 27.500000 \n", + "4 10.011642 \n", + ".. ... \n", + "75 66.600000 \n", + "76 60.245481 \n", + "77 80.100000 \n", + "78 77.900000 \n", + "79 56.800000 \n", "\n", - "[100 rows x 2 columns]" + " Buy.from.shopkeeper.with.AIDS.M_only_stigma \\\n", + "0 65.400000 \n", + "1 31.600000 \n", + "2 44.500000 \n", + "3 36.700000 \n", + "4 24.568959 \n", + ".. ... \n", + "75 72.500000 \n", + "76 69.663203 \n", + "77 83.100000 \n", + "78 80.300000 \n", + "79 67.300000 \n", + "\n", + " Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma \\\n", + "0 63.800000 \n", + "1 26.500000 \n", + "2 40.400000 \n", + "3 27.500000 \n", + "4 24.303359 \n", + ".. ... \n", + "75 66.600000 \n", + "76 63.817489 \n", + "77 80.100000 \n", + "78 77.900000 \n", + "79 56.800000 \n", + "\n", + " Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma \n", + "0 65.400000 \n", + "1 31.600000 \n", + "2 44.500000 \n", + "3 36.700000 \n", + "4 42.846129 \n", + ".. ... \n", + "75 72.500000 \n", + "76 80.820173 \n", + "77 83.100000 \n", + "78 80.300000 \n", + "79 67.300000 \n", + "\n", + "[80 rows x 10 columns]" ] }, - "execution_count": 116, + "execution_count": 344, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# Keep only shopkeeper indicators and rename columns to match\n", - "iuosi = iuosi[['Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49','Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49']]\n", - "iuosi.columns = ['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M']\n", - "iuosi" + "df" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 345, "metadata": {}, + "outputs": [], "source": [ - "## III. Using all original variables + stigma related variables" + "### Issue described below is obsolete and is taken care of upstream\n", + "\n", + "# There is an issue with the duplicate entry for Uganda 2011\n", + "# Merging the dataframes creates a combination of entries (4 in total instead of 1)\n", + "# We need to remove them and keep only one entry with Uganda 2011 that has 71.6 and 79.5 as values\n", + "\n", + "# First list those entries\n", + "#df[(df.Country == 'Uganda') & (df.Survey == '2011')]\n", + "\n", + "# We want to remove index 70, 71, and 72\n", + "#df = df.drop([70,71,72])" ] }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 346, "metadata": {}, "outputs": [], "source": [ - "# Merge full dataset from compile.ipynb (\"final\") and full sitgma realted dataset (\"stigma\") to create one fuller dataset\n", - "# This merge keeps only surveys used in our dataset (left merge)\n", - "\n", - "# Although Uganda 2011 appears twice from the \"stigma\" dataset, we can keep it for the imputation as it adds precision\n", - "\n", - "big = pd.merge(final.reset_index(), stigma.reset_index(), how='left').set_index(['Country', 'Survey'])\n", - "\n", - "# Need to drop \"Buy.from.shopkeeper.with.AIDS.W/M\" in \"final\" which also exists in \"stigma\"\n", - "big = big.drop(columns=['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M'])\n", - "\n", - "# Also drop descriptive columns used for analysis which don't fit into the imputer\n", - "big = big.drop(columns=['iso', 'cow', 'GY'])" + "# Reset index\n", + "df = df.set_index(['Country', 'Survey'])" ] }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 347, "metadata": {}, "outputs": [], "source": [ - "# Initialize imputer\n", - "imp_iter=IterativeImputer(missing_values=np.nan, random_state=0, max_iter=130, verbose=2, tol=0.001)" + "# Add column to indicate whether values here are imputed\n", + "# Once for W and once for M since they are technically different indicators\n", + "df['imputed.W']=np.where(df['Buy.from.shopkeeper.with.AIDS.W'].isnull(),1,0)\n", + "df['imputed.M']=np.where(df['Buy.from.shopkeeper.with.AIDS.M'].isnull(),1,0)" ] }, { - "cell_type": "code", - "execution_count": 119, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (84, 56)\n", - "[IterativeImputer] Ending imputation round 1/130, elapsed time 0.30\n", - "[IterativeImputer] Change: 225.29853484922282, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 2/130, elapsed time 0.53\n", - "[IterativeImputer] Change: 62.33428468967112, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 3/130, elapsed time 0.76\n", - "[IterativeImputer] Change: 30.957188845081344, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 4/130, elapsed time 0.98\n", - "[IterativeImputer] Change: 21.137937843855227, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 5/130, elapsed time 1.25\n", - "[IterativeImputer] Change: 16.100480186511554, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 6/130, elapsed time 1.48\n", - "[IterativeImputer] Change: 13.8040661355171, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 7/130, elapsed time 1.70\n", - "[IterativeImputer] Change: 12.584014188952246, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 8/130, elapsed time 1.96\n", - "[IterativeImputer] Change: 11.642696184588623, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 9/130, elapsed time 2.26\n", - "[IterativeImputer] Change: 10.759726175246731, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 10/130, elapsed time 2.59\n", - "[IterativeImputer] Change: 9.971173296320385, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 11/130, elapsed time 2.83\n", - "[IterativeImputer] Change: 9.246726791994144, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 12/130, elapsed time 3.06\n", - "[IterativeImputer] Change: 8.591012577311428, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 13/130, elapsed time 3.28\n", - "[IterativeImputer] Change: 7.984822306693246, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 14/130, elapsed time 3.52\n", - "[IterativeImputer] Change: 7.417749165473267, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 15/130, elapsed time 3.75\n", - "[IterativeImputer] Change: 6.888510397278649, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 16/130, elapsed time 3.99\n", - "[IterativeImputer] Change: 6.395375765942886, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 17/130, elapsed time 4.26\n", - "[IterativeImputer] Change: 5.937854463750105, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 18/130, elapsed time 4.52\n", - "[IterativeImputer] Change: 5.519438435243864, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 19/130, elapsed time 4.93\n", - "[IterativeImputer] Change: 5.129649454317983, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 20/130, elapsed time 5.20\n", - "[IterativeImputer] Change: 4.7671799722032775, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 21/130, elapsed time 5.52\n", - "[IterativeImputer] Change: 4.429112889693241, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 22/130, elapsed time 6.07\n", - "[IterativeImputer] Change: 4.114079310913918, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 23/130, elapsed time 6.34\n", - "[IterativeImputer] Change: 3.8206337056779107, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 24/130, elapsed time 6.56\n", - "[IterativeImputer] Change: 3.547388515876353, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 25/130, elapsed time 6.82\n", - "[IterativeImputer] Change: 3.2930836545757503, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 26/130, elapsed time 7.13\n", - "[IterativeImputer] Change: 3.0564504381612974, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 27/130, elapsed time 7.40\n", - "[IterativeImputer] Change: 2.8363369846147464, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 28/130, elapsed time 7.65\n", - "[IterativeImputer] Change: 2.631685410086665, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 29/130, elapsed time 7.93\n", - "[IterativeImputer] Change: 2.441310508755478, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 30/130, elapsed time 8.21\n", - "[IterativeImputer] Change: 2.264470789216734, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 31/130, elapsed time 8.48\n", - "[IterativeImputer] Change: 2.1001050557217873, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 32/130, elapsed time 8.77\n", - "[IterativeImputer] Change: 1.9473995816492744, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 33/130, elapsed time 9.08\n", - "[IterativeImputer] Change: 1.8055584218462357, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 34/130, elapsed time 9.38\n", - "[IterativeImputer] Change: 1.6738323883127622, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 35/130, elapsed time 9.71\n", - "[IterativeImputer] Change: 1.551521102751578, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 36/130, elapsed time 10.00\n", - "[IterativeImputer] Change: 1.4379715885031146, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 37/130, elapsed time 10.31\n", - "[IterativeImputer] Change: 1.3332759422665226, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 38/130, elapsed time 10.58\n", - "[IterativeImputer] Change: 1.236812289979428, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 39/130, elapsed time 10.83\n", - "[IterativeImputer] Change: 1.1472833104845095, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 40/130, elapsed time 11.08\n", - "[IterativeImputer] Change: 1.0641600724283455, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 41/130, elapsed time 11.38\n", - "[IterativeImputer] Change: 0.9869899158543529, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 42/130, elapsed time 11.63\n", - "[IterativeImputer] Change: 0.9153541238728282, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 43/130, elapsed time 11.88\n", - "[IterativeImputer] Change: 0.8488617923424508, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 44/130, elapsed time 12.15\n", - "[IterativeImputer] Change: 0.7871487644433565, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 45/130, elapsed time 12.47\n", - "[IterativeImputer] Change: 0.729876031035304, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 46/130, elapsed time 12.71\n", - "[IterativeImputer] Change: 0.6775566497780321, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 47/130, elapsed time 12.96\n", - "[IterativeImputer] Change: 0.6290176417769509, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 48/130, elapsed time 13.32\n", - "[IterativeImputer] Change: 0.5839379645894663, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 49/130, elapsed time 13.58\n", - "[IterativeImputer] Change: 0.5420724786353919, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 50/130, elapsed time 13.89\n", - "[IterativeImputer] Change: 0.5031932980814215, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 51/130, elapsed time 14.15\n", - "[IterativeImputer] Change: 0.46708858691490085, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 52/130, elapsed time 14.38\n", - "[IterativeImputer] Change: 0.43356143778204215, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 53/130, elapsed time 14.61\n", - "[IterativeImputer] Change: 0.40242882823956155, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 54/130, elapsed time 14.83\n", - "[IterativeImputer] Change: 0.3735208507666903, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 55/130, elapsed time 15.23\n", - "[IterativeImputer] Change: 0.3469687741273455, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 56/130, elapsed time 15.48\n", - "[IterativeImputer] Change: 0.3223296593764369, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 57/130, elapsed time 15.78\n", - "[IterativeImputer] Change: 0.2994529991999932, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 58/130, elapsed time 16.06\n", - "[IterativeImputer] Change: 0.27819592411260025, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 59/130, elapsed time 16.43\n", - "[IterativeImputer] Change: 0.2584440487649776, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 60/130, elapsed time 17.03\n", - "[IterativeImputer] Change: 0.240091046225952, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 61/130, elapsed time 17.43\n", - "[IterativeImputer] Change: 0.22303808181700363, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 62/130, elapsed time 17.84\n", - "[IterativeImputer] Change: 0.20719328659289798, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 63/130, elapsed time 18.17\n", - "[IterativeImputer] Change: 0.19247126773306367, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 64/130, elapsed time 18.43\n", - "[IterativeImputer] Change: 0.17879265319735937, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 65/130, elapsed time 18.69\n", - "[IterativeImputer] Change: 0.16608366841842936, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 66/130, elapsed time 19.00\n", - "[IterativeImputer] Change: 0.1542757425227227, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 67/130, elapsed time 19.30\n", - "[IterativeImputer] Change: 0.14330514232716435, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 68/130, elapsed time 19.57\n", - "[IterativeImputer] Change: 0.1331126318848876, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 69/130, elapsed time 19.85\n", - "[IterativeImputer] Change: 0.12364315599849701, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 70/130, elapsed time 20.28\n", - "[IterativeImputer] Change: 0.1148455458682962, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 71/130, elapsed time 20.59\n", - "[IterativeImputer] Change: 0.10667224550499488, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Ending imputation round 72/130, elapsed time 21.02\n", - "[IterativeImputer] Change: 0.09907905722497329, scaled tolerance: 0.09966888445530192 \n", - "[IterativeImputer] Early stopping criterion reached.\n" - ] - }, - { - "data": { - "text/plain": [ - "IterativeImputer(max_iter=130, random_state=0, verbose=2)" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "# Fit the iterative imputer\n", - "imp_iter.fit(big)" + "### I. Boxplots to directly visualize the imputations" ] }, { - "cell_type": "code", - "execution_count": 120, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (84, 56)\n", - "[IterativeImputer] Ending imputation round 1/72, elapsed time 0.02\n", - "[IterativeImputer] Ending imputation round 2/72, elapsed time 0.03\n", - "[IterativeImputer] Ending imputation round 3/72, elapsed time 0.05\n", - "[IterativeImputer] Ending imputation round 4/72, elapsed time 0.07\n", - "[IterativeImputer] Ending imputation round 5/72, elapsed time 0.09\n", - "[IterativeImputer] Ending imputation round 6/72, elapsed time 0.10\n", - "[IterativeImputer] Ending imputation round 7/72, elapsed time 0.11\n", - "[IterativeImputer] Ending imputation round 8/72, elapsed time 0.12\n", - "[IterativeImputer] Ending imputation round 9/72, elapsed time 0.13\n", - "[IterativeImputer] Ending imputation round 10/72, elapsed time 0.14\n", - "[IterativeImputer] Ending imputation round 11/72, elapsed time 0.15\n", - "[IterativeImputer] Ending imputation round 12/72, elapsed time 0.16\n", - "[IterativeImputer] Ending imputation round 13/72, elapsed time 0.17\n", - "[IterativeImputer] Ending imputation round 14/72, elapsed time 0.18\n", - "[IterativeImputer] Ending imputation round 15/72, elapsed time 0.19\n", - "[IterativeImputer] Ending imputation round 16/72, elapsed time 0.20\n", - "[IterativeImputer] Ending imputation round 17/72, elapsed time 0.21\n", - "[IterativeImputer] Ending imputation round 18/72, elapsed time 0.22\n", - "[IterativeImputer] Ending imputation round 19/72, elapsed time 0.23\n", - "[IterativeImputer] Ending imputation round 20/72, elapsed time 0.24\n", - "[IterativeImputer] Ending imputation round 21/72, elapsed time 0.25\n", - "[IterativeImputer] Ending imputation round 22/72, elapsed time 0.26\n", - "[IterativeImputer] Ending imputation round 23/72, elapsed time 0.27\n", - "[IterativeImputer] Ending imputation round 24/72, elapsed time 0.28\n", - "[IterativeImputer] Ending imputation round 25/72, elapsed time 0.29\n", - "[IterativeImputer] Ending imputation round 26/72, elapsed time 0.30\n", - "[IterativeImputer] Ending imputation round 27/72, elapsed time 0.31\n", - "[IterativeImputer] Ending imputation round 28/72, elapsed time 0.32\n", - "[IterativeImputer] Ending imputation round 29/72, elapsed time 0.33\n", - "[IterativeImputer] Ending imputation round 30/72, elapsed time 0.34\n", - "[IterativeImputer] Ending imputation round 31/72, elapsed time 0.35\n", - "[IterativeImputer] Ending imputation round 32/72, elapsed time 0.36\n", - "[IterativeImputer] Ending imputation round 33/72, elapsed time 0.37\n", - "[IterativeImputer] Ending imputation round 34/72, elapsed time 0.38\n", - "[IterativeImputer] Ending imputation round 35/72, elapsed time 0.39\n", - "[IterativeImputer] Ending imputation round 36/72, elapsed time 0.40\n", - "[IterativeImputer] Ending imputation round 37/72, elapsed time 0.41\n", - "[IterativeImputer] Ending imputation round 38/72, elapsed time 0.42\n", - "[IterativeImputer] Ending imputation round 39/72, elapsed time 0.43\n", - "[IterativeImputer] Ending imputation round 40/72, elapsed time 0.44\n", - "[IterativeImputer] Ending imputation round 41/72, elapsed time 0.45\n", - "[IterativeImputer] Ending imputation round 42/72, elapsed time 0.46\n", - "[IterativeImputer] Ending imputation round 43/72, elapsed time 0.47\n", - "[IterativeImputer] Ending imputation round 44/72, elapsed time 0.48\n", - "[IterativeImputer] Ending imputation round 45/72, elapsed time 0.49\n", - "[IterativeImputer] Ending imputation round 46/72, elapsed time 0.50\n", - "[IterativeImputer] Ending imputation round 47/72, elapsed time 0.51\n", - "[IterativeImputer] Ending imputation round 48/72, elapsed time 0.52\n", - "[IterativeImputer] Ending imputation round 49/72, elapsed time 0.53\n", - "[IterativeImputer] Ending imputation round 50/72, elapsed time 0.54\n", - "[IterativeImputer] Ending imputation round 51/72, elapsed time 0.55\n", - "[IterativeImputer] Ending imputation round 52/72, elapsed time 0.55\n", - "[IterativeImputer] Ending imputation round 53/72, elapsed time 0.56\n", - "[IterativeImputer] Ending imputation round 54/72, elapsed time 0.57\n", - "[IterativeImputer] Ending imputation round 55/72, elapsed time 0.58\n", - "[IterativeImputer] Ending imputation round 56/72, elapsed time 0.59\n", - "[IterativeImputer] Ending imputation round 57/72, elapsed time 0.60\n", - "[IterativeImputer] Ending imputation round 58/72, elapsed time 0.61\n", - "[IterativeImputer] Ending imputation round 59/72, elapsed time 0.62\n", - "[IterativeImputer] Ending imputation round 60/72, elapsed time 0.63\n", - "[IterativeImputer] Ending imputation round 61/72, elapsed time 0.64\n", - "[IterativeImputer] Ending imputation round 62/72, elapsed time 0.65\n", - "[IterativeImputer] Ending imputation round 63/72, elapsed time 0.66\n", - "[IterativeImputer] Ending imputation round 64/72, elapsed time 0.67\n", - "[IterativeImputer] Ending imputation round 65/72, elapsed time 0.68\n", - "[IterativeImputer] Ending imputation round 66/72, elapsed time 0.69\n", - "[IterativeImputer] Ending imputation round 67/72, elapsed time 0.70\n", - "[IterativeImputer] Ending imputation round 68/72, elapsed time 0.71\n", - "[IterativeImputer] Ending imputation round 69/72, elapsed time 0.72\n", - "[IterativeImputer] Ending imputation round 70/72, elapsed time 0.73\n", - "[IterativeImputer] Ending imputation round 71/72, elapsed time 0.74\n", - "[IterativeImputer] Ending imputation round 72/72, elapsed time 0.75\n" - ] - } - ], "source": [ - "# Transform resulting dataset\n", - "# NOTE: imputation using all + stigma indicators = iuasi\n", - "iuasi = pd.DataFrame(imp_iter.transform(big), columns=big.columns, index=big.index)" + "#### 1. Women" ] }, { "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th></th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.W</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.M</th>\n", - " </tr>\n", - " <tr>\n", - " <th>Country</th>\n", - " <th>Survey</th>\n", - " <th></th>\n", - " <th></th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>Angola</th>\n", - " <th>2015</th>\n", - " <td>63.800000</td>\n", - " <td>65.400000</td>\n", - " </tr>\n", - " <tr>\n", - " <th rowspan=\"4\" valign=\"top\">Benin</th>\n", - " <th>2017</th>\n", - " <td>26.500000</td>\n", - " <td>31.600000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2011</th>\n", - " <td>40.400000</td>\n", - " <td>44.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2006</th>\n", - " <td>27.500000</td>\n", - " <td>36.700000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2001</th>\n", - " <td>24.859568</td>\n", - " <td>43.117716</td>\n", - " </tr>\n", - " <tr>\n", - " <th>...</th>\n", - " <th>...</th>\n", - " <td>...</td>\n", - " <td>...</td>\n", - " </tr>\n", - " <tr>\n", - " <th rowspan=\"2\" valign=\"top\">Zambia</th>\n", - " <th>2007</th>\n", - " <td>66.600000</td>\n", - " <td>72.500000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2001</th>\n", - " <td>64.169835</td>\n", - " <td>80.952078</td>\n", - " </tr>\n", - " <tr>\n", - " <th rowspan=\"3\" valign=\"top\">Zimbabwe</th>\n", - " <th>2015</th>\n", - " <td>80.100000</td>\n", - " <td>83.100000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2010</th>\n", - " <td>77.900000</td>\n", - " <td>80.300000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2005</th>\n", - " <td>56.800000</td>\n", - " <td>67.300000</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>84 rows × 2 columns</p>\n", - "</div>" - ], - "text/plain": [ - " Buy.from.shopkeeper.with.AIDS.W \\\n", - "Country Survey \n", - "Angola 2015 63.800000 \n", - "Benin 2017 26.500000 \n", - " 2011 40.400000 \n", - " 2006 27.500000 \n", - " 2001 24.859568 \n", - "... ... \n", - "Zambia 2007 66.600000 \n", - " 2001 64.169835 \n", - "Zimbabwe 2015 80.100000 \n", - " 2010 77.900000 \n", - " 2005 56.800000 \n", - "\n", - " Buy.from.shopkeeper.with.AIDS.M \n", - "Country Survey \n", - "Angola 2015 65.400000 \n", - "Benin 2017 31.600000 \n", - " 2011 44.500000 \n", - " 2006 36.700000 \n", - " 2001 43.117716 \n", - "... ... \n", - "Zambia 2007 72.500000 \n", - " 2001 80.952078 \n", - "Zimbabwe 2015 83.100000 \n", - " 2010 80.300000 \n", - " 2005 67.300000 \n", - "\n", - "[84 rows x 2 columns]" - ] - }, - "execution_count": 121, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Keep only shopkeeper indicators and rename columns to match\n", - "iuasi = iuasi[['Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Women]Total 15-49','Accepting attitudes - Would buy fresh vegetables from a shopkeeper with AIDS (2) [Men]Total 15-49']]\n", - "iuasi.columns = ['Buy.from.shopkeeper.with.AIDS.W', 'Buy.from.shopkeeper.with.AIDS.M']\n", - "iuasi" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Compare the values from the different imputation methods" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### I. Merge the original two indicators (with missing data) with three imputation indicators into one dataframe" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [], - "source": [ - "# Merge them\n", - "df = pd.merge(\n", - " pd.merge(\n", - " pd.merge(final_stigma.reset_index(), iua.reset_index(), how='left', on=['Country','Survey'], suffixes=(None, \"_all\")), \n", - " iuosi.reset_index(), how='left', on=['Country','Survey'], suffixes=(None, \"_only_stigma\")), \n", - " iuasi.reset_index(), how='left', on=['Country', 'Survey'], suffixes=(None, \"_all_plus_stigma\"))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [], - "source": [ - "# There is an issue with the duplicate entry for Uganda 2011\n", - "# Merging the dataframes creates a combination of entries (4 in total instead of 1)\n", - "# We need to remove them and keep only one entry with Uganda 2011 that has 71.6 and 79.5 as values\n", - "\n", - "# First list those entries\n", - "#df[(df.Country == 'Uganda') & (df.Survey == '2011')]\n", - "\n", - "# We want to remove index 70, 71, and 72\n", - "df = df.drop([70,71,72])" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "# Reset index\n", - "df = df.set_index(['Country', 'Survey'])" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [], - "source": [ - "# Add column to indicate whether values here are imputed\n", - "# Once for W and once for M since they are technically different indicators\n", - "df['imputed.W']=np.where(df['Buy.from.shopkeeper.with.AIDS.W'].isnull(),1,0)\n", - "df['imputed.M']=np.where(df['Buy.from.shopkeeper.with.AIDS.M'].isnull(),1,0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### I. Boxplots to directly visualize the imputations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1. Women" - ] - }, - { - "cell_type": "code", - "execution_count": 126, + "execution_count": 348, "metadata": {}, "outputs": [ { @@ -2341,13 +1993,13 @@ "2013" ], [ - "2011" + "2008" ], [ - "2011" + "2013" ], [ - "2011" + "2016" ], [ "2011" @@ -2435,8 +2087,8 @@ "Senegal", "Senegal", "Sierra Leone", - "Uganda", - "Uganda", + "Sierra Leone", + "Togo", "Uganda", "Uganda", "Uganda", @@ -2519,9 +2171,9 @@ 48.7, 26.4, 44.1, - 71.6, - 71.6, - 71.6, + 20.1, + 51.4, + 72.7, 71.6, 57.7, 75.4, @@ -2559,18 +2211,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -2588,9 +2231,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -2607,19 +2247,16 @@ "x0": " ", "xaxis": "x", "y": [ - 48.30345508195943, - 53.76048612772965, - 51.894103563496, - 56.50975754815431, - 55.91131125503006, - 49.67400671814656, - 66.24208937915319, - null, - 52.92798233790131, - null, - null, - 45.77749212207978, - 55.47795028053216 + 27.22165334026072, + 20.74449338352134, + 28.93552206066888, + 58.0498599283529, + 61.85272188475734, + 24.80890630136319, + 63.25615447558266, + 52.35177558833146, + 50.82263058897482, + 65.09551816600218 ], "y0": " ", "yaxis": "y" @@ -2649,18 +2286,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -2678,9 +2306,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -2704,10 +2329,7 @@ 38.91865731391849, 33.88592072413024, 55.366243901138766, - null, 52.054518148465256, - null, - null, 37.20176006394223, 60.24548066020205 ], @@ -2739,18 +2361,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -2768,9 +2381,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -2787,19 +2397,16 @@ "x0": " ", "xaxis": "x", "y": [ - 24.859568253699027, - 23.390582857932404, - 14.110043771471155, - 57.230233773406596, - 52.15387049883477, - 31.469286375040596, - 61.202271342000905, - 71.64895404746395, - 48.896811927207665, - 56.22646152583338, - 41.43827676061918, - 40.16917287300395, - 64.16983532722774 + 24.303358509816114, + 23.768724015518746, + 14.16596363529338, + 57.25908115534936, + 51.54456956727535, + 31.345534359205388, + 61.39611367484593, + 49.000493395978246, + 40.698110229533256, + 63.81748892534672 ], "y0": " ", "yaxis": "y" @@ -3654,11 +3261,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+1+UdcL/8e/f4737bXdr6y531y2PaVqaZvpNMNAAUQwRVPB8KkNMM9JMUgMzD6gp2glzc/FUqIWYlpOlocjZNJmDMO/vD8ToOAMDzDCfay5fr8fj+XjIcLriHq67fXd5zf8RERERERERERERERnp/5g+ACIiIiIiIiIiIqIHNQZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgTbMrtY3AwAAAAAAIIYRmYyBNsxMn0AAAAAAAAAQHiKTMdCGmekTCAAAAAAAAMJDZDIG2jAzfQIBAAAAAABAeIhMxkAbZqZPIAAAAAAAAAgPkckYaMPM9AkEAAAAAAAA4SEyGQNtmJk+gQAAAAAAACA8RCZjoA0z0ycQAAAAAAAAhCcanb1wSYPHZUble+0+eKTbn3P+4uWgx/fsxBwdKD3he9vjuaO/Dpzk95jL7dFDAxL1y6/Xe3bAD3gMtGFm+gQCAAAAAACA8ESjOy0tarxxs9e/j9fr1T+fm9btz+tooH0jf5vmvVHge/vrM+f1xIhULcjd5HvsePk59X9hRo+Olxhow870CQQAAAAAAADhiUb3XkE7NXu11mzcpdQ5qzXoxZnK37xX720t0aSMXD0zYbZ++OlXSVJSVp5y132kSRm5GvPKAuW8vlGeOy2SpIcGJKqu4Ybv67e/PTVnjfr0i9fw+Gxdq2nQT5evKX76axoyPkvD47NV8f1Pvs/ZULRfT45+VSMT5mr9B/uCDrT/PVmhgWMzfG+vLditvPXbNWR8lu+xNzfs9BtxqXsx0IaZ6RMIAAAAAAAAwhON7h1op89bq6SslfJ6vfrl1+v605MTteeT/0qS3tmyVwvzNktqG3LHT1miOy0tam31alzKYpWUHpfU8UDbeOOmHhqQKKntatpRifO0/eMvJUkV5y/pXyPT5LnTIscvV/XYsBTV1jeptdWrzMXrgg60TpdbDw1IVFV1nSTppalLVfH9TxoyPlPXaxslSS+mLNYnX57sjR/bAxEDbZiZPoEAAAAAAAAgPNHo/oG2qPgLSVJLS6v69ItXfeNvkqT9nx9T6pzVktoG2i07PvV9jbcKirV41RZJXRtof75Srb8OnKSWllbfx415ZYFOnP5eH+095Ps+UtuVsh3dIzchfYV2lXylZqdbjw+fopaWVs1dUaB9nx3V77edeqh/gppu3Ar7Z/SgxkAbZqZPIADso7TMpaJil8orzR8LAAAAADxIotH9A+29L+TVp1+8bjc7JUkHSk8oedYqSW0D7b0f9/62g5q5+B1JXRtoK77/SX96cqL6vzDD54kRqfr08Em9W7hPc5Zv8H1+xfmOX8Tsva0lmrn4HR395qySsvIkSfs+O6qc1zfqq+PfavTkBeH+eB7oGGjDzPQJBIA95Oa7lJjm8Vlb4DZ+TAAAAADwoIhGPR1o39920Pdxq97doSVvfiBJ+tugyaqpa5Ikudwe9ekXHzDQVtc26LFhKUGPZ9veQ5qas8b39uGjZzocaM/98LOeGp2utwqKVbDtgO9rDxmfpVXv7tCqd3d0/wdCvhhow8z0CQRA7Cst8x9n29n1StrKn5wq2u1+IJj+WQMAAADommjU04F2bPIiOV1uOV1uDY/P1qeH2+71Onhcpk6ePi+p7bYI//PviapruKGbt27rT09O1O1mlyTp+UnzffetbWi6qZmL39Hvt506f/GyHhuWopq6Jt1paVHa3Ld8x/fT5Ws6cuI73/F5vV71HTFVz07M0dkLl3yPDxmfqedeztHxU+d65Wf2oMRAG2amTyAAYl9hcfCBtrDYZfzYesPR8uD/vHZk+mcNAAAAoGuiUU8H2tx1H+nFlMV6cvSrmruiwHc/2ZLS4xr60ixNysjVe1tL9K+Raaqtb7uiNjHjDT02LEXfnXPo5yvVip/+mgaPy9TQl2b5XjBMarun7b9GpmnYhNnavONTDRibIUn6aO8hJaSv8Dv+jEXv6O9PJ/ndz3buigL9deAkud2eSP+4HqgYaMPM9AkEQOyqdDi1catLC153P3BX0Bbuip61BW2DcMY8d1S/b+Eup/GfNQAAAICusWpTs1dr32dHTR8G9XIMtGFm+gQCIDZVOpxKzbo7xibcN85yD9rIab9id/FKfqYAAAAAgrNqDLQPRgy0YWb6BAIgNm3cGuSv+U/zaNN2l22vnDWFgRYAAABAKFaNgfbBiIE2zEyfQADEpiV5wW9rUFbOX4uPNAZaAAAAAKEQmYyBNsxMn0AAxKadJYFX0KZm8qJSvYGBFgAAAEAoRCZjoA0z0ycQALErN9/lN85y9WzvYKAFAAAAEAqRyRhow8z0CQRAbKt0OBlmexkDLQAAAIBQiEzGQBtmpk8gAIDOMdACAAAACMVqBXvNkq6g2IyBNsxMn0AAAJ1joAUAAAAQitVioH2wYqANM9MnEAD25ahqVlm5U6VHXXJUmT+eWMVACwAAACAUq9U+uO492NIlDLSxHQNtmJk+gQCwp0qHUxnz3XdfRCzLo/JK88cVixhoAQAAAIRitaI50N5paVGffvFatqbI7/HSI6c0NXt1JP5xutXZC5c0eFxmjz43edYq7fvsaISPqPdjoA0z0ycQAPaUm+8K+KsqGfMZGHuCgRYAAABAKFYr2gPtXwdO0r9Gpsnxc5XvcVMD7Z2WFjXeuNmjz/3t1m253LF3JTEDbZiZPoEAsKfsZcHvJ2T6uGIRAy0AAACAUKxWtAfavwycpO0ff6lJGbm+x+8daG/89rvSF+RryPgsPTNhttZt+dj3cY8OTda2vYeUPGuVhk2YrXcL9wX9PucvXtbIhLnKXfeR4tKWa3jcHB0/dU5pc9/Scy/naOnqDyT5X0Fb9vVZjZiYrSHjMzU8bo6+Ov5tp4/fewVtZ8f13tYS9X9hhkYlztP2fYfV/4UZPfrZRSoG2jAzfQIBYE/BrqBNzWSg7QkGWgAAAAChWK1oD7R/fupltbZ6NTJhrg6VnZbkP9AuXLlJc1cUyOv16uat2xoyPlNHTlRIkh4fPkVvFRRLkuobf9ND/RN0u9kV8H1+vPSr/uffE3X67I+SpMzF6zQ8Pltut0cut0ePDHlFdQ03/Aba4fHZOlXxgyTpguOK5r1R0Onj9w60HR3XxUtVenRosmrrm+R2ezR5Zm6Pb6kQqRhow8z0CQSAPZVXNis103+gLS1zGT+uWMRACwAAACAUqxXtgfZPT06UJJ08fV5DxmfK47njN9A+OfpVnfvhZ9/nvLlhp15/+0NJbUPo+YuXfe97bFiKfr1WG/B9frz0qx4fPsX39pqNu7Ro1Rbf20PGZ+r7H3/xG2gT0ldo0aotunK1xu9rdfT4/QNtsOPatveQpuas8T3++VffMNDGeqZPIABiS6XDqaJil3YdcKnS4Qz5sYXFLhUWu3iBsDAw0AIAAAAIxWqZGmglKW3uW3pva4nfQPvQgERdu17v+5hNH32irCXrJbUNoZerrvve1/524a7P9fjwKXp8+BQV7vpcP1761e9WAm+/v1tv5G/zvT30pVk6e+GS30Bb13BDS978QP1GTdfwuDk6cuK7Th+/f6ANdlzvFu7T3BUFvse/O+dgoI31TJ9AAFhbYbFLS/PcWprn1tbd/rctSM3yMLxGAQMtAAAAgFCslsmB9tdrteo7Yqq27zvsG2j7j0nX9z/+4vuYNzfs1Ip7rqANNoTebnapruGG6hpu6Hazq0cD7b0d+u8p/f3pJLW0tHb4eFcG2qLiL/Tq/LW+x0uPnGKgjfVMn0AAWNfGrffdR3Za4It+5eZz24LexkALAAAAIBSrZXKgldoG2MHjMn0D7ZI3P9D83Pcltb1g2MCxGTp+6pykjofQ++vuQNvsdGts8iJV1zZIkq5crdGjQ5P1+21X0MdbW71dGmgrvv9JT4xIVeONm/J47igpK4+BNtYzfQIBYF33j7HBZMxjNOxtDLQAAAAAQrFapgfa281O9Rs13TfQ/nbrtmYufkdDX5qlZybM1qaPPvF9bG8NtJK0++ARDRmfpYFjMzQ8bo6+OFLe6eNdGWgl6Y38bXpy9Kt6MWWxPtxTqiHjGWhjOtMnEADW5KgKHGgTuILWCAZaAAAAAKFYra5c8BMMda3WVq/vzydPn9eYVxaYOxgx0Iad6RMIAOvKXnbfQJvmUfIM/6tnQ71QGMLHQAsAAAAgFKvFQNt7NTTd1CNDXtHFS1Xyer2au6JAy9YUGj0mBtowM30CAWBdlQ6n30i7catLjqpmlZQ6VVrW9mfTx/ggYKAFAAAAEAo9WG3/+EsNGJuh/mPSlTpntRpv3DR6PEYG2unz1naZ1TN9AgFgfQyxZjHQAgAAAAiFyGRGBtrlbxV1mdUzfQIB8OAoK3dyS4QeYKAFAAAAEAqRybjFQZiZPoEAsL+ycqdSs+7eKmFtAUNjdzDQAgAAAAiFyGTc4iDMTJ9AANhfambgjd9LSrmStqsYaAEAAACEQmQybnHwR16vV29u2Kkh4zM1ZHymcl7fqGanW5J05WqN4qe/pv8dlqJRifN0quJH3+eZPoEAsLeycmfQV+bMzXcZP7ZYwUALAAAAIBSr1TSmb49QbGbpWxwUbDsQte/16eGTGj15gZqdbrW0tGpqzhqt2/KxJCkubbk27/hULS2tOnKiQv1GTZfnToskBloAvav8XPCBduNWBtquYqAFAAAAEIrVYqB9sLLEQFvx/U/6aO8hbdnxqU/uuo/0t0GTo3YM+Zv3aunqD3xvFxV/oRkL81Xf+JseGZKkOy0tvvc9P2m+Tp4+L4mBFkDkOaqatTLf5Rtj03PcfuNsaqaHFwvrBgZaAAAAAKFYrfbB1bl9Y5cw0MZ2xgfazTs+1f99KkEjJmbrz0+9rFGJ8/TXgZM09KVZ2lXyVdSO45tvL+iZCbPVeOOmXG6PkrJWalfJVzpV8aOenZjj97EzFuZr+77DkhhoAUTexq2ugCtmF+a6lZvv0satLsbZbmKgBQAAABCK1TI10I6fskTPvey/g52/eFmDx2VKkqZmr9a+z46G/X3IP+MDbf8x6b57uv7zuWmSpBs3f1f6grd15MR3UT2WRau26KH+CXp48GTFT39NHs8dHf3mrMYmLfT7uJzXN2rLjk8lSQ033QAQUlWNW5u2ubX8TY8+/szT6cfOnB94S4PEtM4/Bx375ru2n9/SVeaPBQAAAIA1WS0TA+3FS1VKylqplNmrdKbyou9xBtrez/hA+9CARN/tA54Ykep7vKauScPj5kTtOD7ae0iTZ+bqdrNLLS2tWramSPNz39fpsz9qeHy238emL3hbO/f/R5LkdLcAQKcabrRo6iz/sfWtdz0dfvz81+4EjLMpGR5t+OCOinbc0Y8/3zH+zxRLKr5vUWKaR6+92fHPHAAAAMCDzWqZGGjfeGebdh88opLS41qYt9n3OANt72d8oB0yPkuHj56RJD0zYba+O+eQJN36vVmPDEmK2nFMzV6tHfsP+94+U3lRg8dlqvHGTf1t0GQ1O+/+15Qh4zN1+mzbVb+mL8EHYH2FxYG3LEhM86i8MvjH7ywJ/PiE+94uK+c2B13FLQ4AAAAAhGK1oj3QtrS0atCLM3Xr92Y1O93qPyZdbrdHEgNtNDI+0O4+eER9+sWrtr5JG4r26/HhUzRjYb6Gx83RpIzcqB3Hmxt2atrcNb6reVe/t0tTs1dLkhLSV2jdlo/V0tKq/V8c08CxGWppaZXEQAsgtGD3lA01spaWubQkz60leW4lpQd+7pI8xsauYqAFAAAAEIrVivZA+9XxbzVjYb7v7dnLNuiz/3wjiYE2GhkfaCXJ8ctV3+C5fd9hzVm+QW+/v1s3fvs9asfw+22nZi17V4PHZWrwuEwlZa3UtZoGSVJVdZ3i0pbrsWEpGj15gSov/Oz7PNMnEADWV1oWONCmZnrkqOra5wcbd7OXeYz/c8UKBloAAAAAoVitaA+06Qve1sODJ+vRocl6dGiyHh48WVPmvCmJgTYaWWKg7Ur9x6SbPoSgmT6BAIgN915FOyXTo/z33SoqdnXpVgXZywIH2rUFjI1dxUALAAAAIBSrFc2B9rdbt9V3xFR5PHd8j91padE/n5umhqabDLRRKGYG2keHJps+hKCZPoEAiB2OqmZ9ecypjPluv7F1Z4nL7+MqHf6jbXllszLmuf1ub9DVq2/BQAsAAAAgNKsVzYF2295Dfrc3aG/2sg0q3PU5A20UYqANM9MnEACxpaP70e464NLb798dYTPmuwNeRKys3NnhC4uhYwy0AAAAAEKxWtEcaMcmL9KB0hMBj5ceOaXRkxcw0EYhBtowM30CARBbluS5gw60CVMDH8uYz6AYCQy0AAAAAEKxWu2Da3dRbMZAG2amTyAAYsvOkiBX0E7zKGFa4ECbmObhitkIYKAFAAAAEIrVYqB9sGKgDTPTJxAAscVRdd+LfnUyziamebjXbAQw0AIAAAAIhchkDLRhZvoEAiA2lZU7tTDXrYT2WxwEGWdz813Gj9MOGGgBAAAAhEJkMgbaMDN9AgEQuxxVzcqYd/eetAlpHs1d7taSPLcKixlnI4WBFgAAAEAoRCYzNtC+mLJY+Zv3quL8JbW2ekN+/NkLl6JwVN3P9AkEQGxzVDWrpNSpnSUuVTqcxo/HjhhoAQAAAIRCZDJjA+2yNYUaNmG2+vSLV98RU5W1dL32f35MjTdumjqkHmX6BALAuhxVzdq41aWM+W7lLPdo14HIXBXrqGq7RQL3p+0aBloAAAAAoRCZzPgtDq7XNmr3wSPKXLxO/3xumv7n3xM1Nmmh3n5/t7475zB9eCEzfQIBYF0bt7oC7iu7syS8kXZnyd2vmZrlUUkpV92GwkALAAAAIBSr1TSmb49QbGZ8oL03r9erC44ren/bQQ0Zn6U+/eJNH1LITJ9AAFjX/eNsYppHS/J6PhKWVwb/mtwaoXMMtAAAAABCsVoMtA9WlhhoW1u9OnvhkjYU7dfLr76uvw6cpP4vzFDO6xtNH1rITJ9AAFhXsDE1e5mnx1+vsDjwitxIXJVrdwy0AAAAAEKxWu2Dq3P7xi5hoI3tjA20V67WaPu+w3p1/lo9/swU9R0xVekL8rV932FdrqoxdVjdzvQJBIB15eYHDqqFxT0fU0tKnUEH2tIyBtrOMNACAAAACMVqRXugbW31atNHn2joS7P0UP8E/fO5aZr3RoHqG38L+bnnL17W4HGZPf7e97b74BHfnx8ePFnVtQ0R+bpWz9hA26dfvB4Z8ooWrdqi8xcvy+v1mjqUsDJ9AgFgXY6qZq0tcLfdLzYzvHG2/etlzHNH7IrcBwUDLQAAAIBQrFa0B9plawo1ZHyWjn1TqVu/N8vxc5XS5r6l4fHZutPS0unnRmqg9Xq9+udz03xv1zf+ptbW2NwLu5uxgbb4wFfKWPSO+o6YqidGpCp9wdvavu+wrlyNnatnJQZaANHlqGq71cGSPLd2lrjkqDJ/TFbHQAsAAAAgFKsVzYH2Wk2D/vzUy7p4qcrv8ZaWVj39/7K0c/9/JEmPDk3Wtr2HlDxrlYZNmK13C/dJujvQHj56RsPjs/2+xvOT5uvQf0/5Pebx3FHW0vUa9OJMDRiboczF6+R0uTU1Z4369IvX8PhsXatp8LuC9r2tJer/wgyNSpyn7fsOq/8LMyRJU7NXa83GXUqds1qDXpyp/M179d7WEk3KyNUzE2brh59+lSTVNdzQ5Jm5GjwuUwPGZqhw1+c9+ln1VsbvQev1enX+4mUVbDugxIw39JeBkzRwbIbm576vTw+fNH14ITN9AgEAdI6BFgAAAEAoViuaA+3+L44FDKvtrdm4S9PnrZUkPT58it4qKJbUdnXrQ/0TdLvZ5RtoPXda9PjwKbrguCKpbfh9dGiy3G6P39f89PDXSsx4Q16vV62tXr2Rv02nKn5U442bemhAou/j2gfai5eq9OjQZNXWN8nt9viGVkmaPm+tkrJWyuv16pdfr+tPT07Unk/+K0l6Z8teLczbLKntCuF5bxRIarvt6kMDElVT19Sjn1dvZHygvb/bzS4VFX+hweMy1adfvOnDCZnpEwgAoHMMtAAAAABCsVrRHGi37T2khPQVHb4vfvprktoG2vMXL/ve99iwFP16rdbvFgcLV27Sqnd3SJIKd32u2cs2BHzNUxU/6N/PT9d/jn0r1z3jbUcD7ba9hzQ1Z43v8c+/+sZvoC0q/kJS2xW/ffrF++6bu//zY0qds9r3Po/nju9rDBmfpdNnf+zqj6jXs8RAW1Vd53vBsP8dlqI/PTlR46cs0Ttb9po+tJCZPoEAADrHQAsAAAAgFKsVzYH28NEzembC7KDve6ugWOkL8iW1DbSXq6773tf+9r0D7ddnzvtuPzDx1df01fFvg37dTw+fVFzacv396STlvL5Rt5tdHQ607xbu09wVBb7Hvzvn8Bto731hsT794nW72SlJOlB6QsmzVklquw1DyuxVGj15gcYmL9JfB07SqYofuveD6sWMDbSHyk5ryZsfaMj4LPXpF69/jUzTnOUbdPDQCd24+bupw+p2pk8gAIDOMdACAAAACMVqRXOgrWu4ob8Nmux3dawktbZ69cyE2dr7aZmkrg20Xq9XT45+VYePnlHfEVPludP5C4w13bilhPQVKth2oMOBtqj4C706f63v8dIjp7o90I6YmO33cQPHZjDQStKfn3pZL01dqncL9+n7H3+R1xubr8pm+gQCAOgcAy0AAACAUKxWNAdaSVpbsFuDx2Xq5Onzcrk9ul7bqBkL8zV68gK1trZtdl0ZaCXpjfxt6v/CDL+rXu+tcNfnevv93fJ6vfJ6vcp+7T29v+2gbt66rT89OVG3m12S7g60Fd//pCdGpKrxxk15PHeUlJXX7YH28eFTVHnhZ0lSSelx/f3pJB05UdHjn1ekMzbQ3rx129S3jmimTyAAgM4x0AIAAAAIxWpFe6D1er3atP0TPf3/svRQ/wT949mpmvdGgZpu3PJ9TFcH2nM//Kw+/eJ19JuzQb9XQ9NNJc9apadGp2vA2AylL3jbN6omZryhx4al6LtzDt9AK7WNvk+OflUvpizWh3tKNWR89wbaD/eU6snRr2pU4jxt+ugTvblhp/7x7FRdra7r8c8sklniHrTBqvj+J+377KjpwwiZ6RMIAGtxVDVrbYFbsxa5NW2WWwtWuLXrgKtHX+vgly7NWuRWxjy33tvqPy4WFru0NM+tpXlulZU7jf9zWxkDLQDAKq6XfqHG5FFqGtNXDdlTVH2mwvgxAQDaWK32wbW7rFBtfZP6jZqulpbWiH3N9qt4Jenk6fMa88qCiH1tK2TZgXbp6g/87jth1UyfQABYh6OqWTnLPUqY5lFimr/C4u6NtAe/dAV8jeWr2wbG3PzA9zHSdoyBFgBgBdVnKgL+R3Rj8ihdvVJj/NgAAAy0kcrr9Srn9Y1at+XjiH3NhqabemTIK7p4qUper1dzVxRo2ZrCiH19K2TZgTZWMn0CAWAdpWVtQ2CwgTY1y9Otr5U2J/BrJKZ55KhqDvp4bn73r9ItP+fUkjy37eUscysxzaMpWeaPJVpM/y4AAALVbl4f9H9IXy/9wvixdeufY9O6Ho8GsaQ+O8X4zxpAdFH41TXcUL9R0zU1e7WcLndEv/b2j7/UgLEZ6j8mXalzVqvxxs2Ifn3TWW6gbbxxU1UWuf9DVzJ9AgFgHSWlzrbBNMhAm5jWvYE2OSP41zh6OvDq2cQ0T49GufYrS2E/pn8XAACBOhpoq48dM35s3frnYKAFYFNEJjM20DpdbuW8vlGf/ecb32PvbS3Rn56cqD794jUqcV5MrOGmTyAArKPS4VRqZvDBbG1B9wbU7D+u+rzXpOmeP94X+PVLSrt/i4P2gTZtjltrN7pgAwy0AGBd1y5cUmPcIL8RsDFpJLc4CKF9EK7dtM74sQCwNyKTGRtoX3/7Qw0elyfbZu0AACAASURBVKmzFy5Jki5XXdefn3pZu0q+0gXHFb2YslgL8zabOrwuZ/oEAsBaSstcmjLTo4R7xtPcfJccVd37Oo6qZk2ZeXekTZjm0cEv225jUF7pP9Ju3NqzFyFrH2hnzHWrcJcTNsBACwDWVn3smBpyUtQYN0j1S2bq2oVLxo/J6hhoAUQLkcmMDbT/fn66Tp4+73t7Q9F+xaUt97198vR5PTU63cShdSvTJxAA1tSdQbbS4dTKP174K2e5R6VlLt/XKC1z6cM9LlU6Aq+Q7e7oez8GWvthoAUA2A0DLYBoITKZsYH2T09OVNONW763U2av0ruF+3xvX69t1J+fetnEoXUr0ycQALEv2C0Lysq7f8uC7mKgtR8GWgCA3TDQAogWq9XTe2hTbGZsoP3fYSn69VqtJMlzp0WPDUvRN99e8L3/p8vX9PgzU0wdXpczfQIBEDtKSp0qKnZp14G7tyQor2yOyD1re4KB1n4YaAEAdsNACyBarBYD7YOVsYE2IX2F8jfvlSRt23tI/3h2qu60tPjev2n7Jxo/ZYmpw+typk8gAGLD2gL/F/3KWd42ooUaaEvLXCoqdunAochfUctAaz8MtAAAu2GgBRAtVqt9cHVu39glDLSxnbGB9usz5/WXgZPUd8RU9ekXr10lX/ne9+GeUj00IFElpcdNHV6XM30CAWB9ZeXOoCNsSWnb6NrRLQ46GnUjhYHWfhhoAQB2w0ALIFqslqmBdvyUJXru5Ry/x85fvKzB4zIlSVOzV2vfZ0e79TUfHZqs6tqGsI+ts3YfPOL788ODJ/f694t0xgZaqe02BrsPHtHZC5f8Hn9/20EVH/iqg8+yVqZPIACsb2eJK+hAW1jcdquDSodTuX+8SFj2srYXCevoytr2UTcSGGjth4EWAGA3DLQAosVqmRhoL16qUlLWSqXMXqUzlRd9j1t9oPV6vfrnc9N8b9c3/qbWVm+vfb/eyOhAa4dMn0AAWF9HY2tnLwRWUhr8qtv2UTcSGGjth4EWAGA3DLQAosVqmRho33hnm3YfPKKS0uNamLfZ93hXBtqkrDzlrvtIkzJyNeaVBcp5faM8d9puZdo+0H57zqGhL83yfc69b5d9fVYjJmZryPhMDY+bo6+OfxvwPTyeO8paul6DXpypAWMzlLl4nZwut6bmrFGffvEaHp+tazUNflfQvre1RP1fmKFRifO0fd9h9X9hhu+fY83GXUqds1qDXpyp/M179d7WEk3KyNUzE2brh59+lSTVNdzQ5Jm5GjwuUwPGZqhw1+dh/Yw7yuhA63Z7tGn7JxqXslj/Gpmmfz8/XQnpK1R84KuYWbpNn0AAWJujqlkbt7qUMc//dgWhXgSMK2jBQAsAAAMtgOixWtEeaFtaWjXoxZm69Xuzmp1u9R+TLrfbI6lrA+3U7NUaP2WJ7rS0qLXVq3Epi323Lu3KQDs8PlunKn6QJF1wXNG8NwoCvsenh79WYsYb8nq9am316o38bTpV8aMab9zUQwMSfR/XPtBevFSlR4cmq7a+SW63xze0StL0eWuVlLVSXq9Xv/x6XX96cqL2fPJfSdI7W/b6Buplawp9x3Llao0eGpComrqmHv+cO8rYQOu506IJ05bpsWEpWramUB/tPaStu0s1a9m7+vNTLyspK8/vRcOsmukTCADrclQ1K2P+3WE2Ic2jjPkelVd27fMLi13dGnW7i4HWfhhoAQB2w0ALIFqsVrQH2q+Of6sZC/N9b89etkGf/ecbSV0faLfs+NT39lsFxVq8aoukrg20CekrtGjVFl25WtPhMZ6q+EH/fn66/nPsW7n+GI8ldTjQbtt7SFNz1vge//yrb/wG2qLiLyS1jdN9+sWrvvE3SdL+z48pdc5q3/s8nju+rzFkfJZOn/2xw2PsacYG2k0ffaJ/PDs16D0ofvjpVz02LEUbPzxg4Mi6l+kTCADr6ug2BaVlXb9NQXll2z1suzrqdgcDrf0w0AIA7IaBFkC0WK1oD7TpC97Ww4Mn69GhyXp0aLIeHjxZU+a8KanrA+29L9T1/raDmrn4HUldG2jrGm5oyZsfqN+o6RoeN0dHTnwX9Dg/PXxScWnL9fenk5Tz+kbdbnZ1ONC+W7hPc1fcvRL3u3MOv4H23uPt0y9et5udkqQDpSeUPGuV7589ZfYqjZ68QGOTF+mvAyf5rvSNZMYG2ucnzdcHOz/r8P1FxV9oeHx2FI+oZ5k+gQCwrvuvgG23syRy95ENBwOt/TDQAgDshoEWQLRYrWgOtL/duq2+I6b6XSl6p6VF/3xumhqabnZ5oH1/20Hf26ve3aElb34g6e5AW3H+koaMz/J9TNnXZ/0G2/YO/feU/v50klpaWjs85qYbt5SQvkIF2w50ONAWFX+hV+ev9T1eeuRUtwfaEROz/T5u4NgMew20fxs0WWcvXOrw/T9fqdZD/ROieEQ9y/QJBIB1dXQf2UpH231kKx1OFRW7VFTs6vQFw8rKndq4te3j2j83Ehho7YeBFgBgNwy0AKLFakVzoN2295Df7Q3am71sgwp3fd7lgXZs8iI5XW45XW4Nj8/Wp4dPSro70FbXtr2A1+1mlyRp4cpNGvrSLDU73RqbvMj3t+yvXK3Ro0OTA16fqnDX53r7/d3yer3yer3Kfu09vb/toG7euq0/PTnR93XbB9qK73/SEyNS1XjjpjyeO0rKyuv2QPv48CmqvPCzJKmk9Lj+/nSSjpyo6NHPubOMDbR9+sUHvb1Be9W1DerTLz56B9TDTJ9AAFjbzpK7V9GmZt59ka+ycqdSs0Lf+uD+2ySkZnX9HrahMNDaT3cG2uozFbp+qFTVZyqM/54AANARBloA0WK1ojnQjk1epAOlJwIeLz1ySqMnL+jyQJu77iO9mLJYT45+VXNXFPiugG0faCXptbVb9ezEHCVl5WnT9k/09P9ru6J298EjGjI+SwPHZmh43Bx9caQ84Hs0NN1U8qxVemp0ugaMzVD6grd9o2pixht6bFiKvjvn8A20kvRG/jY9OfpVvZiyWB/uKdWQ8d0baD/cU6onR7+qUYnztOmjT/Tmhp36x7NTdbW6rgc/6Y5joA0z0ycQALHh/itkl+S5A66szZgf+CJgqZmBV+Dm5kfmFgkMtPbT1YG2dvN637/ANY3pq7pVi4z/jgAAEAwDLYBosVr3/vt6d5iqo+HWdPdehXvy9HmNeWWBuYPpJKMD7d8GTdbDg4P726DJDLQAbCt7WeDwGmxYC/Yx2csi81fYGWjtpysDbfWZiqD/Ilezf4/x3wsAAO7HQAsgWqwWA234NTTd1CNDXtHFS1Xyer2au6JAy9YUmj6soBkbaA+UnugSq2f6BAIgNuXmB76A2JK8wCtoM+YFXmm7tiDw43qCgdZ+ujLQXi/9Iui/yNVuXm/89wIAgPsx0AKIFgovKw60krT94y81YGyG+o9JV+qc1Wq8cdP0IQXN2EBrl0yfQADEJkeV/1W0qZnB7y1bXul/m4PsZR45qiJzDAy09hPWFbTbi4z/XgAAcD8GWgDRQmQyYwNtXcONLrF6pk8gAGJbWblTZeXOTkdXR9Xdj4vk92agtZ+u3oO2Lm+R3zjbkB5n/HcBAIBgGGgBRAuRyYzeg7YrrJ7pEwgA9BQDrf10daC9Wt+smv17VLt5PVfOAgAsjYEWQLQQmczYQHv2wqUusXqmTyAA0FMMtPbTnYEWANAz1ceO6dqFS8aP40HBQAsgWohMZtl70Dpdbn38WZnpwwiZ6RMIAPQUA639MNACQO+pPlOhxuRRvtvD1C/NNH5MDwIGWgDRQmQyyw20Zy9c0sK8zXp0aLL+d1iK6cMJmekTCIDYU1bu1NI8txLTPFqZ7wr64mDRwEBrPwy0ANB7GpNG8gKLBjDQAogWIpNZYqC98dvvKir+XM+9nKM+/eIVP/01lZQel9vtMX1oITN9AgEQWyodTqVmeXxDWmKaR6lZnk5fJKy3MNDaDwMtAPSO6jMVAeNs05i+ashJMX5sdsdACyBaiExmbKD1er069k2lMha9o4cGJGp43BxtKNqvvwycpMtV100dVrczfQIBEFt2lrj8xtl2JaXOqB8LA639MNACQC+5UhN0oK3LW2T+2GyOgRZAtBCZzNhAO2BshvqNmq7lbxWp8sLPvscfHjyZgRaAbTHQgoEWAGJT3bqVfuNsY9wgVZ+pMH5cdsdACyBaiExmbKB9ZEiSXpq6VEXFX6jxxk3f4wy0AOys0uFUauZ9tzjI5BYHYKAFgFhQs3+P6pfMVN26lbp24ZLx43kQMNACiBYikxkbaG83u7Sr5Cu9mLJY//epBKXMXqVPvjypvw1ioAVgb2XlTmUvaxvSluS5eZEwMNACANABBloA0UJkMku8SNjFS1Va/laRHn9mivr0i9ec5Rt09sIl04fVpUyfQABYV1m5U2sL3Fqa59aBQ9G/hUEoDLT2w0ALALAbBloA0UJkMksMtO253R6VlB7Xy6++rj794vXcyzmmDylkpk8gAKyprNwZcJ/ZjVtdulrfLEdVs1bmuwIejzYGWvthoAUA2A0DLYBoITKZpQbae7tcVaM3N+w0fRghM30CAWBNufnBXwyso/cVFkd/pGWgtR8GWgCA3TDQAogWIpNZdqCNlUyfQABY05I8d9CBttIReGVtYppHOcujP6ox0NoPAy0AWMCVGtWtWqSmMX3VFDdYtZvXmz+mGMZACyBaiExm2YH2rYJiDR6XafowQmb6BALAmgqLA6+SzV7WNpwFG2iX5LmjfowMtPbDQAsA5tUvmdk2zt6jZnuR8eOKVQy0AKKFyGSWHWj/e7JCG4r2R/V7njj9vYa+NEuPDHlFSVl5+u3WbUnSlas1ip/+mv53WIpGJc7TqYoffZ9j+gQCwLruvZVB9jKPyivbHt+4NXC8LSmN/ouIMdDaDwMtAJh3/zjbNKavGnJSjB9XrGKgBRAtRCaz7EAb7W7c/F3/fG6aTp4+L5fbo2VrCvXR3kOSpLi05dq841O1tLTqyIkK9Rs1XZ47LZIYaAF0zlHVrEpH4PhaWOxS9rK2K2d3lrhU6XAG/bjexEBrPwy0sJPqMxWqW7VI9UszVbN/r/HjAbqKgTayGGgBRAuRySwx0J6/eFkHSk9o98EjAaLV7oNHNHPxOwGP1zf+pkeGJOlOS4vvsecnzdfJ0+clMdACCE+lw6mc5XevpF2a55ajKjrfm4HWfhhoYRfVx44FDFzcxxOxglscRBYDLYBoITKZ8YE2d91H6tMvXv8amabB4zIDRKvlbxVp8aotSpixQgPGZmj2sg269XuzTlX8qGcn5vh97IyF+dq+77AkBloA4bn3Ngjt1hZE5360DLT2w0ALuwg2cDWN6Wv8uKKt+tuzqs+eYnu176w0/rOOqCs1qlu3Uo1JI9WQHsc4GyYGWgDRQmQy4wPtw4Mn68iJ70wfhuYs36Ah4zN1raZBLrdH0+et1bI1hTr6zVmNTVro97E5r2/Ulh2fSpKabrkBoMeCvWBY6ixPp59z43dPRJyquKPENI8y5rn10V7YQftzKFLPEcCYeVOCDrQ3ahrMH1s0lX8d9OdgO3OnmP9Zw3J8/+5T+G7b86TwXeP/3gbA3ohMZnygfWxYim43O00fhpatKdJra7f63i7/7geNmJit02d/1PD4bL+PTV/wtnbu/48k6XfnHQDoscz5gQPtvNei872/rWwbaGfO92jHPthB+3PI9PMaCNdvG1cFjrMZ8caPK+oaGnXr9NdRc3Pvtraf9Yy4qH7fWz+cN/+zhmX9tnWDmsb01W9bNxg/FgD2RmQy4wPt2oLden/bQdOHoS07PtWc5Rt8b5d/94NGJc5T442b+tugyWp23v2vKUPGZ+r02R8lcYsDAOHZWRJ4i4PSMldUvje3OLAfbnEA27hS43ebg8akkao+U2H+uGzu+rHjahrTV/XZvKAVrINbHACIFiKTGRlok2et8pmas0Z9R0zVsAmzlZSV5/e+5FmronZMdQ039PjwKbrguCLPnRalL8jXG+9skyQlpK/Qui0fq6WlVfu/OKaBYzPU0tIqiYEWQPhKy1zKzW9TVu6M2vdloLUfBlrYzbULlxhmo4iBFlbEQAsgWohMZmSgzVu/vcui2X+Ofav+Y9LVd8RUzVz8jn6/3XbrharqOsWlLddjw1I0evICVV742fc5pk8gANBTDLT2w0ALIBwMtLAiBloA0UJkMuO3OHD8cjXo4y63R+Xf/RDlo+l+pk8gANBTDLT2w0ALIBwMtLAiBloA0UJkMuMD7cODJwd9vP3er1bP9AkEgH2VlTu1NM+t1CyPVua7VOmI7O0PGGjth4EWQDgYaGNLTcle1WdPsb3G5FFt96JOHmX8WKKh9p2Vxp9bwIOKyGTGBtrt+w5r9OQF+p9/T9ToyQsC/Pv56Ro8LtPU4XU50ycQANbnqGrWynyXUrM8Wprn7tJ9ZisdTqVm+b94WMZ8txxVkTsuBlr7YaAFEA4G2j9cqVH1seOqPnbc/LF0ov3KUtjLA//7BxhEZDJjA22z062j35zVQ/0TtGXHpwG27zusazUNpg6vy5k+gQCwvuxl/kNrYppH5ZWdf05hsSvgcxLTPBF9ETEGWvthoAUQDgbaZlWfqfBdsdk0pq8aZsTp2oVLxo8rmPaBtuHVCapfuQAxrmH+9Af+9w8wjchkxm9xcOybStOHEFamTyAArK2s3Bl0aC0sdnX6eR0NtFt3d/553cFAaz8MtADCwUDbrIaclMArGpfMNH5cwbQPtPVzklW7aR1iXP3KBQ/87x9gGpHJjAy00+et1cVLVb4/d8bqmT6BALC2jgbajVs7H1rLK5sDP2+aRwkRvIqWgdZ+whlor124pPqlmWrInqL6pZmWvWIMQO9hoG0O/tfO4wYbP65gGGjthYEWMI/IZEYG2uVvFely1XXfnztj9UyfQABYm6OqWRnz3D26VcHez1xKmNb28Ql/jLOJaR6tLXBH5NgYaO2nxwPtlRo1xQ32GyQak0fp6pUa479DAKKHgbZZjUkjAwbahpy7P4/qMxVt/zFrRpzqVi0yep5koLUXBlrAPCKTGb/FwVsFxfrm2wvy3GkxfSg9yvQJBID1lVc2a0le20ibMc+t0rKu3aYg6FW0aR7l5kfmNgcMtPbT04G2Zv+eoFeN1ezfc/fjrtSobtUiNWRPUd26PNuNt9XfnjX+yt28OjhMY6Bt1vXSLwLOhdXHjulqfdvfNLj/P2Y1zIgzdqwMtPbCQAuYR2Qy4wPt1Jw1emJEqh4ePFmvZK7Upo8+0fmLl+X1ek0fWpcyfQIBYG/BXmCspJRbHCDCA+32oqADbe27q9texfxKjd+L5pgeJXpD+zBld/wPf3SGgbZN9ZkK1a1bqdrN61V9psL3eO3m9UF/r9oH3GhjoLUXBlrAPCKTGR9o23P8clXb9x1W1tL16v/CDD0xIlXpC/JNH1bITJ9AANhbeaX/SBvqxcW6g4HWfno60F67cClgcGgc+081jX6i7c8vPx10lLhe+kXEn/OmrmRtSJ9gfDyNhsa4Qba7crf9/slNcYPVkD3F2FhmBwy0netooO2Nc2GXjoeB1lYYaAHziExmmYFWkm793qwjJyq0+r1dembCbP35qZdNH1LITJ9AAKCnGGjtJ5wXCbte+oUa4wa1jXjj+vnG2aYxff3/fA+/WyBEyINyJeuDpjcHh4b0OP/vFzeYF7kL8/ePgSi46mPHAp7bjXGDjN3yhYHWXhhoAfOITGZ8oP3ky5NatqZQoxLn6R/PTlXyrFV6t3CfTp4+r2an2/Thhcz0CQQAeoqB1n7CGWjv1ZCTct8IEXyg7Y0RrH0gakx4RvUrFyDGNcyf3quDQ7DBrGlMX9VuXm/8HBuLGGhDq9m/5+5/zEoa6XcLhGhjoLUXBlrAPCKTGR9o+/SL1zMTZqtw1+f6/bbT9OF0O9MnEADoKQZa+4nUQFu/ZGaQ0euJu6NE3KBeuXr2av09A23SSOP/YxnWHxwYaHvn94+BKDbUbmKgtRMGWsA8IpMZH2i/O+fQxg8PKCkrT48/M0WjJy/Qa2u36vOvvlF942+mDy9kpk8gANBTDLT2E6mBtvpMRYeDV29fLcZAay+9PjhcqVFj0siA5yv3oQ3v94+BKDbUbmKgtRMGWsA8IpMZH2jvrbXVq3M//KyCbQc09KVZ6tMv3vQhhcz0CQQAeoqB1n4iNdBerb/7KuZ1eYuCvgDOtQuXdP1QqaqPHY/o85KB1l6iMThUn6nw3ZajMWmksRdssgMG2thSu4mB1k4YaAHziExmiYH21u/NKvv6rNYW7FZC+go9MuQVDX1plhat2mL60EJm+gQCAD3FQGs/kRxoO1Ozf4/f1YoN2VMi9rUZaO2FwSG2MNDGltpNDLR2wvkSMI/IZMYH2udeztH//HuiBozNUM7rG7Xvs6OqrW8yfVhdzvQJBAB6ioHWfqIy0F6pUVPc4IC/Ul6zvSgiX5+B1l4YHGILA21sqd3EQGsnnC8B84hMZnyg3VXylX69Vmv6MHqc6RMIgNhWXtmsjPluJaZ5lJrlUUmpM2rfm4HWfiIx0Nbs36Pazes7vIdnRy/KVJe3KCLPSwZae2FwiC0MtLGldhMDrZ1wvgTMIzKZ8YG2o367dVvVtQ2mDyNkpk8gAGKXo6pZqVke36jWrqw8OiMtA639hDvQNqTH+Y+u61YGfMy1C5eCDrSRvoIW9sLgEBsYaGMLA629MNAC5hGZzLID7cKVm3iRMAC2VlbuDBhnE9M82rjVFZXvz0BrP+EMtDXbi4IOa9VnKgI+tm7dSr+PaUiP09UrNRF5XjLQ2lOsDw7Xfrik68eP217tzqI/fqcnGD+WaKj+9qzx51Y4GGjthYEWMI/IZJYdaH+9VqtvzzlMH0bITJ9AAMSujgbawmIGWkR/oK3dvD74QNvBrQ6ul36h2s3r266cjdA4e7WeWxzYTcQHhys1qtlRpJodRbp24VLUzte1m9YZH7kRW//h4HrpF2rInqKG7Cmq2RGZv2HQ0fOSgdYeGGgB84hMZnyg/cezU9XQdNP0YfQ40ycQALEte5n/OJua6VGlg1scIEID7ZUa1a3LU2PyKDXMiOt0JOjoCtpojmBX6xlo7SaSg0P1mQr/F6iLG9zhf0CItNpNbUNY44SBakwaiViX8EyvDmHBzqe1m9f32vOSgdYeGGgB84hMZnygTZ2zWlt3l5o+jB5n+gQCILY5qpq1tsCtJXlu5ea7VF4Zve/NQGs/9w+099+KoGlM5/eKbchJ6fLH9hYGWnuJ5OBQv2RmwPO5MXlUVJ6XtZsYwuykt4ew++/n3f4fFHhewuTzEkBoRCYzPtDOWb5B/3xumoaMz9SkjFwlz1rlx+qZPoEAQE8x0NrP/QNtsCtiG2bEdfq8qD52TDXbi4LeezYaGGjtJZKDQ2PSyKDP6Wg8L2s3MYTZSW8PYdF6rvK8tBcGWsA8IpMZH2hff/tD5a3f3iGrZ/oEAgA9xUBrP10aaNM7H2hNY6C1l16/gjZpZFSel7WbGMLspLeHsGB/e6EubxHPSxh9XgIIjchkxgfaWM/0CQQAeoqB1n4CbnGQtygq90GMJAZae4nk4HDtwiU1xg26O87GDYr6PWgZwuyh14ewKzV+/0GhIScloi+myPPSnhhoAfOITGaJgXbPJ/9VXNpy9R+TLklyutzK37xXd1paDB9Z6EyfQADYU6XDqbUFbi3Nc2ttgVuOqsh/DwZa+wn6ImF/jLSNcYMsP85erWegtZuIDw5XalSzf49q9u+J6gvY1W5iCLOTqA5hvTDM8ry0JwZawDwikxkfaDd99In6j0nXhqL96tMvXpJU13BDIxPmatW7O8weXBcyfQIBYD+OqmalZnl8Y1timkc5yz0R/z4MtPYTMNDGIAZae7HL4FC7iSHMTnhewors8rwEYhmRyYwPtP8amSbHz1WS5BtoJenK1Rr1f2GGoaPqeqZPIADsZ2eJy2+cbVdW7ozo92GgtR9LDLRXalR97HiPr25koLUXuwwOtZsYwuyE5yWsyC7PSyCWEZnM+ED78ODJam31SvIfaJudbv1l4CRDR9X1TJ9AANhPYXHwgbaklIEW1h5oa/bvUVPc4LsvirMur9tfg4HWXuwyONRuYgizE56XsCK7PC+BWEZkMuMD7dikhSopPS7p7kDr9Xr1zpa9en7SfINH1rVMn0AA2E9ZuTNgnE3N9KjSwUAL6w601y5c8htn29Xs39Otr+MbaBOHqS5vIWJcw4LpthgcGMLsxS5DGM9Le7HL8xKIZUQmMz7Qnqr4QQ8PnqyXpi5Vn37xmpqzRoNenKlHhryiE6e/N314ITN9AgEQO8rKndq41aWiYpfKKzv/2JJSp1Iz746zpWWuiB8PA639mBxoq48dCxhn266iXdmtr9M+0MJeYn1wYAizl0gPYdXHjqluXZ5qN6/nxetgmeclgO4jMpnxgVZqu9/sO1v2as7yDVqYt1mbPvpEDU03TR9WlzJ9AgEQG0rLAm9bMHepW6lZHq3Md/muji0tcylnuUepWR6tLXCr/Fxkr5q9FwOt/RgdaM9UBB3majev797X+fas6rNTbK/h1QlqGtNXDXEDjR9LNNS+072h3moYwuwlkkNYzf49/ue9uMGqPlPB8xJGn5cAeobIZJYYaCXpt1u35fjlqi5dvqZbv8fOL4bpEwiA2JAxzx0w0CZMu/vnnOWeoLc2yFnee2Nb+0A7fY5bawtcsIGuDrQ1+/eodvN61ezfG9HnVF3eIr+hojFukK5eqTH++2dF7VcK8z/EYwNDmL1EcghrjBsUeMX4kplRfV42xg1SY9IoxLrEYfz/BcAwIpMZH2irqusUl7ZcffrF+/zPvycqMeMNXa9tNH14ITN9AgEQG4K96FfiNP+3X1sdOOImpnlUXtmsSodTuw603R4hUveibR9oyLoUOgAAIABJREFUYT+d/d+9fslMvyGhYUZcRJ/rNduLVL9kZtuVs4yzHWKgjS0MtPYSyYE22N8caEiP7Hk11PMS9sL/XwDMITKZ8YF2zCsLlP3ae/r2nEPXrtfr12u1OnH6eyVl5Wls8iLThxcy0ycQALFhSV6QK2jve7ujgfbjz51Kzbr7dmpW29W24R5T+0CblO7WjLmwg1ADbUf3ie3uC3khfAy0sYWB1l4iegVt0siAc2pd3qKoPi8bXp2g+pULEOMa5tvjRRWBWEZkMuMD7b9Gpsnr9QY8/tut2/rLwEkGjqh7mT6BAIgN5ZX+tzlImOY/0GbMcwe9xUH2Mk/QcTcStz7gHrT2E2qgrdleFHSg7e59YhE+BtrYwkBrL5EcaKvPVPjd5qAhPS5qf3uA56W9cA9awDwikxkfaJ+fNF+3m10Bj1+radDIhLkGjqh7mT6BALAOR1WziopdWprn1toCd8CtCBxVzSord6qs3KnSMpdvsM2950XCSkqdAY/35K+xdwUDrf2EvIK2gxfyqj52zPjvz4OGgTa2MITZS8SHsCs1qj52LOrnUp6X9sJAC5hHZDLjA+2eT/6ryTNz9dl/vtH3P/6iiu9/0v7Pj+mlqcu099My/XjpVx8rZvoEAsA6spf5D6ipWR45qsL/urn5gfeKTUjzaG2BO6yvy0BrP10Z72s3rzfyV3Hhj4E2tjCE2YtdhjCel/Zil+clEMuITGZ8oL33xcFCsWKmTyAAzCsrd2r6nOD3j81e1nY1bTj3jC2vbFbKzHu+7j23Rygtc/X46zLQ2k9Xr66uPlOhmv17VH2mwvjvz4OKgTa2MITZi12GMJ6X9mKX5yUQy4hMZnygbbxxU7/dut0lVsz0CQSAWZWOP17Aa1rw2xDce5/ZcMbUD/e42r7HffeuLSxmoEX3B1qYx0AbWxjC7MUuQxjPS3uxy/MSiGVEJjM+0EpSS0urTp4+r90Hj/geu/V7bPxymD6BADBrZ4nr7hAbbKS957GM+cFvSVDpaLsvbWe3QyivbA46AJeU9vzKXAZa+2GgjR0MtLGFIcxe7DKE8by0F7s8L4FYRmQy4wPtr9dqNXhcph4ePNl3G4Oq6jo9NixFFd//ZPbgupDpEwgAs9oHWt8Ye88gmxBksL3/8zduvfv5qVmdD65rC/xvo5C9LLwhjoHWfqI90NZuXq+GGXFqyJ6imh1Fxn8fYwkDbWxhCLMXuwxhPC/txS7PSyCWEZnM+EAbP/01rdm4Sy0trX73mS0q/lxxacvNHVgXM30CAWCWo6pZqZn+I2zyTI9efyvwhb1y8/1vR1BaFvgxiWkeVToCR9ryyrYrbUvLXCosdoV15Ww7Blr7ieZAe/+LjTWN6aua7Yy0XcVAG1sYwuzFLkMYz0t7scvzEohlRCYzPtD+deAkudweSfIbaD13WvT3p5MMHVXXM30CAWBeeWWzcvNdypjnVm6+S5UOpyodTmUv87/a9f7htbA4+EB7771qyyublTH/7pWzK/N7fs/Z+zHQ2k80B9rGuEEBA23DjDjjv4891T6Y2h3/w79nGMLsxS5DGM9Le7HL8xKIZUQmMz7Q9hs1XXUNNyT5D7Q/XvpVT4xINXRUXc/0CQSAtZVXtgn2Pr/bI9yjrPzukJsxzx3w/nBeGOxeDLT2E82BNtj415g00vjvXE8x0KIzDGH2YpchjOelvdjleQnEMiKTGR9oX3/7Q02YtkzHy8+pT794nb94WR9/VqbB4zK1eNUW04cXMtMnEACxy1EVOMAuybv7QmKVDmfQAffejwkHA639RHOgrctbFDD+1a1bafz3CugNDGH2YpchjOelvdjleQnEMiKTGR9onS63FuRu0l8GTlKffvHq0y9ejwxJ0sp12323PrBypk8gAGKPo6rtBb+W5rm1fotLm7a7lJvv0s6SwCtjgw2099/LtqcYaO0nqi8SdqVG9Utm+o+zV2qM/34BvYEhzF7sMoTxvLQXuzwvgVhGZDLjA217Hs8dVVXX+W53ECuZPoEAiC2OKv97yiamefRqjltzlrb9OTXLo10H7g6wG7cG3gaho1smdBcDrf1EdaAFHiAMYfZilyGM56W92OV5CcQyIpNZYqC9XFWjt9/frdnLNkiSWlu9+vrMecNH1bVMn0AAxJaS0uC3LUic1vELhZWUOpWb79LaAnfExtmr9Qy0dsRAC/QOhjB7scsQxvPSXuzyvARiGZHJjA+0R785q4cGJGryzFzfi4Rdra7To0OT9fFnZWYPrguZPoEAsJ6SUqfvKtmV+S5VOu6+6FdhcfAXBku4b6BdWxCZ+8x2hoHWfhhogd7BEGYvdhnCeF7ai12el0AsIzKZ8YH2mQmz9eXR05LkG2gl6eTp8xoxMdvQUXU90ycQANZSVh54hWzO8ruDWUcv/JVw39sbt0bmPrOdYaC1HwZaoHcwhNmLXYYwnpf2YpfnJRDLiExmfKD9y8BJamlpleQ/0HrutOivAycZOqquZ/oEAsBa1ha4gw6w996aoKTUqdTMP+45m+lR1qLAz4nkrQw6wkBrPwy0QO9gCLMXuwxhPC/txS7PSyCWEZnM+EA7ZHymzl+8LMl/oP3y6GkN+P/t3ft31fWd7/H/x/a0nWnnzHgca2+oHWsrtIxnOiNQQBEQLCLUQvHGRT0YW0spSqXqgO0gUi9E6zmm49TGVG2UKaYj9aT0yERigAS8kJvR9/khk2hMCBt2st97f/N4rPVcHSHQT5mvn9X16vabS5cnnap02ReIpOqqlIF2qKEfa20b/HWr1vfH2rq+aGzuqchZDbTFy0ArTU6GsGJVlCHMc1msivJcSrUcZEofaB/c83Sce8mSuPOeh+Ks82bHP+/637H61nviU9PmxwO/aMg+3illXyCSqquxXnGwan11DmYG2uJloJUmJ0NYsSrKEOa5LFZFeS6lWg4ypQ+0ERH1Db+Nb3371vji318TF112XSy87o545rnfZx+rJNkXiKTqq6GxN1atH3x9waZtfdHaNvprWtu64/Ff9cSO3b0VeZ3BWBloi5eBVpqcDGHFqihDmOeyWBXluZRqOciUPtAef/Odk/7c0KsPqln2BSKp9mpt647VG0Z+ynZX/eR/U7CPZqAtXgZaaXIyhBWrogxhnstiVZTnUqrlIFP6QPvlf1wZB1/vGPFjAwPvxdYde+KTX5ybdKrSZV8gkmqvXfW9Y76ndqxP2k5mBtriZaCVJidDWLGq+BB2sCOO3HFTdF05IzpXLYr2pibPpfKfS0mjgkzpA+3mex+Ocy9ZEr//Q2tERLzW1hHfXLQ2Pv+Nb0fT71qST3dq2ReIpNprbd3Y30jsjh9/8OPr6sZ+NcJEZqAtXgZaaXIyhBWrSg9hnctmxbGZ54xoIkZaz2WxMtBK+UGm9IE2IuKJXz0XZ39lUdz2o5/Fpy+4PL6z/u546+0T2ccqSfYFIqn2OtknaOd+5K/X1fVN6jkMtMXLQCtNToawYlXJIax9775R4+yxmefEkS23ey6V9lxKGjvIVBUDbUTEvv/4U3x2+tJYdctPso8SP/rpL+LcS5YM//XB1zti9tW3xN9ctDBmzFsTL+57dfjnsi8QSbVXa1t3rFo/coxdvmbsT9Xeu7M3bt/cGw89PvHvqDXQFi8DraZ67Xv3xeH77oojW+om7B8jf/2oIaxoVXSgbWoae6Ctu8lzqbTnUtLYQaaUgfbqNZvG7H8uvDk+9rk5cdXqO4d/rNL+fLA9/u6fvjNioJ21dEPc9+CTMTDwXjzz3L44b8bV0f/uQEQYaCWdWfc80BtXLu+PBdf0x3Vr+2LuktHj7Eeb6E/UGmiLl4FWU7n2vfvi2KwLRoxgHXsenpDf2xBWrCZiCGtvaorD990VHQ/uiNcPdoz7tV5xoEo9l5LKCzKlDLQbfrij5CptzrdviSd+9dzwQHu06834zIUL4t2BgeGv+fr86+P5l16JCAOtpNNv++7e0a81KGGgnbe0PxqbeybsHAba4mWg1VSuc/XC0Z9UnHXBhPzehrBiVe4QdmTL7SOes85rZo070h7af2D4+exaMN3/cKBJeS4llR9kqppXHFSDh3/5m/jO+ruj6/hbwwPti/teja/NWT3i6665cXPsfOzpiDDQSjr9Pvw6gxHvnV3SH3P/q2tO8sqDhsaJe9WBgbZ4GWg1lRvrU4rHZp4zIb+3IaxYlTOEHdp/YMznrGPnjoo/857LYmWglfKDTOkDbW9ff/zop7+IGfPWxN9+7ar47PSlMfOKG+Lu7Y8Nv0agEo4dfzu+/I8r42jXmyMG2md/93JcuuDGEV+7+tZ74v4Hn4yIiDdP9EvSabXi+pGj7FhD7AMPjf3jB9r6463udyekvS3vxryl/XHt9f2x81EVoaHnZKKeEamWOn7n2lGj2fHlsyfm996xdfD3XL0wju/YqlrvBzcPPh9rFp32s/Dmiy+MOdAe37Cy8s984Z/Lu6dWP7hp8P+f31uU/t9VpakaZEofaJff9OP46pxVsXXHnnjkycb4xRPPxKZtv4gvzlwW31l/d8XOseqWn8SuPf8WETFioH3p5Vfj4tmrRnztsht+NPy1b53ol6TT6sFHR46uH33/7IbvD37d/Ts/+LGrVvZHwzMTe469Lw8NtH2x81EVoeGBtgqec2kie/OV/4g3X/mP8b/mcGccv+aDT9Eev3LGKX9NqR3fcfeHhrAqGHI0IUPY8e8tOv1n8XDnmAPtm7/4WcX/vvBcFqwynktJExNkSh9o/+aihXGiu2fUj7/W1hGfmja/Yuc4++JFce4lS+LcS5bE337tqvjY5+bEuZcsif/3n+3xl+dfHt09fcNfe+E3V8RLL78aEV5xIOnM2r67N5av6Yvla/pi++7e2FXfO/yvH/66ltaeaGzuida2iT+DVxwUL684UOE62BGdqxaNeNfnof0Hxv017U1Ng9+A6RTfuOl08o+SF6ty/1Hyjj0Pj3wH7eqcfyTdc1msvOJAyg8ypQ+0H/106pAT3T3xxZnLKnyaQR/+BG1ExNxlt8WW+x+NgYH3Ys9TTTHt0uUxMPBeRBhoJdVuBtriZaBV0TpSd9OoTyoeXXttxc8xNIR1LrssjtTdqBqv84aryx7CDu0/EB17Hh78HwOS/v4w0BYrA62UH2RKH2h37P4/UXfXzjh2/O3hH3vjcFes+V/b4uFf/iblTB8daNvaj8SspRviry9aGN+4/IZo2f/n4Z/LvkAk6Uwz0BYvA62KVtes8yftG3+dTkNDmIpVrQ9hBtpiZaCV8oNM6QPtly5dHp/4wtw467zZ8VdfXhB/MW1+nHXe7PjUtPnxP766OM6+eNFw1Sj7ApGkM81AW7wMtCpanasXjhrVuhZMr/g5hoawrsumRdeC6ar15n6lEEOYgbZYGWil/CBT+kD75NMvRMMzL5ZUNcq+QCTpTDPQFi8DrYrWGw1PjRpoO3buqPg5DGHFqihDmOeyWBXluZRqOciUPtAO6e3rj9fa3ohXD/znmN80rFplXyCSdKYZaIuXgVa12KH9B6K96bcn/eZf7U1NcaTupjhSd1O80fBUyhkNYcWqKEOY57JYFeW5lGo5yJQ+0B5/65249uYfx8c/PyfOOm92nHXe7Pj45+fEtTf/OLp7+rKPd0rZF4gknWkG2uJloFWtdWTL7emfji0lQ1ixKsoQ5rksVkV5LqVaDjKlD7Qr194V/3TV+nj2dy/HoTeOxqE3jsZvnt8X31y0Ntb94J+zj3dK2ReIpOquta07Gpt7orUt/ywfzUBbvAy0qqXa9+4b8xs3te/dl362j2YIK1ZFGcI8l8WqKM+lVMtBpvSB9txLlsTRrjdH/XjHkWPxhW8sSzjR6cm+QCRVb/UNPbF4Zf/waLarvnfEz2/f3RurN/THurq+eOjx3oqfz0BbvAy0qqUO33fXmANtNX6K1hBWrIoyhHkui1VRnkuploNM6QPt2RcvihPdvaN+vLunL87+yqKEE52e7AtEUnXW0vrBWPbhmlsGf/6eB3pH/Vx9Q09Fzzg00F793b7YtK1XBchAq1qqY8/DY3+Ctqkp/WwfzRBWrIoyhHkui1VRnkuploNM6QPtwuvuiO/dti2Ov/nO8I91HX8rVt96T8xfvjHxZKXJvkAkVWe76kcPsPOW9sf23YOflB3r59bW9VX0jEMDrYpX9vMvlVrnslkjxtnO1dU5TBjCilVRhjDPZbEqynMp1XKQKX2gfb39SHxtzur42OfmxHkzro7PTl8aH/vcnLjwmyvjwGuHso93StkXiKTqrKFx7PFz6FOyY/3cqvWnHtZaWnvi8V8NVu57bZv/0BM3395X+Fat64t5S/tj0Yr8s1Sq7OdfKrmDHdGxc0ccqbupKl9tMJQhrFgVZQjzXBarojyXUi0HmdIH2oiI999/P37/h9aob/ht/OKJZ+LFfX+MgYH3so9VkuwLRFL1tmr9yAF2+Zq+4VF14+bRA+7Qp2tPVmPzyHfaLl7ZHy2tlX0tQi029Elhw6WkM80QVqyKMoR5LotVUZ5LqZaDTFUx0L733vtxpPN4tLUfGVW1y75AJFVvrW2DrzpYW9cX23f3jvjEa2tbd2za1lfyOPv60e5YvqZv1Ki7cXPlv7lYrWWglVRuhrBiVZQhzHNZrIryXEq1HGRKH2h/+a/Px9kXL4qzzps9ZtUu+wKRNHUa67UIy9cYHU+VgVZSuRnCilVRhjDPZbEqynMp1XKQKX2gPfeSJfGDnzwUfz7YHu2HO0dV7bIvEElTJ5+gPbMMtJLKzRBWrIoyhHkui1VRnkuploNM6QPtp6bNjxPdvdnHOGPZF4ikqVNjc08sXvGhd9Cu6I/mlvxzVXsGWknlZggrVkUZwjyXxaooz6VUy0Gm9IH26jWbovGFl7OPccayLxBJU6uW1p7YVd8bu+pHvtNWJ89AK03N2vfui6PrVkTXlTPi6LoVcWj/gTP+vQxhxaooQ5jnslgV5bmUajnIlDLQ/vTnTwy35f5H40uXLo8b6+6LbT9/fMTP/fTnT2Qc77RkXyCSaqehbwy2/Pq+WFfXF43NPelnmgoZaKUp2MGOODbrgjg285wPmnVBvH6w44x+P0NYsSrKEOa5LFZFeS6lWg4ypQy0l155U8lVu+wLRFLttLZu9DtkvaJg8jPQSlOvjj0Pjxxn/6uOPQ+f0e9nCCtWRRnCPJfFqijPpVTLQab0VxzUuuwLRFJt1NzSPWqcnbe0P+55wDf5muwMtNLUq2PnDgOtCj+EeS6LVVGeS6mWg0zpA21fX3/s2P3U8F//qvGlWPTd78etP/pZnOjuSTxZabIvEEm1UWNzz5gD7aZtRsPJzkArTb0O7T8QXbPOHzHOds06/4zfQ2sIK1ZFGcI8l8WqKM+lVMtBpvSB9vqNP42ZV9wQAwPvxZ9eOxSf+MLcWH/n9ph99S2x+tZ7so93StkXiKTqrbWtO3bs7o11dX2xaVtffOfm0QNtQ6NP0E52Blppatbe1BRdC6YPjrMLpkd7U9MZ/16GsGJVlCHMc1msivJcSrUcZEofaP/HVxfH4aPHIiLi+1t3xaLvfj8iIo52vRnnXrIk82glyb5AJFVvq9aPHGOvvLY/bto4+B7axSv6o76h9G8S1tjcE4//qidaWn1jsdPNQCup3AxhxaooQ5jnslgV5bmUajnIlD7Q/sW0+TEw8F5ERHx9/vWx+/FfR0TEuwMD8alp8zOPVpLsC0RSdXayVxps3316n5htbeuO1Rs++PWLV/rU7elmoJVUboawYlWUIcxzWayK8lxKtRxkSh9oZ8xbEzsfezp++a/Px6emzY+u429FRETjCy/HVy67Lvl0p5Z9gUiqzhoaeydkoL3ngdG/z+KV/en/+WopA62kcjOEFatTDWGH9h+Iw/fdFYfvu+uM31vsudREP5eSJj/IlD7Q/rb5D3HOV6+Kv5g2P3bs/j8REXGk83j85fmXxyNPNiaf7tSyLxBJ1VlLa08sXjF6oG1sPr1XFKyt6xtz6G1uyf/PWCsZaCWVmyGsWI03hLU3NY345nLHZp5T1vuLPZeaiOdSUmWCTOkD7ZB3BwaG/+/3338/Wv/f64mnKV32BSKpemto7B0x0u6qP/1XE2zaNnqgXbzCJ2hPJwOtpHIzhBWr8YawzmWzRg20ndfMSn8GPZfFz0Ar5QeZqmagrVXZF4ik6q+cT7uO9Unc0/nmYjLQSio/Q1ixGm8I++g4O1T2M+i5LH4GWik/yFS1A+0Pt+2OC/5hRfYxTin7ApFUm7W09sSO3b3x0OO90do2/te2tnXHrvre2L6797RfkSADraTyM4QVq/GGsKNrrx01zh5de236M+i5LH4GWik/yFS1A+1vnt8XW3fsyT7GKWVfIJJqr/qGnlHf9Kul9YPhtaW1Jx56fHC8/fCP68wy0EoqN0NYsRr3HbR790XXgunD42zXgunRvndf+jPouSx+BlopP8hUtQNtrci+QCTVXmN987CNmwffT9vY3BOLV44cb31qtrwMtJLKzRBWrE45hB3siDcanoo3Gp6K1w92pD9/nsupkYFWyg8yVcVA23X8rXh5/4F4cd8fR1Xtsi8QSbVVa1v3qHF23tL+WFs3OB6urRv9TcFWb/BNwcrJQCup3AxhxaooQ5jnslgV5bmUajnIlD7Qbrn/0fj45+fEWefNjo9/fs6oql32BSKp9hrrE7Sbtg2Oh2ONt/OWGmjLyUArqdwMYcWqKEPY0HOpYlXrz6VUy0Gm9IH2s9OXxksvvxoDA+9lH+WMZF8gkmqvhsbeESPt8jV9w98obOPm3pO+/kBnloFWUrkZaIuVgVbVXK0/l1ItB5nSB9oZ89ZkH6Es2ReIpNqspbUn6ht6oqGxd3icff1odzS3jPyE7eIV/dHckn/eWs5AK6ncDLTFqigD7VRp6O+/w/duST+LpGIHmdIH2nt3/jK27tgTb719IvsoZyT7ApFUvFrbuqO+YXDA/fB4qzPLQCup3Ay0xcpAW1sZaCVVKsiUPtA++fQL8VdfXhBnnTc7PvnFufHJL80bUbXLvkAkSeNnoJVUbgbaYmWgra0MtJIqFWRKH2g/O31pbL734XjmuX3x/EuvjKraZV8gkqTxM9BKKjcDbbEy0NZWBlpJlQoypQ+0F8/6bvYRypJ9gUiq7nbV98a6ur5YvaE/duz+4Jt9NTb3xI7dvfHQ471eYzDJGWglldvQQNS57LI4UnejarzOG6420NZQBlpJlQoypQ+012/8aby479XsY5yx7AtEUvW2q753+Jt9DbV9d2/c88DIH1+9od9IO4kZaCWV29BApGJloK2NDLSSKhVkSh9or1u/NT59weUx84obYvF3fxBXrRpZtcu+QCRVb6vW948aaBetGP1j85b2x6763vTzFjUDraRy66h/JI6uWlj4Or992eAnhWdNSz9LJTr849vTny2dOgOtpEoFmdIH2tt+9LOou2vnSat22ReIpOpt+Zq+McfYsdq4+YOBtqW1Jx7/VU80POv1BxORgVaSSuuNpt/6ZKmqLgOtpEoFmdIH2lqXfYFIqt4++iqDeUv74wdbxx5t5y4Z/Nfl1/fHwg99ynbJdX3xxNOG2nIy0EpSaRloVY0ZaCVVKsiUPtC+9977sfOxp+Obi9bG575+dZx98aK49MqbYudjT2cfrSTZF4ik6q21beRIu2lbX7S2dUd9Q8+Y4+y8pf0xb8nYn7Bdfn2fkfYMM9BKUmkZaFWNGWglVSrIlD7Qbr7vkTj3kiXx/a274pEnG+ORJxvjjrsfjHO+elXs2P1U9vFOKfsCkVSbtbT2RH1DT1x/ywefqJ17ktcfDA24m7YZGM8kA60klZaBVtWYgVZSpYJM6QPttEuXxyv/97VRP/7y/gNx0WXXJZzo9GRfIJJqs9a27lhXN8brDsb4BO3QcLu2zsB4JhloJam0DLSqxgy0kioVZEofaD9z4RXR/+7AqB/vf3cgPnPhgoQTnZ7sC0RSbbZ9d++Yn5qd+9GBdskHX/PhbySm0jPQSlJpGWhVjRloJVUqyJQ+0P79FTfG7sd/PerHH9zzdHzj8hsqf6DTlH2BSKrN1n7407NLBofZuUv6486tvdH8h57YuLl38Mf+62sWr+iPltae9HPXYgZaSSotA21lOnzfXdG5alEcXbci2pua0s9T7RloJVUqyJQ+0D7/0ivxyS/Ni+lzvxcrbt4S19784/janNXxyS/Ojaef3Zt9vFPKvkAk1Wabto3xeoOl/SO+pqW1J7bv7o1d9b2+QVgZGWglqbQMtJPf0bXXxrGZ54yofe++9HNVcwZaSZUKMqUPtBERbxzuip88UB83bLw3vrtha2y5/9F4re2N7GOVJPsCkVSbtbT2xOIVI8fZ7bu9wmAyMtBKUmkZaCe5gx2jxtljM8+JI3U35Z+tijPQSqpUkCl9oL16zaZ46+0T2cc4Y9kXiKTarbVt8F2023f3RkOjcXayMtBKUmkZaCe3Q/sPjDnQdq725z1eBlpJlQoypQ+0X7nsunhh7yvZxzhj2ReIpOqvtW3wlQbr6vpi07Y+75KtcAZaSSotA+3k17ls1qiBtmPPw+nnquYMtJIqFWRKH2h/8kB9XPjNlbHmf22LrTv2xE9//sSIql32BSKp+lu1fuSrDBav7PdO2QpmoJWk0jLQjtHBjuFv6nVkS128frCjrN+vfe++ESPtkS235/9nrPIMtJIqFWRKH2hnzFsTl15500mrdtkXiKTqrrG5Z8xvBrar3isNKpWBVpJKy0A7uo9+4rXryhllj7SvHx183UH2f7ZayUArqVJBppSB9rW2N2Jg4L2IiPjzwfaMI0yY7AtEUnVX3zD2QOsbglUuA60klZaB9iN/Hg1PjfnOWK8kqGwGWkmVCjKlDLSf+MLcOHb87YiI+PQFl2ccYcJkXyCSqruW1p5YvGL0QNvckn+2qZKBVpJKy0A7so7zCUkFAAAO5ElEQVSdO8YcaA/fd1f62aZSBlpJlQoypQy00+d+Ly785oq4/NqN8fHPz4nLr9140qpd9gUiqfpraOwdHmkXr+iP+gbfJKySGWglqbQMtCM7tP/AmANt+9596WebShloJVUqyJQy0HYcORb3/ssv4857HopPfGFu/OAnD520apd9gUiqnVpaDbMZGWglqbQMtKPr2PNwdM06/4PXG+zckX6mqZaBVlKlgkzp3yTs+1t3ZR+hLNkXiCRp/Ay0klRaBtqT197UlH6GqZqBVlKlgkzpA22ty75AJEnjZ6CVpNIy0KoaM9BKqlSQqWoH2h9u2x0X/MOK7GOcUvYFIkkaPwOtJJWWgVbVmIFWUqWCTOkD7TPP/T7eHRgY9eO/eX5fbN2xJ+FEpyf7ApEkjZ+BVpJKy0CrasxAK6lSQab0gfbTF1wef/u1q2L9nTvi5f0HUs+y+b5H4nNfvzrOvnhRrFx3V5zo7o2IiIOvd8Tsq2+Jv7loYcyYtyZe3Pfq8K/JvkAkSeNnoJWk0jLQqhoz0EqqVJApfaDt6e2LhmdejJXr7or//ndXxt/903diy/2Pxn8eOlzRczz59Avx5X9cGR1HjsWJ7t6Ye81tsfm+RyIiYtbSDXHfg0/GwMB78cxz++K8GVdH/7uDn/rNvkAkSeNnoJWk0jLQqhoz0EqqVJApfaD9sP7+d+OZ534fq275SfzVlxfEP121Lh7+5W+it69/0v+9971yIF7c98fhv77vwSdj5dq74mjXm/GZCxeMeA3D1+dfH8+/9EpEGGglTX6NzT2xaVtfbNrWF43NPennqbUMtJJUWgZaVWMGWkmVCjJV1UDbfrgzfvrzJ+IfFt4cn5o2P5Z+74fxjctviAv+YUXsbz1Y0bMsWFkX//LIr+LFfa/G1+asHvFz19y4OXY+9nREGGglnV7NLd1xzwO9sWlbXzQ09p7y6xsaB8fFD1fKr9MHGWglqbQMtKrGDLSSKhVkSh9o336nO3Y//uuY8+1b4mOfmxMzr7ghHvhFQxx/853hr7nrnx+LS761epzfZWJtvvfh+Na3b413Bwbi2d+9HJcuuHHEz6++9Z64/8EnIyLinZ53Jamk9v+pf9TYuuux/nF/zZpb3h31a1bcMP6v0cj+vWXwz3DD9/25SdJ4vf3SC3Fs5jlxfM2i9LNIQ735wNY4NvOcePOBrelnkVTsIFP6QPupafPjvBlXx8Yt/xKtf24b82u6e/ri45+fM+lnef/992P9ndvj8ms3RndPX0REvPTyq3Hx7FUjvm7ZDT+KXXv+LSIijr3dJ0kldceWvlFj67yl/eP+msUrR3/9vKX9cfwdldqL+wYH2vV35J9Fkqq65sGB9tj3FuWfRVO+4f8+tP3uwedy+93p/11OUrGDTOkD7TPP7YuBgfdO+XUnunsn/Sy3/ehnseyGzcPfACwiouv4W/GX518+PNhGRFz4zRXx0suvRoRXHEgqvbV1Yw+0La0nf6/sxs2jX3GwcbNXHJxOXnEgSaXlFQeqxrziQFKlgkzpA23DMy+etCeffr5i53hh7ysxY96a6O8f/bH2uctuiy33PxoDA+/FnqeaYtqly4dH5ewLRFLttH336LF1+ZrxR8OW1p5Ytf6Dr1+1fvxBV6Mz0EpSaRloVY0ZaCVVKsiUPtCeffGikX1lUZx13uz4i2nz46LLrqvYOa5bvzU+/vk58ckvzRvu6/Ovj4iItvYjMWvphvjrixbGNy6/IVr2/3n412VfIJJqp9a2kZ+iXb6mL5pbSvu1zS3dJX+tRmaglaTSMtCqGjPQSqpUkCl9oB3LOyd64vtbd8VD9b/OPsopZV8gkmqv5pbuaGz2KdhKZaCVpNIy0KoaM9BKqlSQqSoH2iEz5q3JPsIpZV8gkqTxM9BKUmkZaFWNGWglVSrIVLUD7TsneuKz05dmH+OUsi8QSdL4GWglqbQMtKrGDLSSKhVkSh9oV669a1RXr9kUX5y5LK5a9YPs451S9gUiSRo/A60klZaBVtWYgVZSpYJM6QPtjbffO6oNP9wRP3u4IU5092Yf75SyLxBJ0vgZaCWptAy0qsYMtJIqFWRKH2hrXfYFIkkaPwOtJJWWgVbVmIFWUqWCTKkDbceRY/HC3leGPyn769/+e8z59i0x84ob4r4Hn8w8WsmyLxBJ0vgZaCWptAy0qsYMtJIqFWRKG2j/9dmX4hNfmBtnnTc7vvCNZfG7f98ff33Rwlh/545Yf+f2+PQFl8e9O3+ZdbySZV8gkqTxM9BKUmkZaFWNGWglVSrIlDbQ/v0VN8b6O7fHm2+fiK079sRnpy+NXXv+bfjnH/vfz8ZFl12XdbySZV8gkopbS2tPtLbln6PWM9BKUmkZaFWNGWglVSrIlDbQfubCK+L/HmiLiIi+vv742OfmxJ9eOzT886+1dcQnvzQv63gly75AJBWvltaeWL2hP+YtHez2zb2G2jIy0EpSaRloVY0ZaCVVKsiUNtCedd7saD/cOfzX//3vroy29iPDf91+uDPOOm92wslOT/YFIql4ra3rGx5nh7rngd70c01Uf2rriWdfrFy7nxgcaFev76vov++zL/ak/1lL0ulkoFU1ZqCVVKkgk4G2TNkXiKTi9dFxdt7S/li9oT/9XBPV0Cdap0LZf9aSdDoZaFWNGWglVSrIlDrQzl12W1z5nTviyu/cEf/tC9+Kb3371uG/nrvsNgOtpCnZWEPf2rri/OP5zX/oiZtv75sSZf9ZS9LpZKBVNWaglVSpIFPaQHvj7feWVLXLvkAkFa/tu0d/wrSx2T8uL0ma3Ay0k/Tn2vBUHF23Io6uWxFvNDyVfp5ay0ArqVJBprSBtiiyLxBJxay+oSc2bu6NjZt7jbOSpIpkoJ2EP9OGp+LYzHNG1LFzR/q5aikDraRKBZkMtGXKvkAkSZKkichAO/F1Lps1aqDtunJG+rnKqaP+kTi6alHF6rpyxvCfWyX/fQ//+Pb0P2tJlQ0yGWjLlH2BSJIkSRORgXbi65p1/qiB9tjMc9LPVU5Dn2gtev4+kKZekMlAW6bsC0SSJEmaiAy0E9+RuptGD39rr00/Vzkd+uOBeKPpt4Wv/d9fTv+zllTZIJOBtkzZF4gkSZI0ERloJ6GDHdG5euHwONu5emG8frAj/1ySpFFBJgNtmbIvEEmSJGkiMtBOXof2H4hD+w+kn0OSdPIgk4G2TNkXiCRJkjQRGWglSVM5yGSgLVP2BSJJkiRNRAZaSdJUDjIZaMuUfYFIkiRJE5GBVpI0lYNMBtoyZV8gkiRJ0kRkoJUkTeUgk4G2TNkXiCRJkjQRGWglSVM5yGSgLVP2BSJJkiRNRAZaSdJUDjIZaMuUfYFIkiRJE5GBVpI0lYNMBtoyZV8gkiRJRam9qSmObKmLI1vqon3vvvTzTLUMtJKkqRxkMtCWKfsCkSRJKkJvNDwVx2aeM6L2pqb0c02lDLSSpKkcZDLQlin7ApEkSSpCXQumjxpoO1cbCiuZgVaSNJWDTAbaMmVfIJIkSUXoo+PssZnnRNes89PPNZUy0EqSpnKQyUBbpuwLRJIkqQh1rl44aqA9uvba9HNNpQy0kqSpHGQy0JYp+wKRJEkqQu179414zUHnsllxaP+B9HNNpQy0kqSpHGQy0JYp+wKRJEkqUu1NTWf+zcEOdkTHnkei48Edxt0zyEArSZrKQSYDbZmyLxBJkiQNfgL32KwLPnhFwqwLznzonaIZaCVJUznIZKAtU/YFIkmSpO44uvbaUe+w7bxmVvq5yunQHw/E4fvvrlhH7rhx8JuzXTmjov++HfWPpP9ZS5IEmQy0Zcq+QCRJktQ9apwdKvtc5TT0idai5xO7kqRqCDIZaMuUfYFIkiTpJJ+gXVaAT9Deu6Xw+QStJKkagkwG2jJlXyCSJEkafAdt16zzh8fZrlnnewetJEkqOchkoC1T9gUiSZKk/+pgR3TseTg6du6IQ/sP5J9HkiTVTJDJQFum7AtEkiRJkiRJ5QWZDLRlyr5AJEmSJEmSVF6QyUBbpuwLRJIkSZIkSeUFmQy0Zcq+QCRJkiRJklRekMlAW6bsC0SSJEmSJEnlBZkMtGXKvkAkSZIkSZJUXpDJQFum7AtEkiRJkiRJ5QWZDLRlyr5AJEmSJEmSVF6QyUBbpuwLRJIkSZIkSeUFmQy0Zcq+QCRJkiRJklRekMlAW6bsC0SSJEmSJEnlBZkMtGXKvkAkSZIkSZJUXpDJQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQxEALAAAAAJDEQAsAAAAAkMRACwAAAACQ5P8Dlwb0s2FGjPAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+19VdaL/8e/f48ycZqamTtM0Vl4wTUvTTE+CgYaIYoiggnfUMsQ0I8sgNDDzgpmi3XCcHLwVaiGl5Y7S8MIWEG/si7Df3x8Ytm73xs1lsz9rL1+vx+P5OHERVpzFepzzbrn2/xMRERERERERERERGen/mT4AIiIiIiIiIiIiovs1BloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBtpedb2gBAAAAAABADCMyGQNtLzN9AQEAAAAAAEDvEJmMgbaXmb6AAAAAAAAAoHeITMZA28tMX0AAAAAAAADQO0QmY6DtZaYvIAAAAAAAAOgdIpMx0PYy0xcQAAAAAAAA9A6RyRhoe5npCwgAAAAAAAB6h8hkDLS9zPQFBAAAAAAAAL0TjU6erlXcuMyofK8dew90+8+cOnM25PE9OzFHeyqO+N/2em/pL4MmBbzP7fHqgYFJ+u33Sz074Ps8BtpeZvoCAgAAAAAAgN6JRrdaW9XUfK3Pv4/P59Pjz03v9p/rbKB9o2Cz5r9R5H/7mxOn9PcRqVqYV+x/3+GqHzTghZk9Ol5ioO11pi8gAAAAAAAA6J1odOcdtNOyV2tN4Xalzl2twS/OUsGGnXp/U7kmZeTpmQlz9NMvv0uSkrPylbfuY03KyNOYVxYq5/VCeW+1SpIeGJiky43N/q/f8fa0nDXq1z9BwxOydaG+Ub+cvaCEGa9pyPgsDU/IVvWPv/j/zPrS3Xpy9KsamThP7364K+RA+5+j1Ro0NsP/9tqiHcp/d4uGjM/yv+/N9dsCRlzqXgy0vcz0BQQAAAAAAAC9E43uHGhnzF+r5KyV8vl8+u33S/rjkxP1yWf/kSS9s3GnFuVvkNQ+5I6fmqtbra1qa/NpXMoSlVccltT5QNvUfE0PDEyS1H437aik+dry6b8kSdWnavXPkWny3mqV47fzemRYipwNV9TW5lPmknUhB1qX26MHBiap7uJlSdJL05aq+sdfNGR8pi45myRJL6Ys0Wf/OtoXP7b7IgbaXmb6AgIAAAAAAIDeiUZ3D7SlZV9Jklpb29Svf4Iamq5KknZ/eUipc1dLah9oN2793P813ioq05JVGyV1baD99dxF/WXQJLW2tvk/b8wrC3Xk+I/6eOc+//eR2u+U7ewZuYnpK7S9/Gu1uDx6dPhUtba2ad6KIu364qBu3HTpgQGJutJ8vdc/o/s1BtpeZvoCAsA+KirdKi1zq6rG/LEAAAAAwP0kGt090N75Ql79+ifoZotLkrSn4oimzF4lqX2gvfPzPti8V7OWvCOpawNt9Y+/6I9PTtSAF2b6/X1Eqj7ff1TvlezS3OXr/X+++lTnL2L2/qZyzVryjg5+e1LJWfmSpF1fHFTO64X6+vB3Gj15YW9/PPd1DLS9zPQFBIA95BW4lZTm9Vtb5DF+TAAAAABwv4hGPR1oP9i81/95q97bqtw3P5Qk/XXwZNVfviJJcnu86tc/IWigvehs1CPDUkIez+ad+zQtZ43/7f0HT3Q60P7w0696anS63ioqU9HmPf6vPWR8lla9t1Wr3tva/R8I+WOg7WWmLyAAYl9FZeA428Gud9LW/OJS6Q7PfcH0zxoAAABA10Sjng60Y6cslsvtkcvt0fCEbH2+v/1Zr3HjMnX0+ClJ7Y9F+MMTE3W5sVnXrt/UH5+cqJstbknS85MW+J9b23jlmmYteUc3brp06sxZPTIsRfWXr+hWa6vS5r3lP75fzl7QgSPf+4/P5/PpsRHT9OzEHJ08Xet//5DxmXru5RwdPvZDn/zM7pcYaHuZ6QsIgNhXUhZ6oC0pcxs/tr5wsCr0v68dmf5ZAwAAAOiaaNTTgTZv3cd6MWWJnhz9quatKPI/T7a84rCGvjRbkzLy9P6mcv1zZJqcDe131CZlvKFHhqXo+x8c+vXcRSXMeE1x4zI19KXZ/hcMk9qfafvPkWkaNmGONmz9XAPHZkiSPt65T4npKwKOP2PxO/rb08kBz7Odt6JIfxk0SR6PN9I/rvsqBtpeZvoCAiB21ThcKtzk1sLXPffdHbQl26NnbVH7IJwx3xPV71uy3WX8Zw0AAACga6zatOzV2vXFQdOHQX0cA20vM30BARCbahwupWbdHmMT7xpneQZt5HTcsbtkJT9TAAAAAKFZNQba+yMG2l5m+gICIDYVbgrx1/yne1W8xW3bO2dNYaAFAAAAEI5VY6C9P2Kg7WWmLyAAYlNufujHGlRW8dfiI42BFgAAAEA4RCZjoO1lpi8gAGLTtvLgO2hTM3lRqb7AQAsAAAAgHCKTMdD2MtMXEACxK6/AHTDOcvds32CgBQAAABAOkckYaHuZ6QsIgNhW43AxzPYxBloAAAAA4RCZjIG2l5m+gAAA7o2BFgAAAEA4VivUa5Z0BcVmDLS9zPQFBABwbwy0AAAAAMKxWgy091cMtL3M9AUEgH056lpUWeVSxUG3HHXmjydWMdACAAAACMdqdQyuO/e2dgkDbWzHQNvLTF9AANhTjcOljAWe2y8iluVVVY3544pFDLQAAAAAwrFa0Rxob7W2ql//BC1bUxrw/ooDxzQte3Uk/nW61cnTtYobl9mjPztl9irt+uJghI+o72Og7WWmLyAA7CmvwB30V1UyFjAw9gQDLQAAAIBwrFa0B9q/DJqkf45Mk+PXOv/7TQ20t1pb1dR8rUd/9ur1m3J7Yu9OYgbaXmb6AgLAnrKXhX6ekOnjikUMtAAAAADCsVrRHmj/PGiStnz6L03KyPO//86BtvnqDaUvLNCQ8Vl6ZsIcrdv4qf/zHh46RZt37tOU2as0bMIcvVeyK+T3OXXmrEYmzlPeuo8Vn7Zcw+Pn6vCxH5Q27y0993KOlq7+UFLgHbSV35zUiInZGjI+U8Pj5+rrw9/d8/133kF7r+N6f1O5BrwwU6OS5mvLrv0a8MLMHv3sIhUDbS8zfQEBYE+h7qBNzWSg7QkGWgAAAADhWK1oD7R/eupltbX5NDJxnvZVHpcUONAuWlmseSuK5PP5dO36TQ0Zn6kDR6olSY8On6q3isokSQ1NV/XAgETdbHEHfZ+fa3/XH56YqOMnf5YkZS5Zp+EJ2fJ4vHJ7vHpoyCu63NgcMNAOT8jWseqfJEmnHec0/42ie77/zoG2s+M6U1unh4dOkbPhijwerybPyuvxIxUiFQNtLzN9AQFgT1U1LUrNDBxoKyrdxo8rFjHQAgAAAAjHakV7oP3jkxMlSUePn9KQ8Znyem8FDLRPjn5VP/z0q//PvLl+m15/+yNJ7UPoqTNn/R97ZFiKfr/gDPo+P9f+rkeHT/W/vaZwuxav2uh/e8j4TP34828BA21i+gotXrVR587XB3ytzt5/90Ab6rg279ynaTlr/O//8utvGWhjPdMXEACxpcbhUmmZW9v3uFXjcIX93JIyt0rK3LxAWC8w0AIAAAAIx2qZGmglKW3eW3p/U3nAQPvAwCRduNTg/5zijz9TVu67ktqH0LN1l/wf63i7ZPuXenT4VD06fKpKtn+pn2t/D3iUwNsf7NAbBZv9bw99abZOnq4NGGgvNzYr980P1X/UDA2Pn6sDR76/5/vvHmhDHdd7Jbs0b0WR//3f/+BgoI31TF9AAFhbSZlbS/M9Wprv0aYdgY8tSM3yMrxGAQMtAAAAgHCslsmB9vcLTj02Ypq27NrvH2gHjEnXjz//5v+cN9dv04o77qANNYTebHHrcmOzLjc262aLu0cD7Z3t+88x/e3pZLW2tnX6/q4MtKVlX+nVBWv97684cIyBNtYzfQEBYF2Fm+56juz04Bf9yivgsQV9jYEWAAAAQDhWy+RAK7UPsHHjMv0Dbe6bH2pB3geS2l8wbNDYDB0+9oOkzofQu+vuQNvi8mjslMW66GyUJJ07X6+Hh07RjZvukO9va/N1aaCt/vEX/X1Eqpqar8nrvaXkrHwG2ljP9AUEgHXdPcaGkjGf0bCvMdACAAAACMdqmR5ob7a41H/UDP9Ae/X6Tc1a8o6GvjRbz0yYo+KPP/N/bl8NtJK0Y+8BDRmfpUFjMzQ8fq6+OlB1z/d3ZaCVpDcKNuvJ0a/qxZQl+uiTCg0Zz0Ab05m+gACwJkdd8ECbyB20RjDQAgAAAAjHanXlhp9QqGu1tfn8/3z0+CmNeWWhuYMRA22vM30BAWBd2cvuGmjTvJoyM/Du2XAvFIbeY6AFAAAAEI7VYqDtuxqvXNNDQ17Rmdo6+Xw+zVtRpGVrSoweEwNtLzN9AQFgXTUOV8BIW7jJLUddi8orXKqobP9n08d4P2CgBQAAABAO3V9t+fRfGjg2QwPGpCt17mo1NV8zejxGBtoZ89d2mdUzfQEBYH0MsWYx0AIAAAAIh8hkRgba5W+VdpnVM30BAXD/qKxy8UiEHmCgBQAAABAOkcl4xEEvM30BAWB/lVUupWbdflTC2iKGxu5goAUAAAAQDpHJeMRBLzN9AQFgf6mZwQ9+L6/gTtquYqAFAAAAEA6RyXjEwX/z+Xx6c/02DRmfqSHjM5XzeqFaXB5J0rnz9UqY8Zr+d1iKRiXN17Hqn/1/zvQFBIC9VVa5Qr4yZ16B2/ixxQoGWgAAAADhWK0rYx7rEYrNLP2Ig6LNe6L2vT7ff1SjJy9Ui8uj1tY2TctZo3UbP5Ukxact14atn6u1tU0HjlSr/6gZ8t5qlcRAC6BvVf0QeqAt3MRA21UMtAAAAADCsVoMtPdXlhhoq3/8RR/v3KeNWz/3y1v3sf46eHLUjqFgw04tXf2h/+3Ssq80c1GBGpqu6qEhybrV2ur/2POTFujo8VOSGGgBRJ6jrkUrC9z+MTY9xxMwzqZmenmxsG5goAUAAAAQjtXqGFxdWwq7hIE2tjM+0G7Y+rn+56lEjZiYrT899bJGJc3XXwZN0tCXZmt7+ddRO45vvzutZybMUVPzNbk9XiVnrdT28q91rPpnPTsxJ+BzZy4q0JZd+yUx0AKIvMJN7qA7ZhfleZRX4FbhJjfjbDcx0AIAAAAIx2qZGmjHT83Vcy8H7mCnzpxV3LhMSdK07NXa9cXBXn8fCsz4QDtgTLr/ma6PPzddktR87YbSF76tA0e+j+qxLF61UQ8MSNSDcZOVMOM1eb23dPDbkxqbvCjg83JeL9TGrZ9LkhqveQAgrLp6j4o3e7T8Ta8+/cJ7z8+dtSD4kQZJaff+M+jct9+3//yWrjJ/LAAAAACsyWqZGGjP1NYpOWulUuas0omaM/73M9D2fcYH2gcGJvkfH/D3Ean+99dfvqLh8XOjdhwf79ynybPydLPFrdbWNi1bU6oFeR/o+MmfNTwhO+Bz0xe+rW27/y1JcnlaAeCeGptbNW124Nj61nveTj9/wWu3gsbZlAyv1n94S6Vbb+nnX28Z/3eKJdU/tiopzavX3uz8Zw4AAADg/ma1TAy0b7yzWTv2HlB5xWEtyt/gfz8Dbd9nfKAdMj5L+w+ekCQ9M2GOvv/BIUm6fqNFDw1JjtpxTMtera279/vfPlFzRnHjMtXUfE1/HTxZLa7b/zVlyPhMHT/Zftev6VvwAVhfSVnwIwuS0ryqqgn9+dvKgz8/8a63K6t4zEFX8YgDAAAAAOFYrWgPtK2tbRr84ixdv9GiFpdHA8aky+PxSmKgjUbGB9odew+oX/8EORuuaH3pbj06fKpmLirQ8Pi5mpSRF7XjeHP9Nk2ft8Z/N+/q97drWvZqSVJi+gqt2/ipWlvbtPurQxo0NkOtrW2SGGgBhBfqmbLhRtaKSrdy8z3KzfcoOT34z+bmMzZ2FQMtAAAAgHCsVrQH2q8Pf6eZiwr8b89Ztl5f/PtbSQy00cj4QCtJjt/O+wfPLbv2a+7y9Xr7gx1qvnojasdw46ZLs5e9p7hxmYobl6nkrJW6UN8oSaq7eFnxacv1yLAUjZ68UDWnf/X/OdMXEADWV1EZPNCmZnrlqOvanw817mYv8xr/94oVDLQAAAAAwrFa0R5o0xe+rQfjJuvhoVP08NApejBusqbOfVMSA200ssRA25UGjEk3fQghM30BARAb7ryLduosr95816PSMrdqHOEfVZC9LHigXVvE2NhVDLQAAAAAwrFa0Rxor16/qcdGTJPXe8v/vlutrXr8uelqvHKNgTYKxcxA+/DQKaYPIWSmLyAAYoejrkXby91KzbrjTtqs4Ecd3D3aVtW0KGO+J+DxBl29+xYMtAAAAADCs1rRHGg379wX8HiDjuYsW6+S7V8y0EYhBtpeZvoCAiC25OZ7gu6GnTnfq+173Hr7g9sfy1jgCXoRscoqV6cvLIbOMdACAAAACMdqRXOgHTtlsfZUHAl6f8WBYxo9eSEDbRRioO1lpi8gAGJLqOfJJqV5lTg9+H0ZCxgUI4GBFgAAAEA4VqtjcO0uis0YaHuZ6QsIgNiSVxD8gmGJnQy0SWle7piNAAZaAAAAAOFYLQba+ysG2l5m+gICILbc/TzZpOntA21nd9byrNneY6AFAAAAEA6RyRhoe5npCwiA2OOoa1FFpVtL82+Ps6FG2rwCt/FjtQMGWgAAAADhEJmMgbaXmb6AAIhdjrrAu2kT07yat9yj3HyPSsoYZyOFgRYAAABAOEQmMzbQvpiyRAUbdqr6VK3a2nxhP//k6dooHFX3M30BARDbHHUtKq9waVu5WzUOl/HjsSMGWgAAAADhEJnM2EC7bE2Jhk2Yo379E/TYiGnKWvqudn95SE3N10wdUo8yfQEBYG2OuhYVbnIrY4FHOcu9Kq/o3Qhb43DxwmHdxEALAAAAIBwikxl/xMElZ5N27D2gzCXr9Phz0/WHJyZqbPIivf3BDn3/g8P04YXN9AUEgLXlFbiDni1bUdn9xxc46lq08o6vlbHAw1DbRQy0AAAAAMKxWlfGPNYjFJsZH2jvzOfz6bTjnD7YvFdDxmepX/8E04cUNtMXEADW5ahrCRpnk9K8ys3v/lBYuCl46M1Z7jX+7xgLGGgBAAAAhGO1GGjvrywx0La1+XTydK3Wl+7Wy6++rr8MmqQBL8xUzuuFpg8tbKYvIACsK5IDbW6+J+TXMv3vGAsYaAEAAACEY7U6BlfXlsIuYaCN7YwNtOfO12vLrv16dcFaPfrMVD02YprSFxZoy679OltXb+qwup3pCwgAaws1rPbkObQMtD3HQAsAAAAgHKsV7YG2rc2n4o8/09CXZuuBAYl6/Lnpmv9GkRqarob9s6fOnFXcuMwef+8727H3gP+fH4ybrIvOxoh8XatnbKDt1z9BDw15RYtXbdSpM2fl8/lMHUqvMn0BAWBtjroWrS1qH1dTM70qKev+82fPN7SossoVNM729GvdbxhoAQAAAIRjtaI90C5bU6Ih47N06NsaXb/RIsevdUqb95aGJ2TrVmvrPf9spAZan8+nx5+b7n+7oemq2tpicy/sbsYG2rI9Xytj8Tt6bMQ0/X1EqtIXvq0tu/br3PnYuXtWYqAFED1VNe1jb16Bu0cvNHa/YqAFAAAAEI7ViuZAe6G+UX966mWdqa0LeH9ra5ue/r8sbdv9b0nSw0OnaPPOfZoye5WGTZij90p2Sbo90O4/eELDE7IDvsbzkxZo33+OBbzP672lrKXvavCLszRwbIYyl6yTy+3RtJw16tc/QcMTsnWhvjHgDtr3N5VrwAszNSppvrbs2q8BL8yUJE3LXq01hduVOne1Br84SwUbdur9TeWalJGnZybM0U+//C5JutzYrMmz8hQ3LlMDx2aoZPuXPfpZ9VXGn0Hr8/l06sxZFW3eo6SMN/TnQZM0aGyGFuR9oM/3HzV9eGEzfQEBANwbAy0AAACAcKxWNAfa3V8dChpWO1pTuF0z5q+VJD06fKreKiqT1H536wMDEnWzxe0faL23WvXo8Kk67TgnqX34fXjoFHk83oCv+fn+b5SU8YZ8Pp/a2nx6o2CzjlX/rKbma3pgYJL/8zoG2jO1dXp46BQ5G67I4/H6h1ZJmjF/rZKzVsrn8+m33y/pj09O1Cef/UeS9M7GnVqUv0FS+x3C898oktT+2NUHBiap/vKVHv28+iLjA+3d3Wxxq7TsK8WNy1S//gmmDydspi8gAIB7Y6AFAAAAEI7ViuZAu3nnPiWmr+j0YwkzXpPUPtCeOnPW/7FHhqXo9wvOgEccLFpZrFXvbZUklWz/UnOWrQ/6mseqf9ITz8/Qvw99J/cd421nA+3mnfs0LWeN//1ffv1twEBbWvaVpPY7fvv1T/A/N3f3l4eUOne1/2Ne7y3/1xgyPkvHT/7c1R9Rn2eJgbbu4mX/C4b977AU/fHJiRo/NVfvbNxp+tDCZvoCAsC6yitcKtzkVmmZW44688dzv2KgBQAAABCO1YrmQLv/4Ak9M2FOyI+9VVSm9IUFktoH2rN1l/wf63j7zoH2mxOn/I8fmPjqa/r68Hchv+7n+48qPm25/vZ0snJeL9TNFnenA+17Jbs0b0WR//3f/+AIGGjvfGGxfv0TdLPFJUnaU3FEU2avktT+GIaUOas0evJCjZ2yWH8ZNEnHqn/q3g+qDzM20O6rPK7cNz/UkPFZ6tc/Qf8cmaa5y9dr774jar52w9RhdTvTFxAA1lS4yR3wgl6pWV5GWkMYaAEAAACEY7WiOdBebmzWXwdPDrg7VpLa2nx6ZsIc7fy8UlLXBlqfz6cnR7+q/QdP6LER0+S9de8XGLvSfF2J6StUtHlPpwNtadlXenXBWv/7Kw4c6/ZAO2JidsDnDRqbwUArSX966mW9NG2p3ivZpR9//k0+X2y+KpvpCwgA66lxuALG2Q4lZbywlwkMtAAAAADCsVrRHGglaW3RDsWNy9TR46fk9nh1ydmkmYsKNHryQrW1tW92XRloJemNgs0a8MLMgLte76xk+5d6+4Md8vl88vl8yn7tfX2wea+uXb+pPz45UTdb3JJuD7TVP/6iv49IVVPzNXm9t5Scld/tgfbR4VNVc/pXSVJ5xWH97elkHThS3eOfV6QzNtBeu37T1LeOaKYvIACsp7Iq9ECbV8BAawIDLQAAAIBwrFa0B1qfz6fiLZ/p6f/L0gMDEvWPZ6dp/htFutJ83f85XR1of/jpV/Xrn6CD354M+b0ar1zTlNmr9NTodA0cm6H0hW/7R9WkjDf0yLAUff+Dwz/QSu2j75OjX9WLKUv00ScVGjK+ewPtR59U6MnRr2pU0nwVf/yZ3ly/Tf94dprOX7zc459ZJLPEM2hDVf3jL9r1xUHThxE20xcQANbjqGtRambwQLutvOsDraOu/TEJS/M9WlngVlXN7Y9VVLY/17ayymX83zUWMNACAAAACMdqdQyu3WWFnA1X1H/UDLW2tkXsa3bcxStJR4+f0phXFkbsa1shyw60S1d/GPDcCatm+gICwJrKK1wBI213757NzfcEDbxVNS3KKwh8tu3aIkbHcBhoAQAAAIRjtWJ1oPX5fMp5vVDrNn4asa/ZeOWaHhryis7U1snn82neiiItW1MSsa9vhSw70MZKpi8gAKyrxuFSZZUr4O7XrqiqaQn5iITlq4NH247h1vS/q5Ux0AIAAAAIh3rf5cZm9R81Q9OyV8vl9kT0a2/59F8aODZDA8akK3XuajU1X4vo1zed5QbapuZrqrPI8x+6kukLCAD76ewZtjnLgt+XlOZVeQWPOrgXBloAAAAA4RCZzNhA63J7lPN6ob7497f+972/qVx/fHKi+vVP0Kik+TGxhpu+gACwp4z5wXfLri9xcwdtDzDQAgAAAAiHyGTGBtrX3/5IceMydfJ0rSTpbN0l/empl7W9/GuddpzTiylLtCh/g6nD63KmLyAA7KmqpkXZd9wxW1LW/gxbnkHbfQy0AAAAAMIhMpmxgfaJ52fo6PFT/rfXl+5WfNpy/9tHj5/SU6PTTRxatzJ9AQFgPVU1LVr63xf5WlngjvgdrpVVLpWURf7r2hUDLQAAAIBwiExmbKD945MTdaX5uv/tlDmr9BYj/F4AACAASURBVF7JLv/bl5xN+tNTL5s4tG5l+gICwFpqHC6lZgU+giA1yytHnflju18x0AIAAAAIx2pdGfNYj1BsZmyg/d9hKfr9glOS5L3VqkeGpejb7077P/7L2Qt69Jmppg6vy5m+gACwlm3loZ8T25MX8iqvcKm0zK09+/rmRcA6hkvYj+nfAwAAACDWWC0G2vsrYwNtYvoKFWzYKUnavHOf/vHsNN1qbfV/vHjLZxo/NdfU4XU50xcQANbS04G2sqp9jN2+xy1HXeDzZ5PS2h+VEOljZaC1L9O/BwAAAECssVodg6trS2GXMNDGdsYG2m9OnNKfB03SYyOmqV//BG0v/9r/sY8+qdADA5NUXnHY1OF1OdMXEADW4qhrUWpm4FiWmnnvRxzcPeqmzQk9ulVWRfZO2o6BduY8j0q2u2ADDLQAAABAz1gtUwPt+Km5eu7lnID3nTpzVnHjMiVJ07JXa9cXB7v1NR8eOkUXnY29PrZ7tWPvAf8/Pxg3uc+/X6QzNtBK7Y8x2LH3gE6erg14/web96psz9ed/ClrZfoCAsB6qmpalFfQPn7mhXmRMEddS9AQm9jJXZHbyiN7Fy0Drf0w0AIAAAA9Y7VMDLRnauuUnLVSKXNW6UTNGf/7rT7Q+nw+Pf7cdP/bDU1X1dbm67Pv1xcZHWjtkOkLCIDYVlnlCh5jp4ceaO819PYEA639MNACAAAAPWO1TAy0b7yzWTv2HlB5xWEtyt/gf39XBtrkrHzlrftYkzLyNOaVhcp5vVDeW+2PMu0YaL/7waGhL832/5k736785qRGTMzWkPGZGh4/V18f/i7oe3i9t5S19F0NfnGWBo7NUOaSdXK5PZqWs0b9+idoeEK2LtQ3BtxB+/6mcg14YaZGJc3Xll37NeCFmf5/jzWF25U6d7UGvzhLBRt26v1N5ZqUkadnJszRT7/8Lkm63NisybPyFDcuUwPHZqhk+5e9+hl3ltGB1uPxqnjLZxqXskT/HJmmJ56focT0FSrb83XMLN2mLyAAYkeNw6W1RR4tzfdo+572u2FDPRIhKc2rBa8Hvl1S1nfPoGWgtQ8GWgAAAKBnrFa0B9rW1jYNfnGWrt9oUYvLowFj0uXxeCV1baCdlr1a46fm6lZrq9rafBqXssT/6NKuDLTDE7J1rPonSdJpxznNf6Mo6Ht8vv8bJWW8IZ/Pp7Y2n94o2Kxj1T+rqfmaHhiY5P+8joH2TG2dHh46Rc6GK/J4vP6hVZJmzF+r5KyV8vl8+u33S/rjkxP1yWf/kSS9s3Gnf6BetqbEfyznztfrgYFJqr98pcc/584yNtB6b7VqwvRlemRYipatKdHHO/dp044KzV72nv701MtKzsoPeNEwq2b6AgIgNtQ4XErNChxdl+Z7dL6hReUVgXfRZi9rf2ZtVU37xyJ952wHBlr7YaAFAAAAesZqRXug/frwd5q5qMD/9pxl6/XFv7+V1PWBduPWz/1vv1VUpiWrNkrq2kCbmL5Ci1dt1Lnz9Z0e47Hqn/TE8zP070Pfyf3f8VhSpwPt5p37NC1njf/9X379bcBAW1r2laT2cbpf/wQ1NF2VJO3+8pBS5672f8zrveX/GkPGZ+n4yZ87PcaeZmygLf74M/3j2Wkhn0Hx0y+/65FhKSr8aI+BI+tepi8gAGJDSZn7no8tqHG4VF7hivgLgd0LA639MNACAAAAPWO1oj3Qpi98Ww/GTdbDQ6fo4aFT9GDcZE2d+6akrg+0d75Q1web92rWknckdW2gvdzYrNw3P1T/UTM0PH6uDhz5PuRxfr7/qOLTlutvTycr5/VC3WxxdzrQvleyS/NW3L4T9/sfHAED7Z3H269/gm62uCRJeyqOaMrsVf5/95Q5qzR68kKNnbJYfxk0yX+nbyQzNtA+P2mBPtz2RacfLy37SsMTsqN4RD3L9AUEQGxYW+QJOdBGc5C9GwOt/TDQAgAAAD1jtaI50F69flOPjZgWcKfordZWPf7cdDVeudblgfaDzXv9b696b6ty3/xQ0u2BtvpUrYaMz/J/TuU3JwMG2472/eeY/vZ0slpb2zo95ivN15WYvkJFm/d0OtCWln2lVxes9b+/4sCxbg+0IyZmB3zeoLEZ9hpo/zp4sk6eru3047+eu6gHBiRG8Yh6lukLCADrc9S1qOCD4IE2NbP9UQad/bkah0ulZW6Vlrn7ZMhloLUfBloAAACgZ6xWNAfazTv3BTzeoKM5y9arZPuXXR5ox05ZLJfbI5fbo+EJ2fp8/1FJtwfai872F/C62eKWJC1aWayhL81Wi8ujsVMW+/+W/bnz9Xp46JSg16cq2f6l3v5gh3w+n3w+n7Jfe18fbN6ra9dv6o9PTvR/3Y6BtvrHX/T3Ealqar4mr/eWkrPyuz3QPjp8qmpO/ypJKq84rL89nawDR6p79HO+V8YG2n79E0I+3qCji85G9eufEL0D6mGmLyAArM1R16Kc5cF3zqZm3vvu2cqq4GfWVlRG9oXCGGjth4EWAAAA6BmrFc2BduyUxdpTcSTo/RUHjmn05IVdHmjz1n2sF1OW6MnRr2reiiL/HbAdA60kvbZ2k56dmKPkrHwVb/lMT/9f+x21O/Ye0JDxWRo0NkPD4+fqqwNVQd+j8co1TZm9Sk+NTtfAsRlKX/i2f1RNynhDjwxL0fc/OPwDrSS9UbBZT45+VS+mLNFHn1RoyPjuDbQffVKhJ0e/qlFJ81X88Wd6c/02/ePZaTp/8XIPftKdx0Dby0xfQABY27bywGfPJv5XuDtic/OD77jNWOCJ6LEx0NoPAy0AAADQM1arY3DtLlN1Ntya7s67cI8eP6Uxryw0dzD3yOhA+9fBk/VgXGh/HTyZgRZAzOvsxcHC3Q2bvSz4z0R6eGOgtR8GWgAAAKBnrBYDbe9rvHJNDw15RWdq6+Tz+TRvRZGWrSkxfVghMzbQ7qk40iVWz/QFBIC1VVSGHmhrHPe+gzavIPjP5eZzBy0YaAEAAIC+QL3LigOtJG359F8aODZDA8akK3XuajU1XzN9SCEzNtDaJdMXEADWt7Yo8HEF5RXhX/DLURd4F21qpldVNZE9LgZa+7nXQHvhdK3qd+/UpX0VOn+u3vjvBQAAAGAlRCYzNtBebmzuEqtn+gICIDZU1bS/8Fe4O2fvVlnlUmWVS466yB8TA639dDbQXjx0SFfi4/x/7alpyihdOF1r/PcCAAAAsAoikxl9Bm1XWD3TFxAA6CkGWvvpbKBtSh4Z9GyqhtxZxs9BK7nwU62cG9+zvfryncZ/1gAAAFZEZDJjA+3J07VdYvVMX0AAoKcYaO2ns4E21IsHNKbHGz8HreTSocM9fiGGWNKQnWL8Zw0AAGBFRCaz7DNoXW6PPv2i0vRhhM30BQQAeoqB1n46vYM2fjB30IZx4adaOYvXRc3l/EXtj5tIHhnV78sdtAAAAKERmcxyA+3J07ValL9BDw+dov8dlmL6cMJm+gICIHZtK3crY4FHqVleFW5y98lzZu+FgdZ+OhtoL1V8FTDONsUP1sUT1cZ/B+5nHXfsckcrYC0XTteqMXuq/3nd9VtLjR8TACA6iExmiYG2+eoNlZZ9qedezlG//glKmPGayisOy+Pxmj60sJm+gACITdvK3f4xrcPKAndUj4GB1n46G2jPN7SPDs4N76p+S6nOn6s3/jtwv2OgBaypMT0+6G8cXKr4yvhxAQD6HpHJjA20Pp9Ph76tUcbid/TAwCQNj5+r9aW79edBk3S27pKpw+p2pi8gAGJTbr4naKDtbFjrKwy09tOr8+hcvf+usStjHpNzw7vGf0/sjIEWsJ6LJ6pDPrv5cv5i48dmJc7idcafp80zuwH0BSKTGRtoB47NUP9RM7T8rVLVnP7V//4H4yYz0AKwPQZaWG2gbcxJCfp/Tut3f2L8d8WuGGgB62Gg7RoGWgB2RWQyYwPtQ0OS9dK0pSot+0pNzdf872egBXA/CPWIgzwecQBTA+25+pD/z2ljDv/PaV9hoAWsKdR/rLp46JDx47qfdQzCzuJ1xo8FgL0RmczYQHuzxa3t5V/rxZQl+p+nEpUyZ5U++9dR/XUwAy2A+0NJmVsZ8z1KzfRqbZGHFwmDuYG2oSX03UO5s4z/ntgVAy1gUefqdTl/sZriB6sxJ4Xnz1oAAy2AaCEymSVeJOxMbZ2Wv1WqR5+Zqn79EzR3+XqdPF1r+rC6lOkLCAD7K69waWWBWysL3KqsckXs6zLQ2k9vBtqG3Flh7xq7cLpWFw8dNv47YQcMtADQNQy0AKKFyGSWGGg78ni8Kq84rJdffV39+ifouZdzTB9S2ExfQADEHkddi1YW3H7EQeGmzh9tUFIW/CiEisrIPAqBgdZ+evss48vrVqoxPT7kXWOX1628Pd7Gx3FXWS8x0AJA1zDQAogWIpNZaqC9s7N19Xpz/TbThxE20xcQALFnbVHwC4SVlIUeXVMzg19ILDffE5HjYKC1n756sbn63Z8EPwIhPk7nz9VH/HtdOOfUpcOHbc+5rbT9Ob/pE4wfSzRc/O6k8WsvEBHn6uXc8K4almaqfmup+eO5DzDQAogWIpNZdqCNlUxfQADEnrsH16Q0r3KWhx7VQn1uxnwGWkR3oL2cvzjkM2r74oVzOu4shb1wpzBs4Vy9rsTHBZ7bSzPNH5fNMdACiBYik1l2oH2rqExx4zJNH0bYTF9AAMSeUKNr9rLQo1pufvDdtvd6JEJ3MNDaT18NtM4N74YeaE9UR/x7dQy0TeOeUFPySMS6xGcYaGEbnV4L++A/VuGOnzsDLYAoITKZZQfa/xyt1vrS3VH9nkeO/6ihL83WQ0NeUXJWvq5evylJOne+XgkzXtP/DkvRqKT5Olb9s//PmL6AAIg9hZuCnyu7rTz06FrjcCl72e3Pyytwy1EXmeNgoLWfvhpoz5+rV1P84MC7xnJn9cnvh3+gTR4pZ/E6xLiGlQsZaGEbDLSGfu4MtACihMhklh1oo13ztRt6/LnpOnr8lNwer5atKdHHO/dJkuLTlmvD1s/V2tqmA0eq1X/UDHlvtUpioAUQnqOuRVU1ge8rKXMre1n782Q7G2fvVONwRWyY7cBAaz99NtA2tOj8uXpdXrdSDbmzVL+l7567yEBrL70ZaC+eqNblVYvbn/W5e6fxazlwqeKroHG2KX6wLpyuNX5sdsZACyBaiExmiYH21Jmz2lNxRDv2HggSrXbsPaBZS94Jen9D01U9NCRZt1pb/e97ftICHT1+ShIDLYB7u/Nu2dQsryqrXMaPqQMDrf306UAbJQy09tLTgfbioUNBQ5hzw7vGz0/g8rqVAeNs/e5PjB+T3THQAogWIpMZH2jz1n2sfv0T9M+RaYoblxkkWi1/q1RLVm1U4swVGjg2Q3OWrdf1Gy06Vv2znp2YE/C5MxcVaMuu/ZIYaAF0rrzCFfQog9Qs64xnDLT2w0ALq+npQNuQOyvkXyU3fX5G28XvTqohe6rtOd9Zafxn3R0XTte2P9bgXL3xY7kfMNACiBYikxkfaB+Mm6wDR743fRiau3y9hozP1IX6Rrk9Xs2Yv1bL1pTo4LcnNTZ5UcDn5rxeqI1bP5ckXbnuAYCQ1m0IfjGwpDSvqr7v3ddtvuGNiGPVt5SU5lXGfI8+3gk76DjHInWOGFH1TfsYN2WUrpS8h1j35uL2/33Om9q982D+1JADbXN9o/lz1MTvg9119/zAfcH/f/uUvNd+npS8Z/z/tgNgb0QmMz7QPjIsRTdbXKYPQ8vWlOq1tZv8b1d9/5NGTMzW8ZM/a3hCdsDnpi98W9t2/1uSdMN1CwBC+nBr6IH27AXzx3bDdUvf1bQPtLMWeLV1F+yg4xwzfW71xvXj/x2kUkbp6qb1iHVrlrQPq/Ondus8uFq4KniczUgwfn5GXWOTrh//Jmqu7dzc/rOeGR/V73v9p1Pmf9awrKub1uvKmMd0ddN648cCwN6ITGZ8oF1btEMfbN5r+jC0cevnmrt8vf/tqu9/0qik+Wpqvqa/Dp6sFtft/5oyZHymjp/8WRKPOADQuRqHS6mZgeNsXkH4FwSLFh5xYD884gBW0+MXCTtXH/CYg6bkkbp4otr4+Wl3Hb9/PXlRN6Cv8IgDANFCZDIjA+2U2av8puWs0WMjpmnYhDlKzsoP+NiU2auidkyXG5v16PCpOu04J++tVqUvLNAb72yWJCWmr9C6jZ+qtbVNu786pEFjM9Ta2iaJgRbAvdU4XCrc5FZuvkfbyq0zzp5vYKC1IwZaWE2PB9r/unC6lmHWwO8fAy2shIEWQLQQmczIQJv/7pYui2b/PvSdBoxJ12MjpmnWknd042b7oxfqLl5WfNpyPTIsRaMnL1TN6V/9f8b0BQQAeoqB1n76YqC9cLo2quclA6299HagRXQx0MKKGGgBRAuRyYw/4sDx2/mQ73d7vKr6/qcoH033M30BAYCeYqC1n0gOtJfXrfT/9fLGmfFRu4uRgdZeGGhjCwMtrIiBFkC0EJnM+ED7YNzkkO/vePar1TN9AQEQm7aVu5WxwKOMBR4VbnLLURf9Y2CgtZ9IDbTODe8GvUBT48z4qJyXDLT2wkAbWxhoYUUMtACihchkxgbaLbv2a/TkhfrDExM1evLCIE88P0Nx4zJNHV6XM30BARB7tpW7A144LCnNq+lzvMpZ7tX2PdF7Ti0Drf1EaqBtzEkJGmivjHksKo87YKC1Fwba2MJAG0Hn6nVpX4Xqd++M+qNi7IaBFkC0EJnM2EDb4vLo4Lcn9cCARG3c+nmQLbv260J9o6nD63KmLyAAYk/2Mm/QQHunaL2YGAOt/URqoG3InRVyoI3GeclAay8MtLGFgTYyLpyuVdOUUbevn/FxvNhdLzDQAogWIpMZf8TBoW9rTB9CrzJ9AQEQe8INtDnLbw9slVUuLc33aGl+5B+FwEBrP5EaaC8eOhQ0zl5etzIqvx8MtPbCQBtbGGgjI9R/5GqaMqpP/vfl3Pie7TVkT/3veTnV+LFEQ335TuPnMHC/IjKZkYF2xvy1OlNb5//ne7F6pi8gAGJPSVnwIw7ulL2sfWCrqmkJ+tjSfE/EjoOB1n4i+SJhFw8dUkPuLDXmpMi54d2o/X4w0NoLA21sYaCNjKbkkVH5WwjO4nUhvw9iG79/gDlEJjMy0C5/q1Rn6y75//lerJ7pCwiA2FRS5lZqplevvNo+qCXeMcKWlLU/4mBtkSfkgFvjcEXkGBho7SeSA60pDLT2wkAbWxhoIyPkHbTJIyP+fToG2qbkkWqYOwUxrvHVCfz+AYYRmcz4Iw7eKirTt9+dlvdWq+lD6VGmLyAAYpujLnCILdx0+/mzeQWh77StqonM92agtR8GWlgNA21sYaCNjIsnqtUUPzhgoL1U8VXEv0/HQNswd4rx33VwvQTsgMhkxgfaaTlr9PcRqXowbrJeyVyp4o8/06kzZ+Xz+UwfWpcyfQEBYF8VlcEDbcZ8HnEABlrEDgaH2MJAG0Hn6lW/pVTODe/qwunaPvkezmIGWjvhegmYR2Qy4wNtR47fzmvLrv3KWvquBrwwU38fkar0hQWmDytspi8gAOztzufVZi+L3N2z5xsYaO2IgRZWE43B4cLpWjUszdSV+Dg1Zk/VxUOHjJ/HsYqBNrY4ixlo7YSBFjCPyGSWGWgl6fqNFh04Uq3V72/XMxPm6E9PvWz6kMJm+gICAD3FQGs/DLSwmmgMDo3p8YHP+4yP67M7Fu2OgTa2OIsZaO2EgRYwj8hkxgfaz/51VMvWlGhU0nz949lpmjJ7ld4r2aWjx0+pxeUxfXhhM30BAYCeYqC1HwZaWE1fDw4XDx0K+Srozg3vGj+XYxEDbWxxFjPQ2gkDLWAekcmMD7T9+ifomQlzVLL9S9246TJ9ON3O9AUEAHqKgdZ+GGhhNQy0sYWBNrY4ixlo7YSBFjCPyGTGB9rvf3Co8KM9Ss7K16PPTNXoyQv12tpN+vLrb9XQdNX04YXN9AUEAHqKgdZ+GGhhNX0+OJyrV1PyyKCBlufQ9u73j4EoNjiLGWjthIEWMI/IZMYH2jtra/Pph59+VdHmPRr60mz1659g+pDCZvoCAgA9xUBrPwy0sJpoDA4XT1SrMSfFf95cqvjK+HkcqxhoY4uzmIHWThhoAfOITGaJgfb6jRZVfnNSa4t2KDF9hR4a8oqGvjRbi1dtNH1oYTN9AQGAnmKgtR8GWlgNg0NsYaCNLc5iBlo74XoJmEdkMuMD7XMv5+gPT0zUwLEZynm9ULu+OChnwxXTh9XlTF9AAKCnGGjth4EWVsPgEFsYaGOLs5iB1k64XgLmEZnM+EC7vfxr/X7BafowepzpCwgAa3PUtWhlgds/nK0scMtRZ/64zjcw0NoRAy2shsEhtjDQxhZnMQOtnXC9BMwjMpnxgbazrl6/qYvORtOHETbTFxAA1la46fY422Ftkcf4cZ1vYKC1IwZaWA2DQ2xhoI0tzmIGWjvhegmYR2Qyyw60i1YW8yJhAGJexnxP0EBrlQGNgdZ+onl+XTx0SM4N76p+986Ifl0GWnuxy+Bw4adaXTp82Pac20p1ZcxjakyfYPxYouHidyeNn1u94SxmoLUTu1wvgVhGZDLLDrS/X3Dqux8cpg8jbKYvIACsLXtZ8DibmslAi9geaC+vW6krYx7za5wZH7GvzUBrLxEfHM7Vq35rqeq3lurC6dqoXS+dxesCznnYQ6wPYR3nJQOtPTDQAuYRmcz4QPuPZ6ep8co104fR40xfQABY27by4EcclJS5jR/X+QYGWjuKxkB78UR1yKGjfktpRL4+A629RHJwuHiiWlfi426fd/FxunjoUFSul87i9iGsacIgNSWPRKxLfMYWQ1jHeclAaw8MtIB5RCYzPtCmzl2tTTsqTB9GjzN9AQFgfdvK3crN9yg336Nt5T0bZ2scLlXVRPa4GGjtJyoD7aFDIQda54Z3I/L1GWjtJZKDQ0PurKDzrmnKqKhcx53FDGF2EukhrH73J2pYmqnLqxZH7T8acF7aDwMtYB6RyYwPtHOXr9fjz03XkPGZmpSRpymzVwWweqYvIADszVHXoqX5t59jm7PcG7GhloHWfriDFlYTycGhKXlkyHMvGtdiZzFDmJ1E8rx0bng36JyM9p3dnJf2wEALmEdkMuMD7etvf6T8d7d0yuqZvoAAsLfCTcGPSMhZHpkBjoHWfiIy0J6r18VDh+/5OXcPEo05kft/JjsGWthLn91BmzwyKtdihjB7ieQQFup8j+Q1kfPy/sFAC5hHZDLjA22sZ/oCAsDecu+4e/ZOkfjaDLT209vzI+DFv+LjVL/7k04/9+KJatVvKY34nWIMtPYUicHhwulaNcUP9n/NpvjB3KkI40NYqPOdgRamz0sAPUNkMksMtJ989h/Fpy3XgDHpkiSX26OCDTt1q7XV8JGFz/QFBEBsc9S1aG2RR0vzPVpb5JGjLvDjoQba1EwGWkR+oL1U8VXw0BAfpwuna6P6O8EjDuwl4oPDuXrV7/5E9bs/ieq56SxmCLOTSJ6XjenxQdfOy+tWcl7C6HkJoGeITGZ8oC3++DMNGJOu9aW71a9/giTpcmOzRibO06r3tpo9uC5k+gICIHY56lqUsSBwgM1YEDjSVla5ggbakrKevdDY3Rho7ac3A22o5yheGRO9Zyl2YKC1F7sMDs5ihjA7ieR5efFEdcBI25A7S+fP1XNewuh5CaBniExmfKD958g0OX6tkyT/QCtJ587Xa8ALMw0dVdczfQEBELvKK4LH16Q0ryoqAwfYqpr2u2zzCtxBH+sNBlr7YaCF1dhlcHAWM4TZSV+clxdPVEf9bxxwXtqLXa6XQCwjMpnxgfbBuMlqa/NJChxoW1we/XnQJENH1fVMX0AAxK5t5cEvAJaU5tW28siNsPfCQGs/vXoG7bn6gOd7RvM5indioLUXuwwOzmKGMDvhvIQV2eW8BGIZkcmMD7RjkxepvOKwpNsDrc/n0zsbd+r5SQsMHlnXMn0BARC7ahyh76Ctcbii8v0ZaO2n1y8id65el9etVGNOiuq3lBr5vWCgtRe7DA7OYoYwO+G8hBXZ5bwEYhmRyYwPtMeqf9KDcZP10rSl6tc/QdNy1mjwi7P00JBXdOT4j6YPL2ymLyAAYlt5hUupmbdf/OvORxhU1bSocJNbpWVuVdVE/nsz0NpPrwdaC2CgtRe7DA7OYoYwO4n6eXmuXpfX5etKfJyapoxS/dbI/Acwzkt7scv1EohlRCYzPtBK7c+bfWfjTs1dvl6L8jeo+OPP1HjlmunD6lKmLyAAYoOjrv05sqlZXmUu8mruEq9Ss7xaWeBWjcMVdNdsRWXw4w8i+fzZ8w0MtHbEQAurscvg4CxmCLOTaJ+XDbmzgp7vHYm/pcB5aS92uV4CsYzIZJYYaCXp6vWbcvx2XrVnL+j6jdj5xTB9AQEQG3LzPcGPM5je/j9zlgcPatnLgh99EOrzeoOB1n4YaGE1dhkcnMUMYXYS7fMy1AswRuIZ35yX9mKX6yUQy4hMZnygrbt4WfFpy9Wvf4LfH56YqKSMN3TJ2WT68MJm+gICwPo6e9Zs4h3/XFl1+w5aR11LyM+P9PDWMdDCfkyf873BQGsvdhkcnMUMYXbCQAsrssv1EohlRCYzPtCOeWWhsl97X9/94NCFSw36/YJTR47/qOSsfI2dstj04YXN9AUEgPV1Z6B11LUoY4En4GMd8gr65hEHsB/T53xvMNDai10GB2cxQ5id8IgDWJFdrpdALCMymfGB9p8j0+Tz+YLef/X6Tf150CQDR9S9TF9AAMSGUI8s6HjEQcZ8jxx17Z9XuKl9NE284+Mdn3P3c2p7i0cc2A8DLazGLoODs5ghzE6MvEhY/mI1xQ9uv7ZteJfzEubPSwBBiExmfKB9ftIC3WxxB73/Qn2jRibOM3BE3cv0BQSAddQ4XNqzNRzcYAAAIABJREFUz6WKg27/4Hrnx/IK2gfRtDntLxCWlOZVbr5HVTW3Py/oWbXT21XVtN9dW7jJraX5Hq0t8gR9j+5ioLUfBlpYjV0GB2cxQ5idcF7CiuxyXgKxjMhkxgfaTz77jybPytMX//5WP/78m6p//EW7vzykl6Yt087PK/Vz7e9+Vsz0BQSANVRUuv2ja1KaVxkLejagdtxBe6fUzPbB7e67cHv6PTow0NoPAy2sxi6Dg7OYIcxOOC9hRXY5L4FYRmQy4wPtnS8OFo4VM30BAWANUzODH2GwtsjT7a/jqAseYssrXKqoDP282G3lPX8uLQOt/TDQwmrsMjg4ixnC7ITzElZkl/MSiGVEJjM+0DY1X9PV6ze7xIqZvoAAMK/G0RJyPM3N7/5A26Gi0q3yCpf/ubM7Pgv9QmPvb2KgBQMtrMsug4OzmCHMTjgvYUV2OS+BWEZkMuMDrSS1trbp6PFT2rH3gP9912/Exi+H6QsIAPO2lbsDXtCrw+K89oG2ssoV8JzZntiyK/T3eGcjAy0YaGFddhkcnMUMYXbCeQkrsst5CcQyIpMZH2h/v+BU3LhMPRg32f8Yg7qLl/XIsBRV//iL2YPrQqYvIADMKylzK/Hu8XR6+92tdz6Xdml+z58ZW1H53+8x/fbXT5zOIw7AQAtrs8vg4CxmCLMTzktYkV3OSyCWEZnM+ECbMOM1rSncrtbWtoDnzJaWfan4tOXmDqyLmb6AADCvsqp9GEvsML39f76a4wm647WkLHhQddS1f417fQ9HXYsy5nv836fjxcM6HoHQEwy09sNAC6uxy+DgLGYIsxPOS1iRXc5LIJYRmcz4QPuXQZPk9nglKWCg9d5q1d+eTjZ0VF3P9AUEgDVsK7/9Il6pmd72RxJ04bm0JWV3/LksryoqO78jtsbhUl6BWxnzPcorcPf6sQkMtPbDQAurscvg4CxmCLMTzktYkV3OSyCWEZnM+EDbf9QMXW5slhQ40P5c+7v+PiLV0FF1PdMXEADW0XEnbMdjDEINtHkFtwfYisrgETc1q3d3xXYHA639MNDCauwyODiLGcLshPMSVmSX8xKIZUQmMz7Qvv72R5owfZkOV/2gfv0TdOrMWX36RaXixmVqyaqNpg8vbKYvIACs6867YzvurL3zrte7P94h3OMOIoWB1n4YaGE1dhkcnMUMYXbCeQkrsst5CcQyIpMZH2hdbo8W5hXrz4MmqV//BPXrn6CHhiRr5bot/kcfWDnTFxAA1lZR6dbaIo8KN7mD7oztykDrqGvR2iKPlua3f42evshYKAy09sNAC6uxy+DgLGYIsxO7nZdN8YPVlDwKsS5pmC3OSyCWEZnM+EDbkdd7S3UXL/sfdxArmb6AAIg95RUupWa1v9jXpHs8o9ZR16KMBYEvNJaxwBOxkZaB1n4YaGE1dhvCGGjtwW7nJewl1s9LIJYRmcwSA+3Zunq9/cEOzVm2XpLU1ubTNydOGT6qrmX6AgIgtlRWuQIG18Q0r15J92pxnkfbygPvkC2vcIW8w7a8IjKPQGCgtR8GWliN3YYwBlp7sNt52fjqBDWsXIgY17hghi3OSyCWEZnM+EB78NuTemBgkibPyvO/SNj5i5f18NAp+vSLSrMH14VMX0AAxJbOHmswb6nHf4dsRWX7C4ltKw/9udvK3RE5FgZa+2GghdXYbQhjoLUHzktYkV3OSyCWEZnM+ED7zIQ5+tfB45LkH2gl6ejxUxoxMdvQUXU90xcQALGls4E2aXrwc2hrHKHvoL37WbY9xUBrPwy0sBq7DA7OYoYwO+G8hBXZ5bwEYhmRyYwPtH8eNEmtrW2SAgda761W/WXQJENH1fVMX0AAxJYah0upmYGDa+L04BG2cFP7XbLlFbc/PzUzco83ON/AQGtHDLSwGrsMDs5ihjA74byEFdnlvARiGZHJjA+0Q8Zn6tSZs5ICB9p/HTyugWMzDB1V1zN9AQEQe6pqWpRX4Fb2Mq9eW+NRYoi7ZDsG2g6Rumv2Tgy09sNAC6uxy+DgLGYIsxPOS1iRXc5LIJYRmcz4QLt19349/tx0rSncrn79E/Thti+U83qh/jxokjbtqDB9eGEzfQEBEPuylwUPtFU1ff99GWjth4EWVmOXwcFZzBBmJ5yXsCK7nJdALCMymfGBVpLKKw7r5Vdf14AXZmrYhDlKmbNKB458b/qwupTpCwgAa6uodKu0zK2Kg52/sJejrv2O2tRMr3LzPaqsivzdsqEw0NoPAy2sxi6Dg7OYIcxOOC9hRXY5L4FYRmQy4wNt89UbnX6s49EHVs70BQSAdeUVBL4g2MqCzkdaExho7YeBFlZjl8HBWcwQZiecl7Aiu5yXQCwjMpnxgfbp/8vSufP1Ae9rbW3T+tLdemBAoqGj6nqmLyAArKmi0h302IKkNG/U7o7tCgZa+2GghdXYZXBwFjOE2QnnJazILuclEMuITGZ8oC0o/kSPPzdd3//gkCSdravX+Km5enL0qzr0bY3howuf6QsIAGsqKQs90JaUtd9FW7jp9seX5nv65EXAwmGgtR8GWliNXQYHZzFDmJ1wXsKK7HJe/v/27v8/6/q+9/j/Y3vabu2+ONbab4qttVVajmfdDAz8BgoWUdpCERHBejRaSylIpcFDbIuUagWtq3GultLqUDrMJvNk9MiQmCskoJZ8M/o6P6QEQ0IIuUJen+uT+/12e9xuI5D4Ed++1z57cUWq5SBT+kAbEfHkM7+L878wP+763o/io9Ovjq+vfiDeevt49mONSfYFIqmY7drTPeJAu6e5K3Y2Df+5ZWsmf1Qz0JYvA62KVlkGh0qDIaxMTcS5bN27L954pila9+5zLlWYcympuiBTIQbaiIh9//Ff8YnLF8bSO3+Q/SjxvR/+LD5+2YLBHx98vS1m3Xhn/PUl82LG3OXx4r5XB38u+wKRVNzWbuodMsKu3dQbrx/pilX1vSOOt//82+548OGeWLupN5p29UTLoYGh91y9LYKBtnwZaFW0JntwaN27LyqbN0T7+vpo3b17wr5upcEQVqaqPZeVzRvi6Mxpg7XfuzLlvnQuy5WBVsoPMqUMtDcuXzti/2ve7fGBT86OG5bdP/ixyfaHg63x+X/4+pCBtm7hmtj8yFPR3/9uPPe7fXHBjBuj753+iDDQShq9Pc0Db3ewp/nkx0795mEnmnPKj+cv6R3yCtuWQxP7bAba8mWgVdGazMGhde++OFo3fchw1rbj0Qn52pUGQ1iZquZctu7dN+SMTfRZcy6nbgZaKT/IlDLQrvlu45ibbLO/dmc8+czvBgfaI51vxscuvjbe6e8f/DVfvurWeP6lVyLCQCvp7Bvp7Q9OHWdH6sQrcCcqA235MtCqaE3m4NCxbN7w4axu+oR87UqDIaxMVXMu23Y8OuJAW9m8YdLvS+eyXBlopfwgU2He4qAIHv3Fr+Prqx+IzmNvDQ60L+57Nb40e9mQX3fTbeti6+PPRoSBVtL4atrVE6vqe+PmFQPj7JwFZx5ol66e2OHNQFu+DLQqWpM60C6qG3E4m4ivXWkwhJUpr6BVETPQSvlBpvSBtqe3L773w5/FjLnL42+/dEN84vKFMfOaFfHAlscH30ZgMhw99nZ87u+XxJHON4cMtL/515fjimtvG/Jrl337wXjokaciIuLN432SNO4e/6fTD7KnjrZr7hv4nLe63pmQ9ja/E3MX9sXNt/bF1p+rDJ04KxN1RlJ66YWBweO6GXGscaNqve/cHkdnTotjy+ef87Nz7P5Vw0azY4tnTczXbtw48DWXzcv/PVX6uTz1rE3UOXMuT+2BqdV3Vg788/zW/PT/fCpN1SBT+kC7eOX344uzl8bGxh3x2FO74mdPPhdrN/0sPjNzUXx99QOT9hxL7/xBbNvxLxERQwbal15+NS6dtXTIr1204nuDv/at432SNO7eONIXNywZ/iraBV8f+rYHNyzpi5f2Texfe+/LJwba3tj6c5WhwYG2AGd73L34/oG2AP+FWRMyOBz71vyqzsWbr/xHvPnKf4z+ayodceymk6+iPXbdjDN+zlg71vjA+4awAvy+Kv1cvvlPj8ebjRvjzZ/9KO2+dC5L1gTdl5LGH2RKH2j/+pJ5cbyre9jHXzvUFh+58KpJe47zL50fH79sQXz8sgXxt1+6IT7wydnx8csWxP/779b484uujq7u3sFfe/FXb4mXXn41IrzFgaTq29N88huH3X5vTzz+y+54/cjAe9U++HBPbNneE80t3RP+1/UWB+XLWxyoaFX9R3YPtkXH0vmDo2vHTXVxeP+BUT+ndffuaN29O14/2DZh57LS4I+Sl6my/FFy57JcleVcSrUcZEofaE99deoJx7u64zMzF03y0wx4/ytoIyLmLLor1j/08+jvfzd2PL07LrxicfT3vxsRBlpJtZuBtnwZaFW0qh0c2utXDnvbgiOrbp70c1lpGBjCOhZdGe31t6nG61hxYymGsBPn0kBbjgy0Un6QKX2gbdz+y6jfsDWOHnt78GNvVDpj+f/eFI/+4tcpz3TqQHuotT3qFq6Jv7pkXnzl6hXRvP8Pgz+XfYFI0ngz0JYvA62KVrWDQ2fdRefsG3+dTZWG9SM+h2q7Wh/CTpxLA205MtBK+UGm9IH2s1csjg99ek6cd8Gs+IvPXRt/duFVcd4Fs+IjF14Vf/PF6+P8S+cPVkTZF4gkjTcDbfky0KpoVTs4dCybN2xU67z28kk/l5WGgSGs88oLo/Pay1XrzflCKYawE+fSQFuODLRSfpApfaB96tkXoum5F8dUEWVfIJI03gy05ctAq6JV7eDwRtPTwwbatq2Nk34uKw2GsDJVliHMuSxXZTmXUi0HmdIH2hN6evvitUNvxKsH/nvEbxpWVNkXiCSNNwNt+TLQqmiNZXA4vP9AtO7+7Wm/+Vfr7t3RXr8y2utXxhtNT6ecy0qDIaxMlWUIcy7LVVnOpVTLQab0gfbYW3+Mm2//fnzwU7PjvAtmxXkXzIoPfmp23Hz796Oruzf78c4o+wKRpPFmoC1fBloVrTMNDu3r70l/dexYqjQYwspUWYYw57JcleVcSrUcZEofaJes2hD/cMPq+M2/vhyH3zgSh984Er9+fl98df6quOM7/yf78c4o+wKRVLvt2tMdzS3daX99A235MtCqaI02OLTu3TfiN25q3bsv/RyeWqXBEFamyjKEOZflqiznUqrlIFP6QPvxyxbEkc43h328rf1ofPorixKe6OxkXyCSit22nT2xbE1fLFvTF43be+L1I12xp7krFt/aOzim3bOuJ+XZDLTly0CrojXa4FDZvGHEgbaIr6KtNBjCylRZhjDnslyV5VxKtRxkSh9oz790fhzv6hn28a7u3jj/C/MTnujsZF8gkorblu09g4PZibZs74nFy3tH/PhkP5+BtnwZaFW0Rhsc2nY8OvIraHfvTj+Hp1ZpMISVqbIMYc5luSrLuZRqOciUPtDO+8a98a27NsWxN/84+LHOY2/Fsm8/GFctvjvxycYm+wKRVNxGGmLn3dI37GNzF/bFqvreSX++EwOtylf22a8mA225OtPg0LGobsg427GsmMNEpcEQVqbKMoQ5l+WqLOdSquUgU/pA+3pre3xp9rL4wCdnxwUzboxPXL4wPvDJ2XHxV5fEgdcOZz/eGWVfIJKK20gD7fWnGWi/s9FAKwPt60cMtGXrjIPDwbZo29oY7fUrC/nWBieqNBjCylRZhjDnslyV5VxKtRxkSh9oIyLee++9+Ld/b4mdTb+Nnz35XLy47z+jv//d7Mcak+wLRFJxe/Dh4QPogw/3jPjxG5f1Rsuh/GcuYyeG6NvvmfwRXGefgbZclWVwqDQYwsqUc6kiVpZzKdVykKkQA+27774X7R3H4lBr+7CKLvsCkVTcWg4NHWnXbjo5wl57U1/M+dPH57zv57OfuYwZaGsrA225KsvgUGkwhJUp51JFrCznUqrlIFP6QPuLf34+zr90fpx3wawRK7rsC0RS7dXc0j3iH0vPeB/aqZCBtrYy0JarsgwOlQZDWJlyLlXEynIupVoOMqUPtB+/bEF85wc/jT8cbI3WSsewii77ApFUm430XrReQXtuMtDWVgbaclWWwaHSYAgrU86lilhZzqVUy0Gm9IH2IxdeFce7erIfY9yyLxBJtdnOpqGvol28vDeaW7rTn6uMGWhrKwNtuSrL4FBpMISVKedSRaws51Kq5SBT+kB74/K1seuFl7MfY9yyLxBJtVtzS3ds29kTO5u6fYOwc5iBtrYy0JarzMGhde++OHLHLdF53Yw4csctcXj/gXF/rUqDIaxMlWUIcy7LVVnOpVTLQaaUgfaHP35ysPUP/Tw+e8XiuK1+c2z68RNDfu6HP34y4/HOSvYFImnqtGV7Tyxb0xfL1vTFT5/oSX+eWslAW1sZaMtV2uBwsC2O1k2PozOnnaxuerx+sG1cX6/SYAgrU2UZwpzLclWWcynVcpApZaC94rqVY67osi8QSVOjBx/uGfaetdt2GmnHkoG2tjLQlquswaFtx6NDx9k/1bbj0XF9vUqDIaxMlWUIcy7LVVnOpVTLQab0tzioddkXiKSp0anj7NyFA6+kzX6uWshAW1sZaMtV2kC7tdFAq8Kdy4nOuSxXZTmXUi0HmdIH2t7evmjc/vTgj5/Z9VLM/+Z98e3v/SiOd3UnPtnYZF8gkqZGIw20S1cbaMeSgba2MtCWq6zB4fD+A9FZd9GQcbaz7qJxvw9tpcEQVqbKMoQ5l+WqLOdSquUgU/pAe+vdP4yZ16yI/v53479eOxwf+vScWH3/lph1452x7NsPZj/eGWVfIJJqqy3be+KO+t5Yu6k39jSP/fPWbuodNtBu2e4tDsaSgba2MtCWq9RvErZ7d3Ree/ngeWrdvXvcX6vSYAgrU2UZwpzLclWWcynVcpApfaD9my9eH5UjRyMi4r6N22L+N++LiIgjnW/Gxy9bkPloY5J9gUgqbrv2dMcTz3RHc0t3vH6kK+5eN/R9ZK9f0jf4c2eq5dDQkfbBh42zY81AW1sZaMtVWQaHSoMhrEw5lypiZTmXUi0HmdIH2j+78Kro7383IiK+fNWtsf2JX0VExDv9/fGRC6/KfLQxyb5AJBWzVfVDX/G69fHh3+TL0Do5GWhrKwNtuSrL4FBpMISVKedSRaws51Kq5SBT+kA7Y+7y2Pr4s/GLf34+PnLhVdF57K2IiNj1wsvxhSu/kfx0Z5Z9gUgqXtt2Dh9j5y0ePs7OXdgXazcZDc91BtraykBbrsoyOFQaDGFlaizncrzvV+xc6lyeS0nnNsiUPtD+ds+/x7Qv3hB/duFV0bj9lxER0d5xLP78oqvjsad2JT/dmWVfIJKK16lvZTDaSLuzaWxvcaDxZ6CtrQy05aosg0OlwRBWpkY7l207Ho2jddMHvrlc3fR4o+np9PPnXE6NynJfSrUcZEofaE94p79/8P9+7733ouX/vZ74NGOXfYFIKl5bto880O56qSsWL/c+spOdgba2MtCWq7IMDpUGQ1iZOt25PLz/wMAw+/7qphf21bTOZbkqy30p1XKQqTADba3KvkAkFa+WQ0OH2LkL+2LL9pNj7J7m/GecShloaysDbbkqy+BQaTCElanTncvK5g3DB9qZ06Jtx6PpZ9C5LH9luS+lWg4yFXag/e6m7TH9727Jfowzyr5AJBWzlkMD70W7ZXtP7NpT3dsYtBzqip8+0RON23uMu+PIQFtbGWjLVVkGh0qDIaxMne5ctm1tHHGgLerbHDiX5aos96VUy0Gmwg60v35+X2xs3JH9GGeUfYFIqs32NHdF4/aeeOKZ0cfb5pbuuH6J962tJgNtbWWgLVdlGRwqDYawMnXac3mwLTrrLhoyznZee3m8frAt/Qw6l+WvLPelVMtBpsIOtLUi+wKRVHtt2zn0PWqXremLlkMj/9q1m3qHvZft9Uv60v8eaikDbW1loC1XZRkcKg2GsDI12rk8vP9AtNevjI5l86K9fmVhx1nnsnyV5b6UajnIVIiBtvPYW/Hy/gPx4r7/HFbRZV8gkmqr5pbuEb+B2LadI3/DsFX1wwfauQv7vNXBWWSgra0MtOWqLINDpcEQVqacSxWxspxLqZaDTOkD7fqHfh4f/NTsOO+CWfHBT80eVtFlXyCSaqtde0YeaO9eN/JA++DDPcNfQXuLV9CeTQba2spAW67KMjhUGgxhZcq5VBEry7mUajnIlD7QfuLyhfHSy69Gf/+72Y8yLtkXiKTaquVQ11m9grblUFcsXT10nG3aNfKv1cgZaIdW2bwhOpbOj46l8wv5jW8MtOWqLINDpcEQVqacSxWxspxLqZaDTOkD7Yy5y7MfoSrZF4ik2mtn09BX0S5dffr3oD1R066e2NnUHc0tvkHY2WagPVn7+nsK/93JDbTlqiyDQ6XBEFamnEsVsbKcS6mWg0zpA23D1l/ExsYd8dbbx7MfZVyyLxBJtdme5oFvFubVsOc+A+3JTh1nj86cFh3LivVfBA205aosg0OlwRBWppxLFbGynEuploNM6QPtU8++EH/xuWvjvAtmxYc/Myc+/Nm5Qyq67AtEkjR6Bto/dbDNQCuDwzirNBjCypRzqSJWlnMp1XKQKX2g/cTlC2Ndw6Px3O/2xfMvvTKsosu+QCRJo2egPVnHsnnDBtrK5g3pz/X+DLTlqiyDQ6XBEFamnEsVsbKcS6mWg0zpA+2ldd/MfoSqZF8gkorfzqbuaNzeE088M7b3j921pzvuqO+Nxbf2xoMP95zx/Wk1egba93WwbchI277+nvxnOiUDbbkqy+BQaRgYwjoWXRnt9bepxutYcWOpzqWBthyV5b6UajnIlD7Q3nr3D+PFfa9mP8a4ZV8gkord0tV9Q74h2NpNo4+Eu/YM/QZicxf2xR31hsVqMtCO0MG2CftabVsbo+Omuui8bka0r6+v+msbaMtVWQaHSsP6Ed8iRLVdWc6lgbYcleW+lGo5yJQ+0H5j9cb46PSrY+Y1K+L6b34nblg6tKLLvkAkFbedTcPH1rkL+2JP8+k/Z+2m3hE/p7llbK++1fAMtOeutq2NwwaPal+Va6AtV2UZHNp2PhZHls4rfR1fuzKOzpwWHXUXpj/LZFT5fvH+FMHZVGkw0JapstyXUi0HmdIH2ru+96Oo37D1tBVd9gUiqbht2d4z4ti6bWdPvH6kK5p29cRPn+gZMr7evW7kzxlt1NXoGWjPXR2L6kZ8VVo1X/PEQKtyZXCojU78++efV21koC1XBlopP8iUPtDWuuwLRFJxa9o18ti666WuWLZm6McafjIw1j72T8M/55ur+tL/Xmo5A+25y0ArA225MtDWVgbacmWglfKDTOkD7bvvvhdbH382vjp/VXzyyzfG+ZfOjyuuWxlbH382+9HGJPsCkVTsTn3Lgi3be2LbzpGH2zknWtAXcxf86WML+mL5nYbFajLQnrsqmzcMG+La61emP1ctZAhTEXMuaysDbbky0Er5Qab0gXbd5sfi45ctiPs2bovHntoVjz21K+594JGY9sUbonH709mPd0bZF4ik4reneeD9aE+8TcGq+pHfZ3bugj+Ns96DdkIz0J7bKps3RGfdRSfH2Qn8BmRlzhCmIuZc1lYG2nJloJXyg0zpA+2FVyyOV/7va8M+/vL+A3HJld9IeKKzk32BSKq9Rn0F7WkG2rkL+2Jnk5F2PBloVcQMYSpizmVtZaAtVwZaKT/IlD7Qfuzia6Lvnf5hH+97pz8+dvG1CU90drIvEEm1V8uhrli6+pRxdsHJV9GebqD1StrxZaBVETOEqYg5l7WVgbZcGWil/CBT+kD7P6+5LbY/8athH39kx7PxlatXTP4DnaXsC0RSbdZyaOBtDxq29sQtK4eOsPdt6I1FywZG2zmnfoOxPQbas81Ae/oO7z8Qlc0bon19fbTu3p3+PFMpQ5iKmHNZWxloy5WBVsoPMqUPtM+/9Ep8+LNz4/I534pbbl8fN9/+/fjS7GXx4c/MiWd/szf78c4o+wKRVPudGGu3bO8ZHGBP9zYIJ97HVmPPQDtyrXv3xdG66UO+wVfbjkfTn2uqZAhTEXMuaysDbbky0Er5Qab0gTYi4o1KZ/zg4Z2x4u6G+OaajbH+oZ/Ha4feyH6sMcm+QCSVs5HeBmHtJgPjeDLQjtyRVTcPGWePzpwWR+umpz/XVMkQpiLmXE7S73PT09GxdH503FQX7evrx/3NFQ205cpAK+UHmdIH2huXr4233j6e/Rjjln2BSCpvLYcGXkn74MM9vkFYFRloR65j2bzhA+3MaeMeCnR2GcJUxJzLc1/r7t3D7t0jd9wyrq9loC1XBlopP8iUPtB+4cpvxAt7X8l+jHHLvkAk1W679nTHPet64o763mjc3pP+PGXNQDty7fUrh40Enddenv5cUyVDmIqYc3lKB9ui/d6Vg3/CoH19fdVfc8Q/vTDO/3HsxECrcuXfPykvyJQ+0P7g4Z1x8VeXxPL/vSk2Nu6IH/74ySEVXfYFIqk227Wne9j7y96zzkh7LjLQnqaDbdGxqO7kOFt3UbTu3Zf/XFMkQ5iKmHM5tJH+h6zK5g1Vfc3T/emFw/sPnPXXMtCWM//+SXlBpvSBdsbc5XHFdStPW9FlXyCSarO71438TcBaDuU/W9ky0I5e6+7d0bp7t7c2mOQMYSpizuXQRhrPOq+bUdXXbNvx6LCv2bGoLv3vtcidGKIrDevTn0VSuYNMKQPta4feiP7+dyMi4g8HWzMeYcJkXyCSarNV9b0jDrTNLd5rdqIz0KqIGcJUxJzLoXXWXXROxtTK5g0nv96yeeN69exUykArabKCTCkD7Yc+PSeOHns7IiI+Ov3qjEeYMNkXiKTabGfT8Lc4WLq6L/25ypiBVkXMEKYi5lwOrX39PcMG2ratjenPNdUy0EqarCBTykB42pg+AAAPWklEQVR7+ZxvxcVfvSWuvvnu+OCnZsfVN9992oou+wKRVLs9+HDPkHF2T3P+M5UxA62KmCFMRcy5HF5l84bovPby6FhUZ5zN+mdgoJU0SUGmlIG2rf1oNPzkF3H/gz+ND316TnznBz89bUWXfYFIqv28rcG5zUCrImYIUxFzLlXEDLSSJivIlP5Nwu7buC37EaqSfYFIkkbPQKsiZghTEXMuVcQMtJImK8iUPtDWuuwLRJI0egZaFTFDmIqYc6kiZqCVNFlBpsIOtN/dtD2m/90t2Y9xRtkXiCRp9Ay0KmKGMBUx51JFzEArabKCTOkD7XO/+7d4p79/2Md//fy+2Ni4I+GJzk72BSJJGj0D7cT3RtPTUdm8ISqbN8TrB9vSn6cWM4SpiDmXKmIGWkmTFWRKH2g/Ov3q+Nsv3RCr72+Ml/cfSH2WdZsfi09++cY4/9L5seSODXG8qyciIg6+3hazbrwz/vqSeTFj7vJ4cd+rg5+TfYFIkkbPQDuxta+/J47OnHayuulG2nFkCFMRcy5VxAy0kiYryJQ+0Hb39EbTcy/Gkjs2xF9+/rr4/D98PdY/9PP478OVSX2Op559IT7390uirf1oHO/qiTk33RXrNj8WERF1C9fE5keeiv7+d+O53+2LC2bcGH3vDLzqN/sCkVQb7drTHU880x3NLd3pzzLVMtBOYAfbho6zf6p9/T35z1Zlrb9/OY4snT9pdSy6Mo7OnBaddRdN6l+38v3a/2elc5eBVkXMQCtpsoJM6QPt+/X1vRPP/e7fYumdP4i/+Ny18Q833BGP/uLX0dPbd87/2vteORAv7vvPwR9vfuSpWLJqQxzpfDM+dvG1Q96G4ctX3RrPv/RKRBhoJY1ey6GuWLamL+YuPNnOprMbaXft6Y61m3pj7abeaNrVk/73VGsZaCeu1t27Rxxoj6y6Of3Zqu3EMFX2DG8aLQOtipiBVtJkBZkKNdC2Vjrihz9+Mv5u3u3xkQuvioXf+m585eoVMf3vbon9LQcn9VmuXVIfP3nsmXhx36vxpdnLhvzcTbeti62PPxsRBlpJo7dtZ8+QcXbuwr64ZlHfmMfWpl3DP3/bTiPt2WSgndg66y4aNvq1bW1Mf65qO3ywEm/s/m3pa/39y+m/1ypuBloVMQOtpMkKMqUPtG//sSu2P/GrmP21O+MDn5wdM69ZEQ//rCmOvfnHwV+z4f88Hpf947JRvsrEWtfwaPzj174d7/T3x2/+9eW44trbhvz8sm8/GA898lRERPyx+x1JOm133tc3bGCdu7Av5i7406tpfzn65y+/851hn3vLir70v69a6vfNA7+Ha+7z+zYRvfXLx+PorJMj7ZvL56c/k6SJ6e2XXoijM6fFMf9eq0C9+fDGgf9/8/DG9GeRVO4gU/pA+5ELr4oLZtwYd6//SbT84dCIv6aruzc++KnZ5/xZ3nvvvVh9/5a4+ua7o6u7NyIiXnr51bh01tIhv27Riu/Fth3/EhERR9/ulaTTtvknvSMOtHPe93+P9vnXLxl54D32R421F/cNDLSr781/ltL0h9fi2J7nB8p+FkkT156Bgfbot+bnP4umfIP/eWjLAwPncssD6f+5TlK5g0zpA+1zv9sX/f3vnvHXHe/qOefPctf3fhSLVqwb/AZgERGdx96KP7/o6sHBNiLi4q/eEi+9/GpEeIsDSaPXcqgrFi8fOtLOWTB0bB3t89duGj7w3r3OWxycTd7iQJLGlrc4UBHzFgeSJivIlD7QNj334ml76tnnJ+05Xtj7SsyYuzz6+oa/rH3Oorti/UM/j/7+d2PH07vjwisWD47K2ReIpOLXcmjgvWhX3NU7+NYGJ1q6evSBtuVQV6yq7x3y65tbzu6bjE31DLSSNLYMtCpiBlpJkxVkSh9oz790/tC+MD/Ou2BW/NmFV8UlV35j0p7jG6s3xgc/NTs+/Nm5g335qlsjIuJQa3vULVwTf3XJvPjK1Suief8fBj8v+wKRVDudOrYuXt4be5rH9rl7mrvG/Gs1NAOtJI0tA62KmIFW0mQFmdIH2pH88Xh33LdxW/x056+yH+WMsi8QSbXXnuau2LXHq2AnKwOtJI0tA62KmIFW0mQFmQo50J4wY+7y7Ec4o+wLRJI0egZaSRpbBloVMQOtpMkKMhV2oP3j8e74xOULsx/jjLIvEEnS6BloJWlsGWhVxAy0kiYryJQ+0C5ZtWFYNy5fG5+ZuShuWPqd7Mc7o+wLRJI0egZaSRpbBloVMQOtpMkKMqUPtLfd0zCsNd9tjB892hTHu3qyH++Msi8QSdLoGWglaWwZaFXEDLSSJivIlD7Q1rrsC0SSNHoGWkkaWwZaFTEDraTJCjKlDrRt7Ufjhb2vDL5S9le//X3M/tqdMfOaFbH5kacyH23Msi8QSdLoGWglaWwZaFXEDLSSJivIlDbQ/vNvXooPfXpOnHfBrPj0VxbFv/5+f/zVJfNi9f2Nsfr+LfHR6VdHw9ZfZD3emGVfIJKk0TPQStLYMtCqiBloJU1WkCltoP2f19wWq+/fEm++fTw2Nu6IT1y+MLbt+JfBn3/8n34Tl1z5jazHG7PsC0RSeWtu6Y7mlu7056j1DLSSNLYMtCpiBlpJkxVkShtoP3bxNfF/DxyKiIje3r74wCdnx3+9dnjw51871BYf/uzcrMcbs+wLRFL5ajnUFXfU98bchX0xd2Ff3FHfGy2H8p+rVjPQStLYMtCqiBloJU1WkCltoD3vglnRWukY/PFffv66ONTaPvjj1kpHnHfBrIQnOzvZF4ik8rV208lx9kRrN5VnXPyvQ93xmxcnr+1PDgy0y1b3Tupf9zcvevWzpNrKQKsiZqCVNFlBJgNtlbIvEEnl6/pb+oYNtHMX9qU/10R14hWtU6Hs32tJOpsMtCpiBlpJkxVkSh1o5yy6K677+r1x3dfvjf/x6X+Mf/zatwd/PGfRXQZaSVOypauHD32Ll5fnFbR7/r07br+nd0qU/XstSWeTgVZFzEArabKCTGkD7W33NIyposu+QCSVr51N3cMG2m07e9KfS5JU7gy056CDbdG+vj46r5sRHTfVRdsjjfnPVGMZaCVNVpApbaAti+wLRFI5a9rVE3evG6hpl3FWknTuM9BOfEdW3RxHZ04bUttWI+3ZZKCVNFlBJgNtlbIvEEmSJGkiMtBOfKeOs0dnTouOZbX9+3tiMC17/j2Qpl6QyUBbpewLRJIkSZqIDLQTn4G2dvPvgTT1gkwG2iplXyCSJEnSRGSgnfi8xYEk1U6QyUBbpewLRJIkSZqIDLTnoINt0V6/Mo7OnBaddRdFZfOG/GeSJI0YZDLQVin7ApEkSZImIgOtJGkqB5kMtFXKvkAkSZKkichAK0maykEmA22Vsi8QSZIkaSIy0EqSpnKQyUBbpewLRJIkSZqIDLSSpKkcZDLQVin7ApEkSZImIgOtJGkqB5kMtFXKvkAkSZKkichAK0maykEmA22Vsi8QSZIkaSIy0EqSpnKQyUBbpewLRJIkSZqIDLSSpKkcZDLQVin7ApEkSSpLrbt3R/v6+mhfXx+te/elP89Uy0ArSZrKQSYDbZWyLxBJkqQy9EbT03F05rQhte7enf5cUykDrSRpKgeZDLRVyr5AJEmSylDntZcPG2g7lhkKJzMDrSRpKgeZDLRVyr5AJEmSytCp4+zRmdOis+6i9OeaShloJUlTOchkoK1S9gUiSZJUhjqWzRs20B5ZdXP6c02lDLSSpKkcZDLQVin7ApEkSSpDrXv3DXmbg45FdXF4/4H055pKGWglSVM5yGSgrVL2BSJJklSmWnfvHv83BzvYFm07Hou2RxqNu+PIQCtJmspBJgNtlbIvEEmSJA28Avdo3fSTb5FQN338Q+8UzUArSZrKQSYDbZWyLxBJkiR1xZFVNw97D9uOm+rSn6uaDv/ngag89MCk1X7vbQPfnO26GZP6123b+Vj677UkSZDJQFul7AtEkiRJXcPG2RNlP1c1nXhFa9nzil1JUhGCTAbaKmVfIJIkSTrNK2gXleAVtA3rS59X0EqSihBkMtBWKfsCkSRJ0sB70HbWXTQ4znbWXeQ9aCVJ0piDTAbaKmVfIJIkSfpTB9uibcej0ba1MQ7vP5D/PJIkqWaCTAbaKmVfIJIkSZIkSaouyGSgrVL2BSJJkiRJkqTqgkwG2iplXyCSJEmSJEmqLshkoK1S9gUiSZIkSZKk6oJMBtoqZV8gkiRJkiRJqi7IZKCtUvYFIkmSJEmSpOqCTAbaKmVfIJIkSZIkSaouyGSgrVL2BSJJkiRJkqTqgkwG2iplXyCSJEmSJEmqLshkoK1S9gUiSZIkSZKk6oJMBtoqZV8gkiRJkiRJqi7IZKCtUvYFIkmSJEmSpOqCTAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCQGWgAAAACAJAZaAAAAAIAkBloAAAAAgCT/H81/hrqsZJ7jAAAAAElFTkSuQmCC", "text/html": [ - "<div> <div id=\"0190a36a-ad39-4fb9-b2f0-94776df35f33\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"0190a36a-ad39-4fb9-b2f0-94776df35f33\")) { Plotly.newPlot( \"0190a36a-ad39-4fb9-b2f0-94776df35f33\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2011\"], [\"2006\"], [\"2010\"], [\"2016\"], [\"2010\"], [\"2018\"], [\"2011\"], [\"2004\"], [\"2014\"], [\"2004\"], [\"2011\"], [\"2005\"], [\"2013\"], [\"2007\"], [\"2011\"], [\"2016\"], [\"2011\"], [\"2005\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2009\"], [\"2004\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2004\"], [\"2018\"], [\"2012\"], [\"2006\"], [\"2011\"], [\"2003\"], [\"2013\"], [\"2006\"], [\"2012\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Benin\", \"Benin\", \"Burkina Faso\", \"Burundi\", \"Burundi\", \"Cameroon\", \"Cameroon\", \"Cameroon\", \"Chad\", \"Chad\", \"Congo\", \"Congo\", \"Congo Democratic Republic\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Ethiopia\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Ghana\", \"Ghana\", \"Kenya\", \"Kenya\", \"Kenya\", \"Lesotho\", \"Lesotho\", \"Lesotho\", \"Liberia\", \"Liberia\", \"Malawi\", \"Malawi\", \"Malawi\", \"Mali\", \"Mali\", \"Mali\", \"Mozambique\", \"Mozambique\", \"Namibia\", \"Namibia\", \"Niger\", \"Niger\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zambia\", \"Zambia\", \"Zimbabwe\", \"Zimbabwe\", \"Zimbabwe\"], \"legendgroup\": \"Non-missing\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"Non-missing\", \"notched\": false, \"offsetgroup\": \"Non-missing\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [63.8, 26.5, 40.4, 27.5, 35.5, 77.5, 69.9, 62.0, 57.4, 41.2, 45.9, 27.4, 61.8, 47.2, 46.7, 40.5, 53.1, 43.5, 32.0, 19.9, 71.5, 46.6, 30.3, 32.4, 25.6, 77.3, 67.8, 60.1, 88.1, 79.4, 48.0, 44.3, 36.6, 83.7, 81.3, 66.6, 33.6, 50.4, 26.2, 69.2, 30.0, 85.4, 75.2, 23.7, 15.4, 45.3, 48.7, 36.5, 19.6, 89.2, 83.5, 68.9, 40.3, 47.1, 41.9, 48.9, 48.7, 26.4, 44.1, 71.6, 71.6, 71.6, 71.6, 57.7, 75.4, 79.1, 66.6, 80.1, 77.9, 56.8], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [48.30345508195943, 53.76048612772965, 51.894103563496, 56.50975754815431, 55.91131125503006, 49.67400671814656, 66.24208937915319, null, 52.92798233790131, null, null, 45.77749212207978, 55.47795028053216], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [10.011641634355932, 40.48276474690653, 8.224011721298588, null, 38.91865731391849, 33.88592072413024, 55.366243901138766, null, 52.054518148465256, null, null, 37.20176006394223, 60.24548066020205], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.859568253699027, 23.390582857932404, 14.110043771471155, 57.230233773406596, 52.15387049883477, 31.469286375040596, 61.202271342000905, 71.64895404746395, 48.896811927207665, 56.22646152583338, 41.43827676061918, 40.16917287300395, 64.16983532722774], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"title\": {\"text\": \"imputed.W\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"2c7c4496-0ae4-4630-8551-f8b879edb66c\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"2c7c4496-0ae4-4630-8551-f8b879edb66c\")) { Plotly.newPlot( \"2c7c4496-0ae4-4630-8551-f8b879edb66c\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2011\"], [\"2006\"], [\"2010\"], [\"2016\"], [\"2010\"], [\"2018\"], [\"2011\"], [\"2004\"], [\"2014\"], [\"2004\"], [\"2011\"], [\"2005\"], [\"2013\"], [\"2007\"], [\"2011\"], [\"2016\"], [\"2011\"], [\"2005\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2009\"], [\"2004\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2004\"], [\"2018\"], [\"2012\"], [\"2006\"], [\"2011\"], [\"2003\"], [\"2013\"], [\"2006\"], [\"2012\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2013\"], [\"2008\"], [\"2013\"], [\"2016\"], [\"2011\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Benin\", \"Benin\", \"Burkina Faso\", \"Burundi\", \"Burundi\", \"Cameroon\", \"Cameroon\", \"Cameroon\", \"Chad\", \"Chad\", \"Congo\", \"Congo\", \"Congo Democratic Republic\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Ethiopia\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Ghana\", \"Ghana\", \"Kenya\", \"Kenya\", \"Kenya\", \"Lesotho\", \"Lesotho\", \"Lesotho\", \"Liberia\", \"Liberia\", \"Malawi\", \"Malawi\", \"Malawi\", \"Mali\", \"Mali\", \"Mali\", \"Mozambique\", \"Mozambique\", \"Namibia\", \"Namibia\", \"Niger\", \"Niger\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Sierra Leone\", \"Togo\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zambia\", \"Zambia\", \"Zimbabwe\", \"Zimbabwe\", \"Zimbabwe\"], \"legendgroup\": \"Non-missing\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"Non-missing\", \"notched\": false, \"offsetgroup\": \"Non-missing\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [63.8, 26.5, 40.4, 27.5, 35.5, 77.5, 69.9, 62.0, 57.4, 41.2, 45.9, 27.4, 61.8, 47.2, 46.7, 40.5, 53.1, 43.5, 32.0, 19.9, 71.5, 46.6, 30.3, 32.4, 25.6, 77.3, 67.8, 60.1, 88.1, 79.4, 48.0, 44.3, 36.6, 83.7, 81.3, 66.6, 33.6, 50.4, 26.2, 69.2, 30.0, 85.4, 75.2, 23.7, 15.4, 45.3, 48.7, 36.5, 19.6, 89.2, 83.5, 68.9, 40.3, 47.1, 41.9, 48.9, 48.7, 26.4, 44.1, 20.1, 51.4, 72.7, 71.6, 57.7, 75.4, 79.1, 66.6, 80.1, 77.9, 56.8], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.22165334026072, 20.74449338352134, 28.93552206066888, 58.0498599283529, 61.85272188475734, 24.80890630136319, 63.25615447558266, 52.35177558833146, 50.82263058897482, 65.09551816600218], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [10.011641634355932, 40.48276474690653, 8.224011721298588, null, 38.91865731391849, 33.88592072413024, 55.366243901138766, 52.054518148465256, 37.20176006394223, 60.24548066020205], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.303358509816114, 23.768724015518746, 14.16596363529338, 57.25908115534936, 51.54456956727535, 31.345534359205388, 61.39611367484593, 49.000493395978246, 40.698110229533256, 63.81748892534672], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"title\": {\"text\": \"imputed.W\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('0190a36a-ad39-4fb9-b2f0-94776df35f33');\n", + "var gd = document.getElementById('2c7c4496-0ae4-4630-8551-f8b879edb66c');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -3724,7 +3331,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 349, "metadata": {}, "outputs": [ { @@ -3916,13 +3523,13 @@ "2013" ], [ - "2011" + "2008" ], [ - "2011" + "2013" ], [ - "2011" + "2016" ], [ "2011" @@ -4010,8 +3617,8 @@ "Senegal", "Senegal", "Sierra Leone", - "Uganda", - "Uganda", + "Sierra Leone", + "Togo", "Uganda", "Uganda", "Uganda", @@ -4094,9 +3701,9 @@ 43.8, 36.1, 43.1, - 79.5, - 79.5, - 79.5, + 40.3, + 57.5, + 80.3, 79.5, 75.1, 80.4, @@ -4134,18 +3741,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -4163,9 +3761,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -4182,19 +3777,16 @@ "x0": " ", "xaxis": "x", "y": [ - 51.82172348464304, - 51.63371792253483, - 60.19781177976836, - 67.84332662203975, - 73.33305914138057, - 49.39458717769393, - 71.95633862825368, - null, - 70.69977791304689, - null, - null, - 70.08302756883629, - 78.09666495277045 + 37.48430691317277, + 33.0573496204897, + 36.68947049362754, + 70.11745134661585, + 74.39653963482156, + 34.6942917927119, + 72.62799679664002, + 62.90019751881499, + 71.88353100909976, + 79.65145595888701 ], "y0": " ", "yaxis": "y" @@ -4224,18 +3816,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -4253,9 +3836,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -4279,10 +3859,7 @@ 51.530925434032866, 42.124637918736795, 50.163912506462616, - null, 63.285159555798266, - null, - null, 48.869560685912965, 69.66320342189823 ], @@ -4314,18 +3891,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -4343,9 +3911,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -4362,19 +3927,16 @@ "x0": " ", "xaxis": "x", "y": [ - 43.117715660745624, - 34.99696361745937, - 32.80721200883463, - 69.57207895753851, - 73.27977952076182, - 46.545528659115774, - 67.91461681851463, - 82.24363123253028, - 63.151939695501895, - 47.693668685983106, - 43.38431171312834, - 63.65204916406636, - 80.95207762610593 + 42.84612926788617, + 35.16663129012852, + 32.957470413688526, + 69.50735329316193, + 72.55544324389314, + 46.01222163399134, + 67.93636699956508, + 63.224267549675346, + 63.98945399904411, + 80.82017338703842 ], "y0": " ", "yaxis": "y" @@ -5229,11 +4791,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+1+UdcL/8e/f4919t7u1tW1365rHLC1Ns7w3cEEDPKCIeADJs3nCNCUPSWhg5jHPuolZRqiFWkhpSlaGIsNRTebgwPv7AzEyzigDjPO5rqvX6/F4PjaG0xUN17bvvbzm/4mIiIiIiIiIiIiIjPT/TB8AERERERERERER0R81BloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBtptdrW0CAAAAAACAjRGZjIG2m5k+gQAAAAAAAKB7iEzGQNvNTJ9AAAAAAAAA0D1EJmOg7WamTyAAAAAAAADoHiKTMdB2M9MnEAAAAAAAAHQPkckYaLuZ6RMIAAAAAAAAuofIZAy03cz0CQQAAAAAAADdQ2QyBtpuZvoEAgAAAAAAgO6JRecuXFb/1zJi8r12HTze6c85f+mXsMd3x+9Xj57xmrFwfcj7Zi3NV4+e8brj93fpOKk1BtpuZvoEAgAAAAAAgO6JRXf8ftU33nzo36elpUXPvDSh05/3oIH2L/3GqM+IdLk93sDjvjt+DRiZoUf7JDLQdjMG2m5m+gQCAAAAAACA7olF7a+gHZ+5Qis37NC4GSvU79Upyt24W+9t3q/R6Uv1wuvT9cOPv0qSkqbmaOmajzQ6famGvzFLWYs2yHendQx9tE+iauoaA1+/7e3xWSvVo2e8BsVn6lp1nX785ZriJ76lASOnalB8psq+/zHwOesL96nXsEkakjBTaz/Ye9+B9tE+iZo8O1eHPj0VePzzE99o8uxcrqCNQgy03cz0CQQAAAAAAADdE4vaD7QTs1cpaeoytbS06Odfr+uRXqP08aEvJEnvbtqt2TkbJbUOuSPHztMdv1/NzS16LWWu9hedkHT/gba+8aYe7ZMoqfVq2qGJ2dq651NJUtn5y/rHkFT57vhV8fNVPfl8ily1DWpublHG3DX3HWgf6TVKR784rXEzVgQenzp/rT75/GsG2ijEQNvNTJ9AAAAAAAAA0D2x6N6BtnDnEUmS39+sHj3jVVt/Q5K075OSwBA6PnOFNm07HPga7+Tt1NzlmyRFNtD+dKVKf+47Wn5/c+Djhr8xSyfPfK+Pdh8NGly/OFX2wIHW57ujZ16aoMYbv8nt8eqfL0+Ux+tjoI1CDLTdzPQJBIBzFBV7VLjTo9Jy88cCAAAAAH8ksejegbb9C3n16Bmv201uSdKBopNKnrZcUutA2/7j3t9yUFPmvispsoG27Psf9UivUer9yuSAvw8ep8PHTmldwd6gF/4qOx/+RczaBlpJyl6Sp617PtXhY6eU+dZ7gWNnoO1eDLTdzPQJBIAzLM31KDHVF7Aqz2v8mAAAAADgjyIWdXWgfX/LwcDHLV+3TfPe/kCS9Jd+Y1Rd0yBJgStZ7x1oq1x1evL5lLDHs2X3UY3PWhl4+9iXZzscaE+e+V4JaYs1MXuVir86Fzh2BtruxUDbzUyfQADYX1Fx8DjbxqlX0v7ws1sFO5xvxwGP8Z81AAAAgMjEoq4OtCOS58jt8crt8WpQfKYOH2t9oa7+r2Xo1Jnzklpvi/Bf/xylmrpG3bx1W4/0GqXbTR5J0suj3wzct7au4aamzH1Xv9126/ylX/Tk8ymqrmnQHb9fqTPfCRzfj79c0/GT30oKHmibm1s0YGSGBoycGrhtAgNt92Og7WamTyAA7K9gZ/iBtmCnMwe+0u/cYf9+nSY9m6ugAQAAALuIRV0daJeu+UivpsxVr2GTNHNxXmAY3V90QgP/NU2j05fqvc379Y8hqXLVtl5Rm5i+RE8+n6Jvv6vQT1eqFD/xLfV/LUMD/zUt8IJhUus9bf8xJFXPvz5dG7cdVp8R6ZKkj3YfVULaYknBA60kLV79YeAq3rZjZ6DtXgy03cz0CQSA/XEF7cO1rqD15zthmpcraAEAAACEZdXGZ67Q3v98afow6CHHQNvNTJ9AADgD96B9eL650HrF7rQ5/EwBAAAAhGfVGGj/GDHQdjPTJxAAzlFU7FHBTo9jr5w1hYEWAAAAQEesGgPtHyMG2t9raWnRqrxd6jVskv72fIqWr9sWeN+Vq9WKn/iW/vZ8ioYmZut02cXA+0yfQADYW2l5k4pL3aqoNH8sTsVACwAAAKAjRCZjoP29A0UnNXhUpuoabqqmrlEvvD5dhz5tfVW8uNSF2rjtsPz+Zh0/WaaeQyfKd6f15semTyAA7Kv9bQ3GTfWpuNQd9uPKK8I/jsgw0AIAAADoCJHJGGh/L2vRBr2/5WDg7Q8/LtLE7FWqrb+hxwckBb0a3cuj39SpM+clMdAC6Jrt+0NfGGzcVF/Qx2zYfPdjshY690XDHjYGWgAAAAAdITIZA+3v3TvQ7jtSoiEJM3W67KJeHJUV9LGTZ+dq695jkqSqOjcAdNq8HG/IQJuY6tPp71rfv+NA6IA7c6HP+HHbUdkPnsBAa/pYAAAAAFgTkckYaH9vf9EJDYqbodr6G2q88Zv+PWmRBv5rmr78+pxGJM0O+tisRRu0adthSVJzSwsAdNqGQn/YgfbW7db3L155J+z7q2vNH7vdVFa1tF6FPN9n/FgAAAAAWJPVCve/ByNB9oyB9veam1u0csMO9X8tQyOS5yh34269mjJXZ85d1KD4zKCPTZu1Wtv3fSaJWxwA6JryCrfGZQT/F+mGzZ7A+9vfn7Y9Xkys87jFAQAAAICOWC0G2j9WDLT3acOHBzQ7Z6PqG2/qL/3GqMntDbxvwMgMnTl3URIDLYCuK69wq2CnR6vyvCoq9gS9r7jUHfJftO0HXESOgRYAAABAR6xW2/8O3H3QHxEGWnvHQPt7R784rTcylum3225duVqt3sPT9M13FZKkhLTFWrNpj/z+Zu07UqK+I9Ll9zdLYqAF8PAUl7q1NNejeTleFexknO0qBloAAAAAHbFasRxo7/j96tEzXgtWFgY9XnT8tMZnrojG306nOnfhsvq/ltGlz02etlx7//NllI/o4cdA+3u+O35NX7BeTwxM1j+GpOqj3UcD76usqlFc6kI9+XyKho2ZpfILPwXeZ/oEAgB4MAZaAAAAAB2xWrEeaP/cd7T+MSRVFT9VBh43NdDe8ftV33izS59749Ztebz2u5KYgbabmT6BAAAejIEWAAAAQEesVqwH2j/1Ha2tez7V6PSlgcfbD7SNN35T2qxcDRg5VS+8Pl1rNu0JfNwTA5O1ZfdRJU9brudfn651BXvDfp/zl37RkISZWrrmI8WlLtSguBk6cfo7pc58Ry/9O0vzV3wgKfgK2uKvzmnwqEwNGJmhQXEz9PmJbx74ePsraB90XO9t3q/er0zW0MRsbd17TL1fmdyln120YqDtZqZPIACAB2OgBQAAANARqxXrgfa/n/23mptbNCRhpo4Wn5EUPNDOXpavmYvz1NLSopu3bmvAyAwdP1kmSXpq0Fi9k7dTklRbf0OP9k7Q7SZPyPe5ePlX/dc/RwVe1ylj7hoNis+U1+uTx+vT4wPeUE1dY9BAOyg+U6fLfpAkXai4ouwleQ98vP1Ae7/junS5Uk8MTJartkFer09jpizt8i0VohUDbTczfQIBYB+l5U3KWnj3Rb8Kua9sTDDQAgAAAOiI1Yr1QPtIr1GSpFNnzmvAyAz5fHeCBtpewybpux9+CnzO2+u3a9HqDyW1DqHnL/0SeN+Tz6fo12uukO9z8fKvemrQ2MDbKzfs0JzlmwJvDxiZoe8v/hw00CakLdac5Zt05Wp10Ne63+P3DrThjmvL7qMan7Uy8Pgnn3/NQGv3TJ9AANhHerY38F+abYqKGWkfNgZaAAAAAB2xWqYGWklKnfmO3tu8P2igfbRPoq5drw18TP5HhzR13lpJrUPoL5XXA+9re7tgxyd6atBYPTVorAp2fKKLl38NupXA6vd3aUnulsDbA/81TecuXA4aaGvqGjXv7Q/Uc+hEDYqboeMnv33g4/cOtOGOa13BXs1cnBd4/NvvKhho7Z7pEwgAeygtbwoZZxNTfVqay0D7sDHQAgAAAOiI1TI50P56zaWnB4/X1r3HAgNt7+Fp+v7iz4GPeXv9di1udwVtuCH0dpNHNXWNqqlr1O0mT5cG2vYd/eK0/vpckvz+5vs+HslAW7jziCa9uSrweNHx0wy0ds/0CQSAPZRXuMMOtKvyGA0fNgZaAAAAAB2xWiYHWql1gO3/WkZgoJ339gd6c+n7klpfMKzviHSdOP2dpPsPoffW2YG2ye3ViOQ5qnLVSZKuXK3WEwOT9dttT9jHm5tbIhpoy77/UX8fPE71jTfl891R0tQcBlq7Z/oEAsA+5uWE3uKgtNz8cTkdAy0AAACAjlgt0wPt7Sa3eg6dGBhob9y6rSlz39XAf03TC69PV/5HhwIf+7AGWknadfC4Boycqr4j0jUoboaOHC994OORDLSStCR3i3oNm6RXU+bqw4+LNGAkA62tM30CAWAfFZVN2rDZo3k5Xs3L8aq41G38mP4IGGgBAAAAdMRqhfsTmJGgyGpubgn89akz5zX8jVnmDkYMtN3O9AkEAPBgDLQAAAAAOmK1GGgfXnUNN/X4gDd06XKlWlpaNHNxnhasLDB6TAy03cz0CQQA8GAMtAAAAAA6Qn+stu75VH1GpKv38DSNm7FC9Y03jR4PA203M30CAQA8GAMtAAAAgI4QmczIQPvUoLERs3qmTyAArK20vIl7zRrGQAsAAACgI0QmMzLQFh0/HTGrZ/oEAsCaKiqbND/HG7gPUPqbXpWWd/3rFZe6NT/Hq6yFPm3Y7FFFpfm/R7tgoAUAAADQESKTcYuDbmb6BALAmjZs9oTcrD1roa9LX6u41B3ytZbleoz/PdoFAy0AAACAjhCZjFscdDPTJxAA1jSv3dWz7UVy5WtFZevAO26qT+Om+pS1IPyrc5ZXcOuESDDQAgAAAOiI1WoY/nSXkD3jFgfdzPQJBIA1Lc0NvYI2MdWnwp0eFX354Ktf7736NiHM12GgjRwDLQAAAICOWC0G2j9Wlr7FQcr05aYPocNMn0AAWFNpeVPIoNp+aM1aeP+raUM+b0LoODtjXtdul/BHxEALAAAAoCNWq21wdW/dEBEGWntnfKD1eH3K23JAk2fnanzmioARSbP198HjTB9eh5k+gQCwrtLy1qthc9Z4lRhmZP1ge/gracdlhH5s+5E2YYJPm7YzNkaKgRYAAABAR6yWqYF25Nh5eunfWUGPnb/0i/q/liFJGp+5Qnv/82W3vw8FZ3ygzVq0QQNGTtX8FR/oL/3G6K1Vm/VqylwNTczW+Uu/mD68DjN9AgFgfeFe5Csx1aeUKaFX0ZaWN2nW4tD71957m4N5OYyNkWKgBQAAANARq2VioL10uVJJU5cpZfpynS2/FHicgfbhZ3yg/fvgcbpWXSdJeualCYHHV7+/Sxs+PGDqsCLO9AkEgPWVV4QfaBMm+FRcevc+sgU7PUFjbFKaT5NnesPeg3b7/gffxxZ3MdACAAAA6IjVMjHQLnl3i3YdPK79RSc0O2dj4HEG2oef8YH2sf5j5PPdkSQ9PXi87vj9kqTfbrvVa9gkk4cWUaZPIADsYeFKb8g4m5B6d6ANd8/atiF2+/7gFw3LXHD/+9ciFAMtAAAAgI5YrVgPtH5/s/q9OkW3fmtSk9ur3sPT5PX6JDHQxiLjA+2rKXO1fN02eb0+vZoyVx8f+kKSVPFTpZ4YmGz46DrO9AkEgD2Uljcpoe3q2N/vJ5ue7Q0Mrfe7DULBTk/g87fv96iomCtnO4uBFgBgGVeqVVVywvxxAABCWK1YD7Sfn/hGk2fnBt6evmC9/vPZ15IYaGOR8YH2bPkl/WNIquobb+roF6f138/+W8+8NEH/82yC5q/4wPThdZjpEwgA+ygudStzQevwujTXo9Lyu+970BW0po/b7hhoAQBW4Nq4NvA/nhvi+ut60RHjxwQAuMtqxXqgTZu1Wo/1H6MnBibriYHJeqz/GI2d8bYkBtpYZHyglaTm5pbAX1+6XKldB4/r1JnzQR/zw4+/xvqwIsr0CQSAc2zYHHorA9PH5AQMtAAA064XHbk7zrYbaa9duGz82Drr2g+Xdf3ECcer+uac8Z81gNiyWrEcaG/cuq2nB48P3IJUku74/XrmpQmqa7jJQBuDLDHQRpJVb3dg+gQCwFlKy1tfLIxbGUQPAy0AwLSgq2fbqSopMX5snf57yV8T9u/FaWozU4z/rAHEltWK5UC7ZffRoNsbtDV9wXoV7PiEgTYGMdB2M9MnEADAgzHQAgBMc9JAW71/t2ozU2KmPmmIGoY/rfqkITH9vq53lxn/WQOILasVy4F2RPIcHSg6GfJ40fHTGjZmFgNtDGKg7WamTyAAgAdjoAUARM3vL/LV6Rf6ulKt+rh+QeNsXRZXaEai7YpdV/4a48cCwNmsVlf/BADZMwbabmb6BAIAeDAGWgBANFSdLVN98tC7A+vkuM7dQ/ZKtWrWLFNdVoqqtxbq6pVq439PdsBACyBWrBYD7R8rBtrfa2lp0dvrt2vAyAwNGJmhrEUb1OT2SpKuXK1W/MS39LfnUzQ0MVunyy4GPs/0CQSA/RWXulVe4TZ+HE7FQAsAiIa6rJTQ+5TOm2L8uJyOgRZArBCZjIH29w4fO6VhY2apye2V39+s8VkrtWbTHklSXOpCbdx2WH5/s46fLFPPoRPlu+OXxEALIFR5hVvLcj2an+PVslzPfcfX0vImpb/pVWKqT4mpPi3L5YXBHgYGWgBANIS9Uimuv/HjcjoGWgCxQmQyBtrfy924W/NXfBB4u3DnEU2enava+ht6fECS7vj9gfe9PPpNnTpzXhIDLYBgFZXBo2tiqk/jpvpUURn6senZwR+XmOpTwU5G2mhjoAUAREPbi1VxH9nYYqAFECtEJrPNQPvMSxMe6tf/+psLeuH16apvvCmP16ekqcu0Y//nOl12US+Oygr62Mmzc7V17zFJDLQAWlVUNmnHAY/eXhs6uiam+rR9f/DwWl7hDvtx83KCR8TS8qawV+BWVDZpw2aPxk31Kf1NrwoZdu+LgRYAEA3Xi46EDLRVJSXGj8vpGGgBxAqRyYwNtHf8/ojEsjnLN+nR3gl6rP8YxU98Sz7fHX359TmNSJod9HFZizZo07bDkqSaGx48BLWAjfx63aMps1qH2YQJoaNrYqpPHx/yhnxeuI+bMN2rr8569e0FjyZl3n186iyvfr3+++fe9Gr2kjDf47BPtTe9uMf3P7b+fKbPNX8sAACbK/9O9QXrVF+wTrXl35k/Hif7/d+X6j5Y23q18gdrjf87H4DYMLVDEJnM2EDbo2d8RGLVR7uPasyUpbrd5JHf36wFKwv15tL3debcRQ2Kzwz62LRZq7V932eSJI/Xj4fADdjIjn13AiNpQqpPiWFG2sqqB39e0Oen+jTlzdCvkTnPJ7fXr1On/WHH3UUr7hj/3bWin3/1B35+po8FAABEpu3fl259uF4Nw5/WrQ/XG/93PgCxYeq8Y7XC3vs8AmTPjA20g+Jm6G/Pp2jSm6t06NNT+vGXa2HFqvGZK7Rt37HA22fLL6n/axmqb7ypv/Qboya3N/C+ASMzdObcRUnc4gBAk5bm3nM17IR2I+3vf32/z9261xMYZe/9z5DxdoJP5RVuzcsJfxuFe2+P0JFvvndr7jKv42Uvav15JU/2GT+WWFiymttdAACcg1scAIgVq8VA+8fK6D1oz1/6RUve3aJewybppX9nKf+jQ3LVNhg5lrfXb9eEmSsDt1VY8d4Ojc9cIUlKSFusNZv2yO9v1r4jJeo7Il1+f7MkBloATdq+P8ztCiYED633+9zS8qawY2vYgTbVp9LyJs3L8YYdcT/c3blh7uTZ8PfBhb2Nn8a9dgEAzsFACyBWrFbb4OreuiEiDLT2zhIvEtbc3KKTZ75X9pI8PTVorEanL9W+T0qCrlp92P12261pC9ap/2sZ6v9ahpKmLtO16jpJUmVVjeJSF+rJ51M0bMwslV/4KfB5pk8gAKzh3qto29+LtqMrW9OzQ6+InbM09LEpb7YOvQU7715123aF7uTszo9ybQPthBlerdrggc29vc7LQAsAcBwGWgCxYrViPdA2N7co/6NDGvivaXq0d4KeeWmCspfkqbb+Roefe/7SL+r/WkaXv3f7dh08Hvjrx/qPUZWrLipf1+pZYqBtn9fr066Dx/XssDQ9PuAN04fTYaZPIACso7S8ScWlbq1+3xs0zlZUdvx5mQvuDrEFO1uvhF2Se/dK2Yw5rVfPtn3Ohs2eTn2PcE6caR1o02Z6VbDDDZt7f4v794E2/BXb1y5clmvjWlVvK9TVK9XGf18AAIgEAy2AWLFasR5oF6ws0ICRU1Xydblu/dakip8qlTrzHQ2Kzwz8afP7Fa2BtqWlRc+8NCHwdm39DTU3t3T769ohywy0bo9XB4pOKnnacj0+4A2lzVqtY1+eNX1YHWb6BALAuroymsYSA62zPGigvV50JPjeVHH9VXW2zPhzEACAjjDQAogVqxXLgfZadZ3++9l/69LlyqDH/f5mPfd/U7V932eSpCcGJmvL7qNKnrZcz78+XesK9kq6O9Ae+/KsBsVnBn2Nl0e/qaNfnA56zOe7o6nz16rfq1PUZ0S6Muaukdvj1fislerRM16D4jN1rbou6Ara9zbvV+9XJmtoYra27j2m3q9MltT6mlIrN+zQuBkr1O/VKcrduFvvbd6v0elL9cLr0/XDj79KkmrqGjVmylL1fy1DfUakq2DHJ136WT2sjA60zc0tOnH6O2W+9Z7++lySXkuZq617PtWNW7dNHlanMn0CAYCuYqB1lgcNtPVx/UJePKB23hTjz0ErufbDZbk2rXO86v27jf+sAaAzGGgBxIrViuVAu+9ISciw2tbKDTs0MXuVJOmpQWP1Tt5OSa1Xtz7aO0G3mzyBgdZ3x6+nBo3VhYorklqH3ycGJsvr9QV9zcPHvlJi+hK1tLSoublFS3K36HTZRdU33tSjfRIDH9c20F66XKknBibLVdsgr9cXGFolaWL2KiVNXaaWlhb9/Ot1PdJrlD4+9IUk6d1NuzU7Z6Ok1iuEs5fkSZKuXK3Wo30SVV1j5nWwwmVsoF265iP98+WJGjAyQ+/k7dQvlddNHUq3Mn0CAYCuYqB1lgcNtOFe3bUuLc74c9BKrpec6PIr5dpJbWaK8Z81AHQGAy2AWLFasRxot+w+qoS0xfd9X/zEtyS1DrTnL/0SeN+Tz6fo12uuoFsczF6Wr+XrtkmSCnZ8oukL1od8zdNlP+ifL0/UZyXfyNNuvL3fQLtl91GNz1oZePyTz78OGmgLdx6R1HrFb4+e8YH75u77pETjZqwIvM/nuxP4GgNGTtWZcxcj/RE99IwNtD16xuvpweP1yhuzNTQxW0MSZoZl9UyfQACgqxhoneWBV9AmDeEK2g5c++GyXPlrYqYmZ7Yahj+t+qQhMf2+XEELwG4YaAHEitWK5UB77MuzeuH16WHf907eTqXNypXUOtC2v8Cy7e32A+1XZ88Hbj8watJb+vzEN2G/7uFjpxSXulB/fS5JWYs26HaT574D7bqCvZq5OC/w+LffVQQNtO1fWKxHz3jdbnJLUuBWqlLrbRhSpi/XsDGzNCJ5jv7cd7ROl/3QuR/UQ8zYQHug6GRErJ7pEwgAdBUDrbM8aKCtKikJus1BfdIQXbtw2fhz8I+s7YpdrmgFgAdjoAUQK1YrlgNtTV2j/tJvTNDVsVLrrUlfeH26dh8ulhTZQNvS0qJewybp2Jdn9fTg8fLdefALjDU03lJC2mLlbTlw34G2cOcRTXpzVeDxouOnOz3QDh6VGfRxfUekM9A6KdMnEADoKgZaZ3nQQHu1tknXLlxW9b6Pdb3oiK5eqTb+/PujY6AFgMgw0AKIFasVy4FWklbl7VL/1zJ06sx5ebw+XXfVa/LsXA0bM0vNzS2SIhtoJWlJ7hb1fmVy0FsnjZsAACAASURBVFWv7SvY8YlWv79LLS0tamlpUeZb7+n9LQd189ZtPdJrlG43eSTdHWjLvv9Rfx88TvWNN+Xz3VHS1JxOD7RPDRqr8gs/SZL2F53QX59L0vGTZV3+eUU7yw60N27dDrxSm5UzfQIBgK5ioHWWjgZaWAsDLQBEhoEWQKxYrVgPtC0tLcrfekjP/d9UPdo7Qf/74nhlL8lTQ+OtwMdEOtB+98NP6tEzXl9+fS7s96pruKnkacv17LA09RmRrrRZqwOjamL6Ej35fIq+/a4iMNBKraNvr2GT9GrKXH34cZEGjOzcQPvhx0XqNWyShiZmK/+jQ3p7/Xb974vjdbWqpss/s2hm2YF29rJ89egZb/owOsz0CQQAuoqB1lkYaO2FgRYAIsNACyBWrFZXXxTWCrlqG9Rz6ET5/c1R+5ptV/FK0qkz5zX8jVlR+9pWyLID7a/XXPrmuwrTh9Fhpk8gANBVDLTOwkBrLwy0ABAZBloAsWK17DrQtrS0KGvRBq3ZtCdqX7Ou4aYeH/CGLl2uVEtLi2YuztOClQVR+/pWyLIDrV0yfQIBgK5ioHUWBlp7YaAFgMgw0AKIFep+NXWN6jl0osZnrpDb443q196651P1GZGu3sPTNG7GCtU33ozq1zed0YF2z3+Kg66SLfm6XC/9O0u9X5msRas/jOql0A8r0ycQAPZSXuFWeYXb+HFcrWWgdRoGWnthoAWAyDDQAogVIpMZG2i37D6qP/cdraPFZyRJjTd/0xMDkzVtwToV7PhEz7w0QesL95k6vIgzfQIBYA8VlU2an+NVYqpPiak+ZS30GR9qGWidhYHWXhhoASAyDLQAYoXIZMYG2kFxM7TnP8WBt7fu+VQvvD5dLS2tN/09fOyUBsXNMHV4EWf6BALAHjZs9gTG2Tbzc7xGj4mB1lkYaO2FgRYAIsNACyBWiExmbKD9n2cTVFPXGHg7Y+4aLVuzNfD21aoaPdon0cShdSrTJxAA9pCe7Q0ZaBNTzQ5pDLTOwkBrLwy0ABAZBloAsUJkMmMD7WP9x8hV2xB4+9lhaYHbHUjSlavVenzAGyYOrVOZPoEAsId5OaED7bgMBlow0P5RMdACQGQYaAHEitVqGP50l5A9MzbQDk3M1sGjJyVJp86c15/6jtZvt92B9x/6lFscAHCOouLQWxwU7PQYPSYGWmdhoLUXBloAiAwDLYBYsVoMtH+sjA202/Yd01+fS1LarNV66oWxWrT6w8D7Sr/9Qb2Hp2nNpj2mDi/iTJ9AANhHcalbq/K8WprrUVFxZONsRWWrh3E8DLTOwkBrLwy0ABAZBloAsWK12gZX99YNEWGgtXfGBlpJ2nXwuGYsXK/3txyUz3cn8HjWog2atmCdfHf8Bo8uskyfQAA4U0Vlk+a3uy3CslxP1IdaBlpn6e5Ae+3CZVVvK5Rr41pdu3DZ+O+A0zHQAs5WVVKiqpITunql2vix2B0DLYBYsVqmBtqRY+fppX9nBT12/tIv6v9ahiRpfOYK7f3Pl536mk8MTFaVq67bx/agdh08Hvjrx/qPeejfL9oZHWjvl9/fbPoQIs70CQSA9VVUNmnHAY9W5Xm140BkV86Gu2fths3RvSUCA62zdGegrTpbpoa4/nf/aFRcf1WVlBj/3XEyBlrAoa5Uq25yXPD59GyZ+eOyMQZaALFitUwMtJcuVypp6jKlTF+us+WXAo9bfaBtaWnRMy9NCLxdW39Dzc0tD+37PYyMD7TlF37S2+u3K33Ou5o6b63WbNqjn3+9bvqwIs70CQSAtVVUNilrYfDQOj/H2+Hn3TvOJqb6lLUwun90nYHWWboz0NbOmxJy76r65KHGf3+cjIEWcKaanDmcT6OMgRZArFgtEwPtkne3aNfB49pfdEKzczYGHo9koE2amqOlaz7S6PSlGv7GLGUt2hD4k/FtA+0331Vo4L+mBT6n/dvFX53T4FGZGjAyQ4PiZujzE9+EfA+f746mzl+rfq9OUZ8R6cqYu0Zuj1fjs1aqR894DYrP1LXquqAraN/bvF+9X5msoYnZ2rr3mHq/Mjnw97Fyww6Nm7FC/V6dotyNu/Xe5v0anb5UL7w+XT/8+KskqaauUWOmLFX/1zLUZ0S6CnZ80q2f8f0yOtDmrN2qHj3j9eKoLE2enatJb65SnxHpeqTXKK0v3Gfy0CLO9AkEgLVt3x/64mCJqT4Vl7p1tbb1vrRFX3pUXuEO+rxwnzMvgmG3MxhonaU7A219XL+wLzBg+vfHyRhoAWeqS4vjfBplDLQAYsVqxXqg9fub1e/VKbr1W5Oa3F71Hp4mr9cnKbKBdnzmCo0cO093/H41N7fotZS52l90QlJkA+2g+EydLvtBknSh4oqyl+SFfI/Dx75SYvoStbS0qLm5RUtyt+h02UXVN97Uo30SAx/XNtBeulypJwYmy1XbIK/XFxhaJWli9iolTV2mlpYW/fzrdT3Sa5Q+PvSFJOndTbsDA/WClQWBY7lytVqP9klUdU1Dl3/O98vYQPvJ51/r0d4JOvbl2aDHm5tbtGX3Uf3XP0fpyPFSQ0cXeaZPIACsrWBn+IF2f5E75DYG+4vcD/y89wq4xQEezkAb7graurQ4478/TsZACzhT2D+RENfP+HHZGQMtgFixWrEeaD8/8Y0mz84NvD19wXr957OvJUU+0G7adjjw9jt5OzV3+SZJkQ20CWmLNWf5Jl25Wn3fYzxd9oP++fJEfVbyjTy/j8eS7jvQbtl9VOOzVgYe/+Tzr4MG2sKdRyS1jtM9esartv6GJGnfJyUaN2NF4H3tXzdrwMipOnPu4n2PsasZG2gT0hZr8eoP7/v+Ras/1L/Gz4/hEXUt0ycQANZWXOoOO9Bu2h56j9nEVF/QlbS7Drk1eqJPCak+JU6I/n1oGWidpTsD7bULl1WfNCRoTAh3z8Sqs2WqKjnBi4hFAQMt4ExVZ8tC/lRC9b6PjR+XnTHQAogVqxXrgTZt1mo91n+MnhiYrCcGJuux/mM0dsbbkiIfaNu/UNf7Ww5qytx3JUU20NbUNWre2x+o59CJGhQ3Q8dPfhv2OA8fO6W41IX663NJylq0QbebPPcdaNcV7NXMxXevxP32u4qggbb98fboGa/bTW5J0oGik0qetjzw954yfbmGjZmlEclz9Oe+owNX+kYzYwPt355PUem39/8bOn/pF/2l35gYHlHXMn0CAWB9GzZ7Qq6UXbn+wbc+uFp7/6tv770dQlcx0DpLdwbaq7VNunqlWteLjrQOCWFedfze+yoyOHQPAy3gXNcuXJZr41rVrFnGCy5GAQMtgFixWrEcaG/cuq2nB48PulL0jt+vZ16aoLqGmxEPtO9vORh4e/m6bZr39geS7g60Zecva8DIqYGPKf7qXNBg29bRL07rr88lye9vvu8xNzTeUkLaYuVtOXDfgbZw5xFNenNV4PGi46c7PdAOHpUZ9HF9R6Q7a6Dt0TNeV6tq7vv+KledevSMj90BdTHTJxAA9lBe4VZxqVvlFW6tyvMqYULo8JqY6lNp+d3PWZrb8YjbHQy0ztLtgfYBqvd9HPaeig/jStprV1y6fuKE47m2F/5+K4nXjR9LLFR9c874eRiAPTHQAogVqxXLgXbL7qNBtzdoa/qC9SrY8UnEA+2I5Dlye7xye7waFJ+pw8dOSbo70Fa5Wl/A63aTR5I0e1m+Bv5rmprcXo1InhN4Ya8rV6v1xMBkNTe3BH2Pgh2faPX7u9TS0qKWlhZlvvWe3t9yUDdv3dYjvUYFvm7bQFv2/Y/6++Bxqm+8KZ/vjpKm5nR6oH1q0FiVX/hJkrS/6IT++lySjp8s69LP+UEZHWjbfvDhYqAF4ET7i1pHtIRUX8hIe+/tC8K9wNi4DJ8qKqNzLAy0zvIwB1rXxrVhB9rrRUei/r3ariyFs3ClMICuYqAFECtWK5YD7YjkOTpQdDLk8aLjpzVszKyIB9qlaz7Sqylz1WvYJM1cnBe4ArZtoJWkt1Zt1oujspQ0NUf5Ww/puf9rvaJ218HjGjByqvqOSNeguBlhX5eqruGmkqct17PD0tRnRLrSZq0OjKqJ6Uv05PMp+va7isBAK0lLcreo17BJejVlrj78uEgDRnZuoP3w4yL1GjZJQxOzlf/RIb29frv+98XxD7zotCsZHWgT0hYredrysBLSFjPQAnCc9rc7aBtpE1J92rwr/L1l219FOy4j+IXEuouB1lke6hW0WwvDjm7h7lPbXW0Dbf1r/1R90hDYXcILDLQAuoWBFkCsWK2u/h/jprrfcGu69lfhnjpzXsPfmGXuYB6QsYF29rL8iFg90ycQAPYS7qrYe29tcK/S8qbA7RGieSwMtM4S7YG27R6Kro1rVfVpkerS4oL+xa8mZ85D+R0JDLRJQ+TKXwObq102i4EWQLcw0AKIFavFQNv96hpu6vEBb+jS5Uq1tLRo5uI8LVhZYPqwwmZsoLVaWYs26NE+iXf1TtDgUZmSWu99ET/xLf3t+RQNTczW6bKLgc8zfQIBYC8VlU3KXBA8zq7K8xo5FgZaZ4nmQFt1tkwNcf2D/kWvescWVW8tVM2aZQ/1BcIYaJ2FgRZAdzHQAogV6l5WHGglaeueT9VnRLp6D0/TuBkrVN940/QhhY2B9j6teG+HcjfuliTFpS7Uxm2H5fc36/jJMvUcOlG+O35JDLQAOq+isvVK2oKdnqjesqCzGGidJZoDbe28KaH/b3xc/5CPqzpbFvXbHDDQOgsDLYDuYqAFECtEJjM20A7817SImOjK1Wo9939T5fZ4VVt/Q48PSNIdvz/w/pdHv6lTZ85LYqAFYF8MtM4SzYG2Lisl7B+XunqlWldrW29/UDf57i0P6ibHBd7XXQy0zsJACzw81ft3qzZzrOPVJw9t/e+F5KHGjyUWXO8uM/7cAv6oiExmbKB9f8vBiJgo8633tHXPp5Kk02UX9eKorKD3T56dq617j0lioAVgXwy0zhLNgbYmZ07IOFufNCTw/nBX2EbrnrQMtM7SnYG26myZatbkqGZNjqpKSoyfM/HHVFVSoqqSE8aPIxxX/pou358Q1sX/oQWYQ2QyS9/i4GpVTcy/Z5WrTr2GTZLH65Mkffn1OY1Imh30MVmLNmjTtsOSpMbffAD+oG4YcvP2naj49rs7Skz1aXK2T1v3wO4KdrTe03jC9O4/R2646tU4Of7u/2CM76cb578PvD/c/6BsjO8fnefm6a9av2byUDUWrofdrZjb+vyYObZzz8Hjn4Y8x24c/zRq5z+gIzdc9WpMv3sebEx5Oeg8aAWNhetbj29ynBpXzHWet+f8scyZ1PrPc+bYh/bvkKb/3RmwOiKTWW6g9Xp9Onj0pBLTl6hHz/iYf//3txzUnOWbAm+fOXdRg+Izgz4mbdZqbd/3mSTpVpMPwB/UTZv79ntfu4HWC5sr2OG9O9BG6Tly4/Qp3fjiqG7U1AU93vj7HzcNGmjT46Lzfc+0H2jXwe5WtF6N3Zg9tlPPg8b0uNDnWMrLxs+bMXfhezVmj3O+93LM/6zvfQ6unBv6HMweZ/y4go6xcF3rsWWlmP9dh7HzZWeY/ndnwOqITGaZgfZCxRUtWFmop14Yq78+l6RZS/NV9v2PMT+O1ycs0Ocnvgm8Xd94U3/pN0ZNbm/gsQEjM3Tm3EVJ3OIAQHhFxR4ty21VVOwJeX9xqVvLcj2an+PVgaNmXiiMWxw4SzRvcdCR60VHQoaL60VHovO1ucWBo3T1Fgf1cf3CXqlt+twea22/D05nxT/SXZ80xPLPwbZbHNTOSDb+uw5z50sA0UNkMqMD7a3fmrR1z6d65Y3ZeqTXKI2ZslT/82yCKn6+auyYHh+QpMp7bq2QkLZYazbtkd/frH1HStR3RLr8/mZJDLQAQhUVe5SY6guyff/dkba41B3y/g2bQ0fch42B1lliOdBerW29L2NNzhzV5MyJ6v1BGWidpauDQ7j7HNfOm2L8/B5r1664dL3kRMy4thWqYfjTqpv0eky/b9U354z/rO8V7sUS29+L2wpc+Qy0TsJAC5hHZDJjA+30Bev1l35jNCRhpvI/OqSaukZJ0mP9x+iXyutGjum322716BkfuP9sW5VVNYpLXagnn0/RsDGzVH7hp8D7TJ9AAFhP5gJfyACb/qY38P6luaEDbmJqbEa19hhonSXWA+3D8ke5YvCPprODw7ULl1WXdvc2B3Vpcbp24bLx56fTtf3+MRC1/p9Q9z6Pq/d9bPy42mOgdRYGWsA8IpMZG2h79IzX5Nm5unj516DHTQ60Xcn0CQSA9YzLCB1f2w+w83K8Yd9fXhHbWx0w0DoLAy2srKuDQ1VJSVSv0EZkv38MRK2qzpapZs0y1axZZsnnIQOtszDQAuYRmczYQPv1Nxc0df5a/bnv6MBVtK7aBgZaALa3Ki90gF2ae/cWBgU7Q6+gzVzAFbQwP9BWnS1T7fwM1WWOVfW2QiO/P9ziwFkYHOyFgTYCV6pVs7z1xZwa4vrLtXGtsWNx5TPQOgnnS8A8IpMZf5GwG7duq3DnEQ1JmKlHeo1Sj57x2rL7qLxee7yCnukTCADrqagMvkp2Xo5XFZXBH9P+NgeZC3wqLY/9cTLQOkt3B9qqs2UhVz3WLJ8T8+clA62zMDjYCwNtx8LdH9nUSOvKZ6B1Es6XgHlEJjM+0Lav7PxlzVqar8cHJOmpF8ZqwcpC04fUYaZPIACsq7zC/cDbFlRUtn5MUbFHq/K8WpXnVXFp7G5zwEDrLN0daGty5oT9o+lXr1TH9PeGgdZZGBzshYG2Y+HOk3WT44wciyufgdZJOF8C5hGZzFIDbVu3mzzaeeBzvZYy1/ShdJjpEwgAe9u+P/R2B0XFrbdDqKhs0o4DHhXu9OjA0egPtwy0ztLdgTbcK5Y3DH9aVWfLYvo7wUDrLAwO9sJA27GwA22WmZ+XK5+B1kk4XwLmEZnMkgOtnTJ9AgFgb+nZoferzVroU0Vlk7IWBj++Ks8b1e/NQOss3R1oq/d9HDI61CcNifnvBAOtszA42AsDbcdq1iwLOVdWbzVzz25XPgOtk3C+BMwjMpllB9q9//lSMxfnmT6MDjN9AgFgb/eOs4mpPo3L8IW9sjYxNbr3qmWgdZZovEhY++GhPmlIzK+evVrLQOs0DA72wkAbmZo1y1SfNER1aXHGxtmrtQy0TsP5EjCPyGSWHWgLd36iMVOWmj6MDjN9AgFgb+1fLKz9lbIbNocfaKN5j1oGWmeJxkB7tbZJV69U69qFy8Z+JxhonYXBwV4YaO3Flc9A6yScLwHziExm2YHWLpk+gQCwt/IKtzIX3B1g5+V4VVHZpP1F7rAD7YNedKyzGGidJWoDrWEMtM7C4GAvDLT24spnoHUSzpeAeUQms8RA29zcopq6RlVW1YSweqZPIACcobS8KeT2Bavygu9Pu78oui8UxkDrLAy0sCIGB3thoLUXVz4DrZNwvgTMIzKZ8YH20Ken9NSgserRMz4sq2f6BALAPvYXuVW406OiLz0Rf05peZOKij1RvXK2DQOtszDQwooYHOyFgdZeXPkMtE7C+RIwj8hkxgfaZ16aoBXv7dBPV6pU5aoLYfVMn0AA2EP72xi03WfW9DEx0DoLAy2siMHBXhho7cWVz0DrJJwvAfOITGZ8oP1T39G63eQxfRhdzvQJBID13e9+svfe0iCc8orWq25X5XlVVBz5lbeRYKB1FgZaWBGDg70w0NqLK5+B1kk4XwLmEZnM+EA7MXuVir86Z/owupzpEwgA6yvY6Qk70G7f/+DBtbS8SeOmBn9Owc7ojbQMtM7CQAsrYnCwFwZae3HlM9A6CedLwDwikxkZaN/fcjBgzaY96jMiXbNzNipvy4Gg972/5aCJw+tUpk8gAKyvqDj8QNvRFbT3vkhYm2gdFwOtszDQwooYHOyFgdZeXPkMtE7C+RIwj8hkRgbaEclzImb1TJ9AANjDvWNrJFfCzssJP9BGcmuESDDQOgsDLayIwcFeGGjtxZXPQOsknC8B84hMZvwWBxU/Xw37uMfrU+m3P8T4aDqf6RMIAPsoLW/S9v2eiAfWcLdGSM+O3ouLMdA6CwMtrIjBwV4YaO3Flc9A6yScLwHziExmfKB9rP+YsI/XN97UX/qFf5+VMn0CAeBcFZXBV9GOy4je1bNXaxlonYaBFlbE4GAvDLRRcqVaNWtyVJ88VHWT41S9rfChfB9XPgOtk3C+BMwjMpmxgXbr3mMaNmaW/uufozRszKwQ/3x5ovq/lmHq8CLO9AkEgPOVljepuNStisrofl0GWmdhoIUVxWpwqN73sVwb16qqpMT4c9jOGGijo2bNMjUMfzpI9dboj7SufAZaJ2GgBcwjMpmxgbbJ7dWXX5/To70TtGnb4RBb9x7Tteo6U4cXcaZPIADQVQy0zsJACyuKxeBQlxYXNITVLJ9j/HlsVwy0XfD71bKB51+7v26vLiv6P1NXPgOtkzDQAuYRmcz4LQ5Kvi43fQjdyvQJBAC6ioHWWRhoYUUPe3Co3loYdgyrOltm/LlsRwy0nRfuatmwA21aXNS/tyufgdZJGGgB84hMZmSgLdx5RNdd9YG/fhCrZ/oEAgBdxUDrLAy0sKKHPTi4Nq4NO4ZdLzpi/LlsRwy0nVcf1y/0OTiyV8hjro1ro/69XflrIhqHYS/8/gHmEJnMyEA7JGGmzl24HPjrB7F6pk8gANBVDLTOwkALK3roV9Du+zjswMEVtN37/WMgily4gbZ+zGDV5Mxp/eu4fg9lnL1ay0DrVPz+AeYQmcz4LQ5OnP5OXq/P9GF0OdMnEADoKgZaZ2GghRXF4o/stg1hbR7WGPZHwEDbeeGu4o7Vc7BtoOUWB87ALQ4A84hMZnygfeqFsfpz39FKTF+i9zbvV/mFn9Tc3GL6sCLO9AkEALqKgdZZGGhhRbEaHKpKSlS9tZArZ6P0+8dA1DmujWtVlxanurS4mP4fBK58BlonYaAFzCMymfGBtqWlRRcv/6otu49qytx31WvYJD31wlhNzF6lLbuPmj68DjN9AgGArmKgdRYGWlgRg4O9MNDaiyufgdZJOF8C5hGZzPhAe2+3m9zavu8zvfD6dPXoGW/6cDrM9AkEALqKgdZZGGhhRQwO9sJAay+ufAZaJ+F8CZhHZDLjA21t/Q198vnXemvVZg1/Y5aeemGsEtOXaPX7u1T81TnTh9dhpk8gANBVDLTOwkALK2JwsBcGWntx5TPQOgnnS8A8IpMZH2h79IzXC69PV/5Hh3Sh4oqt7j8rMdACsC8GWmdhoIUVMTjYCwOtvbjyGWidhPMlYB6RyYwPtO9t3q+kqcv01KCxGpE8R0tyt+joF6fV0Hgr5sdy8sz3GvivaXp8wBtKmpqjG7duS5KuXK1W/MS39LfnUzQ0MVunyy4GPsf0CQQAuoqB1lkYaGFFDA72wkBrL658Blon4XwJmEdkMuMDbVt+f7POXbis/K2HNHbG23pq0FgNipsRs+/fePM3PfPSBJ06c14er08LVhboo99fpCwudaE2bjssv79Zx0+WqefQifLd8UtioAVgXwy0ztLRQHvtwmXVzs9QXeZY1c7P0LULl40/B8NhoHUWBgd7YaC1F1c+A62TcL4EzCMymWUG2ttNHp08873WbNqjNzKW6enB4/XC69Nj9v13HTyuKXPfDXm8tv6GHh+QpDt+f+Cxl0e/qVNnzktioAVgXwy0zvLAgfZKtRri+qth+NMB9clDdfVKtfHn4b0YaJ2FwcFeGGjtxZXPQOsknC8B84hMZnygXbCyUMPfmKX/fvbf6jsiXTMX52nfkRLV1DXG9DgWvlOoucs3KWHyYvUZka7pC9br1m9NOl12US+Oygr62Mmzc7V17zFJDLQA7IuB1lkeNNBWby0MGmfbXC86Yvx5eC8GWmdhcLAXBlp7ceUz0DoJ50vAPCKTGR9op85fq50HPtfVqhqjxzFj4XoNGJmha9V18nh9mpi9SgtWFujLr89pRNLsoI/NWrRBm7YdliQ1efwAYEvl5+8oMdWn9Dd92r4Xdrd5p0+JqT6lTveF/LO+9eF7YQfaW0f2GX8e3uv22a/VMPxpNaYM1c3N62F3K+eqYfjTupE91vhzC5H//vHPyx5ubl7fer6cmWL+dx2cLwEHIDKZ8YHWKi1YWai3Vm0OvF367Q8aPCpTZ85d1KD4zKCPTZu1Wtv3fSZJqr/lBQBbOnPOq8RUnyZn+7Rltxc2t2l76z/PCdN8of+8L/8cMs7Wx/dT/eWfjT8P79Xw9anWY0weqvqCdbC5hrfntP7znJli/LmFjgV+//jnZQ8F61rP51kpxn/X0X2cLwHziExm2YH2nbyd6v9aRsy+36ZthzVj4frA26Xf/qChidmqb7ypv/Qboyb33V/WASMzdObcRUnc4gCAfXGLA2fp6EXCrhcdUX1cv8DtA6pKSow/B8MeJ7c4cBT+yK69cIsDe3Hlc4sDJ+F8CZhHZDLLDrRfnCrT+sJ9Mft+NXWNemrQWF2ouCLfHb/SZuVqybtbJEkJaYu1ZtMe+f3N2nekRH1HpMvvb5bEQAvAvhhonaWjgdYuGGidhcHBXhho7cWVz0DrJJwvAfOITGZ8oP3fF8erruGm6cOQJH1W8o16D0/T04PHa8rcd/XbbbckqbKqRnGpC/Xk8ykaNmaWyi/8FPgc0ycQAPZWWt6krIWt9w5NTPWpcKcnZt+bgdZZGGhhRQwO9sJAay+ufAZaJ+F8CZhHZDLjA+24GSu0eVeR6cPocqZPIADsLXPB3XG2TVFx60hbXuFWeYX7oX1vBlpnYaCFFTE42AsDrb248hlonYTzJWAekcmMD7QzFq7XMy9N0ICRGRqdvlTJ05YHsXqmTyAA7Ku0vClknE1M9WnRKo/m53gDb8/P8aqiMvrfn4HWWRhoYUUMDvbCQGsvrnwGWifhfAmYTcvF8AAAIABJREFUR2Qy4wPtotUfKmft1vuyeqZPIADsq7zCHXagzZgV+tjS3Ojf+oCB1lkYaGFFDA72wkBrL658Blon4XwJmEdkMuMDrd0zfQIBYG/z2l0p2yZlcuhAm5ga/dGNgdZZGGhhRQwO9sJAay+ufAZaJ+F8CZhHZDJLDLS/VFZr9fu7NH3BeklSc3OLvjp73vBRRZbpEwgAe6uobNKGzR7Ny/FqXo5XxaXusPelTc/2Rv17M9A6CwMtrIjBwV4YaO3Flc9A6yScLwHziExmfKD98utzerRPosZMWaoePeMlSVeravTEwGTt+U+x2YOLINMnEAD2Ul7hVuFOj1bleQMvBnavomJPyEC7fT+3OAADLeyHwcFeGGjtxZXPQOsknC8B84hMZnygfeH16fr0yzOSFBhoJenUmfMaPCrT0FFFnukTCAD7KK9wa9zU4OG1YOf9R9qlua3uN+R2FwOtszDQwooYHOyFgdZeXPkMtE7C+RIwj8hkxgfaP/UdLb+/WVLwQOu749ef+442dFSRZ/oEAsA+VuWF3m82MdWnikozx8NA6ywMtLAipwwO1364rOsnTjiea3uhGoY/rbq0140fSyxUfXPO+HOrO1z5DLRO4pTzJWBnRCYzPtAOGJmh85d+kRQ80H765Rn1GZFu6Kgiz/QJBIB9hHtBsMRUn0rLzRwPA62zMNDCipwyOLjyW4cwOItTnpcMtM7glPMlYGdEJjM+0G7bd0zPvDRBKzfsUI+e8fpg+3+UtWiD/tR3tDbvKjJ9eB1m+gQCwD627w+9t+y4DHNj2olvWge9lClezV3mgc3NWuL5faCN/gvKxRIDrbM4ZXBw5bcOYfWv91V90hDYXcILjnpeMtA6g1POl4CdEZnM+EArSfuLTujfkxap9yuT9fzr05UyfbmOn/zW9GFFlOkTCAB7aX8V7ZiJPiVOaP3rDZsfzn1mH6TtClo4C1fQwkqcMji48hnCnITnJazIKc9LwM6ITGaJgdbOmT6BALCf0vImZc33KuGeYS1/q0er8rwaN9Wn9De92nHg4Y62XEHrLFxBCytyyuDgymcIcxKel7AipzwvATsjMpnxgdbj9Wn1+7s0NDFb//vieP1jSKqGvzFL6wr2ynfHb/rwOsz0CQSA/VRUNoW98nFsRuhjRcUPb6TlHrTOwj1oYUVOGRxc+QxhTsLzElbklOclYGdEJjM+0KbPeVeDR2VqfeE+7T5crF0Hj2tV3i71Hp6maQvWmT68DjN9AgFgT+EG2oQJoY/Ny/GqorJJxaVuFZe6o3oMDLTOwkALK3LK4ODKZwhzEp6XsCKnPC8BOyMymfGB9m/Pp+h2kzvk8V8qq/WnvqMNHFHnMn0CAWBPGzaHvmBYYpiBNvstr9LfvHvf2qyFPpVXRGeoZaB1FgZaWFG0B4eqs2VybVyrmjU5qjpbFrPnpSufIcxJnDKE8bx0Fqc8LwE7IzKZ8YF2UHxm2MdvN7nVe3hajI+m85k+gQCwrorKJhV96dGBo+6wo2rBTo/m5Xg1L8eromJP0AuItZkxN3S0XZobndseMNA6CwMtrCiag0NVSYkahj8d5HrRkZg8L135DGFO4pQhjOelszjleQnYGZHJjA+0hTs/Uc7arWpovBV47LqrXtlL8vTxoS8MHllkmT6BALCmisqmoCtfx03t+H6yFZVNrS8SluFTerZX2/eHucr2968VjWNkoHUWBlpYUTQHh7qslJCBtj55aEyel658hjAnccoQxvPSWZzyvATsjMhkxgfaPiPS9T/PJqhHz3j99bkk/bnvaPXoGa8/9R2tvw8ep6cGjQ2wYqZPIACsaWlu6LjalWE1PTv0qtp5Od6oHCMDrbMw0MKKojk41Mf1CxloG4Y/HZPnpSufIcxJnDKE8bx0Fqc8LwE7IzKZ8YH28LGvVHT8dESsmOkTCABrCne7gsTUzg9nRcWhQ2+0XiyMgdZZGGhhRdEcHGrnTQkZZ2vnTYnJ89KVzxDmJE4ZwnheOotTnpeAnRGZzPhA25bPd0e/XnOZPoxOZ/oEAsCawl5Bm9G14WzvJ27NXOjVrMVe7fkkOuPs1VoGWqdhoIUVRXNwuHbhsurS4u7e3iBpSMxeKMyVzxDmJE4ZwnheOotTnpeAnRGZzPhA2+T2KvOt9wK3OZCkuoabGjXpLdXUNZo9uAgyfQIBYE3lFW6NywgeaDu6B204xaXukKF3fxFX0IKBFvbwMAaHqpISVZWU6OqV6pg9L135DGFO4pQhjOelszjleQnYGZHJjA+0WYs26I2MZfrmu4rAQHu7yaNpC9Ypfc67Zg8ugkyfQABYT3GpW8tyPZqz1KsV6z0q2OlReUXXRtVwt0pIf5N70IKBFvbglMHBlc8Q5iQ8L2FFTnleAnZGZDLjA+0TA5NV33hTkgIDrSTduHVb//vieENHFXmmTyAArCXcFa8bNnf+ytk2916F29V72YbDQOssDLSwIqcMDq58hjAn4XkJK3LK8xKwMyKTGR9on3phrDxen6Tggbau4aYe6z/G0FFFnukTCABrCXfv2e4MqqvyQq+gnZfDFbSw5kBbVVLS7a/BQOssThkcXPkMYU7C8xJW5JTnJWBnRCYzPtCOz1yhhe8Uyu3xBgbaa9drNXbG20qettzswUWQ6RMIAGsJd0uCxFSfDn3mUXGpWxWVnft6FZVNylzQ7vYG2V6VlkfnWBlonaXTA+2ValXv2y3XxrW6duFyt55L1Vv/f3t3/x5Vfed//P+x/S67XXety1psFUEpKiiy9SbQBAwBCYZAQCJ3BhAKwRtAIqKGEqoBImqipRKXlo0RawAboiCOoGkgTm5BIHOTSV7fH2IGhhmSSSaZ95kzz+d1Pa5rISF8qodzuS+PJ2Xhb9zUmTFB3soDw/5aDLTu4pbBoeVNhjA34bqEE7nlugRSGZFl5gPtBW+7fvvE0vA3CbttUo5uGTdD0+es1vnmVuvjDZr1DQSAs+yuiH6CdvbTke+PHc77aGvqfKqpG5lvDtaPgdZdhjTQNnrVMWfqtVF12thhj6rNtbURX6d/pB3u6BseaLMmqbV4FVJc+8oFSR0cvJUH1JkxIXwd/lB9aES+LkOYu7hlCOO6dBe3XJdAKiOyzHyglaRQqEd1//ha73x4RB9+fFQNp89ZHynurG8gAJzn+tcczF0UVOYNg+3GbcN/J+1IYqB1l6EMtK3bN8UcVYdzHbWUlkR/rQQG3/6BFu6SjMHhwumzMa/rRJ8QP9/GEOY2bhnCuC7dxS3XJZDKiCxzzED72fFTeufDI+Gfu3wlNf5wWN9AADiTp6lLDZ7obxg2kt/kK1EMtO4ylIG2vTAn5og2nHfIRrzeIMGvdb6tS81fnFTbshzXa3/6CXVOG6v2jPHmZ0mGllc2jfo9baT/ZUHE12YIcxW3DGFcl+7ilusSSGVElpkPtP+80KIJv1usf58wO/wO2qbmVt02KUf1X31re7g4sr6BAHC2698f22/ZWgZa2A60sZ6g7ci4Z3jXUqNXHdlTIr5We16G+fXtdP1PCvP/iI+cm/3LgpF4zQFDmLu4ZQjjunQXt1yXQCojssx8oJ2x4Hm9tHO/QqGe8EArSWUVHykjd13SznHkaL1+dudMjbk7K6ys4pAkqfG8VzMWPK9fTsrR1KzlOlZ/JvzrrG8gAJytpi76KdqRfpfscDHQustQ30Hbnpcxck8ZNnrVun2T2gtz1FJaovONXvPr2+kYaEdBo1cdGfdE/ouH7Ckjcj0yhLmLW4Ywrkt3cct1CaQyIsvMB9p/Gz9L/kBQkiIG2mB3SP9xb3bSzvFB9VE9vWJLzI9l5K5T6d6DCoV6dORovcZNXaBgd0gSAy2AwdU19H3zsN0VftU1RH8sf0VAWblBzSsIqrom8v20nqbR+QZh59sYaN1mSANtW5fON3r1Q/UhecvLRuQdnRgaBto4NXrVur1YHXOmqn1hhrx7ywb8/Aunz6qtaJHaC3PUWrx6xP5lAUOYu7hlCOO6dBe3XJdAKiOyzHygHTd1gVrbL0qKHGjPnP2n/uv+eUk7R/l7/6tnN7we9fNtHZd068RsdYdC4Z97aNYKfXb8lCQGWgDD52nq0ryC6Fcg9I+4dQ2RH19THJCnaeR+fwZadxnyQAtTDLTxifU6Dm/5wCPtaGAIcxe3DGFcl+7ilusSSGVElpkPtOu3/klPzF+rT+u+1C3jZujUN9/rvb/UaMLvFuu5zbuSdo7X9lRp2pMr9cDMQv1qSq4K1+/Ulas+Has/owdmFkZ87sJV21T+/mFJDLQAhq/07UDMbyC2u6LvKdr85dEf7//YSGCgdRcG2tTCQBufWO+UbS9M/l+z/iEM7pLqf/4YaN2FgRawR2SZ+UDr8we0cuOb+tfxs3TLuBm6ZdwM3ToxW5u2l4dffZCMPvrb53phxz51Xrys9s4flblwg9a+tFuffH5S07NXRXxu4fqd2rX3oCSpO9QDAENy6XKPVm3oVtb86HE2Kzeodz7oVnNLT8yPrX+pe8TOcfpMSFm5QS1aEdQ7Vd1IcW+/062s3KBylwZH9foNXrqoK2+8qIszJqhz2lhdeeNFBS9dNP9zlWr89XXqnDZWP66Ya34WJ4s1qv24aEbSz3H1rdfMx0SMvFT/89d/Xf64fK6uvvUaUtyVl59zxXUJpDIiy8wH2t7eXklSMNitpubW8OsOJOlql8/qWPr8i9Oa+GiBjp88o8kzlkV8LG/lVu2r/KskydvpB4Ah2fNO35OxmbnBqJF23uKgTp0LyNvpjznQbnsjOGLn+PsXfb/HwuVB7XnHjxRXWt7393P+kpG7RmJpKymOGjnaSorN/1ylmtajR9U5re9pUOuzOFn7msXR19uuV5N+jrZdJX1/v5bNUduuEqS49s2rXPHnj+vSXdxyXQKpjMgy84E2b+XWmE/KHqv/WuOn5yftHJ5zTfK2doZ/XPt5gybPWKaOiz/qF/fMVpcvEP7YxEcX6/jJM5J4xQGAoSsqvvbqgsx+84OauzigDVsD4XfQ7q7wR423N36TsUTwigN3SdYrDjqyp0Q/iZYxwfzPVaL6Xzngdo76T2cbvWrdvDp8ttbtxbE/p7jvczoy7lFLaYnJWflPyd3FLf8pOdelu7jlugRSGZFl5gNt5sINemzeGnVevCyp70na4pJyjbkrUy++tj9p59i0vVzZBZt0tcuny1e6NHvRRhWXlPedMW+Dtu96T6FQjyoP1Wr89HyFfnr83foGAsDZGjw+1dT5Ir651849sZ+ODQ+xBUE1eHw639al6hq/du7xa3eFP/xzI4WB1l0sB9qOjHvM/6wlioE2+fqH1+tZDbCDYQhzF7cMYVyX7uKW6xJIZUSWmQ+03aGQVm/epXsfK9D/fnJcD/6+UPc9vkT1X32b1HNc7fJrydpXdfvkufrVlFyt3Phm+KnZpuZWZeSu022TcvTw7JVqOH0u/OusbyAAnOv6IXZeQVBV1X0Dq6cp+huAZd7wqoOde0bum4HdDAOtuyRroG0pLUmZUQ3OFmtAbl+YYX6uWBjC3MUtQxjXpbu45boEUhmRZeYDbX9lFR/p57+eqacKX5LPHxj8Fzgk6xsIAGeqrol+Svb6J2M9TV2qqvZpy+v+vnfR3mDL64FRPyMDrbska6A939Y30rbnZagjewrjLIYt5kCbx0ALhjCuy/TklusSSGVElpkMtGUVh2Ka98yLuv23c/XHfX8J/5zTs76BAHCmG98f26+mLvo1BfMWR39edQ1P0MK5Ay0wElq3b4oaaL3lZebnioUhzF2SPoQ1euXdW6aW0hJ5K9/luoQzrksAUYgsMxlop2Q+GzenZ30DAeBMQxlo6xoiX3mwu2L0x9nzbQy0bsNAi1TU/zR2e16GY8fZ820MYW6T1CGs0av2hRkR/yKidfNqrkvYXpcAYiKyzDGvOEjVrG8gAJzJ0xT9ZGxRcSDi4zV1vojBtq4huWdkoHUXBlpg9DCEuUsyhzBveVnM13k0n6jnuoTZdQkgNiLLHDHQfnb8lJ7fskd5K7cpf/Ur+sMrb+n4yTPWx4or6xsIAOfyNPU9Sbtxm1/7qq49FVvX0KV5BdeG28J1QXma+j6/rMKvsgo/rzgAAy3gIAxh7pLMISzWqzw6p41Vc20t1yXMrksAsRFZZj7Q7iir1L+Nn6XZizaqcP1OLV27Q0/MX6v/95vf683yP1sfb9CsbyAAUs/1rzPoV7w9EDHaJuNVBwy07sJAC4wehjB3GakhrLm2VhdOnx3wc7yVB2IOtIP9Oq7L9MNAC9gjssx8oL198lx5vjsf9fNHjtbrl5NyDE40tKxvIABST6x30944zvYbzXMw0LoLAy0wehjC3CXRIaz5RL065kwNj63ty+bqfKP3pp/fWrw68pvhVR7gusSIX5cAEkdkmflAe+9jBTF/PhAI6jYGWgAudOO7abNyg3pqafRTtVm5wVF9Ly0Drbsw0AKjhyHMXRIdwjqyp0Q9EdtSWjLgr2k+UR/XE7dcl+mLgRawR2SZ+UD77IbX9dfaL6J+/u13P9bzW/YYnGhoWd9AAKSeqmpf5NOzi4N6ZZc/+qnaxTxBCwZawAkYwtwlkSHswumzMV9Z0F6Y/FGN69JdGGgBe0SWmQ+0BUUlGnN3lu6fuUzznnlR2QWbNPHRxfqPe7O1YPmWCE7M+gYCIDXV1Pm0u8Kv3RV+NXh88jR1qag4EDHOjvY3CmOgdRcGWmD0MIS5S6JDWKyBtq1oEdclTK9LAIkjssx8oC164Y9a93JZXJyY9Q0EgLvU1PlUU+dTg8c36r8XA627MNACo4chzF0SHcJaSkuiBtrmE/VclzC9LgEkjsgy84E21bO+gQDAcDHQugsDLTB6GMLcZSSGsB+qD6m1eLVat28yGWe5Lt2HgRawR2SZ+UDb09Or8vcP69G5RbrzoQW6ffJcTZ+zWuXvH7Y+WlxZ30AAYLgYaN2FgRYYPQxh7uKWIYzr0l3ccl0CqYzIMvOBdlvpu7rjwfl6Ycc+vXuwRu8erNHmV/dq7P1PqazikPXxBs36BgLA3Ro8PpVV+LX/A788TSP7tRlo3YWBFhg9DGHu4pYhjOvSXdxyXQKpjMgy84F2/PR8nfrm+6ifP3n6rCY9sdTgREPL+gYCwL2qqn3hbxqWlRvUvILgiL6bloHWXRhogdHDEOYubhnCuC7dxS3XJZDKiCwzH2hvnfikgt2hqJ8Pdod068RsgxMNLesbCAD3mrc4GDHQZuUGteX1wIh9fQZad2GgBUYPQ5i7uGUI47p0F7dcl0AqI7LMfKB95MlVqvjgb1E/v7fysB6evTL5Bxpi1jcQAM400OsIPE1d+uBjn/Z/4FeDx6e6hi5t2uZX4bqgNm3r+7kGjy9qnM3KDaqomIEWDLRAsjGEuYtbhjCuS3dxy3UJpDIiy8wH2s+On9KYu7M0JfNZLX5uuxY994oemFmoMXdl6vAnJ6yPN2jWNxAAzlLX0KXCddcG1bIKf8THGzw+zSu49vHM3KDmLIocYfNXBORp4glaMNACTsEQ5i7xDGHNJ+rVXPupLpw+a379cV2mBwZawB6RZeYDrST90NKh1/ZUaeXGN/XMuh3avus9fd/0g/Wx4sr6BgLAWfKXB6JG1arqa++N3bjNH/GxzPnRI2xWblDVNX5V1/gjRtpla4Mj+o3Cjp7oG/TmPxPQlp1+pLgXXg38NNCO3IgPoA9DmLsMNoS1bt+kzmlj+2RMkLfywMheU43eERl/uS7dhYEWsEdkmSMG2lTO+gYCwDnqGrpijq0bt/nDrzVYvDLyY5kxPr9/oD3f1vfEbVW1L/zjftU1fpVV+FXXMPzz9g+0cBcGWmDkMYS5y0BDmLfywLVx9joj9SStt/KAOjMmhL9u6/ZirksMel0CSA4iy8wH2jNn/6mnCl/SfY8v0V2PLIzi9KxvIACc42bvjX1xR0D5KwIxB9lYA+28xQM/KXvjU7jDfe3BF1/59NymgOstX9/3137OwqD5WZLhD1v9w7oeANwcQ5i7DDSEtZSWxBxom2trE76OLpw+G/Nr/1B9KKHrEu7CQAvYIbLMfKCdPGOZMhduUPn7h/X+Xz6J4vSsbyAAnOXG8TQrN6gNWwORg+z1rzWYH1TWU9d+Ln95YMCnYqtror9+Vm4woSdp3e6L033D+ZLVPFkKYHgYaN1lwCdoy8tijmbNJ+oTvo5+qD4U82u3lJYkdF3CXRhoATtElpkPtP/ym0xd/PGK9TGGnfUNBICzeJq6tO6lgOYtDmr+0oD+9E5ARcWR76X9fW7fu2cz50c+Qbu7YvAnH3dXxB5o4/m16YqBFkhjjV5595appbQkoScgGWjdZcD/lLzRq47sKRGDWWvx6hG5Hptra2MOct7yMvs/Kw7W/+ev5c3t5mcB4G5ElpkPtA/PXqlvv79gfYxhZ30DAeAssQbUNZujB9XZT0e/1qDB47vp1/U0dammzqd9lTxBO1QMtECaavSqfWFG5NC2fdOwvhYDrbsM+q7PRq9aSkvUun3TiH+DsPbCnIhrsj0vQ+cbvfZ/XhyMgRZAshBZZjLQnjx9NuzDj48qI3edPvz4qOpPnY342MnTZy2ON6SsbyAAnCXWeLpqY0D5yyOfoq2u8WtflV8bt/m1c49/wHG2ps6neQXXfu38pZFfa7jvoE0XDLRAerrZf6o+nG/2xEDrLtbfjMlbXqa2okV9T84yzsb954+BFsBoI7LMZKC9ZdyMuDk96xsIAGeJNdAuW9v3Tb+qqn3aVzXwGBvLvMXRX/OFkoB2V/h5cjYODLRAemorWhRzoB3Oqw4YaN3FeqDF8P78MdACGG1ElpkMtP5AMG5Oz/oGAsBZbnzfbFZuUDv3DP/9sHUNsUffomLGxngx0ALpKdYTtB0Z9wzriUUGWndhoE0tDLQAkoXIMvN30ErSaU9j+P9uam7Vm+V/1sc1xw1PFH/WNxAAzuJpihxpExln+8UaaHmtQfwYaIH0deP7Pof7PlEGWndhoE0tDLQAkoXIMvOB9o/7/qLbJuUoFOpR58XLGnv/U5qS+az++4Gn9NqeKuvjDZr1DQSAM3maRu5r3fiNxwb7hmKIxEALpLfm2lp5Kw8M692z/Rho3YWBNrUw0AJIFiLLzAfau6fnq+H0OUnSm2//WQ/PXqne3l59c7ZJ9/zPIpMzbX3jHd3x4PzwjxvPezVjwfP65aQcTc1armP1Z8Ifs76BAEgP1TV930xsd8XQ32Gb7hhoASSKgdZdGGhTCwMtgGQhssx8oB1zd5Z6e3slSVn5f9Drb30gSerp6dWYu7OSfp5zjc267/ElEQNtRu46le49qFCoR0eO1mvc1AUKdockMdACgNMx0AJIFAOtuzDQphYGWgDJQmSZ+UB79/R8fXXmO51vbtWYuzJ1rrFZkvTt9xd050MLkn6emU8/rw8/PhoeaNs6LunWidnqDoXCn/PQrBX67PgpSQy0AOB0DLQAEsVA6y4MtKmFgRZAshBZZj7Q7t7/kcbcnaV/HT9LS9a+KknqvHhZk55Yqk3by5N6lgN//j8tWfuqOi7+GB5oj9Wf0QMzCyM+b+GqbSp//7Ak6UJbF5Aa2uEWze0+DEH91/7wQGt9FgCpqbW0RJ3Txqr9mTlqLS1BimsrXtX393NZjvm1hZvr/+eeltKfBtrS7eb/DAZEsf7/8TCiiCwzH2gl6ZuzTTp+8oxCoR5JUrA7pLff/Tj842TUefGy7n2sQG0dlyIG2k8+P6np2asiPrdw/U7t2ntQktTT2wukhh64hvW1lGKamnuVlRtU4Zqg+VkApKaut19T57Sx+nH5XHW9/RpS3NUtz/X9/Vw5z/zawgB++uee/j9/XW+/Zv/PYMCNrP+cYEQRWeaIgdYJLXv+Ne2r/KskRQy0x0+e0eQZyyI+N2/l1vDnWj+CDwAYGK84AJAoXnHgLrziILXwigMAyUJkmWMH2vf/8ome3fB60n6/2yfP1R0PztcdD87Xfz/wlH5250zd8eB8fffPZv3intnq8gXCnzvx0cU6fvKMJAZaAMNXU+czP0M6YKAFkCgGWndhoE0tDLQAkoXIMscOtGUVH2n2oo0mv/f1T9BKUmbeBm3f9Z5CoR5VHqrV+On54dcvWN9AAKSefVV970TNyg1qXkFQVdUMtaOJgRZAovoHIrgLA21qYKAFkCxEljl2oLXsxoG2qblVGbnrdNukHD08e6UaTp8Lf8z6BgIgtdQ1dIXH2es1eBhpRwsDLYBEMdC6EwNtamCgBZAsRJYx0CaY9Q0EQGrZXeGPOdDuq/Kbn82tGGgBID4/1H7KcAnHYaAFkCxElpkPtEeO/kMP/r5Q/z5htn7+65lRnJ71DQRAaqmq9sUcaKtrIgfa6hq/9n/g58naEcBACwDxYaCFEzHQAkgWIsvMB9q7HlmoV3e/r0+Pfalj9V9HcXrWNxAAqcXT1KX85YGIcXbZ2mDExwvXRY63vKM2MQy0ABAfBlo4EQMtgGQhssx8oJ2c8Yz1ERLK+gYCIPV4mrq0c49fRcUB7a7wy9N07WPXfwOx67+RmPWZUxkDLQDEh4EWTsRACyBZiCwzH2gL1+/Usfoz1scYdtY3EADuUlQciPkKhJo6nqIdLgZaAIgPAy2ciIEWQLIQWWY+0J765nvdNilHU7OWa1b+Rs1eFMnpWd9AADifp6lLW14PhJ+GLavwq6rap/wVfT+3pjiguoa+z925J/Y3Ebv+KVsMDQMtAMSHgRZOxEALIFmILDMfaCdnPKOZTz+v4pJybX3jnShOz/oGAsD5Yj0Vmzk/8sf5K/rGw1jvqN1X5Tc9f6pjoAWA+DDQwokYaAEkC5Fl5gPt+On56u3ttT7GsLO+gQBwNk9TV8wnYm8caK9/jcE7f/ZpyeqAlqwO6L2PeLVBohhoASA+DLRwIgZaAMlCZJn5QDsrf6PaOi5ZH2PYWd9AADhw7GyMAAAVOElEQVRfvANt1vyg8gqjn7bdupNhMREMtAAQHwZaOBEDLYBkIbLMfKB9bU+V7n2sQH945S2V7j2oXTdwetY3EADOt3FbjPfKzo9jsO3/WG5Quyt4zcFwMdACQHwYaOFEDLQAkoXIMvOB9qFZKzR9zuqbcnrWNxAAzudp6vvmX/nLA1q2tu+dsjV1PhUVB/Rk3rURNvNmA+38oArXBc3/d6QqBloAiA8DLZyIgRZAshBZZj7QpnrWNxAAqW13hX/QJ2kzc4MqKmZcHC4GWgCIDwNtbM0n6tVSWqKW0hI1n6g3P0+6YaAFkCxEljlioP32+wt6Ycc+FRSVaMHyLSouKdc3Z5usjxVX1jcQAKmtrqEraoydtSDyx1m5fU/dWp81VTHQAkB8GGhj/DWpPqTOaWMjNNfWmp8rnTDQAkgWIsvMB9pDR+r0sztn6tG5RSpcv1OF63fqf3Ke07/8JlOfHT9lfbxBs76BAEh9/a87mLc4qI3b/Kr70qetbwSU9+y1VyJYnzGVMdACQHwYaKO152VEDbTtCzPMz5VOGGgBJAuRZeYD7f0zl+ng4c+ifr7yo1pNz15lcKKhZX0DAQAMjIEWAOLDQBvtxnG2n/W50gkDLYBkIbLMfKD99wmz1R0KRf18sDukWydmG5xoaFnfQAAAA2OgBYD4MNBGaytaFDXOthUtMj9XOmGgBZAsRJaZD7T3Pb5E//jSE/XzX3zp0cRHCwxONLSsbyAAgIEx0AJAfBhoozWfqFdH9pTwONuRPUUXTp81P1c6YaAFkCxElpkPtHveqdYvJ+Vo3ctl2lt5WOXvH9bal3brP++box1lldbHGzTrGwgAYGAMtAAQHwbam2j0qrm2tu+bgzV67c+TZhhoASQLkWXmA60kHTz8dz25eJPufaxAdz2yUJl5G/TeX2qsjxVX1jcQAMDAGGgBID4MtHAiBloAyUJkmflAW1ZxSF2+gPUxhp31DQQAMDAGWgCIDwPt6Lpw+qyaaz/lFQlDxEALIFmILDMfaP/r/nk619hsfYxhZ30DAQAMjIEWAOLDQDt6vOVlEd9orHV7sfmZUgUDLYBkIbLMfKB958Mjmr1ooyo/qtWJhm908vTZCE7P+gYCILVVVfu0pjigTdv8qqnzmZ/HjRhoASA+DLSjo/lEfcQ426+5ttb8bMNx4euz+uHTT5OmdfOqvlF786qk/r7NX5w0/2sNILmILDMfaG8ZN2NATs/6BgIgde3c41dWbjACI+3IY6AFgPgw0I6OG5+e7ddSWmJ+tuHof6LV7fhzAKQfIsvMB9rLV7rkDwRvyulZ30AApK4bx9ms3KA2bvObn8ttGGgBID4MtKOjubY25gDorTxgfrbh8Fa9q7ZlOa7X8som87/WAJKLyDKTgfauaXm6ctUnSbrnfxZZHGHEsr6BAEgdnqYulVX4taY4oK1vBGIOtEXFjIgjjYEWAOLDQDt62gtzIsbZ9rwM8zMBACIRWWYy0P5qSq4Kikq0o6xSY+7K1I6yyptyetY3EACpY9nayDF21oLogXZ3ReQTtHUNfazPnsoYaAEgPgy0o8tbXqbW7ZvkLS/T+Uav+XkAAJGILDMZaD899qVylm7W40+t0c/unKnH5q25KadnfQMBkBpq6nxRY2xmblBPL7v24517ro2znqYurSm+9pRt4bogQ+0wMdACQHwYaAEA6YzIMvN30D7+1FrrIySU9Q0EQGqoqo4eaPufmG3w+ORpivz8La9HvwJhDa8/GBYGWgCIDwMtACCdEVlmPtA6pd7eXr2wY5/ueHC+/uv+eVq6doe6fAFJUuN5r2YseF6/nJSjqVnLdaz+TPjXWd9AAKSGBo9P8xZHD7Q1db6Yn5+/PPY7aq3/d6QiBloAiA8DLQAgnRFZ5tiB9uXXKzThd4uT9vvtr/qbpmevUufFy7py1aeM3HV6dff7kqSM3HUq3XtQoVCPjhyt17ipCxTsDklioAUQv+oaf8RIu6/Kf9PPLSqOHmjnLWagHQ4GWgCIDwMtACCdEVlmPtBeunw15s//32f1Sf0mYV986dGpb74P/3hHWaWWrt2hto5LunVitrpDofDHHpq1Qp8dPyWJgRbA0MXzLtlY76wdaNDFzTHQAqnBW3lALaUl8la+a36WdMVACwBIZ0SWmQ+0Y+7OUu6zL+vQkToFg93Wx5EknW9u1dSs5Tp4+O86Vn9GD8wsjPj4wlXbVP7+4b7PdcBNBIA71dT5tOX1gLa8HlB1DePscDHQAs7Xnpehzmljw1o3rzY/UzpioAUApDMiy8wH2rp/fK11L5fpNw/n6fbfztWqTW/qWP3X6u3tNTnPI0+u0i3jZmjNi39UT0+vPvn8pKZnr4r4nML1O7Vr70FJUutFPwAkVdslDMVXnr7XRSx9LmB+FgDR2vfviRhn+7WdbDA/W7pp//tRdU4bq47CHPOzANb/vAUg/RBZZj7Q9tfb26v6r77Vpu3lGj89X3dPz9dLO/frnxdakn6Wto5Lyl/9ita8+EcdP3lGk2csi/h43sqt2lf5V0mSPxgCgCTrwRB8988eZeUGtWxN0PwsAKJdeeu1mAPt1U8Om58t3XT9o06d08bq0oq55mcB7P95C0C6IbLMMQNtfydPn9XmV/fqP++bo/9+4Cn94p7ZKigq0cUfr4zq7/u3T7/Qt99fCP/46PGvdN/jS9Rx8Uf94p7Z6vIFwh+b+OhiHT95RhKvOAAAp+MVB4CzeSsPxBxom0/Um58t3fCKAwBAOiOyzBEDbeN5r7aVvqt7HyvQmLuz9PSKLTr8yQmFQj1q7/xRTy17UXOWbB7VMxSXlGtW/kZdvtKlYLBbKza+obyVWyVJmXkbtH3XewqFelR5qFbjp+crFOqRxEALAE7HQAs4X2vx6ohxtqW0xPxM6YiBFgCQzogsMx9of5fznG4ZN0OPPLlKfzpQHfNJ2c6LlzXmrsxRPcfVLr8K1+/UHQ/O1+2/navsgmI1t7RLkpqaW5WRu063TcrRw7NXquH0ufCvs76BAAAGxkALpIbmE/XyVh7gyVlDDLQAgHRGZJn5QFtcUi7Pd+cH/Jyenl4dOVqfpBMNLesbCABgYAy0ABAfBloAQDojssx8oK0+cuymDh7+zPp4g2Z9AwEADIyBFgDiw0ALAEhnRJaZD7S3T54b6bdzdcu4Gfq38bM06Yml1scbNOsbCABgYAy0ABAfBloAQDojssx8oI3Vlas+vbBjn/ZX/c36KINmfQMBAAyMgRYA4sNACwBIZ0SWOXKg7W9q1nLrIwya9Q0EADAwBloAiA8DLQAgnRFZ5tiB9spVn341Jdf6GINmfQMBAAyMgRYA4sNACwBIZ0SWmQ+0BUUlURYs36K7puXpqWUvWh9v0KxvIACAgTHQAkB8GGgBAOmMyDLzgXbVpjejrHu5TH86UK2rXX7r4w2a9Q0EADAwBloAiA8DLQAgnRFZZj7QpnrWNxAAqafB49OmbX5l5QZVuC6omjqf+ZncjIEWAOLDQAsASGdElpkPtD09veH/u7mlXdtK39UfXnlL9V99a3iq+LO+gQBILZ6mLuWvCCgrNxihrsH+bG7FQAsA8WGgBQCkMyLLzAZaz3fnNTnjGf381zM1/9mX9ENLh341JVcP/r5QD8ws1L/8JlN/+/QLq+PFnfUNBEBqqanzRY2zWblB7a7wm5/NrRhoASA+DLQAgHRGZJnZQJtdUKyZTz+v6iPHtGD5Fj3y5Cr94ZW3wh9/8bX9enRukdXx4s76BgIgtTDQJh8DLQDEh4EWAJDOiCwzG2hv/+1c/eNLjySp8+Jl3TJuhk598334455zTbp1YrbV8eLO+gYCILV4mrqUv5xXHCQTAy0AxIeBFgCQzogsMxtobxk3Qxe87eEf3zoxW03NreEfN7e065ZxMwxONrSsbyAAUk9dQ5c2/vRNwpatDaq6hqdnRxMDLZB+mk/Um58hFTHQAgDSGZFlpgNtc8u1gfY/75vDQAsAGHEMtED68FYeUGfGBHVOG6vOjAnyVh4wP1MqYaAFAKQzIstMB9qXdu7XG299qDfe+lD/On6WXtixL/zjl3buZ6AFACSMgRZIDxdOn+0bZm9w4fRZ87MN+39TY4t++PTTpGnZV6bOaWPVnvdEUn/f5i9Omv+1BgCAyDKzgfa+x5fExelZ30AAAANjoAXSg7e8LOZA21JaYn624ep/otXteGIXAOAERJaZDbRuyfoGAgAYGAMtkB5+qD4Uc/xL5dccNH9xUm3Lclyv5ZVN5n+tAQAgsoyBNsGsbyAAgIEx0AJpotGrjuwpEeNsR/YUnW/02p8NAAA4HpFlDLQJZn0DAQAMjIEWSCONXrVu36T2why1Fq9mnAUAAHEjsoyBNsGsbyAAgIEx0AIAAAAYDJFlDLQJZn0DAQAMjIEWAAAAwGCILGOgTTDrGwgAYGAMtAAAAAAGQ2QZA22CWd9AAAADY6AFAAAAMBgiyxhoE8z6BgIAGBgDLQAAAIDBEFnGQJtg1jcQAMDAGGgBAAAADIbIMgbaBLO+gQAABsZACwAAAGAwRJYx0CaY9Q0EADAwBloAAAAAgyGyjIE2waxvIACAgTHQAgAAABgMkWUMtNe1rfRd3fnQAt0+ea4K1pToapdfktR43qsZC57XLyflaGrWch2rPxP+NdY3EADAwBhoAQAAAAyGyDIG2p86ePjvuvexAnlbO3W1y6/MhRu0rfRdSVJG7jqV7j2oUKhHR47Wa9zUBQp2hyQx0AKA0zHQAgAAABgMkWUMtD9Vf+qsjtV/Hf5x6d6DKigqUVvHJd06MVvdoVD4Yw/NWqHPjp+SxEALAE7HQAsAAABgMESWMdDepOyCYr397sc6Vn9GD8wsjPjYwlXbVP7+YUkMtADgdAy0AAAAAAZDZBkDbYy2vXlAv396vbpDIX3y+UlNz14V8fHC9Tu1a+9BSdKlq0EAgIOdORdUVm5QzxTZnwUAAACAMxFZxkB7Xb29vVr70m7NXrRRXb6AJOn4yTOaPGNZxOflrdyqfZV/lSRd7uoGADiY57vu8EBrfRYAAAAAzkRkGQPtdW3Y+iflrdwW/gZgktRx8Uf94p7Z4cFWkiY+uljHT56RxCsOAMDpeMUBAAAAgMEQWcZA+1N/P3FKU7OWKxiM/rcmmXkbtH3XewqFelR5qFbjp+crFOqRxEALAE7HQAsAAABgMESWMdD+1NK1O/TzX8/UmLuzwh6atUKS1NTcqozcdbptUo4enr1SDafPhX+d9Q0EgPs0eHza/4FfH3zsk6fJ/jypjoEWAAAAwGCILGOgTTDrGwgAd6mq7hsT++WvCDDSJoiBFgAAAMBgiCxjoE0w6xsIAHeZtzgYMdBm5Qa1c4/f/Fwj6evvfNq9P3le3e1XVm5Q85cEkvr77v/AXX/fAAAAADcjsoyBNsGsbyAA3KOmzhc1zmblBlVU7K4nP+u+jP2/023yl7vr7xsAAADgZkSWMdAmmPUNBIC78ASte/AELQAAAJA6iCxjoE0w6xsIAHeJegftct5BCwAAAACjjcgyBtoEs76BAHCfBo9P+6r8qqr2Mc4CAAAAQBIQWcZAm2DWNxAAAAAAAAAkhsgyBtoEs76BAAAAAAAAIDFEljHQJpj1DQQAAAAAAACJIbKMgTbBrG8gAAAAAAAASAyRZQy0CWZ9AwEAAAAAAEBiiCxjoE0w6xsIAAAAAAAAEkNkGQNtglnfQAAAAAAAAJAYIssYaBPM+gYCAAAAAACAxBBZxkCbYNY3EAAAAAAAACSGyDIG2gSzvoEAAAAAAAAgMUSWMdAmmPUNBAAAAAAAAIkhsoyBNsGsbyAAAAAAAABIDJFlDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUQy0REREREREREREREYx0BIREREREREREREZxUBLREREREREREREZBQDLREREREREREREZFRDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUQy0REREREREREREREYx0BIREREREREREREZxUBLREREREREREREZBQDLREREREREREREZFRDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUQy0REREREREREREREYx0BIREREREREREREZxUBLREREREREREREZBQDLREREREREREREZFRDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUQy0REREREREREREREYx0BIREREREREREREZxUBLREREREREREREZBQDLREREREREREREZFRDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUQy0REREREREREREREYx0BIREREREREREREZxUBLREREREREREREZBQDLREREREREREREZFRDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUQy0REREREREREREREYx0BIREREREREREREZxUBLREREREREREREZBQDLREREREREREREZFRDLRERERERERERERERjHQEhERERERERERERnFQEtERERERERERERkFAMtERERERERERERkVEMtERERERERERERERGMdASERERERERERERGcVAS0RERERERERERGQUAy0RERERERERERGRUf8fiOT5ItKAGBwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+1+UdcL/8e/f4919t7u1ta1365rHPFWmWd4ruKAJoigiqCAe0zxhmpKHMDQw84B5IHMTs4xQC7WQ0pSsDEWGo5owMw68vz8goyODjDDM57quXq/H4/l4xHC6Yodr3fdeXvP/RERERERERERERERG+n+mD4CIiIiIiIiIiIjojxoDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUDbza7WNAIAAAAAAMDGiEzGQNvNTJ9AAAAAAAAA0D1EJmOg7WamTyAAAAAAAADoHiKTMdB2M9MnEAAAAAAAAHQPkckYaLuZ6RMIAAAAAAAAuofIZAy03cz0CQQAAAAAAADdQ2QyBtpuZvoEAgAAAAAAgO4hMhkDbTczfQIBAAAAAABA90Sicxcua9BrKRH5XnsPHX/kzzl/6degx3fH51OvPtGas3Rzu/fNX5mjXn2idcfn69JxUmsMtN3M9AkEAAAAAAAA3ROJ7vh8qmu42ePfp6WlRc++OPWRP+9hA+1fBk5U/zHJanJ7/I977/g0eGyKHu8fy0DbzRhou5npEwgAAAAAAAC6JxLdfwXtlLQ1Wpu9Rwlz1mjgqzOVtXWf3t1eoAnJKzVs3Gz9+NNvkqRJqZlaueFDTUheqdGvz1f6smx577SOoY/3j1V1bYP/67e9PSV9rXr1idbw6DRdq6rVT79eU/S0NzV4bKqGR6ep9Ief/J+zOe+g+o6arpdi5mrj+wc6HGgf7x+rGQuy9Mlnp/yPf3HiW81YkMUVtGGIgbabmT6BAAAAAAAAoHsi0f0D7bSMdZqUukotLS365bfreqzveH30yZeSpHe27dOCzK2SWofcsZMX647Pp+bmFr0Wv0gFhSckdTzQ1jXc1OP9YyW1Xk07MjZDO/d/JkkqPX9Z/3gpUd47PpX/clVPD42Xq6Zezc0tSlm0ocOB9rG+43X0y9NKmLPG/3jqGxv16RffMNCGIQbabmb6BAIAAAAAAIDuiUQPDrR5+UckST5fs3r1iVZN3Q1J0sFPi/1D6JS0Ndq267D/a7y9JV+LVm+TFNpA+/OVSv15wAT5fM3+jxv9+nydPPODPtx3NGBw/fJU6UMHWq/3jp59caoabvyuJrdH/3x5mtweLwNtGGKg7WamTyAAnKOopEl5+W6VlJk/FgAAAAD4I4lEDw6097+QV68+0brd2CRJ+rjwpOJmrZbUOtDe/3Hv7TikmYvekRTaQFv6w096rO949Xtlht/fRyTo8LFT2pR7IOCFv0rPB38Rs7aBVpIyVmzRzv2f6fCxU0p7813/sTPQdi8G2m5m+gQCwBnWbfEoNtHrt26Lx/gxAQAAAMAfRSTq6kD73o5D/o9bvWmXFr/1viTpLwMnqqq6XpL8V7I+ONBWumr19ND4oMezY99RTUlf63/72FdnOx1oT575QTFJyzUtY52Kvj7nP3YG2u7FQNvNTJ9AANhfYZE7YJxt49QraX/8pUm5e5xvz8du4z9rAAAAAKGJRF0daMfELVST26Mmt0fDo9N0+FjrC3UNei1Fp86cl9R6W4T/+ud4Vdc26Oat23qs73jdbnRLkl6eMM9/39ra+puauegd/X67Secv/aqnh8arqrped3w+Jc592398P/16TcdPficpcKBtbm7R4LEpGjw21X/bBAba7sdA281Mn0AA2F9ufvCBNjffmQNfyfdNQf99nSY5g6ugAQAAALuIRF0daFdu+FCvxi9S31HTNXf5Fv8wWlB4QkP+NUsTklfq3e0F+sdLiXLVtF5RG5u8Qk8Pjdd335fr5yuVip72pga9lqIh/5rlf8EwqfWetv94KVFDx83W1l2H1X9MsiTpw31HFZO0XFLgQCtJy9d/4L+Kt+3YGWi7FwNtNzN9AgFgf0UlwQdLrqANj025rQP41FkerqAFAAAAEJRVm5K2Rgf+85Xpw6AejoG2m5k+gQBwBu5B23O+vdA6gM9ayM8UAAAAQHBWjYH2jxEDbTczfQIB4BwlZa23O3DqlbOmMNACAAAA6IxVY6D9Y8RAe7eWlhat27JXfUdN19+Gxmv1pl3+9125WqXoaW/qb0PjNTI2Q6dLL/rfZ/oEAsDeSspab3Fg+jicjIEWAAAAQGeITMZAe7ePC09qxPg01dbfVHVtg4aNm61PPmt9VbyoxKXauuuwfL5mHT9Zqj4jp8l7p/Xmx6ZPIADsqbyiUW9k3rutQfI8T4dXzpaVM+B2BwMtAAAAgM4QmYyB9m7py7L13o5D/rc/+KhQ0zLWqabuhp4cPCng1ehenjBPp86cl8RAC6BrHrznbGyiV+lLvQEfU1DYpITU1vclpHpVWMSLTnUFAy0AAACAzhCZjIH2bg8OtAePFOulmLk6XXpRL4xPD/jYGQuytPPAMUlSZW0TADyy9CXedgNtbKLX//4ffnK3e19Cqlc//OQ2fux2U/qj2z/Qmj4WAAAAANZEZDIG2rsVFJ7Q8Kg5qqm7oYYbv+vf05dpyL9m6atvzmnMpAUBH5u+LFvbdh2WJDW3tADAI1u+9k67AXZKqtf//o8O+YIOuF+e8Bk/drupqGxpvUL5Da/xYwEAAABgTVYr2P8eDAXZMwbauzU3t2ht9h4Nei1FY+IWKmvrPr0av0hnzl3U8Oi0gI9Nmr9euw9+LolbHADomqKSpnb/RVpQeO9es7sL2l9BG5vIbQ66glscAAAAAOiM1WKg/WPFQNtB2R98rAWZW1XXcFN/GThRjU0e//sGj03RmXMXJTHQAui6krJGZW93a90Wj4pKAl8IrLyiUckZgfepTVviVXmF+eO2GwZaAAAAAJ2xWm3/O3DfIV9IGGjtHQPt3Y5+eVqvp6zS77ebdOVqlfqNTtK335dLkmKSlmvDtv3y+Zp18EixBoxJls/XLImBFkDPKStv0rotHi3O9GjdFg/jbBcx0AIAAADojNWK5EB7x+dTrz7RWrI2L+DxwuOnNSVtTTj+dR6pcxcua9BrKV363LhZq3XgP1+F+Yh6Pgbau3nv+DR7yWY9NSRO/3gpUR/uO+p/X0VltaISl+rpofEaNXG+yi787H+f6RMIAODhGGgBAAAAdMZqRXqg/fOACfrHS4kq/7nC/7ipgfaOz6e6hptd+twbt27L7bHflcQMtN3M9AkEAPBwDLQAAAAAOmO1Ij3Q/mnABO3c/5kmJK/0P37/QNtw43clzc/S4LGpGjZutjZs2+//uKeGxGnHvqOKm7VaQ8fN1qbcA0G/z/lLv+qlmLlaueFDRSUu1fCoOTpx+nslzn1bL/47XW+seV9S4BW0RV+f04jxaRo8NkXDo+boixPfPvTx+6+gfdhxvbu9QP1emaGRsRnaeeCY+r0yo0s/u3DFQNvNTJ9AAAAPx0ALAAAAoDNWK9ID7X8/9281N7fopZi5Olp0RlLgQLtgVY7mLt+ilpYW3bx1W4PHpuj4yVJJ0jPDJ+vtLfmSpJq6G3q8X4xuN7rbfZ+Ll3/Tf/1zvP91nVIWbdDw6DR5PF65PV49Ofh1Vdc2BAy0w6PTdLr0R0nShfIrylix5aGP3z/QdnRcly5X6KkhcXLV1Mvj8WrizJVdvqVCuGKg7WamTyAA7KOwyK2E1Nb/0kye1/6FwdAzGGgBAAAAdMZqRXqgfazveEnSqTPnNXhsirzeOwEDbd9R0/X9jz/7P+etzbu1bP0HklqH0POXfvW/7+mh8frtmqvd97l4+Tc9M3yy/+212Xu0cPU2/9uDx6boh4u/BAy0MUnLtXD1Nl25WhXwtTp6/MGBNthx7dh3VFPS1/of//SLbxho7Z7pEwgAeygrb/L/F2abhFSvysoZaXsaAy0AAACAzlgtUwOtJCXOfVvvbi8IGGgf7x+ra9dr/B+T8+EnSl28UVLrEPprxXX/+9rezt3zqZ4ZPlnPDJ+s3D2f6uLl3wJuJbD+vb1akbXD//aQf83SuQuXAwba6toGLX7rffUZOU3Do+bo+MnvHvr4gwNtsOPalHtAc5dv8T/+3fflDLR2z/QJBIA95Oa72w20sYleFRQy0PY0BloAAAAAnbFaJgfa36651HvEFO08cMw/0PYbnaQfLv7i/5i3Nu/W8vuuoA02hN5udKu6tkHVtQ263eju0kB7f0e/PK2/Pj9JPl9zh4+HMtDm5R/R9Hnr/I8XHj/NQGv3TJ9AANjD7oLgA21hkdv4sTkdAy0AAACAzlgtkwOt1DrADnotxT/QLn7rfc1b+Z6k1hcMGzAmWSdOfy+p4yH0wR51oG1s8mhM3EJVumolSVeuVumpIXH6/bY76OPNzS0hDbSlP/ykv49IUF3DTXm9dzQpNZOB1u6ZPoEAsIfyikYlpASOs8kZHpVXmD82p2OgBQAAANAZq2V6oL3d2KQ+I6f5B9obt25r5qJ3NORfszRs3GzlfPiJ/2N7aqCVpL2Hjmvw2FQNGJOs4VFzdOR4yUMfD2WglaQVWTvUd9R0vRq/SB98VKjBYxlobZ3pEwgA+ygpa9TKLLfSlni1MsvN/WcjhIEWAAAAQGesVrC/gRkKCq3m5hb/P586c16jX59v7mDEQNvtTJ9AAAAPx0ALAAAAoDNWi4G256qtv6knB7+uS5cr1NLSornLt2jJ2lyjx8RA281Mn0AAAA/HQAsAAACgM/THauf+z9R/TLL6jU5Swpw1qmu4afR4GGi7mekTCADg4RhoAQAAAHSGyGRGBtpnhk8OmdUzfQIBYF3lFY0qKmniXrOGMdACAAAA6AyRyYwMtIXHT4fM6pk+gQCwpoLCJiWk3rsPUPZ2d7e+XnlFo9Zt8Sh9qVerstwqKTP/72gXDLQAAAAAOkNkMm5x0M1Mn0AAWE9ZeeA426awqOsjbdqSwK+VkOrlytwQMdACAAAA6AyRybjFQTczfQIBYD1FJU1BX00zNz/0gXZ3gVvJ8zxKSPXqzTWebn+9PzIGWgAAAACdsVr1o3t3CdkzbnHQzUyfQABYT0cD7VubPMrL7/z2BLsL3IGfO7X91wrHbRP+KBhoAQAAAHTGajHQ/rGy9C0O4mevNn0InWb6BALAmhZnBl71OmGaVzEhXv364OfGdDDSFpVwi4NQMNACAAAA6IzVahtcm3Zmh4SB1t4ZH2jdHq+27PhYMxZkaUraGr8xkxbo7yMSTB9ep5k+gQCwrt0Fbq3McmvpWk/AONumoytpHxxo20bamKn3rqiNmdrx5yMQAy0AAACAzlgtUwPt2MmL9eK/0wMeO3/pVw16LUWSNCVtjQ7856tufx8KzPhAm74sW4PHpuqNNe/rLwMn6s112/Vq/CKNjM3Q+Uu/mj68TjN9AgFgfbn57qC3KFj9TvvBsKy8SWs2Bx9oH3ysoJAraEPBQAsAAACgM1bLxEB76XKFJqWuUvzs1Tpbdsn/OANtz2d8oP37iARdq6qVJD374lT/4+vf26vsDz42dVghZ/oEAsD62t1T9q64md6AjysovHfv2pipXr0+3avJKV4tXfNoV+AiEAMtAAAAgM5YLRMD7Yp3dmjvoeMqKDyhBZlb/Y8z0PZ8xgfaJwZNlNd7R5LUe8QU3fH5JEm/325S31HTTR5aSJk+gQCwh4nT218Rm5ASONAmpLQfYXcXtN6rdmVW4MjLC4SFjoEWAAAAQGesVqQHWp+vWQNfnalbvzeqscmjfqOT5PF4JTHQRiLjA+2r8Yu0etMueTxevRq/SB998qUkqfznCj01JM7w0XWe6RMIAHvIzXe33jv2vtsV3D+yFpU0Bb3KdnHmvVGxsMit3Hw3V84+IgZaAAAAAJ2xWpEeaL848a1mLMjyvz17yWb95/NvJDHQRiLjA+3Zskv6x0uJqmu4qaNfntZ/P/dvPfviVP3PczF6Y837pg+v00yfQADYR26+WwkprVfOZm93q7zi3vvKKxqDDrS5+Vwp210MtAAAAAA6Y7UiPdAmzV+vJwZN1FND4vTUkDg9MWiiJs95SxIDbSQyPtBKUnNzi/+fL12u0N5Dx3XqzPmAj/nxp98ifVghZfoEAsA5HrxXbXKGJ2DERdcw0AIAAADojNWK5EB749Zt9R4xxX8LUkm64/Pp2Renqrb+JgNtBLLEQBtKVr3dgekTCABnKSlrvdK2oLCJcTZMGGgBAAAAdMZqRXKg3bHvaMDtDdqavWSzcvd8ykAbgRhou5npEwgA4OEYaAEAAAB0xmpFcqAdE7dQHxeebPd44fHTGjVxPgNtBGKg7WamTyAAgIdjoAUAAADQGavVNrg+KrJnDLTdzPQJBADwcAy0AICQXalS9YZM1aZNVm3aZFUWF5s/JgBARFgtBto/Vgy0d2tpadFbm3dr8NgUDR6bovRl2Wps8kiSrlytUvS0N/W3ofEaGZuh06UX/Z9n+gQCwP6KSppUVt5k/DicioEWABCq2vT4dv9Dt/JsqfHjAgD0PCKTMdDe7fCxUxo1cb4amzzy+Zo1JX2tNmzbL0mKSlyqrbsOy+dr1vGTpeozcpq8d3ySGGgBtJeb71b6Uq/eyPRoz8fuDj+uqKRJCalexSa2yt7e8cderWlUWXmTVmW59UamR6uy3Iy6IWKgBQCE4tqFy0GvRKrOXGj82KykqmCfatImO57rnVXGf9YAIovIZAy0d8vauk9vrHnf/3Ze/hHNWJClmrobenLwJN3x+fzve3nCPJ06c14SAy2AQLn5bv/g2mZ3QfDhNSHF2+5jCwqDj67lFY0BY25solcJqV6VV5j/d7Y6BloAQCgqz5YGHWhrFs80fmxW4srZ0OW/dmsnNWnxxn/WACKLyGS2GWiffXFqj379b769oGHjZquu4abcHq8mpa7SnoIvdLr0ol4Ynx7wsTMWZGnngWOSGGgBBAo2usYkepW+1Kuiknvja1FJU7uPi030amXWvTF3d4Fbeflu7fnYrYLC4B+/88DDr7oFA22baxcuq+rgPl0/WqirV6qMHw8AWFHdpJfaDXXXC48YPy4rufbjZV0vPhEx1ZkL7l7JvCCi37fy23PGf9YAIovIZMYG2js+X0gi2cLV2/R4vxg9MWiioqe9Ka/3jr765pzGTFoQ8HHpy7K1bddhSVL1DTd6QA1gU8FG1Nipd694neXVxV88qrnh1sVfPEE/NmdH6/uXrA58PCk9yNdN9CpmqldL3vLqtyqPam4imB9+av1ZzV5k/lhMqf36pOqjB90bHOJfVs1Pvxg/LgCwnLLvVT8jyn++rMvdZP6Y/qju/tmq9v2Nqh/dW7XvbzT+5zwAkWFqhyAymbGBtlef6JBEqg/3HdXEmSt1u9Etn69ZS9bmad7K93Tm3EUNj04L+Nik+eu1++DnkiS3x4ce0ATY1Kr1d4KPtHd9XHjH/7FrNwW+b0qqVxWVPpV+7wt6FW5ccvvhN+buP+ftumP899aqfvmt9eeZtthr/FhMuRE/st0VYTffTDV+XFbSVFGh33dkO97twgLjP2sACEXbn5dufbBZ9aN769YHm43/OQ9AZJg671itrt6iheyZsYF2eNQc/W1ovKbPW6dPPjuln369FlSkmpK2RrsOHvO/fbbskga9lqK6hpv6y8CJamzy+N83eGyKzpy7KIlbHAAItOxtt380vX9c7eh+tLsL3FqZ5Vb29nsv+rW7IPiVuG9t9Ny7hcLUe1fmxiZ6lTzv0f/6/rc/NGnRKo/jZSxrvVo5bobX+LFEwor17W97EewPbrVJUcZ/X6zkevEJ4/c75J6KANBe2z1vXTkbjB8LAGezWgy0f6yM3oP2/KVfteKdHeo7arpe/He6cj78RK6aeiPH8tbm3Zo6d63/tgpr3t2jKWlrJEkxScu1Ydt++XzNOnikWAPGJMvna5bEQAsg0OJMz71RdmrgwJqQ4vWPsA9TUtYYdKBtu4dtsPvcLs589IH25Nng97WFvU2Z1f65UBc1sP1Qx4veBLj242W5cjZETNs9FesmvRTR71tVsM/4zxoAHgUDLYBIsVptf25v2pkdEgZae2eJFwlrbm7RyTM/KGPFFj0zfLImJK/UwU+LA65a7el+v92kWUs2adBrKRr0Woompa7StapaSVJFZbWiEpfq6aHxGjVxvsou/Oz/PNMnEADWcv+LecUk3rt6dnGmJ+BFwjqTmx94FW32dneH74tN9D7S127TNtBOnePRumw3bO6tTZ4OB9rrhUcCxtm6qIGqPFtq/Pflj6ztil2uaAWAh2OgBRApVivSA21zc4tyPvxEQ/41S4/3i9GzL05Vxootqqm70ennnr/0qwa9ltLl731/ew8d9//zE4MmqtJVG5ava/UsMdDen8fj1d5Dx/XcqCQ9Ofh104fTaaZPIACsJ3v7vQE1bYlXJWVd+zolZY0qKmkK+vmFRa23Rli35dGG3/udONM60CbN9Sh3TxNs7r0dTXcHWm/Q/7yvXbgs19aNqtqZp6tXqoz/nvzRMdACQGgYaAFEitWK9EC7ZG2uBo9NVfE3Zbr1e6PKf65Q4ty3NTw6zf+3zTsqXANtS0uLnn1xqv/tmrobam5u6fbXtUOWGWib3B59XHhScbNW68nBrytp/nod++qs6cPqNNMnEADoKgZaZ+lsoIW1MNACQGgYaAFEitWK5EB7rapW//3cv3XpckXA4z5fs57/v1TtPvi5JOmpIXHase+o4mat1tBxs7Up94CkewPtsa/Oanh0WsDXeHnCPB398nTAY17vHaW+sVEDX52p/mOSlbJog5rcHk1JX6tefaI1PDpN16pqA66gfXd7gfq9MkMjYzO088Ax9XtlhqTW15Ram71HCXPWaOCrM5W1dZ/e3V6gCckrNWzcbP3402+SpOraBk2cuVKDXktR/zHJyt3zaZd+Vj2V0YG2ublFJ05/r7Q339Vfn5+k1+IXaef+z3Tj1m2Th/VImT6BAEBXMdA6CwOtvTDQAkBoGGgBRIrViuRAe/BIcbthta212Xs0LWOdJOmZ4ZP19pZ8Sa1Xtz7eL0a3G93+gdZ7x6dnhk/WhfIrklqH36eGxMnj8QZ8zcPHvlZs8gq1tLSoublFK7J26HTpRdU13NTj/WP9H9c20F66XKGnhsTJVVMvj8frH1olaVrGOk1KXaWWlhb98tt1PdZ3vD765EtJ0jvb9mlB5lZJrVcIZ6zYIkm6crVKj/ePVVW1mdfBCpaxgXblhg/1z5enafDYFL29JV+/Vlw3dSjdyvQJBAC6ioHWWRho7YWBFgBCw0ALIFKsViQH2h37jiomaXmH74ue9qak1oH2/KVf/e97emi8frvmCrjFwYJVOVq9aZckKXfPp5q9ZHO7r3m69Ef98+Vp+rz4W7nvG287Gmh37DuqKelr/Y9/+sU3AQNtXv4RSa1X/PbqE+2/b+7BT4uVMGeN/31e7x3/1xg8NlVnzl0M9UfU4xkbaHv1iVbvEVP0yusLNDI2Qy/FzA3K6pk+gQBAVzHQOgsDrb0w0AJAaBhoAUSK1YrkQHvsq7MaNm520Pe9vSVfSfOzJLUOtPdfYNn29v0D7ddnz/tvPzB++pv64sS3Qb/u4WOnFJW4VH99fpLSl2XrdqO7w4F2U+4BzV2+xf/4d9+XBwy097+wWK8+0brd2CRJ/lupSq23YYifvVqjJs7XmLiF+vOACTpd+uOj/aB6MGMD7ceFJ0Ni9UyfQACgqxhonYWB1l4YaAEgNAy0ACLFakVyoK2ubdBfBk4MuDpWar016bBxs7XvcJGk0AbalpYW9R01Xce+OqveI6bIe+fhLzBW33BLMUnLtWXHxx0OtHn5RzR93jr/44XHTz/yQDtifFrAxw0Yk8xA66RMn0AAoKsYaJ2FgdZeGGgBIDQMtAAixWpFcqCVpHVb9mrQayk6dea83B6vrrvqNGNBlkZNnK/m5hZJoQ20krQia4f6vTIj4KrX+8vd86nWv7dXLS0tamlpUdqb7+q9HYd089ZtPdZ3vG43uiXdG2hLf/hJfx+RoLqGm/J672hSauYjD7TPDJ+ssgs/S5IKCgW6n74AACAASURBVE/or89P0vGTpV3+eYU7yw60N27d9r9Sm5UzfQIBgK5ioHUWBlp7YaAFgNAw0AKIFKsV6YG2paVFOTs/0fP/l6rH+8Xof1+YoowVW1TfcMv/MaEOtN//+LN69YnWV9+cC/q9autvKm7Waj03Kkn9xyQraf56/6gam7xCTw+N13ffl/sHWql19O07arpejV+kDz4q1OCxjzbQfvBRofqOmq6RsRnK+fATvbV5t/73hSm6Wlnd5Z9ZOLPsQLtgVY569Yk2fRidZvoEAgBdxUDrLAy09sJACwChYaAFEClWq21wfVRWyFVTrz4jp8nnaw7b12y7ileSTp05r9Gvzw/b17ZClh1of7vm0rffl5s+jE4zfQIBgK5ioHUWBlp7YaAFgNAw0AKIFKtl14G2paVF6cuytWHb/rB9zdr6m3py8Ou6dLlCLS0tmrt8i5aszQ3b17dClh1o7ZLpEwgAdBUDrbMw0NoLAy0AhIaBFkCkUPerrm1Qn5HTNCVtjZrcnrB+7Z37P1P/McnqNzpJCXPWqK7hZli/vumMDrT7/1MUcJVs8TdlevHf6er3ygwtW/9BWC+F7qlMn0AAOFtZeZPKypt65Gsz0DoLA629MNACQGgYaAFECpHJjA20O/Yd1Z8HTNDRojOSpIabv+upIXGatWSTcvd8qmdfnKrNeQdNHV7ImT6BAHCm8opGvZHpUWyiV7GJXqUv9YZ9qGWgdRYGWnthoAWA0DDQAogUIpMZG2iHR83R/v8U+d/euf8zDRs3Wy0trTf9PXzslIZHzTF1eCFn+gQCwJnWbbk3zrZ5I9MT1u/BQOssDLT2wkALAKFhoAUQKUQmMzbQ/s9zMaqubfC/nbJog1Zt2Ol/+2pltR7vH2vi0B4p0ycQAM6UnNF+oI1NDO/wxkDrLOEYaCuLi+XaulFVu/J09UqV8d8DJ2OgBYDQMNACiBQikxkbaJ8YNFGumnr/28+NSvLf7kCSrlyt0pODXzdxaI+U6RMIAGdanNl+oE1IYaBFzw20VQc/CnwF2KhBunbhsvHfBadioAWA0DDQAogUqxXwZ/NHQPbM2EA7MjZDh46elCSdOnNefxowQb/fbvK//5PPuMUBgD+uwiJ3u4F2d4E7rN+DgdZZujvQ1kUNbPeHu+rMhcZ/F5yKgRYAQsNACyBSrBYD7R8rYwPtroPH9NfnJylp/no9M2yylq3/wP++ku9+VL/RSdqwbb+pwws50ycQAM7x4IuAFZU0aWWWWyuz3CosCu84e7WGgdZpujPQXrtwOegf7mrTGQ97CgMtAISGgRZApFittj+TN+3MDgkDrb0zNtBK0t5DxzVn6Wa9t+OQvN47/sfTl2Vr1pJN8t7xGTy60DJ9AgFgfyVljUqed++WBnn54R9jg2GgdZYeuYJ2wyrjvx9OxUALAKFhoAUQKVbL1EA7dvJivfjv9IDHzl/6VYNeS5EkTUlbowP/+eqRvuZTQ+JU6art9rE9rL2Hjvv/+YlBE3v8+4U7owNtR/l8zaYPIeRMn0AA2EthkVvrtniUl+/2XzEb7AXBCgqbevxYGGidpbsD7fXCIwEjbW1SFC8U1oMYaAEgNAy0ACLFapkYaC9drtCk1FWKn71aZ8su+R+3+kDb0tKiZ1+c6n+7pu6Gmptbeuz79UTGB9qyCz/rrc27lbzwHaUu3qgN2/brl9+umz6skDN9AgFgH9nbA+8rm5Dq1eHP299rNjbRq5VZPX8VLQOts3R3oL1a03qrg6qDH6myuNj474vTMdACQGgYaAFEitUyMdCueGeH9h46roLCE1qQudX/eCgD7aTUTK3c8KEmJK/U6NfnK31Ztv9vxrcNtN9+X64h/5rl/5z73y76+pxGjE/T4LEpGh41R1+c+Lbd9/B67yj1jY0a+OpM9R+TrJRFG9Tk9mhK+lr16hOt4dFpulZVG3AF7bvbC9TvlRkaGZuhnQeOqd8rM/z/Hmuz9yhhzhoNfHWmsrbu07vbCzQheaWGjZutH3/6TZJUXdugiTNXatBrKeo/Jlm5ez7t1s+4o4wOtJkbd6pXn2i9MD5dMxZkafq8deo/JlmP9R2vzXkHTR5ayJk+gQCwh/KKxqBD7KoN7a+ejU30Knt76xW2hV+5VVTSM1fTMtA6SzgG2oepPFuqmjdSVDsjStWrF3J1bTcx0AI2dqVKrq0b5dq6kf9DKwIYaAFEitWK9EDr8zVr4Kszdev3RjU2edRvdJI8Hq+k0AbaKWlrNHbyYt3x+dTc3KLX4hepoPCEpNAG2uHRaTpd+qMk6UL5FWWs2NLuexw+9rVik1eopaVFzc0tWpG1Q6dLL6qu4aYe7x/r/7i2gfbS5Qo9NSROrpp6eTxe/9AqSdMy1mlS6iq1tLTol9+u67G+4/XRJ19Kkt7Zts8/UC9Zm+s/litXq/R4/1hVVdd3+efcUcYG2k+/+EaP94vRsa/OBjze3NyiHfuO6r/+OV5HjpcYOrrQM30CAWAPeflNQYfYxZkercxqfxXtrgK3ElLvvf1GpkflFeE9JgZaZ+nJgfbahcuqjxoU+AJiM6KM/17ZGQMtYE/BzodVBz8yflxOxkALIFKsVqQH2i9OfKsZC7L8b89esln/+fwbSaEPtNt2Hfa//faWfC1avU1SaANtTNJyLVy9TVeuVnV4jKdLf9Q/X56mz4u/lfvueCypw4F2x76jmpK+1v/4p198EzDQ5uUfkdQ6TvfqE62auhuSpIOfFithzhr/++5/3azBY1N15tzFDo+xqxkbaGOSlmv5+g86fP+y9R/oX1PeiOARdS3TJxAA1ue/tcHU9gPt7oLWWxnk5rv9Y21JWaMSUjr+2HBhoHWWnhxoXVs3tnsBsfrRvXvkyrG24RLOwhANp6jOXBj0OW76uJyMgRZApFittv+OidRAmzR/vZ4YNFFPDYnTU0Pi9MSgiZo85y1JoQ+0979Q13s7DmnmonckhTbQVtc2aPFb76vPyGkaHjVHx09+F/Q4Dx87pajEpfrr85OUvixbtxvdHQ60m3IPaO7ye1fifvd9ecBAe//x9uoTrduNTZKkjwtPKm7Wav+/e/zs1Ro1cb7GxC3UnwdM8F/pG86MDbR/Gxqvku86/hc6f+lX/WXgxAgeUdcyfQIBYG1l5fddOTs1cKRduNKjopKmdrcwKCrp+GrbcB4bA62zhHugdW3d6L9KrG7SyKCDxPXCI2H/nWGgdSYGWjhFbXp80Of4tQuXjR+bUzHQAogUq9X23zGRGGhv3Lqt3iOmBFwpesfn07MvTlVt/c2QB9r3dhzyv7160y4tfut9SfcG2tLzlzV4bKr/Y4q+Phcw2LZ19MvT+uvzk+TzNXd4zPUNtxSTtFxbdnzc4UCbl39E0+et8z9eePz0Iw+0I8anBXzcgDHJzhpoe/WJ1tXK6g7fX+mqVa8+0ZE7oC5m+gQCwNoeHFtj7g61c5cF3sIgfalXZeWtQ21H96vN3s4VtIjMQFu1My9wfBj193ZjRF3UwB65D23bQFs36SW5cjbA5mpWzWeghaME+xsFdVEDjR+XkzHQAogUqxXJgXbHvqMBtzdoa/aSzcrd82nIA+2YuIVqcnvU5PZoeHSaDh87JeneQFvpan0Br9uNbknSglU5GvKvWWps8mhM3EL/C3tduVqlp4bEqbm5JeB75O75VOvf26uWlha1tLQo7c139d6OQ7p567Ye6zve/3XbBtrSH37S30ckqK7hprzeO5qUmvnIA+0zwyer7MLPkqSCwhP66/OTdPxkaZd+zg/L6EDb9oMPFgMtACcorwh+u4L7x9k2K7PuDbC7CwLvS5uQ4uUetIjYQBv8CrG/qy5qgH88rTxb2iO/Mwy0zsJAC8e5UqXapKiAcbYn/jYB7mGgBRApViuSA+2YuIX6uPBku8cLj5/WqInzQx5oV274UK/GL1LfUdM1d/kW/xWwbQOtJL25brteGJ+uSamZytn5iZ7/v9YravceOq7BY1M1YEyyhkfNCfq6VLX1NxU3a7WeG5Wk/mOSlTR/vX9UjU1eoaeHxuu778v9A60krcjaob6jpuvV+EX64KNCDR77aAPtBx8Vqu+o6RoZm6GcDz/RW5t3639fmPLQi067ktGBNiZpueJmrQ4qJmk5Ay0ARygobAoYaYO9KFhsoldpSwKHtaKSJuXmu5Wb7w77OHu1hoHWaXp+oI3MPRYZaJ2FgRZOVVlcrOuFR7i1QQQw0AKIFKvV1VtLmaqj4dZ091+Fe+rMeY1+fb65g3lIxgbaBatyQmL1TJ9AANhDWXnrvWZLylrfDnZV7f1X0EYCA62zhHOgvV54pP09RBfPjMjzkoHWWRhoAXQXAy2ASLFaDLTdr7b+pp4c/LouXa5QS0uL5i7foiVrc00fVtCMDbRWK31Zth7vH3tPvxiNGJ8mqfXeF9HT3tTfhsZrZGyGTpde9H+e6RMIAHsqLGp/C4O28TZSGGidJdwvEna98Ihq0+NVN+klVW9Y1SP3mw36fRloHYWBFkB3MdACiBTqXlYcaCVp5/7P1H9MsvqNTlLCnDWqa7hp+pCCxkDbQWve3aOsrfskSVGJS7V112H5fM06frJUfUZOk/eOTxIDLYCuu/8WBm0vEBZJDLTOEu6BtlNXqlRZfELXjxaGdbxloHUWBloA3cVACyBSiExmbKAd8q9ZITHRlatVev7/UtXk9qim7oaeHDxJd3w+//tfnjBPp86cl8RAC8C+GGidJZIDbeXZUtXFjbz3IjlxI8P2omEMtM7CQAuguxhoAUQKkcmMDbTv7TgUEhOlvfmudu7/TJJ0uvSiXhifHvD+GQuytPPAMUkMtADsi4HWWSI50NYsntlj96hloHWW7gy0lWdLVb0hU9UbMlVZXGz8nAnADAZaAJFCZDJL3+LgamV1xL9npatWfUdNl9vjlSR99c05jZm0IOBj0pdla9uuw5Kkht+9AP6gbhhy8/adsPju+zuKTfRqRoZXO/fD7nL3tN7PeOrs8D1HOtLRCxKE5euf/rr168WNVEPeZtjdmkWqH91bDXMnP9Lz4Mbxz9o9v24c/6zHn9tAONw4/4Ma4l9ufe5HD+K529Wf490/9zTkbmr9WeZuMvZnL6cw/WdnwOqITGa5gdbj8erQ0ZOKTV6hXn2iI/7939txSAtXb/O/febcRQ2PTgv4mKT567X74OeSpFuNXgB/UDdt7rsfvPcNtB7YXO4ez72BtoefOw3JUe3Gs4bkqPB8/TP3D7SbYHdrFrY+PzImd/85Fv+y8fNmxF34QQ0ZCc73bqb5n3WY3KiuVUP0oPb/B8Ovvxo/NrtqyLs70OZtMn4sdmf6z86A1RGZzDID7YXyK1qyNk/PDJusvz4/SfNX5qj0h58ifhzjpi7RFye+9b9d13BTfxk4UY1NHv9jg8em6My5i5K4xQGArikscmtVVqvCInfYPz4U3OLAWSJ6D9ri4nbjQ7j+Cjq3OHCWrt7ioC5qYNCrtE2fuyOt7ffB6Zx0j+LrhUeC/ju6tm4M+/dq+6v/cBYn/T4AdkNkMqMD7a3fG7Vz/2d65fUFeqzveE2cuVL/81yMyn+5auyYnhw8SRUP3FohJmm5NmzbL5+vWQePFGvAmGT5fM2SGGgBPLrdBW7FJnoD7C7oeHQtLHq0jw8VA62zRHKgvVrTqGsXLsu1daNcWzfq2oXLYfu6DLTO0tWBtifvc2wn1664dL34RMS4duWpfnRv1U4fF9HvW/ntOeM/67CdwzoYaKt25oX9ezHQOhMDLWAOkcmMDbSzl2zWXwZO1Esxc5Xz4Seqrm2QJD0xaKJ+rbhu5Jh+v92kXn2i/fefbauislpRiUv19NB4jZo4X2UXfva/z/QJBID9JGd42g2uyfM8HX582hJvu49PSO3+CMdA6yyRHmh7CgOts3R1oL124bJqk+7d5qA2KSqs/0cAHv77x0DUDVeqVDfppYDBrS5qYI88f9sG2po5ccZ/12HufAkgfIhMZmyg7dUnWjMWZOni5d8CHjc50HYl0ycQAPaTkBJkcE3peFQLNujGJjLQgoEW1tfdwaGyuDhst89A6L9/DETdc+3CZdUsnqnapCjVLJ6pyrOlPfJ9XDkMtE7CQAuYR2QyYwPtN99eUOobG/XnARP8V9G6auoZaAE43rot7QfXdVs6voI22MevzOIWB2CghfUxONgLA20XXKlSzRsp9/56+hspunqlKiLf25XDQOsknC8B84hMZvxFwm7cuq28/CN6KWauHus7Xr36RGvHvqPyeOzxCnqmTyAA7Ke8olGLM++NroszPSqvCN/Hh4qB1lkYaGFFDA72wkD76KozF7a7h2h15sKIfG9XDgOtk3C+BMwjMpnxgfb+Ss9f1vyVOXpy8CQ9M2yylqzNM31InWb6BALA2srKm5S93a03Mj3a87G73fvKyptC/lrlFY2P9PGdYaB1FgZaWBGDg70w0D66uqiB7V/oKWpQRL63K4eB1kk4XwLmEZnMUgNtW7cb3cr/+Au9Fr/I9KF0mukTCADrKitvUkJq4K0JVt29NUFJWaPy8t3Ky3erpMzM8THQOgsDLayIwcFeGGgf3YMvCNZ2/orE93blMNA6CedLwDwik1lyoLVTpk8gAKwrN98d9MW99n/a1O6xopLwXRkbKgZaZ2GghRUxONgLA+2jq9qZ126grdqZF5Hv7cphoHUSzpeAeUQms+xAe+A/X2nu8i2mD6PTTJ9AAFhXsBf3ik30aua89o+lL438qMZA6ywMtLAiBgd7YaDtmqqDH6k2PV616fGqOvhRxL6vK4eB1kk4XwLmEZnMsgNtXv6nmjhzpenD6DTTJxAA1lVQ2P5K2YQUr2KCjLaxiQy0YKC9WsNA6zQMDvbCQGsvrhwGWifhfAmYR2Qyyw60dsn0CQSAtWVvdweMs0UlTVqZ1f7WByuz3BE/NgZaZ3HaQFv/2j9VN2kk7C52KIODjTDQ2gsDrbMw0ALmEZnMEgNtc3OLqmsbVFFZ3Y7VM30CAWB95RWNAfeYLSlrVHLGvdsfJGd4jLxQGAOtszhuoIWjMDjYAwOtvTDQOgsDLWAekcmMD7SffHZKzwyfrF59ooOyeqZPIADsqW20LSppUsn3TcrLd2vPx26VlUfuxcIYaJ3FaQNtXcww1ayaD5urnTeNwcFGGGjthYHWWRhoAfOITGZ8oH32xala8+4e/XylUpWu2nasnukTCAB7KywKvN1BQqo3YlfTMtA6i+MGWu5B6wgMDvbCQGsvrhwGWifhfAmYR2Qy4wPtnwZM0O1Gt+nD6HKmTyAA7O3+Wx0Eux9tSVmj8vLdyt7uDrhNQjgw0DoLAy2siMHBXhho7cWVw0DrJJwvAfOITGZ8oJ2WsU5FX58zfRhdzvQJBIC9PTjOtr2Y2NWa1lsgPPi+gsLwjbQMtM7CQAsrYnCwFwZae3HlMNA6CedLwDwikxkZaN/bcchvw7b96j8mWQsyt2rLjo8D3vfejkMmDu+RMn0CAWBvaUvaD7RtV9Auzmx/dW1CavjGNwZaZ2GghRUxONgLA629uHIYaJ2E8yVgHpHJjAy0Y+IWhszqmT6BALC3krJGJaTcG2CTMzz+FwoLNt7GJjLQgoEW9sHgYC8MtD3n2oXLunbhcli/piuHgdZJOF8C5hGZzPgtDsp/uRr0cbfHq5Lvfozw0Tx6pk8gAOyvvKJRBYVNKixyq7zi3uPrtrS/gjZtCQMtGGhhHwwO9sJAG37XLlxW7Ywo1Y/urfrRvVWbNllXr1SF5Wu7chhonYTzJWAekcmMD7RPDJoY9PG6hpv6y8Dg77NSpk8gAJyrvCLwKtrkDI9KysL39RlonYWBFlbE4GAvDLThV7N4pn+cbVOduTAsX9uVw0DrJJwvAfOITGZsoN154JhGTZyv//rneI2aOL+df748TYNeSzF1eCFn+gQCwPmKSppUVBK+Fwdrw0DrLAy0sKJIDQ5VBz+Sa+tGVRYXG38O2xkD7aOpLC5WZfGJh37Mg+Ns/ejeqosbGZbv78phoHUSBlrAPCKTGRtoG5s8+uqbc3q8X4y27Trczs4Dx3StqtbU4YWc6RMIAHQVA62zMNDCiiIxONQmRQVenbg6PFcn/hEx0IbmwdsW1MWN7PD+snVRA9sNtLXp4fn5unJaB9q6qIGqmzQSdhc7lN8/wDAikxm/xUHxN2WmD6FbmT6BAEBXMdA6SzgGWtfWjQH3SQz3C9qEgoHWWXp6oK3amRf0CsXKs6XGz7F2xEAbmmC3LahZPDPoxwZ7jl4vPBKW42gbaOEs/P4B5hCZzMhAm5d/RNdddf5/fhirZ/oEAgBdxUDrLN0daKsOftTufyTWzoiK+POSgdZZenqgvf//VOiJAeyPhoE2NMGuiq0f3bvjn2vhEdUsnqmaxTPDehuOtoG2dvo41ayaD5urnTeN3z/AMCKTGRloX4qZq3MXLvv/+WGsnukTCAB0FQOts3R3oK1Njw86OET6KloGWmfp8Stog/wfC/WjuYK2u79/DEQP9+BtNepH91ZtUuT/D622gZZ70DoD96AFzCMymfFbHJw4/b08Hq/pw+hypk8gANBVDLTO0t2BNthf2a0f3VtXr1RF9HnJQOsskRgcqjMXBjxnXVs3Gj+/2hUDbYg/p8Ijlrhq25XDQOskDLSAeUQmMz7QPjNssv48YIJik1fo3e0FKrvws5qbW0wfVsiZPoEAQFcx0DpLdwfayuLi9vfB6+Ceij2JgdZZIjU4VBYXq2pnHlfOhun3j4Goc5VnS1W9YZWqN6wK620LHoUrh4HWSRhoAfOITGZ8oG1padHFy79px76jmrnoHfUdNV3PDJusaRnrtGPfUdOH12mmTyAA0FUMtM4SjhcJu154RLXp8apNilL1hlURv3r2ag0DrdMwONgLA629uHIYaJ2E8yVgHpHJjA+0D3a7sUm7D36uYeNmq1efaNOH02mmTyAA0FUMtM4SjoHWChhonYXBwV4YaO3FlcNA6yScLwHziExmfKCtqbuhT7/4Rm+u267Rr8/XM8MmKzZ5hda/t1dFX58zfXidZvoEAgBdxUDrLAy0sCIGB3thoLUXVw4DrZNwvgTMIzKZ8YG2V59oDRs3WzkffqIL5Vdsdf9ZiYEWgH0x0DoLAy2siMHBXhho7cWVw0DrJJwvAfOITGZ8oH13e4Empa7SM8Mna0zcQq3I2qGjX55WfcOtiB/LyTM/aMi/ZunJwa9rUmqmbty6LUm6crVK0dPe1N+GxmtkbIZOl170f47pEwgAdBUDrbMw0MKKGBzshYHWXlw5DLROwvkSMI/IZMYH2rZ8vmadu3BZOTs/0eQ5b+mZ4ZM1PGpOxL5/w83f9eyLU3XqzHm5PV4tWZurD+++SFlU4lJt3XVYPl+zjp8sVZ+R0+S945PEQAvAvhhonYWBFlbE4GAvDLT24sphoHUSzpeAeUQms8xAe7vRrZNnftCGbfv1esoq9R4xRcPGzY7Y99976LhmLnqn3eM1dTf05OBJuuPz+R97ecI8nTpzXhIDLQD7YqB1FgZaWBGDg70w0NqLK4eB1kk4XwLmEZnM+EC7ZG2eRr8+X//93L81YEyy5i7fooNHilVd2xDR41j6dp4Wrd6mmBnL1X9MsmYv2axbvzfqdOlFvTA+PeBjZyzI0s4DxyQx0AKwLwZaZ2GghRUxONgLA629uHIYaJ2E8yVgHpHJjA+0qW9sVP7HX+hqZbXR45izdLMGj03RtapauT1eTctYpyVrc/XVN+c0ZtKCgI9NX5atbbsOS5Ia3T4AsKWy83cUm+hV8jyvdh+A3W3P9yo20avE2V7jz63uuH32G9WP7q2G+JG6uX0z7G7tItWP7q0bGZONP7cQ+u8f/3nZw83tm1vPl3Pjzf+ug/Ml4ABEJjM+0FqlJWvz9Oa67f63S777USPGp+nMuYsaHp0W8LFJ89dr98HPJUl1tzwAYEtnznkUm+jVjAyvduzzwOa27W79z3PqLK/x51Z31H9zSvWje6s+bqTqcjfB5urfWtj6n+fceOPPLXTO//vHf172kLup9W8cpMcb/11H93G+BMwjMpllB9q3t+Rr0GspEft+23Yd1pylm/1vl3z3o0bGZqiu4ab+MnCiGpvu/bIOHpuiM+cuSuIWBwDsi1scOAu3OIAV8Vd27YVbHNiLK4dbHDgJ50vAPCKTWXag/fJUqTbnHYzY96uubdAzwyfrQvkVee/4lDQ/Syve2SFJiklarg3b9svna9bBI8UaMCZZPl+zJAZaAPbFQOssDLSwIgYHe2GgtRdXDgOtk3C+BMwjMpnxgfZ/X5ii2vqbpg9DkvR58bfqNzpJvUdM0cxF7+j3202SpIrKakUlLtXTQ+M1auJ8lV342f85pk8gAKyvsMithFTv3fu9elRSZv6YrtYw0DoNAy2siMHBXhho7cWVw0DrJJwvAfOITGZ8oE2Ys0bb9xaaPowuZ/oEAsDayspbR7P7JaR6VV7xaF+npKzxkT+nMwy0zsJACyticLAXBlp7ceUw0DoJ50vAPCKTGR9o5yzdrGdfnKrBY1M0IXml4matDmD1TJ9AAFhbbr673UAbm+hVYZE7pM8vKWtU8jyP//Oyt4f2eaFgoHUWBlpYEYODvTDQ2osrh4HWSThfAuYRmcz4QLts/QfK3LizQ1bP9AkEgLWFMtDuLnBrVZZbefnudlfJJmd42n1uQWFTWI6NgdZZGGhhRQwO9sJAay+uHAZaJ+F8CZhHZDLjA63dM30CAWBtZeVNSkgJHFiTMzz+IXZllrvD2x+UlDUGHXdXZoXnKloGWmdhoIUVMTjYCwOtvbhyGGidhPMlYB6RySwx0P5aUaX17+3V7CWbJUnNzS36+ux5w0cVWqZPIACsr6SsdYhNW9I6rpaVN/kfDzbA5ua3DrDB7l8bm+jVui2esBwXA62zMNDCihgc7IWB1l5cOQy0TsL5EjCPyGTGjspqPwAAIABJREFUB9qvvjmnx/vHauLMlerVJ1qSdLWyWk8NidP+/xSZPbgQMn0CAWBfRSXBB9js7a23OtjzsVtJQW5xUFIWnu/PQOssDLSwIgYHe2GgtRdXDgOtk3C+BMwjMpnxgXbYuNn67KszkuQfaCXp1JnzGjE+zdBRhZ7pEwgA+wp2+4PYRK/2ftKk9KX33o6Z6lVCSuuVs+EaZ6/WMNA6DQMtrIjBwV4YaO3FlcNA6yScLwHziExmfKD904AJ8vmaJQUOtN47Pv15wARDRxV6pk8gAOytoDBwpM3e7tbuguAvLFZUEp4XB2vDQOssDLSwIqcMDtd+vKzrJ044nmt3nupH91Zt0jjjxxIJld+eM/7c6g5XDgOtkzjlfAnYGZHJjA+0g8em6PylXyUFDrSffXVG/cckGzqq0DN9AgFgf+UVrbc7aLs3bW5+8IG2sCg8Lw7WhoHWWRhoYUVOGRxcOa1DGJzFKc9LBlpncMr5ErAzIpMZH2h3HTymZ1+cqrXZe9SrT7Te3/0fpS/L1p8GTND2vYWmD6/TTJ9AADhPYVHwgbZtwA0XBlpnYaCFFTllcHDltA5hdeMGqG7SS7C7mGGOel4y0DqDU86XgJ0Rmcz4QCtJBYUn9O/py9TvlRkaOm624mev1vGT35k+rJAyfQIBYB8lZY1Kntf6ol8JqV4VFHY8uGZvDxxpH/axXcVA6ywMtLAipwwOrhyGMCfheQkrcsrzErAzIpNZYqC1c6ZPIADsobyiUQmp7a+KTZnf8b1ly8qbAm59EG4MtM7CQAsrcsrg4MphCHMSnpewIqc8LwE7IzKZ8YHW7fFq/Xt7NTI2Q//7whT946VEjX59vjblHpD3js/04XWa6RMIAHvo6LYFMXevpu2pEfZhTnzbOujFz/Ro0So3bG7+CvfdgdZj/PneHQy0zuKUwcGVwxDmJDwvYUVOeV4CdkZkMuMDbfLCdzRifJo25x3UvsNF2nvouNZt2at+o5M0a8km04fXaaZPIADsoaikqcOBNjbRq90F914ArO3K2ZKynj2mtito4SxcQQsrccrg4MphCHMSnpewIqc8LwE7IzKZ8YH2b0Pjdbuxqd3jv1ZU6U8DJhg4okfL9AkEgH2kLXlgTJvafqAtKAwcTddt6bmrIbmC1lm4ghZWFO7BofJsqVxbN6p6Q6Yqz5ZG7HnpymEIcxKnDGE8L53FKc9LwM6ITGZ8oB0enRb08duNTeo3OinCR/PomT6BALCP8opGrdns0YRprcNs2zibkNJ6i4Oy8uBXtBYUtl5Nu+djd4f3q+0K7kHrLNyDFlYUzsGhsrhY9aN7B7heeCQiz0tXDkOYkzhlCON56SxOeV4CdkZkMuMDbV7+p8rcuFP1Dbf8j1131SljxRZ99MmXBo8stEyfQADYT0lZo1ZmtV7tmLbk3ouEdXSf2qVrPQFvv5EZniskGWidhYEWVhTOwaE2Pb7dQFsXNzIiz0tXDkOYkzhlCON56SxOeV4CdkZkMuMDbf8xyfqf52LUq0+0/vr8JP15wAT16hOtPw2YoL+PSNAzwyf7WTHTJxAAzlFS1hh0oI2Z2v6x++9Z21UMtM7CQAsrCufgUBc1sN1AWz+6d0Sel64chjAnccoQxvPSWZzyvATsjMhkxgfaw8e+VuHx0yGxYqZPIACcZd2WwKtlZ86/dyuEcN+bloHWWRhoYUXhHBxqFs9sN87WLJ4ZkeelK4chzEmcMoTxvHQWpzwvATsjMpnxgbYtr/eOfrvmMn0Yj5zpEwgAayopa1T2dreytz/6fWMLCpuUvd2t3QVulXwf/L60XEELBlrYQTgHh2sXLqs2Kere7Q0mvRSxFwpz5TCEOYlThjCel87ilOclYGdEJjM+0DY2eZT25rv+2xxIUm39TY2f/qaqaxvMHlwImT6BALCeopL2o2pBYddf3Ct7e+C9adOWeFVe0f3jZKB1FgZaWFFPDA6VxcWqLC7W1StVEXteunIYwpzEKUMYz0tnccrzErAzIpMZH2jTl2Xr9ZRV+vb7cv9Ae7vRrVlLNil54TtmDy6ETJ9AAFjP4kxPu4E2IbV7o9mm9z1KzvBowUqPSsrCc5wMtM7CQAsrcsrg4MphCHMSnpewIqc8LwE7IzKZ8YH2qSFxqmu4KUn+gVaSbty6rf99YYqhowo90ycQANaTtqT9LQliE7s+mq3Mcrcbe8vKu35FbhsGWmdhoIUVOWVwcOUwhDkJz0tYkVOel4CdEZnM+ED7zLDJcnu8kgIH2tr6m3pi0ERDRxV6pk8gAKznwRf6arstQVe+VklZY9CxN3s796AFAy2szymDgyuHIcxJeF7CipzyvATsjMhkxgfaKWlrtPTtPDW5Pf6B9tr1Gk2e85biZq02e3AhZPoEAsB6Sr5vUnLGvTE1OaPrtyUIdj/b2ESv1m3xdPs4GWidhYEWVuSUwcGVwxDmJDwvYUVOeV4CdkZkMuMD7bWqWg0bN9v/ImFPD41Xrz7RGhO3UFcrq00fXqeZPoEAsJaCwnuDakyiV2+u6f6QmpDSfqDtzouOtWGgdRYGWlhRpAeHqoMfqT5qkOpH91Z91CBdLzwSlq/rymEIcxKnDGE8L53FKc9LwM6ITGZ8oJUkn69ZJd/9qL2HjuvQ0ZMqu/Cz6UMKOdMnEADWUVYe/GrX3QXdux1BSVmjkjM8Yb29wdUaBlqnYaD9/+3d+3uU9Z3/8f/H9rvsdt21LmtpqyBKUUGRrYdAEzCESBACURM5yUEpxBNGIkITJFQDRNRESyUurRsj1gA2REGMqBiImZzwQGYyJHl9f4gZGGbIaZJ53/dnns/relxXSQLc0jufta8d7oEXJXNwOHfydP8we7m0m3Xu5OmEf+1ACUOYS1wZwrgv3eLKfQn4GZFlnhloPzx6Qq+9/V7kYz/86I9vDusDBIB3XO1xBGM1qI72MQlXw0DrFgZaeFEyB4dAaXHsQDtroloq9yf+a5cwhLnElSGM+9ItrtyXgJ8RWWY+0H5zLqCbf79c/37z/MgzaJuaW3XdtCzVf/qF7cUNI+sDBIB3XO0NvRJ9Be14YaB1CwMtvCiZg0NLeVncgXYsHnMQKGEIc4krQxj3pVtcuS8BPyOyzHygnbP4CT27fZ96enojA60klVW8o7ScDUm7jvcO1+tnv56rCTdlRJRVHJQknTnbojmLn9Avp2VpZsYKHak/Ffl51gcIAG/ZvjsUNc7mrw+rscn+uuJhoHULAy28KKmDw5kWdaRNiRpnOzJn6OyZloR/7UAJQ5hLXBnCuC/d4sp9CfgZkWXmA+2/TZ6nUHdYkqIG2vDFHv3HLZlJu463qg/roZVb4n4uLWeDSvccUE9Pr947XK9JMxcrfLFHEgMtgFjVNSHtqghpb1VIDY1d2lwUinrcwZWDbUNjUDV1QTU0Jv7GXyPBQOsWBlp4UcKDw5kWtW4tVMeCmWpfmqaWPWWDfv25k6fVtnaZ2guy1Fq4ZkzG2bNtDGGucWUI4750iyv3JeBnRJaZD7STZi5Wa/t5SdED7anT3+i/bstO2nWUv/G/emzjjpiPt3V8p2unZupiT0/kY3fOW6kPj56QxEALYHBbdnQP+kzavVXRr7jdVZG8xyEw0LqFgRZelOjg0Lp1c+wzZcsHH2nHQ6CEIcwlrgxh3JduceW+BPyMyDLzgfbJ5/+s+xet1wd1n+iaSXN04vOv9cZfa3Tz75fr8ad2Ju06XtpdpVkPrNLtcwv0qxk5Knhyu368ENSR+lO6fW5B1NcuXV2k8jcPSWKgBTC4eM+kzV3ZrbNtV39m7eVvBlbX0KV9b4XG/A3CzrYx0LqGgRZelOjgEO+Zsu0FyR8vAiVb414L/M3vQ9jAfclA6wYGWsAekWXmA20w1K1Vm0r0r5Pn6ZpJc3TNpDm6dmqmNm8tjzz6IBm98/eP9PS2veo8/4PaO79X+tKNWv/sLr3/0XHNzlwd9bUFT27Xzj0HJEkXe3oB4KoezIsdYFc9eVEXe3r12lsX4w60r70V//Pbd10c02s7eapHGTlhLVsZ1mtVF+Fzr77Wf7/kPBI2v+8TEaqvU+esiTqfNVMXXnkJPvfjc4+rc9ZEfb9y4ajuh3ij2vfL5iT9vrzwykvmYyLG3mjvS68YuC+/X7HQ/Hsd9uclgMQRWWY+0Pb19UmSwuGLampujTzuQJIudAWtLksffXxSU+/J09HjpzR9Tn7U55asel57K/8mSWrpDAHAVe1+LfYRB6+93a2WzpAO1cZ+LiMnrEO13Tp2IhT3c2//b/eYXds/Pu7/PZauCGv3ayH4XGl5/3+fix4Om9/3iWg9fFidsyaqY8EMte0shs+1P7VanbP6X/U6mvuhfd3ymFGtbeeLSb8v23YW9/9z5C8w/zOF/X3pFdyXbnHlvgT8jMgy84F2yarn475S9kj9Z5o8Ozdp19H4ZZNaWjsjP679qEHT5+Sr4/z3+sWU+eoKdkc+N/We5Tp6/JQkHnEAYGi7KkLKXx/W2sJu7a3qf8ZsTV1Qm4tCWpAbPcDmr+//6+lV1cG4A+1YPqOWRxy4hUccwIsG/Su7Z1rU+tSayPDaurUw/tcU9n9NR9oUBUqLTe7LQAl/ldwlrvxVcu5Lt7hyXwJ+RmSZ+UCbvnSj7s1ep87zP0jqfyVtYXG5JtyYrmde2pe069i8tVyZeZt1oSuoH37s0vxlm1RYXN5/jUs2auvON9TT06vKg7WaPDtXPT+9/N36AAHgP9U10a+OTV8U1qPrwnrx5ZAaGoM623b159NWVQfH7DoYaN3CQAsvGmxwGBheL2c1wA4lUMIQ5hJXhjDuS7e4cl8CfkZkmflAe7GnR2ue2qlb7s3T/75/VHf8oUC33vew6j/9IqnXcaErpIfXv6jrpy/Ur2bkaNWmksirZpuaW5WWs0HXTcvSXfNXqeHkl5GfZ32AAPCftYXxH20Qedbs7v5XyW7Z0R331bVjhYHWLQy08KLBBod4zwRtX5pmfg/GEyhhCHOJK0MY96VbXLkvAT8jssx8oB2orOId/fw3c/VgwbMKhrqH/gkeyfoAAeA/+euvPs5e+UrZ6pqQdlWExvSVswMYaN3CQAsvGvFAu4SBFrb3pZ9wX7rFlfsS8DMiy0wG2rKKg3FlP/qMrv/dQr2896+Rj3k96wMEgP9s3x37BmDpi6J/vGVH97hfBwOtWxho4UWDPuJg6+aYgbalvMz8HownUMIQ5hJXhjDuS7e4cl8CfkZkmclAOyP9sWHzetYHCAD/aWzq0qaiUNQ4mz6ObwZ2NQy0bmGghRcNNTgESovVviRN7UvSPDvOnm1jCHONK0MY96VbXLkvAT8jsswzjzjwa9YHCABvamzqUk1dUDV1V380QWNTlxoagzHPms1eHlZj0/hfIwOtWxho4UWuDA6BEoYwl3BfwotcuS8BPyOyzBMD7YdHT+iJLbu1ZFWRcte8oD++8IqOHj9lfVnDyvoAAeA9dQ1dys67NLgWbIgdXKtrQiqr6NfY1KW9VSFtKup/3mwyxtmzbQy0rmGghRe5MjgEShjCXMJ9CS9y5b4E/IzIMvOBdltZpf5t8jzNX7ZJBU9u1yPrt+n+Rev1/377B5WU/8X68obM+gAB4D25K7pjnjF7+TNl91ZFP4M2Oy+shsaxfxOwoTDQuoWBFl7kyuAQKGEIcwn3JbzIlfsS8DMiy8wH2uunL1TjV2djPv7e4Xr9clqWwRWNLOsDBIC3NDZ1xYyzGTlhrS28NNDG+3wy3hTsSgy0bmGghRe5MjgEShjCXMJ9CS9y5b4E/IzIMvOB9pZ78+J+vLs7rOsYaAH4UPby2AF2U1H/m37VNQw94CYLA61bGGjhRa4MDoEShjCXDOe+bD5Wr+Zj9eb3Hvdl6nDlvAT8jMgy84H2sY079Lfaj2M+/urr7+qJLbsNrmhkWR8gALynqjoY86Zflz/CIN6Au6silPTrZKB1CwMtvMiVwSFQwhDmkkHvyzMtas9fqM5ZE9U5a6Lal6Z5dqjlvnSLK+cl4GdElpkPtHlrizXhpgzdNjdf2Y8+o8y8zZp6z3L9xy2ZWrxiSxQvZn2AAPCmmrqgdlX0v+nXlc+Xra4JRY20awu7k/bGYJdjoHULAy28yJXBIVDCEOaSwe7L1sI1kXE2MtLmLzS/B7kv3efKeQn4GZFl5gPt2qdf1obnyobFi1kfIAD8qaExqJq6flbXwEDrFgZaeJErg0OghCHMJYPdlx2ZM2IG2s5ZE83vQe5L97lyXgJ+RmSZ+UDr96wPEAAYLQZatzDQwotcGRwCJQxhLhnsvmwvyIoZZzvSppjfg9yX7nPlvAT8jMgy84G2t7dP5W8e0j0L1+rXdy7W9dMXavaCNSp/85D1pQ0r6wMEAEaLgdYtDLTwIlcGh0AJQ5hLBrsvm2trYwbalvIy83uQ+9J9rpyXgJ8RWWY+0BaVvq4b7likp7ft1esHavT6gRo99eIeTbztQZVVHLS+vCGzPkAAuKOxqUtvvRtUWUUoKY8+YKB1CwMtvMiVwSFQwhDmkqHuy+baWrUWrlFr4Rp9W33Q/P7jvkwNrpyXgJ8RWWY+0E6enasTn38d8/HjJ09r2v2PGFzRyLI+QAC4obGpSwUbLr1xWEZOWNt3h8b192SgdQsDLbzIlcEhUMIQ5hLuS3iRK/cl4GdElpkPtNdOfUDhiz0xHw9f7NG1UzMNrmhkWR8gANywtyoUNc4OaGgcv1fSMtC6hYEWXuTK4BAoYQhzCfclvMiV+xLwMyLLzAfaux9YrYq3/h7z8T2Vh3TX/FXJv6ARZn2AAPCnxqboH6/c2B13oD3wt5A2F4W0rrBbm4tCYzrYMtC6hYEWXuTK4BAoYQhzCfclvMiV+xLwMyLLzAfaD4+e0ISbMjQj/TEtf3yrlj3+gm6fW6AJN6br0PvHrC9vyKwPEAD+Ul0TUnZe//ianRdWdU1Iawu7lb4odpzNyAlr4fLoH2fnhWPG3dFioHULAy28yJXBIVDCEOYS7kt4kSv3JeBnRJaZD7SS9G2gQy/trtKqTSV6dMM2bd35hr5u+tb6soaV9QECwJsam7pUUxeMGlMbGoMxA2zm0kv/+cqRtuhP8R97UFU9Nq+iZaB1CwMtvMiVwSFQwhDmEu5LeJEr9yXgZ0SWeWKg9XPWBwgA76mqDkZeJZuRE9beqv43+4r3nNn0KwfYRf1Dbfmboas+l3bg16tr6FJZRUjV74/uzcQYaN3CQAsvcmVwCJQwhLnE/L4806Lm2g907uRp7kt4574EYD0vUYpnPtCeOv2NHix4Vrfe97BuvHtpDK9nfYAA8JZ4r5LNyAmrrqF/uI0ZaK/yaIO6hv5fK/vKRxws73/jsCvH24INI3/0weFj/dez6NFubdkegs89/WL3TwNtt/n3QSIYaN3iyuAQKGEIc4nlfdlSuV+daTerc9ZEdc6aqNathdyXML8vAfQjssx8oJ0+J1/pSzeq/M1DevOv78fwetYHCABvudqrXndVhNTY1BUzuGYsin0V7fbdl14RW10TUu6K/uEtd0W3qmv6f53BXlk7XAMDLdzCQAsvcWVwCJQwhLnE6r48d/J0ZJi93LfVBxO6L9uX3K/WwtXwufZVi504LwE/I7LMfKD9l9+m6/z3P1pfxqizPkAAeEt1TfyBdsMz3VpX2K0Nz3QrPefSK2cj4+yi/hG3rmHo36OmLv6wurZwZMPcx58G9fjmbueteLJ/4F6wNGx+Lcnwx+dH98gLr2CgdYv5QHumRS17yhQoLVZzbe2of52BIYyB1g1W9+W31QfjDrSB0uKE7ku4hYEWsENkmflAe9f8Vfri63PWlzHqrA8QAN6zbFX0cLpwWfSrZOM91mBT0fBHtbF6BW2q+Phk/6D98Bp/v7I0VTDQusV0oD3TovalaVHDR+vWzaP6tQaGMAZaN1jdl821tXEHuZbyslH9ei1Vr6stP8t5HZkzIv93wfpakiHwwujOKQCJI7LMZKA9fvJ0xNvvHlZazga9/e5h1Z84HfW54ydPW1zeiLI+QAB4R2NTl9YVXnqF7LzFYRWVhOK+EdgDD136cfby8LBeOXu5Kx+lkL9+5M+gTRUMtP7CQOsW02d9lpfFHcNG88ZMgRIGWpdY3pftBVlR92NH5gydPdNifvZ62cD3X6Bkq/m1AHAbkWUmA+01k+YMm9ezPkAAeMeuitjHGywu6I77atf1z3Rrb1VIVdXBUQ+rdQ39v2d1Da+cHQwDrb8w0LrFcghrW7ss7kA7mkcdDAxEDLRusH70Rkt5mdrWLut/tAHj7LC//wIlDLQAxheRZSYDbag7PGxez/oAAeAdawvjj7EP5cd+nFE1eRho/YWB1i1eewVtR9qUUQ1iAwMRA60brAdajO77L1DCQAtgfBFZZv4MWkk62Xgm8p+bmltVUv4XvVtz1PCKhp/1AQLAO7bsiD/Q1jV0KX/9pR/vqmCcTSYGWn9hoHWL9RB25V8nb6ncP6pfZ2AgYqB1g/V9idF9/wVKGGgBjC8iy8wH2pf3/lXXTctST0+vOs//oIm3PagZ6Y/pv29/UC/trrK+vCGzPkAAeEddQ5eyl0ePs5ePsTwj1gYDrb8w0LrFC0NYc22tWir3j+rZswMGBiIGWjd44b7EyL//AiUMtADGF5Fl5gPtTbNz1XDyS0lSyat/0V3zV6mvr0+fn27SlP9ZZnJNz//pNd1wx6LIj8+cbdGcxU/ol9OyNDNjhY7Un4p8zvoAAeAtDY1B7aoIafvusX02bGNTl/a9FdKWHd3a9xavwB0JBlp/YaB1iytD2MBAxEDrBlfuy1Qx8P0XKGGgBTC+iCwzH2gn3JShvr4+SVJG7h+145W3JEm9vX2acFNG0q/nyzPNuvW+h6MG2rScDSrdc0A9Pb1673C9Js1crPDFHkkMtACS4/JHJGTkhFWwIWx+TX7BQOsvDLRucWUIGxiIGGjd4Mp9mSoGvv8CJQy0AMYXkWXmA+1Ns3P16amvdLa5VRNuTNeXZ5olSV98fU6/vnNx0q9n7kNP6O13D0cG2raO73Tt1Exd7OmJfM2d81bqw6MnJDHQAhh/1TWhuM+25Y3GhoeB1l8YaN3iyhA2MBAx0LrBlfsyVQx8/wVKGGgBjC8iy8wH2l373tGEmzL0r5Pn6eH1L0qSOs//oGn3P6LNW8uTei37//J/enj9i+o4/31koD1Sf0q3zy2I+rqlq4tU/uYhSdK5ti7AH9rhV2UV8QfafW+F1NwexBDqPwtFBlrra8HQWj64NNC2lhbD59oKV6tz1kS152eZ31uJaC0t7v/neHSB+Z8puC9TxcC/BwVKfxpoS7ea/zsZEMP6f+NhTBFZZj7QStLnp5t09Pgp9fT0SpLCF3v06uvvRn6cjDrP/6Bb7s1TW8d3UQPt+x8d1+zM1VFfW/Dkdu3cc0CS1NvXB/hDL/zqyzO9cQfaL7/ptb+vfKCpua//sRDrwubXgqGFG46oc9ZEfZc1U12vvgSfu7DlcXXOmqjvV2Wb31uJ6Hr1pf5/jhULzf9MwX2ZMn7696CB77+uV18y/3cyIIb19wnGFJFlnhhovVD+Ey9pb+XfJClqoD16/JSmz8mP+tolq56PfK31S/ABpIa9VdGvot1bxeMNhotHHPgLjzhwiyt/lXzgr1jziAM3uHJfpoqB779ACY84ADC+iCzz7ED75l/f12MbdyTt97t++kLdcMci3XDHIv337Q/qZ7+eqxvuWKSvvmnWL6bMV1ewO/K1U+9ZrqPHT0lioAUwOo1NXaprGNnPaWgMqqYuqIbGoPn1+wkDrb8w0LrFlSFsYCBioHWDK/dlqhj4/guUMNACGF9Elnl2oC2reEfzl20y+b0vfwWtJKUv2aitO99QT0+vKg/WavLs3MjjF6wPEAD+s6no0qthc1d2j3ioxcgw0PoLA61bXBnCBgYiuMXv92WqYKAFkCxElnl2oLXsyoG2qblVaTkbdN20LN01f5UaTn4Z+Zz1AQLAX3bFecOv3JUMh+OJgdZfGGjdwkALL/P7fZkqGGgBJAuRZQy0CWZ9gADwl7WF3XHf8IvHFowfBlp/YaB1iysDbaoY+P7jvy94CQMtgGQhssx8oH3v8D91xx8K9O83z9fPfzM3htezPkAA+Mvljze43JVfV1MX1L63Qjz+YAww0PoLA61bGGj9hYEWXsRACyBZiCwzH2hvvHupXtz1pj448omO1H8Ww+tZHyAA/KWuoStmnN2+OxT1NVeOuLsqQibX6goG2p+caVHbuuX94+eCmWrZU2Z/TXEw0LqFgdZfGGjhRQy0AJKFyDLzgXZ62qPWl5BQ1gcIAP+pa+jSlh3d2lQUUlV19KMNqqqDcV9hyytpR4+Btl97QVbM8xe/rT5ofl1XYqB1CwOtvzDQwosYaAEkC5Fl5gNtwZPbdaT+lPVljDrrAwSAW+K9iVhGTjhmyMXwMdB26dzJ0/HfIGftMvNruxIDrVsYaP2FgRZexEALIFmILDMfaE98/rWum5almRkrNC93k+Yvi+b1rA8QAN63qyKk7Lz+oXVzUUiNTV3avvvSx7bs6FZjU//X8grascdAO/4DbaC0WJ1pN6sz7Wa1bi3U2TMto/61GGjdwkDrLwy08CIGWgDJQmSZ+UA7Pe1RzX3oCRUWl+v5P70Ww+tZHyAAvC3e4Jq7ojvmY1t2XBoP89df/XMYOQbafuP1iINAaXHMr9u6dfOofz0GWrcw0PoLAy28iIEWQLIQWWY+0E6enau+vj7ryxh11gcIAG9bWxg7xmbkhJUe52MDP6euoUurN3Urd0W3tr2c2qPiWGCg/cmZFrUWrlFH2hS1L0kbs+fPti9Ji/vq3NH+egMDEdzC4OcPDLTwIgZaAMlCZJn5QDsvd5PaOr6zvoxRZ32AAPC2kQy0GTlhrXgi9uuXPnbpEQgYOQba8RVvoO1ImzLqX4+B1k0Mfv7AQAtC/jeaAAAV+klEQVQvYqAFkCxElpkPtC/trtIt9+bpjy+8otI9B7TzCl7P+gAB4G3VNbFv+vXouvij7WA2Phcy/2fxKwba8TXWjzhIFQxh8CLuS3gRAy2AZCGyzHygvXPeSs1esOaqvJ71AQLA+6prQspf3//s2e27+98kbG9V/8cWLot+NW36ovgDbfplj0DAyDDQjr9AabE6MmeoI3NG/zibwJuEpQqGMHgR9+XVNR+r17mTp82vIxUx0AJIFiLLzAdav2d9gADwt10V0a+wjTvQLop+Ri1GhoEWXsQQBi/ivozVfKxeHQtmRv6GQHv+Qv6fUEnGQAsgWYgs88RA+8XX5/T0tr3KW1usxSu2qLC4XJ+fbrK+rGFlfYAA8Le6hq6YQTYrN3qcTc8Ja/tuHnEwWgy0V9d8rF4te8r07bvV5teSahjC4EXcl7HiPWebx7gkFwMtgGQhssx8oD34Xp1+9uu5umfhWhU8uV0FT27X/2Q9rn/5bbo+PHrC+vKGzPoAAeB/NXVBrS3sVvbysDYVhdTQGNSf94e0fE30YxGsr9OvGGjjaykvixoc2pemmV9TKmEIgxdxX8aK96Z37QX8+SQTAy2AZCGyzHygvW1uvg4c+jDm45Xv1Gp25mqDKxpZ1gcIAGBwDLSxzp08HXd0aCkvM7+2VMEQBi/ivozFQGuPgRZAshBZZj7Q/vvN83Wxpyfm4+GLPbp2aqbBFY0s6wMEADA4BtpYzbW1cUeH1sI15teWKhjC4EXcl7ECpcUxZ2Vzba35daUSBloAyUJkmflAe+t9D+ufnzTGfPzjTxo19Z48gysaWdYHCABgcAy0sXgFrT2GMHgR9+VV/lyqD6pt7TK1Fq5R87F68+tJNQy0AJKFyDLzgXb3a9X65bQsbXiuTHsqD6n8zUNa/+wu/eetC7StrNL68obM+gABAAyOgTa+K18V1r4kjXcmTyKGMHgR9yW8iIEWQLIQWWY+0ErSgUP/0APLN+uWe/N0491Llb5ko974a431ZQ0r6wMEADA4Btqraz5Wr0BpsVoq94/859bW6tzJ0+b/DH7FEAYv4r6EFzHQAkgWIsvMB9qyioPqCnZbX8aosz5AAACDY6AdW821tepMuznyytu2dcvNr8mPGMLgRdyXY6+5tlbt+QvVvjRNrU+t4W8qjAIDLYBkIbLMfKD9r9uy9eWZZuvLGHXWBwgAYHAMtGOrI22Kk8+uPXcmoG8/+CBpAnvLfnq0xP1J/X2bPz5u/mcN72KgHVvNx+pjzsv2/IXm1+U3DLQAkoXIMvOB9rW339P8ZZtU+U6tjjV8ruMnT0fxetYHCAB/21UR0rrCbm3Z0a26BvvrcRED7dhprq2N++ZibWuXmV9bogaGKdcxvGEwDLRjq3Xr5rjfh35/o7GBwdR1fB8AqYfIMvOB9ppJcwbl9awPEAD+takopIyccBRG2rHHQDt2zp08Hfd/xLZu3Wx+bYlq/vi42vKznBd4wf//XWH8MNCOrdbCNfEH2tpa82tLBAMtAFcRWWY+0P7wY5dC3eGr8nrWBwgAf2poDMaMsxk5YW3fHTK/Ntcw0I6tK18R1pE2hTcLAxzBQDvGf57VB2NGv47MGebXBQCIj8gyk4H2xllL9OOFoCRpyv8ss7iEMcv6AAHgH3UNXdqyo1vrCru17eXuuAPtpiIG2rHGQDv2Wir3q23tMrVu3cw4CziEgXbstVTujzy7u70gy/ePNwAAlxFZZjLQ/mpGjvLWFmtbWaUm3JiubWWVV+X1rA8QAP7Q0BhUdl70GLtgaexAW1UdjPp5jU1dqqkLmlyzKxhoAWB4GGgBAKmMyDKTgfaDI58o65GndN+D6/SzX8/VvdnrrsrrWR8gAPxh++7Y582m54S1pKD7qo83uPznZOeFVV3Dq2tHg4EWAIaHgRYAkMqILDN/Bu19D663voSEsj5AAPhDvDcEy8gJq6YuGPeNwaprYr8+Oy+shkZeTTtSDLQAMDwMtACAVEZkmflA65X6+vr09La9uuGORfqv27L1yPpt6gp2S5LOnG3RnMVP6JfTsjQzY4WO1J+K/DzrAwSAP1RVx74pWPby8FW/Pt4rbgcGXet/Fr9hoAWA4WGgBQCkMiLLPDvQPrejQjf/fnnSfr99VX/X7MzV6jz/g368EFRazga9uOtNSVJazgaV7jmgnp5evXe4XpNmLlb4Yo8kBloAw3f56Jq7ojvuK2cH7KqIP9AO9nMQHwMtAAwPAy0AIJURWWY+0H73w4W4H/+/D+uT+iZhH3/SqBOffx358baySj2yfpvaOr7TtVMzdbGnJ/K5O+et1IdHT0hioAUwMo1NXcMaWRubupS9PHqc3VTEM2hHg4EW8IeWyv0KlBarpfJ182tJVQy0AIBURmSZ+UA74aYM5Tz2nA6+V6dw+KL15UiSzja3ambGCh049A8dqT+l2+cWRH1+6eoilb95qP9rPXCIAHBTY1P/q243FYW0t4pxdrQYaAHva1+Sps5ZEyNan1pjfk2piIEWAJDKiCwzH2jr/vmZNjxXpt/etUTX/26hVm8u0ZH6z9TX12dyPXc/sFrXTJqjdc+8rN7ePr3/0XHNzlwd9TUFT27Xzj0HJEmt50MAkFRt32EkPm3sVkZOWI883m1+LQBite/bHTXODmg73mB+bamm/R+H1TlrojoKssyvBbD+9y0AqYfIMvOBdqC+vj7Vf/qFNm8t1+TZubppdq6e3b5P35wLJP1a2jq+U+6aF7TumZd19PgpTZ+TH/X5Jaue197Kv0mSQuEeAEiyXozAV9/0KiMnrPx1YfNrARDrx1deijvQXnj/kPm1pZquf9apc9ZEfbdyofm1APb/vgUg1RBZ5pmBdqDjJ0/rqRf36D9vXaD/vv1B/WLKfOWtLdb5738c19/37x98rC++Phf58eGjn+rW+x5Wx/nv9Ysp89UV7I58buo9y3X0+ClJPOIAALyORxwA3tZSuT/uQNt8rN782lINjzgAAKQyIss8MdCeOduiotLXdcu9eZpwU4YeWrlFh94/pp6eXrV3fq8H85/RgoefGtdrKCwu17zcTfrhxy6Fwxe1ctOftGTV85Kk9CUbtXXnG+rp6VXlwVpNnp2rnp5eSQy0AOB1DLSA97UWrokaZwOlxebXlIoYaAEAqYzIMvOB9vdZj+uaSXN09wOr9ef91XFfKdt5/gdNuDF9XK/jQldIBU9u1w13LNL1v1uozLxCNQfaJUlNza1Ky9mg66Zl6a75q9Rw8svIz7M+QAAAg2OgBfyh+Vi9Wir388pZQwy0AIBURmSZ+UBbWFyuxq/ODvo1vb19eu9wfZKuaGRZHyAAgMEx0ALA8DDQAgBSGZFl5gNt9XtHrurAoQ+tL2/IrA8QAMDgGGgBYHgYaAEAqYzIMvOB9vrpC6P9bqGumTRH/zZ5nqbd/4j15Q2Z9QECABgcAy0ADA8DLQAglRFZZj7QxuvHC0E9vW2v9lX93fpShsz6AAEADI6BFgCGh4EWAJDKiCzz5EA70MyMFdaXMGTWBwgAYHAMtAAwPAy0AIBURmSZZwfaHy8E9asZOdaXMWTWBwgAYHAMtAAwPAy0AIBURmSZ+UCbt7Y4xuIVW3TjrCV6MP8Z68sbMusDBAAwOAZaABgeBloAQCojssx8oF29uSTGhufK9Of91brQFbK+vCGzPkAAAINjoAWA4WGgBQCkMiLLzAdav2d9gADwn5q6oAo2hJWRE9bmopDqGuyvyWUMtAAwPAy0AIBURmSZ+UDb29sX+c/NgXYVlb6uP77wiuo//cLwqoaf9QECwF8aGoPKzusfZwdk54XV2GR/ba5ioAWA4WGgBQCkMiLLzAbaxq/Oanrao/r5b+Zq0WPP6ttAh341I0d3/KFAt88t0L/8Nl1//+Bjq8sbdtYHCAB/2VURihpnB1TXhMyvzVUMtAAwPAy0AIBURmSZ2UCbmVeouQ89oer3jmjxii26+4HV+uMLr0Q+/8xL+3TPwrVWlzfsrA8QAP7CQJt8DLQAMDwMtACAVEZkmdlAe/3vFuqfnzRKkjrP/6BrJs3Ric+/jny+8csmXTs10+ryhp31AQLAXxoag8pefsUjDpbziIPxxEALAMPDQAsASGVElpkNtNdMmqNzLe2RH187NVNNza2RHzcH2nXNpDkGVzayrA8QAP5TUxdU/vr+cXYTbxI27hhogdTTfKze/Br8iIEWAJDKiCwzHWibA5cG2v+8dQEDLQBgzDHQAqmjpXK/OtNuVuesiepMu1ktlfvNr8lPGGgBAKmMyDLTgfbZ7fv0p1fe1p9eeVv/Onment62N/LjZ7fvY6AFACSMgRZIDedOnu4fZq9w7uRp82sb9T/TmYC+/eCDpAnsLVPnrIlqX3J/Un/f5o+Pm/9ZAwBAZJnZQHvrfQ8Pi9ezPkAAAINjoAVSQ0t5WdyBNlBabH5tozXwilbX8YpdAIAXEFlmNtC6kvUBAgAYHAMtkBq+rT4Yd/zz82MOmj8+rrb8LOcFXths/mcNAACRZQy0CWZ9gAAABsdAC6SIMy3qyJwRNc52ZM7Q2TMt9tcGAAA8j8gyBtoEsz5AAACDY6AFUsiZFrVu3az2giy1Fq5hnAUAAMNGZBkDbYJZHyAAgMEx0AIAAAAYCpFlDLQJZn2AAAAGx0ALAAAAYChEljHQJpj1AQIAGBwDLQAAAIChEFnGQJtg1gcIAGBwDLQAAAAAhkJkGQNtglkfIACAwTHQAgAAABgKkWUMtAlmfYAAAAbHQAsAAABgKESWMdAmmPUBAgAYHAMtAAAAgKEQWcZAm2DWBwgAYHAMtAAAAACGQmQZA22CWR8gAIDBMdACAAAAGAqRZQy0l1VU+rp+fediXT99ofLWFetCV0iSdOZsi+YsfkK/nJalmRkrdKT+VOTnWB8gAIDBMdACAAAAGAqRZQy0P3Xg0D90y715amnt1IWukNKXblRR6euSpLScDSrdc0A9Pb1673C9Js1crPDFHkkMtADgdQy0AAAAAIZCZBkD7U/VnzitI/WfRX5cuueA8tYWq63jO107NVMXe3oin7tz3kp9ePSEJAZaAPA6BloAAAAAQyGyjIH2KmXmFerV19/VkfpTun1uQdTnlq4uUvmbhyQx0AKA1zHQAgAAABgKkWUMtHEqKtmvPzz0pC729Oj9j45rdubqqM8XPLldO/cckCR9dyEMAPCwU1+GlZET1qNr7a8FAAAAgDcRWcZAe1l9fX1a/+wuzV+2SV3BbknS0eOnNH1OftTXLVn1vPZW/k2S9EPXRQCAhzV+dTEy0FpfCwAAAABvIrKMgfayNj7/Zy1ZVRR5AzBJ6jj/vX4xZX5ksJWkqfcs19HjpyTxiAMA8DoecQAAAABgKESWMdD+1D+OndDMjBUKh2P/vybpSzZq68431NPTq8qDtZo8O1c9Pb2SGGgBwOsYaAEAAAAMhcgyBtqfemT9Nv38N3M14aaMiDvnrZQkNTW3Ki1ng66blqW75q9Sw8kvIz/P+gAB4J6GxqD2vRXSW+8G1dhkfz1+x0ALAAAAYChEljHQJpj1AQLALTV1QWXn9b+pVUZOWNl5YdU12F+XnzHQAgAAABgKkWUMtAlmfYAAcEvuiu7IODtgU1HI/LrG0mdfBbVrX/K8uCukjJywFj3cndTfd99bbv33BgAAALiMyDIG2gSzPkAAuOXKcTYjJ6zcFW698rPuk2Dcf07XuPbfGwAAAOAyIssYaBPM+gAB4BZeQesOXkELAAAA+AeRZQy0CWZ9gABwS01dUNnLL3sG7XKeQQsAAAAA443IMgbaBLM+QAC4p6ExqL1VIVVVB9XYZH89AAAAAOA6IssYaBPM+gABAAAAAABAYogsY6BNMOsDBAAAAAAAAIkhsoyBNsGsDxAAAAAAAAAkhsgyBtoEsz5AAAAAAAAAkBgiyxhoE8z6AAEAAAAAAEBiiCxjoE0w6wMEAAAAAAAAiSGyjIE2wawPEAAAAAAAACSGyDIG2gSzPkAAAAAAAACQGCLLGGgTzPoAAQAAAAAAQGKILGOgTTDrAwQAAAAAAACJIbKMgTbBrA8QAAAAAAAAJIbIMgbaBLM+QAAAAAAAAJAYIssYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKjGGiJiIiIiIiIiIiIjGKgJSIiIiIiIiIiIjKKgZaIiIiIiIiIiIjIKAZaIiIiIiIiIiIiIqMYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKjGGiJiIiIiIiIiIiIjGKgJSIiIiIiIiIiIjKKgZaIiIiIiIiIiIjIKAZaIiIiIiIiIiIiIqMYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKjGGiJiIiIiIiIiIiIjGKgJSIiIiIiIiIiIjKKgZaIiIiIiIiIiIjIKAZaIiIiIiIiIiIiIqMYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKjGGiJiIiIiIiIiIiIjGKgJSIiIiIiIiIiIjKKgZaIiIiIiIiIiIjIKAZaIiIiIiIiIiIiIqMYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKjGGiJiIiIiIiIiIiIjGKgJSIiIiIiIiIiIjKKgZaIiIiIiIiIiIjIKAZaIiIiIiIiIiIiIqMYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKjGGiJiIiIiIiIiIiIjGKgJSIiIiIiIiIiIjKKgZaIiIiIiIiIiIjIKAZaIiIiIiIiIiIiIqMYaImIiIiIiIiIiIiMYqAlIiIiIiIiIiIiMoqBloiIiIiIiIiIiMgoBloiIiIiIiIiIiIioxhoiYiIiIiIiIiIiIxioCUiIiIiIiIiIiIyioGWiIiIiIiIiIiIyCgGWiIiIiIiIiIiIiKj/j+G1KcDRXY+NQAAAABJRU5ErkJggg==", "text/html": [ - "<div> <div id=\"d74abf18-8164-452c-841c-6c52d3425e7a\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d74abf18-8164-452c-841c-6c52d3425e7a\")) { Plotly.newPlot( \"d74abf18-8164-452c-841c-6c52d3425e7a\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2011\"], [\"2006\"], [\"2010\"], [\"2016\"], [\"2010\"], [\"2018\"], [\"2011\"], [\"2004\"], [\"2014\"], [\"2004\"], [\"2011\"], [\"2005\"], [\"2013\"], [\"2007\"], [\"2011\"], [\"2016\"], [\"2011\"], [\"2005\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2009\"], [\"2004\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2004\"], [\"2018\"], [\"2012\"], [\"2006\"], [\"2011\"], [\"2003\"], [\"2013\"], [\"2006\"], [\"2012\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Benin\", \"Benin\", \"Burkina Faso\", \"Burundi\", \"Burundi\", \"Cameroon\", \"Cameroon\", \"Cameroon\", \"Chad\", \"Chad\", \"Congo\", \"Congo\", \"Congo Democratic Republic\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Ethiopia\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Ghana\", \"Ghana\", \"Kenya\", \"Kenya\", \"Kenya\", \"Lesotho\", \"Lesotho\", \"Lesotho\", \"Liberia\", \"Liberia\", \"Malawi\", \"Malawi\", \"Malawi\", \"Mali\", \"Mali\", \"Mali\", \"Mozambique\", \"Mozambique\", \"Namibia\", \"Namibia\", \"Niger\", \"Niger\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zambia\", \"Zambia\", \"Zimbabwe\", \"Zimbabwe\", \"Zimbabwe\"], \"legendgroup\": \"Non-missing\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"Non-missing\", \"notched\": false, \"offsetgroup\": \"Non-missing\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [65.4, 31.6, 44.5, 36.7, 42.9, 84.3, 84.8, 57.9, 58.4, 50.0, 52.5, 18.3, 67.0, 64.9, 56.7, 50.2, 55.5, 51.6, 47.1, 26.1, 71.7, 53.0, 35.9, 42.9, 35.9, 83.9, 79.6, 73.5, 79.7, 68.9, 46.9, 49.5, 54.5, 87.5, 90.2, 83.9, 42.2, 55.2, 36.7, 73.1, 41.8, 84.9, 72.3, 32.4, 31.2, 48.8, 54.0, 48.4, 68.9, 92.1, 89.9, 79.8, 37.6, 43.7, 38.6, 43.6, 43.8, 36.1, 43.1, 79.5, 79.5, 79.5, 79.5, 75.1, 80.4, 83.5, 72.5, 83.1, 80.3, 67.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [51.82172348464304, 51.63371792253483, 60.19781177976836, 67.84332662203975, 73.33305914138057, 49.39458717769393, 71.95633862825368, null, 70.69977791304689, null, null, 70.08302756883629, 78.09666495277045], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.568958874930733, 54.31378272084832, 29.96041216455179, null, 51.530925434032866, 42.124637918736795, 50.163912506462616, null, 63.285159555798266, null, null, 48.869560685912965, 69.66320342189823], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [43.117715660745624, 34.99696361745937, 32.80721200883463, 69.57207895753851, 73.27977952076182, 46.545528659115774, 67.91461681851463, 82.24363123253028, 63.151939695501895, 47.693668685983106, 43.38431171312834, 63.65204916406636, 80.95207762610593], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"title\": {\"text\": \"imputed.M\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"42a4eadb-77e2-4ce1-9478-04ec1e5c900e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"42a4eadb-77e2-4ce1-9478-04ec1e5c900e\")) { Plotly.newPlot( \"42a4eadb-77e2-4ce1-9478-04ec1e5c900e\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2011\"], [\"2006\"], [\"2010\"], [\"2016\"], [\"2010\"], [\"2018\"], [\"2011\"], [\"2004\"], [\"2014\"], [\"2004\"], [\"2011\"], [\"2005\"], [\"2013\"], [\"2007\"], [\"2011\"], [\"2016\"], [\"2011\"], [\"2005\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2009\"], [\"2004\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2004\"], [\"2018\"], [\"2012\"], [\"2006\"], [\"2011\"], [\"2003\"], [\"2013\"], [\"2006\"], [\"2012\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2008\"], [\"2003\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2014\"], [\"2010\"], [\"2005\"], [\"2013\"], [\"2008\"], [\"2013\"], [\"2016\"], [\"2011\"], [\"2006\"], [\"2018\"], [\"2013\"], [\"2007\"], [\"2015\"], [\"2010\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Benin\", \"Benin\", \"Burkina Faso\", \"Burundi\", \"Burundi\", \"Cameroon\", \"Cameroon\", \"Cameroon\", \"Chad\", \"Chad\", \"Congo\", \"Congo\", \"Congo Democratic Republic\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Ethiopia\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Ghana\", \"Ghana\", \"Kenya\", \"Kenya\", \"Kenya\", \"Lesotho\", \"Lesotho\", \"Lesotho\", \"Liberia\", \"Liberia\", \"Malawi\", \"Malawi\", \"Malawi\", \"Mali\", \"Mali\", \"Mali\", \"Mozambique\", \"Mozambique\", \"Namibia\", \"Namibia\", \"Niger\", \"Niger\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Sierra Leone\", \"Togo\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zambia\", \"Zambia\", \"Zimbabwe\", \"Zimbabwe\", \"Zimbabwe\"], \"legendgroup\": \"Non-missing\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"Non-missing\", \"notched\": false, \"offsetgroup\": \"Non-missing\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [65.4, 31.6, 44.5, 36.7, 42.9, 84.3, 84.8, 57.9, 58.4, 50.0, 52.5, 18.3, 67.0, 64.9, 56.7, 50.2, 55.5, 51.6, 47.1, 26.1, 71.7, 53.0, 35.9, 42.9, 35.9, 83.9, 79.6, 73.5, 79.7, 68.9, 46.9, 49.5, 54.5, 87.5, 90.2, 83.9, 42.2, 55.2, 36.7, 73.1, 41.8, 84.9, 72.3, 32.4, 31.2, 48.8, 54.0, 48.4, 68.9, 92.1, 89.9, 79.8, 37.6, 43.7, 38.6, 43.6, 43.8, 36.1, 43.1, 40.3, 57.5, 80.3, 79.5, 75.1, 80.4, 83.5, 72.5, 83.1, 80.3, 67.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [37.48430691317277, 33.0573496204897, 36.68947049362754, 70.11745134661585, 74.39653963482156, 34.6942917927119, 72.62799679664002, 62.90019751881499, 71.88353100909976, 79.65145595888701], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.568958874930733, 54.31378272084832, 29.96041216455179, null, 51.530925434032866, 42.124637918736795, 50.163912506462616, 63.285159555798266, 48.869560685912965, 69.66320342189823], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [42.84612926788617, 35.16663129012852, 32.957470413688526, 69.50735329316193, 72.55544324389314, 46.01222163399134, 67.93636699956508, 63.224267549675346, 63.98945399904411, 80.82017338703842], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"title\": {\"text\": \"imputed.M\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('d74abf18-8164-452c-841c-6c52d3425e7a');\n", + "var gd = document.getElementById('42a4eadb-77e2-4ce1-9478-04ec1e5c900e');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -5299,7 +4861,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 350, "metadata": {}, "outputs": [], "source": [ @@ -5326,7 +4888,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 351, "metadata": {}, "outputs": [ { @@ -5476,20 +5038,11 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], [ - "2018" - ], - [ - "2012" - ], - [ - "2000" + "2000" ], [ "2001" @@ -5505,9 +5058,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -5524,19 +5074,16 @@ "x0": " ", "xaxis": "x", "y": [ - 48.30345508195943, - 53.76048612772965, - 51.894103563496, - 56.50975754815431, - 55.91131125503006, - 49.67400671814656, - 66.24208937915319, - null, - 52.92798233790131, - null, - null, - 45.77749212207978, - 55.47795028053216 + 27.22165334026072, + 20.74449338352134, + 28.93552206066888, + 58.0498599283529, + 61.85272188475734, + 24.80890630136319, + 63.25615447558266, + 52.35177558833146, + 50.82263058897482, + 65.09551816600218 ], "y0": " ", "yaxis": "y" @@ -5566,18 +5113,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -5595,9 +5133,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -5621,10 +5156,7 @@ 38.91865731391849, 33.88592072413024, 55.366243901138766, - null, 52.054518148465256, - null, - null, 37.20176006394223, 60.24548066020205 ], @@ -5656,18 +5188,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -5685,9 +5208,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -5704,19 +5224,16 @@ "x0": " ", "xaxis": "x", "y": [ - 24.859568253699027, - 23.390582857932404, - 14.110043771471155, - 57.230233773406596, - 52.15387049883477, - 31.469286375040596, - 61.202271342000905, - 71.64895404746395, - 48.896811927207665, - 56.22646152583338, - 41.43827676061918, - 40.16917287300395, - 64.16983532722774 + 24.303358509816114, + 23.768724015518746, + 14.16596363529338, + 57.25908115534936, + 51.54456956727535, + 31.345534359205388, + 61.39611367484593, + 49.000493395978246, + 40.698110229533256, + 63.81748892534672 ], "y0": " ", "yaxis": "y" @@ -5762,13 +5279,13 @@ "2008" ], [ - "2007" + "2005" ], [ "2005" ], [ - "2005" + "2008" ], [ "2006" @@ -5795,8 +5312,8 @@ "Niger", "Nigeria", "Rwanda", - "Rwanda", "Senegal", + "Sierra Leone", "Uganda", "Zambia", "Zimbabwe" @@ -5826,9 +5343,9 @@ 75.2, 15.4, 36.5, - null, 68.9, 26.4, + 20.1, 57.7, 66.6, 56.8 @@ -5912,9 +5429,6 @@ [ "2014" ], - [ - "2012" - ], [ "2010" ], @@ -5922,13 +5436,7 @@ "2013" ], [ - "2011" - ], - [ - "2011" - ], - [ - "2011" + "2013" ], [ "2011" @@ -5967,11 +5475,8 @@ "Rwanda", "Senegal", "Senegal", - "Senegal", "Sierra Leone", - "Uganda", - "Uganda", - "Uganda", + "Togo", "Uganda", "Zambia", "Zimbabwe" @@ -6013,12 +5518,9 @@ 89.2, 83.5, 48.9, - null, 48.7, 44.1, - 71.6, - 71.6, - 71.6, + 51.4, 71.6, 79.1, 77.9 @@ -6054,9 +5556,6 @@ [ "2018" ], - [ - "2018" - ], [ "2017" ], @@ -6066,6 +5565,9 @@ [ "2015" ], + [ + "2016" + ], [ "2018" ], @@ -6086,7 +5588,7 @@ "Senegal", "Senegal", "Senegal", - "Senegal", + "Uganda", "Zambia", "Zimbabwe" ], @@ -6111,10 +5613,10 @@ 83.7, 33.6, 45.3, - null, 40.3, 47.1, 41.9, + 72.7, 75.4, 80.1 ], @@ -6968,11 +6470,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+1+UdcL/8e/f4733et9b2265u1QeV1PLdK3uAhcyUBBFxAPkWTAVTFPyEKYuqHkMFc1NXMuQNPEQUpqSpYLImTRhZhh4f3+YGBlnkIEZ53MNvF6Px/Nxx9GrS+/L9d3lNf9PRERERERERERERGSk/2f6AIiIiIiIiIiIiIj6awy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUA22AVdY1AwAAAAAAIIwRmYyBNsBMX0AAAAAAAAAQGCKTMdAGmOkLCAAAAAAAAAJDZDIG2gAzfQEBAAAAAABAYIhMxkAbYKYvIAAAAAAAAAgMkckYaAPM9AUEAAAAAAAAgSEyGQNtgJm+gAAAAAAAACAwRCZjoA0w0xcQAAAAAAAABMZq5R916uBnbT1G4RkDbYCZvoAAAAAAAAAgMFYrJtHRKxSeMdAGmOkLCAAAAAAAAAJjtToG1xUftPqFgTa8Y6ANMNMXEAAAAAAAAATGanUMrvlHnX4JdKA9UXRBo96aq2dGxikyMUM/3aqSJNnsDs1J36S/jE3Q0InJ2n3wP+6vuVVZrajpy/XnUVM0Lma+zpdec3/s1JlSjZmUqmdfmqrJs1aptr6p9yejH8RAG2CmLyAAAAAAAAAIjNUK5UBbVVOvZ0bG6XzpNbW1tWvNR/s0acZySdL6jw9oxoJ1arHZVVFVq4hx0/XDj7clSZGJGdq255iczjadOlOqiHHT5Wh16t79B3puTLwull1Xq9OpNR/t04wF64J2bvpiDLQBZvoCAgAAAKB75RXNKjxt074jNpWVtxg/HgCAtVitUA+0x06edb/9/bWf9fyr0yVJoyPn6dJ35e6PrVi/U+s/PqC6hl/09IhYtTqd7o+9+vYCnb1wRcdOntXkWavc7793/4EGDomR3c4jGLqKgTbATF9AAAAAADxeeUWz0jI8X0SloJCRFgDwkNUK9SMOOpez84hmLsqWJP3+xWg1/fKr+2Of5J/QrCUf6nzpNY2dlObxdTMXZWv3oZPa+K9DSl+b6/Gxv748zf3YBPKOgTbATF9AAAAAADxezg6b16tcx892GD+uR3120qbcfS3G7D9qM34OAMAUq2VqoP3qbKmGTkxWVU29HK1ODYiIUovN7v54/rEiJaSu0elzlzUxdpHH16a9l6Pte47p/c17lblht8fHhk5M1pXrNwM+vr4aA22Amb6AAAAAAHi8pVl2r4E2JtGhohJr3UW7fK33kBxKs+bbjZ8DADDFapkYaA8fL9bIN+foZsVd9/t+/2K0Gpruud/e+WmhZi/dqAuXr2l0VKrH1yctXK+9h7/QptxDWvr+vzw+NmhMgsf3Jc8YaAPM9AUEAAAAwOPl7vdxB21K13fQlpS57rpdt8WuwqLQ3VUayB20HePu/Pfs3EELAL1gtUI90J746rzGTkpTbX2Tx/vHTkrTmQvfu9+ev3KLNuUeUkPTPf1h2GQ1tzy8u3bEGym6cPmaPv/ynN6alu5+/92aBv1h2GSP59WSZwy0AWb6AgIAAADg8cormpWa7t8zaItKWrzG3Nz91h8uDxx1DbSbcq1/rABgRVYrlANt071f9cL4GaqoqvX62IbtBxU7O1MtNruu36jQc2Pi9fNt152w0UkrtGH7QTmdbTp8vFhDJybL6WzTrw9a9NyYeH19/ju1Op1avHq75qZvDuh89PUYaAPM9AUEAAAAgH8Ki2zaW2BTWXnXjzbo6nEIpo+9Owy0ABAYqxXKgfbA0VMaEBGlgUNiPDQ23Zfd7tDc9M0aNCZBw16bpfxjRe6vq6iqVWRihv40aorGT16osqs/uT92+txljY6cp2dfmqopc1ersel+oKekT8dAG2CmLyAAAAAAgoeBFgD6J6vV8fvPig9a/RKsFwkjMzHQBpjpCwgAAACA4MnZ4f282tR0BloA6OusVm9f8JHCMwbaADN9AQEAAAAQPOUVnnfRJs+3q6TM/HF1h4EWAAJjtfx9tMGjKDxjoA0w0xcQAAAAAMFXUuZ6wTDTx+EvBloACAyRyRhoA8z0BQQAAAAAGGgBIDBEJmOgDTDTFxAAAAAAYKAFgMAQmYyBNsBMX0AAAAAAPF55RbMKT9tUeNqm8grzx/MkMNACQGCITMZAG2CmLyAAAAAAulZS1qzkBQ9f9Ct+tiMsXvSrpxhoASAwVqtld45a9mzpMQrPGGgDzPQFBAAAAEDXVmXb3ONsh1XZfW/EZKAFgMBYrcYJg3qFwjMG2gAzfQEBAAAA0LVHx9kOpo8r2BhoASAwVqtjcL2/IN4vDLThHQNtgJm+gAAAAADoWmq69zibms5ACwDwZLU6BteW3Tl+CdZA+8bUpXr5n2ke77ty/aaGv54iSUpIXaND/z4d8I9DnjHQBpjpCwgAAACArhWVtCg+xXOgLSppMX5cwcZACwCBsVomBtrrNyoUOztTU+au1sWy6+73M9A++RhoA8z0BQQAAADA45WVtyh3v025+20qK+9742xlXd8YaMsrmnXkRIvy9tv65IgOwNqslomBduWHu3Tg6CkVFH6tRVnb3O9noH3yMdAGmOkLCAAAAAD/7S2waVmWXcuy7Np3JHzHzEeF+0BbXtGstAzPO533FoTnvwuA8GS1Qj3QOp1tGvbaLN3/tVnNLXYNnpAku90hiYE2FDHQBpjpCwgAAAAA/+Tut3k9j7avjIDhPtDuLfD+uYlJdDzxO54Li2zK3ddizCf5duPnHoCL1Qr1QPvl15c0c1G2++256Zv17y/OSWKgDUUMtAFm+gICAAAAwD+PPos2JtGhtIy+8YJh4T7Qrsr2PdA+6UcdrNvi+8cNlakpDLSAVVitUA+0SQvX66nhk/XMyDg9MzJOTw2frKnz3pfEQBuKGGgDzPQFBAAAAIB/fA1kyfP7xkAW7gNtV3fQllc82R83kDtoMz90HfPcZXbuoAX6AKsVyoH2l/sPNGhMghyOVvf7Wp1O/fXlaapvvMdAG4IYaAPM9AUEAAAAgH/WbbF7DYA5O8Jz0HxUuA+0lXXNWprl+fNTUGjtFwr77IsWxSQ6tGYTIyvQF1itUA60u/JPeDzeoKO56ZuVu+9zBtoQxEAbYKYvIAAAAAD8U17h+VfpV2XbnvgdmqHSFwbayrpmFZW0aG+B7Yk/ezYYGGiBvsVqhXKgnRi3WEcKz3i9v/DUeY2fvJCBNgQx0AaY6QsIAAAAAPSVgTacMNACfYvV6hhc7y+M90ugz6AlszHQBpjpCwgAAACAwJSUuZg+jkAw0IYeAy3Qt1itjsG1pyg8Y6ANMNMXEAAAAAC9U17RrLSMh888TctwhMVfrfeFgTb0GGiBvsVq+ftog0dReMZAG2CmLyAAAAAAesfXi4atyg7PgZOBNvQYaIG+hchkDLS/1d7ervc379WIN1I04o0Upb2Xo+YWuyTpVmW1oqYv159HTdG4mPk6X3rN/XWmLyAAAAAAeic+xeE10MYkOowfV28w0IYeAy3QtxCZjIH2t46dPKvxkxequcUup7NNCWlrtWH7QUlSZGKGtu05JqezTafOlCpi3HQ5Wp2SGGgBAACAcJWa7j3OJs8Pz7EtnAba8grzxxAMDLRA30JkMgba38relq9la/7lfjtv/3HNXJStuoZf9PSIWLU6ne6Pvfr2Ap29cEUSAy0AAAAQrgqLbF4DbUEhz6B9UgoKWxQ/+7chfIE97F+YjYEW6FuITMZA+1vnLl3VS2/NVUPTPdnsDsXOztS+gi91vvSaxk5K8/jcmYuytfvQSUkMtAAAAEA4Kypp0botdq3bYldRSXiOs5V11h9oi0pavMbw+NmOsL6bloEW6FusVsvuHLXs2dJjFJ4x0HZq8ertGjg4Wk8Nn6yo6cvlcLTq9LnLmhi7yOPz0t7L0fY9xyRJ9ffsAAAAQMDyjzmU8b5DW3fZVVFt/ngQXg7/2/WCZzk7HcaPxZdd+d4vyBaT6NA3l8wfW28VfuX6d1qXY81zDqBnrFbjhEG9QuEZA+1vfZJ/QpNnrdKDZpuczjalr83TglUf68LlaxodlerxuUkL12vv4S8kSS12JwAAABCQ5WtaPUarlEUO1TeZP67+qL7JqaMnWvXBJoeOnmgNm5+HYydcv4a27241fiy+7Dvc6nOgLf3O/LH11ldnXP9OH35szXMOoGesVsfgen9BvF8YaMM7YwPt6k17dO7SVY9nu5osIXWN9hw+6X77Ytl1DX89RQ1N9/SHYZPV3PLwv6aMeCNFFy5fk8QjDgAAABAYX3/1OybRob0FZv+q+sbtNi3JtBuzYbuZf/9HXzgsLcNh/NeIP6z+iIOy8hbFp3ie29T08Di3XeERB0DfYrU6BteW3Tl+CXSgbWtr19ZPPtPIN+do4OBo/fXlaZq/covqGn7p9muvXL+p4a+n9PrH7tyBo6fc//zU8MmqqqkPyve1esYG2rGT0jQgIkrPjIzT9PnrtK/gS92taTB1OHp/815Ne3etezBe89E+JaSukSRFJ63Qhu0H5XS26fDxYg2dmCyns00SAy0AAAAC4+uFqmISHcrdb3ZoW7DC919JD5UF74V+9Coo9D2WFxZZc/TszOoDbWVds0rKmrUq26alWa5n/obz82cr6xhogb7GaoV6oE1fm6sRb8xW8bky3f+1WeU/VSjx3Q80Oiq125srgzXQtre3668vT3O/Xdfwi9ra2gP+vuGQ0Ucc1NY36dC/T2texmY9/+p0DYiI0thJacrcsFtnL1yRozV0d9f++qBFc9I3afjrKRr+eopiZ2fqTrVrpa+oqlVkYob+NGqKxk9eqLKrP7m/zvQFBAAAAOHN152FMYkO4y9Yde5yi06X2Hole4trLPwgp3dff7rEpnOXQ//vn7vf91hu+m5mf4TDQNvXMNACfYvVCuVAe6e6Xv/94j91/UaFx/udzjb9/f9mux/z+czIOO3KP6G4Oas16q252pR7SNLDgfbk6Ytejwl99e0FOvHVeY/3ORytmr1so4a9NktDJiYrZckGtdjsSkhbqwERURodlao71fUed9B+tKNAg/8xU+Ni5mv3oZMa/I+Zklx/I35tzj7Fz1ujYa/NUva2fH20o0BvJ6/SS2/N1Q8/3pbk2iAnz1ql4a+naMjEZOXu+7xX5+pJZaln0Jb/XKncfZ9r2rtr9deXp+npEbGmD6nbTF9AAAAAEP4KCj1HWtN3zwZqxwHXWPivvdb99yivaNa+Izbl7be5x/CSsmafA21Jmfnj7Q4Dbegx0AJ9i9UK5UB7+Hix17Da0dqcfZo+f50k6dnRU/XBlv2SXHe3DhwcrQfNNvdA62h16tnRU3W1/JYk1/D7zMg42e0Oj+957OQ3ikleqfb2drW1tWtl9i6dL72mhqZ7Gjgkxv15HQPt9RsVemZknGrqGmW3O9xDqyRNn79OsbMz1d7erp9v39XvXpikTz/7SpL04fZ8LcraJsl1h/D8lVskSbcqqzVwSIyqaxt7db6eRJYZaJ3ONl0su64Pt+crOmmF/vj3WA2dmGz6sLrN9AUEAAAAfUdRSUvY/7XvyjrrD7TlFc1KXmD3eZfs3gJb2N09W1kX3gNtWXl4/rpnoAX6FqsVyoF2V/4JRSet6PJjUdOXS3INtFeu33R/7E+jpuj2nRqPRxwsytyq1Zv2SJJy932uuembvb7n+dIf9Pyr0/VF8SXZOo23XQ20u/JPKCFtrfv9n395zmOgzdt/XJJrWxwQEeV+bu7hz4sVP2+N+2MOR6v7e4x4Y7b79aWskNGB9qdbVdpxoFAJaWv1zMg4/fXlaZq15EPtK/hSFVW1Jg/N70xfQAAAAACrsfpA29WjDI6edB1veUX4jeXhONCWlDUrLePh+c/MDp9jr6xjoAX6GqsVyoH25OmLeumtuT4/9sGW/UpamC3JNdDerLjr/ljH250H2m8uXnE/fmDSjOX68utLPr/vsZNnFZmYoT/+PVZp7+XoQbOty4F2U+4hvbtii/v9335X7jHQdn5hsQERUXrQ3CJJOlJ4RnFzVktyPYZhytzVGj95oSbGLdb/Dn1b50t/6NmJeoIZG2hfHJ+kp0e8o8R3P1Duvs917cZtU4cSUKYvIAAAAIDVWH2gXZrVxQugTXMoLcMRVsNsh3AcaFPTrffieD3BQAv0LVYrlANtbX2T/jBsssfdsZLU1taul96aq/xjRZL8G2jb29v1wvgZOnn6ogaNSej29aUam+4rOmmFtuw60uVAm7f/uGYsWOd+f+Gp8z0eaMdMSvX4vKETkxloJWlO+ib97ZVE/WVsghLf/UA7Py3UT7eqTB1OrzN9AQEAAACsxuoD7aOPMegYZ8PtsQadhdtAW17h+3m/S7PCZ+xkoAX6FqsVyoFWktZtOaDhr6fo7IUrstkdulvToJmLsjV+8kK1tbVL8m+glaSV2bs0+B8zPe567Vzuvs+1/uMDam9vV3t7u1KXf6SPdx3VvfsP9LsXJulBs03Sw4G29Psf9dyYeDU03ZPD0arY2Vk9HmifHT1VZVd/kiQVFH6tP/49VqfOlPb6fAU748+gvXbjtrbvOabY2Vl6avhkvTg+SWnv5ejw8WL3MyOsnOkLCAAAAGA1Vh9oyyu876KN7jTQrtsSfoNbuA20lXUMtACsxWqFeqBtb2/X1t2f6e//N1sDB0frL2MTNH/lFjU23Xd/jr8D7Xc//KQBEVE6fe6yzx+rvvGe4uas1ovjkzRkYrKSFq53j6oxySv1p1FT9O135e6BVnKNvi+Mn6HXpizRzk8LNeKNng20Oz8t1AvjZ2hczHxt/eQzvb95r/4yNkGVFnnEqvGBtnOOVqfOXrii7G35Gv56igZERJk+pG4zfQEBAAAArMbqA22HY1/YFD3NoehHRkLuoA2NnB3edzIXlbQYPy5/MdACfYvV6hhc7y+M90ugA20wq6lrVMS46XI624L2PTvu4pWksxeuaMI7C4P2va2QZQZa9wuGpa7Rn0dN0cDB0frnjPdMH1a3mb6AAAAAAFYTLgNtZZ334w5S03kGbSgVFLZoaZZdq7JtYTXOVtYx0AJ9jdXqGFx7ynTt7e1Key9HG7YfDNr3rG+8p6dHvKPrNyrU3t6ud1dsUfra3KB9fytkbKBtuverjp38RgtWfazB/5ipARFRGjIxWYuytulE0QX38yasnukLCAAAAGA14TTQVtY1q6SsWbn7bSosCo/j9SVcB9pwxkAL9C1Wy99HGzzKZLX1TYoYN10JqWvUYrMH9XvvPvgfDZmYrMETkhQ/b40amu4F9fubzthA+1/PT9LAITGKSV6pbXuOqfznSlOHElCmLyAAAADoX8ormi1/p2G4DbR9gRUH2vIK12MMkhfYlZbh0L4jwT22lettWpJpN2buEtc5T5xr7hg6XPre2tcEIBwQmczYQHvy9EU1twR3TTeR6QsIAAAA+o/c/Q//On78bIcKCq05yjDQhp4VB9pV2d7PmA3mr9mEOXav799fnblozWsBEE6ITGaZZ9A+Wun3P+rQv0+bPoxuM30BAQAAQP9QWOQ9dsXPdqis3HrDDANt6FlxoPU1JC7NCt7jADoG2vc32bUux9YvTZtnZ6AFgoTIZJYdaJet+ZcGDokxfRjdZvoCAgAAgP6h892zVn/Vewba0OufA63re368q0W5+/qnpHddA+3XF6x3HQDCDZHJLDvQhkumLyAAAADoHxho8ThWHGh9PeJgb0Hwjo+BloEWCCar1bI7Ry17tvQYhWeWG2gbmu6poqrW9GH4nekLCAAAAPqH8opmxac8ubsRg6k/DrSmXyQqZaFrqJueav4Fq777scX9a3bdFtdxxac4lLs/uL8eGGgZaIFgslqNEwb1CoVnxgbaFptdae/l6N9fnHO/76MdBfrdC5M0ICJK42Lmq6HpnqnD8zvTFxAAAAD0H+UVzcrZYdPSLHtQ70QMtv440Jp+kSgruXQ1ND/vDLQMtEAwWa2OwfX+gni/MNCGd8YG2vfW79Tw11N0+eoNSdLNirv67xf/qX0FX+pq+S29NmWJFmVtM3V4fmf6AgIAAABYTX8eaE2/aJRJ8Sl2BloGWiBsWa2OwbVld45fgjXQvjF1qV7+Z5rH+65cv6nhr6dIkhJS1+jQv0/36Hs+MzJOVTX1AR/b4zpw9JT7n58aPvmJ/3jBzthA+/yr03X2whX325vzDisyMcP99tkLV/Ti+CQTh9ajTF9AAAAAAKvpzwOt6cHOpGlzOgba0IyFDLQMtEAwWS0TA+31GxWKnZ2pKXNX62LZdff7rT7Qtre3668vT3O/Xdfwi9ra2p/Yj/ckMjbQ/u6FSWpsuu9+e8rc1dqUe8j99t2aBv33i/80cWg9yvQFBAAAALAaBtr+iYGWgRYIZ1bLxEC78sNdOnD0lAoKv/b4W+3+DLSxs7O0asMnejt5lSa8s1Bp7+XI0eqU9HCgvfRduUa+Ocf9NZ3fLvrmssZMStWIN1I0OnKevvz6kteP4XC0avayjRr22iwNmZislCUb1GKzKyFtrQZERGl0VKruVNd73EH70Y4CDf7HTI2Lma/dh05q8D9muv891ubsU/y8NRr22ixlb8vXRzsK9HbyKr301lz98ONtSVJtfZMmz1ql4a+naMjEZOXu+zygc9xVxgbaP4+aott3aiRJjlan/jRqis5duur++I837+jZl6aaOjy/M30BAQAAAKyGgbZ/YqBloAXCmdUK9UDrdLZp2GuzdP/XZjW32DV4QpLsdock/wbahNQ1emPqUrU6nWpra9frU5aooPBrSf4NtKOjUnW+9AdJ0tXyW5q/covXj3Hs5DeKSV6p9vZ2tbW1a2X2Lp0vvaaGpnsaOCTG/XkdA+31GxV6ZmScauoaZbc73EOrJE2fv06xszPV3t6un2/f1e9emKRPP/tKkvTh9nz3QJ2+Ntd9LLcqqzVwSIyqaxt7fZ67ythAG520Qtnb8iVJu/JP6C9jE9TqdLo/vnX3Z3pj6lJTh+d3pi8gAAAAgNUw0PZPDLQMtEA4s1qhHmi//PqSZi7Kdr89N32z/v3FOUn+D7Tb9xxzv/3Blv1asnq7JP8G2uikFVq8ertuVVZ3eYznS3/Q869O1xfFl2T7bTyW1OVAuyv/hBLS1rrf//mX5zwG2rz9xyW5xukBEVGqa/hFknT482LFz1vj/pjD0er+HiPemK0Ll691eYy9zdhA+83FK/qfoW9r0JgEDYiI0r6CL90f2/lpoQYOiXEv7VbO9AUEAAAAsBoG2v6JgZaBFghnVivUA23SwvV6avhkPTMyTs+MjNNTwydr6rz3Jfk/0HZ+oa6Pdx3VrCUfSvJvoK2tb9LS9/+liHHTNTpynk6d+dbncR47eVaRiRn6499jlfZejh4027ocaDflHtK7Kx7eifvtd+UeA23n4x0QEaUHzS2SpCOFZxQ3Z7X7333K3NUaP3mhJsYt1v8Ofdt9p28wMzbQSq7HGBw4ekqXr97weP/Hu45q/5Evu/gqa2X6AgIAABBqd67eUN2yFDVOGKSGuHG6W3jc+DHBWqw20O4tsGlZll3Lsuzad8Tm9b5te2xKS7dr3jK7Fq6wa/5y1/vz9vt//Ay0DLQMtEB4s1qhHGh/uf9Ag8YkeNwp2up06q8vT1N94z2/B9qPdx11v7160x4tff9fkh4OtKVXbmjEG7Pdn1P0zWWPwbajE1+d1x//Hiuns63LY25suq/opBXasutIlwNt3v7jmrFgnfv9hafO93igHTMp1ePzhk5M7nsDbV/I9AUEAAAg1BpiX3H/IaBDVXGx8eOCdVhpoN1bYHOPpx0y1tq93hc9rdM//yYm0aFcP0daBloGWgZaILxZrVAOtLvyT3g83qCjuemblbvvc78H2olxi9Vis6vFZtfoqFQdO3lW0sOBtqrG9QJeD5ptkqRFmVs18s05am6xa2LcYvcLe92qrNYzI+PU1tbu8WPk7vtc6z8+oPb2drW3t0T4VAcAACAASURBVCt1+Uf6eNdR3bv/QL97YZL7+3YMtKXf/6jnxsSroemeHI5Wxc7O6vFA++zoqSq7+pMkqaDwa/3x77E6daa0V+f5cRkfaMuu/qT3N+9V8uIPNXvpRm3YflA/375r+rD8zvQFBAAAIJSqiou9xtnGCYNUuyHzif64dalTfP64oVKXOsX4uQ8nVhpok+d7j7Ex0x3eA+1j3vbnx2GgZaBloAXCm9UK5UA7MW6xjhSe8Xp/4anzGj95od8D7aoNn+i1KUv0wvgZenfFFvcdsB0DrSQtX7dDYyelKXZ2lrbu/kx//z/XHbUHjp7SiDdma+jEZI2OnKfjp0q8foz6xnuKm7NaL45P0pCJyUpauN49qsYkr9SfRk3Rt9+VuwdaSVqZvUsvjJ+h16Ys0c5PCzXijZ4NtDs/LdQL42doXMx8bf3kM72/ea/+MjZBlVW1vTjTXWd0oM3auFsDIqI0dlKaZi7K1owF6zRkYrJ+98Ikbc47bPLQ/M70BQQAACCUGGjhDysNtPEp3mNszLTu38dAy0AbDhhogeCxWh3/G+T+wni/BPoM2kDrarg1Xee7cM9euKIJ7yw0dzCPydhA+/mX5zRwcLROnr7o8f62tnbtyj+h/3p+ks+13GqZvoAAAACEWn1SpPcjDi6WGj+urtRs3aDGCYNUs3WD8WPpL6w00Obs8H7EQcpCHwNtF4Pt0iy7Xz8OAy0DLQMtEN6sVm//o7KprDjQ1jfe09Mj3tH1GxVqb2/Xuyu2KH1trunD8pmxgTY6aYVWrN/Z5cffW79TbyYsC+ER9S7TFxAAAIBQu3P1huqWzlJD5DDVJ0Va/vmzDLShZ6WBtryiWauyH460q7JtKiv3fF90p2fQvt3pn5dm2VVe4d+Pw0DLQMtAC4Q3q+Xvow0eZSorDrSStPvgfzRkYrIGT0hS/Lw1ami6Z/qQfGZsoP3zqCkq+bbrVz27cv2m/jBscgiPqHeZvoAAAADg8RhoQ89KA21XCotsSsv4bYhdbdNHO2w6Ufxw5PJ3mO3AQMtAy0ALhDcikxkbaAdERD32gbpVNfUaEBEVugPqZaYvIAAAAHg8BtrQs/pAW1TS4vVIg7QM/5412xUGWgZaBlogvBGZzOhA2/GKar5ioAUAAEAwMNCGnlUH2oLCFuXtt2nBe76fO1tS1vvvzUDLQMtAC4Q3IpMZHWijk1Yobs5qn6KTVjDQAgAAIGBWHmjLylu074hNefttKivvOwOLFQfadVvs3b4wGAMtA224YaAFgofIZMYG2kWZW/1i9UxfQAAAAPB4Vh1oS8qaFT/bcyAsLLLOoBkIqw20JWXNnmPsNO9xNjWdRxww0IYfBlogeKxW/lGnDn7W1mMUnhkbaPtKpi8gAAAAeDyrDrSrsm1eI2HyArvx4woGqw20hUXe5zpmmkOJ81z/vCo78DuYGWgZaBlogfBmtbr7Wx9dofDM2EBbW9/kF6tn+gICAACAx7PqQBuf4vsPVqaPKxisNtB63UH7m4LC4I1aDLQMtAy0QHizWh2/r6z4oNUvDLThndFn0PrD6pm+gAAAAODxrDbQFpW0aN0Wu6anej8TNdC/Zm8VVhtoK+ualbvf8y7adVuCe7cyAy0DLQMtEN6sVsfvK/lHnX4JdKA9UXRBo96aq2dGxikyMUM/3aqSJNnsDs1J36S/jE3Q0InJ2n3wP+6vuVVZrajpy/XnUVM0Lma+zpdekyTZ7Q4NiIjSwCExbkkL1wd2Qvp4xgbay1dv+MXqmb6AAAAA4PGsNNAWlbS4/wAV/cizUONTAnuRKiux4kBbWee6k7awyPZEzjMDLQMtAy0Q3qxWKAfaqpp6PTMyTudLr6mtrV1rPtqnSTOWS5LWf3xAMxasU4vNroqqWkWMm64ffrwtSYpMzNC2PcfkdLbp1JlSRYybLkerU7X1TXpuTHzQzkV/yNLPoK2sqjV9CN1m+gICAACAx7PSQLs0y/Ou2Y6RtqCwReUV5s9VsFh1oH2SGGgZaBlogfBmtUI90B47edb99vfXftbzr06XJI2OnKdL35W7P7Zi/U6t//iA6hp+0dMjYtXqdLo/9urbC3T2whXduHlHw19P6eW/ef/McgOt3e7Q0RNnFJO8kkccAAAAIGBWHmj70nNnO2Og7Z8YaBlogXBmtUL9iIPO5ew8opmLsiVJv38xWk2//Or+2Cf5JzRryYc6X3pNYyeleXzdzEXZ2n3opL79rlx/eyVRk2Ys16AxCYqeucL9yATynWUG2qvlt5S+Nk/PvjRVf/x7rBau2qrS7380fVjdZvoCAgCPKiyyKW+/S1+6GwsAestKA23ODpvXOOvPc2cLCluUt9+mfUfC49rOQNs/MdAy0ALhzGqZGmi/OluqoROTVVVTL0erUwMiotRis7s/nn+sSAmpa3T63GVNjF3k8bVp7+Vo+55jKv+pQgtXbdWPN+/IZndo9aY9XmMueWZ0oL3/a7N2H/yP/vHOIv3uhUmaPGuVfv9itMp/rjR5WD3K9AUEADp79AVQ4mc7VFbO/2APhqriYt09Uag7V28YPxYAPWOlgba8olmrsm0e42x3z0Ndt8Xzrtu0DMdjR9obd1q0JNNuVPIC1zEnzzd7HEsy7bpREZrfBxloGWgZaIHwZrVMDLSHjxdr5JtzdLPirvt9v38xWg1N99xv7/y0ULOXbtSFy9c0OirV4+uTFq7X3sNfeH1fR6tTAwdHq7q2MaDj68sZG2jnpm/WH4ZN1ivR72rrJ5+ptr5JkvTU8MkevxCsnukLCAB0KK9o9rorKybRoZwdob17aWmW3aiCE8H/961Pm6LGCYPcqg9/avznG4D/rDTQdigrb/HrhapKynxf2/cWdH2tK7/d4vNr+qvrtxloGWj7LgZaIHisVqgH2hNfndfYSWnufa6jsZPSdObC9+6356/cok25h9TQdE9/GDZZzS0P764d8UaKLly+ppq6RpX/VOF+v93u0O9emOQx9JJnxgbaARFRmrkoW9du3PZ4PwMtAPRO51cG72xplj2kx2H6D+K5+4L7B5Tq3Xke42wH7qQFwocVB1p/FRZ5PxIhJtGh3P3dD7STkxxal2Prt96ZwUDLQNv3MdACwWO1QjnQNt37VS+Mn6GKqlqvj23YflCxszPVYrPr+o0KPTcmXj/fdu120UkrtGH7QTmdbTp8vFhDJybL6WzTqTPfavCEJFVU1crpbNPanH2aGLc4oPPR1zM20J67dFWzl23U/w59230XbU1dIwMtAAQgPqVnd1k9CadLbL2Wusz1h4x9R3r/Pcp+DO4fUGo3ZPocaKuKi43/fAPwTzgPtGXlvv/jW2FR19f267ddY2HszP49FsbO/G2gvRWanysGWgZaExhogeCxWqEcaA8cPaUBEVEaOCTGQ2PTfdntDs1N36xBYxI07LVZyj9W5P66iqpaRSZm6E+jpmj85IUqu/qT+2Ob8w7r+Ven69nRUzV51iqf4y89zPiLhP1y/4Hy9h/XK9Hv6ncvTNKAiCjtyj8huz04rzz3pDN9AQGAzgqLbB4j7dIse1i8mEyHJZmuP2ScLrHOi8p0dQdt1cVS48cGwD/hPNBW1rleIKzzOLtuy+P/ZgQDrQsDbegx0IYeAy0QPFar4/eVFR+0+iXQRxyQ2YwPtJ0rvXJDC1dt1dMjYvXsS1OVvjbP9CF1m+kLCAA8qqy8RUUlLqaPpaesONBW3qpWfVKkxzhbuyHT/HEB8Fu4D7SVdQ+v7f48t5aB1oWBNvQYaEOPgRYIHqvV20e+UXhmqYG2owfNNu0/8qVen7LE9KF0m+kLCAD0JZYcaOuaVXmrWtW781SzbaPuFh43fzwAeqQvDLQ9wUDrwkAbegy0ocdACwSP1fL30QaPovDMkgNtOGX6AgIAfYllB1qgv7lVrarir80fR5Aw0PZPDLShx0Abegy0QPAQmcyyA+0HW/Zr+Osppg+j20xfQACgL2GgBczzeGG8yOF94q5xBtr+iYE29BhoQ4+BFggeIpNZdqD96mypNucdNn0Y3Wb6AgIAfQkDLWDW3cLj3i+KFzlclbeqjR9bIBho+ycG2tDrbqDN3W9T8gK74mc7lLPDFvALmTLQMtACwURkMssOtOGS6QsIAPQlDLSAWR53z3ZSVVxs/NgCwUDbPzHQht7jBtq9BTavF7LJzA7s93sGWgZaIJiITGaJgfbK9Zs6UnhGB46e8mL1TF9AAKAvYaAFzKrZttH3QHux1PixBfTvxUDbLzHQht7jBtqlWXafrzYeyDlnoGWgBYLJauUfdergZ209RuGZ8YF21YZPNCAiSn97JVHDX0/xYvVMX0AAoC9hoAUMu1WthshhHuNsfdoU88cVIAba/omBNvQYaEOPgRYIHqvl65rpDwrPjA+0Tw2frFNnvjV9GL3O9AUEAPoSBlrAvDtXb6h2Q6bq06aoenee8eMJBgba/omBNvR6+oiDVTziIGAMtEDwWK2Oa+WKD1r9wkAb3hkfaP80aooeNLeYPoxeZ/oCAgB9CQMtgCeBgbZ/YqANPb9eJGy+XfEpvEhYsDDQAsFjtTp+X8k/6vRLoAPtiaILGvXWXD0zMk6RiRn66VaVJMlmd2hO+ib9ZWyChk5M1u6D//H4usPHi/X0iHd07OQ3Hu8/daZUYyal6tmXpmryrFWqrW/q9bH1h4wPtOu2HNDHu46aPoxeZ/oCAgB9CQMtgCeBgbZ/YqANve4GWl/Kylu0botdy7Ls2nekZ7//M9Ay0ALBZLVCOdBW1dTrmZFxOl96TW1t7Vrz0T5NmrFckrT+4wOasWCdWmx2VVTVKmLcdP3w421J0tbdnykhdY0mxi7yGGjv3X+g58bE62LZdbU6nVrz0T7NWLAu8JPShzMy0MbNWe2WkLZWg8YkaNRbcxU7O8vjY3FzVps4vB5l+gICAH0JAy2AJ4GBtn/qbqAtr2hWZvbDv3afsyOw33sYaHs+0JaVtyh+tudjDzJ78NgDBloGWiCYrFaoB9pjJ8+63/7+2s96/tXpkqTRkfN06bty98dWrN+p9R8fkCRduX5T7e3tik5a4THQHjt5VpNnrXK/fe/+Aw0cEiO7nUcwdJWRgTZr426/WT3TFxAA6EsYaAE8CQy0/VN3A+26Ld4vWpW7v/e//zDQ9nygzd3v/VzamESHSsr8O+cMtAy0QDBZrVA/4qBzOTuPaOaibEnS71+MVtMvv7o/9kn+Cc1a8qHH5z860G781yGlr831+Jy/vjzN/dgE8s74Iw7Kf670+X6b3aGSb38I8dH0PNMXEADoSxhoAeuq3ZCpxsjhaowcrtoNWaq8VW38mPzFQNs/dTfQ+hoG0zIcvT7vDLQ9H2h9jeQxiQ4Vlfj39Qy0DLRAMFktUwPtV2dLNXRisqpq6uVodWpARJRabHb3x/OPFSkhdY3H1zw60L6/ea8yN3jedDl0YrKuXL8Z8PH11YwPtE8Nn+zz/Q1N9/SHYb4/ZqVMX0AAoC9hoAWsqXZDphonDPJQuyHT+HH5i4G2f+rNQJuazkAbiJ4OtAWFLV4/B/Ep/v8cMNAy0ALBZLVMDLSHjxdr5JtzdLPirvt9v38xWg1N99xv7/y0ULOXbvT4ukcH2k25h7T0/X95fM6gMQke35c8MzbQ7j50UuMnL9R/PT9J4ycv9PL8q9M1/PWUkB7TmQvfa+Sbc/T0iHcUOztLv9x/IEm6VVmtqOnL9edRUzQuZr7Ol15zf43pCwgA9CUMtIA1NcS+4jXQNkYON35c/mKg7Z+6G2hzdnj/9fq9BTziIBC9eZGwzj8P8Sn+3z1bWcdAm7uPgRYIJqsV6oH2xFfnNXZSmmrrmzzeP3ZSms5c+N799vyVW7Qp95DH5zw60H7+5Tm9NS3d/fbdmgb9YdhktTqdvT6+vp6xgba5xa7T5y5r4OBobd9zzMvuQyd1p7o+ZMfTdO9X/fXlaTp74YpsdofS1+bqk/wTkqTIxAxt23NMTmebTp0pVcS46XK0un5Rmb6AAECHsvIWlZWH9/84Z6CFl1vVqtm2UfWpU1W9Jy+s/lp9X+JroG2IHGb8uPzFQNs/dTfQVta5noGamu7Q0ix7QONsZR0Dbe6+3g20lXWuF2zz97mznTHQMtACwWS1QjnQNt37VS+Mn6GKqlqvj23YflCxszPVYrPr+o0KPTcmXj/f9rwT9tGB9tcHLXpuTLy+Pv+dWp1OLV69XXPTN/fq2PpLxh9xUHyuzPQhSJIOHD3l9ZBjSapr+EVPj4j1WPlffXuBzl64IomBFoB55RXNWpb18BluaRkOlVeYP67eYKCFh1vVaogb5zEK1s+MNH9c/VDNto1eA23Nto3Gj8vv42eg7Zf8GWiDiYG29wNtbzHQMtACwWS1QjnQHjh6SgMiojRwSIyHxqb7stsdmpu+WYPGJGjYa7OUf6zI/XWvvr1AA4fE6L+en6TfvxitgUNidOzkWUnS6XOXNTpynp59aaqmzF2txqb7QTkvfTUjA+30+et0/UaF+58fJ1RlfJCnJau3K3rmCg2ZmKy56Zt1/9dmnS+9prGT0jw+d+aibO0+dFISAy0A83y9wMaq7PAcOBlo0Vn14U+9/1r9hEGqKi42fmx1qVONqvkw9M9/rdm2UQ2xr6gh9pWwGmcr6xho+ysG2tBjoA09BlogeKxWx+8rKz5o9UuwXiSMzGRkoM34IM/9YOCMD/IeK1TNy9isEW+k6E51vWx2h6bPX6f0tbk6fe6yJsYu8vjctPdytH3PMUlS4307AIRU068ODwmzvV/kJCbR4fV54SB9tevYz5e2Gj8WWEDeZp8DbdOxQ8aPzddxhdS7U42fg3DSmLvJdd5yNxk/llC4U+NwD7Sf5Nv7rbjfBtrK6tCc947ff03/e5s0ba5rLPzhRhD+/9aP/0007beB9l97zf+7mzJzvuscXLhs/n+jAuHOavn6M54/KDwz/oiDr89/J7vd/C+g9LV5Wr5uh/vtkm9/0JhJqbpw+ZpGR6V6fG7SwvXae/gLSdKvLa0AYNT85a1evymnLHAYP67eyHjfdfyXyswfC8y7f+Ebn+Pk/Vu3LHFsvdU0M1KNEwbpXv6u3n+fH64YPwfh5JcdrrH/lx2bjR9LKFTXt7oH2j2H+q+OgfZuXWjOe8fvwenv2/utuGTXOfjxpjMk5zxxruvHy9tv/tebKckLXOeg9Ir5aw8Q7qyWv482eBSFZ8YH2mdfmqr/Hfq2YpJX6qMdBSq7+pPa2tpDfhzb9xzTvIyHDywu+fYHjYuZr4ame/rDsMlqbnn4X1NGvJGiC5evSeIRBwDMKywK7qtQm8QjDvCo6t15Hi9KVX34U+PHFKi61ClqnDBId4u/Nn4s/QWPOOifTD3iADzigEccAOGJyGTGB9r29nZdu3Fbu/JPaNaSD/XC+Bl69qWpmj5/nXblnwjZcdTWN+nZ0VN1tfyWHK1OJS3M1soPd0lyvRrdhu0H5XS26fDxYg2dmCyns00SAy0AaygqadGqbJtWZdtUWBS+4yYDLXy6VW2J584GCwNt6DHQ9k+mBtolmbZ+K25mxzNoQ/P7OAMtAy0QTEQmMz7QPtqD5hbtPfyFXnprrgZERIX0x/6i+JIGT0jSoDEJmrXkQ/36oEWSVFFVq8jEDP1p1BSNn7xQZVd/cn+N6QsIAPQlDLToDxhoQ4+Btn/iRcJCjxcJCz0GWiB4iExmfKCta/hFn395TsvX7dCEdxbq2ZemKiZ5pdZ/fEBF31w2fXjdZvoCAgB9CQMt+gMG2tBjoO2fGGhDj4E29BhogeAhMpnxgXZARJReemuutn7yma6W3zLy/NlAMn0BAYC+hIEW/UF/G2irLl1WXepUoxrixrmeYxw3zvix+DpH5RXNytlhU/ICu5IX2JW3P7BrIAOtCwNt6DHQhh4DLRA8Viv/qFMHP2vrMQrPjA+0H+0oUOzsTD07eqomxi3WyuxdOvHVeTU23Td9aH5l+gICAH0JAy36AysOtHeu3lBV8dequlga9O99t/hr9wu9YZDPc5SzI7gv9shA6xKMgTZ3v01pGQ6lZTi6Hc4ZaBloTWCgBYLHavX2hRopPDM+0HbkdLbp8tUb2rr7M02d976eHT1VoyPnmT6sbjN9AQGAvoSBFv2B1Qba6t15HgNi7YasoH7/joG2Ifol1WUu7LceN9D6+sNVWoaj1+ecgdYl0IE2d7/3cJ77mJGWgZaB1gQGWiB4rFbH7ysrPmj1CwNteGeZgfZBs01nLnyvDdsP6p2UTA0ak6CX3ppr+rC6zfQFBAD6EgZa9AdWGmirLpb6vMuzqrg4aD+Ge6CNfUU1Wzf0Wz0daFPTXWPgsiy7lmXZVVjk/3WRgdYl0IE2eb7d6+cleYG9y89noGWgNYGBFggeq9Xx+0r+UadfAh1oTxRd0Ki35uqZkXGKTMzQT7eqJEk2u0Nz0jfpL2MTNHRisnYf/I/H1x0+XqynR7yjYye/cb/PbndoQESUBg6JcUtauL7Xx9YfMj7Qpq/N04R3Fuq/X/ynhk5M1rsrtujw8WLV1jeZPjS/Mn0BAYC+JBwG2ruFx1WfOlX1qVNVs22j8eNB+LHSQPvo3bMdgvlrm4G2+4HW1yMOFq7wHgf9HWkZaF0CHWjjU7yH8/iUru9sZqBloDWBgRYIHqsVyoG2qqZez4yM0/nSa2pra9eaj/Zp0ozlkqT1Hx/QjAXr1GKzq6KqVhHjpuuHH29Lkrbu/kwJqWs0MXaRx0BbW9+k58bEB34S+lHGB9rZyzZq/5EvVVlVa/pQepXpCwgA9CVWH2jvFh73GrJqN2QaPy6EFysNtFXFxT4H2rq576h+ZqTqU6cGfDctA233A23Hi4TFp7gGQF9/tT4m0aGlWV3fvdkZA61LoAOtr+E8ZwePOHgcBtrQY6AFgsdqhXqgPXbyrPvt76/9rOdfnS5JGh05T5e+K3d/bMX6nVr/8QFJ0pXrN9Xe3q7opBUeA+2Nm3c0/PWUXh1Lf834QNtVv9x/oKqaetOH0W2mLyAA0JdYfaCtT5vic8yq3ZCl+tSpql29WHeu3gj5cZl+VfrqgnzjPzfhxEoDbWWdj1/Xbw72fuRBAC8exkDb/UD7qPIK3489YKDtmUAH2o7hvPM4W17R9ecz0DLQmsBACwSP1Qr1Iw46l7PziGYuypYk/f7FaDX98qv7Y5/kn9CsJR96fP6jA+2335Xrb68katKM5Ro0JkHRM1e4H5lAvrPsQLsoc6sGRESZPoxuM30BAYC+xPIDbVJk96/SHjlclbeqQ3pcpl+VvmbrBuM/N+HEagNtZZ3rUQe1GzJVs2mNGsc/F9Q7xRloez7QVtY1a2mW9yMOHvcCVZ0x0LoEOtD2FAMtA60JDLRA8FgtUwPtV2dLNXRisqpq6uVodWpARJRabHb3x/OPFSkhdY3H1zw60Jb/VKGFq7bqx5t3ZLM7tHrTHo2dlBbwsfXlLDvQ3r5T43ELtVUzfQEBgL7E6gNtzbaNPgZK7zGreneeX9+v6tLloNzBanqgbYgbF/C/Q82HPRsAq4qLVZ86VQ1x41S7enHIR/FAWHGg7Xxefd4lnrW419+TgbZ3A215hedI+7i/Wv8oBloXBtrQY6ANPQZaIHislomB9vDxYo18c45uVtx1v+/3L0aroeme++2dnxZq9tKNHl/36ED7aI5WpwYOjlZ1bWNAx9eXMz7Q/mVsguob73X/iRbN9AUEAPoSqw+0lXXNqt2Q6TnO+rjb0N8XWOoYrjBIdalT/P45qLpY6vX19TMjjf/a8JeVB9rKumY1xL7idX7vFh7v9fdjoO3dQBsIBloXBtrQY6ANPQZaIHisVqgH2hNfndfYSWmqrW/yeP/YSWk6c+F799vzV27RptxDHp/z6EBbU9eo8p8q3G/b7Q797oVJHkMveWZ8oI2ft0Y7DhSaPoxeZ/oCAgB9STgMtJV1nZ7ZOf45Nfi4g9bf53W6h6vol1SXubBfql8wvccDredI3um8B/hiVqFi9YG26mKp+3EeDZHD/L4jvNtf5wy0DLQhxkAbegy0ocdACwSP1QrlQNt071e9MH6GKqpqvT62YftBxc7OVIvNrus3KvTcmHj9fPuux+c8OtCeOvOtBk9IUkVVrZzONq3N2aeJcYt7dWz9JeMD7byMzfrry9M04o0UvZ28SnFzVnuweqYvIADQl4TLQFu3dNbDYbDTSNsQOUzVhz/1+/swXG1QXeZCBto+jl/nDLSmMNCGHgNt6DHQAsFjtUI50B44ekoDIqI0cEiMh8am+7LbHZqbvlmDxiRo2GuzlH+syP11r769QAOHxOi/np+k378YrYFDYnTs5FlJ0ua8w3r+1el6dvRUTZ61yuf4Sw8zPtC+t36nsjbu7pLVM30BAYC+JFwGWl9/xb72g4wefx+Gq94NtL6ek9oQ+4rxXxf+YqDtnxhoQ4+BNvQYaEOPgRYIHqvV8fvKig9a/RKsFwkjMxkfaMM90xcQAOhLwmWgraxzjbS1GzJVm7XY/XzOqoulunuiUHeu3vDrezBc9W6graxrVvXhT9UQOcz1/Nm0KX4/VsIKGGj7Jwba0GOgDT0G2tBjoAWCx2p1/L7SUxSeWWKg/fSzrxSZmKHBE5IkSS02u7K35avV6TR8ZN1n+gICAMFS9mOL8g7YjUpe4PpDxrotNqPHUXCi5wNxbdZijzs6/XnUAcNV7wfacMZA2z8x0IYeA23oMdCGHgMtEDxWy99HGzyKwjPjA+3WTz7T4AlJ2px3WAMioiRJtfVNeiX6Xa3etMfswfmR6QsIAATL6RJbr/8rbV+zJNPeo3NXffhTn89E7e5OWoYrBlrTxxIK/DpnoDWFgTb0GGhDj4EWCB4ikxkfaP/2SqLKf6qQJPdAK0m3Kqs1+B8zDR2V/5m+gABAsHQMtPEpdi3JtPVLqel2vwbaquJi1WzbqLsnClVZ1/sXrWK4YqA1fSyhRLdkRwAAIABJREFUwK9zBlpTuhpoS8qalZbx8D/K5e0PzmN1GGgZaE1goAWCh8hkxgfap4ZPVltbuyTPgba5xa7/Gfq2oaPyP9MXEAAIlo6Bdua7duN/2DBlXY6t24H20UcZ1KdOVfXuPN8DbTfPRe0YrsBA25cx0DLQmtLVQJua7v03JwoKAx+3GGgZaE1goAWCh8hkxgfaibGLVFD4taSHA217e7s+3J6vV99eYPDI/Mv0BQQAgoWBtvuBtupiqc9xsXrfLtUnRXq8rzZrcbfnnIE29APtnVs1uvv110bVJ72lxgmDVLM3z/ixhOKcM9Ay0Jria6AtKWv2GmdjEh1alR34XbQMtAy0JjDQAsFDZDLjA+350h/01PDJejNhmQZERCkhba2GvTZLT494R2cufG/68LrN9AUEAIKFgbb7gbarZ83WbNuoylvVqt6dp5ptG/16gbDKOoarmq09fMTBrWpVH85XzbaN3T7ft7tzjp6PhXcLj6s+darqU6e6fs338Jz351/nDLRm+Bpoy8pbfA6067b07NnjvjDQMtCawEALBA+RyYwPtJLrebMfbs/XvIzNWpS1TVs/+Uz1jfdMH5Zfmb6AAECwMNB6DrTVu/NUPzNSDXHjVLshS5W3qru+g9bPQfZRDFc9GGhvVashblzA5919zl9/Xg2xr/RbPR0L7xYe9/p1X7shk1/nDLSW1tUjDlZle78oZlEJjzgIBgba0GOgBYKHyGSWGGgl6Zf7D1T+c6Vu3Lyj+7+Gz/9jmL6AAECwMNA+HGjzUk94/xX8ZSmqrPN+QbC6pbN6fc4ZrvwfaH2+EFvkcM55iMbC+rQpvb4Dl3Peu3MeCAZal64G2vKKZuXssGlpll1Ls+xBGWcr6xhoc/cx0JrAQAsED5HJjA+0FVW1ikzM0ICIKLf/en6SYpJX6m5Ng+nD6zbTFxAACBYG2ocDbVnMVN9j1K1qVda5nkVbs22jqoqLAzrnDFf+D7RdDYQ9/TngnPduLHz0GcsMtE/+nAeCgdalq4H2SWGgZaA1gYEWCB4ikxkfaCe8s1Cpyz/Spe/KdedunW7fqdGZC98rdnaWJsYtNn143Wb6AgIAwcJA6/9AGywMV4HdQdsQOYxzHqKxsGbbRq/zX5/m3wu7cc57d84DwUDrwkAbegy0ocdACwQPkcmMD7R/eyVR7e3tXu//5f4D/c/Qtw0cUc8yfQEBgGBhoH040O6dc7DXY1RPMFz18Bm0nZ6dGvAzaPvxOe/tWNh5JK9Pm+L3f7DgnPf+nPcWA60LA23oMdCGHgMtEDxEJjM+0L769gI9aLZ5vf9Odb1eiX7XwBH1LNMXEAAIFgZazxcJq9m2UQ2Rw1wvhpS1OOh3z1bWMVzVbO3BQFvXrMpb1bpbeFzVu/N05+oNzrmpsbCH/7/AOQ/COe8hBlqXRwfagsIWLcuyKzPbFrTnznbGQMtAawIDLRA8RCYzPtB++tlXmjxrlf79xTl9f+1nlX7/ow5/Xqw3E9KVf6xI127cdrNipi8gABAsDLSeA20ozjnDVQ8HWs55WI6FnPPQn3MGWpfOA23ODpt7QO0Q7JGWgZaB1gQGWiB4iExmfKDt/OJg3bFipi8gABAsDLRBHmhvVauq+GtVXSzt8nMYrhho+8NYyDkP/TlnoHXpPNA+Os7GJDq0NCu4/zGOgZaB1gQGWiB4iExmfKBtaLqnX+4/8IsVM30BAYBgYaAN3kBbVVysxsjh7kGmblmKz89juGKg7Q9jIec89OecgdalY6C9fI2BNlQYaEOPgRYIHiKTGR9oJcnpbNPZC1d04Ogp9/vu/xoe/89h+gICAMHCQBu8gbbj2bUeL2i1O8/r89zDVcwo1WYt6pfqF05noO3jYyHnnIHWlM530Kamew+0ufttQT3vDLQMtCYw0ALBQ2Qy4wPt7Ts1Gv56ip4aPtn9GIOKqlr9adQUlX7/o9mD8yPTFxAACBYG2uAMtFXFxV7jbOOEQapbOsvrczuGKzDQWnYsvFWtmm0bVbNto+4WHuecM9CGlc4DbUmZ50ibs+Px42xZeYvy9tuUs8OmwiL/hlwGWgZaExhogeAhMpnxgTZq+nKtzdknp7PN4zmzefs/V2RihrkD8zPTFxAACBYG2uAMtHeu3vA5QNZuyPT63KpLl1WXOsWo+sihapwwSPUz3jJ6HDUfep+fJ4Gx0P+x8M7VGx6P6micMEg12zZyzhlow0bngbbj3JSVt6i8wvXPufttSl5gV/ICu/J+u5u2sMimlMW9u9uWgZaB1gQGWiB4iExmfKD936Fvy2Z3SJLHQOtodeqPf481dFT+Z/oCAgDBwkDb9UBbVVysmm0bVb0nT5W3qrs9l7UbMj1GrYbIYbpz9Ybxn2Nf6lKnqHHCIN0t/tr4sYQCY6H/Y2Ft1mKf/7Ght+e88fXn1RA7rt9ioA09XwNth9z9Nq8RduU6u89n1Xbo7rwz0DLQmsBACwQPkcmMD7QR46artr5JkudAe+3GbT03Jt7QUfmf6QsIAHSlrLxF+47YlLffprLy7v9HOwOt74G2ZttGz4EqcrhfI2314U9Vm7XYdcehH59vCgNt/+TPWFifNsXnQFt1sbRX5xwMtKH2uIE2eb73GDt5huv/Rk/zPdB293spAy0DrQkMtEDwEJnM+ED73vqdemtaur4u+U4DIqJ05fpNHfx3kYa/nqIlq7ebPrxuM30BAQBfSsqaFT/b8w+W3T1Dj4HWx0B7q9rvxxWEKwba/smfsdDrP078djd4r8959Euqy1zYbzHQhl6vB1of42zy/O4ffcNAy0BrAgMtEDxEJjM+0LbY7Fq4aqv+Z+jbGhARpQERUXp6RKwyN+x2P/rAypm+gACAL6uyvf/qZvKCx//hkoHWe6Dt6gW/6tNC84JWocBA2z/5NRbeqva4i7Yhcpiqios550/ynAcJA61Lbx9xEP3IXbTxKQ6VlHV/3hloGWhNYKAFgofIZMYH2o4cjlZVVNW6H3cQLpm+gACAL77uDOru+XkMtL4fcdAQOcxroK3enWf85zhYGGj7p56MhVXFxa5htpeP6uCc+z7n5RXNytlh07Isu3J22NwvXBUMDLQujxtoK+tc5z8+xTXAdvwc7C2wuX8PXbzSrv8Ut/j9c8NA27OBtqSsWfuO2Pwav7vCQMtACwQTkcksMdDerKjW+o8PaG76ZklSW1u7vrl4xfBR+ZfpCwgA+OLzDtpu/nomA63vgbb68KceI2192hRLP1O2pxho+6dQ3s3JOfc+5+UVzUpe4Pkf0pIX/P/27v29yvrO9///48we59A9nW6ntQdPrWNbba172l20pKiAYhGhCoIHBLUSraUUpDDiAJ0iUqzE1o5xnHEi1TaCA/lWxqZ0pMQYCOCh5mTg/f1hNdGYBQlZi/Veh8fjup7XVc43d+wH8mLlzmDZRloDbaGJBtpyZ6Cd/EC7cv3Y//5Xrp/4ERLFMtAaaKVyBpnSB9rnf703zj6vKWbcdN/oJwnr6j4cf/u5a+Onv2jLvbhJyD5AJKlYHZ39Y15FO5kPzzTQFh9ou3r74vV9+6Nnx/YpfXh3tWegbcwMtLn3vLVt/D+iNc0ZipbW8gwsBtpCHxxo2zv64q7mwp+LsxcMxWNPDkRr20CsXD8YK9cPlvQqzpEMtJMbaNva+4v+9z+Vt8F1f/r1bvvOQNy5ojGbedOfBtqXDbRSqUGm9IH2H75+c/zb87siIkYH2oiIF3e9Ep+/amHSVU1e9gEiSSer82BhBGhpndyHZxpoTz7Q1nMG2sbMQJt7z7e2FB9oN2479SdznGwG2kIfHGgXLht/v5uuH/vltvbSBi4D7eQG2mLP/53qf/8jr6CVV9BK5QgypQ+0f3n+N2N4+HhEjB1oh94bjr86/5tJVzV52QeIJJUrA62BNvtaKpGx0EBbDfe8o7P4Kwg7Or2CtpyNDLT/2d43qYFraXPh7G/v6JvSWGugndxAe7JXkE/lnnsFrVfQSuUMMqUPtBd9dX688tvXImLsQPtvz++K866Yl3RVk5d9gEhSuTLQlj7Q9mzZFEcWzoojN06LQxvWpL9NJ5OBtjEz0Obf85bW/pg9//3H0JTr8QZdvQbakU53oL3x1sHRxyA0zSk8F/h0Pux+5MdlD3aZXXvjyEB76lfDfvhZ+fetmtqrxz2D1jNopXIGmdIH2kd3PBsf/+L18eC6x+Ksc6+Mf976i1h0z7r4y/O/GZt/0pp9eRPKPkAkqVwZaEsbaHu2bBodYEaqhZHWQNuYGWir556X+mH1xTLQFvrgIw6WNg+OG2Snf+jL828bP9ouWj406fue/SHu1dREA21Xb+EfKTZuKzwLeOTrOjr7T+uV5AZaA61UziBT+kAbEdHS+sv4xrfuic985ca4+Os3x8yb74/nXviv7MualOwDRJLKlYG2tIH2yNxp4wbaY9MurMjbbtyvW+EOPbw6/b/fyWYsNNA2wj030Bb64EDbebAvVq4fjHmLB2Np82A88a9jP5nm0ubBuHlp8bFxsvc9+/d794OFP8MW35P/5/hv/3B6Y2Hnwb4xr16+q3lwUs/PN9AaaKVyBpnSB9o33/rjSb9t5NEH1Sz7AJGkcmWgLW2gPXrNpUXHy0q87Qy0k89YaKBthHtuoC30wYH2ZPeqvaNv9DEGxV5lO3v+5Afa7H7ys8KfYQ9tLM8nm6tkK9ePv/cr10/8Z7GB1kArlTPIlD7QfvZrC+JAV8+YrxsePh5rN+2Isz8zPemqJi/7AJGkcmWgLW2gPbx6xbjh8nDzHelvV43NWGigbYR7bqAtNJmB9oO1tY//5G1bW2pn7KzlgXbkecxjxvEFE4/jBloDrVTOIFP6QLvq4e3x8S9eH//1/3VGRMRrB3viq7OWxqe+/K3Y+euO5KubWPYBIknlykBb+icJ++BI27v0pug60JP+dtXYjIUG2ka45wbaQpMdaDs6+2Pl+sInCFv9yECseWQgVq4fHPNs1FqolgfaDz5uYqSFywy0k8lAK5UvyJQ+0EZE/OyZF+Jj/zAr7v3+j+JvLpwR3172ULz9zrvZlzUp2QeIJJUrA23pA62qP2OhgbYR7rmBttBkBtrOg30xe8HYYfBbi8Z+krCRRyBUe7U80G5tGRg30La0Tjw4GmgNtFI5g0xVMdBGROz5ze/iE5fOiYV3/zD7Uk5L9gEiSeXKQGugbYSMhQbaRrjnBtpCkxloiw2DTXOGoun69//3vCW18WdCLQ+0Xb190do2EPetKjTZVy8baA20UjmDTCkD7Q2LVxbt/868M/7sk1fFdYseHP26apd9gEhSuTLQGmgbIWOhgbYR7rmBttBkBtqN24oPtNOvH/vltvbqH79qYaDtPPj+JwSbvWAoNm0r7VoNtAZaqZxBppSBdvn3Nk26apd9gEhSuTLQGmgbIWOhgbYR7rmBttBkBtpinxis6fqhmP6hr6uFxxzUwkB736rxg3gpn4jNQGuglcoZZKqaRxzUquwDRJLKlYHWQNsIGQsNtI1wzw20hSb7ScJaWt8faWfeNPbxBk1zhmJpc238mVALA22xVyuXcn8NtAZaqZxBpqoYaF/c9UrcvXJzzL1tVcy74wfxnR/8S+za+2r2ZU1K9gEiSeXKQGugbYSMhQbaRrjnBtpCkx1oRxp5lWxbe38sbR6Mpc2DsW7zQHQezD+7JpOBtjEz0ErlCzKlD7RrN+2Ivzr/mzHjpvti0T3r4uZla+Pr1y+L//Xpb8TDW36efXkTyj5AJKlcGWgNtI2QsdBA2wj33EBb6HQH2lqvFgZajzgofwZaqXxBpvSB9mOXzIrO/+ka9/XPvbAn/u7imQlXdHqyDxBJKlcGWgNtI2QsNNA2wj030BYy0ObX3tEXm7YNxJPPFMbDzoN9sW7zQMxbPBgLl5U2znb1Gmg3PmaglcoZZEofaD/7tQVFv35wcCg+aqCVpIploDXQNkLGQgNtI9xzA20hA21uW1vGvlp20fKhsj8uwkBroJXKGWRKH2hvvXd9/PvOl8d9/Y8ffybuXrk54YpOT/YBIknlykBroG2EjIWlj4VvtD4dR26cFkevvSwOr26OrgM97rmBtioz0ObV0dk/7lEGpT7OoFgGWgOtVM4gU/pAu2Dpmjj7vKb4/FULY/Yt341rFqyIi746P/73Z6+JGxavHFM1yj5AJDV26za//+qUu5oHS3plioHWQNsIGQtLGwvfaH169MeO1HvXfPfcQFuVGWjzamsvPtDet6rcA21hnHzgocFYuW6gIbv+lsI9eGG3gVYqNciUPtAufeCfY/n3Nk2qapR9gEhq3DZuG/+JNu4q4TMhG2gNtI2QsbC0sfDIopnjBtpjl59zylfRuucGWgNtZaqmgbbzYF+FXkE7WPTXacQMtFLpQab0gbYaff+ffhIf/+L1o18+0NUTV95wd/zdxTPjsqbF8dKeV0e/LfsAkdS4LW0u/k7JVF9Fa6A10NZiPTu2x+HVzXFow5oJP9S+q9dYaKCt3nve1t4fK9cPxsr1g9HWXtrQYqA9vYG2rb0/2tr7y/581EpXTQNtV29ftLSOfRXtwmXlfwbtd74/EHeuGEzr5jsL93zOzXnXMNLLvzHQSqUGmdIH2uPHT8SWJ56Nr85aGp/80g3xsUtmxRXX3hFbnng25Xp+f6A7Pvf/vj1moJ02Z3lsePSpGB4+Hs+9sCfOveyGGHpvOCIMtJLyOtlAO9Wfz0BroK21Dq9eMXYonHah56GWcaDt2bE9Dm1YEz07Hh/zdR8eZ48smumel3jPW9vGf0REa9vURzYD7eQG2o7O/li0/P17Pm/JYLR35J9tU63aBtqu3r5o7yh8srDT+e953eaBmL1gKGYvGIp1mweqejj/+b8XRujvPuTvDVI9BJnSB9pVGx6Pj3/x+nhg7dZ4/Km2ePyptrj/oUfjnM9fF5u2PV3x67nqW3fHz555YXSg7T36VnzkomviveHh0e/zpW8uiRd3vRIRBlpJeRV7h37d5qm/U2agNdDWUq/v21/0lZyHNqw55Y8zFk5uoD0yd9qY+3r4/jtGv+3QhjVxdNoFhefPLr3JKF6Gez5v8fh/cFu0fOr/4Nb5h/dfuXjjrYMN28g9+O0fir+y8L5V5X1UUHbVONCebsUe31TK323OdAZaqb6CTOkD7flXzItXfvvauK/fu29/XPz1myt6Ldt//p/x7WUPxdE33x4daF/a82p84apFY77fjbevGn2Fb/YBIqmxa20biKXNg7Fw2VBs3FbaOzAGWgNtLdW9c2fRgbZ36U2n/HHGwonHwmKvkj12+TnRvXvPlN5W7vnE97zYR0PMnj/1gXbkFbQ69StoZ88v/v2zz7epVg8DbbF/rJi9oHrfJgZaqb6CTOkD7Ucuunr0cQEfNPTecHzkomsqdh3H3nwnPvu1BdF79K0xA+3zv94bV1xz+5jvu+iedfHIo09FRMRb7w5JUkV7u++9M9Lujveiac5Q3LRkKLb8tDFbs6FwD5Y/cObus8rTW4ePxrErLxg3Ir61/V9O/WN3/arwfa+9LN7ctLZhG7lfRe/t5rVFB9q3fvHE1N5e7vmE9/yBNeNHwgfWTP0ceuNI4Sy7em7hXGvUrp5buJfdvcXv0/IHxt/3+Utq9/x/srXwdn/4X2r39zB/yfi3yXUL8v/udbKefb5wjd9fn38tkkoPMqUPtF+5+vbY9uR/jPv6R3c8G1+ecVvFrmPh3T+MrTv+PSJizEC7a++rccmVC8d837m3fX/0+7797pAk1UW7944MtIOx5aeN2ZoNhXe0lt+f//bQ2N46dCTeeulX8dahI+9/3S+eGDPSvrl8wcQ/10sfHAsfathGx8Ji9/oXTxQfaF/5zdTefu75hPf89weHYvEHnoW6ePlQvNE79f+/dB8u/DzX3DiUfq5mdu2fnkHbfaj4fdq1Z/wY+Pyv8s+7qfbk00PvD7RVcD1T6dGfjn+bPLIl/7pO1shAu2p9/rVIKj3IlD7QvrjrlTj7vKa4dPqtMf/O1XHTnT+IL1y1KM7+zPR49vndFbuOj10yKz7+xevj41+8Pv7+C9fFn33yqvj4F6+P//lDd/z1BTOir39w9Pte9NX5sWvvqxHhEQeS6iePOPCIg2qtZ8f2ODbtwtGBq2fLptFve33f/ujeuXPSH37vw+0n/nD7rt6+ONx8x2k929c9L/2ed/UWPqFSOT5JlU8SVmiiTxI2cs83bhuIdZsHoq29+LNqa6V6eMRBV2/h7TFv8WDMWzxY8uObznQecSDVV5ApfaCNiHjj0NH44eaWuO2+h+OW5Wtj9SM/jdcOvpF2PR98BW1ExPS598bqR34aw8PHY8fTO+P8K+bF8PDxiDDQSqqfDLQG2mrsZJ8MrOTnoTZdHIebb2/YJjMWdu/eEz07tk/5Xo+75wbaCe95uTLQTn6grafqZaCtpQy0Un0FmapioK02Hx5oD3YfjmlzlsdHL54ZX55xW3Ts+/3ot2UfIJJUrgy0BtpqrGfLpqID7VRf0TkyFqpyY6GB1kBroK1MBtrKZ6CV6ivIlD7Qvrr/D3Hdogfjc//v2/GZr9w4rmqXfYBIUrky0Bpoq7E3Wp8uOiz27Ng+tZ9vZCz8x0/G0WsubdgMtAbaRshAqzOdgVaqryBT+kB7yZULY/qN98aWJ56NJ37x/LiqXfYBIknlykBroK3WjsydNmacPTJ3WnQd6JnSz2UsrPxY6J4baA20lclAW/kMtFJ9BZnSB9q/+PT0ePPtP2ZfxpRlHyCSVK4MtAbaqulAT3Tv/OX7zz490BM9WzbFkUUzC58gbIrjbFevsdBA2xj33EBroM2+lkbJQCvVV5ApfaD98ozb4nevvZ59GVOWfYBIUrky0Bpoq6GeHdvj2LQLR8es3rvml/XnNxYaaBvhnhtoDbTZ19IoGWil+goypQy0e/ftH+1nz7wQ0+Ysj58980LseWX/mG/bu29/xuWdluwDRJLKlYHWQJvegZ4x4+zo82a3bCrbr2EsNNDW2j3v6OyP9o7T+zEGWgNt9rU0SgZaqb6CTCkD7VnnXjnpql32ASJJ5cpAa6DNrnvnzqKfEKx36U1l+zWMhQbaar/nbe39cVfzYMxdPBg33FIYGJvmDMWi5UOTHmoNtAba7GtplAy0Un0FmVIG2oHBoUlX7bIPEEkqVwZaA212r+/bX3SgPbRhTdl+DWOhgbaa73l7R9/oIFusRcuHJnXPDbQG2uxraZQMtFJ9BZnSn0EbEbGv88Do/z7YfTge3vLzeKZtV+IVTV72ASJJ5cpAa6Cthg6vXjFmnD067YKSPinYhzMWGmir+Z6v2zwwOsZOv774SDuZe26gNdBmX0ujZKCV6ivIlD7Q/vPWX8RHL54Zw8PH49ib78Q5n78uLp1+a/z9F66LH25uyb68CWUfIJJUrgy0BtpqqWfH9ji8ekXhlbNlHGe7eo2FBtrqvucTDbSz5xtoyzHQtrYNxGNPDpz2s32rPQNt5TPQSvUVZEofaM+7Yl507Pt9REQ8/OOfx5dn3BYnTpyI3+4/GBf835tyL24Ssg8QSSpXBloDbSNkLDTQVvM9b2vvf3+QLTLQbm2Z3PBmoD35QLtw2dTuaS1koK18BlqpvoJM6QPt2ec1xYkTJyIiomned2L9vzwZERHHj5+Is89ryry0Sck+QCSpXI0MtFffOBjzFjdmN9wyaKCt84yFBtpqv+ctrf0xe35hPLz17sH4zvcHY+X6wWhtm/zoZqAtPtBubRkYN3o3zRmKjs7+9LOpHBloK5+BVqqvIFP6QHveFfPiN6/+T3R1H46zPzM9fn+gOyIifvfa6/HJL92QfHUTyz5AJKlcjQy0MtDWc8ZCA20j3HMDbfGBduX6waJnflu7gVZTy0Ar1VeQKX2g3fjYv8bZ5zXFX57/zfj2sociIuLYm+/ExV+/OVas3pJ8dRPLPkAkqVyNDLRzbhmMlesGGrK7H/QK2nrPWGigbYR7bqD1Ctrsa2mUDLRSfQWZ0gfaiIjf7j8Yu/a+GsPDxyMiYui94fjx48+MfrmaZR8gklSuPIPWM2gbIWOhgbYR7rmBtvhA23lw/DNoN26rnzHTQFv5DLRSfQWZqmKgrWXZB4gklSsDrYG2Vnt93/7ovWt+HLlxWhxZOCu6d+856fc1FhpoG+GeG2iLD7QjtbYNxMZtA9HekX9+lTMDbeUz0Er1FWSq2oH2e+u3xYX/OD/7MiaUfYBIUrky0Bpoa7Ujc6eNjl/HLj8njk27MF7ft7/o9zUWGmgb4Z4baE890NZr1TjQdnT2x4pVAzFvyWCsWFV/o7iBVqqvIFPVDrT/+eKeWLtpR/ZlTCj7AJGkcmWgNdDWYt07d44dZ//UoQ1rin5/Y6GBthHuuYHWQJt9LV29hUdKzFsy9hOzzV5QP8/87eo10Er1FmSq2oG2VmQfIJJUrgy0BtpazEBb/WOhe26gNdBWpmobaFvbin9Stq0t1XF95chAK9VXkKkqBtqjb74de/ftj5f2/Pe4ql32ASJJ5cpAa6CtyQ70xNFpF4wbaE/2HFpjoYG2Ee65gdZAm30tXb190dLaX3SgradPzGagleoryJQ+0K5+5Kfx55+6Ks4698r4809dNa5ql32ASFK5MtAaaGu17t174siimaMj4ButT5/0+xoLDbS1eM9b2wZixaqBuKt5MFrbJh63DLQG2uxr6eotPOJg9vzxA61HHEiq1iBT+kD7iUvnxK69r8bw8PHsS5mS7ANEksqVgdZA2wgZCw20tXbPi70KcaIPETfQlmegbe/oiyef6a+ZT2xVbQPtyD2ct7jwHNp5iyf3Dwy1lIFWqq8gU/pAe1nT4uxLKEn2ASJJ5cpAa6BthIyFBtpau+cLl41/BeK8Jac+owy0pQ+0K9eP/eRWtfBh+dU40NZ7BlqpvoJM6QPtw1t+Hms37Yi333k3+1KmJPsAkaRyZaA2Uz/TAAAZ1ElEQVQ10DZCxsLiY2HPju1xaMOa6NnxuHteZQNtsQ8Rb5ozdMofY6AtbaA92bNTq/2VtAbaymegleoryJQ+0D717K/if3/2mjjr3Cvj7M9Mj7PPaxpTtcs+QCSpXBloDbSNkLFw/FjYu/SmMZ9g7ciN09zzKhpoP/xKzqY5Q7FyvVfQnsmBduO2gaIDbbV/eL6BtvIZaKX6CjKlD7SfuHROrHp4ezz3wp54cdcr46p22QeIJJUrA62BthEyFo4dC7t37hwzzo7Us2O7e14lA23nwb5Y2vz+SLu0eTA6D576xxhoSxtot7YUH2i9glYfzkAr1VeQKX2gvWTaLdmXUJLsA0SSypWB1kDbCBkLx46FPVs2FR1oD21Y455XyUA7UufBvujo7J/U9zXQljbQdvWOf/bvRK9aroYMtJXPQCvVV5ApfaBdct8/xUt7Xs2+jCnLPkAkqVwZaA20jZCxcOxY2L17T9GBtnvnTve8ygba08lAO/FA29HZH5u2DcSmbQMnHb5bWvtj47aBaGmd3DCenYG28hlopfoKMqUPtDcvWxt/c+GMuPzq22L2Ld+N6xaOrdplHyCSGqf2jr7YtG0gnnymf8IPb51KBloDbSNkLBw/Fh7asGbMOHu4+Q73/Azf8zOdgfbUA21be3/MXvD+q2NnLxiKtvbaGGFPlYG28hlopfoKMqUPtPd+/0fRvGbLSat22QeIpMbow8/Dm7dk4mcQnm4GWgNtI2QsLD4Wdu/eE2+0Ph3du/e45wbauulkA+0Hn+k70qLlQ+nnU6kZaCufgVaqryBT+kBb67IPEEn1X+fBvqKfrGTd5vK+A2agNdA2QsbCyo+F7rmBttoG2mJ/pjbNMdDq9DPQSvUVZEofaI8fPxFbnng2vjpraXzySzfExy6ZFVdce0dseeLZ7EublOwDRFL919beX/QdyaXN5X1nwEBroG2EjIV5A60MtNUy0N63auCM/5makYG28hlopfoKMqUPtKs2PB4f/+L18cDarfH4U23x+FNtcf9Dj8Y5n78uNm17OvvyJpR9gEhqjGbPHz/Qbm3xCloDrU43A62BNrtK3HMD7akH2vaOsX+uzp4/FO0d+edTqRloK5+BVqqvIFP6QHv+FfPild++Nu7r9+7bHxd//eaEKzo92QeIpMaopXXsq2gXLhvyDFoDraaQgbbyA201NPJ7PvTw6vRrqUQG2lMPtF29hccHtbYNRGvbwBn5xJsZGWgrn4FWqq8gU/pA+5GLro6h94bHff3Qe8PxkYuuSbii05N9gEhqnDo6+2NrS+GdyTPx8xtoDbSNkIHWQJt9LZXIQDvxQFuPGWgrn4FWqq8gU/pA+5Wrb49tT/7HuK9/dMez8eUZt1X+gk5T9gEiSeXKQGugbYQMtAba7GupRAZaA232tTRKBlqpvoJM6QPti7teibPPa4pLp98a8+9cHTfd+YP4wlWL4uzPTI9nn9+dfXkTyj5AJKlcGWgNtI2QgdZAm30tlchAa6DNvpZGyUAr1VeQKX2gjYh449DR+OHmlrjtvofjluVrY/UjP43XDr6RfVmTkn2ASNJEdR7si8eeHIhN2wairb3/pN/PQGugbYRGB9qmi+Nw8+0Nm4G2+mrv6IsVqwZi0fKhWLFqIDo6T35eT5SB1kCbfS2NkoFWqq8gU/pAu2nb09HXP5h9GVOWfYBI0qnqPNgXi5a//8nFmuYMxbrNxd9xM9AaaBuhkYFWBtpqqqOzP2YvGHtWz1syOOVPXmWgNdBmX0ujZKCV6ivIlD7Q/p/Pz47fH+jOvowpyz5AJOlUbW0ZGPMO/0jFXplloDXQNkLdL++N3oUzUzsy7fw4dvk5ceRbX0+/luy3R6Wq9oF247biZ/WpPurhVBloDbTZ19IoGWil+goypQ+0P/nZczHjpvtix7/ujN0dv429+/aPqdplHyCSdKpWrh+c9Dv9BloDrSpT78KZcezyc+KNnb9Mv5ZGqVYH2ta2qQ1tIwOtDLS1VntH4bFMU/3HiUpnoJXqK8iUPtCede6Vp6zaZR8gknSqTvYK2mIfNmugNdCqMhloK181DbStbQOjjzOYvaAwwrZ3jB9UZ88vflZ39fZFW3t/PPlM/0mfU2ugNdBmX8tU+vA/VNzVXP1/FhtopfoKMqUMtK8dfCOGh49HRETHvt/HwODQSat22QeIJE3U0uaxr6JtaS3+Dv3IQDtrwWAsvb8xW7hs0ECrM56BtvJVy0Bb7FmzTXMKj51pbRuI2fMLX563eDDaO8b/+GLPFT/ZmZ7d5p8U/kz55621ORbWYrU80Bb7R4qmOUOxteXM/15a2wam/A+7K35QuOc33zX1f9z+8eP+ziFVS5ApZaD9i09Pj2NvvhMREX9z4YyMSyib7ANEUuPV0dkfbe39Rd95P1lt7f3R0nryV1t19b4/0MpAqzObgbbyVctAe7KPapjsCFXsUQizFwyl399iGWgrXy0PtG3t/UX/v7Fx25n/vaxcn/v3n1nz/Z1DqpYgU8pAe+n0W+Oir86PGTfdF3/+qatixk33nbRql32ASGqsWlrHvgOzcn35/lLf8bv8RwzMWzz4p9/X1F/NUo5anqm9d25VOxloK1+1DLQfPsNHmuyrYD/8EREjVePzOg20la+WB9pafQVtOfIKWql6gkwpA23P4WPx8I9/Hg+ueyz+4tPT47s/fOykVbvsA0RS49TRWdo79rXQnSsK48Pz7bX3zqU02Qy0la9aBtrOg32j/xA1+grYUzxr9sOt21z8lX7Z97dYBtrKV8sDbVfv+P++Fy6rzv+2JdVvkCn9k4Q9sHZr9iWUJPsAkdQ4nezD/9Ztrs13xIploFUjVC8Dbc+O7XFk4azovWt+vNH6dPr1nKpqGWi7egv/2HbfqoFY2jwY960aOOWjZz5csYG3Wv+RzkBb+Wp9oO3qLfxdZ+O2gar971pSfQeZ0gfaWpd9gEhqnDI//K9SGWjVCNXDQHtow5o4dvk5Y6rmkbaaBtpS6zxYeJbtxm0Dp/Us8kpnoK189TDQSlJmkKlqB9rvrd8WF/7j/OzLmFD2ASKpsVq5fnDch/9N9kNjayEDrRqhehhoPzzOHrv8nDiyaGb6dZ2sehpoayUDbeUz0EpSaUGm9IH2rXfeLfr1//ninli7aUeFr+b0ZR8gkhqvltb+WLd5ILa2DNTVONvVa6BVY1S3A+3caenXdbIMtJXPQFv5DLSSVFqQKX2gPfu8pphz6/fi6efaY2jovezLOW3ZB4gk1VMGWjVC9TDQHlk0c9xAe3j1ivTrOlkG2spXqwNt58HCR6vc1TwYK9cP1tQ/hBpoJam0IFP6QNv+X/8dy7+3KT795bnxsX+YFbeveDhe2vPfceLEiexLm5TsA0SS6ikDrRqhqh1oD/TEoQ1r4sjCWXF4dXN0Heg55ff94Ejbu/SmU3//5Ay0la8WB9rOg30xb8nYRwnNW1I7I62BVpJKCzKlD7QjTpw4EXt+87tYsXpLnH/FvDjvinnx4LrH4g+vH8q+tFPKPkAkqZ4y0KoRqtaB9sjcaWNeEXv02ssmHl0P9FT1MDuSgbby1eJA29LaX/STcba2Ve738E8/7o87VwxOqfm3Ff4MvWHh1H78nSsG47sPDaa/HSQpK8hUNQPtiL379sf9Dz0af/u5a+Pvv3Bd/PUFM2LB0jXx5tt/zL60orIPEEmqpwy0aoSqcaB9o/Xpos+V7dmxPf3aypGBtvLV4kC7cdtA0YF2a0vlfg/3fK/4NVSqeUsMtJIaN8hUFQPtga6eWLXh8fjs1xbE2ec1xbeWrIxnn98dw8PH48ixt+O6hd+Na799f/ZlFpV9gEhSPWWgVSNUjQNtz5ZNRQfaQxvWpF9bOTLQVr5aHGg7Oou/grajs79i17DrN/3xfPtAWi/+V+V+r5JUbUGm9IH2H2feGWede2V85erb40fbW4u+UvbYm+/E2Z+ZnnB1E8s+QCSpnjLQqhGqxoH29X37iw603bv3pF9bOTLQVr5aHGi7eguPOZg9vzDMzp5f2ccbSJJyg0zpA23zmi3R+T9dp/w+x4+fiOde2FOhKzo92QeIJNVTBlo1QtU40Hb19kXPju1xdNoF7z/eYMum9GsqVwbaylerA+1IlXzVrCSpOoJM6QNt63MvnbSnnn0x+/ImlH2ASFI9ZaBVI1StA+1I3Tt3pl9DuTPQVr5aH2glSY0XZEofaD92yayx/cOsOOvcK+Ovzv9mXPz1m7Mvb0LZB4gk1VMGWjVC1T7Q1mMG2spnoJUk1VqQKX2gLeaP7/bHA2u3xmMt/5F9KRPKPkAkqZ4y0KoRMtBWPgNt5TPQSpJqLchUlQPtiMuaFmdfwoSyDxBJqqcMtGqEDLSVz0Bb+Qy0kqRaCzJV7UD7x3f74xOXzqnor7lqw+PxyS/dEB+7ZFYsuGtNvNs3EBERB7p64sob7o6/u3hmXNa0OF7a8+roj8k+QCSpnjLQqhEy0FY+A23lM9BKkmotyJQ+0C5YumZcNyxeGZ+5fG5ct/C7FbuOp579VXz2awui5/CxeLdvIKbfeG+s2vB4RERMm7M8Njz6VAwPH4/nXtgT5152Qwy9NxwRBlpJKmcGWjVCBtrKZ6CtfAZaSVKtBZnSB9rbVzw8ruXf2xQ/2t46+grWStjzyv54ac9/j355w6NPxYKla6L36FvxkYuuifeGh0e/7UvfXBIv7nolIgy0klTODLRqhAy0la9aB9rWtoFYsWogVq4fjPaO/OspZwZaSVKtBZnSB9pqdc2C5vjx48/ES3tejS9ctWjMt914+6rY8sSzEWGglVS9dR7si03bCu/8P/ZkbbyDbKBVI2SgrXzVONBu3FYYMD9YW3t/+nWVKwOtJKnWgkypA23P4WPxq92vjL5S9j9++XJc9a274/Krb4sNjz6Vdl2rHt4e3/jWPfHe8HA8/+u9ccU1t4/59kX3rItH/nR9f+x/T5KqrkNH34v5t419x//u7w6lX9dELX+gcK0vd+Rfi3SmenPxrDh2+Tnxzq5fpV9Lo/TW5rVx7PJz4q3Na9OvZaQPj7NNc4bi7geq/5yebI+1FH6Pjz5eP78nSVJ9B5nSBtp/e35X/MWnp8dZ514Zn/7y3Pj1y/vioxfPjGUPboplD26Mv7lwRjy85ecVvaYTJ07Esgc3xoyb7ou+/sGIiNi199W45MqFY77f3Nu+H1t3/HtERBx7Z1CSKtqbfxyasCd+Mf4d/6Y5Q/HSnol/bKktf2DqzV5QuM7Fd0/953j6uTP/e5RK6dithYH2zfZfpV9Lo3Rs40Nx7PJz4tjGh9KvZaRiZ/TyB/Kvq1w9+kTh9/Tj7fnXotos++9bkhovyJQ20H7l6ttj2YMb46133o21m3bEJy6dMzp6RkQ88Yvn4+Kv31zRa7r3+z+KubetGv0EYBERR998O/76ghmjg21ExEVfnR+79r4aER5xIKk6K/ahs01zhqKl9cx/+GyxX7eSbXysfj5EWPWZRxxUvmp8xMHCZePPr3Wb6+dxAB5xIEmqtSBT2kD7kYuujt/uPxgREYODQ/Fnn7wqfvfa66Pf/trBnjj7vKaKXc+vdr8SlzUtjqGh8S9rnz733lj9yE9jePh47Hh6Z5x/xbwYHj4eEQZaSdVZW3t/0fGyo/PMj5fPtw+k1vE7A62qOwNt5avGgba9oy/mLR4cPZ+XNg9G58H86ypXBlpJUq0FmdIG2rPOvTK6Dx0Z/fLffu7aONh9ePTL3YeOxFnnXlmx67l52dr4809dFWef1zTal765JCIiDnYfjmlzlsdHL54ZX55xW3Ts+/3oj8s+QCTpZK3b/P6raGfPr8yrZyVNnIG28lXjQDtSe0dfRf7xrNIZaCVJtRZkMtCWKPsAkaRT1dHZH23t/XX1qiyp1jPQVr5qHmjrNQOtJKnWgkypA+30uffGtd++P6799v3xvz79jfjGt+4Z/fL0ufcaaCVJUt1loK18BtrKZ6CVJNVakCltoL19xcOTqtplHyCSJKm2MtBWPgNt5TPQSpJqLciUNtDWi+wDRJIk1VYG2spnoK18BlpJUq0FmQy0Jco+QCRJUm1loK18BtrKZ6CVJNVakMlAW6LsA0SSJNVWBtrKZ6CtfAZaSVKtBZkMtCXKPkAkSVJtZaCtfAbaymeglSTVWpDJQFui7ANEkiTVVgbaymegrXwGWklSrQWZDLQlyj5AJElSbWWgrXz1MtC2tfenX8NkM9BKkmotyGSgLVH2ASJJkmorA23lq/WBdmtLYexsmjMUsxcMRUtr9Q+1BlpJUq0FmQy0Jco+QCRJUm1loK18tTzQtrX3j46zHxxpOzrP/Ej767398Xz7wJRatb4w0H5v3dR+/PPtA/HrvdU/REuS6ifIZKAtUfYBIkmSaisDbeWr5YF247aBcQNt05zKvIp2yb2DRX/tSrXknsH0+y9Japwgk4G2RNkHiCRJqq0MtJWvlgfaDz7e4INV4nm0ax4ZiDtXDKa1+hGPR5AkVS7IZKAtUfYBIkmSaqtaH2h7tmyKIwtnxeH774ju3XvSr2cy1fJA23mwL2bPHzvOLlw2lH5dkiTVW5DJQFui7ANEkiTVVrU80B5evSKOXX7OmGphpK3lgbartzDSrts8EEubB2PjtoHoPJh/TZIk1VuQyUBbouwDRJIk1VY1O9Ae6Bk3zh67/Jw43HxHRX79Qz9YEb0LZ02po9deFscuPyeOXnvZlH+OQz9Ykf82kCRJZyzIZKAtUfYBIkmSaqtaHWi7d+8pOtAeWTSzovctq96Flfl9SpKknCCTgbZE2QeIJEmqrWp1oO3q7Yuj11w6brjs2bKpIr9298t7442dv0yr++W96fdfkiSduSCTgbZE2QeIJEmqrWp5oO3evWfMSHt4tQ/7lyRJ9RFkMtCWKPsAkSRJtVUtD7Qjde/eE10HetKvQ5IkqVxBJgNtibIPEEmSVFvVw0ArSZJUb0EmA22Jsg8QSZJUWxloJUmSqi/IZKAtUfYBIkmSaisDrSRJUvUFmQy0Jco+QCRJUm1loJUkSaq+IJOBtkTZB4gkSaqtDLSSJEnVF2Qy0JYo+wCRJEm1lYFWkiSp+oJMBtoSZR8gkiSptjLQSpIkVV+QyUBbouwDRJKkeq1nx/Y4vLo5Dm1YE10HetKvp1wZaCVJkqovyGSgLVH2ASJJUj12uPmOOHb5Oe837cK6GWkNtJIkSdUXZDLQlij7AJEkqd7q3r1n7Dj7pw5tWJN+beXIQCtJklR9QSYDbYmyDxBJkuqt7p07iw60h5vvSL+2cmSglSRJqr4gk4G2RNkHiCRJddeBnjg67YJxA23Pju3511aGDLSSJEnVF2Qy0JYo+wCRJKke69mxfcxIWy+vnu3qNdBKkiRVY5DJQFui7ANEkqR67fV9+6N7587o3r3npN+ne/eeOLRhTbzxTGv69U42A60kSVL1BZkMtCXKPkAkSWrUerZsGvMIhCM3TouuAz3p1zVRBlpJkqTqCzIZaEuUfYBIktSIvb5vf9FPJNazZVNFfv1Djzw05Y5ee1nhsQ333z7ln6On5fH0t4EkSVI9BZkMtCXKPkAkSWrEunfuLDrQVupZtcV+7UrWu3Bm+ttAkiSpnoJMBtoSZR8gkiQ1YumvoH14dWpeQStJklTeIJOBtkTZB4gkSY3auGfQzq2NZ9BKkiSp+oJMBtoSZR8gkiQ1ct2798ShDWvijdan069FkiRJtRtkMtCWKPsAkSRJkiRJUmlBJgNtibIPEEmSJEmSJJUWZDLQlij7AJEkSZIkSVJpQSYDbYmyDxBJkiRJkiSVFmQy0JYo+wCRJEmSJElSaUEmA22Jsg8QSZIkSZIklRZkMtCWKPsAkSRJkiRJUmlBJgNtibIPEEmSJEmSJJUWZDLQlij7AJEkSZIkSVJpQSYDbYmyDxBJkiRJkiSVFmQy0JYo+wCRJEmSJElSaUEmA22Jsg8QSZIkSZIklRZkMtACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJDHQAgAAAAAkMdACAAAAACQx0AIAAAAAJPn/ATmYLF1tpNZVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+1+UdcL/8e/f4733eu/Wtlvu3lQe11LLdK3uDVzQQMEjggp5Ds0Dpil5CFMXzDygqGhu4lqGpCtaIaUpWSqIHCVN5sDA+/vDxOjIIMPMOJ9rZl6vx+P5uG9A6OqSLrd3F9f8PxERERERERERERGRkf6f6QMgIiIiIiIiIiIiitUYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAbaIKttagMAAAAAAEAEIzIZA22Qmb6AAAAAAAAAIDhEJmOgDTLTFxAAAAAAAAAEh8hkDLRBZvoCAgAAAAAAgOAQmYyBNshMX0AAAAAAAAAQHCKTMdAGmekLCAAAAAAAAIJDZDIG2iAzfQEBAAAAAABAcIhMxkAbZKYvIAAAAAAAAAiO1So+4tKBTzr6jCIzBtogM30BAQAAAAAAQHCsVtJUZ0AoMmOgDTLTFxAAAAAAAAAEx2p1Da7L32v3CwNtZMdAG2SmLyAAAAAAAAAIjtXqGlyLj7j8EuxAe7zsvF54Y46eGp6i+KlL9eP1OkmS3eHU7JxN+vOoNA0el65dB/7t+ZzrtfVKmLZMf3phkkYnzdO5ysuej508XamR47P09IuTNXHWSjU2twZ+MmIgBtogM30BAQAAAAAAQHCsVjgH2rqGZj01PEXnKi+ro6NTaz7Yq/HTl0mS1n+4T9Pnr5PN7lBNXaPiRk/T9z/ckCTFT12qbbuPyuXq0MnTlYobPU3Odpfu3L2nZ0am6quqK2p3ubTmg72aPn9dyM5NNMZAG2SmLyAAAAAA/FNR1abCIrtKT9mNHwsAwFqsVrgH2qMnznje/u7yT3r2lWmSpBHxc/X1t9Wejy1f/5HWf7hPTS0/68lhyWp3uTwfe2XCfJ05f1FHT5zRxFkrPe+/c/ee+g9KksPBIxh6ioE2yExfQAAAAAD0rqDI7vUiKm/nOowfEwDAOqxWuB9x8GD5Hx3WzIV5kqTfPp+o1p9/8Xzs4+LjmrX4fZ2rvKxR47O9Pm/mwjztOnhCG/95UDlrC7w+9peXpngem0DdY6ANMtMXEAAAAACPVlHV5vOVrveUWOtO2k9O2FWw12ZM0RFrnQ8ACCerZWqg/eJMpQaPS1ddQ7Oc7S71i0uQze7wfLz4aJnSstbo1NkLGpe80Otzs9/J1/bdR/Xu5j1atWGX18cGj0vXxSvXgj6+aI2BNshMX0AAAAAAPFpZhc3nQFtQZK1Bctlau8/jDJdZ87irGEDsslomBtpDx8o1/O+zda3mlud9v30+US2tdzxvf7S/VJlLNur8hcsakZDl9fkzFqzXnkOfaVPBQS15959eHxswMs3r65J3DLRBZvoCAgAAAODRerqDds1maw20wdxB2zXuznvHwR20ABAAqxXugfb4F+c0any2Gptbvd4/any2Tp//zvP2vBVbtKngoFpa7+j3QyaqzXb/7tphr2fo/IXL+vTzs3pjSo7n/bcaWvT7IRO9nldL3jHQBpnpCwgAAACA3j38DNrEKe7/u25LdNw1uu+I++9vUwEjKwAEwmqFc6BtvfOLnhszXTV1jd0+tmH7ASVnrpLN7tCVqzV6ZmSqfrrhvhM2ccZybdh+QC5Xhw4dK9fgcelyuTr0yz2bnhmZqi/Pfat2l0uLVm/XnJzNQZ2PaI+BNshMX0AAAAAA+Of97XYlTnUqaYr3nbRV1TbjxxYsBloACI7VCudAu+/ISfWLS1D/QUlebrfelcPh1JyczRowMk1DXp2l4qNlns+rqWtU/NSl+uMLkzRm4gJVXfrR87FTZy9oRPxcPf3iZE2as1q3W+8Ge0qiOgbaIDN9AQEAAADgn5V5vp/xWlbBQAsAsc5qdf0Ztfy9dr+E6kXCyEwMtEFm+gICAAAAwD8lpd1fLCw1w6nqGvPHFiwGWgAIjtUK9AUfKTJjoA0y0xcQAAAAAP5bt8XhNc5Gw92ztU0MtAAQLKvl76MNHkaRGQNtkJm+gAAAAADom6pqW9QMs10YaAEgOEQmY6ANMtMXEAAAAABgoAWA4BCZjIE2yExfQAAAAACAgRYAgkNkMgbaIDN9AQEAAAAQuOqaNpVV2FR6yh7RLxbGQAsAwSEyGQNtkJm+gAAAAAAITFW1TenzH3jRsEynKqrMH1cgGGgBIDhWy7YrX7bdW/qMIjMG2iAzfQEBAAAAEJiVeXbPONslfb7D+HEFgoEWAIJjtW6PHRAQiswYaIPM9AUEAAAAQGDS5zm6DbRJU53GjysQDLQAEByr1TW43p2f6hcG2siOgTbITF9AAAAAAATG5x2087iDFgBikdXqGlxtu/L9EqqB9vXJS/TSP7K93nfxyjUNfS1DkpSWtUYH/3Uq6L8OecdAG2SmLyAAAAAAAlNR1abUDO+BtrQsMgdOBloACI7VMjHQXrlao+TMVZo0Z7W+qrrieT8D7eOPgTbITF9AAAAAAASuqtqmgiK7CorsEfsCYbVN1hpoq6ptKiyya+9hu6qqbcaPBwD8YbVMDLQr3t+pfUdOqqT0Sy3M3eZ5PwPt44+BNshMX0AAAAAAhEZ1TZvWbXHo7VyHVuVF1mBrlYG2tMyu1Mz7dySnZjoj6jwCiF1WK9wDrcvVoSGvztLdX9rUZnNo4NgZcjickhhowxEDbZCZvoAAAAAACI2sHO/HHaRmOiPmDlCrDLS+XnhtZZ75u3p7UnLcrsJ9DqNMnwMAblYr3APt519+rZkL8zxvz8nZrH99dlYSA204YqANMtMXEAAAAADBK6uwdRsWk6Y6VVBk3XHxQVYZaH2dw9QMp/Hz05PFq7oPyuFm+hwAcLNa4R5oZyxYryeGTtRTw1P01PAUPTF0oibPfVcSA204YqANMtMXEAAAAADBY6ANjYfvQo6EO2gL9toCsm6L+5ynz3ME/DUK9kbGHdpALLBa4Rxof757TwNGpsnpbPe8r93l0l9emqLm23cYaMMQA22Qmb6AAAAAAAhedU2bUjO6j4tlFZExoFlloK2o8j6P6fMcEfOYiL46VeE+54tX8ZgCIBpYrXAOtDuLj3s93qCrOTmbVbD3UwbaMMRAG2SmLyAAAAAAQqOi6v4zVFMznCopjZxh0SoDbW2Te+wuKbWptMyu6hrz5+ZxYaAFoovVCudAOy5lkQ6Xnu72/tKT5zRm4gIG2jDEQBtkpi8gAAAAAEIrEkdFKw20sYKBFoguVqtrcL27INUvwT6DlszGQBtkpi8gAAAAAAJXVmGLih/BZ6ANPwZaILpYra7Bta8oMmOgDTLTFxAAAAAAfVdR1abUzPvPSl1l4Rey8gcDbfgx0ALRxWr5+2iDh1FkxkAbZKYvIAAAAAD6rutZsw/aUxK54yYDbfgx0ALRhchkDLS/1tnZqXc379Gw1zM07PUMZb+TrzabQ5J0vbZeCdOW6U8vTNLopHk6V3nZ83mmLyAAAAAA+qaiqq3bOJs01akluZE7tDHQhh8DLRBdiEzGQPtrR0+c0ZiJC9Rmc8jl6lBa9lpt2H5AkhQ/dam27T4ql6tDJ09XKm70NDnbXZIYaAEAAIBIU13je6BdtyVyh7ZoGmgj5UXaGGiB6EJkMgbaX8vbVqy31/zT83Zh0THNXJinppaf9eSwZLW7XJ6PvTJhvs6cvyiJgRYAAACIRPk77F7jbGqGUxVV5o8rUNEw0FZUtSl76f3fk/wd1v57YaAFoguRyRhof+3s15f04htz1NJ6R3aHU8mZq7S35HOdq7ysUeOzvX7tzIV52nXwhCQGWgAAACBSlZTatDLPrvwddlVV24wfTzCiYaDNyul+V3NBkXX/fhhogehitWy78mXbvaXPKDJjoH2gRau3q//ARD0xdKISpi2T09muU2cvaFzyQq9fl/1OvrbvPipJar7jAAAAAPqkpt6hrTsdWvquUwf+5TR+PIh8h/7lftGz/I8i8/vpyrXuL9qWNNWpnNXW/fs5+437GN9ebf5YAATPat0eOyAgFJkx0P7ax8XHNXHWSt1rs8vl6lDO2kLNX/mhzl+4rBEJWV6/dsaC9dpz6DNJks3hAgAAAPzW3OpS2mzvEeqdtU7jxxXLTpS1671NThWVtKu51fzxBOLo8XYlTXVq+65248cSKF8D7dpN1v1no/I79zEve9e6xwjAf1ara3C9Oz/VLwy0kZ2xgXb1pt06+/Ulr2e7miwta412Hzrhefurqisa+lqGWlrv6PdDJqrNdv+/pgx7PUPnL1yWxCMOAAAA0DcFRXafQ1RZhbV+xH7jdrsWr3IYs2F7eH60fd0W7zs3UzOdEfMiVQ+KhkccPPxcYCv+c/EgHnEARBer1TW42nbl+yXYgbajo1NbP/5Ew/8+W/0HJuovL03RvBVb1NTyc6+fe/HKNQ19LSPgv/aD7Tty0vP/PzF0ouoamkPyda2esYF21Phs9YtL0FPDUzRt3jrtLflctxpaTB2O3t28R1PeWusZjNd8sFdpWWskSYkzlmvD9gNyuTp06Fi5Bo9Ll8vVIYmBFgAAAH0TKQPt/OW+f+Q8XOa/8/hHr6pqm8+/tpWfe9qTaBhoa5vc/3wsyXVoSa7Dcv9MPIyBFoguVivcA23O2gINez1T5WerdPeXNlX/WKOpb72nEQlZvd5cGaqBtrOzU395aYrn7aaWn9XR0Rn0142EjD7ioLG5VQf/dUpzl27Ws69MU7+4BI0an61VG3bpzPmLcraH7+7aX+7ZNDtnk4a+lqGhr2UoOXOVbta7V/qaukbFT12qP74wSWMmLlDVpR89n2f6AgIAAIDIUlrWfaBNzXBa7kWqzl6w6VSFPSB5W9x/j+/lB/b5pyrsOnvh8Z+PsgrfA+3KvMgbOaNloI0kDLRAdLFa4Rxob9Y367+f/4euXK3xer/L1aG//l+m5zGfTw1P0c7i40qZvVovvDFHmwoOSro/0J449VW3x4S+MmG+jn9xzut9Tme7Mt/eqCGvztKgcenKWLxBNrtDadlr1S8uQSMSsnSzvtnrDtoPdpRo4N9manTSPO06eEID/zZTkvsn4tfm71Xq3DUa8uos5W0r1gc7SjQhfaVefGOOvv/hhiT3Bjlx1koNfS1Dg8alq2DvpwGdq8eVpZ5BW/1TrQr2fqopb63VX16aoieHJZs+pF4zfQEBAABA5HnwR7lTM5wqKbXWOBusHfvcf3//3GOtsbCq2qbCIrsKi+yqqrapuqZNqRndB9pI/P1goA0/BlogulitcA60h46VdxtWu1qbv1fT5q2TJD09YrLe21IkyX13a/+BibrXZvcMtM52l54eMVmXqq9Lcg+/Tw1PkcPh9PqaR0/8R0npK9TZ2amOjk6tyNupc5WX1dJ6R/0HJXl+XddAe+VqjZ4anqKGpttyOJyeoVWSps1bp+TMVers7NRPN27pN8+N1/5PvpAkvb+9WAtzt0ly3yE8b8UWSdL12nr1H5Sk+sbbAZ2vx5FlBlqXq0NfVV3R+9uLlThjuf7w12QNHpdu+rB6zfQFBAAAAJGpuqbN8j/CHSgrDrQVVW1KzfQeYkvL7CqrsHmNtOu2RObYFikDbXVNm+XuFg8UAy0QXaxWOAfancXHlThjeY8fS5i2TJJ7oL145ZrnY398YZJu3GzwesTBwlVbtXrTbklSwd5PNSdnc7evea7yez37yjR9Vv617A+Mtz0NtDuLjyste63n/Z9+ftZroC0sOibJvS32i0vwPDf30KflSp27xvMxp7Pd8zWGvZ7peX0pK2R0oP3xep127CtVWvZaPTU8RX95aYpmLX5fe0s+V01do8lD8zvTFxAAAADAaqw40K7M6/5oiZnzHDp83KadxXYd/cwe0cNhJAy0D945nr3UqYoq88cUDAZaILpYrXAOtCdOfaUX35jj82PvbSnSjAV5ktwD7bWaW56Pdb394ED7n68ueh4/MH76Mn3+5dc+v+7RE2cUP3Wp/vDXZGW/k697bfYeB9pNBQf11vItnvd/822110D74AuL9YtL0L02myTpcOlppcxeLcn9GIZJc1ZrzMQFGpeySL8bPEHnKr/v24l6jBkbaJ8fM0NPDntTU996TwV7P9XlqzdMHUpQmb6AAAAAAFZjxYE2fd6jX/QsNdN6L9TWF1YfaH29OF72Uqfx4woGAy0QXaxWOAfaxuZW/X7IRK+7YyWpo6NTL74xR8VHyyT5N9B2dnbquTHTdeLUVxowMq3X15e63XpXiTOWa8vOwz0OtIVFxzR9/jrP+0tPnuvzQDtyfJbXrxs8Lp2BVpJm52zS/748VX8elaapb72nj/aX6sfrdaYOJ+BMX0AAAAAAq7HiQOvrDtqkKaEbDAv22oxattb99zfvHYfxY7lyo/vQvSTX90AeyXctM9AC0cVqhXOglaR1W/Zp6GsZOnP+ouwOp241tGjmwjyNmbhAHR2dkvwbaCVpRd5ODfzbTK+7Xh+sYO+nWv/hPnV2dqqzs1NZyz7QhzuP6M7de/rNc+N1r80u6f5AW/ndD3pmZKpaWu/I6WxXcmZunwfap0dMVtWlHyVJJaVf6g9/TdbJ05UBn69QZ/wZtJev3tD23UeVnJmrJ4ZO1PNjZij7nXwdOlbueWaElTN9AQEAAACsxooDbVW1zfsu2ilOJfoYDAP9+o+6OzfWfH2p+++7z4E8iPNtBQy0QHSxWuEeaDs7O7V11yf66/9lqv/ARP15VJrmrdii2613Pb/G34H22+9/VL+4BJ06e8HnX6v59h2lzF6t58fM0KBx6ZqxYL1nVE1KX6E/vjBJ33xb7RloJffo+9yY6Xp10mJ9tL9Uw17v20D70f5SPTdmukYnzdPWjz/Ru5v36M+j0lRrkUesGh9oH8zZ7tKZ8xeVt61YQ1/LUL+4BNOH1GumLyAAAACA1VhxoK1tcr9AVWmZXaVldr3zXvfBMCsn+IF28Sp7zEqZ6ehxoC2rsHU73/k7rPX90VcMtEB0sVpdg+vdBal+CXagDWUNTbcVN3qaXK6OkH3Nrrt4JenM+Ysa++aCkH1tK2SZgdbzgmFZa/SnFyap/8BE/WP6O6YPq9dMX0AAAAAAq7HqQPugiqo2pWY88AzajOCeQdv1dUw/XsCkKbO7Blrf57GswqaVeXYtyXVoT4l1vzf8xUALRBer1TW49pXpOjs7lf1OvjZsPxCyr9l8+46eHPamrlytUWdnp95avkU5awtC9vWtkLGBtvXOLzp64j+av/JDDfzbTPWLS9CgcelamLtNx8vOe543YfVMX0AAAAAAq4mEgba2yX1HbUmpTSWltqCfhcpA2/tAG20YaIHoYrX8fbTBw0zW2NyquNHTlJa1Rja7I6Rfe9eBf2vQuHQNHDtDqXPXqKX1Tki/vumMDbT/9ex49R+UpKT0Fdq2+6iqf6o1dShBZfoCAgAAgOhRVmFTdY354whWpAy0ocRAG9hAW1BkV/ZS9wu0FRZF1vcLAy0QXYhMZmygPXHqK7XZQrumm8j0BQQAAACRr6zCptTM6Hk2JwNtbOrrQFtQ1P05wAURNNIy0ALRhchklnkG7cNVfveDDv7rlOnD6DXTFxAAAABEtuqaNq9xtktJaeT+mDgDbWzq60CbPs/R7fs+fb7/Y+fDnxvLTlXEzj9rwONCZDLLDrRvr/mn+g9KMn0YvWb6AgIAAIDI5uvV7ZOmOrVuS+TelcdAG5v6OtA++CJtD75YW1/PORhogVAgMpllB9pIyfQFBAAAAJGtosr30BRJP+r9MAba2NTXgTZ/R/dHHPTl8R6cc5tmvuVgoAVCxGrZduXLtntLn1FkZrmBtqX1jmrqGk0fht+ZvoAAAAAg8q3M8x6qUjOcEf1iYQy0samvA211jXukTc1wf8/n77D36fuec85AC4SS1bo9dkBAKDIzNtDa7A5lv5Ovf3121vO+D3aU6DfPjVe/uASNTpqnltY7pg7P70xfQAAAABAd9pTYtSTXofwddlVVR+7zZ2ubGGhjVV8HWs45Ay1gJVara3C9Oz/VLwy0kZ2xgfad9R9p6GsZunDpqiTpWs0t/ffz/9Deks91qfq6Xp20WAtzt5k6PL8zfQEBAAAArIaBNjYx0DLQApHManUNrrZd+X4J1UD7+uQleukf2V7vu3jlmoa+liFJSstao4P/OtWnr/nU8BTVNTQHfWyPat+Rk57//4mhEx/7Xy/UGRton31lms6cv+h5e3PhIcVPXep5+8z5i3p+zAwTh9anTF9AAAAAAKthoI1NDLQMtEAks1omBtorV2uUnLlKk+as1ldVVzzvt/pA29nZqb+8NMXzdlPLz+ro6Hxsf73HkbGB9jfPjdft1ruetyfNWa1NBQc9b99qaNF/P/8PE4fWp0xfQAAAAACrYaCNTb4G2j0lduXvsGvv4dB/L3DOGWiBULJaJgbaFe/v1L4jJ1VS+qXXT7X7M9AmZ+Zq5YaPNSF9pca+uUDZ7+TL2e6SdH+g/frbag3/+2zP5zz4dtl/Lmjk+CwNez1DI+Ln6vMvv+7213A625X59kYNeXWWBo1LV8biDbLZHUrLXqt+cQkakZClm/XNXnfQfrCjRAP/NlOjk+Zp18ETGvi3mZ6/j7X5e5U6d42GvDpLeduK9cGOEk1IX6kX35ij73+4IUlqbG7VxFkrNfS1DA0al66CvZ8GdY57ythA+6cXJunGzQZJkrPdpT++MElnv77k+fgP127q6Rcnmzo8vzN9AQEAAACshoE2Nj080Gbl3H/hu6SpTmUvdXLOGWgBy7Ja4R5oXa4ODXl1lu7+0qY2m0MDx86Qw+GU5N9Am5a1Rq9PXqJ2l0sdHZ16bdJilZR+Kcm/gXZEQpbOVX4vSbpUfV3zVmzp9tc4euI/Skpfoc7OTnV0dGpF3k6dq7ysltY76j8oyfPrugbaK1dr9NTwFDU03ZbD4fQMrZI0bd46JWeuUmdnp366cUu/eW689n/yhSTp/e3FnoE6Z22B51iu19ar/6Ak1TfeDvg895SxgTZxxnLlbSuWJO0sPq4/j0pTu8vl+fjWXZ/o9clLTB2e35m+gAAAAABWw0Abmx4caEvL7F7jbJfSstB9T3DOGWiBULJa4R5oP//ya81cmOd5e07OZv3rs7OS/B9ot+8+6nn7vS1FWrx6uyT/BtrEGcu1aPV2Xa+t7/EYz1V+r2dfmabPyr+W/dfxWFKPA+3O4uNKy17ref+nn5/1GmgLi45Jco/T/eIS1NTysyTp0KflSp27xvMxp7Pd8zWGvZ6p8xcu93iMgWZsoP3PVxf1P4MnaMDINPWLS9Deks89H/tof6n6D0ryLO1WzvQFBAAAALAaBtrY9OBAW1Dke6AtKGKgZaAFrMlqhXugnbFgvZ4YOlFPDU/RU8NT9MTQiZo8911J/g+0D75Q14c7j2jW4vcl+TfQNja3asm7/1Tc6GkaET9XJ09/4/M4j544o/ipS/WHvyYr+5183Wuz9zjQbio4qLeW378T95tvq70G2gePt19cgu612SRJh0tPK2X2as/f+6Q5qzVm4gKNS1mk3w2e4LnTN5QZG2gl92MM9h05qQuXrnq9/8OdR1R0+PMePstamb6AAAAAAFYTaQNtRVWbVuXZtWilQ4tWOrR1l11V1X17oSvGQu+BtqKqzedAW1EVut83zjkDLRBKViucA+3Pd+9pwMg0rztF210u/eWlKWq+fcfvgfbDnUc8b6/etFtL3v2npPsDbeXFqxr2eqbn15T954LXYNvV8S/O6Q9/TZbL1dHjMd9uvavEGcu1ZefhHgfawqJjmj5/nef9pSfP9XmgHTk+y+vXDR6XHn0DbTRk+gICAAAAWE0kDbRV1TalZnqPiIm//t+SUv9HWsbC7s+gffgu2lDePcs5Z6AFQs1qhXOg3Vl83OvxBl3Nydmsgr2f+j3QjktZJJvdIZvdoREJWTp64oyk+wNtXYP7BbzutdklSQtXbdXwv89Wm82hcSmLPC/sdb22Xk8NT1FHR6fXX6Ng76da/+E+dXZ2qrOzUxrYB+EAACAASURBVFnLPtCHO4/ozt17+s1z4z1ft2ugrfzuBz0zMlUtrXfkdLYrOTO3zwPt0yMmq+rSj5KkktIv9Ye/Juvk6cqAzvOjMj7QVl36Ue9u3qP0Re8rc8lGbdh+QD/duGX6sPzO9AUEAAAAsJpIGmh7+lH8pClOpWb6/6JWjIXdB9raJvcAXlZh6/MdyZxzBlog3KxWOAfacSmLdLj0dLf3l548pzETF/g90K7c8LFenbRYz42ZrreWb/HcAds10ErSsnU7NGp8tpIzc7V11yf66/+576jdd+Skhr2eqcHj0jUifq6Onazo9tdovn1HKbNX6/kxMzRoXLpmLFjvGVWT0lfojy9M0jffVnsGWklakbdTz42ZrlcnLdZH+0s17PW+DbQf7S/Vc2Oma3TSPG39+BO9u3mP/jwqTbV1jQGc6Z4zOtDmbtylfnEJGjU+WzMX5mn6/HUaNC5dv3luvDYXHjJ5aH5n+gICAAAAWE0kDbT5O3oeaPvyI/mMhb4H2seJc85AC4SS1eoaXO8uSPVLsM+gDbaehlvTPXgX7pnzFzX2zQXmDuYRGRtoP/38rPoPTNSJU195vb+jo1M7i4/rv54d73Mtt1qmLyAAAACA1UTSQFtWYfM5ziZOdSo1gztoGWitjYEWCB2r1TW49pWprDjQNt++oyeHvakrV2vU2dmpt5ZvUc7aAtOH5TNjA23ijOVavv6jHj/+zvqP9Pe0t8N4RIFl+gICAAAAWE0kDbS1TW0qKbVpcob3OMszaBloIwEDLRA6VsvfRxs8zFRWHGgladeBf2vQuHQNHDtDqXPXqKX1julD8pmxgfZPL0xSxTc9v+rZxSvX9PshE8N4RIFl+gICAAAAWE0kDbQVVW1alec+3tmLndqxz649JfY+PzOVsZCBloEWiGxEJjM20PaLS3jkA3XrGprVLy4hfAcUYKYvIAAAAIDVRMpAW13TpvT5jm6POAjkBa0YCxloGWiByEZkMqMDbdcrqvmKgRYAAACITJEy0HYd58MKivp+3IyFDLQMtEBkIzKZ0YE2ccZypcxe7VPijOUMtAAAAMCvqqptKiyya+9hu6przB/Po0TCQFtSalPSlO7jLAMtA20kYaAFQofIZMYG2oWrtvrF6pm+gAAAACD6lZZ53+mZmulURZX54+pJJAy0qRm/vhiYj5GWRxww0EYKBlogdKxW8RGXDnzS0WcUmRkbaKMl0xcQAAAARL/UjO4j4so86w4ykTDQdp3HxF8lTXUqJd2psorAxkXGQgZaBlogslktXz/h4Q+KzIwNtI3NrX6xeqYvIAAAAIh+vv4FLCvHafy4ehIJA236vO4vDrZuiyPo3yPTgx0DbWxhoAVCx2p1XeOWv9fuFwbayM7oM2j9YfVMX0AAAAAQuapr2rT3sF1v5zqUv8Pe44/W+xoTuYM2OBVV3ncmZ+U4g3q2L2MhAy0DLRDZrFbXNa74iMsvwQ60x8vO64U35uip4SmKn7pUP16vkyTZHU7NztmkP49K0+Bx6dp14N+ez7leW6+Eacv0pxcmaXTSPJ2rvCxJcjic6heXoP6DkjxmLFgf3AmJ8owNtBcuXfWL1TN9AQEAAEDkWpLrPbymZvoeCR8eE9PnOQJ6Tmq4RMJAW9vkHshLy+wBP9bgQYyFDLQMtEBks1rhHGjrGpr11PAUnau8rI6OTq35YK/GT18mSVr/4T5Nn79ONrtDNXWNihs9Td//cEOSFD91qbbtPiqXq0MnT1cqbvQ0Odtdamxu1TMjU0N2LmIhSz+Dtrau0fQh9JrpCwgAAAAiU1mFzeejCwqKfA8tVdU2lZTaVFpmD+pOz3CIlIE2lBgLGWgZaIHIZrXCPdAePXHG8/Z3l3/Ss69MkySNiJ+rr7+t9nxs+fqPtP7DfWpq+VlPDktWu8vl+dgrE+brzPmLunrtpoa+lhHg33lsZrmB1uFw6sjx00pKX8EjDgAAABC1ehpo83dE/tDCQBubGGgZaIFIZrXC/YiDB8v/6LBmLsyTJP32+US1/vyL52MfFx/XrMXv61zlZY0an+31eTMX5mnXwRP65ttq/e/LUzV++jINGJmmxJnLPY9MIN9ZZqC9VH1dOWsL9fSLk/WHvyZrwcqtqvzuB9OH1WumLyAA8LDSMrsKi9ysfocVAMSqsgqbNm63K3lG94G2tCzyhxYG2tjEQMtAC0Qyq2VqoP3iTKUGj0tXXUOznO0u9YtLkM3u8Hy8+GiZ0rLW6NTZCxqXvNDrc7Pfydf23UdV/WONFqzcqh+u3ZTd4dTqTbu7jbnkndGB9u4vbdp14N/625sL9ZvnxmvirJX67fOJqv6p1uRh9SnTFxAAeFBBkb3bswyt/IxCAIhFJaUP3Dk7xb/HG0QaBtrYxEDLQAtEMqtlYqA9dKxcw/8+W9dqbnne99vnE9XSesfz9kf7S5W5ZKPOX7isEQlZXp8/Y8F67Tn0Wbev62x3qf/ARNU33g7q+KI5YwPtnJzN+v2QiXo58S1t/fgTNTa3SpKeGDrR6xvB6pm+gABAl+qaNq9/yTf1o7JLch1GlRznX1AAWNuDL/bVZfHq0P3Uw9WbNi1e5TAqfb7D82Jmpo/lag1jIQNt9GKgBULHaoV7oD3+xTmNGp/t2ee6GjU+W6fPf+d5e96KLdpUcFAtrXf0+yET1Wa7f3ftsNczdP7CZTU03Vb1jzWe9zscTv3mufFeQy95Z2yg7ReXoJkL83T56g2v9zPQAkBgenqW4ZJcR1iPw9cxhFPBXu4YBmBdPf3HtFBeq6tv+P7zIFZducFYyEAbvRhogdCxWuEcaFvv/KLnxkxXTV1jt49t2H5AyZmrZLM7dOVqjZ4Zmaqfbrh3u8QZy7Vh+wG5XB06dKxcg8ely+Xq0MnT32jg2BmqqWuUy9Whtfl7NS5lUVDnI9ozNtCe/fqSMt/eqN8NnuC5i7ah6TYDLQAEwdddWXtKwvs/2E9V2AOW9bb7XzL2Hg78a1T9wEALwNrS5zm6XavXbQn9QDtxhlPr8u0x683pDLQMtNGPgRYIHasVzoF235GT6heXoP6Dkrzcbr0rh8OpOTmbNWBkmoa8OkvFR8s8n1dT16j4qUv1xxcmaczEBaq69KPnY5sLD+nZV6bp6RGTNXHWSp/jL93P+IuE/Xz3ngqLjunlxLf0m+fGq19cgnYWH5fDEZpXnnvcmb6AAMCDSsvsXiPtklxHRL1Q2OJV1vuXjLryctXvLtTNS1eNHwuA6FBR5f0f1LJynCG9Vl+54R6ukmfG9nCVPPPXgfZ6eH5fGQsZaE1goAVCx2p1XeOWv9ful2AGWjKf8YH2wSovXtWClVv15LBkPf3iZOWsLTR9SL1m+gICAA+rqraprMLN9LH0laUG2uv1ap4Zr9tjB3jUH9pv/rgARIXqmrbHdq1moHVjoA0/BtrwY6AFQsdqBfpoH4rMLDXQdnWvza6iw5/rtUmLTR9Kr5m+gABANLHSQFu/q9BrnL09doBuxw81fly+NGzfZNSt8i+NnwMA9zHQujHQhh8Dbfgx0AKhY7X8fbTBwygys+RAG0mZvoAAQDSx0kDbnD2p+0A7doDqysuNH9vDfB1nODVs3WD8HAC4j4HWjYE2/Bhow4+BFggdIpNZdqB9b0uRhr6WYfowes30BQQAoomVBtrGDat8jpG11+uNH9vDGrZuCFhL8su6PXaAGnMXBvw1uIMWsBYGWjcG2vBjoA0/BlogdIhMZtmB9oszldpceMj0YfSa6QsIAEQTKw20tdfrPeOl5xm0uwrNH1eINWW57xRmZI1dt0qPqSVltG6PHaDmrMmq+6rS+DEhOAy0bgy04feogba6pk35O+xKn+9Q+nyHCouC/7Oec85AC4QSkcksO9BGSqYvIAAQTSw10Da1qfZ6veoP7VfDto1RO1ox0Ma2m5eu+n7WsgXvFIf/GGjdGGjD71EDbf4Oe7cXsikIcqTlnDPQAqFEZDJLDLQXr1zT4dLT2nfkZDdWz/QFBACiieUGWh8atm30DFnNM+MjfrhloI1tD34/P+hW6THjx/awru9VU5qyJhk/B/5ioHVjoA2/Rw20qRndX2k8fb6Dcx4kBlogdKxW8RGXDnzS0WcUmRkfaFdu+Fj94hL0vy9P1dDXMrqxeqYvIAAQTaw+0N4qPdZttGlJGW38uILBQBvbehporfhieAy0/mOgdWOgDb8+D7TzGGiDxUALhI7Vevia6S+KzIwPtE8MnaiTp78xfRgBZ/oCAgDRxOoDbWPuIt9jVgTfRctAG9tuXrqqlvgh3v/RIfnlqHvEQcPWDbo9doAatm4wfizhwEDrxkAbfjziIPwYaIHQsVpd17jl77X7hYE2sjM+0P7xhUm612YzfRgBZ/oCAgDRxPID7YZVDLSIOnXl5WrOnqSW+CFqWjJLNy9dNX5MocZAG5sYaMPPnxcJS81wKjUj+HGWc+7GQAuEjtXqusYVH3H5JdiB9njZeb3wxhw9NTxF8VOX6sfrdZIku8Op2Tmb9OdRaRo8Ll27Dvzb6/MOHSvXk8Pe1NET//F6/8nTlRo5PktPvzhZE2etVGNza8DHFgsZH2jXbdmnD3ceMX0YAWf6AgIA0cTqA23dV5Xdxtnm7EmqvV6vuvIvI/KuQwZaxAIG2tjEQBt+jxpoe1JVbVP+DrveznWosMiu6hrOeV8w0AKhY7XCOdDWNTTrqeEpOld5WR0dnVrzwV6Nn75MkrT+w32aPn+dbHaHauoaFTd6mr7/4YYkaeuuT5SWtUbjkhd6DbR37t7TMyNT9VXVFbW7XFrzwV5Nn78u+JMSxRkZaFNmr/ZIy16rASPT9MIbc5Scmev1sZTZq00cXp8yfQEBgGhi9YG2tun+3YbN2ZPUuGGV6gvyvQbb+kP7jR9jXzDQIhYw0MYmXwNtdU2b1m1xeP4lNn9H3wbBR2Es7PtAW13TptRM78ceZC91cs77gIEWCB2rFe6B9uiJM563v7v8k559ZZokaUT8XH39bbXnY8vXf6T1H+6TJF28ck2dnZ1KnLHca6A9euKMJs5a6Xn7zt176j8oSQ4Hj2DoKSMDbe7GXX6zeqYvIAAQTSJhoH2Qrztqb48d4PePiN+83qBbX35pVPOMN9zD1Z5Co8dR9/UF47+fuK/+0H41vZ2hhm0bI/LO8Icx0MYmXwOtr+eg5u8IzZ85jIV9H2j3lHT//Uia6lRZhX+fzzlnoAVCyWqF+xEHD5b/0WHNXJgnSfrt84lq/fkXz8c+Lj6uWYvf9/r1Dw+0G/95UDlrC7x+zV9emuJ5bAJ1z/gjDqp/qvX5frvDqYpvvg/z0fQ90xcQAIgmkTbQNmzb6HOgrd9V6Nfn3yr/0uir0ltJU9Yk47+fcOv2YnjxQyN+pGWgjU2+BtrUjO5jYGqm/3dsPgpjYd8H2oIi3wNtSSkDrb8YaIHQsVqmBtovzlRq8Lh01TU0y9nuUr+4BNnsDs/Hi4+WKS1rjdfnPDzQvrt5j1Zt8L7pcvC4dF28ci3o44vWjA+0Twyd6PP9La139Pshvj9mpUxfQAAgmkTaQFt/aL/PsfFW6TG/Pr9roG157Vm1JL8cmxJfZKC1kJuXrvr8nm7YttH4sQWDgTY2+Rpo0+c5uo2B6fMcITnvjIV9H2jLKmzdB/MMp6qqGWj9xUALhI7VMjHQHjpWruF/n61rNbc87/vt84lqab3jefuj/aXKXLLR6/MeHmg3FRzUknf/6fVrBoxM8/q65J2xgXbXwRMaM3GB/uvZ8RozcUE3z74yTUNfywjrMZ0+/52G/322nhz2ppIzc/Xz3XuSpOu19UqYtkx/emGSRifN07nKy57PMX0BAYBoEmkDbW1Tm5pnxHu/aNiMeL8/1zPQJr+shq0bYlLTqgUMtBZSV17uc6BtzF1k/NiCwUAbm3wNtL7u2Cwo4hEHoRLIi4Q9+JiD1AynSsv8//3gnDPQAqFktcI90B7/4pxGjc9WY3Or1/tHjc/W6fPfed6et2KLNhUc9Po1Dw+0n35+Vm9MyfG8fauhRb8fMlHtLlfAxxftGRto22wOnTp7Qf0HJmr77qPd7Dp4Qjfrm8N2PK13ftFfXpqiM+cvyu5wKmdtgT4uPi5Jip+6VNt2H5XL1aGTpysVN3qanO3ubyrTFxAA6FJVbfP7jhOrisSBtvZ6vep3Fao5e5L70QZ9+FFwBlo/Btrr9WrYtlHNWZNVv7tv5xeBfT+3xA/p/tiOCHvxu4cx0MYmXwNtbZN7EMzKcSorx6k9JaH784axMLCBtou/z53lnHtjoAVCx2qFc6BtvfOLnhszXTV1jd0+tmH7ASVnrpLN7tCVqzV6ZmSqfrrhfSfswwPtL/dsemZkqr48963aXS4tWr1dc3I2B3RssZLxRxyUn60yfQiSpH1HTnZ7yLEkNbX8rCeHJXut/K9MmK8z5y9KYqAFYF51TZvezr3/I5vZS50he0XqcIvIgTYIDLS9DLTX69WSMtr7DuWZ/t+hjMDUH9rvNdJG+t2ztU0MtLGqp4H2cWEsDG6g5ZwHhoEWCB2rFc6Bdt+Rk+oXl6D+g5K83G69K4fDqTk5mzVgZJqGvDpLxUfLPJ/3yoT56j8oSf/17Hj99vlE9R+UpKMnzkiSTp29oBHxc/X0i5M1ac5q3W69G5LzEq0ZGWinzVunK1drPP//o4Srpe8VavHq7UqcuVyDxqVrTs5m3f2lTecqL2vU+GyvXztzYZ52HTwhiYEWgHnrtnR/nt7KvMj8H+kMtLHnUQNtT8/4rSsvN/5715Q12aiG91c93r/H6/WqKy/XzUtXjZ/rUGCgjU0MtOHHQBt+DLRA6Fitrmvc8vfa/RKqFwkjMxkZaJe+V+h5MPDS9wofKVzNXbpZw17P0M36ZtkdTk2bt045awt06uwFjUte6PVrs9/J1/bdRyVJt+86ACCsWn9xeknL7P7qx0lTnd1+XSTIWe0+9nOV7caPJSwq/uMeHVNG63bBptj07iL3OXhrcvfzU7jZ50DbevSg8d87X8cVVr7OF3r+/SrY5D5vBZuMH0s43Gxwegbaj4sdMSvl14G2tj48573rz1/Tf98mTZnjHgu/vxqCf279+N9EnHOH54XvKr7x75wB6JnV8vXveP6gyMz4Iw6+PPetHA7z30A5awu1bN0Oz9sV33yvkeOzdP7CZY1IyPL6tTMWrNeeQ59Jkn6xtQOAUfOWtXf7QzljvtP4cQVi6bvu4/+6yvyxhMPd878OtJNG6+cdm2PT2sXu0XXe5J7Pz0PuXr9uid+7QLXOdL+w3J3inYF/ne8vGj8HkeTnHe6x/+cdm40fSzjUN7d7BtrdB2NX10B7qyk8573rz2DTf98mTZ3jPgfV1zjn4TJrfmz9byfgcbJa/j7a4GEUmRkfaJ9+cbJ+N3iCktJX6IMdJaq69KM6OjrDfhzbdx/V3KX3H1hc8c33Gp00Ty2td/T7IRPVZrv/X1OGvZ6h8xcuS+IRBwDMKy3r/orUoXzRk3DiEQexp7cXCavfVegZZlvih0T8i1XVNrWpKWuSbo8doFvlXxo/lljBIw5iE484CD8ecRB+POIACB0ikxkfaDs7O3X56g3tLD6uWYvf13NjpuvpFydr2rx12ll8PGzH0djcqqdHTNal6utytrs0Y0GeVry/U5L71eg2bD8gl6tDh46Va/C4dLlcHZIYaAFYQ1mFTSvz7FqZZ1dpWeT+D3QG2tjT20Bb29TmeR6q6d+vUGGgDT8G2tjEQBt+DLThx0ALhA6RyYwPtA93r82mPYc+04tvzFG/uISw/rU/K/9aA8fO0ICRaZq1+H39cs8mSaqpa1T81KX64wuTNGbiAlVd+tHzOaYvIAAQTSJxoA3mRZQYaP0caKMMA234MdDGJgba8GOgDT8GWiB0iExmfKBtavlZn35+VsvW7dDYNxfo6RcnKyl9hdZ/uE9l/7lg+vB6zfQFBACiSSQNtI0bVnl+9L55Zrzqvqrs89dgoGWgNX0ssYKBNjYx0IYfA234MdACoUNkMuMDbb+4BL34xhxt/fgTXaq+buT5s8Fk+gICANEkUgbahm0bu71wVfPM+D5/HQZaBlrTxxIrIn2gLS2zK3upU6mZTq3Ks6u65tG/noHWjYE2/Bhow4+BFggdq1V8xKUDn3T0GUVmxgfaD3aUKDlzlZ4eMVnjUhZpRd5OHf/inG633jV9aH5l+gICANEkUgba5uxJ3Qba22MHqPZ6fZ++DgMtA63pY+mT6/W6dbxU9YeKg3q0hwmRPNCWVdi6vRBk9lLnIz+HgdbNn4G2tMyut3MdSp/vUP6O3sfvR2EsZKA1gYEWCB2r9fCf//6iyMz4QNuVy9WhC5euauuuTzR57rt6esRkjYifa/qwes30BQQAoknED7R9/DoMtAy0po/Fb9fr1ZIy+v73e/xQ3So9Zv64/BTJA23+DrvPf/mqqOr5cxho3XobaEvLup/bVXmB//nDWMhAawIDLRA6VqvrGrf8vXa/MNBGdpYZaO+12XX6/HfasP2A3sxYpQEj0/TiG3NMH1avmb6AAEA0iZSBtq68vNs427hhVZ+/DgMtA63pY/H7mJfM6v4fJeKH+vW5N7+/qobtm4xqypr86/fZZOPH0tN5Kquw6e1ch97O9b6Tc90Wh8+Btqyi5wGMgdatt4F2Sa7vcxvoXbSMhQy0JjDQAqFjtbquccVHXH4JdqA9XnZeL7wxR08NT1H81KX68XqdJMnucGp2zib9eVSaBo9L164D//b6vEPHyvXksDd19MR/PO9zOJzqF5eg/oOSPGYsWB/wscVCxgfanLWFGvvmAv338//Q4HHpemv5Fh06Vq7G5lbTh+ZXpi8gABBNImWgrW1yj7RNS2apOXuSGrZtDOhrMNAy0Jo+Fn8Fc9d41/c5ej5nvh5j0HUnp6+PZeXwiAN/MNCGHwNt+DHQAqFjtcI50NY1NOup4Sk6V3lZHR2dWvPBXo2fvkyStP7DfZo+f51sdodq6hoVN3qavv/hhiRp665PlJa1RuOSF3oNtI3NrXpmZGrwJyGGMj7QZr69UUWHP1dtXaPpQwko0xcQAIgmkTTQhgIDLQOt6WPx+5h93EHbEj+kb9/nbwxW09yUmPWogXZlnu/HGHQNhaVldqXPc18fV+bZVVX96PGLgdatt4G2pLT7+L0k1xHwPyeMhQy0JjDQAqFjtcI90B49ccbz9neXf9Kzr0yTJI2In6uvv632fGz5+o+0/sN9kqSLV66ps7NTiTOWew20V6/d1NDXMgI6lljN+EDbUz/fvae6hmbTh9Frpi8gABBNGGhjDwOt+ePxx81LV9USP8RroPX3GbR8n7s9aqDt6U7O3obYnjDQuvnzImEFRXalZtwfZ3mRsOAw0IYfAy0QOlYr3I84eLD8jw5r5sI8SdJvn09U68+/eD72cfFxzVr8vtevf3ig/ebbav3vy1M1fvoyDRiZpsSZyz2PTCDfWXagXbhqq/rFJZg+jF4zfQEBgGjCQBt7GGjNH4/frterflehGrZt1M1LV/k+D+FA6+tOzt4eY/AoDLRu/gy0ocRYyEBrAgMtEDpWy9RA+8WZSg0el666hmY5213qF5cgm93h+Xjx0TKlZa3x+pyHB9rqH2u0YOVW/XDtpuwOp1Zv2q1R47ODPrZozrID7Y2bDV63UFs10xcQAIgmDLSxJ9CBtq68XM1Zk9WSMlqNqxep9nq98d9Pf0XsQMv3+WMbaGub3HdyPjjOVlQFfs4ZaN0YaMOPgTb8GGiB0LFaJgbaQ8fKNfzvs3Wt5pbnfb99PlEtrXc8b3+0v1SZSzZ6fd7DA+3DOdtd6j8wUfWNt4M6vmjO+ED751Fpar59p/dfaNFMX0AAIJow0MaeQAbauq8quz0PtXlmvPHfT38x0MamvrywWrAYaN0YaMOPgTb8GGiB0LFa4R5oj39xTqPGZ6uxudXr/aPGZ+v0+e88b89bsUWbCg56/ZqHB9qGptuq/rHG87bD4dRvnhvvNfSSd8YH2tS5a7RjX6npwwg40xcQAIgmDLSxJ5CBtnHDqm4D7e2xA1RXXm7899QfDLSxiYE2/Bhow4+BNvwYaIHQsVrhHGhb7/yi58ZMV01dY7ePbdh+QMmZq2SzO3Tlao2eGZmqn27c8vo1Dw+0J09/o4FjZ6imrlEuV4fW5u/VuJRFAR1brGR8oJ27dLP+8tIUDXs9QxPSVypl9movVs/0BQQAogkDbexhoDV/PHyfM9BGKwba8GOgDT8GWiB0rFY4B9p9R06qX1yC+g9K8nK79a4cDqfm5GzWgJFpGvLqLBUfLfN83isT5qv/oCT917Pj9dvnE9V/UJKOnjgjSdpceEjPvjJNT4+YrImzVvocf+l+xgfad9Z/pNyNu3pk9UxfQAAgmjDQxp6AHnFQXt5tnG1Jftn476e/GGhjEwNt+DHQhh8Dbfgx0AKhY7W6rnHL32v3S6heJIzMZHygjfRMX0AAIJow0MaeQF8krP7QfrXED3E/fzZ7kuq+qjT+++kvBtrYxEAbfgy04WdqoEXs/G8n4HGyWoFeDygys8RAu/+TLxQ/dakGjp0hSbLZHcrbVqx2l8vwkfWe6QsIAIRK1Q82Fe5zGJU+3/0vduu22I0eR8nx8PxLDsNV4ANtJGOgjU0MtAy0sYCBloEWiGRWy99HGzyMIjPjA+3Wjz/RwLEztLnwkPrFJUiSGptb9XLiW1q9abfZg/Mj0xcQAAiVUxV24/9yYRWLVznCcs4ZrhhoTR8L3+cMtNGMgTZ2BlrTf98m8YgDIHSITGZ8oP3fl6eq+scaSfIMtJJ0vbZeA/8209BR+Z/pCwgAhErXQJua4dDiVfaYlJXjYKBloH3sGGhjEwNt+AU70ObvuP8fLt/Odai65tG/nrGQgdYEBlogdIhMZnygfWLoRHV0dEryHmjbbA79z+AJho7K/0xfQAAgVLoG2plvOYz/FTnGEAAAIABJREFUy4Yp6/LtDLQMtI8dA21sYqANv2AG2oKi7j9V8nbuo/9sYCxkoDWBgRYIHSKTGR9oxyUvVEnpl5LuD7SdnZ16f3uxXpkw3+CR+ZfpCwgAhAoDbfADbf2h/WrYtlF15eV+/XqGq/APtDevN+jWl18a1TzjDd0eO0ANewqNH0s4zjnf5wy0pgQz0C7Jdfh8BM6j7qJlLGSgNYGBFggdIpMZH2jPVX6vJ4ZO1N/T3la/uASlZa/VkFdn6clhb+r0+e9MH16vmb6AAECoMNAGMdBer1fzzHjPAHN77AA1bljV6+cxXPVxoL1er/pDxWrYtlE3L10N6Pu865wjfGMh3+cMtKY8joH2UZ/DWMhAawIDLRA6RCYzPtBK7ufNvr+9WHOXbtbC3G3a+vEnar59x/Rh+ZXpCwgAhAoDbeADbf2uQp/jV28jIsNVHwba6/VqSRntdX7rD+3v8/e555y/9qxakl+OWQy0DLSxIJiBtrSs+yMO8nc8egDr+nXr8u0xKzWja6ANz1jIQMtAC4QSkcksMdBK0s9376n6p1pdvXZTd3+JnH8wTF9AACBUGGgDH2gbcxf5HGh7e9QBw5X/A23jhlXdz3H80D5/n3PO+zYW1n1VqcbVi9ScNVn1h4oDurZwzvt2zkOBgdatt4G2qtqmiqqez2NpmV1Lch1akutQQVHv45evO25jFXfQhg8DLRA6RCYzPtDW1DUqfupS9YtL8PivZ8crKX2FbjW0mD68XjN9AQGAUGGg5Q5aE/wdaJuzJwU0gnPOAx8L676q7Ha+/Xl0B+c88HMeKgy0bo8aaFfm3b9DNn2+45FDrb+6vt7Mtxwxa+L0roGWO2jDhYEWCB0ikxkfaMe+uUBZyz7Q199W6+atJt242aDT579TcmauxqUsMn14vWb6AgIAocJA24eB9nq96sq/VO31es/7Hh4Q63cV9nrOeR7qfYHcQdsSP6TP3+eMhf6PhT3dGf7g9z3nnIHWynoaaAuKuj++IH1+YC8O+SDGQp5BawIDLRA6RCYzPtD+78tT1dnZ2e39P9+9p/8ZPMHAEfUt0xcQAAgVBlr/Btr6Q/t1O36oZ2xp2LbR87G68nLV7ypU3VeVfp1zBlr/B9ra6/Vez069PTbIZ9AyFvY6FvZ417Kf39+ccwZa03oaaHt6AbCq6uBGRcZCBloTGGiB0CEymfGB9pUJ83Wvzd7t/Tfrm/Vy4lsGjqhvmb6AAECoMND2PtDevHTV92DVxx+z78Jw1YcXCWtqU+31et0qPab6XYW9Pj6Ccx78WOjr0R0tyS9zzh/jOQ8VBlq3hwfa6po2FRbZNWWO74E22PPOWMhAawIDLRA6RCYzPtDu/+QLTZy1Uv/67Ky+u/yTKr/7QYc+Ldff03JUfLRMl6/e8LBipi8gABAqDLS9D7T1h/b7HGgfvIu2Lxiu+jjQhgDnvG9jYdOSWV7jbF/vnuWc9/2chwIDrdvDA23XnbOJPsbZ/B3Bj1uMhQy0JjDQAqFDZDLjA+2DLw7WGytm+gICAKHCQNv7QFtXXu5zoPXnebO+MFwx0EbEWHi9PqBhlnMexDkPEgOt24MDbUVVm9cg2zXSzlrgUElpaMZExkIGWhMYaIHQITKZ8YG2pfWOfr57zy9WzPQFBABChYHWv2fQPvxczpbkl/v8okldGK4YaGNhLOSch/+cM9C6PTjQllXYfD7WYN2W4F8crAtjIQOtCQy0QOgQmcz4QCtJLleHzpy/qH1HTnred/eXyPiHw/QFBABChYHWv4G29nq96ncVqjl7kvvRBgGOs7VNDFcNWxloY2Es5JyH/5wz0Lo9/IiD9Hndnz1bWha6UYuxkIHWBAZaIHSITGZ8oL1xs0FDX8vQE0Mneh5jUFPXqD++MEmV3/1g9uD8yPQFBABChYHWz4E2hBiuGGgjcSy8VXpMzTPjdTt+qJrezuj1P1JwzoM/533FQOv28EBbUeU90hYU9TxoVde0ae9hu/J32HX4uH9jI2MhA60JDLRA6BCZzPhAmzBtmdbm75XL1eH1nNnCok8VP3WpuQPzM9MXEAAIFQZaBloTGGgjayz09Rzm5pnxnPPHeM4DwUDr9vBA26Wq2j0eFhTZlT7fofT5DhX+OtaWVdi0aKVDE6b1/VEIjIUMtCYw0AKhQ2Qy4wPt7wZPkN3hlCSvgdbZ7tIf/pps6Kj8z/QFBABChYGWgdYEBtrIGgsbcxf5fKG8R72IGOc8uHMeCAZat54G2tom9zj78OMO1m52vy9xSvdn1SZNdaqi6tHnnbGQgdYEBlogdIhMZnygjRs9TY3NrZK8B9rLV2/omZGpho7K/0xfQACgJ1XVNu09bFdhkd1zt9CjMNAy0JrAQBtZYyEDbfjPeSAYaN0eNdBm5XQfYN+c4f6/iT7G2aSpTpVVPPrPUsZCBloTGGiB0CEymfGB9p31H+mNKTn6suJb9YtL0MUr13TgX2Ua+lqGFq/ebvrwes30BQQAfKmoalNqZt9eCIWBloHWBAbayBoLfT7iYAaPOHic5zwQDLRujxpofb1gWJee7qDt7T92MhYy0JrAQAuEDpHJjA+0NrtDC1Zu1f8MnqB+cQnqF5egJ4cla9WGXZ5HH1g50xcQAPBlZV73H91Mn//o0ZGBloHWBAbayBsLb5UeU0vyy+7ftyWzdPPSVc75Yz7nfcVA69bXRxzkbuh5tC0p7X1wZCxkoDWBgRYIHSKTGR9ou3I621VT1+h53EGkZPoCAgC+9HRn0KM+h4GWgdYEBtroHws554Gd8+qaNhUW2fV2rkPrtjj8elRNFwZat0cNtLVNbcrfYVdqhlOpGU7l77CruqZNpWV2z5+hby1z6OCnNr/PPWNh3wbaiqo27T1s7/XZvpzzR2OgBUKHyGSWGGiv1dRr/Yf7NCdnsySpo6NT//nqouGj8i/TFxAA8MXnHbTzuIO2Nwy04cdAGxljIec8/Od8Sa73f2hLzXSqusa/z2WgdettoA01xkL/B9p1W7y/v9dtCezPXc45Ay0QSkQmMz7Qnjp7Qf0HJWnirJWeFwmrrWvUU8NTdOBfZWYPzo9MX0AAwJeqapvXXbSpGb2/+jQDLQOtCQy0kTEWcs7De87LKmw+fwqioMi/AYaB1u3hgXZPid3zfPa3cx06dd6u/B12rcqz6/Dx4H8kn7HQv4G2p+/vQO6k5Zwz0AKhRGQy4wPti2/M0b9PnZckz0ArSWfOX9TI8VmGjsr/TF9AAKAnXT+qWVJq8+uuKwZaBloTGGitPxZyzsN/zhloQ+PBgba0rPtPlkyY5v12oHdxdmEs9G+g9fX83758f3POvTHQAqFDZDLjA+3/DJ4gl6tDkvdA62x36XeDJxg6Kv8zfQH5/+3d+3uV9Z3v///HmT3uPdO9Z/p1Wnvw1HFsq611t91FS+oBUKxyqIXiCcG6AQ+lDEhhxAE6RaRYia3dhnHqINU2QgcyldqUjgwhBMJBrTmJvr8/RAIhKyRkLe73Ojwe1/W8LsUgNx/wlrxY3EuSKpWB1kCbkYG2+sdCZ178mbe198a0WSMHrJZtBtpz6fSBttSjf5qmD8TkM1/F+R+9sa2116s5J9h4BtpSY7lX0E48A61UuSBT+kB7xVdmxeu/fzMihg+0//LyjrjkuhlJVzV+2TcQSapUBloDbUYG2uofC515zplvax0+0p7LqwsNtIOdPtCe+czT0QbaKTNO/fXiZec2eBkLx/8M2jMHc8+gnXgGWqlyQab0gfapLS/Gxz5/Wzy26um44OLr4582/jzmfndV/PdLvxHrf9ySfXljyr6BSFKlMtAaaDMy0NbGWOjM8858Iq8qNNAOdvpAW+qxEZNvGznYntnG5vGPXkNj46q+hm3arJMD7djn1tzSG2s39Q17ZXhb+7m9etlAa6CVKhlkSh9oIyKaW34ZX//md+PTX7ozrvzaXTHlrofjpVf+PfuyxiX7BiJJlcpAa6DNyEBbW2OhM6+NMzfQDnbmm4S1bOuL+Uv6Y8a8/li1vi8eWXnqVbVTZg5EU4nBdv6S8f//YKyxt5Eaz0B7eu37e+KBJad+POYuHIi29rHfuM1Aa6CVKhlkSh9oj7/1p1H/2clHH1Sz7BuIJFUqA62BNiMDbf2Phc68+DM30A525kBbqrb2wWfOtu8vPbCeyx+9v39xf2qz7hkc6m6fk3sd9y/uj//4w9jj6umtWj/yubQPjGMcN9AaaKVKBpnSB9rPfHV27OvoGvZlJ068HyvXbYkLPz056arGL/sGIkmVykBroM3IQFv/Y6EzL/7MDbSDjWegPb0zR8Jps8b3Ks5q6cc/Hbz+x9fW3lA3Y17pZwSP9fUMtAZaqZJBpvSBdtkTm+Njn78t/v0/2iMi4s39XfGVqfPjk1/8Zmz/dVvy1Y0t+wYiSZXKQGugzchAW/9j4ckzP/blT8TRm69p2Ay0xTfegbZ9/+CbiD2wpD8WPtofj67sj7Wb+mpqnO3oru2Bdv6SkQPttFkG2vFkoJUqF2RKH2gjIn669ZX46N9PjYe+/8P4q8tvjG8teDzefufd7Msal+wbiCRVKgOtgdZA2zilDLQy0BbceAba9v09MePu4ePgya/XNH0g1m2qndGrlgfaUm/itnYcZ2+gNdBKlQwyVcVAGxGx67d/iI9fPT3mPPiD7Es5J9k3EEmqVAZaA62BtnFKecTB5L+P7sX3NGwG2uIbz0Db3DJyGGyaPvwNw5pbauOVtLU80HZ0D460S1f3x6JlfdGybXzfBwOtgVaqZJApZaC9fd7Skv3vKffHn33ihrh17mNDX1btsm8gklSpDLQGWgNt4+QZtPV95gbawcYz0K7dNPLNqZqmD8Tk0wba+eN4s6pqqBYG2pOPk2iaPhDTZg/E08+Vd60GWgOtVMkgU8pAu/B768Zdtcu+gUhSpTLQGmgzMtDW/1jozIs/cwPtYOMZaFvbekoPtKf99aJltTF81cJAW+pZs+W8QtlAa6CVKhlkqppHHNSq7BuIJFUqA62BNiMDbf2Phc68+DM30A423jcJa27pjWmzBj/2xm8Of/Vs0/SB2NbqEQeVqH1/6TG8nFcoG2gNtFIlg0xVMdC+uuP1eHDp+rjjnmUx475/iP/7D/8cO3a/kX1Z45J9A5GkSmWgNdBmZKCt/7HQmRd/5gbawcY70J6stW1wRFy1vi/mL+mP+Uv6a2ac7eg20DZqBlqpckGm9IF25bot8T8u/UbcOHNRzP3uqrhrwcr42m0L4r996uvxxIafZV/emLJvIJJUqQy0BtqMDLT1PxY68+LP3EA72LkOtLVetQ+0Hd09sWjZyGf+jvcNwUploDXQSpUMMqUPtB+9amq0/2fHiC9/6ZVd8TdXTkm4onOTfQORpEploDXQZmSgrf+x0JkXf+YG2sEMtPm1tvXEuk198dzWwVcin3yF8ox5/TFnwUBsbPYmYeVmoJUqF2RKH2g/89XZJb+8v38g/tpAK0mFZaA10GZkoK3/sdCZF3/mBtrBDLS5bWwe/mrZuQsHon1/Zb8NA62BVqpkkCl9oP3OQ6vjX7f/ZsSX/+iZrfHg0vUJV3Rusm8gklSpDLQG2owMtPU/Fjrz4s/cQDuYgTavtvbeks+bLfcVs2c29Bzbh/sbtqmzDbRSpYJM6QPt7Pkr4sJLmuKzN8yJad9+NG6evTiu+Mqs+J+fuTlun7d0WNUo+wYiqbFbtf7Uq1MeWNJf1itTDLQG2owMtPU/Fjrz4s/cQGugzb6Wba2lB9pFy87PQCsDrVSJIFP6QDv/kX+Khd9bN66qUfYNRFLjtnbTyDfaeKCMd0I20BpoMzLQVu9Y2LlzVxzc2hIH9ux15gWdeaUy0Bpos6+lfX/p8bTSr6DN/jm2dPXgmc+Yl/9rp7Y/9Kb/uEu1HmRKH2ir0ff/8cfxsc/fNvT3+zq64vrbH4y/uXJKXNM0L17b9cbQP8u+gUhq3OYv6S/5yc9EX0VroDXQZlTuQNu1ZXMcXr4kDq1ZER37upx5hcbCw0vuG/qYY9deFF1bNvt5fh7OvLVt8E9CLF3dX9Y72Z+ZgXaw8Q6021p7Y1trb7S11/bAVU0DbUd3TzS3DH8V7ZwFlX8GbXYnf+1U1K8bJJ3fIFP6QPv++x/EhmdfjK9MnR+f+MLt8dGrpsZ1t9wXG559MeV6/rivM/7u/3xr2EA7afrCWPPU83HixPvx0iu74uJrbo+B905EhIFWUl6jDbQT/fcZaA20GZUz0B5evnjYiHhs0uVjjrTOfPSx8GRdWzYPP9cPm+graZ156TNvbRv5CsO1myozrBloxz/QLlp26k+jTJs9EM0ttTvSVttAe/Ln+cbmvnP6DYhV6/ti2uzBH49V6/uqetQ10Er1FWRKH2iXrXkmPvb52+KRlRvjmee3xTPPb4uHH38qLvrsrbFu0wuFX88N33wwfrr1laGBtvvoW/GRK26O906cGPqYL3zj7nh1x+sRYaCVlFfLtpGPOFi1fuKflBloDbQZTXSgPbBnb8kR8dCaFc58AmPh6Y0Yvj+sc/t2P88reOanD4OV+E220zPQjm+g3dg88sdg2uzafZVnNQ6051qpxzeV82ub852BVqqvIFP6QHvpdTPi9d+/OeLLd+/ZG1d+7a5Cr2Xzz/4tvrXg8Th6/O2hgfa1XW/E526YO+zj7rx32dArfLNvIJIau5ZtfTF/SX/MWVD+K68MtAbajCY60HZu315yROyeP9OZT2AsPL2uDetKD7Q7d/l5XsEzH+1PQVTij9kbaMc30I42km9rrc1X0dbDQDtj3sj/LqbNrsxvXJyPDLRSfQWZ0gfaj1xx09DjAk438N6J+MgVNxd2HceOvxOf+ers6D761rCB9uVf747rbr532MfO/e6qePKp5yMi4q13BySp0N7uee+8tLPtvWiaPhAz7x6IDT9pzFasGTyDhY+cv3Me1o5fDY42t1wTx9etbMwevT+OXXtRHJ839ZzO7q3DR+PY9ZeNGBHf2vzPznwcnTyv0c72+Izrh53r8cfm+3le4TN/6tmRw+Csuytz7+nsfm9ooM2+r2Z2y4cDbefh0udU6segafpA/LGjgPv/eei5lsEf9yf+uaD/h52HZt098sfj1tn5v/YarR27B898wcP51yKp/CBT+kD7pZvujU3P/WLElz+15cX44o33FHYdcx78QWzc8q8REcMG2h2734irrp8z7GPvuOf7Qx/79rsDklQX7dx9cqDtjw0/acxWrBn8ZHDhwwWd+2unD1ePN2aPDr4Z1fHvTD3rWb116Ei89dqv4q1DR0592c+fHTbSHl8425mPs6Gx8Gzn/eMfxlvrVsZbP3/Wz/PzcOYHuwd/M+j0cfa37ZW5t3QeHjhtoM2/t2Y1NNAeKn1OB7sHx7/Tx8AnN+T//3iiPffCwKmBtgquZyI99ZORA201/5ic/LVTYb9ukHReg0zpA+2rO16PCy9piqsnfydm3b88Zt7/D/G5G+bGhZ+eHC++vLOw6/joVVPjY5+/LT72+dvibz93a/zZJ26Ij33+tvjP/+qMv7zsxujp7R/62Cu+Mit27H4jIjziQFL95BEHHnGQ0XgecdC1ZXMcm3T50MDVtWHd0D87sGdvdG7fPu4/fu/MS/9xez/P8868ta2n4n+k3iMOxveIg47unmjfP/jc07Wbzu2NrKqxenjEQUf34I/HjHn9MWNef8XeOO985REHUn0FmdIH2oiIg4eOxg/WN8c9i56Iby9cGcuf/Em8uf9g2vWc/graiIjJdzwUy5/8SZw48X5seWF7XHrdjDhx4v2IMNBKqp8MtAbajMYaaEd7M7Cyn4fadGUcXnJvw2agrZ6B9nxkoB3/QFtP1ctAW0sZaKX6CjJVxUBbbc4caPd3Ho5J0xfGX185Jb544z3RtuePQ/8s+wYiSZXKQGugrcaBdrQ3rDq0ZkVZZy4DrYG2/jPQ6nxnoJXqK8iUPtC+sfe/4ta5j8Xf/Z9vxae/dOeIql32DUSSKpWB1kBbjQPtwZYXSg6LXVs2l3fmX/5EHL356obNQNsYA60MtDq/GWil+goypQ+0V10/Jybf+VBsePbFePbnL4+o2mXfQCSpUhloDbTVONB2dPfEkTsmDRtnj9wxKTr2dTnzGhkLnXnxZ26gNdBmX0ujZKCV6ivIlD7Q/sWnJsfxt/+UfRkTln0DkaRKZaA10GZUcqDd1xWd23956jmz+7qia8O6ODJ3yuAbhE1wnHXmOWOhMy/+zD3iYDCPOND5zkAr1VeQKX2g/eKN98Qf3jyQfRkTln0DkaRKZaA10GZ05kDbtWVzHJt0+dCY1f3ALGde42OhMy/+zA20Btrsa2mUDLRSfQWZUgba3Xv2DvXTra/EpOkL46dbX4ldr+8d9s9279mbcXnnJPsGIkmVykBroM1o2EC7r2vYODv0vNkN65x5DY+Fznz8Z97W3hvbWnvLPnMDrYE2+1oaJQOtVF9BppSB9oKLrx931S77BiJJlcpAa6DN6PSBtnP79pJvCNY9f6YzTxgLnXmxZ75oWd/QM1OnzR6I1raeWLupL+YuHIi5Cwfi6efGP7oZaA202dfSKBlopfoKMqUMtH39A+Ou2mXfQCSpUhloDbQZnT7QHtizt+RAe2jNCmde8Fjo53mxZ76x+dQ4e7Kps/pHfNnG5vENbwZaA232tTRKBlqpvoJM6c+gjYjY075v6K/3dx6OJzb8LLZu25F4ReOXfQORpEploDXQZnTmM2gPL188bJw9Oumyst4UzJmf+1jo53nxZz5/ycgxtmn6QEw+4+/nLhwY15kbaA202dfSKBlopfoKMqUPtP+08efx11dOiRMn3o9jx9+Jiz57a1w9+Tvxt5+7NX6wvjn78saUfQORpEploDXQZnTmQNvRPfhGYYeXLx585WwFx1lnPr6x0M/z4s986erxDbRzFhhoKzHQtu/viee29sZzW3ujrb38Z/5WSwba4jPQSvUVZEofaC+5bka07fljREQ88aOfxRdvvCc++OCD+P3e/XHZ/56Ze3HjkH0DkaRKZaA10GZUaqB15rljoTMv/sxb23pi2qzhY+xd948cbddu8oiDcgfatvbemDb71JlOmz1QkTdmq4YMtMVnoJXqK8iUPtBeeElTfPDBBxER0TTj/8bqf34uIiLef/+DuPCSpsxLG5fsG4gkVaqTn2TcdGd/zJjXmN3+7X4DbcEZaKtvLHTmOWfe1t4bq9b3xaJlfdHc0hvt+4e/snbVem8SVomB9vQ3YzvZjLvrY1wz0BafgVaqryBT+kB7yXUz4rdv/Gd0dB6OCz89Of64rzMiIv7w5oH4xBduT766sWXfQCSpUp38JEMG2iIz0FbnWOjMa/vMDbSjD7Qz5pV+nERR/689nxloi89AK9VXkCl9oF379P+LCy9piv9+6TfiWwsej4iIY8ffiSu/dlcsXr4h+erGln0DkaRKdfKTjOnf7o+lq/oasgcf8wraojPQ1v9Y6MyLP3MD7Tm+gnZefYxrBtriM9BK9RVkSh9oIyJ+v3d/7Nj9Rpw48X5ERAy8dyJ+9MzWob+vZtk3EEmqVJ5B6xm0GRlo638sdObFn7mBdvSB9szn/U6bNRAt2+pj0DTQFp+BVqqvIFNVDLS1LPsGIkmVykBroM2oEgPtgT17o/uBWXHkzklxZM7U6Ny5y5lX0VjozIs/cwPt6ANtR3dPtO/viY3NfbGxuS/a2uvjDcI6ug20GRlopfoKMlXtQPu91Zvi8i/Pyr6MMWXfQCSpUhloDbQZVWKgPXLHpKHx69i1F8WxSZfHgT17nXmVjIXOvPgzN9CefaCt16pxoG1r743Fy/pixt39sXhZX7S25V9TJTPQSvUVZKragfbfXt0VK9dtyb6MMWXfQCSpUhloDbQZlTvQdm7fPnyc/bBDa1Y48yoZC5158WduoDXQZl9LR/fgK5Vn3D38TdmmzR6oq1ctG2il+goyVe1AWyuybyCSVKkMtAbajAy09T8WOvPiz9xAa6DNvpaO7p5o2TbyDdmapg/ExubquL5KZKCV6ivIVBUD7dHjb8fuPXvjtV2/G1G1y76BSFKlMtAaaDMq+xEH+7ri6KTLRgy0oz2H1pkXPxY68+LP3EBroM2+lo7unmhu6S050K7dVB3XV4kMtFJ9BZnSB9rlT/4k/vyTN8QFF18ff/7JG0ZU7bJvIJJUqQy0BtqMKvEM2s6du+LI3ClDZ3mw5QVnXkVjoTM/tzNva++Npav744El/bFuU1+07z/3MzfQGmizr6Wje/ARB9NmjRxoPeJAUrUGmdIH2o9fPT127H4jTpx4P/tSJiT7BiJJlcpAa6DNqBIDrTM/f2OhMy/2zNvae2Pa7OFj1gNLzv1+ZKAtf6Bta++N57b2xrbW2hkTq22g7ejuida2npgxb/A5tDPm9UfLtuq5tkpkoJXqK8iUPtBe0zQv+xLKkn0DkaRKZaA10GZkoK3esdCZF3/mazeVfmbnuY6EBtryBtoz/2j+3IUDE3olc9FV40Bb7xlopfoKMqUPtE9s+FmsXLcl3n7n3exLmZDsG4gkVSoDrYE2IwNt9YyFB/bsdeYFn/mZrVpvoK2GgbbUH8uvhTe2MtAWn4FWqq8gU/pA+/yLv4r/+Zmb44KLr48LPz05LrykaVjVLvsGIkmVykBroM3IQJs/Fh5as2Lo74/cOWnUN1hz5pU789Eq9a7302ad+6s3DbQTH2i3tZZ+Y6v5E3jURNEZaIvPQCvVV5ApfaD9+NXTY9kTm+OlV3bFqzteH1G1y76BSFKlMtAaaDMy0OaOhV1bNg/99cmO3nKNMz+PZz7WeZ3+mINps8791bMd3Qbacgba9v09JQfaVeurf/Q00BafgVaqryBT+kB71aRvZ19CWbJvIJJUqQy0BtqMDLS5Y2H3/JkjBtpj115U0VfROvPhZz7ec2ttm/iZG2gnPtB2dPeN7ffyAAAaiUlEQVTExubhr2SeMa/fM2hVMgOtVF9BpvSB9u5F/xiv7Xoj+zImLPsGIkmVykBroM3IQJs7Fh5ecl/JgbaSz6N15sPPvIif5wba8Q20zS29sW5TXzy3deSrlLe19sbaTX2xsbmvJsbZjm4DbUYGWqm+gkzpA+1dC1bGX11+Y1x70z0x7duPxq1zhlftsm8gkhqn1raeoU8kz8cniwZaA21GBtrcsbBz564R42z3/JnO/DyeeRE/zw20Yw+0i5YNf5Xs4mW1P2oaaIvPQCvVV5ApfaB96Ps/jCUrNoxatcu+gUhqjEb8ccu7K//HLQ20BtqMDLT5Y2Hn9u3RPX9mHJk7JQ6tWREd+7qc+Xk+8/OdgfbsA+1obwTWsq22h00DbfEZaKX6CjKlD7S1LvsGIqn+K+oNSwy0BtqMDLT1PxY68+LP3EB79oH29DdiO721m2p72DTQFp+BVqqvIFP6QPv++x/EhmdfjK9MnR+f+MLt8dGrpsZ1t9wXG559MfvSxiX7BiKp/hvtlT7zl1T2kwEDrYE2IwNt/Y+Fzrz4MzfQnn2gbW0r/Ruf21pHPou2ljLQFp+BVqqvIFP6QLtszTPxsc/fFo+s3BjPPL8tnnl+Wzz8+FNx0WdvjXWbXsi+vDFl30AkNUbTZo38RHJjs1fQFjHQdu7cFd0PzIojc6bG4Yfvq+gf/zZcGWgbYSx05sWfuYH27ANtR3dPLF3dP+z/qUtX1/7AZqAtPgOtVF9BpvSB9tLrZsTrv39zxJfv3rM3rvzaXQlXdG6ybyCSGqPmluGvop2zYMAzaAsYaA/s2RvHJl0+7A2Ujtw5qWJnbrgy0DbCWOjMiz9zA+3YA21H9+AraZtbeqO17fz/mBSRgbb4DLRSfQWZ0gfaj1xxUwy8d2LElw+8dyI+csXNCVd0brJvIJIap7b23tjY3Hfe3sTEQDtyoD20ZsWId7g/du1F0bl9e0XO3HBloG2EsdCZF3/mBtrxDbT1loG2+Ay0Un0FmdIH2i/ddG9seu4XI778qS0vxhdvvKf4CzpH2TcQSapUBtqRA+3h5YsNtOc5A239j4XOvPgzN9AaaLOvpVEy0Er1FWRKH2hf3fF6XHhJU1w9+Tsx6/7lMfP+f4jP3TA3Lvz05Hjx5Z3Zlzem7BuIJFUqA+3IgbZz+/YR4+zRSZdV7Dm0hisDbSOMhc68+DM30Bpos6+lUTLQSvUVZEofaCMiDh46Gj9Y3xz3LHoivr1wZSx/8ifx5v6D2Zc1Ltk3EEkaq/b9PfH0c32xblPfWd+h2kBb+k3CurZsjqOTLhsamDp37qrYj43hKnGgbboyDi+5t2Ez0NbWQNuyrS8eWNIfcxcOxLpNY49vBloDbfa1NEoGWqm+gkzpA+26TS9ET29/9mVMWPYNRJLOVvv+npi78NSbizVNH4hV60t/4magLT3QDjWeV83u64rDD98XxyZdHkfunBQHW14468cbrvIGWhloa2WgbdnWN+wefrb7+MkMtAba7GtplAy0Un0FmdIH2v/vs9Pij/s6sy9jwrJvIJJ0tjY2j/zEvmn6QLS1j3wlrYF2jIF2HB25Y9I5Pa/WcFX8QNv5m93RPWdKakcmXRrHrr0ojnzza+nXUsSZ+3le3kA7f0l/yfv42b6OgdZAm30tjZKBVqqvIFP6QPvjn74UN85cFFv+3/bY2fb72L1n77CqXfYNRJLO1tLVpT+xL/WoAwNteQNt585dJV+heHjJfaN+Ha/mPFVRY2E11D1nShy79qI4uP2X6ddSRAZaA62BtpjqYaBtbRt8LNPZHslUTRlopfoKMqUPtBdcfP1Zq3bZNxBJOlujvYK2ff/IjzXQGmgNtMVkoG3MTh9o29p747mtvcNGqOaW3pg2e/AePePu/mhtG/zytZtG3sfnLzn7PcpAa6DNvpaJdObP9QfG+HleDRlopfoKMqUMtG/uPxgnTrwfERFte/4Yff0Do1btsm8gkjRWZ776qrml9KtSTn6SMXV2f8x/uDGbs6C/0EccVEONNhZWQ4125gba4QNtc0vvsHvy3IUD8S/be0eMsNNmn/rNtFXrTw1Xi5b1lfxNttMz0Bpos6/lXGtt6yn5G8obm8//96V5a1+s+3H/hFq6um/oN1Um+u9Y92PjrlQtQaaUgfYvPjU5jh1/JyIi/uryGzMuoWKybyCSGq+29sFXXZ18ddV42tbaG80tvSWfPXuykwOtJj7QHtizN7rnzxwao7q2bE7/+TJWjTYWVkONduYG2lMD7YEvXT70KtnTW/hY6ccYtGyb2Dh1cqDVYAba6m9b68jfpGiaPhBrN53/78v9i0v/91dk2ecvaTDIlDLQXj35O3HFV2bFjTMXxZ9/8oa4ceaiUat22TcQSY3Vma+8Wrq6cq+6aPtD/qudZszr//D71Zd6Hc1ba++T24nWaGNhNdRoZ26gPTXQtn5lWslx5s55439e+Hgy0Bpos6/lXMt+BW32r3+yz1/SYJApZaDtOnwsnvjRz+KxVU/HX3xqcjz6g6dHrdpl30AkNU5t7aVfXTLaIwtqsZOvYnm5tfY+uazVGm0srIYa7cwNtMNfQVvqPr5yfX9MmzX8y+YsqO1X1a3/8eBY+E8b3c+LqpYH2o7u4Y/yqIf/BiTVXpAp/U3CHlm5MfsSypJ9A5HUOI32x/9Wra/NT8RKVc0D7YE9e+PQmhVxePmSONjyQvr1VKpGGwuroUY7cwPtqYH22LUXjXjzxhnz+qN9/+ArCBct64v5S/pj6er+MZ8zW+0ZaIuv1gfaju7BX+us3dRXV7/5LKl2gkzpA22ty76BSGqcMv/4X1FV60B7YM/eODbp8mFv/nVozYr066pEjTYWVkONduYG2uEDbUf3qRFqY/PYb/hVqxloi68eBlpJygwyVe1A+73Vm+LyL8/KvowxZd9AJDVWS1f3j/jjf/X0yX21DrSHl9w3bJw9fWip9RptLKyG6uXMD7a8EEfmTI0jd046629YGGhHDrSNkIG2+Ay0klRekCl9oH3rnXdLfvm/vborVq7bUvDVnLvsG4ikxqu5pTdWra/PV15V60B7ZO6UkgNt585d6ddWbvUyFtZS9XDmB1teGPHfw+Hli0t/rIHWQFsF19MIGWglqbwgU/pAe+ElTTH9O9+LF15qjYGB97Iv55xl30AkqZ6q1oH20JoVI8aoo5MuS7+uSlQPY2GtVa1nfmjNiqFHeXQ/MCs69nWN+rGj/aZFqY89OdDKQFsLtWzri8XL+uKBJf3x3Nbaeg6qgVaSygsypQ+0rf/+u1j4vXXxqS/eER/9+6lx7+In4rVdv4sPPvgg+9LGJfsGIkn1VLUOtB37uoYNUkcnXRad27fnX1cFqtaxsJ6rxjPv2rJ5xJB4ZM7UUT9+1IG2xKhroDXQZl/LeGvZ1jfiOe9rN9XO9RtoJam8IFP6QHvSBx98ELt++4dYvHxDXHrdjLjkuhnx2Kqn478OHMq+tLPKvoFIUj1VtQPth3Vu3z44zJ7llYW1VjWOhfVeNZ75aIPrgT17S358qVeVH5k7Jf37MVonHzFw6Inl6dfSKNXiQDt/SX/JN+Ms8hr+8Ue9cf/i/gk1657B6799zsS+/v2L++PRx/vTfxwkKSvIVDUD7Um79+yNhx9/Kv7X390Sf/u5W+MvL7sxZs9fEcff/lP2pZWUfQORpHqq2gfaeqwax8J6rxrPvHv+zHG/IvZkh5cvHj7OVvFvXBhoi68WB9o5C0aOs0UPtN/93shX8RbZjLsNtJIaN8hUFQPtvo6uWLbmmfjMV2fHhZc0xTfvXhovvrwzTpx4P44ceztunfNo3PKth7Mvs6TsG4gk1VMG2uKrxrGw3qvGMy/1pl/d82emX1elMtAWXy0OtKvWjxxH5y8pdrDc8dveeLm1L61X/722nrsrSZUMMqUPtF+ecn9ccPH18aWb7o0fbm4p+UrZY8ffiQs/PTnh6saWfQORpHrKQFt81TgW1nvVeuYHW16II3dMiqM3Xx2Hly+u6lfEnmsG2uKrxYG2fX9PLFrWN2ycbd+ff12SpGKCTOkD7ZIVG6L9PzvO+jHvv/9BvPTKroKu6Nxk30AkqZ4y0BZftY6F9ZwzLz4DbfHV4kB7svb9PYZZSWrAIFP6QNvy0muj9vyLr2Zf3piybyCSVE8ZaIvPWOjMGyEDbfHV8kArSWrMIFP6QPvRq6YO7++nxgUXXx//49JvxJVfuyv78saUfQORpHrKQFt8xkJn3ggZaIvPQCtJqrUgU/pAW8qf3u2NR1ZujKebf5F9KWPKvoFIUj1loC0+Y6Ezb4QMtMVnoJUk1VqQqSoH2pOuaZqXfQljyr6BSFI9VcsD7cGWF+Lw8iVxaM2KOLBnb/r1jDdjoTNvhAy0xWeglSTVWpCpagfaP73bGx+/enqh3+ayNc/EJ75we3z0qqkx+4EV8W5PX0RE7OvoiutvfzD+5sopcU3TvHht1xtDXyf7BiJJ9VStDrSH1qyIY9dedKpJl0fnzl3p1zWejIXOvBEy0BafgVaSVGtBpvSBdvb8FSO6fd7S+PS1d8Stcx4t7Dqef/FX8Zmvzo6uw8fi3Z6+mHznQ7FszTMRETFp+sJY89TzceLE+/HSK7vi4mtuj4H3TkSEgVaSKlmtDrTDxtkP654/s7Bvv3vO1Al3dNJlcezai+LIHV+b8L+jq/mZ9B+DWspAW3z1NNC2tvXEc1t7o7Ut/1rOloFWklRrQab0gfbexU+MaOH31sUPN7cMvYK1CLte3xuv7frd0N+veer5mD1/RXQffSs+csXN8d6JE0P/7AvfuDte3fF6RBhoJamS1eJAe2DP3pID7ZG5Uwq7hlLffpHVw+hVZAba4qvWgbZlW18sXtYXS1f3j2twXbp68B55srWbqvdeaaCVJNVakCl9oK1WN89eEj96Zmu8tuuN+NwNc4f9szvvXRYbnn0xIgy0kqq39v09sW7T4Cf/Tz9XG58g1+JA29HdE0dvvnrkaLlmRWHf/sHtv0ztwO9q55m71ZCBtviqcaBdu6lv2NjaNH0gtrX2jvrxzS29Iz6+afpA1b6S1kArSaq1IFPqQNt1+Fj8aufrQ6+U/cUvfxM3fPPBuPame2LNU8+nXdeyJzbH17/53XjvxIl4+de747qb7x32z+d+d1U8+eH1/an3PUmqug4dfS9m3TP8k/gHHx1Iv66xWvjI4LX+pi3/Ws6ld/b8No5df9nQOPvWvKnxTvfR9OtSdXZ83tQ4du1F8c6OX6VfS6P01vqVg/9trl+Zfi0nKzW2PvjI6Pfpjc+O/Pim6QOx9d+q897+dPPg9/GpZ6rz+iRJOjPIlDbQ/svLO+IvPjU5Lrj4+vjUF++IX/9mT/z1lVNiwWPrYsFja+OvLr8xntjws0Kv6YMPPogFj62NG2cuip7e/oiI2LH7jbjq+jnDPu6Oe74fG7f8a0REHHunX5IK7fifBsbs2Z+X/kT+tV1jf91yW/jIxJs2e/A65z048X/HCy+d/+9jybqOxPHWVwfL+PZVMx37zuBAe7z1V+nX0igdW/v44G+grH08/VpOVuoevfCR0T/+hV+U/jr/8fv870upnvpwUP7R5vxrUW2W/estSY0XZEobaL90072x4LG18dY778bKdVvi41dPHxo9IyKe/fnLceXX7ir0mh76/g/jjnuWDb0BWETE0eNvx19eduPQYBsRccVXZsWO3W9EhEccSKrOSv3R2abpA9HcMvofn61Upb7dIlv79Pn/Pkrl5BEHxVeNjziYs2Dk/WvV+rM/DuDMr7N0dX/692O0POJAklRrQaa0gfYjV9wUv9+7PyIi+vsH4s8+cUP84c0DQ//8zf1dceElTYVdz692vh7XNM2LgYGRL2uffMdDsfzJn8SJE+/Hlhe2x6XXzYgTJ96PCAOtpOpsW2vpZxW2tZ//8fLl1r7U2v5goFV1Z6AtvmocaFvbemLGvFNv+jV/SX+07x/76zW39MbaTX2F/IZbORloJUm1FmRKG2gvuPj66Dx0ZOjv/9ff3RL7Ow8P/X3noSNxwcXXF3Y9dy1YGX/+yRviwkuahvrCN+6OiIj9nYdj0vSF8ddXTokv3nhPtO3549DXy76BSNJorVp/6lW002YV8+pZSWNnoC2+ahxoT9ba1lPIb54VnYFWklRrQSYDbZmybyCSdLba2ntjW2vvuF6VJamYDLTFV80Dbb1moJUk1VqQKXWgnXzHQ3HLtx6OW771cPy3T309vv7N7w79/eQ7HjLQSpKkustAW3wG2uIz0EqSai3IlDbQ3rv4iXFV7bJvIJIkqbYy0Bafgbb4DLSSpFoLMqUNtPUi+wYiSZJqKwNt8Rloi89AK0mqtSCTgbZM2TcQSZJUWxloi89AW3wGWklSrQWZDLRlyr6BSJKk2spAW3wG2uIz0EqSai3IZKAtU/YNRJIk1VYG2uIz0BafgVaSVGtBJgNtmbJvIJIkqbYy0Bafgbb4DLSSpFoLMhloy5R9A5EkSbWVgbb46mWgbW3rifb9+dcxngy0kqRaCzIZaMuUfQORJEm1lYG2+Gp9oG1t64kZd/dH0/SBaJo+EKvWV//oaaCVJNVakMlAW6bsG4gkSaqtDLTFV+sD7bRZA0Pj7MmaW3rP+7f769298XJr34RatnpwoP3eqol9/Zdb++LXu8//91GSpJNBJgNtmbJvIJIkqbYy0BZfLQ+021p7R4yzTdMHYtGy8//K1Lsf6i/5bRfV3d/tTz9/SVLjBJkMtGXKvoFIkqTaykBbfLU80La1lx5oi3jMwYon++L+xf1pLX/S4xEkScUFmQy0Zcq+gUiSpNqqpgfafV3R/cCsODbp8jhy56Q42PJC/jWNo1oeaDu6e2LRsr5h4+y0WQPR1u6P/0uSVMkgk4G2TNk3EEmSVFvV8kB75I5Jcezai4bVuX17+nWNVa0PtB3dPbGxuS/mL+mPpav7jbOSJJ2HIJOBtkzZNxBJklRb1epA27lz14hx9ti1F8Xh5YsLPbesuudMSf8xkCRJ5y/IZKAtU/YNRJIk1VY1O9Bu3156oF1yX6HnZqCVJEnnI8hkoC1T9g1EkiTVVrU60HZ01+4jDiRJksYKMhloy5R9A5EkSbVVLQ+0B/bsje75M+PYtRfF0Zuvrpk3CZMkSRoryGSgLVP2DUSSJNVWtTzQSpIk1WuQyUBbpuwbiCRJqq0MtJIkSdUXZDLQlin7BiJJkmorA60kSVL1BZkMtGXKvoFIkqTaykArSZJUfUEmA22Zsm8gkiSptjLQSpIkVV+QyUBbpuwbiCRJqq0MtJIkSdUXZDLQlin7BiJJkmorA60kSVL1BZkMtGXKvoFIkqTaykArSZJUfUEmA22Zsm8gkiTVa11bNsfh5Uvi0JoV0bGvK/16KpWBVpIkqfqCTAbaMmXfQCRJqscOL7kvjl170akmXV43I62BVpIkqfqCTAbaMmXfQCRJqrc6d+4aPs5+2KE1K9KvrRIZaCVJkqovyGSgLVP2DUSSpHqrc/v2kgPt4SX3pV9bJTLQSpIkVV+QyUBbpuwbiCRJdde+rjg66bIRA23Xls3511aBDLSSJEnVF2Qy0JYp+wYiSVI91rVl87CRtl5ePdvRbaCVJEmqxiCTgbZM2TcQSZLqtQN79kbn9u3RuXPXqB/TuXNXHFqzIg5ubUm/3vFmoJUkSaq+IJOBtkzZNxBJkhq1rg3rhj0C4cidk6JjX1f6dY2VgVaSJKn6gkwG2jJl30AkSWrEDuzZW/KNxLo2rCvk2z/05OMT7ugt1ww+tuHheyf87+hqfib9x0CSJKmegkwG2jJl30AkSWrEOrdvLznQFvWs2lLfdpF1z5mS/mMgSZJUT0EmA22Zsm8gkiQ1YumvoH1ieWpeQStJklTZIJOBtkzZNxBJkhq1Ec+gvaM2nkErSZKk6gsyGWjLlH0DkSSpkevcuSsOrVkRB1teSL8WSZIk1W6QyUBbpuwbiCRJkiRJksoLMhloy5R9A5EkSZIkSVJ5QSYDbZmybyCSJEmSJEkqL8hkoC1T9g1EkiRJkiRJ5QWZDLRlyr6BSJIkSZIkqbwgk4G2TNk3EEmSJEmSJJUXZDLQlin7BiJJkiRJkqTygkwG2jJl30AkSZIkSZJUXpDJQFum7BuIJEmSJEmSygsyGWjLlH0DkSRJkiRJUnlBJgNtmbJvIJIkSZIkSSovyGSgLVP2DUSSJEmSJEnlBZkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJDLQAAAAAAEkMtAAAAAAASQy0AAAAAABJ/n/qssIDHIG2tgAAAABJRU5ErkJggg==", "text/html": [ - "<div> <div id=\"60e51802-ce03-45e2-8dff-da6f255ebf62\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"60e51802-ce03-45e2-8dff-da6f255ebf62\")) { Plotly.newPlot( \"60e51802-ce03-45e2-8dff-da6f255ebf62\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2000\"], [\"2003\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2001\"], [\"2003\"], [\"2000\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000\", \"notched\": false, \"offsetgroup\": \"2000\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [null, null, 41.2, 27.4, null, null, 25.6, 60.1, 48.0, 66.6, null, null, 30.0, null, 19.6, null, null, null], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [48.30345508195943, 53.76048612772965, 51.894103563496, 56.50975754815431, 55.91131125503006, 49.67400671814656, 66.24208937915319, null, 52.92798233790131, null, null, 45.77749212207978, 55.47795028053216], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [10.011641634355932, 40.48276474690653, 8.224011721298588, null, 38.91865731391849, 33.88592072413024, 55.366243901138766, null, 52.054518148465256, null, null, 37.20176006394223, 60.24548066020205], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.859568253699027, 23.390582857932404, 14.110043771471155, 57.230233773406596, 52.15387049883477, 31.469286375040596, 61.202271342000905, 71.64895404746395, 48.896811927207665, 56.22646152583338, 41.43827676061918, 40.16917287300395, 64.16983532722774], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2007\"], [\"2005\"], [\"2005\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.5, 47.2, 40.5, 19.9, 32.4, 67.8, 79.4, 36.6, 26.2, 75.2, 15.4, 36.5, null, 68.9, 26.4, 57.7, 66.6, 56.8], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2012\"], [\"2010\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [40.4, 35.5, 69.9, 57.4, 45.9, 61.8, 46.7, 53.1, 32.0, 71.5, 46.6, 30.3, 77.3, 88.1, 44.3, 81.3, 50.4, 69.2, 85.4, 23.7, 48.7, 89.2, 83.5, 48.9, null, 48.7, 44.1, 71.6, 71.6, 71.6, 71.6, 79.1, 77.9], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [63.8, 26.5, 77.5, 62.0, 43.5, 83.7, 33.6, 45.3, null, 40.3, 47.1, 41.9, 75.4, 80.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"175c2085-5a51-4539-848f-c0d1b56c193d\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"175c2085-5a51-4539-848f-c0d1b56c193d\")) { Plotly.newPlot( \"175c2085-5a51-4539-848f-c0d1b56c193d\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2000\"], [\"2003\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2001\"], [\"2003\"], [\"2000\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000\", \"notched\": false, \"offsetgroup\": \"2000\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [null, null, 41.2, 27.4, null, null, 25.6, 60.1, 48.0, 66.6, null, null, 30.0, null, 19.6, null, null, null], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.22165334026072, 20.74449338352134, 28.93552206066888, 58.0498599283529, 61.85272188475734, 24.80890630136319, 63.25615447558266, 52.35177558833146, 50.82263058897482, 65.09551816600218], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [10.011641634355932, 40.48276474690653, 8.224011721298588, null, 38.91865731391849, 33.88592072413024, 55.366243901138766, 52.054518148465256, 37.20176006394223, 60.24548066020205], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=1<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.303358509816114, 23.768724015518746, 14.16596363529338, 57.25908115534936, 51.54456956727535, 31.345534359205388, 61.39611367484593, 49.000493395978246, 40.698110229533256, 63.81748892534672], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2005\"], [\"2005\"], [\"2008\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.5, 47.2, 40.5, 19.9, 32.4, 67.8, 79.4, 36.6, 26.2, 75.2, 15.4, 36.5, 68.9, 26.4, 20.1, 57.7, 66.6, 56.8], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2010\"], [\"2013\"], [\"2013\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Togo\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [40.4, 35.5, 69.9, 57.4, 45.9, 61.8, 46.7, 53.1, 32.0, 71.5, 46.6, 30.3, 77.3, 88.1, 44.3, 81.3, 50.4, 69.2, 85.4, 23.7, 48.7, 89.2, 83.5, 48.9, 48.7, 44.1, 51.4, 71.6, 79.1, 77.9], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2016\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [63.8, 26.5, 77.5, 62.0, 43.5, 83.7, 33.6, 45.3, 40.3, 47.1, 41.9, 72.7, 75.4, 80.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('60e51802-ce03-45e2-8dff-da6f255ebf62');\n", + "var gd = document.getElementById('175c2085-5a51-4539-848f-c0d1b56c193d');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -7063,7 +6565,7 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 352, "metadata": {}, "outputs": [ { @@ -7184,24 +6686,24 @@ "x0": " ", "xaxis": "x", "y": [ - 48.30345508195943, - 53.76048612772965, + 27.22165334026072, + 20.74449338352134, 41.2, 27.4, - 51.894103563496, - 56.50975754815431, + 28.93552206066888, + 58.0498599283529, 25.6, 60.1, 48, 66.6, - 55.91131125503006, - 49.67400671814656, + 61.85272188475734, + 24.80890630136319, 30, - 66.24208937915319, + 63.25615447558266, 19.6, - 52.92798233790131, - 45.77749212207978, - 55.47795028053216 + 52.35177558833146, + 50.82263058897482, + 65.09551816600218 ], "y0": " ", "yaxis": "y" @@ -7450,24 +6952,24 @@ "x0": " ", "xaxis": "x", "y": [ - 24.859568253699027, - 23.390582857932404, + 24.303358509816114, + 23.768724015518746, 41.2, 27.4, - 14.110043771471155, - 57.230233773406596, + 14.16596363529338, + 57.25908115534936, 25.6, 60.1, 48, 66.6, - 52.15387049883477, - 31.469286375040596, + 51.54456956727535, + 31.345534359205388, 30, - 61.202271342000905, + 61.39611367484593, 19.6, - 48.896811927207665, - 40.16917287300395, - 64.16983532722774 + 49.000493395978246, + 40.698110229533256, + 63.81748892534672 ], "y0": " ", "yaxis": "y" @@ -7513,13 +7015,13 @@ "2008" ], [ - "2007" + "2005" ], [ "2005" ], [ - "2005" + "2008" ], [ "2006" @@ -7546,8 +7048,8 @@ "Niger", "Nigeria", "Rwanda", - "Rwanda", "Senegal", + "Sierra Leone", "Uganda", "Zambia", "Zimbabwe" @@ -7577,9 +7079,9 @@ 75.2, 15.4, 36.5, - null, 68.9, 26.4, + 20.1, 57.7, 66.6, 56.8 @@ -7663,9 +7165,6 @@ [ "2014" ], - [ - "2012" - ], [ "2010" ], @@ -7673,13 +7172,7 @@ "2013" ], [ - "2011" - ], - [ - "2011" - ], - [ - "2011" + "2013" ], [ "2011" @@ -7718,11 +7211,8 @@ "Rwanda", "Senegal", "Senegal", - "Senegal", "Sierra Leone", - "Uganda", - "Uganda", - "Uganda", + "Togo", "Uganda", "Zambia", "Zimbabwe" @@ -7764,12 +7254,9 @@ 89.2, 83.5, 48.9, - null, 48.7, 44.1, - 71.6, - 71.6, - 71.6, + 51.4, 71.6, 79.1, 77.9 @@ -7805,9 +7292,6 @@ [ "2018" ], - [ - "2018" - ], [ "2017" ], @@ -7817,6 +7301,9 @@ [ "2015" ], + [ + "2016" + ], [ "2018" ], @@ -7837,7 +7324,7 @@ "Senegal", "Senegal", "Senegal", - "Senegal", + "Uganda", "Zambia", "Zimbabwe" ], @@ -7862,10 +7349,10 @@ 83.7, 33.6, 45.3, - null, 40.3, 47.1, 41.9, + 72.7, 75.4, 80.1 ], @@ -8719,11 +8206,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOyd+1+UZeK/v3+Pn911t+2w7VZmapKmpum6uiYGKiqIIoEKKqbiWcuQLBNXUyyPeUCjJC0D00TWkPLQqKmDZ41MmQMD7+8PswyOM8ow4NzPM17X63W9XjHDDDczzN08l/fcz/8TAAAAAAAAAAAAABjh/5keAAAAAAAAAAAAAMDjCoEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBo20ntjXpERERERERERGyDANACgbadmJ7QEBERERERERHtJgC0QKBtJ6YnNEREREREREREuwkALRBo24npCQ0RERERERER0W4CQAsE2nZiekJDRERERERERLSbANACgbadmJ7QEBERERERERHtJgC0QKBtJ6YnNEREREREREREuwkALRBo24npCQ0RERERERER0W5aifJDjdrxedu9ftP0yCFeINC2E9MTGiIiIiIiIiKi3bQSC5Y1KDnd22ZPnm4yPXSIEwi07cT0hIaIiIiIiIiIaDetRHOgzVvQoPnLvK2alk2ghY6FQNtOTE9oiIiIiIiIiIh200o0B9qi9T5t39O6WXntC7SOX2o1LC1fT72SolffmKKvDx4LXPdRcYm6DcrQ86+N19tL16rB55MkuT1eTc7/UM/1S1OPwZnauGNf4DYXaq8qccI8/a33WA1Inq6j1aejfiz2V/xXT/cao117DwZdnpbzrnZ+USFJerrXGF2+xv4OHQmBtp2YntAQEREREREREe2mlYh1oO2TmKM1m0rV1NSkbw9X68mE0ap3eXS46oQShmbp+s063a13KWnSAhVvK5MkLV+9TRNnFMjl9sh5+bq6DJigU2cuSpKGp8/Vmk2l8vkadeBQtboMmCBvgy+qsU2YXqANn5VpZOaioMsJtI8WAm07MT2hISIiIiJ2hJU19Vq/1a2yCrfxsSAiYvxrJWIZaBt8Pm3csS8ooD71SorOO69o1tK1Wrl+V+DyfRVVGp4+V5LUZ/hUHfvR0TLm5Ru0fPU23bj1m55MSAmstJWk10fO0OGqE20eW91vd/TKv7PV1NSkV9+YoqvXfw1cR6B9tBBo24npCQ0RERERsb1uLnEHnfQkd65XDqf5cSEiYvxqJWK9gvZeqn86o64DJ6rB51PSpAX68psjgevOnL+kF/qnS5L+9FKS6n67E7ju0+1f6a1Z7+to9Wn1G5EbdJ+TZhZq4879bR5L8bYyvfvRFknS+2u3q+iT3YHrCLSPFgJtOzE9oSEiIiIitscahyvsmak3l9hjJe26LS5L+el2j/HHBBHRDloJU4H24qVrShiarW8PV0uSho6brQOHfghcf+nKDT3da4y8DT516pIol9sTuG57abnSct5VxZHjGpwyM+h+c+ev0tpNpW0ezz9Hz9SZ85cCY7s3/BJoHy0E2nZiekJDRERERGyP5ZXhA21BkT1CY7ixm3Rclj0eN0RE01oJE4H2pOOCeg7J0r6KqsBlyZkLVbr/+8DXjnNOvfj6BEn+FbS36m4HrtvwWZmyZ3+gquOn1ScxJ+i+M/KWa/Our4Muqzl5Ts/2Gadn+4xTRl5hyHgc55z6Q9cRerrXmIB/6DpCP546J4lA+6gh0LYT0xMaIiIiImJ7jHYFbXmlSwVFHhUUeVRe6TI2/o5Y9TpzoUfJ6V7lv+NmBS0iYoy0ErEOtBdqr6rnkCwdrT4ddHn+snUqKNoW+HrXlweVnLlQktRvRK4OVf0UuG76wiJ9uG6nbtXd1hMvj1K9q2V1bcLQLFUdD75vb4NP12/W6frNOtXdvqP7WbxiY9D+t5K0ZlOp5r63XhKB9lFDoG0npic0RERERMT2ev8etDn5D9+DtqzcHRJ0S8rMRdr2uvoT/++zcac9tnVARIwHrUSsA23ihHkq3X845PKj1afUbVCGLl+7qdu/39Wg0XnatueAJGnF2h1KyV4sl9ujn8869fe+qfrl4hVJUlLGAq1Yu0M+X6N27T2oHoMz5fM1Rjwen69RXQZMCGxv0MzFS9f0XL80Nfh8BNpHDIG2nZie0BARERERO8LKmnqt2+pWWXnrkTInP3TFbeYM+64cJdAiIsZeKxHLQHvx0jV16pKozt2Tg9x7oFKStPqTPeo6cKJe6J+u+cs3qLHR/zM8Hq+m5K/UP/qm6eV/vaXtpeWB+3Revq7h6XP1TO+xGjgqTzUnz7VpTAcOVavXsMlhr+ufNE37K/5LoH3EEGjbiekJDREREREx1qZmhd9/1fS4opVAi4gYe61Ec6DNm9+ghQW+Vk2b3DEnCQNohkDbTkxPaIiIiIiIsbagyBMSZxcV2jduEmgREWOvlWgOtG2VQAsdBYG2nZie0BARERERY63DGbzNQU6+VzUO9qBFRMTItRLlhxoj2trgfq/zKX/oIAi07cT0hIaIiIiIaMrKGr+mx9FeCbSIiLEXAFog0LYT0xMaIiIiIiK2TwItImLsBYAWCLTtxPSEhoiIiIiI7ZNAi4gYewGgBQJtOzE9oSEiIiIittfySpfKKty23ke2PRJoERFjLwC0QKBtJ6YnNERERETE9jh7iSfojNQlZY9fpCXQIiLGXitRfqhROz5vu5wkDDoKAm07MT2hISIiIiJG6+YSd1CcTU73KjXbK4fT/NhiKYEWETH2WokFyxpC/n8YiSdPN5keOsQJBNp2YnpCQ0RERESM1kWFoYE2Od2r8srHaxUtgRYRMfZaieZAm7egQfOXeVs1LZtACx0LgbadmJ7QEBERERGjdd3W8IH2cduLlkCLiBh7rURzoC1a79P2Pa2blde+QOv4pVbD0vL11CspevWNKfr64LHAdR8Vl6jboAw9/9p4vb10rRp8PkmS2+PV5PwP9Vy/NPUYnKmNO/YFbnOh9qoSJ8zT33qP1YDk6TpafTq6cZ1zKi13mZ7pPVZ/7jFSg0bn6fN9hyO6bVrOu9r5RUVUP/dezjuv6Gj1KUnS6k/2aNqConbfpx0g0LYT0xMaIiIiImK0Opz1ypwevAftquLHL1ISaBERY6+ViHWg7ZOYozWbStXU1KRvD1fryYTRqnd5dLjqhBKGZun6zTrdrXcpadICFW8rkyQtX71NE2cUyOX2yHn5uroMmKBTZy5Kkoanz9WaTaXy+Rp14FC1ugyYIG+Dr01julB7Vc/0HqvFKzbq4qVrqvvtjnbtPai/9R6r3WWHWr19RwXaNZtKtXL9LklSvcuj3+9Y62/lUUGgbSemJzRERERExPbocPr3ol231f3YbW3QbLwH2hqHS+u3urVlt/ux218YEa2rlYhloG3w+bRxx76ggPrUKyk677yiWUvXBuKkJO2rqNLw9LmSpD7Dp+rYj46WMS/foOWrt+nGrd/0ZEJKYKWtJL0+coYOV51o07hmLFqtjLzCkMt3flGhboMy1NjYpLWbSpUz7yNlz/5Aw9PnauCoPNVevi6pJdAuLPxEs9/5OHD7utt39JceI3Wr7nbQ/ZZ/f1x9R+QoYWiW+gyfqm++O6bvjv6oZ18dp+dfG6+lH24KWkFbe/m6ho6brZ5DsjR17kpl5C3Xtj0HJElP9xqjjzd/odFZi9V9cKa+/OaIpi8s0rC0ORqWlq+79W5J0n9rftaA5OnqOcT/Mw9V/dSmx+hRQqBtJ6YnNERERETEjtLhrFdBkUdzlni0uNCtyhrzY4qF8Rxoy8qDt7FIzX78trBARGtqJWK9gvZeqn86o64DJ6rB51PSpAX68psjgevOnL+kF/qnS5L+9FKS6n67E7ju0+1f6a1Z7+to9Wn1G5EbdJ+TZhZq4879bRpHwtBsle7/PuRyr7dB//fiCJ0+e1Hrt+7V3/um6vrNOknS7Hc+1jsrN0tqCbQ/njqn5/qlBYLxji/KNeqtRSH32ycxJ7CVwUnHBU1fWBS4z+ZIfW+gnTC9QItXbJQkfXu4Wp27JwdW7D7bZ5w+Ki6RJG3atV9/7jFS551XJElvTpyvPV/5VwD3G5GrXV8elOQPz72GTW7TY/QoIdC2E9MTGiIiIiJiR5mT730sY148B9rUrNA9hhcVxvb3rKh0a/02j6WsqIy/5xrRbloJU4H24qVrShiarW8PV0uSho6brQOHfghcf+nKDT3da4y8DT516pIol9sTuG57abnSct5VxZHjGpwyM+h+c+ev0tpNpW0ay3P90gLBNNx13//3hNZv3au0nHcDl3+8+QtNyV8pKXiLg17DJgd+p/HTlgVWut5LUsYCvb10rS7UXg26/EGB9rl+aTrx8/nA9/UbkRsUaE+f9W/38F3lj3r1jSmB75u+sEhr/vdYeL0Namz0P2dXr/+qP72UFNFjEwsItO3E9ISGiIiIiNgRlle6wp4wbN3W+A9Z8Rxowz2ns5d4YjqGdVvC/22ZdN2W+P+HB0SrayVMBNqTjgvqOSRL+yqqApclZy4MWsXqOOfUi69PkORfQXvvNgEbPitT9uwPVHX8tPok5gTdd0becm3e9XXQZTUnz+nZPuP0bJ9xYbcyGDgq/AnBvA0+/aHrCDl+qdX6rXuVPfuDwHX3fn1voC38z2eakr9SLrdHf+s9VnW374Tc7/WbdZr9zsfqMmCC+gyfGgjTDwq0f3opSZev3QzcfnTW4qBA6/zfVguHq05o4Ki8wPfNXPwfrf5kjySpdP/3GpY2R4NTZmrgqDz9oeuIkHGZgkDbTkxPaIiIiIiIHeGDAu3jcNKweA604VbQFhTFNtBWVLq1bour3d4bV9srK2gRzWslYh1oL9ReVc8hWTpafTro8vxl61RQtC3w9a4vDyo5c6Ek/4rRe/dMnb6wSB+u26lbdbf1xMujVO9qWV2bMDRLVceD79vb4NP1m3W6frMubDBdsHyD0nKXhVxeUvadeg7JUlNTU8SB9peLV/R0rzHaXXZIY6csbfXx+Orbo3rqlRT5fI0PDLTP9hmnn886A7fpnzStTYH2xq3f9JceI+X4pVaSf3UygTaOMD2hISIiIiJ2hA5n+Jj3OJw4LJ4DbVm5O+h5zZzuse2Jwpp/B9PjQMSO0UrEOtAmTpin0v2hq1WPVp9St0EZunztpm7/fleDRucFtgdYsXaHUrIXy+X26OezTv29b6p+uejfZzUpY4FWrN0hn69Ru/YeVI/BmfL5Gts0ppu/3tbf+6Zq8YqNunztprwNPu09UKln+4zTV98elaSIA63kX5Hb7Z+Tgi5rpt7l0eAxbwdWxF6ovaqne41RY2OT5hUUa8kH/r1m7w20KdmLtXy1P14fPFKjP/cY2aZAe/rsRf29b6o8Hq8aG5u09MNNIdtGmIRA205MT2iIiIiIiB1lZU29Mqd7/PvPZnlVUhb/cbb2RnwH2tob9apxuFRS5lJZudu2cbb2BoEWMd60ErEMtBcvXVOnLonq3D05yL0HKiX5o2TXgRP1Qv90zV++IbBnqsfj1ZT8lfpH3zS9/K+3tL20PHCfzsvXNTx9rp7pPVYDR+Wp5uS5qB6Hs+cvKS3nXT3da4z+3GOkBo7KCzppWVsC7X82fq4/9xip3++Ef6637TmghKHZ6jE4U32GTw38/hVHjuvJhBRNmlkYFGhPn72o197M1Sv/ztbMJWs0dsrSwAm/It3iYEr+SnX75yQNTpmpg0dq9O/UORo0uuV7TWIk0E6YXhCxVsf0hIaIiIiI2NHaOeJFY7wH2niRQIsYX1qJ5kCbN79BCwt8rZo2uWNOEhbP7C47pIy85R16n82xWpKGp8/V1wePdej9m8RIoJ373vqItTqmJzRERERExEdtjcMV11sdEGjtIYEWMb60Es2Btq0SaMNz565Lr72Zq6PVpzrsPhcs36CsWSvU1NQU2OP22o1fO+z+TcMWB+3E9ISGiIiIiPgoXVToDhyIpmbH5560BFp7SKBFjC+tRPmhxoi2Nrjf6zdNj9x6fFVepRf6pwf2i+0ort+sU1LGAnUdOFEJQ7O044vy1m9kI9jioJ2YntAQERERER+Vm0vcIauFUrPjL5ARaO0hgRYxvgSAFtji4H80NTXpnZWblTA0SwlDs5Q7f5XqXf4zuV2ovarECfP0t95jNSB5uo5Wnw7czvSEhoiIiIj4qJy9xBP2I53xtoqWQGsPCbSI8SUAtGDpLQ6KPtkds59Vuv+wBo7KU73LI5+vUWm5y7Ri7Q5J/o2H12wqlc/XqAOHqtVlwAR5G3ySCLSIiIiIGL+uKg5dQZuc7o27k4jZPdDG2/PxIAm0iPElALRgiUBb/dMZfbr9K63dVBpw0YpP9cTLo2I2hsI12zXn3Y8DX6/fuleTZhbqxq3f9GRCihp8vsB1r4+cocNVJyQRaBERERExfq1xuJSaFRxnVxXbM2I+TLsGWoezXnPuWeUcj8/NvRJoEeNLAGjBeKBds6lUf3opSX1H5OiPL72pAcnT9ZceI9Vr2GRtKfkmZuM4cuykXn1jim7V3Zbb41VK9mJtKflGR6tPq9+I3KDvnTSzUBt37pdEoEVERETE+LbG4dKqYrcWFbpVUhZfWxs0a9dAG24LinVb7fU7tEUCLWJ8aSXKDzVqx+dtl5OEQUdhPNB2G5QR2NP1+dfGS5Lqbt9RRt5yHTj0Q0zH8vbStercLUl/7TlKiRPmyettUMWR4xqcMjPo+3Lnr9LaTaWSpJu3PYiIiIjYRqtPefT+f7xausKjbw55jY8HH28/3uQPnVt32+tvMdz2E/lL7fU7RPP7mh4HInaMVmLBsoawc2prnjzdZHroECcYD7SduycHtg/4e9/UwOVXr/+qPsOnxmwcn27/SqPeWqS79W75fI3KX7ZeMxatVtXx0+qTmBP0vRl5y7V519eSJJfHh4iIiIhtsPpHX8gBzpZdDcbHhZF7s86nrSUNeu9Dr76usP9zt2Gr/8B81xf2+l3CxYJ579rrd4jm9zU9DkTsGK1Ec6DNW9Cg+cu8rZqWTaCFjsV4oE0Ymq39Ff+VJL36xhT98KNDkvT7nXo9mZASs3Gk5byrTbv2B77+b83P6jkkS7fqbuuJl0ep3tXyrzsJQ7NUddy/6tf0RwIQERER7Wa4j2Vb8WPLG3d6NGuxtfz2iPmPrzuc9UrNDn7uCoo8xsfVHu26xUG4k7iVldvrd2iLVp0rEDE6rURzoC1a79P2Pa2blde+QOv4pVbD0vL11CspevWNKfr64LHAdR8Vl6jboAw9/9p4vb10bWBRo9vj1eT8D/VcvzT1GJypjTv2BW5zofaqEifM0996j9WA5OmBT6pHw/6K/+rpXmO0a+/BoMvTct7Vzi8qJElP9xqjy9ci399h7aZSTVtQFPWYIuG884qOVp+SJK3+ZM8j/3kdjfFAu23PAXXqkqhrN37VyvW79GyfcZo0s1B9hk/VyMxFMRvHOys3a/y0ZYE//Hc/2qK0nHclSUkZC7Ri7Q75fI3atfegegzOlM/XKIlAi4iIiNhW7RJoC1eHxi/Tfv61+T1g120N/7jUOMyPLVrtGmibn4/ZSzyavcQT13G29gaBFjHetBKxDrR9EnO0ZlOpmpqa9O3haj2ZMFr1Lo8OV51QwtAsXb9Zp7v1LiVNWqDibWWSpOWrt2nijAK53B45L19XlwETdOrMRUnS8PS5WrOpVD5fow4cqlaXARPkbYhulfKE6QXa8FlZSJOzeqBds6lUK9fvkiTVuzz6/Y61/sZaw3iglfz/ctAcPDfu3K+pc1dq+eptqvvtTszGcOeuS5PzP1TPIVnqOSRLKdmLdemq/4/Nefm6hqfP1TO9x2rgqDzVnDwXuJ3pCQ0RERHRboZb9ZeTb73o8sMptyoq22fpNy4lp3s1IcfT7vuqqHTr1HnzEXRRYfhAW15pfmzRaudA+zhJoEWML61ELANtg8+njTv2BQXUp15J0XnnFc1aujYQGSVpX0WVhqfPlST1GT5Vx/73qXNJWrB8g5av3qYbt37TkwkpgQWHkvT6yBk6XHWizWOr++2OXvl3tpqamvTqG1N09fqvgesiCbRPvDxKK9fv0qi3Fum1N3O1bsuXkoID7ai3Fml32aHAbe79evUne5Qw1N/lho6brQu1V0N+Rvn3x9V3RI4Shmapz/Cp+ua7Y/ru6I969tVxev618Vr64aagFbS1l69r6LjZ6jkkS1PnrlRG3nJt23Mg8Ht8vPkLjc5arO6DM/XlN0c0fWGRhqXN0bC0fN2td0vyf8p+QPJ09Rzi/5mHqn5q82PbGpYItJHQbVCG6SGExfSEhoiIiGg3Hc7gVbSZ0z2qrDE/rkdhzc/+QJs5w35bADic9dqy2631W91B8bWkzBUSZ1OzvHI4zY85Wgm09pBAixhfWolYr6C9l+qfzqjrwIlq8PmUNGmBvvzmSOC6M+cv6YX+6ZKkP72UFLSQ8dPtX+mtWe/raPVp9RuRG3Sfk2YWauPO/W0eS/G2Mr370RZJ0vtrt6vok92B6yIJtE/3GqPFKzZKkm7+eltPJqToyrVbEQXaW3W39bfeY3XnrkuS9Nnn32rDZ2UhP6NPYk5gK4OTjguavtB/v7Pf+TgQt+8NtBOmFwTG9O3hanXunhz4PZ7tM04fFZdIkjbt2q8/9xip884rkqQ3J87Xnq/84+w3Ile7vvRv+bDziwr1GjY54sc0UmwTaJ/uNcb0EMJiekJDREREtKs1DlfchtnA72jTQOtw1itzRvBWFJtLWuJlQZEnKM7aefVs7Y34DLQOZ72to3k4CbSI8aWVMBVoL166poSh2fr2cLUkaei42Tpw6IfA9Zeu3NDTvcbI2+BTpy6Jcrlbzo+0vbRcaTnvquLIcQ1OmRl0v7nzV2ntptI2j+efo2fqzPlLgbHdG34jDbQnfj4f+HpYWr5K9x+OKNC63B4903usPt3+lX6t+/2BY0zKWKC3l64NWV37oED7XL+0oDH1G5EbFGhPn/VvE/Fd5Y969Y0pge+bvrBIa/73GHq9DWps9D/XV6//qj+9lPTA8UULgbadmJ7QEBEREdG62jXQhtuGIjndq89KXYHoV+NwqbzSFRcRMJ4CrcNZrzn3rFBfXOiOi+eo9gaBFjHetBImAu1JxwX1HJKlfRVVgcuSMxeqdP/3ga8d55x68fUJkvwraG/V3Q5ct+GzMmXP/kBVx0+rT2JO0H1n5C3X5l1fB11Wc/Kcnu0zTs/2GaeMvMKQ8TjOOfWHriP0dK8xAf/QdYR+PHVOUuSB1nn5euDrMZOXauPO/RFvcVBz8pwmzijQ073GKCljgX65eCXkZ1y/WafZ73ysLgMmqM/wqYGg/aBA+6eXkoLGOjprcVCgbR7v4aoTGjgqL/B9Mxf/R6s/2SNJKt3/vYalzdHglJkaOCpPf+g6ImRc7YVA205MT2iIiIiIaF3tGmgfdCK35PFepWZ7427lczwF2nB7BBcU2evv70ESaBHjSysR60B7ofaqeg7J0tHq00GX5y9bp4KibYGvd315UMmZCyX5V37eu/fp9IVF+nDdTt2qu60nXh6lelfL6tqEoVmqOh58394Gn67frNP1m3Wqux16zqfFKzYG7X8r+U+8Nfe99ZIiD7THT54NfP2vsbNUuv/7oECbkr1Eu/YeDHzPkLGzgoKtJHk8Xi35YKNSspeE/Ix7+erbo3rqlRT5fI0PDLTP9hmnn886A7fpnzStTYH2xq3f9JceI+X4pVaSf1UzgdaCmJ7QEBEREdG62jXQbi4Js4J2fMt/Lyq0f8i813gKtOHCut3+/lr73UyPAxE7RisR60CbOGGeSvcfDrn8aPUpdRuUocvXbur273c1aHRe4IRWK9buUEr2YrncHv181qm/900NrDBNyligFWt3yOdr1K69B9VjcKZ8vsaIx+PzNarLgAmB7Q2auXjpmp7rl6YGny/iQJu/zB90zzuv6i89Rur6zbqgQDttQZGWr/ZH6Au1/u/ZXXZIx350aPy0ZXJ7vJKkbXsOaMzkpUH3X+/yaPCYtwM/+0LtVT3da4waG5s0r6BYSz7w7zV7b6BNyV4c+HkHj9Tozz1Gtk+6MEEAACAASURBVCnQnj57UX/vmyqPx6vGxiYt/XBTyHYTHQGBtp2YntAQERER0braNdA6nPXKyQ+OfEnjg782PcaONJ4CbWpWaKDNyY+P5yse//YQH2etRCwD7cVL19SpS6I6d08Ocu+BSkn+uNh14ES90D9d85dvCOx96vF4NSV/pf7RN00v/+stbS8tD9yn8/J1DU+fq2d6j9XAUXmqOXmuTWM6cKj6gSe+6p80Tfsr/htxoF21Ybf6J03TSwMzVLzNf5KvewPtqTMX1XdEjt6cOF+581cpLXeZSsq+k8/XqHkFxeo2KEMv/+stDR03W45zzpCfsW3PASUMzVaPwZnqM3xq4HGrOHJcTyakaNLMwqBAe/rsRb32Zq5e+Xe2Zi5Zo7FTlgZO+BXpFgdT8leq2z8naXDKTB08UqN/p87RoNEt39sREGjbiekJDRERERGtq10DbbPllS5lTPMq6b7gxwpa6xpu9XNZuf1/r9obBFrEeNNKNAfavPkNWljga9W0yR1zkrB440Hh1jTNkVuShqfP1dcHjxkcTXgItO3E9ISGiIiIiNbV7oG29oY/0t67KjM1iz1orW5ZuVuzl3i0qNAdN3G29gaBFjHetBLNgbatEmiDsWKgXbB8g7JmrVBTU5N+uXhFT/cao2s3fjU9rBCMBdp/jZ2lwjXbVX3ibFDJfhD3bjJsJUxPaIiIiIhoXeMh0NbeqFeNw6WSMr8Op/nxdLTxFmjjVQItYnxpJcoPNUa0tcH9XrdWizSOFQPt9Zt1SspYoK4DJyphaJZ2fFHe+o0MYCzQ5i9bp95vTFGnLon6R980Zc/5QLu+PKhbdbdNDSkqTE9oiIiIiI+DNQ6XyitdxsfR5nHHSaCNd+0SaB3Oeq0qditzhke5c73asvvRjXf2Eo/lbA60pscRTtN/G4h2FABaML7FwZVrt7RtzwFlzVqh518br/97cYQGp8zU8tXb9MOPDtPDaxXTExoiIiJivLuosGVPzcwZHlt9vJ5Aaw/tEmhXFYfuL7u55NGMOZqP+j7Omv7bQLSjANCC8UB7L01NTTrpuKDVn+xRwtBsdeqSaHpIrWJ6QkNERESMZ8Od8MhOsZNAaw/tEmjDhcFHtXqz+f4LVrnxIRJoEaMXAFqwRKBtbGzS8ZNntXL9Lr05cb7+0mOkuv1zknLnrzI9tFYxPaEhIiIixrP3fqz5Xu2yipZAaw/tHGhz8h9NHGy+/3VbXPgQCbSI0QsALRgLtBdqr2rjzv2aOKNAz746Tv/om6aMvEJt3Llf551XTQ2rzZie0BARERHj2YKi8IHWLieqItDaQ7sE2nu3+wgE1K2PdosD0wHU6hJoEaPXSpQfatSOz9suJwmDjsJYoO3UJVFPJozW20vX6sTP59XU1GRqKO3C9ISGiIiIGM9W1tQrNSs4SK0qtnZEu1cCbaglX7k1a7HHUmZM8wSeJ9Njud+vKlr+3h3Oln+0SM16dHG29gaBlkCL+Oi1EguWNUS1//TJ0/ZsWWA9jAXarbu/Uebb7+sffdP0976pyshbro079+tCrX1Wz0oEWkRERMRHbWWN/+RIiwrdKilzGR9PWyTQhnpv1MLW3f6FmX+QINASaBEftVaiOdDmLWjQ/GXeVk3LJtBCx2J8D9qmpiad+Pm8ij7ZreTMhfpzj5HqMThTMxatVun+w6aH1yqmJzREREREtK4E2lCbo1ZOvsf4CZ6sbPbbbgKtDSTQIkavlWgOtEXrfdq+p3Wz8toXaB2/1GpYWr6eeiVFr74xRV8fPBa47qPiEnUblKHnXxuvt5euVYPPJ0lye7yanP+hnuuXph6DM7Vxx77AbQaPeVuduyWpc/dkde6erOdfG9++BwRijvFAez93691av3Wveg7JUqcuiaaH0yqmJzREREREtK4E2lDXbfWHx1lL3MbjmpWdNs+/lcFnpQRaK0ugRYxeKxHrQNsnMUdrNpWqqalJ3x6u1pMJo1Xv8uhw1QklDM3S9Zt1ulvvUtKkBSreViZJWr56mybOKJDL7ZHz8nV1GTBBp85clCT1GjZZP591dtjjAbHHEoHWefl64IRhf+s9Vn/oOkJDx83W+2u3mx5aq5ie0BARERHRuhJoQyXQRiaB1h4SaBGj10rEMtA2+HzauGOfvA2+wGVPvZKi884rmrV0rVau3xW4fF9FlYanz5Uk9Rk+Vcd+dLSMefkGLV+9TZL0Qv90Xb7GGcvsjLFA+1V5lWa/87EShmarU5dEvdA/XVPnrtSerw6p7vYdU8NqM6YnNERERES0rgTaUAm0kUmgtYcEWsTotRKxXkF7L9U/nVHXgRPV4PMpadICffnNkcB1Z85f0gv90yVJf3opSXW/tfSyT7d/pbdmvS9J+nOPkUqf9p6ef228+idN0zffHRPYC2OB9o8vvalhaXP04bqd+un0L2pqsufGyqYnNERERES0rgTaUAm0kUmgtYcEWsTotRKmAu3FS9eUMDRb3x6uliQNHTdbBw79ELj+0pUberrXGHkbfOrUJVEutydw3fbScqXlvKvGxiblzPtIBw5Vq8HnU9mBo3oyYTQram2GsUB7+/e7pn50h2J6QkNERERE60qgDZVAG5kEWntIoEWMXithItCedFxQzyFZ2ldRFbgsOXOhSvd/H/jacc6pF1+fIMm/gvZW3e3AdRs+K1P27A/C3veIifO0a+/BqMcGsccSe9CGo/qnM9r5RYXpYbSK6QkNEREREa2rHQJteaVLc5Z4NGeJR6uK3XI4/Zev2+oOXL79C7cKV3s0+W2P3l7k0bxlnsB1ZeVtC4gE2sgk0NpDAi1i9FqJWAfaC7VX1XNIlo5Wnw66PH/ZOhUUbQt8vevLg0rOXChJ6jciV4eqfgpcN31hkT5ct1N3691Be9NK0r9T5wSFXrA+lg20c979WJ27J5seRquYntAQERER0bpaPdBW1rSEuGabQ+39lyePD/466Z7/bkukJdBGJoHWHhJoEaPXSsQ60CZOmKfS/YdDLj9afUrdBmXo8rWbuv37XQ0anadtew5Iklas3aGU7MVyuT36+axTf++bql8uXtGvdb/ryYQUVRw5Lkk6cOgHPdN7rG7c+i36BwRijmUDrV0wPaEhIiIionW1eqANG2Lvi6+Byx4SaGcvifz3I9BGJoHWHhJoEaPXSsQy0F68dE2duiSqc/fkIPceqJQkrf5kj7oOnKgX+qdr/vINamz0/wyPx6sp+Sv1j75pevlfb2l7aXngPr8+eEyvvjFFT/cao/5J0/Td0R875oGBmGG5QHur7racl6+bHkbEmJ7QEBEREdG6Wj3QFhR5wgba+1fLhgu0yQTaRyqB1h4SaBGj10o0B9q8+Q1aWOBr1bTJHXOSMIBmjAVal9uj3Pmr9MXXRwKXfVRcoj90HaFOXRI1IHl60ObHVsX0hIaIiIiI1tXqgbasPHQFbeZ0j2YvCQ234VbVBiLeVrY46GgJtPaQQIsYvVaiOdC2VQItdBTGAu385RvUc0iWjp88K0k677yiP770praUfKOTjgv619hZmrlkjanhRYzpCQ0RERERravVA23tjZZgmpzuVU6+V5U19XI464Mi7eiJwYF27FstX68q5iRhj0ICrT0k0CJGr5UoP9QY0dYG93v9pumRQ7xgLNC++PoEHa46Efh65fpdGp4+N/D14aoTemlghomhtQnTExoiIiIiWlc7BNoHWVLm0tQ5XqVme7V4hUcbtrtVVu5WjcN/vcMZ3f0SaCOTQGsPCbSI0QsALRgLtH/oOkK/1v0e+HrslKX6cN3OwNdXrt3SH19608TQ2oTpCQ0RERERratdA224rQ/mtGGf2YdJoI1MAq09JNAiRi8AtGAs0P6t91hdvHRNkuRt8OmZ3mN15NjJwPVnzl/Ss6+OMzW8iDE9oSEiIiKidbVToK1xuLR+q1vrt7o1e2looE1O96rG4Wr3zyHQRiaB1h4SaBGjFwBaMBZokzIWqHDNdknSJ9u/0nP90tTg8wWu/8/GzzV03GxTw4sY0xMaIiIiol10OOu1Zbc/AJZXtj/02UG7BNrKmnqlZrd+QjACbewk0NpDAi1i9AJAC8YC7ff/PaE/9xipf/RNU6cuidpS8k3gug2flalz92SVlH1nangRY3pCQ0RERLSDDme9Mmd4gmLf5hIz4SmW2iXQLiq8b8Xs+NA4O5stDmIqgdYeEmgRo9dKlB9q1I7P2y4nCYOOwliglfzbGGzbc0DHT54Nunz1J3u0dfc3D7iVtTA9oSEiIiLawVXF4T8yb3pcj1q7BNrM6Z7Q52e8Vzn5XqVmeVVQ5In6pGD3S6CNTAKtPXxc5jLER6GVWLCsIez7lNY8ebrJ9NAhTjAaaOMB0xMaIiIioh2cvSRMAEz3xv1WB3YJtCEraNO9ypz+aMZMoI1MAq09JNAiRq+VaA60eQsaNH+Zt1XTsgm00LEYDbQej1f/2fi5hoydpRf6p+vF1ycoKWOBtu7+Ro2N9vgjNz2hISIiIlrZsnK3Fhe6Nfnt0ECbmhX/UcMugbbG4QpaRZua5VVlzaP5WQTayCTQ2kMCLWL0WonmQFu03qfte1o3K699gdbxS62GpeXrqVdS9OobU/T1wWOB6z4qLlG3QRl6/rXxenvp2qDzNf10+hf1HJKl2e98HHR/F2qvKnHCPP2t91gNSJ6uo9Wno3sgwBjGAq23wac3xufrmd5jlb9snT7d/pWKt5Vpcv6H+uNLbyole0nQH6FVMT2hISIiIlrV5hDXfNKppPv2NS0pi+/Vs7U37BNoa2/49wkur3SprNzdYdsZPOzvgkD7cAm09pBAixi9ViLWgbZPYo7WbCpVU1OTvj1crScTRqve5dHhqhNKGJql6zfrdLfepaRJC1S8rUySVHX8tAYkT1f2nA9CAu3w9Llas6lUPl+jDhyqVpcBE+RtsH5TgxaMBdr/fPq5nuuXpsvXQndUPnXmop7pPVarNuw2MLK2YXpCQ0RERLSqqVmhWxrkzvGopMylGkf8x9naG/YKtLGSQBuZBFp7SKBFjF4rEctA2+DzaeOOfUEB9alXUnTeeUWzlq7VyvW7Apfvq6jS8PS5kqTzziu6W+/SirU7ggLtjVu/6cmElKBFjq+PnKHDVSeieSjAEMYC7esjZ+jjzV888Pr1W/eqT2JODEcUHaYnNERERESrGm7P2Ue1r6lVJdCGSqCNTAKtPSTQIkavlYj1Ctp7qf7pjLoOnKgGn09Jkxboy2+OBK47c/6SXuifHvT99wfao9Wn1W9EbtD3TJpZqI0797d7bBA7jAXaJ14epeMnzz7w+nMXLqtzt6QYjig6TE9oiGhPK2vqtX6rW+u3uh/ZHn/4aCwrdweeu0f5EWBsXV5H1jfcicFWFUcWm+Ll+SXQhkqgjUwCrT0k0CJGr5UwFWgvXrqmhKHZ+vZwtSRp6LjZOnDoh8D1l67c0NO9xgTd5v5AW3HkuAanzAz6ntz5q7R2U2m7xgaxxVig7dQlMez2Bs1cvnZTnbokxm5AUWJ6QkNE+1le6QoJFmXl/oOvypp6lVW4H5uP/trNe/fTTE73KjXby3NlyIe9jtA61jhcyslveY5mL/FE9A8b0T6/Z5wuzVrssZQzFvgj2+gMr/Gx3G9hkZnXDIE2Mgm09pBAixi9VsJEoD3puKCeQ7K0r6IqcFly5kKV7v8+8LXjnFMvvj4h6Hb3B9qq46dDPoGekbdcm3d9HfXYIPYQaNuJ6QkNEe1nuBVlmTM8KigKvtyKJ88p+cqt2Us8lrLkq9gcuDqc4T+uHelqwFj60XrrPU+VP3bs3/ODXkemH/tIrfzRZfw5ud+P1j+6v+UaR9v2nI32+T19ITTs4oPNmWPmNUOgjUwCrT0k0CJGr5WIdaC9UHtVPYdk6Wj16aDL85etU0HRtsDXu748qOTMhUHfc3+gvVV3W0+8PEr1Lk/gsoShWao6HnzfYG2MBtonXh6lv/YM7xMvjyLQImJcGu6kOQ/Saqsz7z0QsYrrtsTmMQq3oi853b8i0PTzcr+zFofGLdNWVHZsYHjQ68j0Yx+pFZXumD7+kThrsXX+lqN9fpsDbUqGRwWr3PgAFy33//0RaK0tgdYe2u3/P4hW0krEOtAmTpin0v2HQy4/Wn1K3QZl6PK1m7r9+10NGp2nbXsOBH3P/YFWkpIyFmjF2h3y+Rq1a+9B9RicKZ+vMaqxgRmMBdrdZYci0uqYntAQ0X4uKgwNM9mzwgc1q31ku+aMSxWV7nZ7b7RrrzVnYhexw0WjzSXWeo5qb/hXZ7b3cd2yuyXgdMTzdMbZsc9TuNfRokLrPRcP8oyzY15LOXP8c8eW3e2/r45e5dzRz28k/xhy6hd/VBqTSVR6mCvWuv73+jYTlQi0kUmgtYcEWsTotRKxDLQXL11Tpy6J6tw9Oci9ByolSas/2aOuAyfqhf7pmr98gxob/T9jXkGxOndP1h9felN/6DpCnbsna867/lDrvHxdw9Pn6pneYzVwVJ5qTp7rsMcGYoOxQBsvmJ7QENF+1jhcypzeEmQzp3u06pPwq+nsfGKch2nXg5mycndQpI10P0072hzSrbSq8l7DvY7i9fXyMJtXS3f0CmXTRvv8Emgjk0BrDwm09tCu72kQraCVaA60efMbtLDA16ppk9u3ghbgfowF2us36yLS6pie0BDRnjqc/o/Ml1e65HD6v773RDrJ6V4VFFkzjHWEdj6YqXG4As+d6bE8Sq0eaGtvhL6OTI/HhPEaaKN9fgm0kUmgtYcEWnto5/c0iKa1Es2Btq0SaKGjMLoHbSRaHdMTGiLGjw5nvTaXuLVuq9uSJwjrSDmYsb52CLQY34E2Ggm0kUmgtYcEWnvIexrE6LUS5YcaI9ra4H6v3zQ9cogXjAXa4yfPRqTVMT2hISLaUQ5mrK/dA23zSmfT43jUEmiDJdBGJoHWHhJo7SHvaRCjFwBasOwetC63Rzu+KDc9jFYxPaEhItpRDmasr50D7arilj2dU7O9cR1qCbTBEmgjk0BrDwm09pD3NIjRCwAtWC7QHj95VjOXrNHTvcbob73Hmh5Oq5ie0BAR7SgHM9bXroG2pKzlYPneSGt6XI9KAm2wBNrIJNDaw0gCbWVNvRYX+h/P3Lkd+w9SBNrI5D0NYvQCQAuWCLR1v93R+q1f6rU3c9WpS6ISJ8xTSdl38ni8pofWKqYnNEREO8rBjPW1a6BdVOgOCbTJ6fG7ipZAGyyBNjIJtPawtUDrcNYrNTv0H6RqHB0z3xFoI5P3NIjRCwAtGAu0TU1NOnikRplvv6/O3ZPVZ/hUrVy/S3/uMVLnnVdMDavNmJ7QEBHtKAcz1teugbY5/NxvRwULq0mgDZZAG5kEWnvYWqAtKw8/363b2jHzAYE2MnlPgxi9VqL8UKN2fN52OUkYdBTGAm33wZnqMmCC5r63XjUnzwUu/2vPUQRaRMQ4l4MZ62vXQFvjcCk1KzhWLCqM33hJoA2WQBuZBFp7SKC1h7ynQYxeK7FgWUPYObU1T55uMj10iBOMBdonE1I0LG2O1m/dq1t1twOXE2gREeNfDmasr10Dbe0Nf6RdVezWokK3NpfEd7gk0AZLoI1MAq09jGiLg/v+QSo1iy0OYi3vaRCj10o0B9q8BQ2av8zbqmnZBFroWIwF2rv1bm0p+Ub/GjtLf3opSWOnLNXn+w7riZcJtIiI8S4HM9bXzoH2cZJAGyyBNjIJtPYw0pOENe+9nZPPScJMyHsaxOi1Es2Btmi9T9v3tG5WXvsCreOXWg1Ly9dTr6To1Tem6OuDxwLXfVRcom6DMvT8a+P19tK1avD5Atf9dPoX9RySpdnvfBx0f4PHvK3O3ZLUuXuyOndP1vOvjY/ugQBjWOIkYT+fdWrue+v17Kvj1KlLoqbOXanjJ8+aHlZEmJ7QEBHtKAcz1pdAaw8JtMESaCOTQGsPIwm0D9LhrNeqYrfmLPFoVbFbDmfbnycCbWTyngYxeq1ErANtn8QcrdlUqqamJn17uFpPJoxWvcujw1UnlDA0S9dv1uluvUtJkxaoeFuZJKnq+GkNSJ6u7DkfhATaXsMm6+ezznY/DmAOSwTaZjwer0rKvtObE+erU5dEvfZmrukhtYrpCQ0R0Y5yMGN9CbT2kEAbLIE2MiMNtA5nvQqKPIE5u6DIE1Xou18CbWRGG2gdznplzmh53pLTvcqd2/b/5xJoI5P3NIjRayViGWgbfD5t3LFP3oaWlbFPvZKi884rmrV0rVau3xW4fF9FlYanz5UknXde0d16l1as3RESaF/on67L1zhjmZ2xVKC9l/POq3pn5WbTw2gV0xMaIqId5WDG+hJo7SGBNlgCbWRGGmhXFYeehGpVcfv/1gi0kRltoC0pc4U8b8npXpWVt+1+CLSRyXsaxOi1ErFeQXsv1T+dUdeBE9Xg8ylp0gJ9+c2RwHVnzl/SC/3Tg74/XKD9c4+RSp/2np5/bbz6J03TN98dE9gLywZau2B6QkNEtKMczFjfxynQlpW7A6vNFhe6O+wEO7GQQBssgTYyIw2095+AKjndq9Ts9s/dBNrIjDbQNj++99vWkyYSaCOT9zSI0WslTAXai5euKWFotr49XC1JGjputg4c+iFw/aUrN/R0rzFBt7k/0DY2Niln3kc6cKhaDT6fyg4c1ZMJo1lRazMsG2jfK9qqnkOyTA+jVUxPaIiIdpSDGev7uATa8srQlWaZM+zzOxNogyXQRmakgTZzuif09TG9/a8PAm1kRhtoK2vqwwbatv7jE4E2MnlPgxi9VsJEoD3puKCeQ7K0r6IqcFly5kKV7v8+8LXjnFMvvj4h6HbhVtDez4iJ87Rr78Goxwaxx7KB9tvD1UH7bsSCQ1U/qdewyXoyYbRSspfot9/vSpIu1F5V4oR5+lvvsRqQPF1Hq08HbmN6QkNEtKMczFjfxyXQhvsId3J6x54J/VFKoA2WQBuZkQbacCsx121li4NY2Z6ThJWUuQIroFOzvCopa/ucRqCNTN7TIEavlYh1oL1Qe1U9h2QF9SVJyl+2TgVF2wJf7/ryoJIzFwZ9z/2B9m69W8d+dAR9z79T5wSFXrA+lg20sabu9h09/9p4Ha46IbfHq/xl6/Tp9q8kScPT52rNplL5fI06cKhaXQZMCGzmbHpCQ8TH1xqHy1Yfxb5XOx7MtDXYOZz1Wr/VfwbtLbujO4O2Se0YaGscLlXWtO02BNr4kkAbmZEG2tob9dpc4lZOvlc5+W3/iPyDJNBGZnsCbbPtmcsItJFpx/c0iFbRSsQ60CZOmKfS/YdDLj9afUrdBmXo8rWbuv37XQ0anadtew4Efc/9gfbXut/1ZEKKKo4clyQdOPSDnuk9Vjdu/RbV2MAMlgi0J34+r91lh7Rtz4EQY8W2PQf01qz3Qy6/ces3PZmQogZfy9n1Xh85Q4erTkgi0CJi7HU46zVnScvHTnPntv1ji6a108FMSZlLqdlt28Ovo86gbVK7BdpFhS2hNXOGJ+JQG+6jwDn59nmuCLTBEmgjsy2B9lFIoI3Mjgi07ZFAG5l2ek+DaDWtRCwD7cVL19SpS6I6d08Ocu+BSknS6k/2qOvAiXqhf7rmL9+gxkb/z5hXUKzO3ZP1x5fe1B+6jlDn7sma864/1H598JhefWOKnu41Rv2Tpum7oz923IMDMcF4oF204lN16pKoF/qnq+eQrBBjxdz31mvW0rVKmrRA3Qdnakr+Sv1+p15Hq0+r34jcoO+dNLNQG3ful0SgRcTYW1AUuifgnCX2iGjN2uVgpsYR/kzYrcW/jjqDtkntFGjDfQy7LfvIlpX7VwimZnm1iJOE2VoCbWQSaO0hgdYe2uU9DaIVtRLNgTZvfoMWFvhaNW1yx5wkDKAZ44H2rz1HBZ2hzhRT565UwtAsXbp6U26PVxOmFyh/2TpVHDmuwSkzg743d/4qrd1UKkn69XcPImKHWXfH26pZM0LDX3J667ezknYZ884vwj/WG3c8/HYbd4S/3c4vzP9OkXq02v8mNX+p+bG05tx3wj/eZy+aH9ujNn+p/3c9Wt1gfCxW8OIV/+MxNtOrT7d78AF+tN4f/qblm3memufI/HfMPxZWdsYC/+O0u8zM89Q8l5p+HKxu8+Nk+j0koh21Es2Btq0SaKGjMB5on+k9VnfrXaaHofxl6zWvoDjwdeUPp9R3RI6qjp9Wn8ScoO/NyFuuzbu+liTdcTUgIsbUeWFiVFq21/i42mLzuE2PozUPHgn/Ru2rbx8+9pNnwr+BO3/J/O8Uqcdq/L/73Hes/zy9+2H4x9v0uGJhc5w+VmN+LFbw8rWGQKDdtBMfZNEG/9/NtLlmnqdNO/0//60Z/kiL4c3I9T9OX3xt5nlqnktN/71a3cfp/zmIHa2VKD/UGNHWBvd7/abpkUO8YDzQFhRt0+pP9pgehtZuKtXUuSsDX1f+cEoDkqfrVt1tPfHyKNW7Wv51J2FolqqO+8+0Z/ojAYj4+FlWHvpx7o46cUustNPHAXPy7/vo/HRPRCf82lzS8jxFewZtk9ppi4Nw+8iuKrbXayJa2eIgWLY4iEyrbHGAkckWB9bWTu9pEK0mALRgJNCOmbw0YFruMv2jb5p6vzFFKdlLgq4bM3lpzMZ0/Wadnu0zTicdF+Rt8Ckjr1AL3/9EkpSUsUAr1u6Qz9eoXXsPqsfgTPl8jZIItIhoxvJKlwqKPFpU6LbVvqbN2ulgxuH0x4TZSzxaVeyOKM7ee9vySlebbmMV7RRoa2/4I23za8JuMbw9EmiDJdBGpvFA+7+oNWmaR7MWu/EBTsjxv763f0GgtbJ2ek+DaDUBoAUjgXbJBxsjNpZ8ffCYug3K0D/6pumtWe/rzl3/1gvOy9c1PH2unuk9VgNH5anm5LnAbUxPaIiIdpSDGetrt0D7uEqgDZZAG5nGAy0nCYtIThJmD3lPgxi9ANCC8S0OHL/U6ulcpgAAIABJREFUhr3c7fGq8odTMR5N2zE9oSEi2lEOZqwvgdYeEmiDJdBGJoHWHhJo7SHvaRCjFwBaMB5o/9pzVNjLm/d+tTqmJzRERDvKwYz1JdDaQ7sG2vJKl+Ys8Sg126vFhW7VODpmWwoCbWQSaO0hgdYe8p4GMXoBoAVjgXbjzv0aOCpP//fiCA0clRfii69PUM8hWaaGFzGmJzRERDvKwYz1tXqgbd7ft7zy8dlvNpx2DLThTuqWOSOyk++1JoE2Mjs60JaVuzVniUeZMyLbq5tAG5kEWnvIexrE6AWAFowF2nqXRxVHjqtztySt3VQa4sad+3Xp6k1Tw4sY0xMaIqId5WDG+lo50FbW1Ctzhifwd5Q712vLE7F1hHYMtM1x7n47IrYTaCOzIwNtWXno87m48OF/jwTayCTQ2kPe0yBGLwC0YHyLg4NHakwPoV2YntAQEe0oBzPW18qBdvYST0gQKih69OOs/NGliqPWMjff/1hs3eM2Ppb7PeMMH1wfFmjXbfWvxJyzxKOy8rZHKQJtZHZkoA33emxtfifQRiaB1h7yngYxegGgBSOBdsL0Av181hn474dpdUxPaIhobzeXtMSILbvtswKuvXIwY32tHGjDxaDMGY9+nM2rVTEyH7SqN+wWB9M9Wr0xNNxuLmnbvEigjcxYBNqHrWon0EYmgdYe8p4GMXoBoAUjgXbue+t13nkl8N8P0+qYntAQ0b5uLml/jLCrHMxYXysH2tSs0Bg0e0nsAm36VI8mTcMHmZLR+rYLZeVuZU73BJ67yprwz2vu3LbNEwTayOzIQBvu/2WtvR4JtJFJoLWHvKdBjF4AaMH4FgfvFW3VkWMn5W3wmR5KVJie0BDRXlbW1GtxoX/VbFq2mVWAVpCDGetr5UBbUuYKee3E4mRhzYG2YBVR6WFOmhbdvrjhVmFmTm/b3x+BNjI7+iRh67a6A4G9oKj1E74RaCOTQGsPeU+DGL0A0ILxQJuWu0x/75uqv/YcpdFZi/WfTz/XiZ/Pq6mpyfTQIsL0hIaI9jHkY73jQ2NEalbrb/DLK12qrDH/+7RHDmasr5UDbe0N/+tgVbFb67a6Y/Z6INBGZrSBtqAo9KPyq4rZ4uBR2NGBtq0SaCOTQGsPeU+DGL0A0ILxQNuM45dabdy5X9lzPlC3f07S3/umKiOv0PSwWsX0hIaI9jFcfGhLjLj/zPVzlrS+Sqn2Rr0+Wu/W7CUeS3nvx2CtZlm5f4Vz5gxPRCvB4lWrB1oTEmgjM9pA63AG72e6qtjd5tcfgTYyCbT2kEBrDwm0iNELAC1YJtBK0u936nXgULXe/WiLXn1jiv740pumh9Qqpic0RLSPiwqD9+lL+p/NXy8qfHiMyMkPDbqRnLmeExu1wTCrmufEYG9TK0qgffBriUD7cKMNtB0hgTYyCbT2kEBrDwm0iNELAC0YD7Sf7zus/GXrNCB5up7rl6Yxk5fqw3U7dbjqhOpdHtPDaxXTExoi2sdw+2a2ZX/FcEExJ7/1A4LmqDRvmUcFq9z4AB8Wbmscj35/U6tJoH3wa4lA+3AJtNaXQGsPCbT2kECLGL0A0ILxQNupS6JefWOK1m35UnfuukwPp82YntAQ0V6uKnYHxdm27J0Z7ZnriUqRH2AlEWgDEmh5LUUrgdb6EmjtIYHWHhJoEaMXAFowHmh/+NGhVRt2KyV7iZ59dZwGjsrTvIJiffnNEd249Zvp4bWK6QkNEe1pNMFvc0noKs9IzlxPVGrDAVaYLQ4iWaUcjxJoeS1FK4HW+hJo7SGB1h4SaBGjFwBaMB5o76WxsUk/njqnok92q9ewyerUJdH0kFrF9ISGiPFjZU29yioefkb6snK3Coo8WlUc+ZnriUptO8DaXOIOrFaevcTzWK6erb1BoOW1FL0EWutLoLWHBFp7SKBFjF4AaMESgfb3O/Uq//64Coq2KSljgZ5MGK1ewybr7aVrTQ+tVUxPaIgYHxYUBZ/Ia93WjjsYIypxgBWNBNpQeS1FJoHW+hJo7SGB1h7y/gExegGgBeOB9rU3c/V/L45Q98GZyp2/Sju/qNC1G7+aHlbEmJ7QENH+lleGnjwsOd3bpv1pHyZRiQOsaCTQhsprKTIJtNaXQGsPCbT2kPcPiNELAC0YD7RbSr7RxUvXTA8jakxPaIhof5sPVO+3pMz/0frySpfWb3Vr91fRfdSeqMQBVjQSaEPltRSZBFrr21qgLSt3KzXbPyemZntVVt6xzyWBNjIJtPaQ9w+I0QsALRgPtA/it9/v6vK1m6aH0SqmJzREtL8lZQ9eQbuqODje5s5t+wEAUYkDrGgk0IbKaykyCbTW92GBtsbhCsTZe+3I/bgJtJFJoLWHvH9AjF4AaMGygXbm4v9wkjBEfGzMyQ8+EC4o8qiypj5suN1c0rYDNaKS9Q+wzjhdqjhqLbfu8QeU3HyP8bHcb+WPZk7cxmspMgm01vdhgfZB/2jYkXujE2gjk0BrDwm0iNELAC1YNtBevHRNx350mB5Gq5ie0BAxftxc4ta6re6grQ064iCZqBT7A6wah0tbdru1ZbdbDmfr39+8WhUjs72reh1O/+r0OUs8mrPEo/LKyIIvr6XIJNBa34cF2rLy8PNRW/9x8GESaCOTQGsPCbSI0QsALRgPtM/1S9PNX2+bHkbUmJ7QENF+Opz1KijyKHOGR7lzW/aavV9W0NrzAKu8MvjjwanZrZ/wrTnQpmR4NGkaPsj0qZ4OCbSLCkMDVCQn5eO1FJkEWuv7sEDrcNYrc7on6PWRmuWN6B+bIpVAG5kEWntIoEWMXgBowXigTZ36roq3lZkeRtSYntAQ0X6Gi0MPOgHL/ScQm72k7WGKqBTbA6z7t6tITvdqUeHDD66bA+2kaR7jj4OVLVjV/n1xaxzhV6YXFLV+n7yWIpNAa31bO0lYjcOlRYVuzV7i0aJCd4fuP3vv/9sItA+XQGsPCbSI0QsALRgPtFPnrtTzr41XwtAsjcxcpDGTlwZpdUxPaIhoLx3O8KtiHxbwKmv82x9E+jHs+yUqxfYA60Efy3/YbQi0kdkRgfZBK9Nbi+i8liKXQGt9Wwu0j1oCbWQSaO0hgRYxegGgBeOBdv7yDVrywcYHanVMT2iIaC8ftHovmpWxkUpUiu0BFitoH50dEWhrb4R+fDs5/cFbjfBaarsEWutLoLWHBFp7SKBFjF4AaMF4oLU7pic0RLSfs5eExqEHbXHQERKVYnuAVVlTr9Ss4L0bI92DlkD7cDsq0FbWBIf0SE+8x2spMgm01pdAaw8JtPaQQIsYvQDQgiUC7Weff6vh6XPVbVCGJOn/t3fv71HV997//x/0rnZrd7fdW/FE1VrPWnfdVSgBUQJBDImamKCGBG2IlMZUxESxSdpiiCcGxTrWioP1MGILo1g6atGJqEREkTkReN8/TGdWJrOSfOaU9/qsPB/X9by+3yI3e8E4y6wXK2sSyZT0bH5Gjo+NKR/Z9LRPaERkX9kPCaupS0t9S6qin4ztVnZUWrshJd19SZqkSl5gRaIJCQQzmXywDgOtWZUaaMt9LzHQTh0DrfdzG2jDkbis60nKmq6UDBj+pUWpMdCaxUBrRwy0RKUHwKE+0D7+xxfkgutWyqaBbTJn7nwRETn01RG5auHd8uAjT+oenAHtExoR0XRlRyUyS+M1YqA1i4HWjhhovd/Egdbt2czrDJ7LXGoMtGYx0NoRAy1R6QFwqA+051xVJ9GPYyIiuYFWROSTkS/kgp/drnRU5rRPaETkr0LhRMkfBjZZ2VGp7q6U3H43TRYDrfdjoLUjBlrvN3GgzX5Xx8Qi0cr+9ygbA61ZDLR2xEBLVHoAHOoD7RkXLZYTJ06KSP5AG0+k5PR5i5SOypz2CY2I/FE0FpfmDueiuLmjchfGjErev8BioDWLgdaOGGi938SBtrMn6TrQTvf87FJjoDWLgdaOGGiJSg+AQ32gvX7JPRII/lVEnIH25MmT8tsnnpFrFrUqHpkZ7RMaEfkjt4vjzgp9eymjkvcvsBhozWKgtSMGWu83caANBBMF/w2qb6ne+4yB1iwGWjtioCUqPQAO9YH2nT3/kDMuWiy/WLZG5sydL8uaN8iP/3eVnHnxzfLG7ve1D29a2ic0IvJHtQ3Vex4qo5L3L7AYaM0yHWiDoaQMDGcy+ZA23kuVjYHW+7l9SFjvYDJvnDW5ezYcicvAcFJ6B5NFPZ6HgdYsBlo7YqAlKj0ADvWBViTzvNnfPvGM3NWxSe7p2iyP//EF+errb7UPy4j2CY2I/FFTe+E4W6m7lxiVvH+BxUBrlslAO35kqqlLS21jumIjLe8lsxhovZ/bQJtt/ON1+oeTUt+akvrWlAwMZ17PaCzzPltxV+FzawNBs5GWgdYsBlo7YqAlKj0ADk8MtCIi3xw9JtF/jchHBz6To9/Z80bVPqERkT8KhgofcRAMJSUSTeTuBCz1mbSMSt6/wGKgNWu6gTYaK/wk+pq6tPQO8riQmYyB1vtNNdBmy46o4+sfTuYeybNweeF7rbbR7BzKQGsWA60dMdASlR4Ah/pAGzt4SG6q65A5c+fnOuXcBVJT/yv5/MvD2oc3Le0TGhH5p3Akc1dS72BSNv8xKes3pgoufIv5FtJsjEqVu8DKfjvv1u2V/dZ5BlqzphtoQ+HC52jW1KWlrSvz8wPBzF94lPI+4r1kHgOt9zMZaN0evVPf6vx3yW2gNR2pGGjNYqC1IwZaotID4FAfaK+7ebU0rX1U/vZeVD77fFQ+/exLeWP3+7KksUuuv+Ve7cOblvYJjYj8V+5xBy4Xv9mhqZgYlSpzgTUUSBYMFZUaaRlozTJ5xIHbqDQUSBY8RqSUu2p5L5nFQOv9Sh1os6/tZDW1M9BWMgZaO2KgJSo9AA71gfacq+rk5MmTBT/+zdFjcvq8RQpHVBztExoR+auJI2DBt482FH8BwKhUmQusan7rPAOtWSYDbTCUzBuW2rpSk76vTD4EifdS8THQej+TgXbi85yz57y2rszru3DCXbSmHyw2MspAaxoDrR0x0BKVHgCH+kB7zaJWORZPFvz4Z198JVctvFvhiIqjfUIjIn81/pl/bt8+2tnDXX8aF1jTfet8uTHQmmUy0I6MZj7kKBRO5B5l4PYszZq64h8ZwnvJLLeBNvvBUmu6UtI7WNlHhIyPgdYsk4E2+5rVNmT+cjD7ukVjcenuS+X+0rC7NyWhcKKo15SB1qxSBtpQOCFbt5f+3PrxMdCaxUBLVHoAHOoD7dMvvCaLV3XKi395W97f/y/Z8/6Hsu1Pr8svlrXLMztCsv+jT3N5kfYJjYj81fg7/RZOeMxBfUuqpAsuRqXKXGC5fbtv/zB30M5kpgPtVO8r7qCtfhMH2mgsnvfs0ko/ImR8DLRmmQy01YyB1qxiBtpoLC7NHfnnuECwvJGWgdYsBlqi0gPgUB9ox3842HR5kfYJjYj8V/bbR7Mj7UN9KQmGSr/jjFGpMhdYgWD+XbRN7WmeQTvDlTrQjozGc588X864znvJrIkD7cT3TrZgqPLfts1Aa5bbQDv+kQbdfZkBPRhKyrqezIdXFvsXGlPFQGtWMQOt219E1TaWNxrmvlvkwRRNEQMtUekBcKgPtIePfCvfHD1mlBdpn9CIyJ+FwgkZClTmgphRySyTC6xINCGBYKLiwxIDrVnlDLSVeF/xXjJr4kA72SMmhgIMtFpNHGjdXqPm9sLXrFIjLQOtWcUMtOP/crecR7mMz+3Xo8mr9PmMaDYEwKE+0IqIjI2dkDd375Onnt+Z+7Gj39nxZtU+oRERTRejklmaF1gMtGaVO9DyXpqZJg60kaj7HbSVeEbmxBhozZo40Da5jLFuZZ+DHo1l/sKj1MGWgdasYgZatw91q6kr7zs9sr/GfeuSNEUMtESlB8ChPtB++tmXctHPG+SMixbnHmMQO3hIfnjprbLn/Q91D86A9gmNiPxfJJqQdT2ZD9dZ11P8B38wKpnFQOv9GGjtyO1DwgLBRO45zrUN5T8bc7IYaM2aONBOdvflxNq6Mh8IVtvo/Ni6Ej68sn9rInfO0x7XvNyKpszr8syLZs+grW/Jfx3LvUs9++to//vq9RhoiUoPgEN9oJ2/Yq1s6N0qY2Mn8p4zOzD8J7mprkPvwAxpn9CIyN9FY/G8C+GauuI/XIdRyfsXWAy0ZjHQ2pHbQJutnG+3NomB1qyJA63b80uXriocbfuHk64fmFjsENi/1f2uanLPZKDNfs0QCCakfzj/US7ZO56LfT8x0JrFQEtUegAc6gPt9+ctkmQqLSKSN9Cmj4/JDy5ZonRU5rRPaETk7yb7cJ1i7j5jVPL+BRYDrVkMtHY01UBb7RhozXL7kLChQFKa2jMfgJgd+MbfkdnWlZKXX3f/b1JnkXfR7gp77z10z68yv9f29d47trf2lP4XG+OfL1zbWNyH8zHQmsVAS1R6ABzqA+3cq1fIoa+OiEj+QLv/o0/lR5fXKh2VOe0TGhH5O7e7mhho/XeBxUBrFgOtHTHQej+3gXayQuFE7tE6kz1PuHdw5l/rSvfYHzLnly3P2f97yRYMFX4NUdto/vxnBlqzGGiJSg+AQ32gvf+h38uNy9vlr+H3ZM7c+bLvnwfk2RdDctHPG+S+B5/QPrxpaZ/QiMjfuV0M1zYU9+E6jErev8BioDWLgdaOGGi9XzED7cQmfhhVsf9N8mp+HGjH3z07PtPHHTDQmsVAS1R6ABzqA20imZLVnY/L6fMWyZy582XO3Ply5sVLZN3DW3KPPvAy7RMaEfm/YCiZ9+E6xXx74sgoo5INF1gMtGYx0NoRA633K3agjcbiMjCc+bDK7r6UDAwnpLsvJf3DxX9wpVdjoC2MgdYsBlqi0gPgUB9os9Lp4xI7eCj3uANbaJ/QiIimi1HJ+xdYDLRmMdDaEQOt9yt2oG3ryv/AsNrGtDz0mPNj63qSRX14pRfz40AbjcULPtStrcv8/MlAaxYDLVHpAXB4YqA9EPtCHnrsKbmzfZOIiJw4cVLeenef8lGZ0T6hERFNF6OS9y+wGGjNYqC1IwZa71fMQBuOxPMGvmwLJ/zv7j6d92Wl8uNAOzKaGWl7B5PS1pWSoUBxQzoDrVkMtESlB8ChPtDuenuvnHZhjSxe1Zn7kLCRg4fkP39yizz7Ykj34Axon9CIiKaLUcn7F1gMtGYx0NoRA633K/ZDwtwGWre0/3tXTjYPtKFwQupbM++7NV0pCUcq8+sy0Jrlh3//ibQC4FAfaH96453y5127RURyA62IyJu798nlC5qUjsqc9gmNiGi6GJW8f4HFQGsWA60dMdB6v2IfcTDx2+Rr6tJSs7zwAyy1/3tXTrYOtK4fJtqYrsgjJxhozWKgJSo9AA71gfb0eYtkbOyEiOQPtOnjY/L9eYuUjsqc9gmNiGi6GJW8f4HFQGsWA60dMdB6v2IH2nAkLvUtzjNnOzakCkbB/mG7hs2J2TrQTvZBYMV+oKhbDLRmMdASlR4Ah/pAe/ENDbLvnwdEJH+g/fOu3XLh9fVKR2VO+4RGRDRdjErev8BioDWLgdaOGGi9X7EDbbbx3zo/FMg817Sp3f5xdmSUgdYtBlqzGGiJSg+AQ32gfXLbK3L2lctlQ+9WmTN3vvxu6EVpvr9XTp+3SAafCmof3rS0T2hERNPFqOT9CywGWrMYaO2Igdb7lTrQ+jlbB9pINFHwCIr6lhSPOJjBGGiJSg+AQ32gFREJBP8qv7ztfrngZ7fLpTfeKbfe+aDsfOPv2odlRPuERkQ0XYxK3r/AYqA1i4HWjhhovR8DbWG2DLShcEIGhpMS3OUcZzgSl7aulNQ2pKWzJymRaKIi/7cYaM1ioCUqPQAO9YH2yDffTfrPso8+8DLtExoR0XQxKnn/AouB1iwGWjtioPV+DLSF2TDQdvflP/t3TVd1z4UMtGYx0BKVHgCH+kB7yf81yicjX+T92NjYCdk0sE1Ou2Ch0lGZ0z6hERFNF6OS9y+wGGjNYqC1IwZa78dAW5jXB9pwJJ43zmYLBCtzt6xbDLRmMdASlR4Ah/pA2/P403L2lcvl7+9FRUTkQOwLuWFpm5x37W3y+tsR5aObnvYJjYj8UzQWl3U9zod99A4mK/IMOUal6l9gjf+QljVdqaK/vZSB1iy3gXbi+6a7rzLPXuS9VHoMtN6PgbYwrw+0gWDCdaCt5ge0OefVJE0RAy1R6QFwqA+0IiLPv/yGnPXTpfLAQ7+XMy5aLHe0PyLfHj2mfVhGtE9oROSfJn7rYnakLffXZVQyq9QLLLeL5uaO4n4dBlqz3Abaar1veC+VHgOt92OgLczrA63mHbRklva/I0Q2BsDhiYFWRGTP+x/KOVfVSdPaR7UPRR567Ck5+8rluf/9ycgXMn/FWvmvS2+Vq2ta5J09+3P/TPuERkT+ye2L/frW8r+VOzsqUfEXWEOBpAwMJ2Xr9skv2Nu63P98i7mLloHWLLeBtlrvm6neSwy0U2cy0EZjcRkYTsq6nqnfX8XGQGtWsQNtKJyQUDhRtbvTvZDXB9qR0bj0DibzznWdPdU91vvWpTxX9veufRxuaf/7QWRjABwqA+2Klm7X/vfW++SUcxfIsuYNuR+baR9/clB+8os78gbam+o6ZPOTO2Rs7ITsfGOPzL16haSPj4kIAy0RVa7ahsKhqam9/DsyGGhLG2ib2vN/fLK7Yjt7kq6/TjFDBgOtWW4Drdv7ZtXqdG5Yr+SglH0vrd2QUv+WWi+34q6pB9poLC71rdX5sCMGWrNMB9poLC7NHc7rVNuYlnBE/7+X1ciGgXZkNHMnbf9wUkLh4u6cjUQTucfB1LemJBjy9u9zstz+MpWI7A2AQ2Wg7fjNgHEzbcFta+X5l9/IDbSjh7+RMy9eIsfHxnI/55pFrfLm7n0iwkBLRJVr/HNMsw0F7LyAmi6vX2AFQ+6jq9sFbShc+IiDYu9qYqA1y22gdXvfLFyefzdtpUZa/rKjuCYbaIcC7u+vYgcnt/Z/4rwfb787RZO0oin174F26mHc7REi1bpDXTtbBtpSm/iXjpV6z810Xv/6gYiKC4DDM4848IKnX3hN7mh/RA4f+TY30L6zZ79csaA57+fdfk+PbHnuFRFhoCWiytY/nJS2rpS0daV8O86OjHr/Astt9Kupm/zDWIIh53Ur5cPdGGhLH2hHRjODX1tXSu7tTOWNs9kq9Uza7EBbd5f+wObllqyc+g7ayd5flXiWZvYOWjJrujtoJ3uEix8fdeDngdbtLxIreW6cybz+9QMRFRcAh/pAm0yl5aHHnpKra1rkf65YJudcVSfX3bxaHul/LvcYgZnw9ZGjcsn/Ncro4W/yBtpdb++V65fck/dzm+/vlSee3CEiIt8cSxMRVaxv48dnRdkLLO3jmKz3o+5jxvvR6hzzu5HMn8mq1rRseZYma+PmzJ9Tx3r312H33uOur9tkP7/YOtZnfr2Nm4+r/1l4uVWtmT+ndyPuf46TvU4fj5T/Gn12KPNrL7k98zqRew8+nPkzv7tj6vfG+o2Fr9OyRu+eu8tpYGvm9/fMC/rHUukme889saX411L766TssWsfBxFVJgAO9YG2/t7fyuULmmTTwDZ5ZkdInnp+p3T3PSUXXLdS7mh/ZMaOo2ntozK07S8iInkD7e69++Wy+U15P3fl6odyP/fbY2kiIiqy3EDrgWOZrCefzb+QffLZzI/v3pOWj2OV/b/17t7sQJuSLc/SZG3c/O/B9cHJ/yyXNRaOENterMzr1PFgdqBNq/9ZeLlV/36+7Lt7j0/6Z/nElvzBL7izMq/RyOeZX/PWel6jqeodTDkD7RR/nu9HC99TlXqtvNbAUHag1T+WatTSUXhu3L1H/7iKzYavH4jIPAAO9YH2vy69VY7FEwU/fiD2hZw+b9GMHcdZly2Vs69cLmdfuVz+54plcsq5C+TsK5fLvz49KP/x48UST6RyP/fiGxpk9979IsIjDoiISsmWb1GMRDOfXJ79/9aOGyoq+a2hPOKgvEccjC8QzP9W3qb2yn07dvYRB929SfU/Cy93+91TP+Jg4vurkt8uz4eEmWX6IWHZ16l/OCm9g8V/MJVN+fkRB9nXsbMnKbUNmfMiHxJGRF4IgEN9oJ14d2rWsXhCLrhu5QwfTcb4O2hFRBaufEAefuJZGRs7Idteel3mXV8vY2MnRISBloiolGy8wKptKLz7qBLPzBwZdQbaFXelpLsvSZO0dkNq2oF2ZDQzRASCiYqPSQy0ZpkOtNWIgdasYgba2ZLfB1q/ZOPXD0Q0eQAc6gPtwPCfpGvjFvn6yNHcj33+5WFp+VWfPP3CayrHNHGgjR08JDfVdcgPL71Vrl28WiIffJz7Z9onNCIiG7PtAmuyD1jp7KnMhXx2oCWzphtoqxUDrVkMtN6PgbYwBlo7su3rByKaOgAO9YH2wuvr5XvnL5Q5c+fLDy5ZIt+ft0jmzJ0vp89bJD+6vFbOumxpLi/SPqEREdmYbRdYkWh1PwE7O9AuWZmS2++myaq7y+wO2mrFQGsWA633Y6AtjIHWjmz7+oGIpg6AQ32g3fHKWxLc+Y5RXqR9QiMisjEbL7A6e/Lvcq1tSEskWtlHHPAM2qkzeQZtNWOgNYuB1vsx0BbGQGtHNn79QESTB8ChPtBmJVNpORD7XPZ/9Knrh4Z5lfYJjYjIxmy9wBoKJKWzJ/NhORPH2XAknvtAsWJ/XQZasxho7YiB1vsx0BbGQGtHtn79QETuAXCoD7RHvv1OVt33Wzn1vAUyZ+58mTN3vpx63gJZdd9vJZ5IaR/etLRPaERENua3C6zuvpRzZ21j8R8exkBrFgOtHTHQej8G2sIYaO3Ib18/EM32ADjUB9rGto3yi2XtsuvtvfLZ56Py2eej8tqbe+SGpW2y5te/0z68aWmf0IiIbMxPF1iBYOHzaWutwAq3AAAgAElEQVQb0xKNmf8aDLRmMdDaUbkDbSSakFC4tMeHMNCaxUBbGAOtHfnp6wciYqAFxlMfaM++crmMHv6m4Me/OPS1nH/tSoUjKo72CY2IyMb8dIE1/u7Z8RUzMDHQmsVAa0fFDrRDgaQ0d6SluSMtd9znvJ/qW1MSjhT3GjHQmsVAWxgDrR356esHImKgBcZTH2jPumypHIsnC348nkjJWT9dqnBExdE+oRER2ZifLrD6h5OuA20xwxIDrVkMtHZUzEA7FHDePwuXF76P6luLe60ZaM1ioC2MgdaO/PT1AxEx0ALjqQ+0t975oNz9QJ8c+ea73I8dPvKtNN/fK4vqOxWPzIz2CY2IyMb8dIEVjcWltiF/VOruK25UYqA1i4HWjooZaJva01MOtMX+ZQcDrVkMtIUx0NqRn75+ICIGWmA89YF25OAhuWJBs5xy7gKZe/UKOeeqOjnl3AVy8Q2N8tGBz7QPb1raJzQiIhvz2wVWNJa5k7Z3MFn0B4SNjDLQmsZAa0fFDLT1Le6PCBlfMc9zZqA1a6qBNhJNyPaXMxXzZ297DLR25LevH4hmewAc6gOtiMjJkyfl7+9FJRD8qzz1/E55Z88/ZGzshPZhGdE+oRER2RgXWPkx0JrFQGtHxQy04x8RsrAuLTUT7qLtHSxuLGOgNWuygTYUTkhtY/4HHkaipX1gm20x0NoRXz8Q+SsADk8MtCdOnJRDXx2R2MFDBXmd9gmNiMjGuMDKj4HWLAZaOyr2Q8J6B52R9oGHUrLxiaR09pR2NzoDrVmTDbRudzR39syOwZKB1o74+oHIXwFwqA+0L/z5TTnrsqUyZ+5817xO+4RGRGRjXGDlx0BrFgOtHRU70FYyBlqzJhto3R4xUd+i836b6Rho7YivH4j8FQCH+kB79pXL5dePbpWPPzkoB7/8qiCv0z6hERHZGBdY+THQmsVAa0cMtN6PO2gLY6C1I75+IPJXABzqA+3p8xbJsXhS+zBKpn1CIyKyMS6w8mOgNYuB1o4YaL3flM+gbRj3DNqGtIQj+ufImYiB1o74+oHIXwFwqA+0K1q6JfTWXu3DKJn2CY2IyMb8cIHVP5yU5o60rOlKydbt5V3QM9CaxUBrRwy03m+ygXZkNC6RaEKGAkkZCiQlGtM/185UDLR25IevH4jICYBDZaB97A/P53r4iWflwuvr5Z6uzdL3h+15/+yxPzyvcXhF0T6hERHZmO0XWOM/1ChbKR9olI2B1iwGWjtioPV+Uw20szVbBtpINCHrepJS35qSdT3JWXOHczbbv34govwAOFQG2utvudc4r9M+oRER2ZjtF1huH6TT1lX6aMhAaxYDrR0x0Ho/BtrCbBhoo7G41LfmPye4tjEtkWjpf0FoW7Z//UBE+QFwqD/iwHbaJzQiIhuz/QLLbaBtai/998NAaxYDrR0x0Ho/BtrCbBhog6HC796oqUvLUMC7x1zpbP/6gYjyA+BQH2hTqbQMDL+U+98vh3bL0rvWy/0P/V6OxROKR2ZG+4RGRGRjtl9gdfYUXiT3D5d+gcxAaxYDrR0x0Ho/BtrCbBhoA8GE60Bbzn9/bMv2rx+IKD8ADvWBtrXzMbnu5tUyNnZCPjzwmXzv/IXSvqFf5q9YK83392of3rS0T2hERDZm+wVWNBaX7r5UxS6OGWjNYqC1o0oMtJFoQrr7UrKmKyUDw+YfVsVAaxYDbWE2DLTRWFxqGwoHWh5xQES2BsChPtD+6PJa+XL0axERWb9pSJbetV5EREYPfyNnX7lc89CMaJ/QiIhsjAus/BhozWKgtaNyB9poLC61jfkDVHOH2fmCgdasSg60oXBCtr+csH4ktGGgHRmNSzgSl/qWzHusviUlwZC3j7fS8fUDkb8C4FAfaL8/b5GMjZ0QEZFrFrXK8PZXRUTk+NiYnD5vkeahGdE+oRER2RgXWPkx0JrFQGtH5Q60QwH352yGwtMPgAy0ZlVqoG3ryv/AqkDQ3pHWloF2tsfXD0T+CoBDfaC9uqZFtjz3irzw5zfl9HmL5PCRb0VEJPTWXvnpjXcqH930tE9oREQ2xgVWfgy0ZpU70IbCCRkYThb1LfPjY6A1q9yBtn/YfaA1uVOQgdasSgy0kw3ptt5Jy0BrR3z9QOSvADjUB9q/ht+T/758mXx/3iIZGP6TiIgc+uqI/MePF8szO0LKRzc97RMaEZGNcYGVHwOtWeUMtBM/XKe2sfghiYHWrHIH2lC48IOQahvMXi8GWrMqMdCOfw53sXc6ezEGWjvi6wcifwXAoT7QZh0fG8v9/588eVKi/xpRPBpz2ic0IiIb4wIrPwZas8oZaN0+WKe7r7hfh4HWrEp8SNj4uzNrG8zunh0ZZaA1jTtoC2OgtSO+fiDyVwAcnhlobaV9QiMisjEusPJjoDWr1IE2Ei28I7OmLi1tXQy01agSA222cKS4n89Aa1YlBtpoLC5N7fnvqd5Be8dNBlo74usHIn8FwOHZgfY3fcNy0c8btA9jWtonNCIiG+MCKz8GWrO4g9aOKjnQFhsDrVkmA204EpeB4aRs3T75M5ujscydtP3DSWsfbZCNgdaO+PqByF8BcHh2oH3tzT2yaWCb9mFMS/uERkR2F4kmpr0A9mN+vsDKjhrbX04Yv6YMtGaVMtAGQ5kPBdu8JZU30ja1p4t+zzHQmsVA6/2mG2gr8cxm22KgtSM/f/1ANBsD4PDsQGsL7RMaEdlbMJScdRfA2fx6gTVx1KhvTRmNgAy0ZhU70Hb25L/H1j2ckmCo9Dv9GGjNYqD1ftMNtJW449y2GGjtyK9fPxDN1gA4PDHQHj7yrez94CN5Z88/CvI67RMaEdmb2wVwZ8/suDD06wWW22tq8kxGBlqzihloJ/4FSLZin2k6PgZasxhovd9UA22lntlsWwy0duTXrx+IZmsAHOoD7cNPPCunnrdA5sydL6eet6Agr9M+oRGRvc3GC+CJv3ft46hkoXDpowYDrVnFDLT9w+4D7VCg9PGFgdYsBlrvxx20hTHQ2pEfv34gms0BcKgPtOdcVSe79+6XsbET2odSEu0TGhHZG3fQ+u8Ciztoqxt30NoRA633m26gDYaSZT+z2bYYaO3Ir18/EM3WADjUB9qra1q0D6Es2ic0IrK3iRfA9S0pnkFreROfQWs6ajDQmlXsM2i7+1IVvQOQgdYsBlrvN91AOzKaedRBIJiQYGh2DJYMtHbk168fiGZrABzqA+3jW16QTQPb5Nujx7QPpSTaJzQisrvxF8B+vztpfH6+wIpEEzIUSBY1ajDQmlXsQDsyGpdwJPO4g3LunM3GQGsWA633MxloZ1sMtHbk568fiGZjABzqA+2OV96SH1yyRObMnS+nXbBQTruwJi+v0z6hERHZGBdY+THQmlXKQFvJGGjNYqD1fgy0hTHQ2hFfPxD5KwAO9YH2nKvqpOfxp2XnG3vkzd37CvI67RMaEZGNcYGVHwOtWQy0dsRA6/0YaAtjoLUjvn4g8lcAHOoD7WU33aV9CGXRPqER0ewpFE7IwHBStm63/3EINl9gVeN1YKA1q1IDbamvIQOtWaYDbf9wUpo70rKmKyVbt1dmFGOgNYuBtjAGWjuy+esHIioMgEN9oG3tfEze2bNf+zBKpn1CI6LZ0VAg/xPp61tTVo+0tl5gVet1YKA1qxID7cQPcqttTBt/OB8DrVkmA23vYP57qaYuLUOB8ocxBlqzGGgLY6C1I1u/fiAi9wA41AfaO9s3yRkXLZbrbl4ttXf9WpY15ed12ic0IvJ/0Vi8YMioqUtL76C9F5G2XmBV63VgoDWrEgNtbUPha9jdZ/brMdCaZTLQur2X2rrKf3QFA61ZDLSFMdDaka1fPxCRewAc6gPtAw/9Xro2bpk0r9M+oRGR/wuFE1UbM7Sy8QKrmq8DA61Z5Q60kWh5ryEDrVmlDrRN7eWfE7IDLZnFQOvk54E2GotLcFdStr+cMP6OAa9m49cPRDR5ABzqA63ttE9oRDQ7crvrrxLfDqyVrRdY1XodsgMtmVXpO2hN74JmoC1+oO0fdv7dbu5ISziS+bPs7Cn8d75/ePLXITswBXdN/dxgBtriYqB18utAG4kmpL41lXvNaxvTEgrbO9Jmfx/ax0FElQmAQ32gPXHipGx57hW5YWmbnHvNCjnrsqVy/S33ypbnXtE+NCPaJzQimh1NfG5mU3uaZ9AqvQ7jB75KvQ4MtMVVzkAbDCVLfg0ZaIsbaDf/MVXw2jV3ZN730Vj+SDvVSB6OxKW20fk1ahudodeGIv/MnL/rW+39rofZkF8HWre/DNH4d3FXOCkDT6XKLvt7qMSvNd0HGRJR9QPgUB9oezY/I2dfuVzWbxqSZ3aE5JkdIXnwkSflvy9fJgPDL2kf3rS0T2hE5I8i0YSEwokp72qJRBMSCE79c2zJhoE2GovnXpPxA56fXoepyo7G5YyhmoUjmdfP7dt5S30NGWiLG2ib290H9mK/xdptYFpj0SNeGGjtyK8DbVtX4V+UaPz3t3+r+yNmNOvf6u//jhPZEACH+kA77/p62ffPAwU/vveDj+TSG+9UOKLiaJ/QiMj+gqFk3t1ha7pSVt8da5LXB9qJ3xJa35qy/rl9xWbzQNvdlz9IBIKVee0YaIsbaO/tdB+Gij2/TTauaP97ZhoDrR35daB1+wuO2oaZf//sCnvvvMkdtET6AXCoD7RnXnyzpI+PFfx4+viYnHnxEoUjKo72CY2I7M/tmZhTPYvRD3l9YHG7oO3s8fdrMjFbB9qJjwMp9a5Nt7ID7doNKenuS9Ikrbgr8+e0NVA40JbyPnK7A7ASHyg2UzHQ2pFfB9pINFHwdUYw5K/fIxHZGwCH+kD7s5vvkeHtrxb8+JPbXpFrF6+e+QMqkvYJjYjsLhxxvzvM9FPlbc3rA63td+xVIhsG2mgsLgPDSVnTlZJ1PUkJR+LSO+j+PN9KPJIiO9CSWbvCSQmFE9LWlZK2rpT0Dk79AV+TFQrnD0y1DXZ9yBEDrR35daAdGc2cK4cCSRkKJGfdd4MQkbcD4FAfaN/cvU9Ou7BGrlp4tzTc97Csuu+3csWCZjntgoXyyq53tQ9vWtonNCKyP7dho7vP3xfyXh88m1yenWnTHXuVyIaBduKdlbWNafndkPtAW4kPlXp0ICn3rUt5qqUNmT+DpjX6xzKx8HuVG4Ii0YQMBZLSP2zfwMRAa0d+HmiJiLwaAIf6QCsi8vmXh+XRwYCs7nxc7urYJA8/8awciH2ufVhGtE9oRGR//cP5g1JtQ2W+HdvLeX2gDYULv03epjv2KpHXB1q316imLi2PbUkWDOx+/guP7F29PEvRuzHQ2hEDLRHRzAfAoT7Qrmjplm+PHtM+jJJpn9CIyB8FQ5k7w/qHS/sWYNvy+kA7Mpp5/ET2NanE3Ze2ZetAm/02+qFAUnoHkxX7gDCvxkDr/Rho7YiBloho5gPgUB9of3rjnfLWu/u0D6Nk2ic0IiIbs2Ggne15faCNxtw/YG+2ffgNA6338+NAGwonZF1P5vnPAz75UEsGWiKimQ+AQ32gfXQwIBff0Cgtv+qTTQPb5LE/PJ+X12mf0IiIbIyB1vt5faAdGc3c5Vzf4jyHtr+EoSgay3yw2JqulGzdbt8d7Ay03s9vA63b3eu9g/b/+8dAS0Q08wFwqA+0V9e0yPW33DtpXqd9QiMisjEGWu9nw0CbrdRnNkdjcalvzf+gseYOu/69ZKD1fn4baCd+OJ8XzueV+FC7lXencq9Tub/W/b/h/UhEZBIAh8pAeyD2uYyNnRARkY8/OahxCBWjfUIjIrIxL1zQ09TZNNCW2lAg6To02fSBcAy03m+2DLSad5+7HY9mSxv88VoTEVU7AA6VgfZ75y+Ur48cFRGRMy5arHEIFaN9QiMisjEGWu83Gwba/mH3gdamDxZjoPV+fhto3d43Te265/Nd4aSnev1de84hRESaAXCoDLRXLbxbLr6hQRav6pRTz1sgi1d1TprXaZ/QiIhsjIHW+82GgdbtWZo1demSH5mgEQOt9/PbQDsymnlu8/hxNhzRPyYiIrIvAA6VgfaLQ1/L4398QTb0bpXvnb9Qfv3o1knzOu0TGhGRjTHQer/ZMNCOjOY/5qC2wa67Z0dGGWhtyI8Dbe73ZtFfZhARkfcC4FD/kLD1m4a0D6Es2ic0IiIbY6D1frNloM1m03Nnx8dA6/38PNASERGVEwCH+kBrO+0TGhGRjTHQer/ZNtDaGgOt92OgJSIicg+Aw7MD7W/6huWinzdoH8a0tE9oREQ2xkDr/Rho7YiB1vsx0BIREbkHwKE+0O584+9yfGys4Mdfe3OPbBrYpnBExdE+oRER2RgDrfdjoLUjBlrvx0BLRETkHgCH+kB7xkWL5X+uWCbtGwZk7wcfqR5Lz+Zn5NxrVshZly2VxjUb5Vg8KSIin4x8IfNXrJX/uvRWubqmRd7Zsz/3/0b7hEZEZGMMtN6PgdaOGGi9HwMtERGRewAc6gNtIpmS4M53pHHNRvnPn9wiP/nFHfLwE8/Kp599OaPHseOVt+SS/2uULw59LcfiSVl4+wPSs/kZERG5qa5DNj+5Q8bGTsjON/bI3KtXSPp45q5f7RMaEZGNMdB6PwZaO2Kg9X4MtERERO4BcKgPtOOl08dl5xt/l6a1j8oPLlkiv1i2Rp5+4TVJptJV/7+9Z99H8s6ef+T+9+Ynd0hj20YZPfyNnHnxkrzHMFyzqFXe3L1PRBhoiYhKiYHW+zHQ2pFNA20wlJR1PUnp7ktJOKJ/PDMVAy0REZF7AByeGmgPfvmVPPaH5+Xnt94np89bJHV3/0auXbxaLvp5g3wQ/WRGj2VJY5f88ZmX5Z09++WKBc15/+z2e3pky3OviAgDLRFVv6FAZtQYGE5KNKZ/PJVoNgy02ddt63Y7XzebBtpQOCG9g5nhLxROqB/PTGbLQNs/nMy977PNlteKgZaIiMg9AA71gfbod3EZ3v6qLLhtrZxy7gK57ubVMvhUUI58813u52z83XNy5S+bp/hVKqvn8afll7fdL8fHxmTX23vl+iX35P3z5vt75Yknd4iIyHeJ40REVevXj+QPGsvuSMuXh/WPq9yyvx/t46hWa9fnv26t9x+37nX7WyTzOnWs9/br9PrbxwuGv9ff1j+umarj3/+u/S2ifyxTNfE1qqlLy1qP/7tVqQ6MZH7/Datnx++XiIjINAAO9YH29HmLZO7VK6Tz4T9K9OOY68+JJ1Jy6nkLqn4sJ0+elPYN/bJ4VafEEykREdm9d79cNr8p7+etXP2QDG37i4iIfH00RURUsY58l8713j8LB42aurRseTad9/Nmspd2Zga7csv+Xirxa720U+/Pw6139ri/bi+9qn9sxf0+MqNS+4P6xzJVLR2Ff9Yta/WPa6ZqfzDze35nz3H1Y5kqt/dEx3r945qJPvok8/tdtVr/WIjKTfvrJCLyVwAc6gPtzjf2yNjYiWl/3rF4surH8sBDv5eVq3tyHwAmInL4yLfyHz9enBtsRUQuvqFBdu/dLyI84oCIqlconHAdNbr79L5Ntn+r+zFp1r/VW98mPRQo/Fbumrq09A97+1vQJ2bLIw4m+/dC+7hmKlsecdDUXvga9Q56+5grFY84ICIicg+AQ32gDe58Z9J2vPLmjB3HW+/uk6trWiSdLrzNfuHKB+ThJ56VsbETsu2l12Xe9fW5UVn7hEZE/i0ai0ttQ+GoEQjqDZKRDxOyK5z0VJEPvTXQRqLuI7Ztz9u0ZaDt7CkcxDt7ZsfwNzJqz0AbjsSlviWVe43aulJWPpu5lBhoiYiI3APgUB9oz7psaX4/XSpz5s6X789bJJfeeOeMHced7Zvk1PMWyGkX1uS6ZlGriIjEDh6Sm+o65IeX3irXLl4tkQ8+zv2/0z6hEZG/CwQTeSPtbLnjzPYCwfyRdihg3+tmy0AbiSby7s5sak9LJGrXGF5Otgy02cKR+Kx6fUZGGWiJiIgmC4BDfaB1892xhKzfNCRbA69qH8q0tE9oROT/orHM4w5m26hhe7a/brYMtNnCkUzaxzHT2TbQzsYYaImIiNwD4PDkQJt1dU2L9iFMS/uERkREVI1sG2hnawy03o+BloiIyD0ADs8OtN8dS8g5V9VpH8a0tE9oRERE1YiB1o4YaL0fAy0REZF7ABzqA21j28aCVrR0ywXXrZRlTb/WPrxpaZ/QiIiIqhEDrR0x0Ho/BloiIiL3ADjUB9p71j1eUMdvBuT3TwflWDypfXjT0j6hERERVSMGWjtioPV+DLRERETuAXCoD7S20z6hERERVSMGWjtioPV+DLRERETuAXCoDrRfHPpa3np3X+5O2Vf/+jdZcNtaue7m1bL5yR2ah2ZM+4RGRERUjRho7YiB1vsx0BIREbkHwKE20P5512753vkLZc7c+XL+tSvl7b99ID+89FZp3zAg7Rv65YyLFsvjW17QOjxj2ic0IiKiasRAa0cMtN6PgZaIiMg9AA61gfZnN98j7Rv65Zujx2TTwDY556o6Gdr2l9w/f+7FXXLpjXdqHZ4x7RMaERFRNWKgtSO/D7SRaEKiMf3jKOv3wEBLRETkGgCH2kB75sU3yz8/iomISCqVllPOXSAfHvgs988PxL6Q0y6s0To8Y9onNCIiomrEQGtHfh1ow5G4NHekpaYu07oee39/DLRERETuAXCoDbRz5s6Xg19+lfvf//mTWyR28FDufx/88iuZM3e+wpEVR/uERkREVI0YaO3IrwNtU7szzmbrH5753+Pf/5GUXeHy2vFqZqBd0ZQq+9faFU7KPw4k1F8fIiKiSgTAwUBbJu0TGhERUTVioLUjvw60E8fZmrq0tHXN/L+LPY8lXY9Fsxf+wkBLRET+CIBDdaBduPIBueWOB+WWOx6U/3f+L+WXt92f+98LVz7AQEtERKQUA60dMdBWty3PpeS+dd7qtbf99VoTEdHsDYBDbaC9Z93jRnmd9gmNiIioGvl5oI1EE9Ldl5I1XSkZGE5a/SFUfh1o+4cL71wNhblzlIiIyE8BcKgNtH6hfUIjIiKqRn4daKOxuNQ25g9/axTuzKxUfh1oR0bjEggmpK0rJd19KcZZIiIiHwbAwUBbJu0TGhERUTXy60Drdmemxt2Z4fcy42O5LW3MDLTN7eX/Wo8O+G/kJSIiIu8GwMFAWybtExoREVE1mm0DbTA0s+Nk9s/XS/nttSYiIiJvB8DBQFsm7RMaERFRNfLrQBsKJwqGydqGtESiM3sH7YexhOwKJz1V+D0eI0BEREQzFwAHA22ZtE9oRERE1civA+3IaFyGAsm8cXam754lIiIiIgZaYDwG2jJpn9CIiIiqkZ8H2mzhiP4xEBEREc3WADgYaMukfUIjIiKqRrNhoCUiIiIivQA4GGjLpH1CIyIiqkYMtERERERUzQA4GGjLpH1CIyIiqkYMtERERERUzQA4GGjLpH1CIyIiqkYMtERERERUzQA4GGjLpH1CIyIiqkYMtERERERUzQA4GGjLpH1CIyIiqkYMtERERERUzQA4GGjLpH1CIyIiqkYMtERERERUzQA4GGjLpH1CIyKi6haNxWVgOCm9g0nZ/nJC/XhmKgZaIiIiIqpmABwMtGXSPqEREVH1isbiUt+akpq6dK7uvtkxWDLQEhEREVE1A+BgoC2T9gmNiIiqV/9wMm+czRaO6B9btWOgJSIiIqJqBsDBQFsm7RMaERFVr95B94E2FPb/ow4YaImIiIiomgFwMNCWSfuERkRE1SsQTBSMs7UNaYlEGWiJiIiIiMoJgIOBtkzaJzQiIqpu3X2pvHE2EPT/ODsyykBLRERERNUNgIOBtkzaJzQiIqp+4UhcQuHEtHfORmNx2f5yQrZuT1p/ly0DLRERERFVMwAOBtoyaZ/QiIjIG4UjcaltHPcohEa7n1XLQEtERERE1QyAg4G2TNonNCIi8kadPYUfKNbckVY5lsDLSRl4KlVW3X2Z3099a3m/TrbIh/aO1URERERU+QA4GGjLpH1CIyIibzRxnM2mcSz3rUtNejxa7Qon1V8jIiIiIvJOABwMtGXSPqEREZE3cruDtqld7w7a/q0JT8UdtEREREQ0PgAOBtoyaZ/QiIjIG4UjcaltGPcM2ga7n0FLRERERFTNADgYaMukfUIjIiLvFI3FJRBMSCCYkEiUcZaIiIiIaLIAOBhoy6R9QiMiIiIiIiIisi0ADgbaMmmf0IiIiIiIiIiIbAuAg4G2TNonNCIiIiIiIiIi2wLgYKAtk/YJjYiIiIiIiIjItgA4GGjLpH1CIyIiIiIiIiKyLQAOBtoyaZ/QiIiIiIiIiIhsC4CDgbZM2ic0IiIiIiIiIiLbAuBgoC2T9gmNiIiIiIiIiMi2ADgYaMukfUIjIiIiIiIiIrItAA4G2jJpn9CIiIiIiIiIiGwLgIOBtkzaJzQiIiIiIiIiItsC4GCgLZP2CY2IiIiIiIiIyLYAOBhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEoYaAEAAAAAAABACQMtAAAAAAAAAChhoAUAAAAAAAAAJQy0AAAAAAAAAKCEgRYAAAAAAAAAlDDQAgAAAAAAAIASBloAAAAAAAAAUMJACwAAAAAAAABKGGgBAAAAAAAAQAkDLQAAAAAAAAAoYaAFAAAAAAAAACUMtAAAAAAAAACghIEWAAAAAAAAAJQw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEoYaEqcFMIAAAICSURBVAEAAAAAAABACQMtAAAAAAAAAChhoAUAAAAAAAAAJQy0AAAAAAAAAKCEgRYAAAAAAAAAlDDQAgAAAAAAAIASBloAAAAAAAAAUMJACwAAAAAAAABKGGgBAAAAAAAAQAkDLQAAAAAAAAAoYaAFAAAAAAAAACUMtAAAAAAAAACghIEWAAAAAAAAAJQw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEoYaAEAAAAAAABACQMtAAAAAAAAAChhoAUAAAAAAAAAJQy0AAAAAAAAAKCEgRYAAAAAAAAAlDDQAgAAAAAAAIASBloAAAAAAAAAUMJACwAAAAAAAABKGGgBAAAAAAAAQAkDLQAAAAAAAAAoYaAFAAAAAAAAACUMtAAAAAAAAACghIEWAAAAAAAAAJQw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEr+P+ZsIgFt+GX2AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOyd+1+UZeK/v3+Pn91tDx223crMTNLUNF1Xt8RARQVRJNBAxVTwbLnIWiauplge1wMaJWoZmiayhphmo6aCZ41MmRkYeH9/mGVgZIiHYZj7ecbrer2uVzEDw80MczvPxT338/8EAAAAAAAAAAAAAEb4f6YHAAAAAAAAAAAAAPCoQqAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEARaAAAAAAAAAAAAAEMQaAEAAAAAAAAAAAAMQaAFAAAAAAAAAAAAMASBFgAAAAAAAAAAAMAQBFoAAAAAAAAAAAAAQxBoAQAAAAAAAAAAAAxBoAUAAAAAAAAAAAAwBIEWAAAAAAAAAAAAwBAEWgAAAAAAAAAAAABDEGgBAAAAAAAAAAAADEGgBQAAAAAAAAAAADAEgRYAAAAAAAAAAADAEATaLlJzuw4RERERERERETshALRAoO0ipic0RERERERERESnCQAtEGi7iOkJDRERERERERHRaQJACwTaLmJ6QkNEREREREREdJoA0AKBtouYntAQEREREREREZ0mALRAoO0ipic0RERERERERESnCQAtEGi7iOkJDRERERERERHRaQJACwTaLmJ6QkNEREREREREdJp2ouxoo3Z+2nlv3TE9cogVCLRdxPSEhoiIiIiIiIjoNO3EwuUNSkyt77RnzzWZHjrECATaLmJ6QkNEREREREREdJp2ojnQ5ixs0ILl9R2akkmghchCoO0ipic0RERERERERESnaSeaA23hBp927O3YjJyuBVrXjzV6PSVXT7ycpFfemK4vjpwMXPdhUbF6D0vTs69O0jvL1qnB55Mkebz1mpb7gZ4ZlKI+w9O1aeeBwNdcrrmh+Mnz9ef+EzQkcaZOVJ4L+744ePi/erLfeO3edyTo8pSs97Trs8OSpCf7jde1m+zvEEkItF3E9ISGiIiIiIiIiOg07US0A+2A+Cyt3VyipqYmfXWsUo/HjVOd26tjFWcUNzJDt+7U6kGdWwlTF6poe6kkacWa7ZoyK19uj1fV126p55DJ+v78FUnSqNQ8rd1cIp+vUYeOVqrnkMmqb/CFNbbJM/O18T+lGpO+OOhyAm33QqDtIqYnNERERETESOiqrtOe/W5t3eNRlcttfDyIiBjb2oloBtoGn0+bdh4ICqhPvJykS9XXNWfZOq3asDtw+YHDFRqVmidJGjDqbZ087WoZ84qNWrFmu27f/VmPxyUFVtpK0mtjZulYxZlOj6325/t6+R+Zampq0itvTNeNWz8FriPQdi8E2i5iekJDREREROyqVS63kjNbTnqSnFmv0jKP8XEhImLsaieivYK2NZXfnVevoVPU4PMpYepCff7l8cB15y9d1XODUyVJv3shQbU/3w9c98mO/Xprzr90ovKcBo3ODrrNqbMLtGnXwU6PpWh7qd77cKsk6V/rdqjw4z2B6wi03QuBtouYntAQEREREbvq4gJPmzNTJ2fWGx+XFddvddvKT3Z4jd8niIhO0E6YCrRXrt5U3MhMfXWsUpI0cuJcHTr6beD6q9dv68l+41Xf4FOPnvFye7yB63aUlCkl6z0dPn5Kw5NmB91u9oLVWre5pNPj+du42Tp/6WpgbK3DL4G2eyHQdhHTExoiIiIiYledu9TbJtAmpjoj0IYat0knZhBoERGtaCdMBNqzrsvqOyJDBw5XBC5LTF+kkoPfBD52XazW869NluRfQXu39l7guo3/KVXm3PdVceqcBsRnBd12Ws4Kbdn9RdBlVWcv6ukBE/X0gIlKyyloMx7XxWr9ptdoPdlvfMDf9Bqt099flESg7W4ItF3E9ISGiIiIiNhVQ62gHTelXmXl9t+LNhKrXmcv8gfq3Hc9rKBFRIySdiLagfZyzQ31HZGhE5Xngi7PXb5e+YXbAx/v/vyIEtMXSZIGjc7W0YrvAtfNXFSoD9bv0t3ae/rjS2NV525ZXRs3MkMVp4Jvu77Bp1t3anXrTq1q793XwyxZuSlo/1tJWru5RHn/3CCJQNvdEGi7iOkJDRERERGxq1a53Eqf2WoV7aT/mfpo7EW75mN/oN60K/Z/VkREu2gnoh1o4yfPV8nBY20uP1H5vXoPS9O1m3d075cHGjYuR9v3HpIkrVy3U0mZS+T2ePXDhWr9ZWCyfrxyXZKUkLZQK9ftlM/XqN37jqjP8HT5fI2Wx+PzNarnkMmB7Q2auXL1pp4ZlKIGn49A280QaLuI6QkNERERETESuqrrlDajXgmT6pXQaiVt+qzYXxFKoEVEjL52IpqB9srVm+rRM16PvZgY5L5D5ZKkNR/vVa+hU/Tc4FQtWLFRjY3+7+H11mt67ir9dWCKXvr7W9pRUha4zeprtzQqNU9P9Z+goWNzVHX2YqfGdOhopfq9Pi3kdYMTZujg4f8SaLsZAm0XMT2hISIiIiJGyuSM0Puqmh5Xd0ugRUSMvnaiOdDmLGjQonxfh6ZMi8xJwgCaIdB2EdMTGiIiIiJipAy1F+3igtiPlgRaRMToayeaA21nJdBCpCDQdhHTExoiIiIiYqSscrmVldty4JmVW68ql/1PFNZVCbSIiNHXTpQdbbS0tcHD3uJd/hAhCLRdxPSEhoiIiIgYacur/JoeR7Qk0CIiRl8AaIFA20VMT2iIiIiIiNg1CbSIiNEXAFog0HYR0xMaIiIiIiJ2TQItImL0BYAWCLRdxPSEhoiIiIjY3ZaVu1V62BOz+9ESaBERoy8AtECg7SKmJzRERERExO507lJv0Bmri0tjL9ISaBERo6+dKDvaqJ2fdl5OEgaRgkDbRUxPaIiIiIiI3eWWYk9QnE1MrVdyZr1c1ebHFkkJtIiI0ddOLFze0ObfOyuePddkeugQIxBou4jpCQ0RERERsbtcXNA20Cam1qusPLZW0RJoERGjr51oDrQ5Cxu0YHl9h6ZkEmghshBou4jpCQ0RERERsbtcvy10oI21vWgJtIiI0ddONAfawg0+7djbsRk5XQu0rh9r9HpKrp54OUmvvDFdXxw5Gbjuw6Ji9R6WpmdfnaR3lq1Tg88nSfJ46zUt9wM9MyhFfYana9POA4GvuVxzQ/GT5+vP/SdoSOJMnag8F964LlYrJXu5nuo/Qb/vM0bDxuXo0wPHLH1tStZ72vXZ4bC+b2suVV/XicrvJUlrPt6rGQsLu3ybToBA20VMT2iIiIiIiN2lq7pOWbnBcXZ1UexFTAItImL0tRPRDrQD4rO0dnOJmpqa9NWxSj0eN051bq+OVZxR3MgM3bpTqwd1biVMXaii7aWSpBVrtmvKrHy5PV5VX7ulnkMm6/vzVyRJo1LztHZziXy+Rh06WqmeQyarvsHXqTFdrrmhp/pP0JKVm3Tl6k3V/nxfu/cd0Z/7T9Ce0qMdfn2kAu3azSVatWG3JKnO7dUv9+31u9JdEGi7iOkJDRERERGxO3VV+/eiXb/NE3NbGzRr90BbVu7Whm0e7dkfm/c/Ij6a2oloBtoGn0+bdh4ICqhPvJykS9XXNWfZukCclKQDhys0KjVPkjRg1Ns6edrVMuYVG7VizXbdvvuzHo9LCqy0laTXxszSsYoznRrXrMVrlJZT0ObyXZ8dVu9haWpsbNK6zSXKmv+hMue+r1GpeRo6Nkc1125Jagm0iwo+1tx3Pwp8fe29+/pDnzG6W3sv6HbLvjmlgaOzFDcyQwNGva0vvz6pr0+c1tOvTNSzr07Ssg82B62grbl2SyMnzlXfERl6O2+V0nJWaPveQ5KkJ/uN10dbPtO4jCV6cXi6Pv/yuGYuKtTrKfP0ekquHtR5JEn/rfpBQxJnqu8I//c8WvFdp+6j7oRA20VMT2iIiIiIiNG0vKpOSwo8mrfUq9VFnpg4YZidA21+oTdoBXN2Xr3xMSEiRkI7Ee0VtK2p/O68eg2dogafTwlTF+rzL48Hrjt/6aqeG5wqSfrdCwmq/fl+4LpPduzXW3P+pROV5zRodHbQbU6dXaBNuw52ahxxIzNVcvCbNpfX1zfo/54frXMXrmjDtn36y8Bk3bpTK0ma++5HenfVFkktgfb09xf1zKCUQDDe+VmZxr61uM3tDojPCmxlcNZ1WTMXFQZuszlStw60k2fma8nKTZKkr45V6rEXEwMrdp8eMFEfFhVLkjbvPqjf9xmjS9XXJUlvTlmgvfv9K4AHjc7W7s+PSPKH536vT+vUfdSdEGi7iOkJDRERERExWla53ErODN7yYN5Sr/FxdVW7BtryqrqQewAXlzprJe3hco82bPfaysPl9nqsER9F7YSpQHvl6k3FjczUV8cqJUkjJ87VoaPfBq6/ev22nuw3XvUNPvXoGS+3xxu4bkdJmVKy3tPh46c0PGl20O1mL1itdZtLOjWWZwalBIJpqOu++e8Zbdi2TylZ7wUu/2jLZ5qeu0pS8BYH/V6fFviZJs1YHljp2pqEtIV6Z9k6Xa65EXR5e4H2mUEpOvPDpcDnDRqdHRRoz13wb/fwdflpvfLG9MDnzVxUqLX/uy/q6xvU2Oh/zG7c+km/eyHB0n0TDQi0XcT0hIaIiIiIGC3bO2lYeZX5sXVFuwba0rLQ9/f6bfYaZ4e/N1vdIX8Ok67f6qzIjRiL2gkTgfas67L6jsjQgcMVgcsS0xcFrWJ1XazW869NluRfQdt6m4CN/ylV5tz3VXHqnAbEZwXddlrOCm3Z/UXQZVVnL+rpARP19ICJIbcyGDo29AnB6ht8+k2v0XL9WKMN2/Ypc+77getaf9w60Bb8+z+anrtKbo9Xf+4/QbX37re53Vt3ajX33Y/Uc8hkDRj1diBMtxdof/dCgq7dvBP4+nEZS4ICbfX/tlo4VnFGQ8fmBD5v9pJ/a83HeyVJJQe/0esp8zQ8abaGjs3Rb3qNbjMuUxBou4jpCQ0RERERMVquLgodDJ2+N61dA20sraBdv9XdZVvH1a7KClpE89qJaAfayzU31HdEhk5Ungu6PHf5euUXbg98vPvzI0pMXyTJv2K09Z6pMxcV6oP1u3S39p7++NJY1blbVtfGjcxQxang265v8OnWnVrdulMbMpguXLFRKdnL21xeXPq1+o7IUFNTk+VA++OV63qy33jtKT2qCdOXdXh/7P/qhJ54OUk+X2O7gfbpARP1w4XqwNcMTpjRqUB7++7P+kOfMXL9WCPJvzqZQBtDmJ7QEBERERGjZagVnekz2eKgO3141fLiAvuNMVo23wemx4GIkdFORDvQxk+er5KDbVernqj8Xr2HpenazTu698sDDRuXE9geYOW6nUrKXCK3x6sfLlTrLwOT9eMV/z6rCWkLtXLdTvl8jdq974j6DE+Xz9fYqTHd+eme/jIwWUtWbtK1m3dU3+DTvkPlenrARO3/6oQkWQ60kn9Fbu+/TQ26rJk6t1fDx78TWBF7ueaGnuw3Xo2NTZqfX6Sl7/v3mm0daJMyl2jFGn+8PnK8Sr/vM6ZTgfbchSv6y8Bkeb31amxs0rIPNrfZNsIkBNouYnpCQ0RERESMpluKPUFx1unbG9TctnegrbntX0m7pdjj+JXKXZVAixhb2oloBtorV2+qR894PfZiYpD7DpVL8kfJXkOn6LnBqVqwYmNgz1Svt17Tc1fprwNT9NLf39KOkrLAbVZfu6VRqXl6qv8EDR2bo6qzF8O6Hy5cuqqUrPf0ZL/x+n2fMRo6NifopGWdCbT/3vSpft9njH65H/qx3r73kOJGZqrP8HQNGPV24Oc/fPyUHo9L0tTZBUGB9tyFK3r1zWy9/I9MzV66VhOmLwuc8MvqFgfTc1ep99+manjSbB05XqV/JM/TsHEtn2sSI4F28sx8y9od0xMaIiIiIqIJXdXmxxAp7R5o0S+BFjG2tBPNgTZnQYMW5fs6NGVaZE4SFsvsKT2qtJwVEb3N5lgtSaNS8/TFkZMRvX2TGAm0ef/cYFm7Y3pCQ0RERETsTsvK3apyxfbKTQKtMyTQIsaWdqI50HZWAm1o7j9w69U3s3Wi8vuI3ebCFRuVMWelmpqaAnvc3rz9U8Ru3zRscdBFTE9oiIiIiIjdYXlVndJneQMHoUsKPDG1ara1BFpnSKBFjC3tRNnRRktbGzzsrTumR24/9pdV6LnBqYH9YiPFrTu1SkhbqF5DpyhuZIZ2flbW8Rc5CLY46CKmJzRERERExO4wfaa3zUqh9dtiM2ASaJ0hgRYxtgSAFtji4H80NTXp3VVbFDcyQ3EjM5S9YLXq3P4zuV2uuaH4yfP15/4TNCRxpk5Ungt8nekJDREREREx0la53CHfyjl3qdf42LpDAq0zJNAixpYA0IKttzgo/HhP1L5XycFjGjo2R3Vur3y+RqVkL9fKdTsl+TceXru5RD5fow4drVTPIZNV3+CTRKBFRERExNg0VKBdXBCbAfNRCbRO36KCQIsYWwJAC7YItJXfndcnO/Zr3eaSgItXfqI/vjQ2amMoWLtD8977KPDxhm37NHV2gW7f/VmPxyWpwecLXPfamFk6VnFGEoEWEREREWPT9ds8bQJteZX5cXWHsR5oi0vdSs70P4bJmfUqLXPmz0mgRYwtAaAF44F27eYS/e6FBA0cnaXfvvCmhiTO1B/6jFG/16dpa/GXURvH8ZNn9cob03W39p483nolZS7R1uIvdaLynAaNzg763KmzC7Rp10FJBFpEREREjF1LyzxaXODR6iJPzMbZmtuxHWhDbVeRnFmvKpfb+Ng6K4EWMba0E2VHG7Xz087LScIgUhgPtL2HpQX2dH321UmSpNp795WWs0KHjn4b1bG8s2ydHuudoD/1Hav4yfNVX9+gw8dPaXjS7KDPy16wWus2l0iS7tzzIiIiIuKv+MMlr/79sVfLVnq187N64+NBfNiPNvtPiLZtT+z9fn68o+3J3hJT6/XZF+bH1lmbx256HIgYGe3EwuUNIefKjjx7rsn00CFGMB5oH3sxMbB9wF8GJgcuv3HrJw0Y9XbUxvHJjv0a+9ZiPajzyOdrVO7yDZq1eI0qTp3TgPisoM9Ny1mhLbu/kCS5vT5EREREbMc7tT6lTAs+mPnnB/XGx4Wds/K0Txs2N2jD5gZVnjY/nki7cZv/wHz3Zw3GxxJp95SGjg5HT5gfW2dtHrvpcSBiZLQTzYE2Z2GDFiyv79CUTAItRBbjgTZuZKYOHv6vJOmVN6br29MuSdIv9+v0eFxS1MaRkvWeNu8+GPj4v1U/qO+IDN2tvac/vjRWde6Wv+7EjcxQxSn/ql/TbwlAREREtLOh9jF1yl6mm3Z5NWeJvfzqePTfgl9a1vYxdOoepu0Zy1scuKrrlJwR/Pilz/Q68oRhbHGAGFvaieZAW7jBpx17OzYjp2uB1vVjjV5PydUTLyfplTem64sjJwPXfVhUrN7D0vTsq5P0zrJ1gUWNHm+9puV+oGcGpajP8HRt2nkg8DWXa24ofvJ8/bn/BA1JnBl4p3o4HDz8Xz3Zb7x27zsSdHlK1nva9dlhSdKT/cbr2k3r+zus21yiGQsLwx6TFS5VX9eJyu8lSWs+3tvt3y/SGA+02/ceUo+e8bp5+yet2rBbTw+YqKmzCzRg1Nsak744auN4d9UWTZqxPPCL/96HW5WS9Z4kKSFtoVau2ymfr1G79x1Rn+Hp8vkaJRFoEREREX/N/MLQb68uK7f//pcFa0LHZZN++kX077es3LbjyM6LrUgWy4G25rZ/H9rFBR7NXepVfqEz42zNbQItYqxpJ6IdaAfEZ2nt5hI1NTXpq2OVejxunOrcXh2rOKO4kRm6dadWD+rcSpi6UEXbSyVJK9Zs15RZ+XJ7vKq+dks9h0zW9+evSJJGpeZp7eYS+XyNOnS0Uj2HTFZ9Q3irlCfPzNfG/5S2aXJ2D7RrN5do1YbdkqQ6t1e/3LfX71hHGA+0kv8vB83Bc9Oug3o7b5VWrNmu2p/vR20M9x+4NS33A/UdkaG+IzKUlLlEV2/4f9mqr93SqNQ8PdV/goaOzVHV2YuBrzM9oSEiIiLa2eLSECcoyqh3RCD69nuPDpd3zZIv/T//5Cxvl2/rcLlH31+KfqBtLxabfnwiaawH2lgxFn/3EB9l7UQ0A22Dz6dNOw8EBdQnXk7SperrmrNsXSAyStKBwxUalZonSRow6m2d/N+7ziVp4YqNWrFmu27f/VmPxyUFFhxK0mtjZulYxZlOj6325/t6+R+Zampq0itvTNeNWz8FrrMSaP/40lit2rBbY99arFffzNb6rZ9LCg60Y99arD2lRwNf0/rjNR/vVdxIf5cbOXGuLtfcaPM9yr45pYGjsxQ3MkMDRr2tL78+qa9PnNbTr0zUs69O0rIPNgetoK25dksjJ85V3xEZejtvldJyVmj73kOBn+OjLZ9pXMYSvTg8XZ9/eVwzFxXq9ZR5ej0lVw/qPJL877IfkjhTfUf4v+fRiu86fd92hC0CrRV6D0szPYSQmJ7QEBEREe3u6iJPUJyNtbfH/5pVP/gDbfosr/GxWLGs3K0N2zzas78lBC8uaLuSeHFBbD2GBFpnSKBFjC3tRLRX0Lam8rvz6jV0ihp8PiVMXajPvzweuO78pat6bnCqJOl3LyQELWT8ZMd+vTXnXzpReU6DRmcH3ebU2QXatOtgp8dStL1U7324VZL0r3U7VPjxnsB1VgLtk/3Ga8nKTZKkOz/d0+NxSbp+866lQHu39p7+3H+C7j9wS5L+8+lX2vif0jbfY0B8VmArg7Ouy5q5yH+7c9/9KBC3WwfayTPzA2P66lilHnsxMfBzPD1goj4sKpYkbd59UL/vM0aXqq9Lkt6cskB79/vHOWh0tnZ/7t/yYddnh9Xv9WmW71OrOCbQPtlvvOkhhMT0hIaIiIjoBKtcbkdsaxDxn9tBgfbh7Siy8/wrnatc7qBtDrJy61Xliq3H0umB1gl7OkdCAi1ibGknTAXaK1dvKm5kpr46VilJGjlxrg4d/TZw/dXrt/Vkv/Gqb/CpR894uT0t50faUVKmlKz3dPj4KQ1Pmh10u9kLVmvd5pJOj+dv42br/KWrgbG1Dr9WA+2ZHy4FPn49JVclB49ZCrRuj1dP9Z+gT3bs10+1v7Q7xoS0hXpn2bo2q2vbC7TPDEoJGtOg0dlBgfbcBf82EV+Xn9Yrb0wPfN7MRYVa+7/7sL6+QY2N/sf6xq2f9LsXEtodX7gQaLuI6QkNEREREe2rUwJteVXorQw27vCvpt26x6MDX7tjNgQ6NdCWV9UpObPl8dqwzVnj76wEWsTY0k6YCLRnXZfVd0SGDhyuCFyWmL5IJQe/CXzsulit51+bLMm/gvZu7b3AdRv/U6rMue+r4tQ5DYjPCrrttJwV2rL7i6DLqs5e1NMDJurpAROVllPQZjyui9X6Ta/RerLf+IC/6TVap7+/KMl6oK2+divw8fhpy7Rp10HLWxxUnb2oKbPy9WS/8UpIW6gfr1xv8z1u3anV3Hc/Us8hkzVg1NuBoN1eoP3dCwlBYx2XsSQo0DaP91jFGQ0dmxP4vNlL/q01H++VJJUc/Eavp8zT8KTZGjo2R7/pNbrNuLoKgbaLmJ7QEBEREdG+OiXQlpW33Ss4MbVe46a22js4M3a3p3BioHVVB8fZZmP1Maq5TaBFjDXtRLQD7eWaG+o7IkMnKs8FXZ67fL3yC7cHPt79+RElpi+S5F/52Xrv05mLCvXB+l26W3tPf3xprOrcLatr40ZmqOJU8G3XN/h0606tbt2pVe29tud8WrJyU9D+t5L/xFt5/9wgyXqgPXX2QuDjv0+Yo5KD3wQF2qTMpdq970jgc0ZMmBMUbCXJ663X0vc3KSlzaZvv0Zr9X53QEy8nyedrbDfQPj1gon64UB34msEJMzoVaG/f/Vl/6DNGrh9rJPlXNRNobYjpCQ0RERER7atTAm2VK3SgTZgU/HEkfo7D5R6t3+q2lbMX+bd3yH3XfmP7pjL0dhLtRfXVRQRaRHSGdiLagTZ+8nyVHDzW5vITld+r97A0Xbt5R/d+eaBh43ICJ7RauW6nkjKXyO3x6ocL1frLwOTACtOEtIVauW6nfL5G7d53RH2Gp8vna7Q8Hp+vUT2HTA5sb9DMlas39cygFDX4fJYDbe5yf9C9VH1Df+gzRrfu1AYF2hkLC7VijT9CX67xf86e0qM6edqlSTOWy+OtlyRt33tI46ctC7r9OrdXw8e/E/jel2tu6JZlL9gAACAASURBVMl+49XY2KT5+UVa+r5/r9nWgTYpc0ng+x05XqXf9xnTqUB77sIV/WVgsrzeejU2NmnZB5vbbDcRCQi0XcT0hIaIiIiI9tUpgbbmdp22FAefDCwp3RsyAHb1+6zfGjosYmh3fBY6uLYXaNfH8DYHBFrE2NJORDPQXrl6Uz16xuuxFxOD3HeoXJI/LvYaOkXPDU7VghUbA3ufer31mp67Sn8dmKKX/v6WdpSUBW6z+totjUrN01P9J2jo2BxVnb3YqTEdOlrZ7omvBifM0MHD/7UcaFdv3KPBCTP0wtA0FW33n+SrdaD9/vwVDRydpTenLFD2gtVKyV6u4tKv5fM1an5+kXoPS9NLf39LIyfOletidZvvsX3vIcWNzFSf4ekaMOrtwP12+PgpPR6XpKmzC4IC7bkLV/Tqm9l6+R+Zmr10rSZMXxY44ZfVLQ6m565S779N1fCk2TpyvEr/SJ6nYeNaPjcSEGi7iOkJDRERERHtq5MCbc1t/56mW4o9Kit3a3GBp038S5/Z9Z+jOdBOneHVnCUebMfJWd5fDbQ1t+s0d2lwRE/OiL0TuLWWQIsYW9qJ5kCbs6BBi/J9HZoyLTInCYs12gu3pmmO3JI0KjVPXxw5aXA0oSHQdhHTExoiIiIi2lenBdqgsbvcSs4Ijn9l5V2Pf+u3+cPvnKX2207ATs6Y74+v/ylpP9C6qv3359ylXuUXemM6ztbcJtAixpp2ojnQdlYCbTB2DLQLV2xUxpyVampq0o9XruvJfuN18/ZPpofVBmOB9u8T5qhg7Q5VnrkQVLLbo/Umw3bC9ISGiIiIiPbVyYG25rY/ABaXurWl2BOx+EegjVygfdQk0CLGlnai7Gijpa0NHvaWvVqkcewYaG/dqVVC2kL1GjpFcSMztPOzso6/yADGAm3u8vXq/8Z09egZr78OTFHmvPe1+/Mjult7z9SQwsL0hIaIiIjoVKtc7oisyLSzTg+03SGBtvsD7ZZij7Lz/L93q4s8clWbf9wjIYEWMbYEgBaMb3Fw/eZdbd97SBlzVurZVyfp/54freFJs7VizXZ9e9plengdYnpCQ0RERHSirfc3TZ/lVXmV+TF1hwTathJouzfQPnyyt8TUeuUXxsbvH4EWMbYEgBaMB9rWNDU16azrstZ8vFdxIzPVo2e86SF1iOkJDREREdFphgpIsRowCbRtJdB2b6B9+MRh4UbNcPZifJQ1/bxCdKIA0IItAm1jY5NOnb2gVRt2680pC/SHPmPU+29Tlb1gtemhdYjpCQ0RERHRabYXkGJxFS2Btq0EWgJtLGr6eYXoRAGgBWOB9nLNDW3adVBTZuXr6Vcm6q8DU5SWU6BNuw7qUvUNU8PqNKYnNERERESnmV8YOiDFyj6ZrSXQtpVA272BNtQK9cUFnd/HtvlrTd8PdpdAixi+dqLsaKN2ftp5OUkYRApjgbZHz3g9HjdO7yxbpzM/XFJTU5OpoXQJ0xMaIiIiotMsr2q7Om91UWyeqZ5A21YCrTW7cpKw9ds8Ss7wP7fyC71h/fGDQGtNAi1i+NqJhcsbwlo9f/acM1sW2A9jgXbbni+V/s6/9NeBKfrLwGSl5azQpl0HdbnGOatnJQItIiIiYjiWV9VpdZFHiws8Ki51Gx9Pd0mgbSuB1ppdCbSRkEBrTQItYvjaieZAm7OwQQuW13doSiaBFiKL8T1om5qadOaHSyr8eI8S0xfp933GqM/wdM1avEYlB4+ZHl6HmJ7QEBEREdG+EmjbSqC1JoHWGRJoEcPXTjQH2sINPu3Y27EZOV0LtK4fa/R6Sq6eeDlJr7wxXV8cORm47sOiYvUelqZnX52kd5atU4PPJ0nyeOs1LfcDPTMoRX2Gp2vTzgOBrxk+/h091jtBj72YqMdeTNSzr07q2h0CUcd4oH2YB3Uebdi2T31HZKhHz3jTw+kQ0xMaIiIiItpXAm1bCbTWJNA6QwItYvjaiWgH2gHxWVq7uURNTU366lilHo8bpzq3V8cqzihuZIZu3anVgzq3EqYuVNH2UknSijXbNWVWvtwer6qv3VLPIZP1/fkrkqR+r0/TDxeqI3Z/QPSxRaCtvnYrcMKwP/efoN/0Gq2RE+fqX+t2mB5ah5ie0BARERHRvhJo20qgtWZ7gXZLsUerizzauqd7wy2B1poEWsTwtRPRDLQNPp827Tyg+gZf4LInXk7SperrmrNsnVZt2B24/MDhCo1KzZMkDRj1tk6edrWMecVGrVizXZL03OBUXbvJGcucjLFAu7+sQnPf/UhxIzPVo2e8nhucqrfzVmnv/qOqvXff1LA6jekJDRERERHtK4G2rQRaa4YKtFm5wSenyc7rvjBIoLUmgRYxfO1EtFfQtqbyu/PqNXSKGnw+JUxdqM+/PB647vylq3pucKok6XcvJKj255Ze9smO/Xprzr8kSb/vM0apM/6pZ1+dpMEJM/Tl1ycFzsJYoP3tC2/q9ZR5+mD9Ln137kc1NTlzY2XTExoiIiIi2lcCbVsJtNZ8ONCWlnlCnkG8tKx7VtISaK1JoEUMXzthKtBeuXpTcSMz9dWxSknSyIlzdejot4Hrr16/rSf7jVd9g089esbL7fEGrttRUqaUrPfU2NikrPkf6tDRSjX4fCo9dEKPx41jRa3DMBZo7/3ywNS3jiimJzREREREtK8E2rYSaK35cKBtvt8edv02Aq1JCbSI4WsnTATas67L6jsiQwcOVwQuS0xfpJKD3wQ+dl2s1vOvTZbkX0F7t/Ze4LqN/ylV5tz3Q9726CnztXvfkbDHBtHHFnvQhqLyu/Pa9dlh08PoENMTGiIiIiLa11gJtK7qOq0u8mjeUq9yFnq1YrVXe/a75aru/G0RaK35cKAtr6oLGWjLq7rnMSfQWpNAixi+diLagfZyzQ31HZGhE5Xngi7PXb5e+YXbAx/v/vyIEtMXSZIGjc7W0YrvAtfNXFSoD9bv0oM6T9DetJL0j+R5QaEX7I9tA+289z7SYy8mmh5Gh5ie0BARERHRvsZKoF1c0Hb1ZsL/fq4ql7tTt0WgtWaoPWgfXkXbXatna24TaK1KoEUMXzsR7UAbP3m+Sg4ea3P5icrv1XtYmq7dvKN7vzzQsHE52r73kCRp5bqdSspcIrfHqx8uVOsvA5P145Xr+qn2Fz0el6TDx09Jkg4d/VZP9Z+g23d/Dv8Ogahj20DrFExPaIiIiIhoX2Mh0Fa53CFXbjabX9i5n41Aa81Qgbb58Sgrd3c6jHdWAq01CbSI4Wsnohlor1y9qR494/XYi4lB7jtULkla8/Fe9Ro6Rc8NTtWCFRvV2Oj/Hl5vvabnrtJfB6bopb+/pR0lZYHb/OLISb3yxnQ92W+8BifM0NcnTkfmjoGoYbtAe7f2nqqv3TI9DMuYntAQERER0b7GQqBt7631Cf/779ylBNrusL1AGy0JtNYk0CKGr51oDrQ5Cxq0KN/XoSnTInOSMIBmjAVat8er7AWr9dkXxwOXfVhUrN/0Gq0ePeM1JHFm0ObHdsX0hIaIiIiI9jUWAm3N7Tqlz/S2DbSTWEHbnRJonSGBFjF87URzoO2sBFqIFMYC7YIVG9V3RIZOnb0gSbpUfV2/feFNbS3+Umddl/X3CXM0e+laU8OzjOkJDRERERHta6wE2vKqOmXltl09mz7T2+kThRForUmgdYYEWsTwtRNlRxstbW3wsLfumB45xArGAu3zr03WsYozgY9XbditUal5gY+PVZzRC0PTTAytU5ie0BARERHRvsZCoHVV12l1kUfJmf6f48Mir7YUe1Ra5ul0nK25TaC1KoHWGRJoEcMXAFowFmh/02u0fqr9JfDxhOnL9MH6XYGPr9+8q9++8KaJoXUK0xMaIiIiItrXWAi0iws8bd7SuaU4/GhIoLUmgdYZEmgRwxcAWjAWaP/cf4KuXL0pSapv8Omp/hN0/OTZwPXnL13V069MNDU8y5ie0BARERHRvjo90LZ3grDOnhistQRaaxJonSGBFjF8AaAFY4E2IW2hCtbukCR9vGO/nhmUogafL3D9vzd9qpET55oanmVMT2iIiIiIsWxpmUcbtnm0Z7/b+FjC0cmBtrSs7cpZAm30JNA6QwItYvgCQAvGAu03/z2j3/cZo78OTFGPnvHaWvxl4LqN/ynVYy8mqrj0a1PDs4zpCQ0RERExVs0v9AZFwew850UQJwfa9JneoBOCscVBdCXQOkMCLWL42omyo43a+Wnn5SRhECmMBVrJv43B9r2HdOrshaDL13y8V9v2fNnOV9kL0xMaIiIiYiza3lvri0udtZLWyYG2+T4PBNpJ9Ro7uV7rt3UtGBJorUmgdYYEWsTwtRMLlze0+66RX/PsuSbTQ4cYwWigjQVMT2iIiIiIseiW4tBvr+9qHIy2Tg60zStoW7u4oOv3P4HWmgRaZ0igRQxfO9EcaHMWNmjB8voOTckk0EJkMRpovd56/XvTpxoxYY6eG5yq51+brIS0hdq250s1Njrjl9z0hIaIiIjoJEvLPFpS4LesvP3VsO2toC0tI9BGy/KqOiVntNz36TO9qnJ1fQUzgdaaBFpnSKBFDF870RxoCzf4tGNvx2bkdC3Qun6s0espuXri5SS98sZ0fXHkZOC6D4uK1XtYmp59dZLeWbYu6HxN3537UX1HZGjuux8F3d7lmhuKnzxff+4/QUMSZ+pE5bnw7ggwhrFAW9/g0xuTcvVU/wnKXb5en+zYr6LtpZqW+4F++8KbSspcGvRLaFdMT2iIiIiITrE5zFkNrg9/fn6h8yKnkwNtze06uar9Ub2s3C1XdWR/Dwi0vy6B1hkSaBHD105EO9AOiM/S2s0lampq0lfHKvV43DjVub06VnFGcSMzdOtOrR7UuZUwdaGKtpdKkipOndOQxJnKnPd+m0A7KjVPazeXyOdr1KGjleo5ZLLqG+zf1KAFY4H23598qmcGpejazbY7Kn9//oqe6j9BqzfuMTCyzmF6QkNERER0iq1XYzY7d+mvh8vyKv92B+VV5scfjk4PtN0hgdaaBFpnSKBFDF87Ec1A2+DzadPOA0EB9YmXk3Sp+rrmLFunVRt2By4/cLhCo1LzJEmXqq/rQZ1bK9ftDAq0t+/+rMfjkoIWOb42ZpaOVZwJ564AQxgLtK+NmaWPtnzW7vUbtu3TgPisKI4oPExPaIiIiIhOMdSWBekzYztcEmjbSqC1JoHWGRJoEcPXTkR7BW1rKr87r15Dp6jB51PC1IX6/MvjgevOX7qq5wanBn3+w4H2ROU5DRqdHfQ5U2cXaNOug10eG0QPY4H2jy+N1amzF9q9/uLla3qsd0IURxQepic0RHSepWUebdjmN1JvF0Uev0dRV3Vd4LFw2r6kj5rNz5v0mW0D7eqi2H7sCLRtJdBak0DrDAm0iOFrJ0wF2itXbypuZKa+OlYpSRo5ca4OHf02cP3V67f1ZL/xQV/zcKA9fPyUhifNDvqc7AWrtW5zSZfGBtHFWKDt0TM+5PYGzVy7eUc9esZHb0BhYnpCQ0Rn+fB+ismZ9RE54Qry+D1qVrncSs4MDn3rt8V26HOqq4tanjcJqfUaM7nlMVtcEPt/6CDQtpVAa00CrTMk0CKGr50wEWjPui6r74gMHThcEbgsMX2RSg5+E/jYdbFaz782OejrHg60FafOtXkHelrOCm3Z/UXYY4PoQ6DtIqYnNER0lqHe3uukk94U7/do7lKvrSzeH50DV1d16MfPjqv/Ptxgv8ep/HRkQ3br6Ndap8S+8tNu44/Jw364IfK/y+09b1as8XbLHzfOV7s1Z4nXVs5a6I9s49LqjY/lYQsKzcxfBFprEmidIYEWMXztRLQD7eWaG+o7IkMnKs8FXZ67fL3yC7cHPt79+RElpi8K+pyHA+3d2nv640tjVef2Bi6LG5mhilPBtw32xmig/eNLY/WnvqH940tjCbSIGFOWV4UOFR2dIMdOtj4QsYvrt0ZnBWtZeeif3Y6P35wlXuOPy8MeLo9sYJi7NPTPWFbujBXNh8tDB2aTzlkS+d/l9p43iwu6Jzidu2y/OcrOZs0zM38RaK1JoHWGzfeTiccI0enaiWgH2vjJ81Vy8Fiby09Ufq/ew9J07eYd3fvlgYaNy9H2vYeCPufhQCtJCWkLtXLdTvl8jdq974j6DE+Xz9cY1tjADMYC7Z7So5a0O6YnNER0lqHOYO6kt2VXnXfrcLmnyzb/7JG4rarz0QtyoR6/LcX2e/zKT3f9cdq6xxMIOJF4nM5XR/Zx2lLcNnAmZzjnAPl8dWSeS1nz/AFn656u31akVzmbeN40B9qkNK/yV3uwHRev8BBoHSCB1hkSaBHD105EM9BeuXpTPXrG67EXE4Pcd6hckrTm473qNXSKnhucqgUrNqqx0f895ucX6bEXE/XbF97Ub3qN1mMvJmree/5QW33tlkal5ump/hM0dGyOqs5ejNh9A9HBWKCNFUxPaIjoLMvK3UGxYu5Sb9Bbssur6rR1j0flVebH2p069WCmtMzzq49fLNkc0rtjVWWkbL2KNjmj/pE8UVjzaulIr1COpMWlbee97vpe3//on1/GpxOVfs2V69z/C7Rm5mECrTUJtM7Qqa9pEO2gnWgOtDkLGrQo39ehKdO6toIW4GGMBdpbd2otaXdMT2iI6DyrXG6VlbvbvBU7vzD4LdtO2pu2szr5YKa9xy/WdEKgrbldF3gsHtWTtTkh0Nbcjt7zhkBrTQKtMyTQOkMnv6ZBNK2daA60nZVAC5HC6B60VrQ7pic0RIwN29unMVZX0nIwY3+dEmgfdZ0SaKMlgdaaBFpnSKB1hrymQQxfO1F2tNHS1gYPe+uO6ZFDrGAs0J46e8GSdsf0hIaIsWHzwaqT96ftjBzM2F8CrTMk0AZLoLUmgdYZEmidIa9pEMMXAFqw7R60bo9XOz8rMz2MDjE9oSFibFhaFjrQsoIWTUmgdYYE2mAJtNYk0DpDAq0z5DUNYvgCQAu2C7Snzl7Q7KVr9WS/8fpz/wmmh9Mhpic0RIwdFxcER1r2oEWTOjnQFpe6lT7LHzbmLfXG9P60BNpgCbTWJNA6QyuBtqzcrew8/7+pSwoie5JRAq01eU2DGL4A0IItAm3tz/e1YdvnevXNbPXoGa/4yfNVXPq1vN5600PrENMTGiLGlsWlbq3f5on5s9FzMGN/nRpoQ+3nnJ0Xu79rBNpgCbTWJNA6w44CbZXLreTM4PkufZZXrurIPE4EWmvymgYxfAGgBWOBtqmpSUeOVyn9nX/psRcTNWDU21q1Ybd+32eMLlVfNzWsTmN6QkPER8/yqrrA6sDkzHoVlzpvdSAHM/bXqYE2v9AbcruQsnLnPU+sSKANlkBrTQKtM+wo0La3f32k/shLoLUmr2kQw9dOlB1t1M5POy8nCYNIYSzQvjg8XT2HTFbePzeo6uzFwOV/6juWQIuI2I6u6ro2q2WcGJ84mLG/Tg20q4serf2cCbTBEmitSaB1hgRaZ8hrGsTwtRMLlzeEnFM78uy5JtNDhxjBWKB9PC5Jr6fM04Zt+3S39l7gcgItImL7hnr7dmJqvdZvc1ac4WDG/jo10JZX1bV5fmTlxu7vGoE2WAKtNQm0ztDKFgcPz3fpM9niINrymgYxfO1Ec6DNWdigBcvrOzQlk0ALkcVYoH1Q59HW4i/19wlz9LsXEjRh+jJ9euCY/vgSgRYRsT0JtBgtnRpoa277nydzl3qVnOE/2V6kYoUdJdAGS6C1JoHWGVo9SVhWrv/f1MWcJMyIvKZBDF870RxoCzf4tGNvx2bkdC3Qun6s0espuXri5SS98sZ0fXHkZOC6D4uK1XtYmp59dZLeWbZODT5f4Lrvzv2oviMyNPfdj4Jub/j4d/RY7wQ99mKiHnsxUc++Oim8OwKMYYuThP1woVp5/9ygp1+ZqB494/V23iqdOnvB9LAsYXpCQ0Tn66r2H2BZjUjNB2LNJmfUO+4s9RzM2F8nB9pHSQJtsARaaxJonaGVQNueruo6bdjm0bylXuUXesN6nUCgtSavaRDD105EO9AOiM/S2s0lampq0lfHKvV43DjVub06VnFGcSMzdOtOrR7UuZUwdaGKtpdKkipOndOQxJnKnPd+m0Db7/Vp+uFCdZfvBzCHLQJtM15vvYpLv9abUxaoR894vfpmtukhdYjpCQ0RnW1xafCK2C3FHR+Euar9J0LKyo38aploycGM/SXQOkMCbbAEWmv+WqAtr6pTdt7//gDYTSeiJNBasyuBts0fczPrO/1uAgKtNXlNgxi+diKagbbB59OmnQdU39CyMvaJl5N0qfq65ixbp1UbdgcuP3C4QqNS8yRJl6qv60GdWyvX7WwTaJ8bnKprNzljmZOxVaBtzaXqG3p31RbTw+gQ0xMaIjrXUHvHxfLJjFrLwYz9fZQCbZXLrQ3bPFpS4NGe/c5ajU6gDZZAa81fC7TpM71t/l2K9IkoCbTWDDfQRmo7JAKtNXlNgxi+diLaK2hbU/ndefUaOkUNPp8Spi7U518eD1x3/tJVPTc4NejzQwXa3/cZo9QZ/9Szr07S4IQZ+vLrkwJnYdtA6xRMT2iI6Fy3FIc++7LT9pMNRw5m7O+jEmirXG4lZwY/B1cXOec5SKANlkBrzfYCbXthL9LPCQKtNcMNtKVlkXl9QaC1Jq9pEMPXTpgKtFeu3lTcyEx9daxSkjRy4lwdOvpt4Pqr12/ryX7jg77m4UDb2NikrPkf6tDRSjX4fCo9dEKPx41jRa3DsG2g/WfhNvUdkWF6GB1iekJDROfa3gFUd7yd1G5yMGN/H5VAu7oo9PPQKfs6E2iDJdBak0DrDMMNtFUut5Iz2j6OnV0JTaC1Jq9pEMPXTpgItGddl9V3RIYOHK4IXJaYvkglB78JfOy6WK3nX5sc9HWhVtA+zOgp87V735GwxwbRx7aB9qtjlUH7bkSDoxXfqd/r0/R43DglZS7Vz788kCRdrrmh+Mnz9ef+EzQkcaZOVJ4LfI3pCQ0Rne3De8Rl5XZ+jzgnysGM/X1UAu3igtCBNtJv6e4uCbTBEmit+WtbHDz871J3bL1DoLVmV/agLS3zBEVaK3vcPyyB1pq8pkEMXzsR7UB7ueaG+o7ICOpLkpS7fL3yC7cHPt79+RElpi8K+pyHA+2DOo9OnnYFfc4/kucFhV6wP7YNtNGm9t59PfvqJB2rOCOPt165y9frkx37JUmjUvO0dnOJfL5GHTpaqZ5DJgc2czY9oSGicy2vqlP5abe2FHs0d6lXW4o9j0ScrbntzEDb2WDX+gzaW/c477F1YqB1Vdd1OiSF2mokOcM5v5sE2mAJtNb8tUDb+kSUc5d6u+WPFQRaa3Yl0DbblbhOoLWmE1/TINpFOxHtQBs/eb5KDh5rc/mJyu/Ve1iart28o3u/PNCwcTnavvdQ0Oc8HGh/qv1Fj8cl6fDxU5KkQ0e/1VP9J+j23Z/DGhuYwRaB9swPl7Sn9Ki27z3Uxmixfe8hvTXnX20uv333Zz0el6QGX8vZ9V4bM0vHKs5IItAiYuctr6pT+qyWk7AsKXj0woqTDmaKS4P3KLWyCslVHfwYJ6bWKzvPGT9vs04LtK1XwqbP8nYqSrT+2uQM56yerblNoH1YAq01fy3QRkMCrTUjEWi7IoHWmk56TYNoN+1ENAPtlas31aNnvB57MTHIfYfKJUlrPt6rXkOn6LnBqVqwYqMaG/3fY35+kR57MVG/feFN/abXaD32YqLmvecPtV8cOalX3piuJ/uN1+CEGfr6xOnI3TkQFYwH2sUrP1GPnvF6bnCq+o7IaGO0yPvnBs1Ztk4JUxfqxeHpmp67Sr/cr9OJynMaNDo76HOnzi7Qpl0HJRFoEbHzhjpDdneeGKz8tFuHT9jL5p/b9DhC2fq+q3KF3o+xo/hXXBr660rLnBPRnBRoQ62CTZ/VuXFXudwqK3c7bqUzgTZYAq01CbTOkEDrDAm0iOFrJ5oDbc6CBi3K93VoyrTInCQMoBnjgfZPfccGnaHOFG/nrVLcyAxdvXFHHm+9Js/MV+7y9Tp8/JSGJ80O+tzsBau1bnOJJOmnX7yIiJY9f7ltnE1MrVfusnr99ItXtffrI27usrbfD9u39X2367PQn7Np56/f55t2hv66XZ9F/vHtLk9UNgR+N02PpSPz3g19f5/+wfzYutvm5/eJygbjY7GDV677748J6fX6ZIcX2/HDDf5/i2bkmnmcmufI3HfN3xd2dtZC//20p9TM49Q8l5q+H+xu8/1k+jUmohO1E82BtrMSaCFSGA+0T/WfoAd1btPDUO7yDZqfXxT4uPzb7zVwdJYqTp3TgPisoM9Ny1mhLbu/kCTddzcgInbKUP+wv/dBfbd9v+Z4NTmrXm/NwvZsfixa33dHjod+vPZ/9euP19nzoV/AXbpq/vfPqier/D973rvd97sZKT9YF/pxunnX/Ni62+bn98kq82Oxg9duNgQC7eZd2J6FG/2/NzPyzDxOW3b5v3/ee+bvCzubs8h/P316wMzj1DyXmr4f7G6o1w+IaE07UXa00dLWBg97647pkUOsYDzQ5hdu15qP95oehtZtLtHbeasCH5d/+72GJM7U3dp7+uNLY1XnbvnrTtzIDFWc8p9pz/RbAhDRea4uavt27EifIbu1zW+Bzl/NW0nDeYviw2c0T5/ptfQ2+NZvu0/OqFdxqXP2Na257awtDsqr6to8p1YXPRpv+WeLg2DZ4sCabHHgDNniwBm29/oBETsWAFowEmjHT1sWMCV7uf46MEX935iupMylQdeNn7YsamO6dadWTw+YqLOuy6pv8Cktp0CL/vWxJCkhbaFWrtspn69Ru/cdUZ/h6fL5GiURaBExPItL3Vpc4FF+YedOZhSOBNquHWC5qv0xYe5Sr1YXeTq1R6mrus6R+5rW3HZWoK257Y+0+YVezV3qoh8xSQAAIABJREFUdVwM74oE2mAJtNYk0DpDAq0zJNAihi8AtGAk0C59f5Nlo8kXR06q97A0/XVgit6a8y/df+DfeqH62i2NSs3TU/0naOjYHFWdvRj4GtMTGiI+WoYT+gi0HGCFo9MC7aMqgTZYAq01CbTOkEDrDHn9gBi+ANCC8S0OXD/WhLzc461X+bffR3k0ncf0hIaIj4att0XIzqtXlcv6CkECLQdY4UigdYYE2mAJtNYk0DpDAq0z5PUDYvgCQAvGA+2f+o4NeXnz3q92x/SEhoixb/OBbGuz86wfCBBoOcAKRwKtM4zVQOuq9m9ZkZzpn+9Ky6z9fARaaxJonSGB1hny+gExfAGgBWOBdtOugxo6Nkf/9/xoDR2b08bnX5usviMyTA3PMqYnNESMfecu9YY8Q73V7Q4ItBxghaPdA22Vy609+90qPdy5fYFjzVgNtA+fnC8xtV5l5R2/c4BAa83OBNqycrfmLfUqfZZX+YXWTpLYkQRaaxJonSGvHxDDFwBaMBZo69xeHT5+So/1TtC6zSVt3LTroK7euGNqeJYxPaEhYuzbXqC1+vUEWg6wwtHOgbas3K3kzJbnQvosb6e2/YglYzHQllfVhZzz8gs7/l0k0FrTaqAtK3e3eRzmLe36nECgtSaB1hny+gExfAGgBeNbHBw5XmV6CF3C9ISGiLFvqAPk1UXWD9YItBxghaOdA21yRtt4t7ig+wNG8X6PNmz32sr0Wf97fhfab2xV59uP5q5q/97a85Z6taTAo/KqlusItN2v1UCbXxj6D4StH69wJNBak0DrDHn9gBi+ANCCkUA7eWa+frhQHfj/X9PumJ7QEPHRsKzcrcUFHs1d6tWW4s4dqBFoOcAKRzsH2lDBaG4EVvVZfS6hNX9tVW+odwa0jn5scdC9EmidIYHWGfL6ATF8AaAFI4E2758bdKn6euD/f027Y3pCQ0TsSAItB1jhaOdAa2oFbfNzKSvXqzlLPNiOyRm/vu1CeytkW78zoMrl/6NUYmq90md6OUlYhLUaaEvL2p6kMiu36/MkgdaaBFpnyOsHxPAFgBaMb3Hwz8JtOn7yrOobfKaHEhamJzRExI4k0HKAFY52DrQPR6PkjPqo7EHLc8maU2f8eqANtW1LYqq1LQw6kkBrzc6cJGxLsSfwR5G5S71dXj1bc5tAa1UCrTPk9QNi+AJAC8YDbUr2cv1lYLL+1HesxmUs0b8/+VRnfrikpqYm00OzhOkJDRGxI4lKHGCFo50Dbc1t/wrL9ds82lLsichZ5XkuRc6OAm3N7Tqlz2z71nmrq2R/TQKtNTsTaLtDAq01CbTOkNcPiOELAC0YD7TNuH6s0aZdB5U57331/ttU/WVgstJyCkwPq0NMT2iIiB1JVOrcAVZpmf/ERemzvMov9EYt/tlNuwdankv21UqgLa8KjrTrt0UmQBForUmgdYYEWmdIoEUMXwBowTaBVpJ+uV+nQ0cr9d6HW/XKG9P12xfeND2kDjE9oSEidiRRqRMHWJPavu16XhROPmVHCbQ8l8LVSqDtLgm01iTQOkMCrTMk0CKGLwC0YDzQfnrgmHKXr9eQxJl6ZlCKxk9bpg/W79KxijOqc3tND69DTE9oiIgdSVTq3AFWKKOxv6ndJNDyXApXAq39JdA6QwKtMyTQIoYvALRgPND26BmvV96YrvVbP9f9B27Tw+k0pic0RMSOJCpZP8BKINAGJNDyXApXAq39JdA6QwKtMyTQIoYvALRgPNB+e9ql1Rv3KClzqZ5+ZaKGjs3R/Pwiff7lcd2++7Pp4XWI6QkNEbEjiUqdOMAKscVBVu6jedBFoOW5FK4EWvtLoHWGBFpnSKBFDF8AaMF4oG1NY2OTTn9/UYUf71G/16epR89400PqENMTGiJiRxKVOneAtaXYo+QM///PXep9JFfP1twm0PJcCl8Crf0l0DpDuwRatKbpf6MQnSgAtGCLQPvL/TqVfXNK+YXblZC2UI/HjVO/16fpnWXrTA+tQ0xPaIiIHUlUsiYHWMESaNvKc8maBFr7S6B1hgRaZ2n63yhEJwoALRgPtK++ma3/e360XhyeruwFq7Xrs8O6efsn08OyjOkJDRGxI4lK1uQAK1gCbVt5LlmTQGt/CbTO0C6B1vT9YHd5/YAYvgDQgvFAu7X4S125etP0MMLG9ISGiNiRRCUOsMKRQNtWnkvWJNDa30gG2ubYmphar3kWt4Uh0FqTQOsMef2AGL4A0ILxQNseP//yQNdu3jE9jA4xPaEhInYkUYkDrHAk0LaV55I1CbT2N1KBtri0Ze5sNjuv49sk0FqTQOsMef2AGL4A0IJtA+3sJf/mJGGI+MhZXOrWhm0elZVH7sRURCX7H2Cdr3br8Al7uW2vP6Bk53qNj+Vhy0+bOXEbzyVrEmjtb6QC7dyl3pB7cXa0ipZAa00CrTMk0CKGLwC0YNtAe+XqTZ087TI9jA4xPaEhYmzoqq5Tdl7wAe7qosgckBGVon+AVeVya+sej7bu8chV3fHnN69WRWuaWtXLc8maBFr7G6lAu7gg9NzV0bxHoLUmgdYZEmgRwxcAWjAeaJ8ZlKI7P90zPYywMT2hIWJsuKU49EGulb38OpKoFN0DrLJyt5IzWx7D5Mx6lVf9+tc0B9qkNK+mzsD2TH3bS6B1gARa+xupQFtW3naLg8UFHT/u67f+7/vnepW/2oPtmPmO/9+GHZ8RaO0sgRYxfAGgBeOBNvnt91S0vdT0MMLG9ISGiLFhfmHot4lGYqsDolJ0D7Cycts+jh0Fi+ZAO3WG1/j9YGfzV0duX9wtxR7NW+pVfqG1kxrxXLIugdb+Wg205VV1Hf6BqbTMo7lLvZq71KvVRdbeNdD6xGLYsaygtbcEWsTwBYAWjAfat/NW6dlXJyluZIbGpC/W+GnLgrQ7pic0RIwNWUFr3kgdYLV3gP1rX0OgtWakAu3Db8tOzrT2XOO5ZE0Crf3tKNC6qus0r9X+stl5kfn3qNn1W/3fPznD/Mp8Ozsh3csKWgdIoEUMXwBowXigXbBio5a+v6ld7Y7pCQ0RY8eHT7aypdi/Eqms3G1pRVJ7EpWie4DFCtruMxKBtsrV9i3ZianW9nzmuWRNAq397SjQhnpXh5WtC6zKHrTWZA9aZ0igRQxfAGjBeKB1OqYnNESMLcvK3dpS7FF5VZ2KS4P3Mt1SHN4BGlEpugdY5VV1Ss5otTozw/oetATaXzcSgTbUnplW4xPPJWsSaO1vR4G29Rxm9Z0AnZFAa00CrTMk0CKGLwC0YItA+59Pv9Ko1Dz1HpYmSXJ7vCpYu0MNPp/hkXWM6QkNEWPT9lb5hbMnLVEp+gdYVS63ikv9Wln9TKC1ZqS2OAgVn4pL2eIgUhJo7W97gbas3K0lBR6NT///7d37e1T1vbfx/wd9qt3a3W33VjxRtdaz1l13FUpAlEAQQ6IGE1RI0IaoNEYtJh6axBZCPDEo1kErDtbDiBWmau2oRSeiEhEPzInA5/lhnFmZzBrmO6d81nflfl3XfV0VkS4yzsJ5Z82awudIc3vtPpyPgdYsBlo7YqAlqjwADvWB9pE/PydnXbFcNgxtkVmz54qIyP6vDsol82+Vu/+wSffgDGif0IjInwWC7gPt4Gj5L9IYlbz/AouB1qxaDbShcCJvpDW5vQHPJfMYaL2f20Cbd3X50sI/fyp9F4dbDLRmMdDaEQMtUeUBcKgPtKdd0iTRj2MiIrmBVkTkk7Ev5Kxf3ah0VOa0T2hE5M+KvQ27khfIjEref4HFQGtWrQbabOFIvKz7O/NcMouB1vu5DbRTPzwvO9LeuyElwVBtH0sGWrMYaO2IgZao8gA41Afak85ZKEeOHBWR/IE2nkjJiXMWKB2VOe0TGhH5t6kfGtbcnqrow8IYlbz/AouB1qxaD7Q8l+oTA633cxtop/6Zky0SLf/WOqVioDWLgdaOGGiJKg+AQ32gvXLRbRII/k1EnIH26NGjcv9jT8llCzoUj8yM9gmNiPxbNBaXkUBSVvekZHA0WdE4OzbOqGTDCywGWrMYaO2Igdb7uQ20brfWaeuszzmRgdYsBlo7YqAlqjwADvWB9q3d/5STzlkov1myRmbNnitLVq6Xn//vCjn53GvltV3vah9eSdonNCKiUjEqef8FFgOtWSYDbTQWl96BlDS2pmVlV7qmb83muWQWA633K/YhYf3DybxxNhw59tc7GovL0GhS+oeTsnW7+ZW2DLRmMdDaEQMtUeUBcKgPtCKZ+83e/9hTckvXBrmt51F55M/PyVdff6t9WEa0T2hERKViVPL+CywGWrNMBtq2zsK3aIfCtXmLNs8lsxhovV+xgTZb9rYGg6NJae5ISXNHSoYmfUjl4GhSlrenpGFZ/nPN9AP3GGjNYqC1IwZaosoD4PDEQCsi8s13hyT67zH5aO9n8t339jxRtU9oRESlYlTy/gssBlqzSg204Ui8YJxtaEpL70BtbonAc8ksBlrvV2qgHRt3RtTJDY4mcz8+3+W5ZnrPWgZasxho7YiBlqjyADjUB9rYvv1yTVOXzJo9N9dxp8+ThubfyedfHtA+vJK0T2hEZH+BYEKGRpM1u8pvaoxKtXuBFY5k3s67eWvl9wR2i4HWrGoH2mqfazyXzGKg9X4mA21ze+GHhjV3pKSxJX3Mgdbk+cVAaxYDrR0x0BJVHgCH+kB7xbWrpG3tQ/L3f0Tls8/H5dPPvpTXdr0ri1p75Mrrbtc+vJK0T2hEZG/RWFxWdlX29tByYlSqzQuskUCyYKio1UjLQGtWpbc4ePHVRE2eazyXzGKg9X4mA212iJ1cY0vaGWiXuv99k/MiA61ZDLR2xEBLVHkAHOoD7WmXNMnRo0cLfvyb7w7JiXMWKBxRebRPaERkb1MHv3LeHlpOjEq1eYHl9ljValBnoDXLZKCNRBPS3Zf5ec3tKQmGkkWfa6U+AInnUmUx0Ho/k4F28geGTT7nTf7xyVfRNrakJRA0+/OLgdYsBlo7YqAlqjwADvWB9rIFHXIoniz48c+++EoumX+rwhGVR/uERkT25vbi1/TtoeXEqFT9C6xQOOH6WK3uqc29TRlozTIZaOv5XOO5ZFY1A+1IIClrelLSO5Aqe0AfG2egNc1koI3GMs+d7FWz/cOZW7tM/fF7H0rKi68myvrmIgOtWZUMtKFwQrZuL+/xKBYDrVkMtESVB8ChPtA++dwrsnBFtzz/1zfl3Q/+Lbvf/VC2/OVV+c2STnlqW0g++OjTXF6kfUIjInvjClpvVeoFltvbfQdHuYJ2Oqt0oK3Vc43nklmVDrTZK59zV2S2lv8YMdCaZTLQ1jMGWrPKGWjdbptkekVzsRhozWKgJao8AA71gXbyh4OVyou0T2hEZHere/I/hGUkwD1ovfoCKxDMv4q2rdPsXosmMdCaVelAW6vnGs8lsyoZaIt9wFu5txFhoDXLbaANR+Ky5ofnSWNrZtyLRBPSP5yUdX1J2bq9dt88ZKA1q5yB1u0bUY2t1Y2GDLRmMdASVR4Ah/pAe+Dgt/LNd4eM8iLtExoR2V8onJCRQLKit/OaxKhUuxdYkWhCAsGEBEO1HdIZaM2qZqCtxXON55JZlQy0xW4j0jtQ3mPNQGuW20Db3J4q+Ppf31yf+24z0JpVzkA79ZtQtbhtEgOtWQy0RJUHwKE+0IqITEwckdd3vSdPPLsj92PffW/Hk1X7hEZEVCpGJe+/wGKgNavagZbn0vRU6S0O3G4jUu5btBlozZo60BYbyIvdGiQSTUgonKj4XQQMtGaVM9AWu9d2Ne/0YKA1i4GWqPIAONQH2k8/+1LO+XWLnHTOwtxtDGL79stPz79edr/7oe7BGdA+oRERlYpRyfsvsBhozWKgtaNKB9pwJP8qzkqu1mSgNauagfbu+53HKHsrhHIfJwZas8q9B+3Uq6CrvW0SA61ZDLRElQfAoT7Qzl22Vtb3b5aJiSN595kdGv2LXNPUpXdghrRPaEREpWJU8v4LLAZasxho7ajSgTZbNbd7YaA1y+0WB22dhWPs/Cl/fd2NhT+nkg9zG9z8w/9/Z0p6+5NUpNbbM+e8p543ey5FY5n7pQ+OFt7KpZJbHTDQmsVAS1R5ABzqA+2P5yyQZCotIpI30KYPT8hPzlukdFTmtE9oRESlYlTy/gssBlqzGGjtqNqBtpoYaM1yG2ijsbj0DqSkuT0lq3tSEgonpHdg0tWyLWnp7a/NfU4HN5tfsUvmA61bgWBCGlsru+KZgdYsBlqiygPgUB9oZ1+6TPZ/dVBE8gfaDz76VH52YaPSUZnTPqEREZWKUcn7L7AYaM1ioLUjBlrv5zbQFit7v9mxcefWBFMr96rnwPak3LEu5amW//DvbXOH/rFMbfvOyq9Gd3u8TK94ZqA1i4GWqPIAONQH2jvve1yuXtopfwv/Q2bNnivv/WuvPP18SM75dYvccfdj2odXkvYJjYioVIxK3n+BxUBrFgOtHTHQer9yBtrJRWOFH+bW3Tf9j3M9evhPmfPLxmf88fsZGy8+qJvem5aB1iwGWqLKA+BQH2gTyZSs6n5ETpyzQGbNniuzZs+Vk89dJOse2Ji79YGXaZ/QiIhKxajk/RdYDLRmMdDaEQOt96tkoB0cTcqanpTcsyElDzyWlO6+ZNUfQuWl/DjQBoLut5IIhhhoaxkDLVHlAXCoD7RZ6fRhie3bn7vdgS20T2hERKXKjkrLbsncW5DcY6D1fgy0dsRA6/3KHWi7+wqvxLxuhXNfU9PBz8v5caCNxuJ5f741NKWlrdP8zzkGWrMYaIkqD4DDEwPt3tgXct/DT8jNnRtEROTIkaPyxtvvKR+VGe0TGhFRqbKjEpml8Rgx0JrFQGtHDLTer9x70JqcO03va+rV/DjQjo1nRtr+4aSs7knJ4GhSojHzf5aB1iwGWqLKA+BQH2h3vrlHTji7QRau6M59SNjYvv3yn7+4Tp5+PqR7cAa0T2hERKXKjkpr16ektz9JRWKg9X4MtHbEQOv9yhloQ2H3gXb+lL+2/XYHNg+0wVBSmjsyz7s1PamyP7StWAy0ZjHQElUeAIf6QPvLq2+WF3fuEhHJDbQiIq/vek8unNemdFTmtE9oRESlYlTy/gssBlqzGGjtiIHW+5V7i4Opb5NvaErL/KX5fx0IcgWtRuFIvOCxae5IlXWlbLEYaM1ioCWqPAAO9YH2xDkLZGLiiIjkD7TpwxPy4zkLlI7KnPYJjYioVIxK3n+BxUBrFgOtHTHQer9yB9pwJH+kXbwif7BtbEnXZBDUzNaBdnC08P7ADU1pCYWrH8wZaM1ioCWqPAAO9YH23Kta5L1/7RWR/IH2xZ275Owrm5WOypz2CY2IqFSMSt5/gcVAaxYDrR0x0Hq/cgfabNm3zkeiCenuy9zXtLsvaf39Z8fGGWjdYqA1i4GWqPIAONQH2k1bXpJTL14q6/s3y6zZc+WPI8/Lyjv75cQ5C2T4iaD24ZWkfUIjIioVo5L3X2Ax0JrFQGtHDLTer9KB1s/ZOtC63uKgnVscTGcMtESVB8ChPtCKiASCf5Pf3nCnnPWrG+X8q2+W62++W3a89o72YRnRPqEREZWKUcn7L7AYaM1ioLUjBlrvx0BbmC0DbSickKHRpAR3JvN+bHVPShpb0jW9opmB1iwGWqLKA+BQH2gPfvN90b+XvfWBl2mf0IiISsWo5P0XWAy0ZjHQ2hEDrfdjoC3MhoG2dyD/3r9reup7LmSgNYuBlqjyADjUB9rz/q9VPhn7Iu/HJiaOyIahLXLCWfOVjsqc9gmNiKhUjEref4HFQGsWA60dMdB6Pwbawrw+0LrdyqChKS2BYP3u/5v9/1h9d4qOEQMtUeUBcKgPtH2PPCmnXrxU3vlHVERE9sa+kKsWr5YzLr9BXn0zonx0pWmf0IjIPwWCCWls/eH+cR2p3IexVBujklnVvMCa/CEta3pSZb+9lIHWLLeBNhqLy7o+5+u/ri9Zt0+T57lkFgOt92OgLczrA20gmHAdaAdH63e8bv9/VDztf0eIbAyAQ32gFRF5dvtrcsovF8td9z0uJ52zUG7q/IN8+90h7cMyon1CIyJ/FAoXvvBqbE3XZGhiVDKr0hdYbi+aV3aV9+sw0JrlNtBOfctvQ1Na7ns4JaFwoiafYs5zqfwYaL0fA21hXh9oNa6g1f731K3cMO2BY5ma9r8jRDYGwOGJgVZEZPe7H8pplzRJ29qHtA9F7nv4CTn14qW5v/5k7AuZu2yt/Nf518ulDe3y1u4Pcn9P+4RGRP6ofzjp+sKrFgMTo1J5L/omf+1GAkkZGk3K5q3FX7Cv7ikcCBua0mVdRctAa5bbQNvYcuwrmtb01ObTzCc/l9auT0nvQJKKtOwW94E2Ek1I/3BS1vUlZev2+owZDLRmlTvQhiOZbyTW6sOnvJjXB9qx8cL/Vuju8+6x1iuuViXyVwAcKgPtsvZe1/73+jvkuNPnyZKV63M/Nt0+/mSf/OI3N+UNtNc0dcmjm7bJxMQR2fHabpl96TJJH54QEQZaIqpNk98iz0Cr09QXfW2dZlfFdve5P3bljIIMtGa5DbTN7S4D+dL6vAU4+1wisyYPtOFIPHcLl2z9w7UflxhozSpnoJ16lXo9r9jUzIaBNvtcGhxNlv3fB5FoInc7mOaOlARD3v59FouBlshfAXCoDLRdvx8ybrrNu2GtPLv9tdxAO37gGzn53EVyeGIi93MuW9Ahr+96T0QYaImoNkWiiYIrAds6a/MChIHWrMkv+oIh99HV7QWt2+0pyr2qiYHWLLeB1u2bG/OnDLSra/RJ59nnUtMtKbnxVirWouWFV9C63Yqi3G9kmMRAa5bpQFvsvqd+vJLWloG20qZ+07GhqTbfBJ7uGGiJ/BUAh2duceAFTz73itzU+Qc5cPDb3ED71u4P5KJ5K/N+3o239cnGZ14SEQZaIqpd4UjmaszVPSnpHaj927IZaI/d5Bd9xa5oLnYlZjCUedxW96Skf7j8D6lioDXLbaAdG8/ciiL79Z86zjY0paV3oLYDLc+lY+d2D9pitwKp1YchZmOgNct0oC12LrT16stj5eeB1u0bifW6ir3eMdAS+SsADvWBNplKy30PPyGXNrTL/1y0RE67pEmuuHaV/GHwmdxtBKbD1we/k/P+r1XGD3yTN9DufHOPXLnotryfu/LOfnls0zYREfnmUJqIqGZ9Gz9c87ruybyYefDRw7Lx6TQVKfui79v4YXk36v6W7Xej9XmM3o4cloamtKzo0P86eLkHH818nbruKf44bPnL4bzHbElrWj4e47k0na3oyHyd3o4Uf1wamtLS0lH759PYF5n/n+ub9b8OXq5/OPMY3Np17K+n2+NWz3OhZkObM7+3p57TP5Zat2uP++P42MbyH0ft/07KHrv2cRBRbQLgUB9om2+/Xy6c1yYbhrbIU9tC8sSzO6R34Ak564rlclPnH6btONrWPiQjW/4qIpI30O7a84FcMLct7+cuX3Vf7ud+eyhNROTpuu7Ojkpp2fh0ioqUG2h/+Lptejr/heympzM/vmt3Wj6O1fYxentPdqDV/zp4uQcfzTwWXXcf++u5a3fm8dr0dFo+H+e5NN2t6Mg8n97eczjv63fPg/nD+bvR2p/vxj5PTxpo9b8WXq1/OPXDQHvsr+fn42lp78o/Fz74qP6fa/VoaCQ70OofSz2a+jg2NGXOldrHVW5T/6wmIrsD4FAfaP/r/OvlUDxR8ON7Y1/IiXMWTNtxnHLBYjn14qVy6sVL5X8uWiLHnT5PTr14qfz7033yHz9fKPFEKvdzz72qRXbt+UBEuMUBEXk/3pZtltvbJiPRRO6Ty0PhRN6HHNXyraHc4sCsYrc44LnkrdxucTD1OVWvx4hbHJhVzoeERWOZ24j0Dyd9+wFhY+P+vsXB2Hjmudfdl5TGlsw97m29TQW3OCDyVwAc6gPt1KtTsw7FE3LWFcun+WgyJl9BKyIyf/ld8sBjT8vExBHZ8sKrMufKZpmYOCIiDLRE5P0Ylcwq9aJv6oe4NTTV7tPMswPtsltS0juQpCKtXZ9ioLWgYw209Y6B1qxyBtqZkt8HWr/EQEvkrwA41AfaodG/SM+DG+Xrg9/lfuzzLw9I++8G5MnnXlE5pqkDbWzffrmmqUt+ev71cvnCVRJ5/+Pc39M+oRERlYpRyaxjvegr9gEr3X21eSGfHWjJLAZab8dA6/0YaAtjoLUjBloifwXAoT7Qnn1ls/zozPkya/Zc+cl5i+THcxbIrNlz5cQ5C+RnFzbKKRcszuVF2ic0IqJSMSqZdawXfZFofT8BOzvQLlqekhtvpWI13cIVtDbkhYGWzGKgdWKgtSMGWiJ/BcChPtBue+kNCe54yygv0j6hERGVilHJrFIv+rr78q9ybWxJSyRa21sccA/aY8c9aO2IgdaeGGidGGjtiIGWyF8BcKgPtFnJVFr2xj6XDz761PVDw7xK+4RGRFQqRiWzTF70jQSS0t2X+bCcqeNsOBLPfaBYuY8RA61ZDLR25IWBllscHDtucVAYA60dMdAS+SsADvWB9uC338uKO+6X48+YJ7Nmz5VZs+fK8WfMkxV33C/xREr78ErSPqEREZWKUcmsal709Q6knCtrW8v/8DAGWrMYaO2Igdb7MdAWxkBrRwy0RP4KgEN9oG1d/aD8Zkmn7Hxzj3z2+bh89vm4vPL6brlq8WpZc+8ftQ+vJO0TGhFRqRiVzKr0RV8gWHh/2sbWtERj5r8GA61ZDLR2VM5AW+lV58VioDWLgbYwBlo7YqAl8lcAHOoD7akXL5XxA98U/PgX+7+WMy9frnBE5dE+oRERlYpRyaxKX/RNvnp2cqGw+ejEQGsWA60dmQy0oXBCGlud50v2A/dGAklZ2ZWWlV1pGRotfyhjoDWLgbYwBlo7YqAl8lcAHOoD7SkXLJZD8WT/5ykCAAAgAElEQVTBj8cTKTnll4sVjqg82ic0IqJSMSqZVemLvsHRpOtAG46Y/xoMtGYx0NpRqYE2GovnjbPZftdX+M2OwTJHWgZasxhoC2OgtSMGWiJ/BcChPtBef/PdcutdA3Lwm+9zP3bg4Ley8s5+WdDcrXhkZrRPaEREpWJUMqvSF33RWFwaW/JHpd6B8gZEBlqzGGjtqNRAGwoX3hakoSkti5oLB9rmjvIeawZasxhoC2OgtSMGWiJ/BcChPtCO7dsvF81bKcedPk9mX7pMTrukSY47fZ6ce1WrfLT3M+3DK0n7hEZEVCpGJbOqedEXjWWupO0fTpb9AWFj4wy0pjHQ2lGpgTYSdR9or11e+GONLeU9JxlozSo10EaiCdm8NSnBnTNnrGSgtSMGWiJ/BcChPtCKiBw9elTe+UdUAsG/yRPP7pC3dv9TJiaOaB+WEe0TGhFRqRiVzNJ80cdAaxYDrR2Z3IO2uy9ZMMTe93DhFbTZe9OaxkBr1rEG2qkffLiyq7wPPbQ1Blo7YqAl8lcAHJ4YaI8cOSr7vzoosX37C/I67RMaEVGpGJXMYqD1fgy0dmQy0I6NZz4QrLsvc+V5JJqQaCwu/cPJvHG23GGQgdasYw20U2/ZUslQbmMMtHbEQEvkrwA41Afa5158XU65YLHMmj3XNa/TPqEREZWKUcksBlrvx0BrR6YDbT1ioDWr2EBb7P7Aq3t0nnPTGQOtHTHQEvkrAA71gfbUi5fKvQ9tlo8/2Sf7vvyqIK/TPqEREZWKUcksBlrvx0BrRwy03o8raAtjoLUjBloifwXAoT7QnjhngRyKJ7UPo2LaJzQiolIxKpnFQOv9GGjtiIHW+5VzD9rm9hT3oCXPxEBL5K8AONQH2mXtvRJ6Y4/2YVRM+4RGRFQqRiWzyn3RNzialJVdaVnTk5LNW6t7Qc9AaxYDrR0x0Hq/Yw20Y+NxCUcy57hAMDEjxtmxcQZaW2KgJfJXABwqA+3Df3o21wOPPS1nX9kst/U8KgN/2pr39x7+07Mah1cW7RMaEVGpGJXMKudF3+QPMsoWCCYqfowYaM1ioLUjBlrvV2qgnYnZMtBGoglZ15eU5o6UrOtLSjiif0zTGQMtkb8C4FAZaK+87nbjvE77hEZEVCpGJbPKedFX6w/RYaA1i4HWjhhovR8DbWE2DLTRWFyaO1J5f/Y0tqYlEq38G4S2xUBL5K8AONRvcWA77RMaEVGpGJXMqnagbeus/AUjA61ZDLR2xEDr/RhoC7NhoA2GCt+90dCUlpGAd4+51jHQEvkrAA71gTaVSsvQ6Au5v94e2iWLb7lH7rzvcTkUTygemRntExoRUakYlcwq50Vfd1/hi+TB0cpfIDPQmsVAa0cMtN6PgbYwGwbaqR/gVos/f2yLgZbIXwFwqA+0Hd0PyxXXrpKJiSPy4d7P5EdnzpfO9YMyd9laWXlnv/bhlaR9QiMiKhWjklnlvOiLxuLSO5Cq2YtjBlqzGGjtqNyBNhTO3FNzTU9Ktm6v7q3aDLRmMdAWZsNAG43FpbGlcKDlFgdEZGsAHOoD7c8ubJQvx78WEZF7NozI4lvuERGR8QPfyKkXL9U8NCPaJzQiolIxKpml+aKPgdYsBlo7KmegdXvLdjXf8GCgNatWA204Epet2xO++KAqGwba7Ne8uT3zHGtuT0kw5O3jrXUMtET+CoBDfaD98ZwFMjFxRERELlvQIaNbXxYRkcMTE3LinAWah2ZE+4RGRFQqRiWzGGi9HwOtHZUz0K7uSRUMtNU8DxlozarFQDs4mj+u9w7oPC9rlS0D7UyPgZbIXwFwqA+0lza0y8ZnXpLnXnxdTpyzQA4c/FZEREJv7JFfXn2z8tGVpn1CIyIqFaOSWQy03q8WA200xnOp3pUz0LZ1Fo6zDLT1r9qBNhxx/7DEQNDet9oz0NoRAy2RvwLgUB9o/xb+h/z3hUvkx3MWyNDoX0REZP9XB+U/fr5QntoWUj660rRPaEREpWJUMouB1vtVM9BGY3FZM+lqzf7h8kcYnktmlTPQ9g8X3uJgdU/lAzwDrVnVDrRut6aw/cOqGGjtiIGWyF8BcKgPtFmHJyZy//vo0aMS/feY4tGY0z6hERGVilHJLAZa71fNQOv2VvpyxySeS2aVM9BGY3Hp7nPGvrbO6j7wiIHWrHpdQTsSsHfcZKC1IwZaIn8FwOGZgdZW2ic0IqJSMSqZxUDr/aoZaN3GpHKv1OS5ZFY5A222aCxek0+iZ6A1qxb3oO0dyP+mR1un3aMZA60dMdAS+SsADs8OtL8fGJVzft2ifRglaZ/QiIhKxahkFgOt92OgtaNKBtpaxUBrlulAGwgmZGg0KaGw+3geCCZkcDRp9b1nszHQ2hEDLZG/AuDw7ED7yuu7ZcPQFu3DKEn7hEZE/i4Szbw43ro9UfGHGzEqmVWrF33hSLzsx4yB1qxKBtpgKClDo0n53X2FtzgIhrjFQT1ioPV+JgPt1A9w6x2o/N7ANsRAa0cMtET+CoDDswOtLbRPaETk3wLBRN6L4+aOVEUjLaOSWbV40VfpY8ZAa1a5A+3ke5tm3oKdktU9mYpdEchzqfoYaL1fqYF2JOD+IWDhiP6fjfWKgdaOGGiJ/BUAhycG2gMHv5U9738kb+3+Z0Fep31CIyL/1thS+OK4kiuYGJXMqsWLPrfHrH+49It9Blqzyhloi33KfDUDE88lsxhovV+pgXZw1P35U+5V5zbFQGtHDLRE/gqAQ32gfeCxp+X4M+bJrNlz5fgz5hXkddonNCLyZ5FowvXFcbn3zBwbZ1QyrdoXfaFw5Y8ZA61Z5Qy0xQamwdHKxxeeS2Yx0Hq/UgPt1HcDcAUteSUGWiJ/BcChPtCedkmT7NrzgUxMHNE+lIpon9CIyH+FI3FZ15eUhcsquxpzaoxKZnEFrffjClo7YqD1fib3oO0dyL9vczXf3LAhBlo7YqAl8lcAHOoD7aUN7dqHUBXtExoR+atINCGNrZkXH/OX5g9Lze3cg7ae1eMetG2dae5BW8PKvQft1IGp2g854rlkFgOt9zMZaMfGM+8MGAkkfX3lbDYGWjtioCXyVwAc6gPtIxufkw1DW+Tb7w5pH0pFtE9oROSvpr4te/4PQ+3wE8mKxtmxcUYl02r1oi8SzQwa5dyrkYHWrHIH2rHxzBXpg6O1GZh4LpnFQOv9TAfamRQDrR0x0BL5KwAO9YF220tvyE/OWySzZs+VE86aLyec3ZCX12mf0IjIXxW7b2YlnzifjVHJLM0XfQy0ZlUy0NYynktmMdB6Pwbawhho7YiBlshfAXCoD7SnXdIkfY88KTte2y2v73qvIK/TPqERkb9y+6Cpxhazt8kXi1HJLAZa78dAa0cMtN6PgbYwBlo7YqAl8lcAHOoD7QXX3KJ9CFXRPqERkf8KBBO5D5tqbk9JOJIZbodGk7J5a/m3OmBUMsv0RV81j0WxGGjNqtVAW+ljyHPJrFoMtJFoQtb1JaW5IyXr+pISiZq9i4CB1iwG2sIYaO2IgZbIXwFwqA+0Hd0Py1u7P9A+jIppn9CIyD9FY5kPNWpsTcvKrrQ8+2LmRWL/cP5tD1Z2lXdFLaOSWSYv+kYC+Y9Fc0dlH9w2NQZas2ox0E79ILfG1rTx+MdzyaxqB9poLJ77sMTJj5PJc42B1iwG2sIYaO2IgZbIXwFwqA+0N3dukJPOWShXXLtKGm+5V5a05ed12ic0IvJPq3vyP3G+oSktTz1f+GMNTWkZCZi/gGRUMsvkRZ/bY9E/XP2LeQZas2ox0GavTp9c74DZr8dzyaxqB9qpI3q2QLD0kM5AaxYDbWEMtHbEQEvkrwA41Afau+57XHoe3Fg0r9M+oRGRP4pE3QeJ23/nPtCaDkpj486oRGYV+zq63R+4oSktq3uqvx8qA61Z1Q604Yj7yG76GDLQmlXtQDv1SvVsJt+YYqA1i4G2MD8PtNFYXII7k7J1e8L4HQNejYGWyF8BcKgPtLbTPqERkT8qNtB23lu7K2ipuoF2bNz96styHotiZQdaMqvWV9AOjpo9hgy0Zk0daMORuGzdnpBwxPlaRmNxWTPpXQOTr0SPRBMFj1Nji9mtKBhozWKgLcyvA20kmpDmDue51tiallDY3pHW5M9qIrInAA71gfbIkaOy8ZmX5KrFq+X0y5bJKRcsliuvu102PvOS9qEZ0T6hEZF/crvFQTCULHi7by2u2NTO1hdYkz/AraEpLW2d5d0PuFgMtNM30AZDyYofQwZasyYPtL0D+ee17NX/bue7yUN5KJyQ5vbMz2luT0kwZDaaMdCaxUBbmF8H2u6+wj9fmjum/78jdoaTMvREquqyv4da/FrVfJAhEdUmAA71gbbv0afk1IuXyj0bRuSpbSF5altI7v7DJvnvC5fI0OgL2odXkvYJjYjsLRJNSCicyF3JEo05L6Sa21N5V2ZGogkJBBNWX/UyORsG2mgsnnt8Jg94fnssipUdjasZQzULRzKPn9tVl5U+hgy0ZmUH2s0B96v3i91qYmVX9eeE7EBLZjHQOvl1oHX7ZojGn7+Dm93fKaTZ4GZ//zlOZEMAHOoD7Zwrm+W9f+0t+PE9738k5199s8IRlUf7hEZEdhYIJvI+pXyND66KLSetF4imTX1LaHNHyvr79pWbzQPt1Ks2TT5cyiQG2vIG2qmPQ24UGXW/YrwW7w5goGWgrTS/DrRuV9A2tkz/474z7L3zJlfQEukHwKE+0J587rWSPjxR8OPpwxNy8rmLFI6oPNonNCKyr2gsnjfOZqvFvUxtyesDrdsL2u6+mfP4jI3bO9BOvSVItloM7NmBdu36lPQOJKlIy27JfJ0ef8J9oA2FE9I/XPgcM72NgW1F/pXIfaNH+1ioeH4daN3u6ezX5xoR2RcAh/pA+6trb5PRrS8X/PimLS/J5QtXTf8BlUn7hEZE9hUKuw9I5QyA0VhchkaTMjSatPKFltcH2mJXm2kf13Rm60Bb7OrMWjxP+MC98toZThZ8syN7D9rsY9XWmbly1sbzmGkMtHbk14F2bDzz3wwjgaSMBJIz7t0gROTtADjUB9rXd70nJ5zdIJfMv1Va7nhAVtxxv1w0b6WccNZ8eWnn29qHV5L2CY2I7CsSdR9oTT9JPhJNFFyBO/kT0G3I64NnW6fLW4E7vXu89cjWgXYk4D7QhiPV/9oPDSXljnUpT7W4JTMat63RP5aphf+RGYICwYQMWvrNpFrEQGtHfh5oiYi8GgCH+kArIvL5lwfkoeGArOp+RG7p2iAPPPa07I19rn1YRrRPaERkZ1Pf3tvYYv5J8m5vDW5oMv/nvZDXB1q3q5z9/qFgU7NhoI3GMs+HlV2Z+zhnP9Bt6sA++apNv5W9qpd7KXo3Blo7YqAlIpr+ADjUB9pl7b3y7XeHtA+jYtonNCKyt2AoKYOjmcoZV4t9IrNNA6LXB9qx8biEI/Hc41OLqy9ty4aB1u1ewdmRdiSQlP7hZM0+IMyrMdB6PwZaO2KgJSKa/gA41AfaX159s7zx9nvah1Ex7RMaEc283N7CrfGJzNVkw0A70/P6QBuNud8ruNwPcwuGktLckRk5V3bV5lYI0xkDrffz40A7OJqUNT0pWdfnn29gMdASEU1/ABzqA+1DwwE596pWaf/dgGwY2iIP/+nZvLxO+4RGRDOzyVfRNrbY94nMDLTez+sDbbF7OZcz0Lr9Go2tdt0uhIHW+/ltoHW7ct0PIy0DLRHR9AfAoT7QXtrQLlded3vRvE77hEZEM7dQOCGhcMLKT2RmoPV+Xh9ox8bdP8ytnFsaDI6638/ZptsiMNB6Pz8NtMW+MaL9QZW1+FC75bemco9Ttb/Wnb/n+UhEZBIAh8pAuzf2uUxMHBERkY8/2adxCDWjfUIjIrIxBlrvZ8NAG4km8q4mHxwtbxRxu11IQ5NdV6Qz0Ho/Pw20bh+gWMmtRWqd2zFptrjF/seaiGg6AuBQGWh/dOZ8+frgdyIictI5CzUOoWa0T2hERDbGQOv9bBhoqy0STUhjS/6w0tye4hYHVNP8NNCOjcelub3wgyq1rzrfGU56qlfftucqfCIizQA4VAbaS+bfKude1SILV3TL8WfMk4UruovmddonNCIiG2Og9X4zYaAdG49LOJK5p2ZjS+YqQNtuGcJA6/38NtCGI/kjbblXrhMREWUD4FAZaL/Y/7U88ufnZH3/ZvnRmfPl3oc2F83rtE9oREQ2xkDr/WbKQGt7DLTez28Dbe73Zdk3M4iIyHsBcKh/SNg9G0a0D6Eq2ic0IiIbY6D1fgy0dsRA6/38OtASERFVGwCH+kBrO+0TGhGRjTHQej8GWjtioPV+DLRERETuAXB4dqD9/cConPPrFu3DKEn7hEZEZGMMtN6PgdaOGGi9HwMtERGRewAc6gPtjtfekcMTEwU//srru2XD0BaFIyqP9gmNiOwtGErK0Ggmmz41vhYx0Ho/Blo7YqD1fgy0RERE7gFwqA+0J52zUP7noiXSuX5I9rz/keqx9D36lJx+2TI55YLF0rrmQTkUT4qIyCdjX8jcZWvlv86/Xi5taJe3dn+Q+2e0T2hEZGf9w8ncSNnQlJbG1vSM+sAVBlrvx0BrRwy03o+BloiIyD0ADvWBNpFMSXDHW9K65kH5z19cJ7/4zU3ywGNPy6effTmtx7HtpTfkvP9rlS/2fy2H4kmZf+Nd0vfoUyIick1Tlzy6aZtMTByRHa/tltmXLpP04cxVv9onNCKyr2gsnjfOZusfnjkDCwOt92OgtaOZMtCGwgkJ7kxa+Y0sBloiIiL3ADjUB9rJ0unDsuO1d6Rt7UPyk/MWyW+WrJEnn3tFkql03f+/d7/3kby1+5+5v3500zZpXf2gjB/4Rk4+d1HebRguW9Ahr+96T0QYaImo/ELhhOtAu7pn5rx4Z6D1fgy0dmTTQBsMJWVdX1J6B1ISjpj9M9FYXFZ25b/bIBS2a6RloCUiInIPgMNTA+2+L7+Sh//0rPz6+jvkxDkLpOnW38vlC1fJOb9ukfejn0zrsSxq7ZE/P7Vd3tr9gVw0b2Xe37vxtj7Z+MxLIsJAS0SV1dhSONCOBI49sESiCRkazQwcW7fbNVBMbSYMtCOBzGO1eaud9xi2aaANhRPSP5wZ/mwb76rNloF2cDRZcM4zeax6B1IF/1xjq13nDgZaIiIi9wA41Afa776Py+jWl2XeDWvluNPnyRXXrpLhJ4Jy8Jvvcz/nwT8+Ixf/duUxfpXa6nvkSfntDXfK4YkJ2fnmHrly0W15f3/lnf3y2KZtIiLyfeIwEVHZvfrmYVnS6gwOa+9JH/Pn7/3ssCy5KX+k+OOmY/8zXi77e9A+jnq19p78x6rjzsPy5QH94yqnv0cyj1NXiX83tXv1zcMFA96rb+of13TV9cO/a3+P6B/LsZp8vjM9732fKHwuZbPp+bR3LPPvaMsqbz+XiIiIpjsADvWB9sQ5C2T2pcuk+4E/S/TjmOvPiSdScvwZ8+p+LEePHpXO9YOycEW3xBMpERHZtecDuWBuW97PW77qPhnZ8lcREfn6uxQRUUV9+ElKwu9kyv7Ywe/Trj32Z/eR4qNP3X9+vXphR2awq7bs8dfi13phx/R+DUr11m73x+qFl/WPrbzfR2ZU6rxb/1iOVXtX4dd6xSr945quOu/O/J7f2n1Y/ViOldtzor2r9D93z4OF/9ySVv3fTzl99MnM+/eS/Jv2fzsRkb8C4FAfaHe8tlsmJo6U/HmH4sm6H8td9z0uy1f15T4ATETkwMFv5T9+vjA32IqInHtVi+za84GIcIsDIpqeuvsK3x5s+hbhWja42f3+uZoNbvbWW9pHAu6P1eCot9+CPjVbbnHgdrsQv98+Y3K23OKgrbOyD0aMRBMFj3Eg6K3nfMnfA7c4ICIicg2AQ32gDe54q2jbXnp92o7jjbffk0sb2iWdLrzMfv7yu+SBx56WiYkjsuWFV2XOlc25UVn7hEZEMyO30a+xZfpHqMiHCdkZTnqqyIfeGmsiUfcR27Z7o9oy0Lp986K7z9tjZS2zZaANR/JH2tU9KeN7M0djmXPg4GjS+MPFvBQDLRERkXsAHOoD7SkXLM7vl4tl1uy58uM5C+T8q2+etuO4uXODHH/GPDnh7IZcly3oEBGR2L79ck1Tl/z0/Ovl8oWrJPL+x7l/TvuERkQzp8kfltPYYt/gN5MKBPNH2lIfAOfFbBloo7H84a+tMy2R6Mx5btgy0GYLR+Iz6vEZG2egJSIiKhYAh/pA6+b7Qwm5Z8OIbA68rH0oJWmf0IhoZhWJJiQUThhfeUZ6RWNxCYUT1o5Rtgy02cKR+Iz8poVtA+1MjIGWiIjIPQAOTw60WZc2tGsfQknaJzQiIqJ6ZNtAO1NjoPV+DLRERETuAXB4dqD9/lBCTrukSfswStI+oREREdUjBlo7YqD1fgy0RERE7gFwqA+0rasfLGhZe6+cdcVyWdJ2r/bhlaR9QiMiIqpHDLR2xEDr/RhoiYiI3APgUB9ob1v3SEFdvx+Sx58MyqF4UvvwStI+oREREdUjBlo7YqD1fgy0RERE7gFwqA+0ttM+oREREdUjBlo7YqD1fgy0RERE7gFwqA60X+z/Wt54+73clbIv/+3vMu+GtXLFtavk0U3bNA/NmPYJjYiIqB4x0NoRA633Y6AlIiJyD4BDbaB9cecu+dGZ82XW7Lly5uXL5c2/vy8/Pf966Vw/JJ3rB+WkcxbKIxuf0zo8Y9onNCIionrEQGtHDLTej4GWiIjIPQAOtYH2V9feJp3rB+Wb7w7JhqEtctolTTKy5a+5v//M8zvl/Ktv1jo8Y9onNCIionrEQGtHfh9oo7G4hCP6x1FNDLRERETuAXCoDbQnn3ut/OujmIiIpFJpOe70efLh3s9yf39v7As54ewGrcMzpn1CIyIiqkcMtHbk54G2uy/z72B23LR1qGWgJSIicg+AQ22gnTV7ruz78qvcX//nL66T2L79ub/e9+VXMmv2XIUjK4/2CY2IiKgeMdDakV8H2sFRZ5zNtrIrPe3H8c4/k7IzXF3bXs4MtMvaUlX/WjvDSfnn3oT640NERFSLADgYaKukfUIjIiKqRwy0duTXgXZ1T6pgoG1oSkskOr3jZN/DhUOxds/9lYGWiIj8EQCH6kA7f/ldct1Nd8t1N90t/+/M38pvb7gz99fzl9/FQEtERKQUA60d+XWgnXx7g8lN93FsfCYld6zzVq+86a/HmoiIZm4AHGoD7W3rHjHK67RPaERERPXIzwNtKJyQNT0paWxNy7q+5LRflVnL/DrQhiPxgnG2f9hfv0ciIqKZHgCH2kDrF9onNCIionrk14HWbfhr7khJNKZ/bJXk14E2+1j1DqRkdU9KAkF7R3QiIiJyD4CDgbZK2ic0IiKieuTXgdbtw6camtISCk/vAJj9+nopvz3WRERE5O0AOBhoq6R9QiMiIqpHDLTT8/X1Un57rImIiMjbAXAw0FZJ+4RGRERUj/w60Lre4qDd3lscEBEREdkaAAcDbZW0T2hERET1yK8D7dh4XIKhpDS3Z+7duronJeGI/jERERERzbQAOBhoq6R9QiMiIqpHfh5oiYiIiEg/AA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiIjqEQMtEREREdUzAA4G2ippn9CIiKi+RWNxGRpNSv9wUrZuT6gfz3TFQEtERERE9QyAg4G2StonNCIiql/RWFyaO1LS0JTO1TswMwZLBloiIiIiqmcAHAy0VdI+oRERUf0aHE3mjbPZwhH9Y6t3DLREREREVM8AOBhoq6R9QiMiovrVP+w+0IbC/r/VAQMtEREREdUzAA4G2ippn9CIiKh+BYKJgnG2sSUtkSgDLRERERFRNQFwMNBWSfuERkRE9a13IJU3zgaC/h9nx8YZaImIiIiovgFwMNBWSfuERkRE9S8ciUsonCh55Ww0Fpet2xOyeWvS+qtsGWiJiIiIqJ4BcDDQVkn7hEZERN4oHIlLY+ukWyG02n2vWgZaIiIiIqpnABwMtFXSPqEREZE36u4r/ECxlV1plWMJbE/K0BOpquodyPx+mjuq+3WyRT60d6wmIiIiotoHwMFAWyXtExoREXmjqeNsNo1juWNdqujxaLUznFR/jIiIiIjIOwFwMNBWSfuERkRE3sjtCtq2Tr0raAc3JzwVV9ASERER0eQAOBhoq6R9QiMiIm8UjsSlsWXSPWhb7L4HLRERERFRPQPgYKCtkvYJjYiIvFM0FpdAMCGBYEIiUcZZIiIiIqJiAXAw0FZJ+4RGRERERERERGRbABwMtFXSPqEREREREREREdkWAAcDbZW0T2hERERERERERLYFwMFAWyXtExoRERERERERkW0BcDDQVkn7hEZEREREREREZFsAHAy0VdI+oRERERERERER2RYABwNtlbRPaEREREREREREtgXAwUBbJe0TGhERERERERGRbQFwMNBWSfuERkRERERERERkWwAcDLRV0j6hERERERERERHZFgAHA22VtE9oRERERERERES2BcDBQFsl7RMaEREREREREZFtAXAw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEoYaAEAAAAAAABACQMtAAAAAAAAAChhoAUAAAAAAAAAJQy0AAAAAAAAAKCEgRYAAAAAAAAAlDJ9kj4AAAKuSURBVDDQAgAAAAAAAIASBloAAAAAAAAAUMJACwAAAAAAAABKGGgBAAAAAAAAQAkDLQAAAAAAAAAoYaAFAAAAAAAAACUMtAAAAAAAAACghIEWAAAAAAAAAJQw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEoYaAEAAAAAAABACQMtAAAAAAAAAChhoAUAAAAAAAAAJQy0AAAAAAAAAKCEgRYAAAAAAAAAlDDQAgAAAAAAAIASBloAAAAAAAAAUMJACwAAAAAAAABKGGgBAAAAAAAAQAkDLQAAAAAAAAAoYaAFAAAAAAAAACUMtAAAAAAAAACghIEWAAAAAAAAAJQw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACUMNACAAAAAAAAgBIGWgAAAAAAAABQwkALAAAAAAAAAEoYaAEAAAAAAABACQMtAAAAAAAAAChhoAUAAAAAAAAAJQy0AAAAAAAAAKCEgRYAAAAAAAAAlDDQAgAAAAAAAIASBloAAAAAAAAAUMJACwAAAAAAAABKGGgBAAAAAAAAQAkDLQAAAAAAAAAoYaAFAAAAAAAAACUMtAAAAAAAAACghIEWAAAAAAAAAJQw0AIAAAAAAACAEgZaAAAAAAAAAFDCQAsAAAAAAAAAShhoAQAAAAAAAEAJAy0AAAAAAAAAKGGgBQAAAAAAAAAlDLQAAAAAAAAAoISBFgAAAAAAAACU/H+blRqekpbCFQAAAABJRU5ErkJggg==", "text/html": [ - "<div> <div id=\"2dab5e70-e94b-4a3b-946a-d70088e219d4\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"2dab5e70-e94b-4a3b-946a-d70088e219d4\")) { Plotly.newPlot( \"2dab5e70-e94b-4a3b-946a-d70088e219d4\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All\", \"notched\": false, \"offsetgroup\": \"2000 - All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [48.30345508195943, 53.76048612772965, 41.2, 27.4, 51.894103563496, 56.50975754815431, 25.6, 60.1, 48.0, 66.6, 55.91131125503006, 49.67400671814656, 30.0, 66.24208937915319, 19.6, 52.92798233790131, 45.77749212207978, 55.47795028053216], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - Only stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - Only stigma\", \"notched\": false, \"offsetgroup\": \"2000 - Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [10.011641634355932, 40.48276474690653, 41.2, 27.4, 8.224011721298588, null, 25.6, 60.1, 48.0, 66.6, 38.91865731391849, 33.88592072413024, 30.0, 55.366243901138766, 19.6, 52.054518148465256, 37.20176006394223, 60.24548066020205], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All plus stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All plus stigma\", \"notched\": false, \"offsetgroup\": \"2000 - All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.859568253699027, 23.390582857932404, 41.2, 27.4, 14.110043771471155, 57.230233773406596, 25.6, 60.1, 48.0, 66.6, 52.15387049883477, 31.469286375040596, 30.0, 61.202271342000905, 19.6, 48.896811927207665, 40.16917287300395, 64.16983532722774], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2007\"], [\"2005\"], [\"2005\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.5, 47.2, 40.5, 19.9, 32.4, 67.8, 79.4, 36.6, 26.2, 75.2, 15.4, 36.5, null, 68.9, 26.4, 57.7, 66.6, 56.8], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2012\"], [\"2010\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [40.4, 35.5, 69.9, 57.4, 45.9, 61.8, 46.7, 53.1, 32.0, 71.5, 46.6, 30.3, 77.3, 88.1, 44.3, 81.3, 50.4, 69.2, 85.4, 23.7, 48.7, 89.2, 83.5, 48.9, null, 48.7, 44.1, 71.6, 71.6, 71.6, 71.6, 79.1, 77.9], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [63.8, 26.5, 77.5, 62.0, 43.5, 83.7, 33.6, 45.3, null, 40.3, 47.1, 41.9, 75.4, 80.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"1dfa5f9e-724d-488b-ab2a-430b35bdf831\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"1dfa5f9e-724d-488b-ab2a-430b35bdf831\")) { Plotly.newPlot( \"1dfa5f9e-724d-488b-ab2a-430b35bdf831\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All\", \"notched\": false, \"offsetgroup\": \"2000 - All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.22165334026072, 20.74449338352134, 41.2, 27.4, 28.93552206066888, 58.0498599283529, 25.6, 60.1, 48.0, 66.6, 61.85272188475734, 24.80890630136319, 30.0, 63.25615447558266, 19.6, 52.35177558833146, 50.82263058897482, 65.09551816600218], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - Only stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - Only stigma\", \"notched\": false, \"offsetgroup\": \"2000 - Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [10.011641634355932, 40.48276474690653, 41.2, 27.4, 8.224011721298588, null, 25.6, 60.1, 48.0, 66.6, 38.91865731391849, 33.88592072413024, 30.0, 55.366243901138766, 19.6, 52.054518148465256, 37.20176006394223, 60.24548066020205], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All plus stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All plus stigma\", \"notched\": false, \"offsetgroup\": \"2000 - All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.303358509816114, 23.768724015518746, 41.2, 27.4, 14.16596363529338, 57.25908115534936, 25.6, 60.1, 48.0, 66.6, 51.54456956727535, 31.345534359205388, 30.0, 61.39611367484593, 19.6, 49.000493395978246, 40.698110229533256, 63.81748892534672], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2005\"], [\"2005\"], [\"2008\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [27.5, 47.2, 40.5, 19.9, 32.4, 67.8, 79.4, 36.6, 26.2, 75.2, 15.4, 36.5, 68.9, 26.4, 20.1, 57.7, 66.6, 56.8], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2010\"], [\"2013\"], [\"2013\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Togo\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [40.4, 35.5, 69.9, 57.4, 45.9, 61.8, 46.7, 53.1, 32.0, 71.5, 46.6, 30.3, 77.3, 88.1, 44.3, 81.3, 50.4, 69.2, 85.4, 23.7, 48.7, 89.2, 83.5, 48.9, 48.7, 44.1, 51.4, 71.6, 79.1, 77.9], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2016\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.W=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [63.8, 26.5, 77.5, 62.0, 43.5, 83.7, 33.6, 45.3, 40.3, 47.1, 41.9, 72.7, 75.4, 80.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('2dab5e70-e94b-4a3b-946a-d70088e219d4');\n", + "var gd = document.getElementById('1dfa5f9e-724d-488b-ab2a-430b35bdf831');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -8818,7 +8305,7 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 353, "metadata": {}, "outputs": [ { @@ -8968,18 +8455,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -8997,9 +8475,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -9016,19 +8491,16 @@ "x0": " ", "xaxis": "x", "y": [ - 51.82172348464304, - 51.63371792253483, - 60.19781177976836, - 67.84332662203975, - 73.33305914138057, - 49.39458717769393, - 71.95633862825368, - null, - 70.69977791304689, - null, - null, - 70.08302756883629, - 78.09666495277045 + 37.48430691317277, + 33.0573496204897, + 36.68947049362754, + 70.11745134661585, + 74.39653963482156, + 34.6942917927119, + 72.62799679664002, + 62.90019751881499, + 71.88353100909976, + 79.65145595888701 ], "y0": " ", "yaxis": "y" @@ -9058,18 +8530,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -9087,9 +8550,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -9113,10 +8573,7 @@ 51.530925434032866, 42.124637918736795, 50.163912506462616, - null, 63.285159555798266, - null, - null, 48.869560685912965, 69.66320342189823 ], @@ -9148,18 +8605,9 @@ [ "2000" ], - [ - "2007" - ], [ "2000" ], - [ - "2018" - ], - [ - "2012" - ], [ "2000" ], @@ -9177,9 +8625,6 @@ "Mali", "Namibia", "Rwanda", - "Rwanda", - "Senegal", - "Senegal", "Uganda", "Zambia" ], @@ -9196,19 +8641,16 @@ "x0": " ", "xaxis": "x", "y": [ - 43.117715660745624, - 34.99696361745937, - 32.80721200883463, - 69.57207895753851, - 73.27977952076182, - 46.545528659115774, - 67.91461681851463, - 82.24363123253028, - 63.151939695501895, - 47.693668685983106, - 43.38431171312834, - 63.65204916406636, - 80.95207762610593 + 42.84612926788617, + 35.16663129012852, + 32.957470413688526, + 69.50735329316193, + 72.55544324389314, + 46.01222163399134, + 67.93636699956508, + 63.224267549675346, + 63.98945399904411, + 80.82017338703842 ], "y0": " ", "yaxis": "y" @@ -9254,13 +8696,13 @@ "2008" ], [ - "2007" + "2005" ], [ "2005" ], [ - "2005" + "2008" ], [ "2006" @@ -9287,8 +8729,8 @@ "Niger", "Nigeria", "Rwanda", - "Rwanda", "Senegal", + "Sierra Leone", "Uganda", "Zambia", "Zimbabwe" @@ -9318,9 +8760,9 @@ 72.3, 31.2, 48.4, - null, 79.8, 36.1, + 40.3, 75.1, 72.5, 67.3 @@ -9404,9 +8846,6 @@ [ "2014" ], - [ - "2012" - ], [ "2010" ], @@ -9414,13 +8853,7 @@ "2013" ], [ - "2011" - ], - [ - "2011" - ], - [ - "2011" + "2013" ], [ "2011" @@ -9459,11 +8892,8 @@ "Rwanda", "Senegal", "Senegal", - "Senegal", "Sierra Leone", - "Uganda", - "Uganda", - "Uganda", + "Togo", "Uganda", "Zambia", "Zimbabwe" @@ -9505,12 +8935,9 @@ 92.1, 89.9, 43.6, - null, 43.8, 43.1, - 79.5, - 79.5, - 79.5, + 57.5, 79.5, 83.5, 80.3 @@ -9546,9 +8973,6 @@ [ "2018" ], - [ - "2018" - ], [ "2017" ], @@ -9558,6 +8982,9 @@ [ "2015" ], + [ + "2016" + ], [ "2018" ], @@ -9578,7 +9005,7 @@ "Senegal", "Senegal", "Senegal", - "Senegal", + "Uganda", "Zambia", "Zimbabwe" ], @@ -9603,10 +9030,10 @@ 87.5, 42.2, 48.8, - null, 37.6, 43.7, 38.6, + 80.3, 80.4, 83.1 ], @@ -10460,11 +9887,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOyd+V+U5eK/v3+P3/PNs3Q6pzx9zFzT1DI9VJ8Ej2iCuCGCCuEammuakktoenDJfUOzxCwj1MIlpDQlSwORHTdmYeD9/WFkdGSEgRmf+xm4rtfretXsN7fjDVw+cz//RwAAAAAAAAAAAABghP9jegAAAAAAAAAAAAAAXRUCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0IZIaVU9IiIiIiIiIiJGsAAmIdCGiOkFBBERERERERERQxPAJATaEDG9gCAiIiIiIiIiYmgCmIRAGyKmFxBERERERERERAxNAJMQaEPE9AKCiIiIiIiIiIihCWASAm2ImF5AEBERERERERExNAFMQqANEdMLCCIiIiIiIiIihiaASQi0IWJ6AUFERERERERExNC0G/uPeHTg88Z2C5EJgTZETC8giIiIiIiIiIgYmnYjdpK7Q0JkQqANEdMLCCIiIiIiIiIihqbdaA6uiz5qCEoCbWRDoA0R0wsIIiIiIiIiIiKGpt1oDq77j3iCMtRAezzvnAaNnKHnBsYpetIC/XajTJLkdLk1PWOd/jV0gvpGJWnHga98j7lRWq6YyQv1z0HxGhabrrOFV3y3nTxdqCGjUvX8q+M1dtoSVVbXdXwyugAE2hAxvYAgIiIiIiIiImJo2g0rA21ZRbWeGxins4VX1NjYpBWf7NaoKQslSas37tWUWavkcLpUUlapnsMm65df/5AkRU9aoE07j8rjadTJ04XqOWyy3A0e3bl7Xy8MSdD5oqtq8Hi04pPdmjJrVdjmpjNCoA0R0wsIIiIiIiK2bXFJvQ4fd2j3YaeKih3Gx4OIiPbSblgdaI+eOOO7/POV3/XSG5MlSYOjZ+rCT8W+2xat3qbVG/eqqua2nh0wTg0ej++2N8bM0plzl3T0xBmNnbbEd/2du/fVvU+sXC62YHgSBNoQMb2AICIiIiJi6xYU1Ssh5eEJVBJS3MorINIiIuJD7YbVWxw8Sta2w5o6J1OS9MzLo1V3+57vts/2H9e0eR/rbOEVDR2V5ve4qXMytePgCa3970FlrMz2u+3F1yb6tk2AlhBoQ8T0AoKIiIiIiK27JNPZ4izXSbNcxsf1uJ+fcCp7t8OYe444jc8BIqIp7YapQPvtmUL1jUpSWUW13A0edesZI4fT5bt9/9E8TUhdoe9+uKiocXP8Hpv2QZY27zyqD9fv0tI1O/xu6xuVpEtXr4c8vs4KgTZETC8giIiIiIjYuknprhaBNnaS2/i4HnfhypYh2UqnpdsvWiMiWqXdMBFoDx3L18B3put6yS3fdc+8PFo1dXd8l7fty1XK/LU6d/GKBsek+j0+cfZq7Tr0tdZlH9T8D//rd1uPIRP8nhf8IdCGiOkFBBERERERWzfgEbQ2jJGhHEHbHHfTP3BxBC0iYge0G1YH2uPfntXQUWmqrK7zu37oqDSdPvez73L64g1al31QNXV39Nd+Y1XveHh07YC3k3Xu4hV9+c0PGjkxw3f9rYoa/bXfWL/9asEfAm2ImF5AEBERERGxdQuK6pWQ/MgetMmdbw/avUe8gXZdNpEVEbEj2g0rA23dnXvqNXyKSsoqW9y2ZvMBjUtZKofTpavXSvTCkAT9/of3SNjRiYu0ZvMBeTyNOnQsX32jkuTxNOrefYdeGJKgU2d/UoPHo7nLN2tGxvqQ5qOzQ6ANEdMLCCIiIiIitm1xSb1ych3aleNUUXHnirOlVQRaRMRQtRtWBtq9R06qW88Yde8T62dt3V25XG7NyFivHkMmqN+b07T/aJ7vcSVllYqetED/GBSv4WNnq+jyb77bvvvhogZHz9Tzr45X/Izlqq27G+qUdGoItA9oamrSqg171Wv4FP1zULyWr9vpu+1GabliJi/UPwfFa1hsus4WXvHdZnoBQURERETE8FtU7FBegSNiYi6BFhExNO1Gc3Bd9FFDUIbrJGFgBgLtAw7nntaQUamqrr2jyuo6vTpyhj7/6owkKXrSAm3aeVQeT6NOni5Uz2GT5W7w7pthegFBRERERMTgDDa2Zm3137M2J9f+kZZAi4gYmnajoyd8hMiEQPuAtA+ytHH7Ed/lbftyNTl9lapqbuvZAeP8NjJ+Y8wsnTl3SRKBFhERERHR7ubmOZWQ8mD/2ZTWg2tuXssTisVOctv+SFoCLSJiaNqNYLc2eFyITAi0D3g80B46lq/XR7+ns4VXNHRUmt99p87J1I6DJyRJZdUORERERES0qT//+jDOPurZnwLff8uewIH2eJ7T+NfSmvs+9457fbbL+FgQESNRAJMQaB+Qk3tKg6Nnqqrmtupu39N/pnygge9M13c/XFTUuDl+9037IEubdx6VJDU2NSEiIiIiok399pQnYHDdd8QT8P5ffBX4/j//0mj8a2nN3K+9487eFfjrQkTE1gUwCYH2AY2NTVqZtVv930pWVNxcZW7arzfj5+ncxSsaHJPqd9/E2au169DXktjiABERERHRzj5py4JdOYG3AiguqVdqhv995y9zGf862pItDhARQxPAJATaJ5C17bDmLNukmro7+mu/sap3uHy3DXg7WecuXpFEoEVEREREtLuPB9eEZLeKS558/+KSeu3KcWrVBtcTQ67dJNAiIoYmgEkItA84/u1ZvZu8VPfuO3SjtFy9RyTqwk/FkqTRiYu0ZvMBeTyNOnQsX32jkuTxNEoi0CIiIiIi2t3iknqt2uDS/GUurdrgsv0JvzoigRYRMTTthmNHlhw7N7RbiEwItA9wN3g0I2O9nhsYp/95fZI+23/cd1tJWaWiJy3QPwbFa/jY2Sq6/JvvNtMLCCIiIiIiIoEWETE07UbtiB4dEiITAm2ImF5AEBERERERCbSIiKFpN5qD691ZCUFJoI1sCLQhYnoBQUREREREJNAiIoam3WgOro4dWUEZrkD79vj5eu0/aX7XXbp6Xf3fSpYkTUhdoYNffBfy64A/BNoQMb2AICIiIiIiRnqgzc1zKiHFexK3pFku5RV0vn2CEdHe2g0TgfbqtRKNS1mq+BnLdb7oqu96Au3Th0AbIqYXEERERERExEgOtEXFDsVOcvuZkOLulCdzQ0T7ajdMBNrFH2/X3iMnlZN7SnOWbfJdT6B9+hBoQ8T0AoKIiIiIiBjJgTZ7j7NFoI2d5FZO7tMPtB9luQK+tlWOn+Y2Pv+I6NVuWB1oPZ5G9Xtzmu7eq1e9w6XeIxLlcrklEWitgEAbIqYXEERERERExEgOtLtyAgfa3Lyn/7UQaBGxWbthdaD95tQFTZ2T6bs8I2O9vvj6B0kEWisg0IaI6QUEERERERExkgNtcUm9EpL9w2VSukvFJebH1pqff+3dmmHFOpfxsSBi6NoNqwNt4uzV+lv/sXpuYJyeGxinv/Ufq/EzP5REoLUCAm2ImF5AEBERERERIznQllbVq6CoXksynUrNcGtJpjMi9p8l0CJ2Lu2GlYH29t376jFkgtzuBt91DR6PXnxtoqpr7xBoLYBAGyKmFxBERERERMRID7SRKIEWsXNpN6wMtNv3H/fb3qCZGRnrlb37SwKtBRBoQ8T0AoKIiIiIiEigtV4CLWLn0m5YGWij4ubqcO7pFtfnnjyr4WNnE2gtgEAbIqYXEERERERERAKt9RJoETuXdqM5uN6dnRCUoe5BC2Yh0IaI6QUEERERERGDt7ikXnkFDtufgKq9Emitl0CL2Lm0G83Btb1CZEKgDRHTCwgiIiIiIgbnrhxvxGw2J9eh7D1OpS1w6/1lLu0+HLlxk0BrvQRaxM6l3Qh2a4PHhciEQBsiphcQRERERERs24Kier842+zoxy7vyonMwEmgtV4CLWLnEsAkBNoQMb2AICIiIiJi22bvcQYOtBP9L6ctcBsfa0eMhECbV+BQ2gLvPC/NdKqgyPyYQpFAi9i5BDAJgTZETC8giIiPW1xSr8PHHdp92KmiYofx8SAiItrBnFxHwEAb+1igTUp3qajY+3308PHI2avW7oE20BHMSbNcETO/gSTQInYuAUxCoA0R0wsIIuKjFhU7lJDy8BefhBS3cvPs+YsaIiKi1aZm+AfCR79nNrt4latFRIyEf/C0e6B90hHMeQX2n9snSaBF7FwCmIRAGyKmFxBExEddktnyl5+EFOs+qvl7Wb2ydzuM+l2BPX8xRURE8xaXeE8UNneJS/OWuhQ/za1xSQ+DbNZWp8ZPaxkRV22wf4Aj0FovgRaxc2k3HDuy5Ni5od1CZEKgDRHTCwgi4qPOX+YK+MuPVa9/9Y8nfHzUQrN3R+4veoiIaI2rNrT8frkrx6niksAnEpu/zP4Bzu6BNuAWB+kuFfzk3U4i9ztnxG13QKBF7FzajdoRPTokRCYE2hAxvYAgIj5qwCNokyPnCNrJqd5fmDM/dXIELSIiPjVbi7AJyRxB+7TMK3D4tplYkunUjoP+P7dE2p60BFrEzqXdaA6ud2clBCWBNrIh0IaI6QUEEfFRi4odfr9YJiRH1h60sz7wBtozP3IULCIiPj0DBdrUDO8/aObmOVsc5cketE/HSI3hzRJoETuXdqM5uDp2ZAVlqIG2sbFJn372uQa+M13de4/Wi69NVPriDaqqud3mYy9dva7+byV3+LUfZe+Rk77//1v/sSqrqA7L89odY4G2weMJSrtjegFBRHzc4hLvmap35Tgj4hfKRyXQIkaONy9fU9n5QuPjQOyIgT5xsivnYdgsKvZ+H83JdUTMEZ2RFmiLigNvixQJ20k0S6BF7FzaDasDbcbKbA14O0X5PxTp7r16Ff9WoknvfaTBMalt9rlwBdqmpia9+NpE3+WqmttqbGwK+XkjAWOBtlvPmKC0O6YXEETEziSBFjECvFGu6tTxvl8CqqdGE2ox4iwuqVfWVqcSkr1HyGbviYyo2ZqRFmhLqziCFhHtpd2wMtDeLK/W/3v5P7p6rcTveo+nUa/8b4p2HfpakvTcwDht339ccdOXa9DIGVqXfVDSw0B74rvzGhyT6vccb4yZpePfnvW7zu1uUMr7a9XvzWnqE5Wk5Hlr5HC6NCFtpbr1jNHgmFTdLK/2O4L2k6056v3vqRoWm64dB0+o97+nSpImpK7QyqzdSpi5Qv3enKbMTfv1ydYcjUlaoldHztAvv/4hSaqsrtPYaUvU/61k9YlKUvbuLzs0V08LY4F2cPRM/XNQvKbMWqXPvzqjX6/fDKjdMb2AICJ2Jgm0iPa3cs3SFiejqJ4a/dRft+zCRd06dcqYZRcuGp97xNaMxECbk+tosZ1EpByxXFpFoEXsbNoNKwPtoWP5LcJqMyuzdmty+ipJ0vODx+ujDXskeY9u7d57tO7XO32B1t3g0fODx+ty8Q1J3vD73MA4uVxuv+c8euJ7xSYtVlNTkxobm7Q4c7vOFl5RTd0dde8T67tfc6C9eq1Ezw2MU0VVrVwuty+0StLk9FUal7JUTU1N+v2PW/pTr1Ha9/m3kqSPN+/XnGWbJHmPEE5fvEGSdKO0XN37xKq8srZD8/U0MLoH7aWr17X44+3qNXyKXvtPmj797HNVVNlncoLB9AKCiNiZJNAi2t/qtPiAZwx+2q9blRr4da2yKjXe+NwjtmYkBtrSKu9WB9l7Ims7iWYJtIidS7thZaDdvv+4RicueuJtMZMXSvIG2ktXr/tu+8egeP1xs8Jvi4M5Sz/V8nU7JUnZu7/UjIz1LZ7zbOEveumNyfo6/4Kcj8TbJwXa7fuPa0LaSt/1X37zg1+g3bLnmCTvEb/desb49s099GW+Emau8N3mdjf4nmPA2yk6d/FKsFP01LHFScIaG5t0+tzPSl+8Qc8PHq8xSUt06Mt81TtcpofWJqYXEETEziSBFtH+mgq0FR8vVVVqfIesGfe6akf0UM241zv8HBUfLzU+94itGamBNpIl0CJ2Lu2GlYH2xHfn9erIGQFv+2jDHiXOzpTkDbTXS275bmu+/Gig/f78Jd/2A6OmLNQ3py4EfN6jJ84oetIC/f2VcUr7IEv3651PDLTrsg/qvUUbfNf/+FOxX6B99MRi3XrG6H69Q5J0OPe04qYvl+Q9SDR+xnINHztbUXFz9Ze+Y3S28Jf2TdRTxBaB9lFcLrf2Hjmpl4cn6tkB75oeTpuYXkAQETuTBFpEe1h2vlBl+ad08/K1lrfl57eIsxWb1hofc2tWfLrGO85P1xgfC+LTkkBrvQRaxM6l3bAy0FZW1+mv/cb6HR0reQ+ofHXkDO0/micpuEDb1NSkXsOn6MR359VjyAS5G1o/wVht3V2NTlykDdsPPzHQbtlzTFNmrfJdn3vybLsD7ZBRqX736xuVRKANhMPp8k3cswPeVeLs1Trx3XnTw2oT0wsIImJnkkCLaN7H95gt37GlxX3K8vNVuWyuquZP063cY8bH3JYEWuwKEmitl0CL2Lm0G1YGWklatWGv+r+VrDPnLsnpcutWRY2mzsnU8LGz1djYJCm4QCtJizO3q/e/p/od9foo2bu/1OqNe9XU1KSmpialLvxEG7cf0Z279/WnXqN0v94p6WGgLfz5V70wJEE1dXfkdjdoXMqydgfa5wePV9Hl3yRJObmn9PdXxunk6cIOz1e4MRpoGxubdOrsT0pd+In+/so4vRU/TzsOfKXbd+9bPpampiZ9uH6XBrydrAFvJyvtgyzfFgs3SssVM3mh/jkoXsNi03W28OEeFaYXEETEziSBFtGsgY6OrR3RQ2XnC42PLRQJtNgVtHOgLSp2KK8g/N/bF692at5SlzFnzPPO+aQZ5sbQ7IWf+dkJMVTthtWBtqmpSZ/u+Fyv/G+KuvcerX8NnaD0xRtUW3fXd59gA+1Pv/ymbj1j9N0PFwO+VnXtHcVNX66XhyeqT1SSEmev9kXV2KTF+segeP34U7Ev0Ere6Ntr+BS9GT9P2/blasDb7Qu02/blqtfwKRoWm65PP/tcH67fpX8NnaDSssoOz1k4MRZol6z5TC+9MVkD3k7WRxv2+P0Bm+DoiTMaPna26h0ueTyNmpC2Ums2H5AkRU9aoE07j8rjadTJ04XqOWyy7xBt0wsIImJnkkCLaNaKTWsDBtpAR9FGkgRabM3iknqt2uBS2gK33l/meioh0QrtGmiXZHrHFTvJraRZLhUUhe+5J0x3+Z67q3v6fGS+bxHtpN1o/jns7uyEoAw10IaTiqpa9Rw2WR5PY9ies/koXkk6c+6SRrw7O2zPbQeMBdpuPWPUY8gE/fvdORoWm67XR78XUKvI3LRf76/4r+/ylj3HNHVOpqpqbuvZAePU4Hm4Z8YbY2bpzLlLkgi0iIjhlECLaNbyQ/sCH0Gbn298bKFIoMXWnL+sZeQLZ0S0SjsG2uw9zhZzmzQrfNsBNAfaD9e5tCrL2SWdONNFoEUMk3Yj0M9kwWiapqYmpX2Q5TvoMRxU197RswPe1dVrJWpqatJ7izYoY2V22J7fDhgLtIdzTwelVfxw4bJeHTlDNXV35HS5NS5lqXbnfKOzhVc0dFSa332nzsnUjoMnJBFoERHDKYEW0bzVidF+P+RXp8UbH1OoRkKgzcl1KG2BWwkpbq3a4FJxSev3Ly6pj8iIaMqConpt2ePUlj1Ov3krKKoPeDRi1lb7RM5gtWOgDRS/wxnAJ0z3Pt/G7Q5l7+6aJr7nneNT5/jZCTFU7UawWxs8rkkqq+vUc9hkTUhdIYfTFdbn3nHgK/WJSlLvEYlKmLlCNXV3wvr8prHNScLswNzlm9W992j9rf9YxUxeKLe7Qd/9cFFR4+b43S/tgyxt3nlUklR524lPwSpEfLJ3XJ3W2Yu9v2id/8n8WBC7stV7tqkme52q92wzPpawfD3/XeeNzf9dZ3wsgfzmdMuAlfGh+4n3/3T7w+iVMN2t7y+Y/xrs7PcXWkbCb0575+29BYE/Lj5pplvL17h05Xrwr/P+crOmzPF+nVPSzI/l6h/e9+/Hnwae36DmNIifiSY+CLSbdzq1bV/XdGr6g+hdaIOfURHDpKkOAWAS2wba23fv+zYCtoLP9h/X2GlLdL/eKY+nURkrt2jWko06d/GKBsek+t03cfZq7Tr0tSTJ6fLgU9CBiE/U9N/Pp+m8JQ2KneTW5asNxseCiJ3Hu9vWe/dw27be+FgCuXJd4IhVWtbyvl/nNbS434Tp7qcyroUfmt1Tc+GH4fm6PljRcs6mvvfI5YktX3v0RLdGP5jbmrrgXsfkXNnN3/9olNPl0dXfWs79lp3BfY8P5meiSTO8z7ltr1u7D3VNk2Z55+Cnyw3Gf0ZFDJemvh8DmMS2gXbO0k/VrWeMZa83IXWFdh464bt8vuiq+r+VrJq6O/prv7Gqdzw8NHvA28k6d/GKJLY4QEQMp2xxgIhPQ7tvcfDoSZQetai45Vr4pPs+jRNbzVtq9gRM85aGZ6/ShOTWX2f0gyDbHGub/7/5v7tygtsyoPn5TO9JatKEZO975sLlh3NWUFSvrK1OLcl0Kic3vO9TtjhgiwPEcApgEtsG2j9uVujCT8WWvd6H63dp4nsrfScDW/HJbk1IXSFJGp24SGs2H5DH06hDx/LVNyrJdyY60wsIImJnkkCLiE9DuwfavAJHi2g4f1ngOJm1NfiYa9Ls3d6vKXu3+XEFitrNYS9QrH38/7P3tC/Qmg52Jp04vTnQWvPnTqAl0CKGUwCT2DbQWs29+w5Nz1in/m8lq/9byRqXslQ3y71bLJSUVSp60gL9Y1C8ho+draLLv/keZ3oBQUTsTBJoEfFpaPdAW1pVr9w8p1Iz3EpIbv0kYUXFjhZHhC7JtM9JoZq1U6AtKnYoKf3h0cBJ6S7tzAkQuicGjrXBxm8CLYGWQIsY2doNx44sOXZuaLcQmRgNtAe+yPM7Sjb/hyK99p809f73VH2wepvvKFU7Y3oBQUTsTNou0N4oV/nOLarYtFZl+fnmx4OIHTISAm17LCp2aNUGl+YvcwX98XurtVOgLa2qV3GJ90jlvAKHL35n73kYacdMfmSbgwfbGyQku5WbF/z8EmgJtARaxMjWbtSO6NEhITIxFmi37z+uv/Qdo+N55yRJdXfu6bmBcZqesU7Zu7/Ui69N1Poth0wNL2hMLyCIiJ1JWwXaG+WqiRvm98NO+Y4t5seFiO22swXaSNBugdYKCbQEWgItYmRrN5p/B7k7KyEoCbSRjbFAOzh6pg58kee7vOPAV3p15Aw1NTVJko6eOKPB0TNNDS9oTC8giIidSTsF2so1SwP+i3TpjXLjY3vcis3rjHor/5TxOUBsTQKt9RJou6YEWgItYiRrN5p//3DsyArKcAXat8fP12v/SfO77tLV6+r/VrIkaULqCh384rt2PedzA+NUVlEd8thaY++Rk77//1v/sU/99cKNsUD7zMujVVld57ucPG+Nlq7Z4btcWlap7n1iTQytXZheQBARO5N2CrTVafEBA60dtzro6MefwiXRC+0ugdZ6CbRdUwItgRYxkrUbJgLt1WslGpeyVPEzlut80VXf9XYPtE1NTXrxtYm+y1U1t9XY2PTUXu9pYCzQ/q3/WFVU1fouvzw80bfdgSTdKC3XswPeNTG0dmF6AUFE7EzaKdCW79jSIkTWRPczPq5AVny6psPWjHtdtSN6qHLZnA4/B0fQot0l0FovgbZrSqAl0CJGsnbDRKBd/PF27T1yUjm5pzRn2Sbf9cEE2nEpy7RkzWcak7REI96drbQPsuRu8Eh6GGgv/FSsge9M9z3m0ct531/UkFGpGvB2sgZHz9Q3py60eA23u0Ep769VvzenqU9UkpLnrZHD6dKEtJXq1jNGg2NSdbO82u8I2k+25qj3v6dqWGy6dhw8od7/nur7OlZm7VbCzBXq9+Y0ZW7ar0+25mhM0hK9OnKGfvn1D0lSZXWdxk5bov5vJatPVJKyd38Z0hw/CWOBdlhsuo4cPy1JOnPukv7cd4zu3Xf4bv/8K7Y4QETsatop0JbeKFd1Yh9RvT8AACAASURBVLT/HrSH9pkfV5itSvUeKUxkxc4sgdZ6CbRdUwItgRYxkrUbVgdaj6dR/d6cprv36lXvcKn3iES5XG5JwQXaCakr9Pb4+WrweNTY2KS34ucpJ/eUpOAC7eCYVJ0t/EWSdLn4htIXb2jxGkdPfK/YpMVqampSY2OTFmdu19nCK6qpu+P3KfzmQHv1WomeGxiniqpauVxuX2iVpMnpqzQuZamampr0+x+39Kdeo7Tv828lSR9v3u8L1Bkrs31juVFaru59YlVeWatwYyzQ7jx0Qn9/ZZwSZ6/W86+O1wert/luK/jxF/Uekag1mw+YGl7QmF5AEBE7k7YKtA8sy89X+aF9unn5mvGxPA0JtNgVJNBaL4G2a0qgJdAiRrJ2w+pA+82pC5o6J9N3eUbGen3x9Q+Sgg+0m3ce9V3+aMMezVu+WVJwgXZ04iLNXb5ZN0rLnzjGs4W/6KU3Juvr/AtyPojHkp4YaLfvP64JaSt913/5zQ9+gXbLnmOSvHG6W88YVdXcliQd+jJfCTNX+G5zuxt8zzHg7RSdu3jliWPsKMYCreTdwHfmgvXauP2I3xeb9kGWpmes8x0KbWdMLyCIiJ1JOwbazi6BFruCBFrrJdB2TQm0BFrESNZuWB1oE2ev1t/6j9VzA+P03MA4/a3/WI2f+aGk4APtoyfq2rj9iKbN+1hScIG2srpO8z/8r3oOm6zB0TN18vSPAcd59MQZRU9aoL+/Mk5pH2Tpfr3ziYF2XfZBvbfo4ZG4P/5U7BdoHx1vt54xul/v/WT/4dzTipu+3Pe1x89YruFjZysqbq7+0neM70jfcGI00D4Jj6fR9BCCxvQCgojYmSTQWi+BFruCBFrrJdB2TQm0BFrESNZuWBlob9+9rx5DJvgdPNng8ejF1yaquvZO0IF24/YjvsvL1+3U/A//K+lhoC28dE0D3k7x3Sfv+4t+wbaZ49+e1d9fGddqH6ytu6vRiYu0YfvhJwbaLXuOacqsVb7rc0+ebXegHTIq1e9+faOSOmegdThdyvv+onYc+Eq7Dn2ts4W/qMFj/yNnmzG9gCAidiYJtNZLoMWuIIHWegm0XVMCLYEWMZK1G1YG2u37j/ttb9DMjIz1yt79ZdCBNipurhxOlxxOlwbHpOroiTOSHgbasgrvCbzu1zslSXOWfqqB70xXvcOlqLi5vhN73Sgt13MD49TY2OT3Gtm7v9TqjXvV1NSkpqYmpS78RBu3H9Gdu/f1p16jfM/bHGgLf/5VLwxJUE3dHbndDRqXsqzdgfb5weNVdPk3SVJO7in9/ZVxOnm6sEPz3BpGA+3xvHP619AJ6tYzRi++NlEvDElQt54x6huVpDPnLpkcWtCYXkAQETuTBFrrJdBiV5BAa70E2q4pgZZAixjJ2g0rA21U3Fwdzj3d4vrck2c1fOzsoAPtkjWf6c34eeo1fIreW7TBdwRsc6CVpIWrtmroqDSNS1mmT3d8rlf+13tE7d4jJzXg7RT1jUrS4OiZOnayoMVrVNfeUdz05Xp5eKL6RCUpcfZqX1SNTVqsfwyK148/FfsCrSQtztyuXsOn6M34edq2L1cD3m5foN22L1e9hk/RsNh0ffrZ5/pw/S79a+gElZZVdmCmn4yxQHvp6nU98/JoLc7crpq6O77rb5SWK3F2pv7cd4wuXb1uanhBY3oBQUTsTBJorZdAi11BOwfaomKHioo735pHoO2aEmgJtIiRrN1oDq53ZycEZah70IbKk8KtaR49CvfMuUsa8e5sc4NpBWOBduqcTE1IXfHE28elLNOk9z6ycEQdw/QCgojYmSTQWi+BFruCdgy0xSX1en+Zyxf10ha4O1WoJdB2TQm0BFrESNZuNAfX9moKOwba6to7enbAu7p6rURNTU16b9EGZazMNj2sgBgLtD2HTW51z4aCH3/R86+Ot3BEHcP0AoKI2Jkk0FovgRa7gnYMtKs2PIyzzS7JdBofV7gk0HZNCbQEWsRI1m4Eu7XB45rCjoFWknYc+Ep9opLUe0SiEmau8PsUv50wFmj/1GuUrpfceuLtN29VqVvPGOsG1EFMLyCIiJ1JAq31EmixK2jHQJuU3jLQxk5yGx9XuCTQdk0JtARaxEgWwCTGAm23njG+DXsDUVZRTaBFROxiEmitl0CLXUE7BtrUjJZxNindZXxc4ZJA2zUl0BJoESNZAJMYDbQrs3Zr4/YjAV2ZtZtAi4jYxSTQWi+BFruCdgy0uXnOFoF2Vw5bHESyBFoCLYEWMbIFMImxQDvwnelBaXdMLyCIiM0Wl3g1PY5QJNBaL4EWu4J2DLSlVfXKK3BoSaZTSzKdys3rPHG2tIpA21Ul0BJoESNZAJMYC7SdBdMLCCLi42cCf3+ZK2JDbSQE2puXr6li01qV79yi0hvlxscTqgRaDNabl6+pLP+Uys4XGh9Le7VroO3MEmi7pgRaAi1iJGs39h/x6MDnje0WIhMCbYiYXkAQEQOdCXzVhsjcx9Dugbb80D7Vjujx0Oj+unn5mvFxhSKBFoPx8fd+5fK5xsfUHgm01hspgXZXjlOrNri0+7Az5H/cJNASaAm0iJGt3Qh0MtFghMiELQ5CxPQCgoiYkNzym3JCSmSeCdzugbYmup9/oB3RQ5XLIitUPS6BFtvy5uVrLd73tSN66FbuMeNjC1YCrfVGQqCdv8z/HzjTFrhDirQEWgItgRYxsrUbzd9XFn3UEJQE2sjGWKB90snBHtfumF5AEBGT0lseQZuaQaANuzfKA0aq6rR482MLQQIttuWt3GMB3/sVm9YaH1uw2i3QFpfUK/c7p/IKHBG7JU1b2j3Q5hU4Ah51FMqJ2gi0BFoCLWJkazeav6/sP+IJylAD7fG8cxo0coaeGxin6EkL9NuNMkmS0+XW9Ix1+tfQCeoblaQdB77yPeZGabliJi/UPwfFa1hsus4WXpEkuVxudesZo+59Yn0mzl4d2oR0cmy9xUFTU5PpIbSJ6QUEEXFXTuc5E7itA20VR9Bi17TsfGHAQFu+Y4vxsQWrnQJtQVG9ElIertdJs1wqKm57zduV41TWVmdYPopvhXYPtLl5Lb93xk5yK3sPgZZAG1kSaBHDp92wMtCWVVTruYFxOlt4RY2NTVrxyW6NmrJQkrR6415NmbVKDqdLJWWV6jlssn759Q9JUvSkBdq086g8nkadPF2onsMmy93gUWV1nV4YkhC2uegK2DLQ3qqo0brsg+r/VrLpobSJ6QUEEbG0yvuL5vxlLs1f5oroM4HbPdDeyj3mF2lrxr2u0hvlEX3yJAItBmPlsrn+R44nRkfUSfLsFGgDfephSWbr63a4P4pvhXYPtEXFgY+gDeV7KIGWQEugRYxs7YbVgfboiTO+yz9f+V0vvTFZkjQ4eqYu/FTsu23R6m1avXGvqmpu69kB49Tg8fhue2PMLJ05d0nXrt+MiKZnJ2wTaN0NHh07WaC46cv1p16jNPCd6cradtj0sNrE9AKCiNiZtHugLa3y7sdZfmifd//NG+Wq2LQ2Yj/2XVpFoMXgLT+0T5VrlnqPnI2gOFtaZa9AGygKJqU/+cSOT/oofk5u6+tk8z/amTJplst3hLDpsQSa07wCh3Yc9D+KNmtraP/ASaAl0BJoESNbu2H1FgePkrXtsKbOyZQkPfPyaNXdvue77bP9xzVt3sc6W3hFQ0el+T1u6pxM7Th4Qj/+VKz/eX2SRk1ZqB5DJmj01EW+LRMgMMYD7a/Xb2rJms/0r6ET9I9B8fq/L43SsZMFpocVNKYXEETEzmQkBNpHfdJHv4M9kvbmjQrdOnXKqNWJI73hatcWo+Mou3DR+J8ndl7tFGjbewRtoG1sgvkofnvO9tzZbZ6T4pJ6vf/I0cgJKW7t/8KlvAJHUNtMtCWBlkBLoEWMbO2GqUD77ZlC9Y1KUllFtdwNHnXrGSOH0+W7ff/RPE1IXaHvfrioqHFz/B6b9kGWNu88quLfSjR7yaf69fpNOV1uLV+3s0XMBX+MBdq9R07qfxPe1zMvj1b8jOU6euKMXC63/tZ/rK6X3DI1rHZjegFBROxMRlqgffzo2fYeRXsr/1TAx3dFq1Ij+2RraG/tFGgf3/s0IdmtgqIn3/9JH8XPK2h9nWy+36osZ5f18UAbKHYnpITvpJoEWgItgRYxsrUbJgLtoWP5GvjOdL8u98zLo1VTd8d3edu+XKXMX6tzF69ocEyq3+MTZ6/WrkNft3hed4NH3XuPVnllbUjj68wYC7TdesYocXamKqvr/K4n0CIidl0jLdA+6ez2t3KPBff4B4G25q2XVDPu9a7p6FcJtPjUtVOgLa3ynigse49T2XucQR25mZPrH2mD+Sg+sdDRItA+vpdvsLE7WJlzAq0JCbSI4dNuWB1oj397VkNHpbXodENHpen0uZ99l9MXb9C67IOqqbujv/Ybq3rHw6NrB7ydrHMXr6iiqlbFv5X4rne53PpTr1F+oRf8MRZoMzftV+9/T9WLr03Ugo+2qOjyb5IItIiIpjz3s/lfMianen/JyPzUaXQcB79sO37cvHxNFZvWqiZuWMuTJwU5575AO+51VXy6pktatXQ2gRafunYLtB2xqNi7b2prR9s+KrGwZaDN2hp4u4hw/Rkx5wRaExJoEcOn3bAy0Nbduadew6eopKyyxW1rNh/QuJSlcjhdunqtRC8MSdDvf3i73ejERVqz+YA8nkYdOpavvlFJ8ngadfL0j+o9IlElZZXyeBq1Mmu3ouLmhjQfnR2je9A2Njbp2zOFmpy+Ss+8PFqvjpyh//fyf1T486+WjyXtgyx17xP70N6jNWSU91DtG6Xlipm8UP8cFK9hsek6W3jF9zjTCwgiYrg88lXgX1y7oukfPPmEPaVVD/aeje7/MMwO76GqWRO9J09qx5wTaAm0aI2dIdC2V2Jhy0BbVOxQQrL/et/WXr7Mefsk0FovgRYxfNoNKwPt3iMn1a1njH8X6xOr2rq7crncmpGxXj2GTFC/N6dp/9E83+NKyioVPWmB/jEoXsPHzvYdfClJ67cc0ktvTNbzg8dr7LQlAeMvPMT4ScKaqaq5rQ3bD2vgO9P1p16jFDd9udGTha34ZLcyN+2XJEVPWqBNO48++FeAQvUcNlnuBo8kAi0idh6bA+2kGS7NW+rskr63wBlUoK2aP63l1gbR/VV6o1xl+aeCPsM9gZZAi9ZIoO2aBjpCtrjk4fYSuXnhi7PMuVcCrfUSaBHDp91o/r6y6KOGoAx1iwMwi20C7aMU/PiLpmes01/6jjHy+jdKy/XK/6bI4XSpqua2nh0wTg0ej+/2N8bM0plzlyQRaBGx83j4K+8vszPnu4z/smHKzI3eOZjVRqCtTosPfLKrkX19/x/M0bQEWgJtV7DswkVVpY43avNWJDVxw4yPxap5JxYGDrTM+dOVQGu9BFrE8Gk3OvppQIhMbBlom7lz976R101d+Il2HPhKknS28IqGjkrzu33qnEztOHhCEoEWETuPBNrgA23lsrkt4+zwF1pcV3a+sNXnIdAGEWhvlKti01pVvZ+s8p3t20IC2+mDI8Dbet+21+b3OXq16s+TWEigNSGB1noJtIjh024Eu7XB40JkYttAe/CL7/Teog2Wv25ZRbV6DZ8ip8v7rw7f/XBRUePm+N0n7YMsbd55VJJUd8+NiF3U24a8c7/hqfjVt95fctIy3NpxoGu6/r/eOZi7uPV5vl1Ro7qpMQ+jy9u9VDuiZaC9vWV96/N+9nvvfeOGqW7L+q7pinmqHdFDde+NDzzP8W/4zWndwulP7e9AV/b2FwdVF9P/6cxz8/s89lXVrZjXZW2eW6v+TJtjoel11aTNc8CcW+ekGd45uPpbGNalIH4mmvjg9bJ3ubRjf9d0arp3Di4UtT1fpn92RrS7ACaxbaDdsudLjZ22xPLX3bj9iOYu3+y7fO7iFQ2OSfW7T+Ls1dp16GtJ0t16NyJ2Ue90Mr/KezTQurqk6//rehhog5iz22fP6Pa3x1V3LCfgkXK3vzjY+nOcezTQruuarvAejVyXPr7l/O7bFnheL/1s/O9LXXqCWT9ZFtavpzamX8t53rctPM/P+1x1W9Y9DLQWvUcfxkLza6spfYGWObfMSTO88371d2vm3Bdod5v/2k3ZHGh//Lnt+TL9szOi3QUwiW0DrSlGTszQN6cu+C7X1N3RX/uNVb3D5btuwNvJOnfxiiS2OEBE+5pX4NDSTKfeX+bS4eNtf+yNLQ6C3+IgkNWJ0X5xq2bc622eLIwtDlrf4qBi09qAgbYsP9/43y/TH5MP5569Zfn5gV9j/rSwPD/vc69tbXGQm+fU0kyv4Th5FR+3Z4sDE7LFgfWyxQFi+AQwiS0CbWNjkyqr61RSVtlCq3l2wLgWrzs6cZHWbD4gj6dRh47lq29UkjyeRkkEWkS0p7l5zhabxWfvaf0XfgJtaIG29Ea5yndsUXVavCo2rW0zzpZWEa7aCrS3co8FDIc3L18z/nfsVv6pDls9ZaRqR/RQxc4tHX6OsgsXw/a13Lx8LeA8V2xaG7a56urv87YC7a6clmv2rpzQIi2xkEBrQgKt9RJoEcMngEmMB9rPvzqj5wePV7eeMQG1knv3HerWM8a3/2wzJWWVip60QP8YFK/hY2er6PJvvttMLyCIiIGcv8zV4pf9hJTWf0kl0IYYaDsgJ09q+4jQyjVLffepie6n8kP7jP/9CtWq1HjVjuihW/mnjI8l0Dw3z3Uw/8jQnvc5gfbJgTY1o+UZmJNmhbYOEQsJtCYk0FovgRYxfNqN/Uc8OvB5Y7uFyMR4oH3xtYla8clu/XajTGUV1S20O6YXEETEQCaltwy0bf2SSqAl0Nox0JZWeY/wLMvPD1swNK0dA21pVb3KD+1T5bK5QR8B3t73OYH2yYE2Ibnleh1qWCQWEmhNSKC1XgItYvi0G4F+NghGiEyMB9o/9x2j+/VO08PoMKYXEETEQGZtbflx2fnLWo+OBNogA+2NclUun6vq1PGqXLMspJBFuGp9i4POql0Drd97fM0yX1Dkff70A+2qDS3/UW3VBo6gDVUCrfUSaK2XQIsYPu1G8/eVRR81BCWBNrIxHmgnp69S3vcXTQ+jw5heQBARA1lcUq8lmQ8jbWqGW0XFrf/gTqANItDeKFdN3DD/j4LHDetwvCJcEWhNjyWQj2934I20Szv8fLzP2w60xSX+W9PMX+ZScUlof47EQgKtCQm01kugRQyfdqP5+8r+I56gDDXQHs87p0EjZ+i5gXGKnrRAv90okyQ5XW5Nz1infw2doL5RSdpx4Cu/xx06lq9nB7yroye+97v+5OlCDRmVqudfHa+x05aosrquw2PrChgJtBu3H/G5ZvMB9YlK0pxlm7Rh+2G/2zZuP2JieO3C9AKCiNiaxSX1bYbZZgm0bQfa8kP7An48/1busQ79+RCuCLSmxxLImuh+Ld7jNXHDOvx8vM/bDrTNFhU7fGt2cUm9dh926v1lLmVtdbY72BILCbQmJNBaL4EWMXzaDSsDbVlFtZ4bGKezhVfU2NikFZ/s1qgpCyVJqzfu1ZRZq+RwulRSVqmewybrl1//kCR9uuNzTUhdoahxc/wC7Z279/XCkASdL7qqBo9HKz7ZrSmzVoU+KZ0YI4E2Km5u0Nod0wsIImK4JNC2HWgrNq0NGGjLd2zp0JwTrgi0pscSyICBdtzrHX4+3ufBB9pHffxkjwkp7nZFWmJhcIG2qNihLXuc2rLHqbyC0AIXc06gNSGBFjF82g2rA+3RE2d8l3++8rteemOyJGlw9Exd+KnYd9ui1du0euNeSdKlq9fV1NSk0YmL/ALt0RNnNHbaEt/lO3fvq3ufWLlcbMHwJIxvcfAkmpqa5HY3mB5Gm5heQBARwyWBtu1Ae/PytYCB9ublax2ac8IVgdb0WAIZ6B8iKjat7fDz8T5vf6DNK3D4xVlf+NvjDHreiYVtB9qConolpPjPcU5uxyMXc06gNSGBFjF82g2rtzh4lKxthzV1TqYk6ZmXR6vu9j3fbZ/tP65p8z72u//jgXbtfw8qY2W2331efG2ib9sEaInxQNv731MDXl93556ef3W8xaNpP6YXEETEcEmgDe4kYeWH9vmOMKyJ7qfyQ/s6POeEKwKt6bE8yYpNa1WdGK3qxOgOHyHO+5xAa9q2Au2je7U/eqRyR9/rzDmB1oQEWsTwaTdMBdpvzxSqb1SSyiqq5W7wqFvPGDmcLt/t+4/maULqCr/HPB5oP1y/S0vX7PC7T9+oJF26ej3k8XVWjAXavO8vanHmdj3z8mgtztzewonvrdRzA+NMDS9oTC8giIjhkkAbXKBttux8YchzTrgi0JoeixXyPm9/oC0qdighuWWgzc0j0LbHtgLt49tINNvRE7Qx5wRaExJoEcOn3TARaA8dy9fAd6breskt33XPvDxaNXV3fJe37ctVyvy1fo97PNCuyz6o+R/+1+8+PYZM8Hte8MdYoC3+rUQfrt+lP/UapQmpK1o4bd7H+ubUBVPDCxrTCwgiYrgk0LYv0IZDwhWB1vRYeJ/bM9CWVtUrJ9c/0rbn6NnSKmJh9u62A+2qDS0DbVJ6x9d/5pxAa0ICLWL4tBtWB9rj357V0FFpqqyu87t+6Kg0nT73s+9y+uINWpd90O8+jwfaL7/5QSMnZvgu36qo0V/7jVWDx9Ph8XV2jG9xsGrDXtNDCAnTCwgiYrgk0BJoCbTWSKDtmrY30DabV+Do0BGdxMK2A21xSb1SMx7Z3iDZrYKijr/XmXMCrQkJtIjh025YGWjr7txTr+FTVFJW2eK2NZsPaFzKUjmcLl29VqIXhiTo9z/8j4R9PNDeu+/QC0MSdOrsT2rweDR3+WbNyFjfobF1FYwE2i17julWRY3v/1vT7pheQBARwyWBlkBLoLVGAm3XtKOBtqMSC9sOtM3mFTiUm+fs8NYGzPlD2wq0xSX12n3YqS17nMorCD0oEmgJtIjh1G5YGWj3Hjmpbj1j1L1PrJ+1dXflcrk1I2O9egyZoH5vTtP+o3m+x70xZpa694nV/31plJ55ebS694nV0RNnJEnf/XBRg6Nn6vlXxyt+xnLV1t0Ny7x0VowE2tdHv6eLl6/5/r817Y7pBQQRMVwSaAm0BFprJNB2TQm01htsoGXOw2drgba4pF5Js/y3ldiV076tOx6XQEugRQyndqN5rVz0UUNQhuskYWAG41scPHomuEjE9AKCiBguCbQEWgKtNRJou6aBAm1xSb227HEqa6tTuw+HFqoel1hIoDVha4E2a6szrCdlK60i0GbvJtAihlO7EWjNDEaITIwH2u59YjVqykKtyz6oH38qlsfTaHpI7cL0AoKIGC4JtARaAq01Emi7po8H2kBHE67aEL61h1hIoDVha4F2/rKWJ2WLneQOaasDAi2BFjGc2o1gtzZ4XIhMjAfaS1eva8ueY0qcnamewybruYFxmpC6Qlv2HFPx76Wmh9cmphcQRMRwSaAl0BJorZFA2zV9PNDuygl8NGEoJ6l6VGIhgdaErQXaQO/5hOTQ/nwItARaxHAKYBLjgfZxrpeUa9u+XL06coa69YwxPZw2Mb2AICKGSwItgZZAa40E2q7p44E2e0/gQBuOEyeVVhELs3cTaE3Y1h60qRn+7/ec3NDe7wRaAi1iOAUwiS0CbW3dXR3/9qwWf7xdUXFz9Y9B8YqetEAfrt9lemhtYnoBQUQMlwRaAi2B1hoJtF3TxwNtTq4j4NGERcUE2nBJoLXe1gJts3kFDuXkOsLyXifQEmgRwymASYwH2ldHzlCfqCQlzs5U9u4vdfHyNTV4ImfPDNMLCCJiuCTQEmgJtNYYqYG2YtNaVU+NVk3cMFVsWsv7vJ0GOknYoydNSkgO/WjCRyUWEmhNGEygDacEWgItYjgFMInxQPtu8lK9+NpE/W/C+1q2dodOfHdedXfumR5W0JheQBARwyWBlkAbUYH2RrnKd25Rxaa1KsvPN/73pz1GYqCt2LTWFxibrVyzlPd5iIG2tKpeRcUO5RU4QjqTfSCJhQRaExJorZdAixg+7cb+Ix4d+Lyx3UJkYjzQSpLH06jCS9e0cfsRjZ/5oZ5/dbyGjkrTvOWbTQ+tTUwvIIiI4ZJAS6CNlEB78/I11Ub394uF5Yf2Gf87FKyRFGjLd2zxzvXwF1oE2tro/rzPwxBon5bEQgKtCQm01kugRQyfdiPQXvXBCJGJLQJtM06XW2cLf9G67IMa+M50ThKGiGihBFoCbaQE2splczscC+1gpATaW7nHHs5vgEBbE92P9zmB1tYSaK2XQGu9BFrE8Gk3mr+vLPqoISgJtJGN8UB77GSBFn+8XW/Fz1P33qPV/61kzVqyUYdzT6uq5rbp4bWJ6QUEETFcEmgJtJESaKvT4lsG2hE9VHa+0Pjfo2CMlEDrF8IDBNr2bnGABFqrJdBaL4HWegm0iOHTbjR/X9l/xBOUoQba43nnNGjkDD03ME7RkxbotxtlkrwHU07PWKd/DZ2gvlFJ2nHgK7/HHTqWr2cHvKujJ773XedyudWtZ4y694n1mTh7dYfH1hUwHmh7DZ+i6RnrtPfISd0srzY9nHZjegFBRAyXBFoCbaQE2so1Szt8NKcdjMhAO6KHake8oJoRLzyMszfK2/U+RwKt1ZoKtKuynF3WhOTmQOu0ZM4JtARaxHBqN6wMtGUV1XpuYJzOFl5RY2OTVnyyW6OmLJQkrd64V1NmrZLD6VJJWaV6DpusX379Q5L06Y7PNSF1haLGzfELtJXVdXphSELok9CFMB5oIx3TCwgiYrgk0BJoIyXQlt4oV3VitF+cvZV7zPjfoWCNlEBblp/fIi5Wp7XzZG68z30SaK3XVKBFjqC1UgItYvi0G1YH2qMnzvgu/3zld730xmRJ0uDombrwU7HvtkWrt2n1xr2SpEtXr6upr4mbNwAAIABJREFUqUmjExf5Bdpr12+q/1vJHRpLV8W2gfajDXsi4g/T9AKCiBguCbQE2ogJtA8sy89X+aF9unn5mvG/P+0xUgJtaZV3H9rqtHjVjHtdlcvmBn3ULO9zAq0dNBVop77n6rKOndIcaDmC1ioJtIjh025YvcXBo2RtO6ypczIlSc+8PFp1t+/5bvts/3FNm/ex3/0fD7Q//lSs/3l9kkZNWageQyZo9NRFvi0TIDC2DbTfninU+i2HTA+jTUwvIIiI4ZJAS6CNtEAbqUZSoOV9TqCNZNmD1nrZg9Z6CbSI4dNumAq0354pVN+oJJVVVMvd4FG3njFyOF2+2/cfzdOE1BV+j3k80Bb/VqLZSz7Vr9dvyulya/m6nRo6Ki3ksXVmjAfayemrdOfufdPD6DCmFxBExHBJoCXQEmitkUDbNSXQWi+B1noJtNZLoEUMn3bDRKA9dCxfA9+Zruslt3zXPfPyaNXU3fFd3rYvVynz1/o97vFA+zjuBo+69x6t8srakMbXmTEeaF8dOUPfn79kehgdxvQCgogYLgm0BFoCrTUSaLumBFrrJdBaL4HWegm0iOHTblgdaI9/e1ZDR6WpsrrO7/qho9J0+tzPvsvpizdoXfZBv/s8HmgrqmpV/FuJ77LL5dafeo3yC73gj/FA+8nWHA14O0Xpizdo/ZZD2rj9iJ92x/QCgogYLgm0BFoCrTUSaLumBFrrJdBaL4HWegm0iOHTblgZaOvu3FOv4VNUUlbZ4rY1mw9oXMpSOZwuXb1WoheGJOj3P2753efxQHvy9I/qPSJRJWWV8ngatTJrt6Li5nZobF0F44F2WGy6ouLmPlErOX3uZw18Z7qeHfCuxqUs0+0HWy/cKC1XzOSF+uegeA2LTdfZwiu+x5heQBARwyWBlkBLoLVGAm3XlEBrvQRa6yXQWi+BFjF82g0rA+3eIyfVrWeMuveJ9bO27q5cLrdmZKxXjyET1O/Nadp/NM/3uDfGzFL3PrH6vy+N0jMvj1b3PrE6euKMJGn9lkN66Y3Jen7weI2dtiRg/IWHGA+0dqHuzj29+NpEnTl3SU6XWxkrs/XZ/uOSpOhJC7Rp51F5PI06ebpQPYdNlrvBI4lAi4idRwJty0B78/I1Vb2frOqp0ap6P1ll5wvDOueEKwKt6bFYIe9zAq0pCbTWS6C1XgItYvi0G83fVxZ91BCU4TpJGJjBFoH2ekm5Vm/cqxkZ6yVJjY1Nlu9Lu/fISU2b93GL66tqbuvZAePU4PH4rntjzCydOecdn+kFBBExXBJoHwu0N8pVEzfMF1VqR/RQbXR/3bx8LWxzTrgi0JoeixXyPifQmpJAa70EWusl0CKGT7vR/H2lvUJkYjzQfvfDRXXvE6ux05aoW88YSVJpWaWeGxinA1/ktf7gMLLgoy2at3yzRk9dpD5RSZqRsV5379XrbOEVDR2V5nffqXMytePgCe9YbbCIICKGQwKtf6C9lXvMP84+sGLT2rDNOeGKQGt6LFbI+5xAa0oCrfUSaK2XQIsYPu1GsFsbPC5EJsYD7asjZ+ir785Jki/QStKZc5c0ZFSqZeOYuWC9BrydrJvl1XK63JqcvkoZK7P13Q8XFTVujt990z7I0uadRyVJ9U4PImKn8OvvvB+LeS/DrV0Hu6afZHt/0Zu7pEH38k4EDLR3t30Stjm/f/4H1Y7oobr4YbqzdX3XdOU81Y7oodvp443/HbDK2+njVTuih+6f/8H4WKyQ97nX5jXEqnlvjoWm11WTNs8Bc26dk2Z45+DaDWvmvPn1tu4x/7WbMmmWdw6KLjUYX+8RI10AkxgPtH/uO0YeT6Mk/0DrbvDoL33HWDaOjJVbtHDVVt/lgh9/0ZBRqTp38YoGx/iH4sTZq7Xr0NeSpJq7LkTETuGxk94jMNIy3Nq+39UlXbvZOwdzFrtVc6tKNTH9WgTammu/h23Oa384433euGGqyV7XJa39cK53Dt6LN/53wCpr3/MeQVv7wxnjY7Hk6+V97n2vN68hFs17cyw0va6atHkOmHPrnDjDOw+Xrlkz7xMfHEG7eZf5r92UU9O9c3DuojXvc8TOLIBJjAfaAW8n69LV65L8A+1X351Tn6gky8axeedRzVyw3ne54MdfNCw2XTV1d/TXfmNV73j4l3XA28k6d/GKJLY4QMTOI1sctDxJWNn5QtWMe90bVaL76VbusbDOOR/9ZosD02OxQt7nbHFgSrY4sF62OLBetjhADJ8AJjEeaHceOqEXX5uolVm71a1njP676wulfZClP/cdo617cy0bR2V1nZ4fPF6Xi2/I3eBR4uxMLf54uyRpdOIirdl8QB5Pow4dy1ffqCTfUb+mFxBExHBJoG0ZaJ+2hCsCremx8D4n0HZmCbTWS6C1XgItYvgEMInxQCtJObmn9J8pH6j3v6dq0MgZip+xXCdP/2j5OL7Ov6DeIxLVY8gETZv3se7dd0iSSsoqFT1pgf4xKF7Dx85W0eXffI8xvYAgIoZLAi2BlkBrjQTarimB1npDDbRZW52+53h/mUvFJcx5WxJorZdAixg+AUxii0AbyZheQBARwyWBlkBLoLVGAm3XlEBrvaEE2uw9D+Pso5GWOW/djgba4pJ6FRW3PzASaAm0iOEUwCTGA63T5dbqjXs1LDZd/xo6Qf/z+iSNeHe21mUflLvB/mfRM72AICKGSwItgZZAa40E2q4pgdZ6Qwm085e5WgTatp6LOW9/oC0uqdfSzIcxPG2BWwVFwf85EWgJtIjhFMAkxgNt0tyPNWRUqtZvOaT9R/O098hJrdqwV71HJGp6xjrTw2sT0wsIImK4JNASaAm01kig7ZoSaK2XQGu97Q20j24j8WikDfbPiUBLoEUMpwAmMR5o/zkoXvfrHS2uv15Srj/3HWNgRO3D9AKCiBguCbQEWgKtNRJou6YEWusNJdDm5rUMh1lbncx5G7Y30HYkhD8qgZZAixhOAUxiPNAOjkkNeP39eod6j0i0eDTtx/QCgogYLgm0BFoCrTUSaLumBFrrDfUkYbl5Ts1f5lJqhlvZe1qPs8y5VwKt9RJoEcMngEmMB9ote77UsrU7VFt313fdrYoapS/eoH2ff2twZMFhegFBRAyXBFoCLYHWGgm0XVMCrfW2FvuKih3assepVRtcys1rO74y58HZ3kCbV+BoEWeDieHNEmgJtIjhFMAkxgNtn6gkPfPyaHXrGaO/vzJOf+k7Rt16xujPfcfohSEJen7weJ92xPQCgogYLgm0BFoCrTUSaLumBFrrfVKgLSp2KCGl41GQOX+y7Q20pVXeSLsk03u0ck5u+yIjgZZAixhOAUxiPNAePfG9ck+eDUo7YnoBQUQMlwRaAm1XCLQ3b1To1qlTRq1OHKnaET1UsWuL8bHwPifQdmafFGhXbQjtY/XM+ZPtSKANRQItgRYxnAKYxHigbcbtbtAfNytMD6PdmF5AEBHDJYGWQNsVAm3znKN1sZD3OYHWlE8Kr0/a97SgiDkPVQKt9RJoEcMngEmMB9p6h0upCz/xbXMgSdW1d/T/27v3/6gKO//j/4/d77pb3dou29LWCqi1CpbStW6gBBpCNBggURO5yE2QxGoxkmLQ2IRaJPFGdKnEYt0QsIZLQ6yII1ZMCEkmCahkJsPA+/vDkMAwk2Quh/nMnPN6Ph6vx0MgwOEQTuTNyZl5Dz2h/oGztgeXAOsLCBGRUzHQMtB6aaAd/O8farBgpmdjoGWg9ULjDbT1TcGYcbaolDtonYiBNvMx0BI5F2DJfKCt2Fir35RW6uhHvrGB9vxwUA+v/72WPf6c7cElwPoCQkTkVAy0DLSeGmg9fM4zPRZyzjN/zrv9jIX1jbEDbXNL5Nmz84tD+k1J9Djb2p7+uMU5Z6C1iIGWyLkAS+YD7XfuWKTBs19J0thAK0nnvj6v/7r7AaOjSpz1BYSIyKkYaBloLWKgdf9YyDnP/Dnv9jMW1jdGD7St7YGYu2YXLQ/pL20B+bqiz12nL6DK6shdthUbQmppTewFxDjnDLQWMdASORdgyXyg/d5PFys4EpIUPdAODH2lm6YvNDqqxFlfQIiInIqBloHWIgZa94+FnPPMn/NuP2NhfWP0QBvvsQb5xfHH1/L1sW+XyB22nHMGWosYaImcC7BkPtA+UP60NvyuQYHgyNhAe/qMX4sf/a0WPfyU7cElwPoCQkTkVAy0DLQWMdC6fyzknCd+zts7I3d6dvr4dHsnSmSgvXZ4be8cjvt2W7ZP/nGBc85AaxEDLZFzAZbMB9rTvQP66f88MvYiYbfcWagbps7VnEWPq7un3/rwJmV9ASEicioGWgZai5IZaE8fP6m+uhr1b63SmZa9nPPrPBbyfp7Zc762auTKM1HLEv+0+vFiLIweaDt9ARWVRo+u5etjXxiMgTa9GGgzHwMtkXMBlswHWkkKhy+q/e+f6NW339fb7x5U5/HPrQ8pYdYXECIip2KgZaC1KNGBtudIh4bypo+NXEOzp6ivroZzfp3GQt7PM3vOdzXH3t1ZVBY7HibTlWEx6NmufZGw9s5hba4Oam3ViLZsH5GvK/J1DU1BtXdeOXc84iD1GGgzHwMtkXMBlrJmoP3g8Md69e33x77u629y4w+H9QWEiMipGGgZaC1KdKDtr3o8apxNdWDknE8+FvJ+nvlzfvXds8mOguMV78fzauOdoy3bo8/76F2ynb6ANlcHVVQaucuWFwlLPAbazMdAS+RcgCXzgfbL032a/t+lumn6wrFn0Hb19OuWOwvV8Y/PbA8uAdYXECIip2KgZaC1KNGBdqCiMO5Ae/r4Sc65w2Mh7+eZP+e1O+I/H9XXlfp5H/0xlj424tkmGmjHe5RBOo+WYKBloLWIgZbIuQBL5gPt3CVP6JnaRoXDF8cGWklqaHpHecUb7A4sQdYXECIip2KgZaC1KNGBtq+uJmacHSyYyTm/DmMh7+eZP+fxno9au4Nn0KbbRAPteC8aVt/EQJtODLSZj4GWyLkAS+YD7b/ftkDBkZAkRQ20oQth/cftBUZHlTjrCwgRkVMx0DLQWpTwi4Sd6o26i3Ywb5p6jnRwzq/DWMj7uc0593VFRsPaHcG0XyCs289YWN848UA73h20O16N/B7U7oh+Li3nPLEYaDMfAy2RcwGWzAfaqbOWqH/grKTogfbEyS/1nz8rMjqqxFlfQIiInIqBloHWooQH2sv1tLWpp61N3ad6OefXcSzk/Ty3z3m3n7GwvnHigbbbH/sM2sc2xD4LOJnnAHPOGWgtYqAlci7AkvlAu/HZP+p/HlyvA+0f6Yapc/Xxp1/ojT+3avp/l2rNUy9ZH96krC8gREROxUDLQGtRsgMt5zz3xkLOeebPebefsbC+MXag7fQFtGX7iNZVjaihKShf17BaWoOqb4rctXztYybyi0NaW5X4xwPOOQOtRQy0RM4FWDIfaAPBEa3a/KL+7bYFumHqXN0wda5unlGgyq07xx59kM2sLyBERE7FQMtAaxEDrfvHQs555s95t5+xsL4xeqDt9AVUVBY9vq67ZnyN98iDZSsYaJOJgTbzMdASORdgyXygvXTpkiQpFLqgrp7+sccdSNL54YDVYSXM+gJCRORUDLTODrQ9bW2Tvg3DFQOtF8ZCznnmz3m3n7GwvjF6oB3vRcGufs7s2qrYRxxs2c5Am0wMtJmPgZbIuQBL5gNtyapn494pe6jjE902Z5nBESXH+gJCRORUDLQTD7Q9RzrUV1ej3t2vT3gee3e/NjbEDOVNV+/u18Z9W4YrBlovjIWc88yf824/Y2F9Y/RAe+3zZuM9Y7a9c1jLVlx5u/L1Ifm6OOfJlMxA2945rNb2QNIvxnZ1DLQMtEROBlgyH2jnL92kXxWt09DZryVF7qStqtmpG2+dr6efbzQ+uslZX0CIiJyKgXb8gbZ3Z8OV0XX2FA0szYv7IlU9Rzqi3m6008dPxj3nY8NV/p3qr1rtyQZWLUl9oD3Vq4HyxWPnuX9r1aTfh7GQgdYL57zbz1hY3xg90La0xt5BW1Qaf4BtbQ8k9eJgnPMrJTrQ1u6I/v2obwqm9H7OQMtAS+RkgCXzgfZCOKzHn3pJt/+qTH/Zf1j3/LpCd9z/sDr+8Zn1oSXE+gJCRORUDLTxB9rTx0/GHV17dzbEnMO+upqE37bbf2W4otQG2oGKwpgfp6+uZsLvw1jIQOuFc97tZyysb4x9kbCrH3NQVBpKaYTlnE9cIgNte2f85/2mciftA5d/vlVPBrWm0psVLr880B5loCVKN8CS+UA7qqHpHf3Lj+bpgYpnFAiOWB9OwqwvIERETsVAG3+g7Wlrizso9lc9HnMOox5vcFVnWvbGPec9R4/JX15o2kDebZG7gh/6H9Pj6HuuMun32XjnemBp3oTfh7GQgdYL57zbz1hY3xg70I6WzqfUc84nLpGBdrznAadyF+3oHbTEHbRETgRYMhloG5r2xq3o0af1vZ8u1h92/Xns67Kd9QWEiMipGGjTv4O2+1SvBgtmRg+GJRMPhtb5yyN3oZ5pO2B+LMkWd6CtmPhOXMZCBlovnPNuP2NhfeP4Ay3n/PqVyEAb73ET+cWp3dHMHbTcQUvkZIAlk4F25vzHEi5T3j/YoW/9cJ5u/En+WKMD8anuXs1d8oS+e2ehZuWv0KGOE2Pfz/oCQkTkVAy0STyDtiT+M2i7/cPqPtWr/q2VGqgojHy6/XhvlyXl8kDbv7Uy4buVR2MsZKD1wjnv9jMW1jcy0FqU6DNoy9dHj7Nrq2JfnDOReAYtz6AlcjLAUtY84sDaWy0H9dDKLXG/La94g+pe2aNw+KLeP9ihqbOWKHQhLImBlojsG30xk2ReaTpeDLTjD7Td/sgLgPXubJh0AMy1cmGg7Wlri7wYWN50+deVRr3oWl9djQYqCjVQUZjQ7w1jIQNtrpzzTl9A66pGxgashiQ//ZuxkIHWokQH2m7/sHY1B1XfFNSu5tReIKzbz0Bb38hAS+RkgKWsGGjPDwf07v8d0suvv6udb/xF77UdzfhzaHe+8Rc9tml7zNf7B8/p5hkFuhAOj33dvQtW6oPDH0tioCUiu3xdw6rYcNWrUZel9gIbozHQTjzQurVsH2hPHz+pobzpUXfJDi6alfKdyYyFDLS5cs6vvcMwvzik5pbEBxjGQgZai5IZaJ2IgZaBlsjJAEvmA+3/fdChm6Yv1E3TF+q2Oct06+wS3fiTfP3H7QU6ePgfGTuO53c0a/ZvVunueRX6wcxiVWys1TfnAzrUcUJ3z6uIetulq6u18819khhoiciuLdtHYv7yvmxl6sMiAy0DrfWxxKuvriapF16brNGxkBhos3mg7fQFYq7vyX4aOGPh5ANtpy+gt94NqGV/MO3PQuGcR2KgzXwMtETOBVgyH2hvnV2iV99+P+oO1UBwRNV1r+snc5Zl7Dje+euH+u22XRo6+7UGhr7S/KWbtP6Zeu3/8JjmFKyOetuKjbV66ZU9kqQL4YtERCZtfOZC3L/Ap/rj/d/BsPKLQ1qx4YJebfZmL+yInNM1lReSOnehc2f1zQtPa2j2FJ2dO13fvPC0QufOmr+PJNJXKxdraPYUBTvazY8lXuf/9HzcYTFwYF9KP16wo918FM2mMvF7OHrOzxbO0vmXn/dsyZzzc19fjHt9/922xK9No9/H+rpq2UQfFz88Eh4b9/KLQypbHdK5r9N7X+ecX1DxI5FzcKo7Mx8jRn++P71q/2u3avnKyDk4fiKcsY/NRG4NsGQ+0I43wgZHQvr32xZk+Giu+PDocc24r0yHj53QXXPLo76tZNWz2rX7PUlS71CQiMikyudi76AtKg2l/OPteS/yqsrl60La8WrQk22ti5yDVZuSO4/+mqqY4ctfU2X+PpJIAxWRO2j7Dx40P5a4ffrPmHM7mDdNvd39Kf14/QcPRn6MRTPlf6nGs42ey0z8HnLOUzvn8a7xBw6PJPz9R7+P9XXVstFzEO/8FJXGDuDVL6T+MZRzHmn0DtpjJxJ/X02nBy+P7HU77X/tVi1dETkHfztq/PGayAUBlswH2vlLN+nL030xX3/42AktevipjB2H7/Mu9fYPjX257cNO3TW3XINnv9K3py3UcODKM3Fn3Feqw8dOSOIRB0RkV3vncMxfMJN5PuG18YiD1B9xMJg3LXZEXDQrY+8L1ndh9r241bFfy5mWvRpcNEtDs6doYGmeeo50RF4krCQv8nUVheo50pH6j8+n2yf96fZp/55yzlM6576uYdXuCKp8feTRBi2tvEhYso33iANf13DMOJvsIyQ45/FL5xEHzS2RF8arrA6qtT2x788jDnjEAZGTAZbMB9qaP7ypH/+8ROue/oPqXtmj2j++pRVPbtePfv6Qql98TQ1Ne8e6niq37lRBWaXODwf09TfDWrh8s6pqdkqS5pds0taX3lA4fFG797bptjnLFL58+7v1BYSIvF2nL6D6pqBqdyT+l5nxYqB1eKAtmJmx9wO3DLQ9Rzpif/y86Sm/IFi8GAsZaHPhnHf6AmptD6T1XFTGwomfQRvvDtrN1cmN4Jzz2FIdaOubgjG/H4n8owQDLQMtkZMBlswH2rvmlmvm/McS6no6PxzUw+t/r+/dtVg/mFmsVZtfHLtrtqunX3nFG3TLnYX6+cJV6jz++dj3s76AEBE5FQNt6gNtvBey6qurMf89zbWcfkGweDEWMtBm+zmv3XFlqCoqS/0zIxgLJx5om1uiX4itqDSkTl96AxfnPPWBNt5gnsgdzQy0DLRETgZYMh9oc531BYSIyKne/ktkFCh+ZERrKoOe7LENkXOwIsmBttsfGRcHC2ZqoCSPcTbFxhtoe9raHPs5GAsZaLP5nLe0xt5FWFSW2nDIWDjxQNvtv/JZKLuag2ndrcw5v1KqA228R04sW8FAm0gMtETOBVjKioH2sy9O67fbdqlsbY2WrNiiqpqd+vRkl/VhJcT6AkJE5FSjd9BS8nfQkjOdPn4y5nERgwUzecRBlg20PUc61FdXo766moSeB8w5T/ycx/s07/ziUEqPsGEsnHygdTrrj13ZVLID7dqq2BfFq93BIw4YaIkyG2DJfKDd+367vvXDebpv8VpVbKxVxcZa/bJwjf71x/P1weGPrQ9vUtYXECIip+IO2vTuoCVn6jnSIf/a5RosmCn/2uU6ffykoz8+Y2F6A+2Zlr1J3+HMOWegZaD1XskOtL6uYZWvv/L9N1cndlczAy0DLZGTAZbMB9qfzSvXnn0fxHz97nfaNKdgtcERJcf6AkJE5FQ8gzb1Z9BS7sRYmN5AO1gwM2agHago5Jw7dM59XbHP4kzkOZzxYqBNfaBtbY+8SFu6z6TNdK++HRn4f1+f3oudWdbpS+7F8RhoGWiJnAywZD7Q3jR9oS6EwzFfH7oQ1s0zCgyOKDnWFxAi8k4trUE1NEVy4ll518ZAy0DrhRgL0xto4z0jeDBvGufcwXPu64rcSbu5OvJs1FTf1xloUxtoN1dH38Wc6ou0WeSGgTbZGGgZaImcDLBkPtDecf/D+vtHvpivP/qRTzPuKzM4ouRYX0CIyBtd/are+cWRF41xeqRloGWg9UKMhUmMhad61dN2IOoZwAMVhTEDrX/tcs65gwOtUzHQJj/Q7mqO/yJt1+MfRa9HDLTejIGWyLkAS+YD7Y5XW/TdOwu14XcNemX3Pu18c5/WP1Ov79yxSNsadlsf3qSsLyBE5P46ffFfvKu+ydm/gDHQMtB6IcbCxMbC3p0NUSNs784Gdfsjzwi++jEHgwUzJ31OMOecgdaqZAfaa++eHS2VZwBbxEDrzRhoiZwLsGQ+0ErSnn1/029KK3X7r8p06y+Wan7JJr3x51brw0qI9QWEiNxfa3v8gXZzNQOt0zHQuj/GwsnHwp4jHXEfZdBzpCPyNqd61dPWFnlxsKvuruWcM9BmW8kOtOO9SFuuPIuWgdabMdASORdgKSsG2lxmfQEhIvcX70Vj8otDaT2bMF4MtAy0XoixcPKx8Nq7Z0frq6vhnDPQ5lTJDrS+rmEtWzES9bG2dkfujJ0MtN6MgZbIuQBL5gPt198M6w+7/qzVlS/q0Q3bYsp21hcQIvJGzS2BqJE21Vf1nigGWgZaL8RYOPlYeKZlb9yB9kzLXs45A21OlcqLhPm6Is+irW8KqqU1t4ZOBlpvxkBL5FyAJfOBtqCsSj+YWazla57TY5u2x5TtrC8gROSdOn0BtbYHrtuz8BhoGWi9EGNhYmPhQEle1Dg7UJLHOWegzblSGWhzOQZab8ZAS+RcgCXzgfbGW+frn1+esT6MlFlfQIiInIqBloHWCzEWJjgWnupV784GDVQURl4gLIFnzXLOGWizLQZa98dAy0BL5GSAJfOB9tbZJRoY+sr6MFJmfQEhInIqBloGWi/EWJj5sZBzzkBrFQOt+2OgZaAlcjLAkvlA2/L+IVVsrFX/wFnrQ0mJ9QWEiMipGGgZaL0QYyEDrRfOebefgba+MbmBtrkloIamoFr25+64yUDrzRhoiZwLsGQy0N40feFYt9xZqG9PW6gbps7Vt6ctjPq2m6YvtDi8pFhfQIiInIqBloHWCzEWMtB64Zx3+xlo6xsTH2jL1195Ec784pC2bM/NjwEMtN6MgZbIuQBLJgPt+wc7Ei7bWV9AiIicioGWgdYLMRYy0HrhnHf7GWjrGxMbaJtbAlHj7GjtnfbXq2RjoPVmDLREzgVYMn/EgSRdCIfH/jscvqiPPvk8Z55La30BISJyKgZaBlovxFjIQOuFc97tZ6Ctb0xsoK1vCsYdaB/bMKKKDZG7aX1d9teuRMqVgbbTF1DjW0G99W4g7XPLQMtAS+RkgCXzgbbtw079YGaxwuGLCl0I65eFa/StH87TjT/J1779R6wPb1LWFxAiIqdioGWg9UKMheOMhad61dN2QD1HOjjnDLSuabIWxKR+AAAgAElEQVSB1tc1rFUbR+IOtPOv+u+KDbnxQmO5MNC2tEYP4kVlIXX6Uh8WGWgZaImcDLBkPtDOyl+hprf+Kkl648+t+tHPH9Lg2a/0zl8/1Kz8FcZHNznrCwgRkVMx0DLQeiHGwtixsKetTUN508e+zr+uNLHzmeCoyzlnoLVqvIG2vTNS7Y74d8/Oj/N1re3ZP37lwkBbVBp7bjdXp368DLQMtEROBlgyH2j/7bYFCocvSpJKVlWrqmanpMijDr49jRcJIyLKVAy0DLReiLEwdiwczJs29uXRenc2THgee450RI26A+WL1X2ql3N+nQbaltagGpqCST0XlYE2dqDt9AVUseHKMFhQEj3Kzn8w/jibXxzSnveyd/QcLRcG2njntnx96ncoM9Ay0BI5GWDJfKCd8rMH1D9wVoHgiG65s1CHOk5IkvyD5/S9ny42PrrJWV9AiIicioGWgdYLMRZGj4U9bW0x4+zQ7CkaqCic8DwOFsyM+T59dTUTnnNKfqD1dQ1HDYr5xSHtak5sfGOgjR1o11ZFP85g/oOxY2Hh0jgD7YMhLS7N/rtoc2GgXbYi9pES3EGbXgy0RM4FWDIfaFdufkF3z6vQvQtWalb+Cl26dEnnh4MqWfWsHlq5xfrwJmV9ASEicioGWgZaL8RAe83dnKd6446I/Vsrxz2HPUc6khp1GWhTH2h3Ncf/FPxEXliJgTZ2oI03vF77dfVNQTW3BLTwoStvM3pXbbY/izYXBtqW1mDUYw6WrRjhGbRpxkBL5FyAJfOBNhS6oB2vtuj39W+qf+CsJOmb8wEtXV2tgaGvjI9uctYXECIip2KgZaDN5U4fP6m+uhr11dXo9PGT474dA+01A61/WP1bK6MGxMG8aROew27/cPxRt+px8/eD8Rr9Nfe9uNX8WJLp2js+k3keKgNt7EAb7+7NR9eEtLZqRGurRqLuTo533uM9zzabyraBttMXUGV1UOuqRrRl+8jYPyx0+gJqbomUyD82TBQDLQMtkZMBlswH2lxnfQEhIkqk9s5htbYHJrxLhYGWgTZXu/Z5qEOzp+hMy964b8tAGzvQdvuHdaZlr/qrHp904B6tr64m6VHXslwdaLmDNr2uHVXjnc+W1vhj5ubq2LdN51mpmSibBlpf17CKyqLP37KVI2kPstfGQMtAS+RkgKWsHWjf/PN+PbZpu/VhTMr6AkJENFlbtl+5Y6ioLKTmlvj/A89Ay0Cbq/nXLo+5m3Nw0ay4b8tAG3+gTaVkR13LcnWg9XUNq3w9z6BNtXh3vba0BrVle+SOzonuRG7vHI76VPwinkGbVOP948J4g3iqMdAy0BI5GWApawfahqZ3tHD5ZuvDmJT1BYSIaKKaWwIxfzkqKgvFvZOWgZaBNleL94JV442PDLTODbS5VK4OtKO1tAZV3xRUe2fi34eBNv5Am0y+rsjH0V3NwbSek5qpsmmgrW+KP9CO94/EqcZAy0BL5GSApawdaHOF9QWEiGiianfE/wtSvLuAGGgZaHO1eHfQDpTkxX1bBloGWutjyVQMtOkPtLlWNg20nb44/0BcGv8fiNOJgZaBlsjJAEsMtGmyvoAQEU3UeHewxLsLi4GWgTZXO338ZNRdtIN509RzpCPu2zLQMtBaH0umYqBloLWuuSUw9piIolLnH2/Q7R/WAw9HxslVTwa1ptKbFS6/PNAeZaAlSjfAkvlA+/7Bv+ueX1fopukL9S8/mhdTtrO+gBARTZSvK/oZevnFIW3ZHn98ZKBloM3pTvXqTMveyIuDneod9+0YaBlorY8lUzHQMtBmS06/MNjVjQ60xEBL5ESAJfOB9tZfLNXv69/UgUMf6VDHJzFZePaFV/X9ex4c+/Kp7l7NXfKEvntnoWblr9ChjhNj32Z9ASEimixfV+RO2todwQmf/cZAy0DrhRhoGWitjyVTMdAy0HqhnW/a/j9L5XORc/7IOvv/d/rHZwy0ROkGWDIfaO/Ke9T6EKJ8fqpHd9z/cNRAm1e8QXWv7FE4fFHvH+zQ1FlLFLoQlsRAS0TuiYGWgdYLMdAy0FofS6ZioGWgpevf/74XeT97+vf8fwORGwIsmQ+0FRtro+5ItTbvoSf09rsHxwZa/+A53TyjQBfC4bG3uXfBSn1w+GNJDLRE5J4YaBlovRADLQOt9bFkKgZaBlq6/jHQErkrwJL5QPvxp1/olsuPDliwbLMWLo8uk1773//Tw+t/r8GzX40NtIc6TujueRVRb7d0dbV2vrlPknTaP0yUGw2QW+oZCFyX3v5L5C92j64LqaEp6MmeezF4eaANXbfzTLb1Hrgy0PbX1Xi20YHW+vcjU43+mvvrasyPJVONjpPW11XLRs+B9e9FpnrtfyO/5m31I+bH4kTW/7+VSHtGB9ptI+bHQkZZ/x2PHA2wZD7Q3pX3qOY99ISqanbq2RdejSlThs5+rdt/VSb/4LmogXb/h8c0p2B11NtWbKzVS6/skSRdvHSJKDe6SK7pOr2P7P8grPzikFY8cUGvveXNXtxxQfnFIa2tvGD/Z5auS6HOQxqaPUXnCmdp+E/Pe7bRgdb69yNTjf6ah//0vPmxZKrRcdL6umrZ6Dmw/r3IVC3vRT6O1+8Kmx+LI1n//1YCHfgwcs5rXgybHwsZZf3nhBwNsGQ+0N42Z5kuZcEfhPInnteu3e9JUtRAe/jYCd01tzzqbUtWPTv2tta34BMRORWPOOARB16IRxzwiAPrY8lUPOKARxzQ9Y9HHBC5K8CS+UC7YNlm+QfPWR+GvnfXYn3/ngf1/Xse1H/d/YC+9cN5+v49D+qfX/bo29MWajgwMva2M+4r1eFjkefmWl9AiIicioGWgdYLMdAy0FofS6ZioGWgzfXaO4fV6QuYH8dEMdASuSvAkvlA+/yOZt3+qzI9+dzLqntlj166JgtX30ErSfNLNmnrS28oHL6o3XvbdNucZQqHL0pioCUi9zT6DNplK0e0pTboyTZtGWGgdXmjAy0x0Lo9BloG2lyt0xdQxYbQ2O/fuqoR+brsjyteDLRE7gqwZD7Q3rtgpeYsenzcLFw70Hb19CuveINuubNQP1+4Sp3HPx/7NusLCBGRU40OtMRA6+YYaBlorY8lUzHQMtDmamurRmI+Lm/Znp0flxloidwVYMl8oM111hcQIiKnev9vQa2pHDGtcHnkL2WPbbA9jq0v5fZfbim785cXamj2FJ1pO2B+LF6JgdabMdDmZvH+4XTZyuwcQBloidwVYCkrBtrPvjit327bpbK1NVqyYouqanbq05Nd1oeVEOsLCBGRm1q5MTLQfvD37H7mHFE6MdBmPgZab8ZAmx21dw6r8a2gWtsT+9heVBo70K6tys4BlIGWyF0BlswH2r3vt+tbP5yn+xavVcXGWlVsrNUvC9foX388Xx8c/tj68CZlfQEhInJTDLTkhRhoMx8DrTdjoLWvdkf045MSeVTBrubYRy61tGbPr+nqGGiJ3BVgyXyg/dm8cu3Z90HM1+9+p01zClYbHFFyrC8gRERuioGWvBADbeZjoPVmDLS2tXfGf1xBImNrS2tQm6uD2rJ9JOE7by1ioCVyV4Al84H2pukLdSEcjvn60IWwbp5RYHBEybG+gBARuSkGWvJCDLSZj4HWmzHQ2hbvTtj84pDqm7Lj+JyIgZbIXQGWzAfaO+5/WH//yBfz9Uc/8mnGfWUGR5Qc6wsIEZGbYqAlL8RAm/mycaBtbglo2crINW9d1Yj2H4r+dPDaHUH5ulL/8RloGWitG+8O2uYW93yMZ6AlcleAJfOBdserLfrunYXa8LsGvbJ7n3a+uU/rn6nXd+5YpG0Nu60Pb1LWFxAiIjfFQEteiIE282XbQNvaHogZrRaXjsR8Xe2O1Ic2BloG2mxoy/bo9+vN1dlzbE7EQEvkrgBL5gOtJO3Z9zf9prRSt/+qTLf+Yqnml2zSG39utT6shFhfQIiI3BQDLXkhBtrMl20D7bWjVX5xSPkPxt5puGzlldHH1xW5w3Zd1UhCd9fGu3PRq1n/fmeqbBxou/2Rf5Cobwpm7Qt9pRMDLZG7AiyZD7SffPalQhdin0GbK6wvIETkrdo7h1WxIfIXzooNoax+4YxUYqAlL8RAm/mybaC99pXtxx1oV1wZfcrXx463E4201qNoNnXtudnVHBx7vERldVCdPnd8zMnWgdbNMdASuSvAkvlA+++3LdCZvkHrw0iZ9QWEiLyTr2tYRWXRf+ksKgu55i+W3X4GWvJGDLSZL9sG2njP5ix+NHZYHH0xpZbW+C+2lM3P8hx9xEB9Y3YdY7xzWbHBHXfZMtBmPgZaIncFWDIfaLc17NbqyhdzdqS1voAQkXdqbol9ZmF+cUi7mt3zFzEGWvJCDLSZL9sG2m5/5NO+11aNqKg0pC3bI3fD1jcFVb4+pPL10df2Xc3xB9rRATcby9aBdnN1/HPphn/sZKDNfAy0RO4KsGQ+0E7/71J9545FumHqXN1463zdNH1hVNnO+gJCRN6JgZbIHWXzQHumZa/66mrUV1ej7lO95sfjVNk40CZTpy/+9b+90/7YxouBNvMx0GY+BloidwVYMh9o3209rPcPdoxbtrO+gBCRd/J1Dauo9JpHHJS64y+VozHQkhfK1oG2r65GQ7OnXClvuk4fP2l+XI782nJ8oO32R/6RbvRjQFFpdj/eoNufvQNta3vs2L22yh3jGgNt5mOgJXJXgCWTgfbW2SX65nxAkjTtl8stDsEx1hcQIvJW7Z1X7v7ZXB3M6runUomBlrxQtg60UePs5fqrHjc/Lidyw0A7Wq68OGS2DrTd/shzaMvXh6IeL2F9TE7EQJv5GGiJ3BVgyWSg/cHMYpWtrdG2ht268db52tawe9yynfUFhIjITTHQkhfKxoG250hH3IF2oKLQ/NicyE0Dba6UzQOtW2OgzXwMtETuCrBkMtAeOPSRCh95Svc/sE7f+uE8/apo3bhlO+sLCBGRm2KgJS+UjQNtt39Yg3nTYgbavroa8+NyIgbazMdAm/kYaDMfAy2RuwIsmT+D9v4H1lsfQlqsLyBERG6KgZa8ULYOtGda9kaNtAMVha55oTAG2szHQJv5GGgzHwMtkbsCLJkPtLnO+gJCROSmGGjJC2XrQNvtH9bp4yfV09amnrY282NxMgbazMdAm/kYaDMfAy2RuwIsZe1A++af9+uxTdutD2NS1hcQIiI3xUBLXiibB1q3xkCb+RhoMx8DbeZjoCVyV4ClrB1oG5re0cLlm60PY1LWFxAiIjfFQEteyA0DbeRO2wPqOdJhfiyJxECb+RhoMx8DbeZjoCVyV4Al84F2TsFqNTS9o4Ghr6wPJSXWFxAiIjfFQEteKNcH2t7dr2kob/rYs2r7n3rc/Jgmi4E28zHQZj4G2szHQEvkrgBL5gPtcy+9rpnzH9P/+/Gvtejhp/RWy0EFgiPWh5Uw6wsIEZGbYqAlL5TLA+3p4yfHhtmr69392nX/uXuOHtOZAwdSqv+p1ZfH5NUp/xg9R4+Zn/9cKpcH2tb2gCqrg1pXNaK33s2d42egzXwMtETuCrBkPtCO+qKrV7V/fEtzClbrP24v0KMbtulA+0e6dOmS9aFNyPoCQkTkphhoyQvl8kDb09YWd6Dt31qZsfNmlb+80Pz851K5OtC2tkeO++pqd+TG4MlAm/kYaIncFWApawbaUaELYe184y/6zh2LdMPUuZr2y+Xatfu9rB1qrS8gRERuioGWvFBOD7RHOuLfQbuz4br/3H3PVcpfXmhW33PXf4R2U7k60K6tGokZaPOLQxn7+V/4U0BrKkdSqnRV5NiXlKf2/ddUjjA0JhkDLZG7AixlxUB76dIlfXj0uFZufkHfvbNQP5hZrCerX9Ynn32pv+w/rBn3lerJ6petDzMu6wsIEZGbYqAlL5TLA223f1j9VY9HjbMDJXnqPtVrflyUXTHQptbG3wXj/vyZatlK26FxV3Pk0RJbto+ovdP+/WGyGGiJ3BVgyXyg/e22Xbr1F0t140/yVbLqWb3XdlTh8MWot/nsi9P6j9sLjI5wYtYXECIiN8VAS14o1wfabn/khcL6t1ZG7pxlnE279s7hnBijkilXB9r6ptiBtHx95gbaw/8IaH970CzLj7+1O2LPfbb/uWCgJXJXgCXzgXbOosf18uvv6uxX34z7NuHwRVXV7MzgUSXO+gJCROSmGGjJC7lhoCVn6vQFVLHhyhhVsSEkX5f9cTlRrg603f5hba4ORo2z2T4SuiFf13DcO3q3bL/+w+efXk/9kRCPrIm8rxQ/kvqPsfF3PDOYKFsCLJkPtOe+Pj9uA0NfWR/epKwvIEREboqBlrwQAy2NdvUQmMlBKhPl8kDb7Y8Mhp2+3Dz2XKy9M/5Au7bq+v952LLd9rESi0vd8WeeyA0BlswH2humzp2wTLl06ZJ+u22Xvn/Pg/rPnxXpkfXbNBwYkSSd6u7V3CVP6Lt3FmpW/god6jgx9v2sLyBERG6KgZa8EAMtjRZvrCkqy9yn01/Pcn2gpcy3bEXs8393NV//u0uPHrd7pMT+9qDajvBnhChbAiyZD7QnTn4Z1Seffal9+4+o8JGn9G7r4YwdR2PzXzWnYLWGzn6tb84HlFe8Qb+vf1OSlFe8QXWv7FE4fFHvH+zQ1FlLFLoQlsRAS0TkZAy05IUYaGm0eINUJp93ej1joKVka++M/jNRu4NP/SeizAZYMh9oxzMcGNEvC9dk7Oc7+pFPH3/6xdiXtzXs1iPrt8k/eE43zyjQhXB47NvuXbBSHxz+WBIDLRGRkzHQ0mg9bW3qq6tR7yvuexEqBloarbklEDPQtrS6Y5RioKVUa+8cds2zmIkotwIsZe1Ae+nSJd06u8Tk5+7u6des/BXas+9vOtRxQnfPq4j69qWrq7XzzX2Rt82CiwgRkVtioKVu/7B6dzZoaPaUK+VN1+njJ82Py6kYaOnqWtsD2rJ9RFu2j6i13T3XPgZaIiLKtQBL5gPtrt3vxdTQtFdLVmzRvQtWZvx4fvGb1bph6lyte/oPunjxkvZ/eExzClZHvU3Fxlq99MoeSVL/2SARUUbzn3NvqzZF7iA78pH9sZBdUePs5QZ/u8b8uJxqsCIy0A787aD5sRBdr/74WuSFl/74mv2xUG5m/f9bROS9AEvmA+0d9z8c08z5j6lk1bPy/bPb5Jj8g+e07PHntO7pP+jwsRO6a2551LeXrHpWu3a/J0kKhsJERBnuomtbs/mC8otDOu5z96+Txm/40+NxB9qvVhaZH5tTnVu5WEOzp2j47+3mx0J0vWrcHbmeN+6+YH4slKtZ//8WEXktwJL5QJst/nrgqD774vTYlw8e/ofuuP9hDZ79St+etlDDgZGxb5txX6kOHzshiUccEBE5GY84oG7/sAbzpsUMtH11NebH5VQ84oC8EI84ICKiXAuwZD7QXrx4aey/e/oGVF33up587mV1/OOzjB5HVc1OLVi2WV9/M6xQ6IJWbn5BJauelSTNL9mkrS+9oXD4onbvbdNtc5YpHL4oiYGWiMjJGGip2z+sMy17o0bagZI8V71QGAMteSEGWiIiyrUAS2YDre+f3bor71H9y4/m6cHHntGZvkH9YGax7vl1he6eV6F//fF8/fXA0Ywdz/nhoCo21ur79zyo7/10sQrKqtTTNyBJ6urpV17xBt1yZ6F+vnCVOo9/Pvb9rC8gRERuioGWRjt9/KR6d7+mnrY282NxOgZa8kIMtERElGsBlswG2oKyKs176Am1vH9IS1Zs0S9+s1pPPvfy2Lc//Xyj7lu81urwEmZ9ASEiclMMtOSFGGjJCzHQEhFRrgVYMhtov/fTxfr7Rz5J0tDZr3XD1Ln6+NMvxr7d93mXbp5RYHV4CbO+gBARuSkGWvJCDLTkhRhoiYgo1wIsmQ20N0ydq9O9A2NfvnlGgbp6+se+3NM3oBumzjU4suRYX0CIiNwUAy15IQZa8kIMtERElGsBlkwH2tFnvErSd+5YxEBLROTxGGjJCzHQkhdioCUiolwLsGQ60D5T26gXXn5bL7z8tv7ttgX67bZdY19+praRgZaIyGMx0JIXYqAlL8RAS0REuRZgyWygveP+hxMq21lfQIiI3BQDLXkhBlryQgy0RESUawGWzAZat7C+gBARuSkGWvJCDLTkhRhoiYgo1wIsMdCmyfoCQkTkphhoyQsx0JIXYqAlIqJcC7DEQJsm6wsIEZGbYqAlL8RAS8nU6Quosjqo/OKQKjaE1NqeG9dHBloiIsq1AEsMtGmyvoAQEbkpBlryQgy0lGi+rmEtWxm5Ll5de6f9sU0WAy0REeVagCUG2jRZX0CIiNwUAy15IQZaSrTW9kDMOJtfHFJ9UzAjP/+aythxOJOtqRwx/z0gIiLvBFhioE2T9QWEiMhNMdCSF2KgpURjoGWgJSKizAVYYqBNk/UFhIjITTHQkhdioKVE83UNa9mK3HzEARERUa4FWGKgTZP1BYSIyE0x0FIqnT5+Ut2nes2PI9EYaCmZOn0Bbb78ImHl60Nqac3M3bNEREReC7DEQJsm6wsIEZGbYqClpDrVq4HyxRqaPUVDs6fIv640J4ZaBloiIiKi7AuwxECbJusLCBGRm2KgpWTyr10+Ns6O1r+1MiM/95kDB1JuoOR/NDR7ivp2NaT8Y/QcPWZ+/omIiIjcFGCJgTZN1hcQIiI3xUBLyXTtODs0e4oGF80y+7kzmb+80Pz8ExEREbkpwBIDbZqsLyBERG6KgZaSaTBvWsxwOVCSl5Gf219eaFrfc5m5U5iIiIjIKwGWGGjTZH0BISJyUwy0lEy9OxtiBtozLXvNj4uIiIiIci/AEgNtmqwvIEREboqBlpLtTMteDVQUyr92OeMsEREREaUcYImBNk3WFxAiIjfFQEtERERERBYBlhho02R9ASEiclMMtEREREREZBFgiYE2TdYXECIiN8VAS0REREREFgGWGGjTZH0BISJyUwy0RERERERkEWCJgTZN1hcQIiI3xUBLREREREQWAZYYaNNkfQEhInJTDLRERERERGQRYImBNk3WFxAiIjfFQEtERERERBYBlhho02R9ASEiclMMtEREREREZBFgiYE2TdYXECIiN8VAS0REREREFgGWGGivUl33un547xJ9767FKltXo/PDQUnSqe5ezV3yhL57Z6Fm5a/QoY4TY9/H+gJCROSmGGiJiIiIiMgiwBID7WV79v1Nt/+qTL39Qzo/HNT8pZtUXfe6JCmveIPqXtmjcPii3j/Yoamzlih0ISyJgZaIyMkYaImIiIiIyCLAEgPtZR0fn9Shjk/Gvlz3yh6Vra2Rf/Ccbp5RoAvh8Ni33btgpT44/LEkBloiIidjoCUiIiIiIosASwy04ygoq9KfXn9XhzpO6O55FVHftnR1tXa+uU8SAy0RkZMx0BIRERERkUWAJQbaOKpffE2/fmijLoTD2v/hMc0pWB317RUba/XSK3skSefOh4iIyKFWPxlSfnFIx47bHwsREREREXknwBID7VUuXbqk9c/Ua+HyzRoOjEiSDh87obvmlke9XcmqZ7Vr93uSpK+HLxARkUM9fnmg7fzE/liIiIiIiMg7AZYYaK+y6dk/qmRV9dgLgEnS4Nmv9O1pC8cGW0macV+pDh87IYlHHBARORmPOCAiIiIiIosASwy0l/3tyMealb9CoVDsv5rML9mkrS+9oXD4onbvbdNtc5YpHL4oiYGWiMjJGGiJiIiIiMgiwBID7WWPrN+mf/nRPN34k/yx7l2wUpLU1dOvvOINuuXOQv184Sp1Hv987PtZX0CIiMar0xdQ41tBvfVuQL4u++NJJAZaIiIiIiKyCLDEQJsm6wsIEVG8WlqDyi8OjbVs5Yg6fdk/ejLQEhERERGRRYAlBto0WV9AiIjiVVQaihpo84tD2lwdvO4/7z97hlXfGEi5JeWRgbb6xWDKP8b+9uv/6yQiIiIiIncFWGKgTZP1BYSIKF7XjrP5xSGtrRq57j/vp18G4v7cmay+kbtviYiIiIgouQBLDLRpsr6AEBHFK1fvoHUi7qAlIiIiIqJkAywx0KbJ+gJCRBSvmGfQrsiNZ9ASERERERFZBFhioE2T9QWEiGi8On0B7WoOqrklIF+X/fEQERERERFla4AlBto0WV9AiIiIiIiIiIgovQBLDLRpsr6AEBERERERERFRegGWGGjTZH0BISIiIiIiIiKi9AIsMdCmyfoCQkRERERERERE6QVYYqBNk/UFhIiIiIiIiIiI0guwxECbJusLCBERERERERERpRdgiYE2TdYXECIiIiIiIiIiSi/AEgNtmqwvIERERERERERElF6AJQbaNFlfQIiIiIiIiIiIKL0ASwy0abK+gBARERERERERUXoBlhho02R9ASEiIiIiIiIiovQCLDHQpsn6AkJEREREREREROkFWGKgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABhhoAUAAAAAAAAAIwy0AAAAAAAAAGCEgRYAAAAAAAAAjDDQAgAAAAAAAIARBloAAAAAAAAAMMJACwAAAAAAAABGGGgBAAAAAAAAwAgDLQAAAAAAAAAYYaAFAAAAAAAAACMMtAAAAAAAAABghIEWAAAAAAAAAIww0AIAAAAAAACAEQZaAAAAAAAAADDCQAsAAAAAAAAARhhoAQAAAAAAAMAIAy0AAAAAAAAAGGGgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABhhoAUAAAAAAAAAIwy0AAAAAAAAAGCEgRYAAAAAAAAAjDDQAq2JAh0AAAHhSURBVAAAAAAAAIARBloAAAAAAAAAMMJACwAAAAAAAABGGGgBAAAAAAAAwAgDLQAAAAAAAAAYYaAFAAAAAAAAACMMtAAAAAAAAABghIEWAAAAAAAAAIww0AIAAAAAAACAEQZaAAAAAAAAADDCQAsAAAAAAAAARhhoAQAAAAAAAMAIAy0AAAAAAAAAGGGgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABhhoAUAAAAAAAAAIwy0AAAAAAAAAGCEgRYAAAAAAAAAjDDQAgAAAAAAAIARBloAAAAAAAAAMMJACwAAAAAAAABGGGgBAAAAAAAAwAgDLQAAAAAAAAAYYaAFAAAAAAAAACMMtAAAAAAAAABghIEWAAAAAAAAAIww0AIAAAAAAACAEQZaAAAAAAAAADDCQAsAAAAAAAAARhhoAQAAAAAAAMAIAy0AAAAAAAAAGGGgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABj5/8RvhxjBtK9dAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOyd+V+U5eK/v3+P3/PNs3Q6pzx9zFyPppbpofoUeERzwQ0RVAjXcNc0JJfANFxy35eTmB1D1MIlpDQlSwORHTdmYeD9/YEYHRllYMbnfmbmul6v6/Vy9tub4QYuHu7n/wgAAAAAAAAAAAAAjPB/TA8AAAAAAAAAAAAAIFoh0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAi0AAAAAAAAAAACAIQi0AAAAAAAAAAAAAIYg0AIAAAAAAAAAAAAYgkALAAAAAAAAAAAAYAgCLQAAAAAAAAAAAIAhCLQAAAAAAAAAAAAAhiDQAgAAAAAAAAAAABiCQAsAAAAAAAAAAABgCAItAAAAAAAAAAAAgCEItAAAAAAAAAAAAACGINACAAAAAAAAAAAAGIJACwAAAAAAAAAAAGAIAm2QlFU3ICIiIiIiIiJiGAtgEgJtkJheQBARERERERERMTgBTEKgDRLTCwgiIiIiIiIiIgYngEkItEFiegFBRERERERERMTgBDAJgTZITC8giIiIiIiIiIgYnAAmIdAGiekFBBERERERERERgxPAJATaIDG9gCAiIiIiIiIiYnACmIRAGySmFxBERERERERERAxOu7H3sEf7jjR1WAhPCLRBYnoBQURERERERETE4LQb8RPdnRLCEwJtkJheQBARERERERERMTjtRmtwXfRxY0ASaMMbAm2QmF5AEBERERERERExOO1Ga3Dde9gTkMEG2uP55zXgvel6of8YxU6cr19ulkuSnC63pmWs1T8Gj1fvmCRt2/eV9zE3yyoUN2mB/j5grIbEp+tc0VXvbSfPFGnQ8FS9+No4jZq6RFU19Z2fjCiAQBskphcQREREREREREQMTrthZaAtr6zRC/3H6FzRVTU1NWvFpzs1fPICSdKq9bs1eWamHE6XSsur1H3IJP3082+SpNiJ87Vh+1F5PE06eaZI3YdMkrvRo7v3HuilQQm6UHxNjR6PVny6U5NnZoZsbiIRAm2QmF5AEBERERHx6RaXOLTzkFOHjjtUUmp+PIiIaD/thtWB9uiJs97LP179Va+8OUmSNDB2hi7+UOK9bdGqLVq1freqa+/o+X6j1ejxeG97c+RMnT1/WUdPnNWoqUu819+990Bde8XL5WILhidBoA0S0wsIIiIiIiI+2YN5Dp+TpyTNdBFpERGxjXbD6i0OHiV7yyFNmZ0lSXru1RGqv3Pfe9sXe49r6txPdK7oqgYPT/N53JTZWdq2/4TWfL5fGStzfW57+fUJ3m0ToC0E2iAxvYAgIiIiIuKTTUhue4brzByX8XH588gJp3J3Ooy567DT+BwgIprSbpgKtN+cLVLvmCSVV9bI3ehRl+5xcjhd3tv3Hs3X+NQVOvXdJcWMnu3z2LSF2dq4/ag+WrdDS1dv87mtd0ySLl+7EfT4IhUCbZCYXkAQEREREdG/xSWONnE2fqJb85bZM9AuWOn0O16rnJpuz3lBRLRCu2Ei0B44VqD+707TjdLb3uuee3WEauvvei9v2ZOnlHlrdP7SVQ2MS/V5fOKsVdpx4Gutzd2veR997nNbt0HjfZ4XfCHQBonpBQQREREREZ9stBxB2xp30xe6OIIWEbET2g2rA+3xb85p8PA0VdXU+1w/eHiazpz/0Xs5fXGO1ubuV239Xf25zyg1OB4eXdvvnWSdv3RVX/73O703IcN7/e3KWv25zyif/WrBFwJtkJheQBARERER8cm22YM2PTL3oN19uCXQrs0lsiIidka7YWWgrb97Xz2GTlZpeVWb21Zv3KfRKUvlcLp07XqpXhqUoF9/azkSdkTiIq3euE8eT5MOHCtQ75gkeTxNuv/AoZcGJej0uR/U6PFozvKNmp6xLqj5iHQItEFiegFBRERERMSnW1zi0I6DTh3Mc0RknC2rJtAiIgar3bAy0O4+fFJdusepa694H+vq78nlcmt6xjp1GzRefd6aqr1H872PKy2vUuzE+frbgLEaOmqWiq/84r3t1HeXNDB2hl58bZzGTl+uuvp7wU5JREOg/Z3m5mZl5uxWj6GT9fcBY7V87XbvbTfLKhQ3aYH+PmCshsSn61zRVe9tphcQREREREQMzJLSBuUXOlRYbH4soZZAi4gYnHajNbgu+rgxIEN1kjAwA4H2dw7lndGg4amqqburqpp6vfbedB356qwkKXbifG3YflQeT5NOnilS9yGT5G5s2TfD9AKCiIiIiIjtm1/oUELKw60OPnzkRGElpQ1hf2QtgRYRMTjtRmdP+AjhCYH2d9IWZmv91sPey1v25GlSeqaqa+/o+X6jfTYyfnPkTJ09f1kSgRYRERERMRz0d7KwLXud+nCZy3t5aZYzbEMtgRYRMTjtRqBbGzwuhCcE2t95PNAeOFagN0Z8oHNFVzV4eJrPfafMztK2/SckSeU1DkREREREtLHnfnD4Pcpo0oy2163KcRkfb2fcc6Ql0K7LDc/xIyKaFsAkBNrfOZh3WgNjZ6i69o7q79zXvycvVP93p+nUd5cUM3q2z33TFmZr4/ajkqSm5mZERERERLS5gf5p6PhpbuNj7Yx5X7ecICZ3h8f4WBARw1EAkxBof6epqVkrs3eq79vJihkzR1kb9uqtsXN1/tJVDYxL9blv4qxV2nHga0lscYCIiIiIGA7m7nL6hNiEZLcmp7naBNrUDLfxsXZGtjhARAxOAJMQaJ9A9pZDmr1sg2rr7+rPfUapweHy3tbvnWSdv3RVEoEWERERETFczMt3KjPHpdxdThWXOLTjoLNNoN1xMDwDJ4EWETE4AUxCoP2d49+c0/vJS3X/gUM3yyrUc1iiLv5QIkkakbhIqzfuk8fTpAPHCtQ7JkkeT5MkAi0iIiIiYjibl+/UvGUuzVvmUl5++MZNAi0iYnDaDce2bDm253RYCE8ItL/jbvRoesY6vdB/jP7njYn6Yu9x722l5VWKnThffxswVkNHzVLxlV+8t5leQBAREREREQm0iIjBaTfqhnXrlBCeEGiDxPQCgoiIiIiISKBFRAxOu9EaXO/NTAhIAm14Q6ANEtMLCCIiIiIiIoEWETE47UZrcHVsyw7IUAXad8bN0+v/TvO57vK1G+r7drIkaXzqCu3/z6mgXwd8IdAGiekFBBERERER0U6BNi/fqYSUlpOuJaS4w3pvX0SMHu2GiUB77XqpRqcs1djpy3Wh+Jr3egLts4dAGySmFxBERERERES7BNriEoc3zj5qcYnD+BwhIj5Nu2Ei0C7+ZKt2Hz6pg3mnNXvZBu/1BNpnD4E2SEwvIIiIiIiIiHYJtAfzHG3ibPxEt3YctOdRtB9nu/yO1yrHTXUbnwNEbNFuWB1oPZ4m9Xlrqu7db1CDw6WewxLlcrklEWitgEAbJKYXEERERERERLsE2rx8J4GWQIsYltoNqwPtf09f1JTZWd7L0zPW6T9ffyeJQGsFBNogMb2AICIiIiIi2iXQlpQ2KCndN3omJLtVUmp+jkLtka9bjhZesdZlfCyIGLx2w+pAmzhrlf7Sd5Re6D9GL/Qfo7/0HaVxMz6SRKC1AgJtkJheQBAREREREe0SaMuqW/ahXZLl1LxlLi3Jckbs/rMEWsTI0m5YGWjv3HugboPGy+1u9F7X6PHo5dcnqKbuLoHWAgi0QWJ6AUFERERERLRToI0WCbSIkaXdsDLQbt173Gd7g1amZ6xT7s4vCbQWQKANEtMLCCIiIiIiIoHWegm0iJGl3bAy0MaMmaNDeWfaXJ938pyGjppFoLUAAm2QmF5AEBERERERCbTWS6BFjCztRmtwvTcrISCD3YMWzEKgDRLTCwgiIiIiIobe/EJHWO2dSqC1XgItYmRpN1qDa0eF8IRAGySmFxBEREREROy4Ow469eEyl9Lmu7Vp18OoWVjcoIQUt+Intrg0KzyCJ4HWegm0iJGl3Qh0a4PHhfCEQBskphcQRERERETsmDsOOr0BttXc3yNtQrK7zW07Dto/ehJorZdAixhZApiEQBskphcQRERERETsmKkZbSNsQopbhcUNba6Pn+jWvGX2D3DhHmhLShuUmeNSQopbSTNdPkc121UCLWJkCWASAm2QmF5AEBEft6S0QYeOO7TzkDOs9s5DRES0yqR0l98Qe/hE2yNr4ye6lZlj/wAX7oF2SVbbubf7kcsEWsTIEsAkBNogMb2AICI+anGJw2ffvIQUt/Ly7f3DDSIiotVmb/YfYuMnujVh+mNH1ia7w+IXnuEeaMPxyGUCLWJkCWASAm2QmF5AEBEf1d/RJwkpbste/9fyBuXudBj1VGF4/mCKiIjP1txdTiXNdClppktrNjq1ZuPDr5kjfrf18kdrXVqS5VT25vD5axQCrfUSaBEjS7vh2JYtx/acDgvhCYE2SEwvIIiIjzpvmf8/2bTq9a/95njiEUlWmbszPH6QRkRE68zd1fYXmNmbncov9P91Kxy2NHjccAi0JaUNyjvl9LsNE1scIKJp7UbdsG6dEsITAm2QmF5AEBEf1e8RtMnhcwTtpNSWwJz1mZMjaBERMWQ+6aRgxSX+A63dw6A/7R5oS0oblDTT9xfJB/McPrdnb3YqIdmtpHRXWHwMCLSIkaXdaA2u92YmBCSBNrwh0AaJ6QUEEfFRi0scSkj2jbPhtAftzIUtP7id/Z6jYBERMXT6OylY6y8wdxz0/eVmaoZbJaXmx9xR7R5o/e37a+U2TM9CAi1iZGk3WoOrY1t2QAYbaJuamvXZF0fU/91p6tpzhF5+fYLSF+eouvZOu4+9fO2G+r6d3OnXfpTdh096//2XvqNUXlkTkue1O8YCbaPHE5B2x/QCgoj4uCWlDTqY59COg+Gzb16rBFpERHwWPmmLg9bbC4tb7hNOv9R8XLsH2idtwxRu36s8KoEWMbK0G1YH2oyVuer3TooKvivWvfsNKvmlVBM/+FgD41Lb7XOhCrTNzc16+fUJ3svVtXfU1NQc9POGA8YCbZfucQFpd0wvIIiIkSSBFhERn5W5u5xKSncpIbklzobjUbJP0+6BNjPnyUcxh6sEWsTI0m5YGWhvVdTo/736b127XupzvcfTpH/+b4p2HPhakvRC/zHauve4xkxbrgHvTdfa3P2SHgbaE6cuaGBcqs9zvDlypo5/c87nOre7USkfrlGft6aqV0ySkueulsPp0vi0lerSPU4D41J1q6LG5wjaTzcfVM9/TdGQ+HRt239CPf81RZI0PnWFVmbvVMKMFerz1lRlbdirTzcf1MikJXrtven66effJElVNfUaNXWJ+r6drF4xScrd+WWn5upZYSzQDoydob8PGKvJMzN15Kuz+vnGLb/aHdMLCCJiJEmgRURE7Jx2D7QlpW23mnh0D9pwlECLGFnaDSsD7YFjBW3Caisrs3dqUnqmJOnFgeP0cc4uSS1Ht3btOUIPGpzeQOtu9OjFgeN0peSmpJbw+0L/MXK53D7PefTEt4pPWqzm5mY1NTVrcdZWnSu6qtr6u+raK957v9ZAe+16qV7oP0aV1XVyudze0CpJk9IzNTplqZqbm/Xrb7f1hx7DtefIN5KkTzbu1exlGyS1HCGcvjhHknSzrEJde8WroqquU/P1LDC6B+3laze0+JOt6jF0sl7/d5o+++KIKqvtMzmBYHoBQUSMJAm0iIiIndPugbas+uE2TLm7wm8bJn8SaBEjS7thZaDduve4RiQueuJtcZMWSGoJtJev3fDe9rcBY/XbrUqfLQ5mL/1My9dulyTl7vxS0zPWtXnOc0U/6ZU3J+nrgotyPhJvnxRot+49rvFpK73Xf/nf73wC7aZdxyS1HPHbpXucd9/cA18WKGHGCu9tbnej9zn6vZOi85euBjpFzxxbnCSsqalZZ87/qPTFOXpx4DiNTFqiA18WqMHhMj20djG9gCAiRpIEWkRExM4ZDoE20iTQIkaWdsPKQHvi1AW99t50v7d9nLNLibOyJLUE2hult723tV5+NNB+e+Gyd/uB4ZMX6L+nL/p93qMnzip24nz99Z+jlbYwWw8anE8MtGtz9+uDRTne67//ocQn0D56YrEu3eP0oMEhSTqUd0Zjpi2X1HKQ6NjpyzV01CzFjJmjP/UeqXNFP3Vsop4htgi0j+JyubX78Em9OjRRz/d73/Rw2sX0AoKIGEkSaBERETsngdZ6CbSIkaXdsDLQVtXU6899RvkcHSu1HFD52nvTtfdovqTAAm1zc7N6DJ2sE6cuqNug8XI3Pv0EY3X19zQicZFyth56YqDdtOuYJs/M9F6fd/JchwPtoOGpPvfrHZNEoPWHw+nyTtzz/d5X4qxVOnHqgulhtYvpBQQRMZIk0CJab/mFIlV/mKya1HGqWj5HZTcrjI8JETsugdZ6CbSIkaXdsDLQSlJmzm71fTtZZ89fltPl1u3KWk2ZnaWho2apqalZUmCBVpIWZ21Vz39N8Tnq9VFyd36pVet3q7m5Wc3NzUpd8KnWbz2su/ce6A89hutBg1PSw0Bb9OPPemlQgmrr78rtbtTolGUdDrQvDhyn4iu/SJIO5p3WX/85WifPFHV6vkKN0UDb1NSs0+d+UOqCT/XXf47W22Pnatu+r3Tn3gPLx9Lc3KyP1u1Qv3eS1e+dZKUtzPZusXCzrEJxkxbo7wPGakh8us4VPdyjwvQCgogYSRJoES32ZoXqYvt6v6GvG9ZNNVNizY8LETtsOAfawuIWTY+joxJoESNLu2F1oG1ubtZn247on/+boq49R+gfg8crfXGO6urvee8TaKD94adf1KV7nE59d8nva9XU3dWYacv16tBE9YpJUuKsVd6oGp+0WH8bMFbf/1DiDbRSS/TtMXSy3ho7V1v25KnfOx0LtFv25KnH0MkaEp+uz744oo/W7dA/Bo9XWXlVp+cslBgLtEtWf6FX3pykfu8k6+OcXT4fYBMcPXFWQ0fNUoPDJY+nSePTVmr1xn2SpNiJ87Vh+1F5PE06eaZI3YdM8h6ibXoBQUSMJAm0iNZauWGNT5xttbygwPjY2oz1k6WqTh1nzMpPlhqfAwytJaUNysxxKW2+Wx8ucym/MLy/9tg10ObucnrnOC/fd2zFJQ6lzXcrfmKLHy5zqaTU/JgDlUCLGFnajdbvy+7NSgjIYANtKKmsrlP3IZPk8TSF7Dlbj+KVpLPnL2vY+7NC9tx2wFig7dI9Tt0Gjde/3p+tIfHpemPEB361iqwNe/Xhis+9lzftOqYps7NUXXtHz/cbrUbPwz0z3hw5U2fPX5ZEoEVEDKUEWkRrfVKgvZ13zPjYHrc6dazfsVpldepY43OAoXXeMpc3DLYajkdxtmrHQJu92dlmjh+NtEuy2t6emRN47Dx9waFThU5jfr69JdBmfGRuDK3+XMb3TojBajc6+z2LaZqbm5W2MNt70GMoqKm7q+f7va9r10vV3NysDxblKGNlbsie3w4YC7SH8s4EpFV8d/GKXntvumrr78rpcmt0ylLtPPhfnSu6qsHD03zuO2V2lrbtPyGJQIuIGErtGGjLCwpUcWCvbl25bnwsiKG2vKCgzTf1tbF9bLkPbfnFS7pdcLpTVi2brbph3VS1bHann6P84qWQ/D/yCx8eMbg0y+kTBEtKw/PPvMPRwuKGNmEwfqJbsxa5tPNQ5wKnv+eLVi9ecTxxTuYtcz11zhJS3AHP+fhpbSN7tHrmgn2+d0IMV+1GoFsbPK5Jqmrq1X3IJI1PXSGH0xXS59627yv1iklSz2GJSpixQrX1d0P6/KaxzUnC7MCc5RvVtecI/aXvKMVNWiC3u1GnvrukmNGzfe6XtjBbG7cflSRV3XHiM7AaEZ/sXVfEOmtxyw8ZF34wP5bq8mrVJcX67s15ZJ/5cSGG2Joj+1Qb16flfT5miKqLfzA+ppD/Hz9f2/I5/Plao+O4esOlhGmPxahpbv1W4dKy1Q9D09RZbn3/k/l5i2S/vfj0sJeQ4tby1a4OfRxMBzo7+ePPLe9rf7dlLHd752zqzLa3fzD/99sD+J5owu+Bdkq6S0lR6vuJLfN27lJgc4YYDprqEAAmsW2gvXPvgXcjYCv4Yu9xjZq6RA8anPJ4mpSxcpNmLlmv85euamBcqs99E2et0o4DX0uSnC4PPgMdiPhETX9+PkvnLmlU/ES3rlxrND6W+/u2tjmysD6ur/Fx+R3r1myjNlz8zvgcYPA6auuMj+FZeW/LupY93LasMzqOXQca/QarrJy21yfPdhuftwUfmY18Cz56tnOQMsvP607w/ff4aW5d+yWwr0mtj9t5IHqdOL1lDn79rWVOFq5o+97edeDhfB7Oa3v72XMttwXyPVHr623Zbf7/bsqk3yP3D1cajX+PihgqTX3dAzCJbQPt7KWfqUv3OMteb3zqCm0/cMJ7+ULxNfV9O1m19Xf15z6j1OB4eGh2v3eSdf7SVUlscYCIGErttMVBTZr//S7tePIkk/ty1g3rpsrPVhufA8SnWfnZalu8V3N3td1vM36iWzPm+g+UxSVm18K5S80eFTp36bM98VJhcYNSMx7G2BETfF+/9XLursC2PGh9XO5OR9TaekRr6xYHJaW+e/1mb247l3n5TmXmuJSZ0/ETtY3//Yj09VvN/99NmfhBy/yePm/+eyfEcBfAJLYNtL/dqtTFH0ose72P1u3QhA9Wek8GtuLTnRqfukKSNCJxkVZv3CePp0kHjhWod0yS90x0phcQRMRI0k6Btmr1Ur8x0o57c1Z+trrT1o5+w7s3Z2ef43bBaeNzgPg07RJoi0scSkj2jYAJyW4t/Nh/uDU9b8GYu9PhjZWmx9Ke+YUOv/M/4ilR0Z8E2raB9llLoCXQIoZSAJPYNtBazf0HDk3LWKu+byer79vJGp2yVLcqWrZYKC2vUuzE+frbgLEaOmqWiq/84n2c6QUEETGStFOgLbtZ4Y2XrVZs22R+XCG2OrXlSGEiK0aydgm0ZdUtMbD1qM0lv58kzN8JqwKNgnY1nAJtWXWDsjc7/cbZ+Ilu5eUTaAm09pVAixg67YZjW7Yc23M6LIQnRgPtvv/k+xwlW/BdsV7/d5p6/muKFq7a4j1K1c6YXkAQESNJWwXa6gaV3axQxbZNqtywxpZbG4RCAi1Gg3YKtE+ysLhBmTkuLcly6mCeTdbAIAy3QNv6Mdj/pUOTUl3eo5s78rEg0BJoCbSI4a3d6Oz2YxCeGAu0W/ce1596j9Tx/POSpPq79/VC/zGalrFWuTu/1MuvT9C6TQdMDS9gTC8giIiRpO0CbRRIoMVoMBwCbaQZjoE2WAm0BFoCLWJ4azdag+u9mQkBSaANb4wF2oGxM7TvP/ney9v2faXX3puu5uZmSdLRE2c1MHaGqeEFjOkFBBExkiTQWi+BFqNBAq31EmijUwItgRYxnLUbrcHVsS07IEMVaN8ZN0+v/zvN57rL126o79vJkqTxqSu0/z+nOvScL/Qfo/LKmqDH9jR2Hz7p/fdf+o565q8XaowF2udeHaGqmnrv5eS5q7V09Tbv5bLyKnXtFW9iaB3C9AKCiBhJEmitl0CL0SCB1noJtNEpgZZAixjO2g0Tgfba9VKNTlmqsdOX60LxNe/1dg+0zc3Nevn1Cd7L1bV31NTU/Mxe71lgLND+pe8oVVbXeS+/OjTRu92BJN0sq9Dz/d43MbQOYXoBQUSMJAm01kugxWiQQGu9BNrolEBLoEUMZ+2GiUC7+JOt2n34pA7mndbsZRu81wcSaEenLNOS1V9oZNISDXt/ltIWZsvd6JH0MNBe/KFE/d+d5n3Mo5fzv72kQcNT1e+dZA2MnaH/nr7Y5jXc7kalfLhGfd6aql4xSUqeu1oOp0vj01aqS/c4DYxL1a2KGp8jaD/dfFA9/zVFQ+LTtW3/CfX81xTv/2Nl9k4lzFihPm9NVdaGvfp080GNTFqi196brp9+/k2SVFVTr1FTl6jv28nqFZOk3J1fBjXHT8JYoB0Sn67Dx89Iks6ev6w/9h6p+w8c3tuPfMUWB4iI0SaB1noJtBgNEmitl0AbnRJoCbSI4azdsDrQejxN6vPWVN2736AGh0s9hyXK5XJLCizQjk9doXfGzVOjx6Ompma9PXauDuadlhRYoB0Yl6pzRT9Jkq6U3FT64pw2r3H0xLeKT1qs5uZmNTU1a3HWVp0ruqra+rs+f4XfGmivXS/VC/3HqLK6TuJ8KZUAACAASURBVC6X2xtaJWlSeqZGpyxVc3Ozfv3ttv7QY7j2HPlGkvTJxr3eQJ2xMtc7lptlFeraK14VVXUKNcYC7fYDJ/TXf45W4qxVevG1cVq4aov3tsLvf1LPYYlavXGfqeEFjOkFBBExkiTQWi+BFqNBAq31EmijUwItgRYxnLUbVgfa/56+qCmzs7yXp2es03++/k5S4IF24/aj3ssf5+zS3OUbJQUWaEckLtKc5Rt1s6ziiWM8V/STXnlzkr4uuCjn7/FY0hMD7da9xzU+baX3+i//+51PoN2065ikljjdpXucqmvvSJIOfFmghBkrvLe53Y3e5+j3TorOX7r6xDF2FmOBVmrZwHfG/HVav/Wwz382bWG2pmWs9R4KbWdMLyCIiJEkgdZ6CbQYDRJorZdAG50SaAm0iOGs3bA60CbOWqW/9B2lF/qP0Qv9x+gvfUdp3IyPJAUeaB89Udf6rYc1de4nkgILtFU19Zr30efqPmSSBsbO0Mkz3/sd59ETZxU7cb7++s/RSluYrQcNzicG2rW5+/XBoodH4n7/Q4lPoH10vF26x+lBQ8tf9h/KO6Mx05Z7/+9jpy/X0FGzFDNmjv7Ue6T3SN9QYjTQPgmPp8n0EALG9AKCiBhJEmitl0CL0SCB1noJtNEpgZZAixjO2g0rA+2dew/UbdB4n4MnGz0evfz6BNXU3Q040K7feth7efna7Zr30eeSHgbaosvX1e+dFO998r+95BNsWzn+zTn99Z+jn9oH6+rvaUTiIuVsPfTEQLtp1zFNnpnpvT7v5LkOB9pBw1N97tc7JikyA63D6VL+t5e0bd9X2nHga50r+kmNHvsfOduK6QUEETGSJNBaL4EWo0ECrfUSaKNTAi2BFjGctRtWBtqte4/7bG/QyvSMdcrd+WXAgTZmzBw5nC45nC4NjEvV0RNnJT0MtOWVLSfwetDglCTNXvqZ+r87TQ0Ol2LGzPGe2OtmWYVe6D9GTU3NPq+Ru/NLrVq/W83NzWpublbqgk+1futh3b33QH/oMdz7vK2BtujHn/XSoATV1t+V292o0SnLOhxoXxw4TsVXfpEkHcw7rb/+c7ROninq1Dw/DaOB9nj+ef1j8Hh16R6nl1+foJcGJahL9zj1jknS2fOXTQ4tYEwvIIiIkSSB1noJtBgNEmitl0AbnRJoCbSI4azdsDLQxoyZo0N5Z9pcn3fynIaOmhVwoF2y+gu9NXauegydrA8W5XiPgG0NtJK0IHOzBg9P0+iUZfps2xH9839bjqjdffik+r2Tot4xSRoYO0PHTha2eY2aursaM225Xh2aqF4xSUqctcobVeOTFutvA8bq+x9KvIFWkhZnbVWPoZP11ti52rInT/3e6Vig3bInTz2GTtaQ+HR99sURfbRuh/4xeLzKyqs6MdNPxligvXzthp57dYQWZ21Vbf1d7/U3yyqUOCtLf+w9Upev3TA1vIAxvYAgIkaSBFrrJdBiNBiJgbaktEGFxebH8SQJtNEpgZZAixjO2o3W4HpvVkJABrsHbbA8Kdya5tGjcM+ev6xh788yN5inYCzQTpmdpfGpK554++iUZZr4wccWjqhzmF5AEBEjSQKt9RJoMRqMtEC7JMvpjYFJM122DLUE2uiUQEugRQxn7UZrcO2oprBjoK2pu6vn+72va9dL1dzcrA8W5ShjZa7pYfnFWKDtPmTSU/dsKPz+J7342jgLR9Q5TC8giIiRJIHWegm0GA1GUqDdcfBhnH000poe1+MSaKNTAi2BFjGctRuBbm3wuKawY6CVpG37vlKvmCT1HJaohBkrfP6K304YC7R/6DFcN0pvP/H2W7er1aV7nHUD6iSmFxBExEgyLALtzQpVbN+kyg1rVF5QYH48QUqgxWgwkgLtvGWuNoE2fqJbxSX2WjcJtNEpgZZAixjOApjEWKDt0j3Ou2GvP8orawi0iIhRpu0D7c0K1Y4Z4vMnRBXbNpkfVxASaDEajKRA++j2Bo9qelyPS6CNTgm0BFrEcBbAJEYD7crsnVq/9bBfV2bvJNAiIkaZdg+0lRvW+N3nqexmhfGxdVYCLUaDkRRoC4sb2sTZ7M1O4+N6XAJtdEqgJdAihrMAJjEWaPu/Oy0g7Y7pBQQRsdWS0hZNjyMY7R5oa9LG+g204bzVAYEWo8FICrRl1S2RNjPHpXnLXDqYZ8/1kkAbnRJoCbSI4SyASYwF2kjB9AKCiFhS2qAPH9mT8MNlrrANtXYPtBXbNrWJs7WxfYyPKxgJtBgNRlqgDQcJtNEpgZZAixjO2o29hz3ad6Spw0J4QqANEtMLCCJiZk7bE8Zk5tjvjN6BaPdAW3azos1RtBUH9pgfVxASaDEaJNBab7gF2h0HncrMcWnnIWenf8lJoCXQEmgRw1u74W/P+UCE8IQtDoLE9AKCiJiQ3PaLckKK/U4YE4i2D7S/W15QoIoDe3TrynXjYwlWAi1GgwRa6w2nQDtvme8vOtPmuzsVaQm0BFoCLWJ4azdav64s+rgxIAm04Y2xQPukk4M9rt0xvYAgIialtz2CNjWDQGuVt65cV/WHyapJHafqD5PDLtoSaNGft65cV+WGNarcsCas91hu1c6BtqS0QfmFDuWd6vyRm3Y0XAJtfqHD79FHOw52/MRrBFoCLYEWMby1G61fV/Ye9gRksIH2eP55DXhvul7oP0axE+frl5vlkiSny61pGWv1j8Hj1TsmSdv2feV9zM2yCsVNWqC/DxirIfHpOld0VZLkcrnVpXucuvaK95o4a1VwExLh2HqLg+bmZtNDaBfTCwgi4o6DzpD8YGkHwy7Q3qxQ7ZghvvvSxvZV2c0K82MLUAItPm75hSLVxfaNqK087BZoC4sbtGmXU6vWuzQp9eEv2RJS3CosNj++UBgugfZgnv9Am7uLQEugDQ8JtIih025YGWjLK2v0Qv8xOld0VU1NzVrx6U4Nn7xAkrRq/W5Nnpkph9Ol0vIqdR8yST/9/JskKXbifG3YflQeT5NOnilS9yGT5G70qKqmXi8NSgjZXEQDtgy0tytrtTZ3v/q+nWx6KO1iegFBRCyrblBevlPzlrWc0TsvPzzjbFl1+AXaigN72pw0rCMx63bBab+Pj0arU8ca/3hii9Xzprb9GMX2NT6uYLRToH30iM0RfsLgh8vCcw/xxw2XQFtc4j/Q5hd2fNwEWgItgRYxvLUbVgfaoyfOei//ePVXvfLmJEnSwNgZuvhDife2Rau2aNX63aquvaPn+41Wo8fjve3NkTN19vxlXb9xKyyanp2wTaB1N3p07GShxkxbrj/0GK7+705T9pZDpofVLqYXEETESDKcAm3lhjWqe7uH/0C7bVNAz0GgJdDa0cdPhNdqOB0Z/rh2CrQ++51O8H9yj1C9jkmTZrb8P5Nmmh3HvHaCd3GJQ5994fuXKNmbO/eLTgItgZZAixje2g2rtzh4lOwthzRldpYk6blXR6j+zn3vbV/sPa6pcz/RuaKrGjw8zedxU2Znadv+E/r+hxL9zxsTNXzyAnUbNF4jpizybpkA/jEeaH++cUtLVn+hfwwer78NGKv/+8pwHTtZaHpYAWN6AUFEjCTDJdBWbNvUEq2GvqTaYS+1CVmB7kPbGmhrR7+hys9WR6XVS2cRaG1m1bI5bd7TtaPfMD6uYLRToH30xI4j/ATapPTQHEHb2TM/R6JPmqNHtwgaMdGtBStcKi7p/NcfAi2BlkCLGN7aDVOB9puzReodk6Tyyhq5Gz3q0j1ODqfLe/veo/kan7pCp767pJjRs30em7YwWxu3H1XJL6WateQz/Xzjlpwut5av3d4m5oIvxgLt7sMn9b8JH+q5V0do7PTlOnrirFwut/7Sd5RulN42NawOY3oBQUSMJMMl0PocYfhIpK2N7a3beccCfh4CLYHWlt6sUE1i7MM4G9tH5ReKzI8rCO0UaDNzHjuC9rFIG6ptalqfLzPbGbU+LdAWFvuP2J3Z2uDxOTcd7Ai00SWBFjF02g0TgfbAsQL1f3eaT5d77tURqq2/6728ZU+eUuat0flLVzUwLtXn8YmzVmnHga/bPK+70aOuPUeooqouqPFFMsYCbZfucUqclaWqmnqf6wm0iIjRa1gG2kf/BLyDz0OgJdDa2fKCgpZfOITx1gat2inQlpQ2KDXjYRCcnObS6o1O5e5yhvQEYcRCx1MDbV5+2xNsxk/s3MnBmPOHEmitl0CLGDrthtWB9vg35zR4eFqbTjd4eJrOnP/Rezl9cY7W5u5Xbf1d/bnPKDU4Hh5d2++dZJ2/dFWV1XUq+aXUe73L5dYfegz3Cb3gi7FAm7Vhr3r+a4pefn2C5n+8ScVXfpFEoEVENOX5H83/kNF6NvOsz5xGx7H/y6f/gH4771jbPVTnTe3wnBNoCbRojXYKtK3mFzqUX+hQSemzeX5i4dMD7aMna3vUg3kcQRuMBFrrJdAihk67YWWgrb97Xz2GTlZpeVWb21Zv3KfRKUvlcLp07XqpXhqUoF9/a+l2IxIXafXGffJ4mnTgWIF6xyTJ42nSyTPfq+ewRJWWV8njadLK7J2KGTMnqPmIdIzuQdvU1KxvzhZpUnqmnnt1hF57b7r+36v/VtGPP1s+lrSF2eraK/6hPUdo0PCWQ7VvllUobtIC/X3AWA2JT9e5oqvex5leQBARQ+Xhr/wfTRSNpi9sfw/IigN7VJMYq9rRb6hq9dJOHWVIoCXQojXaMdA+a4mFTw+0ZdWPbTcx0a3UjOBO0MacE2hNSKBFDJ12w8pAu/vwSXXpHufbxXrFq67+nlwut6ZnrFO3QePV562p2ns03/u40vIqxU6cr78NGKuho2Z5D76UpHWbDuiVNyfpxYHjNGrqEr/xFx5i/CRhrVTX3lHO1kPq/+40/aHHcI2ZttzoycJWfLpTWRv2SpJiJ87Xhu1Hf/8tQJG6D5kkd6NHEoEWESPH1kA7cbpLc5c6o9IP5jsDDrT+LL9QpNvH8wLer5NAS6BFayTQRqftBdqy6gYdzHMod5dTOw46gz6amTkn0JqQQIsYOu1G69eVRR83BmSwWxyAWWwTaB+l8PufNC1jrf7Ue6SR179ZVqF//m+KHE6Xqmvv6Pl+o9Xo8Xhvf3PkTJ09f1kSgRYRI8dDX7X8MDtjnsv4DxumzFrfMgczOxFoKzes8dnyoGr5nHYfQ6Al0KI1Emij00ACLXMeWgm01kugRQyddqOzfw0I4YktA20rd+89MPK6qQs+1bZ9X0mSzhVd1eDhaT63T5mdpW37T0gi0CJi5Eig7XygLb9Q5PekYeUFBU99HIE2gEB7s0KVG9ao+sNkVWzfZPzzBMNTAm10SqC1XgKt9RJoEUOn3Qh0a4PHhfDEtoF2/39O6YNFOZa/bnlljXoMnSynq+W3Dqe+u6SY0bN97pO2MFsbtx+VJNXfdyNilHrHkHcfND4Tv/qm5YectAy3tu2LTtd93jIHcxZ3bJ7v7N7qN9De2bTu6Y89923LfccMUf2mddHpirmqG9ZN9R+MazuvlbWqH/umz5zWL5j2zD4H8Cnv8cpa1acnPPw4bP7U+Jg6Yv2mdS3jbu9zMoJsjYWm11WTts4Bc26dE6e3zMG1X4Kfz0C+J5rw++vl7nBp297odEp6yxxcLG5/vkx/74xodwFMYttAu2nXlxo1dYnlr7t+62HNWb7Re/n8pasaGJfqc5/EWau048DXkqR7DW5EjFLvRphf5T8aaF1R6brPXQ8DbQfm7s65s/4D7X/2P/2x5x8NtGuj0xVzWsJZ+ri287pni/95vfyj8c+X+vQEs366zOL/77i2H4c9W4x/HAIe/6a1vwfatcbHYpUPY6H5tdWU3kDLnFvmxOkt837tV2vm3Btod5r/v5uyNdB+/2P782X6e2dEuwtgEtsGWlO8NyFD/z190Xu5tv6u/txnlBocLu91/d5J1vlLVyWxxQEi2tf8QoeWZjn14TKXDh1v/8/e2OIguD1oq+dN9YlXNYmx7T6GLQ6evsXB4/v6Brp1hBX6G5eVWrpn780Kv2OoSQtsDK3vc2yxsx+H3F0t63lmjkvFJe2v6fy5PVscmJAtDqyXLQ4QQyeASWwRaJuamlVVU6/S8qo2Ws3z/Ua3ed0RiYu0euM+eTxNOnCsQL1jkuTxNEki0CKiPc3Ld7bZLD53l/OpjyHQBhdoy6obVHFgjyo3rFHFtsD2SiXQPj3Q3s475jdw3bpy3fjn2O2C0522ZvJ7qhvWTZXbN3X6OcovXrL0/0ugNRto5y1z+aznCSnudiMtsZBAa0ICrfUSaBFDJ4BJjAfaI1+d1YsDx6lL9zi/Wsn9Bw516R7n3X+2ldLyKsVOnK+/DRiroaNmqfjKL97bTC8giIj+fPyH+dYf6J/2GAJt8IG2oxJo2z9JWNXqpd6wVRvbRxUH9hj//ArW6tSxqhvWTbcLThsfS8BjfuwI8bph3XQ77xjv8w7Y2UBbWNzQZj0P5JduxEICrQkJtNZLoEUMnXZj72GP9h1p6rAQnhgPtC+/PkErPt2pX26Wq7yypo12x/QCgojoz6T0toG2vR9SCbQEWjsG2rLqBt26cr1lW4ObFcY/t0JhOAbasis/q2r1UtUkxqombWzAcZb3efCBNr/Q4Xc9z8x5+jpFLCTQmpBAa70EWsTQaTf8ff0PRAhPjAfaP/YeqQcNTtPD6DSmFxBERH9mb267xcG8ZU//YZ5AS6C1a6CNNMMp0D66D3DNlFiVXyjifW5xoC0pbVBCctsfvvLyOYK2PQm01kugtV4CLWLotButX1cWfdwYkATa8MZ4oJ2Unqn8by+ZHkanMb2AICL6s6S0QUuyHkba1Iz29ysk0BJoCbTWGC6B1t8ewLVjhvA+tzjQllW3bHPwaKRtb3uDsmpiYe5OAq0JCbTWS6BFDJ12o/Xryt7DnoAMNtAezz+vAe9N1wv9xyh24nz9crNckuR0uTUtY63+MXi8esckadu+r3wed+BYgZ7v976OnvjW5/qTZ4o0aHiqXnxtnEZNXaKqmvpOjy0aMBJo12897HX1xn3qFZOk2cs2KGfrIZ/b1m89bGJ4HcL0AoKI+DRLShsCOtt3WTWBNncngZZAa43hEmirls3xe5Kr8oIC3ufPINAWFrf89cPSLKcOHfe/bhcWBz7vxEICrQkJtNZLoEUMnXbDykBbXlmjF/qP0bmiq2pqataKT3dq+OQFkqRV63dr8sxMOZwulZZXqfuQSfrp598kSZ9tO6LxqSsUM3q2T6C9e++BXhqUoAvF19To8WjFpzs1eWZm8JMSwRgJtDFj5gSs3TG9gCAihkoCLYGWQGuNYRNoHzlB26PeunKd93mIA62/E4Flb27/KNmnSSz0H2jzCx3atMupTbucAf8CkzkPXAKt9RJoEUOn3bA60B49cdZ7+cerv+qVNydJkgbGztDFH0q8ty1atUWr1u+WJF2+dkPNzc0akbjIJ9AePXFWo6Yu8V6+e++BuvaKl8vFFgxPwvgWB0+iublZbnej6WG0i+kFBBExVBJoCbQEWmsMl0BbfqGoTZytSev4x4n3efuBNjPH/4kdS0o7//EjFrYNtAfzfE+4lpDS/vY/zHnHJNBaL4EWMXTaDau3OHiU7C2HNGV2liTpuVdHqP7Ofe9tX+w9rqlzP/G5/+OBds3n+5WxMtfnPi+/PsG7bQK0xXig7fmvKX6vr797Xy++Ns7i0XQc0wsIImKoJNASaAm01hgugbasuiXSVs+bqpq0sapavVRlNyt4nz+DQDtvmf9A25EtDR6XWNg20Po72dqSrOCOVGbOfSXQWi+BFjF02g1Tgfabs0XqHZOk8soauRs96tI9Tg6ny3v73qP5Gp+6wucxjwfaj9bt0NLV23zu0zsmSZev3Qh6fJGKsUCb/+0lLc7aqudeHaHFWVvbOOGDlXqh/xhTwwsY0wsIImKoJNASaAm01hhOgZb3uTWBdsdBZ5twmJQe3DpELPQNtCWlbbeRiJ/o1rxloVvvmXMCrQkJtIih026YCLQHjhWo/7vTdKP0tve6514dodr6u97LW/bkKWXeGp/HPR5o1+bu17yPPve5T7dB432eF3wxFmhLfinVR+t26A89hmt86oo2Tp37if57+qKp4QWM6QUEETFUEmjNBdq6t19R7egh0Wn8AAJthEugbT/QllU3aEmW0yfOBnP0bFk1sTB3Z2BH0GbmEGhDKYHWegm0iKHTblgdaI9/c06Dh6epqqbe5/rBw9N05vyP3svpi3O0Nne/z30eD7Rf/vc7vTchw3v5dmWt/txnlBo9nk6PL9IxvsVBZs5u00MICtMLCCJiqCTQGgy0SKCNYAm0gQXasuoGFZc4lF8YmshCLGwbaAuLfSNtakZw+/wy520l0FovgRYxdNoNKwNt/d376jF0skrLq9rctnrjPo1OWSqH06Vr10v10qAE/fqb75Gwjwfa+w8cemlQgk6f+0GNHo/mLN+o6RnrOjW2aMFIoN2065huV9Z6//007Y7pBQQRMVQSaA1ucTDiNVUvnRWV1sycRKCNcAm0gQfaUEosbBtoy6pbtjrIy3eGLIQz5762F2hLShu085BTm3Y5Q3KCNgItgRYxlNoNKwPt7sMn1aV7nLr2ivexrv6eXC63pmesU7dB49XnranaezTf+7g3R85U117x+r+vDNdzr45Q117xOnrirCTp1HeXNDB2hl58bZzGTl+uuvp7IZmXSMVIoH1jxAe6dOW6999P0+6YXkAQEUMlgZY9aE3IHrTmx8P7nEAbqfoLtMz5s/VpgbawuEEJKb5bTOTlB3eSNgItgRYxlNqN1rVy0ceNARmqk4SBGYxvcfDomeDCEdMLCCJiqCTQEmgJtNZIoI1OOxNoD+Y5lJnj0qZdzg7/KT6xkEBrwqcF2kf3WW41ISW4jw+BlkCLGErthr+TWwYihCfGA23XXvEaPnmB1ubu1/c/lMjjaTI9pA5hegFBRAyVBFoCLYHWGgm00WlHA21mjqtNyOpIpCUWEmhN+LRAm5rhPyQEM+cEWgItYii1G4FubfC4EJ4YD7SXr93Qpl3HlDgrS92HTNIL/cdofOoKbdp1TCW/lpkeXruYXkAQEUMlgZZAS6C1RgJtdNqRQFtY3OA3ZOXuCvzPwYmFBFoTdvQI2qT04L7eEmgJtIihFMAkxgPt49wordCWPXl67b3p6tI9zvRw2sX0AoKIGCoJtARaAq01RkKgLb9QpLKbFbzPn1GgzS90+A202ZsJtB2RQGu9Twu0xSUOJaU/PDI8Idkd9MnaCLQEWsRQCmASWwTauvp7Ov7NOS3+ZKtixszR3waMVezE+fpo3Q7TQ2sX0wsIImKoJNASaAm01hjOgbb8QpFqxwzxxsaq1ct4nz+DQFtc4lBCcttAezAv8ABDLCTQmvBpgbasukElpQ3Ky3fqYJ5DxSXBB0UCLYEWMZQCmMR4oH3tvenqFZOkxFlZyt35pS5dua5GT/jsmWF6AUFEDJUEWgItgdYawznQ1sb28YbGVisO7OF9HoAd3YP2YJ5vpM3M6di6RCwk0JqwvUAbagm0BFrEUApgEuOB9v3kpXr59Qn634QPtWzNNp04dUH1d++bHlbAmF5AEBFDJYGWQBtWgfZmhSq2b1LlhjUqLygw/vnTEcMl0N66cl3lBadbtjOoblB5QUGbOFs3rJuq503lff4MAm1ZdcvRhvmFDhUWd/zjRywk0JqQQGu9BFrE0Gk39h72aN+Rpg4L4YnxQCtJHk+Tii5f1/qthzVuxkd68bVxGjw8TXOXbzQ9tHYxvYAgIoZKAi2BNlwC7a0r11UX27dDR3HayXAItBUH9vjMb9XqZS3z7ifQVq1eGtD7vO7tV1Q7ekjU2plAG4zEQgKtCQm01kugRQyddsPffvSBCOGJLQJtK06XW+eKftLa3P3q/+40ThKGiGihBNrAAu3tvGMP42BsX93OO9bpOSfQdi7QVi2b0zYUxvY1/jkUqHYPtE8Ksbfzjql63lSf62pj++jWlesBvc+RQGu1BFrrJdBaL4EWMXTajdavK4s+bgxIAm14YzzQHjtZqMWfbNXbY+eqa88R6vt2smYuWa9DeWdUXXvH9PDaxfQCgogYKgm07Qdav+Eqtm+7gepJEmg7F2hr0sb6DV+tf4pvd+0eaG/nHfM7v5Ub1qisukEV2zapJm2sqpbNCWjOve/zEa+peumsqJVAa70EWusl0FovgRYxdNqN1q8rew97AjLYQHs8/7wGvDddL/Qfo9iJ8/XLzXJJLQdTTstYq38MHq/eMUnatu8rn8cdOFag5/u9r6MnvvVe53K51aV7nLr2iveaOGtVp8cWDRgPtD2GTta0jLXaffikblXUmB5OhzG9gCAihkoCbfuBtmLbJr/hqmLbpk7NOYG2k0fQrl7a5mNQG9vH+OdQoNo90JZfKOJ9/gwk0FovgdZ6CbTWS6BFDJ12w8pAW15Zoxf6j9G5oqtqamrWik93avjkBZKkVet3a/LMTDmcLpWWV6n7kEn66effJEmfbTui8akrFDN6tk+graqp10uDEoKfhCjCeKANd0wvIIiIoZJAG0CgfWxfTm+46uT+p4SrTp4k7GaFahJjfeJsMFtNWK3dA21ZddttJGoSY1V2s4L3OYE2rCTQWi+B1noJtIih025YHWiPnjjrvfzj1V/1ypuTJEkDY2fo4g8l3tsWrdqiVet3S5IuX7uh5uZmjUhc5BNor9+4pb5vJ3dqLNGKbQPtxzm7wuKDaXoBQUQMlQTaAPagvVmh2tg+vkdujn6DcGV1oP3d8oICVRzY0+ktJkwZDoG2rLrliPGq1Utbjpzt5Huc9zmB1qQEWusl0FovgRYxdNoNq7c4eJTsLYc0ZXaWJOm5V0eo/s59721f7D2uqXM/8bn/44H2+x9K9D9vTNTwyQvUbdB4jZiyyLtlAvjHtoH2m7NFWrfpgOlhtIvpZMpdcwAAIABJREFUBQQRMVQSaAM7SditK9dVPW+qatLGqnre1KDiIOEquEAbroZLoA2VvM8JtKYk0FovgdZ6CbSIodNumAq035wtUu+YJJVX1sjd6FGX7nFyOF3e2/cezdf41BU+j3k80Jb8UqpZSz7Tzzduyelya/na7Ro8PC3osUUyxgPtpPRM3b33wPQwOo3pBQQRMVQSaAMLtKGUcEWgNT0W3ucE2kiWQGu9BFrrJdAihk67YSLQHjhWoP7vTtON0tve6557dYRq6+96L2/Zk6eUeWt8Hvd4oH0cd6NHXXuOUEVVXVDji2SMB9rX3puuby9cNj2MTmN6AUFEDJUEWgItgdYaCbTRKYHWegm01kugtV4CLWLotBtWB9rj35zT4OFpqqqp97l+8PA0nTn/o/dy+uIcrc3d73OfxwNtZXWdSn4p9V52udz6Q4/hPqEXfDEeaD/dfFD93klR+uIcrdt0QOu3HvbR7pheQBARQyWBlkBLoLVGAm10SqC1XgKt9RJorZdAixg67YaVgbb+7n31GDpZpeVVbW5bvXGfRqcslcPp0rXrpXppUIJ+/e22z30eD7Qnz3yvnsMSVVpeJY+nSSuzdypmzJxOjS1aMB5oh8SnK2bMnCdqJWfO/6j+707T8/3e1+iUZbrz+9YLN8sqFDdpgf4+YKyGxKfrXNFV72NMLyCIiKGSQEugJdBaI4E2OiXQWi+B1noJtNZLoEUMnXbDykC7+/BJdekep6694n2sq78nl8ut6Rnr1G3QePV5a6r2Hs33Pu7NkTPVtVe8/u8rw/XcqyPUtVe8jp44K0lat+mAXnlzkl4cOE6jpi7xG3/hIcYDrV2ov3tfL78+QWfPX5bT5VbGylx9sfe4JCl24nxt2H5UHk+TTp4pUvchk+Ru9Egi0CJi5EigJdASaK2RQBudEmitl0BrvQRa6yXQIoZOu9H6dWXRx40BGaqThIEZbBFob5RWaNX63ZqesU6S1NTUbPm+tLsPn9TUuZ+0ub669o6e7zdajR6P97o3R87U2fMt4zO9gCAihkoCLYGWQGuNBNrolEBrvQRa6yXQWi+BFjF02o3WrysdFcIT44H21HeX1LVXvEZNXaIu3eMkSWXlVXqh/xjt+0/+0x8cQuZ/vElzl2/UiCmL1CsmSdMz1une/QadK7qqwcPTfO47ZXaWtu0/0TJWGywiiIihkEBLoCXQWiOBNjol0FovgdZ6CbTWS6BFDJ12I9CtDR4XwhPjgfa196brq1PnJckbaCXp7PnLGjQ81bJxzJi/Tv3eSdatiho5XW5NSs9UxspcnfrukmJGz/a5b9rCbG3cflSS1OD0ICJGhF+favmzmA8y3NqxPzr9NLflB705SxotmfMHF75T3bBuqh87RHc3r4tOV85V3bBuupM+zvjngFXeSR+numHd9ODCd8bHwvvcOlsDrVXz3hoLTa+rJm2dA+bcOidOb5mD6zetmfPW19u8y/z/3ZRJM1vmoPiyNd+7IEayACYxHmj/2HukPJ4mSb6B1t3o0Z96j7RsHBkrN2lB5mbv5cLvf9Kg4ak6f+mqBsb5huLEWau048DXkqTaey5ExIjw2MmWIzDSMtzautcVla7Z2DIHsxe7LZnzuu/OtkSbMUNUm7s2Kq37aE7LHHww1vjngFXWfdByBG3dd2eNj4X3uXW2Blqr5r01FppeV03aOgfMuXVOmN4yD5evWzPvE34/gnbjDvP/d1NOSW+Zg/OXrHmfI0ayACYxHmj7vZOsy9duSPINtF+dOq9eMUmWjWPj9qOaMX+d93Lh9z9pSHy6auvv6s99RqnB8fCTtd87yTp/6aoktjhAxMiRLQ7Y4oAtDqyRLQ6iU7Y4sF62OLBetjiwXrY4QAydACYxHmi3Hzihl1+foJXZO9Wle5w+3/EfpS3M1h97j9Tm3XmWjaOqpl4vDhynKyU35W70KHFWlhZ/slWSNCJxkVZv3CePp0kHjhWod0yS96hf0wsIImKoJNASaAm01kigjU4JtNZLoLVeAq31EmgRQyeASYwHWkk6mHda/568UD3/NUUD3puusdOX6+SZ7y0fx9cFF9VzWKK6DRqvqXM/0f0HDklSaXmVYifO198GjNXQUbNUfOUX72NMLyCIiKGSQEugJdBaI4E2OiXQWm97gbaktEGZOQ+3Jlia5VRJKXMejARa6yXQIoZOAJPYItCGM6YXEETEUEmgJdASaK2RQBudEmitt71Am73Z6b1Pq9mbncx5EHY20JaUNqiwuONzTqAl0CKGUgCTGA+0Tpdbq9bv1pD4dP1j8Hj9zxsTNez9WVqbu1/uRvufRc/0AoKIGCoJtARaAq01EmijUwKt9bYXaBOS3W0CbUJK57dEYM47F2gfDeVJM10dCrUEWgItYigFMInxQJs05xMNGp6qdZsOaO/RfO0+fFKZObvVc1iipmWsNT28djG9gCAihkoCLYGWQGuNBNrolEBrve0F2qR0V5tAm5Tuu/7vOOjU0iynNu1qf/sD5rzjgXbHwbZHMSfNDPxrMIGWQIsYSgFMYjzQ/n3AWD1ocLS5/kZphf7Ye6SBEXUM0wsIImKoJNASaAm01kigjU4JtNbbXqD1Fwdzdz3c4mDeMlebcPi0SMucdzzQPj7HrQZ6FC2BlkCLGEoBTGI80A6MS/V7/YMGh3oOS7R4NB3H9AKCiBgqCbQEWgKtNRJoo1MCrfW2F2jLqlsi7bxlLqVmuLXj4MM4m1/o8BsOH70Pc97WjgbaR0/S9qiBnqyNQEugRQylACYxHmg37fpSy9ZsU139Pe91tytrlb44R3uOfGNwZIFhegFBRAyVBFoCLYHWGgm00SmB1nqfFGhLShu0aZdTmTkuHTruP2rl5bc9uvbxI2yfNOeZ2c6oNSG5NdAGdrK1wuKGNnPckRO1EWgJtIihFMAkxgNtr5gkPffqCHXpHqe//nO0/tR7pLp0j9Mfe4/US4MS9OLAcV7tiOkFBBExVBJoCbQEWmsk0EanBFrr9RdoS0oblJDiGwQzc9qu+cUl/o+gzctvP9Bix04SVljcciTtvGWupx6h7E8CLYEWMZQCmMR4oD164lvlnTwXkHbE9AKCiBgqCbQE2mgItLduVur26dNGrUl8T3XDuqlyxybjY+F9TqCNZP0F2txd/o+M9bfn6cE8hxKSAz+ys/V+Uz5wRa2jJrcG2o6F1s5KoCXQIoZSAJMYD7StuN2N+u1WpelhdBjTCwgiYqgk0BJooyHQts45WhcLeZ8TaE3pL9Bmb/YfaPML/cetktKW/WiLS9qPX8x5x/egDVYCLYEWMZQCmMR4oG1wuJS64FPvNgeSVFN3V8MnL1BVTb3ZwQWA6QUEETFUEmgJtNEUaGvffkW1o9+IWgm0BNpo0F+g3X2k7dYFCcnugAIsc96+BFrrJdAihk4AkxgPtGkLs/V+8lJd/KHEG2gfNDg1LWOtkuZ8YnZwAWB6AUFEDJUEWgJtVAXaKJ5zq2Mhc279nJdVEwtzd/oG2sLiBv3/9u7+Par6zv/4/2P3u+5Wt7bLtrS1gje1CpbStW6gBBpCajCERE3kRgIIhdTaiCAGxSbUYhLvCC6VWKwbI9YANowVccSKGULIJMEbJjOTgdf3hzGBYSbJJHNy3jNnno/rel5XhQiHD/FQXgxnylfHh6xflSWOs61tzgxbnDkDrUUMtETOBVgyH2i/detSDZz/QpJGB1pJ+vzLC/qvO35tdFXps76BEBE5FQMtA61FDLTeHws5c/fPPBBkLGxovjzQpnpjsEWlUTW3huXvTn1+nb6Qtm6LPw6heuPYj0DgzBNjoHU/Bloi5wIsmQ+03/nxMoUjUUmJA23/4Be6bvYSo6tKn/UNhIjIqRhoGWgtYqD1/ljImbt/5oEgY2FD8+WBtr0z+bEG473pl7/78qttr2yixyBw5gy0FjHQEjkXYMl8oP111e+08feNGgpHRgfaM2eDWvbgo1p6/29tLy4N1jcQIiKnYqBloLWIgdb7YyFnPv6Zt3cOqb1zaMxXck41xsKJB9qGltQDbVt76jcSG+vjOfPLMdC6HwMtkXMBlswH2jO9/frx/zww+iZhN9xWrGtmLtD8pQ8r0NNnfXkTsr6BEBE5FQMtA61Fkxloz5w4pXO7d6hve63Oth3kzKdhLOTz3L0z93eHtL728qs0Syqj6vQ5d+6MhYnPoK3akP4bgzHQTj33B9r49/fokxHV1YfzsnsfjJ/B4WMMtESZBlgyH2glKRa7qM6/f6gXXn1Tr75+WL4Tn1hfUtqsbyBERE7FQMtAa1G6A23PsS4NFsweHbkG583Qud07OHOHxkI+z90/84aW5BGwfLVz9x7GwsSB1t8dUt2uiGpqI9qyLaxOX/w5s837w0nPl/V3h1S+KpL2oMuZX87qFbTEK2iJnAiwlDUD7TtHP9ALr745+mVffpUb/3FY30CIiJyKgZaB1qJ0B9q+2ocTxtmpDoyceeqxkM9z98+8pjb5GaeFpROPgOnGWJg40F5da1viYw+qNyZ+XKcvpC1fv0lY1QbeJCzdrF5BW/ZQRCvytF/dF+UVtEQOBVgyH2g/O3NOs/+7QtfNXjL6DNrunj7dcFuxuv7xse3FpcH6BkJE5FQMtAy0FqU70PZXF6ccaM+cOMWZOzAW8nnu/pmPjH9X59S5MxaOPdD6/KmfSdvUOv4jDDjzieMZtO7HM2iJnAuwZD7QLlj+iB6rb1YsdnF0oJWkxpbXVFC60e7C0mR9AyEicioGWgZai9IdaM/t3pE0zg4UzeHMHRoL+Tx3/8w7fSGVVEzuGaeTibFw7IF2rDcNq9uV2b2fM2egtYiBlsi5AEvmA+2/37RY4UhUkhIG2uhwTP9xS5HRVaXP+gZCRORUDLQMtBal/SZhp3sTXkU7UDBLPce6OHOHxkI+z23O3OcfUkNLWPV7wmprd26cDQQZCxuap/YKWp9/SI0tYdXtikz654QzZ6C1iIGWyLkAS+YD7cy5y9XXf15S4kB78tRn+s+flBhdVfqsbyBERE7FQMtAa1HaA+3X9XR0qKejQ4HTvZy5w2Mhn+feOfNAkLGwoXn8Z9Be/SZtVRuieutISCWVU39VM2fOQGsRAy2RcwGWzAfaTY//Uf9z7wa93fm+rpm5QB989Kle/nO7Zv93hdb99lnry5uQ9Q2EiMipGGgZaC2a7EDLmefeWMiZu3/mgSBjYUNz8kDb1BrW+tqI6nZF1OmLP2aioSWs1rb4sFW3K/Ubt3Hm6cdA634MtETOBVgyH2iHwhGt2fKM/u2mxbpm5gJdM3OBrr+5SFu37x199EE2s76BEBE5FQMtA61FDLTeHws5c/fPPBBkLGxoThxoU70pW6cv8cxqalMPtFd/HGc+dgy07sdAS+RcgCXzgfbSpUuSpGh0WN09faOPO5CkC6Ehq8tKm/UNhIjIqRhoGWgtYqD1/ljImbt/5oHg5bGwblc4bxs5A393KOXwevWbgl392IPC0qjKV6X/6wEDLQOtRQy0RM4FWDIfaMvWPJ7ylbJHuj7UTfPLDa5ocqxvIERETsVAy0BrEQOt98dCztz9Mw8EUw+S+VqnL/V51NQm3uv93Ymvoi2pSP/Vs1eeufWvZZZNZqDt9IXU3jk0qTO+OgZaBloiJwMsmQ+0i1Zs1i9K1mvw/JeS4q+krd2xV9feuEi/e6rZ+OomZn0DISJyKgZaBlqLMhpoT/eqv2rZ6PDVt72WM8/CsZAzd//MA8HLY+GKhyJ525WPOChflfz4gpFnz17dyHDo757amVv/WmZZugNt/Z7EVytP5s3YroyBloGWyMkAS+YD7XAspod/+6xu+UWl/vLWUd35y2rdes/96vrHx9aXlhbrGwgRkVMx0DLQWpTJQNtfXTw6eo10bvcOzjzLxkLO3P0zDwQZCxuaE59B2+lLHGnr90xtEOTMxy+dgXasVzRP5ZW0DLQMtEROBlgyH2hHNLa8pn/5wUL9uvoxDYUj1peTNusbCBGRUzHQMtBalMlAe/U4OzhvhvpXFHDmWTYWcubun3kgyFjY0Jw40I7U6QtN+pWxnHn6pTPQpnrW71RfRctAy0BL5GSAJZOBtrHlYMpKHvydvvPjZfpD059HvyzbWd9AiIicioGWgdYixwfa6vG/Hc7c/bGQM3f/zANBxsKG5tQDLWc+vaUz0La1px5o2zsnPzAy0DLQEjkZYMlkoJ2z6KG0c8ubh7v0je8v1LU/KhxtZCA+HejVguWP6Nu3FWtu4Sod6To5+u9Z30CIiJyKgZaB1qJMBtq+7VuTBtqzbQc58ywbCzlz9888EGQsbGhmoLUo3WfQVm0Y/w3b0o2BloGWyMkAS1nziANr+9sO677VdSm/rqB0o3Y/f0Cx2EW9ebhLM+cuV3Q4JomBlojsa+8cmtKbmVwdAy0DrUXpDLQ9HR3xNwMrmK3g+gqdOXFq9OvO7d6h/upi9VcXTzjOcuY2YyFnnt6ZN7SEVVIZH5uqN07teZxXxljIQGtRugNtIBhSU2tYDS1hNbVO/XnADLQMtEROBljKioH2QmhIr//fET330uva+/Jf9EbHe64/h3bvy3/RQ5t3JX15cOBzXX9zkYZjsdEvu2vxar1z9ANJDLREZJe/O6TqjZdffVJSmdlv6BloGWgtmmigPXPilAYLZie8SnZg6VwFTvdy5tM4FvJ57u6Zp/or39UbMxsWGQsZaC2azEDrRAy0DLRETgZYMh9o/++dLl03e4mum71EN80v143zynTtjwr1H7cU6fDRf7h2HU/tadW8X63RHQur9b05pareVK+vLgzpSNdJ3bGwOuFjV6zdpr2vHJLEQEtEdtXtiiT9hr589dSHRQZaBlqLJhpoz+3ekfJZs+m8Wna8MycG2mwaaLdsS/1Mzkz+0I2xcOKBttMXUvP+8JSefcqZp46B1v0YaImcC7BkPtDeOK9ML7z6ZsIrVIfCEW3b/ZJ+NL/ctet47a/v6tGdTRo8/6X6B7/QohWbteGxBr317nHNL1qb8LHVm+r17PMHJEnDsYtERCZtemw45W/op/rt/d/hmApLo1q1cVgvtOZnT++Jn+m6rcOu/ByGuzo1OG+GzhfP1YXnnsrLvvr9Og3Om6EvVi9LeUYX/vRUymFx6O1DGZ05xePz3L3GO/P6htT3855zUz/3kW/D+r5q2Xi/Lr6wP/HM63Zmft/nzIdV+kD8DE4Hpv/eMhy7OPr9/ekF+x+7VStXx8/gxMmYK2dO5OUAS+YD7VgjbDgS1b/ftNjlq7ns3fdO6Oa7K3X0+EndvqAq4evK1jyupn1vSJJ6B8NERCZtfSL5FbQlFdEpf3sH3oi/gqtqfVR7XgjnZdt3x89gzeapn+Nk6jt8OP7KwqVzFHx2R17W/9u1Gpw3Q/3VxanP6aN/Jo2KAwWz1Bvo48wzaOQs+TzPjjN/+2jy/Xx9bWb3oZFvx/q+atnIGVx9Nsc+SP2K5Vf/EuHMM2zkFbTHT2Z2lul279evoN291/7HbtWKVfEz+Nt703/eRF4PsGQ+0C5asVmfnTmX9OVHj5/U0vt/69p1+D/pVm/f4Og/d7zr0+0LqjRw/gt9c9YShYYuPxP35rsrdPT4SUk84oCI7Or0hVRSkfiby9a2qf/1Nh5xwCMOsuERB2fbDmpg6dz4aLuiQD3HuuJvElZWMDrk9hzr4syn8a/b83luc+btnUOqqY2oakNU9XvCGb/xI3/dfuxHHKR65m9haVQNLVN/syrOPF4mjzhoaw9r67aw1tdG1Nae3s8FjzjgEQdETgZYMh9od/zhFf3wp2Va/7s/aPfzB1T/x/1a9Ztd+sFP79O2Z15UY8vB0abT1u17VVS5VRdCQ/ryq5CWrNyi2h17JUmLyjZr+7MvKxa7qH0HO3TT/HLFvn75u/UNhIjyO59/SA0tYdXvyfwZegy0DLQWXTnQ9hzrSv5r+AWzp/yGYJz51MdCPs+z58zbO4em9CxaxsKxB9pOXyjlQNvUykCbaVMdaFvbhqb088FAy0BL5GSAJfOB9vYFVZqz6KG0mk4XQmHdv+FJfef2ZfrenFKt2fLM6Ktmu3v6VFC6UTfcVqyfLlkj34lPRv896xsIEZFTMdAy0Fp05UDr9BuCcebOj4WcuXtn3ukLqXz15UcfrK+NTOpVtYyF479J2NVvtFm1Yew3E+PM02+qA23VhuTBPJ03PmWgZaAlcjLAkvlAm+usbyBERE716l/if+Wz9IGI1m0N52UPbYyfwSoGWtdKZ6Dt6ejgzI3HQs7c/TNPNVjV7Ur/3sRYOP5AGwjGX53c0BLO6PFAnHliUx1or35k00Q/dyMx0DLQEjkZYCkrBtqPPz2jR3c2qbJmh5avqlPtjr366FS39WWlxfoGQkTkVCOvoCVeQetmVw60Z06c0kDBrMQ3BCuawyMOsmAs5MzdP/NU96bJvMqTsXDigdbpOPOpD7RXv6I53T+QYKBloCVyMsCS+UB78M1OfeP7C3X3shpVb6pX9aZ6/bx4nf71h4v0ztEPrC9vQtY3ECIip+IVtLyC1qKr3ySs51iXgjUrNVA0R8GalTpz4hRnngVjIWfu/pmnekVhTS2voJ1MDLTuN9WB1t8dUk1tJOFzPZ1HejDQMtASORlgyXyg/cnCKh049E7Sl+97rUPzi9YaXNHkWN9AiIicimfQ8gxai64eaDnz7BwLOXP3z7ypNZw00E7mzSAZC6c+0Hb6pvbmbJz51Afakfzd8TdATffjGWgZaImcDLBkPtBeN3uJhmOxpC+PDsd0/c1FBlc0OdY3ECLKn9raw2psiTeZN4pJNwZaBlqLGGhzYyzkzG3OvK09rLpdEdXvCTMWTqGpDLQNLYnDeP2eMGc+iTIdaCcbAy0DLZGTAZbMB9pb77lff3/fn/Tl773v1813Vxpc0eRY30CIKD+q35P4G8aSyqjjIy0DLQOtRQy0uTMWcua5c+aBIGNhQ/PkB9pOX+pn/6b7yuWRj7d+XI9lS1eMDLTpD9uZxEDLQEvkZIAl84F2zwtt+vZtxdr4+0Y9v++Q9r5ySBsea9C3bl2qnY37rC9vQtY3ECLyfj5/6jfvamhx9jc/DLQMtBYx0Hp/LOTM3T/zQJCBtqF58gNtqsdKTObXW4s3tczWGGjdi4GWyLkAS+YDrSQdOPQ3/apiq275RaVu/NkKLSrbrJf/3G59WWmxvoEQkfdr70w90G7ZxkDrdAy07sdAmz1jYU9HhwKnezlzF898OmOgnfxAO9avt61t6Q1f1j/eRx67/EaX1tfy0Wc84sCtGGiJnAuwlBUDbS6zvoEQkffzd6d+N++mVgZap2OgdT8GWvuxsHffixosmD36Zed27+DMp/nM3YiBdmrPoN2yLfFVtFUbJv8mY1a98Gr82p9scOfVq9kQAy0DLZGTAZbMB9ovvwrpD01/1tqtz+jBjTuTynbWNxAiyo9a24YSRtqaWucHRAZaBlqLGGhtx8IzJ04ljLMjnW07yJlP05m79esGA+3UBtpAMP6og4aWsON/EDrdMdDmZwy0RM4FWDIfaIsqa/W9OaVaue4JPbR5V1LZzvoGQkT5k88/pPbOobTfrGSyMdAy0FrEQGs7Fp5tO5g0zjr9KlrOPPHM3fo1g4F26gNtrsZAm58x0BI5F2DJfKC99sZF+udnZ60vY8qsbyBERE7FQMtAaxEDre1Y2NPRkXKg7d3byJlP05m7dU9noGWgzYcYaBloiZwMsGQ+0N44r0z9g19YX8aUWd9AiIicioGWgdYiBlr7sbC/ujhhnB0omuPom4Vx5sln7kYMtAy0+RADLQMtkZMBlswH2rY3j6h6U736+s9bX8qUWN9AiIicioGWgdYiBtrsGAt79zaqv7o4/mgDB8dZznzsM5/uGGgnN9C2tg2psSU8bY8RciMG2vyMgZbIuQBLJgPtdbOXjHbDbcX65qwlumbmAn1z1pKEr7tu9hKLy5sU6xsIEZFTMdAy0FrEQOv9sZAzd//MA0EG2obm9Afaqg2X34SzsDSqul3u/BrgdAy0+RkDLZFzAZZMBto3D3elXbazvoEQETkVAy0DrUUMtN4fCzlz9888EGSgbWhOb6BtbRtKGGdH6vS58/PkZAy0+RkDLZFzAZbMH3EgScOx2Oj/jsUu6v0PP8mZ59Ja30CIiJyKgZaB1iIGWu+PhZy5+2ceCDLQNjSnN9A2tIRTDrRrt0RUvTGq9bWRnHnsQa4MtD7/kJr3h7X/9SH5uzP7thhoGWiJnAywZD7Qdrzr0/fmlCoWu6jocEw/L16nb3x/oa79UaEOvXXM+vImZH0DISJyKgZaBlqLGGi9PxZy5u6feSDIQNvQPPFA6+8O6f6HIykH2kU5+IraXBho29oTB/GSyqh8/qkPiwy0DLRETgZYMh9o5xauUsv+v0qSXv5zu37w0/s0cP4LvfbXdzW3cJXx1U3M+gZCRORUDLQMtBYx0Hp/LOTM3T/zQJCBtqE59UDr7w6pvTP+ys0t21K/evbqcbawNKr6Pdk7eo6UCwNtSUXy2W7ZNvXrZaBloCVyMsCS+UD7bzctVix2UZJUtmabanfslRR/1ME3Z/EmYUREbsVAy0BrEQNtbo+FPR0d6jnWxZk7fOZt7WE1toQzetUmA23yQNvUGk545WbCUHhvVIvujerX96d+Re1vHs/+Nw7LhYE21dlWbZj4jdzGioGWgZbIyQBL5gPtjJ/8Wn395zUUjuiG24p1pOukJCk48Lm+8+Nlxlc3MesbCBGRUzHQMtBaxECb/WNhqnqOdWmwYPbotxNcX8GZO3TmVRsSx6uGlqmNbQy0iQNte2eKNwO7N3ksrKmNqHxVipH23qi2ZvBKTzfKhYE21dnyCtrMYqAlci7AkvlAu3rL07pjYbXuWrxacwtX6dKlS7oQCqtszeO6b3Wd9eVNyPoGQkTkVAy0DLQWMdBm91g4VgNFc0a/jZHhwwIBAAAgAElEQVR69zaOf+aFt6mvdm3els6ZX/kKz0yff8pAmzjQpnozsFSPMmhrj79yuXJt4itrr/x661+vxyoXBtq29nDCYw7KV0V4Bm2GMdASORdgyXygjUaHteeFNj3Z8Ir6+s9Lkr66MKQVa7epf/AL46ubmPUNhIjIqRhoGWhzeaA9c+KUzu3eoXO7d+jMiVOc+TQOtD3HupLG2cF5M9RfnfrncOTMaeIzTzUiFpZG1d45+eGFgTZxoG1tS/EK2tKonvxDWDW1EdXURhLG17F+Lqb6imY3yraB1ucf0tZtYa2vjahuV0T+7stf3toWb+TLphoDLQMtkZMBlswH2lxnfQMhIkqnTl/8r3eO9yoVBloG2lwdaK/+6/aD82bobNtBznycMnoF7enelMNjX+3DqX9+3juuYFWxaSOv+B0ommN+LeOdLa+gdbYrB1p/d/Jfrx/v2aedvtTPS+UVtOnl7w4lPee3fHUk40H26hhoGWiJnAywlLUD7St/fksPbd5lfRkTsr6BEBFNVN2uy78hLamMqrUt9f+BZ6BloM3VgTZYszJpLBxYOpczn66BNhhS3/atieddMGvcVy5bN/JjPvfMdvNrmaia2sQRkWfQTr0rB9pAMD4aNrTEXzHb1BqecCy88tfPTJ+V6kbZNNCO9YcNTg/cI2/qVvZQRCvytF/dFz/bw8cYaIkyDbCUtQNtY8trWrJyi/VlTMj6BkJENF6p/kpnSWU05StpGWgZaHN1oE31PNSxxkfO3JmBNhAMqXffi+qrfVh927dm9TgbCObWQBsIxp/T2dASntIrZ0dioE0eaKdSpy8+6mbzK2dHyqaBdqxHRIz1h8RTbWSgJQZaIicCLGXtQJsrrG8gRETjVb8n/ecZMtAy0ObqQJvqFbT9ZQWc+TQPtLlUrg20TsRA68xAm0tl00Dr86f4A+KK1H9AnElvHxvSW51hs/7wfPzHueFRu2sY6eMAAy1RpgGWGGgzZH0DISIar7FewZLqVVkMtAy0uTrQnjlxKuFVtAMFs9RzrIszHycGWu/HQMtAa11r25BKKi6Ps7nwKuTJ9r9vxD/PfvekO/+/gYimN8CS+UD75uG/685fVuu62Uv0Lz9YmFS2s76BEBGNl787NPqbo5HqdqX+TQQDLQNtrg60gWBIgdO9Ott2MP7mYKd7OXMG2oQYaPMzBtrsyOk3BsumGGiJvBVgyXygvfFnK/Rkwyt6+8j7OtL1YVIWHn/6BX33zntH//l0oFcLlj+ib99WrLmFq3Sk6+To11nfQIiIJmrkTVHq94THffYbAy0DbU4PtJw5A+045fJA6+8OqXl/WHW7Imren/7wxkDLQEvTHwMtkbcCLJkPtLcXPGh9CQk+Od2jW++5P2GgLSjdqN3PH1AsdlFvHu7SzLnLFR2OSWKgJSLvxEDLQMtAmz8x0OZG/u6Qqjcm/i2I9bXp3Z8YaBloafpjoCXyVoAl84G2elN9witSrS287xG9+vrh0YE2OPC5rr+5SMOx2OjH3LV4td45+oEkBloi8k4MtAy0DLT5EwNtbtTUmv4bPV4dAy0DLU1/DLRE3gqwZD7QfvDRp7rh60cHLC7foiUrE3PTi//7f7p/w5MaOP/F6EB7pOuk7lhYnfBxK9Zu095XDkmSzgRDRLlRP3mlnv6haenVv8R/Y/fg+qgaW8J52RPPhL8eaKPTds5X1vv25bGwb/eOvCxYu1aD82aov6qYM3exkYHWjTPPhkZ+zH27d5hfy2RqHOONHl9vD0/47458rPV91bKRM7D+eXSrF/83/mPe2RAxvxYnsv7/W+l0YGSg3RkxvxYyyvr3eORogCXzgfb2gge18L5HVLtjrx5/+oWk3DJ4/kvd8otKBQc+Txho33r3uOYXrU342OpN9Xr2+QOSpIuXLhHlRhfJM03T58hb78RUWBrVqkeG9eL+/OyZPcMqLI2qZuuwK/9dRn1HNDhvhj4vnqvQn57Kyy7UrdPgvBn6Yk0JZ+5iIwOt+a9NLjXyYw796Snza5lMne9dTDnQ9gYn/ndHPtb6vmrZyBlY/zy6Vdsb8V/HG5pi5tfiSNb/fyuN3n43fuY7nomZXwsZZf3fCTkaYMl8oL1pfrkuZcF/CFWPPKWmfW9IUsJAe/T4Sd2+oCrhY8vWPD76sdYvwScicioeccAjDnjEQf7EIw5yp/o9ia+iHe/NHq+MRxzwiAOa/njEAZG3AiyZD7SLy7coOPC59WXoO7cv03fvvFffvfNe/dcdv9Y3vr9Q373zXv3zsx59c9YShYYiox97890VOno8/txc6xsIEZFTMdAy0DLQ5k8MtLmVzz+k9s4h+fzpjbOBIAMtA6399WRapy80qc95ixhoibwVYMl8oH1qT6tu+UWlfvPEc9r9/AE9e1UWrnwFrSQtKtus7c++rFjsovYd7NBN88sVi12UxEBLRN5p5Bm05asjqqsP52Wb6yIMtC5nNdASA63XY6BloM3VfP4hVW+8/Krx9bUR+bvtrytVDLRE3gqwZD7Q3rV4teYvfXjMLFw90Hb39KmgdKNuuK1YP12yRr4Tn4x+nfUNhIjIqUYGWmKgZaDNn6zvO27FQJufMdDmZjW1kaRfl+t2ZecAykBL5K0AS+YDba6zvoEQETnVm38La93WiGnFK+O/KXtoo+11bH/Wnd/cMtC6P9BmQ8GqYg3Om6GzHW+bX0u+xECbnzHQ5map/uC0fHV2DqAMtETeCrCUFQPtx5+e0aM7m1RZs0PLV9WpdsdefXSq2/qy0mJ9AyEi8lKrN8UH2nf+nt3PnHMqBloGWutryZcYaPMzBtrsqNMXUvP+sNo70/u1vaQieaCtqc3OAZSBlshbAZbMB9qDb3bqG99fqLuX1ah6U72qN9Xr58Xr9K8/XKR3jn5gfXkTsr6BEBF5qawbaE/3Kri+Ij6iLp2r3ucbHf32GWgZaK2vJV9ioM3PGGjtq9+T+PikdB5V0NSa/Miltvbs+TFdGQMtkbcCLJkPtD9ZWKUDh95J+vJ9r3VoftFagyuaHOsbCBGRl8q2gba/rCDpmZ1n2w469u0z0DLQWl9LvsRAm58x0NrW6Uv9uIJ0xta29rC2bAurblck7VfeWsRAS+StAEvmA+11s5doOBZL+vLocEzX31xkcEWTY30DISLyUtk00J45cSrlmyoFa1Y69n0w0DLQWl9LvsRAm58x0NqW6pWwhaVRNbRkx/U5EQMtkbcCLJkPtLfec7/+/r4/6cvfe9+vm++uNLiiybG+gRAReSkvDLS9+17UwNK58Y9dX6EzJ06N+bEMtAy01teSL2XbQOvzD2n91+9UX1IZVfP+sDp9odEvK18dUWtbZvdBBloGWuvGegVtpp/b2RQDLZG3AiyZD7R7XmjTt28r1sbfN+r5fYe095VD2vBYg75161LtbNxnfXkTsr6BEBF5qWwaaAPBkPqri5MG2p6OjjE//mzbwaSP719RMPbHM9Ay0GbB9eRD2TbQVm1IHq1KH0j+skz+ajcDLQNtNlS3K5LwOb1lW/ZcmxMx0BJ5K8CS+UArSQcO/U2/qtiqW35RqRt/tkKLyjbr5T+3W19WWqxvIEREXirbBtrA6V711T6sgYJZ6i8rmPD5s321D6d81W3Psa6UHz8y0BIDLU1v2TTQ+vxDya8qvDd5nE31hkpNrWGtr42obldEnb7xv59U316+Zv1z7lbZONAGgiG1dw6poSWctW/0lUkMtETeCrBkPtB++PFnig4nP4M2V1jfQIgov+r0hVS9Mf4bzuqNmb26KhvLuoF2kjHQMtCmEwOt+2X7QLtojGGxfs/lQWvLtuTneY430lqPotnUlefi7778qs6SyqgaPfQ81GwdaL0cAy2RtwIsmQ+0/37TYp09N2B9GVNmfQMhovzJ3x1SSWXibzpLKqPy+XNzzExVrg+0PR0dScNjf3V2D4+MhZx5PpRNA20gGFJNbSRpRFy5JnlYHBlg/d2pB9erX2GbTY08YqChObvu56nOvqnVG4MmA637MdASeSvAkvlAu7Nxn9ZufSZnR1rrGwgR5U+tbSn+WqyHfmMZCOb+QBsIxp9D219WoIGCWeqrfViB073m1zRejIWc+dX1dHSM++Z2uVi2DbQjr+IsXxVRTW1Ebe3h0S8rqYiqpjaS8DckxnqzpZra7B2FsnGgHWvozuZznEwMtO7HQEvkrQBL5gPt7P+u0LduXaprZi7QtTcu0nWzlySU7axvIESUPzHQ0nSU7WOhF8vWM+/p6NBgwezRV3/3ba81vyanyraBdiqVr0p+5WdrW/beK7NxoA0EGWjJ2RhoibwVYMl8oH29/ajePNw1ZtnO+gZCRPmTvzukkoqrHnFQwSMO3OrMiVPq3feSeve9lPWvip1M2ToWerlsPfOBgllJj+jo3fei+XU5kRcG2k5f4kh75fNps7FsHWhTPcvXK29exUDrfgy0RN4KsGQy0N44r0xfXRiSJM36+UqLS3CM9Q2EiPKrTt/l31xu2Rae8F28c61sHWivfmXhYMHsMd/4K9fK1rHQy2Xjmad6fvLgvBkK1qw0vzYn8sJAO1KnL/4HdtbXMVHZOtD6u0Oq3xNW+aqIqjZ462+hMNC6HwMtkbcCLJkMtN+bU6rKmh3a2bhP1964SDsb941ZtrO+gRARealsHWgHiuZ4drjKxrHQ62XjmZ85cSrlQNu3fav5tTmRlwbaXClbB1ovx0Drfgy0RN4KsGQy0L595H0VP/Bb3fPr9frG9xfqFyXrxyzbWd9AiIi8VLYOtKmGq4GiOebX5UTZOBZ6vWw9877ahxM/xwtmeebNwhho3Y+B1v0YaN2PgZbIWwGWzJ9Be8+vN1hfQkasbyBERF4qWwdaXkFL+XLmvXsbFaxZqb7tWz0zzgaCDLQWMdC6HwOt+zHQEnkrwJL5QJvrrG8gREReKlsH2p6OjoQ3UBoomMUzaIkzz6EYaN2Pgdb9GGjdj4GWyFsBlrJ2oH3lz2/poc27rC9jQtY3ECIiL5WtA20gGH9GZ+/eRvXubVTgdG/Kj+np6Mi54ZaxkDPPhxho3Y+B1v0YaN2PgZbIWwGWsnagbWx5TUtWbrG+jAlZ30CIiLxUNg+049VzrEsDS+eOvsK2v2rZmCNutsVYyJlPpp5jXQqur1D/igIF11fkzOc5A637MdC6HwOt+zHQEnkrwJL5QDu/aK0aW15T/+AX1pcyJdY3ECIiL5WrA22qZ9Se273Dte//7NtvT7n+sv+JX29T45S/jTMfeudZpW6UqwPtmROnNFgwO+HzvH9Fgfl1pRMDrfsx0LofA637MdASeSvAkvlA+8SzL2nOoof0/374Sy29/7fa33ZYQ+GI9WWlzfoGQkTkpXJxoD1z4lTSODs4b4b6q4tdu4ZU37+bMXpNrlwdaM/t3pHy57+no8PVc7MqWOXef9NeKJcHWp9/SHW7IlpfG1H9nrD83fbXlE4MtO7HQEvkrQBL5gPtiE+7e1X/x/2aX7RW/3FLkR7cuFNvd76vS5cuWV/auKxvIEREXioXB9pAMPVAGqxZ6dr3H6wqNq239SXzn4NcymsD7dm2g66eGwNtbpSrA62/O6SSyqgKSy9XvTFqfl3pxEDrfgy0RN4KsJQ1A+2I6HBMe1/+i75161JdM3OBZv18pZr2vZG1Q631DYSIyEvl6kCbarjKtTcLI/fK1YG2p6Mj6fN8oGBWzjyHltwtVwfaptZwwjg7UnunOz+Op/80pHVbI1OqYk3819DlVVP799dtjTA0TjIGWiJvBVjKioH20qVLeve9E1q95Wl9+7ZifW9OqX6z7Tl9+PFn+stbR3Xz3RX6zbbnrC8zJesbCBGRl8rVgTYQDOls20H11T6svu1bGWdp3HJ1oA0E45/nAwWz4uNs0Rw+12nMcnWgbWhJPdC2trnz49j0+9Tfv1uVr7YdGptaw1pfG1Hdrog6ffafDxPFQEvkrQBL5gPtozubdOPPVujaHxWqbM3jeqPjPcViFxM+5uNPz+g/bikyusLxWd9AiIi8VC4PtETplssDLTmfzz/k2qsz3SxXB9pOXyhptCypiMrnd+fHcfQfQ3qrM2yW5a+/9XuSx+lsH2kZaIm8FWDJfKCdv/RhPffS6zr/xVdjfkwsdlG1O/a6eFXps76BEBF5KQZayocYaGmkul2RyyNgpXt/jd6NcnWgDQRDam0bUknF5XG2rZ1nuk53/u7kYbywNKq6XdM/fP7ppak/EuKBdfFRufSBqX8bm37P5xdRtgRYMh9oP//ywpj1D35hfXkTsr6BEBF5KQZayocYaCkQjI+ASa/UrMyNN6NKp1weaEfK9ldveqlUr1wuLI2qpnb6B9q6XbaPlVhWwatvibIlwJL5QHvNzAXj5pZLly7p0Z1N+u6d9+o/f1KiBzbsVGgoIkk6HejVguWP6Nu3FWtu4Sod6To5+u9Z30CIiLwUAy3lQwy0FAiGtGWb7ZtRTXdeGGjJ3cpXRZL+e2hqnf5Xl753wu6REm91htVxjP9GiLIlwJL5QHvy1GcJffjxZzr01jEVP/Bbvd5+1LXraG79q+YXrdXg+S/11YUhFZRu1JMNr0iSCko3avfzBxSLXdSbh7s0c+5yRYdjkhhoiYicjIGW8iEGWgoEUz9vs7DUvWedTncMtDTZOn2JI239Hv7qPxG5G2DJfKAdS2goop8Xr3Pt+3vvfb8++OjT0X/e2bhPD2zYqeDA57r+5iINx2KjX3fX4tV65+gHkhhoiYicjIGWRurp6NC53TvU+3yjAqd7za/HyRhoKRCMvznYyHNO3Xzeplsx0NJU6/TFn0lrfR1ElH8BlrJ2oL106ZJunFdm8n0Hevo0t3CVDhz6m450ndQdC6sTvn7F2m3a+8qh+MdmwU2EiMgrMdBSIBhS795GDc6bcbmC2Tpz4pT5dTkVAy2N5PMPqX5PWFu2hdXa5q37HgMtERHlWoAl84G2ad8bSTW2HNTyVXW6a/Fq16/nZ79aq2tmLtD63/1BFy9e0lvvHtf8orUJH1O9qV7PPn9AktR3PkxE5GrBz73bms3xV5Ede9/+WsiuhHH26wYeXWd+XU41UB0faPv/dtj8Woimqz++GH+Ewx9ftL8Wys2s//8WEeVfgCXzgfbWe+5Pas6ih1S25nH5/xkwuabgwOcqf/gJrf/dH3T0+EndvqAq4evL1jyupn1vSJLC0RgRkctd9GzrtgyrsDSqE35v/zhp7EIfnUg50H6xusT82pzq89XLNDhvhkJ/7zS/FqLpqnlf/H7evG/Y/FooV7P+/1tElG8BlswH2mzx17ff08efnhn958NH/6Fb77lfA+e/0DdnLVFoKDL6dTffXaGjx09K4hEHREROxiMOKBAMaaBgVtJAe273DvPrcioecUD5EI84ICKiXAuwZD7QXrx4afR/95zr17bdL+k3Tzynrn987Op11O7Yq8XlW/TlVyFFo8NaveVpla15XJK0qGyztj/7smKxi9p3sEM3zS9XLHZREgMtEZGTMdBSIBjS2baDCSNtf1mBp94ojIGW8iEGWiIiyrUAS2YDrf+fAd1e8KD+5QcLde9Dj+nsuQF9b06p7vxlte5YWK1//eEi/fXt91y7nguhsKo31eu7d96r7/x4mYoqa9Vzrl+S1N3Tp4LSjbrhtmL9dMka+U58MvrvWd9AiIi8FAMtjXTmxCn17ntRPR0d5tfidAy0lA8x0BIRUa4FWDIbaIsqa7XwvkfU9uYRLV9Vp5/9aq1+88Rzo1//u6eadfeyGqvLS5v1DYSIyEsx0FI+xEBL+RADLRER5VqAJbOB9js/Xqa/v++XJA2e/1LXzFygDz76dPTr/Z906/qbi6wuL23WNxAiIi/FQEv5EAMt5UMMtERElGsBlswG2mtmLtCZ3v7Rf77+5iJ19/SN/nPPuX5dM3OBwZVNjvUNhIjISzHQUj7EQEv5EAMtERHlWoAl04F25BmvkvStW5cy0BIR5XkMtJQPMdBSPsRAS0REuRZgyXSgfay+WU8/96qefu5V/dtNi/XozqbRf36svpmBlogoz2KgpXyIgZbyIQZaIiLKtQBLZgPtrffcn1bZzvoGQkTkpRhoKR9ioKV8iIGWiIhyLcCS2UDrFdY3ECIiL8VAS/kQAy3lQwy0RESUawGWGGgzZH0DISLyUgy0lA8x0FI+xEBLRES5FmCJgTZD1jcQIiIvxUBL+RADLU22hpawyldHVL46osaWsPn1pHXNDLRERJRjAZYYaDNkfQMhIvJSDLSUDzHQ0mSq3xNWYWk0oYYcGGkZaImIKNcCLDHQZsj6BkJE5KUYaCkfYqClyVRSEU0aaMtXR1z5vtdtjSR93262bqs7P04iIqJAkIEWthhoM2R9AyEi8lIMtJQPMdDSZEo50K5ioCUiInI6wBIDbYasbyBERF6KgZbyIQZamky5+ogDIiKiXAuwxECbIesbCBGRl2Kgpal05sQpBU73ml9HujHQ0mTyd8dH2pKKqEoqGGeJiIimK8ASA22GrG8gREReioGWJtXpXvVXLdPgvBkanDdDwfUVOTHUMtASERERZV+AJQbaDFnfQIiIvBQDLU2mYM3K0XF2pL7tW135vs++/faU6y/7Hw3Om6FzTY1T/jZ63jtufv5EREREXgqwxECbIesbCBGRl2Kgpcl09Tg7OG+GBpbONfu+3SxYVWx+/kREREReCrDEQJsh6xsIEZGXYqClyTRQMCtpuOwvK3Dl+w5WFZt27gl3XilMRERElC8BlhhoM2R9AyEi8lIMtDSZevc2Jg20Z9sOml8XEREREeVegCUG2gxZ30CIiLwUAy1NtrNtB9VfXaxgzUrGWSIiIiKacoAlBtoMWd9AiIi8FAMtERERERFZBFhioM2Q9Q2EiMhLMdASEREREZFFgCUG2gxZ30CIiLwUAy0REREREVkEWGKgzZD1DYSIyEsx0BIRERERkUWAJQbaDFnfQIiIvBQDLRERERERWQRYYqDNkPUNhIjISzHQEhERERGRRYAlBtoMWd9AiIi8FAMtERERERFZBFhioM2Q9Q2EiMhLMdASEREREZFFgCUG2gxZ30CIiLwUAy0REREREVkEWGKgvcK23S/p+3ct13duX6bK9Tt0IRSWJJ0O9GrB8kf07duKNbdwlY50nRz9d6xvIEREXoqBloiIiIiILAIsMdB+7cChv+mWX1Sqt29QF0JhLVqxWdt2vyRJKijdqN3PH1AsdlFvHu7SzLnLFR2OSWKgJSJyMgZaIiIiIiKyCLDEQPu1rg9O6UjXh6P/vPv5A6qs2aHgwOe6/uYiDcdio1931+LVeufoB5IYaImInIyBloiIiIiILAIsMdCOoaiyVn966XUd6TqpOxZWJ3zdirXbtPeVQ5IYaImInIyBloiIiIiILAIsMdCmsO2ZF/XL+zZpOBbTW+8e1/yitQlfX72pXs8+f0CS9PmFKBEROdTa30RVWBrV8RP210JERERERPkTYImB9gqXLl3ShscatGTlFoWGIpKko8dP6vYFVQkfV7bmcTXte0OS9GVomIiIHOrhrwda34f210JERERERPkTYImB9gqbH/+jytZsG30DMEkaOP+FvjlryehgK0k3312ho8dPSuIRB0RETsYjDoiIiIiIyCLAEgPt1/527APNLVylaDT5T00WlW3W9mdfVix2UfsOduim+eWKxS5KYqAlInIyBloiIiIiIrIIsMRA+7UHNuzUv/xgoa79UeFody1eLUnq7ulTQelG3XBbsX66ZI18Jz4Z/fesbyBERGPl8w+peX9Y+18fkr/b/nrSiYGWiIiIiIgsAiwx0GbI+gZCRJSqtvawCkujo5Wvjsjnz/7Rk4GWiIiIiIgsAiwx0GbI+gZCRJSqkopowkBbWBrVlm3haf9+/9kTUkPz0JRbXhUfaLc9E57yt/FW5/T/OImIiIiIyFsBlhhoM2R9AyEiStXV42xhaVQ1tZFp/34/+mwo5fftZg3NvPqWiIiIiIgmF2CJgTZD1jcQIqJU5eoraJ2IV9ASEREREdFkAywx0GbI+gZCRJSqpGfQrsqNZ9ASERERERFZBFhioM2Q9Q2EiGisfP4hNbWG1do2JH+3/fUQERERERFla4AlBtoMWd9AiIiIiIiIiIgoswBLDLQZsr6BEBERERERERFRZgGWGGgzZH0DISIiIiIiIiKizAIsMdBmyPoGQkREREREREREmQVYYqDNkPUNhIiIiIiIiIiIMguwxECbIesbCBERERERERERZRZgiYE2Q9Y3ECIiIiIiIiIiyizAEgNthqxvIERERERERERElFmAJQbaDFnfQIiIiIiIiIiIKLMASwy0GbK+gRARERERERERUWYBlhhoM2R9AyEiIiIiIiIioswCLDHQZsj6BkJERERERERERJkFWGKgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABhhoAUAAAAAAAAAIwy0AAAAAAAAAGCEgRYAAAAAAAAAjDDQAgAAAAAAAIARBloAAAAAAAAAMMJACwAAAAAAAABGGGgBAAAAAAAAwAgDLQAAAAAAAAAYYaAFAAAAAAAAACMMtAAAAAAAAABghIEWAAAAAAAAAIww0AIAAAAAAACAEQZaAAAAAAAAADDCQAsAAAAAAAAARhhoAQAAAAAAAMAIAy0AAAAAAAAAGGGgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABhhoAUAAAAAAAAAIwy0AAAAAAAAAGCEgRYAAAAAAAAAjDDQAgAAAAAAAIARBloAAAAAAAAAMMJACwAAAAAAAABGGGgBAN+/smYAAAHASURBVAAAAAAAwAgDLQAAAAAAAAAYYaAFAAAAAAAAACMMtAAAAAAAAABghIEWAAAAAAAAAIww0AIAAAAAAACAEQZaAAAAAAAAADDCQAsAAAAAAAAARhhoAQAAAAAAAMAIAy0AAAAAAAAAGGGgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABhhoAUAAAAAAAAAIwy0AAAAAAAAAGCEgRYAAAAAAAAAjDDQAgAAAAAAAIARBloAAAAAAAAAMMJACwAAAAAAAABGGGgBAAAAAAAAwAgDLQAAAAAAAAAYYaAFAAAAAAAAACMMtAAAAAAAAABghIEWAAAAAAAAAIww0AIAAAAAAACAEQZaAAAAAAAAADDCQAsAAAAAAAAARhhoAQAAAAAAAMAIAy0AAAAAAAAAGGGgBQAAAAAAAAAjDLQAAAAAAAAAYISBFgAAAAAAAACMMNACAAAAAAAAgBEGWgAAAAAAAAAwwkALAAAAAAAAAEYYaAEAAAAAAADACAMtAAAAAAAAABj5/yuMPxmR21cHAAAAAElFTkSuQmCC", "text/html": [ - "<div> <div id=\"d89f903c-619b-4715-b4a1-a68e0a01577a\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d89f903c-619b-4715-b4a1-a68e0a01577a\")) { Plotly.newPlot( \"d89f903c-619b-4715-b4a1-a68e0a01577a\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2000\"], [\"2003\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2001\"], [\"2003\"], [\"2000\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000\", \"notched\": false, \"offsetgroup\": \"2000\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [null, null, 50.0, 18.3, null, null, 35.9, 73.5, 46.9, 83.9, null, null, 41.8, null, 68.9, null, null, null], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [51.82172348464304, 51.63371792253483, 60.19781177976836, 67.84332662203975, 73.33305914138057, 49.39458717769393, 71.95633862825368, null, 70.69977791304689, null, null, 70.08302756883629, 78.09666495277045], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.568958874930733, 54.31378272084832, 29.96041216455179, null, 51.530925434032866, 42.124637918736795, 50.163912506462616, null, 63.285159555798266, null, null, 48.869560685912965, 69.66320342189823], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2007\"], [\"2000\"], [\"2018\"], [\"2012\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [43.117715660745624, 34.99696361745937, 32.80721200883463, 69.57207895753851, 73.27977952076182, 46.545528659115774, 67.91461681851463, 82.24363123253028, 63.151939695501895, 47.693668685983106, 43.38431171312834, 63.65204916406636, 80.95207762610593], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2007\"], [\"2005\"], [\"2005\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [36.7, 64.9, 50.2, 26.1, 42.9, 79.6, 68.9, 54.5, 36.7, 72.3, 31.2, 48.4, null, 79.8, 36.1, 75.1, 72.5, 67.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2012\"], [\"2010\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [44.5, 42.9, 84.8, 58.4, 52.5, 67.0, 56.7, 55.5, 47.1, 71.7, 53.0, 35.9, 83.9, 79.7, 49.5, 90.2, 55.2, 73.1, 84.9, 32.4, 54.0, 92.1, 89.9, 43.6, null, 43.8, 43.1, 79.5, 79.5, 79.5, 79.5, 83.5, 80.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [65.4, 31.6, 84.3, 57.9, 51.6, 87.5, 42.2, 48.8, null, 37.6, 43.7, 38.6, 80.4, 83.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"223ae587-a6c9-4005-87f1-96bd912b7dd1\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"223ae587-a6c9-4005-87f1-96bd912b7dd1\")) { Plotly.newPlot( \"223ae587-a6c9-4005-87f1-96bd912b7dd1\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2000\"], [\"2003\"], [\"2003\"], [\"2004\"], [\"2004\"], [\"2000\"], [\"2001\"], [\"2003\"], [\"2000\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000\", \"notched\": false, \"offsetgroup\": \"2000\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [null, null, 50.0, 18.3, null, null, 35.9, 73.5, 46.9, 83.9, null, null, 41.8, null, 68.9, null, null, null], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All\", \"notched\": false, \"offsetgroup\": \"All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [37.48430691317277, 33.0573496204897, 36.68947049362754, 70.11745134661585, 74.39653963482156, 34.6942917927119, 72.62799679664002, 62.90019751881499, 71.88353100909976, 79.65145595888701], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"Only stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"Only stigma\", \"notched\": false, \"offsetgroup\": \"Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.568958874930733, 54.31378272084832, 29.96041216455179, null, 51.530925434032866, 42.124637918736795, 50.163912506462616, 63.285159555798266, 48.869560685912965, 69.66320342189823], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2001\"], [\"2003\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"], [\"2000\"], [\"2000\"], [\"2000\"], [\"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=1<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Ethiopia\", \"Gabon\", \"Malawi\", \"Mali\", \"Namibia\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"All plus stigma\", \"marker\": {\"color\": \"#EF553B\"}, \"name\": \"All plus stigma\", \"notched\": false, \"offsetgroup\": \"All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [42.84612926788617, 35.16663129012852, 32.957470413688526, 69.50735329316193, 72.55544324389314, 46.01222163399134, 67.93636699956508, 63.224267549675346, 63.98945399904411, 80.82017338703842], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2005\"], [\"2005\"], [\"2008\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [36.7, 64.9, 50.2, 26.1, 42.9, 79.6, 68.9, 54.5, 36.7, 72.3, 31.2, 48.4, 79.8, 36.1, 40.3, 75.1, 72.5, 67.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2010\"], [\"2013\"], [\"2013\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Togo\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [44.5, 42.9, 84.8, 58.4, 52.5, 67.0, 56.7, 55.5, 47.1, 71.7, 53.0, 35.9, 83.9, 79.7, 49.5, 90.2, 55.2, 73.1, 84.9, 32.4, 54.0, 92.1, 89.9, 43.6, 43.8, 43.1, 57.5, 79.5, 83.5, 80.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2016\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.W=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [65.4, 31.6, 84.3, 57.9, 51.6, 87.5, 42.2, 48.8, 37.6, 43.7, 38.6, 80.3, 80.4, 83.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('d89f903c-619b-4715-b4a1-a68e0a01577a');\n", + "var gd = document.getElementById('223ae587-a6c9-4005-87f1-96bd912b7dd1');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -10555,7 +9982,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 354, "metadata": {}, "outputs": [ { @@ -10676,24 +10103,24 @@ "x0": " ", "xaxis": "x", "y": [ - 51.82172348464304, - 51.63371792253483, + 37.48430691317277, + 33.0573496204897, 50, 18.3, - 60.19781177976836, - 67.84332662203975, + 36.68947049362754, + 70.11745134661585, 35.9, 73.5, 46.9, 83.9, - 73.33305914138057, - 49.39458717769393, + 74.39653963482156, + 34.6942917927119, 41.8, - 71.95633862825368, + 72.62799679664002, 68.9, - 70.69977791304689, - 70.08302756883629, - 78.09666495277045 + 62.90019751881499, + 71.88353100909976, + 79.65145595888701 ], "y0": " ", "yaxis": "y" @@ -10942,24 +10369,24 @@ "x0": " ", "xaxis": "x", "y": [ - 43.117715660745624, - 34.99696361745937, + 42.84612926788617, + 35.16663129012852, 50, 18.3, - 32.80721200883463, - 69.57207895753851, + 32.957470413688526, + 69.50735329316193, 35.9, 73.5, 46.9, 83.9, - 73.27977952076182, - 46.545528659115774, + 72.55544324389314, + 46.01222163399134, 41.8, - 67.91461681851463, + 67.93636699956508, 68.9, - 63.151939695501895, - 63.65204916406636, - 80.95207762610593 + 63.224267549675346, + 63.98945399904411, + 80.82017338703842 ], "y0": " ", "yaxis": "y" @@ -11005,13 +10432,13 @@ "2008" ], [ - "2007" + "2005" ], [ "2005" ], [ - "2005" + "2008" ], [ "2006" @@ -11038,8 +10465,8 @@ "Niger", "Nigeria", "Rwanda", - "Rwanda", "Senegal", + "Sierra Leone", "Uganda", "Zambia", "Zimbabwe" @@ -11069,9 +10496,9 @@ 72.3, 31.2, 48.4, - null, 79.8, 36.1, + 40.3, 75.1, 72.5, 67.3 @@ -11155,9 +10582,6 @@ [ "2014" ], - [ - "2012" - ], [ "2010" ], @@ -11165,13 +10589,7 @@ "2013" ], [ - "2011" - ], - [ - "2011" - ], - [ - "2011" + "2013" ], [ "2011" @@ -11210,11 +10628,8 @@ "Rwanda", "Senegal", "Senegal", - "Senegal", "Sierra Leone", - "Uganda", - "Uganda", - "Uganda", + "Togo", "Uganda", "Zambia", "Zimbabwe" @@ -11256,12 +10671,9 @@ 92.1, 89.9, 43.6, - null, 43.8, 43.1, - 79.5, - 79.5, - 79.5, + 57.5, 79.5, 83.5, 80.3 @@ -11297,9 +10709,6 @@ [ "2018" ], - [ - "2018" - ], [ "2017" ], @@ -11309,6 +10718,9 @@ [ "2015" ], + [ + "2016" + ], [ "2018" ], @@ -11329,7 +10741,7 @@ "Senegal", "Senegal", "Senegal", - "Senegal", + "Uganda", "Zambia", "Zimbabwe" ], @@ -11354,10 +10766,10 @@ 87.5, 42.2, 48.8, - null, 37.6, 43.7, 38.6, + 80.3, 80.4, 83.1 ], @@ -12116,1451 +11528,249 @@ "gridcolor": "white", "gridwidth": 2, "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "xaxis": { - "anchor": "y", - "autorange": true, - "domain": [ - 0, - 1 - ], - "range": [ - -0.6630266545966605, - 0.561211929189298 - ], - "type": "category" - }, - "yaxis": { - "anchor": "x", - "autorange": true, - "domain": [ - 0, - 1 - ], - "range": [ - 14.2, - 96.19999999999999 - ], - "title": { - "text": "Buy.from.shopkeeper.with.AIDS.M_all" - }, - "type": "linear" - } - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOyd+1+UZeK/v39Pn/1su/uxtna3XDOTPFSarqtbYqCigiASaHjAVFQ8pYtmmZjmKY9poFGilqFhIhVSGk2aCp5AQ1PmwMD7+8M0A8MMzsMw8DwPXtfrdb12mRM3c7hzrrnnfv6fAAAAAAAAAAAAAMAU/p/ZAwAAAAAAAAAAAAB4WCHQAgAAAAAAAAAAAJgEgRYAAAAAAAAAAADAJAi0AAAAAAAAAAAAACZBoAUAAAAAAAAAAAAwCQItAAAAAAAAAAAAgEkQaAEAAAAAAAAAAABMgkALAAAAAAAAAAAAYBIEWgAAAAAAAAAAAACTINACAAAAAAAAAAAAmASBFgAAAAAAAAAAAMAkCLQAAAAAAAAAAAAAJkGgBQAAAAAAAAAAADAJAi0AAAAAAAAAAACASRBoAQAAAAAAAAAAAEyCQAsAAAAAAAAAAABgEgRaAAAAAAAAAAAAAJMg0AIAAAAAAAAAAACYBIEWAAAAAAAAAAAAwCQItAAAAAAAAAAAAAAmQaAFAAAAAAAAAAAAMAkCLQAAAAAAAAAAAIBJEGgBAAAAAAAAAAAATIJACwAAAAAAAAAAAGASBFoAAAAAAAAAAAAAkyDQAgAAAAAAAAAAAJgEgRYAAAAAAAAAAADAJAi0AAAAAAAAAAAAACZBoAUAAAAAAAAAAAAwCQItAAAAAAAAAAAAgEkQaAEAAAAAAAAAAABMgkALAAAAAAAAAAAAYBIEWgAAAAAAAAAAAACTINACAAAAAAAAAAAAmASBFgAAAAAAAAAAAMAkCLQAAAAAAAAAAAAAJkGgBQAAAAAAAAAAADAJAi0AAAAAAAAAAACASRBoAQAAAAAAAAAAAEyCQAsAAAAAAAAAAABgEgRaAAAAAAAAAAAAAJMg0AIAAAAAAAAAAACYBIEWAAAAAAAAAAAAwCQItAAAAAAAAAAAAAAmQaAFAAAAAAAAAAAAMAkCLQAAAAAAAAAAAIBJEGgBAAAAAAAAAAAATIJACwAAAAAAAAAAAGASBFoAAAAAAAAAAAAAkyDQAgAAAAAAAAAAAJgEgRYAAAAAAAAAAADAJAi0AAAAAAAAAAAAACZBoAUAAAAAAAAAAAAwCQItAAAAAAAAAAAAgEkQaAEAAAAAAAAAAABMgkALAAAAAAAAAAAAYBIEWgAAAAAAAAAAAACTINACAAAAAAAAAAAAmASBFgAAAAAAAAAAAMAkCLRdpLa+EREREREREREROyEAtEKg7SJmT2iIiIiIiIiIiHYTAFoh0HYRsyc0RERERERERES7CQCtEGi7iNkTGiIiIiIiIiKi3QSAVgi0XcTsCQ0RERERERER0W4CQCsE2i5i9oSGiIiIiIiIiGg3AaAVAm0XMXtCQ0RERERERES0mwDQCoG2i5g9oSEiIiIiIiIi2k0rUVrWrAOfdN66W2aPHHoLBNouYvaEhoiIiIiIiIhoN61E3uomJaZ6Ou356hazhw69BAJtFzF7QkNEREREREREtJtWwh9oc/KatGS1J6IpWQRaiC0E2i5i9oSGiIiIiIiIiGg3rYQ/0BZs9Wr/ochm5nQt0Dp+qdUrKbl67PkkDXl1pj4/+W3gvPe2Fan/yHQ99dJUvblys5q8XkmSy+3RjNx39Y8XUzRgVIZ2HjgauM7l2huKT1usJwZP1vDEOTpTWR31fXHsxDd6fNAkFR4+GXR6SvYqffzpCUnS44Mm6dpN9neIJQTaLmL2hIaIiIiIiIiIaDetRE8H2qHx2dq0q1gtLS368lSl+sRNVKPTrVMV5xQ3JlN1txp0v9GphOl52ravRJK0ZuM+TZubL6fLrZprdeo7PE0//nxFkjQ2dZE27SqW19us42WV6js8TZ4mb1RjS5uTr+0flWh8xrKg0wm03QuBtouYPaEhIiIiIsbCklKXtu51qbzK/LEgImLv10r0ZKBt8nq188DRoID62PNJulRzXfNXbtb6rYWB04+eqNDY1EWSpKFj39C33ztax7xmu9Zs3Kf623fUJy4psNJWkl4eP1enKs51emwNd+7p+f9kqaWlRUNenakbdb8GziPQdi8E2i5i9oSGiIiIiNhVl611BR30JL/AbfqYEBGxd2slenoFbVsqf/hZ/UZMU5PXq4Tpefrsi9OB836+dFVPD0uVJP3xmQQ13LkXOO/D/Uf0+vy3daayWi+OmxV0m9PnrdXOj491eizb9pVo1Xt7JElvb96vgh0HA+cRaLsXAm0XMXtCQ0RERETsiiWlrrBHprbLStote5yW8sP9xG1ERCNaCbMC7ZWrNxU3JktfnqqUJI2ZskDHy74LnH/1er0eHzRJniavHukbL6fLHThvf3GpUrJX6cTpsxqVNC/odmct2aDNu4o7PZ5/TZynny9dDYytbfgl0HYvBNouYvaEhoiIiIjYFbfsDR9ot+x1mT42I4Ybu5lOySTQIiIa0UqYEWjPOy5r4OhMHT1RETgtMWOpio99HfjZcbFG/3w5TZJvBe3thruB87Z/VKKsBe+o4my1hsZnB912es4a7S78POi0qvMX9eTQKXpy6BSl56wNGY/jYo3+0G+cHh80KeAf+o3T9z9elESg7W4ItF3E7AkNEREREbErsoLWqXlL3UpM9Sj3LRcraBERe0gr0dOB9nLtDQ0cnakzldVBp+eu3qL8gn2Bnws/O6nEjKWSpBfHzVJZxQ+B8+YsLdC7Wz7W7Ya7+stzE9TobF1dGzcmUxVng2/b0+RV3a0G1d1qUMPde2rP8nU7g/a/laRNu4q16L9bJRFouxsCbRcxe0JDREREROyqD/setBt3+P7+nR/bY9UwImJv0Er0dKCNT1us4mOnQk4/U/mj+o9M17Wbt3T3t/saOTFH+w4dlySt23xASVnL5XS59dOFGv3thWT9cuW6JCkhPU/rNh+Q19uswsMnNWBUhrzeZsPj8Xqb1Xd4WmB7Az9Xrt7UP15MUZPXS6DtZgi0XcTsCQ0RERERMRaWlLq0Za/LNitnYymBFhGx57USPRlor1y9qUf6xuvRZxODPHy8XJK0ccch9RsxTU8PS9WSNdvV3Oz7HW63RzNz1+vvL6TouX+/rv3FpYHbrLlWp7Gpi/TXwZM1YkKOqs5f7NSYjpdVatArM8KeNyxhto6d+IZA280QaH+npaVF+QX71G/END0xeLJWvrsrcN7l2huKT1usJwZP1vDEOUFL0M2e0BARERERzbLK4VRpuVOOGvPH0hUJtIiIPa+V8AfanCVNWprvjWjKjNgcJAzAD4H2dw6WlOmFcdm69etd1d1q0JBXZ+qTo77l5mNTF2nTrmJ5vc06XlapvsPT5GnySiLQIiIiImLv0FHT2KnQml/gDmyJkJzlUVGJ0/S/IVoJtIiIPa+V8AfazkqghVhBoP2dWUs2aOOOQ4Gft39UorQ5+aq/fUd94pLU5PUGznt5/FydqjgniUCLiIiIiPbWUdOohStaY+vyta6IobaoxBnyJjU5y6Mqhz0jLYEWEbHntRKlZc2GtjZobx3f8ocYQaD9nfaBtvDwSQ1LmK0zldV6cdysoMtOn7dWOz8+Jkm6dsuJiIiIiGhbF7SJs34LtrkfeJ2CbaHXSUz16GS5y/S/Jxrf/9AXaHd9/OC/GxERYycAtEKg/Z2ikq80dOwbqr99Rw137um1aUs06JUZOnH6rEYlzQu67KwlG7R5V7EkqbmlBRERERHRtoYLrfPymh54nY8OecNe7+KVZtP/nmjcud/39xw67DV9LIiID4sA0AqB9neam1u0esMeDRydqVGT3tTaTfv178nzVXG2WkPjs4Mum56zRrsLP5fEFgeIiIiIaG/DhdYFK9wPvI6jplHJmcHXyS948HWsLFscICL2vADQCoG2AzZsP6h5KzbpdsNd/eW5CWp0ugPnxY3JVMXZakkEWkRERES0t1v2ukICbUlp5FDpqPFdN7/AbesDhNXWE2gREc0QAFoh0P7OkS/PaGLmct2779Tl2hvqPzJd337vkCQlpOdp3eYD8nqbVXj4pAaMypDX2yyJQIuIiIiI9reoxLcX7bK1LpWW2zu2RiOBFhGx57USpWXNOvBJ5+UgYRArCLS/42nyambuej0+aJKeHpaqD/cfCZxXc61OY1MX6a+DJ2vEhBxVnb8YOM/sCQ0REREREbsmgRYRsee1Enmrm8Ju+RPJ89XspQuxgUDbRcye0BARERERsWsSaBERe14r4Q+0OXlNWrLaE9GULAItxBYCbRcxe0JDRERERMSuSaBFROx5rYQ/0BZs9Wr/ochm5nQt0Dp+qdUrKbl67PkkDXl1pj4/+W3gvPe2Fan/yHQ99dJUvblys5q8XkmSy+3RjNx39Y8XUzRgVIZ2HjgauM7l2huKT1usJwZP1vDEOTpTWR3duC7WKGXWav118GT9acB4jZyYo0+OnjJ03ZTsVfr40xNR/d62XKq5rjOVP0qSNu44pNl5BV2+TTtAoO0iZk9oiIiIiIjYNXtroHXUNGrhCnfgq7gbtvWuvw8R7a2V6OlAOzQ+W5t2FaulpUVfnqpUn7iJanS6darinOLGZKruVoPuNzqVMD1P2/aVSJLWbNynaXPz5XS5VXOtTn2Hp+nHn69IksamLtKmXcXyept1vKxSfYenydPk7dSYLtfe0F8HT9bydTt15epNNdy5p8LDJ/XE4Mk6WFIW8fqxCrSbdhVr/dZCSVKj063f7lnrudJdEGi7iNkTGiIiIiIids3eGmgXtImzfrfs7V1/IyLaVyvRk4G2yevVzgNHgwLqY88n6VLNdc1fuTkQJyXp6IkKjU1dJEkaOvaNwMHsJSlvzXat2bhP9bfvqE9cUmClrSS9PH6uTlWc69S45i7bqPSctSGnf/zpCfUfma7m5hZt3lWs7MXvKWvBOxqbukgjJuSo9lqdpNZAu3TtDi1464PA9Rvu3tOfB4zX7Ya7Qbdb+vVZvTAuW3FjMjV07Bv64qtv9dWZ7/XkkCl66qWpWvnurqAVtLXX6jRmygINHJ2pNxatV3rOGu07dFyS9PigSfpg96eamLlcz47K0GdfnNacpQV6JWWhXknJ1f1GlyTpm6qfNDxxjgaO9v3OsoofOnUfdScE2i5i9oSGiIiIiIhds7cG2nAHtJm1yNPj49hz0BXVwXe60/c/7F2PNaIdtRI9vYK2LZU//Kx+I6apyetVwvQ8ffbF6cB5P1+6qqeHpUqS/vhMghru3Auc9+H+I3p9/ts6U1mtF8fNCrrN6fPWaufHxzo1jrgxWSo+9nXI6R5Pk/7nn+NUfeGKtu49rL+9kKy6Ww2SpAVvfaC31u+W1Bpov//xov7xYkogGB/4tFQTXl8WcrtD47MDWxmcd1zWnKUFgdv0R+q2gTZtTr6Wr9spSfryVKUefTYxsGL3yaFT9N62IknSrsJj+tOA8bpUc12S9Nq0JTp0xLcC+MVxs1T42UlJvvA86JUZnbqPuhMCbRcxe0JDRERERMSu+TAF2gUr3D0+DgItIobTSpgVaK9cvam4MVn68lSlJGnMlAU6XvZd4Pyr1+v1+KBJ8jR59UjfeDld7sB5+4tLlZK9SidOn9WopHlBtztryQZt3lXcqbH848WUQDANd97X35zT1r2HlZK9KnD6B7s/1czc9ZKCtzgY9MqMwN80dfbqwErXtiSk5+nNlZt1ufZG0OkdBdp/vJiicz9dClzuxXGzggJt9QXfdg9flX+vIa/ODFxuztICbfr9vvB4mtTc7HvMbtT9qj8+k2DovukJCLRdxOwJDRERERERu2ZvDbQbtoWG0ZJS+/6NkzN8f8OFq+aPBRG7rpUwI9Ced1zWwNGZOnqiInBaYsbSoFWsjos1+ufLaZJ8K2jbbhOw/aMSZS14RxVnqzU0PjvottNz1mh34edBp1Wdv6gnh07Rk0OnhN3KYMSE8AcE8zR59Yd+4+T4pVZb9x5W1oJ3Aue1/bltoF37/keambteTpdbTwyerIa790Jut+5Wgxa89YH6Dk/T0LFvBMJ0R4H2j88k6NrNW4HrT8xcHhRoa37fauFUxTmNmJATuNy85e9r445DkqTiY1/rlZSFGpU0TyMm5OgP/caFjMssCLRdxOwJDRERERERu2ZvDbS19Y3astel7Fzfylk7x9naegItYm/TSvR0oL1ce0MDR2fqTGV10Om5q7cov2Bf4OfCz04qMWOpJN+K0bZ7ps5ZWqB3t3ys2w139ZfnJqjR2bq6Nm5MpirOBt+2p8mrulsNqrvVEDaY5q3ZrpRZq0NOLyr5SgNHZ6qlpcVwoP3lynU9PmiSDpaUafLMlRHvjyNfntFjzyfJ623uMNA+OXSKfrpQE7jOsITZnQq09bfv6M8DxsvxS60k3+pkAm0vwuwJDRERERERu2ZvDrS9SQItYu/SSvR0oI1PW6ziY6GrVc9U/qj+I9N17eYt3f3tvkZOzAlsD7Bu8wElZS2X0+XWTxdq9LcXkvXLFd8+qwnpeVq3+YC83mYVHj6pAaMy5PU2d2pMt369q7+9kKzl63bq2s1b8jR5dfh4uZ4cOkVHvjwjSYYDreRbkdv/X9ODTvPT6HRr1KQ3AytiL9fe0OODJqm5uUWL87dpxTu+vWbbBtqkrOVas9EXr0+ertKfBozvVKCtvnBFf3shWW63R83NLVr57q6QbSPMhEDbRcye0BARERERsWsSaO0hgRaxd2klejLQXrl6U4/0jdejzyYGefh4uSRflOw3YpqeHpaqJWu2B/ZMdbs9mpm7Xn9/IUXP/ft17S8uDdxmzbU6jU1dpL8OnqwRE3JUdf5iVPfDhUtXlZK9So8PmqQ/DRivERNygg5a1plA+/7OT/SnAeP1273wj/W+Q8cVNyZLA0ZlaOjYNwJ//4nTZ9UnLknT560NCrTVF67opddm6fn/ZGneik2aPHNl4IBfRrc4mJm7Xv3/NV2jkubp5Okq/Sd5oUZObL2smRBou4jZExoiIiIiInZNAq09JNAi9i6thD/Q5ixp0tJ8b0RTZsTmIGG9mYMlZUrPWRPT2/THakkam7pIn5/8Nqa3byamBFr/psRGtDpmT2iIiIiIiLG0vMqn2ePoSQm09pBAi9i7tBL+QNtZCbThuXffqZdem6UzlT/G7Dbz1mxX5vx1amlpCexxe7P+15jdvtmYEmhLjp8xrNUxe0JDRERERIyFjppGLVzhDrzpnLXIo/KqRpWUurRwhVuzFnm0YZtLjhrzxxprCbT2kECL2Lu0EqVlzYa2Nmhv3S2zR249jpRW6OlhqYH9YmNF3a0GJaTnqd+IaYobk6kDn5ZGvpKNYIuDLmL2hIaIiIiIGAvzC9whK4PeWBB62vK1vS9iEmjtIYEWsXcJAK2wxUEXMXtCQ0RERESMhRlzQmNsR/a2VbR2DbSOmkZt2OZScpZHGXPd2rrXXuPvrARaxN4lALTCFgddxOwJDRHtaUmpS1v3uh66Pf56izx+1rDK4dTBIz57WyxCNMMFK0ID7YS0jgNteVWjtu51qeSE/aOgXQPtsrWukMdmd5G9/obOSKBF7F0CQCuW3uJg8syVZg8hImZPaIhoP7Nzg99Ibenlq116mzx+1rC8qlHJWa2PQ3KWh2CO2EVLy50hsW/Vu6EBcMEKt3YXBZ8+a5G9V9XaNdCGi+cLVrhNH1d3SaBF7F0CQCumB1qX26OCHQc1fd5apWSvCjgqaZ7+9kKy2cOLiNkTGiLay/ZvaP3aJSyVf+/Ulj3W8vOynnsz3dHjV+Vwmv7YtPXjz1ymPy7t/fFSbO+j9qE8MdWjZTbaF/PHX8x/TNpbeMQ+9x92n+VVvr1oV613a+EK34cfU7LcQfGvyhE+DNp55SaB1h4SaBF7l1aitKxZBz7pvBwkDGKF6YF21pINihuTpYWrPtBfnpugxfnb9O/J8zU8cY7O/XTJ7OFFxOwJDRHt5Za94QNfabm1Al9HFh0JP34zfXdLz72Z3rDNHo/fnCXG95HsKb/5Ibb3UUe/x+z73qinz4auVDTb+ct6b9TBzhtuu4OSUt98G26lbWKqvcOgXQNtR1sc9NYtYAi0iL1LK5G3uimqfz+dr24xe+jQSzA90P7thWRdveH7yOGpl6YGTl+zcZ82bD9o1rAMY/aEhoj2khW0Pv1vsDZs7/pKT1bQhhqLFbRvveuLM1lvxmY1bqxX0IaLRw/jCtrX5/ruh1Xru/44sYIW/TpqHrwys6PzWUFrzmO1YZtLyZkeZczxbT1RWu4M2QLGav+dilYCLWLv0kr4A21OXpOWrPZENCWLQAuxxfRA+38DJ8jjaZIk/f2FFDV5vZKke/ed6jdimplDM4TZExoi2s/2Yelh3MN0WrbvPjh30X5vGB+WPWhLTvhixdI11vz7yqsalZzZJkBk2ueDjli6eLXvtfR5mf1eS2hdIwXa2vrQD6yyc9mD1ipmzLH3B1gPkkCL2Lu0Ev5AW7DVq/2HIpuZ07VA6/ilVq+k5Oqx55M05NWZ+vzkt4Hz3ttWpP4j0/XUS1P15srNgU7mcns0I/dd/ePFFA0YlaGdB44GrnO59obi0xbricGTNTxxjs5UVkd9Xxw78Y0eHzRJhYdPBp2ekr1KH396QpL0+KBJunbT+P4Om3cVa3ZeQdRjMsKlmus6U/mjJGnjjkPd/vtijemB9t+T52vlu7vkdnv078nz9dEnX0qSHBdr9PigSSaPLjJmT2iIaE9LSl3astf1UAal2np7B9qH5fGzeqCtrfdFpKISp4pKetdXeDsjgRa7ywdtceC3vMq3dU/70+1obwq04eJ6xhz7bj/RVgItYu/SSvR0oB0an61Nu4rV0tKiL09Vqk/cRDU63TpVcU5xYzJVd6tB9xudSpiep237SiT5vmk+bW6+nC63aq7Vqe/wNP348xVJ0tjURdq0q1heb7OOl1Wq7/A0eZq8UY0tbU6+tn9UovEZy4JOt3qg3bSrWOu3FkqSGp1u/XbPWs+xSJgeaL+p+klPD0vV7Ya7OvLlGf3vM6/pqZem6o/PJGjhqg/MHl5EzJ7QEBHtqN0D7cOgHQItEmix+3TU+A4W1var82aPqTvtTYGWFbSIaBetRE8G2iavVzsPHA0KqI89n6RLNdc1f+XmQGSUpKMnKjQ2dZEkaejYN/Tt947WMa/ZrjUb96n+9h31iUsKrLSVpJfHz9WpinOdHlvDnXt6/j9Zamlp0ZBXZ+pG3a+B84wE2r88N0HrtxZqwuvL9NJrs7Rlz2eSggPthNeX6WBJWeA6bX/euOOQ4sZkauDoTI2ZskCXa2+E/I7Sr8/qhXHZihuTqaFj39AXX32rr858ryeHTNFTL03Vynd3Ba2grb1WpzFTFmjg6Ey9sWi90nPWaN+h44G/44Pdn2pi5nI9OypDn31xWnOWFuiVlIV6JSVX9xtdknztcnjiHA0c7fudZRU/dPq+jYTpgVaSmptbn9A/XajRvkPHQ55I/k8FrIbZExoioh0l0FpfAq09JNAixsbeFGhLSl29dgsYAi1i79JK9PQK2rZU/vCz+o2YpiavVwnT8/TZF6cD5/186aqeHpYqSfrjMwlquHMvcN6H+4/o9flv60xltV4cNyvoNqfPW6udHx/r9Fi27SvRqvf2SJLe3rxfBTtajw1lJNA+PmiSlq/bKUm69etd9YlL0vWbtw0F2tsNd/XE4Mm6d98pSfroky+1/aOSkN8xND47sJXBecdlzVnqu90Fb30QiNttA23anPzAmL48ValHn00M/B1PDp2i97YVSZJ2FR7TnwaM16Wa65Kk16Yt0aEjvnG+OG6WCj/zbfnw8acnNOiVGYbvU6NYItAawarbHZg9oSEi2lECrfUl0NpDAi1ibOxNgba2vlFVDqd2F7l63RYwBFrE3qWVMCvQXrl6U3FjsvTlqUpJ0pgpC3S87LvA+Vev1+vxQZPkafLqkb7xcrrcgfP2F5cqJXuVTpw+q1FJ84Jud9aSDdq8q7jT4/nXxHn6+dLVwNjahl+jgfbcT5cCP7+SkqviY6cMBVqny62/Dp6sD/cf0a8Nv3U4xoT0PL25cnPI6tqOAu0/XkwJGtOL42YFBdrqC74FoV+Vf68hr84MXG7O0gJt+v0+9HiaAotLb9T9qj8+k9Dh+KKFQNtFzJ7QEBHtKIHW+hJo7SGBFjE29rZA21sl0CL2Lq2EGYH2vOOyBo7O1NETFYHTEjOWqvjY14GfHRdr9M+X0yT5VtDebrgbOG/7RyXKWvCOKs5Wa2h8dtBtp+es0e7Cz4NOqzp/UU8OnaInh05Res7akPE4LtboD/3G6fFBkwL+od84ff/jRUnGA23NtbrAz5NmrNTOj48Z3uKg6vxFTZubr8cHTVJCep5+uXI95HfU3WrQgrc+UN/haRo69o1A0O4o0P7xmYSgsU7MXB4UaP3jPVVxTiMm5AQuN2/5+9q445AkqfjY13olZaFGJc3TiAk5+kO/cSHj6ioE2i5i9oSGiGhHCbTW1+6BtrTcqdLy3rVyLJwEWsTYSKC1hwRaxN6llejpQHu59oYGjs7UmcrqoNNzV29RfsG+wM+Fn51UYsZSSb6Vn233Pp2ztEDvbvlYtxvu6i/PTVCjs3V1bdyYTFWcDb5tT5NXdbcaVHerQQ1376k9y9ftDNr/VvIdeGvRf7dKMh5oz56/EPj535Pnq/jY10GBNilrhQoPnwxcZvTk+UHBVpLcbo9WvLNTSVkrQn5HW458eUaPPZ8kr7e5w0D75NAp+ulCTeA6wxJmdyrQ1t++oz8PGC/HL7WSfKuaCbQWxOwJDRHRjhJora9dA62jplGzFrXZezGr9+y9GE4CLWJsJNDaQwItYu/SSvR0oI1PW6ziY6dCTj9T+aP6j0zXtZu3dPe3+xo5MSdwQKt1mw8oKWu5nC63frpQo7+9kBxYYZqQnqd1mw/I621W4eGTGjAqQ15vs+HxeL3N6js8LbC9gZ8rV2/qHy+mqMnrNRxoc1f7gnZFSyAAACAASURBVO6lmhv684DxqrvVEBRoZ+cVaM1GX4S+XOu7zMGSMn37vUNTZ6+Wy+2RJO07dFyTZqwMuv1Gp1ujJr0Z+N2Xa2/o8UGT1NzcosX527TiHd9es20DbVLW8sDvO3m6Sn8aML5Tgbb6whX97YVkud0eNTe3aOW7u0K2m4gFBNrfaWlp0VvrdytuTKbixmRq1pINgU8fLtfeUHzaYj0xeLKGJ84J+oTD7AkNEdGOEmitr10DbX5B6NHLM+a6TR9Xd0mgRYyNdgu0VQ7ftwS683cse9ul+cvdltI/r7+5zPyxtNfs5wSiHbUSPRlor1y9qUf6xuvRZxODPHy8XJIvLvYbMU1PD0vVkjXbA3ufut0ezcxdr7+/kKLn/v269heXBm6z5lqdxqYu0l8HT9aICTmqOn+xU2M6XlbZ4YGvhiXM1rET3xgOtBu2H9SwhNl6ZkS6tu3zHeSrbaD98ecremFctl6btkSzlmxQyqzVKir5Sl5vsxbnb1P/kel67t+va8yUBXJcrAn5HfsOHVfcmCwNGJWhoWPfCNxvJ06fVZ+4JE2ftzYo0FZfuKKXXpul5/+TpXkrNmnyzJWBA34Z3eJgZu569f/XdI1KmqeTp6v0n+SFGjmx9bKxgED7O8XHTmnEhBw1Ot3yepuVMmu11m0+IEkam7pIm3YVy+tt1vGySvUdniZPk1cSgRYRMRoJtNbXroE2O9cTEmgTUz2mj6u7JNBiT7m7yKWFK9xauMKtPQftNS8Y0U6Btu0HUclZnm4LtWlvhH7ghR1r9vMC0Y5aCX+gzVnSpKX53oimzIjNQcJ6Gx2FW7PxR27J1/g+P/mtiaMJD4H2d9Zu2q+Fqz4I/Lx172FNn7dW9bfvqE9ckpq83sB5L4+fq1MV5yQRaBERo5FAa33tGmiXrXWFvGlOzuy9b5wJtNgTbtkb+rraXWSvuSGSdgm0RSXO0Dkuq3vmOH+gfesdt/I3uLADCbSI0Wsl/IG2sxJog7FioM1bs12Z89eppaVFv1y5rscHTdLN+l/NHlYItgm0T700tVtv//S35zXk1Zm63XBXLrdHSVnLtafoC52prNaL42YFXXb6vLXa+fExSQRaRMRoJNBaX7sG2vKqRiVnBv/Duaik9z7P7BpoqxxOLf89ps9a5FFJqbHnmaOmsVfvKWyWjppG7Tno0ta9rrCPRcac3r91iF0CbbgPoRJTu2cVbeobvtsu2O7Ulj3YkQRaxOi1EqVlzYa2NmhvnbVapOlYMdDW3WpQQnqe+o2YprgxmTrwaWnkK5mAaYG2yes1ZE/y5srNerR/gv5v4ATFpy2Wx9OkE6fPalTSvKDLzVqyQZt3FUuS6u64sBusR3xYvet+KJw26/eDfNSYPxYM7xenfI/R8rfNH0tnrb7k1o79br2/w62vvzV/PN1pXr7vcTpRbv5YOuPsRaGBKdJj9f6O1kj4eo5H3/1o/t/RG7xyw63Xc4Ifi/d3+M77+lu3ct/yaEJa6OM1Ps2j3Ld8l71yo3O/89PPPVq40m0pp892//7cMn8s7T1+yhP2ddDW6kuxf26k/R5oN+10a/tHfl3YTv9jYPq/IRG72e543w8ArZgWaB/pG2/InuLD/Uc04fVlut/oktfbrNzVWzV32UZVnK3W0PjsoMum56zR7sLPJUkutxe7QSfiQ6rZr72ecvps35uZ6zfNHwuG91SFV4mpHq16x2P6WLBjl6/1vZYqvjN/LEb96WL4rxC+90FTh9c5VBJ6ncx53f/c3FNo/r6W7T37Q2z/xr2F4R+P0jJvxLEkTPX973/f7dxjYcX71coe/qL1vqu95lVKVvD5D3rtdMVp2b7b37bHoz2F2JH+x8Hsf0MidrfdMc8AQCumBdqhY9/QE4Mna9rcfH1y9JR+vnQ1rD1FSvYq7So8Fvj5m6qfNHB0pm433NVfnpugRqc7cF7cmExVnK2WxBYHiIjRyBYH1teuWxw8bNpxi4PyqsawESq/oOOvzC9YEX7VYHdvd9D268tW8UR5bF+THX1lfvGq1vs84Xfb/9z2tCqH8eeg/37NzmVv0weZ9abvsdn/afBjXuVwasM2l5atdXXrFi5sccAWB4jdLQC0YuoetOd+uqSlb+9QvxHT9NJrs/T+h5+YtlHvW+t3a+rs1YFtFVa9t0cp2askSQnpeVq3+YC83mYVHj6pAaMy5PU2SyLQIiJGI4HW+hJo7aEdA21tfaOyc0OD4IP20Gx71Pq2OmrM/1sieaLc91qav9yae7buLgp/YL0l/w0fbttG2cSp0cVy/0HH5q9wmR7XrOzsxb7n/UfF5szDBFpjEmgRoxcAWrHEQcKam1tUVvGD5iwt0JNDp2h8xjIVfnYyaNVqd3PvvlMzct/VwNGZGjg6U0lZy3X1hm9j45prdRqbukh/HTxZIybkqOr8xcD1zJ7QEBHtKIHW+hJo7aFdA22VwxlYuZmdG/kgYeFW3W7YZo/nptUDbW196CraohKnikpCVw8nTA0Ntv7HsDO/j0BrTAKtPSTQIkavlSgta9aBTzovBwmDWGGJQNsWt9ujfYeO65kR6eoTN9Hs4UTE7AkNEXuPVQ5n4CjanfmqqB0l0FpfAq09tGugjcbyKt9K2gUr3N36te5Ya4dA679/S8udQf/98YfUxFSPJmV49FqYbQ6yczu/1QSB1pgEWntIoEWMXiuRtzr8nuyRPF/dYvbQoZdgmUDrdLl1sKRMk2asVJ+4iUrPWaNjJ74xe1gRMXtCQ8TeYXlVo5LbHfQj0ooyO0ugtb4EWnv4MAVau2qXQGvEWG0pQaA1JoHWHhJoEaPXSvgDbU5ek5as9kTUf8BGAi3EClMDbXNzi746872yF7+nx55P0ujJ87XzwFHd+e2+mcPqFGZPaIjYOwx3kJaMufZ/M9+RBFrrS6C1hwRa69ubAm2sJNAak0BrDwm0iNFrJfyBtmCrV/sPRTYzp2uB1vFLrV5JydVjzydpyKsz9fnJbwPnvbetSP1Hpuupl6bqzZWbA8dKcrk9mpH7rv7xYooGjMrQzgNHA9cZNelNPdo/QY8+m6hHn03UUy9N7dodAj2OaYF22boP9c+X0xQ3JlP/LdirSzXXzRpKlzB7QkPE3mHGnPAHwDF7XN0lgdb6EmjtIYHW+hJoQyXQGpNAaw97+7/ZELtTK9HTgXZofLY27SpWS0uLvjxVqT5xE9XodOtUxTnFjclU3a0G3W90KmF6nrbtK5Ekrdm4T9Pm5svpcqvmWp36Dk/Tjz9fkSQNemWGfrpQE7P7A3oe0wLtI33j9fcXUvSvifM0PHGOhiXMDqvVMXtCQ8TeYdgVtHN675t5Aq31JdDaQwKt9SXQhkqgNSaB1h4SaBGj10r0ZKBt8nq188BReZq8gdMeez5Jl2qua/7KzVq/tTBw+tETFRqbukiSNHTsG/r2e0frmNds15qN+yRJTw9L1bWbHLHMzpgWaA+WlBnS6pg9oSFi77DK4QxaRZuc2fmDrthJAq31JdDaQwKt9SXQhkqgNSaB1h4SaBGj10r09AratlT+8LP6jZimJq9XCdPz9NkXpwPn/Xzpqp4elipJ+uMzCWq4cy9w3of7j+j1+W9Lkv40YLxSZ/9XT700VcMSZuuLr74V2AvLHCTMrpg9oSFi79FR06iSUpeKSpwxOxCLVSXQWl8CrT0k0FpfAm2oBFpjEmjtIYEWMXqthFmB9srVm4obk6UvT1VKksZMWaDjZd8Fzr96vV6PD5okT5NXj/SNl9PlDpy3v7hUKdmr1NzcouzF7+l4WaWavF6VHD+jPnETWVFrMywbaO/8dt8WTyazJzRERDtKoLW+BFp7SKC1vgTaUAm0xiTQ2kMCLWL0WgkzAu15x2UNHJ2poycqAqclZixV8bGvAz87Ltbony+nSfKtoL3dcDdw3vaPSpS14J2wtz1u2mIVHj4Z9dig57FsoJ23/H090jfe7GFExOwJDRHRjhJorS+B1h4SaK0vgTZUAq0xCbT2kECLGL1WoqcD7eXaGxo4OlNnKquDTs9dvUX5BfsCPxd+dlKJGUslSS+Om6Wyih8C581ZWqB3t3ys+42uoL1pJek/yQuDQi9YH8sG2itXb4Y8wayI2RMaIqIdJdBaXwKtPSTQWl8CbagEWmMSaO0hgRYxeq1ETwfa+LTFKj52KuT0M5U/qv/IdF27eUt3f7uvkRNztO/QcUnSus0HlJS1XE6XWz9dqNHfXkjWL1eu69eG39QnLkknTp+VJB0v+05/HTxZ9bfvRH+HQI9j2UBrF8ye0BAR7SiB1voSaO0hgdb6EmhDJdAak0BrDwm0iNFrJXoy0F65elOP9I3Xo88mBnn4eLkkaeOOQ+o3YpqeHpaqJWu2q7nZ9zvcbo9m5q7X319I0XP/fl37i0sDt/n5yW815NWZenzQJA1LmK2vznwfmzsGegxTA+2BT0uDVsmePF2ll16bpf7/mq4la7bL6202cXTGMHtCQ0S0owRa60ugtYd2C7RVDqeqHPYYa6wk0IZKoDUmgdYeEmgRo9dK+ANtzpImLc33RjRlRmwOEgbgx7RAu2P/Ef15wHgdKfVthtxw954eHzRJM3Lf1ZY9n+mpl6Zq/dZCs4ZnGLMnNEREO0qgtb4EWntol0DrqGnUwhXuQMiYtcjz0IRaAm2oBFpjEmjtIYEWMXqthD/QdlYCLcQK0wLt0LFv6MCnrcuxdx44qiGvzlRLi+/JXXzslIaOfcOs4RnG7AkNEdGOEmitL4HWHtol0G7Y5gp5Q7NwxcMRLAm0oRJojUmgtYcEWsTotRKlZc2GtjZob90ts0cOvQXTAu0fn0lQ3a2GwM+Z89dp+bqdgZ9rr9Xp0WcTzRhapzB7QkNEtKMEWutLoLWHdgm0GXPcYVedmD2unpBAGyqB1pgEWnv4MM1niLEWAFoxLdD+38AJuln/a+DnZ0akB7Y7kKTLtTfUJ26iGUPrFGZPaIiIdpRAa30JtPbQLoF2wYrQQJuc+XAEDQJtqARaYxJo7SGBFjF6AaAV0wLt8MQ5OnSkTJJ0quKc/jRgvO7ddwbO/+QoWxwgIvZWCbTWl0BrD+0SaEtKQ7c42LL34XhuEWhDJdAak0BrDwm0iNELAK2YFmh3FR7TY88nKT1njZ4cMkVL1mwPnFf+3Y/qPzJd6zYfMGt4hjF7QkNEtOOBdh6WQGvHx8bvwxZoHTX2fLzsEmhr6xtVWu5UfoFby9a6VFL6cDyvausJtOEk0BqTQGsPCbSI0QsArZgWaCVp36HjemPRem3ccUgeT1Pg9FlLNmhG7rvyNHlNHJ0xzJ7QENG+OmoateegS1v3ulRe1fnrtz3ozqxFnqhuwyx7e6D1x4fEVI8y5rpt9dj4tVugLa/yBcBoIuuytcGvJTuFWjsF2odVAm2oBFpjEmjtIYEWMXqtRGlZsw580nk5SBjEClMDbUd4vc1mD8EwZk9oiGhPHTWNypgbvCfj7iLjb8DaBsC2Ycnsv8uovTnQhvsqd3KWfR6bwN9ho0Db9sOKxFSPikqMP6/CvZYWrrBPSCPQWl+7B9rdRS5t2Ob7MNFRE5vbJNAak0BrDwm0iNFrJfJWN4U9oGkkz1e3mD106CWYHmirzl/UW+t3K+PNt5W14B2t23xAv1y5bvawDGP2hIaI9rR9UPJr9M1vuAPudOb6ZtubA21+QfjHprTcXn+rXQJtabkz7P1tdBVsR68ls/8uoxJora+dA23b1eX+DwJj8d8ZAq0xCbT20G7/3UC0klbCH2hz8pq0ZLUnoilZBFqILaYG2hXv7NQjfeP14rhZmj5vrabNzdezozL0h37jtH5roZlDM4zZExoi2tOOopDRiGf3qNSbA21H8d1u2xzYJdCGWwHbmVW0dn8t2SHQVjmcKjnhst2HFLHSroG2vKox7GujM9/26EgCrTEJtPbQbv/dQLSSVsIfaAu2erX/UGQzc7oWaB2/1OqVlFw99nyShrw6U5+f/DZw3nvbitR/ZLqeemmq3ly5WU3e1u0/f6j+RQNHZ2rBWx8E3d7l2huKT1usJwZP1vDEOTpTWR3dHQGmYVqg/eyL03q0f4KOnfgm6PTm5hbt2H9E//PPcTp8vNyk0RnH7AkNEe3p7qIwX4PPNP6P+3CrBjdss3ZIa2tvDrRVDqeSM4MfmwU2+sq8X7sE2nCvpc582GH315LVA21RSfD925ntI8qrGrV1r+/r9Xb7gKOtdg20Ha1O37KXQNtTEmjtIYEWMXqtRE8H2qHx2dq0q1gtLS368lSl+sRNVKPTrVMV5xQ3JlN1txp0v9GphOl52ravRJJUcbZawxPnKGvhOyGBdmzqIm3aVSyvt1nHyyrVd3iaLY7rBK2YFmgT0vOUt2Z7h+cvWbNdr6Qs7MERRYfZExoi2s/ScqeOnHTqjQXRrfhrezvL1rq0YIU7JiuaetLeHGhr631hyf/YbInhvo09qV0CraOmUdm5XQvibV9LnX0dmq2VA22VI3zgMzJfhYuDJaXWfi52pF0DbUePXyweBwKtMQm09pBAixi9VqInA22T16udB44GBdTHnk/SpZrrmr9yc9A3yo+eqNDY1EWSpEs113W/0al1mw8EBdr623fUJy4paKXty+Pn6lTFuWjuCjAJ0wLtE4Mnq/y7Hzs8/9xPl/SX5yb04Iiiw+wJDRHtZduvUydnebR9ny8I2emo8bGwtwfa3qBdAm1tvS/S+g9kZLcPK7qqlQNtRysw8wsih8pwW09kzDUWOBescFvKWbm+v2VKlvljae97W0NfL1UOp0rLfRaVBH8jIFarywm0xiTQ2kMCLWL0WomeXkHblsoffla/EdPU5PUqYXqePvvidOC8ny9d1dPDUoMu3z7Qnqms1ovjZgVdZvq8tdr58bEujw16DtMC7SN941V7ra7D86/dvKVH+sb33ICixOwJDRHtY9htDbK6/x/0p75z6kS5y1KmzPC96Tz8pfljaa/ZzxOraKdA+zBr5UDblRW07bcJ6UwACXc9DG/7Vb0lpS4lZwVvSVHl8MX2WH6QSKA1JoHWHhJoEaPXSpgVaK9cvam4MVn68lSlJGnMlAU6XvZd4Pyr1+v1+KBJQddpH2hPnD6rUUnzgi4za8kGbd5V3KWxQc9iaqC9dvNWh+cTaBGxt9nVA4NF6+tzw/9eDO+Fq9YLXWZIoLWHVg60tfWhB83LzvUY2vJj2drQD7SWrTX2XPRfPn+DCzvQ/7xpH2jDhfFY7DnbXgKtMQm09pBAixi9VsKMQHvecVkDR2fq6ImKwGmJGUtVfOzrwM+OizX658tpQddrH2grzlZraHx20GXSc9Zod+HnUY8Neh5TA21Cep4mzVgZ1oT0PAItIvYq24cKv929P6k/0E7Ldmv6bOxIAm2wBFp7aPVAW1vvW5W5Za9v+wmj812Vwxm0t3DGHLfhA4UFwqIFwo1Vzd8Qui9ueVX41cfdcZBDAq0xCbT2kECLGL1WoqcD7eXaGxo4OlNnKquDTs9dvUX5BfsCPxd+dlKJGUuDLtM+0N5uuKu/PDdBjU534LS4MZmqOBt822BtTAu085a/b0irY/aEhoj2scrhDFmd1JmVSY4a3xHNt+51dWrVbWaO7w3e+g94I/wgJ6b7HpOfbXhAr+6QQGsP7RBou6J/L9TOfJBFoI1suEDb9r5rq5E9gzsrgdaYBFp7SKBFjF4r0dOBNj5tsYqPnQo5/Uzlj+o/Ml3Xbt7S3d/ua+TEHO07dDzoMu0DrSQlpOdp3eYD8nqbVXj4pAaMypDX2xzV2MAcTAu0VmPWkg169NnEVvsn6IVxviXil2tvKD5tsZ4YPFnDE+cEfcJh9oSGiPbSUeN7Y7phm6tTR8KucjiD9gXsTNwl0BqTQBssgdYe9vZAG40E2sh2FGjb75WenOnploNYEmiNSaC1hwRaxOi1Ej0ZaK9cvalH+sYHN6hnE3X4eLkkaeOOQ+o3YpqeHpaqJWu2q7nZ9zsW52/To88m6n+feU1/6DdOjz6bqIWrfKG25lqdxqYu0l8HT9aICTmqOn8xZvcN9AwE2g5Y9d4erd20X5I0NnWRNu0qltfbrONlleo7PE2eJq8kAi0ixk5HTWOHK8U62h7ByO0SaI1JoA2WQGsPCbShEmgj21Ggra1v3ZJiy17jW1J0VgKtMQm09pBAixi9VsIfaHOWNGlpvjeiKTO6vgctQFtMC7SDXplhSDO4XHtDz/8nS06XW/W376hPXJKavN7A+S+Pn6tTFeckEWgRMTa2X7VUVBIcW7pygDECrTEJtMESaO0hgTZUAm1kHxRoe0ICrTEJtPaQQIsYvVbCH2g7K4EWYoVpgXbjjkOGNIPsxe9p54GjkqQzldV6cdysoPOnz1urnR8fk0SgRcSu29GBWdp+rdT/Zrb9V0+N3D6B1pgPCrT+/X+Xr3Vpz8GHI1jaJdD69yg1exxmSaANlUAbWQKtPSTQ2kMCLWL0WonSsmZDWxu0t+6W2SOH3oKltziovVbX47/z2s1b6jdimlxujyTpxOmzGpU0L+gys5Zs0OZdxZKkhnseRHxIvRMjdx4I/2ls4adNunvf5/X6Ji16q/W8lCyPTnzdev6DnDHPd533d/h+F4bXH2hv1Afff9frmwJ7TPld9Y7H0H1vZ0+c9q0iWLnOmn/rDw5P0OMyd7HvsTJ7XD3tsnzf33/qG/PHYhX9zwmz5xQr+84m3/20aKU5r+9dB3yPUe5b5t8XVjYnz3c/HTpizmspLdv3+z/Y3WZc+93YTv+cE+2/A83+9yyimQJAK5YLtG63R4eOlCkxY6ke6Rvf479/445DenPl5sDPFWerNTQ+O+gy6TlrtLvwc0nSb40eRHxIvRsjS46HD7QnTodetuKs7/SLtcZvvzXQurXzAHZkINDeCr7/Cj8L//j84Ijdc8CKnij3tAZaC4ynvXMWhz4m72zu3t9ZfdGjb6qaLOW8pb6/fX+x+WNp783b5jw3WgOt+fOKVX1nk+8+WvSWOY/Rro/9gdb8+8LKBgLtUXMep9ZAa/59YWX9c06097PZ/55FNFMAaMUygfa847JyV2/Vk0Om6LHnk5Sz7H1V/vBzj4/j1am5+uKrbwM/3264q788N0GNTnfgtLgxmao4Wy2JLQ4QMTZm5waHpuxc31flqhxO5Re4tXCFW1ujPGALWxwYs+0WB44a34HZFq5wKycv+v1/7azVtzgI95j4XzdG3F3ke3zzC9wqrzJ2neVvhz9YH4b35Dcdv0bavsY2bIvtwaj8v9/sOcXKssWBPWSLA3von3PMeIwQ7S4AtGJqoP3tXqN2Hjiqf02cpz/0G6cJry/TH59JkOOXWtPG1CcuSTXttlZISM/Tus0H5PU2q/DwSQ0YlSGvt1kSgRYRY6OjxheMFqxwa3eRL1Y4ahqVnBUcPGYt6vwbAAKtMf2B9ntHozLmtomyU8PHp7Z7BPdGrR5okzNDH5MFK4zFpmVrQ0OrkUjrD7RTZ7o1fTZ2ZFK6+4GB1lHT7jUW5dzWkQTayBJo7SGB1h4SaBGjFwBaMS3Qzsxdr788N0HDEmbr/Q8/Ud2tBknS/w2coEs1100Z0737Tj3SNz6w/6yfmmt1Gpu6SH8dPFkjJuSo6vzFwHlmT2iI2HsNd2CwaFZuEmiN6Q+0H33iDHu/+03O9KiopHfH2dp66wfaopLQx8lIZK1yhH98N2yL/Hf6A+3KdbyWHmT6bN+cc+JM+NdJuMcuMdWjktLYPNcItJEl0NpDAq09JNAiRq+VKC1r1oFPOi8HCYNYYVqgfaRvvKbPW6vqC1eCTjcz0EaD2RMaIvZeOwq0nY0YBFpj+gPtjv3h7/fNu90qLXfG9KvYVtbqgba2vlGl5U5t2ObSlr0uw9sUlJaHj4PL1hJoY2WkQNvR3BarDz4ItJEl0NpDAq09JNAiRq+VyFvdFPbfJ5E8X91i9tChl2BaoD397XllLXxHfx4wPrCK9mb9rwRaRHwoLK9q1PK1vv0X9xwM/8YrXEhKzuz8V+sJtMb0B9oz34cPeL19S4P22iHQdvTaWrjC95xPzgof/TLmhO4rbCQOEmiNGSnQlleF30M4Vq8xAm1kCbT2kEBrDwm0iNFrJfyBNievSUtWeyKakkWghdhi+kHC7vx2X1v3HtawhNn6Q79xeqRvvHbsPyK32x5H9DN7QkNE+xkuTuQXhH+TvLuodaVZcmZ0XwEm0Bqz7UHCikqcgT1OH5YtDdpr10AbLr623xakvCr4cka2N6itJ9AaNVKgra3v3tcYgTayBFp7SKC1hwRaxOi1Ev5AW7DVq/2HIpuZ07VA6/ilVq+k5Oqx55M05NWZ+vxk68Hq39tWpP4j0/XUS1P15srNavJ6A+f9UP2LBo7O1IK3Pgi6vVGT3tSj/RP06LOJevTZRD310tTo7ggwDdMDbVsqz11QzrL31ScuSU8OmaLc1VvNHlJEzJ7QENF+5heEBqTEVM8Dvzpv9Ovb4STQGrNtoPXfd53d77c3acdA29H2BR0F2PKqxk5tWUGgNaaRQNvRa2x3ke+bBRu2uaJeUUugjSyB1h4SaO0hgRYxeq1ETwfaofHZ2rSrWC0tLfryVKX6xE1Uo9OtUxXnFDcmU3W3GnS/0amE6Xnatq9EklRxtlrDE+coa+E7IYF20Csz9NOFmi7fD2Aelgq0fu43urT34BcaPXm+2UOJiNkTGiLazwUrwgfarkTYB0mgNWa4QPsw+zAE2s5KoDVmZwJtW5etDd6bNjnrwR9cdSSBNrKdCbSOmkZt3evS1r2umB3IjUBrTAKtPSTQIkavlejJQNvk9WrngaPyNLWujH3s+SRdqrmu+Ss3a/3WwsDpR09UaGzqIknSpZrrut/o1LrNB0IC7dPDUnXtJkcsszOWDLR2wuwJDRHtZ7gjmGfM6b5VTARaYxJog7VjoK2tb1R2bvd9+EGgNWY0gbajfWm37O38849A0T2C4QAAIABJREFUG1mjgdZR06jkrK4/Ju0l0BqTQGsPCbSI0WslenoFbVsqf/hZ/UZMU5PXq4Tpefrsi9OB836+dFVPD0sNuny4QPunAeOVOvu/euqlqRqWMFtffPWtwF5YNtB+/OkJzc4rMHsYETF7QkNEe7phmysoznbX6tnaegKtUQm0wdo10DpqfNuIZMxxa8EKd0y3qSDQGjOaQNvR6ueO9ud+kATayBoNtG3/W2V0Sx4jEmiNSaC1hwRaxOi1EmYF2itXbypuTJa+PFUpSRozZYGOl30XOP/q9Xo9PmhS0HXaB9rm5hZlL35Px8sq1eT1quT4GfWJm8iKWpth2UC7de9nmvD6MrOHERGzJzREtK+OmsaYHbX8QRJojUmgDdaugbY7JdAaM5pA66hpDBw0rK3RHDyMQBtZo4G2oy15uvrBB4HWmARae0igRYxeK2FGoD3vuKyBozN19ERF4LTEjKUqPvZ14GfHxRr98+W0oOuFW0HbnnHTFqvw8MmoxwY9j2UDrV0we0JDRIwkgdaYBNpgCbShEmiNGe0etCWlrqBIG+3ewQTayBoNtLuLQlfQJmd2PUQRaI1JoLWHBFrE6LUSPR1oL9fe0MDRmTpTWR10eu7qLcov2Bf4ufCzk0rMWBp0mfaB9n6jS99+7wi6zH+SFwaFXrA+lgi0zc0tqrvVoJprdSFaHbMnNETESBJojUmgDZZAGyqB1pjRBlq/peXOLn2FnkAb2c7sQdt2FW1yZnSrmttLoDUmgdYeEmgRo9dK9HSgjU9brOJjp0JOP1P5o/qPTNe1m7d097f7GjkxR/sOHQ+6TPtA+2vDb+oTl6QTp89Kko6Xfae/Dp6s+tt3ohobmIPpgfaTo6f05NApeqRvfFitjtkTGiJiJAm0xiTQBkugDZVAa8yuBtquSqCNrNFA67e03KnScmfMtuUh0BrTaKAtLXdq616X9hx0dXl/4LYSaI1JoEWMXivRk4H2ytWbeqRvvB59NjHIw8fLJUkbdxxSvxHT9PSwVC1Zs13Nzb7fsTh/mx59NlH/+8xr+kO/cXr02UQtXOULtZ+f/FZDXp2pxwdN0rCE2frqzPexu3OgRzA90D710lStem+PLl6+pms3b4Vodcye0BARI0mgNSaBNlgCbagEWmMSaK1vZwNtrCXQGtNIoG2/DUXGXHfMIi2B1pgEWsTotRL+QJuzpElL870RTZkRm4OEAfgxPdD+acB43W90mT2MqDF7QkNEjCSB1pgE2mAJtKESaI3ZUaB11DRqz0GX8gvc2nOw+55XBNrIEmjtYaRA66hpDIqzgef+3ti8vgi0xiTQIkavlfAH2s5KoIVYYXqgTZuTr9Kvz5o9jKgxe0JDRIwkgdaYBNpgCbShEmiNGS7QOmoaNWtR8BuahSu6Jw4SaCNLoLWHkQJtabkzbCxYEKPXFoHWmARaxOi1EqVlzYa2NmhvnfW/+A02wZRAu3HHoYDrNh/Qs6MyNG/FJhXsOBh03sYdh8wYXqcwe0JDRIwkgdaYBNpgCbShEmiNGS7QFpWED0ml5bHfBoFAG1kCrT00soI2OTP0dbW7iBW0PSmBFjF6AaAVUwLtqElvGtbqmD2hISJGkkBrTDMD7emzTs1f7raUMxf6njcpM8wfS3u3f2ROVCLQGjNcoPUHue4KSW0l0EaWQGsPjexB2/7Dj+xcD3vQ9rAEWsToBYBWTN/iwPFLbdjTXW6Pyr/7sYdH03nMntAQESNJoDWmmYH2+Nfh4xWGd/V6c1b1EmiNGS7QdvRV7CoHK2jNkEBrD40E2tr6RlU5nCoqccZ8RTqB1pgEWsToBYBWTA+0/zdwQtjTbzfc1V+eC3+elTB7QkNEjOTrc31v8Ja/7VL+BuzICdN8b7AuXO35I8/7A21attv0+8HKzl/mijrQVjmcWr7WpeQs396n5VWdf5wItMbs6CBhG7YFfxBRVNI9rzUCbWTzNxBo7aDRQNtdEmiNSaBFjF4AaMW0QLvz42MaMSFH//PPcRoxISfEf76cpoGjM80anmHMntAQESPpX0GLxuzqClr/keq37nUZXs10/GvfG7yMuW7T32haWX8gXfVu56KSo6ZRGXODXwfJWZ1fvUmgNWZHgba23hfKS8ud3bJy1i+BNrIEWntIoLWHBFrE6AWAVkwLtI1Ot06cPqtH+ydo867iEHd+fExXb1j/cHhmT2iIiJH0r6Cdlu3W9NnYkf43WF1ZQVvlcCo5Kzj4GlklSKA1ZrhAW1ruDMTXjLnusFG8pDT8FhJb9nYuehBojfmgQNsTEmgjS6C1hwRae0igRYxeAGjF9C0OTp6uMnsIXcLsCQ0RMZLsQWvMWOxBm18Qulo5OSvymzYCrTHbB9pwQTzcylgCbc9KoLW+BFp7SKC1hwRaxOgFgFZMCbRb9x7W9Zu3A///QVodsyc0RMRIEmiNGYtAu2BF+O0kIu13SqA1ZvtAu7sofHhtv2rZUdOo5MyuH6CKQGtMAq31JdDaQwKtPSTQIkYvALRiSqAdljBbZ89fCPz/B2l1zJ7QEBEjSaA1ZiwCbfuDICWmepScyQraWBltoK2tb1R5VWtAz5jjVklp54MHgdaYBFrra3qg3eOb87JzOTDig8x60/c47f+UQGtlCbSI0QsArZi+xcFXZ76X2+0xexhRY/aEhogYSQKtMWMRaB01jcrODY6zRkIggdaY7QNtuJWxyZkeObp4oLeOJNAak0BrfU0PtHvDf7iC4WUFrbUl0CJGLwC0YnqgfXLIFP15wHglZizVe9uKVHX+opqbW8welmHMntAQESNJoDVmLAKt39Jyp4pKjB+pnkBrzHAHCSuvatSytS5lzHFr2VpXp7ct6IwEWmMSaK2v6YF2j/P3D1TMP0CklZ2c4WYFrQ0k0CJGLwC0YnqgbWlpUfWFK9qx/4hen/+2+o2YpieHTFHanHzt2H/E7OFFxOwJDRExkgRaY8Yy0HZWAq0xwwXanpRAa0wCrfU1PdCyB60h2YPWHhJoEaMXAFoxPdC2536jU7sLP9eQV2fqkb7xZg8nImZPaIiIkSTQGpNAa30JtPaQQGt9CbT2kEBrDwm0iNELAK2YHmjrb9/RZ1+c1uL8bRo5MUdPDpmixIylWrNxn0q/Pmv28CJi9oSGiBhJAq0xCbTWl0BrDwm01pdAaw8JtPaQQIsYvQDQiumB9pG+8Rry6ky9/+EnOu+4bKv9ZyUCLSJaXwKtMQm01pdAaw8JtNaXQGsPCbT2kECLGL0A0Irpgfa9bUVKylquJ4dO0ahJb2rp2h068uUZ/drwW4+PpaziBw16ZYb6xE1UUtYK3fntviTpcu0Nxact1hODJ2t44hydqawOXMfsCQ0RMZIEWmMSaK0vgdYeEmitL4HWHhJo7SGBFjF6AaAV0wOtH6+3WWfPX9D7Oz/RlDfe0pNDp2jo2Dd67Pc33L2np16aqlMV5+Rye5S7eos+/P0gZWNTF2nTrmJ5vc06XlapvsPT5GnySiLQImJsrHI4tXytSwtXuLU8xkeiJ9Aak0BrfQm09pBAa30JtPaQQGsPCbSI0QsArVgm0N5vdKms4get23xAEzOX6+8vpGjIqzN77PfvO3Rcr89/O+T0+tt31CcuSU1eb+C0l8fP1amKc5IItIjYdR01jUrO8gT+gZ+Y6lFylkeOGIVCAq0xCbTWl0BrDwm01pdAaw8JtPaQQIsYvQDQiumBNnf1Vo2cmKP/feY1DRiVodl5BSo8fFL/v737f2+qPvg//v9435/bbbf3nPc9x+4pG8rw275wz23CKIhQKUJt0dYCWlrAUgVrFbH4ZW11UMpUikOtQ1lxqAEdRFHMdLpWphRBkTRJU16fH0J6mubUnJyEvs87fT6v63FdAgUODTnIi5OTEydPT+pxND7QoXvue1Lzlq/XlbMrdUfDFp35OqqDh4/p2rm1GR+7fHWrtj23VxIDLYDC9fQOZYyzaT29xRk3GGi9YaANPgZaOzDQBh8DrR0YaO3AQAv4R0ROxgfa6jWb1b37VQ0cP2H0OO5s3KIZN1bp089OKhZPaGldixo2tWv/m0c0e+HqjI+tXdemJ7fvkSRFY0kAKMjul4ZdB9rdLw0X5cdfsTr14z3xdEJdz2EiC88PtCdPTf7vgUNHkiqrSKh6lfnPQ5Bt2pJ6jB56rDjPjXylf/4HHzX/uQiyypWpz9Phd808TulzqOnPQ5A98mTqz5219yeMPEY7dqV+/saN5j8XQbb63tTv5Rf2mnku3VaT+vk7dpj/XARZ+pxj4jECbEdETsYH2qDUsKlDa1s6R78c+tv7umZujQ4dOaZZc2oyPnbZqgfVtesVSdIXZ+IAUJDIJ3H3Wxx8Upwfv3p1+gqYuJ5+BhNJX0H76eeT/3vgwFupq6SqViWMfx6C7P5HUp+nlraEkefq/ZtTP/+mLTxO32R5Xeq5FDpi5pyaPo+a/jwE2UOPpz5HDfeZeYz+8EzqcVpzv/nPRZCtXJ9+RY2Zx2np+Ston9hu/nMRZOlzjonHCLAdETkFdqB9YGu3fvKrqkn7+Z7cvkd3Nm4Z/XLob+/rhrI6fXH6K33nxwsUHXJOHjNurNKhI8ckcYsDAMXR2xdTedX5cbYqod6+4r2ckVsceMMtDoKPWxzYgVscBB+3OLADtziwA7c4APwjIqfADrR/ef2wtnTsmrSf78TJ07ps1mK9F/lEieGklq1q1b0PPS1JmrdsvR5+8lklkyPa9dJrmj67UsnkiCQGWgDBx0DrDQNt8DHQ2oGBNvgYaO3AQGsHBlrAPyJyMj7Qfv/aW3Xy1FemD0OS9Mprb+uKXyzT/1xzq26/5yF9fXZIktR//IRuqmjUpTMX6ecLVin83kej38f0CQ0AcmGg9YaBNvgYaO3AQBt8xRxo02NrWUVCa5rjing4hzLQesNAawcGWsA/InIyPtCW37lRnTt7TR+G70yf0AAgFwZabxhog4+B1g4MtMFXrIG2p9cZp8aOtLm+HwOtN4UOtJH+qEJh/48vA603DLSAf0TkZHygvbNxiy6/bolm3Fil+ZVNumXFfRmCnukTGgDkwkDrDQNt8DHQ2oGBNviKNdDWN8ezBtqyikTOq2gZaL0pZKBt63SubK5cGfc11DLQesNAC/hHRE7GB9p1Dz6l5s3bJhT0TJ/QACAXBlpvGGiDj4HWDgy0wcdAawe/A63blc2VK/N/rBlovWGgBfwjIifjA63tmT6hAUAuDLTeMNAGHwOtHRhog69YA21vXyxrCGxqzT0mMtB643egbWrNflzKKhLqC+X3nGSg9YaBFvCPiJwCMdB+3P+ZHnxsp+5o2CJJGhk5pzfeOmr4qLxl+oQGALkw0HrDQBt8DLR2YKANvmK+SVhvX0z1zXHVNCTU1hnjTcKKyO9AO/b2BmOFIwy0FwIDLeAfETkZH2j3v3lEF19ZpgW3N+miaXMkSQPHT+i7V9+iZ1/oM3twHjJ9QgOAXBhovWGgDT4GWjsw0Aafl4E2FE4NfW2dsbyvvMyFgdYbvwNtKBzNGme9XNk8HgOtNwy0gH9E5GR8oP3pb+/Qn/cfkqTRgVaSXj90VNfMrTF0VN4zfUIDgFwYaL1hoA0+Blo7MNAGX66Bti+UfQ/T3r78B76JMNB6U8ibhIXCUbVsjau+Oa6uHn+PHQOtNwy0gH9E5GR8oP3W9PlKJkckZQ60ieGkvj19vqGj8p7pExoA5MJA6w0DbfAFZaCtvy+ulrYYJlBxZ+qc89pbDLRBlWugdXvzLz9vMjURBlpvChloi4GB1hsGWsA/InIyPtDOuLFKRz/4WFLmQPvn/Yd05exKQ0flPdMnNADIhYHWGwba4AvKQAtvuII2uHINtOVV7o9psR4jBlpvGGjtwEAL+EdETsYH2u279ury65ZoU9sOXTRtjn7f9YJq17XpW9Pnq3Nnr+nDy5npExoA5MJA6w0DbfAFZaBdckdcy+/CRBYu4wraoPumgTbSH1VTa/Y/Rvi5h+lEGGi9YaC1AwMt4B8RORkfaCWpp/ev+t1t63TFL5dr5m/v0KI77tO+A38zfVieMn1CA4BcGGi9YaANvqAMtNyD9ptxD9rgcxtoI/1RrTl/a4N5FQktWTHm9gZ1cYUjxXs8GWi9YaC1AwMt4B8ROQVioLU50yc0AMiFgdYbBtrgY6C1AwNt8LkNtG73nW1pi6sv5P44hsJRbTh/pW1tY2LCj3PDQOsNA60dGGgB/4jIyfhAG4sn9OBjO3VDWZ2+f+2t+sH1FfrFzav0SPtzSgwnTR9ezkyf0AAgFwZabxhog4+B1g4MtME3fqCN9EezxtmyioTqm92fa5H+qCpXZg+6Xq+yZaD1hoHWDgy0gH9E5GR8oK28+yFdM7dGWzp26Zk9fdr5/D61bN2pK36xTCsaHjF9eDkzfUIDgFwYaL1hoA0+Blo7eB1ow5Eh9YWGFAoX93FioM3N7QrafAba3j73N8xr7/Y2JDLQesNAawcGWsA/InIyPtB+b+YinY0OZX39x/2f6VvT5xs4ovwyfUIDgFwYaL3xMtCGwlF1dMfU1hnL6+W8uTDQesNAawcvA21vX0zl1c6wt2aCIdAPBtrc3Abats7s0bW3z30YZKCdHAy0dmCgBfwjIifjA+2sOTWuX382OqQrfrFsko8m/0yf0AAgFwZab3INtH2hoawxoqe3OCMtA603DLR28DLQlldlj3tdPcUZoUbvn7o1hgms3RTPGmgHBlPDaX1zXPXN8dFxNv0PU2OvdI70R1VZl3mLg/IqbnFQbAy0dmCgBfwjIifjA21H94tq3rxNp06fGf26f33+heru3ao//ukvBo/MW6ZPaACQCwOtN7kGWrc30CmvLs5fyBhovWGgtUOugdbtHzu+6eX0+XL7seFu/EA7XsvWzPNey1bn40PhqJrOv0lYTQNvEnYhMNDagYEW8I+InIwPtFfOrtR//GieLpo2R/911UJ9e/p8XTRtjr41fb7++5pyXTZr8aggZvqEBgC5MNB6k2ugrWlwHziK8Rgx0HrDQGuHXAPtRG9I1dZZ3Ctol98VxwQq7nS/gnasUNj9cZrotgf5YKD1hoHWDgy0gH9E5GR8oN2z9w317jvoSRAzfUIDgFwYaL3JNdCOv5IsfdVYMR4jBlpvGGjt4OUWB+Pvd1pelVCkSG/Ql/4xTX8egsztHrTjpUfU8bzeZ/abMNB6w0BrBwZawD8icjI+0KZLJIb1z08/N30YeWf6hAYAuTDQepNroI30Z15FW1kXL9q7zzPQesNAawcvA+3AYOqNpto6Y2rvjhVtnB0YZKD1wstA+01X0Hb1xNSyNa4du/09dgy03jDQ2oGBFvCPiJyMD7TRobhq1j46epsDSTp56ivNvW2tTpw8bfbgPGT6hAYAuTDQepNroE3rCw2pLzRU1EGJgdYbBlo7eB1oLxQG2ty8DLQDg9mvHGhqjWXd7qW2Mf9hioHWGwZaOzDQAv4RkZPxgbZ2XZturtqgt9+JjA60Z6MxrWh4RJV3P2T24Dxk+oQGALkw0HrjdaC9EBhovWGgtQMDbfBNNNB29cS0pjmulq3OKwR6+1JXOff2pbhdVdvTm99jzUDrDQOtHRhoAf+IyMn4QPvdq2/RF6e/kqTRgVaSvjxzVt+/9lZDR+U90yc0AMiFgdYbBtrgY6C1AwNt8LkNtOPvC1xWkci6jUtXT3HuS8tA6w0DrR0YaAH/iMjJ+EB72U8XKxZPSMocaE+e+kr/+ZMFho7Ke6ZPaABKX6Q/WtC9ThlovWGgDT4GWjsw0Abf+IE20u9+v9mWrZnPtYnuS5vvn1EMtN4w0NqBgRbwj4icjA+0t9ZsVOMDHRqKxUcH2k//NajFd96vW1bcZ/bgPGT6hAagNPX2xdTRHdOmLc7VSuXVCfWF8h88GGi9YaANPgZaOzDQBt/4gXai4bW+Ofu5Nv4q2q6e/MdDBlpv/Ay06fukhyOFP/8YaL1hoAX8IyIn4wPtp5+d1E9/e8fom4RdOnORLpo2R7NvuVsDx0+YPrycmT6hASg9o2/AsiT7L8vl1Ym835yKgdYbvwNtpD+qDa3OYLGhNf93NWeg9YaB1g4MtMHndouDyrp41p85E42v4UhhIyADrTf5DLSR/qjWNMcz/n8h33sDj8dA6w0DLeAfETkZH2glKZkcUehv72vn8/v0/MsHFH7vI9OH5DnTJzQApWWi+/uNle9VtAy03vgdaN3u2zj+ZcG5MNB6w0BrBwba4HMbaEPhzJG2rfPCvayegdabfAZat/9/KK8ubDRcemfq5199b0z3bMBEGGgB/4jIKTAD7euHjmrn8/tGv+7M13Y8WU2f0ACUlrFj37wJBtp87/XHQOuN34HW7aqzfP+ixkDrDQOtHRhog89toE0LhaN5vwogXwy03uQz0NY3u/9Z5OfWSGnpK2jhjYnzHWA7InIyPtD+89PP9ZNfVek/f7Jg9B60/cdP6NKZi3T43b+bPTgPmT6hASgtY6+AmVeRfZsDt/sB5sJA643fgXb0lhRjr1qqYqC9EBho7cBAG3zfNNBOBgZab/IZaN1ezVFWkf9tkcbiClquoAUuNCJyMj7Qzlm6VpvadiiZHBkdaCWpo/tF3VTROGnHse/AYf3bD+fq4ivLRnV0vyRJ+mTgM81Zulbfm7lIN5TV6eDhY6Pfz/QJDUDpGXsVzLzzf4Gub477eiOWgUEGWq/8DrRuLytt787vsWKg9YaB1g4MtMHHQGuHfO9BW15V2J9F43EPWm8YaAH/iMjJ+ED77enzFYsnJCljoE0MJ/VfVy2ctOPY3XtAt61scf22myoa9cT2PUomR7TvwGFNu2GpEsNJSQy0AC6M3r6Yunpio7czCIWjvt+QhYHWm/EDbVdPTLWNqdG0rdN546/0O2SP/Rz39A6pvtn/kM5A643XgTbSn3qc8r0dSC4MtN74HWjHv8mR33ugMtDmxkBrh3wG2vRzqL07pvbumHr7Cr+HMAOtNwy0gH9E5GR8oJ12w1KdOHlaUuZAe+zDf+q/rymftOPY9uyfddf6rVlfP/jFl7pkxkINJ5OjX/ez+Sv1+qGjkhhoAVx4LVsLe1dmBlpvxg60blfFrt0YV+VK57GoXBn3/Q7m4zHQeuNloO3ti6m82nncNrQW742OGGi98TvQut1D088VgAy0uTHQ2iHfgbbYGGi9YaAF/CMiJ+MD7boHn9JvlzTor6F3dNG0OTr6wcd69oU+/eRXVbrnvicn7Tge7ezRL25epWvn1uoH11eodl2bvj47pIOHj+naubUZH7t8dau2PbdXEgMtgAurp3coa7Aor87vnnIMtN6MHWgnerOV8ZqKNP7teyM1ViytiaulLYYJ3NOU+jxt2jLx5338S3zLKhK+bw8yHgOtN34G2kh/1PU55ue+2wy0uXkdaMORIe1+eUi9+4s7EDLQesNAawcGWsA/InIyPtAOxeJa1fS4vjV9vi6aNkcXTZujS2Ys1IaHt43e+mAyevHVN3X/li6dOn1GJ099pXnL16thU7v2v3lEsxeuzvjY2nVtenL7HknScHIEAIriyzMj6twxrFtXpP5Hv3PHsDY/Mew6WrzzXtLzj3vH3efHim3D2tmDiSw8P9B+dWZE6za5f97dFOOxP/xu0vPPh4Q2Pz7s+nl85z33z+O6Te4fn6+WR1O/Lx7aav73a5DdvjL1eX/3fe/nqeHkSNEeu/T3Nf15CLK236d+L6/bOPE57NXXMp9Pq9cP68szxfnzbufu8z//Jh6nb3L3vanPfe+r+T2XiuW2mtTP/3S3+c9FkBXz/weAqYaInIwPtOfOnZMkJRLD6j9+YvR2B5J0Njpk6rD05tvvacaN1Tp05JhmzanJ+LZlqx5U165XJEmfnYoBQFFsfSr7qs1V97pfyfnWUe8/bvoK2kc74urcGcME0lfQfvxpTDufz/68L3a5MrO2IVGUx37/wdTPt3B5XJV1mMiSO1Kfpwcejbt+Hv9x3P1dzLc+5f7x+Wp+OPXzb3yE59I3WV6X+rwfeLvwc+De1/J/7NLf1/TnIchaH0t9ruubJ/78ul2N3rmzOM+lzp3nf/77eC59k7p1qc/Tsy8U5/Oer/QVtI//wfznIsjSzw8TjxFgOyJyMj7QLlv1oOuVsgcPv6/psysn7TgiH/XrsxOnRr/82pthzZpToy9Of6Xv/HiBokPx0W+bcWOVDh05JolbHAAonso691Fw/F+SW7bm95Lf9EALb9JvEtbe7QwULVvjev7P2eNf+k1Y2rud+56uaY7ndQuKgUHuQeuVl3vQtnVmPk7lVYmi3SuYWxx44/cetOnnUk1Dajj0+yZH6cfe9OchyHLd4qAvlH17nfSgW4znErc48KYYtzgIhVP3sl/THFdHnvd05hYH3qSfH8V4bgBTDRE5GR9o5y1fr1+Xr9Gp02ckpa6kbd68TRdfMU8bH90xacex4eFtWli9QWejQzrzdVQLbm9S8+ZtqWNctl4PP/mskskR7XrpNU2fXank+cvxTZ/QAJQOt4G2vCox+q7MbZ2xvN8gbGCQgdbvQOsmFE4NgG2dMYXCqa9zu0/wmjxHDAZab7wMtAODqTcKa9kaV3t3LO+x/Jsw0HrjZ6ANhVOjYDEeJwba3Lzcg9bt/NjWWZx7oTLQelPoQBuODGW8aWJZRX5vnMhA6w0DLeAfETkZH2iHk0ndfd+TuurX1frz/kO67ne1uvo3K3T43b9P6nGcjca0ouERXTZrsX5wfYVWNT0+etVs//ETuqmiUZfOXKSfL1il8HsfjX4/0yc0AKUj/RfWsfy8g7kNbqtJ/aXz6EfFGWRMmugNxfK5apOB1huvA+2FwkDrTT4DbaQ/qjVjnkOVK+Oj//jhFwNtbl4G2vH/+FRZl/+rAybCQOtNoQPt+FcUpHl9jjHQesNAC/hHRE7GB9p0Hd0v6t//d65urd2koVg893cISKYMpi/cAAAgAElEQVRPaABKS/rlvZV18ZIdZwcGS2ugbWp1/wtwPkMGA603DLR2yGegdRuQahsLGzoYaHPzMtAODKaubG7vjqmrp7hXozPQelPoQNuy1f0fEL1erc5A6w0DLeAfETkZGWg7ul9yVX7nRl3208X6fdcLo18X9Eyf0ADARqU00Pb2ZQ9MTXm8hHRgkIHWKwZaO+Qz0E50BXohjxMDbW5eB9oLxe0VI5iY34HW7c+n8irvzy8GWm8YaAH/iMjJyEB7/by7PAt6pk9oAGCjUhpoBwZTfwmub46rsi6uts78rzRjoPWGgdYODLTBx0Brl0LeJGzs57qyLr9biDDQesNAC/hHRE6BucWBrZk+oQGAjUptoC0UA603DLR2yGeg7Qtlv8leobd3YaDNrdCBNtKfeuz6QkNFvfWBSY89nfqcbHuuNG8v5Ofezgy03jDQAv4RkVMgBtrXDx3V2pZOLVvVqsq7H9K9Dz2tQ0eOmT4sT5k+oQGwW19oSB3dMXV0x/J6UynblcJAW8zHjoHWm0IH2p7e1GO2Y7e/+2ky0HqTz0A7MJgajto6Y2rZGldvX+HjGANtboUMtKFwVJUrM9/YrRT+/Cr1gdYPBlpvGGgB/4jIyfhAu6Vjl749fb4W3N6k2nVtuqNhi367pEH/70e/0+Pb/mT68HJm+oQGwF7j3yG7vNr7OyvbzvaBttiPHQOtN34G2vSVfhu3ZL6UvrYxvzdyGxhkoPUq34G22BhocytkoHV7Y8R877sdRAy02RhovWGgBfwjIifjA+1lsxYr8o+BrK/fd+CwvjdzkYEjyi/TJzQA9iqvyr7PXCn8JdcL2wfaYj92DLTe5DvQdvWkPn7eBPd17OrJ7zFjoPWGgTb4ChloJ7pPqunzcqEYaLMx0HpTKs8BwAQicjI+0F7162rXr4/HE7qUgRZAiYr0u/8lt77ZzL01J5vNA+2FeOwYaL3JZ6ANhcc8TkvcB6W2TgbaC4GBNvgKGWhrGkrzzy4G2mwMtN4w0AL+EZGT8YH2rvVb9cprb2d9/R+eeVlrWzoNHFF+mT6hAbBXZV32u5e3bLX/L7le2DzQXojHjoHWm3wG2rHvXD7RFbQ9vfn9/mOg9YaBNvgKGWh7+7JvcdAXsvNcPhYDbTYGWm8YaAH/iMjJ+EBbXb9ZF19Zpmvm1qj8zo1aWL1BM26s0n9dtVBL61oyBDHTJzQA9gqFM18qX9OQ/z0xbWX7QFvsx46B1pt8Btrx9wmet6TwQZ2B1hsG2uArZKBNnwPbu2Nq746VzL3TGWizMdB6w0AL+EdETsYH2vr7f6/GBzo8CWKmT2gA7BbpT12NVApXH+XD9oG22I8dA603+d6DdvxLsavvSV3p53dQYqD1hoE2+AodaEsRA202BlpvGGgB/4jIyfhAa3umT2gAYKNSGGiLiYHWm3wH2kh/6o3C6pvj6uqJFXyFOgOtNwy0wcdAm42BNhsDrTcMtIB/RORkfKAdGTmnbc/t1Y2L6/XDny3VZbMWa/Ytd2vbc3tNH5qnTJ/QAMBGDLSZGGi9yXegLTYGWm8YaIOPgTYbA202BlpvGGgB/4jIyfhA2/rEM7r8uiW6f0uXntnTp2f29Om+R7brf665VR3dL5k+vJyZPqEBgI0YaDMx0HrDQGsHBtrg8zPQ9oWG1NEd0+6Xh0ryfukMtNkYaL1hoAX8IyIn4wPt9NmVOvrBx1lff+S9DzXzt3cYOKL8Mn1CAwAbMdBmYqD1hoHWDgy0wZfvQNvVE8u4n3NtY+m9qSUDbTYGWm8YaAH/iMjJ+EB7yYyblRhOZn19YjipS2YsNHBE+WX6hAYANmKgzcRA6w0DrR0YaIMvn4E20h/NGGfTunpKa8hkoM3GQOsNAy3gHxE5GR9of3nzanXvfjXr67fv2qufL1g1+QeUZ6ZPaABgIwbaTAy03jDQ2oGBNvjyGWj7QkOuA+3K9XGtaY6rtjGhts7C34TPNNsH2t6+mDq6Y+oLFe95x0DrDQMt4B8RORkfaF8/dFQXX1mm6+fdpap7Htbt9zyka+fW6uIr5mnv/rdMH17OTJ/QAMBGDLSZGGi9YaC1AwNt8OUz0G5+MuY60M5bkvnlDa12DptpNg+0Ta2Zj1HL1uKcIxlovWGgBfwjIifjA60k/evzL/RoZ49WNT2uOxu36OEnn9XH/f8yfVieMn1CAwAbMdBmYqD1plgDbSicuiow3yv+GGi9YaANvm8aaCP9zvOjvTvmOsbeUpnQPJfR1vS5tBC2DrS9fe4Deihc+I/NQOtNKfz+B0whIqdADLQ2Z/qEBgA2YqDNxEDrTTEG2rFXmpVXJ/J6OTADrTfFGGhD4ag6umPq3Z//WMZAm9tEA+3YNwMrr05oxd1x54rZ9FC7JKG7m+Luo+A79p7TbR1o0yP6eO3dhf86GGi9YaAF/CMiJ+MD7bEP/6lbazfp6t+s0BW/XJ4l6Jk+oQGAjRhoMzHQelPoQDv+nejTI5TX789A602hA23L1szxL9+XzjPQ5uY20IbC2W8GNv7K2bFvEOb2sfn+o0eQ2DrQcgWteQy0gH9E5GR8oJ01p0bzlq/Xtuf26rkX9mcJeqZPaABgIwbaTAy03hQ60NY3u1/153VQYqD1ppCB1m0kLKtIqKfX+4/FQJub20DreiWmy0Db1hnL+vh5S5xbHlSuNHOP6ELZOtAODGb/owb3oJ1cDLSAf0TkZHyg/Y8fzdPpr742fRi+M31CAwAblfJA29M7pI7umHa/7P3XxkDrTaEDbVun+5VmXu9Fy0DrTSEDbU/vkOtjlM/LtRloc3MbaCf63D+1M6765pTxj0Nlnfs/epg+D/thw0AbCke1oTWmNc1xtXXGMs5dfaEhtXfHinLlbBoDrTc2/74HTCMiJ+MD7c8XrNLfP/7U9GH4zvQJDcDU4vfNjYLG5oE2/QY6blddjr+KqbbR21/YGGi9yWegdXucwpEhlVe5Xw3oBQOtN1xBG3xuA22kP6qahszPe03DN5/Dxt7TOa2yjitoLwS358aa5gv7uWag9YaBFvCPiJyMDLRH3vtw1PMvH9BNFY16/uUDOnz0w4xvO/LehyYOL69Mn9AATB1jX55t833+BgbtHWhD4ajKqzP/cpweywsZlhhovfE60I5/nGobnatkw5EhtXfH1LI1ntfoNzDIQOtVse9B28Q9aItuojcJi/Snbl1Q3xxXV08s5z8GhsLRjH/0KK+y98+moA+0E70CIBy5cJ9vBlpvGGgB/4jIychAe9G0OZ4FPdMnNABTQ6FvbhQ0tg60bi/nTb/kt5CXZjPQeuN1oHV7nIpxT8b0z19/X1wtbTFMoOLO1Of/tbf8P79D4dRQ2NuX/1jGQJvbRAOtH5H+1Pmvqyd2QcfCCy3oA63b1cplFRd2EGeg9YaBFvCPiJyMDLSxeMKzoGf6hAZgapjozY2Kea+5yWTjQBuOuA+w9edfYsoVtBee14H2mx6nQqR/fnhTyEBbCAba3Io50JaKoA+0vX2TfzsJBlpvGGgB/4jIyfg9aCXpvcgno//df/yEHt/2J73cd8jgEXnP9AkNwNQw/iW/abbei9bGgXZg0H34G/vy6/Hvgu71qk0GWm+8DrTj7zM7/nHy6/ddQ7pnQzxQyqtTz6U7680fy3iH3mWgDSoG2mxBH2gHBjP/jKlpuPD/SLv0/NXwq++N6Z4NmAgDLeAfETkZH2h/3/WCLp25SMnkiE6dPqP/ueZWXT/vLn3/2lv1aGeP6cPLmekTGoCpwe3NjfJ5V/OgsXWgHT/Alldl/wU5FE693Defvzgz0HrjdaAdf7sJt8epVKzdlHouvXLArufShcRAmxsDbTYbBtq0yfrH2fRAC29M/74AbERETsYH2itnVyr83keSpMf/8Cf9fMEqnTt3Th982K8f/9/tRo7pwcd26vLrlox++ZOBzzRn6Vp9b+Yi3VBWp4OHj41+m+kTGoCpY+ybG/m5L2OQ2DrQDgymXmba1hlTe3fx7rfIQOuN14F2YDCqvtBQ0R+nIGKgzcZAmxsDbTabBtrJsn1X8P5MSj+/n9hu/ljGM/14ATYiIifjA+3FV5bp3LlzkqSyynu19endkqSRkXO6+MqyST+ejz45rqt/syJjoL2polFPbN+jZHJE+w4c1rQblioxnJTEQAsAftg80F4IDLTe5DPQThUMtNkYaHNjoM3GQGuHRZWp5/eHn5o/FgCFIyIn4wPtlbMr9e6xf2jg+AldfMU8ffTJcUnS3z/+VD/82dJJP565t63V8y8fGB1oB7/4UpfMWKjhZHL0Y342f6VeP3RUEgMtAPjBQJtp3xupYWDhsriW34WJLLkj9ftm0xYGlDQG2mwMtAy0fjDQ2oGBFigtRORkfKBt3/GiLr6yTN+aPl8rGh6RJJ06fUYzf3uHNjy8bVKP5Y9/+otWNDyiL05/NTrQHjx8TNfOrc34uOWrW7Xtub2SpE8Ho4AdTsIGx08OTQm31ab+gvX+R+aPJQj63sx+d25MbNOWuPHHLCjSA+2+12PGjyUo0r9POrpjmMCD5994sn4Dz6W0x/+QOg9vf47PyTcx/f9Ji25PPb8/+tT8/7MhwEz/vQueEZGT8YFWkj74sF+HjhxTMjkiSUoMJ/WHZ14e/fJkdOr0GV3162oNfvFlxkC7/80jmr1wdcbH1q5r05Pb90iSRs6dA+wwAiuY/n0ySZbflfoL1slT5o8lCL76+pyOHguWXS+MqKwiocb7h40fy3j9x80/ZkFx30PDKqtI6G/vjBg/lqBID7R/3D2MCbS1p37frNs0bPzxCoptzyRVVpHQ8y8ljR9LoBn+/6TF5wfas1Hzx4IAM/08gWdE5BSIgTYI1ax9VF27XpGkjIH20JFjmjWnJuNjl616cPRjTb8kAABsxC0Ogq93f+pqsnsf5OW+QcYtDrJxiwNuceAHtziwA7c4AEoLETkFdqB97oX9umv91kn7+S6btViXX7dEl1+3RN+/9lb92w/n6vLrlugf/zyu7/x4gaJD8dGPnXFjlQ4dOSaJgRYA/GCgDT4GWjsw0GZjoGWg9WMqDbShcFSRfvPH4QcDLVBaiMgpsANtR/eLWnB7k5Gfe+wVtJI0b9l6Pfzks0omR7Trpdc0fXbl6O0XTJ/QAMBGDLTBx0BrBwbabAy0DLR+TIWBti80pPJq537ebZ32/VoZaIHSQkROgR1oTTZ+oO0/fkI3VTTq0pmL9PMFqxR+76PRbzN9QgMAGzHQBh8DrR0YaLMx0DLQ+jEVBtryquw3XezptevcwUALlBYicmKgLTDTJzQAsBEDbfAx0NqBgTYbAy0DrR+lPtD2hYayxtmyioSaWu369TLQAqWFiJyMD7T7DvxN1/2uVv/5kwX69/+dmyXomT6hAYCNGGiDj4HWDgy02RhoGWj9sGmgDYWj6uiOKRT2/n3CEfeB1rbbHDDQAqWFiJyMD7RX/HK5Hml/Tn89+I4OHn4/S9AzfUIDABsx0AYfA60dGGizMdAy0Pphy0DbsjWeMbC2bPX+GDa1xjK+b3lVQuGIXecOBlqgtBCRk/GBdtZNd5o+hIIyfUIDABsx0AYfA60dGGizMdAy0Pphw0AbCkddr4Lt7fN+zF09MdU3x9WyNW7dODswyEALlBoicjI+0Naua9PBw8dMH4bvTJ/QAMBGDLTBx0BrBwbabAy0DLR+2DDQdvXEXAfa9u7gHnOxMdACpYWInIwPtEc/+FiXzlykG8rqNL+ySQtuzxT0TJ/QAMBGDLTBx0BrB1sG2q6emMqrU8PKmubUlXuhcFSVK1PHX7kyrr5QcX4NDLQMtH7YMNBOdAVtT2+wn//FxEALlBYicjI+0M666U7NvW2tmjdv04OP7cwS9Eyf0ADARgy0wcdAawcbBtrevuyr/lbUJ0YH29H7YVYX536YDLQMtH7YMNAODGbfg7apNdjHW2wMtEBpISIn4wPt9NmVOnfunOnD8J3pExoA2IiBNvgYaO1gw0A7/o2JyioSmrck+yrAsoqEunoyf7/1hYa0oTWmNc1x7X7Z26/R7ceFOwZahy0D7cBg6h892rtjed17tlQw0AKlhYicjA+08yubNPjFl6YPw3emT2gA7NfbFxt9me+a5rhCYfPHdKHZMNBOxccl49dvyUDb1eM8ThtaY1a+6U0hbBhox1/x53Wg7QsNZX27l3ttmh49beI20Eb6o2rrTN2Sorw6obbOYJ8DisWmgXYqY6AFSgsRORkfaB/t7NFVv67WvQ89rSe279GT4wQ90yc0AHYLR7IHiPLqhCL95o/tQgr6QOt2n7/KlfGSf1zGsmGgdXvpfG1jwvhxTSYbBlq3oXV1U1zlVePOfVWZ57765uxht6zCvsd3f8iu2wm0dWY/r6bCm1Ax0NqBgRYoLUTkZHyg/dn8lZp9y90TCnqmT2gA7Nbe7f6OzKX+ssWgD7QTPS7FehMjG9gw0LpdmVlWkZhSVzvbMNAODKbG9PrmuCrr4mrZmvrHjnBkSE2tMVXWxdXUGst63BhozXD7nFeutOPYC8FAawcGWqC0EJGT8YHW9kyf0ADYjYE2mKMSA63dA63X2xz09sXU0R3Tjt0xa6+OtmWg9cPtSs6aBgbaC238lc22ft7zxUBrBwZaoLQQkVMgBtq/f/yp7t/Sper6zVpa16Lmzdv0wYf9pg/LU6ZPaADsFo4MZf1luLKu9F9KH/SBNhTOHimmwuMylg0DrdtL5+ubvY1g48c/W29hUcoDbaQ/8w3GahrsvDratoGWWxyU/q/VZgy0QGkhIifjA+1L+0L6tx/O1Y2L61W7rk2169r0f4vu0X/8aJ5eP3TU9OHlzPQJDYD9+kJDqm9O3Y+xaYq8yVHQB9qp+riMZcNAOzCYugq2piF1/9L0S+dzfR+3ez/bOkKV8kCblr4dgunj8Mu2gXZgMPUqgsq6uGoa7Hxe+MFAawcGWqC0EJGT8YH2mrk12rP39ayv3/Xia5q9cLWBI8ov0yc0ALCRDQPtVGfLQOuH25W3ZRWpId70seVrKgy0trNxoJ2KGGjtwEALlBYicjI+0P7nTxZoOJnM+vrEcFKXzFho4Ijyy/QJDQBsxEAbfKU80Eb63e+z2dVj36+VgTb4GGjtwEBrBwZaoLQQkZPxgfbq36zQ396JZH392+9ENOPGagNHlF+mT2gAYCMG2uAr5YF2YDCqnt7Mq2i93rs2aBhog4+B1g4MtHZgoAVKCxE5GR9oO3f26nszF6nxgQ5t37VX257bq4ZN7fru1bdoS8cu04eXM9MnNACwEQNt8JX6QDswmLqvaV8oxfSx+MVAG3wMtHZgoLUDAy1QWojIyfhAK0l79r6hm6s26KpfV+uKXy7XvGXr9ewLfaYPy1OmT2gAYCMG2uCbCgNtKWCgDT4GWjsw0NqBgRYoLUTkZHyg7eh+SdGhuOnD8J3pExoA2IiBNvhsHGjTV8SGwuaPZbIw0AYfA60dGGjtwEALlBYicjI+0P73NeX66JPjpg/Dd6ZPaABgIwba4LNtoB1/T9m2TjuOu1AMtMHHQGsHBlo7MNACpYWInIwPtDuf36cFtzdp14uv6a3wBzry3ocZgp7pExoA2IiBNvhsGmjDkcxxNq23L/jHXigG2uAr1YG2p3dIa5rj2tAas/o+zmkMtHZgoAVKCxE5GR9oL5o25xsFPdMnNACwEQNt8Nk00Pb2xVwH2vbu4B97oRhog68UB9r27uznnO3/IMJAawcGWqC0EJGT8YH2zNdRxeKJCQU90yc0ALARA23w2TTQ9oXcr6Dt6gn+sReKgTb4SnGgLa/Kfr7VN5v79d2zIV6wZXelnkuVKwv/sdY9UPrnHlMYaIHSQkRORgbaK36xTF+fHZIk/fj/bjdxCEXL9AkNAGzEQBt8Ng20A4NR1TfHM8aimoaEIv3mj+tCY6ANvlIcaN3+QaSmIRGo4zFpcVWwHutQOKqWrXGtaY5rx247zukTYaAFSgsRORkZaH9wfYWq6zdrS8cuXXzFPG3p2DWhoGf6hAYANmKgDT7bBtqBwai6emJq64ypqyc2JcbZgUE7B9pwZEihsPnjmCylONCO/wcR02/Mtz8UC5TX3grO8zEcGVJ5deZjtaHVnvP6eAy0QGkhIicjA+1fD76jRXfcp9/cukb/9sO5+nX5mgkFPdMnNACwEQNt8Nk40E5FNg20kf6o1owZ9ipXxqfEUFuKA204MqSaBmfwa2qdOv8oYpu2Tvd7dIcjk3vO6P1LrCi3okgf/91Nhf9Yz77In2+AaUTkZPwetL+5tcH0IRSU6RMaANiIgTb4GGjtYNNA6zYU1Taae1n8ZCnFgTYtHBlimA24plb3gbYvNLnnjO4/uR+HSY/9IfjnTaDUEZGT8YE2KJ07d073b+nS5dct0X9fU647GrYoOhSXJH0y8JnmLF2r781cpBvK6nTw8LHR72f6hAYANmKgDT4GWjvYNNC6vSy+rIKBFriQenqz30SxvGryn3dHPxoyfuuJ8Sb7KmIA2YjIKbAD7QNbu/WTX1VN2s+3o+dVzV64WqdOn9HXZ4d0U0WjHml/TpJ0U0Wjnti+R8nkiPYdOKxpNyxVYjgpiYEWAPxgoA0+Blo7MNAGHwMtTBt79Xpl3dS4tQgAOxCRk/GB9sszZ12//i+vH57UNwl7+52Ijn7w8eiXt3Ts0h0NWzT4xZe6ZMZCDSeTo9/2s/kr9fqho5IYaAHAj1IfaCP9UXV0x9TRHbP2L8IMtHawaaDtC2VfydfeXfq/vxhoEQSR/qi1fx4BKF1E5GR8oL34yjJV3PWAXtoXUiIxbPpwJEkDx0/ohrI67dn7hg4ePqZr59ZmfPvy1a3a9tze1McG4KQGALYp5YE2FI5mvWN2T699v04GWjvYNNAODKaeHy1b42pqjam3b2r83mKgBQDAHRE5GR9oQ397X40PdOhHP1+my366WKs3PK6Dh9/XuXPnjBzPL29erYumzdGajb/XyMg57X/ziGYvXJ3xMbXr2vTk9j2SpBOnYwBQNINfTg231aaGyw//af5Yiq354eyXcZevSBg/rny9eiD169jwUNz4sWBi6x9IPU77QzxOQfXG26nHaE0zjxHsZ/r/kwCUFiJyMj7Qpjt37pwOv/t3bXh4m6bPrtSVsyu1qW2H/vnp55N+LINffKnKux/Smo2/16EjxzRrTk3Gty9b9aC6dr0iSYolkgBQRCNTwvK7UsPlv06YP5ZiW7dx2PU+m6aPK1+vH0qqrCKhjY8MGz8WTGxDa+r326HDU+f8YZsjR0dUVpHQ2o32nQeAbKb/PwlAKSEip8AMtOmOvPeh7ntku7579S36/rW36js/XqDq+s06/dXXF/TnffWvb+vvH386+uUDh97V1b9ZoS9Of6Xv/HiBokPx0W+bcWOVDh05JolbHACAH6V8i4OWrdlX0FbW2ffSZm5xYAfbbnEwFXGLAwAA3BGRUyAG2k8GPlPrE8/oql9X6+Iry3Tbyhbt3f+WkskRnTz1lW6t2ahbVtx3QY+hefM2za9s0pmvo0okhrWy6TEtW/WgJGnesvV6+MlnlUyOaNdLr2n67EolkyOSGGgBwI9SHmgj/VFV1jkjbXlVwso3ZmGgtQMDbfAx0AIA4I6InIwPtL9adI8umjZHv7x5tZ76Y6/rlbKnTp/RxVfMu6DHcTYaU+26Nl1+3RJd9tPFWljdrOOfn5Qk9R8/oZsqGnXpzEX6+YJVCr/30ej3M31CAwAblfJAOzCYGmn7QkPq7Ysp0m/+ePxgoLUDA23wMdACAOCOiJyMD7TNm7cp8o+Bb/yYkZFz2nfg8CQdUX6ZPqEBgI1KfaAtBQy0dmCgDT4GWgAA3BGRk/GBtnffwQnt2fu66cPLmekTGgDYiIE2+Bho7cBAG3wMtAAAuCMiJ+MD7WWzFmf66WJdNG2Ovj19vmb+9g7Th5cz0yc0ALARA23wMdDagYE2+BhoAQBwR0ROxgdat74+O6T7t3RpR8+rpg8lZ6ZPaABgIwba4GOgtQMDbfAx0AIA4I6InAI50Ka7oazO9CHkzPQJDQBsxEAbfAy0dmCgDT4GWgAA3BGRU2AH2q/PDukH11eYPoycmT6hAYCNGGiDj4HWDgy0wcdACwCAOyJyMj7QVtdvzrK0rkVX/GKZbq3ZaPrwcmb6hAYANmKgDT4GWjsw0AYfAy0AAO6IyMn4QLt6w+NZGh/o0FN/7NXZaMz04eXM9AkNAGzEQBt8DLR2YKANPgZaAADcEZGT8YHW9kyf0ADARgy0wcdAa4dSHGgj/VG1dcZUuTKuypVxdXTb/XuQgRYAAHdE5GR8oB0ZOTf638c/P6nWJ57RvQ89rcPv/t3gUXnP9AkNAGzEQBt8DLR2KMWBtq0z9XtvrHaLR1oGWgAA3BGRk7GBNvKPAc266U79+//O1ZK7Nulfn3+hH1xfoet+V6tr59bqP340T6/+9W1Th+c50yc0ALARA23wMdDaoRQH2vKqRNZAW7nSzLjZvmMo61hM2x/iOQkAKA1E5GRsoF1Y3ay5t61V776DWlrXol/evFr3PvT06LdvfHSHblxcb+rwPGf6hAYANmKgDT4GWjtMmYG2joGWgRYAUGqIyMnYQHvZTxfrb+9EJEmnTp/RRdPm6OgHH49+e+Sjfl0yY6Gpw/Oc6RMaANiIgTb4GGjtUIoDband4gAAALgjIidjA+1F0+bo089Ojn75khkL1X/8xOiXj39+UhdNm2PgyPLL9AkNAGxk40Abjgwp0m/+OCYLA60dSnGgTb9JWHlVQuVVjLMAAJQqInIyOtAe/9wZaL979S0MtAAwRdg00IbCUdU2OlfybWidGmMRA60dSnGgBQAAUwMRORkdaDe17dBjTz+vx55+Xt+aPl/3b+ka/fKmth0MtABQomwaaGsasu8BORWu6GOgtQMDLQAAsBURORkbaK/+zQpPgp7pExoA2MiWgekoF6YAAAppSURBVDbSH3V9k576ZjNvWDSZGGjtwEALAABsRUROxgbaUsn0CQ0AbGTLQDswyEDLQBtsDLQAAMBWROTEQFtgpk9oAGAjmwZat3eU7wsF/7gLxUBrBwZaAABgKyJyYqAtMNMnNACwkU0D7cBgVD29Q6pvjqupNTYlxtmBQQZaWzDQAgAAWxGREwNtgZk+oQGAjWwbaKciBlo7MNACAABbEZETA22BmT6hAYCNGGiDj4HWDgy0AADAVkTkxEBbYKZPaABgIwba4GOgtQMDLQAAsBUROTHQFpjpExoA2IiBNvgYaO3AQAsAAGxFRE4MtAVm+oQGADZioA0+Blo7MNACAABbEZETA22BmT6hAYCNGGiDj4HWDgy0AADAVkTkxEBbYKZPaABgIwba4GOgtQMDLQAAsBUROTHQFpjpExoA2IiBNvgYaO3AQAsAAGxFRE4MtAVm+oQGADZioA0+Blo7MNACAABbEZETA+2YWp94Rj/82VJdNmuxqtds1tloTJL0ycBnmrN0rb43c5FuKKvTwcPHRr+P6RMaANiIgTb4GGjtwEALAABsRURODLTn27P3DV3162p9duKUzkZjmrd8vVqfeEaSdFNFo57YvkfJ5Ij2HTisaTcsVWI4KYmBFgD8YKANPgZaOzDQAgAAWxGREwPt+Q4f/VAHD78/+uUntu9Rdf1mDX7xpS6ZsVDDyeTot/1s/kq9fuioJAZaAPCDgTb4GGjtwEALAABsRURODLQTtLC6WX945mUdPHxM186tzfi25atbte25vZIYaAHADwba4GOgtQMDLQAAsBUROTHQutT6+B/1u9vWaTiZ1P43j2j2wtUZ3167rk1Pbt8jSfrybAIAkKdltQmVVST0yXHzxwJ3fW+mHqP7HjZ/LJjYvS2px+n1t8wfCwAAQD6IyImBdkznzp1Tw6Z2Lbi9SdGhuCTp0JFjmjWnJuPjlq16UF27XpEknYkOAwDylB5o+/9l/ljg7rXQ8OhAa/pYMLGmB1PPpTfeMn8sAAAA+SAiJwbaMa1/8CktW9U6+gZgkvTF6a/0nR8vGB1sJWnGjVU6dOSYJG5xAAB+cIuD4OMWB3bgFgcAAMBWROTEQHu+N946qhvK6pRIZP8rzrxl6/Xwk88qmRzRrpde0/TZlUomRyQx0AKAHwy0wcdAawcGWgAAYCsicmKgPd8dDVv07/87VxdfWTbqZ/NXSpL6j5/QTRWNunTmIv18wSqF3/to9PuZPqEBKH3hyJB27I5p98tDivSbP55iKNWBNhSOqqM7pt799o+apTrQhiND2v3yUMk8nxhoAQCArYjIiYG2wEyf0ACUtt6+mMqrU/eYLKtIqLw6oXDE/iGmFAfa9u7Y6ONUVpFQbWPC+DEVohQH2lA4mvV8CoXNH1chGGgBAICtiMiJgbbATJ/QAJS28qpExuhXVpFQU6u5wSz0zpDadxRuUWXq19L2VKzgH+uVA+YHxFA4mvU4lVUk1NVj5tiee7Hwz+v9j6SGv+q7C/+x2ncM6f2PzQ+INQ3BeT69/4/iPJduX5l6nDZuKfxx2vWy+ecSAACYOojIiYG2wEyf0ACUNrfRr745bux4el6OuR6TSY+0mx+V+kJDrsfW3m3m2OrWxY0/LuO99a75gXaiYzNxLG8ecf89Y9I9TebOLQAAYOohIicG2gIzfUIDUNpK9QraYuIK2mzFuIK22IJwBW19c/ZwbfsVtMXEFbQAAGAyEZETA22BmT6hAShtvX2xjJG2vKo07kFbisbfg7amwe570JaiUDia9Xyy/R60AAAAtiIiJwbaAjN9QgNQ+sKRIXX1xNTTWxrvOl/KQuHUUNvbx5WIQRXpj6qnd4jnEwAAgGFE5MRAW2CmT2gAAAAAAAC2ISInBtoCM31CAwAAAAAAsA0ROTHQFpjpExoAAAAAAIBtiMiJgbbATJ/QAAAAAAAAbENETgy0BWb6hAYAAAAAAGAbInJioC0w0yc0AAAAAAAA2xCREwNtgZk+oQEAAAAAANiGiJwYaAvM9AkNAAAAAADANkTkxEBbYKZPaAAAAAAAALYhIicG2gIzfUIDAAAAAACwDRE5MdAWmOkTGgAAAAAAgG2IyImBtsBMn9AAAAAAAABsQ0RODLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFAMtERERERERERERESGYqAlIiIiIiIiIiIiMhQDLREREREREREREZGhGGiJiIiIiIiIiIiIDMVAS0RERERERERERGQoBloiIiIiIiIiIiIiQzHQEhERERERERERERmKgZaIiIiIiIiIiIjIUAy0RERERERERERERIZioCUiIiIiIiIiIiIyFAMtERERERERERERkaEYaImIiIiIiIiIiIgMxUBLREREREREREREZCgGWiIiIiIiIiIiIiJDMdASERERERERERERGYqBloiIiIiIiIiIiMhQDLREREREREREREREhmKgJSIiIiIiIiIiIjIUAy0RERERERERERGRoRhoiYiIiIiIiIiIiAzFQEtERERERERERERkKAZaIiIiIiIiIiIiIkMx0BIREREREREREREZioGWiIiIiIiIiIiIyFD/H/eOoVbNPWSPAAAAAElFTkSuQmCC", - "text/html": [ - "<div> <div id=\"d8b9c49b-c99f-41fc-90bd-ed03092da739\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d8b9c49b-c99f-41fc-90bd-ed03092da739\")) { Plotly.newPlot( \"d8b9c49b-c99f-41fc-90bd-ed03092da739\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All\", \"notched\": false, \"offsetgroup\": \"2000 - All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [51.82172348464304, 51.63371792253483, 50.0, 18.3, 60.19781177976836, 67.84332662203975, 35.9, 73.5, 46.9, 83.9, 73.33305914138057, 49.39458717769393, 41.8, 71.95633862825368, 68.9, 70.69977791304689, 70.08302756883629, 78.09666495277045], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - Only stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - Only stigma\", \"notched\": false, \"offsetgroup\": \"2000 - Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.568958874930733, 54.31378272084832, 50.0, 18.3, 29.96041216455179, null, 35.9, 73.5, 46.9, 83.9, 51.530925434032866, 42.124637918736795, 41.8, 50.163912506462616, 68.9, 63.285159555798266, 48.869560685912965, 69.66320342189823], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All plus stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All plus stigma\", \"notched\": false, \"offsetgroup\": \"2000 - All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [43.117715660745624, 34.99696361745937, 50.0, 18.3, 32.80721200883463, 69.57207895753851, 35.9, 73.5, 46.9, 83.9, 73.27977952076182, 46.545528659115774, 41.8, 67.91461681851463, 68.9, 63.151939695501895, 63.65204916406636, 80.95207762610593], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2007\"], [\"2005\"], [\"2005\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [36.7, 64.9, 50.2, 26.1, 42.9, 79.6, 68.9, 54.5, 36.7, 72.3, 31.2, 48.4, null, 79.8, 36.1, 75.1, 72.5, 67.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2012\"], [\"2010\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Uganda\", \"Uganda\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [44.5, 42.9, 84.8, 58.4, 52.5, 67.0, 56.7, 55.5, 47.1, 71.7, 53.0, 35.9, 83.9, 79.7, 49.5, 90.2, 55.2, 73.1, 84.9, 32.4, 54.0, 92.1, 89.9, 43.6, null, 43.8, 43.1, 79.5, 79.5, 79.5, 79.5, 83.5, 80.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Senegal\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [65.4, 31.6, 84.3, 57.9, 51.6, 87.5, 42.2, 48.8, null, 37.6, 43.7, 38.6, 80.4, 83.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all\"}}}, {\"responsive\": true} ).then(function(){\n", - " \n", - "var gd = document.getElementById('d8b9c49b-c99f-41fc-90bd-ed03092da739');\n", - "var x = new MutationObserver(function (mutations, observer) {{\n", - " var display = window.getComputedStyle(gd).display;\n", - " if (!display || display === 'none') {{\n", - " console.log([gd, 'removed!']);\n", - " Plotly.purge(gd);\n", - " observer.disconnect();\n", - " }}\n", - "}});\n", - "\n", - "// Listen for the removal of the full notebook cells\n", - "var notebookContainer = gd.closest('#notebook-container');\n", - "if (notebookContainer) {{\n", - " x.observe(notebookContainer, {childList: true});\n", - "}}\n", - "\n", - "// Listen for the clearing of the current output cell\n", - "var outputEl = gd.closest('.output');\n", - "if (outputEl) {{\n", - " x.observe(outputEl, {childList: true});\n", - "}}\n", - "\n", - " }) }; }); </script> </div>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Now add box plot from newly imputed using all variables\n", - "trace1 = px.box(df.reset_index()[df.reset_index().GY==2000], y=\"Buy.from.shopkeeper.with.AIDS.M_all\", points='all', hover_name='Country', hover_data=['imputed.M','Survey'])\n", - "trace1.update_traces(offsetgroup='2000 - All', selector=dict(type='box'))\n", - "trace1.update_traces(legendgroup='2000 - All', selector=dict(type='box'))\n", - "trace1.update_traces(name='2000 - All', selector=dict(type='box'))\n", - "trace1.update_traces(showlegend=True, selector=dict(type='box'))\n", - "trace1.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>')\n", - "\n", - "# Now add box plot from newly imputed using only stigma variables\n", - "trace2 = px.box(df.reset_index()[df.reset_index().GY==2000], y=\"Buy.from.shopkeeper.with.AIDS.M_only_stigma\", points='all', hover_name='Country', hover_data=['imputed.M','Survey'])\n", - "trace2.update_traces(offsetgroup='2000 - Only stigma', selector=dict(type='box'))\n", - "trace2.update_traces(legendgroup='2000 - Only stigma', selector=dict(type='box'))\n", - "trace2.update_traces(name='2000 - Only stigma', selector=dict(type='box'))\n", - "trace2.update_traces(showlegend=True, selector=dict(type='box'))\n", - "trace2.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>')\n", - "trace1.add_trace(trace2.data[0])\n", - "\n", - "# Now add box plot from newly imputed using all + stigma variables\n", - "trace3 = px.box(df.reset_index()[df.reset_index().GY==2000], y=\"Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma\", points='all', hover_name='Country', hover_data=['imputed.M','Survey'])\n", - "trace3.update_traces(offsetgroup='2000 - All plus stigma', selector=dict(type='box'))\n", - "trace3.update_traces(legendgroup='2000 - All plus stigma', selector=dict(type='box'))\n", - "trace3.update_traces(name='2000 - All plus stigma', selector=dict(type='box'))\n", - "trace3.update_traces(showlegend=True, selector=dict(type='box'))\n", - "trace3.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>')\n", - "\n", - "trace1.add_trace(trace3.data[0])\n", - "\n", - "# Plot actual data from 2005\n", - "fig2005 = px.box(df.reset_index()[df.reset_index().GY==2005], y=\"Buy.from.shopkeeper.with.AIDS.M\", points='all', hover_name='Country', hover_data=['Survey'])\n", - "fig2005.update_traces(offsetgroup='2005', selector=dict(type='box'))\n", - "fig2005.update_traces(legendgroup='2005', selector=dict(type='box'))\n", - "fig2005.update_traces(name='2005', selector=dict(type='box'))\n", - "fig2005.update_traces(showlegend=True, selector=dict(type='box'))\n", - "fig2005.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>')\n", - "trace1.add_trace(fig2005.data[0])\n", - "# Plot actual data from 2010\n", - "fig2010 = px.box(df.reset_index()[df.reset_index().GY==2010], y=\"Buy.from.shopkeeper.with.AIDS.M\", points='all', hover_name='Country', hover_data=['Survey'])\n", - "fig2010.update_traces(offsetgroup='2010', selector=dict(type='box'))\n", - "fig2010.update_traces(legendgroup='2010', selector=dict(type='box'))\n", - "fig2010.update_traces(name='2010', selector=dict(type='box'))\n", - "fig2010.update_traces(showlegend=True, selector=dict(type='box'))\n", - "fig2010.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>')\n", - "trace1.add_trace(fig2010.data[0])\n", - "# Plot actual data from 2015\n", - "fig2015 = px.box(df.reset_index()[df.reset_index().GY==2015], y=\"Buy.from.shopkeeper.with.AIDS.M\", points='all', hover_name='Country', hover_data=['Survey'])\n", - "fig2015.update_traces(offsetgroup='2015', selector=dict(type='box'))\n", - "fig2015.update_traces(legendgroup='2015', selector=dict(type='box'))\n", - "fig2015.update_traces(name='2015', selector=dict(type='box'))\n", - "fig2015.update_traces(showlegend=True, selector=dict(type='box'))\n", - "fig2015.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>')\n", - "trace1.add_trace(fig2015.data[0])\n", - "\n", - "# Plot the thing\n", - "trace1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### III. Country level analysis" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1. Women" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Benin', 'Burkina Faso', 'Ethiopia', 'Gabon', 'Malawi', 'Mali',\n", - " 'Namibia', 'Rwanda', 'Senegal', 'Uganda', 'Zambia'], dtype=object)" - ] - }, - "execution_count": 133, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Find countries for which there is a missing value\n", - "df[df['Buy.from.shopkeeper.with.AIDS.M'].isna()].reset_index().Country.unique()" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [], - "source": [ - "# Select those in a dataframe\n", - "missW = df.reset_index().set_index('Country').loc[df[df['Buy.from.shopkeeper.with.AIDS.W'].isna()].reset_index().Country.unique()]" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [], - "source": [ - "missW.Survey = missW.Survey.astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>Survey</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.W</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.M</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.W_all</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.M_all</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.W_only_stigma</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.M_only_stigma</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma</th>\n", - " <th>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma</th>\n", - " <th>imputed.W</th>\n", - " <th>imputed.M</th>\n", - " <th>GY</th>\n", - " </tr>\n", - " <tr>\n", - " <th>Country</th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " <th></th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>Benin</th>\n", - " <td>2017</td>\n", - " <td>26.5</td>\n", - " <td>31.6</td>\n", - " <td>26.500000</td>\n", - " <td>31.600000</td>\n", - " <td>26.500000</td>\n", - " <td>31.600000</td>\n", - " <td>26.500000</td>\n", - " <td>31.600000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Benin</th>\n", - " <td>2011</td>\n", - " <td>40.4</td>\n", - " <td>44.5</td>\n", - " <td>40.400000</td>\n", - " <td>44.500000</td>\n", - " <td>40.400000</td>\n", - " <td>44.500000</td>\n", - " <td>40.400000</td>\n", - " <td>44.500000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Benin</th>\n", - " <td>2006</td>\n", - " <td>27.5</td>\n", - " <td>36.7</td>\n", - " <td>27.500000</td>\n", - " <td>36.700000</td>\n", - " <td>27.500000</td>\n", - " <td>36.700000</td>\n", - " <td>27.500000</td>\n", - " <td>36.700000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Benin</th>\n", - " <td>2001</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>48.303455</td>\n", - " <td>51.821723</td>\n", - " <td>10.011642</td>\n", - " <td>24.568959</td>\n", - " <td>24.859568</td>\n", - " <td>43.117716</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Burkina Faso</th>\n", - " <td>2010</td>\n", - " <td>35.5</td>\n", - " <td>42.9</td>\n", - " <td>35.500000</td>\n", - " <td>42.900000</td>\n", - " <td>35.500000</td>\n", - " <td>42.900000</td>\n", - " <td>35.500000</td>\n", - " <td>42.900000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Burkina Faso</th>\n", - " <td>2003</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>53.760486</td>\n", - " <td>51.633718</td>\n", - " <td>40.482765</td>\n", - " <td>54.313783</td>\n", - " <td>23.390583</td>\n", - " <td>34.996964</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Ethiopia</th>\n", - " <td>2016</td>\n", - " <td>43.5</td>\n", - " <td>51.6</td>\n", - " <td>43.500000</td>\n", - " <td>51.600000</td>\n", - " <td>43.500000</td>\n", - " <td>51.600000</td>\n", - " <td>43.500000</td>\n", - " <td>51.600000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Ethiopia</th>\n", - " <td>2011</td>\n", - " <td>32.0</td>\n", - " <td>47.1</td>\n", - " <td>32.000000</td>\n", - " <td>47.100000</td>\n", - " <td>32.000000</td>\n", - " <td>47.100000</td>\n", - " <td>32.000000</td>\n", - " <td>47.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Ethiopia</th>\n", - " <td>2005</td>\n", - " <td>19.9</td>\n", - " <td>26.1</td>\n", - " <td>19.900000</td>\n", - " <td>26.100000</td>\n", - " <td>19.900000</td>\n", - " <td>26.100000</td>\n", - " <td>19.900000</td>\n", - " <td>26.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Ethiopia</th>\n", - " <td>2000</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>51.894104</td>\n", - " <td>60.197812</td>\n", - " <td>8.224012</td>\n", - " <td>29.960412</td>\n", - " <td>14.110044</td>\n", - " <td>32.807212</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Gabon</th>\n", - " <td>2012</td>\n", - " <td>71.5</td>\n", - " <td>71.7</td>\n", - " <td>71.500000</td>\n", - " <td>71.700000</td>\n", - " <td>71.500000</td>\n", - " <td>71.700000</td>\n", - " <td>71.500000</td>\n", - " <td>71.700000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Gabon</th>\n", - " <td>2000</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>56.509758</td>\n", - " <td>67.843327</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>57.230234</td>\n", - " <td>69.572079</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Malawi</th>\n", - " <td>2015</td>\n", - " <td>83.7</td>\n", - " <td>87.5</td>\n", - " <td>83.700000</td>\n", - " <td>87.500000</td>\n", - " <td>83.700000</td>\n", - " <td>87.500000</td>\n", - " <td>83.700000</td>\n", - " <td>87.500000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Malawi</th>\n", - " <td>2010</td>\n", - " <td>81.3</td>\n", - " <td>90.2</td>\n", - " <td>81.300000</td>\n", - " <td>90.200000</td>\n", - " <td>81.300000</td>\n", - " <td>90.200000</td>\n", - " <td>81.300000</td>\n", - " <td>90.200000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Malawi</th>\n", - " <td>2004</td>\n", - " <td>66.6</td>\n", - " <td>83.9</td>\n", - " <td>66.600000</td>\n", - " <td>83.900000</td>\n", - " <td>66.600000</td>\n", - " <td>83.900000</td>\n", - " <td>66.600000</td>\n", - " <td>83.900000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Malawi</th>\n", - " <td>2000</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>55.911311</td>\n", - " <td>73.333059</td>\n", - " <td>38.918657</td>\n", - " <td>51.530925</td>\n", - " <td>52.153870</td>\n", - " <td>73.279780</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Mali</th>\n", - " <td>2018</td>\n", - " <td>33.6</td>\n", - " <td>42.2</td>\n", - " <td>33.600000</td>\n", - " <td>42.200000</td>\n", - " <td>33.600000</td>\n", - " <td>42.200000</td>\n", - " <td>33.600000</td>\n", - " <td>42.200000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Mali</th>\n", - " <td>2012</td>\n", - " <td>50.4</td>\n", - " <td>55.2</td>\n", - " <td>50.400000</td>\n", - " <td>55.200000</td>\n", - " <td>50.400000</td>\n", - " <td>55.200000</td>\n", - " <td>50.400000</td>\n", - " <td>55.200000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Mali</th>\n", - " <td>2006</td>\n", - " <td>26.2</td>\n", - " <td>36.7</td>\n", - " <td>26.200000</td>\n", - " <td>36.700000</td>\n", - " <td>26.200000</td>\n", - " <td>36.700000</td>\n", - " <td>26.200000</td>\n", - " <td>36.700000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Mali</th>\n", - " <td>2001</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>49.674007</td>\n", - " <td>49.394587</td>\n", - " <td>33.885921</td>\n", - " <td>42.124638</td>\n", - " <td>31.469286</td>\n", - " <td>46.545529</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Namibia</th>\n", - " <td>2013</td>\n", - " <td>85.4</td>\n", - " <td>84.9</td>\n", - " <td>85.400000</td>\n", - " <td>84.900000</td>\n", - " <td>85.400000</td>\n", - " <td>84.900000</td>\n", - " <td>85.400000</td>\n", - " <td>84.900000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Namibia</th>\n", - " <td>2006</td>\n", - " <td>75.2</td>\n", - " <td>72.3</td>\n", - " <td>75.200000</td>\n", - " <td>72.300000</td>\n", - " <td>75.200000</td>\n", - " <td>72.300000</td>\n", - " <td>75.200000</td>\n", - " <td>72.300000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Namibia</th>\n", - " <td>2000</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>66.242089</td>\n", - " <td>71.956339</td>\n", - " <td>55.366244</td>\n", - " <td>50.163913</td>\n", - " <td>61.202271</td>\n", - " <td>67.914617</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Rwanda</th>\n", - " <td>2014</td>\n", - " <td>89.2</td>\n", - " <td>92.1</td>\n", - " <td>89.200000</td>\n", - " <td>92.100000</td>\n", - " <td>89.200000</td>\n", - " <td>92.100000</td>\n", - " <td>89.200000</td>\n", - " <td>92.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Rwanda</th>\n", - " <td>2010</td>\n", - " <td>83.5</td>\n", - " <td>89.9</td>\n", - " <td>83.500000</td>\n", - " <td>89.900000</td>\n", - " <td>83.500000</td>\n", - " <td>89.900000</td>\n", - " <td>83.500000</td>\n", - " <td>89.900000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Rwanda</th>\n", - " <td>2007</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>71.648954</td>\n", - " <td>82.243631</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Rwanda</th>\n", - " <td>2005</td>\n", - " <td>68.9</td>\n", - " <td>79.8</td>\n", - " <td>68.900000</td>\n", - " <td>79.800000</td>\n", - " <td>68.900000</td>\n", - " <td>79.800000</td>\n", - " <td>68.900000</td>\n", - " <td>79.800000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Rwanda</th>\n", - " <td>2000</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>52.927982</td>\n", - " <td>70.699778</td>\n", - " <td>52.054518</td>\n", - " <td>63.285160</td>\n", - " <td>48.896812</td>\n", - " <td>63.151940</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2018</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>56.226462</td>\n", - " <td>47.693669</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2017</td>\n", - " <td>40.3</td>\n", - " <td>37.6</td>\n", - " <td>40.300000</td>\n", - " <td>37.600000</td>\n", - " <td>40.300000</td>\n", - " <td>37.600000</td>\n", - " <td>40.300000</td>\n", - " <td>37.600000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2016</td>\n", - " <td>47.1</td>\n", - " <td>43.7</td>\n", - " <td>47.100000</td>\n", - " <td>43.700000</td>\n", - " <td>47.100000</td>\n", - " <td>43.700000</td>\n", - " <td>47.100000</td>\n", - " <td>43.700000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2015</td>\n", - " <td>41.9</td>\n", - " <td>38.6</td>\n", - " <td>41.900000</td>\n", - " <td>38.600000</td>\n", - " <td>41.900000</td>\n", - " <td>38.600000</td>\n", - " <td>41.900000</td>\n", - " <td>38.600000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2014</td>\n", - " <td>48.9</td>\n", - " <td>43.6</td>\n", - " <td>48.900000</td>\n", - " <td>43.600000</td>\n", - " <td>48.900000</td>\n", - " <td>43.600000</td>\n", - " <td>48.900000</td>\n", - " <td>43.600000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2012</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>41.438277</td>\n", - " <td>43.384312</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2010</td>\n", - " <td>48.7</td>\n", - " <td>43.8</td>\n", - " <td>48.700000</td>\n", - " <td>43.800000</td>\n", - " <td>48.700000</td>\n", - " <td>43.800000</td>\n", - " <td>48.700000</td>\n", - " <td>43.800000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Senegal</th>\n", - " <td>2005</td>\n", - " <td>26.4</td>\n", - " <td>36.1</td>\n", - " <td>26.400000</td>\n", - " <td>36.100000</td>\n", - " <td>26.400000</td>\n", - " <td>36.100000</td>\n", - " <td>26.400000</td>\n", - " <td>36.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Uganda</th>\n", - " <td>2011</td>\n", - " <td>71.6</td>\n", - " <td>79.5</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>71.800000</td>\n", - " <td>80.100000</td>\n", - " <td>71.800000</td>\n", - " <td>80.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Uganda</th>\n", - " <td>2011</td>\n", - " <td>71.6</td>\n", - " <td>79.5</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>71.800000</td>\n", - " <td>80.100000</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Uganda</th>\n", - " <td>2011</td>\n", - " <td>71.6</td>\n", - " <td>79.5</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>71.800000</td>\n", - " <td>80.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Uganda</th>\n", - " <td>2011</td>\n", - " <td>71.6</td>\n", - " <td>79.5</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>71.600000</td>\n", - " <td>79.500000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Uganda</th>\n", - " <td>2006</td>\n", - " <td>57.7</td>\n", - " <td>75.1</td>\n", - " <td>57.700000</td>\n", - " <td>75.100000</td>\n", - " <td>57.700000</td>\n", - " <td>75.100000</td>\n", - " <td>57.700000</td>\n", - " <td>75.100000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Uganda</th>\n", - " <td>2000</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>45.777492</td>\n", - " <td>70.083028</td>\n", - " <td>37.201760</td>\n", - " <td>48.869561</td>\n", - " <td>40.169173</td>\n", - " <td>63.652049</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Zambia</th>\n", - " <td>2018</td>\n", - " <td>75.4</td>\n", - " <td>80.4</td>\n", - " <td>75.400000</td>\n", - " <td>80.400000</td>\n", - " <td>75.400000</td>\n", - " <td>80.400000</td>\n", - " <td>75.400000</td>\n", - " <td>80.400000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2015</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Zambia</th>\n", - " <td>2013</td>\n", - " <td>79.1</td>\n", - " <td>83.5</td>\n", - " <td>79.100000</td>\n", - " <td>83.500000</td>\n", - " <td>79.100000</td>\n", - " <td>83.500000</td>\n", - " <td>79.100000</td>\n", - " <td>83.500000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2010</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Zambia</th>\n", - " <td>2007</td>\n", - " <td>66.6</td>\n", - " <td>72.5</td>\n", - " <td>66.600000</td>\n", - " <td>72.500000</td>\n", - " <td>66.600000</td>\n", - " <td>72.500000</td>\n", - " <td>66.600000</td>\n", - " <td>72.500000</td>\n", - " <td>0</td>\n", - " <td>0</td>\n", - " <td>2005</td>\n", - " </tr>\n", - " <tr>\n", - " <th>Zambia</th>\n", - " <td>2001</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>55.477950</td>\n", - " <td>78.096665</td>\n", - " <td>60.245481</td>\n", - " <td>69.663203</td>\n", - " <td>64.169835</td>\n", - " <td>80.952078</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>2000</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " Survey Buy.from.shopkeeper.with.AIDS.W \\\n", - "Country \n", - "Benin 2017 26.5 \n", - "Benin 2011 40.4 \n", - "Benin 2006 27.5 \n", - "Benin 2001 NaN \n", - "Burkina Faso 2010 35.5 \n", - "Burkina Faso 2003 NaN \n", - "Ethiopia 2016 43.5 \n", - "Ethiopia 2011 32.0 \n", - "Ethiopia 2005 19.9 \n", - "Ethiopia 2000 NaN \n", - "Gabon 2012 71.5 \n", - "Gabon 2000 NaN \n", - "Malawi 2015 83.7 \n", - "Malawi 2010 81.3 \n", - "Malawi 2004 66.6 \n", - "Malawi 2000 NaN \n", - "Mali 2018 33.6 \n", - "Mali 2012 50.4 \n", - "Mali 2006 26.2 \n", - "Mali 2001 NaN \n", - "Namibia 2013 85.4 \n", - "Namibia 2006 75.2 \n", - "Namibia 2000 NaN \n", - "Rwanda 2014 89.2 \n", - "Rwanda 2010 83.5 \n", - "Rwanda 2007 NaN \n", - "Rwanda 2005 68.9 \n", - "Rwanda 2000 NaN \n", - "Senegal 2018 NaN \n", - "Senegal 2017 40.3 \n", - "Senegal 2016 47.1 \n", - "Senegal 2015 41.9 \n", - "Senegal 2014 48.9 \n", - "Senegal 2012 NaN \n", - "Senegal 2010 48.7 \n", - "Senegal 2005 26.4 \n", - "Uganda 2011 71.6 \n", - "Uganda 2011 71.6 \n", - "Uganda 2011 71.6 \n", - "Uganda 2011 71.6 \n", - "Uganda 2006 57.7 \n", - "Uganda 2000 NaN \n", - "Zambia 2018 75.4 \n", - "Zambia 2013 79.1 \n", - "Zambia 2007 66.6 \n", - "Zambia 2001 NaN \n", - "\n", - " Buy.from.shopkeeper.with.AIDS.M \\\n", - "Country \n", - "Benin 31.6 \n", - "Benin 44.5 \n", - "Benin 36.7 \n", - "Benin NaN \n", - "Burkina Faso 42.9 \n", - "Burkina Faso NaN \n", - "Ethiopia 51.6 \n", - "Ethiopia 47.1 \n", - "Ethiopia 26.1 \n", - "Ethiopia NaN \n", - "Gabon 71.7 \n", - "Gabon NaN \n", - "Malawi 87.5 \n", - "Malawi 90.2 \n", - "Malawi 83.9 \n", - "Malawi NaN \n", - "Mali 42.2 \n", - "Mali 55.2 \n", - "Mali 36.7 \n", - "Mali NaN \n", - "Namibia 84.9 \n", - "Namibia 72.3 \n", - "Namibia NaN \n", - "Rwanda 92.1 \n", - "Rwanda 89.9 \n", - "Rwanda NaN \n", - "Rwanda 79.8 \n", - "Rwanda NaN \n", - "Senegal NaN \n", - "Senegal 37.6 \n", - "Senegal 43.7 \n", - "Senegal 38.6 \n", - "Senegal 43.6 \n", - "Senegal NaN \n", - "Senegal 43.8 \n", - "Senegal 36.1 \n", - "Uganda 79.5 \n", - "Uganda 79.5 \n", - "Uganda 79.5 \n", - "Uganda 79.5 \n", - "Uganda 75.1 \n", - "Uganda NaN \n", - "Zambia 80.4 \n", - "Zambia 83.5 \n", - "Zambia 72.5 \n", - "Zambia NaN \n", - "\n", - " Buy.from.shopkeeper.with.AIDS.W_all \\\n", - "Country \n", - "Benin 26.500000 \n", - "Benin 40.400000 \n", - "Benin 27.500000 \n", - "Benin 48.303455 \n", - "Burkina Faso 35.500000 \n", - "Burkina Faso 53.760486 \n", - "Ethiopia 43.500000 \n", - "Ethiopia 32.000000 \n", - "Ethiopia 19.900000 \n", - "Ethiopia 51.894104 \n", - "Gabon 71.500000 \n", - "Gabon 56.509758 \n", - "Malawi 83.700000 \n", - "Malawi 81.300000 \n", - "Malawi 66.600000 \n", - "Malawi 55.911311 \n", - "Mali 33.600000 \n", - "Mali 50.400000 \n", - "Mali 26.200000 \n", - "Mali 49.674007 \n", - "Namibia 85.400000 \n", - "Namibia 75.200000 \n", - "Namibia 66.242089 \n", - "Rwanda 89.200000 \n", - "Rwanda 83.500000 \n", - "Rwanda NaN \n", - "Rwanda 68.900000 \n", - "Rwanda 52.927982 \n", - "Senegal NaN \n", - "Senegal 40.300000 \n", - "Senegal 47.100000 \n", - "Senegal 41.900000 \n", - "Senegal 48.900000 \n", - "Senegal NaN \n", - "Senegal 48.700000 \n", - "Senegal 26.400000 \n", - "Uganda 71.600000 \n", - "Uganda 71.600000 \n", - "Uganda 71.600000 \n", - "Uganda 71.600000 \n", - "Uganda 57.700000 \n", - "Uganda 45.777492 \n", - "Zambia 75.400000 \n", - "Zambia 79.100000 \n", - "Zambia 66.600000 \n", - "Zambia 55.477950 \n", - "\n", - " Buy.from.shopkeeper.with.AIDS.M_all \\\n", - "Country \n", - "Benin 31.600000 \n", - "Benin 44.500000 \n", - "Benin 36.700000 \n", - "Benin 51.821723 \n", - "Burkina Faso 42.900000 \n", - "Burkina Faso 51.633718 \n", - "Ethiopia 51.600000 \n", - "Ethiopia 47.100000 \n", - "Ethiopia 26.100000 \n", - "Ethiopia 60.197812 \n", - "Gabon 71.700000 \n", - "Gabon 67.843327 \n", - "Malawi 87.500000 \n", - "Malawi 90.200000 \n", - "Malawi 83.900000 \n", - "Malawi 73.333059 \n", - "Mali 42.200000 \n", - "Mali 55.200000 \n", - "Mali 36.700000 \n", - "Mali 49.394587 \n", - "Namibia 84.900000 \n", - "Namibia 72.300000 \n", - "Namibia 71.956339 \n", - "Rwanda 92.100000 \n", - "Rwanda 89.900000 \n", - "Rwanda NaN \n", - "Rwanda 79.800000 \n", - "Rwanda 70.699778 \n", - "Senegal NaN \n", - "Senegal 37.600000 \n", - "Senegal 43.700000 \n", - "Senegal 38.600000 \n", - "Senegal 43.600000 \n", - "Senegal NaN \n", - "Senegal 43.800000 \n", - "Senegal 36.100000 \n", - "Uganda 79.500000 \n", - "Uganda 79.500000 \n", - "Uganda 79.500000 \n", - "Uganda 79.500000 \n", - "Uganda 75.100000 \n", - "Uganda 70.083028 \n", - "Zambia 80.400000 \n", - "Zambia 83.500000 \n", - "Zambia 72.500000 \n", - "Zambia 78.096665 \n", - "\n", - " Buy.from.shopkeeper.with.AIDS.W_only_stigma \\\n", - "Country \n", - "Benin 26.500000 \n", - "Benin 40.400000 \n", - "Benin 27.500000 \n", - "Benin 10.011642 \n", - "Burkina Faso 35.500000 \n", - "Burkina Faso 40.482765 \n", - "Ethiopia 43.500000 \n", - "Ethiopia 32.000000 \n", - "Ethiopia 19.900000 \n", - "Ethiopia 8.224012 \n", - "Gabon 71.500000 \n", - "Gabon NaN \n", - "Malawi 83.700000 \n", - "Malawi 81.300000 \n", - "Malawi 66.600000 \n", - "Malawi 38.918657 \n", - "Mali 33.600000 \n", - "Mali 50.400000 \n", - "Mali 26.200000 \n", - "Mali 33.885921 \n", - "Namibia 85.400000 \n", - "Namibia 75.200000 \n", - "Namibia 55.366244 \n", - "Rwanda 89.200000 \n", - "Rwanda 83.500000 \n", - "Rwanda NaN \n", - "Rwanda 68.900000 \n", - "Rwanda 52.054518 \n", - "Senegal NaN \n", - "Senegal 40.300000 \n", - "Senegal 47.100000 \n", - "Senegal 41.900000 \n", - "Senegal 48.900000 \n", - "Senegal NaN \n", - "Senegal 48.700000 \n", - "Senegal 26.400000 \n", - "Uganda 71.800000 \n", - "Uganda 71.800000 \n", - "Uganda 71.600000 \n", - "Uganda 71.600000 \n", - "Uganda 57.700000 \n", - "Uganda 37.201760 \n", - "Zambia 75.400000 \n", - "Zambia 79.100000 \n", - "Zambia 66.600000 \n", - "Zambia 60.245481 \n", - "\n", - " Buy.from.shopkeeper.with.AIDS.M_only_stigma \\\n", - "Country \n", - "Benin 31.600000 \n", - "Benin 44.500000 \n", - "Benin 36.700000 \n", - "Benin 24.568959 \n", - "Burkina Faso 42.900000 \n", - "Burkina Faso 54.313783 \n", - "Ethiopia 51.600000 \n", - "Ethiopia 47.100000 \n", - "Ethiopia 26.100000 \n", - "Ethiopia 29.960412 \n", - "Gabon 71.700000 \n", - "Gabon NaN \n", - "Malawi 87.500000 \n", - "Malawi 90.200000 \n", - "Malawi 83.900000 \n", - "Malawi 51.530925 \n", - "Mali 42.200000 \n", - "Mali 55.200000 \n", - "Mali 36.700000 \n", - "Mali 42.124638 \n", - "Namibia 84.900000 \n", - "Namibia 72.300000 \n", - "Namibia 50.163913 \n", - "Rwanda 92.100000 \n", - "Rwanda 89.900000 \n", - "Rwanda NaN \n", - "Rwanda 79.800000 \n", - "Rwanda 63.285160 \n", - "Senegal NaN \n", - "Senegal 37.600000 \n", - "Senegal 43.700000 \n", - "Senegal 38.600000 \n", - "Senegal 43.600000 \n", - "Senegal NaN \n", - "Senegal 43.800000 \n", - "Senegal 36.100000 \n", - "Uganda 80.100000 \n", - "Uganda 80.100000 \n", - "Uganda 79.500000 \n", - "Uganda 79.500000 \n", - "Uganda 75.100000 \n", - "Uganda 48.869561 \n", - "Zambia 80.400000 \n", - "Zambia 83.500000 \n", - "Zambia 72.500000 \n", - "Zambia 69.663203 \n", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "autorange": true, + "domain": [ + 0, + 1 + ], + "range": [ + -0.6630266545966605, + 0.561211929189298 + ], + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0, + 1 + ], + "range": [ + 14.2, + 96.19999999999999 + ], + "title": { + "text": "Buy.from.shopkeeper.with.AIDS.M_all" + }, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOyd/V9UZeK/v39Pn/1su/sxt3a3XDOTfMg0XVe3xEBFBVEk0EDFVFB8ShfJMjFN0dQ0FTRS1DI0TGQLKc2mTAWfQENT5oGB9/eHiYFhhp3DMHDOwet6va7XLnOG4WYe7pyLe+7z/wQAAAAAAAAAAAAApvD/zB4AAAAAAAAAAAAAwKMKgRYAAAAAAAAAAADAJAi0AAAAAAAAAAAAACZBoAUAAAAAAAAAAAAwCQItAAAAAAAAAAAAgEkQaAEAAAAAAAAAAABMgkALAAAAAAAAAAAAYBIEWgAAAAAAAAAAAACTINACAAAAAAAAAAAAmASBFgAAAAAAAAAAAMAkCLQAAAAAAAAAAAAAJkGgBQAAAAAAAAAAADAJAi0AAAAAAAAAAACASRBoAQAAAAAAAAAAAEyCQAsAAAAAAAAAAABgEgRaAAAAAAAAAAAAAJMg0AIAAAAAAAAAAACYBIEWAAAAAAAAAAAAwCQItAAAAAAAAAAAAAAmQaAFAAAAAAAAAAAAMAkCLQAAAAAAAAAAAIBJEGgBAAAAAAAAAAAATIJACwAAAAAAAAAAAGASBFoAAAAAAAAAAAAAkyDQAgAAAAAAAAAAAJgEgRYAAAAAAAAAAADAJAi0AAAAAAAAAAAAACZBoAUAAAAAAAAAAAAwCQItAAAAAAAAAAAAgEkQaAEAAAAAAAAAAABMgkALAAAAAAAAAAAAYBIEWgAAAAAAAAAAAACTINACAAAAAAAAAAAAmASBFgAAAAAAAAAAAMAkCLQAAAAAAAAAAAAAJkGgBQAAAAAAAAAAADAJAi0AAAAAAAAAAACASRBoAQAAAAAAAAAAAEyCQAsAAAAAAAAAAABgEgRaAAAAAAAAAAAAAJMg0AIAAAAAAAAAAACYBIEWAAAAAAAAAAAAwCQItAAAAAAAAAAAAAAmQaAFAAAAAAAAAAAAMAkCLQAAAAAAAAAAAIBJEGgBAAAAAAAAAAAATIJACwAAAAAAAAAAAGASBFoAAAAAAAAAAAAAkyDQAgAAAAAAAAAAAJgEgRYAAAAAAAAAAADAJAi0AAAAAAAAAAAAACZBoAUAAAAAAAAAAAAwCQItAAAAAAAAAAAAgEkQaAEAAAAAAAAAAABMgkALAAAAAAAAAAAAYBIEWgAAAAAAAAAAAACTINACAAAAAAAAAAAAmASBFgAAAAAAAAAAAMAkCLQAAAAAAAAAAAAAJkGg7Sa19Y2IiIiIiIiIiNgFAaANAm03MXtCQ0RERERERES0mwDQBoG2m5g9oSEiIiIiIiIi2k0AaINA203MntAQEREREREREe0mALRBoO0mZk9oiIiIiIiIiIh2EwDaINB2E7MnNEREREREREREuwkAbRBou4nZExoiIiIiIiIiot0EgDYItN3E7AkNEREREREREdFuWomy8mYd+KTr1t0xe+TQVyDQdhOzJzRERERERERERLtpJXLXNSk+2dNlL15qMXvo0Ecg0HYTsyc0RERERERERES7aSVaA21WbpOWr/OENSmdQAvRhUDbTcye0BARERERERER7aaVaA20Bdu92n84vGlZ3Qu0jp9r9UpStp54IUHDX52nz05/7T/2XmGxBo1N0dMvzdSba7aqyeuVJLncHs3Nfld/G5mkweNStevAcf/3XK29pdhZy/TksOkaHb9A56ouRXxfnDj1H/UfOk1FR08HXJ6UsVYHPz0lSeo/dJpu3GZ/h2hCoO0mZk9oiIiIiIiIiIh200r0dqAdEZuhLbtL1NLSoi/OVKlfzFQ1Ot06U3lBMRPSVHenQQ8bnYqbk6vCfaWSpPWb92n2wjw5XW7V3KjTgNGz9P2P1yRJE5NztGV3ibzeZp0sr9KA0bPkafJGNLZZC/K04+NSTU5dGXA5gbZnIdB2E7MnNERERETE7uioadShY059dMilaofT9PEgIuKjoZXozUDb5PVq14HjAQH1iRcSdKXmphav2aqN24v8lx8/VamJyTmSpBET39DX3zraxrx+h9Zv3qf6u/fULybBv9JWkl6evFBnKi90eWwN9x7ohX+lq6WlRcNfnadbdb/4jxFoexYCbTcxe0JDRERERIzUiupGJaa3newkMd2jsgoiLSIi9rxWordX0Lan6rsfNXDMbDV5vYqbk6sjn5/1H/vxynU9MypZkvT7Z+PUcO+B/9iH+4/p9cVv61zVJY2clBlwm3MW5WvXwRNdHkvhvlKtfe8jSdLbW/erYOch/zECbc9CoO0mZk9oiIiIiIiRujLfFXRG6tSFbtPH1RW3feS0lB/ut9f9h4hollbCrEB77fptxUxI1xdnqiRJE2Ys0cnyb/zHr9+sV/+h0+Rp8uqxAbFyutz+Y/tLypSUsVanzp7XuIRFAbebuXyTtu4u6fJ4/jF1kX68ct0/tvbhl0DbsxBou4nZExoiIiIiYqSmLnAHBdr4ZI/p4+qKocZvpjPSCLSIiEa0EmYE2ouOqxoyPk3HT1X6L4tPXaGSE1/5v3ZcrtHfX54lybeC9m7Dff+xHR+XKn3JO6o8f0kjYjMCbjsla732FH0WcFn1xct6asQMPTVihlKy8oPG47hco98NnKT+Q6f5/d3ASfr2+8uSCLQ9DYG2m5g9oSEiIiIiRmrIFbQL7BUYo7HqddEKX6jOfsvFClpExF7SSvR2oL1ae0tDxqfpXNWlgMuz121TXsE+/9dFR04rPnWFJGnkpEyVV37nP7ZgRYHe3XZQdxvu60/PT1Gjs211bcyENFWeD7xtT5NXdXcaVHenQQ33H6gjqzbsCtj/VpK27C5Rzr+3SyLQ9jQE2m5i9oSGiIiIiBipFdWNSkxrtwdt2qO5B+3mnb5Qveugy/SxICI+KlqJ3g60sbOWqeTEmaDLz1V9r0FjU3Tj9h3d//Whxk7N0r7DJyVJG7YeUEL6Kjldbv3wU43+8mKifr52U5IUl5KrDVsPyOttVtHR0xo8LlVeb7Ph8Xi9zRowepZ/e4NWrl2/rb+NTFKT10ug7WEItN3E7AkNEREREbE7OmoaVVzq1J5il6odj16cra0n0CIimqGV6M1Ae+36bT02IFaPPxcf4NGTFZKkzTsPa+CY2XpmVLKWr9+h5mbfz3C7PZqXvVF/fTFJz//zde0vKfPfZs2NOk1MztGfh03XmClZqr54uUtjOllepaGvzA15bFTcfJ049R8CbQ9DoP2NlpYW5RXs08Axs/XksOla8+5u/7GrtbcUO2uZnhw2XaPjFwQsQTd7QkNEREREjJYV1Y0qq3DKUWP+WHpTAi0iYu9rJVoDbdbyJq3I84Y1aW50ThIG0AqB9jcOlZbrxUkZuvPLfdXdadDwV+fpk+O+5eYTk3O0ZXeJvN5mnSyv0oDRs+Rp8koi0CIiIiJi3zCvoO2EYYnpHhWXBq6m7curawm0iIi9r5VoDbRdlUAL0YJA+xuZyzdp887D/q93fFyqWQvyVH/3nvrFJKjJ6/Ufe3nyQp2pvCCJQIuIiIiI9re41Bn0pjMx3SNHTaM2FbadSCwzx6OKavPHG20JtIiIva+VKCtvNrS1QUfr+JQ/RAkC7W90DLRFR09rVNx8nau6pJGTMgOuO2dRvnYdPCFJunHHiYiIiIhoa1e97Q65Mmj9puDL5+d4TB9vtH3/Q1+g3X3QbfpYEBEfFQGgDQLtbxSXfqkRE99Q/d17arj3QK/NXq6hr8zVqbPnNS5hUcB1M5dv0tbdJZKk5pYWRERERERb+/Fhb8hAu2RV6I983qo3f8zRdNd+3+9/+KjX9LEgIj4qAkAbBNrfaG5u0bpNH2nI+DSNm/am8rfs1z+nL1bl+UsaEZsRcN2UrPXaU/SZJLY4QERERET766hpVGJaYITdVOjSynxXyEBr9nijLVscICL2vgDQBoG2EzbtOKRFq7fobsN9/en5KWp0uv3HYiakqfL8JUkEWkRERETsGzpqGrVtr0t5BW7/CcLKKoL3pt1U2PciJoEWEbH3BYA2CLS/ceyLc5qatkoPHjp1tfaWBo1N0dffOiRJcSm52rD1gLzeZhUdPa3B41Ll9TZLItAiIiIiYt+2rMKplfkuLVnt1ra9fTNgEmgREXtfK1FW3qwDn3RdThIG0YJA+xueJq/mZW9U/6HT9MyoZH24/5j/WM2NOk1MztGfh03XmClZqr542X/M7AkNERERERG7J4EWEbH3tRK560LvuR7Oi5fYSxeiA4G2m5g9oSEiIiIiYvck0CIi9r5WojXQZuU2afk6T1iT0gm0EF0ItN3E7AkNERERERG7J4EWEbH3tRKtgbZgu1f7D4c3Lat7gdbxc61eScrWEy8kaPir8/TZ6a/9x94rLNagsSl6+qWZenPNVjV5vZIkl9ujudnv6m8jkzR4XKp2HTju/56rtbcUO2uZnhw2XaPjF+hc1aXIxnW5RkmZ6/TnYdP1h8GTNXZqlj45fsbQ9yZlrNXBT09F9HPbc6Xmps5VfS9J2rzzsObnFnT7Nu0AgbabmD2hISIiIiJi97R6oN221+X/OG1mjkcV1eaPCRGxu1qJ3g60I2IztGV3iVpaWvTFmSr1i5mqRqdbZyovKGZCmuruNOhho1Nxc3JVuK9UkrR+8z7NXpgnp8utmht1GjB6lr7/8ZokaWJyjrbsLpHX26yT5VUaMHqWPE3eLo3pau0t/XnYdK3asEvXrt9Ww70HKjp6Wk8Om65DpeVhvz9agXbL7hJt3F4kSWp0uvXrA2s9V3oKAm03MXtCQ0RERETE7mnlQFtc6gza8zAzx2P6uBARu6uV6M1A2+T1ateB4wEB9YkXEnSl5qYWr9nqj5OSdPxUpSYm50iSRkx8w38ye0nKXb9D6zfvU/3de+oXk+BfaStJL09eqDOVF7o0roUrNyslKz/o8oOfntKgsSlqbm7R1t0lylj2ntKXvKOJyTkaMyVLtTfqJLUF2hX5O7XkrQ/8399w/4H+OHiy7jbcD7jdsq/O68VJGYqZkKYRE9/Q519+rS/Pfaunhs/Q0y/N1Jp3dwesoK29UacJM5ZoyPg0vZGzUSlZ67Xv8ElJUv+h0/TBnk81NW2VnhuXqiOfn9WCFQV6JWmpXknK1sNGlyTpP9U/aHT8Ag0Z7/uZ5ZXfdek+6kkItN3E7AkNERERERG7p5UD7cp8V8gT09hpFe22j4Ijs9lu+8hp+v2C+KhrJXp7BW17qr77UQPHzFaT16u4Obk68vlZ/7Efr1zXM6OSJUm/fzZODfce+I99uP+YXl/8ts5VXdLISZkBtzlnUb52HTzRpXHETEhXyYmvgi73eJr0P3+fpEs/XdP2vUf1lxcTVXenQZK05K0P9NbGPZLaAu2331/W30Ym+YPxgU/LNOX1lUG3OyI2w7+VwUXHVS1YUeC/zdZI3T7QzlqQp1UbdkmSvjhTpcefi/ev2H1qxAy9V1gsSdpddEJ/GDxZV2puSpJem71ch4/5VgCPnJSpoiOnJfnC89BX5nbpPupJCLTdxOwJDRERERERu6eVA21egTtkYKx22CcwEmgRMZRWwqxAe+36bcVMSNcXZ6okSRNmLNHJ8m/8x6/frFf/odPkafLqsQGxcrrc/mP7S8qUlLFWp86e17iERQG3m7l8k7buLunSWP42MskfTEMd++o/F7R971ElZaz1X/7Bnk81L3ujpMAtDoa+Mtf/O82cv86/0rU9cSm5enPNVl2tvRVweWeB9m8jk3Thhyv+642clBkQaC/95Nvu4cuKbzX81Xn+6y1YUaAtv90XHk+Tmpt9j9mtul/0+2fjDN03vQGBtpuYPaEhIiIiImL3tHKgLasIjpsr8603zt6w9fc3exyIGB2thBmB9qLjqoaMT9PxU5X+y+JTVwSsYnVcrtHfX54lybeCtv02ATs+LlX6kndUef6SRsRmBNx2StZ67Sn6LOCy6ouX9dSIGXpqxIyQWxmMmRL6hGCeJq9+N3CSHD/Xavveo0pf8o7/WPuv2wfa/Pc/1rzsjXK63Hpy2HQ13H8QdLt1dxq05K0PNGD0LI2Y+IY/THcWaH//bJxu3L7j//6paasCAm3Nb1stnKm8oDFTsvzXW7TqfW3eeViSVHLiK72StFTjEhZpzJQs/W7gpKBxmQWBtpuYPaEhIiIiImL3tHKgra33Rdolq91astqtTYUuOWrMH5MZEmgR+5ZWorcD7dXaWxoyPk3nqi4FXJ69bpvyCvb5vy46clrxqSsk+VaMtt8zdcGKAr277aDuNtzXn56fokZn2+ramAlpqjwfeNueJq/q7jSo7k5DyGCau36HkjLXBV1eXPqlhoxPU0tLi+FA+/O1m+o/dJoOlZZr+rw1Ye+PY1+c0xMvJMjrbe400D41YoZ++KnG/z2j4uZ3KdDW372nPw6eLMfPtZJ8q5MJtH0Isyc0RERERETsnlYPtOiTQIvYt7QSvR1oY2ctU8mJ4NWq56q+16CxKbpx+47u//pQY6dm+bcH2LD1gBLSV8npcuuHn2r0lxcT9fM13z6rcSm52rD1gLzeZhUdPa3B41Ll9TZ3aUx3frmvv7yYqFUbdunG7TvyNHl19GSFnhoxQ8e+OCdJhgOt5FuRO+gfcwIua6XR6da4aW/6V8Rerb2l/kOnqbm5RcvyCrX6Hd9es+0DbUL6Kq3f7IvXp89W6w+DJ3cp0F766Zr+8mKi3G6PmptbtObd3UHbRpgJgbabmD2hISIiIiJi9yTQ2kMCLWLf0kr0ZqC9dv22HhsQq8efiw/w6MkKSb4oOXDMbD0zKlnL1+/w75nqdns0L3uj/vpikp7/5+vaX1Lmv82aG3WamJyjPw+brjFTslR98XJE98NPV64rKWOt+g+dpj8MnqwxU7ICTlrWlUD7/q5P9IfBk/Xrg9CP9b7DJxUzIV2Dx6VqxMQ3/L//qbPn1S8mQXMW5QcE2ks/XdNLr2XqhX+la9HqLZo+b43/hF9GtziYl71Rg/4xR+MSFun02Wr9K3Gpxk5tu66ZEGi7idkTGiIiIiIidk8CrT0k0CL2La1Ea6DNWt6kFXnesCbNjc5Jwvoyh0rLlZK1Pqq32RqrJWlico4+O/11VG/fTEwJtK2bEhvR6pg9oSEiIiIimqGjxrc3arXDafpYuiuB1h4SaBH7llaiNdB2VQJtaB48dOql1zJ1rur7qN1m7vodSlu8QS0tLf49bm/X/xK12zcbUwJt6clzhrU6Zk9oiIiIiIg94Z5ilzJzPFq62q2PDgWGy+JSpxLT296gbiq0d9gk0NpDAi1i39JKlJU3G9raoKN1d8weufU4VlapZ0Yl+/eLjRZ1dxoUl5KrgWNmK2ZCmg58Whb+m2wEWxx0E7MnNERERETEaLttrytoldC2vb54We0IjLOtlpbZN24SaO0hgRaxbwkAbbDFQTcxe0JDRERERIy2qQvcQQE2daFbtfW+bQ1CfcyzNeDa0b4caMsqnMrM8T1Gq/Jdqqg2f0yRSqBF7FsCQBtscdBNzJ7QENF+VlQ3avtel0pP9b03gY+KpWUubd9r7ze5fUFHTaMOHXPqo0OuPrEHJqKVTEwLDrDT5nh06JhTx08TaO1iRXVjyNDuqDF/bJFIoEXsWwJAG5be4mD6vDVmDyEsZk9oiGgv9xQHfmQ0M8dj2zdJj6oZ2X0nSNjZiurGgI9YJ6Z7VFZBpEWMlpsKg7c4aP96W7AscIVtYpq9/3vWVwNtqK0q4pPtO18SaBH7lgDQhumB1uX2qGDnIc1ZlK+kjLV+xyUs0l9eTDR7eGExe0JDRPtY7Qi94mhPsX3eDFZ869S2j6zlZ+W9d/91DOytWm315sEjLtMfl45+fyW699HK/ODHIjPHPm/av//Z/Meko0XH7DMXYfQtq3Bq6Wq3/2Pwp841Kq8gMMLGtfv/K/Nd2lPs0sp8l7btddk6ztbWE2jtIoEWsW9pJcrKm3Xgk67LScIgWpgeaDOXb1LMhHQtXfuB/vT8FC3LK9Q/py/W6PgFuvDDFbOHFxazJzREtI+d7dmXV+A2fWxGLT7W+Yoqs3x3W++9me5sRZnV3uguWB68d6TZ/ue76N5Hnf0cs+97o549H3o+MNPFK+0zF2F0DXXSr8T0thWxdn+9GdHOgbaiulEfHQq9dVLILQ4WsMUBIlpDK5G7rimifz9dvNRi9tChj2B6oP3Li4m6fsv3J4enX5rpv3z95n3atOOQWcMyjNkTGiLaR1bQtjk91fe7b9rR/ZWerKANNhoraN961xd509+Mzmrc3lhBm5Ftnzft0VpB+/pC3+O0dmP3HydW0D66dja3FZf6XrdLVgf/0Wdlft96vtg10IbaOqnjdcoqnP7teVbm23vPbgItYt/SSrQG2qzcJi1f5wlrUjqBFqKL6YH2/4ZMkcfTJEn664tJavJ6JUkPHjo1cMxsM4dmCLMnNES0lx3fSGVk23vPvkidneF7s3/hsv3eJD4qe9CWnvI9V1est+bvV1EdeBKjxDTrrWTuDZet872WPit/9H53jJ7hAm2o11tfO0miHQNtX/jDb1cl0CL2La1Ea6At2O7V/sPhTcvqXqB1/FyrV5Ky9cQLCRr+6jx9dvpr/7H3Cos1aGyKnn5ppt5cs9XfyVxuj+Zmv6u/jUzS4HGp2nXguP97rtbeUuysZXpy2HSNjl+gc1WXIr4vTpz6j/oPnaaio6cDLk/KWKuDn56SJPUfOk03bhvf32Hr7hLNzy2IeExGuFJzU+eqvpckbd55uMd/XrQxPdD+c/pirXl3t9xuj/45fbE+/uQLSZLjco36D51m8ujCY/aEhoj2s6LatydcaVnffQMVTjsH2tr6RpWW+fZc7GuBIuB3tHigra1vlKOmUcWlThWXOm29Iqw7EmgxGlY7nAEBtjXCtv8DYvvXW1/8w6IdA21f2DqpqxJoEfuWVqK3A+2I2Axt2V2ilpYWfXGmSv1ipqrR6daZyguKmZCmujsNetjoVNycXBXuK5Xk+6T57IV5crrcqrlRpwGjZ+n7H69JkiYm52jL7hJ5vc06WV6lAaNnydPkjWhssxbkacfHpZqcujLgcqsH2i27S7Rxe5EkqdHp1q8PrPUcC4fpgfY/1T/omVHJuttwX8e+OKf/ffY1Pf3STP3+2TgtXfuB2cMLi9kTGiKiHbV7oH0UtEOgRQItRs/2H4Nfstrdp/8AFUo7BlpW0CKi3bUSvRlom7xe7TpwPCCgPvFCgq7U3NTiNVv9kVGSjp+q1MTkHEnSiIlv6OtvHW1jXr9D6zfvU/3de+oXk+BfaStJL09eqDOVF7o8toZ7D/TCv9LV0tKi4a/O0626X/zHjATaPz0/RRu3F2nK6yv10muZ2vbREUmBgXbK6yt1qLTc/z3tv96887BiJqRpyPg0TZixRFdrbwX9jLKvzuvFSRmKmZCmERPf0Odffq0vz32rp4bP0NMvzdSad3cHrKCtvVGnCTOWaMj4NL2Rs1EpWeu17/BJ/+/xwZ5PNTVtlZ4bl6ojn5/VghUFeiVpqV5JytbDRpckX7scHb9AQ8b7fmZ55Xddvm/DYXqglaTm5rYn9A8/1Wjf4ZNBT6TWvwpYDbMnNEREO0qgtb4EWntIoEWMjnYMtLX1vk/kPEpbJxFoEfuWVqK3V9C2p+q7HzVwzGw1eb2Km5OrI5+f9R/78cp1PTMqWZL0+2fj1HDvgf/Yh/uP6fXFb+tc1SWNnJQZcJtzFuVr18ETXR5L4b5SrX3vI0nS21v3q2Bn27mhjATa/kOnadWGXZKkO7/cV7+YBN28fddQoL3bcF9PDpuuBw+dkqSPP/lCOz4uDfoZI2Iz/FsZXHRc1YIVvttd8tYH/rjdPtDOWpDnH9MXZ6r0+HPx/t/jqREz9F5hsSRpd9EJ/WHwZF2puSlJem32ch0+5hvnyEmZKjri2/Lh4KenNPSVuYbvU6NYItAawarbHZg9oSEi2lECrfUl0NpDAi1idLRroK2tb9s6qXXP4L4sgRaxb2klzAq0167fVsyEdH1xpkqSNGHGEp0s/8Z//PrNevUfOk2eJq8eGxArp8vtP7a/pExJGWt16ux5jUtYFHC7mcs3aevuki6P5x9TF+nHK9f9Y2sffo0G2gs/XPF//UpStkpOnDEUaJ0ut/48bLo+3H9MvzT82ukY41Jy9eaarUGrazsLtH8bmRQwppGTMgMC7aWffAtCv6z4VsNfnee/3oIVBdry233o8TT5F5feqvtFv382rtPxRQqBtpuYPaEhItpRAq31JdDaQwItYnS0c6B9lCTQIvYtrYQZgfai46qGjE/T8VOV/sviU1eo5MRX/q8dl2v095dnSfKtoL3bcN9/bMfHpUpf8o4qz1/SiNiMgNtOyVqvPUWfBVxWffGynhoxQ0+NmKGUrPyg8Tgu1+h3Ayep/9Bpfn83cJK+/f6yJOOBtuZGnf/raXPXaNfBE4a3OKi+eFmzF+ap/9BpikvJ1c/Xbgb9jLo7DVry1gcaMHqWRkx8wx+0Owu0v382LmCsU9NWBQTa1vGeqbygMVOy/NdbtOp9bd55WJJUcuIrvZK0VOMSFmnMlCz9buCkoHF1FwJtNzF7QkNEtKMEWutLoLWHBFrE6EigtYcEWsS+pZXo7UB7tfaWhoxP07mqSwGXZ6/bpryCff6vi46cVnzqCkm+lZ/t9z5dsKJA7247qLsN9/Wn56eo0dm2ujZmQpoqzwfetqfJq7o7Daq706CG+w/UkVUbdgXsfyv5TryV8+/tkowH2vMXf/J//c/pi1Vy4quAQJuQvlpFR0/7rzN++uKAYCtJbrdHq9/ZpYT01UE/oz3HvjinJ15IkNfb3GmgfWrEDP3wU43/e0bFze9SoK2/e09/HDxZjp9rJflWNRNoLYjZExoioh0l0FpfOwfa0jKXlq52a+lqt7bvtd/4uyKBFjE6EmjtIYEWsW9pJXo70MbOWqaSE2eCLj9X9b0GjU3Rjdt3dP/Xhxo7Nct/QqsNWw8oIX2VnC63fvNjZO0AACAASURBVPipRn95MdG/wjQuJVcbth6Q19usoqOnNXhcqrzeZsPj8XqbNWD0LP/2Bq1cu35bfxuZpCav13CgzV7nC7pXam7pj4Mnq+5OQ0CgnZ9boPWbfRH6aq3vOodKy/X1tw7NnL9OLrdHkrTv8ElNm7sm4PYbnW6Nm/am/2dfrb2l/kOnqbm5RcvyCrX6Hd9es+0DbUL6Kv/PO322Wn8YPLlLgfbST9f0lxcT5XZ71NzcojXv7g7abiIaEGh/o6WlRW9t3KOYCWmKmZCmzOWb/H99uFp7S7GzlunJYdM1On5BwF84zJ7QEBHtKIHW+to10JaWBZ4wJz7Zo02F9voduiKBFjE69sVAW1Ht0+xxRFMCLWLf0kr0ZqC9dv22HhsQq8efiw/w6MkKSb64OHDMbD0zKlnL1+/w733qdns0L3uj/vpikp7/5+vaX1Lmv82aG3WamJyjPw+brjFTslR98XKXxnSyvKrTE1+NipuvE6f+YzjQbtpxSKPi5uvZMSkq3Oc7yVf7QPv9j9f04qQMvTZ7uTKXb1JS5joVl34pr7dZy/IKNWhsip7/5+uaMGOJHJdrgn7GvsMnFTMhXYPHpWrExDf899ups+fVLyZBcxblBwTaSz9d00uvZeqFf6Vr0eotmj5vjf+EX0a3OJiXvVGD/jFH4xIW6fTZav0rcanGTm27bjQg0P5GyYkzGjMlS41Ot7zeZiVlrtOGrQckSROTc7Rld4m83madLK/SgNGz5GnySiLQIiJGIoHW+to10C5Z7Q4KtH35zTyBFntSR02jNhW2rUgvq+i7zzM7Bdpte13KzPFo6Wq3SsuCx+uoadTSdnNhZo5H1Y6+8dj19Tkd8VHTSrQG2qzlTVqR5w1r0tzonCSsr9FZuDWb1sgt+RrfZ6e/NnE0oSHQ/kb+lv1auvYD/9fb9x7VnEX5qr97T/1iEtTk9fqPvTx5oc5UXpBEoEVEjEQCrfW1a6DNyA6Os335zTyBFnvSUH/w6GsrMlu1S6DdVBj8KYGOkTavIPhxW7ra3eWfdeqc03K2/j5mjyOUZj83EO2olWgNtF2VQBuIFQNt7vodSlu8QS0tLfr52k31HzpNt+t/MXtYQdgm0D790swevf2zX1/U8Ffn6W7DfbncHiWkr9JHxZ/rXNUljZyUGXDdOYvytevgCUkEWkSMno4aXxQrPeWSo8b88fSkBFrra9dAu21vcLxYEkGYsItWD7R7il1KXehWYrpvq4mOc1tZhbPPz3d2tdrhDPlGNDPbo+17Xd1akRnqdYqd+3FJ2zwc6njHOS51QXQ+SWD27203zX7NItpRK1FW3mxoa4OO1lmrRZqOFQNt3Z0GxaXkauCY2YqZkKYDn5aF/yYTMC3QNnm9huxN3lyzVY8PitP/DZmi2FnL5PE06dTZ8xqXsCjgepnLN2nr7hJJUt09F/aA9YiPmN9cdClxbts/8hPnevTN927V3++bzs70/Z4/1Zg/Fgzt52d8j9Gqt80fS1d9f2dbnMhe49G1W+aPqafMzfP9nqcqzB9LRz8uCQ4Yazb4jn1e7gmY897faf54MdBvvg8d+VqdkuLRwlyP3n6/66+xnfv/+21joEVH2+67UMfn53gC7t/sNcHXSUz3dPk50Pq9qQvc+F9svZ/M/rckYk/bE+/7AaAN0wLtYwNiDdlbfLj/mKa8vlIPG13yepuVvW67Fq7crMrzlzQiNiPguilZ67Wn6DNJksvtxR7QifiIuWxt8Edq1r3rMf212FPOme/7HW/eNn8sGNozlV7FJ3u09h37Pg/vNpg/hp52Vb7vtVT5jflj6ejyEPNafLJHdxva9m1r75lz5o+5ox8VmR/nOnr+u977/dOzQoxhZtv/j/vtf7OWN3XpdvcW+Z4by9Z69FERduaiFb7798iJtvs31Otqb1Hg/X/+W2/QdQ6Xdu0xcrnbbsPs+8Hqtt5PZv9bErGn7Yn/zgBAG6YF2hET39CTw6Zr9sI8fXL8jH68cj2kvUVSxlrtLjrh//o/1T9oyPg03W24rz89P0WNTrf/WMyENFWevySJLQ4QMTp29kbc7HH1lGxxYH3tusXBo6aVtzjo7IRtZRWhPzq/qdB6z7VtH4Ueq5mequi9+6miOnBf57gOY4lrF2u7cgKx1i0OFq92adtHTuzE+ct8r6H2Wxw4agJfW529bsoqnMorcCuvIPSJxIzY+jPMvh+sbl//NxtiTwoAbZi6B+2FH65oxds7NXDMbL30Wqbe//AT0zbqfWvjHs2cv86/rcLa9z5SUsZaSVJcSq42bD0gr7dZRUdPa/C4VHm9zZIItIgYHUOd2Kgv75tJoLW+BFp7aOVAu6c4eJ/RlfmuTgPttr1987l2quK3GLnK3nN6Z/uaEmh7zlCBtjcl0BqTQIsYuQDQhiVOEtbc3KLyyu+0YEWBnhoxQ5NTV6royOmAVas9zYOHTs3NfldDxqdpyPg0JaSv0vVbvo2Na27UaWJyjv48bLrGTMlS9cXL/u8ze0JDxL5hWYVTiWltb3QT07r2ZtduEmitL4HWHlo50NbW/3aSsAVuJaYFniSs4+raxDRPnz1ZWF8JtBXVjQH/nYqb2baitquPH4HWmARae0igRYxcK1FW3qwDn3RdThIG0cISgbY9brdH+w6f1LNjUtQvZqrZwwmL2RMaIvYdqx1Obdvr0rZunh3bDhJorS+B1h5aPdD+N/cUu7RktVubCvv2nNdXAm1tve/j9aVlLm350OWPtakL3Kqo7trtEGiNSaC1hwRaxMi1ErnrQu+dH86Ll1rMHjr0ESwTaJ0utw6Vlmva3DXqFzNVKVnrdeLUf8weVljMntAQEe0ogdb6EmjtoZ0D7aNiXwq0HY101TOB1pgEWntIoEWMXCvRGmizcpu0fJ0nrEnpBFqILqYG2ubmFn157ltlLHtPT7yQoPHTF2vXgeO69+tDM4fVJcye0BAR7SiB1voSaO0hgdb69uVAG6kEWmMSaO0hgRYxcq1Ea6At2O7V/sPhTcvqXqB1/FyrV5Ky9cQLCRr+6jx9dvpr/7H3Cos1aGyKnn5ppt5cs9V/riSX26O52e/qbyOTNHhcqnYdOO7/nnHT3tTjg+L0+HPxevy5eD390szu3SHQ65gWaFdu+FB/f3mWYiak6d8Fe3Wl5qZZQ+kWZk9oiIh2lEBrfQm09pBAa30JtMESaI1JoLWHBFrEyLUSvR1oR8RmaMvuErW0tOiLM1XqFzNVjU63zlReUMyENNXdadDDRqfi5uSqcF+pJGn95n2avTBPTpdbNTfqNGD0LH3/4zVJ0tBX5uqHn2qidn9A72NaoH1sQKz++mKS/jF1kUbHL9CouPkhtTpmT2iIiHaUQGt9CbT2kEBrfQm0wRJojUmgtYcEWsTItRK9GWibvF7tOnBcniav/7InXkjQlZqbWrxmqzZuL/JffvxUpSYm50iSRkx8Q19/62gb8/odWr95nyTpmVHJunGbM5bZGdMC7aHSckNaHbMnNEREO0qgtb4EWntIoLW+BNpgCbTGJNDaQwItYuRaid5eQduequ9+1MAxs9Xk9SpuTq6OfH7Wf+zHK9f1zKhkSdLvn41Tw70H/mMf7j+m1xe/LUn6w+DJSp7/bz390kyNipuvz7/8WmAvLHOSMLti9oSGiGhHCbTWl0BrDwm01pdAGyyB1pgEWntIoEWMXCthVqC9dv22Yiak64szVZKkCTOW6GT5N/7j12/Wq//QafI0efXYgFg5XW7/sf0lZUrKWKvm5hZlLHtPJ8ur1OT1qvTkOfWLmcqKWpth2UB779eHtngymT2hISLaUQKt9SXQ2kMCrfUl0AZLoDUmgdYeEmgRI9dKmBFoLzquasj4NB0/Vem/LD51hUpOfOX/2nG5Rn9/eZYk3wrauw33/cd2fFyq9CXvhLztSbOXqejo6YjHBr2PZQPtolXv67EBsWYPIyxmT2iIiHaUQGt9CbT2kEBrfQm0wRJojUmgtYcEWsTItRK9HWiv1t7SkPFpOld1KeDy7HXblFewz/910ZHTik9dIUkaOSlT5ZXf+Y8tWFGgd7cd1MNGV8DetJL0r8SlAaEXrI9lA+2167eDnmBWxOwJDRHRjhJorS+B1h4SaK0vgTZYAq0xCbT2kECLGLlWorcDbeysZSo5cSbo8nNV32vQ2BTduH1H9399qLFTs7Tv8ElJ0oatB5SQvkpOl1s//FSjv7yYqJ+v3dQvDb+qX0yCTp09L0k6Wf6N/jxsuurv3ov8DoFex7KB1i6YPaEhItpRAq31JdDaQwKt9SXQBkugNSaB1h4SaBEj10r0ZqC9dv22HhsQq8efiw/w6MkKSdLmnYc1cMxsPTMqWcvX71Bzs+9nuN0ezcveqL++mKTn//m69peU+W/zs9Nfa/ir89R/6DSNipuvL899G507BnoNUwPtgU/LAlbJnj5brZdey9Sgf8zR8vU75PU2mzg6Y5g9oSEi2lECrfUl0NrDRy3QVjucqqg2fxxdkUAbLIHWmARae0igRYxcK9EaaLOWN2lFnjesSXOjc5IwgFZMC7Q79x/THwdP1rEy32bIDfcfqP/QaZqb/a62fXRET780Uxu3F5k1PMOYPaEhItpRAq31JdDaw0cl0DpqGrUq3+UPIZk5HtuEWgJtsARaYxJo7SGBFjFyrURroO2qBFqIFqYF2hET39CBT9uWY+86cFzDX52nlhbfk7vkxBmNmPiGWcMzjNkTGiKiHSXQWl8CrT18VALtpkJX0BuizBx7BBECbbAEWmMSaO0hgRYxcq1EWXmzoa0NOlp3x+yRQ1/BtED7+2fjVHenwf912uINWrVhl//r2ht1evy5eDOG1iXMntAQ8dG2uNSp7XtdOnTMXnGGQGt9CbT28FEJtEtWu0OuWjF7XEYk0AZLoDUmgdYe2mk+QrSaANCGaYH2/4ZM0e36X/xfPzsmxb/dgSRdrb2lfjFTzRhalzB7QkPER9eOwWJVvn1CGoHW+hJo7SGB1vyxhZNAGyyB1pgEWntop/kI0WoCQBumBdrR8Qt0+Fi5JOlM5QX9YfBkPXjo9B//5DhbHCAidmZpWfDHfeOTPSqrsEekIdBaXwKtPXxUAm1ZhTNovtu21x7PTQJtsARaYxJo7SGBFjFyAaAN0wLt7qITeuKFBKVkrddTw2do+fod/mMV33yvQWNTtGHrAbOGZxizJzREtL/VDqccNV37ntY3tx3dU2yPYPGoBNpqh31/v0cx0Nrx8XpUAm1tvS/S5hW4tTLfpeJS+/y+BNpgCbTGJNDaQwItYuQCQBumBVpJ2nf4pN7I2ajNOw/L42nyX565fJPmZr8rT5PXxNEZw+wJDRHta7XDqcycyLYoCLWaLD7ZPmc17+uBtn1AT13ots3j0t5HKdC2PwFVZo59Xke19Y9WoLWrBNpgCbTGJNDaQwItYuRaibLyZh34pOtykjCIFqYG2s7wepvNHoJhzJ7QENG+ZmQHB9aufGQ3r8Ad8feabV8OtKG2n0hMt98bt0cl0O4pDn68MnPs83gRaK1vXwm0pWUubSp0afteV7dXmxNojUmgtYcEWsTItRK565pCLoAJ58VLLWYPHfoIpgfa6ouX9dbGPUp9822lL3lHG7Ye0M/Xbpo9LMOYPaEhon0N9R/4Jau79ga+orpRxaVOW634q63v24G2Yzi32/7ArT4qgbazk0/ZZbsDAq317QuBtuO2Oonp3VtpTqA1JoHWHhJoESPXSrQG2qzcJi1f5wlrUjqBFqKLqYF29Tu79NiAWI2clKk5i/I1e2GenhuXqt8NnKSN24vMHJphzJ7QENF+VjucWpUfeg/ZrgZau9qXA237j8vbcfuJVu0WaPcU+1b2HTrWtefUyk5ei13dF9os7RhoyyqcKj3V/VWYdrEvBNpQr5GVXdiWp6MEWmMSaO0hgRYxcq1Ea6At2O7V/sPhTcvqXqB1/FyrV5Ky9cQLCRr+6jx9dvpr/7H3Cos1aGyKnn5ppt5cs1VN3rbtP7+79LOGjE/Tkrc+CLi9q7W3FDtrmZ4cNl2j4xfoXNWlyO4IMA3TAu2Rz8/q8UFxOnHqPwGXNze3aOf+Y/qfv0/S0ZMVJo3OOGZPaIhoLx01jUpdGHrFnh1XWUZqXw601Q6nEtPsH97tFGg7bheSV2D8/g61n/OmQuv/zq3aIdC2fjT+/V0uZeW2zX+J6R6Vltnnvo5UuwdaR010PvHRXgKtMQm09pBAixi5VqK3A+2I2Axt2V2ilpYWfXGmSv1ipqrR6daZyguKmZCmujsNetjoVNycXBXuK5UkVZ6/pNHxC5S+9J2gQDsxOUdbdpfI623WyfIqDRg9yxbndYI2TAu0cSm5yl2/o9Pjy9fv0CtJS3txRJFh9oSGiPay4/6kcTN9vrHU3WNxNi2r8yCMwf4YhZWTFdW+lZlLVru1ba/LNqsxA56rNgm0xaWhT5jXlddTWYUz4PEy+3fqilYPtO0/Gh83M/hxsuP+zF3V7oG2tr5RqQuC/zvSnT9kEGiNSaC1hwRaxMi1Er0ZaJu8Xu06cDwgoD7xQoKu1NzU4jVbAz5RfvxUpSYm50iSrtTc1MNGpzZsPRAQaOvv3lO/mISAlbYvT16oM5UXIrkrwCRMC7RPDpuuim++7/T4hR+u6E/PT+nFEUWG2RMaItrLzmLSnuL//ubLURP40flNhcajH4G29wNtX9Augbbj3pitFpdaM1hGW6sH2vaPSahA29WYbsQlq92WMjPb9xjNSDd/LB19b3v413e1w6kDR5ya/nrbY7Zktbtbf3gi0BqTQGsPCbSIkWslensFbXuqvvtRA8fMVpPXq7g5uTry+Vn/sR+vXNczo5IDrt8x0J6ruqSRkzIDrjNnUb52HTzR7bFB72FaoH1sQKxqb9R1evzG7Tt6bEBs7w0oQsye0BDRXob6+Ht8cvgTEoXa19To6qXWQLvxA94I/zenphBo22uXQBtqi4L4ZPvt+RupVg60nX00vqPR/rlm/5HHToZb1dv+j4pxyR4tW+uOymuLQGtMAq09JNAiRq6VMCvQXrt+WzET0vXFmSpJ0oQZS3Sy/Bv/8es369V/6LSA7+kYaE+dPa9xCYsCrpO5fJO27i7p1tigdzE10N64fafT4wRaROyrllU4/R8XTUwztgdjqI+XGv1oMIHWmATaQO0SaGvrG5VXEPj6sNs2Bd3RyoG2tj5w7opL9ii+wyracJ8eiMTW287b5MJObH3e/LdAW+0I/cePaKxOJ9Aak0BrDwm0iJFrJcwItBcdVzVkfJqOn6r0XxafukIlJ77yf+24XKO/vzwr4Ps6BtrK85c0IjYj4DopWeu1p+iziMcGvY+pgTYuJVfT5q4JaVxKLoEWEfE3QwXa1AXG9jMk0BqTQBuonQJtbb1v39/SMtcjs3K2VasH2orqxoBPDSxa6db7u1zattfVY/tuE5XCm7cp/L64HfdMj+YfQAi0xiTQ2kMCLWLkWoneDrRXa29pyPg0nau6FHB59rptyivY5/+66MhpxaeuCLhOx0B7t+G+/vT8FDU63f7LYiakqfJ84G2DtTEt0C5a9b4hrY7ZExoiPhqG2mfT6JtkAq0xCbSB2i3QPqpaPdDW1vu2OiircPZYkO0oUSm8RgJtRXXo7SKiseqZQGtMAq09JNAiRq6V6O1AGztrmUpOnAm6/FzV9xo0NkU3bt/R/V8fauzULO07fDLgOh0DrSTFpeRqw9YD8nqbVXT0tAaPS5XX2xzR2MAcTAu0ViNz+SY9/lx8m4Pi9OIk3xLxq7W3FDtrmZ4cNl2j4xcE/IXD7AkNER8d9xS7lJHtUUZ211YwEWiNSaANlEBrD+0QaHtbolJ4jQTa2vrg7UMysqMToQi0xiTQ2kMCLWLkWoneDLTXrt/WYwNiAxvUc/E6erJCkrR552ENHDNbz4xK1vL1O9Tc7PsZy/IK9fhz8frfZ1/T7wZO0uPPxWvpWl+orblRp4nJOfrzsOkaMyVL1RcvR+2+gd6BQNsJa9/7SPlb9kuSJibnaMvuEnm9zTpZXqUBo2fJ0+SVRKBFxOjpqPFFsbIKZ7fOjt1RAq0xCbSBEmjtIYE2WKJSeI0G2tp634nCtu11aU+xK2r/bSLQGpNAaw8JtIiRayVaA23W8iatyPOGNWludE4SBtCKaYF26CtzDWkGV2tv6YV/pcvpcqv+7j31i0lQk9frP/7y5IU6U3lBEoEWEaNjRXWjEtPb7S+70K1qR3SCC4HWmATaQAm09pBAGyxRKbxdCbQ9IYHWmARae0igRYxcK9EaaLsqgRaihWmBdvPOw4Y0g4xl72nXgeOSpHNVlzRyUmbA8TmL8rXr4AlJBFpEjI6hTgK2Mj86b8gItMb8b4HWUdOo7XtdWpXv0keHHo1gSaC1hwTaYIlK4SXQ2kMCrT0k0CJGrpUoK282tLVBR+vumD1y6CtYeouD2ht1vf4zb9y+o4FjZsvl9kiSTp09r3EJiwKuk7l8k7buLpEkNTzwIOIj6r0oGuqvsWkLPbr/sKnbzl3ku733d3q06wB2ZmugvVUfeP/drG/y7zHV6tp3ovPYWNlTZ32rCNZssObverO+SWvfaXtMtu6y5jh72pV5vt//zH/MH4tVbH1OmD2nWNl3tvjup5w15rxudh/wPUbZb5l/X1jZrFzf/XT4mIVeS/vd2MHW+ynSfwOa/e9ZRDMFgDYsF2jdbo8OHytXfOoKPTYgttd//uadh/Xmmq3+ryvPX9KI2IyA66Rkrdeeos8kSb82ehDxEfV+FE1bGBxo33onOrfdFmjd2nUAO9MfaO8E3n9FR0IH9O8c0X0OWM1TFZ62QGuB8XT0rXeCH5PdB80fV2+7cn1roDV/LFaxLSqZP69Y1Xe2+O6jnLfMeYx2H2wNtObfF1bWH2iP81qysq33U6T3s9n/nkU0UwBowzKB9qLjqrLXbddTw2foiRcSlLXyfVV992Ovj+PVmdn6/Muv/V/fbbivPz0/RY1Ot/+ymAlpqjx/SRJbHCBidCwtcwWEpsQ0jyqqfSdnWbrarVX5vpOHRXLbbHFgzPZbHDhqGrWp0KWlq93Kyg3efiI+2RPx42EXrb7FQajHJDPH+EdM9xT7Ht+8Arcqqo19z6q3XSF/Lob21LnuvUbKKpxale97nA4dM35brT/f7DnFyrLFgT1kiwN72Ho/mfEYIdpdAGjD1ED764NG7TpwXP+Yuki/GzhJU15fqd8/GyfHz7WmjalfTIJqOmytEJeSqw1bD8jrbVbR0dMaPC5VXm+zJAItIkbPimrfm9Zte12qdjj9b2DbW1rW9TdpBFpjtgbabx2NSl3YLsrODB2fonUSN6tqx0C7ZLWx2LQyv8MfRNKNPZ4E2t4LtGUVzqDb21Ro7LlIVAovgdYeEmjtIYEWMXIBoA3TAu287I360/NTNCpuvt7/8BPV3WmQJP3fkCm6UnPTlDE9eOjUYwNi/fvPtlJzo04Tk3P052HTNWZKlqovXvYfM3tCQ8S+a2Ja5AGqvQRaY7YG2o8/CQ5DATEvzaPi0r4dZ2vrrR9oNxUGx1Ijj0u1I/TjayT+tQbaNRt4Lf03U+a7ux1oO0b0rgQQolJ4CbT2kEBrDwm0iJFrJcrKm3Xgk67LScIgWpgWaB8bEKs5i/J16adrAZebGWgjwewJDRH7rqHiROoCAm1P2Rpod+4PHYa27nGrrMIpR435z43e0OqBtrbeF3kysn1/uNhTHDjOzh6nUCsz45M9WplPoI2W0Qi0S1aH3lrEyEpnolJ4CbT2kEBrDwm0iJFrJXLXNYX8t0c4L15qMXvo0EcwLdCe/fqi0pe+oz8OnuxfRXu7/hcCLSLib4YKFEY/4tteAq0xWwPtuW9DB7y+vqVBR+0QaENZUR24RcX2vcHjD7U63cjqWwKtMaMRaENt8ZKRzQraaEmgtYcEWntIoEWMXCvRGmizcpu0fJ0nrEnpBFqILqafJOzerw+1fe9RjYqbr98NnKTHBsRq5/5jcrvtcUY/syc0ROy7VjucysgOXOEXyepNAq0x258krLjU6Y94j8qWBh21a6BNXRD8h42OezdXVAdez+gfPgi0xoxGoK2tD9zmICPbY/hkbkSl8BJo7SGB1h4SaBEj10q0BtqC7V7tPxzetKzuBVrHz7V6JSlbT7yQoOGvztNnp9tOVv9eYbEGjU3R0y/N1JtrtqrJ6/Uf++7SzxoyPk1L3vog4PbGTXtTjw+K0+PPxevx5+L19EszI7sjwDRMD7Ttqbrwk7JWvq9+MQl6avgMZa/bbvaQwmL2hIaIfd9qR/c+Vk+gNWb7QNt635VVPHphtlU7BtrOti/IKwgdoSqqO98KIZQEWmMaDbR7il1ale/SpkJXpyvUHTWNXV69TlQKL4HWHhJo7SGBFjFyrURvB9oRsRnasrtELS0t+uJMlfrFTFWj060zlRcUMyFNdXca9LDRqbg5uSrcVypJqjx/SaPjFyh96TtBgXboK3P1w0813b4fwDwsFWhbedjo0t5Dn2v89MVmDyUsZk9oiIjhJNAaM1SgfZS1Y6CtqA69d3MkW4OEkkBrTCOBtuNJwBLTo7eNCFEpvJ0FWkdNoz465NL2vS4dOtZzf6Ai0BqTQGsPCbSIkWslejPQNnm92nXguDxNbStjn3ghQVdqbmrxmq3auL3If/nxU5WamJwjSbpSc1MPG53asPVAUKB9ZlSybtzmjGV2xpKB1k6YPaEhIoaTQGtMAm2gdgy0tfWh9242+tH4cBJojRku0HYW0reF2C84EolK4Q0VaB01jcrMMbb6vLsSaI1JoLWHBFrEyLUSvb2Ctj1V3/2ogWNmq8nrVdycXB35/Kz/2I9XruuZUckB1w8VaP8weLKS5/9bT780U6Pi5uvzL78W2AvLBtqDn57S/NwCs4cRFrMnNETEcBJojUmgDdSugdZR06hNhS4tWe3WynxXHL6DvwAAIABJREFU1OJsbT2B1qjhAm1Xt6LoqkSl8IYKtHuKg0/MFs0/cLSXQGtMAq09JNAiRq6VMCvQXrt+WzET0vXFmSpJ0oQZS3Sy/Bv/8es369V/6LSA7+kYaJubW5Sx7D2dLK9Sk9er0pPn1C9mKitqbYZlA+32vUc05fWVZg8jLGZPaIiI4STQGpNAG6hdA21PSqA1ZrhA66hp9J+Er73ROhkfUSm8oQLtpsLQgbYn9uIm0BqTQGsPCbSIkWslzAi0Fx1XNWR8mo6fqvRfFp+6QiUnvvJ/7bhco7+/PCvg+0KtoO3IpNnLVHT0dMRjg97HsoHWLpg9oSEihpNAa0wCbaAE2mAJtMY0sgdtWYUzINJGa5/g2nqikhFDBdri0tArm6O1N3B7CbTGJNDaQwItYuRaid4OtFdrb2nI+DSdq7oUcHn2um3KK9jn/7royGnFp64IuE7HQPuw0aWvv3UEXOdfiUsDQi9YH0sE2ubmFtXdaVDNjbogrY7ZExoiYjgJtMYk0AZKoA2WQGtMI4G21bIKpxxRfs0RlcLb2UnC8goC93CO1qrmjhJojUmgtYcEWsTItRK9HWhjZy1TyYkzQZefq/peg8am6MbtO7r/60ONnZqlfYdPBlynY6D9peFX9YtJ0Kmz5yVJJ8u/0Z+HTVf93XsRjQ3MwfRA+8nxM3pqxAw9NiA2pFbH7AkNETGcBFpjEmgDJdAGS6A1ZlcCbU9IVApvZ4G2tt53ErfSMlePrJxtlUBrTKOBtrTMpe17XTp0LLqPGa8lYxJoESPXSvRmoL12/bYeGxCrx5+LD/DoyQpJ0uadhzVwzGw9MypZy9fvUHOz72csyyvU48/F63+ffU2/GzhJjz8Xr6VrfaH2s9Nfa/ir89R/6DSNipuvL899G707B3oF0wPt0y/N1Nr3PtLlqzd04/adIK2O2RMaImI4CbTGJNAGSqANlkBrTAKt9f1vgbY3JNAa00ig7bjqOTMneqGQ15IxCbSIkWslWgNt1vImrcjzhjVpbnROEgbQiumB9g+DJ+tho8vsYUSM2RMaImI4CbTGJNAGSqANlkBrzO4E2uJSp/IK3Nq+1xXx1gdEpfASaO1huEBbUd0YEGc54Z45EmgRI9dKtAbarkqghWhheqCdtSBPZV+dN3sYEWP2hIaIGE4CrTEJtIESaIMl0Boz0kC7qdAV8IYnMT2yE1QRlcJLoLWH4QJtZyd227Y3OvM2ryVjEmgRI9dKlJU3G9raoKN11v/gN9gEUwLt5p2H/W7YekDPjUvVotVbVLDzUMCxzTsPmzG8LmH2hIaIGE4CrTEJtIESaIMl0BozkkBb7QgdmjYVdv35R1QKL4HWHrKC1h4SaBEjFwDaMCXQjpv2pmGtjtkTGiJiOAm0xjQz0J4979TiVW5LOW+p73mTNNf8sXR0x8eRR6WyisjDBYHWmJEE2rKK0IF2ZT6Btick0NpDI3vQtt6XreYVRO8x5bVkTAItYuQCQBumb3Hg+Lk25OUut0cV33zfy6PpOmZPaIiI4STQGtPMQHvyK1fIOIWhXbex69GuuNSpxPS229hT3PXbINAaM9ItDhLTgh/rSB4nolJ4CbT20Eigra33raTdU+xSRXV0HydeS8Yk0CJGLgC0YXqg/b8hU0Jefrfhvv70fOhjVsLsCQ0RMZwEWmNaIdDOynArb5MLO3HxSldEgbazj893dTUtgdaYkQba0jJXQKSNZPVsbT1RyYgEWntoNND2lLyWjEmgRYxcAGjDtEC76+AJjZmSpf/5+ySNmZIV5N9fnqUh49PMGp5hzJ7QEBHDSaA1ZrQCraOmUR8dcmn7XpfhAHjyK98bvNSFbtPvByvbGkjXvhsYlSqqfR+R7+yEUtE6kQ6B1piRBtrW109ZhbNbKwGJSuEl0NpDAq09JNAiRi4AtGFaoG10unXq7Hk9PihOW3eXBLnr4Aldv2X90+GZPaEhIoaTQGvMaATaakfgx+jjk42drIVAa8xQgXZToSvs/d3Z/qZd/fg8gdaY3Qm00ZCoFF4CrT0k0NpDAi1i5AJAG6ZvcXD6bLXZQ+gWZk9oiGhfS8tc/piXmO5RaVnPvAEj0BozGoE2r8AdFAET08O/aSPQGrNjoO1sZWyolbQZ2YHXSV3glqOLjzWB1pgEWutLoLWHBFp7SKBFjFwAaMOUQLt971HdvH3X////m1bH7AkNEe1pqD0xE9NDh6XuSqA1ZjQC7ZLVwYE2PtkT9uPaBFpjdgy0Hc9e3mqoP3Y4anzXX7LarU2Fri7H2dp6Aq1RCbTWl0BrDwm09pBAixi5ANCGKYF2VNx8nb/4k////zetjtkTGiLa087CkpGPw3dVAq0xoxFoO37cPj7Zo8Q0VtBGy46Bdk9x6NdRtM9k3iqB1pgEWutLoLWHBFp7SKBFjFwAaMP0LQ6+PPet3G6P2cOIGLMnNES0p52FpZ7Y5oBAa8xoBFpHTeBH6RPTjD2mBFpjdgy0He/v+GSP8gp6LjgRaI1JoLW+BFp7SKC1hwRaxMgFgDZMD7RPDZ+hPw6erPjUFXqvsFjVFy+rubnF7GEZxuwJDRHtqaOmUYlp3d8T04gEWmNGI9C2WlbhVHGp0/CWFQRaY4Y6SZijxvcHj02Frh5Zgd5eAq0xCbTWl0BrDwm09pBAixi5ANCG6YG2paVFl366pp37j+n1xW9r4JjZemr4DM1akKed+4+ZPbywmD2hIaJ9rXY4tTLftyfmynxXj+w/W1tPoDVqNANtVyXQGjNUoO1NCbTGJNBaXwKtPSTQ2kMCLWLkAkAbpgfajjxsdGpP0Wca/uo8PTYg1uzhhMXsCQ0RMZwEWmMSaK0vgdYeEmitL4HWHhJo7SGBFjFyAaAN0wNt/d17OvL5WS3LK9TYqVl6avgMxaeu0PrN+1T21XmzhxcWsyc0RMRwEmiNSaC1vgRae0igtb4EWntIoLWHBFrEyAWANkwPtI8NiNXwV+fp/Q8/0UXHVVvtPysRaBHR+hJojUmgtb4EWntIoLW+BFp7SKC1hwRaxMgFgDZMD7TvFRYrIX2VnhoxQ+OmvakV+Tt17Itz+qXh114fS3nldxr6ylz1i5mqhPTVuvfrQ0nS1dpbip21TE8Om67R8Qt0ruqS/3vMntAQEcNJoDUmgdb6EmjtIYHW+hJo7SGB1h4SaBEjFwDaMD3QtuL1Nuv8xZ/0/q5PNOONt/TUiBkaMfGNXvv5Dfcf6OmXZupM5QW53B5lr9umD387SdnE5Bxt2V0ir7dZJ8urNGD0LHmavJIItIhofQm0xiTQWl8CrT0k0FpfAq09JNDaQwItYuQCQBuWCbQPG10qr/xOG7Ye0NS0Vfrri0ka/uq8Xvv5+w6f1OuL3w66vP7uPfWLSVCT1+u/7OXJC3Wm8oIkAi0iWl8CrTEJtNaXQGsPCbTWl0BrDwm09pBAixi5ANCG6YE2e912jZ2apf999jUNHpeq+bkFKjp6WnV3Gnp1HDn/3q7Fa7Yqbk6unhuXqnnZG/Xrg0adq7qkkZMyA647Z1G+dh08IYlAi4jWl0BrTAKt9SXQ2kMCrfUl0NpDAq09JNAiRi4AtGF6oE1f+o72HvpctTfqTB3HGzkbFfP/27v396jKQ+3j/497v9u2213r3m3prtKiFLX2wK5thRIoQjQIMVETA2hIQEMUDEHFxENDaiHEqgSLGoqlwaIOaGEUxVGrTaRKVDwwpyTc7w/DZDGZFeaZA3nWM/l+r+tzXZWDLDLMsrlZWevaGn340SeKJ5Ja1tCmpo1d2v/KEc1dvDrjx9av69Bj23dLkqLxUQAItFtWpz5xePTxpHqexmQWnxloP/ls6l+jQ0dGVVGVVO0q+x+HINu4JfUabX54xMp7Kf3rb3rI/sciyKpXpj5Oh9+w8zqlxxLbH4cge/CxEVVUJbX23qSV12jHztSv37zB/sciyFbfnfqz/Oxe3ktBlv442XiNANcRkZf1gTYoNW3cqrVt3eP/HPr7W7pyfp0OHTmmOfPqMn7s8lWb1LPzBUnSp18mACDQas8MtJ2/T+jxJzGZ9BW0H3489a/RgVdTV0nVrEpa/zgE2b0Ppj5ObR1JK++lex9I/fobt/A6ncuKhtR7KXTEzjkvPZbY/jgE2eZHUh+jpnvsvEZ/eDL1Oq251/7HIshW3pV6nfr6eS8FWfrjZOM1AlxHRF6BHWjv6+zVD39RM2W/3mPbd+u25i3j/xz6+1u6pqJBn578Qt/4wSJFY97JY9a1NTp05JgkbnEAIPi4xYEZbnEQfNziwA3c4iD4uMWBG7jFgRu4xQFQOCLyCuxA+9eXDmvL1p1T9uud+OSkLpmzVG9GPlByZFTLV7Xr7s2PS5IWLL9L9z/2lEZHx7Tz+Rc1c261RkfHJDHQAgg+BlozDLTBx0DrBgba4GOgdQMDrRsYaIHCEZGX9YH221fdoE8++8L2YUiSXnjxNV36s+X6nytv0M13btZXp2KSpMHjJ3RdVbMunr1EP120SuE33xv/ObZPaACQCwOtGQba4GOgdQMDbfDlM9B2dMfHP6ZrWhOKlOAcyUBrhoHWDQy0QOGIyMv6QFt52wZ1P9Fv+zAKzvYJDQByYaA1w0AbfAy0bmCgDT7TgTY9pJ5tfXvxYyEDrZlSDLShMO+l842BFigcEXlZH2hva96i71x9o2ZdW6OF1S26/pZ7MgQ92yc0AMiFgdYMA23wMdC6gYE2+EwH2rqmZNZAW4ohioHWTDED7dnjemVtUgOh/N+PvJfMMNAChSMiL+sD7bpNv1frA9smFfRsn9AAIBcGWjMMtMHHQOsGBtrgMx1oG1sTRgNtX39M69vj2tobVziS+3VnoDVT6EDbP5B95XNlbTLv21PwXjLDQAsUjoi8rA+0rmf7hAYAuTDQmmGgDT4GWjcw0Aaf6UDrN/R1dGeOhW2diawhMNdIy0BrptCB1u/WFBVV+V9Fy3vJDAMtUDgi8grEQPv+4Efa9PATurVpiyRpbOy0Xn71qOWjMsv2CQ0AcmGgNcNAG3wMtG5goA2+fB4S1j8QV2NrQnVNSXX1Zg6F4UjMdwic+OMmYqA1w0DrBgZaoHBE5GV9oN3/yhFdeFmFFt3cogtmzJMkDR0/oW9ecb2eenbA7sEZZPuEBgC5MNCaYaANPgZaNzDQBl+ugTYUjqqjO66O7vg5R72BkP9A25LjQWJdO1I/r64pobaOOCZRe0fqdXry2fwG2shgVJU1ma9JY2v+503eS2YYaIHCEZGX9YH2R7++VX/ef0iSxgdaSXrp0FFdOb/O0lGZZ/uEBgC5MNCaYaANPgZaNzDQBt+5Blq/0bWv3/+19BsCz/Xj0ya7whP+CnlIWDgSU1tnQo2tCXX1xvO+/yzvJXMMtEDhiMjL+kD7tZkLNTo6JilzoE2OjOrrMxdaOirzbJ/QACAXBlozDLTBF5SBtvEervo7l6rbUuecF19loA2qcw20fg8Gq6ydfHwaCMUyRtq2ztzvz64dqXNeZU1CK27HZJZUJwq6gpb30tRioAUKR0Re1gfaWdfW6Ojb70vKHGj/vP+QLptbbemozLN9QgOAXG5emfoE76Y6+59sBln6E6x3P5z6UYmB1kxQBlqY4Qra4DrXQFvdkD3Q5hqfIoOpoTbXw8HSuAetmULvQct7aWox0AKFIyIv6wPt9p179Z2rb9TGjh26YMY8/a7nWdWv69DXZi5U9xP9tg8vZ7ZPaACQS/oKWpjhCtrgCspAe+Ot9v9CIcgWL+cK2qA710Db1pn934xC7l96Lgy0Zhho3cBACxSOiLysD7SS1Nf/N/3mpnW69OcrNPvXt2rJrfdo34G/2z4so2yf0AAgl/QVtOs32//S5yBbdFPqEyyuoA2uoAy03IP23LgHbfBNHGgjg1Gtb09924KqpJbe7I2z1Q0JhcKlfY0YaM0w0LqBgRYoHBF5BWKgdTnbJzQAyIV70JrhHrTBx0DrBgba4Js40PpdNXvP5oQGQud+DUNhb9itb07m/PFpDLRmGGjdwEALFI6IvKwPtPFEUpsefkLXVDTo21fdoO/+uEo/++0qPdj1tJIjo7YPL2e2T2gAkAsDrRkG2uBjoHUDA23wTRxoz37IV9q5Hgw2NJy66rayNvvnmNyHloHWDAOtGxhogcIRkZf1gbb6js26cn6dtmzdqSd3D+iJZ/aprfMJXfqz5bql6UHbh5cz2yc0AMiFgdYMA23wMdC64VwD7UAopoFQTJHz+D5jVMpt4kDr92Cw6oZzv8/6+mNZP6eiKqmevtxjIgOtGQZaNzDQAoUjIi/rA+23Zi/RqWgs69vfH/xIX5u50MIR5ZftExoA5MJAa8ZkoA2Fo9raG1dHd9z4S3lNMNCaYaB1g99AGxmMak2rNwJW1ibVP3B+RidGpdwmDrTpwTSfoZWB9vwLykDb1hnHOTDQAoUjIi/rA+2ceXW+334qGtOlP1s+xUeTf7ZPaACQCwOtmVwD7UAoe4zo6y/NSMtAa4aB1g1+A21PX/YAmOtL6AvFQJvbxIE2/Ro1tibU2JoYH1lD4ah27PL/C6nIYPatESpruMVBKQVloIUZG68R4Doi8rI+0G7tfU6tD2zTZye/HP+2f338qRru7tQf//RXi0dmlu0TGgDkwkBrJtdA29ia/SXApRqYGGjNMNC6wW+g9Xv/VFQlFQqX/nVioM3Nb6CdaOJVtevbs0fCUDiqljMPCatr4iFhpRaUgXbF7QmcAwMtUDgi8rI+0F42t1r/8f0FumDGPP3X5Yv19ZkLdcGMefrazIX67ysrdcmcpeOCmO0TGgDkwkBrJtdAW9d0/q6YYaA1w0DrBr+Btq3Tf6A9H/eiZaDNLddAGwr7Xz1Zqq8aYKA1E5SB1vbHIegYaIHCEZGX9YF2996X1b/voJEgZvuEBgC5MNCayTXQ+g1MdU0MtFOJgdYNfgNtOBLL+nL4rl7uQWtLroF2svvLluo1Y6A1w0DrBgZaoHBE5GV9oE2XTI7onx9+bPsw8s72CQ0AcmGgNZNroI0MZl5FW92QKNmXZzPQmmGgdYPfQJt+D3Wdecje+XpA2NAwo5KJYq+g7R+Iq60zoa29caN7zk7EQGuGgdYNDLRA4YjIy/pAG40lVLf2ofHbHEjSJ599ofk3rdWJT07aPTiDbJ/QACAXBlozuQbatIFQTAOhWEm/NJuB1gwDrRsmG2inCqNSbib3oJ34VQPprxiYeG/aytr87yXMQGuGgdYNDLRA4YjIy/pAW7+uQ7+tWa/XXo+MD7SnonHd0vSgqu/YbPfgDLJ9QgOAXBhozZgOtOcDA60ZBlo3MNAGn99AOxCKaX17XGtaE9q1Jzb+bV298Yx7z/pdWdvi8wCxc2GgNcNA6wYGWqBwRORlfaD95hXX69OTX0jS+EArSZ9/eUrfvuoGS0dlnu0TGgDkwkBrhoE2+Bho3cBAG3wTB9qBUPY9Zzu6s0fBcMT/3rSNrfm9JxlozTDQuoGBFigcEXlZH2gv+dFSxRNJSZkD7SeffaH//OEiS0dlnu0TGgDkwkBrhoE2+Bho3RCUgbatM45JrN2YyBhoG1uzH4I42eBU3ZD9Y/N9eBgDrRkGWjcw0AKFIyIv6wPtDXUb1HzfVsXiifGB9sN/DWvpbffq+lvusXtwBtk+oQFALgy0Zhhog4+B1g1BGWiRW66B1u9e26FwVJU1mVfP5ntPbgZaM4UMtOn7pBfy8LbJ3ku2Pw5Bx0ALFI6IvKwPtB9+9Il+9Otbxx8SdvHsJbpgxjzNvf4ODR0/Yfvwcmb7hAYAuTDQmil0oI0MRrW+3Xtozvr2eN5jBQOtGQZaNwRloF1xewKTqLot8wraiQ/+qqjyHgo22XlvIBTL++FgaQy0ZvIZaCODUa05a2ivrE1m3Du4mPeS7Y9D0DHQAoUjIi/rA60kjY6OKfT3t/TEM/v0zJ4DCr/5nu1DMs72CQ0AcmGgNVPoQNvRnT1stHXmNyAy0JphoHVDUAZa2x+HIPN7SFjLWX/RVNeULHh8NcFAayafgbanL/u/RZW1xY2GvJfMMNAChSMir8AMtC8dOqonntk3/m1ffuXGm9X2CQ0AcmGgNVPoQOt3P8Z8P1FjoDXDQOsGBtrg8xtoh4ZTV2GW4kvjc2GgNZPPQDvZbSoGQoW/nryXzDDQAoUjIi/rA+0/P/xYP/xFjf7zh4vG70E7ePyELp69RIffeMfuwRlk+4QGALkw0JopdKCta8r+hLiyhoH2fGCgdQMDbfBNNtBOFQZaM/kMtH5fzTHZfYR5L5UWAy1QOCLysj7Qzlu2Vhs7dmh0dGx8oJWkrb3P6bqq5ik7jn0HDuvfvjdfF15WMW5r7/OSpA+GPtK8ZWv1rdlLdE1Fgw4ePjb+82yf0AAgFwZaM4UOtH5fVprvE80ZaM0w0LqBgTb4GGjdkO89aM9+eFsh/y3ivVQYBlqgcETkZX2g/frMhYonkpKUMdAmR0b1X5cvnrLj2NV/QDetbPP9vuuqmvXo9t0aHR3TvgOHNeOaZUqOjEpioAVQWumnL5fy38lAa2biQNvTF1d9c2o07ej2Hvzl9xr19cfU2JpQY2tCPX35f0LMQGvGdKAt9gFGk2GgNWMy0IbCUdU3e/fJ3FrkkHQ2RqXcGGjdkM9Amz73dfXG1dUbV/9A8e8p3ktmGGiBwhGRl/WBdsY1y3Tik5OSMgfaY+/+U/99ZeWUHce2p/6s2+/qzPr24U8/10WzFmtkdHT8236ycKVeOnRUEgMtgNIIhaOqXundP66+OVmy+wAy0Jo5e6D1uyp27YZExmtUvTJRsteIgdaMyUDbPxBXZa33uq1vL93wx0BrxmSg9bt3cykGpaFhRiUTDLRuyHegLTXeS2YYaIHCEZGX9YF23abf69c3Nulvodd1wYx5Ovr2+3rq2QH98Bc1uvOex6bsOB7q7tPPfrtKV82v13d/XKX6dR366lRMBw8f01Xz6zN+7IrV7dr29F5JDLQASsPv4R4tJRqWGGjNnD3QTvawlfP1Gu17OTVWLKtLqK0jjknc2ZL6OG3cMvnHfeKX+FZUJQu6qtkPA62ZXANtKBz1fT+1dZZmLGRUys10oA2Fo9q1p/RXozPQmmGgdQMDLVA4IvKyPtDG4gmtanlEX5u5UBfMmKcLZszTRbMWa/3928ZvfTAVPfeXV3Tvlh59dvJLffLZF1qw4i41bezS/leOaO7i1Rk/tn5dhx7bvluSNDI6BgBF8xsrbrglWZJ/9613nPkEa9uInujDZBafGWi/+HJM6zaOGA20FVWleY0OvzFq/OshqQceGfH9OL7+pv/Hcd1G/x+fr7aHUn8uNnfa//MaZDevTH3c33hr1Pfj+M77/q9TR1dpXqf0v8/2xyHIOn6X+rO8bsPk57COrpHz8vqMjI7piV1nfv2NvE7ncsfdZ64u/4v/e+l8471kppT/fwCYbojIy/pAe/r0aUlSMjmiweMnxm93IEmnojFbh6VXXntTs66t1aEjxzRnXl3G9y1ftUk9O1+QJH30WRwAinZzQ/ZYsaY1WZJ/d/oK2oe2JtT9RByTSF9B+/6HcT3xTPYVtEt9rsysbyrNa7T/YOrXW7wioeoGTObGW1Mfp/seSvh+HP9x3P8p5p2/9//x+Wq9P/Xrb3iQ99K5rDhzPjvw2uQfyzWt2a/Tq0dLcz5N//tsfxyCrP3h1J/lxlb/98arR/3fS6V6jbqfOPPr38N76Vwa1qU+Tk89W5pzGO+l8yP9cbLxGgGuIyIv6wPt8lWbfK+UPXj4Lc2cWz1lxxF5b1Afnfhs/J9ffCWsOfPq9OnJL/SNHyxSNJYY/75Z19bo0JFjkrjFAYDS6B/I/mS4VA8L4xYHZiY+JKyrNz7+5fJtnQk98+fs1yh9z8yuXu++p2taE+MPFDPFPWjNmNyDtqM783WqrCnd/Zy5xYEZk3vQRgZTr1VdU2okLOXDEdOvve2PQ5DlusVB+hYEE3WV6GFu3OLATClucRCOxNTWmdCa1oS29sbz+u8T7yUz6Y9Tqc5hwHRCRF7WB9oFK+7SLyvX6LOTX0pKXUnb+sA2XXjpAm14aMeUHcf6+7dpce16nYrG9OVXUS26uUWtD2xLHePyu3T/Y09pdHRMO59/UTPnVmv0zOX4tk9oAMrHQCimju64OrrjJb3fHwOtmYkDrZ9QOJr1GvX1x7JGjDWt+d1Lk4HWjMlAOzSc+guPts6EuvIcI3JhoDVjMtCeSygcLeocyKiUW66B1u8vDc/+S6liMdCaKXagjQxGMx6aWFGVeggp76XSYqAFCkdEXtYH2pHRUd1xz2O6/Je1+vP+Q7r6N/W64le36PAb70zpcZyKxnVL04O6ZM5SfffHVVrV8sj4VbODx0/ouqpmXTx7iX66aJXCb743/vNsn9AAIBcGWjMmA62fyR4ols9Vmwy0ZkwH2vOFgdZMoQNtOBJTfXPmkFTI1c+MSrmZPCSspT1zpC3VQxGHhhloTRU70Pb0+Q/tples814yw0ALFI6IvKwPtOm29j6nf//f+bqhfqNi8UTunxCQbJ/QACAXBlozhQ60E0eMtHyu3GSgNcNA64ZCB1q/91IhoyCjUm4mA+3QcOpK2q7eeMmunE1joDVT7EA72a0q+voZaEuJgRYoHBF5WRlot/Y+76vytg265EdL9bueZ8e/LejZPqEBQC4MtGYKHWj9vhQ431GJgdYMA60bCh1o/YakQkYPRqXcTAfa84WB1kyxA+1AKPsWPPncl5v3khkGWqBwRORlZaD98YLbjQU92yc0AMiFgdZMoQPt0HBqpG1sTai6IaGO7vzve8pAa4aB1g2FDrR1TdnjbF0TA+35wEDrhlI8JOzs+6RX1uR3H2HeS2YYaIHCEZFXYG5x4Gq2T2gAkAsDrZliBtpiMdCaYaB1Q6EDrd/V6IV8aT2jUm6lGGgHQjENhGIF3SeYgdZMKQbatEIevMc5leZJAAAgAElEQVR7yQwDLVA4IvIKxED70qGjWtvWreWr2lV9x2bdvflxHTpyzPZhGWX7hAagvIUjMW3tjWtrb9z4oR4TMdCayXegHQh5r00hA8XZGGjNFDvQ9vWnXrMdu/K/ynlomIHWVKEDbfp91daZUFtnouBzHqNSbsUMtJHBqNac9XDEytr8h3QGWjOlHGh5L50/DLRA4YjIy/pAu2XrTn195kIturlF9es6dGvTFv36xib9v+//Ro9s+5Ptw8uZ7RMagPIVCkdVWVvYgz3OxkBrJp+B9uwvGU0PFIVcnZTGQGummIG2rTOR8ZrVN+f3ILehYQZaU8UMtKXAqJRbMQNtT1/2lc6VtfmNU107Uue8FbcndOf6OCaxrC71XnryWQbaIGOgBQpHRF7WB9pL5ixV5B9DWd++78BhfWv2EgtHlF+2T2gAypffE83z/SR4aJiB1lQ+A21lTfa9Mgt52nwaA62ZQgfaUNj/AVQ9ffm9Zgy0Zhhog6+YgbaxNeH7fsrniueuHdkPr8LkGGiDjYEWKBwReVkfaC//Za3vtycSSV3MQAtgGvN7YE4hnwAw0JoxHWgjg/5jX2Nr4fdyZKA1U8hAGxmMaofPFX8VVUl1dDPQng8MtMFXzEDb0e3/fsrnivT9oeC9h1bfnfpz23Rv8I7t5cO8l4KMgRYoHBF5WR9ob7+rUy+8+FrWt//hyT1a29Zt4Yjyy/YJDUD5mvgl2RVVSVU35P/JNAOtmXyuoK1uyH5t2joZaM+3fAfa9JdiL5jkqrR8bxnCQGuGgTb4ihlow5FY1lcRdPXaucKzlB5+PPUx2fa0+78X3ktTi4EWKBwReVkfaGsbH9CFl1Xoyvl1qrxtgxbXrtesa2v0X5cv1rKGtgxBzPYJDUD5igxmXkVbWVPYfU4ZaM3kM9CGwpm3Oahryv9+pmdjoDWTz0A78bYGC24sflBnoDXDQBt8xQy06f8+dfXG1dUbz/sBYUHFQMt7qVAMtEDhiMjL+kDbeO/v1HzfViNBzPYJDUD5GwjF1D9Q2FPnh4YZaE3lM9AODacGiv6BeMFPmj8bA62ZfAba9FPiM0baqqQe/F2i4Ae6MdCaYaANvmIH2nLEQJuN95IZBlqgcETkZX2gdT3bJzQAyIWB1ky+A20pMdCayWeg7ev3fwhRMVf7MdCaYaANPgbabAy02XgvmWGgBQpHRF7WB9qxsdPa9vReXbu0Ud/7yTJdMmep5l5/h7Y9vdf2oRll+4QGALkw0JphoA2+fO9BO/FBe3VNxX0CzUBrhoE2+BhoszHQZuO9ZIaBFigcEXlZH2jbH31S37n6Rt27pUdP7h7Qk7sHdM+D2/U/V96grb3P2z68nNk+oQFALgy0Zhhogy/fgTYymHpQWGNrQj19hd8mJI2B1gwDbfAVMtAOhGLa2hvXrj2xot9LQcRAy3upUAy0QOGIyMv6QDtzbrWOvv1+1rcfefNdzf71rRaOKL9sn9AAIBcGWjMMtMGX70Bbagy0Zhhogy/fgbajO/OezvXNxT0YMYgYaHkvFYqBFigcEXlZH2gvmvVbJUdGs749OTKqi2YttnBE+WX7hAYAuTDQmmGgDT4GWjcw0AZfPgNtOOJ/P+eevvIaMhloeS8VioEWKBwReVkfaH/+29Xq3fWXrG/fvnOvfrpo1dQfUJ7ZPqEBQC4MtGYYaIOPgdYNDLTBl89AOxDyH2hb709ofXtc9c1JrW+PKxyx83qXiusDbf9AXFt74xoIle514L1khoEWKBwReVkfaF86dFQXXlahHy+4XTV33q+b79ysq+bX68JLF2jv/ldtH17ObJ/QACAXBlozDLTBx0DrBgba4DMdaCODUTVvSPgOtJW12f/s8m0PXB5oW9ozb0HR1lmacyTvJTMMtEDhiMjL+kArSf/6+FM91N2nVS2P6LbmLbr/saf0/uC/bB+WUbZPaACQCwOtGQba4GOgdQMDbfCda6ANhaPjV8O2daZeywU3Zo6xt9zhP9r29bt7Fa2rA23/QNz3tQiFeS9NFQZaoHBE5BWIgdblbJ/QACAXBlozDLTBV6qBNhSOFvRlwAy0ZvIdaCODUe3aE9OOXaX5MnlGpdz8BtpQOKr6Zm/gW9Oa0NIa758XnBlql1Sn7j/rNwpuetjOX56UgqsDbVev/2vR1Vv874P3khkGWqBwRORlfaA99u4/dUP9Rl3xq1t06c9XZAl6tk9oAJALA60ZBtrgK8VAe/aXAlfW5neVGQOtmXwG2nAklvGl8pW1SfUPFDcsMSrl5jfQNrZmXxW79Obs4a+6IZF63WomfN+NqRF3TaubI62rAy1X0NrHQAsUjoi8rA+0c+bVacGKu7Tt6b16+tn9WYKe7RMaAOTCQGuGgTb4ih1o/a76q6w1/6SagdZMPgPtxHtn5vua+GFUys1voDW5z2xFVerq2aHh1FXoN9UlxsfZirNug+DirQ5cHWiHhr1bUXAPWjsYaIHCEZGX9YH2P76/QCe/+Mr2YRSc7RMaAOTCQGumVANtX39MW3vj2rXHfKBgoDVT7EDrd4VgPleaMdCayWegnew1KeY9yKiUm99Am3VFbFVSja0J9fXH1NiaGP/fZ3+sJ7t6sxRfXj/VXBhoQ+Go1rfHtaY1oY7ueMZD2QZCMXX1xkty5Szvpfww0AKFIyIv6wPtTxet0jvvf2j7MArO9gkNQHlK3yOzFPdjZKA1YzrQRgZTr43fPUwnXsVU32z2CRsDrZl8Blq/12ni65Nm+uR5BlozRV9BW8NAe775DbR+V5jnuldzKOx/5S1X0Jae38f6fN9OgveSGQZaoHBE5GVloD3y5rvjntlzQNdVNeuZPQd0+Oi7Gd935M13bRxeXtk+oQEoP2ePSJW1xX+iy0BrxmSgDYWjGV/yu6Y1MT7uFTNUMNCaMR1oJ75O9c2pEdbvvpkd3eZjDAOtmXzvQVvdcNY5r4Z70E4Fv4F2aDh1RWxLe1xtnQnjB+l1dGcOu43cg/a8mPhxTivFX+Tmei9VNyRwDgy0QOGIyMvKQHvBjHnGgp7tExqA8tLXH8v65KuytrhPwBhozZgMtGd/IjbxS3n9XjvTL/VloDVjOtD6vU7pezKGIzF1dKcGqHz/8iP96zfek1BbRxyTqLot9fF/8VWzj29kMPX+6emLl2RsYqDNbbKBtlChcFRdvfGix3Wbgj7Q+l1tbnKVcyneSzBj+88I4CIi8rIy0MYTSWNBz/YJDUB5mewKmWI+AWOgNZNroA1H/AfY9NViXEF7/pkOtOd6nYqR/vVhxnSgLbX0r2/7z2uQlXqgLQdBH2j97vdb3XB+X7/9oXjgpH/vto/Dj+0/I4CLiMjL+j1oJenNyAfj/3vw+Ak9su1P2jNwyOIRmWf7hAagvHT1+g9AxTz0g4HWjMkVtH6vTUt7fNLXz/RJ2gy0ZkwHWr+HHZ39OhXqdz0x3bk+ESiVtan3922N9o9lokNvMNAGFQNttqAPtEPDmf+NqWsq7v8buCr9+7d9HABKg4i8rA+0v+t5VhfPXqLR0TF9dvJL/c+VN+jHC27Xt6+6QQ9199k+vJzZPqEBKC+RwexxyXTkmwwDrRmTgXbiAFtZk/0Jciic+nLtfD5xZqA1YzrQTrzdhN/rVC7Wbky9v1844N5Dmc4XBtrcGGizuTDQppk+2LAcMdAC5YWIvKwPtJfNrVb4zfckSY/84U/66aJVOn36tN5+d1A/+L+brRzTpoef0HeuvnH8nz8Y+kjzlq3Vt2Yv0TUVDTp4+Nj499k+oQEoP5HB1BDY0R0vyZOwGWjNmAy0Q8OpLzPt6I6rq7c098scGmagNWU60A4NRzUQipX8dQqich1o+/pjautMaGtvPO8xioE2NwbabC4NtNMZAy1QXojIy/pAe+FlFTp9+rQkqaL6bnU+vkuSNDZ2WhdeVjHlx/PeB8d1xa9uyRhor6tq1qPbd2t0dEz7DhzWjGuWKTkyKomBFkDwMdCaMR1ozwcGWjP5DLTTRTkOtG2dmQ95q6xN5jXSMtDmxkCbjYHWDQy0QHkhIi/rA+1lc6v1xrF/aOj4CV146QK998FxSdI773+o7/1k2ZQfz/yb1uqZPQfGB9rhTz/XRbMWa2R0dPzH/GThSr106KgkBloAwcdAa8buQJsaBhYvT2jF7ZjMjbem/ixv3MKAklZuA+1kD+Pr6jV/zRloc2OgzcZA6wYGWqC8EJGX9YG2a8dzuvCyCn1t5kLd0vSgJOmzk19q9q9v1fr7t03psfzxT3/VLU0P6tOTX4wPtAcPH9NV8+szftyK1e3a9vReSdKHw1HADZ/ABcc/iZXc+EDblfpyYfhLD7TvDZX+Nchl4BX/h8PB38YtiSl/jYIqPdDueylu/VhK4cWQ/3th/Wbz1zz9c2yfU4Js05mrlBvX815Ke+QPqT9725/mY3Iutv9/Uvr9bfs4EHC2P++CMSLysj7QStLb7w7q0JFjGh0dkyQlR0b1hyf3jP/zVPTZyS91+S9rNfzp5xkD7f5Xjmju4tUZP7Z+XYce275bkjR2+jTghjE44Ty89rfecWas2D6iP+7CZBafGWi/OnV+Xodz+eKr0zp6LFh2Pjumiqqkmu8dsX4sEw0en/rXKKju2Tyiiqqk/v76mPVjKYUvT53WDbXZA+1f/zZq/O9I/xzb55Qg6+hK/blZt3HE+mseFNueHFVFVVLPPG/+Z21asvz/k9Lvb9vHgYCz/T6BMSLyCsRAG4Tq1j6knp0vSFLGQHvoyDHNmVeX8WOXr9o0/mNtf0kAAOTCLQ7M2LzFQRD1709dTXb3Jr7cN8jK7RYHQ8OpB4RV1njjbFtnfl+Gzy0OcuMWB9m4xYEbuMUBUF6IyCuwA+3Tz+7X7Xd1Ttmvd8mcpfrO1TfqO1ffqG9fdYP+7Xvz9Z2rb9Q//nlc3/jBIkVjifEfO+vaGh06ckwSAy2A4GOgNcNAm4mB1g3lONAODUcVGYxqIBRTKJz/z2WgzY2BNtt0GmhD4WheD94LEgZaoLwQkVdgB9qtvc9p0c0tVn7ts6+glaQFy+/S/Y89pdHRMe18/kXNnFs9fvsF2yc0AMiFgdYMA20mBlo3lOtAWwwG2twYaLNNh4F2IBRT5Vm3EOnodu/3ykALlBci8grsQGuziQPt4PETuq6qWRfPXqKfLlql8JvvjX+f7RMaAOTCQGuGgTYTA60bGGizMdDmxkCbbToMtGffOiStr9+tcwcDLVBeiMiLgbbIbJ/QACAXBlozDLSZGGjdwECbjYE2NwbabOU+0A6EYlnjbEVVUi3tbv1+GWiB8kJEXtYH2n0H/q6rf1Ov//zhIv37/87PEvRsn9AAIBcGWjMMtJkYaN3AQJuNgTY3BtpsLg20oXBUW3vjed2jORzxH2hdu80BAy1QXojIy/pAe+nPV+jBrqf1t4Ov6+Dht7IEPdsnNADlbyAUU31z6hOSNa2JvB+aw0BrhoE2EwOtGxhoszHQ5sZAm82VgbatM5ExsLZ1mr+GLe3xjJ9bWZNUOOLWuYOBFigvRORlfaCdc91ttg+hqGyf0ACUt3Ak84EeFVVJVdYm83r6MgOtGQbaTAy0bmCgzcZAmxsDbTYXBtpQOJrx/wfS+gfMj7mnL67G1oTaOhPOjbNDwwy0QLkhIi/rA239ug4dPHzM9mEUnO0TGoDy1tUb9/1kLJ+HejDQmmGgzcRA6wYG2mwMtLkx0GZzYaDt6fP//wRdvcE95lJjoAXKCxF5WR9oj779vi6evUTXVDRoYXWLFt2cKejZPqEBKB+RwdSXLlbWJlW9MqGtvfFJPxnL52oZBlozDLSZGGjd4MJAGwpHtaY1dZzVKxPj56+evvj4VwisaS3d1XwMtLkx0GZzYaCd7ArafP7S1nUMtEB5ISIv6wPtnOtu0/yb1qr1gW3a9PATWYKe7RMagPIx8d5wFVVJPdaTUGXNhFsc1HCLg/OBgTYTA60bgj7QRgajql6ZyDq3dT+Rfb6rby7N6MJAmxsDbTYXBtqh4ex70La0B/t4S42BFigvRORlfaCdObdap0+ftn0YBWf7hAagfPhdFdN45qFgjWeuPmtpz++pzUPD3kALMwy0KQy0bgj6QDsQ8n9y/M2TnJcmXkUbjsTU1pnQmtbUVxWY/OWU7XOISxhoPa4MtEPDUfUPxNXVG8/rq2nKRfrPru3jAFAaRORlfaBdWN2i4U8/t30YBWf7hAbATeFITOvPXDFbvTKhHbv8b2XQ2Fr8J88MtPlJD7T9A/HxK//WnBnKbf+5mUquDLQ9fd7rtL497uRDb4rh6kBbe2fugTYyGM16SOIag3Oi7XOIS/wG2oFQTPXNqe+vb05qIBTMP1ul5tJAO52l/+zaPg4ApUFEXtYH2oe6+3T5L2t19+bH9ej23XpsgqBn+4QGwE11TdmfKK+8K3uw6Okrz08Ub6pL/V6PvhfMT/z97vNXvTKR160lXOfCQNs/cP6+TN4VQR9oh4b9z3dPP5c93E78C6nJHpLo2mC4P+TO7QTCkVjWKF5Zm31lczlioHUDAy1QXojIy/pA+5OFKzX3+jsmFfRsn9AAuCcc8b+ibN19cXV0x1VZk1R1Q6Jsx9mh4eAPtOUyDBXDhYF24r0Y0/K52nkgFHN6eHdhoA1HYmppT53bGlsT4++j/oG4GlsTqm5IqKM7+/YF5fI+dGmgnezBlOX836M0Blo3MNAC5YWIvKwPtK5n+4QGwD2TDbTT6UEfDLTBV+4D7UAo80rBju7g/j7PxYWBtlB+V0hX1rh3NadLA21fv/9/n/r63fqYF4KB1g0MtEB5ISKvQAy077z/oe7d0qPaxge0rKFNrQ9s09vvDto+LKNsn9AAuCn90K98x79wJKYdu+Latcftq/6CPtCGwlFV1ky4xUEDtzgIGr/7m5rct9nv3qaujlDlPNAODWde0VlZk3TyoUguDbSRwexzX2VNclqc+xho3cBAC5QXIvKyPtA+vy+kf/vefF27tFH16zpUv65D/7fkTv3H9xfopUNHbR9ezmyf0AC4KTKYuvqvsiapuiaz0aF/IJ4xKlWvTDh3JVla0AfaoeHU+NfYmnqNWqbhw6dcGGiHhlPvi7qm1IjU1mk2ok/24Kq2zuAPaBOV+0Cb5vJD+lwaaNMf65YzD7FsaY87/bHPBwOtGxhogfJCRF7WB9or59dp996Xsr5953Mvau7i1RaOKL9sn9AATB8Tr2py+bYILgy0050rA20h/B4CV1GVVFeve7/X6TLQusy1gXa6YqB1AwMtUF6IyMv6QPufP1ykkdHRrG9PjozqolmLLRxRftk+oQGYPvwGJZMv5w4iBtrgK+eBdmjYu0LQ9S/jZqANPgZaNzDQuoGBFigvRORlfaC94le36O+vR7K+/bXXI5p1ba2FI8ov2yc0ANMHV9BiKpX7QDs0nLq/aWNrQh3d7t7CgoE2+Bho3cBA6wYGWqC8EJGX9YG2+4l+fWv2EjXft1Xbd+7Vtqf3qmljl755xfXasnWn7cPLme0TGoDpY+ITzV18mnkaA23wTYeBthww0AYfA60bGGjdwEALlBci8rI+0ErS7r0v67c163X5L2t16c9XaMHyu/TUswO2D8so2yc0AO4LR2IaCMWMvrw6HImppy+uvn6zHx9UDLTBx0DrBgba4GOgdQMDrRsYaIHyQkRe1gfarb3PKxpL2D6MgrN9QgPgtq5e76rYytqk+vqnx8jCQBt8rg204UhM69vjqm9Oav00evI8A23wMdC6gYHWDQy0QHkhIi/rA+1/X1mp9z44bvswCs72CQ2AuwZCMd8Hf7l624J8MNAGn0sDbWQwquqVicxbgNS6+dCvfDHQBh8DrRsYaN3AQAuUFyLysj7QPvHMPi26uUU7n3tRr4bf1pE3380Q9Gyf0AC46+yrZ882Ha6iZaANPpcG2on3Z07r6Qv+sReLgTb4ynWgDYWjWt8e15rWhHbscv+9xkDrBgZaoLwQkZf1gfaCGfPOKejZPqEBcFdPn/+oNBAq/6GFgTb4XBpo+/r9r0bv6g3+sReLgTb4ynGgDYWjWe+39e1uv98YaN3AQAuUFyLysj7QfvlVVPFEclJBz/YJDYC7IoNR1TVlfoLb2Fo+n8CfCwNt8Lk00IYjMVXWTM/bhTDQBl85DrRtnQnfvxSx9Z67c32iaMtvT/2eqlcW/+9ad1/wz5uuYqAFygsReVkZaC/92XJ9dSomSfrB/91s4xBKlu0TGgC3RQZTtzpoaY9Piy/HTmOgDT6XBtqh4dQVfdUNZwaWhoT6B9w47mIx0AZfOQ60Le3+XwFi6+F8fsdi09KaYL3WoXBqVC+H21Ew0ALlhYi8rAy03/1xlWobH9CWrTt14aULtGXrzkkFPdsnNABwEQNt8Lk20E5Xrg204UhsWtzG5WzlOND63VakusHe729/KB4oL74anD/j4UhMlbXlczsKBlqgvBCRl5WB9m8HX9eSW+/Rr25Yo3/73nz9snLNpIKe7RMaALiIgTb4GGjd4NJA29HtXXVZWZucNlc5l+NAO/H1rG5IWLt6Fuavk83bUfTtiauxNVG0s28JVay+PdPjHAQEGRF5Wb8H7a9uaLJ9CEVl+4QGAC5ioA0+Blo3uDLQ+l1xWVmbVGTQ/rGdb+U60KZNh3s9u2yy21FM9ZXsXTv8H+ZoU9cO/uwCthGRl/WBNiidPn1a927p0XeuvlH/fWWlbm3aomgsIUn6YOgjzVu2Vt+avUTXVDTo4OFj4z/P9gkNAFzEQBt8DLRucGWgneyhUtPhdgflPtAi2Hz/cqRm6m8REH4nZv3WExOF3yn/8w8QdETkFdiB9r7OXv3wFzVT9uvt6PuL5i5erc9OfqmvTsV0XVWzHux6WpJ0XVWzHt2+W6OjY9p34LBmXLNMyZFRSQy0AFAIBtrgY6B1gysDbVdvsB4qNZUYaGEbt6MAEFRE5GV9oP38y1O+3/7Xlw5P6UPCXns9oqNvvz/+z1u27tStTVs0/OnnumjWYo2Mjo5/308WrtRLh45KYqAFgEKU+0AbGYxqa29cW3vjzn4izEDrBlcG2shgVJU1meNsi8MPKsoHAy2CIDIYdfa/RwDKFxF5WR9oL7ysQlW336fn94WUTI7YPhxJ0tDxE7qmokG7976sg4eP6ar59Rnfv2J1u7Y9vTf1YwNwUgMA15TzQBsKR7OemN3X797vk4HWDa4MtEPDqXuVdnTH1dIeV0/f9PlzxUALAIA/IvKyPtCG/v6Wmu/bqu//dLku+dFSrV7/iA4efkunT5+2cjw//+1qXTBjntZs+J3Gxk5r/ytHNHfx6owfU7+uQ49t3y1JOnEyDgAlM/z59HBTfWq4fPef9o+l1Frvz77XZuUtSevHla+/HEj9PtZvTlg/FkzurvtSr9P+EK9TUL38Wuo1WtPKawT32f7/SQDKCxF5WR9o050+fVqH33hH6+/fpplzq3XZ3Gpt7Nihf3748ZQfy/Cnn6v6js1as+F3OnTkmObMq8v4/uWrNqln5wuSpHhyFABKaGxaWHF7arj81wn7x1Jq6zaM+N5r0/Zx5eulQ6OqqEpqw4Mj1o8Fk1vfnvrzdujw9Dl/uObI0TFVVCW1doN75wEgm+3/nwSgnBCRV2AG2nRH3nxX9zy4Xd+84np9+6ob9I0fLFJt4wM6+cVX5/XX/cvfXtM77384/s8HDr2hK351iz49+YW+8YNFisYS498369oaHTpyTBK3OACAQpTzLQ78nlZf3eDelzZziwM3uHSLg+mKWxwAAOCPiLwCMdB+MPSR2h99Upf/slYXXlahm1a2ae/+VzU6OqZPPvtCN9Rt0PW33HNej6H1gW1aWN2iL7+KKpkc0cqWh7V81SZJ0oLld+n+x57S6OiYdj7/ombOrdbo6JgkBloAKEQ5D7SRwaiqG7yRtrLGzSfVM9C6gYE2+BhoAQDwR0Re1gfaXyy5UxfMmKef/3a1fv/Hft8rZT87+aUuvHTBeT2OU9G46td16DtX36hLfrRUi2tbdfzjTyRJg8dP6LqqZl08e4l+umiVwm++N/7zbJ/QAMBF5TzQDg2nRtqBUEz9A3FFBu0fTyEYaN3AQBt8DLQAAPgjIi/rA23rA9sU+cfQOX/M2Nhp7TtweIqOKL9sn9AAwEXlPtCWAwZaNzDQBh8DLQAA/ojIy/pA27/v4KR2733J9uHlzPYJDQBcxEAbfAy0bmCgDT4GWgAA/BGRl/WB9pI5SzP9aKkumDFPX5+5ULN/favtw8uZ7RMaALiIgTb4GGjdwEAbfAy0AAD4IyIv6wOtX1+diuneLT3a0fcX24eSM9snNABwEQNt8DHQuoGBNvgYaAEA8EdEXoEcaNNdU9Fg+xByZvuEBgAuYqANPgZaNzDQBh8DLQAA/ojIK7AD7VenYvruj6tsH0bObJ/QAMBFDLTBx0DrBgba4GOgBQDAHxF5WR9oaxsfyLKsoU2X/my5bqjbYPvwcmb7hAYALmKgDT4GWjcw0AYfAy0AAP6IyMv6QLt6/SNZmu/bqt//sV+nonHbh5cz2yc0AHARA23wMdC6gYE2+BhoAQDwR0Re1gda17N9QgMAFzHQBh8DrRvKdaDtH4irvjmpiqqk1rfHFY64+/tjoAUAwB8ReVkfaMfGTo//7+Mff6L2R5/U3Zsf1+E33rF4VObZPqEBgIsYaIOPgdYN5TjQhsJRVVQlM1SvTCgyaP/YCsFACwCAPyLysjbQRv4xpDnX3aZ//9/5uvH2jfrXx5/quz+u0tW/qddV8+v1H99foL/87TVbh2ec7RMaALiIgTb4GGjdUI4DbVdvPGugrahKaiA09b/Hrh0x32OxaX+I9yQAoDwQkZe1gXZxbavm37RW/fsOallDm37+29W6e/Pj49+/4aEdunZpo63DM872CQ0AXMRAG3wMtG5goD3Px8JACwDAeUNEXtYG2kt+tFR/fz0iSfrs5FZXyF0AAAtxSURBVJe6YMY8HX37/fHvj7w3qItmLbZ1eMbZPqEBgIsYaIOPgdYN5TjQ+t7ioMHdWxwAAAB/RORlbaC9YMY8ffjRJ+P/fNGsxRo8fmL8n49//IkumDHPwpHll+0TGgC4yMWBNhyJTauBiIHWDeU40A4Npx4SVteUGmdbHH9IGAAA8EdEXlYH2uMfewPtN6+4noEWAKYJlwbaUDg6/jT59BPlbR/TVGCgdUO5DrQAAKD8EZGX1YF2Y8cOPfz4M3r48Wf0tZkLde+WnvF/3tixg4EWAMqUSwNt+iq+s3X1lv9oyUDrBgZaAADgKiLysjbQXvGrW4wEPdsnNABwkSsDbWQw+16YFVVJNbYmrB/b+cZA6wYGWgAA4Coi8rI20JZLtk9oAOAiVwbaoWEGWgbaYGOgBQAAriIiLwbaIrN9QgMAF7k00HZ0x7MG2oFQ8I+7WAy0bmCgBQAAriIiLwbaIrN9QgMAF7k00A4NR9XXH1Nja0It7fFpMc4ODTPQuoKBFgAAuIqIvBhoi8z2CQ0AXOTaQDsdMdC6gYEWAAC4ioi8GGiLzPYJDQBcxEAbfAy0bmCgBQAAriIiLwbaIrN9QgMAFzHQBh8DrRsYaAEAgKuIyIuBtshsn9AAwEUMtMHHQOsGBloAAOAqIvJioC0y2yc0AHARA23wMdC6gYEWAAC4ioi8GGiLzPYJDQBcxEAbfAy0bmCgBQAAriIiLwbaIrN9QgMAFzHQBh8DrRsYaAEAgKuIyIuBtshsn9AAwEUMtMHHQOsGBloAAOAqIvJioC0y2yc0AHARA23wMdC6gYEWAAC4ioi8GGjPqv3RJ/W9nyzTJXOWqnbNAzoVjUuSPhj6SPOWrdW3Zi/RNRUNOnj42PjPsX1CAwAXMdAGHwOtGxhoAQCAq4jIi4H2TLv3vqzLf1mrj058plPRuBasuEvtjz4pSbquqlmPbt+t0dEx7TtwWDOuWabkyKgkBloAKAQDbfAx0LqBgRYAALiKiLwYaM90+Oi7Onj4rfF/fnT7btU2PqDhTz/XRbMWa2R0dPz7frJwpV46dFQSAy0AFIKBNvgYaN3AQAsAAFxFRF4MtJO0uLZVf3hyjw4ePqar5tdnfN+K1e3a9vReSQy0AFAIBtrgY6B1AwMtAABwFRF5MdD61P7IH/Wbm9ZpZHRU+185ormLV2d8f/26Dj22fbck6fNTSQBAnpbXJ1VRldQHx+0fC/wNvJJ6je653/6xYHJ3t6Vep5detX8sAAAA+SAiLwbaszp9+rSaNnZp0c0tisYSkqRDR45pzry6jB+3fNUm9ex8QZL0ZXQEAJCn9EA7+C/7xwJ/L4ZGxgda28eCybVsSr2XXn7V/rEAAADkg4i8GGjP6q5Nv9fyVe3jDwCTpE9PfqFv/GDR+GArSbOurdGhI8ckcYsDACgEtzgIPm5x4AZucQAAAFxFRF4MtGd6+dWjuqaiQclk9t/iLFh+l+5/7CmNjo5p5/Mvaubcao2OjklioAWAQjDQBh8DrRsYaAEAgKuIyIuB9ky3Nm3Rv//vfF14WcW4nyxcKUkaPH5C11U16+LZS/TTRasUfvO98Z9n+4QGYHoIR2LasSuuXXtiigzaP55iletAGwpHtbU3rv797o+a5TrQRgaj2rUn9X4KR9z/88dACwAAXEVEXgy0RWb7hAag/A2EYqqsTd1nsqIqqcrapEJh+8dVjHIcaLt64+OvUUVVUvXNSevHVIxyHGhD4WjWe2kg5PafQQZaAADgKiLyYqAtMtsnNADlr64pmTH8VVQl1dJuZzQLvR5T147iLalO/T46fh8v+t/1wgH7A2IoHM16jSqqkurps3NsTz9X/Mf13gdTw1/tHcX/u7p2xPTW+/YHxJb2eNZrZGtIf+sfpXkv3bwy9Tpt2FL867Rzj/33EgAAmD6IyIuBtshsn9AAlD+/4a+iys6o1Lcne+Cy7cEu+6PSQCjme2xdvXaOrWFdwvrrMtGrb9gfaIP0XnrliP+fGZvubElYf40AAMD0QUReDLRFZvuEBqD8leMVtKXEFbTZSnEFbakF9Qrauia3r6AtJa6gBQAAU4mIvBhoi8z2CQ1A+RsIxVRZ4w1KlTXu34O2HE28B62t4Q+TC4WjWe8l1+9BCwAA4Coi8mKgLTLbJzQA00M4ElNPX1x9/TFFBu0fD/yFwqmhtn+AKxGDKjIYVV9/6v0UjjDOAgAA2EJEXgy0RWb7hAYAAAAAAOAaIvJioC0y2yc0AAAAAAAA1xCRFwNtkdk+oQEAAAAAALiGiLwYaIvM9gkNAAAAAADANUTkxUBbZLZPaAAAAAAAAK4hIi8G2iKzfUIDAAAAAABwDRF5MdAWme0TGgAAAAAAgGuIyIuBtshsn9AAAAAAAABcQ0ReDLRFZvuEBgAAAAAA4Boi8mKgLTLbJzQAAAAAAADXEJEXA22R2T6hAQAAAAAAuIaIvBhoi8z2CQ0AAAAAAMA1ROTFQEtERERERERERERkKQZaIiIiIiIiIiIiIksx0BIRERERERERERFZioGWiIiIiIiIiIiIyFIMtERERERERERERESWYqAlIiIiIiIiIiIishQDLREREREREREREZGlGGiJiIiIiIiIiIiILMVAS0RERERERERERGQpBloiIiIiIiIiIiIiSzHQEhEREREREREREVmKgZaIiIiIiIiIiIjIUgy0RERERERERERERJZioCUiIiIiIiIiIiKyFAMtERERERERERERkaUYaImIiIiIiIiIiIgsxUBLREREREREREREZCkGWiIiIiIiIiIiIiJLMdASERERERERERERWYqBloiIiIiIiIiIiMhSDLRERERERERERERElmKgJSIiIiIiIiIiIrIUAy0RERERERERERGRpRhoiYiIiIiIiIiIiCzFQEtERERERERERERkKQZaIiIiIiIiIiIiIksx0BIRERERERERERFZioGWiIiIiIiIiIiIyFIMtERERERERERERESWYqAlIiIiIiIiIiIishQDLREREREREREREZGlGGiJiIiIiIiIiIiILMVAS0RERERERERERGQpBloiIiIiIiIiIiIiSzHQEhEREREREREREVmKgZaIiIiIiIiIiIjIUgy0RERERERERERERJZioCUiIiIiIiIiIiKyFAMtERERERERERERkaUYaImIiIiIiIiIiIgsxUBLREREREREREREZCkGWiIiIiIiIiIiIiJLMdASERERERERERERWYqBloiIiIiIiIiIiMhSDLRERERERERERERElmKgJSIiIiIiIiIiIrIUAy0RERERERERERGRpRhoiYiIiIiIiIiIiCzFQEtERERERERERERkKQZaIiIiIiIiIiIiIksx0BIRERERERERERFZioGWiIiIiIiIiIiIyFIMtERERERERERERESWYqAlIiIiIiIiIiIishQDLREREREREREREZGlGGiJiIiIiIiIiIiILMVAS0RERERERERERGQpBloiIiIiIiIiIiIiSzHQEhEREREREREREVmKgZaIiIiIiIiIiIjIUgy0RERERERERERERJZioCUiIiIiIiIiIiKyFAMtERERERERERERkaUYaImIiIiIiIiIiIgsxUBLREREREREREREZCkGWiIiIiIiIiIiIiJLMdASERERERERERERWYqBloiIiIiIiIiIiMhSDLRERERERERERERElmKgJSIiIiIiIiIiIrIUAy0RERERERERERGRpRhoiYiIiIiIiIiIiCzFQEtERERERERERERkKQZaIiIiIiIiIiIiIksx0BIRERERERERERFZioGWiIiIiIiIiIiIyFIMtERERERERERERESWYqAlIiIiIiIiIiIishQDLREREREREREREZGlGGiJiIiIiIiIiIiILPX/AWr047GtkBEPAAAAAElFTkSuQmCC", + "text/html": [ + "<div> <div id=\"ecf1d934-4ea6-43bd-8209-c7e78f095dde\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"ecf1d934-4ea6-43bd-8209-c7e78f095dde\")) { Plotly.newPlot( \"ecf1d934-4ea6-43bd-8209-c7e78f095dde\", [{\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All\", \"notched\": false, \"offsetgroup\": \"2000 - All\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [37.48430691317277, 33.0573496204897, 50.0, 18.3, 36.68947049362754, 70.11745134661585, 35.9, 73.5, 46.9, 83.9, 74.39653963482156, 34.6942917927119, 41.8, 72.62799679664002, 68.9, 62.90019751881499, 71.88353100909976, 79.65145595888701], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - Only stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - Only stigma\", \"notched\": false, \"offsetgroup\": \"2000 - Only stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [24.568958874930733, 54.31378272084832, 50.0, 18.3, 29.96041216455179, null, 35.9, 73.5, 46.9, 83.9, 51.530925434032866, 42.124637918736795, 41.8, 50.163912506462616, 68.9, 63.285159555798266, 48.869560685912965, 69.66320342189823], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[1, \"2001\"], [1, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2000\"], [0, \"2003\"], [0, \"2003\"], [0, \"2004\"], [0, \"2004\"], [1, \"2000\"], [1, \"2001\"], [0, \"2003\"], [1, \"2000\"], [0, \"2003\"], [1, \"2000\"], [1, \"2000\"], [1, \"2001\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Cameroon\", \"Chad\", \"Ethiopia\", \"Gabon\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Malawi\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Nigeria\", \"Rwanda\", \"Uganda\", \"Zambia\"], \"legendgroup\": \"2000 - All plus stigma\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2000 - All plus stigma\", \"notched\": false, \"offsetgroup\": \"2000 - All plus stigma\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [42.84612926788617, 35.16663129012852, 50.0, 18.3, 32.957470413688526, 69.50735329316193, 35.9, 73.5, 46.9, 83.9, 72.55544324389314, 46.01222163399134, 41.8, 67.93636699956508, 68.9, 63.224267549675346, 63.98945399904411, 80.82017338703842], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2006\"], [\"2005\"], [\"2007\"], [\"2005\"], [\"2008\"], [\"2008\"], [\"2009\"], [\"2007\"], [\"2006\"], [\"2006\"], [\"2006\"], [\"2008\"], [\"2005\"], [\"2005\"], [\"2008\"], [\"2006\"], [\"2007\"], [\"2005\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Congo\", \"Congo Democratic Republic\", \"Ethiopia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Mali\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Senegal\", \"Sierra Leone\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2005\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2005\", \"notched\": false, \"offsetgroup\": \"2005\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [36.7, 64.9, 50.2, 26.1, 42.9, 79.6, 68.9, 54.5, 36.7, 72.3, 31.2, 48.4, 79.8, 36.1, 40.3, 75.1, 72.5, 67.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2011\"], [\"2010\"], [\"2010\"], [\"2011\"], [\"2014\"], [\"2011\"], [\"2013\"], [\"2011\"], [\"2011\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2014\"], [\"2014\"], [\"2013\"], [\"2010\"], [\"2012\"], [\"2011\"], [\"2013\"], [\"2012\"], [\"2013\"], [\"2014\"], [\"2010\"], [\"2014\"], [\"2010\"], [\"2013\"], [\"2013\"], [\"2011\"], [\"2013\"], [\"2010\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Benin\", \"Burkina Faso\", \"Burundi\", \"Cameroon\", \"Chad\", \"Congo\", \"Congo Democratic Republic\", \"Cote d'Ivoire\", \"Ethiopia\", \"Gabon\", \"Gambia\", \"Ghana\", \"Kenya\", \"Lesotho\", \"Liberia\", \"Malawi\", \"Mali\", \"Mozambique\", \"Namibia\", \"Niger\", \"Nigeria\", \"Rwanda\", \"Rwanda\", \"Senegal\", \"Senegal\", \"Sierra Leone\", \"Togo\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2010\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2010\", \"notched\": false, \"offsetgroup\": \"2010\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [44.5, 42.9, 84.8, 58.4, 52.5, 67.0, 56.7, 55.5, 47.1, 71.7, 53.0, 35.9, 83.9, 79.7, 49.5, 90.2, 55.2, 73.1, 84.9, 32.4, 54.0, 92.1, 89.9, 43.6, 43.8, 43.1, 57.5, 79.5, 83.5, 80.3], \"y0\": \" \", \"yaxis\": \"y\"}, {\"alignmentgroup\": \"True\", \"boxpoints\": \"all\", \"customdata\": [[\"2015\"], [\"2017\"], [\"2016\"], [\"2018\"], [\"2016\"], [\"2015\"], [\"2018\"], [\"2018\"], [\"2017\"], [\"2016\"], [\"2015\"], [\"2016\"], [\"2018\"], [\"2015\"]], \"hovertemplate\": \"<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>\", \"hovertext\": [\"Angola\", \"Benin\", \"Burundi\", \"Cameroon\", \"Ethiopia\", \"Malawi\", \"Mali\", \"Nigeria\", \"Senegal\", \"Senegal\", \"Senegal\", \"Uganda\", \"Zambia\", \"Zimbabwe\"], \"legendgroup\": \"2015\", \"marker\": {\"color\": \"#636efa\"}, \"name\": \"2015\", \"notched\": false, \"offsetgroup\": \"2015\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"box\", \"x0\": \" \", \"xaxis\": \"x\", \"y\": [65.4, 31.6, 84.3, 57.9, 51.6, 87.5, 42.2, 48.8, 37.6, 43.7, 38.6, 80.3, 80.4, 83.1], \"y0\": \" \", \"yaxis\": \"y\"}], {\"boxmode\": \"group\", \"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0]}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all\"}}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('ecf1d934-4ea6-43bd-8209-c7e78f095dde');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", "\n", - " Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma \\\n", - "Country \n", - "Benin 26.500000 \n", - "Benin 40.400000 \n", - "Benin 27.500000 \n", - "Benin 24.859568 \n", - "Burkina Faso 35.500000 \n", - "Burkina Faso 23.390583 \n", - "Ethiopia 43.500000 \n", - "Ethiopia 32.000000 \n", - "Ethiopia 19.900000 \n", - "Ethiopia 14.110044 \n", - "Gabon 71.500000 \n", - "Gabon 57.230234 \n", - "Malawi 83.700000 \n", - "Malawi 81.300000 \n", - "Malawi 66.600000 \n", - "Malawi 52.153870 \n", - "Mali 33.600000 \n", - "Mali 50.400000 \n", - "Mali 26.200000 \n", - "Mali 31.469286 \n", - "Namibia 85.400000 \n", - "Namibia 75.200000 \n", - "Namibia 61.202271 \n", - "Rwanda 89.200000 \n", - "Rwanda 83.500000 \n", - "Rwanda 71.648954 \n", - "Rwanda 68.900000 \n", - "Rwanda 48.896812 \n", - "Senegal 56.226462 \n", - "Senegal 40.300000 \n", - "Senegal 47.100000 \n", - "Senegal 41.900000 \n", - "Senegal 48.900000 \n", - "Senegal 41.438277 \n", - "Senegal 48.700000 \n", - "Senegal 26.400000 \n", - "Uganda 71.800000 \n", - "Uganda 71.600000 \n", - "Uganda 71.800000 \n", - "Uganda 71.600000 \n", - "Uganda 57.700000 \n", - "Uganda 40.169173 \n", - "Zambia 75.400000 \n", - "Zambia 79.100000 \n", - "Zambia 66.600000 \n", - "Zambia 64.169835 \n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", "\n", - " Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma imputed.W \\\n", - "Country \n", - "Benin 31.600000 0 \n", - "Benin 44.500000 0 \n", - "Benin 36.700000 0 \n", - "Benin 43.117716 1 \n", - "Burkina Faso 42.900000 0 \n", - "Burkina Faso 34.996964 1 \n", - "Ethiopia 51.600000 0 \n", - "Ethiopia 47.100000 0 \n", - "Ethiopia 26.100000 0 \n", - "Ethiopia 32.807212 1 \n", - "Gabon 71.700000 0 \n", - "Gabon 69.572079 1 \n", - "Malawi 87.500000 0 \n", - "Malawi 90.200000 0 \n", - "Malawi 83.900000 0 \n", - "Malawi 73.279780 1 \n", - "Mali 42.200000 0 \n", - "Mali 55.200000 0 \n", - "Mali 36.700000 0 \n", - "Mali 46.545529 1 \n", - "Namibia 84.900000 0 \n", - "Namibia 72.300000 0 \n", - "Namibia 67.914617 1 \n", - "Rwanda 92.100000 0 \n", - "Rwanda 89.900000 0 \n", - "Rwanda 82.243631 1 \n", - "Rwanda 79.800000 0 \n", - "Rwanda 63.151940 1 \n", - "Senegal 47.693669 1 \n", - "Senegal 37.600000 0 \n", - "Senegal 43.700000 0 \n", - "Senegal 38.600000 0 \n", - "Senegal 43.600000 0 \n", - "Senegal 43.384312 1 \n", - "Senegal 43.800000 0 \n", - "Senegal 36.100000 0 \n", - "Uganda 80.100000 0 \n", - "Uganda 79.500000 0 \n", - "Uganda 80.100000 0 \n", - "Uganda 79.500000 0 \n", - "Uganda 75.100000 0 \n", - "Uganda 63.652049 1 \n", - "Zambia 80.400000 0 \n", - "Zambia 83.500000 0 \n", - "Zambia 72.500000 0 \n", - "Zambia 80.952078 1 \n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", "\n", - " imputed.M GY \n", - "Country \n", - "Benin 0 2015 \n", - "Benin 0 2010 \n", - "Benin 0 2005 \n", - "Benin 1 2000 \n", - "Burkina Faso 0 2010 \n", - "Burkina Faso 1 2000 \n", - "Ethiopia 0 2015 \n", - "Ethiopia 0 2010 \n", - "Ethiopia 0 2005 \n", - "Ethiopia 1 2000 \n", - "Gabon 0 2010 \n", - "Gabon 1 2000 \n", - "Malawi 0 2015 \n", - "Malawi 0 2010 \n", - "Malawi 0 2000 \n", - "Malawi 1 2000 \n", - "Mali 0 2015 \n", - "Mali 0 2010 \n", - "Mali 0 2005 \n", - "Mali 1 2000 \n", - "Namibia 0 2010 \n", - "Namibia 0 2005 \n", - "Namibia 1 2000 \n", - "Rwanda 0 2010 \n", - "Rwanda 0 2010 \n", - "Rwanda 1 2005 \n", - "Rwanda 0 2005 \n", - "Rwanda 1 2000 \n", - "Senegal 1 2015 \n", - "Senegal 0 2015 \n", - "Senegal 0 2015 \n", - "Senegal 0 2015 \n", - "Senegal 0 2010 \n", - "Senegal 1 2010 \n", - "Senegal 0 2010 \n", - "Senegal 0 2005 \n", - "Uganda 0 2010 \n", - "Uganda 0 2010 \n", - "Uganda 0 2010 \n", - "Uganda 0 2010 \n", - "Uganda 0 2005 \n", - "Uganda 1 2000 \n", - "Zambia 0 2015 \n", - "Zambia 0 2010 \n", - "Zambia 0 2005 \n", - "Zambia 1 2000 " + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Now add box plot from newly imputed using all variables\n", + "trace1 = px.box(df.reset_index()[df.reset_index().GY==2000], y=\"Buy.from.shopkeeper.with.AIDS.M_all\", points='all', hover_name='Country', hover_data=['imputed.M','Survey'])\n", + "trace1.update_traces(offsetgroup='2000 - All', selector=dict(type='box'))\n", + "trace1.update_traces(legendgroup='2000 - All', selector=dict(type='box'))\n", + "trace1.update_traces(name='2000 - All', selector=dict(type='box'))\n", + "trace1.update_traces(showlegend=True, selector=dict(type='box'))\n", + "trace1.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>')\n", + "\n", + "# Now add box plot from newly imputed using only stigma variables\n", + "trace2 = px.box(df.reset_index()[df.reset_index().GY==2000], y=\"Buy.from.shopkeeper.with.AIDS.M_only_stigma\", points='all', hover_name='Country', hover_data=['imputed.M','Survey'])\n", + "trace2.update_traces(offsetgroup='2000 - Only stigma', selector=dict(type='box'))\n", + "trace2.update_traces(legendgroup='2000 - Only stigma', selector=dict(type='box'))\n", + "trace2.update_traces(name='2000 - Only stigma', selector=dict(type='box'))\n", + "trace2.update_traces(showlegend=True, selector=dict(type='box'))\n", + "trace2.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>')\n", + "trace1.add_trace(trace2.data[0])\n", + "\n", + "# Now add box plot from newly imputed using all + stigma variables\n", + "trace3 = px.box(df.reset_index()[df.reset_index().GY==2000], y=\"Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma\", points='all', hover_name='Country', hover_data=['imputed.M','Survey'])\n", + "trace3.update_traces(offsetgroup='2000 - All plus stigma', selector=dict(type='box'))\n", + "trace3.update_traces(legendgroup='2000 - All plus stigma', selector=dict(type='box'))\n", + "trace3.update_traces(name='2000 - All plus stigma', selector=dict(type='box'))\n", + "trace3.update_traces(showlegend=True, selector=dict(type='box'))\n", + "trace3.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=%{customdata[0]}<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[1]}<extra></extra>')\n", + "\n", + "trace1.add_trace(trace3.data[0])\n", + "\n", + "# Plot actual data from 2005\n", + "fig2005 = px.box(df.reset_index()[df.reset_index().GY==2005], y=\"Buy.from.shopkeeper.with.AIDS.M\", points='all', hover_name='Country', hover_data=['Survey'])\n", + "fig2005.update_traces(offsetgroup='2005', selector=dict(type='box'))\n", + "fig2005.update_traces(legendgroup='2005', selector=dict(type='box'))\n", + "fig2005.update_traces(name='2005', selector=dict(type='box'))\n", + "fig2005.update_traces(showlegend=True, selector=dict(type='box'))\n", + "fig2005.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>')\n", + "trace1.add_trace(fig2005.data[0])\n", + "# Plot actual data from 2010\n", + "fig2010 = px.box(df.reset_index()[df.reset_index().GY==2010], y=\"Buy.from.shopkeeper.with.AIDS.M\", points='all', hover_name='Country', hover_data=['Survey'])\n", + "fig2010.update_traces(offsetgroup='2010', selector=dict(type='box'))\n", + "fig2010.update_traces(legendgroup='2010', selector=dict(type='box'))\n", + "fig2010.update_traces(name='2010', selector=dict(type='box'))\n", + "fig2010.update_traces(showlegend=True, selector=dict(type='box'))\n", + "fig2010.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>')\n", + "trace1.add_trace(fig2010.data[0])\n", + "# Plot actual data from 2015\n", + "fig2015 = px.box(df.reset_index()[df.reset_index().GY==2015], y=\"Buy.from.shopkeeper.with.AIDS.M\", points='all', hover_name='Country', hover_data=['Survey'])\n", + "fig2015.update_traces(offsetgroup='2015', selector=dict(type='box'))\n", + "fig2015.update_traces(legendgroup='2015', selector=dict(type='box'))\n", + "fig2015.update_traces(name='2015', selector=dict(type='box'))\n", + "fig2015.update_traces(showlegend=True, selector=dict(type='box'))\n", + "fig2015.update_traces(hovertemplate='<b>%{hovertext}</b><br><br>imputed.M=0<br>Buy.from.shopkeeper.with.AIDS.M=%{y}<br>Survey=%{customdata[0]}<extra></extra>')\n", + "trace1.add_trace(fig2015.data[0])\n", + "\n", + "# Plot the thing\n", + "trace1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### III. Country level analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1. Women" + ] + }, + { + "cell_type": "code", + "execution_count": 362, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Benin', 'Burkina Faso', 'Ethiopia', 'Gabon', 'Malawi', 'Mali',\n", + " 'Namibia', 'Rwanda', 'Uganda', 'Zambia'], dtype=object)" ] }, - "execution_count": 151, + "execution_count": 362, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "missW" + "# Find countries for which there is a missing value\n", + "df[df['Buy.from.shopkeeper.with.AIDS.W'].isna()].reset_index().Country.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 363, + "metadata": {}, + "outputs": [], + "source": [ + "# Select those in a dataframe\n", + "missW = df.reset_index().set_index('Country').loc[df[df['Buy.from.shopkeeper.with.AIDS.W'].isna()].reset_index().Country.unique()]" + ] + }, + { + "cell_type": "code", + "execution_count": 364, + "metadata": {}, + "outputs": [], + "source": [ + "missW.Survey = missW.Survey.astype(int)" ] }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 365, "metadata": {}, "outputs": [ { @@ -13593,7 +11803,7 @@ 26.5, 40.4, 27.5, - 24.859568253699027 + 24.303358509816114 ], "yaxis": "y" }, @@ -13616,7 +11826,7 @@ "xaxis": "x", "y": [ 35.5, - 23.390582857932404 + 23.768724015518746 ], "yaxis": "y" }, @@ -13643,7 +11853,7 @@ 43.5, 32, 19.9, - 14.110043771471155 + 14.16596363529338 ], "yaxis": "y" }, @@ -13666,7 +11876,7 @@ "xaxis": "x", "y": [ 71.5, - 57.230233773406596 + 57.25908115534936 ], "yaxis": "y" }, @@ -13693,7 +11903,7 @@ 83.7, 81.3, 66.6, - 52.15387049883477 + 51.54456956727535 ], "yaxis": "y" }, @@ -13720,7 +11930,7 @@ 33.6, 50.4, 26.2, - 31.469286375040596 + 31.345534359205388 ], "yaxis": "y" }, @@ -13745,7 +11955,7 @@ "y": [ 85.4, 75.2, - 61.202271342000905 + 61.39611367484593 ], "yaxis": "y" }, @@ -13764,7 +11974,6 @@ "x": [ 2014, 2010, - 2007, 2005, 2000 ], @@ -13772,44 +11981,8 @@ "y": [ 89.2, 83.5, - 71.64895404746395, 68.9, - 48.896811927207665 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=Senegal<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>", - "legendgroup": "Senegal", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "mode": "lines", - "name": "Senegal", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 2018, - 2017, - 2016, - 2015, - 2014, - 2012, - 2010, - 2005 - ], - "xaxis": "x", - "y": [ - 56.22646152583338, - 40.3, - 47.1, - 41.9, - 48.9, - 41.43827676061918, - 48.7, - 26.4 + 49.000493395978246 ], "yaxis": "y" }, @@ -13817,7 +11990,7 @@ "hovertemplate": "Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>", "legendgroup": "Uganda", "line": { - "color": "#FECB52", + "color": "#FF97FF", "dash": "solid" }, "mode": "lines", @@ -13826,21 +11999,17 @@ "showlegend": true, "type": "scatter", "x": [ - 2011, - 2011, - 2011, + 2016, 2011, 2006, 2000 ], "xaxis": "x", "y": [ - 71.8, - 71.6, - 71.8, + 72.7, 71.6, 57.7, - 40.16917287300395 + 40.698110229533256 ], "yaxis": "y" }, @@ -13848,7 +12017,7 @@ "hovertemplate": "Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>", "legendgroup": "Zambia", "line": { - "color": "#636efa", + "color": "#FECB52", "dash": "solid" }, "mode": "lines", @@ -13867,7 +12036,7 @@ 75.4, 79.1, 66.6, - 64.16983532722774 + 63.81748892534672 ], "yaxis": "y" } @@ -14713,8 +12882,8 @@ 1 ], "range": [ - 9.938379536552885, - 93.37166423491827 + 9.997406059476345, + 93.36855757581704 ], "title": { "text": "Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma" @@ -14723,11 +12892,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd53dU56H2//N3PG9+7508h5OT4pMnObYTcFyI49ix48QNTDHFGBBFVNFFrwKBEKBKlZAQCPVeUe+9ojqzZ4/aSDOzZzQz1+/FFmMwMgiDdAvu67PWtU6EBGwJzl7km617/gNEREREREREREREJMR/iL4AIiIiIiIiIiIiIlkx0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQkyqwOt0zku+hKIiIiIiIiIiIiIps2sDbSjYzb8/oOVoi+DiIiIiIiIiIiIaNoID7TdfQqW+R7D//79e/zu/eXe/d8/f4O/f7NN9OURERERERERERERTRvhgXbx+sNYu+M0UrJL8fr8FcjIK8fx81H44rt9GBy2iL48IiIiIiIiIiIiomkjPND+5t1vMWa1AwD++OEq74+nZJdiy/5gUZdFRERERERERERENO2EB9r/mb8CI6NWAMAbH632xlrnuAu//+vsP4O2z2zjJJ1Vc2Fo1CH8Ojgx05xumEc04dfBidm4ywNlyC78Ojgx83iA/llwHdzMr39A//MXfR2cmClDdoy7PMKvgxMz84gGzekWfh2cmA2NOmDVXMKvgxM3oukmPNCu2nYK36w9iNExG5ZvOo7dx8PR3tWP6PhsvPHRatGX91SibxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjmm7CA606MIx1uwIxOmZDa0cv5n7qg9feXIBfvb0Et5LyRF/eU4m+SXDixkAr9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo5ougkPtD827nKh16DCrjlEX8qUiL5JcOLGQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajmi6zYpAOzhsQW1TB8prmh/bbCf6JsGJGwOt3GOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDmi6SY80J4Lv41f/mkhXntzAX75p4WPbbYTfZPgxI2BVu4x0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLQc0XQTHmjf+Gg1Kmpb4HK5RV/KzyL6JsGJGwOt3GOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDmi6SY80H682E/0JTwX0TcJTtwYaOUeA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLzRSPx4PQG0l4/8tNmDN3Ed76xxr4n7oMq02blt9v3OVCfGrhtPza9GyEB9rQG0kIvhwPy6hV6HV4PB6cvhSLP32yFv8zfwWOn4/yvq+7T8GCNQfwP/NX4OPFfiivafG+T/RNghM3Blq5x0Ar9xho5R4DrbxjoJV7DLRyj4FW7jHQcjPlyLnrmPfZehSU1mLMakdrRy+WbjiCResOTcvv19ByH0s3HJmWX5uejfBAm5xVgt++twyvvbkAc+Yuwpx5ix/ZTElIL8LfFm7FwJAF6sAw/vrVZiRlFgMAvl69H2FRyXC53MgtqsGbH6+Bc9wFgP9Al3kMtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DlZsLgsAVz5i5CTUP7Iz9utdlxPS4DznEX3G4PTl64ife/3IT5X22G774gjI7p1zdn3mKoA8Pen/fg7cbWLny0aDtOBEdj8frDeP/LTcgrrsGY1Y4/f+KD37z7LRb5HEJDy318vNgPvvuCsGjdIXyydCeSs0q8v15mQcVL/13ws5nwQPvGR6sRGHoLuUU1KK5ofGwzZdvBiwi5luh9++qtdKzxOw3z4Ah+8+4yjLtc3vf9Y8kO77WJvklw4sZAK/cYaOUeA63cY6CVdwy0co+BVu4x0Mo9BlpuJmTkV2DuP9c98WMS0ovw92+2wWqzw+PxwGdnII4F3QDw04G2paMHv3hrIQpKawHoD0r+e8Ue739+8ARtS0cPfv3OUiSkFwHQv+P9++2nvL/etoMXEXw5/sV9wvQI4YH2g6+3iL4EAI8H2vi0Qny0aDvKa1rw4cJtj3zsul2BuHEnCwD/gS7zGGjlHgOt3GOglXsMtPKOgVbuMdDKPQZaucdAy82E2yn5+Gz57id+jO++IITeSPK+XVBa632q9UmB9nfvL/f+eGNrF+Z+6gPg8UD7q7eXwO32AAAUdQi/ensJLKNWuN0e/OFvq9Ddp7yYT5YeIzzQ7jgS8siZrqLcTb+HD77eAvPgCIZHxvDN2oN4/8tNKCitxWfLdj3ysdsOXkR4VDIA/exajuPknEjOcbfQ35+I5OXg/YeIBOG/f1480f+e5riXZTOhuKIRb3685okfs3TDEcQl53vfrmvqxFv/0H/OkwLtg48B8MjbPw60P/79F6w5gNjEXJRWNeGf3z7axujFEh5oN/sH49fvLMWn3+7Ed1tOYtXWRzdT3G4PTl28iXf+vRGfLd+NwLA4/GvFHlTUtuCDBVsf+VifnWcQHZ8NgE9QyDw+QSv3+ASt3OMTtHLPwydopR2foJV7fIJW7vEJWrnHJ2i5mTAyasVv3l2Ge+X1j/y45nBi19FQWG0aNvsHI2zigUEAyC+pxT+W7AAA/PdflkJRh7w/57U3FzxzoH344wAgKj4Ly3yPwv9UJEKvJ4Gmj/BAe+jMVRwLuvGTE+Xi1QTsOhaGwWEL/vsvS2GzO7zve/fzjaio1Z/6FX2T4MSNgVbuMdDKPQZaucdAK+8YaOUeA61cu282otXciSZzPerUUtQN5mHUMSr8ujgxY6DlZsq58Nt446PVyCqoxJjVjs5uA5b5HsUav9MA9KD68WI/WG0aXC43Vm8PQMClGADAO//e6H29pPjUQvzirYVPDbQZeeX414o98Hg8kwbaYcsYfvPuMrzx0Wr0G80z8SWQlvBAO1tk5JXj241HMWa1o7tPwdxPfVBV3wYAWORzCOfCb8PlciM+rRBvf7YeLpf+7TWibxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOgfXnXax59LLhWqTkoNSWiSIlBnhKJLOU80ownkWz0R6Jx16RTbN3CPxdOzBhouZni8XgQFpWM977wxZy5izD3Ux+cCI6G0znuff+ZkFjM/2oz3v9yE7YfugSrTQOgH935/pebsGT9EVy4chdvfLQaJvPQEwOtOjCMuZ/64I2PVk8aaAFg5ZYT+Hzl3hn47OUmPNDuOBKCXUdDJ93u4+EIiriDhpb7034dznEXNvsH43fvL8cbH63G9bgM7/t6DSq+Xr0fr89fgU+W7kRdU6f3faJvEpy4MdDKPQZaucdAK/cYaOUdA63cY6CdXes0G9CmdqBJrUOdWopKUw5KTUm4Z7qJPCUCWcYgpCsnnhhcn7QU4xFkGgORq4SgULmBMnM8hjSz8M+bEzMGWk5mu46G4uqtdNGX8coTHmh3HQvD7/+6EvM+W6+fQbvtFP7yrw3444ersNk/GN+sPYj/++dvcCelQPSlTkr0TYITNwZaucdAK/cYaOUeA628Y6CVewy007ce88jkwVVJeEHBdS9SjUcngmso7ik3UKLEo1LNRK1ahAa1Gi3mVnSa+9BjHpr0GnkGrdxjoOVk1dbZi7mf+sAyahV9Ka884YH24JmrCLgUA7f7h1fF83g8OBseh+DL8QD04wfmf7VZ1CU+keibBCduDLRyj4FW7jHQyj0GWnnHQCv3GGinvh+Cazua1DrUqiU/BFclGnlGPbimGY8jyfA8wfUscpVQFCo3UKLcfSi41jwUXIdfyOfEQCv3GGg5GZ0IjsafP/FBVkGl6EuRgvBA+9v3lnnPy3iY5nDijY9WAwDsmgO/envJTF/alIi+SXDixkAr9xho5R4DrdxjoJV3DLRyT+ZA22MeRqfZgFa1HY1q7URwzX4ouIYj2xtc9z1zcE0y7EWa8RiyjGeRp4ShUInSg6spC7VqERrVGrSqbS80uD7rGGjlHgMtRzTdhAfaP/xtFTLyyh/78bziGm+gTc8tx7uf+870pU2J6JsEJ24MtHKPgVbuMdDKPQZaecdAK/depUDbbR5Bp7n/oeBajKqJ4FqoRCHXGI4s47kXEFzPIc/4ILgmoMqUhVq1+KHg2o9uQcH1WcdAK/cYaDmi6SY80F6Ly8Brby7AZ8t3Y8Oes9iyPxhfrtqHX7y1EGfD42CzO/CLtxYiNjFX9KVOSvRNghM3Blq5x0Ar9xho5R4DrbxjoJV7sznQdpuHJ4Jr20PBNQslE8E1zxg2EVyP/czgus8bXHON4Q8F1+yJ4Fr7UHAdEf71mI4x0Mo9BlqOaLoJD7QAUNfUiVMXb2LbwYvYdvAijgXdQG5Rtff9rR29Aq/uyUTfJDhxY6CVewy0co+BVu4x0Mo7Blq5N5OBVj9SoG8iuNagVi1CpSkLJcpdPbgqYcgynp0Irnt/ZnA9PvGEazjuKdEo9QbXkong2o5Oc7+wIwVm2xho5R4DLUc03WZFoH2Zib5JcOLGQCv3GGjlHgOt3GOglXcMtHLveQLtg+DaYm5Fw4PgqmZOBNcbyFPCkGk8i1TjUSQaf05w9Uea8TiyjUGPBNfKieDapNahTW1Hp9mAnlf0CdfpHgOt3GOg5Yimm5BAu8bvtPep2DV+p5+42U70TYITNwZaucdAK/cYaOUeA628Y6CVew8H2h7zEDrMvRPBtfqh4BqPe8oN5CqhyDQGPldwTVdOIMsYhDxjxEPBNeeh4NrB4DqDY6CVewy0HNF0ExJo9wdcRlev0fufn7TZTvRNghM3Blq5x0Ar9xho5R4DrbxjoH111+0Nri1oVKtRq95DpZqJYiUehRPBNUsJRIbpKBKNe545uCYbJ4Krch55SgTumW7qRwqoOahTS9Gk1qHV3IFOsxG9A6PCvx7c42OglXsMtBzRdBN+xMGNO1mT/rjVpiH4cvzMXszPIPomwYkbA63cY6CVewy0co+BVt4x0L486zYPosPcNxFcq1Cj3kOFmoES5c5EcA1BpjEQKcYjSPpZwXU/0o0PgmskipSbKDMl/hBczfVoNXfgPoPrKzMGWrnHQMvJbNzlwmtvLsCceYvxX28vwevzV2DphiPeBy9/rl+/sxQG08ALusqXn7BA63SOw2qz49fvLIXVZn9sNY0dmDN3kajLmzLRNwlO3Bho5R4DrdxjoJV7DLTyjoFW3PTgqj/h2qBWoUYtfCi4Xp8IrmeeI7j6I814ElnKeeQrkShSYlDqDa5laDLXo3PwPsacQ+g1M7jKOAZaucdAy8nsQaB9EFNtdgd2HgnFtxuPPtevax4cgdvteRGX+EoQFmiv3krHf/55EV57c8FPbsn6I6Iub8pE3yQ4cWOglXsMtHKPgVbuMdDKOwbaF7eugQG0m3vRYm5Gg7lyIrimo8R0BwXKdeQol5ChnEGq8TASjbufObimGPcj3XgS2UrwQ8E16aHg2oA2cyfum5UpB9fneZGwl33GdhWmmh7098p73i0DrdxjoOVk9uNACwD5JbV47wtf79tZBZX4cOE2/OVfG7DI5xAGhiwAgPCoZGw9cAG+e4Pw9er9+GTpTvQZVAA/PEHb2NqFjxZtx4ngaCxefxjvf7kJecU1M/tJzgJCjziw2R341dtL0Nja9dg6uw0vRUkXfZPgxI2BVu4x0Mo9Blq5x0Ar7xhof3pd5gG0qz0/BFdTASrUdBSbbk8E1xBkKKefM7iemgiul73BtVrNRb03uN7HfbOCPvPYtHyOr0ygNVlh7ByAqb4P5uI2DGbUYiS+FJYrORi7kAL7ydtw7L2O8S1hcK8+B3wb4J25uFX89QsaA63cY6DlZprvTifWbZ/5TebHgdZqs8N3bxAOn70GADCaBvH7v65EU1s3ACD0ehJWbTsFALgck4b/97fvoA4MAwD2nojAieBoAD8E2paOHvzirYUoKK0FACRnleDfK/ZM3xd3lhJ+Bq3D4cS4y+V92+Vyo76501vbZzvRNwlO3Bho5R4DrdxjoJV7DLTyTp5Aa0WXeQAdag9a1GY0qHpwLVdSUazcRoHxGnKMl5BpPI1Uw6GfFVyTHwRX4wXkK5dxT4l9KLiWo0l9EFxN6J2m4Pqsm82B1tA1CFN9P8wl7RjMqsNwfBks1/MwdjEVtlN34PCPwvjWMLjXBD0SXJ8099pgOLdHQDsQDVtAPMZC0qE09Av/XEWNgVbuMdByM23xaqeQTeZBoP3te8vwu/eX45d/Woj5X21GZ7cBgP7aUovXH/Z+vNVmx3/+eRGc4y5cjknDqq0nve+LiE7BZv9gAI8G2t+9v9z7MY2tXZj7qc90fFlnNeGBtrC0Dm98tBoulxvOcRf+tWIPfvHWQsyZtxhZBZWiL++pRN8kOHFjoJV7DLRyj4FW7jHQyruXN9Ba0WU2o13tRrPajHq1AtXe4BrnDa4ZxgCk/OzgesAbXAuUKyhSYlGmJKNazUWdWo4mtRFt5vvomkXB9Vk3k4HW0D0EpdEAtawDgzkNGE4ohyWqAGMh6bAFxEM7GAXn9gi41wYDy6YYXNcEYXxrGBz+N2A7dQdjF1NhuZaH4fgyDGbVwVzSAaWhH4auQfSp4r/es20MtHKPgZabacMjYjaZHz9BO+5yIbeoGn/8cBVM5iFcvJqAX7+zFHP/uc671+evgMk8hMsxafDdG+T9tR5+++FA+9Y/1ng/5sdvy0J4oP14sR9iEnIAALdT8vGnT9ZicNiC1JxSfLzYT/DVPZ3omwQnbgy0co+BVu4x0Mo9Blp5N3sC7cPBtWkiuOZ7g2u+chXZD4Kr8eAzx9YfgmsAcrzB9dZEcM1DnVqOZrUR7eaulzq4PuueJ9AaekegNBuhVnRiILcRw0mVsNwsxGhoBmxnEqAdugmnXyRc6y4Ay09PKbh6Vp3D+KZQOPZeh/14HKznk2G5ko2ROyUYSq+F+V4rTHW9MHaa0WeyCv/6vexjoJV7DLSczCY7gxYAPlq0Hak5pbiTUvDIU7IPY6CdOuGB9r/eXgKXyw0A8NkZiGNBNwDoRx3891+Wiry0KRF9k+DEjYFW7jHQyj0GWrnHQCvvpivQ9pqt6DKraDc/CK7lqFbzUa6koEi5hXzlKnKMF587uGYYTyHHeBH53uCa8lBwbZoIrip6zYx5k+3hQNvfPwJjqwK18j4G8pswlFIFS0wRRsMzYT2bAO1wDJw7r8C14RI8K85MLbiuCIRr4yU4d12B/UgsrOcSMRqRiZFbxRhKrcZAQTNM1d0wtpnQb5zaC5txL24MtHKPgZaT2WSBtrSqCb9+Zynu9xihDgzjjx+u8h55UNPYgX0nIwAw0D4L4YH2D39bBXVgGHbNgdfnr0B5TQsAwDw4gt//daXgq3s60TcJTtwYaOUeA63cY6CVewy08m6qgfaH4NqFZrUJdWo5qtU8lHmD65WJ4HrqZwfXFOPBh4LrVRQpt1CupKBazUe9N7h2M7hO9c/WOApjmwmm6m4MFLZgKLUaI7eKMRqZBWtQIuxHY+HccxWezaHwrAyc2jmuy0/Dte4CnH6R0A7dhC3wLkZDM2CJuYfh5EoM5DZCrbgPpcWI/r4R4V8D7sljoJV7DLSczB4E2jnzFmPOvMX41dtL8MHXW5CcVeL9mOzCKny4cBve/XwjPlm6E+U1zQAYaJ+F8EC740gIPly4Df9YsgMfL/aDx+OB1abBZ+cZrN1xWvTlPZXomwQnbgy0co+BVu4x0Mo9Blp51zMwBLOjY+IJ11yUKckoUmKRr1xGjvEi0o2nkGw88FzBNdt4yRtcyx4Jrs3eJ1xFfx1eiiljMHaoMNX0wHyvFUPptRi5XQLLlWxYg5JhPx4Hx95rGN8UCs+qc1N+4SysC8b4tnBo+ydeOOtSGixRBRhOKMdgdj3MZe1QGg0wdA+J/xpwL3QiAm2/yYJ+4yAMBhOMvX1Qerqg3G+HqaMZalsdzC1VMDeVYaChCIO1eRisycJQVRqGKxIxUnYHI8WxsBRFwZJ/GaN5YRjLvoixzCBYM07DlnoStpQjsCfuh3Z3Dxx3dsARtxXO2I0Yv+kDV9T3cF1fAffVJfBc/gaI+BJKV6fwPwdRY6DliKab8EDrdI7jSmw6zkfegTowDAAYs9qxblcgBoYsgq/u6UTfJDhxY6CVewy0co+BVu4x0MqzdrUHtWoxipQYZBpP/4zgGoCcieBarMQ99IRrxURw7WZwnepMVhg7B2Cq64W5uA2DGbUYiS+F5UoOxoJTYD95G4691zG+JQzu1VMPru7V5zC+OUw/x/XkbYxdSIHlSg5G4ksxmFkLc3E7TPV9MNwfgDJom7EXCePErF8ZgsFghrHPAGNPD5SuDpg6W2Fqb8BIRx2cvbUYaCzBQF0BBmuzMVSVgeHKZAyX3cVIyS1Yim/CUnAVlvwIjOaEYCwrGNaMQFjTTsGWcgz2pIPQEvZBi98Fx+3tcN7ahPGY9RiPWgPXje/gvvotPFcWwRPxNRD++ayb0tEi/M9I1BhoOaLpJjzQTtXcT31EX8KkRN8kOHFjoJV7DLRyj4FW7jHQvrprMTej0pSFPCXyJ5+ELTAHPxRcU1Ft0oNri9qMdrUbXWaz8M/jpZhqg6FrEKb6fphLOjCYVYfhu2WwXMvD2KU02E7dgcM/CuPbwuFeEzTl4Or57ixcm0Lg2H0V9mO3YA1KguVyNkbiijGUVqO/cFZND4ztKvqUZ3txs+d5kTDu8fWrI/rTof2K/nRo9/2Jp0OboLbWwdxSCXNjKQYa7mGwLhdD1VkYqkrFcHkiRspuw1IcC8u9G/rToblhGMu5iLHMc7CmB8CWegL25MMTT4fuhuP2DjjjtsAZ89DTodeW60+HRi4EIr4QHj8nmyfiK3gufwP3taVwXV8BV9RqjN/0gTPWF47b2+C4sxNawl7YEw/AlnIUtrSTsGacwVhWEEazL2E0LwyWgiuwFEVhpOQWRsriMVyRhKHqdAzWZGGwLh8DDUUwN5VDbamC2lYPU2cLlK5OGHu6YewzwNCvol8ZQp8q97nHDLQc0XR7aQLt795fLvoSJiX6JsGJGwOt3GOglXsMtHKPgfbVWJd5AI1qNUqVBGQrwUg07p30Kdg8JQKVpiy0mJvRN2iZlhcJe1Vm6B6C0miAWtaBwex6DCeUwxJVgLGQdNgC4qEdiIZzewTca4OBZVMMrivOwLXhIpw7r0A7EgPr2QSMhmfCElOEoZQqDOQ3Qa3sgrFVQX//9J7j+lIHWnXsiU+Hqq01MDdXvNinQ2M3YTxm3cTToSvhvroUnsvfwBP5lfDwOfm+gCdyAdxXFsN9bRlcUaswHr0WztgNcN7aAme8H9xJe2FP8Ic9+TBsKcdhTQ/AWOZZjGVfwGhuKCz5kXo0Lo7BSOltDJcnYKgyFUPVmRisy8VAfSHMTaUwN1dCba2FqaMRps42KN33YezphaFfgcE4gH4TzySebWOg5YimGwPtcxJ9k+DEjYFW7jHQyj0GWrnHQPtyrl3tRq16D/eUaKQbT076dGy6MQD3TDdRqxah3dz72K8x1RcJe1Vm6B2B0myEWtGJgdxGDCdVwnKzEKOhGbCdSYB26CacfpFwrbsALD89tadcl52G2ycYTr8IaAejYTt9F2Mh6bBEF2I4sQKDOQ1QyzuhNBtg6BkW/jV4eM8SaPl06BSeDo2ceDr06lK4bqzEeNQajMesgzN2Exy3t0GL36U/HZp08IenQ9PPYCzrPEZzLmE0L1wPxkXRGCmJw3B5PIYrkjFUlY7Bmmz96dDGYv3p0Nbq5346lC8SJvcYaDmi6cZA+5xE3yQ4cWOglXsMtHKPgVbuMdDO/vUOWNCsNqNCzUCeMXzS4wqSDHuRY7yAMlMiGtQadJsHn/rrvuyBtr9/BMZWBWrlfQzkN2EopQqWmCKMhmfCejYB2uEYOHdegWvDRXhWnJn6Oa5rgjC+NQwO/yjYTt3B2MVUWK7lYfhuGQaz6mAu6YDS0A9D9yD61Gn43NRR/enQfnXi6dBuKF2dMHW2QG2rh9paDXNTOQYaizFYl4/BmmwMVaVjuCIZw+XxGCmJg6UoGpaCqxjNC8doziWMZZ2HNf0MbGknYUs5CnvSQTgS9sGTtAeO29tevqdDI76AJ3Ih3FeXwHVtOVxR3+vfKh+zEc64LXDc3gHt7m7YE/frT4emnph4OvQcxnIuYiAMxoIAACAASURBVDQ3DJb8yxNPh8ZipOw2hssTMVSViqHqLP3p0IZ7MDeWwtxSCbW1DqaOJij32/WnQ3v7YOhX0G8cRL/6cj4dykAr9xhoOaLpxkD7nETfJDhxY6CVewy0co+BVu4x0M6+dZlNqFcrUKzEI9sYhCTjnseCbKrxMAqUK6hSc9BibkWv+dnPU5xtgbbfOApjmwmm6m4MFLZgKLUaI7eKMRqZBWtQIuxHY+HcfRUu30vwrAyc+jmuq85hfFOo/sJZx+NgPZ8My5VsjNwpwWBGLQYKG2GuaoPSch/Grh4o3fdh6myDqaMRamstzM2VMDeVYqC+cOLp0EwMVaZiuDwBI6W3YSmOmXg6NBKjuaEYy76Ascyz+tOhKcf1p0MT/CeeDvXTv708dgPGo9fCFbUK7mvL4L6yGJ7IBUD4LH06NOJreK4sgvvqt3Dd+G7i6dD1cN7aBMft7RNPh+6beDr0GKxpp2DNCMRYVjBGc0JgyY/Qnw4tvomRklsYLruL4cpkDFVlYLA2GwN1BRhoLIG5uQJqaw1M7Q0wdbZC6eqAsadHfzrUYJ54OvTZztrlJh8DrdxjoOWIphsD7XMSfZPgxI2BVu4x0Mo9Blq5x0Arela0me+j2lSAQuUG0ozHJz2uIEM5jSIlFnVqKTrNfS/k9572QKuMwdihwlTTA/O9Vgyl18JyqwijkRmwnr0L7Wg0nLsj4PK9AM93Uw+uWB4A99ozcG0+g/GdgRg/cBrOYwEYDzwFZ/BxOEOPwHllP5w3dsNxaxucsb4T3yq/Gq7rK+C+NvF0aITcT4cOtZTC1V//Sj4dyj19DLRyj4GWI5puDLTPSfRNghM3Blq5x0Ar9xho5R4D7cyu2zyCJrUB5UoqcpVQJBv3T3JcgT9ylBCUKcloUuvQY56es0uVni54DI1TfyGl7BBYE4NhjzkD7copOC6ewPiZYxg/chiufUfg9jsCj+8ReNYeA1aenHpwXXYSWHUUWHsA2LgX2LYD2LkF8N8IHF4LnFgFnFkGnF8EhHw5PU+IzsTZoc2VTz87dAb/Lr7ULxLGPfcYaOUeAy1HNN0YaJ+T6JsEJ24MtHKPgVbuMdDKPQba6V2n2YB6tRzFShwyjYFINO6e5LiCoygwXkO1moc2tQO9ZusL+/2Vni6Ym8oxXHYXozkhsCcdxPhNHz1Mhn0BXFwAnFsCBKwAjn0PHPIB9vgCftuAzTuB9fuANYeAFceAb09NMbqeAr47pv+8DfuALTuBHVuBfb76r39iLTxn18B9aQ1cV9YIOztU9N8N0WOglXsMtHKPgZYjmm6zItA2tXV7/3OvQUXojSRk5Fc88jG1TR3Teg0ejwcngqPx7ucb8e7nG7Ht4EXY7A4AQHefggVrDuB/5q/Ax4v9UF7T4v15om8SnLgx0Mo9Blq5x0Ar9xhoX9x6zWNoU9tRreaiwHgNqcajkxxXsBuZxrMoVm6jTi1Hp9n43L/vwxF2LC0EWtRBuC5sAY6vAg6t1cPojq3Alh16MF1zEFj5LME1AJ5Vp+HeEIjx7efhPBAC7WQEbMHXYb1yC2NxSRhJy8ZQ4T2Ya6pg6miZ/OzQWfBnxD3094aBVuox0Mo9BlpOZuMuF157cwHmzFuM/3p7CV6fvwJLNxxBV6/xmX+t8KhkbD906bEfD7mWOOmP/xwPrveXf1r4yD5YsPWF/PrTRXigjYhOwevzV8DlcmNoeBR/+NsqfLRoO/744SpcuHJ3xq4jOasYnyzdCZvdAZfLjVXbTuFc+G0AwNer9yMsKhkulxu5RTV48+M1cI67ADDQyjwGWrnHQCv3GGjlHgPtz1+3eQhNah3KlGTkGC8hybDvsSCbbPRHrhKKciUVTWrjMx9XYOgdgdJkwMC9SljupsJ2+TocgUEYP3gM7h374fHdqx8N8N1R/aiAqQbX7wLh2hQC7L8B+7FbsAYlwXI5GyNxxRhKq4H5XitMNT0wdqjoU/iiTK/iGGjlHgOt3GOg5WT2IHgaTAMAAJvdgZ1HQvHtxqPP/Gv9VKC12R0YHXsxX+cfX+/LQnignffZetQ1dQIAQq8n4ZOlO+HxeNDa0Yu//GvDjF1HYFgc9p2M8L59OSYN63YFwjw4gt+8uwzjLpf3ff9YsgPFFY0AGGhlHgOt3GOglXsMtHKPgXbq6zT3oVYtwT0lFpnG05O+mFea8TjuKTdQYypAm/k++n50XEF//wiMrQrUyvsYyG/CUEoVLDFFGA3PgP10LJz+EXBtCYJnzWlg2dSfcMWyU/CsCYBr8zk494XCfioao2GpsMQUYSi1CgP5TVAru2BsU9Dfr7/w07S/SBg3q8dAK/cYaOUeAy0ns8mCZ35JLd77whcAUFXfhve/3OR938Nvh0UlY9vBi/h4sR/OhMQ+EmgNpgHM/dQHZdXNjzxB+7v3l+NaXAaWbzqO+V9txvnIO95fOzo+G+9+7ot5n63H16v3o195PMI+LdBW1rXi48V+eOffG/HB11tQVNEAAHA6x+G7Lwh/+dcGzPtsPTbuOQe7pn9nfXJWMT5YsBXzv9qMr1fvR3tX/8/+ev4U4YF2zrzF8Hg8AIDF6w/j0rUEAIDb7cGceYtn7DpKq5rw1682Y3DYAs3hxDLfo7h5NwflNS34cOG2Rz523a5A3LiTBYD/QJd5DLRyj4FW7jHQyj0G2snXOzCKFnMrKk05yFcuI9Vw6PEX8zLuQbbhHMq6Y9DcnAtjcTWGUqsxcqsYo5FZsAYlwn40Fs7dV+HyvQTPysCpB9cH57hOvHCWZ/teuPYfgjPgDLTwcIzdjsdQbjFMDV0w9I78rM+RgVbuMdDKPQZaucdAy820kRUfY/jbD2d8k/lx8LTa7PDdG4TDZ68BeHKgvRyThj9+uApdvQqAH56gtWsOfLJ0J+6kFAB49IiD33+wEgGXYgAA5sERzJm7CFabhoEhC+bMW4xegwoA2H7oEnYdDX3q9f7Yhwu3IT61EABwJ6XAe63JWSVYvP4wPB4P3G4PDgdeQ3lNC/qNZvz2vWXo7DYAAK7EpuOz5bun8sf4TIQH2nmfrUdDy330GVTMmbvI+wm3d/XjrX+smdFr2X08HHPmLsKv31mKBWsOwOkcR0FpLT5btuuRj9t28CLCo5IBAM5xNyfp3G4PXG6P8OvgBP35ezxwudxwCprd6cK4y80JmscDjLs8wq+DEzMAwq9B5OwO/f/axsfQb2tA/VAyCozBSDbsefzFvLr3oqTiONoSAzFwJgjudeeeLbiuOK6/cNb6ffoLcPlt01+Q65APcPx74PxGeKL2wZ1+Du7qOLg77sFl7sS4w84/f24a5pm4/4u+Dnlnd7iE/dvL5dL//Sfq95+2zYJ/V78Mc7n1YCP6Ojhxm2lDn/5ByCbzIHj+9r1l+N37y/HLPy3E/K82e/vd0wLtkvVHvO97EGjX7z6LMyGx3h//caBtbO3yvu/1+SvQ028CAO8TrQAQn1aIxesP/+T1/uFvq/C/f//eO999QQD0J2Xdbv1BUUUdwn/+eREAoLymGW/9Yw2yC6ugOZzeX+/m3Rys3HLC+7bmcOIXby18YUcyPCA80EbeTPUeNLzJ/zwAYGh4FPO/2oyj527M2HVcj8vA0g1HYLVpcLnc8D91GTuOhKCituWxg4R9dp5BdHw2AEAZsnOSzuZwYWTMIfw6ODFzON0YHHVAGbSL2ZAdypDGCZrL7cGARfx1cGLm8QCmWXAd07YBO9TuIQw09GGotB0jWfUYjS+F6U4S2lMvo+JeALKa/Sc9riC7fi+qk/ajO/gIRrefAJb9+BzXM3CvPwv31kC4dxyHe/c+YM9m4OB64Oj3wKkVwNklwIUFQNgXQPjncF9fAcfdXbBlnsVYaSxGGvIx0NUC04Blxr82pmH9z1/4nxEnZAMW/f4v+jpknnFI0L+7Bu0YHHXA4XSL+7fftP6bknvaRsYcsDlcwq+DE7eZ5hkywzOozvgm8+MnUsddLuQWVeOPH66CyTz01EC7cc857/vCo5Lx+vwV+NXbS3Dzbo73x38caB9+AbIHb3s8HpwNj8M/v92Fz5btwruf+2KRz6GfvN6GlvtQB4a9Gxm1AtCflP1y1T58tmwXPlm6E7/800Lvz03OKsbXq/fjt+8tw7aDF2G1aQi+HI9tBy8+8nv85t1vf9aLpD2J8EALAK0dvaiobYHLpf+vEs5xF67HZXjfngmrtp5EVHyW9+3Kula88++NGBy24L//shQ2+w+V/t3PN6KitgUAv8VN5vGIA7nHIw7kHo84kHsv3REHqhWGrkGY6vthLunAYFYdhuPLYLmWh7GLqbCdugOHfxTGt4XDvSYI+DYA7u9OYeDAcbRdPoTSHH+kdu5+/LiC3l0oLN2H+vhj6As/j9HT0bCdiYUt+CbsIVeghZ6HM/QwXJc2wXNhMRCqB9fJ5rq+Alr8LlgzzsJSHIPB2jyYOpvRb3q2Fwib7vGIA7mnDPGIA5nHIw7kHo844GT2U0cGfLRoO1JzSlHT2IF3P/f1/nh+Se0jgdZ3b5D3feFRyfhm7UE0tXXjD39bhb6J4wqmEmhTskvx4cJtsEyE1rjk/CcG2smOODAPjuBXby9B2/0+AEC/0fxIoH1gaHgUi3wO4dK1BMQm5uK7LSe973vwBO2Y9cWGe+GBdmTU+pMbGLLM2HWcCI7G99tP4cGLgZ28cBOrtup/AIt8DuFc+G24XG7EpxXi7c/We+Ox6JsEJ24MtHKPgVbuMdDKvdkQaA3dQ1AaDVDLOjCYXY/hhHJYogowFpIGW0A8tAPRcG6PgHtt8GNPsU42bd1JGE4dQ0PcQeRX+iOp//Egm9azH4VtwahriEZPVTyGim9jNPsS7In7MR69Fp6Ir34ywD4eYWMnImzLrIuwTxoDrdyTIdB29NpR0WBHZqGG2EQNIdfsOH5Ow46DDqzZ4sCSNU6s2ODA6i0ObNjhwNZ9Duw87ID/CQ1HAjWcCtYQGKrhwmUN4VF2XI9zICZRw500Dck5+q+bV6qhuNqOygY76trsaOm2475B/Of+tDHQyj0GWk5mkwXP0qom/PqdpbjfY4TBNIBfv7MUVpsGANh1NPSJgfZBiA2+HI9v1h6Ex+OZUqC9HJOGFZuPA9Bb4uL1hyc9C/ZJgbalowf/72/fweFwwu324Pj5KLz25gLYNQcib6biTEgsPB4PPB4Pth64gJBriTCYBvD6/BXeawqPSsaXq/yf62s6GeGB9rU3FzxxM2XMascm//N4598b8c6/N2KZ71Hvq8H1GlR8vXo/Xp+/Ap8s3Ym6pk7vzxN9k+DEjYFW7jHQyj0GWrk3HYHW0DsCpdkAtaITA7mNGE6qhOVmIUZDM2A7kwDtUDScfpFwrbsALD899XNclwXAvfY8xrdHQDsQDVtAPMZC02BMTEFzSQxKWkKQ3nd00uMKMnuPoKz9DNoqAzCQ6Y/x6LVAxJevfIR90hho5d6rEGibu+woqbYjNdeOqHgHgiM1HD6tYes+B1ZudGDxaqfQLV/vxOrNDmzwc2DzPgd2HHJg33H9Gk+cdyAwRENwpIawKDuuxjlwM0HDnVQNSdka0gs05JZoKKrUI3Ntqx3N9+3o6LejV33+rx0DrdxjoOVk9iB4zpm3GHPmLcav3l6CD77eguSsEu/HHDh9BR8u3IZlvscQeiMJ732hP1H7pEDrcrnxz2934XJM6pQC7cCQBZ8t3433v9yEResOobKuFf/79++9L1b24+v9qRcJ2+wfjLn/XIfPlu1CYWkdvvhuHz79dicGhixYvuk4/vyJD+Z9th4+O8/AatOfkk3LLcOHC7d5f+/uPuUFfGUfJTzQtnT0PLLm9h5kFVRixebjyMivEH15TyX6JsGJGwOt3GOglXsMtHJvKoG2v38ESosRauV9DOQ3YSilCpaYIoyGZcJ6NgHakRg4d16Ba8NFeFaceYYXzgqAe/U5jG8Jg2PfDdhP3sbYhRRYruZiOL4Ug5m1MBe3w1TXB0PXIPpUK3rMw2hWG1GhpiNXCUWy8fHzY5P7d6OgdTcaSjfDlLQMzqs//TTsgwg7ljkRYevyX6kI+8Q/VwZaqfcyBNq6djsKyu1IyNBw9ZYeNPef1LBx19Ti6/J1TmzareHAKQ3nwjRcj3MgKVtDfpmGgicsr1RDer6GpCwNt1M13Lyr//4h1+0IjtRw5pKG40EOHAzQsPeYA34HHdi8R8N6Pwe+3+TAsnUzE4BXbXLAZ7sDm3Zr8DvgwJ6jDhw4peHYWQ2nL2k4H6E/NXwl1oGoeAduJWtIyNCQlqehsMyBuiY3SmvtqG7W0NhhR1sP/y0gyxhoOaLpJjzQ/hSb3YF/rdgj+jKeSvRNghM3Blq5x0Ar9xho5Vu/cRTGVhNM1d1ATSeGU6sxcqsYo5FZsAYlwn4kFs7dV+HyvQTPysBnCq6e787CtSkEjj3XYD92C9agJFguZ2MkrhhD6bUw32uFqaYHxg4VfcrYU6+102xEnVqOYiUOWf0Bkz4dm9G1HRVVG9CZ8x2G4xbBE/Ho+bCuGyuljbBP/HvAQCv1RAfabsWG6mYNOcX6U6PhUXacuqBhzxEH1vnpxw9MJVBu93fgaKB+DMHNuxrS8zSU1trRKjg29qo2dBr0p3zr2vQjEIqr7cgr1ZBZqB+RcCdNQ0yiHo7Do+y4cFk/UuFUsH7Egv8JDTsP60cvbNihH8WwYsPUvjbPs6VrnVjp68DabQ747tK/xruPOHDgpIajZzUEXNRwLlzDpasaIqPtuHHHgdgkDXczNKTm2pFdpKGg3I6SGjuqmjTUt9vR2m1Hl1H833tOHwMtRzTdZm2g9Xg8mPupj+jLeCrRNwlO3Bho5R4DrdxjoH0FpozB2KHCVNMD871WDKXXYiSuGJYr2bAGJcN+7BYce6/B5RsKz6pzzxZcV5yBa8NFOHdegXY4BtazCRgNz4QlpghDqVUYKGiGWtkFY5uCfmX0uT6PXtWCzp4y1HdGobjjJNJ79jweZA27kNe6BXUla9GXthy2qAUPRdjdGMs8ixFvhG2VPsI+aQy0cm+6A217rx3l9XZkFGiISdJj3rGzGvwOOrB689SegF2zVT8T9sR5/enVW8kasos0VDXYcV/y2NdltKG12476dj2CltToTxtnF+mR9G6GhtgkDTfuOBAZbcelq3pUDbioR9aDAQ74n3Biu78eYdduc2ClrwNL105v/J2Oc3+bu+zoNNheyNEPsoyBliOabsIDbXR89mO7HJOGNX6n8Y8lO0Rf3lOJvklw4sZAK/cYaOUeA+0snMkKY+cATHW9MBe1YTCjFiN3SmC5koOx4BTYT96GY+91jG8Og3v1swVXLDsNt08wnH4R0A5Gw3M+CWOhGbBEF2I4qQIDuY1QyzuhNBtg6B158Z+bOgqlqxMDjSUYrLiN7rJA1Ffuwb3m7Uju3flYkE3p24Hiel+05H8PJW0txhIni7DTcJ0SjIFW7j1voG2+rz8RmpKrP0F5PlLDodMatux1YOWGpwfYpWudWL/Dgb3H9W/Hj7xpR3yGHt9qW+3oNon/Gr3Ke9IZtD2KHtgbO+2oabajrM6Owko7sov1J5QTMzXEpWiIitdwJdaB0Ot2nI/U/xyPn9NwMEDDnqMO+B3Qj35Y5+fAqk0OfOszA+f+rnPi+00OrN/hwOa9Duw4qP8dO3Raw4kgBwIv6ef+ht6w4+otB27e1Y+xSMrSj7XILdFwr0r/HxdqW17sub+zaQy0HNF0Ex5o3/9y02P7aNF2+Ow8g7b7faIv76lE3yQ4cWOglXsMtHKPgXYGplph6BqEqb4f5pJ2DGbVYTi+DJZreRi7mArbqTtw+EdhfGsY3GuCni24fhsA95ogjG8Lh8M/CrZTdzB2KQ2Wa3kYvluGwex6mEvboTT0w9A9iL4f/ZfM6XiRsB8ibDFGyuIxlnMR9gR/WOJ90JuxErWlPsht24JE4+NBNvP+DpTV70JL1TH0V13FQD0j7HSNgVbuPSnQ9phsqG+zo7DCjsTMH85/9T+hn/86ldC2fL0Tm/dMnP8a/uD8VzvuVenh71ULXi/bRL1IWK9qQ0e/Hj5rW/UXQCuqtCO3RH9htKRs/ciLmwkarsY5EBaln/sbGKK/sNrh0xr2Hdew45D+wmsb/PQnspevn/74+62PfqzGOj89PD849/dggB6mT1/ScD5SQ+j1B+f+6iE7MVMP29nFGgor9eBd06z//0F7rx09ysz/+TPQckTTTXigfdmJvklw4sZAK/cYaOUeA+3Pm6F7CEqjAWpZBwaz6zGcUA5LVAHGQtJgC4iHdiAa49sj4F4bDCx7tuDqWXUW45vD4Nh7HfbjcRgLToblSg5G7pRgMKMW5qI2mOp6Yew0o89kfa7P42cHWnUUSlfHRIS9g7Gci9AS/DEetQaI+ALuyC8wdHsxOnK/Q3n1eqR3+z0WY5MMu5DTdQjlnZfQ1J2BblO/8D9XmcZAK++6FRvq2zRU13ue7/zX/Q4cOTtx/muC/gRiaa1+3qjoz5F78kQF2ukcz/2d+rm/DLQc0XQTEmhbOnqmvNlO9E2CEzcGWrnHQCv3GGj1GXpHoDQboFZ0YiC3EcNJFbDcLMRoaAZsZxKgHYqG0y8SrnUXgOWnn/Ec10C4fC/Bufsq7EdiYQ1KxGhkFkZuFWMotRoDhS0wVXfD2Kai3/h857g+654YaJ8SYR9+IS7nta+gJH2Lpnurca9xE5L7JzmuwLAfecYwVKgZaFab0TtgEf7nLvMYaF/dPe/5r0vW8PzXV32vYqCd7j3vub8HTmrYfcQxK8793X3EgUMBTp77K/GIppuQQPvamwumvNlO9E2CEzcGWrnHQCv3XtVA298/AqXFCLXyPgbymzCUUgVLTBFGwzJhPZsA7UgMnDuvwLXhIjwrzjz7C2etvwDnjsvQDt+ELfAuRsMyYbl5D0PJVRjIa4JacR9KixH9fbP7W/M9bhdMXR0YaCjSI2z2hZ+MsA9vNOYbdOWuR2XdLmR27Xv8xbyMu5BuPIl7SjRq1HtoV7uFf67co2OgfXn3Is5/3bBTDzQ8/1XOMdDOrvWYeO7vw+f+tvfxGJTpHtF0ExJoR0atU95sJ/omwYkbA63cY6CVey9LoO1XRmFsNcFU3Y2BgmYMpVZj5FYxRiMyYQ1KhP1ILJy7r8LlewmelYHP+MJZAXCvPY/x7RHQDkTDFhCPsZA0WKIKMJxQjsHseqhlHVAaDTD0DAv/Wjzz1840cSZsQxFGym5PRNh9T42wCP8crhvfwZa4G33FAahvPo+C7jNIMeyfJMjuRbYSjFIlAY1qFbrMA8I/b+4pfy8YaGflekw21LXrT+YlZGi48uPzX6fwtN1Uzn993hcJ417uMdDKs8nO/a2qd6Ki1jX7z/1dqx+n4rPdgU27fzj398Ap/bsCTl/ScD5CQ8g1Oy7HOhAV78CtZA0JGRrS8jTkFGsoqLCjtNaO6mYNjR3izv2dbSOabrPiDFqrzY6MvHJci8vAjduZyC6sgl1ziL6sKRF9k+DEjYFW7jHQyj1hgVYZg7FdhammB+Z7rRhKr8VIXDEsl7NhDUqG/dgtOPZeg8s3FJ5V5579hbNWn8P4ljA49t2A7eRtjF1IgeVqLobjSzGYVQdzcTtMdX0wdA2iT32+c1xnw34qwrqiVk8pwmp3d2MsMwgjJXFQGrLQ3JOFUuU2spTzSDTuefy4AuNB5CuRqDJlo8Xcgt6BmT2agXsBf2cYaIWsW7Ghqkl/waDbqRrCbthxMlj/1mef7TN3/isDrdxjoJV7L/IM2vsGG1q67ahrt6OqwY6Sajvyy3ju72wf0XQTHmjzimvw63eW4tfvLMXbn63H3E99MGfeYvz2vWUoqmgQfXlPJfomwYkbA63cY6CVey8s0JqsMHaaYarrhbmoDYMZtRi5UwLLlRyMBafAfiIOjr3XMb45DO7Vzx5cPd+dhcs3FI4912A/dgvWoGRYLmdjJK4YQ+m1MN9rhammB8YOFX3KmPCv63Ts8Qgb/LMj7EBdAUydbfC4HOgwd6FGLUShEoV044lJjyvIMAagSIlBrVqMDnOf8K8F9wL+PjHQTsvae+0oq7cjvUCPEhevajh6Tn/y6/tNUzv/de02B3YdduDkeQdCb9gRl6Kf/1rZ+OLOf2WglXsMtHLvZXmRsFfp3N+dhx3wP6HNmnN/ZTbucuG1Nxfgl39a+NhKKhsBALGJud6P//0HK9HVa3zs16lt6sA7/974s6/jeX/+bCc80M791AexibkYd7m8P2bXHAgMi8O8z9YLvLKpEX0D5sSNgVbuMdDKvZ8MtKoVhq5BmOr7YS5px2BWHYbjy2C5loexi6mwnboDh38UxreGwb0m6NmD64ozcG24BOfOK9AOx8B6NgGjEVmwxBRhKLUKAwXNUKu6YGxT0K/I83Rmv2kUyv2JM2FLH0TYvVOLsFGr9AibNRFh6wth6mxDv+mHF+PqMY+gWW1ChZqOPGMYUpUDj8XYJMM+5BgvotSUhEa1Ft3mQeFfF24a/q4x0P6sec9/zZk4/zVCP/9x8z79qa+p/Jf3DX4O7Duuf3tuZLR+/mt+mX7+60x9Hgy0co+BVu69LIF2utfWY0djh378QWmtHQUVduQU68cjJGRouJWsISregcuxDoRcs+N8hH7fPnZWP0Lmwbm/m3Zr8Nmun/s73cc+LF7txLIH5/766WcO+02c+3swQMPxIAfOTJz7G3Ldjiu3HIi+q+F2in6WcXq+Hn9l9iDQGkwDk77f4/Hgf//+vfftnwq04y4XBoctz3Udz/PzZzvhgfanIqzmcOJXby+Z4at5dqJvkJy4MdDKPQZa+WboGoRacR9D6bVwx5fAGpIGW0A8tP3RGN8WDvfa888cXPFtANw+wXD6RUA7GAXb6bsYC0mH5WYhhhMrMJjTALW8E0rTy3mO64vcT0fY74HwJ0XYLyaNsMr99kciUOdhWwAAIABJREFU7MO7bzaiXi1HiekOsoxnkWjc/ViQTTUeQb5yFVVqDlrVdvSZX80nkLkf/T1koJ10dW12FFZMnP8aq7/Ajf8JDRt3Tu2/eC9f99D5r2EPzn/VUFSphwDRn9+DMdDKPQZaucdAO/1r75s497dFfwG0e1V25JXqgTQpSz/i5uZdDVdv6d8pERypIfCS/sJqh05r2Htcw46D+guvrd+hfwfG8nUvLvLK7GmBdtW2U3jtzQX4YMFW9CsD+P0HK3ElNh0ffL0F//v373E+8g6AR5+Adbs9OHnhJt7/chPmf7UZvvuCMDqmP6n8339ZiuDL8Vi64Qj+/s02RN5MnfTn7zkejr/8awPmfuqDLfuDH3nw82UkPNAuWncIPf2mx368orYFyzcdF3BFz0b0TYwTNwZaucdA+2pOaTHCfK8VwwnlGI3Mgu3kbTj9Ip/pPFf3miCMbw2Dwz8KtlN3MHYxFZbreRi+W6af41rSAaWhXz/HdRZ8zrNpP0TYe3qEzXrWCLtnIsLeemqEfbBesxWt5k5Uq/koVK4jzXhskuMKdiPTeAZFyi3UqWUYGx9E/yz4enEzP1kDbVWT/qrht1P0by09FaxhzxEHfLZNLcCu2qS/SvnRQP2FaW7e1V9lvbTWjtae2RNgnzYGWrnHQCv3GGhf7nUabGju0o8+qGzQv6vjp879jYh+/NzfgwEz/wTt/1cTgf9THTbjm8zTAu3gsAVz5i32vv37D1Zi74kIuN0edHT1Y87cRbDZHY8E1oT0Ivz9m22w2uzweDzw2RmIY0E3AAC/e385jp7T//PAkAW/eXcZjKbBR35+ak4pPliwFQ6HE5rDiQ8WbEVCetEL+/qLIDzQBkXcwZ8/8cG+kxEIi0rGxasJ8Dt8CX/6ZC0CQ2/hckyad7OR6BsNJ24MtHKPgfblXH//CEy1PRjMrsfIrWKMXUiFdvgmXL6hTz9eYNU5OHdchu3kbbij8jAaX6qf41rcBlNdL4ydZuGf38swPcK2T0TYuBmJsA+v2zyMJnM9ypQU5CohSDb6PxZkk43+yFVCUK6koMlcj27zo08vezxgoJV0r2KgbeuZ3vNfX5YXf5nKGGjlHgOt3GOg5Wbaf5SdFbLJPAi0c+YtfmQPYulkgba+udP79uvzV6Cn3/RIYPXdF4TQG0nejykorcXHi/0A6IG2sbXL+74vV/kjOav4sTNoNccPTzbvOBLifVL3ZSU80H6wYCs+WrR9SpuNRN8kOHFjoJV7DLSzdKoNxg4z1P+fvff+juM807T/H+184292vN7Z3fFonNYa6XOULFmyMsUAiTnnnHMCM5hBEpHIOeeccw6N7uquRugG0FXVaOD6figQIkUQAIlQAOt9zrnOMfLb1WAZvnz3/ZS20Z9UiftxFh7/GLRDTxhdf2NaCevbdAvtSDDD1+Jwh+TSl1qNXNbxUtp1zpaEvaVYHe5ZSNg14xL2+htL2Odpd1qpkUsosD8l1X550rqCZOkMefYnVMo5tDjbsTiHp/yeQtCal6UoaBs7FAor3rz/dfkGL5v36v2vlwNUHoZrxIz3v9a0KHQ5jH+MC4UQtOZGCFpzIwStYKHH5h3GagCTzZskaJ/voH329vOCdfnmU0Qk5Ex8Tk1DO//54TpAF7QWmzzxsVXbzhIUlf7C1w+4h9h1/BYfLd/HJ6sO8Ms/r+Hqvcg3vNqLYwwXtDOdxxGpRh9h0jH6JiEwDiFozY0QtMZhlQax19vozWtiILqEwbtpKGcj8O6+z9j3/tMs2fJnZOddlNPhDN1OwRVVRG9OA/Y6K1Zp5ku1hKB9TsLW5o1L2OuvJ2FjD+kStnj6TtiZM0Sz3EKFnEmO/RFJ0slJ6wrSpasUOaKolUvpcNpf++cIQWteFpug7Xbo/a+5Jeqk/a8rZrB122+T3v96/KLKtXsqQZEaCZkKBeUKDe3KnG2/fhsQgtbcCEFrboSgFZh55kPQbj9yg7vBCROfk1NUzYff7QV0QVvd0Dbxsb/7HSQhveiFrz98/j67jt+a6J3ddfyWELQLNb94f5XRR5h0jL5JCIxDCFpzIwTt/GLrHsBR2UVfeg3u0HyGryegHgvBtzUAVk7fAes98AjPpRjcgZn0J1TgLGpDapHpmSPRYBZB+4KELXqqS9iYgwZL2B/pcvZRL1dT7IgjU7pFvO3wJHUFR8mW7lImp9IoN9DtdM365wpBa14WWtB22fX+14xCfTnK3SCF8zdUDoz3v363bmb9r7uPapy6onLzoUporL5wpbhaobnr7b+PzSVC0JobIWjNjRC0AjPPdILWPTjMP/3qa4Y9elfvTARtQnoRf122h2GPis83ytrdF7kYEAbo/u/IhYcAdFrs/MvvvkPuHXjh69ftucSdJ3pFQku7hd98vHGiw3apjhC0sxyjbxIC4xCC1twIQTtL5GGkFgfOolYGEspxB2bguRiNd38go+uuTV1FsPIivq23UY8HM3QjAXdYAX3pNTgqu7BZZi/fZsLbJGhfLWFXv4aEvaFL2Lr8OZewz9Pm7KFaLqTAHkaqdGGSdOx+UqRz5NmDqZLzaHV20TNNXcGbIASteZlrQSv6X5cWQtCaGyFozY0QtAIzzzNB+0+/+volnvW+Ltt0kv/5gR+VtS0zErRjY2Ncvh3OB19s5/3Pt7H7RMCE4P3F+6u49SiWv3y7m19/tIHA8BSAF76+rLqJ33+6hT9+vZOdx26SlFnMz99bSUpW6UJemjkdIWhnOUbfJATGIQStuRGCdnqsNjeOWiu92Q24IosYup2CciqckR33GPO7PHUVwQ9X8O65j3I2gsG7aQzElNCb34S9wYbVPmT4Y1tqgvZlCXttDiTszCsh3gRL7yBNziYqHBnk2B+QKB2fRMgeJN1+nSJ7DHVyBZ3OhVnUJgSteXkdQWuRRf/r24YQtOZGCFpzIwStQMzCzS/eX/XKtO7bPELQznKMvkkIjEMIWnMjBK2OrbMPuayD/pRq3MG5DF+LQzsShG/TzWkXco1uuIF2+AnDV2JxP86mP6kKubQdqX1hJNtsWIyC1upw42hvGZewEeMS9sC4hH2VgJ1MwkaOS9i2eZewz9Pp7KVerqDIHkuG/QZx0qGXhGyidJxs+wMqHOk0ORux9C7c+Z5HCFrz8rygnbP+10Oa6H9dIghBa26EoDU3QtAKxCzcCEG7yEcIWsFiQwhac2MaQWsfwt4k4cxvZiC2lMH7aXguROHd+5Cx1VenlrCrLjGy/S7qqTCGApJxPS2kL7MOR40Fq3VhqgjmC6MErVV2TS5hg354AwlbsOAS9nla5S6q5Hzy7MGkSOdfUVdwkQJ7KNVyIW1Oi+HP+zOEoDUHz/pfMwtVIhNV7gYrXLihcuzcyIz7X9ds09hzTOP0FZVbgXqNQUqOSkmNQkv34vo/eQTTIwStuRGC1twIQSsQs3AjBO0iHyFoBYsNIWjNzdskaK1WF47qbvoy63A9LWToZhLqyVBGtt2BVZemriJYcxXv3od4LkQx+CCdgfgynAUtSM12ehxz3/25WJhPQTshYWtydQmbNkMJe/8f+ILX6hI2Y3FI2Gd0O100yg2UyalkSfdIkI6+JGPjbYfJlG5R4oijXq6iy9ln+PP8KoSgfTto6VYoqVFIyRnvfw1UOX1F9L8KXo0QtOZGCFpzIwStQIyY+R4haGc5Rt8kBMYhBK25WVKCVvYgtTmRS9roT6rE/TgLj38M2qHHjK6/MW0VgW/zLdSjwQxfi8cdkkdfajVyeQe2rsUr0Oab2QpaXcI2j0vYp28uYUvGJWxnu+ES9nk6nQ5q5TKK7FGkS1eJlw6+JGSTpJPk2AOpkDNplluwOBfP+adDCNrFz/P9rwmZCkGRGtfujfe/Hnrz/tfYVJX6pjHR/2pShKA1N0LQmhshaAVixMz3LBlBu27PJaOPMOkYfZMQGIcQtOZmsQlaqzSIvd5Gb24jA9ElDN5NQzkbwcju+4x97z91CtbPn5Fd91DOPGXodgquqCJ6cxqw11mx2peONFtIZiJoZy9hDy9qCfsMi3OYFmcHlY4c8uxBJEtnJ60rSLVfosD+lBq5mHZnj+Hnng1C0BrPdP2vyzfMT//r6ywJE7x9CEFrboSgNTdC0ArEiJnvMUTQPgxLnjGLfYy+SQiMQwhac2OEoLV1D+Co7KIvvQZ3WD7D1xNQj4Xg2xIAK6dZyLXuGtqBR3guxeAOzKQ/sQJncStSq0yPWELz2jwTtFaHLmH7anLGJezVGUvYkeB14xL25qKXsD+l1dlJqT2RLPtt4m2HJ68rsN+mxJ5Ag1xDt3PA8DPPJULQzj+v6n89cFIztP9VCFpzIwStuRGC1twIQSsQI2a+xxBB+5dvd8+YxT5G3yQExiEErbmZF0ErDyO1OHAWtTKQUI47MAPPxWi8+wMZXTvNQq6Vl/Btu416PIShG4m4wwroy6jFUdWN1bK0F3IZzQsStjCcobSrjMUfWvIStts5QLvTRovcRoOzjhq5mAo5kxJ7AgX2MHLsD8mUbpEiXSRBOjZpKvbHuoJT5EqPqZSzaZHbDH9s840QtLNnLvpfN+zSOHBS48INXeBGJupCt6JBnbf+VzMJWptDRu4pY6A9BnfjDZSavYyUf4dWsZ7e7jzDzzfXdHYqtDYoNJYr1OapVKSolESpFAZp5NxWyfBXST2j4mgRgs6sCEFrboSgFYgRM9+zZCoOFusYfZMQGIcQtObmTQWt1ebGUdNDb3YDrsgihm4no5wKZ2THPcb8Lk9dRfDDFbx7HqCci2DwXhoDMaX05jdhb7RhtQ8Zfk2WMpNJWDX6AL6g72coYY+MS9iocQnbRo+8sBK20+mkTe6mydlInbOcKjmPMjmVQns0efYgsux3SJOukCydmVK2TkWCdIwU6QKZ0i0K7ZHUyqW0O22GP38LjRC0U2ORPTS061UBk/a/bpo+/TpZ/2tMqkpuiWpo/+vbKGglqRtndxGutnAGGy6jVO3EV/olY8V/nZSRsm/p7cox/NyT0W3z0N6q0FyjUF+kUJ2hUhavUhyukfdQIeuGStp5jaRjKnF7NKI2a4T9oBGyzDtj2vOFoDErQtCaGyFoBWLEzPeIioPx2XX8Fj/77bIf+c23/PHrnQB09dj5at0x/u0DP/66bA+lVU0TX2f0TUJgHELQmpupBK2tsw+5rIP+lGrcwbkMX41DOxKEb9PNaRdyjW64gXboCcNXYnE/yaY/uQq5rB2pvdfwx7zUsToGfiJhr7yxhPV1luG0tM+bhO12umh3SjQ722hw1lIjl1ApZ1HsiKfAHk6uPZBM6Rap0gUSpeNvJFvjbYdIkk6TJl0hy36HPHsQRfYoyuRUquQ86pzlNMmNtMnddDqdWJzDhj+HiwWzC9qu8f7XnBKVmFRdnl4OUDl8VmXz3vnrf10MLF1BO4RdaqO3Kwd3azBD9WdRqzYzWvLpK0Tsh3jLV+GpOYi76Rb9HYnIPVVY5YVZDtnZpdDaqNA0nmatTFEojVYpDNbIuaOScUUl5bRK4iGNmJ0aEetfT7JORvgPurCN26uRdFwl7YJG1g2VvAcKxeEq5Qkqddkag72i4sCsCEFrboSgFYgRM98jKg5eMedvhuJ/NwKAL9ce5W5wAj7fKFkFVbz713V4R3zAUvwDXTBXCEFrYuxDaNY+XMUtDMSWMng/Dc/5SLx7HzK2euoqgjG/y4xsv4t6MoyhgGRcEYX0ZtXjqO3BanMb/9iWOLqEbaKvJgf3hITd/3oSNvOWnoStL3xlEnYmS8J+ZJhOZy+tTgtNzkbq5Qqq5HzK5TSKxtOt2fa7pEtXSZbOTNrp+jrp1gzpJjn2hxTYwyh2xFEhZ1IjF9Mg19Ait9LutNHlFLUXs+FtF7SdkofyeoWMApWIRJU7QQrnr2vsP6mx3sD+18XAYhe0VqcLh62Rvs403C2BDNeeQKtYy2jxx5OK2NGSj9Eq1jBcexxX0z36OlNx2BqwzsE9wiLpadaWGoWGYoXqTF1yFofr0jPrhi5Bk46rxO3V5Wj4a6ZZf0roCi8R63Vpm3BQI+W0LnNz7uhytzRal721eSpN5boE7uxSZtzFLjpozY0QtOZGCFqB2WdsbIw7T+L54Ivt/Ow33/J//riaNbsv0N5lm/Zr65s7+f2nWxbglEt7FnXFwfNJ1YWcrh47//WPrSiqhrPPxc/fW8mIzzfx8Q+/20thWT2weP9AF8w/QtC+3VitLhzV3fRl1OJ6WsjQzSTUE6H4tt6BlZemTsGuvYp3XyCeC9G4H2YwEF+Gs7AFqcVOj0OkEGf93LxKwj7xm0bCfv4TCRs9LmFfLwnb7XQx6O2nva+DBmcttePpVr27NZyciXTrxfF064E3EK7P0q3+ZNlv6+lWRxRlcgpVjlzq5HIa5UZa5S46nbJIty4wS13Qznf/a5fd+Mc4XywWQWuV+5B7qunvSMTVFICn9jDe8u8ZK/7oFSL2U7TKjQzVn8bd+oTerizstlZ6nNPU48geuroU2hoVGivG06ypL6ZZM6/o3azPp1lDV8x/mrU6U6WhWBfA7a0K3bb5v+5C0JobIWjNjRC0ArPP8cuP+P2nW8grrmFoWEFy9HHmWhD/8Ze1DA5NfX2EoJ3ZLApBq2leWjut1Dd3TpCZX8G//n65IefZeewmQZFpgC6J//T1rhc+vnG/P0FR6YDxf6ALjEMI2iWO7EFqcyKXtNGfVIn7cRYe/xi0Q48ZXX992iqCsS238R4LZvhaPO7QPPrSqpHLO7F19hv/2N4CJiRsdTbuwnCGU19PwiqvIWE7e3tpc1pocjZRL1dSPZFujdHTrdKzdOvZ2adb7TfIsT+gwB5GyXi6tVouokGuoVlupd1ppcs5YPj1F0zNYha0c9X/umWfxpFzKv4BKoHhGrHP9b92G9T/uhhYaEFrc9hxWsYXdTVcQ6nZw0jZd6/sh/WVfoFatZ3B+gu42kLp7S5AkrqwSMN0tCm01CrUP0uzJqoUP1XJe6iQfUsl/YJG8nGVuH0aUVs0wldrhHw3C9G6wsvTdRoxO9QX06y39cVbpVH6Iq7aPJXGcn1BV2fnzNOsRiAErbkRgtbcCEErMPM4+1z886+/pb6586WPdfXYJ/5zeU0zf122h99/uoU/fLmDgrI6QBe07322hROXH/Hrjzbw3mdbJj42OjrG+ZuhvP/5Nj74YjtbD1+bEL6/eH8VjyNSWbXtLB98sZ3rD6IW4NEaN4YL2tziav7tAz/eeferF/jnX3/LruO3Fvw8Nkcvv/poParmnTjfJyv3v/A5u47f4l5wAgAe1ScwKSO+MbSRUcPPIZiCIQ2104lW2oo3sZyRwHR8F6MY3fsAfvCfWsJ+78/onvv4LkQyEpiON7EcrbQVtUPGM6ThGx1D8/rwaMYwpIygaL6ljceDZm/D25LPSEUEvqxrjMYdYGzaOoLPGQtdhy/xGCN5txmpjsfbUYbq7GFY9TCg9iJ7LPQMN9ExWEGzO4/agWTK+yIp6n1CrhxAhuMSSdLJN0q3xkuHSHWcIUu+Qr7zLiV9wVT2x1DvSqfVXUjnYBXW4VacHhsudQCP9hY8V4IXGBvDsJ89pPjoto1SWecjPddHWIyPm/e9nLjgZdt+jRUz6H/9fouXXUe8nLni5e5jL9GJPnILR6hv9mF36vfPqc9g7t/p+Xj+1SEJrbeUkZ4ovK3++Gp3MjrFoi5fyTI8xXvpL7iOlBVHW3wllUEyBTe9ZF3wknrUS/xuL1EbvIStnGWadbWXmK0aifu9pJ/0kuM/QuEdL+XBXmpjfTSm+2gv9GGp8eFo89Fv9zE0aPzzNB+oXh+jY2OGn8PMDCkjhv3tpXl9+EbHDPv584bRf68vEbSRUUZ8Y4afQ2AcCz2xW71Eb1x4Jpv8klr+6x9bpz3zn77eRXRSHgBRibm8//k2QBe0/8+vvyE8LguAp/HZvPeZ/v1iUwr48ze7GPYojI2NsWGfP2euBQHwv/7wPRcDwgBdEv/sN98y7FFnd2EX8RguaP/8zS7uBMXTPzDIv/9pNe7BYbILq1i98zydFmnBz3P7cRwHzt6beLusuok/fLXzhc/ZsO8yIdEZAPS6VYFJUb0+hjxew89hdvokF646C4PZdXgiClBvJuI9EcLolgBYOU0Kdv11Rg49Rr0Si+dJFkOplbgr2unv7qXXNfXP9Y6M4hr26p9nCBq97sVPX/8gA5ZmBhty8ZSGo2ZcxRu7n9Gg6ZOwvtANDCcfpbfoGrbaINo7Ymi0pVDdm0aZM5ZCOYRcx30y7NdIkc4SbzvyRunWROkYqfYLZDlukCc/pNgZRnlvAjW9WTT0ldDaX0vnQAdWlx2H202vW2N0FAaGvIZfX4ExAPTN0/e292rUtWjklniJTfXyIETj4k0vB09rbNg9s/7Xtds19h73cu6axt0nGpGJXrIKvFQ3anTbjb9+S5m+QW387783+XqFAWcHbksugw0hDFacRSnejK/os8lrCYo+ZChzFbaogzTeDaD4VBJpO2uJ8Bt4427W2J0aSYc10s5qZF/TKLinURrqpSrOS12GRlORl/YaDUurF8nmxTlg/DVfTAwMeRkdfdPnXzAXOA37u0vFNezFOzJq4N9+88Qi+Ht+KTDk8aJ6fYafQ2AcCz2zXX75pkw20Ul5fL768MTbg0MefvnnNRMER6cD4PWOMDo6BoBd7ueff/0toAvaf/398omPeb0jvPPuV/QNuNl6+Bp3guInvnducTV/XbYH0AXt86nd//mBH91Wx9xd5EU2hgva//d33+H1jgDwf/64euL9dU0dfLn26IKf54s1R8jMr5h4u2/AzX//v8vxKNrE+977bAtl1Xo/rtExe4FxiIqDBUIeRmp24CxsZSChHHdgBp6L0Xj3BzK6duqFXKy8hG/bbdQTIQzdTMQVXkBfRi2Oqm6sPbNbgKJ6R3G6VOOvzyJAryNopK8mC3dhGMOp/pPWEYw+/Bwl+CtcEd8gx35HT7IfrXnbqC0/SFn9KQraz5PVfZFU6zmSbCfesLv1IEnSqee6W59Q6IikTE6h0pFLrVxGo9xAq/NZd+s0/Yuv4PWWhAneNmZTcdDcpVBcrfe/hsaq3HyocuqKyu6jGqtF/+uiZ6LiQPbQ1a3Q2qzQWKlQm69SlaZQFqNSHDpERVAj9UHptIY9wBp9AlfKWnyFky/q8hX+jYHENXQFHaf22gMKj6eTvLWJ8JVDL6dZvx/vZt2jkXRMJe28SuZ1ldwHCkVhGuXxKtUZKvVFKs3VCu0tCt1W46/b24KoODA3ouLA3IiKA8FCjzJgDJNNYVk9v/tk08TbY2NjyL0DyL0DbD9yY+IV5gnpRXy++jCfrNzPR8v38U+/+hrQBe1v/rbhhe/5r79fTke3xPLNp4hIyJl4f01DO//54TpAF7TPBzd/+vbbNoYL2v/4y9qJC/ybv23A5ugFwOcb5efvrVzw8/z8vZVYbPIL7/t2wwmu3ovE5xslOjmP332yCZ9vFBCC1swIQTt3WG1uHDU99GbV44osYuh2MsqpMEZ23GPM7/LUKdgfruDd8wDlfCSD99MZiC3Fmd+MvVGix/5m8m0mmE3QWu39ONrGJWxBKMOp/gzH78cdtYa+qGVICSvoSvWjJXs1dQXrqCjdSFH1FnIbd5DasZdE6+snW/Xu1qOkSOfJsN8g2/6AAnsoxfZYyh16d2u9XE2z3EK700r3Ana3CkFrbl4laC2yh/p2hfwKhfgMhScRGlfvqRy7oLL9oDqj/tcV60X/60JikTx0tCs01yrUlyhUZ6lUJKqURKjkB453s14c72bdrxG1VSNirZeQ77xE+A2QurOW4pPJ1N+8TU/IIdypqxgt+nBSETuS/3d64zbS8egMdbeeUHIph+wz7aSeHibdXyX7tkpBkEZJlEplskptrkpj2Xg3a5eCRTz3hiMErbkRgtbcCEErMPO4Bof5H/+1kvKa5pc+tu/UHe4FJ+Dsc/Evv/uOlo4eAKyS8wVB+/P3VjI29mKCdsA1xPYjN7g7LngBcoqq+fC7vYAQtAs+xy8/4t//tJq+ATd7Tgbwd7+DPIlIZfuRGy9VC8z3DA0rvPPuVxP9s8/GYpP5cu1R/ucHfny0fB81De0THzP6JiEwDiFoXw9bZx9yWQf9KdW4g3MZvhqHdjgI36ab0y7k8m28iXY4iOErsbiDc+lPqUYu68DW0WvY43kbBe1kElaL2ofv8SpGAj/HEbecxry1FNRtJaFn7yzSrZfJst8mdzzdWmpP+km6tXNW6daFQAhac9Ll8FDTolDfNEZsqsrDcI1LASqHzqps2quxfAb9r36bNbYf1jh+UeX6fZWgKI3ETIXCCoXGDgXLIl6QtGiRPXRZFNqaFZoqFeryVarSFcpiVYpCNHLvKWReVUk5q5J4RCN2l0bkRo2wVTN7qV/0GpmMPRWUnY2h6fZ1bE/3Mpzx7Sv7Yb0Fn+PO2YacfRFbbjjdRQV0VHfR3uIRadYljhC05kYIWnMjBK3A7BPwOJZffbSerIIqhj0q/QODPAxL5hfvryKnqJqmtm7+9x9/QNO8jI6OcfZ6MO+8+xWKqlHf3Ml/+8+vSUgvAiAyMWfC9yWkF/HXZXsY9qj4fKOs3X1xondWCNoFHp9vlCcRqaial8EhD5sPXuE3H2/ky7VHXxChi3WMvkkIjEMI2p9gH8LeJOHMb2YgtpTB+2l4zkfi3fOAsdVTVxGM+V1mZMddlFNhDN1OxhVRSG9WPY6aHqw2t/GPbRKWqqB9ScKmXJ6QsM/XEXiCv6IneRU1RRvIbt5BnG2S7lbbYVJsZ0iXrpFtf0C+41m6NeMn6daeBU23LgRC0L6ddEgeyusVMgpUIhJV7gQpnL+usf+kxvpdM+t/XbNNY88xjdNXVW49UgmLU0nJVSmpVWjpFr8zU2L30NGh0FKn0lCqUJP9kzRrgEr6JZWkEyoH+8MTAAAgAElEQVTx+zWit2o8XaMR8t2b96yFLvcSsVYjertCxskeym4V0hIWjjXhIq7s7XgLvniliB0p/QaleheDjVcYaIvEaSlFstuMv46CeUMIWnMjBK25EYJWIAYeR6Tyh6928rPfLuN//eF7Vu+6QFV928THtx+5wW8+3sgnK/eTV1zDP344zN9W7KOqvo0/fb2Lk/6Pef/zbbz/+TZKq/Ta0LGxMS7fDueDL7bz/ufb2H0iYGIRmBC0i3S2HLxq9BEmHaNvEgLjMKOgtfa4cFR305dRiyu8gKGbSagnQvFtvQMrL00pYUfXXsW7PxDPxWjcgRkMxJfjLGxFanbQIw8b/thel8UsaHUJ2zDeCftMwu59ScI+Y+z+P3BFfENHxmpKqneR0jVZ+vUA6dJVCu3R1MnldDplwx+nkQhBuzSZq/7XY+dGRP/rFEykWasU6gpUqtLViTRr3n2FzGsqqedUEo+oP6ZZ/Wa30CLcTyNyk0bsbo3Eo/r3z7ymknt/vJs1TqU6XaWhcJiOylbs9dkMND5hqP40WuUGRks+fbWILV+Bp+YA7sZbDHTEM+ZuwOYw7hUcAuMQgtbcCEFrboSgFYgRM9+zZATtL95fZfQRJh2jbxIC43grBa3sQWqTkUva6E+qxP0oC49/DNqhx4yuvz7NQq6L+LYEoB4NYfhaAu6wfPrSqpErOrF19Rv/2OYYowXtqyTs6OOVk0rYH2XsF6hhG7DmHKa29hy5HWdJsB2epPv1CFn2O5TJKTTKDXQ7Z7dU7W1DCNrFx3T9r6vmsP91NkvClgw/TbPmqFQkqZREqhQ8Usi5padZk0+qxB/QiN6mp1lDl88uzfp0jf694g9oJJ/Uf0bOLf1nlkTqZ6jJ0c/UUqfS0aFgmUSMW50DOKz19HWm4mq6x3DdMbwVqxkt+dsrROxHeCt+YLj2KK6mu/R3pOCw1mOVX0z/TywJM/r5ERiCELTmRghacyMErUCMmPkeIWhnOUbfJATGsVQFrVUaxF5voze3kYHoYgbvpKKcecrI7vuM+flPU0Xgz8ju+yhnIxi8k8pAdDG9uY3Y621YpUHDH9tCshCCdkLCVmfqEjZ15hJ2JHQDStxRBjMDkMuf0tQaRXFPEOnSVeKkAy8J2WTpDHn2J1TKObQ4O+hxLr1U80IiBO3C0+XwUN2skF2sEp2q8iBUebH/df3C9b8uJUFrRJo1zM9L5Ea96zXxyI9p1rz7CkUhGmWx+jnqClSaqvTzdVne7N+TzdGLbKmkvyMed9NNPDUHGClbyVjx5Iu6Rov/jlaxnuG6U7hbH9PXmYHd1oJVnlmdjhC05kYIWnMjBK25EYJWIEbMfI8QtLMco28SAuNYzILW1tWPXNFJX3oN7rB8hq8loB4NwbclAFZOvZBrdP11tEOP8fjH4H6URX9SJXJJG1KbTI9YXjPBXAlaXcLW6xK2IESXsJGvI2GPMZgZwEBJDM6GYuzdnbTKHVTJeeTZg0ixn5u0riBN8qfQHkGNXEq7UzL8ei41hKCdezokDxV1ev/r0wSV208Uzl3X2HdSY93OxdX/utCC1mL30NGp0FKvJ0drc1Uqk1RKI1UKnmh6N+vl59OsKhFrjUmz9sxTzYNkt+G0lDLQFslg4xWU6l2MlH3zyloCX+k/UKu2MlR/HldrKL3d+UjS7P/PJyFozY0QtOZGCFpzIwStQIyY+R4haGc5Rt8kBMZhqKCVh5GaHTgLWxmIL8cdmIHnYjTe/YGMrp16IRcrL+Hbegf1RChDN5NwhRfQl1GLo7obq1W8jH2mvI6gtdr75lzC9shD9Dg9WHoHaXI2Ui6nkS3dI0E69pKQjbcdIdN+mxJ7Ag3OWrresoVdRiAE7esz0f+arRIao/e/nvZX2X3kNfpfd2scOKVx/obK3SCFyCSVDAP6X99U0HZZPRNp1vpCvRO1PE6lKEwj9/k061GV2N16p2q4nza7NOuq59OsGilnVTKvquTeez7NqlCXr9JUObs06+wZRpI66O3Ox9UaylD9edSqrfhK/zGFiP1aX9TVcIWBtgiclhIku3XezigErbkRgtbcCEFrboSgFYgRM98jBO0sx+ibhMA45lvQWm1uHDU99GbV44ooZOh2MsqpMEZ23GXM7/LUVQSrr+Ld+xDP+UgG76cxEFuKM78Ze5NEj33I8Gv3NvBTQfujhM0Yl7CX3kDC3tYlbP2LEvZ5upx91MuVFNtjSbdfJ046+JKQTZJOkmN/RKWcRYvcisUpnvO5RgjaF5nX/tdShZrWH/tfjcbi8KC4oHUB06wh342nWbdqxO/XSDqhp1mzA1TyAxVKIlQqElVqsn/SzSoZf70mwyq7sdta6OvMwN36mOG6U/qiruK/T7Ooaz/uxpsMdMQh91RgczgX/uxC0JoaIWjNjRC05kYIWoEYMfM9QtDOcoy+SQiMYy4Era2jF7msg/6UatzBuQxfjUM7HIRv482pU7ArLuLbdBPtSBDDV+NwB+fSn1KNXNaBrbPP8GvzNmOV+nA2lOCreIqaegktajejj1ZMKWG599mPnbBZd15Mwk7z89qcPVTLhRTYQ0mRLkxSV7CfVOki+fZwauRi2p09hl8jM7DUBG2n5KG1R6G5W6GhXReeVY0K5XV6qrWwQiGvTCG3RJ0R0Smq3v96RmPznunTr8vWevHb5GX7Ib3/9do9vf81IVOhoFw/00Jfk26rh/YWheZqhfoileoMlfL48TTrA4XM6ypp51WSjqnE7dGI2qwR/r1BadYlWi9jlftxWOvo70jB1XSX4dqjeCt+YKz4oykWdX0/vqjrDv0dyTisdVjlxbNoUghacyMErbkRgtbcCEErECNmvkcI2lmO0TcJgXHMSNDah7A3SjjzmxmILWXwfjqe85F49zxgbPXUVQRjfpcZ2XEP5VQ4Q7eTcUUW0ZvdgKPWitU2s2UmgtkjN9cwUBrNcMoFRkI3zEDCHnttCfsMi3OQZrmFckcmOfaHJNpOTFJXcIhM6SbFjjjq5Wq6nItHXJiJZ4K23eqhpVtfMFXbqlDdpFBer1BSq1BUqZBXri+1yixUSc1VScpWic9QiUlViUxSCY9TCYlReRKhERiucS9Y4fZjhZsPdYnpf1vl4i2Vc9c0Tl1ROX5R5eh5XYzuO6n3re44pLH1gMrmPRrrd2ms2abx/RaNlRunl6ZzyUT/6xWVO08UwuJU0vNVSmrmtv/1hX8zDg+dXQqtDQqNZeNp1mSVkiiVgiCN7Nsq6f4qKadUEg5oxGxXiVinEbJidmnWiLVeorZqxO3XSD6ukn5RI/vWi2nW6iyV+hKF5lqFjvbFm2adC2wOJ3JPBQMdcbgbb+Kp2c9I+YpXpmFHiz9Bq1inL+pqeURfVwZ2W/OMF3UZiRC05kYIWnMjBK25EYJWIEbMfI9hgvbs9WCKKxoY8flm9Pn3ghPm+URvNkbfJATG8UzQWntcOKq66cuoxRVewNDNRNQTofi23oGVl6ZeyLX2Kt79gXguRuMOzGAgoRxnUStSi4MeeXaLTASvj6O9hf6KZIYybqFF7HyliPWGb8WXG8BQeSzOhtLXkrDP0+0coF6uptgRT6Z0i3jb4ZeEbKJ0nBz7A8odGTQ5m7E4Bw2/TvNNh+ShzaLQ1KVQ365Q06JQ2ahSNp72zK/Qk56ZhSpp+Sop2SoJmQqxqSrRySpP41VCY/WE5qOnGg9CFW4/UbgVqHL9gYr/HT39ef66vkzq5CWVY+dVDp1VOXBSY89xjZ2HNbYfVNm8V2PDbo11OzR+2KrN6KX6i5VVm7z8sFV/LBt2a2zeqz/GnYf1x3zgpMahs/q1OHlJ5fRV/RpdCtCv2fUHKrcC9eVdD8M1IhP156CiYfbL8rptHtpbFZprFOqLFKozVMriVYrDNfIeKmTdUEk7r72QZg37YXZp1tCVXiI2aMTs1Eg4rJH60zRrjEpVmkJtvkpjpUJrs0JXt55mXeglYYsFyd6Ds7uYgbYIBhv8Uap34Sv9eppFXVsYqj+HqzWE3u5c7HOwqMtIhKA1N0LQmhshaM2NELQCMWLmewwTtH/6ehfvvPsVv3h/Fev2XCI0JhPJ0WfUcd54jL5JCBYA2YPUJuMsaaU/qRL3oyw8l2MZPfyEsQ3Xp1nIdRHf1gDUYyEMX0/AHZpPX3oNjsoubN1iUZORSN0W+mpycOfcR405wNjDbyZPxQavw5N0HldxJHJzFVaHvkjtdZaEPaPdaaVGLqbA/pQ06dKkdQUp0gXy7SFUywW0Oi1z9ni77B7D0p4HT88s7fndOuMl5uuwfL2XVRu9fL9VY+12jQ27NDbt1dh2YFx6HtPYf1Lj0BmNo+dVTlxSOX1F5dx1jYu3xqXnfX1Z1p0nCveDFQKfagRFaoTGqITHq0QlqcSmqsRnKCRnq6Tl6UuxckpU8ssViqoUSmsVKhpUqpsV6loVGjv1xGq7zUP3Ai7Osjg8dHaOp1nLFWrzVCpSVEqjVAqDNHJuq2RcUUk5rZJwUCNmh8rTOUizhq/RXj/NOsvr8nYL2iHsUge93bm4WkMYqj83g0VdX6FU72SwwZ+B9gic3cVI9rezbkUIWnMjBK25EYLW3AhBKxAjZr7H0IoDuXeAqMRcdhy9wX9+uI533v2KP329i9NXgygsq8c7MrN0rZFj9E1CMDdYpUHs9TZ6cxsZiC5m8E4qypmnjOy6x5if/9RVBN/74919H+VsBIN30xiILqE3rwl7vQ2r9PanHZcCz3pj3QUhKPEn8D1eNamMHX28EiXuGO78IHrri7DZXr2ARvWOYu9X6bB5aLXoUqy+TU97VjSolNZ5yK6ykFBeTlhhCvfzgwnICeRW5hOupwVzNTmMKwmRXI/LIiC6hvtRFh4+HeJ+yNymPZevN15kvg7frfOyYoOX7zfr8nbdTl16bt2vsf2wxu6jGvtOaBw8rS+TOn5R5bS/ytlrGhdu6sulrt5TufFA5fZjhbtBetrzSYRGcLRKWLxKZKJKdKpKfLpKUpZCSq5KRoFKdrFKbplCYaVCSY1CRZ1CVZNCbYsutZu7FNqsCl32pddB+zoYkmZd4SVivZ5mTTykkXpGJfOKSs4dlcJgjdJolcpUXfo2Vii0NSp0dRnXzfo2CFqr7MZhbaavKwN3SyDDdSfRKtYxWvzJFIu6lqNU78PdeIOB9ljknnJsDtnwx7Kg100IWlMjBK25EYLW3AhBKzDzjPh8vPPuV+w4euOlj+07dYd33v1q2lfH3wtOYPeJgFmf5fbjuDn5PotxFlUHbUtHDw9Ck1iz+wK//PMafv7eSqOPNO0YfZMQzBxbVz9yRSd9adW4Q/MYvpaAejQE3+aAaRdyja6/gXboCcP+sbgfZ9GfVIla143L0r9kl7csZma60CirSBdrKTkqiVkKcWkqMUnDxDy1EP2giuhrmUSdjSbiWDBhR8MJOhxJ4OFY7h9MJOBgBlePlnPpZDNnzkgcPzfIkXMqB09p7D2hsfuIxvZDGlv2a2zao4vC1ds0/DZrrFhi0nPZWi/LN+hLmlZv01i7Q2PjHo0t+3Sxu+uIxt7jGgdOaRw+q3LsgsrJyypnrqhcuKEL4it3del565HKnSCFByEKjyI0gqI0wuJUniaoRCWrxKWpJGYqpOTo/aNZRSq5pfoiqOJqhbI6va6gpkWvL2jqUmizKHRIHrodxv/uzZRFL2jl8W7WRoWm8TRrZYpCabQuPHPu/CTNulMjYr1G6GzTrKs1orZoxO0bT7Ne0NOseQ8Vip+qlCeqVGeq1BcrtNQqdLQtzW7WpSRorXIfDmsN/R3JuJrv4Kk9grf8+6kXdZV/j6f2MK7mZ4u6arDKYgFlj1MIWrMjBK25EYLW3AhBKzDzjPh8/Pf/u5zffrIJRdUm3u8d8fHeZ1v42W+XLZig9Sgag0Nv5/OxaAStzzdKeU0zV+5F8O2GE/yP/1rJ7z7ZZPSxph2jbxKC55CHkZodOAtbGYgvx/0wA8/FaLz7AxldO/VCLlZdYmTbHdSToQzdSsL1tJC+zDocNRasVtekP29GS8IWEeIl7vOQ9lyvsXKjwqqtg3y/vZ/VO52s2Wtn3X4rGw9b2HzUwo6TNvad6eXQ+cG3/iXuZmKhBO2zNGtLjUJDsUJ1pkp5gkpxuEreg/E06wWNpOMqcXv1NGu4ydKsRrAYBa3NISP3lDPQHou78QZK9T5GypfPYFHXSdwtgfR1peOwNi2JRV1GIgStuRGC1twIQWtuhKAVmHlGfD5+9ttlbNzvT3xa4cT7M/Mr2Ljf/4UEbUh0Bu99tpXffrKJL9cexWrvBV4UtOU1zfx12R5+/+kW/vDlDgrK6gD41Ufr6bRIAMSlFvDPv/4Wj6IL4TtP4jly4YFI0M7XtHfZCAxPYfWuC/zi/VX88s9r2HzwCqExmVhsspFHm/EYfZMwG1abG0dtD71Z9bgiChkKSEY5FcbIjruM+V2euopg9RW8ex/iuRDF4IN0BuLKcOY3Y2+S6HG8/sKSYdVHr0ubdqFRQblCbqme9kzPH097Zuppz6hkPXkYFje+0ChC40GIwp0ghVuP9MTilbvmeon7srVeVqz34rdZT6yu26knWLfs19hxwMPeA/0c2G/j6N5WTu2u5NzuEi7tLeDq3hxu7Mvk9oFU7h7N4t65Eu5fa+TBfRsPQod5HKERHK2nPSMSVaJTxtOeWXraM6NAT3vmlekJ3eLq51/i7qGyw0JhZyGZ3WEk9lyYpD/2AOnSFYrsUdTKZXQ6zfWyX7PxWoLWiDTrMi/hP+jCNm6vLnDTLmhk3dDFbnG4LnqrM1UainUB3N66NNOsRmCkoJUkC87uIlztTxlsuIxStRNf6VevFrEln6FWbf5xUVdXDnapnR7nkOHXcSkiBK25EYLW3AhBa26EoBUs+ISuheDvF55JZsTn459+9TWp2aX8sOP8xPu3Hr5GUmbxhKDt7Xfzs98um/B5u08EsP/0HeBFQfunr3cRnZQHQFRiLu9/vg2AbUeuE5mYA8DBs/f4u99BCsvqAVi96wKp2aVC0M7H/PqjDfz8vRWs3X2RB6FJNLV1G3WUWY3RN4m3EVtHL1JxB1JCLbbAQmwXU7AdiMG6MZielQ/oXPmI1lVBNK4KoW5VOFWrIijzi6Z4VSy5G9LI2FNI0rEqYi+08PR6DyH3egl8MszdID3teeOB3lHpH6By4abeXXnaX097Hjk3nvY8oXddbj+sd19u2quLwjXbNL7frLFiw9JLey5fP7db3O+HKDx6qr/EPTRW5Wm8SnSynvZMyFRIyVZJy9fTuLklKvkVetqzrE5Pe9a06J2tjZ0KrRaFDpuHrude4m6TenHWF+MuCEaJP87o45WT9sb6Hq9CiT+OuyAYZ30xVmn2L8O19LpplBspk1PJlu6SKB19Scgm2o+S47hLqT2JBrmebqdY+va2Y5E8dLTpL82X6kepy9YoT1Qpfqq/hD/7lv6S/uTjKnH79Jf6h6/WCPlubtKsCQc1Uk7rMveFNGuKLn2bynUJ3GmyNKsRzL+gHcIutdHblYO7NZih+rOoVZsZLfl06kVdVTsZbLiMq/0pzu4iJPvcLRoU6AhBa26EoDU3QtCaGyFoBQs+k/xv3wVhknkmaL3eEX755zUMuIZQVI3//HAdquZ9IUH7fAVCdHIeyzad1B/Oc4LW6x1hdHQMALvczz//+lsAwuOyOHD2HgAffreXkOgMrt2PAuA//rIW9+CwELTzMduOXOc//rKWf//Tatbuvsijpym0d9mMOs4bj9E3CSPpkDxv/hL3vR427xhmw5Zh1m4Y5od1w6xaqxguMd8o7bnIFxoZ/XsyE6yyC7m5GldJFJ7k84yErJ/0vyzGHn6DGn2Awex79FVnI3XPjXzodDqpkysosseQLl0jXjr4kpBNkk6Ta39CpZxNi7MdxevD6VINv3aC10T20NWlvyy/sWI8zZr6Ypo184pK6hmVxEPGplm7bYvgegkmZa4ErdXpwmFrpK8z7blFXWsZLf54ikVd36HU7B1f1BWD3FNmukVdRiIErbkRgtbcCEFrboSgFSz4ePqNYZJ5JmgB9pwMICgyjYT0QnYeuwkwIWjHxsa4ci+Cj1fs55OV+3nvs618u+EE8KKgTUgv4vPVh/lk5X4+Wr5v4ntbbDJ/XbaHAfcQf/c7SFePnZVbT9PaaeWTlfsBsSRsXqeprZt7wQms3HqGf/39cn790QZ2Hb9FdHIezj6X0cebdoy+SRhJq8UzP9JzjZeVa1X81nlYs2GY9VuG2bzdw9a9CtsP6sub9p7QOHhKl57HLqic8lc5e1Xl/A2VywEqV8cXGgU8UrkbrPAgVHmjl7iX1+nLqWpa9WVVzd0KrT0KndLS66BdNMjDONqb6a9IYij9Gt6n2+D+5y/L2Ptf4H26g6H0G/RXpmDvaKXH+fpVFJP+7srdVMsF5NtDSJHOT1JXsJ9U+2UK7RHUyiW0O20vfQ/VOyoErYFY7B462hWaaxXqSxSqs1QqElVKIlTyA8fTrBfH06z7NaK2aoSvmV2aNWSFl6frNGJ2qKQeHSH1zHia9bZKYZBGaZRKRYqqd7OWK7Q2KHR2ijTr28jrClqr3IfcU0N/RyKupgA8tYdnvqir6Tb9HUnIPWJR12JACFpzIwStuRGC1twIQSsw8zwvaAvK6vh2wwnW7blETlE18KOgTcwo5k9f78I9OAxARELOS4LW2efiX373HS0dPQBYJefE9wb4/adbiEnJ5/jlRwB88MV2gqPTOXcjBBCCdsHGO+KjsKwe/7sR/P7TLbzz7ldGH2naMfomYRiyB6lNJui2k/CrFqLPNJNwuIq0nQXkrEulwC+OEr9YKlZFUb0qgoZVYTSvDKZt1RO6VgVi2RJO9+E4uv0z6HlciiWxHktpNzbL5Au5FiNC0M4MqbubvposBrPvokbvZ+zhN5OmY0dCNzCccoGB0mjklhqsjrlZVGPpHaTJ2USFI4Ns+wMSpeMvydh422EypQBK7Ak0OGvpmkFdgRC0c4DsoatbobVZobFSoTZfpSpNoSxGpShEI/eeQuZVldSzKgmHx9OsGzRCV84uzRr2LM26RyPpmEra+fE060OF4nCNsniV6gyV+iKF5lekWRdqSZhgcfIqQWtz2HFayhhoj8HdcB2lZg8jZd9NsajrY7SKtQzXntAXdXWm4bA1ikVdixghaM2NELTmRghacyMErcDM87ygHR0d473PtvDeZ1vx+UaBHwXtw7Bk/LafBcA1OMyyTSf5ZNUB4EdB29TWzf/+4w9ompfR0THOXg/mnXe/mqhG2HX8Fp+sOkBiRjGgd8/+3e8g+SW1gBC0CzITC8N2nuffPvDjZ7/5lm/WHzf6WNOO0TeJ+cQqDWKvt9Gb24grupjBO6koZ54ysuseY37+Uy/k+uEK3j33Uc5GMHg3jYGYEnrzmrA32LDa347FJELQvoxN6qW3vmj63tgnfigJJ3EXhuJsKJ2T3thndDn7qJerKHHEkSHdJE46NEldwUly7IFUyJk0y628ybIcIWh/xCIZk2aNWKcRs10l4YBGyimVdH+V7NsqBUEaJVEqlckqtbkqjWXjadYuBYtjbh6zELTmZkyV6e0uxNUWzmDDJdSqHfhKv5xiUdenqJWbGao/g7s1eHxRVxtiUdfSQwhacyMErbkRgtbcCEErMPM8L2gBTlx+xKFz9yfefn5J2CerDvD+59v4duMJymua+eWf13DyyuMXKg62H7nBbz7eyCcr95NXXMM/fjjM31bsAyAyMYd33v0Kh1OvWwh4HMvPfrsMVfMCQtDOywy4h0hIL2Lvqdv85uONvPPuV/z2k03sP3OX1Jwyhj2qUUd7rTH6JjFbbJ39yBWd9KVV4w7NY/haPOrREHybA6YUsKy4yOiGG2iHnzDsH4v7cTb9SVXIpe1I7U7DH9dCYHZBa3W4kFuqcJVE6r2xwesm740N/BY15gDunPv01eQgWXrm9Bztzh6q5SIK7GGkShcnryuQLlJgD6NaLqLdOTc//60TtLKHLotCW7NCU6VCXb5KVbpCWeyLadaUsyqJRzRid2lEbtQIWzXLbtbvf5pmVcm8rpL7QKEoTKN8Is2q0lyt0N6i0G01/noJQWsGhrDbWuntysbdEsRQ/Rm0yk2Mlnw2xaKuL1GrdjDYcAlXWzjO7kIkqXsRPBbBXCEErbkRgtbcCEFrboSgFYgRM99jmKD9b//5NT/77TKWbTrJ3eCEif6JpTZG3ySmRR5GarHjLGxhIL4c98MMPBei8e4PZHTt1akl7KpLjGy/i3oqjKGAZFxPC+nLrMNRY8FqXTpVBPOFqQTts97Y8iSG0q7hDX9Fb+yDL9AidjKUcZP+ilTsHW3MVW9sj9ODxTlEs9xKhZxJjj2QJOnkJEL2EBnSTYrtsdTLVXQ556ezcbEKWovkoaNDoaVOpaFUoSb7J2nWAJX0SypJJ1Ti92tEb9V4usTTrEYgBO3bw4+LulJxNd9nuPY4WuUaRktevahrrGI5Ss0e3A3XGGiPwWkpw+awG/5YBAvw+yIErakRgtbcCEFrboSgFYgRM99jmKBNzy3Ho2hG/fg5G6NvEj1OD1abG0dtD71Z9bgiChkKSEY9GcbIjruM+V2euopgzVW8ex/iuRDF4IN0BuLKcBa0IDXb6XHMnVh7G3mbBa3U3UVfdSaDWXfRovZN0xt7kYGSGOSW2jnrjX1Gl3OABmctJfYEMqUA4m2HXxKyidJxsu0PqHCk0+RswtI7uCDXaL4FrSFpVj+NyE0asbs1Eo+qpJ5Tybymknt/PM0ap1KdrlJfqNJUpZ+vaxGkWY1ACNqlh9XRi9xTRX9HIu6mADw1B/GWr2Ks+MNXiNgP8Zb74ak5hKspgP6OROSeaqxy32svCRO8PQhBa26EoDU3QtCaGyFoBWLEzPcsmg7an45rcBibo9foY0w7C3UzsHX0Ipe102cJ+vIAACAASURBVJ9chTs4l+ErsWiHnuDbeHPaKgLf5ltoR4IZvhaPOySPvtRq5PIObF1iG/RseFsErc3m1Htj84NQ4o4x+mjF5L2xQd/jSTyFuzAMZ2MZVvvc//60OyVq5VIK7RGkSZeJkw68JGRTpPPk20OolgtolY176fCMBK39J2nWHJWKJJWSSJWCRwo5t/Q0a/JJlfgDGtHb9DRr6PI3l6yhy71ErNWI3qZ/z+STKumXVbIDVAqeaJRGqlQm6WnWhlKFlnqVjk4Fi93438WlhBC0ixebQ8JpKWWgPYrBhmvji7q+naIf9mO0yjUM1x7H1fzgx0Vdzle/UkQIWvMiBK25EYLW3AhBa26EoBWIETPfs2gF7f7Td3jn3a+MPsa0M2f/4O1D2BslnPnNDMSUMng/HeV8JN49Dxj74crUKVg/f0Z23UM585Sh2ym4oorozWnAXmfFal+YNKEZWYqC1upwITdX4iqOxJP06t7Y0cBlqLGHcOc8pLc2D5t1Pl66O0yLs4NKOYc8+xOSpNMvydh46SDp0jWK7DHUyRV0Oo3pN55Is1Yp1BWoVKWrNKb6KA33kndfIfOanjZNPKL+mGb1E2nWtxkhaI1mGEnqore7AFdbGIP1F1CrtuMr/WIKEfsZWuUmfVFXSxC9XdnYbW+2JFAIWvMiBK25EYLW3AhBa26EoBWIETPfs2gFbbfVQUVti9HHmHZe5x+0tceFo6qbvoxa3GEFDN1MRD0Rgm/bbVh5aeqFXOuuoR14hOdSDO7ATPoTK3AWtyK1yPTIxt+szMiiF7TyMI72JgbKExlKu4o3fCvc/8fLvbH3v0SL3MVQxi36K9Owd85tb+wzup0uGuV6yuQUsux3SJCOTlJXcJRs6S5lciqNciOW3rmrTLDYPXR06onRhlKF2lw9SVoaqSdLswP0pOmPaVaViLWzT7M+XaMnYyfSrJdUcm7pCdqSSD1RW5MznmatU+noEGnWpYAQtAuEPIjd1kpfVxbu1icM1Z9Gq9zIaMmnUyzq+gK1ajuD9Rf1RV2WQiSpa07PJQSteRGC1twIQWtuhKA1N0LQCsSIme9ZtIJ2qcwL/2hlD1KrjLOklf6kCtyBmXgux6IdfMzo+utTVxGsvIRv623U4yEM3UjEHVZAX0YtjqpurBaxkGsxstgErdTdSV91BoNZd9Ci9jL24OtJ0rH/YCRsE8OplxkojcPRWk+PPD8p606nTK1cRqE9mnTp6qR1BcnSWfLsQVQ5cml1djITMdxl9UykWesL9RRpeZxKUZhG7vNp1qMqsbv1FGq4nzarNGuYn5fIjXrXa+IR/fsX3h6h8KHeCVsWq6dq6wqeS7NahLx7mxGCdm6xOgdwWOvp60zB1XSP4bpjeCtWM1ryt1eK2JGyZSg1exhsuMZAezROSyk2h7Qg5xWC1rwIQWtuhKA1N0LQmhshaAVixMz3GCpoIxNzXkjJ5hXX8OdvdvGbjzdy/PIjfL5RA083sxm8m4ZyOpyRXfem7YId++EK3j33Uc5GMHg/nYGYEnrzmrA32Ay/2QheHyMFrc0q01tfiDvvMUrcUUYfLX9Fb+wPeBJP4yoMx9lYjtXeP29napW7qJLzyLMHk2I/95KMjZMOkCZdodARSa2jlJYueUmkWXtekWad7yVhgsWNELRvhs3Ri2yppL8jHnfTTTw1BxgpWznNoq5VeGoO4m66Nb6oqwqrbGyHuhC05kUIWnMjBK25EYLW3AhBKxAjZr7HMEH7OCKVf/ndd6TmlAEw4B7iF++vYtuR6zwITeKXf17DjYfRC3qmgrI63v98Gz9/bwUrt57BNTgMQFePna/WHePfPvDjr8v2UFrV9OMX/bSKYMMNtMNPGPaPxf0km/6kKuTSNqR2Y7ozBfPHQglaq2MAuakCV9FTPEnn8AWvnbw39tF3qLGHcecG0luXP0+9sTqW3kGanI2U2dLItNwnwXrsZSHbc4TE6jskpSSTeL+euIODRG3WCP9+lmnWVc+nWTVSzqpkXlXJvac8l2ZVqMtXaaqcvzSrELTmRgjaqZHsNn1RV1skg41XUKp3MVL2zdSLuirGF3U13aOvMxWHrWHKRV1GIgSteRGC1twIQWtuhKA1N0LQCsSIme8xTND+4csdRCbmTLwdFJnG//fFdsbGxgBISC/kD1/uWLDzDLiH+OWf11BYVo+qeTly4QFPIlIB+HLtUe4GJ/z/7L35fxNnnu/7d5xZ7p25Z869Z9I9vc+ck57Tk87WSaeTTichITsEAiRAFiAQwhKWAGHLAiHsS9jDvhljjI1ZzOp9lS3vm1RSlWRJJZWk0vK+Pwg7GEvGgO2SXc/39Xq/XliypaeqpIfSW9/6PESjMS5dL+eRFz9Cj0QTf3e6CNclC87Kdmz2gcvLFKQ/gyJoZT/Oxlo8JVn4z69HPzozRW7sGMIn56Fe3Ia7PA9HS9N9P2e7U6OlNUhDTZDa4lvdrOdCFJ4Mcf1AmMvbQ+Rt9ZB9oIIzZzM5XbKZ0x2LewnZ03WrOHnuR45vu8qRBS0cmtCHiH33VjfrrDBnFobJXpHoZr28LcS1vUEKj4coPRui8vId2ayS8ce9CyFozY0QtBqJhbqacbVdw9twGL9lDaHyWUSL3uhDxL5GuGw6fstqfA0/4mq9dN8LdRmJELTmRQhacyMErbkRgtbcCEErECVqsMswQfuLx8YhuzzdP89cvIHVGw50/9xhl/nlE+OHbDxHMy/xyeL1vW5X3F5+9/QkItFo920vvfs5N4otiXGmwUQhMIaBELSOthbc5RdQL+4gfOJz4rvHJM2N1Y9+QiD3ezzFZ3A2WuiQe8uMNptGU32QuooglpshKi6EKDlzK5t1d5CLm0Kc/zZE9pchMueH++xmPTJb4vj6Ak5mHuVU5dre3bH2hWSUr+NkxglObS/m9ErHvXWzjoCF7YSgNTdmErQ22YfDXo+75SK+hv0EqlcRLptGrPDVfizUtQZv42FcbddvLdQ18AsQGoEQtOZFCFpzIwStuRGC1twIQSswc0WiUR56ZAyfLdvc674Fq3bw0CNjejizZLXzYBbzVmwD4LdPTcDudA3KWIdzGSZof/vUBJxKZ/fPj42a1h13AIlYgd89PXHIxrNs7R4Wf72TcdNX8MToGcxeuhnVr1FUbuX5sXN7/O70hd9z4GQeIE7Qzcy9Clq7TcZVfR3flX0ETy8ltj95bmzkxw9QT32NnH2c5twyys95KToZ4saBMPnbQ1xYHyJndYisxWEyPgtx7KMwhyY+QDbrpBDHVzSRcfASp6/vJbN5RS8he8a2hJzGrVyxZlFWV0VjszetulmNQAhaczMSBa1N7sRpq6azOQev9QcCVcvQS6cQLxjVx0Jd4whWzEOt3YCn6eSthbpGfq66ELTmRQhacyMErbkRgtbcCEErMHNFolF+86cJPDF6BsFQuPt2PRLl6ddn8ssnxt+ToFXcXmKx+KCOeTiWYYL2xfHzycy9DsCNYgu/evJd/IFg9/1nzg9txMFnyzbz9OszsTlchMI6H83/jqVrdnOloILRkxb2+N25y7ey82AWAL6ALjApeiRGMBxNep9XUfFUVeK7eBL/8W/Q936QVMbqOyYgb1hG7aofuTq3gBPvuR8om/Xk9DBn5unkLNO5uCbM1S06BXvDlB2LUJ2tU5ev01Dmx9Jgoagjm8vSNrKkJb2E7DlpJdeVvVi8l+lQm/BqIXyaLriNSDSOFooY9vzegPH7wMzEYnH8QeOO/4Og+jsJKBUEbVmEGreiWxYRLZ2YUsLGC14iWvYeumUxocZtBG3ZBFxVqH6P4dtiFPE4qGkwDqPwBobna38gUG8df6PHITAGfzBCLBY3fBxmxsjzHy0UIRIVx9+sBMNR9Eis/3+TBp9XBQOLmSsSjfLLJ8YzfeH3nDl/o/v2i9dKmb7w+x4dtIdOXeDp12fxxOgZvP3hMmyORKes6KC9exkmaA+eyuPf/zyJaQvW8fCzk1m+bl/3fYVltTz+8jQ27DwxZONZumYPX363t8cY/jp2DsUVVp4bM6fH705bsI5Dpy4A4A3ogpGKX0dx6tibI7RW6zQURqi5pFOZFaHkSISivRGubta58E2Q6yvrqFx5luavNuBZP4v4D71zY6PbxyCvXUDt0h+48dklzkxpT57NOlUnY1aYs4t0zq8Mc3mdzvUdOoUHwpRnRLCc16m/FqGlXMfWoCPbInR6U2+HQ3VS5y2mSDlBnnNd77gCaSHnHWspVI5R5ylAUiW8fl1wFyLRGP5gxLDn9/h1fIGIwCBicRKCNg3GkgrV60RzFhNqP0WobiORqnnE+lioK174MtGyDwjXLCfYtIeg/QIBVx0+f8DwbUk3AMPHYCSegInnH00cfzPjDybmf6PHYWY8atiwcy9/MEIkGjP8HFRgDFooQjhyD8ff6M+yggFnqOt3NX5+ZRl6klUkGuXnj44l93IRUz77tvv2WUs2kn2xoFvQujp9/PKJ8bTbZQDmrdjGwtU7ACFo+1OGCVpI5L5+tmwz2/dnouuR7tvnLt/Kp0s3dS/ENRS182BWjzyNwrJaXhw/H7fHx2/+NAEt+FMb99Ovz6S4wgqIS9yGA212jaaGIPWVQWoKglRcDFGSFaLgaIiru4Nc2hzi/Jow2ctDZH5+K5t1SuoFrs5MbefGZ5ewLt2BsvZzotvH9F7E64c38G6cRcvaDVR9k83NNXVcWq+RvyPEjYNhik6FKMsNUnU1RG1pkMbaIK2tD57N2q4EqFMaKZMvc0XaT7a0KomQ/YILjs0UOE5TLZfRqrgNP0bDERFxYG7SJ+IggENqxtV2BW/DIfyWb/qxUNerhMum4a9eha9hP+6uhbpkNQ22Z3ggIg7Mi4g4MDci4sDciIgDcyMiDgRDXf+tQjWEZNUlaHU9wh/+9gEer59gKMwfX/qIUFjv0UF7ewTCqXNXGT9jJSAEbX/KUEGbqqLR2JA/p+zy8PBzk6mpb0WPRJm24HtWrt8PwLhpK9iw8wTRaIxT567y5OgZ3WM0epIwDbJGS2uQhtog1pKE2CzLCVJ0KiE883fckc06J8zxj8McfoBs1kPv6mR87ObG4pvUffsjyuZl6DuS58bq+z5EPfkN7ssnkC2l2JyeIdkvbYqHGrmaIkc2lxzbyZKW9hKyWdKXXHbsosSZh1Wx0u4SEmYgEILW3Ay1oLXJPpy2OtytF/DV7yNQvZJw6UfECkb3sVDXm4TKP8VvWYO34TCutmtIjhZGykJdRiIErXkRgtbcCEFrboSgNTdC0AqGuhyROJIBJKsuQQswf+U2Dpw4T1beDeZ8uQWgW9DG43HW7zzOKxMXMnrSQp5+fRbjpq0AhKDtTxkuaCtrmvhm8yFmLFrPrC82smHnCZrbJEPGcuFqKY+/PI3//OtUPlm8vjsTt90u8/aHy/hff3mfURMWUFnT1P03Rk8Sw412SaO5MUh9VRBLVzfr2RAFx0Jc3RPk8tYQeWvCnFseInNBmJMzwxydGubQuw+wCNZEneMfJ6Rt1uIwOasTMrdHN2tOEEu+l7b8UlwXjhHI/IrowalJZWxs3wSCmcvQiw7jry/AbpOHbP+1KE6q5CJuOE9wXlpPprSol5DNkb7hquMg5fI1GuU2w4/5SEUIWnMzWILWJrtx2qrobD6Ht24HWtVS9NLJfS/UVfQOwYq5qLXr8TSeQGkvQnKM/IW6jEQIWvMiBK25EYLW3AhBa26EoBWYuW4XtNeLqxk3bQUfzf+O/JsVwE+C9uyFAp4fOxefGgDgeFa+ELT3UIYK2q82HuChR8bw/Ni5TF/4PR9//h1PjJ7Bzx8dy+Y9p4wcWr/L6EnCEGSN1tbEZfm1pbe6WXN7drNeXB8i96sQZ78YoG7W8TpHpyTiBzI/T8QRnF8T5tLmRExBwdFEbEHFxRA1BYk4g6aGIG32VNug4my04CnOJJCzDv3oJ7Czd25sfPdYwicXoF76AXfFBaS2lu7HCISidKrhQdzXARqUFsqdV7jqOMA56eteMvaMtJgL0kZuOk5RLZfQoijGvz5MghC05uZBBa3dKSN3lOBpOo2vdjPBigVESib0sVDXi0RKJqJVLsJXu5XO5jPI7WXYnS7D94UZEYLWvAhBa26EoDU3QtCaGyFoBWau2wVtLBbn6ddn8vTrs7qvLO8StHuOnOP92V8D4FUDjJ+xktHvLQKEoO1PGSZosy8W8MvHx5F3paTH7bFYnP3Hc/nZH8dy7lKhQaPrfxk9STwI7Y707WatuhrCWpKINGgZgGxWR0sTnWV5qBe3ET45j/iuMb27Y3e9iX70U/znN+IpOYuzyUqHnPpS4IEWtO0uH7VyLcVyLpelHzgrLUsSV7CUy44fKJZzqJVraHf5DH8dmRUhaM1NfwWt5GhHabuJt+kYas06ghVziBaN6UPEjkIvnUKgahle6w90NufgtFmwyUMTmyLoH0LQmhchaM2NELTmRghacyMErcDMdbugBVixbh9ffLOr++fbFwkb/d4innnzU8ZNX0FJZR1/+NsHrFy/XwjafpRhgnbctBWsWLcv5f3L1+3jzalLhnBE91dGTxIdskZrW5CGuiC1ZUGqroUoPx+kOCPEzUNhruwMcnFDiNyvQ2QtudXNOi3M4UkP1s16pKubdX6Y7C9DnP/2VjfrniAFR8MUnwlRcSGE5WaQurt1sw4wdpsDV/U1fFf2Ejq9hNi+d5NGFUQOfoR27lu8BSeQ68qxOb339DwPKmhbFBfVcik3HRnkSRs5Iy3uJWTPSV9x1XGAMmc+9UozIjsyfRCC1tz0FLR+HFIjrtb8Wwt1fU2o/BNiha+lXqir4FXCpR8T6Fqoq+UCDns9Nll86TIcEILWvAhBa26EoDU3QtCaGyFoBaJEDXYZJmj/91/ep7CsNuX9lroWfvOnCUM4ovurgXqztzs0mpuC1FUFsRQGqbgUovRsiMLjIa7tvdXNuvZWN+vCMCdnhTn6wYN1sx6aqHPsozAZn4V6drNuD3HjQJiikyFKc0JUXQ1RWxKkoSZIS0uQdqfxk2MXNkcnSm0J3htH0c6uJnpgSvLc2P2TCJ5Zju/aAVyWm9ilB78s+F4FbYPSToV8nWuOQ+RI3/aSsZnSIs5L33PDcYJKuYhmRTJ8/wpSIwStOXHY63G3XiDWfgCtegXh0g/7jCWIFr1BqHwWfss3txbquopDajZ8OwQPhhC05kUIWnMjBK25EYLW3AhBKxAlarDLMEH70CNj6LDLKe+3O1089MiYoRvQfVaPN63oZh1cZBVngwVPUSaB3HVEjsxInhu75x1CpxaiXv4Bd+UlpLbBWSirL0Hb7lKxKlZKnRfId+zmrLS8d36sfSkXHdsodJylRqmmVbm3Dl6BsQhBO5IJ4JCacLXm42v4kUD1KsKlHxEreKUPETs2sVBXzXo8jcdR2guRHLY02BbBYCAErXkRgtbcCEFrboSgNTdC0ApEiRrsMlTQ9pU5MVwE7ZlFYU7NCnPsg/ADSdZD43WOfxQmY3aIrEVhclaFyPs+xOXtIa4fCFN4MkTZuVvdrMW3ullbB34F8XTC0dJIZ9l5/Be2Ej4xj/iut3vL2F1voR+bjT9vI52l2Tib6vrMjR1Ibhe0rYobi1xOoTOTC9IWzti/6CVkz0qryHfso0y+RL3cSLuIKxjWCEE7MpCkVlxt1/A2HMZv+Ypw2XRiBa+mXqir+B2ClfOJNm/H15KJ3FGK3SkW5zMbQtCaFyFozY0QtOZGCFpzIwStQJSowS5DBe24aSt479OvkzJu2ophIWjvlKxHJ9/ZzRri4qYQV3YHuXkkTElXN+uNENbyII11QVo7RrZo7Q92mwNX1VV8+XsInf6C2N7xyXNjD32cyI0tPIlcV4FNNqbrtEnpoMFXTIFyjFxpbZK4goWcl77juuMolXIBTYropBtpCEE7vJAcdpS2AryNR1EtawiVzyJW+HofHbFjEh2xtRvwNGUgd5Rgd/4UjdLfRcIEIxMhaM2LELTmRghacyMErbkRglYgStRgl2GCduHqHf0i3ctaEqTeEqK5RXxQ7y82hxulthjfXXJjo/vfS+TGXj+IYinAJrkNGW+74qdebqBUvki+Yx/Z0sokcQVfcFHaSoEzE4tcQavSafh+FgwuQtCmJ3anjNJejKfxJGrNeoLlc4gWvXWXjNjZqDXr8DQdR2kvwu68e/6zELTmRgha8yIErbkRgtbcCEFrboSgFYgSNdhlmKAdKWX0JJHu2JwqzoZqPEWnCeR+R+TI9NS5sRmLUC/vxF1xGamt3bAxtyoeapQqCh1ZXHRs54x9Se+4AvsKbrj2UeW+hFWpo11RDd/XgqFFCFpjsclu5PYyPM2Z+Go2EaycT6TonZQiNlb4OqHyT/BbvsXbeBil7QaS4/7nGSFozY0QtOZFCFpzIwStuRGC1twIQSsQJWqwSwjaByyjJ4n0IoCjpSmRG3txK+ETc1Pnxh7/DH/eZjrLcnA0N9BhYB5rkyJRKRdxw3Gc89L3ZEqLegnZHGkN15yHqZBv0KgkpE5fi4QJRj5C0A4NNtmD01ZFZ/NZfNYtaJULiZS8m1rEFowmXDYNv2U1voaDuNquIDlaBnxcQtCaGyFozYsQtOZGCFpzIwStuRGC1rxI7UG8V3Wj1ZMoE5RhgvaZNz/tF+leRk8WRmK3OXBVXsGXv5tQxmJie8clz409PI1Azho8RaeQ6yuxOX0GjjtAvdJMmZzPVcePnJO+SpIfu5g8xyYKHKexyGW0KsmjFYSgNTdC0A4sNtmH016LuyUXr3UHWtUS9JL3iBe8lKIj9mXCZR8QqF6Jr2E/7tZLOKRGOhT/kIxXCFpzIwSteRGC1twIQWtuhKA1N0LQmhNHc5DoD3HYYLR5EmWGMkzQbt+f2S/SvYyeMIYKm8ONUlOE7/phtLOriB6YnDw39sf3CWatxHfjMEpNkWG5sV20KV5q5RqK5RwuOXaQJS3tJWSzpC+5LO2kRD6PVaml3dU/gSwErbkRgvZ+8eOw1+NuvYC3bjeBquXopVOIF4xK0RU7Cr1kMoGqZXitO3G3nMdpq6NDNjZWRAhacyMErXkRgtbcCEFrboSgNTdC0JoPZ32I2LaEnA0ejxqtnkSZoNI64qDDLhs9hLuW0ZPGYGBz+pDrq/AUZhDIWUvk8LSkMja+dxyhjEX48nfhrsxHau8wfOwtiky1XMINxynypA3J4woc33DVcYBy+SoNSut9P5cQtOZGCNq7EcAhNeFqvYyvYT+B6lWESz8kVvhKyniCSPEktMov8Fq309mcg9NmwaZ402BbeiMErbkRgta8CEFrboSgNTdC0JobIWjNhVwbIr4lIWe1jCgdTnNn0EaiUR56ZAxL1+zpcXvOpSKmzvl2wJ7nt09NwO50Yalr4anXZib9ne37M5m3YtuAPWc6VdoJ2nBYJzP3OuNnrOShR8YYPZy7ltETx4MTwNHcSGdpLv4LWwgfn0N891u9Zezutwgfn4P/whY6S3NxNDdiZG5sFw1yK+XyNa46DpIjfZMkrmARedIGbjhOUSUX06LIA/bcQtCaGyFof0KSWnG1XcPbcAi/5SvCZdOJFbzah4h9l2DFAny1W+lszkLuqMQmdxq+HfeCELTmRgha8yIErbkRgtbcCEFrboSgNQ9KZZj4RmAD+M9Fum83c0WiUX795Lv81wsfUt/U3n37QAtaxe0lFov3KWi1YBjVPzKPR9oI2pr6Vpau2cPDz07m3/88iQWrdlBe3WD0sO5aRk8e94rU3oG7Mh9f/i5CGYuI95kbuxZPYQZyfRU2p7GXE3coGu0uFatSS4kzj8vSLrKkL5PEFSzjkmMHxXIOtbKFtkHsvhOC1tyYUdBKDhtKWwHexqOoljWEymcRK3wtpYiNFo0lWDEXX81GPE0ZyB2l2Jwuw7djIBCC1twIQWtehKA1N0LQmhshaM2NELTmwF0Shlty1nc50uM+M1ckGuVXT77LgRPneXfGqu7bbxe0sVicxV/v5E+vfsLjL0/js2WbiUQT0RD/8cx77Dp0lokzV/PE6BlkXyxg/sptvDl1CW9OXUpACwE9O2iffn0mK9bt47FR03j69ZlcL64GenbQllTW8eL4+Tz12kyee/uz7t8ZrmWooFX9GgdOnOeViQv5+aNjmfDJKn7x2DjqmzuMHNY9ldETSF/YpFu5sTcOE8xaSfTH95Pnxh6YjHZ2Fb4bR1Bqi7E5jM2N7aJVcVMtl1HgOM0Fx2YypS96CdlsaTVXHT9SJudTrzQxlF29QtCam5EsaO1OGaW9CE/jCdSa7wmVf0a06K0+ROxbhMo/Q635Hk/jCZT2IuzOgetWT0eEoDU3QtCaFyFozY0QtOZGCFpzIwTtyMdToCcWA9sAngK91/1DXrN3wMxtQ0+SikSj/Ntj7xCLxXlh3Dxy84uBnoI2+2IBz42ZQzisEwrrPDdmDqdzrgPw8HOT2bI3A4CDp/L41ZPv0tIuAfDOx8vJzE383u2C9t8ee4ejmZcAOHbmMk+/PgvoKWifHzuXU9lXATh59grPvPnpQB+FIS3DBO3spZv5zZ8m8MK4eez48QyyywMkDkjXgRoOZfQk0kUiN7YST9GpPnNjY3vHEzr9Bb78PbiqrmK3OQwfexeNSgcV8g2uOw6TI61NGldwXlrHDcdxquQimhTJ0PEKQWtuRoKgtclu5I5SPE2n8dVsJFgxj2jR2JQiNlb4GqHyWfgta/A2HkVpu4nksBm+HUYgBK25EYLWvAhBa26EoDU3QtCaGyFoRza+C7fk7EZwlyb/jD/kNXGtMSSpSDTKzx8dC8CNYgtPvz4TXY/0ijgIhfXuf3++ajubdp8EEoLW2tgGwLXCKp59a3b3781fuY0fDmYBPQXtb5+aQCwWB0DXIzz0yBjcHl8PQavrke7fccid/OKxcQOy640qwwTtQ4+MYfrC77sPUlcJj50xRgAAIABJREFUQdsfAjiaG+gszcF/YTP68c+S58buepvwibn4L2yls+w8jpb0yI1N4KdOrqdUvki+Yw/Z9hW9hOwZ+xIuOrZT6MiiRqmiVfGkwbh/QghaczOcBK1N9uC0VdLZfBafdQtaxQIixe+mFrEFrxIum47f8hXehkO42q4hSfe/oN5IRAhacyMErXkRgtbcCEFrboSgNTdC0I5c/FkR2ADxTaBUpv58P+TlCYDHP/QkqdsFLcCH89ayZW9GD0Hr8fmZu3wroyYsYPR7i/jD3z5gw84TQELQtttlICF4R01Y0P1YC1fvYPv+TKCnoH385Wk9xvDbpybQ3Cb1ELRZeTd5c+oSRk9ayKgJC3qMcTiWYYK2oLSGWUs28usn3+3uonUqnULQJqFXbuyed5J0x75B5MgMArnr8BRl4myw0CEbnxvbRZvioUaupMB5hovSVs7YlySJK1hJvmMfpfJF6uUG2hW/4ePuCyFozU06Clqb7MNpr6GzOQdv3Q60yi/QS97royP2FcKlHxKoXoWvYT+u1ss4pHT6Iid9EYLW3AhBa16EoDU3QtCaGyFozY0QtCMQp4aWEU3I2S1xZGvfn+3MXHcK2jabk//861QOnMzrFrRLvt3F3OVbu3Nn5y7f+kCC9ndPTyIe79lB6/H6uwWt4vby6yff7Y5ItUmKELQPWl41wJ4j53hh3Dx+/uhYHnpkDPuP5xK+rTU6nWugJ4lEbmwhvuuHCJ5ZQXT/eylyY6egnV2N98ZRlNoSbI70WgG9SbFTKRdy3XGMXMd3SeIKFpIrreWa4ygV8k2alA7Dx3yvCEFrbgwVtLKKw16HuzUPb90uAtVfopdOJl4wKoWMHYVeOoVA1XK8dbtxt17AYa+nI82/BElnhKA1N0LQmhchaM2NELTmRghacyME7cjC5tAIHU3I2dj2OM7Gu3+uM3PdKWgBvtl8iKdem9ktaD+a/x07fjwDQH1TO4+/Mp2vNh4A7k/Q/uyPY8nKuwnAibP5PDdmDvBTBq21sY3f/3UK4bBOLBbn600HeeiRMQRD4cHbEYNchgva26vc0siCVTv43dOTePjZySxds8foId21HmhScPqQ6yrxFp4icG5N6tzYfe8SOr0E35W9uKqvpVVubIei0a4EqFOaKJMvc0XaT7a0KklcwRdclLZQ6MzEIlfQqqSXUL4fhKA1N0MjaP04pEZcrZfwNewnUL2ScNkHxApfSSFiX0IveQ+tagle6w7cLbk47bXYZJ/h+2ukIQStuRGC1rwIQWtuhKA1N0LQmhshaEcONilI+EAMNkB0VxyptX/n9GauZII2oAV55MWPugVtcYWVp16byV/HzmHOl1vIvljA756eRM6lonsWtOWWRp4fO5eV3+/nmTc/5Zk3P6Wo3Ar0XCRs9tLNPP7KdEZPWsjVgkremLKElyf+9NjDrdJK0HZVQAtx5PRFXnt/sdFDuWv1fyII4Gyqp7P0HP68zejHPiO+K1lu7BjCJ+ehXtyGuzwPR2uz4RPYnSTiCqopcmRzybGdLGlpLyF7VlpOvmM3pc4LWJU62l3pE7cwUAhBa24GWtBKUiuutqt4Gw7ht3xFuGwasYJXU8YTREomoFUuxGfdSmfzWZy2KmxyeuU0j2SEoDU3QtCaFyFozY0QtOZGCFpzIwTtyMDeEUTfm5CzkT0x7B39P58XJWqwKy0F7XCqVG9eqa0Nd8Vl1Ms7CZ1KnRurH/2EQO73eIrP4GysoUNOv0uOWxQnVXIRN50nOS+tJ1Na1EvI5khruOY4RIV8nQal3fAxDwVC0Jqb+xW0kqMDpe0m3sYj+C1rCJXPJFb4WmoRW/QOwcr5+Go24WnORO4oxya7Dd9+syMErbkRgta8CEFrboSgNTdC0JobIWiHP1JrkOiuOGyA8IEYdvu9ncuLEjXYlbaC9uTZK91ty+lcHYqGXXKhWArwXT9I8MxyYvsnJc+NPfgB2tmv8d48jmItTbvc2AQBGpQWyp1XuOY4wDnp6yT5sYvJc2zipiMDi1xKi+JKg3EPPULQmpu7CVq7U0ZpL8LTeAK1Zh2h8tlEi95MKWKjRW8RrJiDWrMeT9NJlPZi7E7F8O0UJEcIWnMjBK15EYLW3AhBa26EoDU3QtAObxxNIaI7EnI2dDiKzXHvjyFK1GBX2graPUeymfDJKqOHcdfqOzd2Kb4r+3BVX8dukw2flJLR7vJhlWsplnO5JO0kS1rWS8hmScu4JO2kWM7FKtfS7hJ5lh2KELRmp0vQ2pwu5I5SPE0ZqDUbCVbMJVo0pg8R+wah8lmolrV4m46htBVgd9oN3x7BvSEErbkRgta8CEFrboSgNTdC0JobIWiHL876ELGtCTmrnYxic97f44gSNdiVtoJ2uFRs7zjY+TrhE5+jXvoBd+WltMyN7aJFcWGRS7npyCDPsYkz0uJeQvac9DXXHAcol6/SoLQYPuZ0RQhac2GTO5E7KulszsJXu5WoZRHR4vEpRWys8DXCZTPwW77B23AYV9t1JKnN8O0QDAxC0JobIWjNixC05kYIWnMjBK25EYJ2eKJUh4lvBjZAIDPyQI8lStRgV1oI2lgsjuzy0G6Xe5Hu5WhpMnzS6YsGpZ0K+TrXHIfIkdYkiStYRJ60npvOk1TJxbQoTsPHPFwQgnZkYlO8OG0WOpvP4bVuR6tcTKR4UmoRW/AK4dKP8Fevwld/AFdrPg6pmQ4lYPi2CAYPIWjNjRC05kUIWnMjBK25EYLW3AhBO/xwVYSJbwI2gC9Pf+DHEyVqsMtwQXvm/A0efm4yDz0yJinpXkZPOrfT7lKxKnWUOi+Q79jNWWl58rgCx3aKHNnUyBbaFLHq+/0iBO0wR1Zx2upwt5zHa91JoGoZeslk4gWjUsjYUeilUwlULcdXv5eIfIVOuZEOJf0W9hMMPkLQmhshaM2LELTmRghacyMErbkRgnZ40VmowwZgA3iuP7ic7VCEoBU1+GW4oP3D3z7g2y2HaWq1Y3e6ejFUdel6OT/741h++cT4bvYcOQdAa4eDMR99yf/+y/u8OH4+ReXW7r8zctJpVTqxyBUUOjO5KG3hjP2LXkI2W1rNFWk/ZfJl6pQm2kVX34AhBO1wwY9DasTdeglfw34C1SsJl35ArPDlFCL2JfSSyWhVS/Fad+JuycVps2KTe2Yv322RMMHIRghacyMErXkRgtbcCEFrboSgNTdC0A4fPNd/krPukoH7vC5K1GCX4YL2V0++S0ALGT0MTudc5+PPv0t639sfLuOHg1lEozEuXS/nkRc/Qo9EgaE9QW9SOqiUC7jmOEqutDZJXMFCch3ruO44RpVcSJMiFh4aTISgTT8kRwuutiv4Gg7it6wmXDaNWMHolPEEkZKJaJWL8Fm30dl8DqfNgk3x9uu5hKA1N0LQmhshaM2LELTmRghacyMErbkRgnZ44DufkLPxjeCqGNjP6qJEDXYZLmg/mv8d+TcrjB4GB06cZ96Kbb1uV9xefvf0JCLRaPdtL737OTeKLcDgnaC3K37q5QbK5EvkO/aRLa3sJWPP2JdwQdpGoSOLGrlSxBUMMULQGofkaEdpu4G38TB+y7eEyj8hVvh6ahFbPI5g5ef4ajfT2XwGuaMcm+x+oDEIQWtuhKA1N0LQmhchaM1NvTtEoT+KVRbzvxkRgtbcCEGb/gQyIwk5uxnk2oH/nCZK1GCXIYJ2+/7MbjbsPMETo2ew8Ksf2Lb/dI/7tu/PHLIxbdmbwcsTF/D82Ln81wsfMnf5VvyBIEXlVp4fO7fH705f+D0HTuYBA3eC3qp4qFGqKHSc5aJjO2fsS5PEFazkimMvpfJF6uR6RPalsQhBO/jYnQ6U9iI8jcdRa9YRKp9NtOiNlCI2WjSGYMVc1NoNeJoykDtKsDtdgzI2IWjNjRC05kYIWvMiBK25uOnQ2NquMbnez39aVP5bxU/8W5XK36wqHzf4WdsaIMMWoNop/l8YyQhBa26EoE1fbE4N7WQUNkBsWxxn/eB8RjNzRaJRHnpkTI9I0P/z/FTmLt9KQAsO6Vh2HsxK2lw5EsoQQTv6vUX9Zqgq+2IB32w+RKdHxdXpY9z0FSxds5srBRWMnrSwx+/OXb6VnQezAHD7wveF3Sdj7SymSD7BBcd6MqVFvYTsecdaCpSj1LoLsXnt9/1cgsEhpMfwByOGj2Mk0OnpxOcoJ9CWiVa3kXDlPGLFY1KK2FjRm+iVswlav0drPYnqKMHTKQ/pmPVIDFXTcathY/CF6VR1gUHEYuALGD8OgTEAeNJgHEbhVs07/3j8ieNv9DgEg0O+K8xaW4ixjQF+Vt1TyPaXf61SedYa4MMmjTW2EKflMJZO47dtpODyGXTepYZRNR09EjPu3G8QzykFd8cfjBDSY4aPQ9CTzs4w+pFYQs7+EMfboQ/ac5m5ugTt7etEyS4P42esZOX6/UM6FiFoDah4PI6uRwx7/oLSGp5+fRbFFVaeGzOnx33TFqzj0KkLAARCkX6g49DaqfNeo8B1gFzHV73jCqQvyJe3UO7OokWtxhvy9fOxBUYRicYI61HDxzGs0FSCnRbC9mzCjduIWBYSKxnfh4h9nWjlTPT6tegdxwgphWh+h/HbEYoQjcUJhqMEghFDUDXj94GZicXjaGHx/jcr8Xh///8fmZh9/jH78R8pKMEIOZ1hltuCvNwQ4L9X9Zat/7NK5Y1GP1/bg1zyhNHCUWLxOP5QhFp/hNOuMGulEB+0BPiz1c//SPIYXfxLlcrTVj9TWwJ8K4XIcIWxqBH8abAvhhOqFjHs3CsYjhKNxQ17/kEjDY7rcCCsR4lEY4aPQ/ATmhohdiCekLN74miuwT03N3MlE7QAh05dYNy0FbS0Szw66uPu2xd+9QNvTFnS/fP7s78m+2IBJZV1vDh+Pk+9NpPn3v6M68XVAFjqWnhh3Dy+2XyI8TNW8sybn3L5RjkAobDOJ4vX8/jL03hjyhKWrtndLWhTPd5wLcMF7eOvTE96u8fn5+FnJw/ZOOqb2nHInd0/Xy2o5Lkxc3B7fPzmTxPQgj99Y/L06zMprrACyS9xa1O81Mo1FMs5XHLsIEvqHVdwVlrOZcduSp15WBUr7S7V8EsDBPeGiDhIjU3x4rRZ6Gw+h9e6Da1yEZGSialFbMFowmXT8FtW42s4iKvtCpKjxfDt6AsRcWBuRMSBuRERB+ZFRBwMXypljT3tAaY3+HmsRuUfkkjU31apjKtXWdca4LLU+zH6s0hYqVPjmE3jq9YAUxv8PFPr56HK1OL2nypUHrGovFOnsrglwJ72APmSRksa7DNBT0TEgbkREQfphdQeJLIn0Tmr741h7xj88/KhrvPOb8h1fjXkJKtkgtYhd/LWB0v5bttRAB4bNQ2bI3H/KxMX8vLEBYTDOvF4nN//dQoer5/nx87lVPZVAE6evcIzb34KgLWxjZ/9cSxXChLrU2Xl3eS19xcDsP94Lm9MWYIeieJVA/zlrdndgjbV4w3XMkzQ5t+sYOX3+/nFY+NY+f3+Xnwwbw3/8cx7Qzae1RsOMGnWagJaENWvMeGTVXy18QAA46atYMPOE0SjMU6du8qTo2cQjcaAxAl6i6JQLZdw03GKPGkDZ6TFvYTsOelbrjkOUSFfo0FuM3xCEzw4QtBq2GQfTpsVd8t5vNadBKqWoZdMJl7wUnIRW/gy4bIPCFSvxNewH3frJRxSI8MxT1kIWnMjBK25EYLWvAhBO3y4Iml83xZgQr3KvyeJK/j7CpVHLYkM2R/aA1Q47/6Y/RG0qbA4g2TYA6xrTUjiF6wqv+ojRuEfKlQetqi8XudnXqOfbe0B8iSNpjTYt2ZFCFpzIwRt+iC1Bon+kOicDR+MYZOG5px8qOtOpzRUJKsuQfvvf57EfzzzHr97eiK/+dMEvtp4oPvK99lLN3Pm/A06PSpvTl3K/JXbKCq3UtfYzqgJCwDQ9QixWBxICN5fPDYOSAja2/2fpa6Fx1+eBiTWgPrhVsQowNebDnYL2lSPN1zLMEFb39TON5sP8fNHxzJ1zre9+GTxei5eKx2y8QS0EJ8u3cTDz03mv174kAWrdnR3zbbbZd7+cBn/6y/vM2rCAiprmrr/Lkf6NumLOk/awE1HBha5lBZFMXwSEww85hK0fhz2BtwtF/HV7yNQtYJw6QfECl9O0RU7Cr1kMoGqZXitO3G3nMdpq6NDHjmd4kLQmhshaM2NELTmRQja9KRF1siyaSxv0Xitzs+/JulY/ecKledqVeY3+TnSoVEn3/vzPIigTUWdrJFt19jUpvFpo8orVpXfVav8XQpx+3cViftftqp82qiysS3x91ZZ/J80WDiag3QW6Wjno0TPxlGqzHL+L7gdIWjTA2dDiNi2hJwNnhja4zHUFYqphpCs7uyglV0e/tdf3qehxdb9O0czL/Hld3vJuVTE6g0HOHL6Ilv3nebH47ms3pBofszKu8mbU5cwetJCRk1YwM8fHQskBO0fX/qo+7Fu/3n8jJUczbzUfd+2/ae7BW2qxxuuZXjEQVc79HCtLOlLsqRlXHLsoFjOoVauod3lM3ziEgw+I1PQBpCkZlxtV/DVH8BfvYpw6cfECkanjCeIFE9Cq/wCr3U7nc05OG0WbIo3DbZlcBGC1twIQWtuhKA1H4olhO+CTvhQDLZA+EAMNSeCu1jH0SzmgqHGKgc5bNOY05iIEPinJCLzZ1WJ7tPVrQHO2TVaB+B5B0PQpqJJ0ciTNLa3B5jX6OcNq5/fW5JHM3TxyyqVv1lVpjX4+a41QIY9QLVTvD7vBZsURKkK47scIXg0SnxLQgTdSWRXHO+VCHab2L9mQQha45FrQ8S2Jt6TgczIkD+/mStZxMHabUd479Ovu3/usMuMfm8RK9btIze/mIYWG1M++5ZZX2wk/2YFitvLr598l/rmDgBsktIvQTttwffsOnS2+76V3+9n3optfT7ecC1DBO2eI+eQnO7uf/dFuleT0mH4RCUwhuEuaCWpHaX9Bt6Gw/gt3xAq+4RY4Wt9iNh3CVYswFe7lc7ms8gdldjkTsO3wyiEoDU3QtCaGyFoRz6yNYQvP0LoSJT4JpIKmtuJb4kTOhrFd0HHVREekiw8M1Hq1NjWHuCDBj9/sCTvLn3YovJevZ+NbRrXHYMzjqEUtKloURLxDXvaA3zREuCdOpU/WtSkkrqLf61UeabWz5QGP1+1BjjakdinRh/XdMBZH8JzQyeQGUHfF0v6/o7+EEc7FSVwOULkUry7e68LLSOCYhHnhCMdIWiNxVUZ7v7/WD039HK2QxGC9k5Bq/o1fv/XKVwtqOy+7Zk3P+XF8fNxe3zE43H+8tZs/vLWbLRgGGtjG7//6xTCYZ1YLM7Xmw7y0CNjCIbCfQranQezujNoXZ0+nn59JvNWbOvz8YZrGSJoXxg3j4qaxu5/90W6l9ETlcA4hougtTsllPZCPE3HUWu+I1Q+m2jRGylFbLRoLMGKufhqNuJpykDuKMXmdBm+HemGELTmRghacyME7cjD2RDCe10neDxKfDO9BI2+N4Z6LoK7PAwdJDrs8iMEj0eJbk/eYRfdGUc7GcV7NSFvbIMkDUca7YrGBUljTWtCPv46SU7rP1SoPFmjMrNRZW/70HWJpoOg7Wu/3XRqHOhIRD1MrE/so3+p9KUUt/9S6ePJGpWJ9SrLWxJ/e9OZeCyjt2cwkFqDuEvDqOdvdcMn+7JlM4QOxfCd13GV9/yy5fYMWndZmNCRaM+u2j0xvNd07HZxfjASEYLWONwl4e73mS/fGDnboQhBe6eghYQ8/ds7c7tzYOcu39pjoa5Js77i7Q+Xdf88e+lmHn9lOqMnLeRqQSVvTFnCyxMX9CloA1qID+et5b9e+JDRkxby1cYDzPlyS5+PN1zL8IiDa0VVhMO60cO47zJ6shIYR7oJWrvThdxRgqfpFGrteoIVc4kWvd2HiH2LUPlnqDXf42k8gdJehN0pG74dwwUhaM2NELTmRgja4Y+jOYjnpo52KkosiWCN7Irjz4rgLukpaFJl0EptCfHjO68TOpzisuiNCdEbOBPBc1PHWR+i4z5yUEcaTYpGhi3AkpYAL9YmF4r/UunjxVqVJS0BTtkChi2Ulc6Cti9KnRpHOzS+ag0wpcHPn2uS5/R28U8Via7cd+pUvmgJsLc9wBUp0b1r9Lb0F5tDQ6kJ4b0SQTsZJbojRVTB3hiBzFvvyYa+35PJFgmTWoKo5/UeXbXxTRA4E0GuFeeJIwkhaI3BU6B3v7c8BbqhYxElarDLcEH78LOT+fWT7zJ+xkq27M2gsqap274PhzJ6whIYh1GC1ia7kTvK6Ww+g692M8HK+USKx6UUsbHC1wiVz8JvWYO38ShK200kh83w/TfcEYLW3AhBa26EoB1+SG2JRX4CZyLdKz/36HbdESdwOkJnoY7Ulvq9fS+LhDkaQ3QW6vizI+g/xpJGJcQ3JVagVnMSMtjRMvLnlWpnkL3tAWY2qvypVuUfk4jCX1WrjK3z821rgAtS+nR0DldB29exyLAH+K41wLQGP3+zJnJsU4nbf6hQ+b1F5Q2rn3mNfra3B8iTNMOEeY9j0/V+O3srqmBj7/dbbFuc4PEovssRlKowNuneniOZoO3C5kx0+YXu6MzV98Xw3NDv+bkE6YcQtEOP73Kk+wtOd6nxjVGiRA12GS5o4/E41sY29h/P5ZPF63l01Mc8/OxkPpr/HfuP5xo9vLuW0ZOEwDgGW9DaFC9OWzWdzefwWbehVS4iUjIxtYgteJVw2XT8lq/wNhzC1XYNSWo1fD+NVISgNTdC0JobIWjTH7st0dHqPxshsrv3pcyxrYlMSc91HUdj/+fyexG0yZBrE1EKgdMRInuSX2Id2xon2JVnWxke9osQ3XBobGrTeK/ez8OW3tLv7ypU/mBR+aDBz7b2AEVpHAUx0gRtKqxykGy7xsY2jU8bVV62qvyuOnn2b9cx/F21yitWlU8bVTa1aWTbNeoGqUPcbgviqgjjy9MJHU0eS8KGxGJ+/uwI7tKB+fKjL0Hb43XSFMKfHenRSR/flFjUyFkvzh2HKx53GM0lBO1QoZ6LdMeOKJXGy9kORQhaUYNfhgvaOyugBTl06gLPvjWbhx4ZY/Rw7lpGTxIC4xgoQWuTfThtVtwtuXitP6BVLUUveZ94wUspOmJfIVz6IYHqVfga9uNqvYxDaqRDCRi+T8yEELTmRghacyMEbfphkzRcFWHUnOQL/cS3xAkei+K9qj+QIHlQQdvr8ezB/ufZnkqMX65J3zzbVkXjnF1jdWuA1+v8/CxJN+Y/Vaj8ucbPnEY/hzo0auXhM5eaRdCmolHROC8lFmyb2+jn9bqEdP+HPhYo+1W1ygtWlekNfta1BsiwB7DcQ2awzZlYtM97XUfLiBLZ2cd7JCOK97qObA1hG4RF0PoraG8fe2eRTvhgzzkp/GOMzkI9bd/Hgp+QWoJ4r+qEDv/UlR08GsVdFhYRNYOFU0PLiHZ/YSlb0+fzlihRg12GC1rF7SX7YgFffreXlycu4OFnJzN+xkrWbT9K/s0Ko4d31zJ6khAYx70LWj8OewPulgv46vcSqFqOXjqVeMGoFF2xo9BLpxCoWo63bjfu1gs47PV0KH7Dt10gBK3ZEYLW3AhBazw2p4ZSneigCx9I3okaOpy4lHkgcyAHWtAmQ2oN4i4Lo+beyrNN0R2o77sjz9aA49CgaBzp0Pi8yc9fa1X+OYmg+9dKlVetfpa3aGTZNFqGsdQwu6BNRYuikS9p7GkPsLglsbjbI5aEjE8lbh+qVHmm1s/UBj9ftQY4Zktk5Tpabi3kdS7SS2z2WMjraBRfno6rYui6zO9V0N6OsyGEPyvS4/0c3wz+rMg9dfELBh+5JoSaq6PvTf766/5SYHscX56O1CrOBweS4PFo9/51NqTXe0OUqMEuwwXtQ4+M4dm3ZrPjxzPU1LcOq/xZEILWzKQWtAEcUjOu1nx89QfwV68iXPoRsYJXUojYl9BL3kOrWoLXugN3Sy5Oey022Wf4NgpSIwStuRGC1twIQWsMcm0I3+VIopMpxeXMvjwdpTo8KN1zHcrQCNpkOBtu5Wuei6DvTy0NwodiqLn6oOXZVjg1drYH+LjBz6MWlb9PIt7+vVplQr3K922JhaWMft0MJELQ3hvtisZNh8aPHRpftmhMqFd5ouanheD+pdTP6MtBvswMk/NjBM/m5N2x2t4YanaEzgLdUGHzIIK2C5sjsejRnZ3+4YOJrlqjj5kZsTk03KVhApkRYluTZJTvjKOei+CviRBqjuG9phPZ1fP3QkeiuEvS4zL84YpNCnZnOEd3xtMyk12UqMEuwwXtlr0ZTJq1moefm8zo9xax8vv95F4uotOjGj20fpXRk4TAOAKhKF63HVfbdbwNh/FbviFcNoNY4Wspc2IjJRPQKhfis26ls/ksTlsVNsVj+LYI7h0haM2NELTmRgjaocFZH8J7VSd4LHkXqb4vsbiWq+LeF/u5X4wStL3G4bwjz3Z3crEV25aIdvBditxXnu1lSWNda4Bx9Sq/TRJX8A8VKo/VJC5f390eoHIYd8f2ByFoHwA58UWD56ZOIDNCMEUGs7QtTubBCEvOhHkpX+OfyxKvtX+uUHnUovJOncqSlgB72xNfALQO4TYMhKC9HWdd767a2LY4ak4kLeXUSEJqD+K5oRM8GiV+54JyGxPC3Jffs7v5zkXC5JoQgcxIjwUgY9viqLm6OH73iL0j2N2xHNkTw96RnvtPlKjBLsMFbVdFozEqahrZceAMkz/7hoefm8xzb39m9LDuWkZPEoKhwe60o7QV4G06hmpZS6j8U2LFb6YWsUXvEKycj692M57mTOSOcmyy2/DtEAwcQtCaGyFozY0QtIODoymE54aOdjJKbFtv4RjZHcd/NoK7LGzYh7d0EbRJx2YPolSG8V1O5NnGUuTZRro/EyquAAAgAElEQVSyOq/pyLU/ZXU2yxqZdo1lLQFesar8f1W+XkL2/6lU+ZtVZWFzgOO2RMSB0ds9pK9RIWj7jb3jVlTHeZ3QoVjSL1nimxIiTM1NLOQltQapkjUybAG+a010aj9fq/KLJF8OdPGPlSq/t6i8YfUzv8nP9vYAFySNpkHYpoEWtF3YJA3Pjd6X1IcORxMr1w/SFQFmw1kfwndRT3oVQnxLHO1klM4iPeUXWXcK2i7s9iCe6727okOHY7hLBu+KjpGC1Brs7kgOH4hht6fv+bUoUYNdaSNoA1qI68XVbNh5gokzV/Off53Ks2/NNnpYdy2jJwnBwGJ3KsgdxXiaTqLWridYMYdo0VspRWys6C2CFXNQa9bjaTqJ0l6M3akYvh2CwUcIWnMjBK25EYJ2YJBag3QWJjpAozuSXFb6Q5xAZoTOIh2pLT3eb+ksaFPt4+482xSSLLYBGnbH2HdUZ0ZOiMevB/j78oT8+rcqlTetiYzQHEmjLQ22yUiEoE2OzZnoJvRejaCdjBL9IcWXA7sT72nPDR1nXeieFlmyykHO2jU2tGnMalQZZU10df9dCnH7d7fiNkZbVT5t9LO5LbGAXd0DdHkPlqC9Hbk2SVemyDq979elqzKM/2wk6WsysisRXdDfWJxUgrbH8bP20RXdLI7fnTiag93//4cOR9N+4TxRoga7DBe0S9fs4eWJC/i3x97hydEzmLdiG6fOXUV2eYweWr/K6ElCcH/YZDdyRzme5kx8tZsJVs4nUvxOShEbLXqDUPmnqJa1eJuOobQVoAWUe1wkTDCSEILW3AhBa26EoL0/7B1B3CVh/FmRpCuxx7bF0U5F8dzU0/aD7HATtLdT4NTY1qqxtExjWV6IXcd0KnbFiCQTaZvBd6hnZ6PR408HhKC9tR+abmUiZ9/KRL7zEvGueI2jt+I1qsLYBqkrrlHROC9pbG3XmNvo57U6Pw9bEvEbqbpuf1Wt8mJtIppjXVuADHsAi/Pu4xsKQduF3R5MZJ3eEQUROhrFVRa+J7ltJuy2IJ1FiSsxen0htTGR0+29cn8Ls/VH0HZhkxJZw+Efk2QNF+miq1ZJdDR3XS2jnYwOi30iStRgl+GCdtaSjRw5fZEOu2z0UO6rjJ4kBH1jUzw4bVV0Nmfjs25Fq1xEpGRC6o7YwtcIl83Ab/kGb8NhXG3XkaS2pI+depEwgRkQgtbcCEFrboSg7R92exBXWTghcZKshh3fEid4PHGpvXOYrGI+XARtm5KQVl+3BHi7zp/0EvH/q0Ll6RqVufUq5ypCOK5G0DKivRa/SZpnW3XvebYjATMKWrs9iKsyjO+CTuhoNOkiSvFNoO+P4c9OdLynwxcsLXIiQ3l3e4BFzQHG1vn5L4vK/92HuH2oUuUvtX6mNvj5uiUR41F2mzQaSkF7O4olhJYR7dFVG90Rx3dBR2o3fl8bjaMxhC8/QvhA7/9nYlsTX/z1FV3QX+5F0N6OszGEP7vnAmSxrXH82fcnikcCcm2oW6D7syKGj6e/mL3qGtuZOHM1/+f5qfz+r1MYPWkhVwsqjR5Wj/qPZ97D7nQZPYz7LsMF7XAvoycJQQKb7MNpr8XdkoPX+gNa1RL0kveIF7yUXMQWvEK49CP81avw1R/A1ZqPQ2qmQwn0+zmFoDU3QtCaGyFozY0QtMmxOTSUqkTmpP5jEiG7KbHSte9yBNl6b5c3pwvpKmgbFY0TNo1FzQFesKr8S2Xv/Nj/t9LHKKvK0uZEx2BfGZ12exBXVRjfpbvk2e5Knmc7UhnxgtaZWLjK07X4XApZH92ZyOv0Xh1+x71N0bjh0PixI5G3PKFe5fEalf+e5D3Txf+o9PGnWpXJjQHWOcIc6kh0pLcP8djttiDeK3ccl40QPB7FVWmirlpZQ6kOo+Ykf41GdiUiBZTqgc3vvV9B24XNodFZqBM+eEdX7YEYnYV62l/eP1C4KsLdC7P58nTDx3MvmL3+/MYs9h3LIRaLE4/Hycq7wW+fmoDH6zd6aN0lBO0g1dptR3jqtZlGD+OuZfQkYT78OOwNuFsv4KvfS6BqOXrpFOIFo1J0xY5CL51KoGo5vvq9uFsu4LA30KH4H3gsQtCaGyFozY0QtOZGCNoENqeGUpNYdCV8MNaju+v2BYB8F3QUy/CSOCm3OU0EbZVTY297gBmNfh6vSX4592+qVcbVq3zXGuCS9OAySWoJ4i7tO8+Wjbc6Kc9G6Cy81Rk9gqTRSBO0UksidkTNiSR9D7MB4psTix35zuu4DFygbygodmgc7tBY3Rpgcr2fZ2r8/M8ki+V18c8VKo9aEu+zJS0B9rQHuCJptA7BWJWqMNqpaI94iejOOL78yIg8RjZ74rWqZUR6d3FvhNChGN6rERxNg3du/qCC9nYcTSHUnEiPBTHjWxJdtcPlipL7wV0S7t5ez/XhJWc7FHMLWj0S5aFHxvSKIm1ssRGNxgDIu1LC82Pn8qdXP2HctBW4On0A7DyYxZwvtzDri428/eEyRk1Y0H0FfUOLjTEffcnTr8/iuTFzKK9u6H7sLXszePyV6bw4fj4HTubx+CvTAYjF4iz+eid/evUTHn95Gp8t20wkGgWEoB20unyjnM17Thk9jLuW0ZPEyCWAQ2rC1ZqPr+FHAtWrCJd+RKzglRQi9iX0ksloVUvxWnfibsnFabNik32DNkYhaM2NELTmRghac2NaQSsnFkDx5UcIHU2S77chIefUXD2ROTkCu4GMErRXHRrr2wJMrFf5j+rkCyI9YlH5qMHPjvYA5UMhw+XEpbudBTr+rEhiBfMkWaTxzQl5oubqiTzbluE7dw5nQWtzJLoOfZf77orW98YInInguanjbBhZgv1+qZQ1TtkCrO/QmN0W5PnaxAJ6qcTtP1aq/KclscDe502J9+RFSeuza/1+sXcE8V2OEN3Zs6tWOxVFqRren1Ok1iDe6zqhI9FeXx7Etia6993FOvZByje+k4EUtF3YnAlpGToc7fk+/DGG56aOTTL+OAwUnut69/a5S4bna3PIazew0wBS1Puzv2bUhAWcyr6KU+nscZ/kdPPws5OpqW8FYMePZ5g6dw0Ae46c4/d/ndItd7/4ZhffbD5EPB5PyNcT5wEotzTyXy98iB6JUtfYzn888x5OpZNwWGfCJ6u6GzizLxbw3Jg5hMM6obDOc2PmcDrnOiAE7QPXR/O/w6cGjB7GfZfRk8RIQJLacLVdw9twGL/la8Jl04kVvpoyJzZSMhGtchE+6zY6m8/htFmwKd4hH7cQtOZGCFpzIwStuTGToHU2hPBe1xNCJ0n2ZGRPInfSXRYesg/JRjIUgrZF0Thr11jREuC1Oj//Wpm8c+/ZWpV5jX4OdzzYyvQDun+ciWxB7zU9kWebZDG4rlXpg8cTcRdK1fB57QwbQXtLnntul+d9HYf8WyvZjyAZNBjcmUFbKwfJsiW+PJnZqPKSVeW3fYjbv69IfMEy2qoyu8nP5jaNc3aN+oF4/8qJS8eDx3t21UZ2xfFeiQybzGi5NoQvT0/6mo3svhVdYBnY6IL+MhiC9nYcLUF85/UeX57ENycyWmXr8P7M4ctLyNn4RnBVDN/Pz0NeSebtISFFhcI6uw9n89YHS/nlE+N5Ydw8svJuAnDgZB7jZ6zs/t2AFuQXj41Dj0TZc+QcU+d8233frkNnmb10M02tdn795LvdHbgAL09cwPXiavYfz+0WvJCQsrdfYR8K693//nzVdjbtPgkIQfvA9exbs7lZYjF6GPddRk8SwwnJYUdpK8DbeBTVsoZQ+Sxiha+nFrHF4whWfo6vdjOdzWeQO8qxyW7Dt6MLIWjNjRC05kYIWnMzkgWtozmI56aOdip5h110V5zAmUiia2kEXkZ7NwZD0FrlIIdtiRXo/1Lr559SLF70Wp2flS0Bsu0JiWv0vugvdtutRaYuRQgei/a4pLd3nm0E7/X0zTVNV0Fr7wjiKg/jy9MJHU7e3R7fmMi6VM9FcJeEkVrN9/59UPq7SFiDopEraWxt05jT6Oe1Oj8PW5JHkXTx62qVF2tVpjf4+b4twGl7gBr5/o6R1BbEd0EnuiPe4/hrGRGUmvQ6d7U5NFzlYQJnIr3/z+mOLkiPhecGW9B249Rwl4YJHb2jq3ZfDM8NHZtk/L64F/xZkW7ZLNem1+vvXhnyChhEPyoYCnMq+yq/fWoCZVX1bN13mt8+NeH/Z++8w6O40ny9YTbc3bv37t7dvXt38uzMzu54PNEee+yxB9vYY5yzMU5kk0w2wQQTTDIGDCaDyCIJEBkRRBJZKEutVrekljpHxequro7v/aNARigCkkpS1fc87/OAQvepDkddb33nd+j59rg6Hn5hGB5fFYn7TjHx8zV1v3vz/3mFpdz/ZL96v/PoyyM4fvYaa7cdYtoXG+p+J1dXUidoq2v9TF2QwJuDZ9B76Cwef3Ukq7ccBDRBe8+1fvsRer07kekLN7Au8TAbdx6rR2cvpSeJzojT48Vny6LadAihaBXBvClEMz9oUsRGM/sSzJ+KYFhNddkRvPZsnJ4KxY+jJTRBq240QatuNEGrbrqToHVZg1Rlhgmk3LZE9qaQ3SgvI626HtaEjq9tBG2OR2SjLcCoUnlX+W83ImseLhQYUiKw2ipypRtGRbgst2WfNiYU196WZ9sJltt3BkFbr0v5cLTR9y2rIbLlFuFt7JzCu6vRWkHbFGavyAWXyFZ7gFnlAfoW+3lcL/CDZsTtz3Vyt/zIUj9fWQIccIitjzDxilTmNhR9kcQYNVc7Lhrgdpx2+UJgcH8z0QXZynfWpzldbLMamWPKZIjxPM/pj3SMoL0Fl+WGbN9cv6s2kBLp9LLT4RERD8mvvdiGOJ6Szj3e1qDmcrh8nLmU1eDrgz/5kl0HTnPoxKV6XbK3VlOC1ump4OEXhjX5O2M+W173/9S0zDpBO2fpVqYuSKjLnZ26IEETtG1Vrw+cTu+hs5qks5fSk4Sik663Eq8tl+ryY9QWrSWYP41IZv9mROx7SHmTEYpWUF12AJ8tE6fHpfhx3C2aoFU3mqBVN5qgVTddWdA6HUEqc0P4T0aIbGsodmIJcYIHo1RfDePuxhuV3C13KmhtPpHzLpFllgD9i+UuudsFzHfzBZ4uEvjE5Ge7LYBOjSLNK8dpVLcmz3bvjTzb3I7vAlVC0LrL5Yso/pMRwrsa38grlhBH2hel9myYivxQl1nO3tW4V0HbFFafyFW3yE67yLzyAINKBJ4qEvhxQdMblP20oJZniwSGlsid9XvsIhnupjcDdFmC1J69bfn82o4TfZ4SidoL8mu4YXRBDOF0BJ++Yy/C5HuqOGI3s9JcwKTSq7yjP8nv85P5dvYW/iJjFX/WCHm1CjURNRFhEd6hrGxvCodbrMvVjW6Od4oO6LZAzWUyO/jdc0M4ce460WiMeDzOtSw9j7w4HH2xGW9FNY+98jFlFicg58nOWboVaFrQArwx6DOOpF4BoKKqlk9mr8IfCJJXWMqjL4+gsrqWcDjCkImL6wTt6OnL2bQrBYCSMhs93x7H4jW7AU3Qqr6UniQ6ZIL1VuNxFFBVfoJa43rEgplEsgc1KWJjGe8i5X2CX7+UGtNefNZruNw2xY+jrdEErbrRBK260QStuulKgtbhkk/qhNTGcyjj60BKjlJzKYKnWPkOxc5OS4K2zCdyxBlgTnmAN4wC/9mIYPlJQS2vGwRmmwMccoiYOsFxdUYcbhFvkUTN5eY7Revl2RaEcLSjqGhvQetwBvHpbsRBJDcRB7FGljI3O4u1CykdR3sJ2ubIdIvstYsssgQYXuLnuSI//61rWtz+KF/gKb3AgBKBOeUBttsCXHaLWG7e5s3l87dvSlW3fL5txu3wiPh08sXABu/dNSDtjVJzuf1XZlxwOdluK2ZeWRZDjefpVXiEn+fu5O8y1zUqYG/l37M383D+PnrrTzKp9CrrHYW4Asq/Dl22GxvDbb1Nth+N4O0EERZOZ5DQ7lhddI3L1n0+L6u9Ll8v4L0Rc3jkxeE8+vIIeg+ZSWpaZt33z13O4ZV+U+n17gTeHDyDzDwD0LygLbM46Tt6Ps/2mcDz70+q2zAMYOHKnTz55hjeGTabHftT6fWuLGiz8o0822cCL/ebwpT56zl5/joP9hpCalqmJmjbosw2Nys2JjN57joAYrF4l8mlVXqSaEsc3lo8TgOV5tPUGDch6uYQzh5K/PobjYvY670J5Y7Fr19EbWkSFdZLuNxmxY+jo9AErbrRBK260QStuunMgtbhubFT+9mwfIJ0WxdifK2c6VebJp/Iacue7/DxvU3Q6j1BdtgDTDQJ/Mkg795+uzD5lU6gb7G8PPmsS+6WU/o4uip1ebbnw00LzNXyZkKBo22fZ9umgtYrdxVWXwsTOBYhsq3xjbyim+KIh+SLKD69hKMbRl50FZQQtE2R7xE55JC780eX+nnZIHB/MxuUfa9A4A96gQ+K/XxW5mezLcC10iA1qZF676Obm1J57kL8Ox1yt7d4KEp8ff33ZmyD/J6szG7biygF7iqOOSystuiYbLpGn6KTPFqwj+/mNN0Fe5O/z1zHz3J30qvwCB8ZzzO3LItEazEXXE7Kvf4G99VhGbR38posCMmP9y2d9ZFEObdXiU56pz1IJFGey8I7Y90uq16rjq1YLF7372tZet76aIZyg+mgUlzQXrqez6+eHsjgT77kvh59AbA7vTz0/FAOnrio7OBaUUpPEneHH7ezhErLWWqKtxEonE84ZwTx62820RH7FqHckQQKF1JbupNKSxpulwm7r+EfLjWhCVp1owladaMJWnXTqQTtjTzK2gsReXOg25eFr4HQrhi1Z8L4dCFN7twj6R6RpKoIw0rkTX8aEyF/0AuMKPWTYJWXHCs95u6O23xbnm0jEQB1ebYnI1Rl3n3X6b0IWpclSGVOCOF08+MMJSkX4aDRPJ1J0DaFwRskxSGyyhrgE5OfN4wCv20kWuUm38kX+INOYEWaRPnO+l21oV0xqjLCzf7dcJdJ1FyKENrT8IJgJFF+LfuK7n51htnr57LLzQ5rCQvKshlmPM/zhUf5ee5O/qGFLtg/v6UL9u2iE0wovcIKs47DdjO5njvfeLozCtqbOB1Bai7Vjy6SN4aL4ivsmPNVlyVY19UbSop1y88bWnVcVVTV8mCvjyg22YjH40z7YgNzl21TeljtXooL2hc/mFwXNnxT0IJsyF/uN0WhUbW+lJ4kmieA22WiwnKB2tKdBAq/JJQziljG203EE7xJOHs4Ad08aoxbqDSfwe0sxu4VOsGxdD40QatuNEGrbjRBq26UFrSeEnnZd3B/47u1h3fIO7VX5Cm/yUpXxuITSXXKS4vfM/ob7U77Qb7A80V+Pi3zk2SX5YjS41Y9NztT0+XN78Lbm8izXR9H2hul9kyYypwQLmvLz11rBa3DLeLTS9RejCAeihLd1FSnb4zAsQjV18LyBjpaxEinpisI2qYo9YmkukQSrCJTTH76FPv5fWEt371tTnssPcDGA2Fq1n3zmg2uj5OXEuZ8sUSRJ4ivSEI43TDHPL4WpH1Raq7cWXSBzlPNMYeVNRYdU0qv8W7RKf5QkMz3crbylxmrm5Wwf5e5jv/K3cGfdIcZbDjHHFMm26xGzjtdjXbB3gudWdDWe53qQ4hHIvUu2Ea2xam5FGm3rlp3mVSXbxw8EO22q3O06tjaffAMT/ceT8+3xjLi06VUVtcqPaR2L8UF7a+fGUQ0GgPqC9pwJMpvnhmk0KhaX0pPEjdxuSxUWK9QU7oHv34xodyxxK6/02RObCRrCGLB59QYN1JVnorHocfhq1H8OLoSmqBVN5qgVTeaoFU3HS1o3SaJ6qvystFYQkPRE9kWx38iQmVOqNstJ+xISn0iyXaRz8r8vGIQ+I9G4gr+W1fLh2Ui88wBjjlFyjWh1iVwuEV8RXKnn3iomTzbDXGC+2/k2eoaLsVuStB6SiWqrt/YyGtn41EF8fVxpOQotWmN37ZG56crC9qmMHtFLrhEttgCzCwP8GGxn8f1Aj/NFRibKpG9Ldro6/km0vo4liMRzM1EF5i9fq643OyylrKwPIfhxvO8UHiUX+Tt4n9lrW+xC/bfsjfxUP5e3io6wSelV1huLuCgo5ycu+iCvRe6iqC9idMZpPpqmMj2+nOSeCiKT9d257Beo1T32SSQElH8uNsTrbRq71Jc0PZ6dwL6YjNQX9CeuZTF073HKzSq1ldHTwoutwOfNZ0aUzJ+/TKkvInEMvo0I2IHEcyfQa0hgaryE3jtBTi8VYpPbt0BTdCqG03QqhtN0Kqb9ha0LnOQ6uthxCPRejtu37opkngkSlVmuFVdfxqNk+8R2WoPMLbUz1N6eanv7UL2AZ3AwBKBFdYAF10tbxKm0XWoy7M9F0ZKbpiZWXcBZHusLs+2siREpDZORb6c8yzta7yL/ebycOHUvUUqaHQuuqOgbQqrT+SqW2SHPUBCfpBzh8NIN2I5ijbHWH44xCuXxHrz5Y/za3io0EuPQit/LNTxQMEFvpezj2+10AX7txlr+Wnudp7RHWKg4Syfl2Wy1WrknNNJma/zrOTsaoL2VrxFEoGUSL1olejWOLUXIve0iZdPF6qbA4XU7i1n7T5N0GrV/qW4oE06fJbHXx3JsoS93NejL1v3nGDqggR+/cwgtienKj28Fqu93vxOjxefLZNq00GEopVIeZ8SzfygSREbzexHMH8qtUVrqC47gteeg8NTofgk1p3RBK260QStutEErbppa0HrtMsZmv7jESJbGxGyCfImQdVXNdFzL1x0iaywBhhYIovXxrIYn9ILjC31s9UeIL+RJZqaoO3euMtv5MSmRup2IW8N0S03NvK6HMFr0N6j3RU1CdrbsfgCXLd7OWq08FmZjjcNOTyky+NHeYX831wT/5bnazLn9t/yKvm3PDP/kVfEw7oC3i7KZ2aZgWR7OdnurnO+2pUF7U0criDV18KEdzTsqq0ouLPz2sqcUN3v117o/nLW7tMErVbtX4oLWoAjqVfoP2YBPd8exwsfTGbY5CWkXc1VelitqnueJL2VeO05VJcdpbZoDcH8qUQz+zUjYj9AyvsUoWgl1aaD+GyZOD1exScrNaIJWnWjCVp1owladXOvgtbpDFKRF0I4dSMf8/al0OsgmByl5vKNXMpOcMxdjXKvyDGnyHyzSG+jHE1wuzT4jwKBlw0Cn5X5SbbLEQct3a4maNWHp1iOGAkcixDZEYP1IO2NUXs2LOc8a7EiqqG7C9oiTw0nHDbWm/VMM13n/aJU/qjbzw9ytrXYBfs3GWv5Se4efq+7QE+9jmf0Fv6g9zU6997k+/kCjxUKfFDsZ0Z5gC22AGmuzhsd0x0E7a14jRL+E5F6qwCim+PUpkVaXJ1TfT1c9zvV6WHFj6Wj0Eqr9q5OIWg7W63YmMzjr46s+7/F7qbv6Pn8/oVhvD5wOpl5xrrvtfbN7PBW47UXUFV+glpDAmL+DCJZg5oUsbGMPkh5E/Hrl1FjSsZnTcfldig+KWl8gyZo1Y0maNWNJmjVzZ0KWodbXgYonAkT3tWIkF2LvFnRhRvdd5305LQzY/AGSbKLfFrm5/kiPz9oRAb8XCfwntHPIkuAVKe8Cdid3o8maNVNazcJ0+iedHVBa/UFuObysMdmYlF5Lh8XX+DlwhR+lbebf8pKaFbA/lnGKv41ayMP5u3ldf1xxhZfYml5Psn2MrLcPmzN3K/BG+SYU2SlNcB4k5/XDQK/KWxc2t5czfBwoUCfYnkDxgSrvGFjay6itSfdTdDexOEWqboerr9qYI282VdFfqjBZ5LaC5G6zy6VOeo6F9ZKq/YuxQWtFAqzYmMyrw+czmOvfMwfXxvFWx/NYO22Q4Qj0Q4fT5nFyfPvT6onaD8cNY/NSceJRmOkXc2jx+uj68bWYILz1eBxFlFVnkpN8SbEgs8JZw9tWsRef4dQ7jj8+sXUlO6hwnoFl8ui+OSj0TKaoFU3mqBVN5qgVTctCVqHR96QqPZ8mNCeWL3Mt5snPqHdcgeerzDUbXc7bk8y3PJu5CNK/TzWxIn+I3qBoSV+1lpFrrnb5n7VLmh1JUGu5QQpKlPn/KcJWnXTFQSt0VvDKaedBIue6abrfGg4zRMFB/hhzja+lbmmWQH71xlr+EluIk/pDtLfcIaZputsshg443BQ6q1t87GW+mTxmmCVL671KfbzcGHjeeA3+U2hwOsGgfEmPyut8maNBm/HzEfdVdDeitsk4T8ZqbchaXRznNpzYVyWIP5T38hZX6H6zoO10qq9S3FBO37WKl7uN4V1iYc5cPwiycfSWL4hmZ5vjWXS3LUdPp5+Y+Zz7PTVOkHrq6zhwV5DiES/kcVvDPqMa1l6ACot56gxbiGgm0c4e3iTIjZ+/XVCOaMJFC6ktnQnFZaLuF0mxScZjbtHE7TqRhO06kYTtOqmMUHrNUrUXozImwbdLmRXQ3h7DCE1QkVBCIdL+WPoSlh9ImddIl9ZAvQt9vOrRvJjv1cg8CeDwESTwA57gEJP+7w/1SBoS+1BrmYHOXpaYvPuIItXSUybG2LgqHA9howLM3m2xMLlEusTJfalSJy7KpFT1H3/NmqCVt10BkFr9QVId3nZaytjcXkeo4wXeFWfwq/zkvg/WRta7IL9l6yN/DZ/D6/pUxhTfJGvzHkk201kuL3NdsF2JOVekTSXyGZbgBnlAT4oli/Efb8ZcXu/TuAlg8DoUj9LLQEOOUTy2vjipxoEbb3jzQwTSmq46ieWEMdr7L7zfHNopVV7l+KC9vcvDCMgBht83Wxz8+tnBnXoWPanXGDS3LVUVtfWCdrMPCOv9Jta7+fGzVzJ7kNnARoVsZGcEQQL5yOUbqPGmkalpxhPVVCjmxEMRakNhBUfR6up1mhLQpEY1f6QomPwVksaChGNxakUQoqPQ3WAurQAACAASURBVEMZ4nGoLg/hT48QOhgjvp6GmwYlxhFPRanNi+DzaK+VO8FWLXHMHWSuVeSNYj8/KWh4Mv7TAoG3iv3Mt4ocdwexV3XM2Hw18vOv9GPUFuiMEuevhthzOMyqTSFmLwoxcnJDEXu3jJsaYs7iEKs2hdh9MMypCyGyCkKYHV33/VAphIjG4oqPQ814qiTFPndV+0OEIrF2v5/yKoFzHgdb7AZml2fQ33iapwoP8OPcRP6qhS7Yv8pcw49zE+mpO8gA4xlml2ewxW7gnMdBeZWg+Ofne8FZHeS6L8hup8h8a4BBpX56GgR+1Iy4/S9dLc8ZBEaY/CyxihxwieRV3N391wbCBEPR1v+O0ud+bUSFRSJwOkJsY5zYpjiV5SHFx6QUaq7K6lru69G3gbtLPpbGgLFfdMgYtiQdZ9oXGzrkvpQqxQXtS32nNPr1gBik51tjO2wcVdUCz703EV9lTT1Be+l6Pr2HzKz3s1MXJLAl6TgAkZJlRCyJRLznCdeWEorENFRCNBYnElV+HK0mrNGWxGJxwgo+rmIoqvxrSsXE48jPv4ZqCFfEiObHiaXEYRMNc2S3QDQ1TlQfJ1yj/Hjbk7aef1xSlENVYabbg/Qq9vO9Rk6yH9D7GVoussEbItcfRVLw+AHFn4PWIIVjuLwxcnUxTp2Lsi0pwuJVYSbODDNodNNiddgnYWYuCLNqQ4R9hyNcuBbFaIpRG6h/+7X+GKXmGNeyYhw5GWXTzghfrggzaWaYwWOal7cjJsj3sXx9mF37I5xOi5Kri2F3xwiGlH/smiIcked/pcehZkQpqthnr3BE/vx3r7cjhWOYxBpOV9lY7y7kU8tV3ik5yUOFe/nX7E0tdsH+c85Gfle4h94lJ5hsvsI6VyGpVTZKAzVIneAzshKUiVFOVkdY6Q4xxhLkhRI//93Iaoub/Fgn8KdiP8PNIl+5JI5UhTEEogSbuY9IVD7/a/W4OsH7pa0J1yo/BiVRc2mCtmNKcUGbuO8ki9fspqpaqPuay1PJ9IUb2J9yocPGMWX+evYcPgdQT9Bm5RsbSOSxM1bU/azSbfYayqFFHKgbLeJA3WgRB90flzVIVWaYQEqE6JZ4wyV+G+KIh6NUp4dxl2uvhTvhiltktVVkSIm8EcztJ87fzhf4o15gVKmfjbYAOZ0oo7czRhyU2oNcyw1y7IzElqQgS1ZLTJkTYui4pgXpoNFhJswIseBriYTtEgdOSFzMkNC3Ubas1SNSUBIkLV3i4EmJTbu+iUoYPqH5Lt3BY8KM/yzEvKUSqzdL7D4UIvWCRIYuSJlD2cdaizhQN3cScVDireW0085GSxEzTdfpbzjDU7qD/Dgnkb/OaL4L9luZa/hRTiJPFBzgQ8NpPjOls8FSxCmnHaO3RvHHoSuR5xE56JAjckaV+nnRIG8Y2ZS4/X6+wON6gQ+L/cwsD7DFFuCCS8TsVV/EgUZD1FytEbRSKMzEz9fwdO/x9B09n+Ubkvl03joAsguKeX3gdJ7tM4GXPvyUq1mFAOiLzbw2YBpfrdvDwPELef79SVy4lld3e5/MXkXPt8by3og5zF22rU7QNnV7Xb0UF7RP9x7PL58awH09+vK754bwm2cGcV+Pvvz6mUE8+vIIHnlpeB3tWY+8NJzHXx3J46+O5LFXPubnT/Tj8VdHUm518ts/DUYMhup+tte7E8jKNwKd6wO6RseiCVp1owladaMJ2u6H0xGkMjeE/2SEyLbGM9eCB6LUXA0T9zW/SZjGN5h9IiedIgvNAfoU+7mvkbiCH+YLPG/wM8XkZ69DxNhBG77cDUoJWqtbJFsfJPWixO6DIVZukJj1ZYiRk5qXnaM/DTH7yxArN8mi8/QlOSPWorD0LrYESc8Lcvx8kJ0H5OOZvSjE2GmhZrt7B44KM3JSiM++CLF0bYitSUEOn5a4nBVEbwpi87bvuDVBq25uFbQ2n0im20eyvYyl5fmMLb7Ea/oUHsjfw79mbWyxC/afshL4Vd5uXi5MYaTxAovKc9ljM3HN5cHqCyh+rN2dIm+QY06RldYA40r9vGaQNyBrStx+98bGkx+WiUwx+UmwiqS65I3OlD4WjY6joyueO4R4zsAOp7FqjaBN3HeK90bMIRKN4vRU8OSbY+qE6iv9pnL45GUADp24xPPvTwLAaLLy8yf6cel6PgDHz6bTZ9hsAHYeOM17I+YQjkSpEQK88MHkFm+vq5figvb42XRS0zJbRUfVrR20AAPGfsHqLQeJRmMcPnWZZ3qPJxqVW9yVniQ0lEMTtOpGE7TqRhO0XR+HS6QiP4SQGiG8o6GQja8FaV+U2gsReTOMW8RPY5uEacgUe0X2OkSmmeROpcayAX9WINCn2M8X5gAnnLLEVXrcrX7dtKOgtXlFCkuDXLgusT9F3nhr/jKJ8Z81Ly2Hjg8zdW6Ir9aE2LonSMpZifQ85btN7xaLWyTXIG84lnxMfhwWrpCY/HnzXcEDR4X5aEyYSbMkFnwtsW6bxL5jEmcuS2Trg5jbYHM+TdCqi1JvLWedDjZbDcwqy2BQyTmeMxzhP3MT+ZuMtS12wf4gZxs9dPv5wHCaaabrrDfrOem0YfDWKn5sGo1T4hU55RRZbxWZXObnHaOfhwoFvtNMzu1vCwXeMAp8YvKzyhogxSFi6MQXGjXuno6u5jagb08aq9YI2rEzVrJ1z4m6793a8RoOR4jF4gC4vVX88qkBgCxoH3p+aN3v6IvNdVGn42auZPONaFGAJWuTWry9rl6KC9qbFQ5HsDo8Sg8DaChobU4vH46ax8MvDOPNwTMoKCqr+57Sk4SGcmiCVt1oglbdaIK26+HwiPgKQ9SeDRPaHYM1NBCyoaQYtefC+PQSjmY6DDVB+w15HpFNtgCjS/300MvxBLefvD5UKPBRicBKa4BLbSDJFH0dtYGgNTmCpN+IJNh6F5EE6xPlSIIL19sukqArYSgPciU7yNHTEtv2Blm2XmLGwhCjP215g7PRU0LM+jLE8g0S25NDpJyVuJodxGBu3eOoCdruhc0nku2u4IC9nGXl+YwrvsQb+uP8Lm9vq7pg//FGF+xLhccYUZzGl+U5JNlMXHV7sGhdsN2Kcq/ItQqJPb4Qn5X5+aDYzx/0At9rZFXITe7XCbxsEBhd6meZJcAhh0h+J4rs0bhzOrzCVRCu7HgaqeoaP/f16EutEKj39aTDZxk0/ksABo5fyKETl+q+t377kTqhevxsOu9/PIfeQ2by5uAZ3P9kP0AWtE+8Mbrud279/8DxC0k+llb3vQ07j7Z4e129FBe0YjDElPnr62IOACqqauk3Zj7eimplB9eKUnqS0FAOTdCqG03QqhtN0HYBPCJeg0TthQjS3ijx24QsqyG8M4ZwOkyFLoTD3frbVqugtflE0lwiX1sC9C+Wu4YaWwb6VJHAuFI/ibYABe285Lyjaa2grRdJcOguIgk23shevRFJYL2D16eaKXeKZBXKj/ueIxJrt8pdyBNmhhg8tnl5O2x8mClzQixaKbFhh8T+4xLnrknkG4N1j78maLseJp/AWaeTLVYjn5dlMtBwlqd1h/hp7nb+tqUu2IzVfD97G48X7Oe9olRmlF9np7eY4w4rRR4tC1ZtNJZBa/GJXHaLJNoCzCkPMKBE4Cl946tHbvJfulqeK/IzrMTPIkuAvXaRTG2O7xKouaLRGL9+ZhA6Q1m9r89dlsjUBQkAjJ6+nO3JqXXfm/d1ItO+2ICvsobfPDOIknI7AA6Xr1WC9vaO3IUrd7Z4e129FBe0Uxck8NGEReToSuoEbUCUmDR3LeNnrVJ2cK0opScJDeXQBK260QStutEEbefEUyJRczlMcH+U+DoaCNlIYgz/yQiVuSGczrt//tQiaMt8IkecAeaWB3jTKPDTgtqGO2EX1PKaUWBWeYCDju6fx3eroK0XSXD8ziMJltyIJDh2pmtHEnQVbF4RXUmQixkSh09JbE4KsmRNiOnzQ4yY2Lw4HzRa3rhs7lchNm6PsOtAiJNpQa7nBzHZtL8FSpPjruCgo5zl5gI+Kb3Cm0XHeSh/L/+WvYk/b6EL9n9lrecXebt4sfAYw4vTWFiewy5rKVdc7gZdsHeySZhG9+NONgmz+UQy3CJ77HIG+9ASP88WCfxnI39Hb/IfBfIFzkElAvPKA+y0i1x1i1g7wbFryKi95i5L5IORc7E6PIRCYU6lZfC754bUrTBP2HGU/mMWEIvFcXkq6fn2OKZ9sQGjycqjL48gFAoTi8VZsjaJ+3r0JSiFmhW0W5KO12XQVlTV0uvdCS3eXlcvxQXtQ88PpbK6FqBO0ALUCAEee+VjhUbV+lJ6ktBQDk3QqhtN0KobTdB2DtxlEtXXwoiHo8Q2xBsI2ejWOIGUCJVZYZz2tnu+uqug1XuC7LSLTDIJPFvU+NLNX+oEPij2s9gS4LRLHSeO9SIJ9gRZtTHaqkiCTz4LMX+ZLG73H78RSWDS5o3OiskmC9cTaUF2HZA3VpuzRGL89JY3LhsxURa9S9aE2JwU5PApiYsZErqS9t+4TA2Ue/2cd7rYdqMLdpDhHH/SHea/cnfwPzLXNStg/zJjNd/L2cpjBcm8W3SKKaXXWGPRkeKwUuipvqNxaIJW3dyJoG2OXI/IAYfIEnOAkaV+XjD4+bmu6Y7bH+QLPK4X6FvsZ2Z5gK32ABdcImZtbulw1F5SKMziNbt58s0xPPDsYHoPmcmFa3l13xf8IkMmLubp3uP5aMIilqxNYvpCOZJg8tx19Hx7HL2HzOTy9QLeGzGHtz6a0aygDYgSo6Z9zR9fG0XvITNZvGY3U+avb/b2unopLmgfeXE4UigM1Be0FVW1PPDsYIVG1fpSepLQUA5N0KobTdCqG03QKoPLEqQqI0zgaITopkaE7MY44pEoVdfDuCzt9/x0F0Gb7hZZZxUZXuLnUX3jJ4aP6gWGl8o7Vl/vxtl5VrdITpH0TSTBRjmSYNTk5jsrR02WM021SILujdUtkmeUu6VTz8fYsENi0Uo5O3jY+Obl7eCxYSbMlGX92q1y9ELqRYmswiDlTuWPrbOQ66nkkL2cFeYCJpRe4e2iEzycv4//l725xS7Yf8haz/25u3i+8CjDjOf5oiybndZSLrvcmL3+NhujJmjVTVsJ2qbQe4IcdQZYYQ0wrtTP6waB3zQSJXRrpNDvC2vpU+xnikn+O33a1f1XsiiJVi3XzY27AFZsTGbhqp0KjqbrleKC9uMpS5n3dSJBKVQnaB0uH8M//Yqhk5YoO7hWlNKThIZyaIJW3WiCVt1ogrZjcNqDVGaH8B+PENnSUMjGEuIED0apvhrGbeq492NXFLQWn0iqS2SxJcD7Rj/3N9Kt8/18geeK/Ewy+dll7567UOtNDSMJPmkpkmCcnE16M5LgcnqM9NwgJkf3e3w0mqepDFqDOcjVbLnLentyiK8TZME/ekorNi77NMSMhSGWrZc3PTt6WuJKdhBDefd6fZV7/aQ5XSRai5lblsVHxvM8W3iY/87dwd+1ogv2uzlbeLRgH32KTvJp6TVWW3Qcc1gocFd12DFoglbdtLegbYoSr8gpp3xBdZLJT2+jwO8KBb7TTM7tAzqBN4wCE0wCq6wBjju659/0jkar5uv0xSx6vTsRMRgiIAZ5tf9UTp6/rvSwulQpLmgd7gpe/GBy3SZhD78wjPt69KX30FnYnV6lh9diKT1JaCiHJmjVjSZo1Y0maNsHpzNIRW4I/8kI4e2xBkI2vg6k5Cg1lyJ4iiXsCi3v6wqCttQnst8hMqM8wCsGOduusY1K3jLKWXdHnQHKu8lyyXqRBDdyRqfObTmSYHwTkQS3LlFv7SZhGt2Tu9kkrNwlklMY5Mxlib1HJdZtk1jwtcSkWRIfjWle3g4dF2by5yEWrpBfl8nHJM5dlcg1SFg6YZd2nqeSI3YzK80FTCy9Sm/9SX6fn8y3s7fwFy10wf7PzHXcl7uT5wqPMNR4nvll2Wy3lXDJ5WrTLth7QRO06kYpQdsUZT6Rcy6RTbYA08v8vG+UV8M0Fk90k1/oBF42CIwp9bPMEuCwo/tt5tmeaNV8RaMxZi7axJNvjqHn2+NYsGIH8Xi85V/Uqq4UF7QgP5EZuQaSj6Vx7PTVupDhrlBKTxIayqEJWnWjCVp1ownatsHhFvHpQghnwoR3NSJk14K0J0ZtWgRvkYSjkyyx74yCtsArss0mL4t8qkhe+thYR82AEoEVFjm/ztYJxn231EUSXPomkmB2KyIJRk66EUmw4UYkwcU7iyTQBK26uRtB2xw2r9zVfSkzyOFUiS1JQb5aG+KzBSE+ntTyxmVjp4WYvUh+Pe84EOL4efniRHE7RbyYvX4uulxst5UwryyLIcbz9Co8wn25O/mfLXTB/kXGKr6Ts4VHCpJ5R3+SSaVXWWku4KjdQr6n47pg7wVN0KqbziZom8LiE7nkEkm0BZhjDtC/WOBJvcCPmum4/W9dLc8X+Rle4meRJcBeu0hWJ7wIpDRaadXe1WkE7bUsPcnH0uq+Jvi7xhtA6UlCQzk0QatuNEGrbjRBe3c4PCK+Iona82FCe2LE11Jfyq6B0K4YtWfC+HQhHJ305KAzCNpLLpGV1gCDSgQebCSj7jv5Ak/o5S6ZzbYAeZ1Ebt8p9xRJsFruoD12RmqzSAJN0Kqbtha0LWFyBMkoCHLqgnxBYfVmiblfSYz/LMTgFrpvh38SYtrcEItWS2zaFeTgCYm0dImCkiDWZuaDAncVR+0WVpl1TDZdo0/RSR4pSOY7OS13wf595jp+lruTXoVH+Mh4nnllWWy3FXPB5ew0XbD3giZo1U1XEbRNYfPJWfJJdpEvzAGGlAj8ySDwnwW1TYrbHxfU0rNIYFCJwDxzgJ12kWtudWwQ2hhaadXepbigtTo8PNtnAg88O7gug9bm9PLwC8PIKyxVdnCtKKUnCQ3l0AStutEErbrRBG0r8Yp4jRK1FyNIyVHi62jQJRveEUM4FaEiL4TT2TUe044WtGavSIpDZL5Z5B2jn581snzxR/kCLxkEppf52WcXKe5CSxbLHCLpeTciCfbcEknQzOZLDSIJUuRIgsLS+pEEbY0maNVNRwva5rB4RApKgqSlSxw4IbFxZ5BFqySmzg0x/JOmu2/7j5boPd3HmytMvLo7h2eOp/HQhaP8OH0Xf5+xvlkB++cZq/j37M08nL+P3vqTTCy9ygqzjsN2M7meSsUfk/ZGE7TqpqsL2ubI9cixSEvMAT4u9fOCwc99zUQl/CBf4I96gX7FfmaVB9hmk1fmmLvQZ4+7QSut2rsUF7R9R89nWcJeotFYnaAFSNx3kg9HzVNuYK0spScJDeXQBK260QStutEEbdN4SiVqroYJHogSS2i4sVdkaxz/8QiV2SGc9q75GLa3oDV4g+yxi0wx+XmuyM8PGjk5+rlOoE+xny/NAU455SWNSj8uzXFPkQQLb0QSHJQjCbL1wVZHErQ1mqBVN51J0DaHzlPN/jIbc3MK6X/5Gk+eS+WnZ/fzjxe38ufpq5uVsN+6uo5/Pr2T/0o5whNHz/Ph8SxmnC9mV5aLPFOgXS+AdHY0QatuurOgbQq9J8gRZ4AVFjlC6TWjwK8bWbVzk+/mCzyilz+fTDH5SbCJnHaJmDrBsbQFWmnV3qW4oP3NM4OQQmGAeoI2HInyu+eGKDSq1pfSk4SGcmiCVt1oglbdaIL2G9zmINXpYcTDUWIbGwrZ6KY4gaMRqjLDuKzd4zFra0Gb6RZJsIl8XOrnsUKBbzdy0vP7wlqGlvhZYxW52kmjH+y+byIJDpyQO1sXfN1yJMGQWyIJttyIJLiWG6S0Ewp8TdCqm84iaM1eP1dcbnZaS/miLJvhxvO8UHiUX+Tt4h+yWu6C/X/Zm/lt1j6eTT/JO2lXGXRYx/DNFkZ+Uc2QZjbTGzgqzEdjwkyaJb+3122T2HdM4sxl+cKJ2aX8c9SeaIJW3ahR0DZFsVfklFNkrVVkksnP20aB3zXx+eXf8+WvP6ATeNMoMMEksNoqcsIpX5BW+ljuBK20au9SXND2eH003opqoL6gNZqsPPryCIVG1fpSepLQUA5N0KobTdCqGzULWpc1SFVmmEBKhOiWhkI2tiGOeDhK9bUw7rLu+R65F0Fr9YmcdYkstQToV+xvtBPlu/kCzxTJJzGJtgCFns71WrsZSZByVo4k+KqVkQSfTJcjCdZtkyMJ0tLbP5LgjnALOI3luDKycKWewr1vF54NK/AumY13xmgqRr9PZf/nCJ09pvxYNRShIwVtkaeGFIeVtZZCppam815RKo8VJPP97K38ZUbzXbD/I3MdP83dzjO6QwwynOPzsky2Wo2cczop8wnN3q/NK1JUFuRSVpCjp+X3+NJ1EjO+aLnjfeCoMKOnyBvxLd8gsT05RMpZiavZQQzmzjWP3Q2aoFU3mqBtmTKfyDmXyEZbgGkmP+8Z/Tyqb3zj0pv8UifwikHOzP/aEuCII0BBZ/lccBtaadXepbigXbBiBx+MnMuVDB339eiLvtjMwRMXebbPBGYv2aL08FospScJDeXQBK260QStulGToHU6glTmhvCfjBDZFmsgZOPr4wT3R6m5HMZToo73xJ0IWpNP5LAjwOfmAK8ZBH7SyGYcPymo5TWDwOfmAIcdAco6wTFaPLdFEmySIwlGf9q6SIIVnSSSwO4TsXsEnCUWXBnZuE6n4klOwrNxFd6vPsc7YwwVYz+gsv/zVL31h1YhJm9V/PnRUIa2FLQWX4Arbje7baV8WZ7D8OI0Xiw8xi/zdvO/sxJa7IL9v9mb+F3eXt4sOs740it8XV7AAXs5Oe6Kdn0MypwiWYVBUi9KJB2WWLNFYv5SiQkzWt64bNh4uVt+0UqJDTvkzf/OXZPINyo8R7QSTdCqG03Q3j0Wn7y56Xab/Hmof7G8kemPmhG3PysQeL7Iz/BSP4ssAfbZRbIUnie00qq9S3FBG5RCzPhyE79+ZhD39ejLfT368mCvISxavbsu+qAzl9KTnYZyaIJW3WiCVt10Z0HrcIlU5IcQUiOEdzQiZNeCtDdK7YUIXoOEvZN2ObQnzQnaQk+QRFuAT0x+nilqvGvk14XyxhpLLQHOuZTdDVlf9k0kQcJ2ednyhBmtiyRYvEqOJDh6WqFIAo+As9SKMysH15nTePYn4dm0Gs/SOXhnjaVi7IdUDHyRqrcfa518ffsxKga+SMXYD/HOGotn6Rz59vYn4TpzWr4fk5V4VDtBVyt3KmiLPDWccNhYd6ML9v2iVP6o288PcrbxrRa6YP82Yy0/zd3O07pDDDCcZXZZBlusRs46nZha6IJVCqtHpKBUnlMOnZTYuCvIktUS0+aFGD6x+Ys7Nzf+m7NEYuUmiV0HQpxMC3I9P4jJ1jn+3mqCVt1ogrbtsflE0j0iSXaRBWaRj0rkFUSNXcy+9aJ2zyKBwSUC880iu+wi6W75ttp7vGoufbGZ+5/sV4/7evRl5LRlbXb7z/aZ0Oj3Nu48xrQvNrTJ/XT2UlzQxuNxAMLhCDanty7uACAgBpUaVqtL6UlNQzk0QatuNEGrbrqToHV4RHyFIWrPhgntjsEa6kvZNRDaHaP2bBhfYQiHR/kxK82tgvaKW2SNVWRoiZ/fFzY8ofh2vsDjeoGPS+XNMjIV6P5oLJJgWmsjCZbKkQTJNyIJdB0RSeDx4zTZcGbl4jp3Fs+BvXi2rMWzbC6+2eOpGN+PioEvUdX78VZ3vVb2f56KsR/gnTEG71ef49m4Ck9yEq7TqbgysnGWWLB7WpZeWgaturld0Fp9Aa65PCTZTCwqz+Xj4gu8XJjCr/J2848tdMH+WcYq/jVrIw/m7eV1/XHGFl9iWXk+++1lZLl9HSIbOpoSa5D0vCAnzgfZdUDeLPDzJRLjpjd/UWjgqDAjJoaYPj/EkjUhNicFOXxK4mKGhK6k42JSNEGrbjRB27HkeESS7SKLLQFGlPp53uDnZwVNd9z+MF+gh16+AD7bHGCbLcBFl4i5DecHrb6p6lo/Pd8ay9Wswja5veYErRgMIfjV8fgrLmjHzljRaKdsZp6BZ3qPV2BEd1ZKT1wayqEJWnWjCVp106UFrVfEa5CovRBB2hslvpYGXbLhHTGE1AgV+SEc3XzTlzvB4ruxKYY3zLvFfn6ua3iC8IN8geeK5N2L99g7bgOMm5EEp2+NJFjUukiCmTciCXYdkCMJcgqDWNpDJHsDOMocOHPycZ87h/tQMp6t6/F8PR/f55/g+6Q/FYNfpqr3H1svXvs9R8Xo9/HOGI13yWw8G1bg3rcLV+opXBlZOI3l2N1t122oCVr1YfDWctJpI8GiZ0b5dT4qO0cP3X5+mLONb2WuaVbA/k3GWn6Sm8hTuoMMMJxlVlkGmywGzjgclHprFT+2zoTVLZJnCHLuqnxBKGG7xJcrJSbPCTG0hY3LBo8NM2GmnHG9dqvEniMSqRclsgqDlDvbboyaoFU3mqDtHBR6ghxxBlhhCTC21M9rRoFfNfJ57NZc/0f0An2K/Uw1yRfLz7jkCKo7vW+tvqmxM1bw5epddf/PLijm9YHTebbPBF768NM6casvNvPagGl8uXoXH46ax0sffsqVTB2jpn3Nq/2nMmfp1rqf6/XuBL5YsYOn3hxLr3cn1N3GrR20Td1PdynFBe2AcV/w3og5VFULgNxJu3jNbn7VcwBL1+9VeHQtl9ITlIZyaIJW3WiCVt10NUHrKZGouRwmuD9KfH3Djb0i2+L4T0SozA3hdHSd42pvir0ie+0i00x+XjI0npX2swKBd4x+5ptFUhxt26nRGPqyIBcz7jyS4NPP5UiCzbtvRBLktOGyYW8AR7kTZ24B7rTzsnjdth7v8gX45kzAN2EAFYNfofKdOxGvvfCNfg/fZyPxLpmJJ2E57r07cZ86iSs9E4exHIer4wWXJmi7H1ZfgHSXl722MhaX3FZSUAAAIABJREFU5zHSeIFXClP4dV4S/ydrQ4tdsP+StZEH8vfwmj6FMcUX+cqcR7LdRGY37YJVCkN5kCs5QY6dkUhMDvF1gsSshSFGtXARauCoMKM/DTFjYYhl6yW27ZXnwCvZQQzldzYHaoJW3WiCtnNj9AY56ZRXNU0yCbxlFHiwUF7J1Ji4/Xa+wAM6+ecmmgTWWEVOOOXbaeo+OromzggzblrH01IlH0vjtQHTCIcjdV97pd9UDp+8DMChE5d4/v1JABhNVn7+RD+y8o0ATJi9mpf6TiEUCiOFwjzY6yO8FdXoi8384qn+JB9LA2B/ygV6vTsRqC9om7qf7lKKC9pINMqsJVt47r2JnLmUxav9p/L8+5PIKyxVemitKqUnIg3l0AStutEErbrp7ILWXSZRfS2MeDhKbENDIRvdHCdwLEJVZhiXtfMeR0eT5xHZbAswptTPE3qB7zTygf7BQoGRliArrQEutVN38a2RBNvuIJJg/GeNRBLcy/JfbwBHuQtnng5XWhruIwfwJG7Au+ILvHMn4Zs4iIohr1HZp0frxWvfZ/GNelcWr4tm4E74GvfeHbhPnsCVfh2HwYTDVaP4a6EpNEHbNSn21pLqtLPBUsRnpnT6Gk7zRMEBfpSTyF+10AX71xlr+HFOIk8WHKS/8QxfOnPYaCnitNNOidYF2ykod4lkFwZJvSSx94jE2m0S85dJTJwZYvDY5uXt0HFhJn8eYuEKifWJEsnHJM5dlcg1SA1WEmiCVt1ogrZrUuYTOesS2WALMM3k591iP4/qG98j4Ca/1Am8ahQYU+pnuSXAEUeAQk/Hx2+2dPGpvWiuLHY3j73yMSVltnpfD4cjxGJyfKnbW8UvnxoAyIL2kZeG1/3csoS9zFqype7/vd6dQKGxHH2xmQeeHVx3G+FwhPt69KWyuraeoG3qfrpLKS5ob1bivpPc/2Q/Pp66jKAUUno4rS6lJxwN5dAErbrRBK266WyC1mUJUpURJnA0QnRTQyEb2xBHPBylOj2M+w47hrorNp/IBZfIckuAASUCvy1sfFncU0UC40r9bLMFKLghOpvbJKy1WDwiuQY5kiDpcOsjCT6+EUmw/GYkwQWJ7LuIJGhz8frhn6gY+Q6+aSPwLvoM9/plePYk4j6ZgutaOs6iUhyuasWf93tFE7SdE5tP5LrLyz67iSXmPEYXX+Q1fQq/yU/in1vRBfvPWRv4TX4Sr+pTGF18kSXmPPbZTVx3eet1wd7pJmEaymPziuhKg1zKkDh0Sl5F8NWaENMXhPh4Ussbl42dFmL2ohArN0gkHQpzKT1Kem6QYov2t1RtaIK2e2H2iVx0iSTaAsw2B+hfLGfY/rAZcdvRVV2jDE1VNBqjz7DZJO472eB7x8+m8/7Hc+g9ZCZvDp7B/U/2A2RB2/PtcXU/t2JjMgtX7qz7//PvTyK/yIS+2EzPt8bWu80Hnh1MudVVT9A2dT/dpRQRtIn7TjXKiE+X8siLw9m650Td1zp7KT2xaCiHJmjVjSZo1Y3SgtZpD1KZHcJ/PEJkSyNCNiFO8ECUmqthPCbtdXqTI84Ac8oDvGFsfIfgH+YLvGwQmFEe4IBDpLSJ27kTQXszkuDgbZEEg8c0LQU+GitHEixafeeRBA6zB1eeHteFi7gPH8SzfSPeFQvxzpuEb9IgKoe+TuU7T7RevH7wNBUf98Y3dTjehdPxrFuKJykR94ljOK9ew6kvweGsUvy57Sg0QascJd5aTjvtbLQUMdN0nX6GMzxZcJAf5yTy1xnNd8H+VeYafpSTyBMFB+hrOM1npnQ2WIo45bRj9La+Y1sTtN2PUnuQ6/lBTqYF2X1Qvlg29yuJ8Z+1vHHZ8E/k1Q2LVkts2hXk4Al55UJBSRCrtqFmt0MTtOrhmltkl11kvllkcInA00XyCiq118pN+xn8yZfE4/F6X/dV1vCbZwZRUm4HwOHy3ZWgfbDXkLrbvtlBW13jrxO0zd1PdylFBO1rA6a1ms5eSk8eGsqhCVp1owladdPRgtbpDFKRF8J/MkJ4e6yBkI2vBWlflNqLEbxGCXsH7WjdmTF4g+yyi0wy+elVJPD9Rjoh7tcJvG/0s9gSINUlbwLWmtu+XdCWOW9EEpy7EUmwVj5pH9aKSIJ5NyMJjjUfSeCweHDm63FdvIT76CG82zfhWfkl3nmf4pv0EZVD36Cyz5NtK14dlYo/j50NTdC2HzafSKbbR7K9jK/MeYy50QX7QP4e/jVrY4tdsP+UlcCv85J4pTCFkcYLLCrPZa+tjHSXF6sv0CZj1ASturB4RPKNQc5fk9h/XGLLboll68JMmdP8/D5wVJjBY76Z41dvkTdvTL0gkaELUuZQ/tg07hxN0GqouXJ0JfzxtVF4fFUNvmc0WXn05RGEQmFisThL1iZxX4++BKXQHQnanz/Rj+Nn0wE4eOIiL/WdAnyTQdvc/XSX6jQRB121lJ4kNJRDE7TqRhO06qa9Ba3DLeLThRDOhAnvalzIhpJi1J4L49NLOLROHdI9IuutIsNL5GyxxpamPaoXGFbiZ51VJP0OIwFujSQ4fjrGqhuRBC1tUPPxJHlzmqYiCRxWH84CA65Ll3EfO4Jn5xY8qxbjnT+FislDqBj2JpXv3oF4ff9pKkb0xjdlON6F0/Cs+QrP7q24jx/FdeUqzkKjJl7vAU3Q3hul3lrOOh1sshiYVZbBAMNZeuoO8ZPcRP4mY22zAvZbmWv4Yc42euj284HhNNNM10mw6DnptGHooCxYTdCqm9szaI2WINdy5Itz2/fL8/zsL0OMntLyxmUjJ4X47IsQS9eG2JoU5PBpictZQfSme8gN12hXNEGroeaaMn899/Xoy/1P9qvHQ88PBWDy3HX0fHscvYfM5PL1At4bMYe3PprRakGbpzfxSr+pLFy5k+ffn8Tz708iM0/eWOzWiIOm7qe7VKcQtNey9Mxfvp2xM1YyftYqFq7aWbfLW2cvpScJDeXQBK260QStumlrQevwiPiKJGrPhwntiRFfSwMpG94ZQzgdpkIXwnGHcrG7YfWJnHaJLLYE+KDYzy90DWXs9woEni0SmGQS2GkX0Xta93wV3RpJsONGJMHMliMJJs+5EUmQJEcSXL9WgTnLiOvyFVwpN8TrmiV4F0zF9+lQKoa/ReV7PVsvXt/rScXwt/B9OhTvgql41izBs3MLrpQjuC5fwakz4LD7FH9uujuaoG0em08ky+1jv72MZeX5jCu+xOv64zyYt7dVXbD/mJXAr/J281LhMT4ulrtgk2wmrro9WNqoC/Ze0ASturmTTcLMLpFsfZAzVyT2HZNXSiz4WmLybImPWti47KMxYSbNkn9+3Tb5989clsjWBzG30+aUGi2jCVoNrbRq71Jc0K5LPMxvnhnE4E++ZOqCBCbPXccHI+fyi6f6s2l3itLDa7GUniQ0lEMTtOpGE7Tq5p4FrVfEa5SovRhBSo4SX0cDIRtJjOE/GaEyN4TTqe7NSEp9IgccIjPLA7xqFPhxI/mxPy2o5U2jwNzyAEecAcqaub1GIwnmtSKSYHqIRYsr2b+hnLMb08nbkoJ5yzbca77Cu3AavinDqRjRm8r3n269eH33SSqGvUnF5CF450/Bs2oxnp1bcB87guvSZZwFBhxWTbx2FjRBK2LyCZx1OtliNfJ5WSYDDGd5WneIn+Zu529b6oLNWM33s7fxR91+3i9KZWppOusshRx3WCnytD4LVik0Qatu7kTQNofNK+eTX84KcuS0xNakIEvXyh21I1vYuGzgqDCjp4SY9aXcsbs9OUTKWYmr2UEMZnV/VmhvNEGroZVW7V2KC9pHXhpeF/J7a6VdzeP3LwxTYER3VkpPEhrKoQladaMJWnVzN4LWUypRczVM8GCUWELDjb2iW+MEUiJUZoVx2tV9klXgFdlmCzCu1M9TRQLfbSSu4DeFAv2LBb62BEhzifV2Wrf7vokkOHNZIumwvPFLc5EEw0bWMnm4iUWjrrNjcgqnpyeSNX0pJdOm45xwF+K1z5NUDn0D36SP8M77VM6L3b4J99FDuC5ewpmvx2HxKP5Ya9wZahC0OZ5KjjksrDfrmWm6ziDDOZ4rPMKv8nbzL63ogv3fWQn8Mm83LxYeY3hxGgvLc9htK+WK290pumDvBU3Qqpu2ErQtUeYQydAFSb0gZ9eu3iIxb6nEJ581v5pj4Kgww8bLGbmLVkps2CFn5567JpFvDGJV+eqbe0UTtBpaadXepbigfe69iY1+PRQK87AmaDU6MZqgVTeaoFU3rRG0bnOQ6uthxMNRYhsbEbIb44hHolRdD+OyqFvIXnKJrLQGGFwi8LvChjL22/kCPfQCo0v9bLIFyLslc7eoLMilZiIJho0UmDi8nDlDM1j+0Qm2DNzJgQFfc2nwDAoHj8Ay4B287z7TevH6zhPUDH8D36RBeOdNwrtiIZ7tG3EfPojrwkVceXocZk28dle6uqAt8wlccDnZZS1lcXke44ov0Vt/kscKkvlhzrYWc2D/LGMVf5mxmu9nb+WxgmTeLTrF1NJ01loKSXFYKfRUK36M7YkmaNVNRwna5rB6RApKgqSlSxw8KbFpV5DFqySmzQ0xfELz3bc3N6ecs0Ri5SY5F/1kWpDr+UFMNnV/DmkNmqDV0Eqr9i7FBe20LzZw7nJOg6/vOnCa+cu3KzCiOyulJwklKfWKfD9f4Oc6gd8X1tKzSOA1o7wj9rASPxNNAp+bA3xlCZBgFdllFzniDHDeJZLpFjF6u/YHAU3QqhtN0KqbxgStyxakKjNMICVCdEtDIRtLiBM8GKX6ahi3Sb2vHbNX5LhDZIFZ5B2jn58VNBSyP8oXeNEgMNXkZ69DROeQTyBTzkls2ytHEsycIzB1tJk5QzP5evBJNg/cyb5+y0n9cCbp731MUZ8+OHs/ewcdrz2oGPIavomD8M6dhHfFF3gSN+A+cgBXWhrOPB2Ochd2nyzoHJ3gsdToeDqzoLX5RHLcFRy1W1hnKWSG6ToDDWfpVXiEX+bt5p+zNrQoX/8sYxX/kLWe/87dQU/dIT40nGZK6TVWmHXst5eR7vJ2+S7Ye0ETtOqmMwjalii2BEnPDXL8fJAdB0Ks3CCvHhk7LcSg0c13346YGGL6/BBL1oTYnBTk8CmJixkSuhJt4zK7TxO0Gpqg1ar9S3FBO/HzNfzq6YG83G8KIz5dypCJi+j17gR+99wQRk9fXo/OWEpPEkqS6w40ukv2nfDtG7mBvy2Uu6NeMPh5x+hnUInAmFI/08v8fGkOsMoaINEWYL9DJNUpcs0tovPKG8UodfyaoFU3mqBVN5FoHK9bojI3hP9khMi2WAMhG18HUnKUmksRPMUSdpWe3Bi9QfY6RKaY/Dxv8PPDRv4W3Fcg0MfoZ0ahyIYrfg7sMpO0JJMdU06xfdgu9vZfwakPZnHt/VHo33kPx9u92l68elsvnTRBq16UFLQmn8B5p4sd1hIWlecypvgibxWd4NGCffwgZxt/lbmmRfn6rYzVfCdnCw/l7+U1fQojitNYUJbNNquRMw4Hxd5axR/jzowmaNVNVxC0zWFxy9E/565KJB+TWJ8osXCFxOTPQwwd17y8HTw2zISZIeYvk1i7VWLPEYnUixJZhUHKncofW0egCVoNrbRq71Jc0H7+1VbmfZ3YKtqz4vE4X63bw+OvjuTRl0cwee46xGAIAIvdTd/R8/n9C8N4feB0MvOMdb+n9CShNKU+kVyPvDz1uENkr0Nkky3AckuAeeYAn5b5+bjUT/9igTeMAr2KBB7VC/xSJ/AfjXRN3Q0/yhf4hU6+3T8ZBF43CPQr9jOi1M/kMj9zywN8bQmw0RZgj10kxSFy0SWS45HHf7fHrgladaMJWvXhcIlU5IcQUiPEd9NQyK4FaU+M2rQI3iIJh0f5MStBjkdkgy3AyFI/j+vlC3G3z9sPZnj44ISOORuOs2/acjL7jaLw3fexvf1c68Vr7z/iG/QKvgkD8M2ZgHf5Ajzb1uM+lIw77TzO3AIc5c47Eq+tRRO06qW9BK3NJ5Ll9nHYbmaNRcd003UGGM7ybOFh7s/dxT9lJbSq+/V/Za3nZ7k7eVp3iL6G00wtTWeluYAD9nKuu7xYVdz92hZoglbddHVB2xKG8iCXs4McPS1voLlsvcSM/8/ee4dHeZ/5+id1c3Y35+Tsbk5+2WyczUnszdpJSHHs2LGNHTeMjQsuuGDAFFOMwXRM792YXoTookiAKAIhqkRHII3ajKRRmRlpNH0kQCNNUbt/fwyWwQIkQMMr+D6f67qvy9JIw/d9X83Xr2498zxzQgy+Tu/2qwaXfR5i4pwQC1eF3+my70iQMxkBjJa7+x2TVyKCVpBIIh3NBW1byfa9x+jSdxIXLvqoqg7QbdAMVm7cA0C3QTNYF5dEXV09x89m077zYGpq6wARtLdLmdePwe3nnMvPYaef3XY/m8qqWW71M6+0mgnmKoYWV9GnyMd7hVW8YvTxdJ6PPxt8/Jehkp+1guD9jxwf/60P9z38e56PV43hf6tvkY9hpiomWar5orSaKGt4bQn2ao46/Rir6iipDDUZTCOogQjaex+72483N0Rlcg2huHpYwdVSdgWEttZTebQGryGEXcHhG2VePyk2HwvznfTMtPHHTG/TPTbzIs8d0DFq1Tq2jR+BqfuNJWz5209h+/BVSvp/RMnoEVjnzsS9/rJ4TUnBkZmD3WyPiHhtKSJo1eVWBW2xp5IUh4NNZUXMtWQyqOAEb+Yl8deceO7L2MB3W1L9mr6Cn2du4NGcHXTOS+LTghPMNmcQYy0k2WGnSKpfI44IWrW51wXtjbA4/OhyAxw+Ga6eXbkhyMyFV/d8vx79htYwemqIOUvCVbvxieEq3ixjkNK76N5JBK0gkUQ6mgva+voGYvck8/6AqTz95mAe6zSALv0mE7sn+Y6uI9NQRF5hSePHUTEJjJ4ehbfiEg936EttXV3jY2/2nkCqLg8QQdsWKPT40bn8nHD62eeoJtbmJ7rMz4LSaqZZqhll8jGgqIpuhVV0Nvp4Pt/HY3nh3rnXeqvtrfBrfSV/yPXxRK6PjvlVvF3go2eRj0HFVYwxVTGrxM8SazXry6rZYfNz0OHntMtPtttPaRs4h8LNI4L2HsTjx2MMUnmyluD2OhpW0qRKtmZzPb5DtdQXg9t9j19/lw9HUSnOtAycRw7jjo+jbN1KktauYeaWnbyVeJb705xN98M0J2/tSmbm4iUcGNEf53vPXBavT1LSpRP6rh+R3ns4qUNmcH5qFJnLd5C/KwXb+SwcpjJs7irtj70ZRNCqy7UEbZnXT7rLyx6bheWlBsaZzvOR8SgvGBJ4KGsLP2ph9euPdNE8lLWFFwwJfGQ8yjjTeZaXGthjs5Du8sofhNsAImjVRmVBeyPKPH4MRQFOnA+ScCjI2tgA81eE+9l+MrL5wWVDxoWYMi/cL3fzrhBJx8J9dAvb2ABVEbSCRBLpaC5ol67bxZOvf8qXUdvYlXSSXUknmb8yjr+9OpCYHYc0WZPN4aFzr/EkJZ8jPbuA13qMverxoZOWNgpku9cv3OVYvX70bj9nXX4OOfzstPnZaKtmqbWaOSXVjDVV8VlxFb2KfLxTEBawT+b5+HNeFfe3UpuGX1wxbO25y8PWPiysYsDlYWvTSqpZcHnYWqwtLKKPO8NiutATaNmxlgutSbCmnvJLQe3W4PXjKA8It4m3OETlmVqCu+poWEUTIVu3oYHqA7VcyKjBZQ82fl9tXQPui0HN1n1beKpwFVtxpWfiPnoEz85teNYux7NgGt5Jn1E+5EMqPurIhbf/hrnbS2wfN5zPo9by4v5z3JdZ0WT/+sNJM11jDzJ93hpihs0lsftMtvVcSexn24mbcpRdK7I5mGDjnK6aYutdes6+QUMDONvAOjSjQq39x+T1keJ0sMkarn793HqWN/MO8NecHfw8c0OLer9+L30Fv8jYyOP6eN7OP8BnRaeYZ8liS1kRx50OzF6f5scpNI/7YpDaugbN16EyWt7Tll8WtFrfg95tmG0B0vQBDh4PsHV3iGXrgkybH2TY+OYHlw0YHmLc9BBfLA+ydmuA3QeDnDgfRF8cHlx2J4/jK0Hb4u9pA7/nCq2LRBLpaC5on+8y7KrK1a+Sk2/i5Q9H3/H1vPPxJB5s351pCzZQX9/AqfM5dOk76aqvGTsrmvVxSQDUNzQIitJwmbqGBi7UNVASqkfvr+O0r5b9lbXEXahllbeG+e4QE+0BhlgD9LL4ebu4mheLqnncWMVDuVXc1wqS92c5Pn5j8PFIfhXPFlbzhslPD4ufT0v9jLMFmO0MssJdw+byWvZerOW4r47M6jqKA/V4auqprW+gXrgpGr76WdDo3w/V1mv+GrgrqWigQQ8NSQ2whiZClvXQcKiBhnyo913/eYCvfwbaCnW11JW7qS3KJXT+BMGDO/FvXUXV8plUzhjGpRE9uNinExfeeeK67QUy+77D2mmTGLh+G48n5zbdb7J9tEt20GGziQ/mmxg5w8m8RQE2xtVyMKWe7NwGXJ4G6urbwPmIIKr//z9Uc+/sP7UN9ViClZyotLOpvICZDh39LSm8XLCX3xli+VFGy6pf/zVjNX/MjeO1wkQ+LTnOXGcGsRVFnPE5KAtVUdcGjlW4fRoa5PWvNaGaOu3u/y7/DGh9D3ovUVPTgN3ZQLahgSPH6tkSX8viqBrGz6il//BmBpd9VsOoyTXMW1LD+q21JB6qJy2jAYu1Hr+/9dfacLPXvw28XoTWRSKJdDQXtA93+Lixn+uVqamt4+EOfTVYEXgrLjFs8jKmLdiALqeATt3HXPX4kIlL2JaQAkiLA5VpzSFhLRm29uk1hq21i9CwtRfzvx62NvDysLUZVwxb225vvWFrdyvS4uDuwFka4EJaDdX7aqlb29BEyNavbsCfUMfF1Bpc5pZfz9q6BlwX7tBb79xVOExlOHRZOFOSce/ajnv9StwLp+OdMozyYT0o79WJC12ebPGALVfXjhT26UHc2HmMWLqPF3cYuP9s0/6xP8vw8dvDVby0y8+g7QFWJ4Q4eDyALjdwV/WNa20apMXBXUOhp5IjDhsbrAXMNGfwSeFx3sjbzyM52/lZ5nq+m7a8Wfn6/bQV/CJzI4/rd/B2/gHGlaUyz5LFZmsRxxxOzF6f5scp3BmkxYHaSIuDO4+xJMDZjACJR4Nsig+xKDrI5LkhBo9pfnDZp6NCTJgdYsHKEBviAiQcCXJaFyDPFK6+vdm1SIsDQSKJdDQXtO98PIkd+441+XxcQjJv9Zl4x9Zx7EwmxSX2xo/P6nLp2HUUFRcr+dMLffAHQo2PdXh/BLqcAkAErcq0pqC9Xcq8fnLdAc65/By5YtjaisvD1iZaqpsMW3smksPW8sPD1t6/Ytja5GsMW0t2+jnv9pPvCdx1vfVE0LZNHLYAFRkhqpJqqd3QVMg2rGogsLOOS6drcBfd+vVrFUHrqcZutuPIzMGVkoJrTzzuDatwL5qJd+pwvMM/orzPq1zo8lSLxWtFj5fwfNqV0lGDyRs7lTPjlpLweSzRQ48wYXAOH8x08dT6an6bVMXPdNf4Q42ukmdO+/jkjJ+1mQEMbaz/W1tBBG3boNRbzTmnh502M0tKDIwpTqWb8QjPGvbwm6zN/FC3qmXVr7rV/D47lg65e+llTGai6TxRpbnss5WS6Sq/6t+0l9/akDDh3kAErdqIoG1bWJx+MnMDHD0dZPu+IFEbg8xaFGTk5CAfNzO47OPPahg1Ofz1URuD7EgMcvR0kIy8ACXOa/97ImgFiSTS0VzQpuryaPdcL97oOY4RU5YzfMoyXusxlnbP9iT5VMYdW8cXK2LpPWwuvio/NTW1TJi7hiETlwDQc8hslq/fTV1dPQmHTvN8l2HU1dUDcoOuMm1J0LYG3xy2FnetYWvFTYet/baVh6398Ypha+9cHrY2+Ipha0uvMWwtR4NhayJo2wYOR4Dy7BC+Q7XUbKpvKmRXQnB7HZUna/EYg9huoWLiWtxQ0HqqsVscOLL0uI4fC4vXjavwLJ6Fd9oIvCN6Ut7nNSrevRnx2gHv4A/wTvgUz/xJOKMWU7BmK6lrDrEvKpNVC61Mml5N/+FfV5R0HVVDxy+DPLalmv86WsVPs5q+5tpl+fgwt4rFpdWcuM4vJEJTRNDeGfLcFznssLHeWsAMs44Bhcd5PW8/f8nezr9nrOc7Lah+/Ye0lfwyM4Yn9PF0yTvI0MJTfGHJZqu1mBNOBxbPzQ2lE0GrNiJo1UYE7d1DmcdPbnGAU+kBEg4HWR8X4MuVISbMCjFwVPPVt4PHhJg8N8Ti1eHK3f3JQTINNTi9ImhVRiKJdDQXtABOdwWrNu1l4ty1fD4jiuXrd1NS5ryja6j2Bxk7K5onX/+Ux14ZQN+RX+BwlwNQ5vDQbdAMHn25P2/1mYg+39z4fVpvEoJ23GuC9nYp9frRe/ycuTxsLd7mZ8PlYWuzS6oZd3nYWs8iH10KfLyUX8VTeT7+mBsWs/9+h4atfXnFsLW9VwxbK/DcXKWgCFptsLv8ePUhfEdrqNnaVMiyAkKx9VQm1+DNDWF3t/K/b3HiyDYQTD+Ld98u3DGr8SyZjWf6KLwje1Pe9w0q3mvfcvHa/UW8g94Pi9d5E3FFL8K1fTOugwdwnD1PbqqZlJM+tu0NsmxdkKlfXP9tfV0mhnhhWYBHdldxf+q1e1U/k+fjs+Iq1pdVk9PK50YlRNDePqXeas663MTbTCwu0TPalErX/MM8o9/NA1mb+Of0qGbl67fSlvFj3RraZcfSMXcffYwpTDanEV2aR6LdSpa7otXXLYJWbUTQqo0I2nsHkz08uOzQiSCxe0IsXxdk+pdBho8P0aeZ6tv+w2oYMy3E3GVBVm8OsjMpSEpqkJyCAFaF2z+pgEQS6bQJQXs3R+tNQtAOEbStj9ElUdOEAAAgAElEQVQTIM3lJ8XpZ6+9mi02P6usfr4orWZKSTXDTVX0K6rig4IqXjOGWyk8kuvjQb2Pn7fSsLUH9JX82eDj6TwfLxureK+wit5FPoYUVzHBXMXckmqWW/3sqahhnzvAYaefVJcfg9uPtQ2cw3sNu9uPNz9I5bEaQtvqaVhJEylbs7ke3+FaynNC2G+xCtRe4saZnYfzxElcCbtxb1qDZ8kcPDNG4R3Vm4p+nal49+mWi9duL1D+6bt4x32CZ94EXKsW4t4Wg+vgfpyp53DkF2N3Xgz/3FvCFR57DoZv9OcsDjJyUjO/IAyr4aOlAd7Z4+eZ0z5+nVV5zb7Srxp9TDBXEW9Ts1d0pBBB2zwG90UOOspYW2pkmimd/gXHeDV3P3/O2cb/l7GOb7eg9cAP0lbyq8wYnjLs5L38gwwvPsOXJdnElZk45XTedPVrayCCVm1E0KqNCFo1KHX7ySkMcPxckF0HgqzZEmDesiDjZ9bQf8SN5W3vwTUMmxBi2vwgS9cG2bor3Lv/fE4AU5m0jbrbkUgiHc0FbYHJysCxC+nYdRTPvjO0CW09Wm8SgnaIoG17FHv9ZF8etnbA8fWwtSWXh62NMX09bO2ty8PW/haBYWu/v2LY2psFXw9b+/zysLXFVwxbS7o8bC1L0WFrTfD48RQEqTxZSzC+joYomgjZ2o0NVB2opSIrhMN+45vdVhevHz5H+cAuVE4cSPncCbijFuCOi8F1IBHH2VQceUXYHRearMPi8HM+J0DSsQAx8SEWRgUZPzN0VUuCazFkXIjpXwZZuDnI5OQAfXXVPG+o4r5r/Ow9ZPDxQUEV80qrOeS4820/VEJ1QVviqeKMy8UOm4lFFj2jis/yQf5hntbv4v6sGP7pJqpf/5Adx8u5+/i44BhTzGmsLs1nv91Kjrvp66gtIIJWbUTQqo0IWrX5qgdtoTVAalaA/SkBNu8MsWR1kCnzQgwZ23zrhE9Ghhg/M8T8FSHWxQVIOBTkZFoQQ9GtDS4T7iwSSaSjuaDt1H0MPYfOJnZPMnsOnGpCW4/Wm4SgHSJo7z2uNWwt5hrD1j4u8tHd7OfVgqrGYWu/MVTyHxEcttavqKrJsLXNtq+HraW57s5hazavH3dxkEtnawjsrqM+uulgr7p1DVQn1nIhvQanNSxk7aVuHDl5OE+ewrVvD55Na3EvnYtnxud4R31MRb83qXjvmZaL167PUf5JF7xjBuCZMw73ii9xx27AlbQP55mzOHILsNu/frv0tXrQWt1+sgsCHD0TZNveIMubaUnwFQNGhnuiLYoOsnlniAPHAyQaAqws8TOguIrH8679s/JYno9+RVWstIaruLW+jipxrwtavesCB+xlrCnNZ6o5nX4Fx+iUm8ifcrbxk4y1Lap+/Z/pUfw6K4b2hp28l3+IEcVnWGDJYVuZidNOFyUaVL+2BiJo1UYErdqIoFWblgwJK3X5ycwPknwmPHhsVUyQ2YuDjJ4SpO/QG8vbPkNqGDEpxMyFQVZuCN9LHj4ZRJcbwOLQ/vgFEbSSyEdzQfv7v/fkYmWV1su45Wi9SQjaIYJWba7Xg7bQ4yfDHR62lujwNw5bW9g4bK2qcdjaGxEetvZkXtNha2OvGLa2wRYetnboDg9bc5UEuHi+Bv/eOurXNBWy9avqCGz2UhmbTfmmeNzLvsAzcwzlo/tS3v8tKt5vZfFq8970MTg9DSQcDl3VkqC5qolRk4PMXRp+q1zCoSCnMwIYSwJYveE/CMwvqaZbYRW/NzS9pj/X+3jB6GOkycemsmpy3fI2OS25mwVtiaeK004X28pMLLDkMKL4DO/lH6K9YSe/zorhf7ag+vXbacv4ScZa/pSzjU65ifQrOMZUczprSvM5YC9D72qb1a+tgQhatRFBqzYiaNWmJYK2OfLMAU7pAuw9EmRDXICFUUEmzgnxaQsGlw0aHWLSnBALooJs3BZg35HwvWS+We4J7xQSSaSjuaB9q89EikvsWi/jlqP1JiFohwhatYnUkDCrt+mwtY1lTYet9brGsLX7W3nY2mN5Pp7L99HZ+PWwtVGXh60tuGLY2r5mhq05ywJcSPXhj79IXXSwiZBtWOonNDsN/8ilVH7UjQvvPNGsePW+/yzOPm9TOrgfhaPHkjNlPmlzNnB80T4OrEhl55oCNmyoYOXGcA+whauCfLEsXMUw/cvwW9HGzwrx+dQQIyaFGDIufHM8oJmWA83x2dhwS4Ll64PEJQQ5dnloxJXno9gbrs6ebKnmjQIfv9I37R97v76Szsbwud5rr8bcBn7mha9py4I2213BfruV1aX5TDGn8XHBMV7O3ccfsuP4sW4N32pB9es/pUfxQNYmntbv4oP8w4wqPssii54dNhNnXHdv9WtrIIJWbUTQqo0IWrVpDUF7I8wOP2n6AIdPBIlLCLF8fZAZC4IMn9D8vWnfoTWMnhK+z43eFGTH/iApZ4Nk5stA49ZEIol0NBG0OfmmRhKPnKXboBkkHjlLdp7pqsdy8k1aLO+movUmIWiHCFq1iZSgbQ2MngDpXw1bc3w9bG1+SXjY2giTr3HY2usF4VYKj7bisLUH030MOnSJuNhKSq8hZGuX1VK62ML5+Uc4MnURSaM+5eSg7mR//BbGHq9S8N7b6N7vR/KHY9ndfT4xvTaytE8iM/ulMmZAEQMHXrgtiXozDBgeFrdDxoVF7udTw2J39sJaFq0KsSk+xIFj4eEPlusMKDO4w60yhhZX8Wy+75qtMP6Y6+OjQh8LS6s55vTfla0qVEIrQWvxVHHK6SSuzMT8kmyGFZ/h3byDPKnfyf/LjOEHaStbVP3604x1PJy9nddy9zOg4BjTzTrWWY0cctjIdV/U/Py2ZUTQqo0IWrURQas2kRa0zaEvCnDifJDdB4Os3Rrgi2Utm2fQa1ANQ8aGmDIv3C93884Q+1MCnMsKUGiV6tubQSKJdDQRtA+2795i2nq03iQE7RBBqzaRFLRmh5/C0vBblvRFATLywgLwTGaAk2nhv4gfPhlkf0qAhCPhCbPb94UnxW7cHmDN1gCrYsJVnItXB/lyZYh5S4PMXBhk6vzwW6nGTQ8xekqQ4ePDPVIHjgrRb2h4+myPoTV8NKqSfmOsfDrJwJDp5xg2+xjD5h9gyJK9DFq5h75r99Bz8z66xB/mzb3nGbnHwoa4i+Suq6XhG0K2ZgWc21THF3tDdD7p577sFvTi1fn45VkfD5yo4nfJPv58qIrHE6t5JqGajrv9dN7pp+sOP723Bxi8LcDnsUGmbwuwYFuQqG0BNu0MEbsnxI79QfYcDLLvSJADxwMcORWuaj2tCw94SDcEyDKGhzMYSwIUlwUouY5ovZJr9aD9itMuP8us1Xxc5OOR3KbH9u85Pp7K8/FpcRWry6rJdGv/8yzcHJEStFnuChLtVqJL85hsTqOPMYWOuftolx3b4urXf75c/fqMfjdd8w8z2pTKkhI98TYzqU43pd5qzc/f3YwIWrURQas2ImjVRmtBeyOKrAHOZQc4cCzAll0hlq4Jz0EYOj5E78HNFyOMmx5i3vKw+N19IMjxc0H0RQGsco96FRJJpKOJoA2GalpMW4/Wm4SgHSJo700sjvBNzldyNDM/SJo+wNmMq+XoqXN1HEgJNcrR2N0hYuJDrI39Wo4uWR1kwcoQc5d9LUcnzQkxbkZYjg6bcIUcHXZnKkL7f+pj5AAL0/qlsfjjA6zvtYX4Hos48uFEzn/wCfnvvov9neebbTFQ2f0DAqPXUztL36RCluVwadkl8qOdJMU5WXr4AjPO+Jl4LsCodD+DM/30yayia04VnfVVvGSo4inD5WFr+tYdtvbI5WFrr10xbG34NYat7b1i2JqxBcPWvhK0JV4/Bxx+ZpdU815hFf99jQrk/8zx0dFYxRhTFdvt124DIdxd3IqgNXt9nHA62Got5gtLNkMLT9El7yBP6OP5ZWYM/9CC6tfvpC3n3zPW85fs7byet58BhceZYdax3lrAYYeNPKl+jTgiaNVGBK3aiKBVm7YsaJsjyxj+HSY+MUj05iBzlgQZPTXU7OCyXoNqGD7+cvuudUHlK24lkkhH8x60APlFpY3/XebwsDZ2P0dO6jRcUcuj9SYhaIcI2tanxOnHVBauZDQUhSsb0w3ht+Cc1gU4lhrkyKlwJWTi0XBl5I79QWL3hNi0M8T6uACrNwfDfUfXBFkQdXXf0clzQ4yf2bTvaP/hIfoMuTOCtDl6D66h39AaBo4Ky9vh48Myd9z0EBPnhJg6Pyx75y0NV8YuXh2WwWs2VBK72sS+5edJWXSA1HmbyJy6COPYiVg+G4j94/fwdn2x5cO13mtPed838I7sjWf6KDxLZuOOWY1r7y6cx49z4Yj16rYFMfVUHaylIiuEw3H7N2+FnnBP2+POcI/b2MvD1haUVjOtpJpRJh8DisLD1jobw71yH8sL985tzWFrf8j18URuWLC+fXnY2qDiKibbArxSUHXN7/tvvY93C6qYWeJnv13715XQ+lxL0Ga6ytlnKyWqNJeJpvP0MibTIXcvv8+O5V91q5uVr/8jbRk/1K3iN1mbedawh27GI4wpTmVJiYGdNjPnnB6pfm0DiKBVGxG0aiOCVm3uZkF7I4yW8Lv0Eo8G2bg9wKLocEHJoM+btk4otmm/Xi2RSCIdzQXthm0HePTl/tTV1XPhoo+/vTqQN3qO44nXBrJq016tl9dstN4kBO24FwVtoxwtDpBtDKDL/VqOHj8X5OjpIAevkKPxieEm9pt3ht9av3pzkKhrDGWasaDpUKah40MMGn37Q5ki0nd0RIjBn4cYNj7EyMlBxkwLMWFWuHfTjAXhvzovia5h6ZoQS9eGj3nNlgAbtwfYvCtEXEKQ+P1B9hwKkng0yMETQY6eCXIqLTxt9Vx2+NxmFwTILQ5QUBrAZL+21LQ7L2E3mnCeO4/r4AFc2zfjil6EZ95EvBM+xTvofSq634R4ffcpyvu8hndET7zTRuBZPAv3xlW49sTjOn4MR5Yeu8WBzXNjEeQsC1C9v5aKjBAOW9v8a3qO++tha7vsfjbYvh62Nt4cHrbWs8jHOwVhAfvk5WFrv77G0K4b8dfcSnoX+VhSWs2JFrRHEO4+zF4fxxxONluLmGfJYlxZKm/nH+Bx/Q5+kbmR76etaFa+fjdtOf+RuZ5Hc3bwRt5+BhaeYJY5g43WAo7a7RR6KjU/TqF5RNCqjQhatRFBqzb3qqC9ERanH11uuEVYfGLbnL1xJ5FIIh3NBe1zXYahzzcDsHbrft7qM5GGhgYKTWW88O5wbRfXgmi9SQja0ZqCttTtx2z3U2gNkGcKkFMQIDP3ct/RjHBD+OQzQQ6fCLI/JUjC4SA79wfZtvdy39FtAdZuDRC1MciydZf7jq4IMXdpkJmX5ejE2SHGTg8xanL4rfWDPg/xyciWvbXlTvHxZ2E5Omh0WOCOnBT6Wo7OvSxHFweZvzzIoujgVXJ0Q9xXcjREfGKQhG/I0ePngpzSXS1HDcWX+47aApS6bu6a3W4PWruzEnuBBee5dFyHDuLavgV39GI88yeFxevgD6jo0eGOi1fha4yeAGkuP8mXh61ttlWzyurni9Jq5rtCbLb70Xu0X6dwe5R5/WS4ytlrK2FlaS4TTOfoebn69XfZW/mXFla//m9dNA9mbeF5wx56GI8ytvgcy0oM7LZbSHN5sEr16z2BCFq1EUGrNiJo1UZFQStcjUQS6WguaNs914uGhgYAeg2bw+ot+wCor2+g3XO9tFxai6L1JiG0DuZv9B39aijTN/uO7k8JsPfyUKZ9h+vYsbeGjdsDV/Ud/Woo05V9R68cynRV39HLQ5m0FqO9BtXQ57Ma+l85sX5iiNHTwi0BJs8N9x6atSjIvOXh1gFL14RbCazeHGRdbOSHMrU1ritoXT4cBRacaTqchw/h2rEV9+oleOZPwTNxMOWDu1LR46UWi9cLXZ6ivM+reId/hHfqcNyLZuLecFm8pqTgyMzBbraLeL3D3GhImNC2KPZUkuJwsKmsiLmWTAYXnuSt/CQe08dzX8ZGvpfegurX9BX8PHMDf82J5828JMZYzzLHksmmskKSHQ6KpfpVGUTQqo0IWrURQas2ImgFiSTS0VzQPtdlGLkFFmwOD+2e7Ym51AFAcYmdp98crPHqmo/Wm8S9gMUZlqNGSwB98eWhTIYAqZkBTqUFSUkNcvhUkAPHAuw7EmT3gSA7Ei/3HY0PsS4uQPSmICs3BFm6OsjCqCDzloVl4vQvg0yeE5aMo6eGGD4hxJCxl/uODgtLSa3F6FdytN+wcN/Rz8aG1zl6anjdk+aEmDb/shxdFj6+JauDrFgfJHpTkHVxATbFh4jdHWJHYvj87DsSPl+HT4bl6Km0IKmZAdIM4fOrLwqf7yJrAMtdKEc1we3DUVSKMy0D55HDVCfGU75+OZ4vp+KZ+BnlQz6k4qOONyFen6S8VyfKh/XAO2UY7oXTca9fiXvXdpwpyTh0WThMZdjcVdofu9AEEbRtgzKvn3SXlz02C8tLDYwznecj41FeMCTwUNYWfqSLblH164900TyUtYUXDAl8ZDzKONN5lpca2GOzkO7yNhkadytDwoR7AxG0aiOCVm1E0KqNCFpBIol0NBe0G7cfpN1zvfjD870ZNX0lABcu+nj5w9HMWx6r8eqaj9abhJZYHH7WxQaI3vy1HF0QFa6wbCJHp4UrMhvlaBvrO9p3aA2fjAxXtg6bEG4DMHZ6uC3A1C9CzFwQZO7ScNuAxavDUyzXx9awcVu49+rWXSG27w23HUg4HG5DcPhEuPL2xPkgZzLCFbmZuQFyCsNtDAqtAcwyQEh73D4cxVYcukycR4/g3hmHe+1y3Aum4Zk8hPIh3Sjv9QoX3nmiZeL1nSco7/UK5UO64Zk8BPeCaeHn2xmH8+gRHLpMHMVWbG6f9scu3DIiaO8MxZ5Kkh12YqyFzDZn8GnBCTrnJfFozg5+nrmB77ag+vV76Su4L2Mjj+njeSs/icGFJ5lryWRTWREpDgcm782/FkXQqosIWrURQas2ImjVRgStIJFEOpoLWoBCUxm6nALq6uoBqKmtY+uuI40ft+VovUloSaHV3zp9R4fUMGBkuCfqV3J0zLQQE2aHhzJ9JUfnrwixKDrcYzVqY5C1WwNs2BZgy64Q266Uo8lBDp0I92z9So6eyw6QkRvu7XqlHLXeZN/RK7kXh4TdU7S2eH37b1R81JHyIR/imfgZlUtnUL5+Oe74OJxHDuNMy8BRVCriVRFE0N4+Vm81aS4Pu+0WlpUYGFt8jh7Gozxn2MN/Z23hf+lWtaj69V90q/ld9lY65O6lpzGZCaZzrCzNZa+thAxXeZPq19ZABK26iKBVGxG0aiOCVm1E0AoSSaTTJgTt3RytNwmt2fyNvqOJR4McPB7g6Omv+46ey7o8lMkYaOw7aiq7+8WGCFqNcFfhMJXh0GXhTEnGvWt7uDXAwul4pwyjfFgPynt14kKXJ1suXnu8RPngrngmDsYzfwru1Utw7diK8/AhnGk6HAUWbK6rxevtDgkT7m5E0DZPoaeSo3Y7G60FzDJnMLDwBG/k7efRnB38R+Z6vpu2vFn5+v20Ffxn5kb+po/nnfwDDCk8xTxLFlusxRx3ODHfQvVrayCCVl1E0KqNCFq1EUGrNiJoBYkk0mmzgnbPgVOMm71a62U0G603CUE7RNC2Mp5q7GY7jswcXCkpuPbE496wCveimXinDsc7/CPK+7zKhS5Ptap4tTtvbbiPCFq1UV3QlnqrOef0sNNmZkmJgTHFqXQzHuFZwx5+k7WZH7aw+vXfdGtolx3LS7l76W1MYZLpPKtK8ki0l5LprtD8OK+HCFp1EUGrNiJo1UYErdqIoBUkkkinzQramB0H6TN8rtbLaDZabxKCdoigbSGeauwWB44sPa7jx8LideMqPItn4Z02Au+InpT3eY2Kd29GvHbAO/gDvBM+xTN/Eu7oxbi2b8F16CDOc+nYb0O8thQRtGpzrwvaPPdFDjtsrLcWMMOsY0DhcV7P289fsrfz7xnr+U4Lql//IW0lv8yM4Ql9PF3yDjK08BRfWLLZai3mhNOBxXP3DsATQasuImjVRgSt2oigVRsRtIJEEum0WUF7t0TrTULQDhG0fuwWJ45sA87jx3Ht3YU7ZjWeJbPxTB+Fd2Rvyvu+QcV77VsuXru/iHfQ+2HxOm8iruhFuLZvxnXwAM5z57EbTdidlzQ/bptXBK3q3M2CttRbTarTTbzNzOISPaNNqXTNP8wz+t08kLWJf06Pala+fittGT++XP3aMXcffYwpTDanEV2aR6LdSlYbrn5tDUTQqosIWrURQas2ImjVRgStIJFEOiJobzNabxKCdqguaB3n0lsuXru9QPmn7+Id9wmeeRNwrVqIe1sMroP7caaew5FfjN15UfNjuhlE0KpNWxa0ue6LHHLYWGc1Mt2sY0DBMV7L3c/D2dv5acY6vt2C1gM/SFvJrzJjeMqwk/fyDzK8+AxflmQTV2bilNNJyV1c/doaiKBVFxG0aiOCVm1E0KqNCFpBIol0NBe0x89m8fpHY/nzi3347TM9mtDWo/UmIWiH6oLWbjRR8eFzlA/sgnfsADxzxuOOWoA7LgbXgUQcZ1Nx5BVhd1zQfK2RQASt2mglaEs8VZxxudhhM7HIomdU8Vk+yD/M0/pdPJC1iX9qYfXr/81Yyx9z4nglN5G+BceYak5ndWk+SXYrOe578zXbmoigVRcRtGojglZtRNCqjQhaQSKJdDQXtM++M5SVG/dwJt1AeraxCW09Wm8SgnaoLmhVRwSt2kRK0OpdFzhgL2NNaT5Tzen0KzhGp9xE/pSzjZ9krG1R9es/pkdxf1YMT+t38X7+IUYWn2WhJYftZWbOOF3KV7+2BiJo1UUErdqIoFUbEbRqI4JWkEgiHc0Fbadun2u9hNuK1puEoB0iaNVGBK3a3IqgLfFUcdrpYluZiQWWHEYUn+G9/EO0N+zk11kx/GMLql+/nbaMn2Ss5U852+iUm0i/gmNMM6WzttTIQUcZBvfd1SrkbkUErbqIoFUbEbRqI4JWbUTQChJJpKO5oB07K5r07AKtl3HL0XqTELRDBK3aiKBVm2sJ2hz3BZLsVlZfrn7tW3CMV3IT+WNOHP83Yy3fakH16z+lR/FA1iae1u/ig/zDjCo+yyKLnh02E2dcUv3aVhBBqy4iaNVGBK3aiKBVGxG0gkQS6WguaPMKS3j05f507jWe3sPm0mf41bT1aL1JCNohglZtRNCqRYmnilNOJ3FlJr4syWai7TzvGw/xlGEnv8qM4QdpK5uVr99JW85PM9bxcPZ2Xsvdz4CCY0w361hnNXLIYSNXql/vGkTQqosIWrURQas2ImjVRgStIJFEOpoL2k7dPqfHZzP5YkUsS9bEN6GtR+tNQtAOEbRqI4L23iLLXUGi3Up0aR6TzWn0MabQMXcf7bJj+bFuTYuqX3+YHsV/ZW3m74bdfGg8wufFqSwp0RNvM5PqdFPqrdb8OIXWQQStuoigVRsRtGojglZtRNAKEkmko7mgfb7LMBoaGrRexi1H601C0A4RtGojgvbuweKp4oTTwVZrMV9YshlaeIoueQd5Qh/PLzNj+IcWVr/+LHM9j+Rs5428/YwsPc3skkw2WAs44rCR776k+XEKdw4RtOoiglZtRNCqjQhatRFBK0gkkY7mgrb3sLl4Ky5pvYxbjtabhKAdImjVRgRt2yHTXUGivZRVJXlMMp2ntzGFDrl7+X12LP+qW92sfP0facv4oW4Vv8nazHOGPXQ3HmFs8TmWlujZZbNw3unB+o3q11sZEibcO4igVRcRtGojglZtRNCqjQhaQSKJdDQXtKs27eWlD0YyZ9kW1sUlsf4b3MksXbeLp98czGOdBjBy2gqq/UEASm0uug+eyV8v98q9cqiZ1puEoB0iaNVGBO2dwez1cdzhZIu1mHmWLIYUnuKd/AP8TR/Pf2Zu5PtpK5qVr99NW85/ZK7n0ZwdvJG3n4GFJ5hlzmCjtYCjdjtFnsqbXpcIWrURQasuImjVRgSt2oigVRsRtIJEEuloLmjf7D2BLv0mX5c7laTkc7z0wUhcngtU+4P0HDqbpet2AdBt0AzWxSVRV1fP8bPZtO88mJraOkBu0FVGBK3aiKC9fcq8fjJc5ey1lbCyNJcJpnP0NCbTIXcvv8veyr+0sPr1f+uieTBrC88b9tDDeJSxxedYVmJgt91Cmqtp9WtrIIJWbUTQqosIWrURQas2ImjVRgStIJFEOpoL2raS7DwT6dnGxo/XxSUxcuoKvBWXeLhDX2rr6hofe7P3BFJ1eYDcoKuMCFq1EUHbPCavjxSHg01lRcy1ZDK48CRv5SfxmD6e+zI28r30FlS/pq/gvowN/DUnnjfzkhhUcII5lkw2lRWS7HBQfAvVr62BCFq1EUGrLiJo1UYErdqIoFUbEbSCRBLptAlBW1xi58uobYycuoLB4xfzxYpYCk1lmq6p78gv2LrrCOnZBbzWY+xVjw2dtJTYPcmA3KCrjAhatVFd0JZ5/ehcXvbYLCwvNTDOdJ6PjEd5wZDAQ1lb+JEuukXVr/9HF81vs7byYm4CPY3JjDedZ0WpgQRbCTqXl7I2cKzXQgSt2oigVRcRtGojglZtRNCqjQhaQSKJdDQXtIeOp/HQ0z14f8BUxs6KZuysaN7tP4Xf/71nY5Xqnc7StTv56LNZ1NbVcep8Dl36Trrq8bGzohv749bVNQiRoL7tU9/QQH0bWIegDQ0aX/9gTX2rPM+F2hCmQCW6ag9HK8vYVlHMKncucxwZfG49w8eWFN4pOsDzxt08lberkQdyNrdIwP4yO4an83fyoekQY8vOstJtIOmiFX11OVV1tZpfx1sFkNe/wqh+/Vtr/7kbqb98/bVehyDXX1WCNZttmTUAACAASURBVHWaXv+GBu3PgSDXX1k0dhQSSaSjuaB9tccYkpJTm3w+4eDpJmI00mloaGD6wo30GT4XfyAEgC6ngE7dx1z1dUMmLmFbQgoAjgq/EAnK2z7+YB0Xq0Kar0PQhmBNPeWVQU3X4KwI4KwIYC73kekpJ8XpYLfdwnprAQtLs5liTmNI0Sl6Go/SOT+Jvxt28+ecbfwqcxP/plvTohYDN+JfMlbzu+ytvJS7l94FyUwyn2eVNY9ERylZngocl9d3L1Jb14DnUlDzdQja0NCA5mvQEkeFX/M1aMYFuf4q47kUpLauQfN1qIyW913lleEKWq3vQQVtuFgVrqDVeh1Ko7GjkEgiHc0F7Z9f7HNVf9evUlNbx8Md+t7RtcxespkhE5c2DgADqLhYyZ9e6NMobAE6vD8CXU4BIG9xUxlpcaA2rd3iwOz1keEqJ9nhYJctLFkXWfRMMacxtPAUPY3JvJmXxHOGPTycvZ37s2L4sW4N30+7Pcn6g7SV/CRjLf+VtZlHc3bwgiGBt/MP0NuYwojiM0wzpbOkRM9GawF7bBaOO5xkuSso8VRpfg20RFocqI20OFAXaXGgNtLiQG2kxYHaSIsDQSKJdDQXtB27jiLLUNTk85mGIjq8P/KOreNcRh6de42npqa2yWM9h8xm+frd1NXVk3DoNM93GUZdXT0gN+gqI4JWba4laEs8VWS5KzjucLLHZmGjtYAlJXqmmdIZXnyG3sYU3s4/wAuGBB7N2cEDWZv4ScZafpC28rYk6/fTVvBj3Rruz4rhL9nbec6whzfzkuhpTGZo4SmmmtNZZNGz3lrALpuFZIeDTFc5Zq9P8/N4tyKCVm1E0KqLCFq1EUGrNiJo1UYErSCRRDqaC9pN8Yf568v9mbEohriEZGL3JDN94UYe6diPqJiEO7aO0dOj+O0zPWj3XK9G3uw9AYAyh4dug2bw6Mv9eavPRPT55sbv03qTELRDBO29Sam3mhz3BU46neyzlbKprJClJXpmmHWMKj5L34JjdMk7yKsFiTyuj+e/s7bw04x1/GN61G1J1u+mr+DfdGv4VWYMf8rZxt8Nu3kjbz8fGY/yWeFJJpnOs8CSw9pSI/E2M0ftdtJdXoo9lZqfMxURQas2ImjVRQSt2oigVRsRtGojglaQSCIdzQUtQFLyOT4eMY+XPhjJs+8MpeeQ2ew+cFLrZbUoWm8SgnaIoG27WL3VGNwXOe10kWi3ssVazPJSA7PMGXxenEr/gmO8l3+Il3L38rh+Bw9lbeE/Mtfzw9uUrN9JW86/6Fbzy8wY/pAdx9P6Xbyet5/uxiMMKjjBBNM5vrBks7o0nx02E4cdNs47PRR4Lml+zoSbQwSt2oigVRcRtGojglZtRNCqjQhaQSKJdDQXtDE7Dl3V3/Vui9abhKAdImgjS5nXT777EmdcLpLsVmLLiokqzWWuJZOxxecYUHicD/IP80puIk/o4/ld9lbuy9jA/9Kt4lu3IVm/nbaMH+mi+UXmRtplx/KUYSedchP50HiEgYUnGGc6zzxLFls9RexymjnoKCPV6SbfLZJVJUTQqo0IWnURQas2ImjVRgSt2oigFSSSSEdzQfv4q59gLnVovYxbjtabhKAdImhbhtFTyTmnh4OOMraVmYguzWOeJYvxpvMMLDzBh8YjvJq7n/aGnbTLjuUXmRv5kS6ab9+GZP1W2jJ+qFvFfRkb+F32Vp7Qx/Ny7j7ezz/EgMLjjC0+xxxLJitLc9lqLSbJbuWMy0We+yJlLTyu1h4SJtxdiKBVGxG06iKCVm1E0KqNCFq1EUErSCSRjuaCNj7xOH2GzyXh4Gky9IXk5Juuoq1H601C0A6VBG2hp5I0l4cjDhs7bCZWl+YzvySbiabzDC48SXfjEV7P28/T+l38MSeO/5cZw7/oVvPdtOW31TLgn9Oj+Fnmeh7K2sLj+h28lLuX9/IP0q/gGJ8XpzLLnMHyUgObrUUk2ks57XRhcF/E6q2O+DkRQas2ImjVRgStuoigVRsRtGojglZtRNAKEkmko7mgfbB99xvS1qP1JiFox90maIs9lehcXpIddnbazKyzGllgyWGyOY0hhafoaUzmjbz9/N2wmz/nbOPXWTH8WLeG76WvuC3J+o/pUfw0Yx2/ydrMX3Pi6ZC7ly55B/m44Bgji88yw6xjaYmeTWWF7LWVcMLpIMd9gdI7IFlvBxG0aiOCVm1E0KqLCFq1EUGrNiJo1UYErSCRRDqaC1pflZ9gqOa6tPVovUkI2qGFoLV4qsh0lZPicLDbbmGDtYDFJXqmmtMZVnyGXsZk3spP4nnDHv6SvZ0HsjbxfzPW8g9pK29Lsv4gbSU/yVjLA1mbeCRnOy8YEng7/wC9jSkMLz7DVHM6S0r0bLQWsMdm4ZjDSaa7ghJPlebXKVKIoFUbEbRqI4JWXUTQqo0IWrURQas2ImgFiSTS0UTQPvv2EKqqAwC88O5wLZbQatF6kxC041YFbYmnimx3BSecDhJsJcRYC1lSYmC6WceI4jP0MabwTv4BXsxN4NGcHfxX1mb+v4x1/M/0qNuSrN9PW8GPdWu4PyuGh7O386xhD2/mJdHTmMzQwlNMMaex0JLDemsBu2wWkh0OMlzlmL0+zc91W0QErdqIoFUbEbTqIoJWbUTQqo0IWrURQStIJJGOJoL2qTcGMXLqCqJiEmj3bE+iYhKuS1uP1puEoA2l3mqs1VWkV3hItJeyqayIZSUGZpozGG1KpV/BMd7NO0iH3L08po/nwawt/HvGev7pNiXrd9NX8G+6NfwqM4Y/5WzjGf1u3sjbz0fGo3xWeJJJpvN8WZLNmtJ84m1mjtrtpLu8FHkqNT9n9xoiaNVGBK3aiKBVFxG0aiOCVm1E0KqNCFpBIol0NBG0Z9IN9B89n64Dp/HQ0z344JNp16WtR+tNQrh1yrx+ct0XOeN0sd9uZau1mBWlBmabMxhTnMqAgmO8n3+Ijrn7+Js+nt9mbeXnmRv4oW4V37oNyfqdtOX8H100v8yM4Q/ZcTyt38VrufvpZjzCoIITTDCd4wtLNqtL89leZuaww8Z5p4cCzyXNz5nwNSJo1UYErdqIoFUXEbRqI4JWbUTQqo0IWkEiiXQ070HbdeB0rZdwW9F6kxD85Lsvcdbl5oC9jLgyE6tK8phnyWJs8Tk+KTxO1/zDdMpN5En9Tn6fHct9GRv537povn0bkvXbacv4kW41/5m5kXbZsTxl2Emn3ES65h/mk8LjjDOdZ54li1UlecSVmThgLyPV6SbfLZL1XkEErdqIoFUbEbTqIoJWbUTQqo0IWrURQStIJJGO5oL2bo/Wm8S9QoHnEuedHg45bGwvM7O6NJ8vLNlMMJ3j04ITdDMe4bXc/Tyt30W77Fj+M3Mj/0cXzXfSlt+yZP1W2jJ+qFvFzzM38NusrTyhj+fl3H28n3+IAQXHGFOcyhxLJitLc9lqLWa/3coZp4s890XKvNoMCRPaDiJo1UYErdqIoFUXEbRqI4JWbUTQqo0IWkEiiXTarKDdc+AU42av1noZzUbrTaItUeSpJN3l5ajdTrzNxJrSfL4syWaS6TyfFZ6kh/Eob+Tt5xn9bv6Us41fZcbwr7rVfDd9xW31Zf3n9Ch+lrmeB7O28Jg+npdy9/Je/kH6FRxjtCmVmeYMlpca2GwtItFeyimnE73rAlZv9W0drwhatRFBqzYiaNVGBK26iKBVGxG0aiOCVm1E0AoSSaSjuaC95Ku+5udjdhykz/C5d3g1Nx+tN4nWxuz1keEqJ9nhYJfNwnprAQstOUwxpzG08BQ9jcl0zkviWcMeHs7ezv1ZMfxYt4bv3aZk/cf0KH6asY7fZG3m0ZwdvJibQJe8g3xccIyRxWeZbtaxpMTAprJC9tpKOOF0kO2uoMRTpdm5EkGrNiJo1UYErdqIoFUXEbRqI4JWbUTQqo0IWkEiiXQ0F7TtnuvFoHGLOHQ8jZqaWq2Xc9PRepO4FiWeKjLdFRxzONljs7DRWsCSEj1TzekMLz5Db2MKb+cf4AVDAo/kbOeBrE38JGMtP0hbeVuS9R/SVvKTjLU8kLWJR3K287xhD2/lJ9HbmMLw4jNMNaezuETPBmsBe2wWjjmcZGosWW8HEbRqI4JWbUTQqo0IWnURQas2ImjVRgSt2oigFSSSSEdzQZuWZWTGohj+/tYQHntlAJPmrSU920hDQ4PWS2tRIvXiL/VWk+O+wEmnk722EjaVFbK0RM8Ms46RxWf5uOAYXfIO0iF3L3/Niec3WZv5acY6/jE96rYk6/fSV/Bj3Rruz4rh4eztPGvYQ+e8JHoakxlaeIop5jQWWnJYZzWy02Ym2eEgw1WO2evTfMO804igVRsRtGojglZtRNCqiwhatRFBqzYiaNVGBK0gkUQ6mgvar9LQ0EB2bjHzlsfyfJdhPNdlGAujt2O1u7Ve2g1zoxew1VuNwX2R004XiXYrm61FLC81MMucwefFqfQvOMZ7+Qd5KXcvj+t38FDWFn6WuZ5/vk3J+t205fyrbjX/LzOGP+Vs4xn9bt7I208P41EGF55kkuk8X5Zks6Y0n3ibiSMOG+kuL0WeSs03vbsJEbRqI4JWbUTQqo0IWnURQas2ImjVRgSt2oigFSSSSKfNCNqvkpNvYv7KOB7p2I8nXhvIn17ow8ipK7hYWaX10q6ZAYXHeT//EB1z9/E3fTy/zdrKzzM38EPdqtuSrP8jbRk/0kXzi8yNtMuOpb1hJ6/m7udD4xEGFZxgnOk88yxZRJfmsa3MxEFHGalON0aRrHcMEbRqI4JWbUTQqo0IWnURQas2ImjVRgSt2oigFSSSSKdNCNpSm4ul63bx0gcjafdcLz6bsJjkUxnU1dVTfqGSgWMW0G/UfK2Xec00J1n/l24V92Vs4HfZW3lCH88ruYl8kH+YgYUnGFt8jjmWTKJKc4ktKybJbuWMy0We+6Lmm4/QPCJo1UYErdqIoFUbEbTqIoJWbUTQqo0IWrURQStIJJGO5oL2vf5TeLB9d975eBKbdx6+ZqXshYs+2j3bU4PVNZ8JpnPMMmewvNTAVmsxiXYrp50uDCJZ73lE0KqNCFq1EUGrNiJo1UUErdqIoFUbEbRqI4JWkEgiHc0F7RcrYimy2G74NfX1DRw/m32HVnRz0XqTELRDBK3aiKBVGxG0aiOCVl1E0KqNCFq1EUGrNiJoBYkk0tFc0F7yVV+X8guVWi+v2Wi9SQjaIYJWbUTQqo0IWrURQasuImjVRgSt2oigVRsRtIJEEuloLmgfbN/9hrT1aL1JCNohglZtRNCqjQhatRFBqy4iaNVGBK3aiKBVGxG0gkQS6WguaAtM1qswFltJPpVB/9HzOXJSp/Xymo3Wm4SgHSJo1UYErdqIoFUbEbTqIoJWbUTQqo0IWrURQStIJJGO5oL2evEHQrzbf4rWy2g2Wm8SgnaIoFUbEbRqI4JWbUTQqosIWrURQas2ImjVRgStIJFEOm1W0DY0NPDs20O0Xkaz0XqTELRDBK3aiKBVGxG0aiOCVl1E0KqNCFq1EUGrNiJoBYkk0tFc0G5LSGlCzI5DDB6/mDd7T9B6ec1G601C0A4RtGojglZtRNCqjQhadRFBqzYiaNVGBK3aiKAVJJJIR3NB27HrqCa80XMcQyYuochi03p5zUbrTULQDhG0aiOCVm1E0KqNCFp1EUGrNiJo1UYErdqIoBUkkkhHc0F7t0frTULQDhG0aiOCVm1E0KqNCFp1EUGrNiJo1UYErdqIoBUkkkhHc0FbX9/Q+N8OdzlL1+1izrItZOcW3/G1lF+opM/wuXTqPuaqz5faXHQfPJO/vtyfzr3Gk55d0PiY1puEoB0iaNVGBK3aiKBVGxG06iKCVm1E0KqNCFq1EUErSCSRjmaCtshio1O3z/ntMz34dNxCnO4KnnpjEK9/NJbXeozl93/vybEzmXdsPVXVATp1+5x5y2ObCNpug2awLi6Jurp6jp/Npn3nwdTU1gFyg64yImjVRgSt2oigVRsRtOoiglZtRNCqjQhatRFBK0gkkY5mgrbvyC/o8dlMDh9PZ/D4xbzz8STmLNvS+PiCVdt5f8DUO7aean+AkjIn6dnGqwStt+ISD3foS21dXePn3uw9gVRdHiA36CojglZtRNCqjQhatRFBqy4iaNVGBK3aiKBVGxG0gkQS6WgmaB97ZQBZhiIALlz08WD77uQVljQ+XmQu4+EOfe/4ur4paNOzC3itx9irvmbopKXE7kkG5AZdZUTQqo0IWrURQas2ImjVRQSt2oigVRsRtGojglaQSCIdzQTtg+27Y3eVN378cIe+lDk8jR873OU82L77HV/XNwXtqfM5dOk76aqvGTsrmvVxSYDcoKuMCFq1EUGrNiJo1UYErbqIoFUbEbRqI4JWbUTQChJJpKOpoHW4vxa0j3Ts1yYFrS6noElP2iETl7AtIeVOL00ikUgkEolEIpFIJBKJRCKR3GPRVNAujN7Omi2JrNmSyB+e782XUdsaP14Yvb1NCNqKi5X86YU++AOhxs91eH8EupyCO742iUQikUgkEolEIpFIJBKJRHJvRTNB27HrqBZxp/NNQQvQc8hslq/fTV1dPQmHTvN8l2HU1dXf8bVJJBKJRCKRSCQSiUQikUgkknsrmgnatpZDx9No91wv2j3bkwfbd6fdc714/aPwcLAyh4dug2bw6Mv9eavPRPT5Zm0XK5FIJBKJRCKRSCQSiUQikUjuiYig/UaWrtvF028O5rFOAxg5bQXV/iAApTYX3QfP5K8v96dzr/GkZ3/d4uD42Wxe7TGGx14ZQJ/hc/GUX2x8bNWmvTz79hCefP1TJs9fT21d3R0/JknL4qvyM2LKch7rNID2nQcTFZPQ+NitXP8bPZ+k7eVG1+t2X+PdB89k6KSld+Q4JLeWIouNrgOn85eX+vLKh6NJOZ3Z+NitXP+amlrGzormLy/15Zm3PiPh4Ok7fkySludWrn8wVMOo6St54rWBPN9lGLG7jzZ+T15hCe8PmMqL742gc6/xnDqfc8ePSdLyHDmp4+UPR/NIx350GzQDc6mj8bEb7fG5BRZefG8EU7/ccNXz3WjPkLS93Or1Tzh0moc7fExS8rkWP5+k7eV61+tGezxc//p/lVRdHg+2705xiT3ixyC59Vzvd/8bXf/aujrmLt/Kg+27U3Gx8qrnO6vLpWPXUTzc4WP6jvyCS77qO3o8kpvLrbif613/hoYGvozaRof3R9Dh/RGMnRV9VZtMiaQlEUF7RZKSz/HSByNxeS5Q7Q/Sc+hslq7bBUC3QTNYF5dEXV09x89m077zYGpq66j0VfP4q5+QoS+ktq6OBau289mExUD4f8wd3h+Bp/wi1f4APYfOZlP8YS0PUXKDTP1yA0MmLiEQDGFzeHjqjUGcz8wHbu363+j5JG0v17tet/saj088znNdhomgbePp1H0M6+KSaGho4ERqNg93+Bh/IHTL13/R6h0MGrcIfyBEflEpb/WZSDBUo+UhSm6QW7n+S9bE89mExQSCIcocHtp3Hoyx2Bp+vm6fs/9oKgA5+SYefbl/402/pG3F4S7nkY79SM8uoL6+gQWrttPjs5nAjV/jupwCOvcaz8hpK64StDf6mZG0vdzq9V8bu5+BYxbQpe+kqwTdjZ5P0vZyo+t1oz3+etf/q4RCNXTuNZ4nX/9UBG0bzo1+97/R9R84ZgFL1sTz22d6XCXoLlZW8eTrn5KqyyMYqmH6wo1s3XVEk2OTNJ9bcT9w/euflJzKW30m4g+EqKurZ+DYhSxfv1uTY5PcvRFBe0Wy80ykZxsbP14Xl8TIqSvwVlzi4Q59r/qr+Zu9J5CqyyMpOZU+w+c2fr7SV02753oRCtUwZf76q6rwjp7S0W3QjDtzMJKbzpET6Vjt7saPP/l8AdsSUm75+l/v+SRtM9e7XrfzGr9w0UfHrqPYsuuICNo2nNq6OmJ3H2288QL4y0t9KSlz3vL1f/btIVI1dZfkVq9/p26fk2koanxs9pLNLFkTT0NDAw893YMLF32Njz3WaYD8kt5G43CXk5Sc2vhxboGFp98czP/f3r3/RVEvfhz/f/xWVKeTt4ojgqIoalkcTUMuSigaiCAKpXlERTkmKpmkeQizTLykJ7+GmoliJl4xRbxAIoqCFxCQ27Lv7w99mdiFXddVmAFfz8fDH3ZmdpwPb3aYeTPMSHL7Gb9ecVsNjxq1LvsHh4LW3fcMrMfb/IuvXJfdbld4XFqngtbV+mA97vJytY+XXOffbu1XO7Rm4w6NDp3Pvt/CXJ37S4/PX1Kngm7H3nzNWfR5T2w6ngFvuh/Jdf6Z/9mlxav+Oh7YvH0/5394YhS0bkQl/lvf7TqoU0WXNWZKssO82QsztXX3IX3x9W6lZuQ4zHtz7EyVlVcqfHaa8g4XGtOvXb+lt8bN6pFtx9Opq3+kt8bN0tWyCq/zd7U+WF/HvJ7mMz5/6Zfa/uNh7Tt0gh/QvUjRxWsaMj5WrTabV/nX1jXo5YBI5eTmKXBiosaGJevg0dM9PQx4ydP8X/ILV01tvTH9u10HjROzsNhlxpV2J84UKyAknlsc9RIbtvxo7K89OY5zLmg9PS6ANT1p/q4Kuq7WB+vrmJe7fXy7rvIvK69U8JT5ampuoaDtZdrP/SXP8ncu6Jas3qxFK7MVPjtN/iHxSkrNUl39o57ZeDw1T7qfjpzzLzx7SaMmJ+l+zUM1NbcoKjFduf893BObjj6EgtaFzE07FRa7TK02mwoKzyskaqHD/ORlG5T9/T59lrVN6eu2OswLCIk37j+Xf/ycMf3W7bt6feSHPbL98F5jU7OiEtO1euN2SfI6f1frg7U55+XtZ/zEmWJNikmV3W6noO1FbtyqUuDERB35rUiSd/lXVFbrhSFTtD5nt+x2u878fkV/HxGlO9UPenQseHKe5l9UXKp+vqFqbPrr3mK79h1VzPxVkqQrpRUaFDxDA4Ki9XJAJAV9L3HktyIFhMSrsuqeJHl0HOdc0HpyXABr8iZ/dwWt8/pgbR3zamm1ud3Ht+sq/7DYZTpW+LskUdD2Ih3P/T3N37mgm7ckS4ETE3Trzj01Nbfoo4/XdPqFHazJ0+6nI+f8JenTldnyGRquvw2fqtCPlqqlpbXbtx19CwWtE7vdrtSMHE2ds8K4qfPp85c1OnS+w3JxC9Zq255ftD5nd6eHQwwOjtH1ituKiF/u8EP7alkFf+ZkcbV1DZoUs1gZG3KNad7m72p9sK6u8vLmM97S0qqxYcnGFdMUtL3DpavlGj4hQT8X/FWmeZN/zcN69fMN1cMOD4YIi12mn34pFKzrSfN/yS/c4cB8y84DSvzXF2pqbtGwf87R0RN/PhisrLxSb42bpfKbd3pmIPDKnv3HNHLSXOPntySPjuOcC9rHHRfAmrzN31VB29X6YF1d5eVqH9+Rc/47//eIwzIUtNbX1bm/5Fn+zgVdasZmLV3zjfH65LkSBU9xPIeEtTxp99ORc/7f7TqoqXNWqOFRk2y2NqVmbNYnK77q/kGgT6GgdZK2doviFmQ63Ivufs1DvTpsqsNOO3Bigk6fv6y8w4WaPDPVmH676r5eHTZVrTabUjNytGbjDmPenrxjiohf3jMDwRNram7R+zMWKyc3z2G6t/m7Wh+syVVe3nzGi4pL9fcRUXpz7Ey9OXam+v//VXTcg9q6ym/e0fAJCQ5PaZW8y1+S+gdFq6Ky2pgXFrtMB4+c6uZRwFve5D9mSrKOn75ozPt4+Uatz9mt4ivX5fu2Y4kTGb9Cu38q6N5BwGsHj5zSmCnJqr5X4zDdk+M454LW3fcMrOlp8u+qoHW1PliTq7xc7eM7cs4/JjlDg4JnGMd/L/qFaVDwDB0qONO9g4DXujr3lzzL37mgy/5+n+YtyTJenzxXorcjPu6mLcez8KTdT0fO+cfMX6Xv9xwyXp/5/YqGT0jovo1Hn0RB28GJM8V6O+LjLi9FD49L07rsH2SztWnP/mMKCImXzdam+oZGDQqeoV9PXVCrzaZPV2YrKfXPHfOpohINfTdOlVX39LCuQe9OW6Ade/N7eljwUOamnVq0MrvLed7k7259sB5XeT2LzzhX0Fpf6EdLHR4U0s7b/FMzcpSStlGtNpuKikvVPyhad+/X9uiY4Dlv8l+X/YOiEtPV2NRs3NLgjxu3VVvXoNcCo1RUXCpJqrr7QIODY3Tx8h89OiZ4puZhvYaMj3X4hUo7T/bxzgWtu+8ZWM/T5u9c0LlbH6zHXV6u9vEdPe4exFxBa23uzv09yd+5oKu+V6OBo6fr0tVytbTaFLcgU8s//7bbxwHveNP9dOSc/2dZ2zQzJcP4heyqL3M73RYDeBwK2g6SUrP0wpAp8vGPMP69E/mJJKmislofzFqi/kHRGj91gX6/VGa8r6DwvEZ/ME8DR01XdNJKhyc3f/XtXg0ZH6u3xs3SsrVb1NZm7+lhwUND343TS37hDvm3/5mKN/m7Wx+sx11eT/sZp6C1thu3qtTPN9Qhex//CO3PPynJu/wfNTYrbsFavT7yQ414P9Hhz+ZhLd7m39zcoqTULA0OjtGwf87Rrn1HjXX+XHBaY8OSFTgxQSMnzTUeOgLr2bE3v8v823N29RlfuuYb+fhH6EW/MOPYsf3pze72GbAWb/N/J/IT+fhH6H/+McU4dth36LfHrg/W4i4vd/t4V/k7o6C1Nnfn/q7yf1BTZyzb8Xun/QrsX46d1dB34zQ4OEZzFn2u+oZG08YH97zpftzlX9/QqLmp6zV8QoKGT0hQVGK6bt3hHuR4MhS0AAAAAAAAAGASCloAAAAAAAAAMAkFLQAAAAAAAACYhIIWAAAAAAAAAExCQQsAAAAAAAAAJqGgBQAAAAAAAACTUNACAAAAAAAAgEkoaAEAAAAAAADAJBS0AAAAAAAAAGASCloAAAAArM6hRQAABfhJREFUAAAAMAkFLQAAAAAAAACYhIIWAAAAAAAAAExCQQsAAAAAAAAAJqGgBQAAAAAAAACTUNACAAAAAAAAgEkoaAEAAAAAAADAJBS0AAAAAAAAAGASCloAAAAAAAAAMAkFLQAAAAAAAACYhIIWAACgD7tZWa2k1Cz9452P9KJfmAYERStuQaYqKqvN3jQAAAAAoqAFAADos2y2NgVOTNSslNUquXZDNbX1Kr5yXdMS0jXi/UTZbG1mbyIAAADw3KOgBQAA6KMqKqvVzzdUV8sqHKbfvV+rrbsPqeFRo6rv1aifb6iuV9w25m/evl/jwlMkSQePntbwCQn68pv/6pWASG3ZeUAvB0Sq4VGTsXx9Q6N8/CN05LciSdLX237SyElz9UpApEZNTlJB4XlJUvq6rZo4/V8O21J49pJ8/CNUW9fQLV8DAAAAwOooaAEAAPqo5uYWDRw1XSlpG10WoI8raPOPF+n1kR9qwYpNqqy6p4bGZg0IitZPvxQay/944LgGB8eo1WbTjweO640xMbpQUiabrU0/F5yWj3+Erlfc0dU/bqqfb6jKb94x3rtk9WbNSlndTV8BAAAAwPooaAEAAPqwU0UlGjU5ST5DwzUpJlWfZW3T2QtXjfmeFLT9fENVWXXPmJ+8bIMSF39hvI5bsFafrsyWJIXFLtOqL3MdtmFaQrrWfrVDkvTetIXK/M8uY57f+Djtzz/5DEcMAAAA9C4UtAAAAM+BS1fLlZObp5j5q+TjH6GY5AzZbG0eFbQ+Q8Md1pV/vEgDgqLVarOpqblFrwVO08lzJZKkoe/NVj/f0E7/klKzJElbdh7QiPcTJUlFF69pQFC0Wlpae+JLAAAAAFgSBS0AAMBz5mpZhV4YMkUH8k+5KGjzHAravw2f6vD+VptNA0dP168nL+jg0dMaMj5WdrtdkhQ0OUk5uXku/++ah/Xy8Y/Q+UulSl+3VQvTNz37AQIAAAC9CAUtAABAH3X417NavOrrTtPtdrsGjpquHXvzVVvXoH6+obpcesOYvzzzW7cFrSSlpG3UktWbNW9JlpZnfmtMj05aqZS0jQ7L3rp9V21tduN17CdrtHL99/IPidepopKnHicAAADQm1HQAgAA9FGXS2/olYBILUzfpAslZaq6+0DFV64rJW2jXgucZtxXdlDwDG3evl/Sn2Xq8AkJjy1oj544r5GT5uqNMTE6f6nUmH7417N6JSBS+cfPqdVm08lzJeofFK0TZ4qNZQ4VnNHrIz+Uf0i8ceUtAAAA8LyioAUAAOjDii5e04x5q/Tm2Jl60S9MA0dP1/R5n+ni5T+MZfYdOiH/kHiNnDRX0UkrlZObp9EfzJPkuqBttdk0KHiGAicmdJqXk5unoe/N1ssBkQqanKRd+452eu8bY2KUsSG303sBAACA5w0FLQAAAHrUvQcP9eqwqbpxq8rsTQEAAABMR0ELAACAHtHWZteDmjrFzF+lhEXrzN4cAAAAwBIoaAEAANAj8o+f00t+4YpK/LdqauvN3hwAAADAEihoAQAAAAAAAMAkFLQAAAAAAAAAYBIKWgAAAAAAAAAwCQUtAAAAAAAAAJiEghYAAAAAAAAATEJBCwAAAAAAAAAmoaAFAAAAAAAAAJNQ0AIAAAAAAACASShoAQAAAAAAAMAkFLQAAAAAAAAAYBIKWgAAAAAAAAAwCQUtAAAAAAAAAJiEghYAAAAAAAAATEJBCwAAAAAAAAAmoaAFAAAAAAAAAJNQ0AIAAAAAAACASShoAQAAAAAAAMAkFLQAAAAAAAAAYBIKWgAAAAAAAAAwCQUtAAAAAAAAAJiEghYAAAAAAAAATEJBCwAAAAAAAAAmoaAFAAAAAAAAAJNQ0AIAAAAAAACASShoAQAAAAAAAMAkFLQAAAAAAAAAYBIKWgAAAAAAAAAwCQUtAAAAAAAAAJiEghYAAAAAAAAATEJBCwAAAAAAAAAmoaAFAAAAAAAAAJNQ0AIAAAAAAACASShoAQAAAAAAAMAkFLQAAAAAAAAAYBIKWgAAAAAAAAAwyf8BQWisYGqNmuoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd93cV56Hu8fv3OLnHJyft5CYndoIdO+Y4jltwB9N7R3TTexVVCAGig0AUiaKKOqj33uveM3tm9yLt+twfJHbAIJAA6RW8z2etZ60ICTGSyCz8XaNX/wdEREREREREREREJMT/EX0BRERERERERERERLJioCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhJkTAdan88v+hKIiIiIiIiIiIiIRsyYDbROlwd/+Hi26MsgIiIiIiIiIiIiGjHCA21nj4oZEXvwP/+ch999NDO8//vXH/HPH1eLvjwiIiIiIiIiIiKiESM80E5ZshMLfzqI5Mwi/H78LKTnlGDvsTh8O2czLDaH6MsjIiIiIiIiIiIiGjHCA+1vPpwOl7sXAPCnT+aGfz05swgrt0aLuiwiIiIiIiIiIiKiESc80P73+FmwO90AgD9/Oj8ca33+AP7wv2P/DNoe3cNJOndfAFanV/h1cGLW5wtCt/cJvw5OzPyBEFRrr/Dr4MQsFAIMY+A6uNGfwdz/9Rd9HZyYqdZe+AMh4dfBiZlu70OfLyj8Ojgxszq9cPcFhF8HJ25EI014oJ27OhI/LtwOp8uDmcv3YsPe02jpMOBKYib+/Ol80Zf3XKJvEpy4MdDKPQZaucdAK/cYaOUdA63cY6CVewy0co+BliMaacIDrWa2YfH6w3C6PGhq7ca4LxfhrXcm4lfvT8X1uzmiL++5RN8kOHFjoJV7DLRyj4FW7jHQyjsGWrnHQCv3GGjlHgMtRzTShAfan/MHAug2aujt84q+lCERfZPgxI2BVu4x0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLQc0UgbE4HWYnOgqr4VJZUNT2ysE32T4MSNgVbuMdDKPQZaucdAK+8YaOUeA63cY6CVewy0HNFIEx5oj56+iV/+ZRLeemcifvmXSU9srBN9k+DEjYFW7jHQyj0GWrnHQCvvGGjlHgOt3GOglXsMtBzRSBMeaP/86XyUVjUiEAiKvpQXIvomwYkbA63cY6CVewy0co+BVt4x0Mo9Blq5x0Ar9xhoOaKRJjzQfjZlrehLeCmibxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYbLaFQCKcu38VH3y3H2+Mm493PF2BL5Dm4PX0j8uf5AwEkptwfkfdNwyM80J66fBfR5xLhcLqFXkcoFMLBE9fwly8W4r/Hz8LeY3Hh13X2qJi4YBv+e/wsfDZlLUoqG8OvE32T4MSNgVbuMdDKPQZaucdAK+8YaOUeA63cY6CVewy03GjZdfQS3puwBHlFVXC5e9HU2o1pS3dh8uIdI/Ln1Ta2Y9rSXSPyvml4hAfapIxC/PbvM/DWOxPx9rjJePu9KY9ttNxOy8c/Jq2C2eqAZrbhf79fgbv3CgAAP8zfiti4JAQCQWTnV+KdzxbA5w8A4D/QZR4DrdxjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGi50WCxOfD2uMmorG157Nfdnl5cupEOnz+AYDCE/cev4qPvlmP89ysQsTkKTlf/9b393hRoZlv49z18ua6pA59OXoN90VcwZclOfPTdcuQUVMLl7sVfv1iE33w4HZMX7UBtYzs+m7IWEZujMHnxDnwxbR2SMgrD7+9eXulr/13wY5nwQPvnT+fj8KnryM6vREFp3RMbLau3x+DkxTvhly9cT8OCtQehW+z4zYcz4A8Ewq/7fOpP4WsTfZPgxI2BVu4x0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLTcaEjPLcW4fy1+5tvcTsvHP39cDbenF6FQCIvWHcaeqMsABg+0ja1d+MW7k5BXVAWg/0HJr2dtDP/vh0/QNrZ24dcfTMPttHwA/d/xPm9NZPj9rd4eg+hzia/uA6bHCA+0H/+wUvQlAHgy0Cam3senk9egpLIRn0xa/djbLl5/GJcTMgDwH+gyj4FW7jHQyj0GWrnHQCvvGGjlHgOt3GOglXsMtNxouJmciwkzNzzzbSI2R+HU5bvhl/OKqsJPtT4r0P7uo5nhX69r6sC4LxcBeDLQ/ur9qQgGQwAAVbPiV+9PhcPpRjAYwh//MRedPeqr+WDpCcID7U+7Tj52pqsot9Ie4OMfVkK32GGzu/Djwu346LvlyCuqwoQZ6x9729XbY3A6LglA/9m1HMfJOZF8/qDQP5+I5OXl/YeIBOG/f1490f+e5rjXZaOhoLQO73y24JlvM23pLtxIyg2/XF3fhnc/7/89zwq0D98GwGMv/zzQ/vzPn7hgG67dyUZReT3+Nf3xNkavlvBAu2JLNH79wTR8OX0d5qzcj7mrHt9oCQZDiIy5ig++XoYJMzfgcOwNfDVrI0qrGvHxxFWPve2idYdwJTETAJ+gkHl8glbu8QlauccnaOVeiE/QSjs+QSv3+ASt3OMTtHKPT9Byo8HudOM3H87Ag5Kax369z+vD+t2n4Pb0YcWWaMQOPDAIALmFVfh86k8AgP/62zSomjX8e956Z+KwA+2jbwcAcYkZmBGxG1siz+LUpbugkSM80O44dAF7oi4POlFiLtzG+j2xsNgc+K+/TYOn1xt+3YffLENpVf9Tv6JvEpy4MdDKPQZaucdAK/cYaOUdA63cY6CVa+26gia9DfV6Daq1IlRbcuD0OoVfFydmDLTcaDl6+ib+/Ol8ZOSVweXuRVunETMidmPB2oMA+oPqZ1PWwu3pQyAQxPw1B3DgRDwA4IOvl4V/XlJiyn384t1Jzw206Tkl+GrWRoRCoacGWpvDhd98OAN//nQ+DIo+Gp8CaQkPtGNFek4Jpi/bDZe7F509KsZ9uQjlNc0AgMmLduDo6ZsIBIJITL2P9ycsQSDQ/+01om8SnLgx0Mo9Blq5x0Ar9xho5R0DrdxjoH191607nwiu5VoWikx3kK/GI0c9iwz1GFKV/UhStuCOsv6pUz2dwj8WTswYaLnREgqFEBuXhL9/G4G3x03GuC8XYV/0Ffh8/vDrD528hvHfr8BH3y3Hmh0n4Pb0Aeg/uvOj75Zj6pJdOH7+Fv786XyYdOszA61mtmHcl4vw50/nPzXQAsDslfvwzexNo/DRy014oP1p10ms333qqduw9zSiziSgtrF9xK/D5w9gxZZo/O6jmfjzp/Nx6UZ6+HXdRg0/zN+K34+fhS+mrUN1fVv4daJvEpy4MdDKPQZaucdAK/cYaOUdA63cY6AdW2vTjWjWWlGvVaNaK0KZKQtFprt4YLqKHPUMMpQopKn7nhlcn7VkZRfuKYeRrZ7EffUyivVEWPt04R83J2YMtJzM1u8+hQvX00RfxhtPeKBdvycWf/jf2XhvwpL+M2hXR+JvXy3Fnz6ZixVbovHjwu34v3/9EQnJeaIv9alE3yQ4cWOglXsMtHKPgVbuMdDKOwZaucdAO3LrNjvRpiuPBddyLQtF6u1XFFw3IUXZPRBcT+GBehmFaiLKtHuo0vJRq1WgUW9Cm96DLt361GvkGbRyj4GWk1VzWzfGfbkIDqdb9KW88YQH2u2HLuDAiXgEg//+qXihUAhHTt9A9LlEAP3HD4z/foWoS3wm0TcJTtwYaOUeA63cY6CVewy08o6BVu4x0A59Xbp94AnXFtRr1ajSCvufcFVv44F6BTlKf3BNVfbirvFlgusRZKuncF+9jEL11iPBtfKR4Gp7JR8TA63cY6DlZLQv+gr++sUiZOSVib4UKQgPtL/9+4zweRmP6vP68OdP5wMAevu8+NX7U0f70oZE9E2CEzcGWrnHQCv3GGjlHgOtvGOglXsyB9ou3RYOrnVa1UBwzXwkuJ5GZji4bh52cL1r3IRUZQ8ylCPIUWNxX43rD66mDFRp+ajTKtGkNb/S4DrcMdDKPQZajmikCQ+0f/zHXKTnlDzx6zkFleFAm5Zdgg+/iRjtSxsS0TcJTtwYaOUeA63cY6CVewy08o6BVu69SYG2U7ejTTegKRxcC1D+SHDNVk4jQzn6CoLrUeQoD4PrbZSbMlClFTwSXA3oFBRchzsGWrnHQMsRjTThgfbijXS89c5ETJi5AUs3HsHKrdH4bu5m/OLdSThy+gY8vV784t1JuHYnW/SlPpXomwQnbgy0co+BVu4x0Mo9Blp5x0Ar98ZyoP13cG1+JLhmoFC9jftqHHKU2IHguucFg+vmcHDNVk4/ElwzB4Jr1SPB1S788zESY6CVewy0HNFIEx5oAaC6vg2RMVexensMVm+PwZ6oy8jOrwi/vqm1W+DVPZvomwQnbgy0co+BVu4x0Mo9Blp5x0Ar90Yz0HbqNrTpPQPBtRJVWgHKTBkoVG89ElyPDATXTS8YXPcOPOF6Gg/UKygKB9fCgeDagjbdIOxIgbE2Blq5x0DLEY20MRFoX2eibxKcuDHQyj0GWrnHQCv3GGjlHQOt3HuZQNs1EFwb9SbUapWo0vIfCa6XkaP2B9cUZTfuKC8SXLcgVdmLTCXqseBaNhBc67VqNGstaNON6HpDn3Ad6THQyj0GWo5opAkJtAvWHgw/Fbtg7cFnbqwTfZPgxI2BVu4x0Mo9Blq5x0Ar7xho5d6jgbZLtz4SXCv6g6t2D4VqIh6ol5GtnsK9lwyuaeo+ZChRyFHOPBJcsx4Jrq0MrqM4Blq5x0DLEY00IYF264Fz6OhWwv/7WRvrRN8kOHFjoJV7DLRyj4FW7jHQyjsG2jd3nboVrXo3GvUm1GkVqNIehIPr/YHgmqEeRpppD+4oG4cdXJOUgeCqHkOOegYPTFf7jxTQslCtFaFeq0aT3oo2XUG32Sn888E9OQZaucdAyxGNNOFHHFxOyHjqr7s9fYg+lzi6F/MCRN8kOHFjoJV7DLRyj4FW7jHQyjsG2tdnnboFrXoPGvVG1GkVqNQeoFRLR0E4uJ7EPeUwUpRdLxhctyJNeRhczyJfvYpi051/B1e9Bk16K9oZXN+YMdDKPQZaTmb+QABvvTMRb783Bf/5/lT8fvwsTFu6K/zg5Yv69QfTYDSZX9FVvv6EBVqfzw+3pxe//mAa3J7eJ1ZZ14q3x00WdXlDJvomwYkbA63cY6CVewy0co+BVt4x0Ipbf3DtHgiu5eHgWqgmPBJcDyFZ2YW7L/iEa6qyHxnqMeSqZ5GvxqMoHFyLUa/XoM3SDpfPim6dwVXGMdDKPQZaTmYPA+3DmOrp9WLdrlOYvmz3S71f3WJHMBh6FZf4RhAWaC9cT8N//HUy3npn4qCbumSXqMsbMtE3CU7cGGjlHgOt3GOglXsMtPKOgfbVrVO3oEXvRqPegFqtHJXafZRqaSg0JeC+egnZ6kmkq4eQouzEHWXDsINrsrIVacp+ZKrRjwTXu48E11o0621o19UhB9eX+SFhr/uUFg2myi4YuuU975aBVu4x0HIy+3mgBYDcwir8/duI8MsZeWX4ZNJq/O2rpZi8aAfMVgcA4HRcElZtO46ITVH4Yf5WfDFtHXqMGoB/P0Fb19SBTyevwb7oK5iyZCc++m45cgoqR/eDHAOEHnHg6fXiV+9PRV1TxxNr6zS+FiVd9E2CEzcGWrnHQCv3GGjlHgOtvGOgHXwdZvO/g6teFg6uBaabyFMvIUs98QqCa+RAcD0XDq4VWjZqwsG1He26ih7dNSIf4xsTaE1uKG1mmGp6oBc0w5JeBXtiERzns+A6noze/Tfh3XQJ/pWxCM4/Ckw/EJ5W2Cz++gWNgVbuMdByoy1inQ+L14z+nubngdbt6UXEpijsPHIRAKCYLPjD/85GfXMnAODUpbuYuzoSAHAuPhX/7x9zoJltAIBN+85gX/QVAP8OtI2tXfjFu5OQV1QFAEjKKMTXszaO3Cd3jBJ+Bq3X64M/EAi/HAgEUdPQFq7tY53omwQnbgy0co+BVu4x0Mo9Blp5J0+gdaNDN6NF6xp4wrUMlaa8fwdX5SKy1JNIVw8ixbjjhYJr0sPgqhxHrnoOD9RrjwTXEtRrD4OrCd0jFFyHu7EcaI0dFphqDNALW2HJqIYtsRiOi9lwxaTAE5mAvq1x8K+KRXBB1GPBdagLLoqGb+0ZaMWtwj9WUWOglXsMtNxomzLfJ2RP8zDQ/vbvM/C7j2bil3+ZhPHfr0BbpxFA/8+WmrJkZ/jt3Z5e/MdfJ8PnD+BcfCrmrtofft2ZK8lYsSUawOOB9ncfzQy/TV1TB8Z9uWgkPq1jmvBAe7+oGn/+dD4CgSB8/gC+mrURv3h3Et5+bwoy8spEX95zib5JcOLGQCv3GGjlHgOt3GOglXevb6B1o0PX0ap1oVFrQI1WigpTHkrUFBSoA8FVOYF7yssE123h4Jqnnke+eg3FahIqtGxUayWo1+rQrLejYwwF1+FuNAOtsdMKtc4IrbgVlqxa2G6XwBGXB9fJNHgOJKJvexx8a84guDAamDHM4DrjAIILj8G/5gz6tl6B50AiXCdT4YjLg+12CSyZNdCLW6DWGmDssKJHE/+5HwtjoJV7DLTcaLPZxexpfv4ErT8QQHZ+Bf70yVyYdCtiLtzGrz+YhnH/Whze78fPgkm34lx8KiI2RYXf16MvPxpo3/18Qfhtfv6yLIQH2s+mrEX87SwAwM3kXPzli4Ww2BxIySrCZ1PWCr665xN9k+DEjYFW7jHQyj0GWrnHQCvvxk6g7Q+uLVonGsLBNXcguN5AnnIRmcoJpCsHkPxSwfUAssLB9fpAcM1BtVaCBq0OLXrHax1ch7uXCbTGbjvUBgVaaRvM2XWw3S2D4+p9OE+lw3PoNvp2XIVv7VkEFh8HZh4c/hOuC6LgXxUL75bL8EQmwHU8BY6L2bAlFsOSUQ29sAWm6h4YOyzo0dzCP5ev4xho5R4DLSezp51BCwCfTl6DlKwiJCTnPfaU7KMYaIdOeKD9z/enIhAIAgAWrTuMPVGXAfQfdfBff5sm8tKGRPRNghM3Blq5x0Ar9xho5R4DrbwbuUA7EFz1TjRo9Y8E12QUqDeQq15AlhLTH1yV7cOOrQ+Da7oSiSwlBrnh4Jr8SHCtHwiuGrp1Bryn7dFAazDYoTSp0MraYc6thzW5HI74fDhP34P7yG307YyHb915BJaeQGjWoWEH19C8o/CviIV38yX07rsBV3QSHOezYE8ohCW9Cnp+M0zV3VDadPSY+PUajTHQyj0GWk5mTwu0ReX1+PUH09DepUAz2/CnT+aGjzyorGvF5v1nADDQDofwQPvHf8yFZraht8+L34+fhZLKRgCAbrHjD/87W/DVPZ/omwQnbgy0co+BVu4x0Mo9Blp5N9RA26270aFrjwTXElRouShWk5GvXn8kuEa+cHBNVrY/ElwvIF+9jhI1GRVaLmrCwbWTwXWoX1vFCaXZBFNFJ8z3G2FNqYD9egGcZzPgjrqD3t3X4Nt4AaEVpxCafXj4wXXOEQQiTsG78SJ691yHO+ouHOcyYb9RAGtqJfQHTTBVdkFp0WBQ5Xgi+XUbA63cY6DlZPYw0L793hS8/d4U/Or9qfj4h5VIyigMv03m/XJ8Mmk1PvxmGb6Ytg4llQ0AGGiHQ3ig/WnXSXwyaTU+n/oTPpuyFqFQCG5PHxatO4SFPx0UfXnPJfomwYkbA63cY6CVewy0co+BVt51mFXo3jZUayWo0HJQrCYhX72GPPU8spQYpCkHkKRse6ngmqmcCAfX4seCa0P4CVfRn4fXYqoLSqsGU2UX9AdNsKZVwX6zEI7zmXBHJaF37w14N12Ef/kphOYeHX5wnXUYgWUn4Ft/Hr27rsF99A6cZ+7Bfi0f1pQKmPMaoJV3QGkywaA6xX8+uJeeiEBrMDlgUCwwGk1QunugdnVAbW+BqbUBWnM19MZy6PXFMNfmw1KVA0tlBqzlqbCV3oG9OAH2gmtw5MfBkXsOzpxYuDJj4LoXBXf6QXhS9sOTvAu9d7ai79ZGeBN+gvfGKviuLYP/6iIE4uYhcGkWghemInTuR+DMd1A72oR/HUSNgZYjGmnCA63P58f5a2k4djYBmtkGAHC5e7F4/WGYrQ7BV/d8om8SnLgx0Mo9Blq5x0Ar9xho3/x16BoatHpUaDl4oF5DpnIcScrWFwiuB5A1EFwL1BuPPOFaOhBcOxlchzqTG0qbGabqbugFzbCkV8GeWATH+Sy4opPRu/8mvJsuwb8yFsH5LxJcDyGwJAa+n86hb1c83Idvwxl7D46rD2BNKoc5px6Wig4EFCsMPXbxnw9uRGZQrTAadSg9RihdXVA7WmFqa4KppRb21mr4uqtgriuEuToPlqpMWMvTYStLgq34FuyF1+EouApH3gU4cs/AmXUSroxouNMPw50aCU/yHvTe3Y6+25vRl7ge3ptr4Lu+HP74JfDHLUDg8hwEL0xH6PxkhM78AJz+ZsxNbW0U/jUSNQZajmikCQ+0QzXuy0WiL+GpRN8kOHFjoJV7DLRyj4FW7jHQvjnr1K1o1BtQYcpDoZqATOXEM5+ATVK24L750eCaggpTf3Bt1BrQonWiQ9eFf1yvxTQPjB0WmGoM0AtbYcmohu1WMRwXc+A6kQpPZAK8W+LgX30awQVRww6umHEQwUXR8K09i77tV+A5eAvOU+lwXLkP291SWLJqoZW0QW0wwthlG9I1v8wPCeOenEGz9z8dalD7nw7tbB94OrQeWlM19MYy6HVFMNc+gKU6G9aKDFjLU2AruQN78U04Cq7B8eBy/9Oh2bFwZcXAde8o3GkH4EnZh96knQNPh26A9+ZP8N1YCV/8I0+HXpzZ/3To2UnAmW+Fx8+nLXTme4TO/YjgxWkIXJqFQNx8+K8ugu9aBLw3V8ObsA59tzeh9842eJJ3w5O6H+70Q3BlRMGZeQLOnFg48s7DkR8He+F12IsTYSu9C2tFGiyVGbBU58Jcmw+9vgRaYzm05hqY2hqhdrRB6eqE0mOE0aDBoFrRo8n9JDgDLUc00l6bQPu7j2aKvoSnEn2T4MSNgVbuMdDKPQZaucdA+/qtU7ejUW9ClZaPAjUR2epJJCu7nhFityJDPYZ8NR7lWhbq9Vq066YR/CFhb8aMnVaodUZoxa2wZNbAdrsEjrg8uE6mwXMgEX3brsC35gyCC6OBGcMNrgcQXHgM/jVn0Lf1CjwHEuE6mQpHXB5st0tgyayBXtwCtc4IY4cVPdqr//he60CruZ75dKjWVAm9ofTVPh16bTn88YsHng6djeCFaQid+xGhs98LD59P37cInZ2I4PkpCF6cgUDcXPivLITv2lL4rq+EL3Etgnc3off2FvQm7YQneS/caQfguncErszjcGafgiP3bH80LoiHvegmbCW3YS1LgbXiHizV2TDX3IdeXwS9oQxaUxVMrXUwtTVD7WyH0tUNo0GFUTHDYOJT2mNtDLQc0UhjoH1Jom8SnLgx0Mo9Blq5x0Ar9xhox+66dDuatVZUaYUoUm8jR4lFqrJn0BB717gZGcpR3FfjUG7KRL1WjTbdOOj7ly3QGrvtUBsUaKVtMGfXwXa3DI6r9+E8lQ7Podvo23EVvrVnEVh8HJh5cNhPuQYXRMG/KhbeLZfhiUyA63gKHBezYUsshiWjGnphC0zVPTB2WNCjif9BZ8MJtHw6dAhPh54deDr0wjQELs+GP24B/PGL4bu2HN6bq9GXuL7/6dC72//9dGjaIbgyjsGZdQLOnNP9wTj/CuyFN2ArSYStNAnW8jRYKjP7nw6tK+h/OrSp4qWfDuUPCZN7DLQc0UhjoH1Jom8SnLgx0Mo9Blq5x0Ar9xhoxa/b7ESz3o4arRhFpjvIUc8iTdn3jDNhN+Gecgj31cso0+6hVqtAm96DHn140e91D7QGgx1KkwqtrB3m3HpYk8vhiM+H8/Q9uI/cRt/OePjWnUdgaQxCsw4N/xzXeUfhXxEL7+ZL6N13A67oJDjOZ8GeUAhLehX0/GaYqruhtOnoMb3C4Ko5+58ONWgDT4d2Qu1og6mtEVpzDbSmCuj1JTDXFcBSnQtLZSas5WmwlSbBVpIIe+ENOPKvwJF3Ac6c03BmnYAr4xjcaYfgSd0PT/Ju9N7dDu/tzQjd3QjvzdWv39OhZ75F6OwkBC9MReDiTATi5vV/q3z8MvhurIT35v4/ZhcAACAASURBVE/ou7UBvXe29j8dmrJv4OnQo3BlxcCZHQtH7rmBp0OvwV58E7aSO7CWp8BakdH/dGjtA+h1RdAby6A1VcPUWg+1vaX/6dDuHhgNKgyKBQbt9Xw6lIFW7jHQckQjjYH2JYm+SXDixkAr9xho5R4DrdxjoB3NudCidaJGK0Gxmoxc9TzSlEjcUTY8/YlYZSPSlQPIUy6iRE1BrV6GFr0b3cMMsYNtrAVag+KE0myCqaIT5vuNsKZUwH69AM6zGXBH3UHv7mvwbbiAQMQJhGYfHn5wnXMEgYhT8G68iN491+GOugvHuUw4rj+ALbkYluwKmIuqoVfXw9TSBFNrHbSmKugNZdDri2CuuT/wdOg9WMtSYCu5DXvRTTgK4geeDj0LZ/YpuDKPw3XvSP/Tocl7+58Ovb1l4OnQtf3fXn5tKfxXFiIQNxfBizMQPD8FobMTgdNj9OnQMz8gdH4yghemI3B5zsDToUvgu74c3ptrBp4O3TzwdOgeuFMj4U4/DFdGNJxZJ+HIPdP/dGjBVdgLr8NWfAu2siRYy9NhqcqEuToP5rpC6A2l0JoqYWqphamtCWpHK5Surv6nQ436wNOhLuF/V9+EMdDKPQZajmikMdC+JNE3CU7cGGjlHgOt3GOglXsMtK9+3bobrXo3arVylGppyFMu4p5yEHeVjYM8EbsBaUokctVzKFaTUK2VoEXvQI8+siFqxAOt6oLSqsFU2QX9QROsaVVwXM+H82w63EduoW/3Ffg2nEEg4jhCc4YfXDHzAEILDyK4/AACPx2Af0skfLv2wh+5G/6jO+CP2Qzf6fXwn18Ff9xiBOLmI3BpFoIXB54OPSP306HWxiIEDDVv5NOh3PPHQCv3GGg5opHGQPuSRN8kOHFjoJV7DLRyj4FW7jHQvtzadAPqtEqUaffwQL2Me8ph3DVuGvR4glRlL3KUMyg23UG1VoRmvQ3dZoeQa1e7OhAy1g39ByllnoT7TjR64w+h73wkvDH74D+0B/5dOxHYvAvBtbsQitiF0MI9wOz9ww+uMyKBObuBhduAiE3Aqp+AdSuBLUuBnQuBfXOBQ9OBYz8CJ797tU+IjsbZoQ1lzz87dDS//q/zDwnjXnoMtHKPgZYjGmkMtC9J9E2CEzcGWrnHQCv3GGjlHgPt0NauK6jXqlFmysID9QoylKO4a9wyaIhNUXYjR41FoXoLVVoBmrQWdOmj/zSi2tUBvb4EtuJbcGadRO/d7fBfXdQfJmO/BWImAkenAgdmAXvmATsWARsjgLWrgRXrgCWbgQU7gFl7gOmRw4yukcDs3cDC7cCyTcDKn4B1q4AtKxHaE4HggWUIRkcgcCYCvkvLR/3sUNF/p0SPgVbuMdDKPQZajmikjYlAW9/cGf7f3UYNpy7fRXpu6WNvU1XfOqLXEAqFsC/6Cj78Zhk+/GYZVm+PgafXCwDo7FExccE2/Pf4WfhsylqUVDaGf5/omwQnbgy0co+BVu4x0Mo9BtrH16GbUK/VoULLRr4ajwz1GJKUZ4XYnchST6BQTUCl9gCNehO6dNuoXvOjEdaVehJ9cdsROL4S2DsX2LEQ2BwB/LSqP5Au3Qws2A7MfoHgOiMSofmHEFgeBf+6E/DuPI3eQxfgOXUdrrg7cNxKhzUzD+bicmh1DVA6f3Z26Bj4+nKP/L1hoJV6DLRyj4GWk5k/EMBb70zE2+9NwX++PxW/Hz8L05buQke3Muz3dTouCWt2nHji109evPPUX38RD6/3l3+Z9Ng+nrjqlbz/kSI80J65kozfj5+FQCAIq82JP/5jLj6dvAZ/+mQujp+/NWrXkZRRgC+mrYOn14tAIIi5qyNx9PRNAMAP87ciNi4JgUAQ2fmVeOezBfD5AwAYaGUeA63cY6CVewy0ck/WQNuhm9GgNaDClIt89TqylBgkKdsGDbFJyjZkKTEoUG+gwpSLRq0BnfrIP4Vp7LZDrTfC/KAMjlsp8Jy7BO/hKPi370Hwp60IRWzqPxJgzm5gxgscK7DwGPyrYuHdchmeyAS4jqfAcTEbtsRiWDKqoRe2wFTdA2OHBT3aq/nhZNzYGAOt3GOglXsMtJzMHgZPo8kMAPD0erFu1ylMX7Z72O9rsEDr6fXC6Xo1n+efX+/rQnigfW/CElTXtwEATl26iy+mrUMoFEJTazf+9tXSUbuOw7E3sHn/mfDL5+JTsXj9YegWO37z4Qz4A4Hw6z6f+hMKSusAMNDKPAZaucdAK/cYaOXemx5ou3QbGvVGVGr3UWhKQJZ6AinGHc8IsVuQqUYjX41HhZaNeq0OHbr2yq7HYLBDaVKhlbXDnFsPa3I5HPH5cJ5OR+/Ba/BtOYPAyiiEFhzsP5N1mME1NOcgAsui4Ft/Gr17r8EVnQTH+SzYEwphSa+Cnt8MU3U3lDYdBs09sj8kjBvTY6CVewy0co+BlpPZ04JnbmEV/v5tBACgvKYZH323PPy6R1+OjUvC6u0x+GzKWhw6ee2xQGs0mTHuy0Uormh47Ana3300ExdvpGPm8r0Y//0KHDubEH7fVxIz8eE3EXhvwhL8MH8rDOqTEfZ5gbasugmfTVmLD75eho9/WIn80loAgM/nR8TmKPztq6V4b8ISLNt4FL19/d9Zn5RRgI8nrsL471fgh/lb0dJheOHP52CEB9q335uCUCgEAJiyZCdOXLwNAAgGQ3j7vSmjdh1F5fX43+9XwGJzoM/rw4yI3bh6KwsllY34ZNLqx9528frDuJyQAYD/QJd5DLRyj4FW7jHQyr03JdB26TY0ac2o0gpQqN5CtnoKKcruQUPsXeMWZChH8UC9gjJTFur1GrTryrD/XIPihNJsgqmiE+a8BlhTKmC/XgDn2Qy4o+6gd/c1+DZcQCDiBEKzDw//CdeZ+4B5uxBasgPBNbvh33YAfQdPwnM2Ho6EDJhza2Gq7ILSosGguoZ37WYPA63EY6CVewy0co+Blhtt9lmfwTb9k1Hf0/w8eLo9vYjYFIWdRy4CeHagPRefij99Mhcd3SqAfz9B29vnxRfT1iEhOQ/A40cc/OHj2ThwIh4AoFvseHvcZLg9fTBbHXj7vSnoNmoAgDU7TmD97lPPvd6f+2TSaiSm3AcAJCTnha81KaMQU5bsRCgUQjAYws7DF1FS2QiDouO3f5+Btk4jAOD8tTRMmLlhKF/GYREeaN+bsAS1je3oMWp4e9zk8Afc0mHAu58vGNVr2bD3NN4eNxm//mAaJi7YBp/Pj7yiKkyYsf6xt1u9PQan45IAAF5/kJN0wWAI/oD46xjqfNwrXTDU//UX9ed7vAHhnwOZFwpB6NefEzsAwq9hOOvze6H39aDDXYZqWzIKzOeQru57xhOxm5CtHUGp5SoaHdkweOpg9+rh9/fE/afPD79uh79VRaCyHYH7dQgmlSBwNRfBk6kIHkhAaOslhFbEAvOODj+4ztgPzN0FLNoKRGwEVq8F1q8Ati4F9q8ETm1F6MZRBHPjEWi6D7/WBl9fL7/+3CufP9B//xd9HTJP5L9//IH+f/+J/hxwAr/+waF//UX/tx/36jfarF/+Ucie5mHw/O3fZ+B3H83EL/8yCeO/XxHud88LtFOX7Aq/7mGgXbLhCA6dvBb+9Z8H2rqmjvDrfj9+FroMJgAIP9EKAImp9zFlyc5Br/eP/5iL//nnvPAiNkcB6H9SNhjsf1BU1az4j79OBgCUVDbg3c8XIPN+Ofq8vvD7u3orC7NX7gu/3Of14RfvTnplRzI8JDzQnr2aEj5oePmWYwAAq82J8d+vwO6jl0ftOi7dSMe0pbvg9vQhEAhiS+Q5/LTrJEqrGp84SHjRukO4kpgJADBZezlJ5/EG4HD7hF/HUKdyr3ReXxBWp1foNZhsfZygBYIhmB1e4dfBiVkoBGhj4Dp+PtXmRoe1E/WWUpRpycgznUe6uh93lA1PfyJW2Yh7yiE80C6hwpyOBkslOq0GqBYP9C4rLHU9sBW3wJFZA9etIrguZsMTk4K+yAT4Nl9CYGUsQvOjXuAJ14MILTiI0NJ9CK3cAaxeB6xbCWxZCuxcCOyfAxyaDhz7ETj5HYKXZsF3az16M47AVXwN9tpcWDoboVkco/451uz9X3/RX2tOzMwOLwLBkPDrkHki/91ldXrh9QWF/xuUEzOH2wePNzDktxf9337cq99oC1l1hCzaqO9pfv5Eqj8QQHZ+Bf70yVyYdOtzA+2yjUfDrzsdl4Tfj5+FX70/FVdvZYV//eeB9tEfQPbw5VAohCOnb+Bf09djwoz1+PCbCExetGPQ661tbIdmtoVnd7oB9D8p+93czZgwYz2+mLYOv/zLpPDvTcoowA/zt+K3f5+B1dtj4Pb0IfpcIlZvj3nsz/jNh9Nf6IekPYvwQAsATa3dKK1qRCDw8KmEAC7dSA+/PBrmrtqPuMSM8Mtl1U344OtlsNgc+K+/TYOn99+V/sNvlqG0qhEAv8VN5vGIA7nHIw7kHo84kHuijzjo1l1o0bpQq5WhRE1BrnoB6UrkoCH2jrIBaYb9uN8Ri7KGa2gqSYIhLQP2y9lwxaTAE5kA75Y4+FefRnDBCwTXGQcRXBQN39qz8G65gL7d59B3IBbeQ1HwH9mF4OHVCB2aDRybDJz4Hjj9zRMLXJqFvsT1cKcfgaMgHpaqHJjaGmAw2YR/vR8djziQe6qVRxzIPB5xIPd4xAEns8GODPh08hqkZBWhsq4VH34TEf713MKqxwJtxKao8OtOxyXhx4XbUd/ciT/+Yy56Bo4rGEqgTc4swieTVsMxEFpvJOU+M9A+7YgD3WLHr96fiub2HgCAQdEfC7QPWW1OTF60Aycu3sa1O9mYs3J/+HUPn6B1uV9tuBceaO1O96AzWx2jdh37oq9g3prI8A8D23/8Kuau6v8CTF60A0dP30QgEERi6n28P2FJOB6Lvklw4sZAK/cYaOUeA63cG71A60ab3oM6rQKlWjruq5eQrh7CHWXjoMcTpLduQ37pPlSnHELn2SOwbTuM4JzhBtcDCC48Bv+aM+jbegWeA4lwnUyFIy4PttvFsCc/gCMtDc6063Alx6D39lb4ryxE6MzT4+vTI+y1gQjbOOYi7LPGQCv3ZAi0RpMZJmMDzJ25sLXegKPxONw129FXuRSBkkkIFX2BYPHX8Jf8CF/ZTHjLF6CvMgK91WvhqdkMd+0uOOsOwNEQDXtjLBzNl2Fvuw5r+11YOtJh7syF3l0MracSJkMjFKUdRpMKg2YV/rE/bwy0co+BlpPZ04JnUXk9fv3BNLR3KTCazPj1B9Pg9vQBANbvPvXMQPswxEafS8SPC7cjFAoNKdCei0/FrBV7AfS3xClLdj71LNhnBdrG1i78v3/MgdfrQzAYwt5jcXjrnYno7fPi7NUUHDp5DaFQCKFQCKu2HcfJi3dgNJnx+/Gzwtd0Oi4J383d8lKf06cRHmjfemfiMzdaXO5eLN9yDB98vQwffL0MMyJ2h38aXLdRww/zt+L342fhi2nrUF3fFv59om8SnLgx0Mo9Blq5x0Ar90Yi0Hb0dKGxNR9VjQkoaDyFrNZ9SOoZPMTea9iIwpwtqIvfjq6ju2DbsA+BOZGDRtfggij4V8XCu+UyPJEJcB1PgeNiNmyJxbBkVEMvbIGpugfGDgt6TE6one0w1xXCVpIIZ+YJ9N7pj7A4890bH2GfNQZaufcmBFqjyQitpwqWzgzYW67C2XAUnupN8JYvQKDkW4SKPhO6YPHXCJRMhL90BrwV89BXuQy9Vavhqd4Ed+1OuOoi4aiPgr3pFBwtF2FvvQZb2+2B+JsDvasIWncFTMYGqEobFNUIg2ZBjz68Hwj4tDHQyj0GWk5mD4Pn2+9NwdvvTcGv3p+Kj39YiaSMwvDbbDt4Hp9MWo0ZEXtw6vJd/P3b/idqnxVoA4Eg/jV9Pc7Fpwwp0JqtDkyYuQEffbcckxfvQFl1E/7nn/PCP6zs59c72A8JW7ElGuP+tRgTZqzH/aJqfDtnM76cvg5mqwMzl+/FX79YhPcmLMGidYfg9vQ/JZuaXYxPJq0O/9mdPeor+Mw+TnigbWztemwNLV3IyCvDrBV7kZ5bKvrynkv0TYITNwZaucdAK/cYaOXeUAKtwWCH2qhAK2uHObce1uRyOOLzoV++i65rF9B05xjKM/cit2wLkrueHmHvKOuR1rwRBfc3o/b6NnRG74Jl81745x1AaN5R+FfEwrv5Enr33YArOgmO81mwJxTCkl4FPb8ZpupuKG06ekzuJ69RezzCujJjhh1hXfcGImx17hsVYZ/5dWWglXqvQ6BV1A7o3SWwtqfA0XIRrrpI9Favha9s9hAD6Vfwlc+Bp2odnPWH4Gi+DEtHOvTukmevqwjmzmxY29Nga7sFe2t8f0BtPAFnw1G46vbBXbMDnuoN6K1ajb6KpfCVz4W/bDoCJT8gWPTVqATgQMn38JdNha98DrwVi9FbtQqe6vVw12yHq24vnPVH4GiMgaP5POwtV2FrS4C1PQWWjkw4DAXwWathMtRCNbZAUbphNGnCv+bc6IyBliMaacID7WA8vV58NWuj6Mt4LtE3CU7cGGjlHgOt3GOglW8GxQmlyQRTRSdQ2QZbSgXs1wvgPJsBd9Qd9O66Bt+GCwhEnEBo9mH0Ld4PfftetJ3ciapb23C/cDNS2gc7I3Y9Uls34EHRNlSk70dLYgwMV+NguZwG+40CWFMroT9ogqmyC0qLBoM6xCfBXibCXp4tbYR95t8DBlqpJzrQGjQHVGML9K4C2Npuw94YC1fdbvRVroS/bBpCRV8MKVB6KxbBU7MFjvpjsLfGw9KRBZOhBkaTKvhz7IZBs8BoUqAo7TAZGqH1VELvLoa5MxeWjnRY2+/C3na9/+iExlg4GqLhrDsAd+0ueGo2o7d6LfoqI+AtXwBf2Uz4S35EsPjrIX1uXu7J3y8RKPkW/tIp8JXNhrdiEfoqV6C3ah3cNVvhqtvTH7wbYmBvOgN7yxXYWm/C2p4MS2cGzF0PoHeXwGSohmpshqJ0wqiaYNDlvueOpTHQckQjbcwG2lAohHFfLhJ9Gc8l+ibBiRsDrdxjoJV7DLRvwFQXlFYNpsou6A+aYE2rgv1GARznM+GOSkLvnuvwbrqIQMQphOYeHfToAN+CSJi37kVHzC5U39yGB/mbkdo6eIhN7t6M7JYDKG48i+qmu2hqK0On+hJRRHNC7WiDua4Q9uKBCHt7yzAi7Aa47h2BPRxhm6SPsM8aA63cG+lAazTpMBnr+89/bbsBR0NM//mvFUsRKJk4pFDoL52MvsoIuGt3wt54Ara2BJi7HsBkaIJBk/v/2wbdBqNqgqJ0QjU2w2Soht5dAnPXA1g6M2BtT4at9SbsLVdgbzoDR0MMnPWH4KrbA3fNVvTVrEegdiW8FYvgK5sNf+kUBEq+RbD4yxF+8nckzv1VBo5+eMp3WHBPHQMtRzTShAfaK4mZT+xcfCoWrD2Iz6f+JPrynkv0TYITNwZaucdAK/cYaMfgTG4obWaYqruh5zfDkl4Fe0IhHOez4IpORu/+m/BuugT/ilgE5w8eXAcNsQsPQt97BG2XjqA66zDuV+5BaseWQUNskrIFGUoU8tWrKNeyUK/Xol1/wRAbjrAF/RE2ayDCxi14iQhrF/81ew3HQCv3XjbQKqoRWk8lLB33YG+5AmfDEXiqN8JbPh/B4m+G9JSmr2wmeqtWw1W3D/ams7C2J0HvLoaqtKFHcwr/HL3Je9YZtAbNAaNJh6J2QzW2wGSog9ZTBr27AJaOLFjbU2FrS4S95SoczefhaDwBZ8ORgaMftg8c/bAK3ool8JXPgb9sGgIl3yNYNGHEj30IFn/Vf+5v2XR4y+ehr3LpwLm/GwfO/d0PZ30U7I0nB879jYet7Ras7Wkwd2ZD7yqE1lMOk7EeqtL6Ss/9HUtjoOWIRprwQPvRd8uf2KeT12DRukNobu8RfXnPJfomwYkbA63cY6CVewy0ozDNDWOHBaYaA/TCFlgyqmFLLIbjYg5cMSnwRCbAuyUO/lWxCC6IGnZwxYyDCC6Khm/tWfRtvwLPwVtwnkqHLT4H3Vn30FB+B6VNccjtikGqcfegIfaucTMylCO4r8ah3JSJOq0KbbrxBT7eJyNs35Aj7JyBCHuUEXaEx0Ar954daF1QlE7o3aWwtqc+cf7rUEJbsPhr+MrnwlO9/pHzX9Og9ZRDUbvBpx3FTtwPCXPBoFmgqEaoShtMxgZo3RUD5/7mwNKR3n/kReu1/oDadAqO+ii46iLhrt0JT/Wm/nN/K5fBWzEP/tIZCJRMHDj6YYTjb9GEgXN/pw2c+7tk4NzfDQPn/u6Ds+EIHI0nHjn3NxHW9lRYOrKgdxdA6ymDyVDXf+6v2g2jSYdBc4z614GBliMaacID7etO9E2CEzcGWrnHQCv3GGhfbMZOK9Q6I7TiVlgya2C7XQJHXB5cJ1PhOZCIvm1X4F9zBsGF0cCM4QbXAwguPAb/mjPo23oFngOJcJ1MhSMuD7bbJbBk1kAvboFaZ4Sxw4pu3YlmvR01WjGKTHeQo55FmrJv0BB7R9mIdPUQ7quX0OTKQp1WgTa9B8MKJpoTakfrQIRN+FmE/ZYR9jUYA628M+h2mE0tCFjLXvr8V3fN1v5vR2+9BktnNkyGWhhVk/CPkXv2xAXakRzP/R3qub8MtBzRSBMSaBtbu4a8sU70TYITNwZaucdAK/cYaPtn7LZDbTBCK22DObsOtrulcFy9D+epdHgO3UbfjivwrT2LwOLjwMyDw37KNbggCv5VsfBuuQxPZAJcx1PguJgNW2IxLBnV0AtbYKrugbHDgh5tsFDqQovWiRqtBMVqMnLV80hTInFHGeyc2A1IVyKRq15AiZqCWq0MLVoXuh/5Vs1QCDAM9nl5GGFr8/sjbObx4UXYWwMRtvA6I+wYHAPtm7uXP//1c57/+obvzQy0I7uXPfe3t2od+ipXCDj39/Mnzv31VUXAX7eO5/5KPKKRJiTQvvXOxCFvrBN9k+DEjYFW7jHQyr03NdAaDHaojQq0snaYc+thTS6HIz4fzth7cB+5jb5d8fCtO4/A0hiEZh0adnANzTsK/4pYeDdfQu++G3BFJ8FxPgv2hEJY0qug5zfDVN0NpU1Hj2l4/wHTrbvRqnejVitHqZaGPOUi7ikHcVfZOGiITVP2I1c9h2I1CdVaCVr0DnTrzz/DMRQIwBSOsDcHIuzmYUbYKNgLr8NcndcfYTVG2NdhDLSv717F+a/+8pkI1q3l+a+SjoF2rM3Fc3/D5/4aYDCZ8aad+zvWRjTShARau9M95I11om8SnLgx0Mo9Blq597oEWoPqhNJkgqmiE+a8BlhTKmC/XgDnmXtwR91B765r8G24gEDECYRmHx5+cJ1zBIGIU/BuvIjePdfhjroLx7lM2G8UwJpaCf1BE0yVXVBaNBjUV/cfDW26AXVaJcq0e3igXsY95TDuGjcNejxBqrIXOcoZFKm3Ua0VoUlvQ7f52efXGUwDZ8IywnKP/r1goB2jc0FRO6B3l8DangJH84Wfnf/6ryEEk+ef//qyPySMe73HQCvTnjz312mqRp9e9hqc+/uvgXN/pw6c+7sYvZWr4KleP3Du714464/A0RjzyLm/CbC2p8DSkQlzVz60nlKYDLX95/4q4s79HWsjGmlj4gxat6cX6TkluHgjHZdv3kPm/XL09nlFX9aQiL5JcOLGQCv3GGjlnrBAq7qgtGgwVXZBf9AEa1oV7DcK4DiXCXdUEnr3XId300UEIk4hNPfo8IPrrMMILDsB3/rz6N11De6jd+A8cw/2a/mwplTAnNcArbwDSpMJBnXknxZr0xXUa9UoM2XhgXoFGcpR3DVuGTTEpii7ka2eQqF6C1VaAZq0ZnQNcpZcj/60CBuNvtubEYibP8wIe2MgwjYzwr7hY6AV9HnX7VCNLdC7C2BruwV74ym4anehr3IF/GVTh3TW5as4/5WBVu4x0Mq9V3kGrUGzwmhSoagdMBmaoPVU9R/9wHN/x/SIRprwQJtTUIlffzANv/5gGt6fsATjvlyEt9+bgt/+fQbyS2tFX95zib5JcOLGQCv3GGjl3isLtCY3lDYdpupu6PnNsKRXwZ5QCMf5LLiik9G77wa8my7BvyIWwfkvElwPIbAkBr6fzqFvVzzch2/DGXsPjqsPYE0qhzm3HlppO9RGBYYecWGxQzehXqtDhZaNfDUeGeoxJCnPCLHGHchST6LQlIBK7T4a9cZBQ+xjEbboYYTd9FIRNhTwDX4GLfdGj4F2ZGY06TAZ6mDuzOmPEg3H4a7dBm/FkmGc/zoFfZXL4a7dBXvjSdjaEmHuegDV+OrOf2WglXsMtHLvdfkhYW/Sub99lRHorV47Zs79lZk/EMBb70zEL/8y6YkVltUBAK7dyQ6//R8+no2ObuWJ91NV34oPvl72wtfxsr9/rBMeaMd9uQjX7mTDHwiEf623z4vDsTfw3oQlAq9saETfgDlxY6CVewy0cm/QQKu5YeywwFRjgF7YAktGNWyJxXBczIErJgWeyAR4t8TBvyoWwQVRww6umHEQwUXR8K09i77tV+A5eAvOU+lwXLkP291SWLJqoZW0QW0wwtg19p5G6NDNaNAaUGHKRb56HVlKDJKUbYOG2CRlG7KUGOSr11FhykWD1oAO3fzE+zWYnFDbW58eYU8/J8LGze2PsBkDEbbmfv+TsKbBv5XvmT8kjHujx0D7YlNUw+Pnv9Yfgad6A7wV84b8Lb/+0hnorVoNV91e2JvODJz/WtJ//usofRwMtHKPgVbuvS6BdqRnNGlQlIfn/tZC6ymFuSsflo5MWNtTYGtLeOTc3xg464/AVbd34Nzf9QPn/i4eOPd3KgIl34/4sQ/9Rz98hUDJD/CXTYevfC76Kh6e+7sB7podcNXtg7PhKOyNJ+BovgB769WBc39ToKkAOgAAIABJREFUYenMht5VJDo9CfUw0BpN5qe+PhQK4X/+OS/88mCB1h8IwGJzvNR1vMzvH+uEB9rBImyf14dfvT91lK9m+ETfIDlxY6CVewy08k1pM0MrbYM1rQrBxEK4T6bCcyARfVuvwL/6NIILjw0/uE4/gODCY/CvPo2+rXHwRCbCdSIVjrg82G6VwJJZA72oBWqtAcZOi/DPwVDXpdvQqDeiUruPQlMCstSTSDHueEaI3YIM9Rjy1XhUaNmo12rRoT/+Lcf/jrAP+iNsxsMIO+85Efbbp0ZYtb3lmRH2WWOglXcMtE+forRD7y6FtT0ZjubzcNXtHzj/ddYQv232K/jK5/zs/Nd0aN0VUJRu4R/fwzHQyj0GWrnHQDvyM5jMUFQDVKUVJmM9tJ5y6F1FMHdmw9qe1n/ETWt8/7m/jSfhrI+Cq27/wLm/GwfO/V0Kb/k8+MumD5z7+9Uri7wye16gnbs6Em+9MxEfT1wFg2rGHz6ejfPX0vDxDyvxP/+ch2NnEwA8/gRsMBjC/uNX8dF3yzH++xWI2BwFp6v/SeX/+ts0RJ9LxLSlu/DPH1fj7NWUp/7+jXtP429fLcW4Lxdh5dboxx78fB0JD7STF+9Al8H0xK+XVjVi5vK9Aq5oeETfxDhxY6CVewy0b+bUOiPMeQ2wJRbBefoeevfegG/tGYTmHBl6cJ1/FP6Vp+HdfBme/TfhOp4Cx8Uc2BKL8P/Ze8/vqO48X/f+HffNfe8zd3zPmT49M+fMjKfb3ac99urstrvdtrHBNmATDJhgggkGjDHGZJODyAKEQCjnnHPOuWrvqlKouFNVPffFLoRkJCRQKEn1+671rIVUUtWuXVU/44fP/vwGM2pxFLdjq+/H2vV0EnSh0esYptXeRq29mBL5ETnyJVKkQxOK2ETrXjKlHymU71Bpy6LJXkenQxq5P1PCtockbOwLSNg9IQl7f9oS9lkIQRu5RKqgla1tOHpLQv2vl/E2fIda8yVGxUdT+p9af/l7qDVf4Kvfh6vlHM6Oewx2Z2Oz1GO1yWF/flM+D0LQRjRC0EY2QtAubCz2Qaw2CUnqwmZpwd5f84ze3ytP9f766nbPuWv6f2qi+L+rL885481kgnZw2MXLv1o28vW//vZTvv4hikAgSEe3hZdfXYpP0cYI1vi0Iv7w4Ta8PoVgMMi6nSf5/vRtAH7++goO/Wj+eWDIxc9eW45kGxzz+ynZpfx2yVY0TUfVdH67ZCvxaUUzdv7DMWEXtKejHvLLN9ex90gUl6OTOH8jnh0HL/CLNz/n5KX7XLuXOsJ8nHAvNILwIQRtZCME7cLE2jWAvaKLobRaXHcK8J5ORN0fjf+L85P3ua7+Ef2ra/iOPiQQnYs7rpShtFocxW3YanuROhxhf36zRd+Ai1ZHJ3X2UkrleHKlKFKlw88QsV+TIZ2kQL5NpT2DBnsNnQ4L/Q4fFptrQUjYZyEEbeSyGAWt1Waf3f7XBbL5y1QQgjayEYI2shGCVjDX83+VnQoL481jQfvyr5aN4bEsHU/Q1jd3jnz9z2+spNdiGyNYN+09zaXbiSM/k19ay5+W7QBMQdvY2j1y27ur9pGUWfxUB62q6SN//uq7iyNJ3YU6YRe0v12ylT8u3T4l5uOEe5EQhA8haCMbIWjnJxbJjdxkZaCwheFHZWYK9sgD9B1XCa6aZJOt5cfxb7qIeiAaz9kkXHcLGcysw17VjbV7aMzjzNgmYfOMPoebdkc3dfZyyuQk8uRrpElHSJB2jy9ipT2kS8fIl25SYU+jwV5Fh6OPfpvTlLD1BSEJe+Y5JOzqkIQ9E1YJ+yyEoI1cFqKgnW7/a6DsLfTKFaH+1x9wtV1nqCs51P/aRb/dHfbnOFcIQRvZCEEb2QhBK5jrsepeLGFgvHmRBO3oDtrHX48WrB9/8R2xSXkjP1PX1Ml//nktYAraPqt95LYVmw9z+2HmmN8fdnnYduA8b368k7dX7Obf/7CaH688eMGzPT8m7IJ2qnMzNj3chzDuhHuREIQPIWgjGyFow4e1exB7ZReD6bW47hbgPZ2Euv8O/o0XYPnUU7DuqAyG48txFLYiN0tYZM+Uj2GhC9o+h4d2ey8N9krK5RTy5BukS0cnFLEJ0m7SpKPky9cpk5Opt5fTYetA6m4zJWzJfVPCPtozdQkb/7UpYUun3wk71whBG7nMP0HrCfW/lo/tf63djl65kkDpW1MQsO+gV63CV7cbd9NJXO3RT/pf5X5mavfrxYAQtJGNELSRjRC0gkie2RC0W/ad5XJ00sjP5JXU8uePvgJMQVvb1DFy219X7iEps2TM7+89EsW2A+dHeme3HTgvBO1czc9fXxHuQxh3wr1ICMKHELSRjRC0s4dF9iA3W3EUtjL8qBx3VCa+Iw/Qv7pGcNUkXbDLj+HfdAH1QDTeM0m47hUymFGLvbJ7RjfZWjiC1kuno59GezUV9nQK5FukyydIkPZMWE+QJv9ArnyVUlsCdbZiOnvKcDTk/0TCrlr0EvZZCEEbucy1oLU4nMjWdhx9xaH+10t4Gr5DrdkS6n/985T6X7XqdXjr9+NqPouzI4bBnhxslgassm3OnstiQAjayEYI2shGCFpBJM9kgtbl9vIPv/gAr08FpiZokzJL+NOyHXh9Kn5/gDXbj3Hswj3A9H/7jl4DoLtP5r//+iPsA8Njfn/tjuNcumVWJLR19vHqW+tHOmwX6ghBO80J9yIhCB9C0EY2QtBOD2vPIPbKbgYzanHdK8R7Jgn1mzv4N00hBbvqlJmCPfIAd1TmqBSs9blSsNNhPgraToeVRnstVbZMCuRoMqRTJFr3TihiU6RD5EqXKZHiaOhNoac5kaHSe3gyT7+AhD1rStiGwkUjYZ+FELSRy0wLWtH/urAQgjayEYI2shGCVhDJ81jQ/sMvPniKx72vyzYc5J/fWEl1fduUBG0wGOTExRjeeG8Lr7+7me3fXhgRvD9/fQXnb8Tzx6Xb+eWb67gekwYw5vcralv4zd828rsPtrL1m3OkZJfys9eWk5ZTPpenZkZHCNppTrgXCUH4EII2shGC9tmYKVjJTMHGl+OOysB39KGZgl09WRfsMfwbL6B+cwfv6SRcdwsYTK/FXtk1oynY6RBOQdvlkGly1FNlz6bQdpdM6TRJ0r5niNiD5EgXKOu7RVN7NL3V13Hm/Ij6aHdIwk4kYCeTsJHTO/lThKCNXJ5P0HpF/+siQwjayEYI2shGCFqBmLmbn7++YsK07mIeIWinOeFeJAThQwjayEYIWh/WniHsVd0MZtbhuluI52wS6oE7+DddhOXHJ0nB/oi+4yrKkQe4r2Qw/KicgcIW5CYrFmn+C4e5ELTdDjvN9iaq7bkUyTFkSedIkvZPKGKTpQPk9J+irPM8zQ3n6S85jidpN/7bnz2nhH0QkrAdES1hn4UQtJHLWEE7M/2vWtVq0f+6QBCCNrIRgjayEYJWIGbuRgjaeT5C0ArmG0LQRjYRIWhlD3JLKAWbUIH7aqaZgt15ncCaKaRgv7iAuv8O3tOJuO6EUrAVXVi750cKdjrMpKDtcQzR4mimxpZPsfyALOkCydKBiUWsdR85vT9Q1nac5urDWHN2472/+gUkbJGQsC+IELSRgdn/2sZAb5HZ/9p6CW/DdwQbtz5H/+v7aNXrx/S/DvTkYLM0YrXZw/4cBc+HELSRjRC0CxuLzYdF9mG1KlgtCtZ+BalPQepVkHoU5G4FuVNF7lCxdajY2lRsrSr2ZhN3uyEEbYQjZu5GCNp5PkLQCuYbQtBGNotF0Fp7h7FV95gp2HtFeM4mo357B//mKaRgPztlpmB/iMV9OYPhR2UMFLQgNy6MFOx0eBFB2+MYpsXRSq29iGI5jhz5IinSwQlFbJJ1DzndBylv+pbWst1IqetQopdMLGGj/o4/eo0pYbOEhJ1NhKBdHDzpf83B2RGDq/ks3vr9aNXr8Ze/L/pfBU8hBG1kM98ErcUWQhpHOvaMIx3bn5aOjkYVR4OGo15joE5joFZjoFpjsCpEhc5Quc5Qmc5wqc5wic5wkY6zSMdZqOPMN3DlGbhyDVw5Bq4sHVemjjtDx51m4E418KQaeJINPEkG3oQQ8Qa+OD++h36UB36UWD/KfT9qjB/1nh/1TgAtOsStAPrNAPp1E+NaACMqiP9KEP/lIP5LQQIXgwQuBAmcDxI8C8EzJvw4s/gGhKCNZMSIme0RgnaaE+5FQhA+hKCNbBaMoH2cgi1qYzjxcQo2Dn3XFFKwnxzD/8V51P3RoRRsPkNpiycFOx2eJWh7HU7a7B3U2ksolePJlS6TKn0/sYi17Ca7ay/l9btoK9yInPgJvugl42/Q9VMJWxaSsN2dQsLOIULQLgRG97+m42qPxt100ux/rXrx/tfhrmRw1Yr+1whFCNq5wSL7sEgh4fhYOo5OOXaZ0tHWHqJVxd4Sko5NKo5GUziOSMcajcHH0rFSY6jCFI5DZSHhWBySjoU6zgLdFI6PpWNIOLoydHyZBkZOEE+KYZJk4E0MEW/ge2QKxxHpeN+P8lg43g1Jx9sm+s0A+o1RwvFqEOPKKOk4WjieM6XjTMvGSCR4BoLnzPMauGCKXf+l0Hm/EjRfh2shGXzDfJ2026YoNu4G8DmFoI1kxIiZ7VkwgnbtjuPhPoRxJ9yLhCB8CEEb2cwnQWvtc2Kr6WUwq95MwZ5LRv32LsbmS7BiKinYKJTDoRRsXBkD+c0RkYKdDoY/iDTkoc3RRb29jFJbArnyVdLkHyYUsYnWXWR37qKiZguteauRkj7Bc/cDiJpIwu4VEnaeIgTtfGCS/tey2el/fb5NwgSLjRcStPYnl1bPR+noTjeTjuGSjsHTwGnCLu4WJKdDwvEsT4TjhZBwvBzEHxXEiApJx1D6VL8ZQL/1RDqqdwLmaxljvq5KrPk6++JCPPKbiddE873hSTbfJ+5Uw0zIpofeS5k6rmzdfH/lGjjzDZwFZtJ2uCj0fiwNvUfLdYYqdAYrQ+/h6lByt07DUaeZid5GDXtT6P3fEkr+hj4bcqeK3PUkJSz1mp8na7+C1apgkRTz82YzP38z9fkXHbQCMWJme8IiaK/dS50y833CvUgIwocQtJHNnApamxepVcZR3MZwYiWu61n4joVSsGtPTykFq+2Lxns6AVf0qBRs10DYz+PCwEO7vYd6ezllcjL58nUybcdIkHaPL2Otu8jq2E559Re05K/Gkrwc970PCUb9fYyENaLXhiTsOSFhFxhC0M4+E/W/qjVbwtr/KgRtCNso6Then2P3KOn40z7HkHR0NI26tLo+JGhqRl1aXamZIqdcZ6h0POloPJGOOT+VjqMurR4tHRPGkY4/vbT6bgDt8eXVo6XjjQDGtSDB64yRjoHxpOMZhHR8QR5fmj5GOl4cTzo+ueRdv2leBj916fjkUvtJpWOOMSIdvUV+/BXBCaXj4GPpWGXWBDwtHZ9UC4yWjnLHONKx76fS8UmlwUxKR8HUEYJWIEbMbE9YBO0fl26fMvN9wr1ICMKHELSRzUwLWsuoFKwzpgjPuRTUg3cxtlyeWgp2++gUbKmZgm2wYJGF7JsqfQ4vHY4+GuxVVNjTyJdukiEdJ1HaM0EqdieZHdsoq/mCpoI19KeuwBXzIYFr7woJu8gRgnb6zEz/60eoNVvM/tfWSwx3PmKgtwjZ2jZr/a+RJGgtVgV7s8pQmZmyVO778V8Jhl3gLURGpOOzLq2OGufS6ltPejjVu6Ok431TOj6WzL5HfrzxxtikY4opqN2phimsM0LCMSskHUNy21lgmML7sXAsMYX4Yzn+WDgOVpkCfaDWFOqO+pB0HJ1ybA1Jx46QdOwyRb3UHRL3j6WjRcFiHZVytIX//T4V5lsHrWBuEYJWIEbMbM+CqTiYrxPuRUIQPoSgjWyeW9DavEhtMo7idoaTRqVgd9+YWgp2w3m0fbfx/hhKwabWYK/oROoUKdgXodNhocFeQ6U9g0L5NhnSCRKtE4nYXWR0bqO0diONhWvpS1vJcOxSU8SOSNh9IQn7MCRhO0Q/5SJGCNrJ8CLJ/dj7qifof33nhfpfh7qScfSVI4Wx/3UxClprv4KjUWO4WMeTaqDe8+O/NImIPW1emh48O1Y6+i+GUo5XzEvbR/ocb/ykz/G2mVJ9Ien4OOmYbqZlR0tHZ7bBYJqBI9lAfmRgiTHojTbouu6n7ZJO8xmDhmN+ar43qNxnULrToGCLQd56P7nr/eSs85P9uZ/MtQYZaw3S1xikrTZIXWWQssog+TODvqzA09LRMo50FCnHRYcQtJGNELQCMWJme0TFQWi2HTjPy79a9oRXl/K7D7YC0NMvs2TtN/zLGyv507IdlNe0jPxeuBcJQfgQgjayGU/QWvqd2Gp7GcxuwHm/GM/5FNTv7mFsuUxw5Ylnp2A/PYmxPQrl+/u4L6XjjCtlIK/JTMGKLtgXptMh0WSvo9KWTaF0m6z+oyRavp5QxKZ3b6e4fhMNRWvpSV/J0INlGDfee0rC+rsrcPR1CgkboUS8oLW7kZ/qf/0BpXYbeuWKWet/nQ8sZEEr9Sg46jWchTqeJAMtOkDgwsQiNngG9BsBfI/8uHINBqs1bO2qKR9n+Vi7exTamxVaKhXqC1Sq0xTK41SKozXyLqlknVJJO6SS/LXGo60asZ9r3FmmT4uYzzQefqGR8JVGygGVjKMaOWdVCq4qlMaoVCapNORquAfEJmGRihC0kY0QtAIxYmZ7RMXBBHPk3F1OXo4F4P01+7kcnYTfHyCnqIZX/rQW3fADC/Mv6IKZQQjaCMTuRWq14Shpx8iqw3srB9/xR2i7bxD4/MwUUrDn0PbexnsqHtetXIZSarCXdyJ1OsL/3BY43Q4bTfZGqm2ZFPdFkd17mCTLxInY1J4dFDVspq7kc7ozP2Uw7iOUmM9NCZt93kzCNhZPmIQ1/EHkISXsz1sQHha7oLU4hpGtrQz0FjLcGYez5WKo/3UzRsWysPW/zgfmvaC1+5C7FAZqNFx5ZvpUvxV45g7wgfNBtNsBvAnmxj4DtRpy9/TXtz7JR2e7QludQlOpQm22KTlLY0zpmXPWlKApB1QSvjLlaMxn0xOtdz/Rif3clLZJezTSDpkyN++SKXfL40zZW1+g0lJpSuDuHmXKadcX2iRMsGgQgjayEYJWEOkTDAa5dCuRN97bwsuvLuV//24Vq7cfpbPHOunvNrZ285u/bZyDo1zYM68rDkYnVedyevpl/uvvm1BUDcegk5+9thzD7x+5/c8ffUVxRSMwj/+CLph1hKBdnFgsTmx1fU9SsBdSUQ/ew/hyCinYlScxtl15koJ9WMJAXhO2egsWqyvsz20x0O0YoMVWR13vI8o6z5LX9R3J/RNs1iXtIqX3KwobN1Nbuo6urFXIKRtwJz+WsHEhCfv8SVghaCObhS5oZ7//1Rn25zhbzBdBa7H5sHWoDFZpuLJ1fHF+9BsBgs/YmCpwMYh6N4AnxWC4SMfRoCH1TrKO2X309Ch0NCs0V4XSrOlj06zZp1TSvx+bZr37yeynWWuzVZpKTQHc2a7Qa5398y4EbWQjBG1kIwStINLnwIkb/OZvGykorcPjVZBsg3x/+jb/8cc1uD3PPj9C0E5t5oWg1TSd9m4Lja3dI2QXVvFPv/k4LMez9Ztz3H6QAZiS+PcfbBtz+/pdJ7n9MBMI/1/QBeFDCNoFit2L1GbDUdLBUHIVruvZ+E7Eo+25ObUU7PpzaF/fwn8uCW90XigF24HU4RB9czNIn81GR08ejW23qGw9Tn77flJ7x5ewCdIukvu/Ir95CzXl62kr2Ex/3l4GCs5OS8I+CyFoI5v5LWhnqv91JUrtdjyNR57uf3V45sHzDA9zLWgtsg9bq8pQudm1qsT6Ma4G4Rki1h8VRInx404zGC7VsTerWPoUujoU2uoVGh+nWZNVSu+rFFxTyD2vknlUI/WASsJOjYcbNWJWadz5aBqi9ROd+2s1Hn2pjk2zXlQpvq1R/lClKk2lvkCluVKhvUmhu3vqadZwIARtZCMEbWQjBK0gkscx6OQff7mUxtbup27r6ZdH/lxZ18qflu3gN3/byG/f/5KiigbAFLSvvbORb0/c4JdvruO1dzaO3BYIBDly7i6vv7uZN97bwqa9p0eE789fX8HN2HRWbD7MG+9t4czVh3PwbMM3YRe0+aW1/MsbK3nplSVj+MdfLmXbgfNzfjxW2wC/ePNzVE0fOb63l+8a8zPbDpznSnQSAF7VEEQohj+IpvvDfhyCcXD6UNol1NJW9MQy9Kh0/D/cJ7DtCkySguXTkwR2ROE/+gD9WgZ6cjlqaRtKh4zXpYw8hj8QRNXC9/p7lEXw3vN68UjN2DsT6Wq5QF3jQYpadpHe/dWEIjap/yvyWr6ksvpL2ir3Yq06hav+PmpnOYq9D6+izsmxB4JBfGF8/QXhJRgM43//FRWfqx91oArNmobecxO97ShGww781SsITqX/tfwd/DVrMJq+Rms/jd53D03OQRlqwOex4VX1Zx6D2xf+12Cxvf4+l4Ha7UerCaBnB/A/DBKMevZGXfqlIO7rAew3A/TcDFAfZVB8TifnqEbafp3E7ToP12ncWz7NNOsqnUebNJJ36mQc1Mk9oVN8Safitk5dvEFThkF7sZ/eWgOp3WBA8uNyhf91mg18mp9AMBj244hkwvn3H1Xz4w+I1z9S0XQ/hl+8/pHMXE/8Jp249XPPeFNYVs9//X3TpMf8+w+2EZdSAMDD5Hxef3czYAra//eXHxKTkAPA/cRcXnvHvL/4tCL+8OE2vD6FYDDIup0n+f70bQD+9befcuzCPcCUxC+/uhSvT53eiZ3HE3ZB+4cPt3HpdiJDw27+7fercLm95BbXsGrrEbr7pDk/nos3E9h9+MrI1xW1Lfx2ydYxP7Nu5wnuxGUBMOTRBRGKZgTxqv6wH0dE4tZx9g3hru7Cm1mDEp2HdjoBY+9tguvOTZqCDaw/i7HvNtrpRJQ7eXgza3HXdOPsH2LIPbVjMPxBPIoR1nMQ9tdhCgw7Pbj623C35GKru0FX1Q/UV+2ipP5LMjq3TyhiEy07yWnfQXnjHpobjtDTdB1HRw5OqYchtxL25xUIgssb/vMrCA8Aw7N038NuD67BDjxSCb6+eHztl1GbD6HXbcFfObX+10DFEozaDWiN3+BrP4ev5wEeKR+Xo4Vh1+C0j3Fwgaw/s/L6hF7/F/19p83A1ezHnRfAExdAuRHEf46J07CnYPhokN5vAtTtCFCwwU/yZwb3njPZ+ribNX6rRspenczDGnlndIqjNCruGdQmGjRm67SVGnQ36PR3GthknUFX+M/5fMLlNdf/cB9HRBPG9cejmAGNsJ8DQVjwqn40Q7z+kcxcz3Q3v3xRxpu4lALeXbV35Gu3x8e//2H1CNFxmQDoukEgEARAtg/xj79cCpiC9p9+8/HIbbpu8NIrSxgcdrFp72ku3U4cue/80lr+tGwHYAra0andf35jJb0W28yd5Hk2YRe0/9+vP0LXzX+N+N+/WzXy/YaWLt5fs3/Oj+e91fvILqwa+Xpw2MX/+D8f41O0ke+99s5GKmrNftxwx+wF4UNUHMwuFqsLW30/AzmNOB+U4LmYivJdDMbWywRXnpy8C3brZZRDMXgupuF8UMJATiO2+v4Z64JV9QAOpxr28zQfsMhD2DqaGazLYbj4Drb8Y3Tn76SxeCNlNV+Q1bGVBOsEIta6i6zO3ZS0fEtNyxla2x/S3VdNn31+d/aKioPIZjoVB1bZhs3SwOBT/a/r8Je/J/pf5zkjFQd2Hz29Cu2tCs3VCvWFKjUZChWPVEruaJRfVqn9Uaf1uJ/eI34GjwTQTzKhiNWOg+NgkI49Aaq3Bchb7yfhU+OpioGYT0PdrDs0Ur5RyTiikn1GJf+qQsk9jcpEldoslcYSldZahc42hV5L+M/bYkFUHEQ2ouIgshEVB4K5HmU4PIw3xRWN/PrtDSNfB4NB7APD2AeG2bLv7MgV5kmZJby7ai9vL9/Fmx/v5B9+8QFgCtpX/7JuzH3+028+pqtX4uMvviM2KW/k+3VNnfznn9cCpqAdHdz86deLbcIuaP/jj2tGTvCrf1mH1TYAgN8f4GevLZ/z4/nZa8vps9rHfG/pum/58coD/P4AcakF/PrtDfj9AUAI2khGCNppYvchddhxlLUzlFKN62YO3pPxaHtvEVh3dvIU7LqzaF/fwnfyEa4bOQylVOMoa0dqt89Jf12kCdrREtZVdBdP+gkGU3fSl/45LXmrKa/aQHb7VhKsO8dPxVp3kdGzl8LOH6jqvEpjXybt9oXbZSkEbWQzsaD1Isl92PurGOxOw9V2G3fTCXx1u9CrVk2t/7VU9L/OJX2Sj65OhdZ6hcYyhdoclapklbJYlcLroW7WY6Fu1l0aDzdpxK7RufORzt1lOsmfGRRs8FO3PUD33gBD3wfxn2BCEascCyIfDNCxz0/tPoOS/QY5hzQyT6rkXlQpuq1R9lClOlWlPl+luSLUzdqj0GcL//mKdISgjWyEoI1shKAVRPI43V7+538tp7Ku9anbdn53iSvRSTgGnfz3X39EW1c/ABbJMUbQ/uy15QSDYxO0w04PW/ad5XJI8ALkldTy54++AoSgnfM5cOIG//b7VQwOu9hx8AJ/XbmHW7HpbNl39qlqgdkej1fhpVeWjPTPPp4+q5331+znn99YyZsf76SuqXPktnAvEoLwIQTt5FisLmx1/QzkNuF8WILnYhrKoRiMbVemloL98grKdzF4LqbijC02U7B1fVgs4U+ILUZB+1MJ6007gfbwK/w3V6DfeA854WOaCtdQ2LiZpP4JRKy0i7S+/eT3nqS8/y519hLaHJ30DczvROzzIgRthGJ3I0td4KpluCsZV9t1PI0/oNRuQ69cQWAq/a9lf0OrXo2vbjfuplOQUtG1AAAgAElEQVQ42+8w2J2Bvb8GSbbQ7/CG/3kuNOw+evoUOloVWqoVGgpVajIVKuLNNGv+FYXsH1XSDqsk79OI36bxYL3GvRVT7GD9WCd1lUHxJj8NO/z07g/gPBwkcIrxRewpUM8EcV4OYL9tYE006C3Q6G5SRZp1gSMEbWQjBG1kIwStINLnws14fvHm5+QU1eD1qQwNu7l2L5Wfv76CvJJaWjp6+V+/+wxN0wkEghw+E81LryxBUTUaW7v5b//5AUmZJQA8SM4b8X1JmSX8adkOvD4Vvz/Amu3HRnpnhaCd4/H7A9yKTUfVdNweH1/sOcWrb63n/TX7x4jQ+TrhXiQE4UMIWl8oBevAXtYRSsHm4j0Vj/b1FFOwn59F+/omvhPxoRRsFY7SdqS2uUnBToeFKmhNCdtkStjisRKWK++M4L2zhL60ldSWrSO77UsSpKeFbKrlG/IsZymR46i1F9Nqb6c3Qi6vFoJ2cWKxDyNbWxnoLWS4Mw5ny0W8Dd+h1mzGqJha/6u/fAla9Qa8Dd/gaj6Hs/M+Az252CyNWG32sD/HeY3so6tLoa1BpalcoS73J2nWCyqZx1VSvlVJ3KURt0nj/mrtqRqA5+pm/Vgndo1G3GaV1D0aJd/rNJ006D1jMHQugHo2CBOI2OAZMK4H8MX5cWXpDFZq2NpULCLpumgRgjayEYI2shGCViAGbsam89slW3n5V8v4199+yqptR6lp7Bi5fcu+s7z61nreXr6LgtI6/v7ZXv7yyU5qGjv4/QfbOHjyJq+/u5nX391MeY1ZGxoMBjlxMYY33tvC6+9uZvu3F0Y2AhOCdp7Oxj0/hvsQxp1wLxKC8BEpgtbsgrUwkGemYN2X0lG+vz/FFOyJUAr2Hp4LZgp2MLth3qRgp8N8FrQjErY225Sw6aaEDdxcPkbCPiYY9XeGYpfRkbOa0rptpPaO0xUr7SFT+pESOY4GeyXdjsgWTULQLkxmqv812LhV9L8+g5E0a41CQ5FKTaY6kmYtiFLIPq2S/oNK8j71SZp15fQ2tIhZqfFgg0b8do3k/eb9Z59WyY8KdbMmqNRmqjQWq7SXq1hKNAYLdDwpBuo9P/5LwQlrCYJnQb8ZwBtv4MozoAPkTnXe/0OiYOYRgjayEYI2shGCViBGzGzPghG0P399RbgPYdwJ9yIhCB+LRtDafUidDuzlnQyl1OC6FUrB7r2Nf8O5KaRgz6DtuYnv+CNc17MZSq7CUdKB1Gaj3754L9UNt6AdI2GL7pgS9sHEEvaJjH0P5f46+vP2Ult/mLyuQyRa9zwlZJOl/eTKl6mwp9Nsb1p0FQXTRQja+chk/a9/m7H+1+lsErZg+GmaNU+lKkWl7IFK0Q2FvPNmmjX1oEribo24zWaa9e7H00uz3l9t3lfibo3Ug+Zj5J03H7PsgXkMdXnmMbU1qHR1KfTJ4z8HqUfBUafhLNTxJBlo0QECFyYWsYELQbToAJ4kA2ehzkC9htQ99nM+sklYuF8fQVgQgjayEYI2shGCViBGzGyPELTTnHAvEoLwsZAErUVyIzeEUrBxpU9SsNujCH46lRTsZdSDoRTs/cWTgp0OcyFoLfIgto7GF5Kwxt11KAn7cWdfQK6KobkjlpL+G6RLJ8btjU2VDlMg36bGlk+7oxvRg/lshKANA3Y3stSJo6+Moa4knK1Xf9L/+pc5639dSII2HGnWeyt1Hqw3u16T9z1JsxZEKZTc0aiIN4+joUilpcY8vp6+F/w82X3IXQoDNRquPANvgoF2K0DwLBOKWP/lIOo9P54Ug+FiHUejirV/ao8vBG1kIwRtZCMEbWQjBK1AjJjZHiFopznhXiQE4WO+CVqpcwB7RSdDqTW4ovPx/piAtu82/g3np5aC3X3jSQo2qQpHSTtS6+JOwU6HmRK0TyRsVkjCHn9OCfsN7uwLDJc9wtFUitTbRau9jWp7LvnSTVKk78YRsrvJlE5RYntIvb2Cboct7OdzoSEE7cxjsQ9jszzuf32Is+UC3oaDqDWbMCqWzqv+17kWtH2yj65uhbZGMzlan69SnaJS/kCl6JZmdrOeGJ1mVYldE540a/8EadZpvz9sPmztKoNVGq4cA1+cH/16gOBpJhSxRlQQJdaPO0NnqFzH3qJikab3uRWCNrIRgjayEYI2shGCViBGzGyPELTTnHAvEoLwMdeC1iKHUrD5zQzHleK+nIFyOBZ9exTBz05NnoLdchn1u3t4zqeYKdisemy1vVj6IzcFOx2eR9Ba5EFs7Y8lbHRIwu54YQkr93bTbzcvte5xOGlyNFAuJ5MjXyRJ2veUkE2S9pMjX6JcTqHZ3kivYzjs52+hIwTt82P2v9Yz2J2Ns+MerqYz+Or3PV//a+VHqDVb8DR8h7PF7H919BUjW9vntP/1RQVtj8U3kmZtLDY7USsTVEruaeSPTrPuV4nfbnaqxqzUppdmXTE6zaqRdlgl+0eV/Cuj06wKDYUqLdXTTLPOABbZh61VZahcx5WpozzwY1wNwgQiNngG9BsBfA9HbdTVPnsbdQlBG9kIQRvZCEEb2QhBKxAjZrZHCNppTrgXCUH4mA1Ba+0awF7RxVBarZmCPZ2Ati8a/xdTSMGuPY2++wa+Y3G4rmcxnFSJo7gdqU2m3yZSsDPNTwXtzEjYi6aEbRwrYUfT5ZCos5dTLD8gQzpJgrR7nLqC7ymQb1Ftz6PN0YWoK5h5hKD9KbPc/yp387j/Ndz02XwoTmifwzTrnY9CadZNGom7NFK+NdOsuRdUCq8rlMWqVCWr1OX+pJtVCv/5mgirVcHerDJcquNOM1Bi/PivTLJR160A3gRzo66BGg25S5nzjbqEoI1shKCNbISgjWyEoBWIETPbIwTtNCfci4QgfLyIoLVIbuRGaygFW2amYH+IRd8xeQqWFcfNFOzBu3jOpeCMKTJTsDW9WPpECnausMiDOJrK8VfHomYcR3u4ncCNj58pYbnyzpNO2JxLY5Owz3w8L22OLqpteRTIt0iVvh+3riBDOkmx/IA6ezldDins5ygSWMiC1mIfxmpzYLVZkaQeZKkDm6UFm6Uee38Vjr7ySRnqSsTTeBildhtGxfIppF//RKDsHbSqx/2vJ0P9r+nY+6qR5P45Pw+9Fh+dbQqttQqNJSq1WSqViaE061WF7DMqGUdUUr5RSdih8fALjZhPw5RmnWMJOZNIfQqOBo3hIh1PioF610/g4iQbdd15slGXo05D6pk/nzUhaCMbIWgjGyFoIxshaAVixMz2CEE7zQn3IiEIHxMJWmv3IPaKLgbTa3Hdycd7OhF1fzT+Ly5MLQW76/qTFGxiJY7iNqRWkYINF3JXO0NVKXgyT6PHfDEFCfvNc0rYJ/Q6hmm2N1JhTyNHvkSStH+cuoJ95MgXKZeTaXI00DOHl3ULnvA8gtZiH8Rqk5HkPmSpC9nahs3SiL2/BkdfBY7eEgZ68xnszmKwO52hriSGO+NwdsTgbL+Dq+0GztaruFrO4W46jbvpOJ7Gw3gbDuKt34+vbjdK7XaU2q2o1V+gVa1Fr/oUo/ITjIoP8Ze/N6UE63Txl7+PVr0eb/1+XC0XcHbEMNBbMOP9r6Pps/no7lFob1JorgilWVNVyh6qFN3WyL2oknlSJe07laTdGo+2qMSu1bjzyfTSrLFrdB5u0kjYpZF6QCXzmEbu+bFp1toclcYyhdZ6ha7O+Z1mnQmkHoWBOg1ngY430UCLDhA4P7GI9V8Oosb4cacaDJfoOJpUrJb5I2In/DwLQRvRCEEb2QhBG9kIQSsQI2a2J2yC9vCZaEqrmjD8/in9/JXopFk+ohebcC8SgrnncQpWrejAl1SB+0oGypEH6DuuElz14+Qp2M2XUL+9i+dcMq57T1KwVpGCDTtWq4OBxmJc+TdQ478meH3puCJWv7cBf95ZPJXxOJrKn0vCjqbbYaPeXkGJ/JBM6cdx6wpSpEPkSzeptufS6uigT9QVPJOppEMHeosY6MllsDuDoa5UhrsSGO54gLPjLq622zhbr+JsuYCr+SzuppN4Go/gafgOb/0BfHVfo9R9RaBxO1rNJrTqdehVq9ArV2BUfIS/fAmBsndmXYZOl0DZ3/CXv49RsQy9cgV61WdoVZ+j1mxEqdmKUrcDX90evA3f4G34Dk/jD7ibTuBqOoOr5QKutusMdz5ioLcI2do27det1+qjs12htU6hsUShNkulIlGlNEaj4JpCzlmVjCPamDTrvc+ml2a9u1wndp3Go60aSXs10n+aZn2kUpOhUF+o0lyt0N6q0NNrplnnepOweYPdh9ypMlit4coz8MYb6DcDBM8yvog9DcZVc6Mu15iNuubBc3nRNUYI2ohGCNrIRgjayEYIWoEYMbM9YRO0v/9gGy+9soSfv76CtTuOc/dRNpJtMFyH88IT7kVCMDtYuwexV4ZSsHcLQinYO/g3XoDlk6Rg1/z4JAV7LYvhxAocRW3ILZJIwc4n7B5sHU0MlyfgTTuGcXfduDI2cONjlMQDuIru4GgqxyIN0u94vk3CTLy0O7qpseVTKN8mVTo8Tl3BLjKkExTLsdTby+h0WMN/np6Bxe4y06GyDUnuR5K6kK3t2KxN2PtrsfdX4OgtZaC3gMHubAa70xjqSma48xHOzvtmOrT9Js6WK7hazuNqOo276QSexh/wNnz3JB1atwO15kvUmsfp0M8wKpZjVCwNpUPfIVD2l7BLz/F5MyRD38Oo+BCj8hP0qk/RqtaiVn+BWrMFpXY7vrrdeOv34204iKfxMO6m47ibTuNqOYez5bKZom2/g7MjhuHOOIa6khjsTmewO4uB3nwcvSU4+iqw99dgszQiW9uQpS4kuQ+rTcZiH8Rid83q+6HP5qO7O5RmrVSoL1CpSlMpf6hSfFsj76JK1imVtEMqSXs0Hn2pcn8G0qwxq7XnT7PK03uui13QWmw+bO0qg5Uariwd30M/xvUAwTOM3w97GvTrAXxxflw5BoNVGraO2duoK6znRgjaiEYI2shGCNrIRghagRgxsz1hrTiwDwzzMDmfL/ef5T//vJaXXlnC7z/YxqEfb1Nc0YhuTC1dG84J9yIheDEssge52cpAYQvDj8pxR2XiO/IA/atrBFdN0gW7/Dj+TZfwH7qHeiHlSQq2ugdr73DYn5tgfKR+KwN1+bjyolDjdhG8+sG4G3bp97/Ek3WOoepM5J6uCe9vMkHbN+Ci2d5MhT2dXOkyyePUFSRa95ItX6RMTqLJUU+P49nvn5lLh14MpUNP4Wk8iqfxkJkOrd+LUrsTpXYbaigdqlWtRq9ciVFppkP95X8nUPr2PBCfEyRDS9/GX/53/OVLMCo/Qq9ciVa1Gq16HWrNJpTabSi1O/HV78VbfwBP4yE8jUdxN53C1XwWZ8tFs06g7TbOjrsMdzxguCuBoa5UBrszGOjJZaC3CP9wLYPWamyWemyWFmSpA0nqwWqzYrU5sNgX7loQljTrJzqxn5tp1uSvNdK/V8k+pZJ3SaU4WqM8TqU63ZS+zVUKHc0KPT3h62ZdLILWIinYW1SGynXcGTpKrB8j6hkbdZ0Lot02N+py5hsM1IZno66wnjMhaCMaIWgjGyFoIxshaAWRPIbfz0uvLOHL/Wefum3nd5d46ZUlk14dfyU6ie3fXpj2sVy8mTAj9zMfZ1510LZ19XP1bgqrtx/l3/+wmp+9tjzchzTphHuREEyMtWcQe2U3gxm1uO4V4j2dhPrNHfybppiC3Xkd39E43FczGU6owFHYaqZgZXMn8RfZJEwwN1jsTuytdTjLHuBL+QF/9Opx07H+25/iSz6EsyQWe2s1Fptz1H24ntkdqg/W4bSWjnSHOroTsHRdpqv9EG2tX9LcuoqWlk9paVpBW9MndDR+Qk/DCqT6dQw2bMFd99VId6has2WS7tA3wy4+x79M/i8Eyt4JpUOXYlQsD10qvxa15gvUmi9Dl8o/ToeOvlT+NK6W82Z6tv2mmQ7tvM9w5yOGupIZ7E5jsDubgd4CHL2l2PsrsPfXYrM2IVvbkaQuJLkfq2ybk3ToT5n3m4TZQ92szQotoTRrdZpCeZwpPPMu/STNulUj9nONu9NNs67SeLhRI2FnKM161EyzFlxTKL2vUpmsUput0liq0Fav0NWxMLtZF5qgtVoUHE0qwyU67lQDNcaP//IzNuq6GES9E8CTbOAs0nHUa0i98/j9PocIQRvZCEEb2QhBG9kIQSuI5DH8fv7H//mYX729AUXVRr6vG35ee2cjL/9q2ZwJWp+i4fYsztdj3ghavz9AZV0rp67EsnTdt/zP/1rOr9/eEO7DmnTCvUhEMmYKVsJR2MpwfDnuqAx8Rx+aKdjVk3TBLj+Of/NF1AN38JxNMlOwmXVmCrZnaEqPLwTtDL+e9iGsNjuSHEqHWtuxWZuxWepC6dAyBnoLGejJCaVDUxjujGe4IxZ3UxRK5SHUgk0YGR8RSH6bYPJfCKa+aZL+FwIZb+HPfQ+j+CP0sk/RqtaM2x0aKH0r7OJzfP48Z+lQR1859v6qCdKhA1gmSfpGAnMlaB+nWdvqFJpKFWqzVSqTVEpjVAquhtKsRzVSDqgkfGWmWWMiLM0aDuaroJV6FRz1Gs4iHU+ygXYnQODCMzbquhLaqCvNYLhUx75ANuoKJ0LQRjZC0EY2QtBGNkLQCiJ5DL+fl3+1jPW7TpKYUTzy/ezCKtbvOjkmQXsnLovX3tnEr97ewPtr9mORB4CxgrayrpU/LdvBb/62kd++/yVFFQ0A/OLNz+nukwBISC/iH3+5FJ9iCuFLtxLZd/SqSNDO1nT2WLkek8aqbUf5+esr+Pc/rOaLPae4+yibPqs9nIc25Qn3IrHYsXYPYa/qZjCzDtfdQrxnklAPROPfdBGWH3+mhA2ufpyCfWimYOPLn0rBToeFLGgnS4dOeWf5lsuT7iz/7HToXxdMOlSrWIavahnuqg8Yqn4XR/V72GrfR6pdgqX2A/rrlmGpX4PcuI2Bpm9xtpxdsOlQweQ8l6ANR5p1mU7MZ6awTfjKFLgZRzVyzppitzTGFL212SpNpaYA7mxfmGnWcBBWQWv3IXcrDNRqOPMNvAkG2u0AwXMTiNjTYFwNoDzw48o0N+qytapYptnDG6kIQRvZCEEb2QhBG9kIQSuY87m7BqI/nXvGGcPv5x9+8QHpueV89uWRke9v2nualOzSEUE7MOTi5V8tG/F527+9wK5Dl4Cxgvb3H2wjLqUAgIfJ+bz+7mYANu87w4PkPAD2HL7CX1fuobiiEYBV246SnlsuBO1szC/fXMfPXvuENduPcfVuCi0dveE6lGlNuBeJBY/sQW4ZlYK9mmmmYHdeJ7BmCinYTRdRD0TjPZOE624hg5l12Ku6sXZPLQU7HaYuaD3TSoc62+/iar+FszVq0p3lldqtI92hCy8d+tdQOvQDjMqP0Ss/RatejVa5Gr3sU4zCj/Dn/J1gxpsE094kmPoXgilvEkz+C4Hkv6JnrUAr2o6v+giulpsMdzxkqCvRTIf2ZDLQk4ejr9hMh/ZVY7M0YLO0htKhvVht0kg6tNsxQKO9mhI5nkz5DAnSnqf6Y1Pl7yi03aDKnk2rvY1+x/Slv2B+0yf56OowL82XGgM05GpUJquU3jcv4c89b17Sn3pAJWGneal/zCqNOx/NTJo1aY9G2iFT5o5Js6aZ0rel0pTA3RGWZg0HcyFoRzbqqtZw5Rj4HvnRn7VR1xnQbwTwPfLjyjUYrNawtS/OjbrCiRC0kY0QtJGNELSRjRC0gjmfcSr65oRx5rGg1XWDf//DaoadHhRV4z//vBZV08ckaEdXIMSlFrBsw0Hz6YwStLpuEAgEAZDtQ/zjL5cCEJOQw+7DVwD480dfcScui9NRDwH4jz+uweX2CkE7G7N53xn+449r+Lffr2LN9mPcuJ9GZ481XIfzwhPuRWIhYO0ZwlbdY6Zg7xXhOZuMeuAO/s1TTMF+dc1MwUZlPEnBNktYJkjBWhxOLLYBMx0q9SFLncjW1lHp0HIcvcUM9OQx2JPFUFcaQ12JDHc+xNkRg6s9GlfbdZwtl3A1n8fd/CPuxmN4Gr/H23AQX/0+fHW7MBp2oNdtQaveYF4uXxlKh5Z/iL/83XmeDn0rtLP8+xgVy9ArV4S6Qz9HrdmIUrM11B26B2/DNz/pDj2Dq+XCqHToXYY7Y0elQ9MZ7MlhoLcwlA6txN5fh83abKZD5W4k2YLVZsdiH6Tf7n7yXpEGcDSW4iq8jZKwn8CNj8b9j4ZxbwPe9JMMVyZh62yl3+6d1nu03dFHrb2IQvkOadLRp2RsgrSLdOkYRfI9au0ldDr6J90kTDBPsfvo6TEvy2+uCqVZ08emWbNPqaR/r5L8dXjTrL3WeXC+BOMyk4LWIvuwtZkbdbkydZQHfoyrATjN+P2w58fZqKtb1BLMFULQRjZC0EY2QtBGNkLQCuZ8fEPhYZx5LGgBdhy8wO0HGSRlFrP1m3MAI4I2GAxy6kosb32yi7eX7+K1dzaxdN23wFhBm5RZwrur9vL28l28+fHOkfvus9r507IdDLs8/HXlHnr6ZZZvOkR7t4W3l+8CxCZhszotHb1ciU5i+abv+afffMwv31zHtgPniUstwDHoDPfhTTrhXiTCjt2NRRrA3tLBYFElruQMvLdjUM9HYRw5QXDvN7BrN+zdBd98Bd9uh0Nb4fAWOLYZTmwkeOlL9Nvb0eJ2o6bvRcnfj6/sG7w13+Jt+AZf3R6Uuh0oNVtRazaiVX2OXvVZKB26DH/5+wTK/kagbL6mQ98kUPZX/OXvYpR/iFH5iZkOrVqDVr0BtWYLSu02fHW78NXvw9twEE/j97gbj+Fu/hFX83lTFrddx9UejbMjhuHOx+nQNAZ7ssx0aG8oHdpfg83SiGxtRZY6kaQ+rDYZi20Ai8MZ/vfMyHvHi62zheGKJLxpJzDurR9XxgZufoySsB9XUTSOpjIs0uC0HrdvwE2Lo4UqWxZ58lWSpQNPydhE69dkS+cosyXQaK+hx/H0YwpBG176ZB9dnQqt9QqNZQq1OSpVySplsSqF10Np1mOhNOsujYebNGJWTy/NeucTnftrNR59qZK+3yD9+1Ca9aJK8W2N8ocqVWmq2c1aqdDepNDdLdKsi5EXEbRWq4K9WWWoVMedZqDE+PFHTbJR110/nhSD4SIdR4PYqGs+IARtZCMEbWQjBG1kIwStIJJntKAtqmhg6bpvWbvjOHkltcATQZucVcrvP9iGy+0FIDYp7ylB6xh08t9//RFtXf0AWCTHyH0D/OZvG3mUVsiBEzcAeOO9LUTHZfLD2TuAELRzNrrhp7iikZOXY/nN3zby0itLwn1Ik064F4m5wtrnNFOwWfVmCvZcMur31+aB/JyldGhrlFkr0H6X4Y5YhjvjGepKCW2kZKZD1YEq3LZabJZR6VCpB0m2htKhQ4jL3ke9hywyAw2FuPKuoj7aTfDah08L2ah30e9vwZN1lqHqDOTuzmk/bo9jkAZ7DaVyPFnSORKkr58SssnWb8mTr1Fpy6LF0Uqfwz3p/QpBOwPYffT0KrS3KjRXK9QXqtRkKFQ8Uim5o5F/RSH7R5X0wypJe0Np1nUad5dPL81673GadYdGyjcqGUdCadZrCqUxGhWJKrVZKo0lCq0TpFnnapMwwfzkWYJW6lNwNGgMF+l4UgzUe378F5+xUVdUECW0UddQqY69WcVqFe+t+YoQtJGNELSRjRC0kY0QtIJIntGCNhAI8to7G3ntnU34/QHgiaC9di+VlVsOA+B0e1m24SBvr9gNPBG0LR29/K/ffYam6QQCQQ6fiealV5aMVCNsO3Cet1fsJjmrFDC7Z/+6cg+FZfWAELRzMiMbhm09wr+8sZKXX13Kh58fCPdhTTrhXiRmDJsXqVXGUdzGcGIFrmtZ+I7Foe+6TmDt6fErCFb9QLD4zwQL3ySY/xaBvHcI5L2Pv2ApRtEK9NK1qFWbFm06dCFvEjbbWGxu7G31DJfH4Us9ghG9dtx0rP/WSnzJh3CW3MfeUoXFNjztx+5w9FFrL6ZIvkf6BHUFadIxiuS71NqL6XD0vdDjCEH7hD4pPGnW2LUaj7aoJO3WSPtOJfOkSu5FlaLbGmUPVapTVerzVZorQmnWHoW+GerjFII2sgkGMTfqqtNwFuh4ksyNugLnxxexwTNgXAvgexjaqKtCx9YmNupaiAhBG9kIQRvZCEEb2QhBK4jkGS1oAb49cYOvf4ga+Xr0JmFvr9jN6+9uZun6b6msa+Xf/7Cag6dujqk42LLvLK++tZ63l++ioLSOv3+2l798shOAB8l5vPTKEmwOs27hws14Xv7VMlRNB4SgnZUZdnlIyizhq+8u8upb63nplSX86u0N7Pr+Mul5FXh9argO7bkm3IvE82Dpc2Kr6WUwqx5nTBGecymoB+9ibL4EKybpgl31I/qOqyhHHuC+ksHwozIGCluQm6xYpMnThosRIWifIPX2MViXgzvnEtqDHQSjljwlY4NR76M93I475xKDdTlIvS8mRkfT53DTam+jyp5NnnyNFOu34wjZr8mSz1Iqx9Ngrx63ruBFWHSC1u6jp0+ho1WhpVqhoVClJlOhIn5smjXtsEryPo34bRoP1mvcWzHNbtZPf5pmVck+o5J/VaHknkblSJpVpbVWobNNodcS/vMlBG2EYPchd6oMVGu4cg288Qb6zQCcY3wRexb0mwF8jwxceQaDVRpyh9ioazEhBG1kIwRtZCMEbWQjBK1AjJjZnrAJ2v/2nx/w8q+WsWzDQS5HJ430Tyy0CfciMQabF6lNxlHcznBSJa7roRTs7hsTp2BH4f/iAur+aLynE3HdKWAwvRZ7RRfW7pkRWouNSBW0FpsTe2s1zpJYfMmH8N/+dPx0bPQafKlHcJbFYW+rx2KbvsjvcQzRaK+l1JZItnSeROvep9kHRBcAACAASURBVOsKpAPkylepsmXS4mihb2B2/gFhvgraPslHV5dCW4NKU7lCXe5P0qwXVDKPq6R8q5K4SyNuk8b9BZ5mDQdC0C4uLDYftnaVwUoNV5aO76Ef/XqA4BnGrya4gLlRV6KBs0BnoE5D6hHvh0hACNrIRgjayEYI2shGCFqBGDGzPWETtJn5lfgULVwPP2Mz14uCpX9UCvZ+MZ7zKajf3cPYcpngyhPPTsF+dspMwf4Qi/tyBsNxZQwUtCA3Rm4KdjpEiqCVe7oYqs7Ak3UO/f6XEPXu0+nYax+iPtqNK+8qA/UFWC3yjDx2p6OfOnspRXIMGdLxCeoKjlAo36HWXkS7vXfOzstsC9qwpFlXajzYoBG/XSN5v0r6DyrZp1Xyo0Jp1gSV2kyVxmKVlhrz+HrmQZo1HAhBuzCxSD7sLSpDZTquDB0l1o/xjI26/JeCqPdCG3UVhzbq6lNeaJMwweJACNrIRgjayEYI2shGCFqBGDGzPfOmg/an43R7sdoGwn0Yk86Mf/DtXqRWG46SdoaSqswU7PFHaLtvEPj8zBRSsOfR9j1OweYzlBZKwXYNhH1BW2wsRkFrkQZxNJXjKopGSfiGwI2Px03HGvfW4007wXBFErbOFvrt3mk/dp/DQ5u9PVRXcIMU6eA4QnYPmfIZSuR4Gu1VdDvC976ekqCVf5JmzVOpSlEpe6BSdEMh77yZZk09qJK4WyNus5lmvfvxi0vWux/rxK7RiNts3mfqQZXMEyq5F1SKbmmUP1CpTjHTrE3lCm2NKl3dCn2iC/O5EIJ2fmO1KNibVIZLdNypBmqMH//liUWscSWIct+PO11nqGzyjbqEoI1chKCNbISgjWyEoI1shKAViBEz2zNvBe2uQ5d46ZUl4T6MSedFPtgWixNbXR+D2Q1mCvZCKurB50nBRqEcfpyCLWUgv9lMwcoiBTuXLHxB68XW2cZQZQqejFPoMV/Alb8/JWMDNz5CSdiPq/A2jsZSrNLMSNEexzBNjnrK5CSypQvj1hUkSd+QK12h0p5Bi6OZvgFXWM7VSJq1RqGhSKUmU6U53U95jE5BlEL2aTNtmrxPfZJmXSnSrIsZIWjnB1KvgqNew1mk40k2UO8ECFx4xkZd1wP44vy4snQGKzVzo64XqNoQgjZyEYI2shGCNrIRgjayEYJWIEbMbM+8FbS9FhtV9W3hPoxJZ9wPr92L1GbDUdLBUHIVruvZZgp2z82ppWA3nEfbdxvv6QRc0Y9TsJ1InSIFO59YaILWarEz0FCEK/86avzXBK8vfTodG/V39JjNeDLPMFSVhtzdMWOP3+mwUm8vo1iOJV0+MUFdwQ8UyNHU2Atpt/fM6PPvk310dZuJ0aZyhfp8M0la/sBMluZeMJOmT9KsKrFrpp9mvb/aTMaOpFmPq+SdNxO0ZQ/MRG1dXijN2qDS1SXSrAsBIWjnFrlbYaBWw5lv4E000G4HCJ6bQMSGNuryxoc26qrWkDtV+u0zdzxC0EYuQtBGNkLQRjZC0EY2QtAKxIiZ7Zm3gnahzEBO49gU7JeXJxWwwU9PYmyPQvn+Pu5L6Tgflpgp2AZL2BcdwdSZ14LW7sHW0chweTzetGMYdz4ffyOvmytQkg7iKo7B0VKJRR6akcfvc3hpdXRQbc8lX7pJinToKRmbKO0hSzpNiRxHg6OSbodjSvfdY/GNpFkbi80UaWWCSsk9jfzRadb9KvHbzRRqzEptWmnWeyt1Hqw3u16T95n3X3zRoPia2QlbEW+mahuKRqVZ+4S8W8wIQTvzWGw+5A6VwSoNV66B75Ef/cbEG3UFLgTRogN4kgychToD9RpS99y8JkLQRi5C0EY2QtBGNkLQRjZC0ArEiJntCaugfZCcNyYlW1Baxx8+3Marb63nwIkb+P2BMB7dFGfCFOw5MwX7YygFm1qDvVykYBcT80nQSn0WBuvycOdeRnu4k+DVJU9v5BX1PtqD7bizLzJYm4XUO3MbavU4nDQ5GiiXk8mRL5Ik7XtKyCZL+8mVLlNhT6fJ1kxnj3tBpFn7J0izzvYmYYL5jRC0L87/z957R0d1pvuac++sWbNmzdxZ949ZM/ec0yfek9rtDu502n1ON+3Upp3tts1xBJONI2CCDRhsAwYMtrHBgMjZIogkhAJCCISQEBLKOYdKu5RqV+3aoaqe+aNABqskorQlfd9vrWctVFXa9dYu1afSw1vv53BreGp1OgtMfBkm2tEQ1q4wrCf2Rl3bvrdRV4WOs83ecy8FrbhIQSs2UtCKjRS0YiMFrURGZqBjm6Ddezidex6aSHpWAQBdPj+/fmQqc5ZsYOeBVH731FvE7To2qDXlFJTzyMtz+OXoyUyZvYpuNQBAc5ubse98ym8efZ1nJiwgv7i653u0rxPxbzlJ95FoF6ynzIHDJWfBioBdgtahdKPUFtOddxgt5XNC8W/E7o7d9xZa6pd0XzyKUluKw3Pn5rc2el2UKvnkOI6Q3raWJNdHvTtkGz4n9eI+0hKzSd3QzIkPdY6+Z5Aw7Ta7Wade3c1qcPJzncx1Oue2B6/qZg1Sfl6numjgulmloBUbKWivj9MZRKnS6bxooqZbBA+FCG3vZ6OuHRGCh0Oop0w6802Uah2Ha2ieYyloxUUKWrGRglZspKAVGyloJTIyAx3bBO3jr77PkZSsnq/jj5zisVfmEolEAEjOyOXxV98ftHq6fH5+99Rb5BZUoBsmS1bv5NvD6QC8+vZStu1LJhQKcyanmFHPvINphQD5Bl1kBkvQulqa6CjOQD29GePIPCI7X+ndHbvrNfRjH+HL2kF7WTZOh/uGj9/q0WhqDlJXGaSq4HI3a5rOxaM6OfEGZ7cGSd/dTOrRc5w4F09SzapeMva44yOO5a/nyKFjHPqyiIPTO/oXrRMvd7PONjixyCB1ebSb9exmnfO7g1w8rFOYolN69nuzWV32P+9XkIJWbKSg/Q5nWxBvhUFXrok/zUI/GCK0te+Nusw9YbSjV23UVXdrG3XZiRS04iIFrdhIQSs2UtCKjRS0EhmZgY5tgvYn949Hae/q+XrWx+tYuS6+5+s2p8JPH5wwaPUkJJ3hvY+/6XW5t6ObX46eghUK9Vz254kfkltQEa1zCCwUEnsYCEHrcHfgrbqEL+cAwRPLCe+dErM71jownUD613QVJOGpr6JN8dPi0GioDVJTEqTigk7JaZ1LJy7PZt0ZJHODzqkvdVI/1UlaYPTdzTo1wKFPqzmy5xRHs7ZxvGlpbyHbtJSjWds4+u0pjn1VxfGF/pvrZr2Dm/XYhRS0YiOioHU1B2kvM+g+b+JPtjD2hQlv7nujLuPbMIGk6EZd7cUG7saR8dpv80pBKzJS0IqNFLRiIwWt2EhBKxE5VijEXaPG8v7SuF7XLfxsK3eNGnuNM4uV7fuSmb98MwC/eHgSTk/7gNQ6nGOboP3Fw5PweDt7vr7/2ek94w4gOlbgl6MnD1o9S7/axcefb2f8jOU8OGYmc5fEofo18oureXLcvGtuO2PRWuKPZgDyDbrI3L6gDeBurKez6CT+jPWYCbNgx0u9RxXsmEj37qW07o6nbGseWes6OLlSJ/ljg8T3dQ69Y7B/8m2MDJjRwZF1hSSeOEZSyXqOO3uPK0hpXsXpmnhyK89RWtVEY4M2pLpZ7UAKWrEZsYJW0XA3BmkvNvBlWQSSLMxvw0Ti6Hujrv2XN+rKMfGWGriaR+B5+R5S0IqLFLRiIwWt2EhBKzZS0EpEjhUK8fM/TuLBMTMJ6kbP5aYVYvSLs/jpgxNuStB6O7oJhyMDWvNwjG2C9pkJC0hKzwEgt6CCnz00EX8g2HP9iVODO+Lg/aVxjH5xFg53O7ph8s6Cr1myeifn8koYM2XRNbedt2wT2/clA9AdMCWCYloRNCMU87rOThNPm0VbjUljkUlNtkVVWicNCfm07Yqnc9tSrK0Te48q2PYSnWvnULcsjrx5p0h+q4n9E29sZuuBy7NZk+abpC01Ob3a4NxGkwu7DQoPWZSlmFRnGVSUtFHUcJ6ctv2cdH3eS8YmuT7itGcdBe1Hqe0uRPF7bT/XQxErHCGgW7bdf5dq/zkQmXAEVM2+5/+28Zn42yy08hB6dggzKUxobwQ2EFvEbo9gHQ6jZ4QIXgoRaLDwdQyBx2ETov/+F339Ef35FxlVswhH5PNvJ11+++47oFtY4Yjt50BiD5oRwrTk8y8yIscKhfjpgxOYsWgtJ07l9lyeeb6QGYvWXtNBu//YaUa/OJsHx8zk1beX4nBHO2VlB+31Y5ug3Xcsg1/9aQrTF67h3semsWzNnp7rLhZV8cBz01m3/cig1bNk9S4+/Xr3NTU8Me4DCkqqeXzsB9fcdvrCNew/dhqI/oEuGaEELDoUC3djiNYKi4Z8i+qzFmXJFoUJFvm7Lc7HWZz+wiBtiUnSBwZH3jU5MNnkwESdtLdrKViQTMOKtfjWzYBtvUcVBDdOoe3zzyj56BCnZxSTMFnl0JsmiXMMUj4yObXCJGutSe42k/x4k5JEi8oMi7qcEM3FFs56C68zRLcv9mPo1oK0qLWUdWWQrewgxfVpLyGb7F5CtrKN0o50WtQqurSA/ed+GBAKRdD0kG337xsC50BkwpcFvd11XA+/z0JrCaGXhjHOhrGOhQnvjsB6eovY9RDeHcE6Fr2tXhpGaw7h77b/cQw1IhHwD4E67ELk9ccfjD7/dtchsYeAHl3/7a5DYg+aHiIUks+/qOhGCDMUtr0OiX0Mdn5Z6ednFYNPrFihEHffN470s/m88f6XPZfPXrye1My8HkHb3unjpw9OoNWpADB/+WYWrdwKSEF7I7FN0EJ07uv7S+PYsjcJ0/zuB37esk3MWbKhZyOuwcj2fcnXzNO4WFTFMxMW0NHl4+d/nIQW/K6Ne/SLsygoqQbkR9yGAy1OjYa6ILWlQSrzgpRk6lxK1slL0MneGeRMnM6p1Qapy3SSPrw8m/WNG+tavcLRqe2cm51LxSe78Kz+GGvLa727Y7e/gm/7PJy7ttBwMJOKlBbKsnWqCoPUVwVpbr79+YxNXi/l3ktccCeS4VrPCdfHvYRsqmsl59zfUqScpcbbQKs3YPtzNByRIw7EZqiNOHA6giiVOl15JmqahZ4QIrStj/mw68HcHUY7FsJ3xqKjcHhu1GUncsSBuMgRB2IjRxyIjRxxIDZyxIFksPMXJaotxMoVQWuaFr976i26uv0EdYM//PkddMO8poP26hEIx9KymTBzBSAF7Y3EVkHbV0Kh8KDfp9Lexb2PT6OythnTCjF94VpWfLMXgPHTl7Nu+xFCoTDH0rJ5aMzMnhrtXiSEQdFoag5SVxWk+lKQsmydopNB8o/p5O4zyNqqc/ob/bvZrB8YHH7X4MBtzGbdP9Ek4U2Do7MMkhYapC3TyVhtkLXJT/GuMpwHk+jatxpj11sxN/IK7XsTLeVzuvOOoNSU4FC67/h5qVdaKFbOk+3eR5rry5jjCk651pDrPkyZkk+D12n/czlCkIJWbOwStK6WIN5yg64cE3+qhb4/THhLHyJ2YwQjPrpRV/c5i/aSkbVRl51IQSsuUtCKjRS0YiMFrdhIQSsZ7LitCC4biJUrghZgwYrNxB85RXJGLh98uhGgR9BGIhG+2X6Y5ycvYsyURYx+cTbjpy8HpKC9kdguaEsrG/gibj8zP/qG2Z+sZ932IzS2uGyp5XR2IQ88N51/f+JN3vv4m56ZuK1OhVffXsq/Pfo6z05aSGllQ8/32L1IDDdaXRqN9UFqy4JUXOlmTdHJO6STvSvI2U1RCZq2TCdpYVSOJrxpsH/irYvWA5NNDr8blbbJHxucXBmVuVlbo3I3/1hU9pZl61Rfikrgpqu6WV0tLXSUZKJmbsE4Mp/Ijld7d8fuHId+bBHq2e10lGbharvzIrS1XaXaW8Ul5RRnXTtIjjGu4IRzCZnuLVx0p1DpLaPZ22X7cz5SkYJWbAZa0Lqag7SXGHRnRzfqMuLDhDfFFrHhLRH0/WH8KZc36iozcLUMne7ekYgUtOIiBa3YSEErNlLQio0UtBKRc7WgzSkoZ/z05byz4GuyLpQA3wnalNN5PDluHj41AMDh5CwpaG8itgraVevjuWvUWJ4cN48Zi9by7odf8+CYmdx93zjidh2zs7Qbjt2LhC0oGs3N0Y/lVxVe7mZNv7abNfMbnfRVOimf3KFu1gkmCW9Exw8kfRgdR3BqtcGZuOiYgryE6NiCkkydyrzoOIOGuiAtzpt7bA5PF97qQrpzE9BSPiP07esxu2OtA9OxTq9FK0rGU19Jm+K/4+e5ydtOhVJEnvs4Ge4NJMUYV5Di+ows9x6KlDPUKvW0eu98HZLYSEErNndE0Ho03PU6HYUGvrMWWqKFuSdMpI+NukLbI+gJIdSTFl15JkqljtMhRawdSEErLlLQio0UtGIjBa3YSEErETlXC9pwOMLoF2cx+sXZPZ8svyJodx1M4/W5nwPQrQaYMHMFY6Z+BEhBeyOxTdCmZubx0wfGk3Hu0jWXh8MR9h5O50d/GEfamYs2VXfjsXuRuB1a3cOvm/VO426qp7MwHX9GHOahObDj5V4yNrx7PPrxxfjO7aG94gJOh0KbVyOgh+hUjTtWS523lRIlh/OeA5x0rY4xrmAR6e6vyXEfolTJo8HrsP1nSGSkoBWbmxG0Do+Gp1ano8DEl2GiHQ1h7epDxK4Ha2eY4JEQvgyTznwTT42Ow23/Y5Z8hxS04iIFrdhIQSs2UtCKjRS0EpFztaAFWL5mD598saPn66s3CRsz9SMeeXkO42cs51JpDb976i1WfLNXCtobiG2Cdvz05Sxfs6fP65et2cPLby4exIpuLXYvEm2KRnNLkLqaIFVFQcrO6xSfClKQqHNhv8G57UEy1+mkf66TvPhyN+t0gwNTbq+b9eCVbtYFBqmf6pz68nI3664geQkGBSd0Sk7rVFwIUnOL3ax3GoerA2/lRXw5+wgmLSW8Z2KM7tiXMA/Own9qHZ2Fqbgb62jrYxOt2xG00XEF1RR6TpPl3kmKa1mMcQWLOe3aTJ7nBJVKKS1yXMGQQgpasYklaB3OIEqVTudFEzXdJHgohLW9j/mwG8DcE0ZLDOE7a9FRJDfqGk5IQSsuUtCKjRS0YiMFrdhIQSuRkRno2CZof/Po61wsqurz+oqaJn7+x0mDWNGt5U692FvdGo0NQWrKglRcDFJyRqcwRefiYZ3zuy93s351uZt1kcHR2QYJb91eN+v+ySaH3jFIfF+/tpt1i05uvEH+UZ3Ckzpl2TpVl4LUVQZpagrSOhwEghLA01BD16VkAulrsQ7OjDmqILxnMsETy/DlHsBbVYDD3XHD93EzgrbZ20GFUkye+zinXRs54fykl5BNda0gy72bQiWTGqWWNjmuYEgjBa24ONuChFoiqHkW/jQL/WCI0NZ+NuraFyZw4qqNuprkWILhjhS04iIFrdhIQSs2UtCKjRS0EhmZgY5tgvauUWNpcyp9Xu/0tHPXqLGDV9At5poXrexmtQ2nQ6G9PAdf1i70xI+I7Hqt90ZeO17BOPwB/tOb6CjOwN3SdFv32Z+grfe2UqJcIMd9kPS+xhW4vuK8O4ES5QIN3jbbz6Hk5pCCduTjag3iLTfoyjHxp1jo+8OEN/ezUdeBEP5Ui64cE2+5gatVitiRihS04iIFrdhIQSs2UtCKjRS0EhmZgY6tgra/mRPDRdCe+Mjg2GyDQ28ZtyVZ908wOfyOQeJcneSPDE5+ppOxVufsFp2ceIOLR3WK0i53sxZc7mZtFvSPf0XFU1dO18VEAmmrsfa9E7M7NhT/BlrK53TnHUapLcahdN/ROr4TtH5qlFoKlUzOuXeT6lweY1zBJ2S6NpHnSaJCKaHZ22n/eZTcFlLQjhxczUG8ZQbd5038yRbGvjDhTbFFbGhbdKOu8NkIvnwLpUrH6RR0LRYYKWjFRQpasZGCVmykoBUbKWglMjIDHVsF7fjpy5k65/OYjJ++fFgI2u9L1oRp3+9m1cncoHNuZ5ALBw0uXelmzdWpLg5SXxOkuU3+cd8frtY2OkrPoJ7ZhnHkQyI7xvbujt05FuPoh6hnt9FRmoWrdeA20Gr2dlKhlFDSmcpZzyZOOBf3ErIpzuVkuXdxyZNJtbeGVq9q+3mU3FmkoB1+uJqDtJcadGdbBJIsjPgwkY19iNgdEYKHQqjp0Y26lGodh+u7Y93MJmGSkYcUtOIiBa3YSEErNlLQio0UtBIZmYGObYJ20cqtN8RQT/WlILUVOo1ypuAdweHpRqkppvvCIbSUVYTip8XsjrX2v0vg5Gq6LibiqaugTRk4AdrgdVCq5JHjTuCU6+uY4wpOur4ix32QEiWXejmuQAikoB2iKBruxiDtxQa+rKiINfeGicQRU8RaOyIED4fwnYqKWE+NjsN9/fuRglZspKAVFyloxUYKWrGRglZspKCVyMgMdGwTtCMldi8Swx13cyOdRRn4MzdhHn6fyI5XenfH7h6PfvwTfOd2016eg9OhDFg9rV4/tUodRcoZstx7SHWtiCFkP+G0O47ijmTqukpp9t74xmKSkYMUtDajaLgbdDqKoiJWSwxh7gkT2UBvEbserJ0RgkdC+DJMOgtMPLU6jtvY8FAKWrGRglZcpKAVGyloxUYKWrGRglYiIzPQkYL2NmP3IjGccLg68FYV4MvZT/DEMsJ7Jsfojn0JM+E9/Ke+ofNSKp6GWtq8gQGrqdnbRaW3jIvuZDJdm2OPK3At46x7J4We01R7q2ltj3br9rdJmGTkIwXt4ODwaHjqdDoKDXxnLLRj1xGxu8Jox0L4Tpt0XDLw1N2eiO0LKWjFRgpacZGCVmykoBUbKWjFRgpaiYzMQMc2QfvIy3NuiKEeuxeJoUsAd2MdnYWp+E+twzw4C7a/1EvIhvdMInhiGb6c/Xgr83G4BrYbtcHrpEy5SK77MKdca0hyfRRjXMFqzrv3U6LkUOdt7fNYUtCKjRS0d5YeEXvJwJdhoh0NYe0Kw3p6idjIBjB3h9GOhvCdsegoHDgR2xdS0IqNFLTiIgWt2EhBKzZS0IqNFLQSGZmBjm2CdsvepBtiqMfuRWKo4HQotFfk4ju3B/34J4R3j+89qmDHK5iH3sd/eiOdRadwNzcOaE2t3gA13gaKlLOcc+0l1bUyxriCj8lwb+CC+zgVShFN3vYbPr4UtGIjBe2t4XBreGp1OvNNfBkmwcMhrB2xN+qKrL8sYhND+M5GRay7QadNsf9xSEErNlLQiosUtGIjBa3YSEErNlLQSmRkBjpDesRBm1Oxu4Trxu5FwhYUP576Srrykwic/Apr/7sxN/IKxU9DS1lJ94XDKDVFODzdA1pXs7ebSqWcfHcKZ9xbSHYt6SVkk12fcta1g0vKKaq9VT3jCm4FKWjFRgra/nG4NJTqqIhV002Ch0KEtvchYjeAuTdM4LiFL8uivcjA3RgcEiK2L6SgFRspaMVFClqxkYJWbKSgFRspaCUixwqFuGvUWJas3nXN5SfP5PPmB1/esfv5xcOTcHraqahp4uEXZsW8zZa9ScxfvvmO3edQypATtIZhkpSew4SZK7hr1Fi7y7lu7F4kBgNXm5OO0izUs9vRjy0isnNcjO7YsRhHPkQ9s42O0jO4WtsGvK5Gr4tSJZ9czxFOudbGHFeQ5vqSbPc+ipXz1Cstd/T+paAVGyloozidQZQqna48E/WkhZ4QIrStDxEbB+a3YQJJl0VsiYG7aXhKTiloxUYKWnGRglZspKAVGyloxUYKWonIsUIh7nloIr9/+m1qG1p7Lr/Tgtbb0U04HOlX0GpBA9U/Mp+PISNoK2ubWbJ6F/c+No1f/WkKCz/bSnF5nd1lXTd2LxJ3GofSjVJTQnfeEbSUzwntezNmd6y17x0CaavpupiIp64ch+fWO1FvjAC13kaKPFlku+NJc63qJWNPuD4mw7WeC+5Eyr2XaPJ6B7QmKWjFRjRB63QEUSp1unJN/KkW+sEQoa19iNiNEYz4MIETFt3ZFu2lBq7mkSUzpaAVGyloxUUKWrGRglZspKAVGyloJSLHCoX42UMTiT9yiokzP+u5/GpBGw5H+Pjz7fzxP9/jgeem8/7SOKxQCIBfPzKVHftTmDxrJQ+OmUlqZh4LVmzm5TcX8/KbSwhoOnBtB+3oF2exfM0e7n92OqNfnEVOQTlwbQftpdIanpmwgIdfmMXjr77fc5vhGlsFrerXiD9yiucnL+Lu+8Yx6b3P+Mn946ltbLOzrJuK3YvE7eJqaaaj+DRq5maMI/OI7Hyld3fsrtfQEz/Cl7WL9vIcnA5lwOtq8XZTpVRQoJzkjHtrH+MKlnLGtZ0CJZ0qpYrWdt+gnjspaMVmpApaZ1sQb7lBV85lEXsgTHhLbBEb3hTB2HdFxJp4y0aeiO0LKWjFRgpacZGCVmykoBUbKWjFRgpayaBn7laYtXnwiRErFOLH979GOBzh6fHzSc8qAK4VtKmZeTw+9gMMw0Q3TB4f+wHHT+YAcO/j09i4OxGAfccy+NlDE2lqdQHw2rvLSEqP3u5qQfvj+18jIekMAIdOnGX0i7OBawXtk+PmcSw1G4CjKed45OU5d/pZGNTYJmjnLonj53+cxNPj57P12xMo7V1A9Am58kQNh9i9SNwMDncn3qpL+HIPEkxeQXjvlNjdsQdnEkhfS9elZDwNNbQpgQGvrcmrUKYUcMF9lAzXupjjCk66vyDbHU+xkk2dt8n28ykFrdgMd0HragniLTPozjHxJ1sY+8KEN/chYjdHRaw/2aI757KIbRFbTkpBKzZS0IqLFLRiIwWt2EhBKzZS0EoGPZO/socYsUIh7r5vHAC5BRWMfnEWpmn1GnGgG2bPvz/8bAsbdh4FooK2ur4FgPMXy3jslbk9t1uwYjPb9iUD1wraXzw8iXA4AoBpWtw1aiwdRNNVegAAIABJREFUXb5rBK1pWj23cSud/OT+8Xfk1NsV2wTtXaPGMmPR2p4n6UqkoL1zuJsa6Cw8iT9jA2bCbNjxUi8ZG947iWDSUnw5+/BWXsTh6hiE2gLUeZsoVrI5744nzfV5Lxmb5PqIDNc6ct3HKFMKaPIOfNfuzSIFrdgMF0Hrag7SXmrQnW0SOGFhxIcJb+pbxOr7w/hTLbpyTLzlBq5WKSFjIQWt2EhBKy5S0IqNFLRiIwWt2EhBKxn0dAWgyz/4xMjVghbg7flfsXF34jWCtsvnZ96yTTw7aSFjpn7E7556i3XbjwBRQdvqVICo4H120sKeYy1auZUte5OAawXtA89Nv6aGXzw8icYW1zWCNjnjAi+/uZgxUxbx7KSF19Q4HGOboM0rrGT24vXc89DEni5aj7dTCtpbxOlqx1uZh+98PMHjSwjvmdi7O3bHy5iH5uI/HUdn0SncTQ2DUltru48qpYoCJZ0zru0ku5bGGFewhLPubRQoJ6lSKmnxdtt+Tq+HFLRiM9QErbspSHuJQfc5i0CShfFtmEgcsUXslgj6gRD+NIuuXBNvhY6zTcrGm0EKWrGRglZcpKAVGyloxUYKWrGRglYicr4vaFscHv79iTeJP5rRI2gXf7mDecs29cydnbds020J2l+OnkIkcm0HbVe3v0fQeju6ueehiT0jUh0urxS0t5tuNcCug2k8PX4+d983jrtGjWXv4XSMq1qjh3JsWRyUAJ6GKroKThBIX4N1YHrMUQWhb19HS1lJ94VDKNWFODxdg1Jfk9dLufcSF9yJZLjWc8L1cS8hm+ZaRbY7niLPOWq9jbR5B36Mwp1GClqxsUXQKhruxiDtRQa+LIvAcQtzb5jIBmKK2NDWCPrBEGqaRdcFE6VSx+mQUvFOIAWt2EhBKy5S0IqNFLRiIwWt2EhBKxE53xe0AF/E7efhF2b1CNp3FnzN1m9PAFDb0MoDz89g1fp44NYE7Y/+MI7kjAsAHEnJ4vGxHwDfzaCtrm/ht0+8gWGYhMMRPt+wj7tGjSWoGwN3IgY4tgvaq1NcUc/Cz7byy9FTuPexaSxZvcvukq6bwVgInA437WXZ+LJ2oid+RGTXa7038trxKsbR+aiZW+koycTV0jpoC1W90kKxcp5s9z7SXF/GHFdwyvUNFzxHKVPyafJ6bF9c7wRS0IrNgApaj4a7XqejyMB3xkI7FsLcHSayntgidlsEPSGEetKiK89EqdJxOKU8HEikoBUbKWjFRQpasZGCVmykoBUbKWglIieWoA1oQUY9806PoC0oqebhF2bxxLgP+ODTjaRm5vHL0VM4eSb/pgVtcUU9T46bx4q1e3nk5Tk88vIc8ourgWs3CZu7JI4Hnp/BmCmLyM4r5aU3FvPc5O+OPdwypATtlQQ0nYPHM3nh9Y/tLuW6udMveodHRakto/viMbS0Lwntezt2d+y+t9HSvqT74jGU2jIcHnVQFqXWdpVqbxWXPBmcde0g2fVpjHEFSznj3kK+O5VKpYIW7+B07g42UtCKzZ0QtA6Phqdep+OSge+0iXY0hLW7n47YHRGCh0Ko6SadF02Uah2Hy/5zISJS0IqNFLTiIgWt2EhBKzZS0IqNFLQSGZmBzpAUtMMpt/sid7W00lF6BjVzK8bR+UR2vNq7O3bXa+iJH+HL2kl7WTZOh3vQFqFmbwcVShF57uOcdseRFGNcQaprJefc31KkZFHrbaB1GI4ruBWkoBWbmxG0Do+Gp1ans8DEl2ESPBLC2hmBPjpire0RgodD+E6ZdOabeGp0HG77H7PkO6SgFRspaMVFClqxkYJWbKSgFRspaCUyMgOdIStoj6ac62lbHsq5mRe0w9OFUl1I94VDaCkrCX37eszuWOvgDAIn19BVkIynoZo2ZfCEZ723lRIlh/OeA5x0re5jXMFact2HKVXyafC6bF8o7UIKWrGJJWgdbg2lWqfzool6yiR4OIS1PRJTwrIerJ0RgkdC+DJMOgtMPLU6Do/9j01yfaSgFRspaMVFClqxkYJWbKSgFRspaCUyMgOdIStodx1MZdJ7n9ldxnXT3wvY3dRAZ9Ep/KfjMA/NhR0v95Kx4T0TCSYtxXc+Hm9FHk5X+6AtMNFxBTUUek6T5d5JimtZLyF7wrmETPdmLrpTqPSW0+zttn1hHCpIQSsuDmcQszWC/5KFmm4RTAgR6k/E7gqjHY2K2I5LBp46KWKHO1LQio0UtOIiBa3YSEErNlLQio0UtBIZmYHOkBW0wyVXXqwOVwfeynx8OfsIJn1KeO+k3t2xO17CTJiDP2MDnYUncTc1DOqCEh1XUMxFTxKnXRs54fwkxriCzzjn2kuRcoYab70w4wpuBSloRz5OZxClUqfrgomaZqEnhAhtiy1iIxvA3H1ZxGaadBRKETuSkYJWbKSgFRcpaMVGClqxkYJWbKSglcjIDHSGhKANhyMo7V20OpVeDPUE0r/BOjgz5qiC8N4pBJNX4Ms9iLfqEg5356AuINFxBRfIcR8kPea4gkWku9eQ4z5EqXKRBq/T9kVvOCEF7cjB2RbEW2HQlWviT7XQD4QIb+lDxK6PithQSgTtXIiOQgN3vU6bFLFCIQWt2EhBKy5S0IqNFLRiIwWt2EhBK5GRGejYLmhPnMrl3sencdeosTEZ8rlKyBpH5qFmbqWj+DSuluZBXjD81Ci1FCqZnHPvJtW5PMa4gsVkujZz0Z1MpVJKi7fL9kVuOCMF7fDD1RrEW27QlWPiT7HQ94cJb+6nI3ZPGC3Rwpdl0V5k4G4M0qZEj3Uzm4RJRh5S0IqNFLTiIgWt2EhBKzZS0IqNFLQSGZmBju2C9ndPvcWXGw/Q0OzE6WnvxWDlTE4xP/rDOH764IQedh1MA6C5zc3Ydz7lN4++zjMTFpBfXN3zfZ1FGSg1JYO+OLR4u6hUSsnznCDTtYkTzsUxxhWsIMu9h0Ilkxqljlav3/ZFbSQhBe3QxdUcxFtm0H3exJ9sYcSHCW/qQ8TGgbk3TCDpsogtMXA3fSdi+0IKWrGRglZspKAVFyloxUYKWrGRglZspKCVyMgMdGwXtD97aCIBTbe7DI6fzOHdD7+Oed2rby9l275kQqEwZ3KKGfXMO5hWCBi8N+gNXgelSh457gROub6OPa7A9RU57gRKlTwavG22L2AjHSlo7cfVHKS9xKD7nEXgRFTERjb2IWI3RjDiwwROWHSfi4pYV/OtCzYpaMVGClqxkYJWXKSgFRspaMVGClqxkYJWIiMz0LFd0L6z4GuyLpTYXQbxR04xf/nmXpd7O7r55egpWKFQz2V/nvghuQUVwMC8QW/1+qlV6ihSzpDl3kOK67M+xhVsIs9zggqlhGbv4M63lUhBO2goGu7GIO3FBr4si0CShbk3TCSOmCI2vCmCse+yiM02aS+7PRHbF1LQio0UtGIjBa24SEErNrUdOhf9IaoVuf6LiBS0YiMFrURGZqBji6Ddsjeph3Xbj/DgmJksWrWNzXuPX3Pdlr1Jg1bTxt2JPDd5IU+Om8fvn36becs24Q8EyS+u5slx86657YxFa4k/mgHcmTfozd4uKr1lXHQnk+newgnnkt7jCpzLyXLvujyuoJZWr2r7AiU6UtDeYRQNd4NOR6GB76yFlhjC3BMmsoF+Raw/2aI7x8RbZuBqGbw/mKSgFRspaMVGClpxkYJWLC54NDa1akyr9fMf5Sp/UfIdPylTeapa5d06P183B0h0BqjwyN8LIxkpaMVGClqJyLFCIe4aNfaakaD/8eSbzFu2iYAWHNRatu9LjtlcORJii6AdM/WjG2awkpqZxxdx++nsUmnv9DF+xnKWrN7JubwSxkxZdM1t5y3bxPZ9yQB4u/WbxtHlpqojn4vKETLca0lyfdRLyJ5yf8UFJYHKjjxauxy3dD+SgUU3w6iaZXsdw45Onc5mA7XEIpBloSeGCO2OQF8idksE80CYYFoIf55Fd7VJh8uw/XGYVoTugGnb/St2P4+CEwpH6FTt/zmU2EMkcmu//0cKSpf9NdiGTz7/I5kzXp2vWjXG1fn50feE7I3ywzKVx6r9vN0Q4KtWjURPkPJO+x/biKHLvt+93QET04rYfw4ktqBqVk+DhkRMRM4VQXv1PlFKexcTZq5gxTd7B7UWKWhtSCQSwTQt2+4/r7CS0S/OpqCkmsfHfnDNddMXrmH/sdMA6Ga4X4JmCCXYRo16nrz2eE66V/WSscmuT8jybqKkM4XWQAV+w3/d40rsJxSOYIXsr2PIEgxjuCJYlRGs7AihpAiR3cB6Ys+I3QrhQxFCGRGsoghmUwSjewg8jj4IRyKYln33H9BDtp8DkYlEwLDx+ZfYC4AxBOqwi4Ah7vpjXH7+7a5Dcvt0GWFOd1usdOmMqQvwT2W9Zeu/lKm8VB/gS5dOVreFYUXX/6AZpkYLcaLT4mu3wVvNGqNr/DGPcfWxHq31805zkLVug5QuizpN3NfSrWLn+x/Tir7/s/scSOzBCkX//rO7Dol9iJxYghZg/7HTjJ++nKZWF/c9+27P5YtWbeOlNxb3fP363M9JzczjUmkNz0xYwMMvzOLxV98np6AcgIqaJp4eP58v4vYzYeYKHnl5DmdziwHQDZP3Pv6GB56bzktvLGbJ6p09grav4w3X2C5oH3h+RszLu3x+7n1s2qDVUdvQilvp7Pk6O6+Ux8d+QEeXj5//cRJa0Oi5bvSLsygoqQZ6f8St2dtNpVJOvjuVM+4tJLt6jytIcS0jy72TQs9pqr01tLbLcQXDETniIIrDreGp0enMN/FlmAQPh7B2xN6oi3UQ2hpBPxhCTbPoumCiVOo4HcPvI4G6KUcciIwccSA2csSBuMgRB8OXck+QXa0B3qv382Clyg9iSNSfl6uMr1X5ujnAWZdG6/eOcSObhF3yaBxs01jVHGBanZ9HKv38sLRvcfv3JSr3V6pMqFVZ0hhgT1uAHLdGyxA4Z5Jr8XbLEQciI0ccSAY7pzxfkO5ZNejESixB61Y6eeWtJXy9OQGA+5+djsMdvf75yYt4bvJCDMMkEonw2yfeoKvbz5Pj5nEsNRuAoynneOTlOQBU17fwoz+M41xedH+q5IwLvPD6xwDsPZzOS28sxrRCdKsBHn1lbo+g7et4wzW2CdqsCyWsWLuXn9w/nhVr9/birfmr+fUjUwetnpXr4pkyeyUBLYjq15j03mesWh8PwPjpy1m3/QihUJhjadk8NGYmoVD0f1AavW5KlXxyPUc45fqml4xNci3ipGs15z0HKFFyqPe22r6wSO4Moglah0tDqdbpvGiippsED4UI9Sdit0XQE0KoJy268kyUKh2nc+QILSloxUYKWrGRglZcpKAdPuS6NTa0aEyt9fObcl8vMfqXJSqjKlTeqfOztTVAsef6x7wRQdsXpYrGMUeA1c0B3q3z80SVyt39dNz+TYnK7ypUxtb4WdQYYEdbVBo3KfafW1GRglZspKCVDHZiuaXBIFauCNpf/WkKv35kKr8cPZmf/3ESq9bH93zyfe6SOE6cyqWzS+XlN5ewYMVm8ourqalv5dlJCwEwTYtwOAJEBe9P7h8PRAXt1f6voqaJB56bDkT3gNp2ecQowOcb9vUI2r6ON1xjm6CtbWjli7j93H3fON784MtevPfxN2SeLxy0egKazpwlG7j38Wn8/um3WfjZ1p6u2VanwqtvL+XfHn2dZyctpLSyoef7ev9Af8Jpdxx57uNUKEU0eztsX0gkA8NIFbROZxClSqcrz0Q9aaEnhAht60fEbo8QTAihppt0XjRRqnUcrpEvrqSgFRspaMVGClpxkYJ2aNLs1Tjp1FjZHOClaj8/iiE+/65E5ZEqP/Pq/RxwaFQrN7+G346g7YsqJcgJh8balgAz6/08U6VyTz/zb39QonJvhcoLNdHHsqlV45RLo34IPA8jHSloxUYKWslgRw+rthAr3++gVdq7+LdHX6euydFzm4SkM3z69W5Onsln5bp4Dh7PZNOe43x7OJ2V66LNj8kZF3j5zcWMmbKIZyct5O77xgFRQfuHP7/Tc6yrv54wcwUJSWd6rtu893iPoO3reMM1to84uNIOPVyT7l7DWfcOLnkyqPZWyXEFAjHcBa3TEcRbqdOVa+JPtdAPhght7VvEWtsjBA+HUE9FRaynRsfhtv9x2IUUtGIjBa3YSEErLlLQDg3qvBqHHBoLGwM8WaXyDzFGCPywVOU/q/0sa9JIdmg03YH7HQhB299jPOnU2NiiMbfBz39W+/l1ucpf9SFu/7JE5RdlKs9Vq8ypV1nfopHq1KiRHbd3DCloxUYKWonIiTXi4KvNB5k65/Oer9ucCmOmfsTyNXtIzyqgrsnBG+9/yexP1pN1oQRvRzf3PDSR2sY2ABwu7w0J2ukL17Jjf0rPdSvW7mX+8s39Hm+4xhZBu+tgGi5PR8+/+2Oox+5FQmIfw0XQulqDeMsNunIui9j9YcKb+xCx68HaGSF4JIQvw6Qz38RTq+O4gY/9iYYUtGIjBa3YSEErLlLQ2kOporGzNcCMOj/39zE/9pflKhNrVda2BDjnGpg6BlPQ9kWDV+O0S2Nra4AFDX5eqvbz24rY5+QKPytXebpaZUadnzUtARKdASo88nfYzSIFrdhIQSsRObEErerX+O0Tb5CdV9pz2SMvz+GZCQvo6PIRiUR49JW5PPrKXLSgQXV9C7994g0MwyQcjvD5hn3cNWosQd3oV9Bu35fcM4O2vdPH6BdnMX/55n6PN1xji6B9evx8Sirre/7dH0M9di8SEvsYaoLW1RLEW2bQnWPiT7Yw9l1PxIbRjkZFbMclA0+dFLE3gxS0YiMFrdhIQSsuUtAODudc0Y/8T6pV+VWMj/v/VYnK/RUq0+v87GgLUDpIXaJDQdD2RfPl87a7NcAnTQFeq4nO2P27fsTtj8pUHq3y81adny+aAxxxaDc0i1dUpKAVGyloJSInlqCFqDx96rV5PXNg5y3bdM1GXVNmr+LVt5f2fD13SRwPPD+DMVMWkZ1XyktvLOa5yQv7FbQBTeft+V/x+6ffZsyURaxaH88Hn27s93jDNbaPODifX4ZhmHaXccuxe5GQ2IddgtbVFKS91KA72yRwwsKIDxPZGFvERjaAtfuyiM006SiUIvZOIQWt2EhBKzZS0IqLFLR3niavRopTY3lTgBdq/PwwxriCvy9ReaJK5cMGPwlt0Y//21HrUBa0fdHq1bjg1vi2TePTJo1JtSoPVKr8z9LeG6dd4Z9LfYyuVJla6+ezpgAHHBr5Ao+1uoIUtGIjBa1ERmagY7ugvfexadzz0EQmzFzBxt2JlFY29Nj34RC7FwmJfQy0oHU3BWkvMfBlWQSSLMxvw0TiiC1i14O5O4x2LITvjEVHoYG7XqdNitgBQwpasZGCVmykoBUXKWhvn2olyAGHxrx6P49W+WN2eP6oTOXFGj8rmwOkOaPdoXbX3eYdnoK2PwrcGgfaopurTav186dKP/9S1re4/YdSlfsro6MkljYG2NumkevWaBkCj2UwkIJWbKSglcjIDHRsF7SRSITq+hb2Hk7nvY+/4b5n3+Xex6bxzoKv2Xs43e7yrhu7FwmJfdwRQatouBuDtBdFRayWaGHuCRPZQJ8dseaeMFqihS/LoqPIwN0YpE1uADHoSEErNlLQio0UtOIiBe3NU+yJzkt9p87PqIroZlbfF3+/KfcxtdbP+haNnCHcqTnSBG1flHg0jjo0vmyOPm+PV0WleV/i9m9LVH5foTKuxs9HjQF2tgbIct2ZjdmGElLQio0UtBIZmYGO7YL2+wloQfYfO81jr8zlrlFj7S7nurF7kZDYx80IWodHw12v01Fk4DtjoR0LYe7uR8TGgbk3TCApKmLbi6WIHWpIQSs2UtCKjRS04iIFbf+0ejXOujS+bg4wvlbl5zHmx/6gROXBSpX36v3sag1QNow+7SOKoO2LSiVIkjM6H3hGnZ+nq1TuifEcX/1c31sR7YaeX+9nc2uADFd0ozO7H8utIAWt2EhBK5GRGejYLmi9Hd2kZubx6de7eW7yQu59bBoTZq5gzZYEsi6U2F3edWP3IiGxj1iC1uHR8NTpdFwy8J020Y6FsHb1L2KNb8METlh0n7NoLzFwNUvpMxyQglZspKAVGyloxUUK2mtpVDSOOwMsbQzwXLUa8+Px/7PUx9PVKh83BTjq0KgfAnXfKqIL2r6oVTTSnBpxLRpz6v08Xx3d3C1Wt/RflEQv/2W5yvPVKnPq/cS1RL+/dog3IkhBKzZS0EpkZAY6tgvau0aN5bFX5rL12xNU1jYPq/mzIN+gi4rDoxF0hAmUWPgyTIJHQlg7I7Ce2CJ2YwQj/rKIzTZpL5MidrgjBa3YSEErNlLQiovogrZKCRLfpjG3ITqv9G9iyLcfl6m8UuNnVXOAdNfImk8qBe3N0eDVyHBpbGkNML/ez4s1fu6tiHbW9tV1e0+5yjNVKjPq/KxtCXDcGaBSGRq/b6WgFRspaCUyMgMd2wXtxt2JTJm9knsfn8aYqR+xYu1e0s/m09ml2l3aDcXuRUIysDjcGkq1TudFE/WUSfBwCGt7JKaEZR2EN0Uw9oXxJ1t0nzfxlhm4WobGm0rJnUUKWrGRglZspKAVF9EEbb5bY1Orxpt1fv6jj4+y/7ZCZVqtn40tGheG0biCW0EK2jtDk1cjy6WxszXAx00BxtX4+X1FdJZtX+L2R2Uqj1epvF3n58vmaDd28SD/vElBKzZS0EpkZAY6tgvaKwmFwpRU1rM1/gTT3v+Cex+fxuOvvm93WdeN3YuE5M7gcAZRqnQ680zUkxbBhBCh/kTs5gihhAj6yRBdOSbecgNXq5Q1IiEFrdhIQSs2UtCKy0gWtK1ejdOu6MZQ42r8/CyGkP3rUpWHK1Xm1KvsbdOo8Ii1DkpBO7C0eDVy3Rp72zSWNgaYWKtyf6XKP5T2LW7/pczHnyr9vF7rZ2VzgANtGgUDtNGcFLRiIwWtREZmoDNkBG1A08kpKGfd9iNMnrWSf3/iTR57Za7dZV03di8SkpvD6QiiVOp0XTBR0yz0gyFCW/sRsVsi6AdC+FMtunJNvBUGzrboHyM3s0mYZOQhBa3YSEErNlLQistIErQNXo1ER4DFTQGeqVL5x9Le82P/qdTHn6tVFjcGSHQGhu3mTncKKWjtI9+tccCh8VlTgNdr/YyuVPnnGD+zV88+fqBSZVKtytKmAN+2aVxwR/8j4lZrkIJWbKSglcjIDHRsF7RLVu/iuckL+fH9r/HQmJnMX76ZY2nZKO1ddpd2Q7F7kZDExtkWxFth0JVr4k+10A+ECG/pW8SGtkbQD14WsRdMlEodp6N/+SIFrdhIQSs2UtCKjRS04jKcBW2FJ8ietgCz61X+WBXtho01//O1GpXVzQEyXbcns0YiUtAOPYo9GkccGl80B3irzs9jVdFxCH2J278rURlVEf05/6QpwK7WAOdc0bEL17svKWjFRgpaiYzMQMd2QTt78XoOHs+kzanYXcotxe5FQnRcLUG8ZQbdOSb+FAtjf5jw5n5E7LYIekIINc2iK89EqdJxOm9NskhBKzZS0IqNFLRiIwWtuAwnQXvBrRHXovF6bXRjpu+Lqr8sUfldhcpbdX42twYoHOHzY+8EUtAOHyo8QRKdAda0BJhR5+fpajXm2I4r/ODyPOWXqv0saPCzpTXAaZd2Tde4FLRiIwWtROR0dPm4a9RYAlrwmssTks4wfvryQalh+75k5i/fPCj3ZVdsF7TDPXYvEqLgag7SXmbQnW0SOGFh7AsT3tSPiN0eIZgQQk236LwYFbEO152VKVLQio0UtGIjBa3YSEErLkNV0LZ4NU66NFY1B3i52s/dMToI/7ZE5U+Vfj6o97O/TaNKkWvYzSIF7fCnRtFIdWpsaNGYU6/yXLXKL8qi/2ERS9z+VYnKr8tVxlSrzG8KsNdrkubUqFXsfyySwUUKWonIkYJ2cDJkBe1Xmw/y8Auz7C7jurF7kRhpuJqDtJcYdJ+zoiI2Pkxk43VE7OEQ6ikzKmKrdRwDtDHA95GCVmykoBUbKWjFRgpacRkqgrbOq3HYobGoMcBT1dF5m98XS/9a5uP5apVPmzROODSapFC6baSgHbnUezVOuTQ2tWrMq/fzQk208/wHfYjbKyNBnq5SmVnvZ21LgCSn/I+PkYwUtBKRcyOCVjdMZn+yngfHzGTsO5/y9eYE3l8aB8Cl0hqembCAh1+YxeOvvk9OQTkAFTVNPD1+Pl/E7WfCzBU88vIczuYW9xzvvY+/4YHnpvPSG4tZsnpnj6Dt63jDPUNW0J7NLSZu1zG7y7hu7F4khiWKhrsxSHuxge+sReC4hbk3TCSOPkWstSMqYn0ZJp35Jp7awROxfSEFrdhIQSs2UtCKjRS04mKXoC3zaOxqjX5U+/7K2NLoF2Uq42tV1jQHOOuy/1yNRKSgFY8mReOsS2NHW4DFzRqTGjV+V6HyN/2I27vLVJ6oUnmnzs/q5gDHHAFK5AiRYY8UtJJBz05guw3EyI0I2l0H03jpjcVYoRBOTzv3Pftuj1B9ctw8jqVmA3A05RyPvDwHgOr6Fn70h3GcyysBIDnjAi+8/jEAew+n89IbizGtEN1qgEdfmXvd4w332C5o31nwNT41YHcZtxy7F4khjUfDXa/TURgVsVpiCHN3mMh6YovY9WDtDKMdjYrYjksGnjodxxB9QyMFrdhIQSs2UtCKjRS04jJYgjbbrfFNS4DJtdGPV8f62PUfKlTerfOzrVXKn8FCClqxuXoGbYtXI8etsactwJLGABNqVe6vVPn7fsTtv5b5eKTSz7RaPyubAxxs07gkX7vDBiloJYOePprXBpwYuRFBO33hWnbsT+m57uqOV9O0CIcjALiVTn5y/3ggKmh//cjUnu+pqGnigeemAzBj0Vq27Uvuue7zDfuue7zhHtvMRB52AAAgAElEQVQF7WOvzOXCpQq7y7jl2L1IDAUcHg1P3WURm2miHb0sYjcQ8wUf2QDW7ssi9vTQF7F9IQWt2EhBKzZS0IqNFLTiMhCCttkbnYm5oinACzV+7irtLXb+vkTlsSqV+fV+DrRF52jafS5ERApasbnRTcIuujUOOKKv6am1fh6uVPmnGGNIrvCPpT4erFSZXBsdSRLfpnHBo9E6BB6z5DukoJUMegI2ESNd3X7uGjW2V3PlvmMZTJz5GQATZq7gaMq5nus27k7sEarJGRd4+c3FjJmyiGcnLeTu+8YBUUH7hz+/0/M9V389YeYKEpLO9Fy3ee/x6x5vuMd2QbtxdyKjX5zNghWbidt1jC17k65hqMfuRWIwcXg0PLU6HQUmvoyoiLV2hqGPjtjIBjB3h9GOhfCdsegoMnDX67QNMxHbF1LQio0UtGIjBa3YSEErLndC0NYoGgfbNBY0+HmsKnbH3V2lKi/U+FnRFCDVqdE0BB67RApa0blRQdsXRZ7o7OjPmwK8WefnkarY/yFzhb+73Cn/Wo3K4qYAu1sDnHNF/1PH7nMhCnWKj1MOB1ubq1jaUiAFreCInFAozM8emkhZVcM1ly9ZvYt5yzYB0U/H70442XPd0q92MX/5Zrwd3dzz0ERqG9sAcLi8NyRov9+Ru2Lt3useb7jHdkH7zIQFjJn6UZ8M9di9SAwEDreGp0anM9/Ed8okeDiEtaPvjboiG8DcE0ZLtPBlXRaxDTptI7y7QwpasZGCVmykoBUbKWjF5VYEbYlHY3trgHfr/NxXER1P8H0R8+vyaPfcNy0Bsm2esS/pGyloxeZ2BW1fVHiCJDoDrGkOML3Oz1PVKj8p61vc/nWpym8rVF6u9vNhg5+trQEyXRqNI/xvr4Hikrudw22NfNVYyoyac/y5IplfFR/g/720lf/l4jfXUK122V6vxD5Ez5LVu3jlrSW0ODwYhknamYv86k9TKK1sAGDTnuO89u4ywuEILk8HDzw/g/nLN1Nd38Jvn3gDwzAJhyN8vmEfd40aS1A3+hW02/cl98ygbe/0MfrFWdc93nCP7YJ2uMfuReJ2cLiCKNU6nRdN1HST4KEQof5EbByYe8MEjkdFbHuxgbsxOOJFbF9IQSs2UtCKjRS0YiMFrbjciKDNcmmsaYnOpPxFDMnyg5LorMoZdX52tQYoFfR91HBEClqxGShB2xfVSpAUp8a6Fo3Z9SrPVkfXlL/sQ9z+VYnKv5Wr/Ge1n/cb/Gxq0Tjp1KgbAufOTuq9KhlOJ9taqvi44SITq07zYNlR/rloN//7xQ29JOz3+ZtLO/iP0gRerTlJrb/b9scjsQ/Roxsmq9bHc9+z7/KLhycxZsoizuYW91yv+jWmzF7Fg2NmMnnWSj7fsI8FK6IjCeYuieOB52cwZsoisvNKeemNxTw3eWG/gjag6bw9/yt+//TbjJmyiFXr4/ng0439Hm+4Z0gI2qZWN2u2JDB3SRwA4XBk2MyltXuRuBGcziBKlU5XnomaZqEnhAht61/EGt+GCSRZdJ+zaC8xcDVLEfF9pKAVGyloxUYKWrGRglZcvi9omxSNEw6NT5s0xlRHNwH6vjT5h1KVp6pVFjUGOOyQsmQ4IwWt2Ay2oO2LOq9GuktjU4vGB/V+Xqjx85tyHz/oZ4Oyn5erPFOl8l69n29aAiQ7NKqUkfM+ptDTwRFHI183lfJe3Xmeq0zh1yUH+P8ubeW/XEfA/t8FG/lx8bc8Wn6cadWZrGgs5NuWOs673DQp/p77kDNoJTLXz5WNuwDWbElgxTd7baxm+MV2QXsur4SfPjiBSe99xl2jxgLQ5lT49SNTOZKSZW9xNxC7F4mrcTqCeCt0unJN/GkW+sEQoS39iNiNEYz4MIETFt3ZJu2lUsTeDFLQio0UtGIjBa3YSEErLtXeIOm+EB/U+/lTpZ+/jSFC7i5Teak6ukv7STkvckQhBa3YDBVB2xdNisZZV3SkysLGAK/W+PmPcpW/6Ufc/rhM5ckqlXfr/HzVHCDRMTS7+hsVP5lOFztbqllcn8/EqtP8sewY/1K0h/8jP65fAfu/XlzHXxfu4N9LE3ixMo0P6nJZ31xGkqOFcs+NjyyQglYi03/SswoY/eJstKBBQAvy1GvzSM3Ms7usYRXbBe1jr8zl1LkCgB5BC5BbUMET4z6wqaobjx0Lg6s1iLfcoCvHxJ9qoe8PE97ct4gNb4qKWH+yRfd5E2+pgatFioXbRQpasZGCVmykoBUbKWjFodCjsbk1wFt1fn5XEfujxfdWqEyt9bOhRSNXzo8d0UhBKzZDXdD2RbNXI9utsbs1wOLGAONrVe6viL1B4RV+WKryp0o/b9T5WdUcIKEtuh4OZJ1Fng6OtTWxpqmMWXXneb4yhX8rOchfXNp23S7Y/5Yfx91F3/JI+XFer85kWcMl9rTUkv29LtjbQQpaiUz/CYXCLFq5lfuefZcHnp/BsjV7iEQi1/9GmZ7YLmh/9tBEQqEwcK2gNa0Q9zw00aaqbjwDuQC4WoJ4Sw26z5v4ky2MfWHCm/oRsZsjGPvD+FMsunJMvOUGrlYpEAYKKWjFRgpasZGCVmykoB2ZtHo1Ml0aq5sDvFajck957Pmxj9YGmFWvsrs1QLlHrgMiIQWt2AxXQdsXrV6NPI/G/jaN5U0BptSqPFSp8o+lvUe1XOEfS308VKkypVZlWZPGvrboMVpv4P4aFT9nXU52tdSwpKGAydWZjC5P5F+L9vB/XqcL9r9e/IYfFG7nt6UHeaEylbn1uaxrLiPJ0Uypu3NQzpcUtBIZmYGO7YJ29IuzqKhpAq4VtKfOFfDgmJk2VXXjuRMvdFdzkPZSg+5si0CShREfJrKxHxG7JYJ+IIw/9bKIrTBwtsk/EAYbKWjFRgpasZGCVmykoB0ZNHg1Ep3RjrI/V6v8Uwwp8Y+lPp6uUvmkKcAxR4DGG9gkTDJykYJWbEaaoO2PQo9GQpvGquYAb9RFR7r8sLTvjtu/L1G5r0LlpZpuptV5eKuunqm1lxhTkcZvShL4y0vb+a/X6YL9v/LjuKtoL6PLE5lancmnDZfY3VpLlst1x7pgbwcpaCUyMgMd2wXtvmMZ/O6pt1i96QB3jRrLjv0pzFu2iZ89NJHdCSftLu+6ueEXtKLhbgrSXmLgy4qKWPPbMJE4+hSxoa0R9IOhqIjNNfFW6jgdUggMFaSgFRspaMVGClqxkYJ2eFLhCbK3TWNOvcrDlSp/HUM2/LRMZWyNny+aA2S4NFq+d4zvbxImEQspaMVGJEHbF8XuABtbFN6sczC6soUfl7bx1yXePsXt/yjp5v8pauG/F5Xw3wrP8ReF6fyiLJXnK9KYU5fD2qZSEtuaKPEMThfs7SAFrURGZqBju6AFSDx5ntfeXcYDz8/g0Vfm8vrczzmTU2R3WTeUXi9cRcPdoNNRFBWxWqKFuSdMZAN9i9htEfSEEGqaRVeeiVKl43TKP/yHOlLQio0UtGIjBa3YSEE7PLjg0djYojGt1s9vK2LLg3+vUHmjzs+mFo2LNzA/VgpasZGCVmxEEbSl7k6SHM1801TG3PpcXqhM5belB/lBYd9dsP8lfxP/W/5+/nvhSf62uPD/Z++946I61739c96zT33f857+O+8uJ7u3ZGdnZyd7Z6eautOL7iQmxkRjiSX2hr33EjV27IoNFQsq9oZYkA4zwwzMwPQKKmtmzRoErt8fC41GBEyABazn/nyuP2gzz6wFDzPX3Ot784uCUn5Sj7j9Qb7En4wVfFgUZqxN3YOP+2SsreDx3w0haAWiRDV3tQpB29pq6boknn5n4M2PHW4/3QbP4k+v96NTzwlk5llufq08N0bFmUrk/VVUbqm+q4S9IWKjSVVIx69zpVbEenziBX5bRQhafSMErb4RglbfCEHb+nCGZE741MtxPy4K86DhTiFwX7469GZ0SZgdbhlz8N7/hoWg1TdC0Oqb9iJo7cEw531+tjqLmV2STT/LGV4zHuSB3G38cwNZsH+dsZzvZm/gsfzdvF94hFHWiyy1G0h228kNlN9xX9aQKl7XOGXGlIT5sCjMY0aJ79czoOwRg8S7FomRNokVTpkjXhnLN9ivmxohaAWiRDV3aS5olVglS9cl0annBJ56ewDPdBzEe59NYtXm/VRer2rx9ZQ4vLzWNe42QfvJoJlsSDxMVVU1Zy/m0aHT4K/WVpeI3VRDdE8V0olKrmRWErQoeMRU33aHELT6RghafSMErb4RglZ7bCGZ/R6ZqfYIncx1D7X5RUEF71kkZpZGOOiNUBr89vcrBK2+EYJW37QlQWsIXOWQx8lKh4Gx1kt8WHiMJwuS+J+cTfxNxop6Jew/Zcbzy9yt/NmQTG/zaabbMtnstHDG66O0ibJgS4PqUMYNrggTS8J0tYR50lR39MwNfmuQeMciMcQaZokjwgFvyw5qFIJWIEpUc5fmgnb4lOW81X0s8QnJ7D18jqRDZ1myNokX3htK3IxVLb6e7kNmcejExZuCNlR+jUdf6cP1qq9k8V96TeRSlgmAyKHrVJxSRWygSIhYPSEErb4RglbfCEGrb4SgbXkMAZkEV4QRtjAvFqqXx379xfvDRolPiyS+dERI9TVuqvi9ohdB6wrKGKxRzqYr7ElRiN+sMGuxwogJMT4bWsmoyTFmLVZYtVlh1wGF42kK2cYopT7t196cCEGrb1qToLUHw1zw+dnutDK3NIf+ljO8bjzIg3nb+b9Zqxvsgv3v7PU8lr+b9wqPMMJ6gSX2Ava7S8mpowu2JXGEZNJ86n4/3R7h0yKJZ03qELK7idtfF0i8Zg4zwBpmgSPCHo9MbqDp1yYErUCUqOYuzQXtn17vR0SO3vF5u8vP717q1aJr2ZOSStyMVZRfrbgpaDPzLLzdfdxt3zds8jJ27D8FgLcsKtApslLF1XBM83UItEGprKasQtHs/j1lsubHQM9cr6ohcFW78y/Qlpoa8LWCdWhGefPvP+mBKKucMn2tEf5kvPMF+ffyJZ4plBhsDbPBLZMfbJnH7itXz7/m56CJKPFESc9TSDmlsGmnwsKVCuNmxOgzrJKeg74Zg8fEmDwvxpI1MRJ2q7d9KVvBYm/7e2bgqsL1qhrN16FntHz+U1ahCtqWuj9zsIKjXhfxDhPjbel0LTzO0wV7uS9nE99poAv2HzJW8cvcLbxk2E8vyymml2Sx2VXEWZ8Xe1lY8/N47+c9SkYgSqInyhyHTB9rmJcKJX5WT8ftzwsq+LNZoq81wlyHzC53lKyAelvfZA1XwzFkpUrzYyHQDj2XqcjOb57rfhv3d+jGwPGLm+z2X/5wZJ1fW7ftEOPnrG2S+2ntpbmgfbPb2Do/H5GjvPDe0BZbx5WrEq9+NIpQ+bXbBG3a5Xw695l82/eOm72GjYmHAaiuqRHolBqgpkb8DugVND7/sevVmh8DPaOef+3XIdDu/Gu9Bi2JVTbt/lNZU0N2pIpVoUp6lMo8aArf8UL7xwUS79hkZnoVTkhVXKsS5/9ecLmrycip4eCxatYmXGfmousMHlO/aB0ytpJZi66zbst1Dh6rJqegBpPlK7ILajh8spqExOt8sbySsdMblrd9h1cyfuZ1Fq2sZFvSdY6dqSbXUIPLq/0xagw1bfT8tye0fP5Te/qb7PYqa6opVq5yrMLJqqCBOOd53is+zO+NO/m37LUNZ8HmbuAJUxJdrceY5LnMxpCZ1AoPrlhY8/PUkrgqqzklqf9DRriivG2Vub+ON/Zu8JMCiT8XRfjcIbM4EOPQtesUKdVcb8T5rxF//7pG1Fd1tSLMC+8N5WKWsUlurz5BK0djSGF9dDBrLmgTdh9lwcodXLkq3fycL1DOhLlr2ZOS2mLrGDtrNTuTTwPcJmiz8i13SOShk5be/F6t2+wF2iEiDvSNiDjQNyLiQN/UiIiDb4U1JJPklplYEuYtc92Xrv66QOIDS5jZdpnDHhl7E+THNgWtNeLAFZQx3hJJsDpBjSQYPjFGr8ENCNMZMRaujLF5Z5SUUwrpeVFKPN98HSZblLTMKMknFDYmRlm0KsbE2TEGxsXqlbe9BlcydHyMaQtiLFursG1vjMNnoqTnRSl2to79VkQc6JtvEnFQGLjGEY+L1XYT422X6Vp4nGcMe/hhzuYGu2D/PmMVP89N4EXDfnqYTzG1JIMNTjOnvB6swQrNj0drpyAok+yJsNgRYbBV/X/zmzoGSN46SPIpo8QnRWEml0bY5Fbjcm78/xERBwJRX9XQSUuZt2L7zY+zC4ro1HMCL384kjc/GXNT3JqK7HTsMZ55K7bzyaCZvPnJGC5kGhg0/kve+XQc0xdtuvl9r3QZyZylW3n+3aG80mXkzdu4tYP2bvfTXkpzQfti5+H89vke3N+hG394tQ8Pv9SL+zt043cv9eKJtz7n8Tf736Q56/E3+/P0OwN5+p2BPPX2AB54tjtPvzOQUqeX3/+5N3I0dvN7X+kykqx8C9D6nqALWg4haPWNELT6RghafSME7b2RH5DZ5I4w1BrmeVPd07sfNUr0KpZY5oyQ1opzTLUWtDZPlEu5UQ6dVOXnFysUxk6P0beeSIJegysZOSnG7C8V1mxR2HtE4VyGgqmk5fcwmydKhiHKsVSFHftjrNigMHORKpJ7D6m/+7b/yBjjZ8ZYsFxh3fYo+44qpF5WKCiO4myGvMm6EIJW39QlaJ2hCJd8AXa6bMwvzWVAUSpvGVN4KG8H/5a1pl4B+1cZy/mvrHU8mreLTqbDDC1KY1FpPnvcJWT5Q82Soy2QMQejpHhkljkjDLeF6WRWM8zvJm5/kC/xuEniY2uEqa4oa1wyJ3zqsEqtH4ugZWnpqsntQ01OzxanoUo6dJaOPcZTWXn95ufe7j6O5KPnAdh/JI3XusYBYLE5eeDZ7jf92cipK3iz21hisUqUWCWPvvIZwbKrmIrsPPj8pyQdOguo8aOvdBkF3C5o73Y/7aU0F7SHT6Vz/Gxmo2ipurWDFqDH0Dms2LiPqqpqko+d56XOw6mqqgaEoNUzQtDqGyFo9Y0QtPpGCNr6SfOpL3x7Favi9esvdr+fL/G8SWKoNcwmd4T8FpJrTUFLCFqnXybbFOX4OYUd+9Ru0inzGu5AHTwmxtR5MZatV+XniTSFnEIFRxs5vo6ATEGx2gW874jCum1R5q9QM3H7j6j/sfceUsmIiTFmLlJYsVEhMTnG8VSFTMM37wauCyFo9YkleI2jXhcbPGZme7L4xHyCZwv28qOczXwnc2W9AvbvMlbys9wEnjfs41PzSaaUZLDeYeakR3TBtjasIZljXpnVTpnRJWE6WyT+aKz7TcUbWeiPGCTes0iMskmsdMoc9cpYguL5YXulpavmcidNqK8cbj9PvT2A4hLXbZ+vrLxOdbUaA+EPXuG3z/cAVEF7a7Pl4jW7mPLFxpsfv9JlJEZLKaYiO4+83PvmbVRWXuf+Dt0ov1pxm6C92/20l9Jc0N6oysrrOD0BrZcB3CloXd4gnwyayWOv9+Pd3pMoKCy5+TWtNwmBdghBq2+EoNU3QtDqGyFov8IeUiMIZttlPrCE+XUdA1t+nC/xllliYkmYJLf6IljrdX9TmkrQ3ogkSL1875EE42ojCTY1QSRBW6LIGSU9N0rK6Shb98ZYulZh6vwYQ8fVL297DqpkYFyMiXNiLI5X2JQY5cAJhfNZUUwlUVz3EJ8hBG37xBmKkO4LsstVwoLSPAZZUnnbmMLv8hL596z6s2D/KmM5/5m1jt/n76SjKYUhRedYaM8jyW0jwx8UXbDtgJKQzGmfzFZflBnuKB9ZwjxhUjtr79Z1+5BBoqNFfSNyqSPCAW8EU0A8b2zrtHhVXoHK8pbnLlVVVc2H/aaSsPvoHV87fCqdrgOm07nPZN7tPYnfPNcdUAXtC+8Pu/l9S9clMXfZtpsfv9Y1jvxCG6Yi+x0zqB55uTelTt9tgvZu99NeSnNBK0djjJ21+mbMAUDZlQq6D5lFsOyqtotrRGm9SQi0QwhafSMErb4Rglbf6FnQWoJRdnlkxtrCvGYO86M6Xpg+YJDoUhRmviPCMa+MoxWsu6m4V0Fr86hS8dBJVQw2NpJgxEQ1kmB1ghpJkHpZm0iCtoLDL5NTqHDqgsLuWuE9d4nC6KkKfeo51j0HVfLZ0EpGT1WY/aVC/GaF3YcUTl6o7T72334/QtC2XYqCFRz3ulnrKGSiLZ1utV2wP8lJ4G8b6IL928yV/CQngReM++lrO8Mk22XWOgo54XVTLLpgdcPXM2jtIfWKkQRXhGn2CJ8WSXQwSXX+X7zB/QUSr5vDDLSG+cIeYa9HJq+NXOUgEBm0y9bvofeIeTcHZt6oUPk1Hn6pF8WlbgA8vtA3ErSPvtLn5m3f6KC9ei18U9DWdz/tpTQXtONmr+GzkfPJMRTfFLQRWSFuxiqGT1mu7eIaUVpvEgLtEIJW3whBq2+EoNU3ehK0eQGZda4Ig6xhnjGpl3R+/QXnY0aJPsUSK5wyF/3ar7k5qUvQOmvl4PFzarTAjUiCQaPr7+wcNLo2kmCd+nPHayMJnO38GLY0rqBMYUmU89lRDp5Q2LwzyqJ4hUlzGz5HPQdVMmScep6W1A4uO59ezaWcKBaH+B/QmnCFZDL8QZLcNr6w5zG46BwdTSn8Pn8n/9GILtj/yFrLw/mJvGNKYZAllQWleex227js+6oL9psMCRO0Hxo7JMwVkkn3y2x3y8y0R+hdLPFCocRPCyruKm5/UVDBy4USfYvDzLNH2OWRyRT/C1odeq4cQzHPdBxEIHTljq9ZbE6eeOtzYrFKqqtr+GJVIvd36EZUid2ToH3g2e4cPpUOwL4j53iz21jgqwza+u6nvZTmgvaPr/Wl/GoFwE1BC3BNivDU2wM0WlXjS+tNQqAdQtDqGyFo9Y0QtPqmvQpaV0gm1SfzpUPtBKpraMoP8tUXmsNtYba4Ihh00vlzI5LgXIbCydTqe44k+KI2kuDQSf1EErQVSrwyWUY18zcxWWHlRoVZixRGTmp4cFm/4ZWMnR5j3nI1M3fPYYUzlxTyLdE2k/3bligOVnDC62ado5DJtst8aj7JcwX7+GlOAn+X0XAX7I9zEni2YC+fmE8w0ZbOWkchx7xuLMFrjbp/IWj1TWMFbX1k+WV2uWXmOyL0Lw7zamGYXxruLm5/UiDxfKFEz2KJmaURtrojXPTLOFvB8dAjeq6xs1Zzf4du/Oa57rfxx9f6AjB6RjwvvD+Mzn0mc/5yAR99Pp33PpvUaEGbZ7LxdvdxzF22jde6xvFa1zgy89TBYrdGHNztftpLaS5oH3+jP0qsErhd0JZdqeCRl3trtKrGl9abhEA7hKDVN0LQ6hshaPVNexG0pUGZg94IM0sjvGdRO3i+/uLwpwUVdLRITCmNsM/T/qdW3xFJsDLW6EiCWYvVS+v3HK6NJLCJPaKt4wrKFNRmBe8/qrAxUWHZ2komzIrRf1T93be9BlcyfGKMGQsVdXDbvhhHz0a5nB/F6ha/G3Ue75BMpj9EkruERaX5DC1Ko6MphUfyd/JfWesa7IL9t6w1PJS3g7eNKQy0pDK/NJedLhuXfAGcoci3Xp8QtPqmKQTt3cgLyOz3yCxyqFesvGlW44LuJm5/mC/xjEmiW1GYKaURNrsipPpk7PeQqS24d0SJau7SXNAOGLuImV8mEFViNwWtxxei/5iF9I37QtvFNaK03iQE2iEErb4RglbfCEGrb9qqoDUHo+xwq9OpXy0Mc18dL/oeNEh8XBRmgSPCCV/77NK5GUmQVhtJsK7xkQRT5sdYt6VKRBLolK9n0BY7o6TnRTlyJsr2verv0rQvFIZNqL+zuuegSgbExZgwSx34tiExyv5jCmkZCgbrvQ0ua2tYgxWc8nrY4DQzpSSDHuZTvGDYz89zE/j7jFX1CtjvZK7khzmb6WDYw8fmE4y3XWa13cRRrwtzC2TBCkGrb5pT0N6NwmCUg94Iy5wRhlnDdDLXfXXLrVe5PG6S+LAozDhbmLWuCKd86qAzrY9fe0CUqOYuzQWtx1/GGx+Pvjkk7LHX+3F/h2507jsFtzeo9fIaLK03CYF2CEGrb4Sg1TdC0OqbtiJoM/wya5wyn1vDPGmq+8XcEyaJ/sVhVjtl0tvZJdkmm9r5uOewcjOSYERDkQTD1EvWv1gZY1NibSRBbhSbR/17v9chYYL2xb0MCXP6ZfLMUc5cUkhKUVizVWHeMoUx02L0HV6/vO09tJJRk9Wu7FWbFXYdUN9QyDZGKfVpfxzqwxWSyfaXscddwuLSfIYVpfEX02H+kLerUV2w/1rbBfum8RCfF51lfmkuiS4bF/0BHE3QBfttEIJW32ghaO9GcVDmmFcm3ikTZwvzvkXiUWPdOfHfzVc//6hR4n2LRJxNYpVT/fmidvxmUHMgSlRzl+aCFqCqqpqMXDNJh85y6MRFCgpLtF5So0vrTUKgHULQ6hshaPWNELT6pjUKWmdI5pRPZqEjQreiMA/VcWnk/xRIvFyovjjb5pYxBdr+7/BtkQQ71UiCcTMajiQYXkckgbERnYtC0OqbexG0DWG2R7mQo/7uJiTF+HKNwpS5MQaNaXhw2aAxMSbPVX9m8y71Ni5kRzGXtszftC0kccrrZaPTwrSSTHqaT/GiYT+/yN3CPzTUBZuxgvuyN/N0wR66Fh5nnDWdeIeRwx4nhYHGZcFqhRC0+qY1Cdq7URJSnwusdUUYbwvTpSjM4ya1s/ZuXbe/M0p0MksMs4ZZ6oxw0BuhMNj2nx80B6JENXe1GkF7KctE0qGzNz8nhdvGH4DWm4RAO4Sg1TdC0OobIWj1TWsQtCUhmWRPhGn2CB3NEj+rIz/25wUV/MUiMb00wgFvpM1e4lhXJMHURkQSDIyLMWVejGVr1Z87fk4h2xT9VpEEQtDqm6YUtPVR6pPJNkY5kaZ2z8ZvVjUBqdYAACAASURBVDvAR01R6D20fnnbd1glo6fHmLtUYc0WhaRDCqcvKuSaFRz38Luf4y9jn6eUJfYChlsv8G7hYf6Yv4v/zl7PXzfQBft/s1bzYN523jAeon/RWeaW5rDdaeWC3695F+y3QQhafdMWBO3dsIdkzvlkNrsiTCmN0L0ozDMmNcv2buL2AYPEG2aJQdYwCx1qDn1eO7vS5l4RJaq5S3NB6/QEePnDkTzycu+bGbQub5DHXu9HntGq7eIaUVpvEgLtEIJW3whBq2+EoNU3WghaYyDKFleEkTaJlwrr7oZ52CjxaZHEYkeEMz71UmOtj9W98PVIgtlf3kMkwQrlZiTBpVsiCZoaIWj1TUsJ2vpwBWWM1ihpGQrJxxU27IiycGWMCbNjDIhreHDZ0PExpi2IsXh9hAUHA0w7V8SInCy6G07zZ0Myv8zdyj9mxtcrYP8mYwX3ZW/iqYIkuhQeY6z1EqscRlI8ToyBq5qfp+ZCCFp905YF7d1whmQu+WW2uWVmlkboVSzxfKHETwruLm5/aajglUKJfsVh5jsi7PLIZOoki12UqOYuzQVtt8GzWLxmF1VV1TcFLUDC7qN8MmimdgtrZGm9SQi0QwhafSMErb4RglbftISgveSXWeWU6VusXp5YV57cU0aJAdYwa1wyOW2kq6XEI5OeV0ckQT2ZnHdEEqQonE1vXCRBUyMErb5pDYK2IazuKJfzoxxNVYg/cI2RiQ7e32LgyYSL/GLHMf7fwST+6ewG/upy/V2w/5i+mp9c3E6Hywf5NP8ss23ZbHNaOe/zYw+GNX+cWiAErb5pj4K2PjL9Mrs8MvPsEfoWh3mlUOIXdVytc4OfFlTwfKFEr2KJmfYI29zqc5n2NGxUlKjmLs0F7cMv9UKJVQLcJmgrr1fxh1f7aLSqxpfWm4RAO4Sg1TdC0OobIWj1TVMLWkdI5rhXZr4jwkeWMA/UkR/7w3yJ1wrDjCkJk+iWMbfifLi7RRIMbiBbc2BcjClzayMJ9jVNJEFTIwStvmltgrY0GOas10eCs4gZJVl8ZjnDy8ZkfpW7lX9qoAv2f11ewX9c2MjPTibxu73HeWxdOs8tLOTtqW66jpTuHFw2pJIRE2PMXKSwYqNCYnKM46kKmYYoJR7tj0VLIAStvtGboL0beQGZvR41836gNczr5rqft9z6/KWDSaJ7UZip9ggJrgjnfGrsgtaP5V4RJaq5S3NB26HTYIJlV4HbBa3F5uSJtz7XaFWNL603CYF2CEGrb4Sg1TdC0OqbbytorSGZPR6ZSaUR3jbXfSnhLw0VvG9Ru1AOeWVKW+GkZVOJGkmw90jjIwn63BJJsPGWSAKru3X9PXlKvXjzDPjOpuJP3kdgyzoCy+YRnDWGysupmq9PoA1aCNq8QDkH3HaW2QsYZb1IZ9NR/pSfxPeyN/K/GsiC/T+Z8TyQu41XjQfoaznDrJJstriKSfP56uyCtTiiXMqJknJaYcueGEvWqm+uDBnX8OCygXExJs6JsThejRs5cELhfFYUU0nLd7o3F0LQ6hshaOvHFIhywBthqTPCMGuYjhapzoGlN/hBvsQTJokuRWHG28Ksc0U47ZNbdV6+KFHNXZoL2tlLt/LxwBlcyDBwf4dumIrs7Dtyjpc/HMnULzZqvbwGS+tNQqAdQtDqGyFo9Y0QtPrmXgVtQVAdzDHMGub5u+THPmKQ6FEssdQRIdWn/WO8wY1IgpRTaiTBwkZGEoyYoEYSxG/+KpLAoEEkwa14fBV4LaX4MrLxnTxBYE8igfUrCCyeQWjqcMqGf0pZ77e40vkZrrz35F2RkzZpfl4E2tAcgtYeDHPO52OLq4iZJVn0sZzhFeMB7s/dxv9pqAs2Yznfz9nI4wVJfGA6Spz1IsvtBg66HeQHrjTpOh21nfEnLyjsPqT+bc9ZojB6qsJnDQwu+2xoJaOnqm/ixG9Wf/7kBYWcwnsbXKY1QtDqGyFovxlFQZmjXpmVTpk4m8R7FvU5z/fuIm6/ly/xB6NEZ4tEnC1MvFPmmFemuBW80SNKVHOX5oI2qsSYNG89v3upF/d36Mb9Hbrx6Ct9mL9ix83og9ZcWm8SAu0QglbfCEGrb4Sg1TcNCdrzfpnlzgifFasvMr7+4uP7+RLPmiSGWMNscEU0n4rsCKji5cSNSIL19xZJsPSWSIIcY8tHEng85XhNRXgvXsJ/JIXAzgT8qxcTXDCZ0MSBhAZ/RHn3V+uVrl+nvNvLlA38gND4/gTnTiCwaiGBHZsIHD5Alduh+e+gQBu+qaDND1zhoNvBcruB0bZLfFh4lMcLkvh+TsNdsP87M55f527jFeMB+ljOMLMkiy2uIlJ93laTBesKqh3157PUztlNiVEWxytMnBNjYAODy3oOqmTIuBhT56kdu1v2xEg5rXApJ4rF0br+zwpBq2+EoG1abCGZkz6ZNS6ZsbYwHxapmft1vYl96zDUjmaJ4bYwy5zqFUYtGfkkSlRzl+aCtqamBoDKyuu4vMGbcQcAETmq1bIaXVpvbALtEIJW3whBq2+EoNU3twpae0jtDJlrj/BhUZhf1xFX8ON8iTfMEuNtYXa51W4SLdZ9ayTBmi1qN9vISY2LJFiwXI0kOHhCFSctEUngsfvx5ZnwnUvDfzCZwLaNBFYsIDh7HKGx/Sj7vDPlXV9svHjt/DRlPd+gbOgnBCcPIbhwGoG1y/Dv3o7/+FF86Zl4zDY8vrtPoRcZtPrmboLWHgyT5vOx1VnM7JJs+lrO8KrxAA/kbuOfG+iC/euM5Xw3ewOP5e+ms+koo6wXWWo3kOy2kxco1/wxNwUlHplMQ5TjqWp27YqNCjMXqZEovYfUL2/7DVf3oHnLFdZti7LnsMKZSwr5liiOFn5zSwhafSMEbctgD8qk+mQ2uSNMLo3QrSjM0yaJ++oRtw8YJN40Swy2hlnkiLDfI5PfDPuDKFHNXZoL2qGTltbZKZuZZ+alzsM1WNG9ldYbmEA7hKDVN0LQ6hshaPVLUVDmlFTFeFuYN8yqfP36C4VfF0h8WBRmrj3CUW/LDsK4NZJgc20kwfjGRhIsUi8/TmrOSIKAhNfqxJuVi+/0KQL7dhPYtJrAklmEpo8kNLIn5X06Uv5hh8Z3u37YgfI+HQmN7Elo+kgCS2apt7lvN77Tp/Bm5eK1OnEHpG+9fiFo9YshcJWjPhdbQ0WMsV7iw8JjPFmQxP/kbOJvMlbUK2H/KTOeX+Vu5WVjMr3Np5luyyTBWcRZr4/SVtIFqxXOgExBcZSz6Qr7jiqs3x5lwXKF8TNi9B9Zf/dtr8GVDJ8YY8ZChWXr1U7+o2ejXM5vnjeRhKDVN0LQaoszJHPBL7PVHWFGaYQexRLPF9b9POwGvzJU8GphmP7FYeY7Iuxyy2R9i6t8RIlq7tJc0PYYNoePPp/OlasSoHbSLli5g4de6MGi1bs0Xl3DpfVGJdAOIWj1jRC0+kYIWv2QF5DZ4IowxBrmWZMaT/D1FwB/NEp8Viyx3BnhfAtc3l9nJMH8xkUSTK6NJNi+V53AnmOMNkkGpMd3FY/Zii/9Mv6jR/Dv2kZgzRKCC6YQnDSEsqEfU97jda68/1TjxWvXFyn7vDOhsf0Izh5HYMUCAts24j+YjO9cGr48Ex67v0V/H4Sgbb/Yg2Eu+Pxsc1qZU5JNf8sZXjce5De52/nnrNUNdsH+v9ou2PcKjzDCeoGl9gL2u0vJaSddsFpR5IiSnhfl8Jko2/bGWLZWYdqCGEPH19/933NQJQPiYkyYFWPhyhgbEqPsP6aQlvHN33wSglbfCEHbesnwy+zyqFcz9S0O82ezxM8LKu4qbn9aUMELhRK9iyVm2WV2uGXS/TKuBu5HlKjmLs0F7fWqKqZ8sZFXPxrFybQs3vl0HK91jSPPaNV6aY0qrTcjgXYIQatvhKDVN0LQtl9SfTJLHWpnxiN1TB/+Qb7Ey8URhlvDbHZFKGjGuAJTSZRzGfceSTBmmhpJsGHHV5EENtc3+331OIN4DRZ85y/gTzmg5rCuWkhw7gRC4/tTNvADyru9fG/5rt1fJTT4I0ITBxKcPwn/6sVqbuyRFLwXL+E1FeHxtE6pJQRt26YwcI0Uj5NVDiPjrOl0KTzGUwVJ3JfdcBfsP2bG88vcLbxuOUAv82mmlWSyyWnhtNdLSejbd2cL7h2HXybXrHD6okLSIYXVCQpzlyqMnhaj77D65W3voZWMmqwOM1y1WWHXAYXjaQrZxiildxnUKAStvhGCtu2RG5DZ45H5wh5hgDXMa+a6o6hu8KPaGQGfFklMs0fY4oqQ5pNx1N6eKFHNXZoL2huVsPsov3muOwPGLSaqxLReTqNL601HoB1C0OobIWj1jRC07YeD3giz7DLvWerutvhxvsRbZolJpRH2emSsoYaHhN0LJd5vFkkwfOItkQSHaiMJihvZFRaM4Cnx4M0pwH/2DP7kPQQS1hJcNpfgzDhCcZ9R1vddyrs8dw/5rs9Q1vstyoZ/SmjqcAKLZxBYv4LAnkR8J0/gy8jGaynF46vQ/Jx/G4Sgbd04QhEu+P3scFmZV5pD/6KzvGE8xG/zdvAvWWsa7IL9/7LX88f8XbxbeJjh1gt8WVrAXncpOf4y3KFvPiRMoA3m0igXstU3qjbvirJ4tcLkuQ1fbdBzUCWDxqhXHHy5Rv3ZQycVMvNiBMqEoNUrQtC2H4yBKAc8Eb50RBhmDfO2WeLBOt6Uv5WnjJLW6kmUDkoTQZuw+1idfD5mEY+/0Z9NO4/c/FxrL603F4F2CEGrb4Sg1TdC0LZNzMEoiW6ZMSVhXisM1/kE/Nb82GPeum/nXgWtI6B2eZ1IUwfk3IgkGNSAJBhQG0mw5JZIgux6Igk8vgq8llJ8Gdn4Tp4gsCdRlaSLZxCaOpyy4Z9S1vstrnR+pvHdrl2ep6zfu4RG9yE4cwyBZfMIbFmHP3kfvrOpeHML8JR6cQcjmp/flkAIWu0pDFzjiMdFfG0XbNfC4zxj2MN92Zv5TgNdsP+QsYpf5G7hRcN+ephPMbUkg41OC6e8XmyN6IIVgrb9UOqVyTJGOZ6msPOAwqpNCrMWK4ycHKP30Prlbd9hlYyeHmPuUvXqhqRDahdvrllpksgYQetECNr2jyUY5bBHZrkzwiibxF8sEr83fhWLIEpUc5cmgrZjj/GNprWX1puIQDuEoNU3QtDqGyFo2wYZfpk1TpnBVnUCcF1C9k/GCvpbw6x0yo3Oj72boC2sjSTY97VIgvqmlH82VI0kmL/iq0iCi9m3RxJ43CG8piK8Fy/hP5KixgGsXkxw/iRCEwcSGvwR5d1fvbeYgW4vUzbwA0Lj+xOcO4HAqoUEdmzCn3IA3/kLeA0WPM6g5uewtSEEbfPjDEW46A+Q6LIxvzSXAUWpvGVM4aG8HfxrA12wf5WxnP/KWsejebvoZDrMsKI0Fpfms8ddQpY/1GC+YEMIQasPXEEZQ7G6nycfU9iQGOWLlTEmzo4xIK5+edtrcCVDx8eYtkDNy922N8aRM2qObrFTPG9oywhBq1+sITUCS5So5q5WE3HQVkvrzUKgHULQ6hshaPWNELStD1dI5rRPZpEjQveiML8z1p0f+1KhxEibxBZXBGPg3s9hiVfGVlrD4dO1kQSr1EiCfo2IJJh5SyTBmUsKpjw/3lwjvtRz+A/sI7hlPYHl8wnOHktoTF/K+r9PedcX7yFm4GnKer5B2dBPCE4eQnDhNAJrl+HfvR3/8aP40jPxmG14fFc1P19tFSFomwZzsIKjXhdrHCYm2C7zsfkEHQx7+FHOZr6TubJeAfv3Gav4WW4Czxv20cN8iiklGax3mDnp8WANNm+EhhC0+uZGBq3NFeVyfpSjZ6Ns36teFTH9C4XhExoeXNZ/ZIzxM9Wc8HXbo+w7qpB6WaGgOIozoP1jFNwdIWgFokQ1d7UKQXspy8SsJVsYOmkZw6csZ+7ybWTlW7ReVqNK601CoB1C0OobIWj1jRC02lMSkjngiTDdHqHTXab1/qyggo5mddBDsidCSSNv+0Ykwcnz9x5JMGWOzNrlbg6tyyd982mKNyfh37CawJJZhKaPJDSyJ+V9OlL+YYfGd7t++BzlfTsRiutFcEYcwaVzCCSswb8/Cf/p03iz8/DaXLgDYlBRcyMEbeNwhiKk+4LscpUwvzSXgZZU3jam8Lu8RP49a22DXbD/mbWOR/J30tGUwpCicyy055HkLiGzCbpgvw1C0OqbxgwJc/pl8ixRTl9S2JOisHarwvxlCmOn1/9GXs9BlfQeUsmI2jfzVmxU//8cT1XINEQp8Wj/+PWOELQCUaKauzQXtPEJyTz8Ui96j5jHuNlrGD0jno8HzuDB5z9l/Y4UrZfXYGm9SQi0QwhafSMErb4RgrblMQWibHWrmWB/Nkv8Tx1TeB8ySHQrCrPQEeGUT8bZwG3eFkmwtTaSYHLdkQT9BkqM/NzOzP5ZbBp1gpRx27k0YSmF46fijBtCcMjHlPd4nSvvP9V48dr1Rco+70xobD+Cs8cRWLGAwLaN+A8m4zuXhi/PhMfu1/zYC75CCNqvKApWcNzrZq2jkIm2dLqZT/BswV5+nJPA3zbQBft3GSv5aU4CzxXso7v5JJNsl1nnKOSE101xM3fBfhuEoNU3jRG0DWG2R7mYrQ6G3JKkZoxPmRdj8NiGB5cNjIsxcU6MxfEKmxKjHDihcD4riqmkkQMiBd8KIWgFokQ1d2kuaB9/sz/Fpe47Pn/2Yh5/er2fBiu6t9J6kxBohxC0+kYIWn0jBG3zkx6QWe2U6V8c5om75Mc+aZL43BpmjVPNm63rdkq8Mul5UVJOq5O4F65SLy+90ck0YEAZY/sVMavvJZb1PsTmHpvZ230RZ3tOpKDX59i7f0Dgoz/fW77rp69RNrgroYmDCH4xmcCaJfh3bcV/7DDeS+l4TcV4POWaH2PBvaMnQZsfuMJhj5O1jkKmlWTSv+gsbxgP8XB+47pg/z1rLb/LS+RtYwqDi86xoDSP3W4b6b62m20sBK2+aQpBWx92n0yOMcrJ8wq7DqqROLO/VIibovBZPVnmN/LMR09Vvz9+s8LuQwonLyjkFIrBZU2FELQCUaKauzQXtK9+NKrOz8dilTwmBK2gFSMErb4RglbfCEHbtDhDMid8MgscET4uCvOg4U4Ze1++xCuFEnG2MNvdMubgV8f/65EEy9fJzJ/lZ+YwI/P6nGNlr31s7bGeA93mcebj0WR16UPxB+8SeP+5xkvXD56h7LN3CI3sgTQ7jsCXswhsiiewdye+kyfwZubgLXbg9ouYgfZMexG09mCYCz4/u1wlLC7NZ5T1Ih8WHqODYQ8/y03gnzLjGxSwf5u5kh/nJPBswV66mU8w0ZbOWkchx71uilpxF+y3QQhafdPcgrY+XEEZky1KWmaU5BMKGxOjLFqlDi4bGNdw9+2QcTGmzlM7drfsiZFyWuFSThSLQzyXaSxC0ApEiWru0lzQjp+zltPnc+74/Pa9J5i1ZIsGK7q30nqT0JrppREWOyKsccnscMsc9EY465PJ8stYgu37H74QtPpGCFp9IwTtt8MaktnrkZlSGuEdi8RP6ogr+HlBBX+xSMwojXDAG8EdkjEXV5B+0sGpzdkcmn+C5LGJJPdfyeFuM0nrOpz8Lp9S2vktyt57uvHitcvzlPV7l9DoPgRnjiGwbB6BLevwJ+/DdzYVb24BnlIv7mDk5vprasDTCo6joOVpK4I2L1BOSm3369SSDPpbzvC68SC/z9/Jf2Wta1C+/lXGcv4xM56f5SbQwbCHDwuPMcp6kUWl+exylXDJF9D8MWqBELT6RktB2xA2T5SMgijHUhV27I+xYoPCjIUKwyfWHdtzW4TP8ErGTo8xb7nCum1R9hxWB1nmW6I4xOCymwhBKxAlqrlLc0E7atpKHnqxJ291H8vnYxbRZ9R8Xukykj+82ofBE5bcRmssrTcJLTEF5TovOb2V7+dL/NJQwSMGiWdNEq+bw3xYFKZXscQQa5gJJWHm2iMsd0bY7IqQ5JY55pW54JcpCMo4WsHjvBtC0OobIWj1jRC094YhILPFFWG4LcwLhRI/qOP/xcP5V+iR5eTLM1kc2ZpM/szF5I+YhKHPQIo+/gh351fuKWYg9PHLBD7vQmj8AILzJxKIX0QgMQH/4YP4LlzAazDjcZV9o8cjBK1+aQ2C1h4Mk+bzkeiysdCexwjrBT4sPMozhj38NCeBf8hY1aB8/V8Zy/nv7PU8kr+Tt4wp9LOcYbotk/UOM0e9LgyBq5of69aIELT6pjUL2vpwBGQKiqOcTVcz19dtizJ/hcK4GTH6j6i/+7bX4EqGT4wxY6HCsvUKO/bFOHo2yuX8KFa3vp4HCUErECWquUtzQTtt4SZmfpnQKJqzampqWBi/k6ffGcgTb33O6BnxyNEYAA63n26DZ/Gn1/vRqecEMvMsN39O601CS8zBKKNsEv2Kw3xcFKaTWeLFQonHTRIPGCR+1IC8bSw/zFdv7zGjxAuFEu9YJLpawvQtDjPCFmaqPcICR4TVTpmtbnVS9ymfzOWATGEzdvEKQatvhKDVN0LQ1s95v8xyR5j+pis8llde597+zFkLQxL2snH6FMw93mqUdC1772lcXd7A2uMTzIOHYpk0nZIly/Hu2o7/+FF86Zl4zDY8vmvN+viEoNUvLSFocwPlHPI4WeMwMaUkg97m07xmPMhDeTv4r6x1/HUjul//d2Y8v8jdwrMFe/mo8Dhx1ot8WVrAbreNC34/9mBY82PZFhGCVt+0VUHbEEXOKJdyo6ScjrJ1T4ylaxWmzo8xdFzD0QkD4mJMmBVj4coYGxKj7D+mkJahYLC2v8FlQtAKRIlq7tJc0LaW2nXgDJ37TObKVYlwJMong2ayavN+AD4ZNJMNiYepqqrm7MU8OnQaTOX1KkDfgrYxOEMyhqDMJb/Mca96SesWV4QVTpn5jggTS8IMs4b5rFjiw6Iwb5olnjNJPGqU+HVB3V1W34SfFVTwsFHiKaPEa4Vh3rNI9CiWGGQNM9YWZpZdZqkjwgZXhF0emcMemTSfTG5AvRS3rscmBK2+EYJW3+ha0AYkvMUOvJk5avbqvl2c2rWbL/ak0PVIOvene+7Yg3+UFeLNA+eZtDye5DGDcXV96TbxGnjvOawfdCK7S29SPx7Nib5zOR63lpOzk0hbd4bsw/lYjW7cgdaR7yoErX75toK2NBgm1edlu9PKgtI8hhWl0dl0lKcKkvhxTgJ/34ju17/JWMF3szfwaN4u3jam0N9yhhklWWxwmjnmdWMU3a/NhhC0+qa9Ctr6cPhlcgoVTl1Q2J2isDpBYe4ShdFTFfoMq1/e9h5ayajJMWYtVli1WWHXAYXjaQrZxiilPu0f270iBK1AlKjmLs0FbXV1DTv2n6JL/2k8+5fBPP5mfzr3ncKO/adadB05hmJMRfabH8cnJDN6Rjyh8ms8+kofrldV3fzaX3pN5FKWCRCCtiWwhmRyAjLnfKo43eWRWe+KsMQRYaY9wlhbmIHWMJ8WSbxrkXi1MMyTJonfGVUx2xSC9wf5qjD+g1HieZPEW2aJT2wy/WsF86TSCPMdEVY6ZRJcEfZ51IE36X710l5nKziOgqZFCFp90x4Frcd7BY/Zii/9Mv6jR/Dv2kZgzRKCC6YQnDSEsqEfU97jdbxdX+Rg3ECmLlvJO/tT+XFm8I498/5Lbj7aeZQ5C5eRNHwcFz4exIlPJrKn2yI299jMst6HWDL8Iitnmlm3LsTuQwqnLykUFLeNjhshaPVLQ4I2J1DOIY+D1XYTk22X6WU+zavGAzyUt4P/bGT26z9nxvPL3K08b9jHx+YTjLFeYqm9gCS3mv3qCEVa7PEKbkcIWn2jR0FbH66gTGFJlPPZUQ6eUNi0M8qieIVJc2IMGt1w9+2gMTEmz43x5RqFzbuiHDqpcCE7irm0dT6/EoJWIEpUc5fmgnbZhr08/c5AFsbvZO/hc+w9fI4vViXy5FsDSNh9TJM1ub1BOvWcwOFT6WTmWXi7+7jbvj5s8rKbAlnrTULQMK6QGnVwOSBzyidzwBNhq1uNRFjgiDDVHmGkTaJvcZiuljDvWNQohT8ZK3jAoEYsNIXk/XG+xG8NEk+YJP5sluhkluhWFOZza5g4W/i2gWuJtQPXUnUycK0tIgStvmlLgtbjCODNL8SXdh7/oQMEtm0ksHIhwbnjCY3rT9mAzpR98tJdYwWKu7/O9kmjGbl2My8czeb7udfu2N8eTHXz2g4TPRbnMnxMPqP6l9JvoMTno2JMmqO++Nq6N8bRVIUsYxSHX/vj8m0QglaflIQkUn0+jl5zMr80l6FFabxfeIQnC5L4Uc5m/i5jZaO6X7+fs5E/5u+ioymFz4vOMqskm01OCye8bgoDzRvPIfh2CEGrb4SgvTdKvDJZxijHzykkJius3Kgwa5HCyEkNDy7rO6yS0dNjzF2qsGaLQtIhhdMXFXLNimbPIYSgFYgS1dyluaB9qfPw2zpXb1R+oY3XPx7d4ut5/7PJ3N+hG9MXbaK6uoa0y/l07jP5tu8ZN3sNGxMPA1BVVSNoDqpbF7HqGnyxaoqi1WRGqjhVUcX+a9dJKKtkRaCSWV6Fse4oAxwy3Upk3rHKvGCJ8IfCML8yqMPSvq3g/X6+xK8MEn8oDPOCJcI7VvW+BjhkxrqjzPIqrAhUklBWyb6r1zlVUUVmpIqiaDW+WDWxVnAc2xM1NTVUa3j/SmW15sdAzwCanv+q61VcLwtSaS0klnEe5Xgy8q4NhFfPR5o7hmtjP+Na/79wpctzjR+s9cEzlH/WkYtTxrF49Ta67rvMb89779yPciV+dTLM49sivL5IofuYSsbPuM6S1ZXs2HudsxeqMRdXc7VC+/PUbs+/xrTH/ed6dQ1OJcx5ycv2smLmebMZYD/L20WHeNiQyH/mNK779V+zR5MtlgAAIABJREFU1/BgwQ5etxygb+lpZnmySAhZOFvhoSRaQWV1+zt2eqK6Wv3713odekaprNL0/NfUaH8M2gOV12vwB2soKKzh9LlqEvddZ/naSibPuc6AuPrlba/BlYyYWMmcxddZm3Cd5MPVXMyopri0mmuSOP/tGo0dhShRzV2aC9pHX/nsZp7rrVV5vYpHX+mjwYogVH6N4VOWM33RJrLyLbzZbextXx86aSk7k08D4C2XBc1BWetHVqq4Go41+vuLQ1E1qsEvk+KNsNMts84t86VTjWoYbQszwBqmW1GYv1gkXjar3ba/Najdt005cO1PxgpeLJToaJH4uChMP2uYUTaJafYIi2q7eLd7Ihz0Rjjjk8kKyFhCUTyt4Li3FpTKasoqFE3X4CuPCjTielUNwWtKk9+uP1CBv9hOIDOL4MnjBPckEly/gtDi6ZRNHUbZ8O6U93qLK52fbrR4Le/6IuX936dsbF9Cc8biXzYf26oNZK7az6GVF5i2toR3t1/l4YNh7rtcx5tDWRK/ORzmxR0yfTcqLNuqkJQSIzU9hsmq4C3T/ny0NDU1aL4GLfGWt739x14eJtXvZbu7mPn2XIYUp/Fe4RGeMCTxw5zN/G1mw92v38lYwQ9yNvJ04R46FR5mUNE55pbmsMVVxGmfl5IySfPHKWhegtcUrlfVaL4OPaPl866yCrWDVuvnoHrA5oqSkR/l6JkoO/bFWLZeYfoXCsMmxOg1uH6B+/nIGONnxvhihcL67V8NLjMWR3EHv/marobVDlqtj42u0dhRiBLV3KW5oH3/s8nsPnjmjs8nJp/i3d6TWmwdZy7kYLV7bn58McvIa13jKL9awe//3Bs5Grv5tVe6jCQr3wKIiAM909JDwpwhGWMgSrpfzbfd51HzblfVDlybXBphmDVMn9qBa2+ZJZ4vVHNzf10g8T8FTTdw7Xe1A9derR249mmRxMDagWsz7RGWOiKsv2Xg2rkGBq61RUTEgb6514gDj6sMr8GM78IF/IcPEkhMIBC/iOD8iYQmDCA0qAvl3V9ufLfre09S3v1lQoO6EJowgOD8iQTiFxFITMB/+CCetAuY0iycOVtOYrLC8g0K0xbE6D8pxlvzYjy1Seb+oxG+n11HHEuGRIczYfqeirLyfJSMdhBJ0NSIiIPWhSskk+UPkey2s9JhYILtMj3Mp3jZmMxvcrfzr1lrGtX9+i9Za7g/dxsvGfbT3XyScdZ0ltsN7POUkuEP4gxFvvWQMEHbRkQc6BsRcdA6cPpl8sxRzlxSSEpRWLNVYd4yhdHTY/Qd3sDgsiGVjJgYY+YihRUbFRKTYxxPVcg0RCnx1H+/IuJAIEpUc5fmgvZSlomHXuxJxx7jGTl1BSOmLuft7uN46IUenErLbrF1LFi5g17D5yGFZSorrzNx3jqGTloKQI+hc1ixcR9VVdUkHzvPS52HU1VVDYgn6HqmpQVtU2ANyeQFZNJ8Mke86sC1Da4IS50RZtllxtrCDLKG6VEs8b5F4rXCME+bJB5uhoFrj9YOXHvTrArlz4qlOwaubXFF2OuROe6TudTKBq4JQatvrlfV4C+X8ZR68eYW4Dubij95H4Et6wgsm0dw5hhCo/tQ1u9dyrs833jx2vlpynq9Rdnw7oSmDCOwaDqBdcvxJ+3Ad/wYvsuZeCyleHxqTqW5NEpaZpR9RxXWblUnK4+a/FW220djKnl1scJj2yP84nSY7+bd+Tf5u2yJj3LDLCqWuSBEbKMQgrZlsQYrOOX1ssVVxNzSHAZZUvmL6TB/yk/ivuxNfKcx3a+ZK7kvexN/yk/iL6bDDLKk3ux+PeX1Yg1WNGotQtDqGyFo9Y0QtG0Dc2mUCznq0LGEJDUHf8rcGIPGNDy4bGBcjIlzYiyOV9iUGOXACYXzWVFMJVHKK4Sg1TuiRDV3aS5oAXyBclZvOcCkeesZMzOeFRv3YXf5WnQNEVlh3Ow1PP3OQB5/oz99Ri3AGygDwOUN8smgmTz2ej/e7T2JgsKSmz+n9SYh0I62KGibAnMwSqZf5rRP5oA3wna3zBqnzEJHhGn2CKNsEv2Kw3xcFKaTWeLFQonHTWq0wo+acODagwb1dv9sluhYO3CtvzVMnE1ieulXUQ073Oo6z/pkMptw4JoQtO0Yv4S32IE3MwffyRME9u4ksCmewJezCE0bQWhkD6707ciVD55pfLdrl+co6/suobjPCM6MI7hsLoGEtfiT9+A/ewZvTgGeEg/uQPiO9ZR6ZS7nR0k5HSUhKcaiVTEmzIrRb8TXXmgMruT9yTFeWhHlkaQIP71YxxskeeoQxOG2MFtcEQyBVnC82yBC0DYdzlCEDH+QfZ5SltsNjLOm0918kpcM+7k/dxv/0sju13/LWsNvcrfzsjGZHuZTTLBdZqXDQLLbTpY/hKuJ1isErb4RglbfCEHb9in1yWQbo5xIU9h1QCF+s8KsxQqjpij0Hlq/vP1sWCVjp8eY/aX6c7sPKZy8oJBTqN3gMkHLIkpUc1erELRtubTeJATaoVdB+21xhGQKgjIX/TLHvDJ7aqMaljsjzLNHmFASZqg1TO/aqIY3zBLPmiQeMUj8ylDBD5pA8H4vX+IXBRX83ijxjEniNXOYzhaJnsUSQ6xhxtnCzLFHWOaMsMkdYbdb5qhX5rxf7UAuCQlB2xbxeMrxmorxXkrHf+ww/l1bCaxZQvCLyYQmDqJscFfKP33tnmIGyj55ibIBnQmN609w7ngCKxcS2LYR/6ED+NLO480vxOMINLg2Z0AmzxLl5AWFnQe+iiQYPPbu3R7dh1by/nyFt3bJPJUa5ic5d/6u/7Sggo4WiSmlEfZ5ZGyt4Dy0B4SgbTxFwQpOejxsdlqYXZLNgKJUOppSeCx/Nz/I2ch3MlY0KF//NnMlP8zZzBMFu3mv8AhDis4xvzSXrc5iznh92EJSiz0eIWj1jRC0+kYI2vaNKyhjsEZJy1DYf0xhw44oC1fGmDA7xoC4hrtvh4yLMXVejCVrFbbsiZFyWuFSThSLo2maQwTaI0pUc5fmgtZiczJg3GJe6xrHC+8Pu4PWXlpvEgLtEIJWO4qDMtkBmVSfTIpHVgeuuSJ86YgwszTCmBJ14NqnRRJ/sUi8UqgOXHvIoAqrJhm4ViDxgFHiMaOa9fuOReIjS5i+xWFG2MJMKY2wwBEh3imz1R0h2RPhlE/mckDGFIg2WTeXQMZj9+PLM+E7l4b/YDKBbRsJrFhAcPY4QmP7UfZ5Z8q7vth48fr+U5T3eJ2yoR8TnDSE4IIpBNYswb9rG/6jR/ClX6bS6yIQuHrPa70RSbD/LpEEdealDa1k9FSFGasU4g5G6X4hwnN5EvfV8Xv5oEEd/LfAEeGEr/VEgrQ3hKBVcYYiXPYF2esuZZm9gLHWS3xiPsELhv38Kncr/5y1ulHdr/+etZYH87bzivEAPcynmGhLJ95h5KDbQY6/rFXtl0LQ6hshaPWNELT6xhuKUWit4miqwo59MZZvUJixUGFEIwaX9Ruudt/OW66wbluUPYcVzlxSyLdEcYirmdoMokQ1d2kuaN/sNpYew+awY/8p9h9Ju4PWXlpvEgLtEIK27eIKqZI0PSBz0ieT7ImwxaXK1AWOCFNKI4ywqbL1I0uYt2sHrj1mlLi/oG4x9k34ae3AtSdNqkR+95aBa2NK1IFrSxwR1tUOXEupHbiWE1AltdbHsVkJSHhtLrzZefhPn8a/P4lAwhqCS+cQnBFHKK4X5X07Uf7hc42PGfjgGco+e4fQyB6Epo0g8OUsNbpg7058J0/gzczBW+zAHWi4G6++IWGlPjWS4PAZNZJgcbxSdyTB1xg6PsaMhQorN6qXze1MV1hslulvDfOEqe7foSdMEv2Lw6x2yqSLJ/gthl4EbWHgGie8bjY5LcwqyebzorN0NKXwx/xdfD9nI3/TiO7Xv8tYyY9yNvNkQRLvFx5haFEa80tz2ea0ctbro6QFu1+bAiFo9Y0QtPpGCFp9U9+QMEdAJt+iDi7bc1iVsPOWK4yd3vDzv16DKxk+UX0OuGy9Kn+Pno1yOT+K1S26b1sTokQ1d2kuaH/7fA+uVoS1XsY3Lq03CYF2CEGrb67GqjGXK5z3q/EHu90yG11qLMIce4RxtjBDageudbZIvFoY5hmTxO+NEj8vqOB7TTRw7VeGCh41SjxnknijduBa79qBaxNLwsx3RFjhVGMk9npkjntrB64Ftemu9Piu4THb8KVn4j9+FP/u7QTWLiO4cBrByUMoG/oJZT3f4ErnpxsvXru+SFn/9wmN6Utw9lgCy+cT3LIe/4F9+FLP4cs14in14Q5GmuxxxCprMBQrnKqNJFjRiEiCnoMq6T8qxsTZMRavVti6J8aRs1F1crBPfbPgC3uET4rC/NZw5/n+nwKJlwsl4mwS29zqmwxa/x3olfYgaB2hCJd8AZLcJSy1FzDGeomPzSd43rCPX+Zu5Z8z4xvV/fqfWet4KG8HrxoP0Mt8msm2y6y2mzjkcZATKNf8cTY1QtDqGyFo9Y0QtPqmPkHbEBZHlEs5UVJOq/EHS9YqTJ0XY8i4hqMTBsSpswcWroyxITHK/mMKaRkKBmsUV3tv2GhliBLV3KW5oH239ySsdo/Wy/jGpfUmIdAOIWj1TVNk0N4YuHa2duDajtqBa4scEaaXRoizSfS3hvmkKExHszoQ7XGTehn7j5tw4NpvageuvVSoDlz7pChM/+LagWv22oFrTpnttQPXztQOXDPfMnDN4yrDazDju3AB/+GDBBITCMQvIjh/IqEJAwgN6kJ595fvKd+1vPurhAZ/RGjiQILzJ+FfvZjAzgT8R1LwXryE11SExx267ZiWeGWKnFGM1ii5ZoUMgzrJN/WywsnzCkfORjl4Qu1u2HlAlaSbEqOs2aJK1i/XKCxYrjD7S4XpXyhMnR+rk1GT638yHTdFYc4ShXXboyQfUzifHcVs/+p42UIy+z0yU+0ROpklflZH9MbPCyroZFbPwQFPhJJW8HsvUGkLgtYYuMoxr5sNTjMzSrLobznD28YUHs3bxXezNzSq+/UfMlbxk5wEni7Ywwemowy3XuALex47XFbO/f/t3XlYVOmB/v13kkxmksnMb5Ykk0lmJjNZJ6YTe9+77XZpbbdW225b2x033BHBfd93URFFUREUQUQUFUQRwQWQvdjXoqCgiirAhaWqsOB+/yitFhUoweIpfe7Pdd3XNYLNnPK0J/jt8hytFiX6Jx9q97KPgVbuMdDKPQZaudeZQNveUnMMiI777sFlG3cZsWCVsd146zS7EW4rTdjgYcT+o0YEhRkRdcOIlGwDSrTif81ethHZm5BAm5FbbN2FqHiMnb0eF6LiocgpbvG5jNxiEYf3TERfJDhxY6CVe47wkLCyqgZk6SzviL2sbUBoRQOOqeuxr6wBW0vrsaKkHvOK6jDlwQPXBuXVomdOLd7MrsWfMmufzwPXFPfwh0QNXr9WiE8up2PguZsYFRyJKcdOw9XnGFZ6emP79h04sGENTqxYiLBFc3Bl8TzELXVH2ooVyFy7CZmbvJC0KwjX9kXh4uFUhPiX4eiJWhzwtzwsa9dBI7Z6Wb5ZXbPdiOWbTFi81gS3FZZ3HsxcYMKUdp68a4+5LDFh7XbLLQmCzxtxNd6IjIKnv5shW2eAv9py64zeuU//tX81uxbjC+qws7QeV7UNDnXfTa7lRAdalb4OcZWVOFVejF0lmVhQFI9vcy/jk8xQ/CH9GP7Bhne//k3SXvws5RBeVQRhQPZ5TMmPwWplEnxKcxFeUQbFS/ju1+cxBlq5x0Ar9xho5Z49A21rU+sbkKM04GaKAeeijDgaZICHt+V74Vk2PLhs9iITVm42YddBI/yCDbhwxYi4VAPySvi3sDoyInsTEmi79Rhn8xyd6IsEJ24MtHLPEQJtR1eqqUVJpgrF19KQeSEGCQFnccUnAGf3HkLgrn04vGM39m7fiS07PbDC6wBcDh3H5GNn8M2pyxhwPh4fX1bgtRvF+F2SFv+h6PxD136VVotfJ9Tit9dr8ccrdXglvA6vnqnHW8ENeO94PXocNqCntxH99hgxYJsRQzaaMHyVCSOXNmKMWyOcHnkwwxQXy18Fm7vEBLeVlpC7fJMJa7ZbAu+2vZbg63XEiAP+RhwJMuD4aROCwizvqj0XZcTFGAOu3DQi9pYRcWkGJGUakJZr+atk+aUGKDUNaLzf+j1oy6saEF/ZgH1lDZhWWId3s5/8NfplRi0+zK7FzKI6HFRb3pEs+t8LzvbZO9Bm6e4gUqPG4dI8rC1OhnN+DAZnh+ONjJP4ReoRfM+GWw/8KNkbv03zR4+s0xiZewluRXHYWZKBk+pi3NRWQiXhu1+fxxho5R4DrdxjoJV7IgJte1NWNCA5y4DL14wICjPBy9eI9TuNmL+87QfQOs1uxLR5jVi41oTNe4w4eMyIkAuWNxuk5xlRyu9LnzoiexMSaI2mRpvn6ERfJDhxY6CVe/YItIVlBuQqDcgoMCAl24Bb6QbcSDbgarwRl68ZceGKEWcjLQ+QOhFqwtGTBhwKMGC/nxF7fIzYvfcu9m0pxuHVSTi+KBKnXE4g3HkPrk5ahcSxc5AzagzKRgxAzXDbbzNQ8XU/5I4cicRvZyBqzAqcHu+Bo07H4Dk5HOun3cKiGUWYPP82Ri1pxFerTBi63oiB20zot9uIXvuN6HHEgA8D6vFeSD3ePl+P1y/X4S+xdfi/uFr8JrkW/5n+fG7V8JvMe+ieZXloVr/cWnz54IFrM4vqsFBZh/Ul9dj14IFrJ8sbcEHTgGvaBqR28IFrjz4krLSqAZc0lnctjyqow5+fcv/YX2fUon+u5eFvQeUtbw/BvXjrTKBV6esQp61EsFoJj5IMuBfFY1TuJXySGYrfp/vjxza++/XnqYfxWkYQBmZfwNT8GKxRJsOnNBcRFWXI0N0W/mv0so6BVu4x0Mo9Blq554iBtr1lFlpu83XmouXBZVu9jFi6vv0Hlz38m2Jrtpmwx8eI46EmRMRY3qQg+jWJHJG9Cb8HLQDkFpZa/2+1Ro/DgeGIup4i8IhsJ/oiwYkbA+3LP5XWEk1zlAZk5FuiaUK6AdeTjEhWNCE6rhEXrhhxJtLyV9xPhFruZ+pz3HIfqN0+RuzYZ8Lm3Uas22HEqs0mLF1nwoJVRsxbZvmrSc6ulqe3tvUN0qyZVVgyPR8bp8bDc9J5+Dv54cz47bgyZimSvp2O/G9GQPN1H9vv7frVhygdMQA5o8cicbwLYiavRsRMT4TOD0Tg0ks4ui4ZB3eWwOvAPez3s3xDd/SkASdCTTh1wRKJL1wx4tI1y39pv5FkxK10y69PRr4lMheWGZ7pv74rdA3WB66FVjTgaPl3D1xbrrQ8cM3pwQPXBubVWh+49oen3Lu1o/tj1j28kVWLHg8euPZNfh0mFdZi7oMHrm1WWY7JT12PyDtmrFLVY3BeLf7nKV/r95n38FV+Ldar6nFO8/weTsY5xtoKtBm624ioKINPaS7WKJMxNT8GA7Mv4LWMIPw89TD+xoZ3v/442Ru/T/fHJ5mhGJV7Ce5F8fAoyUCwWok4vvtV6Bho5R4DrdxjoJV7L2KgbWsFpQbcUhgQEWNAQKgJnj6WZy+4LDW1+meTvBLxxy1yRPYmPNAePXkR7wxwhtnchNt3avHB4JkYOnEpPvxiJg4cOyf68Nol+iLBiRsDrZgpNZYnoWY9fAhU5pMPgTr34CFQQWGWh0AdCTTggP+TD4Fas92IFQ/vZ7ryu/uZTp1n//uXTp5tgMsMDVY4Z2Lr1Fh4TzqNk5MOInLSRsRPcEfWWCeoRg1F1dc9bA6v1SN6oHLiUKhnOaF0sRuUGzdA6XUAyoAQKMOvQhWngKaoDOW6WuHn8Xkv/5EHrp1/+MA19aMPXKvD9KI6jHvwwLX+uXXP9YFrrz9y/9gYPpThpZ1KX4cbWi2i7qmxU6XA/KI4jMyNxMdZp/HbNH/8yIZ3v34vaS9+kXoEb2ScxODscDjnx2BtcTIOl+YhUqNGlu6O8NfJtT4GWrnHQCv3GGjl3ssWaNtbWq7ljRinwi23QNjq9WLe2u15jsjehAfa3iNckZmrBAAcPhGO4ZNXoLm5GQXFanz2zXyxB2cD0RcJTtwYaC1T6y33P8pTGZBVaLlXZ2KGAXGpBsTesjxJ9GKMAWFRRpwOt9wf6dhpE44EGawPgfI4YPkf/Q0eRqzZZrln6KI1lodAzVlswgx3MQ+BmjK3ETPcLccwf7nlmJZvtPx1n22ejdjhZTl2z8OW+5keDjQg4GQtwgJUiPJNxc2Dl5G6JxDZm/eiaPValC6cC+3MsaiaMBA1Iz6y/R2vo3ujesYIVC12hn7jEui8tkEX4IvK82HQXr8BrSIHFapK4f8uvOh79IFrZx974NrKxx649lVRPVyUdfBV10OhE3/s3POZQleD8Afvfl2tTMKU/BgMyD6P7opA/CzlkE3vfv1Jsjf+kH4Mn2aewejcy1hYnIDdqkyElBcjvlKH0iq+o/pFHgOt3GOglXsMtHJPtkDLPTkiexMeaLv3dkJzczMAwMl1M3wCzgMAmpqa0b23k8hDs4noiwQnbo4caMsqG1BUbnlCZ2ahAak5lr/CciPFgKsJRly+bkT4VQPOXrLcED7wrAn+ISYcOmGAt58lOHp4G7FlrxEbdlr+usuyjSYsXGOC63ITZi8yYbqbCZMFRNOp8ywPgXJ55CFQKzaZsPYpD4E6eMyII4GWh0CdPGd5V+35KMu7bK/EGXEt8cFDoLIs78bNLjKgoMxyfyX1Y/clrSjTQ5OVD+3NOFSGn0P9meOoPrAT+s3LULV0OqpnfYOacX1tjq63v/oANeM/R9Wcb1G1fBb0W1eg8oAHdCf9UXkxHJr4BGhyClBRwSepO+IevQct92KsRF+H61otAtVF2K5SwLUoDt/kROKjzNP4TZo//i5pf7vx9ftJXvhlqi8+yAnBkJxwTC+IxXplCnzL8nFZU44cvvv1pR8DrdxjoJV7DLRyj4GWI7I34YG29whXZOeXoFyjR/deE6Es1QAAilQV+OTLOYKPrn2iLxKcuD1roC2tbECR+ruHQKU+5SFQ4dEtHwLl98hDoDx9jNix34Qtnpanc67aYsKyDSYsXG20RNOFlhu+t/fEzue9SXMaMc21EbMWmDBvmeX+qkvXmbByswnrdhixebflPqy7fYzY52uEz3EjjgZZ7mcafN5y0/oLV4yIfHA/0+tJRiSkWe5nqsi33P+1sMyAEnv8tXF9PSqUFdCkZaIyNgaVYaeh8/eB3nMz9OsXoGrBFFRPG46aUZ/aHl5HfIzqyYNR7ToBVatdofNYB91hL+hOB0F7JQrapFRo8ktQob0n/N9hruNjoHW8pelqcKGiFAdUOVhZnIhJeVfxefY5dFcE4qcph9qNr/9f0l78Y7I3/ph+HD2zzmBMXhQWFSVgjyoTIeVKJGi/e/drZx4Sxr3YY6CVewy0co+BVu4x0HJE9iY80PoFR6J7bye82mcSFqzbDwC4facWA8YsxFavQMFH1z7RFwmucyt5+BCoYksMTMk2ICHN8hCo6DhLNLxwxRIRg88bEfDIQ6AOHW+E12ETtj/yEKiVDx4C5f7IQ6Cm2fAQqOd+f9O5jXCeb8KcRZZ3vC5cbcSyDSas2mLC+p1GbPE0Yud+y83gHz4Eyu+kAYFnvnsIVHi0JRrHJBhxI9kSk1OzLXE5r8SAIvWzPQSqK1ehvQdNfgm0SanQXomC7nSQJZJ6rEPValdUu05A9eTBuD3iY9vf7TqqJ6qdh6Nq4VTo1y9C7YHtqD5xGJVhZ6CNvQZNeiYqSjQo1/OvL8swBtqunbKqFrEaLQLKirC1JB0uBTfwde5FfJAZgv9J88MPk/a1G19/kOSFX6X54u2MYAzNCceMglhsUKbiaFk+ojTlyNXdtfl4GGjlHQOt3GOglXsMtHKPgZYjsjfhgRYACorVSMnIh9ncBABovG/GidAo648dmeiLxMs2td7yEKiCskceApX15EOgzj94CNTJc989BOrgsScfArX2sYdAuXThQ6CeiKYujZjuZrmfqetyExautdw2YPVWEzZ4WG4nsNPbcnsBbz8jDp0wwD/EhMCzJoRcMOLsJcttCS5ffxBNUyy3LUjNsdzGIE9lQFG5AWUOGk2fxyoqaqDJKYAmPgGVF8MttwM44AH91hWoWj4LVXO+Rc34z5/tNgPj+qJ61jeoWjod+s3LoNu/A7rAo6gMPwftzThosvJRUaZ/4liMjU2ousub5cs6BtrnN3VVA9Iqq3G+vBTepdlYXnwLE/Oi0S/7HP6iOIF/TfGx6d2v/5RyAH9KD0DvrLMYlxeFJUW34KnKRGh5CRK1epQ9x3u/MtDKOwZaucdAK/cYaOUeAy1HZG8OEWhfZKIvEqIX88j9TMMut34/050P72f64CFQyzZaAqXrckuwnO5m6vJg+nDTW3kI1AYPI7bu/e4hUN5+lodAHQsxISjMhIgrZkRebUREjAGXbxgRe8uIm6kGJGZYHpSVWWSJpsUVjDjtrUJVCa0iB9rrN1B5Pgy6AF/ovLZBv3EJqhY7o3rGCNSM7v0Mtxn4CNVOA1HtMhb6lXOh37EGOh9PVJ46gcrLkdDeSkZFXjEqtB2/XyQDrdxjoLV9xVW1iNFocbysEFtL0jG34Dq+yr2I9zNP4ddpfvjbZNve/fpfaUfxTsYpDMuJwKz8a9ikTIV/WQGiNRUo1HftLUMYaOUdA63cY6CVewy0co+BliOyN4cNtGcv3sDSTT6iD6Ndoi8SIldQ2mCXYDrt4UOglprgvtKEJetMWLHZ8hCoTbuN2O5lxG4fI7x8LQ+B8g0y4HioCcHnjAi9aHkIVOQjD4GKTzUgOcsARZ7B8hCoUgNKnvIQqGedIz8kzCGmq4WmqAyalHRor0ZDd+YUdEe2wRT0AAAgAElEQVQPQLd7A6rWuqHKzQk1U4eiZmQP29/tOrIHaqYORZWbE6rWukG3e4Pla545Be3VaGhS0qEpKkO5rtbur4+BVu4x0FqmrmpASmUVwspV2FeahWXFiZiYF42+2WF4Jf0E/iXloE3vfv3nlIP4c3oAPssKw4S8K1hanAiv0iycLS9BcmUV1A7wWh8dA628Y6CVewy0co+BVu4x0HJE9uawgdb/VCQmz98i+jDaJfoiIXIl2gbrQ6C2P/4QqJMGBDzlIVDRcU95CFSxHR8CZcfJHmgrSnWojLyIyuAA6A7uhn7bKuhXzEW1yxjUTBzwbLcZGN0b1TNGoGrxdOg3LoHOaxt0Ab6oPB8G7fUb0GTkoEKlE/6aHx0DrdyTJdAW6e8hWqPBMXUBNpekYXb+NXyZE4F3M0Lw36lH8QNb3v2avA//nXoU72aE4MucCMzOv4bNJWk4pi7EVY0GRV387tfnMQZaecdAK/cYaOUeA63cY6DliOzNYQPti0L0RYITN9kDrSZV0X54ndAf1XNGo2r5bOi3r4Tu4G5UBh9H5aUIaBJuQZNTiIqKGuGvpSNjoJV7L0OgVVc1IKlSjzMVJdirysKSolsYn3cFfbLOolt6AP6fje9+/ZeUg3gl/QT6ZodhYl40lhUnYl9pFsLKVUhxwHe/Po8x0Mo7Blq5x0Ar9xho5R4DLUdkbwy0nST6IsGJm+yBtkJViarVrtB5rIPusBd0p4OgvRIFbVIqNAUq4cdn7zHQyr0XIdAW6u8hWlMB/7ICbFKmYlb+NQzLicA7GafwX2lH8YMkr3bj6w+T9uHXaX54P/MUvsq9iLkF17G1JB3HywoRo9FCWWX/24k44hho5R0DrdxjoJV7DLRyj4GWI7I34YE2Nj4dQyYswRt9J+OVT8c/MUcn+iLBiZvsgVb2MdDKPdGBtqyqHolaPULLS+CpysSSolsYlxeF3lln8af0APxTygGb3v36byk++KsiEP2yz8EpLxorihPhXZqN8+WlSKusfinf/fo8xkAr7xho5R4DrdxjoJV7DLQckb0JD7S9vp6H/X5nEZechWRF3hNzdKIvEpy4MdDKPQZauWfvQJuru4soTTmOluVjgzIVMwpiMTQnHG9nBONXab74vg3vfv27pP343zR/fJgZghE5kZhXcAPbShQ4UVaEa1qNtO9+fR5joJV3DLRyj4FW7jHQyj0GWo7I3oQH2kFjF4k+hE4RfZHgxI2BVu4x0Mq9zgTa0qp6JGh1CClXYo8qE4uKEjAmLwo9s87gj+nH8Y/J3u3G179J2oufphxCd0Ug+mefx+S8q1ilTMLB0hxcqChDuu7FvLfzizIGWnnHQCv3GGjlHgOt3GOg5YjsTXigXbLxIJIV+aIPo8NEXyQ4cWOglXsMtHKvrUCbo7uDy5py+JblY70yBdMLYjEkJxxvKoLxH6lHbHr3698n7cdv0vzxUeZpfJMTCdeiOGxXKRCoLsJ1rRYl+jrhvwYyj4FW3jHQyj0GWrnHQCv3GGg5InsTHmhzClR4Z4AzhjktwyTXLZg8v+UcneiLBCduDLRyj4FWzpVW1SO+Uocrd9XwLMvEwuIEjM69jE8zz+AP6cfwExvf/fqzlEN4VRGEAdnnMSU/BquVSfApzUV4RRkUfPerw4+BVt4x0Mo9Blq5x0Ar9xhoOSJ7Ex5oB41dhPFzN2DbvkDsORTyxByd6IsEJ24MtHKPgfblXJbuDiI1ahwuzcPa4mQ458dgcHY43sg4iV+kHsH3bHjw1o+SvfG7dH/0yDqNkbmX4FYUh50lGTipLsZNbSVUfPfrCz8GWnnHQCv3GGjlHgOt3GOg5YjsTXig7TPCFc3NzaIPo8NEXyQ4cWOglXsMtC/eVPo6xGkrEaxWwqMkA+5F8RiVewmfZIbi9+n++LEN7379XtJe/HvqYbyTfQqDcy5gWn4M1iiTcag0Fxcr1MisvC38dXL2HwOtvGOglXsMtHKPgVbuMdByRPYmPNBOct2Cqpq7og+jw0RfJDhxY6CVewy0jrfMytu4WKGGT2ku1iiTMTU/BgOzL+C1jCD8PPUw/saGd7/+Q7I3/pB+DJ9khuLb3MtYUBSPXSWZOFVejLjK79792pmHhHEv/hho5R0DrdxjoJV7DLRyj4GWI7I34YH2wLFz+Pxbd2zeG4AjQRHwfWxdyfNIKD75cg7eGzQd7mv3ob7BCAAoLa/EuDkb8O6De+U++lAz0RcJTtwYaOUeA23XTqWvw01tJU6qi7GzJANuRXEYmXsJPbJO43fp/viRje9+/UXqEbyRcRKDs8PhnB+DtcXJOFyah0iNGlm6OzYfDwOt3GOglXcMtHKPgVbuMdDKPQZajsjehAfaLyctx4hpq1pdV4mIvoXPv3VHpf426huMmDhvEzyPhAIAxs5ejyNBETCbmxAbr0CPYXPQeN8MgN+gyzwGWrnHQPt8p9DVILyiDD6luVitTMKU/BgMyD6PVxVB+FnKIZve/fqTB+9+/TTzDEbnXsbC4gTsVmUipLwY8ZU6lFbVP7fjZaCVewy08o6BVu4x0Mo9Blq5x0DLEdmb8EDrKBQ5xUhW5Fl/fCQoAu5r9qGq5i7e7DcV981m6+e+nLQcCSk5APgNusxjoJV7DLS2r0Rfh+taLQLVRdiuUsC1KA7f5ETio8zT+E2aP/4+aX+78fX7SV74Zaov3lIEY0hOOKYXxGK9MgW+Zfm4rClHzjO8+/V5jIFW7jHQyjsGWrnHQCv3GGjlHgMtR2RvDhFoi1QV2OF9Eu5r9mHOst3Yti8QBcVqocc01X0bToRGIVmRjy/GL2nxuXkrPRF4NhoAv0GXeQy0co+B9rul6WpwoaIUB1Q5WFmciEl5V/F59jl0VwTipza++/UfUw7g/9KPo1fWWYzNi8LiogTsUWXhdLkSt7T65/ru1+cxBlq5x0Ar7xho5R4DrdxjoJV7DLQckb0JD7SXYpPw50/GY9T0NViy8SCWbDyIb5xX4689J1rfpdrVPA+fxoS5G3HfbMaNxAyMmLqyxeeXbDxovT+uwWTmJJ3Z3IzG+03Cj4MTs6amZpgEnv964327fF11Qx0yamtw7bYG56pVOFqZh12aDKxSJ2FJabx1E4uu4LcKv3bD68P9V/pRfJAdghGFkXBX3cQuTQbOViuRdFeHKoNR+Pl81jU3N8PUKP44OFHnHzA6wHGIWr1R/DGImrHRcv5FHwcnZqZGy/Vf9HHIPHt9/2PT+b/fhKYmnn9Z13i/CWaef6lHZG/CA+3g8YsREZ3wxMfDIm8+EUbtrbm5Ges8/DB5/hY0GEwAgJSMfAwat7jFz3NZsQcnw64CAKruGjlJZ2g0o7ahUfhxcGJmut+Eu3UmocdQfc/01OXfvofEaj0u6dQI0hbhQHk2tpSlYanqFqYXxeLb/EsYkHseH2aF4BXFCfxnmi9+knzA5tj6+P4p5SC6ZQSgT04YJhRcwQpVIg6UZ+NCZRkUNTWtHueLPHMTcLuuUfhxcGIGQPgxiFxb1x8ZJvv5l3m36xphbuL5F7mqO+K+77pbZ4LpfpPw70E5MattaITBZBZ+HJy4Edmb8ED7Rt/JLe7v+lDjfTPe7De1S49l057jcFnhaX0AGADU3LmH1z+bbA22ANBvlBtSMvIB8K+4yTze4kDu2fsWBwpdDa5pNThXrsIxdQE8VZlYr0zBgqJ4TM2PwTc5keiXfQ7vZYagW3oAfpXmi58ke3c4sj56q4H/SjuKV9JP4IPMEPTPPo+RuZfgnB+DRUUJ2KhMhVdpFgLKinClogJF+nvCz4WI8RYHco+3OJB3vMWB3OMtDuRe1V3e4kDm8RYHHJG9CQ+0/UcvQHpW4RMfT8sqRL9R7l12HLdSczDMaRkaG+8/8bmJLpvg5XsGZnMTwi7dRJ8RrjCbmwDwG3SZx0Ar99oLtCp9nZDI+r2kvfh/KQfx36l++KsiEB9lnsbA7Av4NvcyphfEYknRLWwuScP+0mycKCtCeEUZ4rSVyNbdQZmD3efVkcdAK/cYaOUdA63cY6CVewy0co+BliOyN+GB9ljIZbw7wBnrd/kjKCwagWejsc7DD2/3nwZv/7AuO46F67zxyqfj0b23k3VfTloOAFBr9Bg7ez3eGeCM4ZNXIDNXaf3nRF8kOHFjoH35p9LXIV1Xg1iNFmHlKviXFWCPKgvrlClYqU6Ec2EMRjyIrO9mhOBP6QH4Zaov/uE5RNZ/TjmIX6f5obsiEB9nncag7AsYnXsZMx5E1i0lafAuzUaguggRFWWIq6xEju4O1A7w6ybDGGjlHgOtvGOglXsMtHKPgVbuMdByRPYmPNACQET0LUxx24rPv3VHr6/nYaLLJpy5eF30YdlE9EWCEzcG2hdjbUVW96J4TMmPwde5F9E3OwzvZJzC/6Ufx3+kHsGPOxlZv5/k9dTIOiYvCjMLrmFpcSK2lqTjgCoHQepiXKxQI75Sh1zdXUbWF2AMtHKPgVbeMdDKPQZaucdAK/cYaDkiexMeaP1PXWpxf9cXjeiLBCduDLRdtxJ9HdJ0NYjRaHG2vAR+ZfnYo8rE2uJkuBXFYXLeVbtF1n9JOYj/eRBZe2SdxuDscIzJi4KbKg4rVUmMrJKOgVbuMdDKOwZaucdAK/cYaOUeAy1HZG/CA+37g2dAWaoRfRgdJvoiwYkbA+2zrURfh7TKalzVaHCmogRHy/KxW5WJNcpkzC+Kw6S8q/gq9yI+y7JE1j+mH8cvUo/gR52MrD9I8sK/pvjgf9P88aoiCJ9khuKL7HCMzYvCrPxrWPbgnawHS3NwUl2MSI0aCVpLZG3r9dj7IWGcY4+BVu4x0Mo7Blq5x0Ar9xho5R4DLUdkb8IDbciFWEyevwVhkTeRmlmAjNziFnN0oi8SnLjJGGiVVbVIraxGtEaD0PIS+JblY1eJJbK6FsXBKS8aw3Mj0CfrLN7OCMYf0o/h31MP4++T9nc6sv5big9+k+aP1zIskXVITjjG5UVhdv41LC++hW0lCviU5iJYrcQlTTluafXI09+z268FA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLEdmb8EDbrce4NufoRF8kOHF7UQNtsajImrwPP005hN+m+eP1jJP4NPMMhuaEY3zeFcwpuI4VxYnYrrJE1lPlxbisKUeiVo98fdvvZBU1Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI7I34YG2tq4BRlNjq3N0oi8SnLiJDLRF+ntIqaxCtKYCp8uVOFKWB4+SDKxWJmFewQ1MzIvGlzkR6J11Fm8pLJH156mH8XedjKx/20pknZB3BXMLrmNlcSJ2qBQ4VJqLkPJiRGnKkVSpR4Ed38kqagy0co+BVu4x0Mo7Blq5x0Ar9xho5R4DLUdkb0ICba+vXFBXbwAAfPbNfBGH8NyIvkhw4tbZQFuov4fkyipcqahASLkSh0vzsLMkA6uUSXB5EFmH5USgV9ZZvKkIxu/T/fGzlEP4YdK+TkfWn6Ucwu/S/fFGxkn0zJI3snZmDLRyj4FW7jHQyjsGWrnHQCv3GGjlHgMtR2RvQgLtx0Nnw33NPnj7h6F7r4nw9g9rdY5O9EWCE7d6oxkV9+pbRNZDpbnYoVJgZXEi5hZcx4S8KxiaE46eWWfwRsZJ/O5BZP3b5M5F1h8mWSLr79P98aYiGL2yzmJYTgQm5kXDpeAGVimTsLMkA4dL8xBSrsSVigokV1ahkJH1uY2BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWI7E1IoI1LzoLzwu0YPXMt/vzJeHw7Y22rc3SiLxJc51egv4ekSj2iNOUIKS+2ObL+sJOR9e+S9uPnqYfxh/RjeEsRjN5ZZ/Hlg8g6r+AGViuT4FGSgSNleThdrkS0pgIplVUoYmR1iDHQyj0GWrnHQCvvGGjlHgOt3GOglXsMtByRvQm/B+3ometEH0KniL5IcJbl6+8iUavHZU05TpUXw6c0F9tVCqwoTsScgusY/yCyfpp5Bq9nnMRv0/zx05RD+EEnI+vfJ+/Hvz+IrG9nBKNP1lkMz42AU140XIvisEaZjF0lmfAty0doeQmiNRqkVlajuKpW+K8Z17kx0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLQckb0JD7QvOtEXiZdpefp7uKXV45KmHMFqJXxKc7GtRIHlxbcwO/8axuVFYUhOOD7JDMVrGUH4TZo//i3Fp/ORNenJyPpV7kVMyruK+Q8i625VJo6W5eNMRQmuajRIq6xGjcEk7CFhnPgx0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLQckb05bKA9e/EGlm7yEX0Y7RJ9kXC0PUtkfVURhP9N88e/pvjgB0lenYqsP0r2xi9Sj+CP6cfxTsYpfJYVZlNkLdHXdfi1dvYhYdyLPQZaucdAK/cYaOUdA63cY6CVewy0co+BliOyN+GB9m5t/VM/7n8qEpPnb+nio3l2oi8S9liu7i4StDpEatQ4qS7GwdIcbC1Jx7LiRMzKv4axeVH4Ivv5R9YfJ3vjP1KP4P8eRNa+2WH4OvciJuddhVtRHNYWJ2OPKhN+Zfk4W16CGI0WaboaqDoRWTszBlq5x0Ar9xho5R4DrbxjoJV7DLRyj4FW7jHQckT2JjzQdu/thNlLd+FSbBIaG++LPpxnJvoi8bSpqyyRNb5Sh4sVagSpi3FAZYmsS4sTMbPgGsbkRWFwdjh6ZJ1Gd0Ug/ifND/+SchDf72Rk/Ydkb/wy1Rd/Sg/Auxkh6Jd9DiNyIjElPwbuRfFYp0zBHlUW/MsKEFauQqxGi3SBkbUzY6CVewy0co+BVu4x0Mo7Blq5x0Ar9xho5R4DLUdkb8IDbVJ6Htbv8kfP4S54b+B0rNx6GMmKPDQ3N4s+NJvY6ze/uqoBObo7iKusRERFGQLVRfAuzcaWkjQsKbqFGQWxGJ17GYOyL+DjB5H112l++OfnEFl/kuyNX6X5olt6AN7LtETWb3IiMTU/BguK4rFemQJPVSaOqQtwrlyFa1oNFC9oZO3MGGjlHgOt3GOglXsMtPKOgVbuMdDKPQZaucdAyxHZm/BA+1BzczMU2UXY6hWIPiNc0XuEKzwOBqOsQif60NrU1m/gzkTW73UisLYWWUfmRmJafgwWFidggzIVe1VZOKYuxPnyUlzXapGhuy1dZO3MGGjlHgOt3GOglXsMtPKOgVbuMdDKPQZaucdAyxHZm8ME2ocycouxfX8Q3u4/DR9+MROvfzYZ7mv24c69OtGH9lTTC2IxKvcSBmSfx4eZIfiL4gT+O/Uo/inlQKcCa3vvZF1YnNDqO1lFX7hkGQOt3GOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkie3OIQFtaXgnPI6H4/Ft3dO/thLnLdyP6RirM5iZU376HmYt3YtqC7aIP86nai6z/mOyN/0zzxZ/TA/B+5il8buM7WUVffLj2x0Ar9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo7I3oQH2pHOq9Gtxzh8PWUljp++/NR3yt6+U4vuvSYKOLr2LS++hY3KVHiVZiGgrAgXKkpxQ6tFZiUj68s+Blq5x0Ar9xho5R4DrbxjoJV7DLRyj4FW7jHQckT2JjzQbtsXiMKS8jZ/TlNTM2LjFV10RM9G9EWCEzcGWrnHQCv3GGjlHgOtvGOglXsMtHKPgVbuMdByRPYmPNDera1vddW374k+vHaJvkhw4sZAK/cYaOUeA63cY6CVdwy0co+BVu4x0Mo9BlqOyN6EB9puPca1OUcn+iLBiRsDrdxjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5InsTHmjzi8taLK+oDNE3UuG8cDuirqeIPrx2ib5IcOLGQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajsjehAfa1jQYTPjGebXow2iX6IsEJ24MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliOzNYQNtc3Mzen3lIvow2iX6IsGJGwOt3GOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkiexMeaE+GXX1i/qcuYc6y3fhy0nLRh9cu0RcJTtwYaOUeA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLEdmb8EDbf/SCJzZ04lK4rNiDwpJy0YfXLtEXCU7cGGjlHgOt3GOglXsMtPKOgVbuMdDKPQZaucdAyxHZm/BA+6ITfZHgxI2BVu4x0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLQckb0JD7RNTc3W/1ujq4bnkVBs3hsARXZRlx9L9e17mDx/CwaNW9zi46XllRg3ZwPeHeCMYU7LkKzIt35O9EWCEzcGWrnHQCv3GGjlHgOtvGOglXsMtHKPgVbuMdByRPYmLNAWlpRj0NhFeOXT8Zi11ANaXQ0+HjobQyYswRfjl+CvPSciJi6ty46nrt6AQWMXYatX4BOBduzs9TgSFAGzuQmx8Qr0GDYHjffNAPgNusxjoJV7DLRyj4FW7jHQyjsGWrnHQCv3GGjlHgMtR2RvwgLtVPdtGD93Ay7HJmPOst34espKbN4bYP38zgPBGDV9TZcdT32DASq1FsmKvBaBtqrmLt7sNxX3zWbrx76ctBwJKTkA+A26zGOglXsMtHKPgVbuMdDKOwZaucdAK/cYaOUeAy1HZG/CAu17A6cjPasQAHD7Ti269RiHnAKV9fOFSjXe7De1y4/r8UCbrMjHF+OXtPg581Z6IvBsNAB+gy7zGGjlHgOt3GOglXsMtPKOgVbuMdDKPQZaucdAyxHZm7BA263HOFRUVlt//Ga/qVBr9NYfa3TV6NZjXJcf1+OB9kZiBkZMXdni5yzZeBC+QREA+A26zGOglXsMtHKPgVbuMdDKOwZaucdAK/cYaOUeAy1HZG9CA61G912gfbv/NIcMtCkZ+U/ck9ZlxR6cDLva1YdGRERERERERERELxmhgdbjYDAOBVzAoYALeLXPJOzwPmn9scfBYIcItDV37uH1zyajwWCyfqzfKDekZOR3+bERERERERERERHRy0VYoO0/eoFN62qPB1oAmOiyCV6+Z2A2NyHs0k30GeEKs7mpy4+NiIiIiIiIiIiIXi7CAq2juRSbhO69ndC910R06zEO3Xs7YcgEy8PB1Bo9xs5ej3cGOGP45BXIzFWKPVgiIiIiIiIiIiJ6KTDQPsbzSCg++XIO3hs0He5r96G+wQgAKC2vxLg5G/DuAGcMc1qGZMV3tziIjVdg8PjFeG/gdEyevwX66jvWzx04dg69vnLBR0NmYdV2X9w3m7v8NZFtausa4LbaC+8Nmo4ew+bA2z/M+rmOnP+2vh45nrbOV2d/j4+bswHzVnp2yeugjiksKcfomevw1udTMXDMQly9mWb9XEfOf2PjfSzZeBBvfT4Vnw6fi7DIm13+msh2HTn/RlMjFqzbjw+/mIk+I1wReOaK9Z/JKVBh1PQ16DvSDcOcluFGYkaXvyayXdT1FAwYsxBv95+GsbPXQ1mqsX6urWt8dn4J+o50w5odR1t8vbauGeR4Onr+wy7dxJv9piAi+pbNX48cT2vnq61rPND6+X8oISUH3XqMQ5Gqwu6vgTqutT/7t3X+75vN2OJ1At16jEPNnXstvl58Sjb6j16AN/tNwVT3bbhbW9+lr4eeTUfaT2vnv7m5GTu8T6LfKDf0G+WGJRsPtrhNJpEtGGgfERF9C59/645K/W3UNxgxcd4meB4JBQCMnb0eR4IiYDY3ITZegR7D5qDxvhn3auvx/uAZSM0swH2zGTsPBGPu8t0ALP/D3G+UG/TVd1DfYMDEeZtwLOSyyJdIbViz4yhcVuyBwWhCuUaPj4fORmJaLoCOnf+2vh45ntbOV2d/j4dciEXvEa4MtA5u0LjFOBIUgebmZlxLUODNflPQYDB1+Pzv8jmF2Ut3ocFgQm5hKYZPXgGjqVHkS6Q2dOT87zkUgrnLd8NgNEGt0aPHsDnIKyqzfL2xixB+JQEAkJFbjHcGOFu/6SfHotFV4+3+05CsyEdTUzN2HgjG+LkbALT9ezwlIx/DnJbBfe2+FoG2rX9nyPF09PwfDgzHzMU7MWLqyhaBrq2vR46nrfPV1jW+tfP/kMnUiGFOy/DRkFkMtA6srT/7t3X+Zy7eiT2HQvDKp+NbBLo79+rw0ZBZSEjJgdHUiHUefjgRGiXktVH7OtJ+gNbPf0R0AoZPXoEGgwlmcxNmLvGAl+8ZIa+NXlwMtI9Q5BQjWZFn/fGRoAi4r9mHqpq7eLPf1Bb/1fzLScuRkJKDiOgETJ6/xfrxe7X16N7bCSZTI1Zv923xLrwrN1Iwdvb6rnkx9MyiriWjrEJn/fGMRTtxMuxqh89/a1+PHFNr56szv8dv36lF/9ELEBAaxUDrwO6bzQg8c8X6jRcAvPX5VKjU2g6f/15fufBdUy+Ijp7/QWMXIS2r0Pq5TXuOY8+hEDQ3N+PPn4zH7Tu11s+9N2g6/5DuoDS6akREJ1h/nJ1fgk++nAMAbf4eV6m1qG8wwMv3TItA29a/M+R4Onr+cwpUaG5uxkSXTU8E2ta+Hjmets5Xa9d4oPXz/9CeQyHY7ROCQeMW89rvwFr7sz/Q/vkH8ESgC7kQi/mr93bFodNz0JH2A7R+/j2PhGLtzu++H/A/dYl//qNnxkDbhqnu23AiNArJinx8MX5Ji8/NW+mJwLPR2Hf0LNZ5+LX43EdDZkFZqsHEeZsQGZNo/XiRqgIfD53dJcdOnVNb14CPh85GoVLd4fPf2tcjx/fo+erM7/HFGw7g1PkYRETf4v9Av0AU2UX4dPhc3DebO3T+79bW49U+k+AXHIl+o9wxZMISRF1P6eqXQR1k6/n/a8+JuHO3zvrxE6FR1j+YTZi70fpOu1upOegzwpW3OHpBHDx+3nq9tuX7uMcDra3fF5Bjetbz31qge9rXI8f36Plq6xr/0NPOv7JUg/Chd30AAA2LSURBVMHjF8NoamSgfcE8/LM/YNv5fzzQrd/lj9XbfTFx3ib0HuGKheu8UVvX0DUHT51mS/t51OPnPzEtFwPHLETNnXswmhox1X0rgs/FdMWh00uEgbYVnodPY8LcjbhvNuNGYgZGTF3Z4vNLNh6Eb1AEdnifxFavwBaf6zPC1Xr/udj4dOvHK7RVeLv/tC45fuo4g9GEqe5bscvnFAB0+Py39vXIsT1+vjr6e/xWag5Gz1yH5uZmBtoXSFmFDv1GueNaggJAx86/WqPHK5+Ox36/s2hubkZqZgHe+nwqKvW3u/S10LOz9fwrcorRrcc4GIzf3VssNOI6Zi7eCQAoKFbj/cEz8O4AZ7zaZxID/QviWoICfUa4QqOrBgCbvo97PNDa8n0BOaaOnP+2Au3jX48c26Pnq/G+uc1r/ENPO/8T5m7EzcRMAGCgfYE8+md/W8//44Fu0Xpv9BvlhorKahhNjZizbPcT/8GOHJOt7edRj59/AFi13Rfde03EG30nY9ycDWhsvG/3Y6eXCwPtY5qbm7HOww+T52+x3tQ5JSMfg8YtbvHzXFbswcmwq9jvd/aJh0N8MHgmVGotnFw3t/gf7UKlmn/NycHdra3H6Jlr4XEw2Pqxjp7/1r4eOa6nna+O/B5vbLyPIROWWN8xzUD7YsgtLEXfkW64cuO7mNaR83/nXh269RiHe488GGLC3I24eDUR5Lie9fz/tefEFt+YHz99Ge5r9sFoasRn38zH9VuWB4MpSzX4eOhslJZXds0LoQ4Ju3QT/UcvsP7vNwCbvo97PNC2930BOaaOnv/WAu3Tvh45rqedr9au8Y96/PyfDr/W4ucw0Dq+p/3ZH7Dt/D8e6NZ5+GPD7mPWHyel52Hw+JZ/hiTH8qzt51GPn/8ToVGYPH8L6huMMJubsM7DH8u3HLL/i6CXCgPtYzbtOQ6XFZ4t7kVXc+ceXv9scouLdr9RbkjJyEdkTCLGzFpn/bhWV4PXP5uM+2Yz1nn4YbdPiPVzYZE34eS6uWteCD0zo6kR385YC7/gyBYf7+j5b+3rkWNq7Xx15Pe4IqcYb30+FR8NmYWPhszCOw/eRcd7UDuu0vJK9B3p1uIprUDHzj8AvDPAGWqN3vq5CXM3Iupasp1fBXVUR87/F+OXID4l2/q5ZZt9sN/vLHIKVOgxrGXEmeS6BWcv3rDvi6AOi7qWjC/GL4G++k6Lj9vyfdzjgbatf2fIMXXm/D8t0Lb29cgxtXa+WrvGP+rx8z9ziQfeHzzD+v3fX3pOwPuDZyD6Rqp9XwR12NP+7A/Ydv4fD3S+QRFYtN7b+uOk9DwMc1pmpyOn5+FZ28+jHj//MxfvRFBYtPXHqZkF6DvSzX4HTy8lBtpH3ErNwTCnZU99K/pEl03w8j0Ds7kJYZduos8IV5jNTairN+D9wTMQl5yF+2YzVm33xcJ1lgtzsiIPvb5ygUZXjXu19fhqygqEXIjt6pdFNvI8fBqrt/s+9XMdOf9tfT1yPK2dr+fxe5zvoHV84+ZsaPGgkIc6ev7Xefhh6SYf3DebocgpxjsDnFFVc7dLXxPZriPn38v3DKa6b4XBaLLe0qCkTIu7tfV4s99UKHKKAQC6qtv4YPBMZOeXdOlrItvcuVeHT4fPbfEfVB6y5Rr/eKBt698ZcjydPf+PB7q2vh45nrbOV2vX+Ee1dw9ivoPWsbX1Z39bzv/jgU5ffQfvDZqO3MJSNN43w2WFJzbvDbD766CO6Uj7edTj53+H90nMWuph/Q+yOw8EP3FbDKL2MNA+YuE6b7zy6Xh07+1k3ZeTlgMA1Bo9xs5ej3cGOGP45BXIzFVa/7kbiRkYNHYR3hs4Hc4Lt7d4cvOhgAv4dPhcfDx0NjbuOY6mpuaufllko15fueCvPSe2OP8P/5pKR85/W1+PHE9b56uzv8cZaB1bWYUO3XqMa3Huu/d2wqXYJAAdO/8NBhNcVuzB2/2n4fNv3Vv8tXlyLB09/yZTIxau88YHg2fis2/mIzTiuvVrXrmRgiETlqDfKDf0H73A+tARcjwhF2Kfev4fnufWfo9v2H0M3Xs74S89J1i/d3z49Oa2rhnkWDp6/r+ctBzdezvhz5+Mt37vEBGd0O7XI8fS1vlq6xrf2vl/HAOtY2vrz/6tnf/bd2qtP/fRf3cevgP76s009PrKBR8Mnon5q/eirt4g7PVR2zrSfto6/3X1BixYtx99R7qh70g3THXfiopK3oOcng0DLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERPQSK9fosXCdNz75cg7+0nMC3h3gDJcVnlBr9KIPjYiIiIiIwEBLRERE9NIym5vQb5Q7Zi/dhbyiMty5W4ecAhWmuG3F59+6w2xuEn2IRERERETSY6AlIiIiekmpNXp06zEOhUp1i49X1dxF4Nlo1DcYoK++g249xkGl1lo/73/qEoZOXAoAiLqegr4j3XDg2Dm81mcSjp++jFf7TEJ9g9H68+vqDeje2wnXEhQAgKMnL6L/6AV4rc8kDByzEDcSMwAAW70CMWr6mhbHkpiWi+69nXC3tt4uvwZERERERI6OgZaIiIjoJWUyNeK9gdOxdJNPqwG0vUAbG6/A2/2nYcWWw9DoqlFvMOHdAc64eDXR+vPPX47HB4Nn4r7ZjPOX4/HhFzORlaeE2dyEKzdS0L23E1TqShSWlKNbj3EoLa+0/rPrd/lj9tJddvoVICIiIiJyfAy0RERERC+xZEUeBo5ZiO69JmL0zHXY4X0SaVmF1s/bEmi79RgHja7a+vklGw/Cfe0+649dVuzBqu2+AIAJczdi54HgFscwxW0r9hwKAQB8PWUlPI+EWj/Xc7gLLsUmPcdXTERERET0YmGgJSIiIpJAbmEp/IIjMXPxTnTv7YSZSzxgNjfZFGi795rY4mvFxivw7gBn3DebYTQ14s1+U5CUngcA6PX1PHTrMe6JLVznDQA4fvoyPv/WHQCgyC7CuwOc0dh4vyt+CYiIiIiIHBIDLREREZFkCpVqvPLpeFyOTW4l0Ea2CLRv9J3c4p+/bzbjvUHTEZeUhajrKfh0+Fw0NzcDAAaMWQi/4MhW/3/fuVeH7r2dkJFbjK1egVi59fDzf4FERERERC8QBloiIiKil1RMXBrW7jz6xMebm5vx3sDpCLkQi7u19ejWYxzyi8usn9/sGdBmoAWApZt8sH6XPxat98ZmzwDrx50XbsfSTT4tfm6FtgpNTc3WH89dvhvb9weh9whXJCvyOv06iYiIiIheZAy0RERERC+p/OIyvNZnElZuPYysPCV0VbeRU6DC0k0+eLPfFOt9Zd8fPAP+py4BsMTUviPd2g20129loP/oBfjwi5nIyC22fjwmLg2v9ZmE2Ph03DebkZSeh3cGOONWao7150TfSMXb/aeh9whX6ztviYiIiIhkxUBLRERE9BJTZBdhxqKd+GjILPyl5wS8N2g6pi/agez8EuvPiYi+hd4jXNF/9AI4L9wOv+BIDBq7CEDrgfa+2Yz3B89Av1FuT3zOLzgSvb6eh1f7TMKAMQsRGnH9iX/2wy9mwuNg8BP/LBERERGRbBhoiYiIiKhLVd++h9c/m4yyCp3oQyEiIiIiEo6BloiIiIi6RFNTM27fqcXMxTvhttpL9OEQERERETkEBloiIiIi6hKx8en4a8+JmOq+DXfu1ok+HCIiIiIih8BAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESC/P9+WWABv7TyxQAAAABJRU5ErkJggg==", "text/html": [ - "<div> <div id=\"f49a7793-d2bf-4d40-a56d-1bb8951ab782\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"f49a7793-d2bf-4d40-a56d-1bb8951ab782\")) { Plotly.newPlot( \"f49a7793-d2bf-4d40-a56d-1bb8951ab782\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [26.5, 40.4, 27.5, 24.859568253699027], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [35.5, 23.390582857932404], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [43.5, 32.0, 19.9, 14.110043771471155], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.5, 57.230233773406596], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [83.7, 81.3, 66.6, 52.15387049883477], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [33.6, 50.4, 26.2, 31.469286375040596], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [85.4, 75.2, 61.202271342000905], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2007, 2005, 2000], \"xaxis\": \"x\", \"y\": [89.2, 83.5, 71.64895404746395, 68.9, 48.896811927207665], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Senegal<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Senegal\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Senegal\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2017, 2016, 2015, 2014, 2012, 2010, 2005], \"xaxis\": \"x\", \"y\": [56.22646152583338, 40.3, 47.1, 41.9, 48.9, 41.43827676061918, 48.7, 26.4], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2011, 2011, 2011, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [71.8, 71.6, 71.8, 71.6, 57.7, 40.16917287300395], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [75.4, 79.1, 66.6, 64.16983532722774], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"1bd9f8e2-345e-48a8-a3f5-689716e5f4d3\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"1bd9f8e2-345e-48a8-a3f5-689716e5f4d3\")) { Plotly.newPlot( \"1bd9f8e2-345e-48a8-a3f5-689716e5f4d3\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [26.5, 40.4, 27.5, 24.303358509816114], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [35.5, 23.768724015518746], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [43.5, 32.0, 19.9, 14.16596363529338], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.5, 57.25908115534936], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [83.7, 81.3, 66.6, 51.54456956727535], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [33.6, 50.4, 26.2, 31.345534359205388], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [85.4, 75.2, 61.39611367484593], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2005, 2000], \"xaxis\": \"x\", \"y\": [89.2, 83.5, 68.9, 49.000493395978246], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [72.7, 71.6, 57.7, 40.698110229533256], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [75.4, 79.1, 66.6, 63.81748892534672], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all_plus_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('f49a7793-d2bf-4d40-a56d-1bb8951ab782');\n", + "var gd = document.getElementById('1bd9f8e2-345e-48a8-a3f5-689716e5f4d3');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -14763,7 +12932,7 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 366, "metadata": {}, "outputs": [ { @@ -14967,7 +13136,6 @@ "x": [ 2014, 2010, - 2007, 2005, 2000 ], @@ -14975,52 +13143,16 @@ "y": [ 89.2, 83.5, - null, 68.9, 52.054518148465256 ], "yaxis": "y" }, - { - "hovertemplate": "Country=Senegal<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>", - "legendgroup": "Senegal", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "mode": "lines", - "name": "Senegal", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - 2018, - 2017, - 2016, - 2015, - 2014, - 2012, - 2010, - 2005 - ], - "xaxis": "x", - "y": [ - null, - 40.3, - 47.1, - 41.9, - 48.9, - null, - 48.7, - 26.4 - ], - "yaxis": "y" - }, { "hovertemplate": "Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>", "legendgroup": "Uganda", "line": { - "color": "#FECB52", + "color": "#FF97FF", "dash": "solid" }, "mode": "lines", @@ -15029,18 +13161,14 @@ "showlegend": true, "type": "scatter", "x": [ - 2011, - 2011, - 2011, + 2016, 2011, 2006, 2000 ], "xaxis": "x", "y": [ - 71.8, - 71.8, - 71.6, + 72.7, 71.6, 57.7, 37.20176006394223 @@ -15051,7 +13179,7 @@ "hovertemplate": "Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>", "legendgroup": "Zambia", "line": { - "color": "#636efa", + "color": "#FECB52", "dash": "solid" }, "mode": "lines", @@ -15926,11 +14054,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd53dU56H2/+fveN783js5xycn7fhJTpzEdtziOHbsOHEDU0wxBmRA9N4RHSSEQAWBEKoIddQr6r33Pl1tNGXv0cxcvxdbiGqQBdItuK/PWtdaBoTYkrKG+Oute/8fEBEREREREREREZEQ/0f0BRARERERERERERHJioGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhon9GQxcFJOrvixuiEKvw6ODFTXB5YxhXh18GJ2aTbC+OoU/h1cGLm9QK6BXAd3PxPN6x9/UVfBydmxlEnJt1e4dfBiZllXIHi8gi/Dk7MRidU2BW38OvgxI1orjHQPiPRLxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjmmsMtM9I9IsEJ24MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliOYaA+0zEv0iwYkbA63cY6CVewy0co+BVt4x0Mo9Blq5x0Ar9xhoOaK5xkD7jES/SHDixkAr9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo5orjHQPiPRLxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjmmsLOtC6XJOiL+GpRL9IcOLGQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajmiuLdhAO2Fz4LUPVou+jKcS/SLBiRsDrdxjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGi5+eL1ehEalYb3vtyMV99Ygj/+Yx0OnrkGu0OZkz9v0u1GUsadOXnf9NMID7T9Q0as8D2B//379/jNeyun9x9//gZ//2a76Mt7KtEvEpy4MdDKPQZaucdAK/cYaOUdA63cY6CVewy0co+Blpsvfhdu4M3PNqC4ogE2uxMd3YNYvtEPS344Oid/XnN7L5Zv9JuT900/jfBAu3TDMazfdQ638yrw2/dXIbuwCicvRuOL7w5gZMwq+vKeSvSLBCduDLRyj4FW7jHQyj0GWnnHQCv3GGjlHgOt3GOg5ebDyJgVr76xBPXNXQ/8vN3hxI2EbLgm3fB4vDh9KRbvfbkZ73+1Bb4HAjFh067v1TeXwjw8Nv377v64paMPHy3ZgVNBMVi64Rje+3IzCsvqYbM78edPfPCrd77FEp+jaG7vxcdLd8L3QCCW/HAUnyzfjfTc8un3l1NcjY+X7pyXz4WMhAfaX73zLWx2JwDg9x+umf7523kV2HooSNRlzZjoFwlO3Bho5R4DrdxjoJV7DLTyjoFW7jHQyj0GWrnHQMvNh+yiarzxzx+e+DYpWaX4+zfbYXc44fV64bPbHycCowD8eKBt7x7Az/64GMUVDQCA9Nxy/HvVvul/vnsHbXv3AH759nKkZJUCAEKj0vD9jjPT72/7kcsIupb0/D5geoDwQPs/76/C+IQdAPCHj9ZOx1rXpBuv/ZVn0HILdwy0co+BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOXmw63bRfhs5d4nvo3vgUCERqVN/7i4omH6rtYnBdrfvLdy+udbOvrwxqc+AB4NtL94axk8Hi8AwGgexS/eWgbrhB0ejxe/+9sa9A8Zn88HS48QHmjXbD+Db9YfwYTNgZWbT2LvySvo6tMhJikPf/horejLeyrRLxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZabD2XVLXj943VPfJvlG/2QkF40/ePG1h788R/a73lSoL37NgAe+PHDgfbhP3/RusOITy1ARW0r/vntnmf7AOmJhAda8/AYftjjjwmbAx3dg3jjUx+88voi/OKtZbiZVij68p5K9IsEJ24MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6Dl5sP4hB2/emcFSqqaHvh5RXVhz/FQ2B0KthwMQlh0+vSvFZU34B/LdgEA/vsvy2E0j07/nldeX/STA+39bwcA0Um5WOF7HAfPXEXojTTQ3BEeaB826XZjUG+GU1FFX8qMiH6R4MSNgVbuMdDKPQZaucdAK+8YaOUeA60867eMoscyhA5zJ1rMDWgwl6NxpAAT6oTwa+PEjIGWmy8XrtzCHz5ai9ziGtjsTvT067HC9zjW7TwHQAuqHy/dCbtDgdvtwdodZ3E2OA4A8Pa/N6GsugUAkJRxBz/74+KnBtrswir8a9U+eL3exwbaMasNv3pnBf7w0VroDJb5+BRIa0EE2pExKxpau1FV3/bIFjrRLxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOgfTE3YBlDj0WHTnMXWs2NaDRXoM5cgEpjOkqNN1FkvI58QzCyjeeQYTiGNMM+pBr2PHZGR5/wj4cTMwZabr54vV6ERafj3S988eobS/DGpz44FRQDl2ty+tfPh8Tj/a+24L0vN2PH0WDYHQoAIDmrBO99uRnLNvjhUkQy/vDRWpgso08MtObhMbzxqQ/+8NHaxwZaAFi99RQ+X71/Hj56uQkPtBeu3MLP/7QYr7y+CD//0+JHttCJfpHgxI2BVu4x0Mo9Blq5x0Ar7xho5R4Drfg9LrbWmvOnYms8iowRyDMEI8egxdYfC61PW7rhELKMp5BnCEShIQx3jFGoMidjVDEL/xxwYsZAy8lsz/FQXL+ZJfoyXnrCA+0fPlqL6oZ2uN0e0ZcyK6JfJDhxY6CVewy0co+BVu4x0Mo7Blq5x0D7fNdvGUePRY9OczdaLU1oMlc+cGdrsSES+cYQZBvP47bBD6lPuLN1JrE113BhOraWG5NQbc5GvfkOms01aDO3ocvSjz6LCUMW22Ovl2fQyj0GWk5WnT3as6KsE3bRl/LSEx5oP166U/QlPBPRLxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOg/fFpd7bq0WHpRqulGU3mKtSZC1FpvI0yY8JUbA1GjuE8Mgx+SDXsn2VsPYhMw0ktthrDUGKMQrkxEdXmLNSbitFkrkabuRVdlj70WkwYtDy/M2MZaOUeAy0no1NBMfjzJz7ILa4RfSlSEB5oQ6PSEHQt6YWt8aJfJDhxY6CVewy0co+BVu4x0Mo7Blq5J0ugHbCMo8diQKelB63mZjROxdYqYwbKjLdQbLyBAmMIcgz+yDAcR5p+nmLrsNgHdDHQyj0GWo5orgkPtOm55fj1uyvwyuuL8OobS/Dqm0sf2EIn+kWCEzcGWrnHQCv3GGjlHgOtvGOglXsvYqAdsIyj12JEp6UXreYWLbaairTYarqFO9OxNQCZhhNI0x+YVWxN0x9ApuEEcg0BKDCGascImLTYWjcdW1vQaelFr8UoPLbOZgy0co+BliOaa8ID7R8+Wgv/0JsoKK1HWXXLI1voRL9IcOLGQCv3GGjlHgOt3GOglXcMtHJPdKAdHLbOa2zNMQSgwBiCO8YbKDPdQpUxA3WmIjSaq9D6QGy1Cv/azMcYaOUeAy1HNNeEB9oPvt4q+hKeiegXCU7cGGjlHgOt3GOglXsMtPKOgVbuPc9AOzg8MR1b28wtaDJXo85UjGpzFspNibhjjEKBMRS5zxxb9yPDcBw5Bn8UGENQbLyBMuNUbDUXTsXWZnRaetBjMWDAMi7887xQx0Ar9xhoOaK5JjzQ7vILQVV9u+jLmDXRLxKcuDHQyj0GWrnHQCv3GGjlHQOt3PuxQDtomUCvxYQuSx/azK1oMlej/m5sNSaixBiFQmMYcg0XkGk4iXTDwVnF1lTDfmQY/JBjOI98YzCKDZEoMyag0ngbdeZCNJmr0GppRoelGz0WPQYsY8I/Zy/TGGjlHgMtRzTXhAfaLQeD8Mu3l+PTb3fju62nsWbbg1voRL9IcOLGQCv3GGjlHgOt3GOglXcMtDLMhj6LCV2WfrSZ29BsrkG9+Q6qzdmoNCehejQWhQYttmYZTyHdcIixVZIx0Mo9BlqOaK4JD7RHz1/HicCoH91CJ/pFghM3Blq5x0Ar9xho5R4DrbxjoH3RZkOfxYwucz/azW1otmixtcacg3JjMu4Yo1FguIJcQyCyDKee4c7Wfbht8EO28TzyjSEoNkSi1HgTlcZ01JkL0GSuRKulCZ1mLbb28xiBF3IMtHKPgZYjmmvCA+2LTvSLBCduDLRyj4FW7jHQyj0GWnnHQCtug/MUW9MM+5BhOIZs4znkG4JRZLw+HVsbhgvRb69Fq7kRneYu9Fh0vLNVojHQyj0GWk5mk243Xnl9EV59cyn+661l+O37q7B8ox/6Bg3P9H5/+fZy6E3Dz+kqX3zCA+0uvxDsOR762O09eQWB4Ylobu8VfZk/SvSLBCduDLRyj4FW7jHQyj0GWnnHQPt8Nmixo89iQbd5AO2WNjSba9FgLnkgthYawpFrvIhMw2ncnvUxAnuRYTiGHMM55Bsuo8gYgVJjPCpMaag156PRXIFWcyM6zF3osQxhwDL6xOt+ng8JW+jTDY7D2G6AuaYPw8VtGM2ox3hCGQydZuHXJmoMtHKPgZaT2d1AezemOpwqdvuF4ttNx5/p/VpGxuHxeJ/HJb4UhAfaPSfC8NpfV+PNzzZoZ9BuP4O//Gsjfv/hGmw5GIRv1h/Bf/z5GyTeLhZ9qY8l+kWCEzcGWrnHQCv3GGjlHgOtvGOgfXR3Y2vXVGxtMdehwVyKGlMuyo0pKDHGoNCoxdYsw2mkGw7PPrbqjyLbcBb5hssoNkagxBiPClMqas35aDCXo8XcgA5zJ3osQ+h/SmydzV7UQKsz2mDoNsPUOAhLWSdGchsxllwJa3QxbCGZcJxLhnI0Bq5d1+DeeBneVf7At2cfO8udNuEfj6gx0Mo9BlpOZg8HWgAoKm/Au1/4Tv84t7gGHy7ejr/8ayOW+BzF8KgVAHAlOh3bDl+C7/5AfL32ED5ZvhtDejOAe3fQtnT04aMlO3AqKAZLNxzDe19uRmFZ/fx+kAuA8EB75Px1nA2Oe6Cae71eBFxJQNC1JABAdmEV3v9qi6hLfCLRLxKcuDHQyj0GWrnHQCv3GGjl3cseaLXYOowuyyDaLe1onoqttaZcVBhTUGKKRaHxKvKMQcgynHmhY+tstlACrb5vBMZmHSyVXRjJb8ZYWjWscSWYCMuBPSAFTr84uPZeh3tzCLxrLvxobH3SvKv84d4UDNfuCCjHYuE4nwJbSBZMTTrhH7+oMdDKPQZabr757nbhhx3zv8d5ONDaHU747g/EsYBIAIDBNILX/roarZ39AIDQG2lYs/0MAOBaXCb+39++g3l4DACw/1Q4TgXFALgXaNu7B/CzPy5GcUUDACA9txz/XrVv7j65C5TwQPvrd1fA7lAe+XlFdeEPH60FADgVFb94a9l8X9qMiH6R4MSNgVbuMdDKPQZaucdAK+9erEA7f7H1tuEIsg1nkG+4hCLjNZQa41BpSkWN6W5srUe7pQPdlkH0W0YWwOdmdpuLQKufPkqgd+oogTqMJ5TBei0P9ovpcJ5KgHogCpPbwuBZfxFY8dNjK1aeg8cnCK6d4VAOx8BxJgm2yxmwXi/AeGI5RrIbYCnpgKl+AIZOE3R6q/DP9UIcA63cY6Dl5tvStS4he5y7gfbX767Ab95biZ//aTHe/2oLevr1AICoxFws3XBs+u3tDif+889L4Jp041pcJtZsOz39a+Ext7HlYBCABwPtb95bOf02LR19eONTn7n4tC5owgPt7/62BtmFVY/8fGFZ/XSgzSqowjuf+z7yNguB6BcJTtwYaOUeA63cY6CVewy08k5coLWjb3gY3ZYhtFs60GyuR4O5DDWmPFQYU1BqjEWR8SryDJeQZTiL24Yjs4yte3DbcARZhrPIM1xCkfEqSo2xqDCmoMaUhwZzGZqnY+sQ+oaHMWSxC/+6zNeeFmh1xgkYOs0w1Q/AUtKBkewGjCVVwBpZCFtwJhxnk6AciYZr51W4N1yCd9X5Wd3d6lkXiMmtV6DuvwHnyQTYA9MxcTUX4zfLMJpRi+GiVpire2FsM0A/wIeYPa8x0Mo9Blpuvo2Ni9njPHwH7aTbjYLSOvz+wzUwWUZx+XoKfvn2crzxzx+m99v3V8FkGcW1uEz47g+cfl/3//j+QPvHf6ybfpuHfywL4YE2MiEbr7y+CJ+t3IuN+wKw9VAQvlxzAD/742IEXEmAw6niZ39cjPjUAtGX+liiXyQ4cWOglXsMtHKPgVbuMdDKu+cVaPstI+i2DKLd0oEWcz0azOWoMeWj0pSKUmMciozXkG+4hGzDmanYundWsTXdcBhZhjPIMwah0HgVJSYtttaactFgLkWzuQ7tlnZ0WQbRZ5Ertj51Jjv0vcMwNelgqejCSF4TrOk18CSXYyI0G3b/FCjH4uDaEwG3bwi83wXM7iiB7wLg9g2Ba+91OP3iYA9IwURYDqyxdzCWWo2R/GZYKrtgbNZB3zeCITO/RqLGQCv3GGg5mT3uDFoA+GjJDmTkVyDxdvEDd8nej4F25oQHWgBobO3Bmcux2H7kMrYfuYwTgVEoKK2b/vWO7kGBV/dkol8kOHFjoJV7DLRyj4FW7jHQyrvHBdp+yyh6LEPoMHeixdyABnM5as35qDClosQYj2JjBPINl5FtOIsM/dF5i62DjK0PTD8wBmObHubqXgwXtWI0oxbjN8swcTUX9sA0OE8mQD1wA5Nbw+BZFzjLc1vPw73hElw7r0I5EgPH2STYgjNhjSzEWFKFdpRAaSdMDQMwdJmhM0wI/7xwM9+LHGh1xhHodWYYhvQwDPTD2NcNU08HTF3NMHfWw9JWA0trBYab7mCksQCjdbkYrc3AWHUqxisTMV4WD2tpNPR6k/CPRdQYaDmZPS7QVtS24pdvL0fvgAHm4TH8/sM100ce1Ld048DpcAAMtD/Fggi0LzLRLxKcuDHQyj0GWrnHQCv3GGjlnW7YgW57MXIM55BhODbrYwS02HoaucaLKDSGo8QYg3JjCmqmYmuLuQ7tljZ0mwfQZzEL/7gX2nS6cRg6TDDV9cNS0oHRrAaMJ5bDer0AtksZcJxJhHIoBq4d4fD4BAErz/304LriLDzrL2JyWxjUg1Fwnr4Fx6V0eGKLMJ5QhtGMOgwXt8Fc0wdjuwG6wXHhnxdubve0QKszjkKvt0CvM8AwMAhjfy9MPZ0wdbfC3NEIS3stLK2VGG4uxUhjEUbqczFam4Wx6nSMVSVhvPwmrGWxsN6JhLUoHBP5obDlXYItJwD2rLNwZJyCM/0YnKmHoCTvg5q4G+qt7XDF+2Iy7gdMRq+DO+o7eK5/C2/EEnjDFwFXPn+uM/Z0CP86iBoDLSezu4H21TeX4tU3l+IXby3DB19vRXpu+fTb5N2pxYeLt+Odzzfhk+W7UVXfBoCB9qcQEmhf+2A1qurbp//5SVvoRL9IcOLGQCv3GGjlHgOt3GOglXe6YQdaJzIfOrP1EDLvxlZDOO4Yo1FuTEaNOQcN5hI0m2vvi60W3tn68Iw2GHosMDUNwVKuHSUwllIFa0wxbCFZcJxPgXIsFq7dEXBvCoZ3tf/s7m5dEwC3byjUvdfhPB4P+4VUTFzJgTW2BGNpNRjJb4a5qhvGFj30/Y8/SmAuHhLG/bTpTGPQG4ah1xmnI6ixtwum7jaYO+9G0Kr7ImieFkFr0jFWmYzxigRYS2NhLYmCtegqJgruRtALUxH0NBy3/bQImrL/vgi6Ge74DfDGrtciaOQKeOYogs7FvFcXwxOxFJ7IFXBHfYfJmPVwxW2A6+ZmqLd2QEnaAyVlP5xpR+C4fRyOzNOwZ5+DLScQtrzLmCgIg7XoGvQ6g/D/DYgaAy1HNNeEBNqsgiqMjFmn//lJW+hEv0hw4sZAK/cYaOUeA63cY6CVd7phBxzuMXRZ+nln6+NmdkDfNwpjix7mqh4MF7RgNL0W1rhSTITnwh6YCueJm1D3R2JySxg8ay/M8igBf7g3XoZr1zUoR2PhOJcMW0gWrNHFGEuuxEhuIyxlXTA1DsLQbYHOaHsuH58sgVZnskJnGIFeb4JhUAfDQB+MfT0w9bTD3NkEc0c9LG3VGG4p174lviEfo3U5GK3JwFhVKsYrb8E69S3x1qJrmCgMw0ReMGy5gbBnnYcj8zQct0/AmXYESsoBKEl7oSbugOvmVrjiN2IyZj3c0d/DHbkSnuvL4L32DRD+pfDI+eR9Ae/VRQ9G0Oh1mJyOoNvvRdDUw1oEzbgbQS/Aln83gl7V4nFZHMYrEjBWmYyxmnSM1mZjpCEPI41FGG4pg6W1Cub2Wpg7m2DqboOxtwvG/l4YBoeg1xmhNwxDZ+Jd3c9zDLQc0VwTfsRBVGLuY3/e7lAQdC1pfi9mFkS/SHDixkAr9xho5R4DrdxjoJV3z+shYS/KdEPjMHQYYa7tw/Cddoxm1mP8VjmsEfmwBd2G4/QtqAejMbn9Cjzrg4AVszlK4Bw864Mwuf0K1IPRcJxJhO3SbVgj8jF+qxyjmfUYvtMOU10/DJ1G6HTiotPzDLQ604T2LfHT54IO3HcuaMuD54I2l9x3Lmjm1LmgU98SXxoNa/F1TBRewUR+CGy5QbBn+8OedQaO2ye1b4lPOQgleS/UW7vgStgKV/wmTMb6aBH0xip4IpfDe+0beK9+tQBC51PuBA3/Gt6IJfBc/xbuqNVaBI31gSveF+qt7VATd0FJ3gdn6iE404/BkXEK9qyzsOUEwJYXhIn8UFiLwmEtvg5rWSzGyxMwVpWEsep0jNZlYaQ+V4ugzaWwtFbC0l4Dc0cjTN2tGB3sgjqig2FgAHqdAXq9BTrjKIbMz+c/AHALewy0HNFcExZoXa5J2B1O/PLt5bA7nI+svqUbr76xRNTlzZjoFwlO3Bho5R4DrdxjoJV7DLTy7kUOtDqjDYZuM0yNg7CUdWIktxFjyZWwRhfDFpIJx7lkKEdj4Np1De6Nl+FdNbujBDxrL2BySxjU/ZFwnrgJe2AaJsJzYI0rxWh6LYYLWmCu7oGxVQ99/yiGzHP4cZttD50LOvCYc0FrHj0XtO4x54IWX4et+Co8peFPORd012POBV09p+eCPv9vh/8K3mvfwBO5HO4bq+CO/l6LoHGb4ErYCvXWLijJe+FMOQhn2lE4bp+EPesM7Nn+sOUGYSI/GBOFV7QIWhqN8fKbGK9MxFh1KkZrMzFal4uRxgIMN5fA0loBS1sNzJ31MHW1wNTTAWNfNwwDAzAM6aHXmaEzjkJnEv9AtRf5IWHcs4+BliOaa8IC7fWbWfjPPy/BK68v+tEt2+An6vJmTPSLBCduDLRyj4FW7jHQyj0GWnm3YAKt2Q593wiMzTqYK7sxkt+MsbQaWGNLMBGWA3tACpx+8VD3XofbNxTeNQGzO0pgtT/cm4Lh2h0B5VgsHP7JmAjNhjWmGGMpVRjJa4KlvAumhj4YO4agH9DDMDj00LmgTTDfPRe0pUyLoA15GK3NfvBc0LK4+84FDYMt/zJsOYGwZ5+bOhf0OJyph6Gk7IeStEeLoDc3YzJug/Yt8dPngi6F9+oiIPwL4aHziQv/Uoug15fBHblSi6Ax6+GK3wjXzS1QE3dASdoLJeXAg+eCZp2HLTcQE3nBmCjUzgW1lkbDWhaP8cpbGKtKwWhNBkbrcjDSkI/hpjsYbimHpa0a5o567Vvie9ph7OuBYaAPhkEd9HoTdIYR6ExW8f/bXsBjoJV7DLQc0VwTesSBw6niF28tQ0tH3yPr6dfD4/GKvLwZEf0iwYkbA63cY6CVewy0co+BVt7NVaDVD47D2G6AuaYXw8VtGM2ow3hCGawRebBfTIfzVALUAzcwuTUUnnWBwIqfHlux4iy8a8/D4xsA944ATB64ANexAKhn/OEKOAdX8Bmo4SehRh6DGnsISsK+qXNBt9x3LuiaF+tc0PDHnAsas36G54IGPnIuqK0iDp7GlJ92LuhAH88FfUnGQCv3GGg5orkm/AxaVXVh0u2e/rHb7UFTWw+GR60Cr2rmRL9IcOLGQCv3GGjlHgOt3GOglXemgV549S33Ho7UWKA9HKn23sORxkviYMu6AXviFXl4pfoAACAASURBVDijLkMJuwj1YgBcp8/BdfQM3HtPw7PtFLwbT8H7/WlgxZlZ3N16Blh9Elh7FNhwENi8F9ixA9izGTi0EfBbB5z+Dji/AghcAgTP/dmi2t2gd78lfu3UuaCboCZs0yJo8t5754JOf0v83XNBQ+6dC1oag/HyBIxXJmGsOg2jtZnauaANhdq3xLdUTJ0L2gBT991vie+59y3xd88FnYOvvywPCeMePwZaucdAyxHNNeGB9k5FI/7w0Vq43R64Jt3416p9+NkfF+PVN5cit7hm3q7D6/XiVFAM3vl8E975fBO2H7kMh1MFAPQPGbFo3WH8z/ur8PHSnaiqb5/+faJfJDhxY6CVewy0co+BVu4x0L680+tNMHc2YaQ+D9ayWNizAqDG7YMnZCNwdiVwcg1w1Ac4uAnYvRXYtgvw3Qf4HALW+AErT83qKAGsPKX9fp9D2vvbvlN7/wc3aX/eyTXA2ZXwXlwNz5WVcEeufvBc0Jtbod7aCSV5L5Tpc0FPwJ55Zupb4i9OnQsaBmtxhHYuaFm8di5oVSpGa6e+Jb6x4L5via+BuaMepq7m+yJo/33ngo4I/3rN9xho5R4DrdxjoOWI5prwQPvx0p2IS8kHANy6XYQ/fbIeI2NWZORX4OOlO+ftOtJzy/DJ8t1wOFW43R6s2X4GF67cAgB8vfYQwqLT4XZ7UFBaj9c/XgfXpHbXr+gXCU7cGGjlHgOt3GOglXsMtC/u9ANjsNQ0YDwnB/b4aChhQZg8dxLuQwfh3blbuxN1w0HtztTVJ7U7VX9ybD0L77pz8GwOwOTuQLgOX4ZyOgzOixFwXI2BLS4B1tQ0jOfnYqSyFObWmqlzQdtg7O1+4FvidQb5IuhCHgOt3GOglXsMtBzRXBMeaP/rrWVwuz0AAJ/d/jgRGAVAO+rgv/+yfN6uwz8sAQdOh0//+FpcJn7Y4w/LyDh+9c6KB45h+MeyXSirbgHAQCvzGGjlHgOt3GOglXsMtAtjOt04DB0mmOr6YSnpwGhWA8YTyzFxNRNO/xioR8Lg3hkIz8az8K6Z5VECK87AuzYAk1uCoR64AeepBHivZMEakYfxhDKMZtRhuLgN5ppeGNsN0A3yfNGXeQy0co+BVu4x0HJEc014oP3d39bAPDwGp6Lit++vmj4+wDIyjtf+unrerqOithV//WoLRsasUFQXVvgeR2xyPqrq2/Hh4u0PvO0Pe/wRlZgLgIFW5jHQyj0GWrnHQCv3GGjnYEYbDD0WmJqGYCnvwkheE8ZSqmCNKYYtJAuO8ylQjsXCtTsC7k2X4V19ftZHCXjXnoBn00m4d52D6+glOAOuw34tBeNJpRjJb4a5shvGZh30/SMYMtsfuM65ekgY92KMgVbuMdDKPQZaTmaTbjdeeX0RXn1zKf7rrWX47fursHyjH/oGDT/5fV2JTseOo8GP/HxIZOpjf3427l7vz/+0+IF9sGjbc3n/c0V4oN3lF4IPF2/HP5btwsdLd8Lr9cLuUOCz+zzW7zo3r9ey9+QVvPrGEvzy7eVYtO4wXK5JFFc04LMVex54u+1HLuNKdDoAYNiqcpJOcXlgc04Kvw5OzFxuL6wOl/Dr4MTM4wHGbPz6yzoAGFkA17FgN65iRG/FWKcR43X9mLjTBltmPRy3yuCIyIMSlAb1VAImD0TCvTUM3rWBs4utK05Pndt6BNi0H9i2G9i1DTi8A55zBzEZehZq/BU4cpIxUV+G0aFBDI87n+ljG5lQ+f//JN6YzQWPh19/oRsX92dbHS643F7xnwNOyGzOSSguj/Dr4MRNZneDp940DABwOFXs9gvFt5uO/+T39WOB1uFUMWF7PiH84et9UQgPtC7XJCLis3DxaiLMw2MAAJvdiR/2+GN41Dpv13EjIRvLN/rB7lDgdntw8Mw17PILQXVD+yOV3Wf3ecQk5QEAnKqbk3RujxeuSY/w6+DEzOPxQnWJ+/rbnJPCPwcyz+P1QnGJvw5OzLxeyf7+H3dA0Y1CbdfBVdMNpaAJk+nVmIwtwmRoJtznk+A5EgPvznB4fS4BK87NLriuOQP4HAc2HgS27AZ27gD2bQYObwCOrwVOrwb8lwOXvoU3dhPcGUcweScEk/UpcHWVQTX2wGm38evPzdkUl/b6L/o6ZJ7I//+jujzwePj1l3WuSQ/c/PpLPZk9LngWlTfg3S98AQC1TZ1478vN0792/4/DotOx/chlfLx0J86HxD8QaPWmYbzxqQ8q69oeuIP2N++tRGRCNlZuPon3v9qCi1cTp993TFIe3vncF29+tgFfrz0EnfHRCPu0QFvT2IGPl+7E2//ehA++3orS6mYAWp/0PRCIv/xrI978bAM27bsAp6LF+fTcMnywaBve/2oLvl57CF19ull/Pn+M8EA7U2986jOn73/NttOITsqd/nFNYwfe/vcmjIxZ8d9/WQ6H895/MXnn802obtCOYhB9mz0nbjziQO7xiAO5xyMO5N6LfMSBzmiDodsMU+MgLGWdGMltxFhyJazRxbCFZMJxLhnK0Ri4dl2De+NleFf5zyq2etZegHtzMCZ3h8B1MBiuoxfg8jsN94mD8J7YDJz8Dji3AriwBLj8NRD2BXDl8+m5o1ZDTdwNe9ZZWEuiMFqXA3NHHQyDOgxZ7OI+fzziQOrxiAO5xyMO5B6POODm2/iqjzH27Yfzvsd5OHjaHU747g/EsYBIAE8OtNfiMvH7D9egb9AI4N4dtE5FxSfLdyPxdjGAB484eO2D1TgbHAdAO/701TeWwO5QMDxqxatvLsWg3gwA2HE0GHuOhz71eh/24eLtSMq4AwBIvF08fa3pueVYuuEYvF4vPB4vjvlHoqq+HTqDBb9+dwV6+vUAgIj4LHy2cu9Mvow/yQsTaH/z3so5ff+ngmLw/Y4z0w8DO30pFmu2nQYALPE5igtXbsHt9iAp8w7e+mzD9IPNRL9IcOLGQCv3GGjlHgOt3FswgdZsh75vBMZmHcyV3RjJb8ZYWg2ssSWYCMuBPSAFTr94qHuvw+0bCu+agFnFVu9qf7g3BcO1OwLKsVg4zqfAFpKFiRu5mIjNhC0hCY6ESDhuXoAadwCTN9YB4V8+EFwfnjdiCVzxvnDc9sNEQRjGKpMx3FIOY18PdCar+M/tj4yBVu7JFGhbepwoq3Uio8CJ2GQFIZFOnAhQsP+kgiNnFZwMVHEuWMHFcO3XrsY6EZWoIj5VQVKWgvR8J7KLFRRWKCitcaKqyYn6didaepzoGnwx//5koJV7DLTcfBv99HdC9jh3g+ev312B37y3Ej//02K8/9WW6WD5tEC7bIPf9K/dDbQb9gbgfEj89M8/HGhbOvqmf+2376/CgM4EANN3tAJAUuYdLN1w7Eev93d/W4P//fv30/M9EAhAu1PW4/ECAIzmUfznn5cAAKrq2/DHf6xD3p1aKKpr+v3FJudj9dZT0z9WVBd+9sfFz+1IhrsYaKfY7E5sPngRb/97E97+9yas8D0+fav0oN6Mr9cewm/fX4VPlu9GY2vP9O8T/SLBiRsDrdxjoJV7DLRyb64CrX5wHMZ2A8w1vRgubsNoRh3GE8pgjciD/WI6nKcSoB6IwuS2MHjWXwRWzOYhWefg8QmCa0c4lEMxcJxJhO1SBqwR+RhPLMdoVgMsJR0w1fXD2G6AqaMDlpYKjFWnYqIwDI7bx+G6uRmeiCVPDLAI/xKT0eugJO+DLecCrGVxGGnIg7mzCXqdWfjXcLZjoJV7L0ugbetzorzeiawiBXGpCkJuOHHqooq9fip+2Kli6VrXvG3VRhXrtqrYsEvFlgMqdh1R70XgCwrOBSsIvKIg+LqCqzFORN1SEZemIDFTQVqeFoELyhWU1DpR2eREfZsWgTsHnv/f0Qy0co+Blptv3lELvCPmed/jPHxH6qTbjYLSOvz+wzUwWUafGmg37bsw/WtXotPx2/dX4RdvLUNscv70zz8caO9/ANndH3u9XgRcScA/v92Dz1bswTuf+2KJz9Efvd7m9l6Yh8emNz5hB6DdKfvlmgP4bMUefLJ8N37+p8XTvzc9twxfrz2EX7+7AtuPXIbdoSDoWhK2H7n8wJ/xq3e+ndVD0p6EgfYZiX6R4MSNgVbuMdDKPQZauTeTQKszTsDQaYapfgCWkg6MZDdgLKkC1shC2IIz4TibBOVINFw7r8K94RK8q87P7iiBdYGY3BoG9cANOE8mwB6YhomruRi/WYbRjFoMF7XCXN0LY5se+oGxR65TrzPC3NGIkfpcWEtjYM/2h5K0F+7oNcCVL54YYT3Xl0O9tR2OjFOwFl3FWM1tWFqrYBjow5DZJvzrNBdjoJV7L0Kg7ejXQmXOHQU30xSERTlxOkjBvuNaBJ1pOF27RcWOQyr8/BUEXVVwNdb51IVEOnExXIuqJwNVHD2n3XG766iKrftVbNylYu1WFas3znME3uDCuq0qNu5UsWW/ip1HVOw/oeLIWQUnAhScvazgwn0R+EaCirhUBUlTEThrKgJX1avo7PFoEbhbi8B9BvFfc25+xkDLyezHjgz4aMkOZORXoL6lG+987jv980XlDQ8EWt/9gdO/diU6Hd+sP4LWzn787m9rMDR1XMFMAu3tvAp8uHg7rFOhNSG96ImB9nFHHFhGxvGLt5ahs3cIAKAzWB4ItHeNjk1gic9RBEemID61AN9tPT39a3fvoLXZnU/5zP00DLTPSPSLBCduDLRyj4FW7jHQSjaTHfreYZiadLBUdAFVHRhLrYY19g4mQrNh90+BciwOrj0RcPuGwPvdLI8S+C4Abt8QuPZEQDkWB7t/CiZCs2GNuYOx1GqM5DXBUtEFU5MO+t5hDJmefharzjQOY28XhptLMVaVhIn8UDjTj8EVtwnea988+RiC8EWYjPWBM/UQbPmXMV6RgOHGYph62qEzjoj/uggYA63cEx1ouwedqGl2Iq9UQWKGgvAYJ84FKzh4SoHvHhUrf5hZsPx+s4odB1UcO68dUXAjQUVaroLiKicaO50YMM7PxzNgcqBryIm2XicaOpyobnairM6JokoFOSUKbhc4kZytheboJBXX4lWE3nAi6KoC/2AFpwJVHDunffy7j6nYdkDFpt0q1m1TsdpXxXKf+QnAy9bduxP4bgTe9ZgIfPdO4PD7InDiQxG4pOa+O4EZgRfUGGg5mT0ueFbUtuKXby9H74ABetMwfvn2ctgdCgBgz/HQJwbauyE26FoSvll/BF6vd0aB9lpcJlZtOQkAGJ+wY+mGY489C/ZJgba9ewD/72/fQVVd8Hi8OHkxGq+8vghORcXV2AycD4mH1+uF1+vFtsOXEBKZCr1pGL99f9X0NV2JTseXaw4+0+f0cRhon5HoFwlO3Bho5R4DrdxjoH2xpx8Yg7FND3N1L4aLWjGaUYvxm2WYuJoLe2AanCcToB64gcmtYfCsC5xdbF11Hu4Nl+DaeRXKkWg4zibBFpwJa2QBxpIqMJI9dZRA/QAMnWbojBOz/HjsMAzqYO6ow2htNqx3ImHPOgs1cRfcN1Y9+RiC6Ydx7br3MK7a7AXxMK6FOgZauTeXgbbX4EBtqxbpkrIUXItX4R+q4PBpBVv2KVg1w7tO12zWQuWRs9pdoZEJKlJzFBRVKmhod6J/nuLrQtn9EbixUwvc5VMROLdEQUaBEynZCm6maxE4Il5FyP0R+KIWsg+eUrD3uIpdh13YtEfF+u0qvvNV8e36eYzAG7Q7mzfsuncn8L7jKg6fUXD8wr07gS9fVxAe/fCdwAqyihTkl01F4EYn6toUNHc50dHPCDyTMdByMrsbPF99cylefXMpfvHWMnzw9Vak55ZPv83hcxH4cPF2rPA9gdCoNLz7hXZH7ZMCrdvtwT+/3YNrcRkzCrTDo1Z8tnIv3vtyM5b8cBQ1jR34379/P/2wsoev98ceErblYBDe+OcP+GzFHtypaMQX3x3Ap9/uxvCoFSs3n8SfP/HBm59tgM/u87A7tLtkMwsq8eHi7dN/dv+Q8Tl8Zh/EQPuMRL9IcOLGQCv3GGjlHgPtwplOb4WhwwRTXT8sJR0YzWrAeGI5rNcLYLuUAceZRCiHYuDaEQ6PTxCw8tzsjhJYfxGT28KgHoiC93wS7BfTYb2WN3WUQB2Gi9tgrumFsd0A/eD48/0YjaMw9XRguOkOxituwZZ/Gc7UQ5iM+wHe8EVPvgv22jdwxfvCmX4MEwWhUw/jKoOxtxs68/O9ThnGQCv3Zhto+40ONLRrUTAlW8H1BBUXwrRzVrcd0ELfTCLdal/tqIDDZxQEhCm4flNFcrb2IK76Nka2ud6PnUE7aHagW+dEW58WgWunInBxpYK8UgUZhcp9EVhBxE0VoVFTEThEwemL2lESh04r2HNMxfaDKnz3qPDZrmLN5vmNwCs3aHdYb9ipYss+BTsPPyYChym4HKHgyn0RODFDQVruvQh8p8aJigYnalsVNE1F4N4X/H+fDLQc0VxjoH1Gol8kOHFjoJV7DLRyj4F2jma0wdBjgalpCJbyLozkNWEspQrWmGLYQrLgOJ8C5VgsXLsj4N4UDO9q/9nd3brmAty+oVD3XofTLx72gBRMhOXAGleCsbQajOQ3w1zZDWOzDvq+EQyZH7yT9Lk/JMxsh2FgAJa2GozWZsBadA2OzNNQb22HJ3LFUx/G5Y5ee+9hXKWx9x7GpTeJ/5q+ZGOglXuPC7T9JgcaO524U+1EWp6CqFsqLl5VcOy8gh0HVXy/eYbxdaMWxA6fVuAfqt1Bm5Sl3VFb26q88HHrZZjIh4QNmh3o0WkPeGvsmorA9U4UVzkfiMAJtxXEJGvxfjoChyo4E6Tg+FQE3ntMO+LCd68Cnx1TEXiejoNYutaFlT88JgL7TUXgAAVnLmn/AeLSNS0CRyaoiE1RcCtDQWqOFoHzyhQUVz8UgQec6NVrn6u5+Bow0HJEc014oP1shXY78/Co9Ylv19DaPU9X9NOIfpHgxI2BVu4x0Mo9BtoZzOyAvm8UxhY9zFU9GC5owWh6LaxxpZgIz4E9MBXOEzeh7o/E5JYweNZemOVRAv5wb7gM165rUI7GwHEuGbaQTFhvFGIsqRIjuY2wlHXC1DgIQ7cZOuOzP7xqNoFWbxiGqbsVIw2FGC+/CVvuRSgpBzAZsx7e8K+e/jCuhG33PYwr/b6Hcc32aARuNmOglWsDJgeau5woqXXidr4TsSkqImImcTxAwc4j2gOvZhKkVm1wYfNeLY75B2sPokrK1CJTbbMTXUP8++RFmMhAOx8bNDvQo78XgWtatAh8p1qLwJmFWiC9dVtB7FQEDot24tI1LQKfvj8C+2kPmdt8XwReMcMzkp/HVkxF4B92atew49BUBD6twC9Au1b/UC0Ch0U5cT1BRWyy9rGl5ijIKpy6E7ha+xzUtiroHnDBOOxGzxxGYG5hj2iuCQ+0AVcS8NGSHfiPP3+DlZtPIiWrFE5FFX1ZMyb6RYITNwZaucdAK/dkDLQ63TgMHUaYa/swfKcdo5n1GL9VDmtEPmxBt+E4fQvqwWhMbr8Cz/ogYMUsjhJYMXWUwPYrUA9Gw3H6FmxBt2GNyMN4QhlGM+sxfKcd5to+GDqM0A2J+Rb9xwZa8wSM/b2wtFZhrDod1qJwOG6fhOvmVniuL5v5w7jyLmG8IgEjjUUw9bRJ+zCuhToG2pdng2YH2nq1b0XPLFQQm6Kd3XnygvbAKZ/tKpatm9ndgL57VBw8peBcsHb2560M7Vvbq5ud6BqU6++Kl3kve6Cdj92NwO39TjR1auGzokGLwPllWhhNzdHulo1N1o4DCYvSInBAmBZW/QK0O833+anYeVgLsD/s1O5Wn+mD8p5XBF6zWYXPDu1u5B2HVOz1U3HotBaqz9wfgaOduH5TRcx9ETizUHudKK7SInBNixbG2/qc6NExAi/EEc014YH2rr5BIy5fT8FnK/bg1++uwNZDQSipbILX6xV9aU8k+kWCEzcGWrnHQCv3XvRAqzPaYOg2w9Q4CEtZJ0ZyGzGWXAlrdDFsIZlwnEuGcjQGrl3X4N54Gd5VszxK4PsLmNwcCnV/JJwnbsIemIqJ8FxY40oxll6D4YIWmKt6YGzRQ983iqEF/i8jer0J5s4moPsOrKWxsOUEQEneC3f090D4F09+GNeNVfcexnUn8r6HcQ2BD+N6ccZA++KsrU/79uesYgXxqQpCbzhx+qIWUDbsVLF8Bud6fuvjwqbdKvafUHH2soLwGAXZhR7klCioanKic+DF/XuA++ljoH1x1qt3oGPAiaauexG4uNqJvDLtiIS03KkInKI9SO9KtBOXI7QIfOaSdtTC4TMK9h3XIvCWfQo27lSxdotrXiPwtz5TEXj7VAQ+qGLvMS0C+90XgYOuKgiNciJiKgIn3NaOvMh4KALXNmvnJDMCz25Ec23BBNq7XJNuRN3KwW/eW4lXXl+Ev/xrI2KS8hZsqBX9IsGJGwOt3GOglXsLKtCa7dD3jcDYrIO5shsj+c0YS6uBNbYEE1dyYA9IgdMvHure63D7hsK7JmD2RwlsDIZrdwSUY7FwnE+BLSQL1uhijCVXYSSvCZbyLpiahmDosWDoORwlMN/Tmaww9vVguKUcY5XJmCgIg+O2H1zxvvBe+2YGD+PaxIdxveRjoF0Y6xxwoqrJiZwS7cFLYVFOnL2sYP8JFRt3zeyhSst9XNiwS3sA0ukgLW7EpynILlZQ2ehEe/+jr/GzfUgY93KMgVbuPXwGba/BgY5+J5rvi8B3aqbuBJ6KwIkZCuJSFdxIUBE+FYEvhGkPWzt+4dEIvGHX1J3AG1wzuoP/uUTg9S5856ti/Xbt4XTbD6rYc0z7rgA/f+0hdv4hWgQOuaFF4Ogk7bU3JVtBRoF2BEZxpYLyOidq7ovA3TrnSxWBiebaggi0Xq8XFbWt2OUXgv95fxX+8NFaHPOPRFvXAHKKq/HO55twzD9S9GU+lugXCU7cGGjlHgOt3JvLQKsfHIex3QBzTS+Gi9swmlGH8YQyWCPyYL+YDuepBKgHojC5LQye9ReBFT89tmLlOXh8gjC5IxzKoRg4ziTCdikD1oh8jCeWYzSrAZaSDpjq+mHoMEGne3kCo2FID3NnPUbrcmAtiYI9+zyUpD1wR333lIdxfTH1MK698BYHaQ/jqufDuGQbA+3cr2tIu8srv0yLG+ExTpwLVnDwlALfvcqM7l5bvt6FDTu1u2VPX1QREulEXJoWTSoatHAwm2tjoJV7DLRyT8RDwvoM2n+Qau5yoq5N+49HJTVOFJRPReA8BUmZD0Xg6wouXHlMBD6iYst+FRt2qVi7RcWqeYzAy31cWD0VgTftUbHtgIrdUxH42HkFpy6q8A++LwLHq4hOUnEzTUHyVATOLVFQVKmgrM6J6rsRuFc7w3vAND9fD6K5JjzQngqKwRv//AGvvrkUPrvPI+9OLdxuzwNv09Wnw6/fXSHoCp9M9F8UnLgx0Mo9Blq5N9NAqzNOwNBphql+AJaSDoxkN2AsqQLWyELYgjPhOJsE5Ug0XDuvwr3hEryrzs/q7lbP2guY3BIG9cANOE8mwB6YhomruRiPL8Xo7VoMF7XCXN0LY5se+oEx4Z+/uZzONAZTTyeGm0swXpmIibxgONOOwBW3Ad6ri5/8MK7I+x/GFT79MC7jQw/jms1DwriXYwy0z7ZegwO1rQoKyhUkZSuIiFfhH6qdJ7lln4LVG5/+0K3l613w2aHd4XUqUEXwdS1OZBVqd2+19c7dHVsMtHKPgVbuiQi087F+oxaBW7qdqG9zorJJezBiQbmCrGIFaXlOJGYqiEubisAxTgRfVxA4FYFPBCg4clb7DoZdUxF4404V67aqWLVxZmd5P5cIvF6LwOu2qdi0+6EIfE7BqUAV56cicOgNJ67Fq4hKVBE/FYFvF2jflVFYoaCsVovADR3a3yndg1oEJpprwgPtZyv3IjIhG2NW24++jdvtwYnAqHm8qpkT/YLKiRsDrdxjoJV3usFxuNsGMV7QjLGUKlhj7mAiNBsO/2QofnFw7YmA2zcY3u9meZTAan+4N00dJeAXB4d/MiZCs2GNKcZYytRRAhVdMDUOwdAzLPzzMf+zwzA4BEt7LUbrsmAtvg575hmoiTvgjlz5lIdxff3gw7jKb957GJdh5g/jYqCVdwy0P75+owMN7U4UVWrf9hqZoOLCFe1f3LcdUPGd79Pj67J1LqzfrmL3URUnAhRcjtAeFJRR4ERZrRMtPWK/XZaBVu4x0Mq9lzXQzsemI3CPE/Xt2hE1dyNwdrGC9Px7ETjqloqrMU6ERDoReEV7+OLJC1MR+KSiReADU3cCb1Wxeh4jMNFcExJo27sHZryFTvSLHSduDLRyj4FWjpkaBjCa1QDrtTw4j8fDvTH4p9/d6hME145wKEei4TiTBNvlDFivF9w7SqC0E6b6ARg6+W3yd6czjMDU04aRxiKMl9+ELS8IzpSDmIz1gTf866c/jOvWQw/jaq99rg/jYqCVdzIH2sZO7SE7abnav0BfDNe+NXXnYe3MxJn8y+3arSp2HVXhF6DdxRSdpCI9X/sX9aauBXKu9xPGQCv3GGjlHgPtwt/9EfjuncCFFVoEvv9O4LsR+O6dwE+LwKs2qlj5AwMtzT0hgfaV1xfNeAud6BchTtwYaOUeA+3LNUOXGZaSDljjSuHwT4Zr17Un3+W6LxLKqQTYA9NhjcjD+M0yjGbcf5SA4aU/SuCZZrbBMNAHS1s1xmpuw1p0FY6MU1ATtsETuXzmD+PKv/9hXF3QmebnrFwGWnn3MgbaAZMDLd1OlNY4cbvAiegkBZeuaU8x33lE+3bRmcTXdVu1B90c99fia1SiirQ87aE5jV1O9M/TGYFzOQZaucdAK/cYaDmZTbrdeOX1Rfj5nxY/svKaFgBAfGrB9Nu/9sFq9A0aHnk/Da3dePvfm2Z9Hc/6+xc6IYF2QOy/OAAAIABJREFUfMI+4y10ol8kOHFjoJV7DLQv5nR6K8w1vRhLq4EtJAvKoRh41gX+aIh1+4bAeeImrBH5GMlpgLFZhyGTfU4fEvayTK8zw9TVjJGGfFjL4mHLCYSSsh+T0euA8C+f8jCu76Ek74UtJwDWsvsexqUzCv+4hiwMtDLvRQu0g2YH2nqdKK9zIrNQO6s1+LqCk4Ha2Xw+22f2raHfb1ax46CKY+cVXAzXziFMy1Vwp1p7UMuAUfzHOh9joJV7DLRyj4GWk9ndQKs3DT/2171eL/73799P//jHAu2k242RMeszXcez/P6FTvgZtID2xTQPj2FQb35kC53oFwlO3Bho5R4D7QKf2QFjqx4jeU2wRhbCcfoWJreE/fgdsd9fgHogCrbLGRhLqYK5qge6oR+/G5OB1gGdaQLGvh5YWiswVpWKicIwOG4fh+vmZngiljz1YVyuhK1w3D75xIdxLdQx0Mq7hRZo2/udqGhwIqtYQXyq9uCTM0EK9vlp35q5fP3T4+uazdrDVI6e0578HZmgIjVHe1p2Q7sT/ZLE15mMgVbuMdDKPQZaTmZPC7Rrtp/BK68vwgeLtkFnHMZrH6xGRHwWPvh6K/7379/j4tVEAA/eAevxeHH6Uize+3Iz3v9qC3wPBGLCpn2e//svyxF0LQnLN/rh799sx9XYjMf+/n0nr+Av/9qINz71wdZDQZh0u+f6UzGnhAfatJwyvPbX1TzigHvhxkAr9xhoF870A2OwlHVhPLEc9sB0uPZeh3e1/+Nj7MpzmNwRDse5ZFjjSjBc1ApDx08/+1WWQKvXGWHuaMRIfS6spdGwZ52HkrQX7ug1wJUvZvgwrqB7D+Pq/mkP41qoY6CVd/MZaDsHtKdI55YoSLitICzKibOXtSdlb9qt4lufp8fX1b4qtu5XcfiMgoAwBddvqkjO1p5SXd/mRJ9B/Of0RRoDrdxjoJV7DLTcfPv/6sPxf+vC5n2P87RAOzJmxatvLp3+8WsfrMb+U+HweLzo7tPh1TeWwOFUHwisKVml+Ps322F3OOH1euGz2x8nAqMAAL95byWOX9D+eXjUil+9swIG08gDvz8jvwIfLNoGVXVBUV34YNE2pGSVPrfPvwjCA+0b//wBMUl56Bs0QG8afmQLnegXCU7cGGjl3v/P3nt/xXWm6drf3+NvvvGEPjOn55weT7ftaY897u6x3Va3k2zljFBCCeWcExJCQgiQhAAhISERRRBBiJxzpqAyoaqo2u+uAq7vh5Kx1BZBMrBB+73XutYaQBTvrqL38lw8dT9S0M4+RrMLa7WBgfRqXFHZiOMJDG+4Mn49wYYriOMJuKKyGEivxlpjwGienunMt0XQGq0OLJ1t9NU/Y7AsCdeTaygpR/EmbGb0xg9TX8ZVcIuBysfTvoxrriIFrX6ZLkHbYfJQWa/wpEiQlCGIjle4EC44eFqwZa9gxcYpyNdNKlv3CQ6fEYRECG7eVUl6LMgtFlQ2CjqlfJ12pKDVN1LQ6hspaCWznf+n9KImvCo/Ctp3P1j8Ej/K0lcJ2rqmjrGP//WTlRiM1pcE65YDoUTEpoz9m4KSGj5bHAz4BW1DS9fY175Zc5DU7KKfddAK9aflbbuOXxub1J2v0VzQ/ve3W7U+wi+K1jcJiXZIQatvpKCdWcwtVvryG3HeeYrn/EN8OyJhxflX1xOsvoi69xbu0FQcD4qxF7XN+IKu+SNo3Zh7jNhaqhiozMT5NAb343Oo93cxfHvl5Mu4Ev5mGVf9s1ldxjVXkYJWv0xF0HaZPVQ1+UVpUqZfnIZECA6fFWzdr7Jq0+RLt1Zu9BK0V3DojCAk3C9wkzIEOUWCynqFtt75cP95+5CCVt9IQatvpKCVzHZMXjdGDXhV3mSC9sUO2h8/flGwLt10nMTU/LF/U9vYwX98HgD4Be2Llacrgk4R+yD7pe8fdA6x48hVvli6mwUr9vKbP63lUuT9N3y250Y0F7Qrt56aF12z40Xrm4REO6Sg1TdS0E4Pxl4HtrJ2Bh+VMXQ1HfVALKNrL407Fevbeh3Pmfs4b+fRn1OHpclEr232zz2XBK3RMoC1o4W+uqc4Su4z9OQqSvIhfHcCGY1aOKVlXO7MF5dx1c6ZZVxzFSlo9YvB6sFshYJSQXKWv6/1UqTgyDnB9gMqa4Iml68rNnjZskfl4GnB+XBBVJzC/XRBzjNBeb1CW8/cuLdIfo4UtPpGClp9IwWtRM+ZCUG79WAY1+NSx/5NfnENny/ZBfgFbU1j+9jX/rJyH6nZxS99/4EzUew4cnWsd3bHkatS0P7SRNxO4YMFGzl07gbhMY+4FpP8EnM9Wt8kJNohBa2+kYL2NbG6sdQb6c+qwXnzCcrJewxvCR9XxI4EhCIOxzN07TGDqRXYKjoxmpzaX8dzZlXQ2tyYDQbsTRUMVKbjzL+BJ+MM6v0djNxaNvEyrltLXl7GVf58GVd357xYxjVXkYL27aTb6qG2TaGgXCElRyH2gUpYtOB4iGDnIZW1U5CvywK9bN6tsv+U4NxVf29sYpogq1BQVqfQapDydT4jBa2+kYJW30hBK9FzJhO0Tpebv/vt97g9ApiaoE3NLuazxcG4PYLh4RHW7TzHufAEwC9oD569AUBXj4V//HAJtr7Bl74/IPg8Ebf9FQmtHT28/+WGsQ7b+RrNBe3nS3axYMXecZnr0fomIdEOKWj1jRS042PusGMvbMFxrwj3xUd4d91gdOWrl3aNrryAd9cN3Bcf4bhXRF9hM+Z2u+bXMBnTLWhN5j6s7Q301+biKL7HUPZlxKMD+OLXMxr17eTLuB4dfCuXcc1VpKCdf/TYPDS0KzyrUEjLVYhLEly5IThxSbDriErAdpUlARPL16WBXjbtUjl61seZMEFErMLdFEFmgaC0VqG5W8rXtx0paPWNFLT6RgpaiZ7zo6D9u99+/zN+7H1dvPEY//rJSqrqWqckaEdHR7lw7S6ffLuVj78JYufR8DHB+y8fr+DqrUf8z6Kd/O6LQG7efQzw0veX1zTz+79u5g/fb2f74SukPynhVx8t53Fu2Ww+NdMazQXtfI/WNwmJdkhBq2+koPUv7bJVdjGQWokrIhNxJI6R9ZfHX9q1ORzl5D2cN3Poz6zBWttLr3V+LpN6bUFrc2Hp7sTeWMpgeQrO/Cg8aafw3tvGyK0lU1zGdXZsGZddJ8u45ipS0M4temwemjoViqsVHucJEpIF4bcEp0JV9hxTCdw5Bfm63svGYJW9x1XOXFaJuK2QkCJ4nC8oqVFo6vL/7326loRJ5idS0OobKWj1jRS0EpnZy798vGLcad23OXNC0Hp9wxSU1BCflMONhAxyn1Xj9fq0PtaUovVNQqIdUtDqG10JWpsHS5OZ/if1OOMK8Jx9gG/bdVj+ahE7uuYi6v7bDF1JZ/BhGbbSdow9b9dSqVcJWpPJiq21jv7qHJxFd3BnXkQ83Mtw3FqI+nqKy7iuMViWJJdxzXGkoJ1dmrsVSmoUMgsEd1ME124rnA0T7DuusnGXytL1k8vXwJ1+WXs6VCX8ll/iPs4TFFcpNHUq9Eyxy1oKWn0jBa2+kYJW30hBK5GZvUhBq1Fa2nt4/8+BvPv+Ij5csJEPF2zk3fcX8f6XG+bF8jCtbxIS7ZCCVt+8rYLWZBjEXtyOI6mEobBU1H0xjK6++Oqp2OXn8e2IxHMuCWf8U/ryGjG3vr3LpYxWJ5auDvoaihmpT8OdF4GSegzv3S2M3vjhNZdxZctlXPMYKWinj1aDQnm9QnahIDFNEBmncO6qYP8pwebdKssCJ5avSwK8rN+hsvuoysmLgqs3BXceCtLzBEWVCg0dU5evU0FvgtZoG8RqbKC/KxNnWwxD9cdxNl7GaqzX/GxaIAWtvpGCVt9IQSuRmb1IQatRvlt3iMPnb+L2KGOfG3Ir7D8dxcqtpzQ82dSi9U1Coh1S0Oqb+S5ojZYhrLU9DDyuwRWdjXI8geGNV8df2hUYhjh2B1dkFgPpVVirDRgtb9+SKXOvCVtrNQNVWTgLY3Fnnkd9sJvh2FVvsIyrVC7jekuRgnZqdJg8VDQo5BQJkjIE0fEKF8IFh84IgvYKVmycXL4GbFfZdUTlxEV/Z2xckiDtiUJhpUJ9m4LBOrvX9LYKWoupjT5DAY72O7gaz6PU7MBXvojRks9eyWBnsuZn1uR5koJW10hBq2+koJXIyMx0NBe0//rJSoTq/dnnPYrKrz9dpcGJXi9a3yQk2iEFrb6ZT4LW3Gqjr6AJ551CPBce4d0ZBSvOv7qeYFUI3j03cYem4HhQjL2oFVP3gObXMF0YrYNYO1rpqy/EUfoAV044SsoRfAkbGY1eOH4NQfS3Py3jyg5jpOYhg/UFWNsb5TIuHSIFrYcus4fqJoW8EsHDTMHNeyohEYLDZwVb96us2qxOKF8Xr/MSsE0l+LDKiRBBWLQg9oFKSo7C0wqFulaF7lmWr1NhPgtas8WIvaeMwY6HOJuu4qndj7dyFSOlfx5XxPoqlqLUBuNqvIij4x59hmdYzJ302oc0vx4tkIJW30hBq2+koJXIyMx0NBe0v/1iPWZr/88+b7b28x+fB2hwoteL1jcJiXZIQatv5qKgNRod2Mo7GEwuZyg8A/VgHCPrLo07FesLikA5cx9nTC79OXVYGkz02ub70ik3ZkMP9uYKBqoe4yy4hTvjLOqDnYzELJ94GVfMCtT7wT8t46oafxnXay8Jk7xVvO2CttvioaZFoaBUkJwluJ2oEhopOHpesP2AypqgyeXr2iCVnQdVjl0QXI72P0ZKtuBpuUJtq4LBov11vglzXdAabf1YjbX0d2XiaInGXX8MtSqQkdK/jithh8u+QVRvYajhJM62GPq7c7CamjDaZQf23yIFrb6RglbfSEErkZGZ6WguaA+cieLPy3bzOLeMToOZjm4T6U9K+GxxMNsPX9H6eJNG65uERDukoNU3mgpamxtLg4n+7Fqct3JRTiUyHHRt/HqCgFDEoXiGrj1mMKUCW3knRpNT8+fwTTGa+7G2N9Ffm4+j+B5DOWEojw7iuxPIaPS3ky/jSjn6imVcg691Bilo9c18FrTdVg91rf4p1ZQchdgHKmHRghMhguDDKuu2Ti5f1wSpbD+gcvS84FKkICZRJTlLkF8qqGlW6J6n8nUqzAVBa7Q5/ZUE3fk42uJxNZxFqd6Or+yHcSXsSMmXqJVrcdcdwtF8jYHOVGy9lZissgf7dZCCVt9IQatvpKCVyMjMdDQXtB5FZf/pKP7xwyW8895C3nlvIf/w4RJ2HLn6Ui/tXI3WNwmJdkhBq29mS9CaOvuwF7bgSCzCHZqMd89NRleGvLqeYOUFvMHRuEMe4Ux4Rt/TZsxtNs2fq9fGNoTZ0IW9sYzBilSc+VF40k+jJm5nJGbpFJdxheB8Fu9fxtUy/cu4pKDVN3NV0PbYPDR0KBRVKqTnKsQ/9Pe2nrgk2HVEJWC7ypKAieXrqi0q2/arHD4ruHhdcOueyqNMQV6JoLpJocus/XVqyewJWjdmswG7oYTBjgc4m8Lw1O7BW7GC0ZIvxhGxn+OrWOavJGi6xGBHIvaeIsyWLv72XQCSN0MKWn0jBa2+kYJWIiMz09Fc0P6Y0dFRrPYBekw2vL7hn309JjFTg1NNHq1vEhLtkIJW30y3oDVaXFiruhlIr8R1PQtxNJ6RwLBxp2KHN4WjnLiL80YO/Zk1WOt66bXMn05Ak9GGta2e/ponOIsSGMq6hHi0H19cAER9M/EyrnsvLuNKGVvGZbTO3jIuKWj1jRaCtsfmoalTobha4XGeICFZcC1G4XSoyp5jKoE7VZaun0S+blLZul/l8BlBSITg5l2VpMeC3GJBZaOgU+fydSpMt6A1Wvuw9VYz0JmBo/k67rojqJUBjJT+ZYJKgm+fVxKcwtkaS3/X80oC2/x9Z8R8QQpafSMFrb6RglYiIzPTmTOCdrL8y8crtD7CK6P1TUKiHVLQ6ps3FrQ2D5ZmM325DTjjC/CcTcK3/TosH2dp15pLqPtvM3QljcGkUuylbRh75n4voNHqwtLVgb2xhMGyZFx51/GkncB7L4iRm4smXcYlni/jchQn0l+TN+eWcUlBq29mQtC2GBRKaxUyCwR3UwTXbiucCRPsO6GyKVhlaeDE8nXlRi9BewWHzghCwgXR8QpJGYKcIkFFg0KHSfvn7W3gTQSt0ebEamymv+sJztZYhhpOI6qDGC77boJKggWoletw1x/G0RLBQGcatp4qTNY+zZ8DPSMFrb6RglbfSEErkZGZ6UhB+wuj9U1Coh1S0OqbqQhaU48De2kbg0mlDF1JQ91/m9E14yztWn4e3/breM4l4YwvoC+3AUuzmV6b9tc67vUZLdhaaumvzsb5LA734wuIpD0Mx66GyK8nX8aV8eIyrgrMhh7my9twpaDVN68raNt6FMrrFXKeCe6nCSLjFM5dFew/Jdi8R2XZJPJ1xQYvW/aoHDwtOB8uiIpTuJ8uyHkmKK9XaOuRv4uzxfiC1o3Z0oXdUMRgeyKupksotbvwVSxjtOTziSsJanbjagxlsD0Ru6EYs7mb+XIv1BtS0OobKWj1jRS0Er1ndHSUiNspfPLtVt59fxH/5w9rWLvzLB3dpkm/t6Gli9//dfMsnHJ+RwraXxitbxIS7ZCCVt+8JGgtQ1jreunPrMF5Iwfl+F2GN4WPv7QrMAxxNB7X9SwG0quwVnVjtMze2/OnitHqwNLZRl/9MwbLknA9ucZA5hF6c7ZiS1k18TKuu5vGlnE5St98GddcRQpaffOioO00eahoUMgpEjzIEETfUQgJ90+yBu0VrNg4sXxdFuhl826V/acE564KrscqJKYJsgoFZXUKrQb5ezaXMFstjDobGOhMxdF8DXfdIdTKtYyULJigkuA7RHUQQw2nn1cSPMFqbJGVBPMQKWj1jRS0+kYKWonec+TCLX7/1808LallyK1gtvZzMjSWf/+fdbiGJn5+pKCdWqSg/YXR+iYh0Q4paPWJuc1G39Nmhh+VIC4l4w2OZnTlhXGWdoXg3XMTd2gKjsQi7M9aMXXOpbenujH39GJrrmSgMhPn0xjcj8+h3t+FGr+KgcTFdGetpLZ4PYUNQaQbgkk27yHZvIei+u2IpJlfxjVXkYJWH3RbPFQ3KeSVCB5mCm7eU7l4XXDqoo9tB1RWbVYnlK9LA71s3KWy74TKmTBBRKzCvRRBZoGgtFahRcrXOYnRPojV1Eh/dzbOthiGGk4iqjczXPbNBJUEf0GtDMBddwRH83UGOtOx9VZjlJUEbxVS0OobKWj1jRS0Ej3H3u/g73+3iIaWrp99rbvXMvZ/V9S28NniYH7/1818+t02npXXA35B+9FXmzl64Ra/+yKQj77aPPa1kZFRzly5w8ffBPHJt1vZciB0TPj+y8criEnMZEXQKT75diuXox/MwtVqFylof2G0vklItEMK2rcbo8mJrbyTwZQKhq49RhyKZyQgdPylXVsiUE4n4ryVS39OHZYGE7027d+iarQMYO1opq+2AEfJfYaeXEVJPoTvTiCjUQsh8ivc8Qsxpy6jOX8tZVWbyO7YMSZi/5Y00yGemK9SYcvS/Nq0RAra+Y/B4qG2VaGgTCE5S3A7USU0UnD0vGDHQZU1QZPI1/V++br3uMqZyyoRtxUSUgSP8wUlNQpNXfL3Y24zhMXcQZ+hEEf7XVyNISg1O/GVLxlXwo6WfIGvYgUjjftwNl5msP0BdkMJZrMBWUmgD6Sg1TdS0OobKWgls51HW7wkbZh9XpXC0jr+6+stk575j9/vICn9KQAP0gr4+JsgwC9o/7/f/cDd5FwA7qXk8dFX/sd79PgZf/phB26PwujoKIG7QzgZGgvArz9dxbnwBMAvid99fxFuj/hlT+wcjhS0vzBa3yQk2iEF7VuCzY2l0UR/Th3OmFyUM/fxBUWMX0+w7hLqwTiGo7MYSqvAVt6J0ajh0i6bG7PBgL2pgoGKdJz5N/BknEG9v4ORW8te7n698Q39DxbTlb2SmpINFDTvJK331SI22byXTPM5nlpuU2HLosFWQ6ddH9OxU0EK2rmNweqhrlXhaYVC6hOF2AcqYdGCEyGC4MMq67ZOLl8Dd6rsOaZyOlQl/JYgIVnwOE9QXK0wMMic7oeW/ITZYsLeU85gZzLO5it46g7grVzNSOmfJ6gkWIio3spQwxkcbfH0dediMfkrCd5kSZjk7UEKWn0jBa2+kYJWMtuJX+zVhFclKf0p36w5MPaxa8jDb/60doy4pGwAvF4fIyOjAFhsA/z97xYBfkH7z79fOvY1r9fHO+8tpH/QyZYDoUTEpow9dkFJDZ8tDgb8gvbFqd1//WQlBqN1+p7kORYpaH9htL5JSLRDCtr5h6l7AHtRK44HxbhDU/DuvcXoqpBx6gku4A2OwhPyEGfCM/oKmjC32sYeaypLwqbt3OY+rO0N9Nfm4ii6y1B2KOLRAXzx6xmN+vYVPbBf447/HuPj9TSU7qK46SCZhoPjTsWmmg/zxBxOkSWJGlsRLfZ2evrmXifuXEIKWu3osXlo6FAoqlRIz1WIfyi4elNw8qJg11GVgO0qSwLGl69LArys36Gy+6jKqUv+773zUJCeJyiqVGjoUOiZRL6+7pIwycxitA1gNdbT3/UYZ+tN3PXHUas2MlL61fiVBKV/Qa1cj7vuKI7mSAY6M7D11mC09U/8s6Sg1TVS0OobKWj1jRS0ktmOMqgNr0pReQMfLtg49vHo6Ci2vkFsfYNsPRhGZFwqAKnZxXyz5gALlu/hi6W7+bvffg/4Be37fw586TH/+fdL6TSYWbrpOImp+WOfr23s4D8+DwD8grarxzz2tb/9+G2LZoI2r6gaob7azr8qAcHnZ/A0bx6tbxIS7ZCCdu5itLiwVhsYSK/CFZWNOHaHkcCw8esJNl1FOZ6AKzqbgcc1WGt7MFqGJvwZ0ypobS4s3Z3YG0sZLE/BlReJJ+0k3ntbGbm1ZMJlXMr9zZjzDtFcfZby1hByDWdINR2QU7EzjBS0M0OPzUNTl0JxtcLjfP/U6rUYhdOhKnuPqWwIVlm6fmL5GrBdZdcRlRMXBVduCOKSBGlPFAorFerbFAzWX35OKWg1wObCYmqjrzsfR9sdXA3nUGq24yv/YcJKAm/FCjy1e3E2hTHY8QB7Tylmc88bn0MKWn0jBa2+kYJW30hBK9FzHC43/+u/llNR2/Kzr+0+HkFkXCr2fgf/+OESWjt7ATCa7S8J2l99tJzR0ZcnaAcdQ2w9GMb154IXIL+4hs+X7AKkoJ21vPPeQv7xwyUs33KSGwkZ8/ZJ1vomIdEOKWjnBuZWC315jTjvPMVzLgnfjkhYfv7VU7GrL6Luj2EoLI3BpBLsJW2Yet6snuB1Ba3JZMXWWkd/dQ7Ooju4My8iHu5lOG4tRH09joT9muG4NWPLuKxlN2lrvkNlVywFputkmM9M0BV7lFzLNYotD6mxFdNq75RTsdOIFLRvRotBobROIeup4F6Kf2nWmTDBvhMqm4JVlgaOL18Xr/MSsE0l+LDKiRBBWLQg9oFKSo6/yqCuVaF7GuTrVJCCduYwW3qw95Qx2JGEsykMT+1evBWrGC35YoJKgu8R1dtwNZx9XkmQh8XUhtHmnPbzSUGrb6Sg1TdS0OobKWglek94zCN++8V6cp9V4/YIBgZd3EjI4F8+XkF+cQ3N7Qb+7Q+rUVUvIyOjnLocxzvvLUQRKg0tXfy///E9qdnFANxPy+fThdsB/9TtZ4uDcXsEw8MjrNt5bqx3VgraWUr/oJPkzGfsPBrO+19u4J33FvLRV5s5eDaa3GdVKELV6mivFa1vEhLtkIJ2djH2OrCVtTP4sIyhq+mo+28zuvbSq6dil5/Dty0Sz9kHOOMK6MttwNJsntbOyL8VtEarE0tnO30NxQyWPsSVG4GSegzv3c2M3vhh3CnYkVtL8N7biiftJK68SAbLk7E2PqOtp5gaaz5FlkRyzFdINb+6oiDFvI9My3meWmKptObQaK+jy27V/PV625GC9ue09SiU1yvkPBPcTxNExSmcDxccOCXYvEdl+YaJ5evaIJWdB1WOXRBcjvYv7UrJFjwtV6htVTBYtL/GH5GC9pdhtPVj661hoDMDR3Mk7rqjqJXrGSn96wSVBH9FrQrEXX8MR0sUA52PsfXWTlpJMO1nl4JW10hBq2+koNU3UtBKZCAmMZNPF27n3Q8W8+tPV7Fmx1mqG9rHvr71YBjvf7mBBcv38LSklq9XH+DPy3ZT3dDOH7/fwbGQGD7+JoiPvwmirLoZ8NclXLh2l0++3crH3wSx82j42CIwKWg1SqfBTExiJmt3nuXX/72Kf/hwCcs2n9D6WJNG65uERDukoJ0hrG6sdUb6M2tw3sxBOXmP4S3h4y/tWh+GOBKP63oWA2mVWKu6MZpndlLU3GNkuOo+IvM86oNdDN9eOa6AJfIrfPHrEY/2M5QdiqPoLv21uVjbGjCZ++iwG2mwVVFmSSffcvP1p2LtcipWC942QdvWo1DX5hesTyv8kjUlRyExzT+lGhWvcDlacO6q4NgFwdkwwYVwwaEzgqC9ghUbJ5avq7eobD+gcuSc4NJ1QUyiyqNMQUGpoLp5/j2PUtBOjtHmxGJqoa87F2dbHEMNZxDVWxkuWzhJJcGqFyoJHmLvKcNsefNKgmm/LilodY0UtPpGClp9IwWtREZmpjNnBC2A1zdMaVUTFyMT+eirLbzz3kKtjzRptL5JSLRDCtpfjrndjr2wBce9ItwXH+HddYPRlRfGWdoVgnf3TdyhyTgSi7AXtmDu6Ju1sxqtgwxUZSEe7v35FGzMctQHO/FknMFZcJOBynTszRWYDYax7++2O2i2N1NlLeCZ5S7ZlsukmORU7HxlLgnapi6F6maFkhqFvBLB43zBo0x/f+uteyrXYhTtYe7UAAAgAElEQVRCIgSnQlUOnxXsPa6ydZ9g/Q6VlZvUCcXqVFi1WWXrAf9jh0T4f+bDTEFeiaCqaXYW6c02UtD+iBuzuRu7oZjB9vs4G0NRanbjK1/OaMnn44pYX9kPKDXbcTWcw9F2h77ufCymNnptc/8PTlLQ6hspaPWNFLT6RgpaiYzMTEdzQdvS3kNUfBorgk7xq4+W8d5nAWw5EMrd5FyMlj6tjzdptL5JSLRDCtqpYzQ5sVV0MZBaiSsiE3E4npH1l8df2hV0DeVUIs6bT+jPrsVSb6TX6tbk7PamCtyZFxiN/n5MyA7HrWW4IoGBnlaM1sGffU+7vYd6ewWlljTyLTfIMJ+SU7FvGdMhaNt6FRraFSrr/Quscp75l1ndT/dPrUbHK4Q9n1o9EeKvCth5SGXzbpW1Qb9crL7Iio3+5Vpb9wl2H1U5dEZw6pJfuF69Jbh5TyUhWZCUKXic5598rWwUdJq1fy20QG+C1mSxYuupYqAzDUdLBO76w6iV6xgpWTCFSoLjOFqi6e/KxGqsm/VKgulGClp9IwWtvpGCVt9IQSuRkZnpaCZogw5e5t//Zx2//nQVa3ee5UZCxti2t/kUrW8SEu2QgvYV2DxYmkz0P6nHeTsPz9kH+LZeh+Xj1BOsu4R6MJah8AwGH5VhK+/AaHyzpV3TidlgwFlwy7/A67mUHb25iKGsS9haqum1+ztoLQ7nlKdik837yDKH8NQSR6XtCY22errsds2vVfL69Ng8DDhGaWgXlNYqFJQpZBYIkrMEd1P8b9+PuK1wKVJw5rL/bf17j6ts26+yIVhl1RaVJQHTI1aXrveyJkhl4y6VHQdV9p3wd7ieveLvcb0eqxB7XyUxzV9ZkF0oeFrhrzKoa1Vo61HomcZuZr3wNgpao92B1dREf3cOzrbbDDWcQlRvYbjs2ylUEuzD2XT1hUoCo+bXM2PPkxS0ukYKWn0jBa2+kYJWIiMz09FM0P7ui0B+9dEyAneHcCMhndaOHq2O8oui9U1Coh16F7QmwyD24jYcSSW4L6ei7othdPXFV0/FrjiPd2cUnvMPcd4ppC+/EXPr3HrLvtHSz0BFOuqD3S/UF3yNeHSA/upsOqydL03FZlpOjzsVm24+Rq4lghLLI2ptpbTZu+i1D2l+jRIPHSYPjR0KlY2CoiqFJ0WC9DzBgwxB/ENB9B2FKzf8/aonLgkOnhYEH1HZskdl3bbJF129ydRq0F7BrudTqycvCkKuCa7eFNy4q3LnkX9qNSNPkFssKK5WqGoSNHUqup1enQvMX0E7hMXcSZ/hGY6Oe7gaL6LUBuOrWDqBhP0MX/kilJoduBrP42i/Q5+hwF9JoMP7mhS0+kYKWn0jBa2+kYJWIiMz09G04qC9y8iNhAzWbD/D//qv5bz3WQBBBy+TmJqPxTag5dGmHK1vEhLt0IugNVqGsNb2MJBRjSsqC3EsgeGNV8avJ9h4FXEsAVd0NgMZ1VhrezBa5uj/E29zY28sw51xdqzCwHfzG2wZm2mqv0Kx8fakXbE/m4rtm71eXD3RY/PQalCobVMoq1N4Wq6QVShIyRbcSxHcTlSJiFUIjRScCRMcPS/Yd9y/mGrjLpXV0zi1uiTAy9ogLxt3+R9/33GVo+f9Pzc0UhARq3A7UeVeiv98WYWCp+X+c9e2KbQa5NTqfGeuC1qT1Yytt5yBzhSczeF46g7irVzNSOmXE1QSfIVatRF3/XGcrTefVxLUY7QNaH49cwkpaPWNFLT6RgpafSMFrURGZqajeQftj/END1Ne08yFa3dZFHiUX320nE+/26b1sSaN1jcJiXa8jYLW3GqlL78R551CPOcf4t0ZBSvOv3pp1+qLqPticF9OxZFUgr24DZPh532scxGzoQtn/g2cSeswpS2jqWAdJTVBZHbvn/JUrF0xYXNofy3zgU6zh6ZO/+RncbVCbrF/IjQpU3DnkX9S9Oot/+ToyYuCQ2f8E6VBewUB21VWbJy+qdXlG7ys2+afiA0+onLwtODERf/E7JUbguh4hfiH/ona9Fz/hG1RlX/itrFDocPkv6a5tCRMMvvMBUFrtA1iNTbQ35WFs/UmQ/XHEVWbGC77egIJ+2e8lavw1B3A2XyFwY5H2HvKMVtMmj+n8wUpaPWNFLT6RgpafSMFrURGZqYzZwQt+BeGRcalsmbHWf7vH9fwT/+5VOsjTRqtbxIS7ZjPgtZodGAr72DwURlD4RmoB2MZWXfp1VOxy8/h23Ydz9kHOOMK6H9Sj6XJTO88mgA02AdpsdTS2BRJZfUuCpqCSO3ZPfWu2FdMxQrvCHbH27mh/kd6bB7aehTq2vydpU8r/IusUnIUEtP8i6yuxypcfr7I6tgFwb4T/i7UjbtU1gSpLF0/fVOrq7b4O1y37VfZe9zf7XrmssqlSEHEbYWYRJW7Kf4u2MwCQUGZQmmtQm2rQkv39E6tSkGrb2ZP0A5hMbfTZyjA0X4HV+MFlJod+MoXTVJJsPh5JcEFHO0J9BmeYjG3o8dKgulGClp9IwWtvpGCVt9IQSuRkZnpaCpo7f0OkjKesu1QGO99FsA77y3kk2+3cuTCLQpKalBVr5bHm1K0vklItGNeCFqrG0u9kf7sWpw3n6CcSmQ46Nq49QQj6y8jjsThishkILUSW2UXRrNL++uYMm7a7D3U2copsaaQZ4nice+RCaZij75xV+xcF7RdZg9NXQrVzQrF1Qp5JYLH+YKHmYKEZMHNeyrhtwQhEYJToSqHzwh2H1PZuk+wfofKyk3qtE2tLlvvZd1Wlc17VIIPqxw4JTh+UXA+XBAWLYiKV4hLUnmQLkh7PrX6rEKhokGhoV2h3Tj3RKgUtPpmugWt2dKLvaeMwY6HOJuu4Kndh7diFaMlX4wrYYfLvkZUbWKo/jjO1lv0d2VhNTZgtM2PdzLMV6Sg1TdS0OobKWj1jRS0EhmZmY5mgvazxcG8895CfvXRMlZvO0NMYiY9JptWx3njaH2TkGjHXBO05o4+7IUtOBKLcIcm4919k9GVIa+uJ1gZgnfXDdwXH+G4V4S9sAVzh13za3gdDPZBmm1NVNnyeGZJIMccSorpwCtFbGrvLvJatlPWeIza7vs02Rp/cVfsTAratl6F+jaFynqFwkr/1GraE4X76f6p1ag4hbDnU6snQgT7Twl2HlLZvFtlbZDK0sDpqwRYtUklcIfK1v0qe46pHD4rOB2qcvG64FqMwq17KgkpgkeZfgGcXyooqVGoaVZo7lYwWLX/XZkJpKDVN28iaI22fqzGWgY6H+NoicJdfwy1KpCR0q8mqCT4Em/l6ueVBFcZ6EzB1luOySorCbRCClp9IwWtvpGCVt9IQSuRkZnpaCZoj4XEUFhah9fr0+oI0xKtbxIS7dBK0BotLqxV3QykV+K6noU4Es/I+rDxl3ZtCUc5eQ/nzSf0Z9VgqTfSa3Vr/vxNnZ9PxWaYT447Ffu4ezfFNZtpLFxHb8ZK7DmH6avNw2id3kngVwlag9VDi0GhpkWhpEahoFTwuMAvL+8mC24lqlyLUbh4XXD6sl927jmmsvWASuBOlVXTOLW6NNDL2iCVTbtUdh5S2X9S5XiIX+qGRQsi4xRiH6jcTxOkPvFL4MIKhYp6vxxu75GLrCZCClp9M56gNdqcWEyt9HXn4WiLZ6jhLKJ6G8Nl309SSbAEpWYnrsYQHO136TMUYjF3ICsJ5h5S0OobKWj1jRS0+kYKWome4xse5p33FrLtUNjPvrb7eATvvLcQ3/DwhI8RGZfKzqPhv/gs12KSp+Vx5mLmVAfti3G43JisfVofY9JofZOQaMeMC1qbB0uzmb7cBpxxBXjOJuHbFgnLXy1iR9deQj0Qy9DVdAYflWEra8fY69D8eXodXmcqNsW0n2zzRYo7L9Ncfhj7o+V4b30LkV/hvbsZR0kiJpN1yj+7w+ihocP/tvqiSoWcIv/b7ZMyBHFJ/rfhX7nhf1v+8YuCY+e87Drif9t+wDaVZdM4tbpyo5f1O/x1A7uP+usHTl3y1xGE3xLcvKuSkOyvK3icJ8gr8S/fqm5WaOpS6DJr/1q+7UhBq2fcjAobfYYSBtsf4Gy8jKd2D96KFZNXElRvYqjhJM62GH8lgakRo11WEswnpKDVN1LQ6hspaPWNFLQSPcc3PMw//edSPliwEUWoY5/3+ob56KvNvPvB4lkTtB5FxTX0dr4ec1bQ7jnht/BzPVrfJCTaMZ2C1tTjwF7SxmBSKUNhaaj7bzO6ZpylXSvO49sZhef8Q5wJhfTlN2JumbqInBu83lRsuvkEueZISq3J1NrK6Ooqxpl7jZGY5YxGfo0rfBmWiO00PLjHs9wusp76F0XdTRHcTlS5dlvhUqTgbJjgyDnB3uMq2w+obAxWWbVFZUnANE2trveyJkhlU7B/Uda+EyrHzgvOXhFcjhZcj1OIva+SmCZIyRFkFwqeVvgXcNW1KrTJqdV5gxS0bz8max+23moGOtNxNF/HXXcEtTKAkZK/jF9JUPIl3so1eOoO4mgOf15JUIHJatH8eiTTgxS0+kYKWn0jBa2+kYJWouf4hod594PFbNgTQkpW0djnnxRWsmFPyEsTtPFJOXz01RY+WLCR79YdwmjxD16+KGgralv4bHEwv//rZj79bhvPyusB+O0X6+nqMQOQnPmMv//dIjyKXwhH3E7h4NloOUGrRQxGK5V1rVofY9JofZOQaMebCFqjZQhrbQ8Dj2twRWejHL/L8Kar49cTbLiCOJ6AKyqbgfRqrNWGeba0y0O3fWDcqdgkw0Hutp4ktu4CN8vDiCy8wfWcVCLTi4lMaiH8jpmwG25CwgUnQ4Y4csjI/h3tbN/SReAGKysDhqZtanXFBi8B21WC9gp2HVE5dEZw8qIgJFxw9abgxl2VOw8FSY8FGXmCyroRKupUqpoETZ0KnSbtn2vJ7CEF7duB0ebEamymv+sJztZYhhpOI6qDGC77bsJKgtGqZSi1wbiaLuLouEef4RkWcyeykuDtRwpafSMFrb6RglbfSEErmfXcWQdxq2afV8Q3PMzf/fZ7MvPKWL3tzNjntxwIJf1JyZig7Rtw8u4Hi8f2S+08Gs6eExHAy4L2j9/vICn9KQAP0gr4+JsgAIIOXuZ+Wj4A+05F8peV+ygqbwBgzY6zZOaVSUErM360vklItGMyQWtus9FX0IQz4RmekId4g6MZXXnh1fUEqy+i7r2FOzQVx4Ni7EVtmAxz922vPTYPrQaF2jb/9GdBuUJmocKDbBs3UzsJu9fAmdsVHL5eyp7QCnaeqyPoeCuBB3pYG2xl5RYHS9aLaRGrSwK8rN7in4bdfkBl33GVI+f807KhkYKIWIXbiSr3UgQp2YKsp4Kn5QpldQq1rQqthjebWp3JJWGSuY8UtPMJN2ZzJ/aeIgY7EnE1XUKpDcZXsYzRks8nqCT4FlG95XklwW36u3Owmpow2h1vtCRM8nYgBa2+kYJW30hBq2+koJXMeiK/0oZX5EdB6/X6+M2f1jLoGEIRKv/xeQBC9b40QftiBUJSxlMWbzzmv5wXBK3X62NkZBQAi22Av//dIgDuJuey91QkAJ8v2UV8Ug6hUQ8A+Pf/WYfT5ZaCdqZyPy3/pSnZpyW1/OmHHbz/5QaOXLjF8PCIhqebWrS+SUi040dBazQ5sZV3MphSztC1DMShOEYCQsedivVtvY7nzH2cMXn059RhaTLRO4tva+80e2jqUqhuUiiuVsgr8feYJmUKEpL9/aZXb/n7Tk9dEhw64+9B3bpPELBdZeXG6etaXb7BS8A2lS17VIKPqBw8LThxUXAx1E7UuSruHU0k7VgUuScvU3whlNL4NEoLe6hsFDR2KHQYtXv9paDVN1LQzj1MVgu23koGOlNxNIfjrjuEWrmWkZIvJ6gkWIBatRZ33SEczdcY6EzD1ls5aSWBFLT6RQpafSMFrb6RglbfSEErmfV4BrThFflR0AIEHwsn9n4WqdlFbD98BWBM0I6OjnIxMpEvl+1hwfI9fPTVFhYFHgVeFrSp2cV8s+YAC5bv4Yulu8ceu8dk47PFwQw6h/jLyn1091pYvuUEbV1GFizfA8glYTOSmMRM/vHDJWTmlwMw6BziXz5eQdDBy0TfSec3f1pL2I0krY435Wh9k5DMIjY3lgYT/Tl1OGNyGT7/gJGtEeOK2JGAUMTheIauPWYwtQJbRSdGk/ONf36PzUN7j0Jdm0JFvUJhhULOM0HqE4X7aYLYByrXYxXCogXnrgqOXRDsP6my86DKxl0qa4NUlq6fJrkaoLJis4s1O22s39/LlqPt7Dhbz57QWo5G1HM+pplr93qIS+4nOUvhcYGgoFRQWuufWm0xKBisL1+fyWjBUXwPb8LGsb/ejUZ/iyftBH31z+i1za23DktBq2+koNUGo20Qq7GB/q4snG0xDDWcRFRvYrjs6wkqCT7HV7EMpXYXrqZLDHYkYjcUYbZ00Wt3v9E5pKDVL1LQ6hspaPWNFLT6RgpaiZ7zoqB9Vl7PosCjBASfJ7+4BvhJ0KbllPDH73fgdLkBSEzN/5mgtfc7+McPl9Da2QuA0Wwfe2yA3/91Mw8fF3Lkwi0APvl2K3FJ2ZwOiwekoJ2RfPrdtrFuCYDY+1n897dbGR31jzmnZhfx6XfbtDrelKP1TUIyM5i6B7AXteK4X4w7NAXvnpuMrgp5dT3Bygt4g6NxX3yE414RfYXNmNvtLz2eweqfWq1pViipeT61mi949Hxq9dY9lWsxCiERgtOhKofPCnYfU9m6XyVwh8rKTeq0Ta0uW+9l3VaVzbtVgg+rHDglOBEiOBfuISTaRmhcO2H3K7mSksWVzHginkYTXXqV2zUhJLSc4kH3YVJMB8gxh/LMkkCVLY9mWxOGN9hEbrQ56K/JQUk+BFFfj4lZNXE7g6UPMZn7NP9dGA8paPWNFLQzyRAWczt9hkIc7XdxNV5AqdmBr3zJhL2wP1USnMbZGkt/Vw5WYzNG25v/YWw8pKDVL1LQ6hspaPWNFLT6RgpaiZ7zoqAdGRnlo68289FXW8be9f6joL2RkMHKracAcLjcLN54jAUr9gI/CdrmdgP/9ofVqKqXkZFRTl2O4533Fo5VI+w4cpUFK/aSllMC+Ltn/7JyH4WldYAUtDOSv//dImx9g2Mfb953iROXYsc+7jXZePeDxVoc7bWi9U1C8sswWlxYqw0MpFfhisxCHL3DSGDYSwJWWR5K//Jr9C6PpnnjA8oPFJB7rpasqF7uxw4S9Xxq9Xy4X3QeOCUIPuwXoOu2qiybrqnVdV5WbvIL2637VXYf84vc06EqIRGCazEKt+6pJCT7xe/jfEFeiaCkxi+Gm7r8U6s9djdttm5qbWWUWJPJNUeSbj5BsnnPK8kwnyTPEkWJNYU6Wzlt9h7edOrsR2wtNQxlhzJyc/GYlB2+vRJX3nUsXe2a/15MBSlo9Y0UtL8cs8WEvaeMwY5HOJuv4Kk7gLdyFSOlf56gkuAvqJXrcNcfxtEc4a8k6KnCZJ3dP+ZIQatfpKDVN1LQ6hspaPWNFLQSPedFQQtw9MIt9p+OGvv4xSVhC1bs5eNvgli04SgVtS385k9rOXYx5qWKg60Hw3j/yw0sWL6HpyW1fL36AH9ethvwV6G+895CrHZ/3UJ4zCPe/WAxQvUCUtDOSP7590vHnnCA330ROFZ3ANDda+FXHy2b1TM9K6/n42+C+NVHy1i+5SSO52PZ3b0WFgYc5n9/spLPFgdTVt089j1a3yQk42Owemgx+N9SX1qrUJjdT16sgayQJlL3VXF/cxnxq4qJWlVJ6Op6zqxu4fCaboLXmtm8rp81AW6WrJueydWl672sDfJXDew8qLL/pMqxC/4qgrBoQWScQuwDlftp/sqCnGeCwgp/lUFdm0J7z5stsuq2D9Bka6TKlkuhJZ5s80VSTPtfKWJTTAfJtlzmmeUuVdYCmu3NbzQVOx7mHiPOojv47gT+VGEQtRBP+mn6Gorptf0y6TvbSEGrb6SgnRpGWz9WYx39XY9xtETjrj+OWrWBkdK/TlxJUL4cpWY3rsZQBtvvYzcUYzZ380v/ODRdSEGrX6Sg1TdS0OobKWj1jRS0EhmZmY5mgvazxcEkZz4DoKi8gX/4cAlDbmXs6ylZs1txMOgc4jd/WktReQNC9XLwbDS3EzMB+G7dIa7HpTI8PELus2re+ywAr8+/oU7rm8TbSofRQ2OHQmWjoKhS4UmRID1XISlDEP9QEB2vcOWG4EK4f6nUwdOC4CP+ZVMBW1WWB05fJcDKjV4CtvuXZO0+qnLojH951tUbXq7Hqty8659aTcr0L9vKKxEUV/uXcDV1KXSaZ+M5G3rNqdhT5FtuUGpJo95eQbu9Z0bOZbQ6GKjKQjzaD5EvVBjc38lgeTJGc7/mv2tvihS0+kYK2hewubCY2ujrzsfRdgdXwzmUmu34yn6YpJLgO0T11p8qCbpzsRpbZqSSYLqRgla/SEGrb6Sg1TdS0OobKWglMjIzHc0EbVxSNv/rv5YTuPsCv/7vVWMFwAClVU28/+dALkXen7Xz3E3OZdO+iz/7vL3fwa8+Wo5veHjsc58v2UVReQMg/wP9b+mxeWh9PrVaVqfwtFwh66kgJVtwL0VwO1ElIlYhNFJwNkxw9Lxg33GV7Qf806Wrt6gsCZgesbp0nWDdWidBa+zsXmPiyLpuzmzpJmR3L+EnLUSH93P7nsK9VEFKjiCrUFBQrlBer1DXqtBqmHhq1S2GGXCps/4cd/X10Wirp9L2hKeWOLLMISSb9015Krbb7pjxM9qaK3FnhjB644efKgxiV+PMj8bS3an57+l0IAWtvtGjoDWbe7D3lDLYkYSzKQxP7V68FSsZLflikkqCANx1R3A0X2egMx1bbzXGWa4kmG6koNUvUtDqGylo9Y0UtPpGClqJjMxMRzNBC34puu1QGNdikvF6fWOf33HkKkEHL49Nqc5GDp27wb5TkSzacJQPFmxk68EwXEMeyqqb+eP3O176txv2hBD7IBvQ93+gtxoU/9TqXsG6bSrLN0xf1+ryDV7WbfNPxAYfUTl03MPpYwOEHjIRtbuFhC3lpK3OJXdlBiUrHlG/IoG2FbEYV9ygf9V1XHticYem4LhfjL2oFVP3wLRf/8wL2iHa7F3U2kopsTwi1xJBuvmY5lOx42E29OAsjMUXF/BThUH0QjwZZ7A3ls67CoPJkIJW37ytgtZo68fWW8NAZwaO5kjcdUdRK9dPUknwBd6KFXhqduNsvMxg+wPshhLMZgNzpZJgupGCVr9IQatvpKDVN1LQ6hspaCUyMjMdTQXtePlxE9xsZtuhMD76ajNGSx9C9RIQfJ6DZ6MpKKlhwfI9L/3bHUeuEhmXCsCAS9UtZvvPawSWBHhZvcXLpmCVnYe87D+pcvyCyoWrXq7cUImOV0l46OVhhpfHeV4KSryUVnupbVZp6/bSa/DgrDXgeVyFiMzEdzSe0YDLLy3tepGRrRF4zz1Aic/Hnd+As83CgFPMyvUL7whuxTctj2V1DdLpaKR+IJdiWzw51oukTDAV+8R6mVL7PRr6C+l2tGF3uTT5HRgcdOKuy8L3aM+YlCXyK3xJu/DUZDA46ND893Sm8PpGcHm8mv38fqfK4JBXohEjo+D0+DQ/xxvh8uDqa8dtLkDpvoNoPou3dhsj5d9PWEkwUr4Qb+02RPM5lO4E3OYCXP3tDLo82l/TLANofgYt6XdpfwbNcMvXX884PT5GRuXrryX9Gv63n8vjxTs8ovl/g0q0wa34EF75+usZGZmZjuaCVhEq+cU1xN7PIj4ph7LqppfqBGYrB8/e4PD5m2Mfl1Y18Yfvt1Ne08ynC7e/9G8Dd18gPikHgCHFp2tqG320dvroMQ/TN/ga3+vx4em2I541od59iu/8A0a2Xx9XxI4GXGb4aDzeqCzUrGqUhh6GHIqm1+4bHkF4h1/re1yKisXdS5uzgur+VJ7aI8mwHB93KjbTeoYi+y1qBzLpctVhd9s0f82HFC9KVxW+nAuM3vypwmA0fg1qyW08duMcOOPMMzwyiqK+3us/nTg92j8HemZkZBSP0P4c4+PF7TSh2MpQe5NQ28LwNexluHI5oyWfjy9hy/7KcHUg3qZjiM4bCFMWSn8DbrdzDlzT3GF0FNxz4Bxa4dLx/cf9/PXX+hwSbfAI//1f63PoGafHq9nPVtRhhofl669XhHcY3/CI5ueQaIeMzExHU0GbmV/O//3jGt55byG/+dNa/u0Pq3nnvYV8uGDjWMfrbCUyLpVth8LGPi6tauKzxcH0Dzr5p/9cikf56S8mH321mfKaZkC+xW0qmAyD2IvbcDwoxh2airr3FqOrL75axK68gDc4GnfII5wJz+h72oy5zab5NbyKySoOXqcrNtV8kBzzFYosiVTbntJsb8EwC12xr4PZ0IWz4CbDcWt+krI3fsD9+Bz2pnLe1rcyj4esONA3c6XiwGS1YOutZKAzDUdLBO66Q6hVaxkpWTB5JUHtXpxNYQx2PMDeU4rZPLu1KPMZWXGgX2TFgb6RFQf6RlYc6JsBl6w40DsyMjMdzQRtQ0sXf/+7RRwLiaF/0Dn2+e5eC4G7Q/iHD5fQ0NI1a+ex9Q3y609X0djajdc3TODuEI5djAFgUeBRLkXeZ3h4hKSMp3y4YONYDYPWN4m5hNHswlpjYCC9GldUFuJ4AsMbr4w7FTu8KRzlxF2cN3Loz6zBWtdLr2VI8+uYKj8K2h676zW7Ys+Qb7lJmSWdBlsVHXaj5tcy7mtq6WewIhX1/q6XKgxE0h4GKjMwWqa/23e+IAWtvplNQWu0D2I1NdHfnYOzLYahhpOI6i0Ml307YSXBcNn3iOptuBrO4miLp687D4upDaPNqfnzN9+Rgla/SEGrb6Sg1TdS0OobKWglMjIzHc0E7YY9IazZfmbcr0aSGVoAACAASURBVC/fcpJ1O8/N4okg52kl7/85kP/zhzVs2neRIbcCQI/JxnfrDvGvn6zki6W7qW3sGPserW8SWmFusdKX34gzoRDP+Yf4dkbBivOvnopdcwl1/22GrqQxmFSKvbQNY8/cmg6dKl12K432OiqtOZT23SHbemHcrtj5MBX7Smxu7I0leDLOMBq9cEzKDsetw/k0BrNBTtn12qWg1TvTL2iHsJg76DMU4mi/i6vxIkrNTnwVSybuhS39CrUqEHf9MRwtUQx0PsbWW4vR1q/5c/Q2IwWtfpGCVt9IQatvpKDVN1LQSmRkZjqaCdr3Pgsg91n1uF8vrWri1/+9ahZP9GbR+iYx0xiNDmxlHQw+KmMoPAP1QCwj6y69eip2+Xl826/jOZeEM76AvtwGLM1mem3aX8fr0mN30WrvpMZWTLHlIbmWa6SZjr4VU7HjYenuxJkfxXDsqr+pMLiAvbkCvVUYTIYUtPrmTQWtyWrC1lvOQGcKzuareOoO4K1czUjpl5NUEqx6oZLgIfaeMswW+ccSrZCCVr9IQatvpKDVN1LQ6hspaCUyMjMdzQTt3/32e7p6zON+3Wi28857C2fvQG8YrW8S04bVjaXeSH92Lc6bT1BOJTK85dq49QQjgWGIo/G4rmcxkF6Jtaobo8Wl/XW8AS9OxRZaYsm0nJ9gKvYQT8xXKbLep9VZgsHROT+mYsfBZO5jsCwZ9f6OlysMHu5loDITo3VQ8zPOVaSg1TcTCVqjbRCrsZ7+rkycrTcZqj+OWrWRkdKvJpyG9ZX9gFKzHVfDORxtd+jrzsdiaqPXNj/vrW8zUtDqFylo9Y0UtPpGClp9IwWtRM/xDQ/zznsLX9rb9GN2H4/gnfcW4hsenvAxIuNS2Xk0HIB//v1STNa+GTnrfI5mgvad9xZO+IKYrH1S0M4Q5o4+7IUtOBKLcF9KxrvrBqMrQ8ZZ2hWCd89N3KEpOBKLsD9rxdTZp/k1vAmvNxW7l8fmsxSYYyi3ZdJgq6bDbnrp8SZbEjZnsQ3RV/8MT9pJRqO+G5Oyvvj1OJ/FYe6Zf9O/WiAFrb7x+XzYre30GQpwtN3B1XgepWYHvvJFk1QS/PV5JcFxHC3R9HdlYjXWyUqCeYYUtPpFClp9IwWtvpGCVt9IQSvRc3zDw/zTfy7lgwUbUYQ69nmvb5iPvtrMux8sfi1Ba+93MDIyOqNnno/RVNCevXqHazHJr+Ts1TtS0P5CjGYXtsouBtIqcUVkIo7EM7L+8vhLu7ZEoJxKxHkrl/7sWiwNJnpt8/Nt7W86FVtjK6TF1kZP3+RLdOaboLV0tuHKvc5IzPKfKgxuLmIo6yK2lmrNzzffkIJWP5isduw9pTja7zDUcBK1MoDR0j9PoZJgH86mqy9UEsg/frwtSEGrX6Sg1TdS0OobKWj1jRS0Ej3HNzzMux8sZsOeEFKyisY+/6Swkg17Ql6aoI1PyuGjr7bwwYKNfLfuEEaLfzBTTtBOHs0E7cffBE2JuR6tbxK9dg+9Ng+WZjP9T+pxxhXgOfsA37ZIWD5OPcG6S6gH4xi6lsFgcjm28k6Mxvn5Nv3pnop9HeaDoDUZbThKk/DeC3qhwuBrxKP99FdnY7TOz9d9LiAF7duIG4upjf6uLBwtEXhq9+IrXzyuiB0uX4RSswNX4wUc7XfoMxT4KwnsQ3PgWiQziRS0+kUKWn0jBa2+kYJW30hBK5nt/KpxiH9omH1eFd/wMH/32+/JzCtj9bYzY5/fciCU9CclY4K2b8DJux8spsdkA2Dn0XD2nIgApKCdSjQTtG9LZvumYOpxYC9pYzCphKGwVNT9MYyuvjhOPcEFvMFReC48wpnwjL6CJsytNs1vbG/KbEzFvg5zVtDaXPTVFvD/s/fewVHd6Z731tZ9t97drd2td6tu1c7cuXHnhvHMnXBnrufaMx7P2OOxB2cbgw3GYAwGE4wxJhhMsknGNtgGE2SByTkHkREZhCJKrdgK3X06qtMJnfvz/tFGIKslkqTT0vl9qz5VSEjdv9Ot/nX3p5/zPKGji0luGHKjhcGuiQSv7MJhu3spLbiBELS9G8ntxW0rwW8+gFy1jHDpeyQKXk7fliB/AJFrE1FMSwmY9+CxFhKLKHc1JEzQNxCC1rgIQWtshKA1NkLQGhshaAU9ne+VybqQLtcFbTQa46HnxuMPKITCEX7/4gTCkWibCtqbWyAcPHGJNyYtBoSgvZ0IQXuP6a4Hv+RUcJVb8Z0sQ96YS+iT3cTfy+64PcF72YQ+2Y28MRffyTJc5VYkZ++s4rK2yNR6zJS588hzHuSsYw1HHQs7rIo95fiSS85tFLtPY3KX0ehx9sg6M03Quswm5DNrSGwZ2SplE5vfQMldhbu2XPf19TWEoO09OJxNtDSfJ1i3GbViAdHi0R1XxRYOI1Q+i2BNNr7Gk7ikWtJVxHY2JEzQ9xGC1rgIQWtshKA1NkLQGhshaAU9HWcsiUMH0uW6oAWYuXgN2/ef5mhuHtMXfg3QKmiTySQr1u9jwJtzGDhqDk8MmsLwiR8DQtDeTkSLg3tMVzzQHXVuWi5WE9x9Be2rQ0RnbiD51vL0VbFjVxD5aCtK1jH8B/Px5Ndjt/be09QbPU6q3OUUu09zybmNU44vyXHM7aAqdiFnHWvIcx6kzJ1HrceMtUW/6eaZIGjtdheBq3uJ7p58o4XBhsGEchbgLTuD5O69fxuZjhC0mYfkCeCSKvA1HkGuWkWodDrxwsEd9omNlIxPDeuq34nHmofddfvV5ULQGhshaI2LELTGRghaYyMErbERglZg5NwsaK8UVTJ84sdMmLmMC1fLgBuC9tiZfJ4dNoOgrAKw7+gFIWjvILoJ2o6Gg32XTM+dPKAlKYC7qBF/ThHK2hNE5u8g8fbK9FWxo74k9v56tC8OENxxEe/ZSpw1Dmxu/Temu6G3VMXeCXoJWskVxFt+jlDOQtjw6o0WBrsnEcjbg13KvNuqLyIErb44nHY81jyC9TtQKz8hWjKOZH7/DqpiBxMqm06wahW+xiO4pAok9721PBGC1tgIQWtchKA1NkLQGhshaI2NELQCI+dmQZtIJHli0GSeGDSFeDwB3BC0m3af4K1pSwAIyCpvTFrMwNFzASFobycZ3eIgmUxfXp1JSfvgdas4TXa8ZyoIbjlHaOk+4lO+6bA9QeKdLMKLdiKvO43vWAmua81IDv0qQ++V3lwVeyf0tKB111Wg5GaR2DLiRguDLSNQznyNu65C99vDaAhB21MouKQafI0nCdZkEyqfSbxwaIctCqLFb6FWLiRYt4WW5gs4HM3dsi4haI2NELTGRQhaYyMErbERgtbYCEErMHJuFrQAHy/fwkdLN7R+ffOQsIGj59Lv1akMf/djistreei58SxesVUI2ttIRgpah8vL6o0HePyVyXov5ZaxN3vxXKkjsC8PddURonM2k3zrqw5lbHT2ZtSVOQT25eG5XIujoUX3jeZu6YtVsXdCTwhah81OMG8PsV0Tb2ph8CqhI4vwlp1HcnXt4DPB7SMEbdcjuVrwWAsJmPegmJYSuTaRRP6A9IO7Cl4hXDoZuWo5/oYDuG0lSG5fj61VCFpjIwStcRGC1tgIQWtshKA1NkLQCkREujsZI2ijsTgnzhUweuoSfvKHYfR7dSrZWw7rvaxbp6OhXVPXElqyj+Dms3hzy3FWSthcqu6byt1yJ1Wxx+wfc865lqvOQ5S5r1Lnaew1VbF3QncJWskVwFuaS/jwPFg/uFXMRndPJpC/D7vdpfuxC4SgvTdUnA4z3uYzBGrWo5V/RKx4ZIdVsbGiEWjlcwnUrMPbnIvTXo/No+9+KgStsRGC1rgIQWtshKA1NkLQGhshaAUiIt0d3QVtfZPEJyu38dtnx/HrJ9/ix78fxolzBXov67YTm7aOyPztKGtO4D9ciLuoAUnqvYOZrC3B266KPeL4kFPOZVxybqfEdYYqTwVNHuPIw64WtO7aUpTTK0lsHn5TC4ORyGfW4DJX6X68grYIQXt7SG4/blsp/oaDyFXLCZdOIVEwqIOq2AFESt5BMS0hYN6Dx1qI3ZWZZxkIQWtshKA1LkLQGhshaI2NELTGRghagYhId0c3Qbsn5xyDx87jp48M561pSziam0ckEuWXj4+kyerQa1l3HL03iXuhwWPH5C6lyH2Ki46tnHR8cWdVsZ6+VxV7J3SFoHVYJYJXdhDb+U6rlE1uGELo6GJayi9icxv7Ns5khKBtj8NhocVykWD9VtSKRUSLx5DMf7GDwV1DCZXPJFidja/xBC57NTaPovsx3C5C0BobIWiNixC0xkYIWmMjBK2xEYJWICLS3dFN0N738FAmzv4Kd4u/zfeFoO16rC1Bat31lLkvk+faz1lHNkcdC0RV7D1yt4JWcvnxlZwifGjujb6y6wcR3TuVQMEB7JJb92MT3BojC1rJHcQlmfA1HiNYnUWobAbxwiEdtCjoT7RkLGrlYoJ122mxXMHhlHQ/hntFCFpjIwStcRGC1tgIQWtshKA1NkLQCkREuju6Cdqv1u3j0QHv8tBz41nw5SbKqxoAIWjvFVEV23PcmaBV8VQXo55aTnLT6zdaGGwdhXz2G5yN9bofj+DOMIqgtbvceCxXCdTvQjF9SqTkbZL5/Tuoih1MuPR95OqV+BtzcNvKkTy9t+VLZwhBa2yEoDUuQtAaGyFojY0QtMZGCFqBiEh3R9cetIlEkvN5pUyYuYyfPjKcp4ZM418feZ3Syno9l3VH0WtzuJOq2BzHh5x2fMUl5w5K3GepclfS5PHovsH1dm5H0DosFoIXtxDfMf5GC4ONQ9COfUpL5WVs7t5zSregLX1P0Co47XV4m04SqFmDVjabWNHrHQ7uihaPRq1YQLBuMy3N53A4GjPgGHoOIWiNjRC0xkUIWmMjBK2xEYLW2AhBKxAR6e7oPiTsejzeAGu2Hqbfq1P5yR+GMXrqkl4xLKwnNoI7qYo97ljMOec35DsPU+4uoN7TRG/q69ib6EjQSk4vvpLjRA7MbtvCYN/7+AsOYbcLOd4X6M2CVnJ7cduK8Jv3oZi+IHJtEon8gekHd+W/TLj0PWTTl/jN+3HbipHcXt2PQW+EoDU2QtAaFyFojY0QtMZGCFpjIwStQESku5MxgvbmFFyrZur81fzisRF6L+WW6coHvMUTuLeq2JbMnHbeV2kjaN0qnqpC1BNfkNw4rFXKxre9hXx+Hc4ms+7rFXQtvUXQOh2NeJvPEajdiFYxj1jxmx1WxcaKhqOVzyVQ+w3eptM47fWID3jSIwStsRGC1rgIQWtshKA1NkLQGhshaAUiIt2djBS01xOUVb2XcMvc7YO7wSNhcl+j0HmcC87NnHB83oGIFVWxmYoajhNwWgle2ER8+9gbLQw2vIZ2bAktpqvY3Kru6xR0D5kmaCVPALetDH/DYeTqFYRLp5EoGJS+KrbgJSIlE1BMnxEw78JjycfuEpXdd4IQtMZGCFrjIgStsRGC1tgIQWtshKAViIh0dzJW0B44dpEPPl6j9zJumVs9iC2eADWeWkrdl8hz7uOM42uOOuaLqthejOTw4i86QuLQzDYtDCL7Z+AvysHuEPeZEdBT0DqcNloslwnWbUetXEy0ZCzJ/Bc7GNw1hFDZDILVWfgaj+OyVyG5g7rffr0dIWiNjRC0xkUIWmMjBK2xEYLW2AhBKzByYvE49z08lPlfbGrz/ZPnChk3/fMuu55fPj4Su6sFU20Tj78yOe3PrN2a0ytc4d0kYwXtpt3HGfneJ3ov45a5+QF7Z1Wxn3LOsZ4CVw7l7kLq3c2IqtgMxq3SYrqKdnwpyQ1DW6VsYscYghc24Gw21oAkQQ8JWreMy16Nr/EEweqvCZV9QLzwtQ5aFLxItGQMasXHBOu30WK5jMNp1f126qsIQWtshKA1LkLQGhshaI2NELTGRghagZETi8f5xWMj+N3zb1PXYG39flcLWo83QCKR7FTQaqEIstI374+MFbS9JXmu/ZxxZnXSK3YOpx0ruOzcyTX3OardJpo9Pt03F8Ht4WwyI59fR3zbWzdaGGwcinbic8KNxfiCmXOKu6Bn6WpBa3d58FgLCJh3o5g+I1IygUTBgA5aFLxCuHQactUK/A2HcNvKkDx+3W8TIyEErbERgta4CEFrbISgNTZC0BobIWgFRk4sHufnj41g+/7TjJh0o5DyZkGbSCT5cMl6/vTyezz60kTeX5BFLB4H4P5+o9mw8xhvTv6UPw6cxPGz+cxcvIZXx83j1XHzUbUw0LaC9olBk/l4+RYe6T+RJwZN5kpRJdC2gra4vJYX3pjJ469M5unX3m/9md6ajBC0iUQSd4sfq93djkxP26rYTzjvWEe+6wgVrVWx+m8kgjvDbvfgLzhEdN/732lhMAt/8VEkZ2qCfZshYQLDcfeCVsVpr8fbdJpAzTdo5XOJFb3R8eCu4jfRKuYRqN2At+ksToeo1s4EhKA1NkLQGhchaI2NELTGRghaYyMEraDHM+0bmLym50mTWDzOvz7yOolEkueHf8CpC0VAW0F7/Gw+Tw+dTiQSJRyJ8vTQ6Rw+eQWAB54ew9ebDwGw42AuP39sBE1WBwCvv7OInFOpn7tZ0P7rI6+zJ+ccAHuPnOeJQVOAtoL22WEzOHj8EpBqk9rv1aldfS/0aHQXtEdO5/HA02O47+Ghacn0lLmviqrYvoBbpqXyMtqxT0luHNIqZeM7xhG8sAmHpand7whBa2xuR9BKbi9uWwl+8wHkqmWESyeTKHg5fVVs/kAi1yahmL7A37APj7UIye3V/TgF6RGC1tgIQWtchKA1NkLQGhshaI2NELSCHs+bX+pDmsTicX7yh2EA5BWZeGLQZKLRWLsWB+FItPXfsz5Zy+qNB4CUoK0xWwC4XFDBU0Omtf7czMVrWLfjKNBW0P7y8ZEkEkkAotEY9z08FK8/2EbQRqOx1p9xun389JHhXXLT6xXdBe1Dz43n86930dBsx+5qaUemR+9NQnBvOBvrkc+uJbF11E0tDIahnvwST1UhNo/a4e8KQWtsvitoHY5mWprPE6zbjFqxgGjx6I6rYgtfRyubTaBmDd6mkzjttYge1L0LIWiNjRC0xkUIWmMjBK2xEYLW2AhBK+jx+FXwKz1PmtwsaAHe/uBLvt58qI2g9QcVZizKpv/I2QwcPZeHnhvPyvX7gZSgvX6GfF6Rif4jZ7de1pxPv2Ht1hygraB99KWJbdbwy8dH0mhxtBG0R3Ov8uq4eQwcNYf+I2e3WWNvjO6C9uePjWjtN9Ebo/cmIbhz7JKbQMF+onumtGlhED44B1/JcSTn7VVDC0FrTCR3EJdUQcxxArV2NaHS6cQLB3cgY/sTuTYexfQpgfpdeCxXsbvcuh+D4N4RgtbYCEFrXISgNTZC0BobIWiNjRC0AiPnu4LWIrn4zTPj2H4gt1XQzvt8AzMWZbf2nZ2xKPueBO2vnhhFMtm2gtYfUFoFrccb4BePjaCu0QaA5PAIQXuvmTBzGReulum9jLuO3puE4PaQXDLe8guEjnwMG169qYXB2wQvbcVhsdzxZQpB2/dxOO14rHkE6neiVn5CtGQcyfz+aWVsvHAIobIZBKuz8DUewyWZkNxB3Y9B0D0IQWtshKA1LkLQGhshaI2NELTGRghagZHzXUELsDRrJ4+/MrlV0E6YuYxvth0BoK7ByqMD3uWzVduBuxO0P/79MI7mXgVg/7ELPD10OnCjB22N2cKDz4wlEomSSCRZsnoH9z08lFA40n03RDdHF0G7dmtOKyvX7+ePAycx57N1rNl6uM3/Xb+TMjl6bxKCznHVV6KczSaxdeSNFgabXkc9tRxPTTGdtTC4FULQ9iUUXFINvsaTBGuyCZXPIl44tIOq2BeJFo8hVrMYrWEbLZaLOBx3LvgFvRshaI2NELTGRQhaY3LZqfG1RePdBoWXzSrv1issaVLZbdMocOq/PkHPIAStsRGCVmDkpBO0qhbi4RcmtAraorIaHn9lMs8Mm870hV9z/Gw+v3piFCfPFd6xoC01mXl22AwWf7WVfq9Opd+rUyksrQHaDgmbNj+LRwe8y8BRc7iUX87gsfN46c0bl93boougHTh67m2T6dF7kxC0xy45CVzdS3T3pLYtDA7NxVdyCsnl75LrEYK2dyK5WvBYCwmY96CYlhK5NpFE/oD0g7sKBhEunYJctRx/wyHctlIkd+rv53aGhAn6LkLQGhshaI2LELR9nxp3iF2SxtxGlReqZX5YHuR7ZfIt+b1JZnCNwgdmhSyLxjF76rL0Ph5B1yEErbERglYgItLd0b3FQUdJJpNEozG9l3HL6L1JCFJI7gDesjOEchbAhsGtUja2YwLBKztwWKUuv04haDMdFafDjLfpDIGa9WjlHxErHtnx4K7ikWjlHxGoWY+36QxOh5nOKqyFoDU2QtAaGyFojYsQtH2Pkw6NL5pV3qiT+Y0pvXy9r1xmQI3MzEaVj+1hZjUovFWn0K9a4ccVnYvbH5XL9KtSGFUns6BJZZNV5bxD/+MW3DlC0BobIWgFIiLdHd0F7aMD3k37fX9Q4YGnxvTwau48em8SRsddW46Su4rE5jdutDDYPBz11Arctde69bqFoM0cJLcft60Uf8Mh5KqvCJdOIVEwKH1VbP4AItcmopiWEjDvwWMtRHK13PF1CkFrbISgNTZC0BoXIWh7N2UujU1WlSlmmT9XKfx9GqH6N2Uyj1XJvFuvsNaqku+68fsd9aCt92ictGtkWzVmNSgMrVX4g0nmH8o7Frd/VSbzq0qZF2tS1/Vls8p+SaPY1bO3ieD2EYLW2AhBKxAR6e7oJmgvXC1j8Vdb+ekjw1n81dZ2jP/gC+7vN1qv5d129N4kjIjDZieYt4vYrok3tTAYTPjwR/iu5SK5Aj2yDiFodbr/HRZaLBcJ1m9FrVhEtHgMyfwXOxjcNYxQ+SyCNdn4Gk/ikmqweZQuWYcQtMZGCFpjIwStcRGCtvdg9mgcsqssatIYVKvwsw4qXX9VKfN6rcxnzSrH7RpN7o4v826GhJW4NPZLGsuaU71r+9fI/HtlStB2JG///tuWCUNrFWY2KGRbNU7YNeo6WZug+xGC1tgIQSsQEenu6CZo6xqsLM3ayU/+MIxx0z9vx3sfruDs5RK9lnfb0XuTMAqSK4DvWi7hwx/B+ptaGOyaSDBvFw6bvcfXJARtN9/n7iAuyYSv8RjB6ixCZTOIFw7poEVBfyIl41ErPyFQvxOPNQ+Hs3v/JoSgNTZC0BobIWiNixC0mctFh8Zqi8a4eoXfm2R+kEZ8/rA8yHM1MjPMCtttGibXne3jdyNoO6Lp2zVvtqosbNIYXafQr0rhvk6qbr9XJvPjCpl+1akWCx83qWy1aVxypi5P7/ugr+MJhIk2J3E2iNd/RkQIWoGISHdH9xYHy9bs0XsJ9xS9N4m+jrumBPXUVyQ3vd4qZROb30DJXYW7tkzXtQlB23XYXW48lnwC9btQTJ8SKXmbRMFLHVTFDiZUNp1g1Sp8jUdwSRVI7mCPr1kIWmMjBK2xEYLWWDisIbxFUZRjMWKbE9AgXv/pTbU7xE6bxswGhReqZf4pzSCvvyqT+Z1JZky9wkqLxgWHhvUer7crBW1n1LhDHLdrZFs0ZpgVhtQq/M4kp23JcJ0flMn8ujLVK/c9s8Jyi8pBSaVUtEzoMjyBMMlNSVgJkR0J/Fej2O3itYBREIJWICLS3dFF0G7afQKHy9v6787I9Oi9SfRFHBYrwcvbie2YcKOFwYbBhA7Px1t2BsndMy0MboUQtHeDgtNeh7fpFIGaNWhls4kVvd7h4K5o8WjUyoUE67bQ0nwBh6M5A44hhRC0xkYIWmMjBG3fxtkYwlcQRT0SI7Y+JWPacEG8/utJmj2p0/uXNqsMr5O5vzK9oPxJhcwrtQoLGlNisr47/jZ6SNB2hNWjUejU2CtpfN6s8k69wvPVMr+skPl+J/L2h+VBHqlKtXKY06iy1qpyyqF1y23Ul/EEwsTzksS/sy9oh+J4KsR7gr6OELQCEZHuji6C9vnhH1BWZW79d2dkevTeJPoKktOH79pJwgfn3tRXdhCx3e8SyNuDXXLqvsbvIgTtLe5Ttxe3rQi/eR+y6Qsi1yaRyH85/eCugpcJl05GrlqGv+EAblsJktun+zF0hhC0xkYIWmMjBG3fwlUfxn8linYgTmJteyGbXAWRnQmCuVFaKiIkI+L1X3dS6NRYb1WZZFZ4okrmb9MIx78rk3miKlUput6qUujsmbXpLWg7o8mtcf7blgnzG1XerJN5vErmR7domfDTCpmnqmXG1it80qSyw6aR59SwZMAxZRo396D1VIVRj8RIZt3YK+LrkgRzozgbxeuDvogQtAIRke6O7i0OQuGI3ku4p+i9SfRuVDzVRagnv2zbwmDLCJQzWbjrKjJgjR0jBO0NnI5GvM3nCNRuRKuYT6xoVIdVsbGiEWjlcwnUfIO3ORenvR6bR9X9GO4UIWiNjRC0xkYI2l6MW8NdEyZwMUZoX5xEdhoh+3WS0J44wfMx3FVhpJtOERc9aLuWeo/GAUljQaPKK7UKP+lgkNevK2WG18l83qxy0p6qqtVjvZksaDuj2h3iqJTq0TvdrDCoVuG3lenl93X+ulzmAZPMyzUKU80yX1lUDtlVygzcMiHdkDDJqeErjBLemWizj4gWCH0PIWgFIiLdHd0F7c/++AbD3lnI6o0HuFZRRzye0HtJdxS9N4neiMPSRPDiZuI7xt3UwuBVQjkL8ZafQ3L1fD/Ru8GIglbyBHDbyvE3HEauXkG4dBqJgkEdVMUOIFLyDoppCQHzbjzWQuyuFt2PoasQgtbYCEFrbISg7T1ILg2PKUzwfIzwnnibarfrJNYkCe2PE7gcxVUbxubu5PKEoL1rrJ5UhecKi8qYOoWHTKk+sd8VFxGh2QAAIABJREFUg/9UHuT5aplZDQq7pJRc1Hvt1+mtgraz+yTfpbHLpvFZs8qEeoXnamR+0UEbiev8Y3mQR6tS0vzDJpX1VpVch4Y5A46pO0knaNv8fTSFCJ6JtmmBkFwN2qFYqgVCJ3uLIPMRglYgItLd0V3Qmmqb2LT7BBNnf8XDL0zg/n6jGTf9czbtPkFdo03v5d0yem8SvQXJ6cVffJTI/lltWhhEd08mcHUvdrtL9zXeKX1d0DqcNloslwnWbUetXEy0ZCzJ/P4dDO4aSqh8JsHqbHyNJ3DZq7G5Zd2PoTsRgtbYCEFrbISgzVwkR4iW8gjB01EiOxIkV9NOyMbXJ1EPx/Bfjd7xNHYhaG+fSleIbbZUxeaz1ak+qOkGW/3BJDOuXiHLonHRof+6O6OvCdrOaPBonHVobLCpzGtSeaNO5rGq9APZbubnlTLPVsu8Xa/wWbPKLknjquveB7RlArcStG1+tiKCmhNrswfFvxEtEHorkkNDqYgRKUsi9VBLFUHmYeTE4nHue3goP/vjG6389tlxzFiUjaqFenQt63cc5YOP1/TodfZUdBe0302T1cmWvSd5asg07nt4qN7LuWX03iQyGreKx5SPduJzkhuH3tTCYCTKmWxcZpP+a7wH+oygdcu47NX4Gk8QrM4mVPYB8cLXOmhR0J9oyVjUysUE67bTYrmMwynpfww6IAStsRGC1tgIQZs52G0hvCUR5BMxolsTsIp2Qja2OYFyLIa3KIrDcm+PWyFo09Pk1jhuT1VhDqtV+GUHrQp+ViEzuEZhUZPGIbtKQwas/U4wkqDtjAq3xmG7ygqLylSzwiu1Cg+aUm0ROhK3f1Mm86ApNchtWoPCKotGjl2johe1TLgTQXsdyRHCfzX1gVG6FgiSQ7yWyFRctamzLyLfaV+RXA1qTkwMhjMgRs51QWt3tbR+z93i541Ji1m8YmuPrkUI2m6Ozy9z6nwhi1dsZeDoufz6ybd47e0FLM3aqffSbhm9N4lMxNncSPDCBuLbx7RK2eSGIYSOLsZbfgHJ1TcqK3ujoLW7WvBYCwiYd6OYlhApeYdEwYAOWhQMIlz6PnL1SvyNObht5UiegO7HkCkIQWtshKA1NkLQ6ofDEsJXGEU5GiO2sX3/WFZBdGsC+UQMb0kEu9S1j1MhaFNcdWmstapMrFd4rCol374r5P6+TObPVan+pZusfaN3qRC0nWPxaFx1auy0aXzarDKuXuGZ6pSY76zq9p8rgvypWmZEncy8RpWNVpVzDo3GDGsJcDeCts3fT2OI4Oko8W/atkBQDwvZlwnYpRDe4lTlc2JN++eX2I4Eie3Jdi1y5NNRXPXiPYERMHLSCVqAnQfPMHzixzRZHfyh/zut35/z2ToGj53X+vVb05Zw/Gw+xeW1vPDGTB5/ZTJPv/Y+V4oqgdSZ9c8P/4ClWTt5Y9Ji+r06lfN5pQCEI1He+3AFj740kcFj5zH/i42tgrajy+ut0V3QPjVkGn8cOImJs79i467jlFWZicXjei/rtqP3JpEp2B0t+AtziOyf0baFwZ6pBAr2Y5fcuq+xq8lsQavitNfjbTpNoOYbtPK5xIpGdDK4axRqxQKCdZtpaT6Hw9GYAceQ2QhBa2yEoDU2QtD2HM6GMP78KOrhWJu+jq1yYxVEdiYI5kbxVES6vRrNiIK2zq2xV9KY16QyoEbmvg6qJB8wyYysk1nWrHLakZJ1eq+9qxGC9u6p92icdmiss6rMbVR5vVbmkar0rS+u8/0ymX+rlHmhWuadeoWlzSq7bRqFTn1aJtyroG3FrdFSEUE7GCd5U9V/fJ1ogdCjuDXcVWGCuVGi2xLthez6JMrxGC2lkdQwuG970DrS9BpmJUS3JAhcimK3ifuvr9LTOe1ayinXZz1OuqQTtE63jyHj57NszR4AHuk/EcmZ+v8Bb87hpTdnE4lESSaTPPjMWPwBhWeHzeDg8UsAHDh2kX6vTgWgxmzhx78fxsX8MgCO5l7llbc+BGDrvlMMHjuPaCxOQFZ5csi0VkHb0eX11uguaN+c/CkPPTeewWPn8dmq7eReLMYfVPRe1m1H701CV9wKLZVX0I4tIbnhtRstDLaOQj77Dc7Gev3X2I1kiqCV3D7cthL85gPIVcsIl04mUfBy+qrY/JcJX3sP2fQlfvN+3LZiJLdX92PojQhBa2yEoDU2QtB2E+7UKaWBy1FC++NpK5iSWRDeEyd4PobHFEbq4arMvi5oLZ5U39HlFpXRdanT1r+fRpz9qFzmxRqZuY0qu2waNRk0yKs7EYK2eyh1aRySVL6yqEw2ywyskfmPyiA/6KTq9u/KZB4ypVpmTDenehgfs3fvULkuE7Q3YbeH8OdFiWxL0wIhX7RA6GoclhD+/CjagTiJ7GS755fQ3jj+K+klebohYe6qMMrRWNvLWgWhPXG8xZEef44SdC89nRzHHF1Il+uC9t//PIr7+43mV0+8yb/9aSSfrdpONBoDYNr8LI6czsPnl3l13HxmLl5DYWkNtWYr/UfOBiAajZFIJIGU4P3pI8OBlKC9v9/o1usz1Tbx6EsTAXh3zles23G09f+WrN7RKmg7urzeGt0FLUA8nqDUZGbt1hzGvL+UB54aw7PDZvDhkvV6L+2W0XuT0ANnYz3yuXUkto660cJg4xC0Y5/SUnm5zw+Huo4egtbhaKal+QLBui2oFQuIFo/upCp2OFr5HAK13+BtOo3TXo/No+h+u/UVhKA1NkLQGhshaLsGyaXhrk71+AvtiZP8ur2QTaxJEtofJ3A5iqs2rPsU9L4maCtcGputKtMaFJ6qlvmHNNWxPyhLVTpOqFfItmhcMfCAHCFoe5Zmj8Zlp8Z2m8biJpUx9QpPViv85BYtE35ULvNElcyoOpkFTSqbrCoXHKleyfeynu4QtG3+vsxh5FMxEmtFC4SuQnJpeMojyCdjxDa3r5KNbkkgn0rdvreSqekE7c3X4y2OENobb9MLPfl1MtWv1iTuv75ATyeckHUhXb5bQetu8fPrJ9+ivklq/Zk9OedYuGwzJ88V8unK7ew+fJbsLYfZtu8Un67cDqQqY18dN4+Bo+bQf+RsfvKHYUBK0P7+xQmtl3Xz129MWsyenHOt/7dm6+FWQdvR5fXWZISgvZ5wJEphaTWrNx6g36tTxZCwDMIuuQkUHCS6d1rbFgZ738dfcAi73aP7Gnua7hS0kjuIS6rA13iEYNUqQqXTiRcO7qBX7EtESiagmD4jYN6Fx5KP3WW8+6OnEYLW2AhBa2yEoL07JGdqsnkwN0pkZ6LNqb2tp/iuT6IejuG/GsXZkHl7bG8WtI1ujSOSxidNKkNqFX5RmV5u/aJS5rVahU+aVI5ImdcHVE+EoM0c6j0aJ+0aa6wqsxoUhtUq/MGU/kOG6/xVmcyvvm2Z8G69whfNKvskjaLb/NChuwVtK26NlrII2oE4ydU37Y+iBcJt4WwIE7gSTX3wt7rtc0wiO4l2II4vP4rDeme3Y2eC9mbsUojApSjRLYl2z2/i/uvdGDnpWhx8uWY3o6cuaf3aZnczcPRcPl6+hVMXiqhvkhj7/udM+WgVF66W4fEG+MVjI6hrtAEgOTy3JWgnzv6KDTuPtf7f4q+28sHHazq9vN4a3QXtiXMFLF6xlVfe+pCfPTqcx1+ZzKxP1nL45BU83oDey7tl9N4kuhW3TEv5RUJHF5PcMKRVysa3jkY+vw5nk1n/NepIVwlau8uOx5pHoH4nauUnRErGk8zvn1bGxguHECqbQbA6C1/jMVz2KiR3UPfbwogIQWtshKA1NkLQ3h52e4iW0gjyqVjq9N00Qja2MYl6JIavMIrDkvmPqd4kaK84NbItGhPqFR6pktOeLv4P5TJPVcu836Cw2apSIU7H7RQhaHsHJS6NA5LGsmaVSWaF/jUy91emfwzcPNTuYVPqw4kPzKlq8RN2jdqbPqDoMUF7E3YpROBKe9kX2ZHAJ1ogYPNoSA6NlmsRlGMx4hvan4kR2Z4geCaKu/rezsK4XUF7M9erom8eDMdKiGxL4L8S7fJBloLuxchJJ2hlRePBZ8ZyKb+89Xv9Xp3KC2/MxOsPkkwmeXLINJ4cMg0tFKHGbOHBZ8YSiURJJJIsWb2D+x4eSigc6VTQrt9xtLUHbYsvyBODJvPBx2s6vbzeGt0F7R/6v8PU+avZk3OutaFwb4rem0R34DJXIZ9ZQ2LLyBstDDa8hnZsCS2mPGxuVfc1ZgJ3LmgVXFItvsaTBGuyCZXPIl44rIMWBS8SLRmDWvExwfpttFgu4XBadT9mwQ2EoDU2QtAaGyFo0+OwhvCWRFCOx4imOZWUVRDdmkA+EcNbEumVg1QyVdDWuEPssmnMbVR5sUbmXyraD176fpnMgyaZ0XUKyy0qZ/voIK/uRAja3k2TR+OiQ2OLTWVhk8boOoV+VQo/vkXLhB9XyPy5SmGcWWWZM8JWW+pymnp4/a66MPKJWJv+3Mmsb1sgVBrrFHpXXao9Tnhnol2VbHxtqq2AtziC3d51zzN3I2hbuT4Y7lDbqt7kagjti+MtEf1qewNGTjpBCyl5+tzrM1r7wM5YlN1mUNeoKZ/x2tsLWr+eNj+LRwe8y8BRc7iUX87gsfN46c3ZnQpaVQvz9gdf8rvn32bgqDl8tmo70xd+3enl9dboLmh7e/TeJLoKu91F4Opeorsnt2lhENk/A39hDnZHi+5rzDQ6E7SSqwWPtZBAw14U01Ii1yaSyB/QQYuCVwiXTkOuWoG/4RBuWymSx6/78Qk6RwhaYyMErbERgjaFszGEryCKeiRGbH2agV6rILIzQTA3murv1wcqvTJB0DZ7NE47NL5sVhlZJ/OAKb1Uuq9cZkCNzLwmlb2SRp1oVXDPCEHbd6l1pypmsy0aH5gVhtQqPGxKVdZ2JG5/UJaqzH2pRmaSWWF5s8oBSeNaN4s2yaXhLYkQ2te232nrKfRNvX+v/S52KYS3KIqa07ZH73XJGd6VIHghhquu+16b35Ogvfn+c2j4CqKEd7b9IDORnUQ5FktV+mbAbS5oj4hIdydjBe2Xa3bz+CuT9V7GLaP3JnEvSK4g3vJzhHIWwoZXb7Qw2D6G4IUNOJsbdV9jJpMStGGcDjPepjMEatajlX9ErHhkx4O7it9Eq5hHoHYD3qazOB0Nuh+H4O4QgtbYCEFrbIwqaF31Yfx5UbRDceLr0gjZLAjviRM8H8NjCvfJaiA9BG2ZS2OTVWWKOVXFl04Y/U2ZzGNVMhPrFdZaVa72wds+ExCC1nhYPaketXsljeU2jemWEM9Xy/yyIlWV3pG8/b/lQR4xybxeKzO7UWWtVeWkI9U7tyvXZ7eFCFxqf9ZCr2+B4P52iGRulOi29mdkxNcnUY7HaCmNIPXQ4MKuErQ342gOETwfI7ax7XNqbEOS4LkYjj4o23szIiLdnYwVtOfzSsnadFDvZdwyem8Sd4O7rgLlTBaJLSNuamEwFO3E53iq8kULgw6Q3H7ctlL8DYeQq74iXjGNRMGg9FWx+QOJXJuEYvoCf8M+PNYiJLdX92MQdB1C0BobIWiNjSEErVvDXRMmcDFGaF+cRHZ7IZtYkyS0P07gchRX7b319ustdLegNXs0DtlVFjVpDK5R+FkHp17/siIlfj5rVjluv/fp9ILbQwhaY/PdHrRNbo3zDo3NVpUFjSpv1sk8USXzo04GlX2vTOZfK1K9n8fUp4bxbbelekY33+P63DVhlOOxNvt1MgvUnN7RAsFhCeHPj6IdbP+ck8yC0N44/iv6DdnqDkHb5v6rDqMci7U79siOBP6r0S5t1yC4O0REuju6C9oJM5cRlFW9l3HX0XuTuF0cNjvBvD3Edr/7nRYGM/EXHUVyCHnY5vZyWGmxXCRYvxW1YhHR4jEk819MXxVb+Dpa2WwCNWvwNp3Eaa/F5lF0PwZB9yIErbERgtbY9EVBK7k0PKZve/rtiZPMIm3Fkno4hv9qFGeDMfe/rha0Fx0aWRaNcfWpCfTphhj9sDzIs9Uy080K22walS6x9+iFELTG5k6GhFW7QxyVUo/v6WaFQbUKv62U+dtbtEx4wCQzsEZmilnmK4vKIbtK2R1WxEsuDW9xhNCeeLs9PHgmc1ogSC4NT3kE+WSMWJq+5dHNCeRTsVSLnAw4K6C7BW2b++/bFhZt+tWuAu1AnJayCLYMuD2MiIhId0d3QfvUkGlcLTbpvYy7jt6bRGdIrgDe0lzCh+fD+sE3tTAYS/DCJhyWJt3XqDeSO4hLMuFrPEawOotQ2QzihUM6aFHQn8i18SiVnxCo30XYU4Q/IHrzGhUhaI2NELTGpi8IWskRoqU8QvB0lMiO9kNWWAmxjUnUIzF8hVEcFvH3bvPcm6CtdofYadOY1aDwQrXMP5W3H+T1V2UyD5lkxtQprLConHekTrHW+7gFKYSgNTZ3Img7wurRKHBq7LJpLGlSmVCv8HyNzC8qO2+Z8MPyII9WyQyvk/mwSWWdVSXXkaq67+z6HJb0p9BHdibwFUSRHD17GzobwgSuRAntibd73klkJ9EOxPHlR3FY9XnOKXf6OCpZyG42Mducz/DqXP5UcZD7rm3lfxZl49F69rW/XQrhv9K+zUNiTarFg6tWvBfpSUREuju6C9qvNx/iiUFTmLl4DVmbDrJ2a04bMj16bxLpcNeWopxeSWLz8BstDDYOQz35BZ6qQmweY7YwsLvceCz5BOp3oZg+JVLyNomCl9LK2Hjhq4TKZhCsWo2v8RguyYTkDra5vM6GhAn6PkLQGhshaI1NbxS0dimEtySCfCJGdGuizWAZVgKrILo1gXwihrckgt0m/r7TcbuCttmjcdKusbRZZXhdapBQOunykwqZV2oVFjSmhgt1dX9KQdciBK2x6QpB2xmNbo2zDo2NVpV5TSoj6lK9pdN9mHMzP6+UeaZaZny9wqfNKrskjatODct3Lt9dHUY5GiP5dc+1QJCcGi3XIijHYsQ3tG+VE9mWIHgmmhqM1QOtWq65vORIzaxuruQDcz7Dqk/zaMUB/vnaFv57YRb/qWBFpxQE3Lr9/TkbQwRPR9v1gI9tShA8HxMfpPYAIiLdHd0F7QtvzGTg6LkdkunRe5O4jsMqEbyyg9jOd9q2MDgwG1/JcSSnkVoYKDjtdXibThGoWYtWPodY0esdVMW+SLR4DGrFIoL1W2mxXMThsNzW9QhBa2yEoDU2QtAam94gaB2W1MRr5Vj6U0eTq1IVVMHcaOr00d46SKaH6UjQFjo11ltVJpkVnqiS+bs0EuVvy1L9KSeZFdZbVQp7aLCNoOsQgtbYdLeg7YwKt8Zhu8pKi8ZUs8IrtQoPmlIDAjsSt39TJvOgKfUh0LQGhZUWjRy7hsmh4SuMEt7dPS0QXHXftsvZ2f7sjPjaJGpODG9xBLvU9c87xc4WDtqaWNFUwfT6PIZUn+L35fv4x2ub+K+3IWD/W2EW/3RtM49U7Gdo9Slm1F9lVXMFh23N1PgDPdLi4Ja4NTwVEdScWLt2ROFdcXyF0R4bnGY0RES6O7oL2t4ePTcIyeXHV3KK8KG5baRsfMd4ghe34LDcnmjszUhuL25bEX7zPmTTF4SvvUci/+X0g7sKBhEunYJctRx/w0HctlIkt/+ur1sIWmMjBK2xEYLW2GSioHU2hPHnR1EPx4ivb1+llMyC8J44wfMxPKZwRvTz641ILRpqAg5KqaFAr9Qq/KSDQV73V6ZOR17arHLCfu8DgAT6IwStsdFT0HaExZOqlt0laXzarDK+XuGZ6lRVbWdVt/9cEeSxKpkp5QpnT0aRv1OVGb6DFgh2KfWBoJoTI7H2O8O9VqcuK3ghhqvu3l43p9pDuNlna2R5UzlT668wqOoEv6vYyz+UbOK/FKy6pYD9H4VZ/OjaVh6rOMDw6lxmma/ydZOJI5KFMpev0+vvqR60d4LkTC/bk1mgHUr17zXCAM+eQkSku5MRgrbJ6mT52j1Mm58FQCKR7DV9aXt+Y1Dx1BSjnlpOctPrN1oYbHod9dQyPNXF9NUWBg5HIy3N5wjUbkSrmE+saFQHVbEvECseiVb+EYGa9Xibz+B0mLv8dhGC1tgIQWtshKA1NroLWreGqz6M/0oU7UC83Rvi6/3pQvvjBC5HUz3qxBu0u8LqSU1pX2nRGFOn8LuqVJ/Y78qOfyoP8kK1zMwGhZ22VL9Zvdcu6HqEoDU2mShoO8Ps0Tjt0FhnVZnbmGq38khVqp9tOmn7wgWNHbuiaKtvPKdEs6DxYIzq8siNftjuVLuEYG6UyLb2Z2jE1ydRjsVoKY3cUSWnxaOS53Cxx2bmi8Yy3qu/zMum4/ymfA9/W7KRvyi8tYD9X0XZ/PjaVp6oPMSI6jPMbShgTXMVx+1WKl13X5hj82SmoL0ZhyVE8EKM2Ka290n8myTyqRhOs3jfcq+IiHR3dBe0F/PL+Nkf32Dke59w38NDAbDZ3dzfbzT7j13Qd3G3kZ7bcC0EL24hvmN8m2rZ8KG5+EpOIt3jE04mIXkCuG3l+BtzkKtXEC6dRqJgUPqq2PwBRK5NRDEtJWDeg8daiOTqmcFdQtAaGyFojY0QtMampwWt5Pr2zfD5WGqwytfthWx8fRL1cAz/1SjOBrE33S0mV4htNo0ZZoVnq9OLjB+UyfzeJDOuXmG1ReNiDw/ZEeiHELTGprcJ2s4odWkcsqt8ZVGZYpYZWCPzgCm1v/2wRGHiyTBXNretyrSuTZC/NU5odfsq2dCeOIFL0U4lYLNH5bLDyU6rmSVNpUysvchLVcf4j7I9/HXJBv6iYOUtBez/LlrDT0u306/yMKNqzvJRQyHrLNWcstuo+868kK4m0wXtzbhrwsgnYiSy295X0a0JApdios/8XSIi0t3RXdA+NWQapy8WAbQKWoC8IhPPDJuu06puP925AUhOL76S40QOzG4jZWM7JhC8vB2Hxar7JnWvOJw2WiyXCdZtR61cTLRkLMn8/h0M7hpKqHwWwZpsfI0ncUk12DyKbmsXgtbYCEFrbISgNTbdLWglp4anMkLwbJTwrvaTrlkJsY1J1CMxfIVRMRjkLmlyaxy3a3zWrPJ6rcwvO2hV8LMKmUG1CouaNA47VLRE5swgEPQsQtAam74kaDui2aNxxamx3aaxuEllVrnGtpwI9jVtRV/l+gRf7Y8w8HyI75XJ/Khc5vGqIK/UehlZa2d0XR2v1xTwnOkY95ft4vvF6/nPt5Cv/6lgBX9ZtJafl+7g6cocxtScZUFDERstNeTa7Zg9sq63TW8StDfTUhpBOxhv9zoivCeOrygqWh7dAUZPrdnKm5M/5bfPjuPBZ8YycNQcLuWX672sNrm/32jsrha9l3HX0V3Q/vyxEcTjCaCtoI3G4vzisRE6rer20/UPfBVPVSHqyS9Ibhz2nRYGK3DXlOi+Md0VbhmXvRpf4wmC1dmEymcSLxzaQYuC/kRLxqFWfkKgficeax4Op13/Y/gOQtAaGyFojY0QtMamqwWt3R6ipTSCfCqWOl10FW3fSK1KVb3IJ2J4SyKi8uUuyXdprLWqTKxXeKwq/XCdvy+T6VelMMUss9GqUvadN64dDQkTGAMhaI2NEQRtZ1gqQly6oPBRlYPnq5u4v6KZH5ZJfL/M12Gv2/9TFuQvr0n8fyVV/M/iq/yfa+f4Sflp/lx5mnG15/m4oZjN1jrO2R00uvUrvLkdequgvY7dHsKfFyWyvW0LhGQWqDkxPJXife2tMHr+PHgKW/aeJJFIkkwmOZqbxy8fH4k/oOi9tNYIQXuPeWLQZEy1TUBbQXv6YhF/HDhJlzUtX7uHh54b3/p1s83J0AkL+Y8n3+KFN2ZSWFrT+n9d9WB3WJoIXthEfPvYm6plBxM+/BG+a7lIroDuG9LtYne14LEWEDDvRjEtIVLyDomCAR1UxQ4mVDqdYNUqfI1HcEkVSN18ekpXIQStsRGC1tgIQWts7lXQOqwhvCURlOMxopvb9+9LroLIzgTB3CieigiSQ/yt3Sl1bo19ksa8JpWBNTL3laeXBw+YZEbUyXzZrHLKcetBXkLQGhshaI1NXxe0Zo9Mrl1io6WGBQ1FjKk5y9OVOfy8dAd/WbS208rX/1z4Df9v0R6+f+0c/1hWxo/Km/jHcjffL0vf7/b6B2IPm2SG1Cp8YFbItmicsGvUZmjP9N4uaG/G0RwimBttN1Q0vi5JMDeKs1G87kiHkRONxbnv4aG4W/xtvm9ukloLLnMvFvPssBn86eX3GD7xY1p8QQDW7zjK9IVfM+WjVbz29gL6j5yNze4GoL5JYuiEhTwxaApPD51OaWV962V/vfkQjw54lxfemMn2A7k8OuBdIDWz6sMl6/nTy+/x6EsTeX9BFrF4HBCC9p6z42AuDz03ni+yd3Hfw0PZsPMYMxZl8/PHRrB5z8keX09Ds51+r05tI2hfe3sB63YcJR5PcO5KKQ+/MIFoLPUHcC8PcMnhxV90hMiBD9q2MNg1kWDeLhxWSfdNqHNUnPZ6vM25BGq+QSufS6xoRIeDu6LFo1ErFhCs20JL8wUcjuYMOIa7RwhaYyMErbERgtbY3KmgdTaG8BVEUY/EiK1v3z82mZU61TB4PobHFBanG94hFo/GWYfGVxaV0XUKvzHJfD+NDPiXiiAv1sjMaVTZZdOouYtBXkLQGhshaI1Nbxe0de4gJ+021lmq+aihkFE1Z+lXeZiflm7nfxetuWX7gb8oWMlfl2zgP8r28FLVMd6tvciSplJ2Ws1cdjppTjOQucmT6tO9xaayqEljdJ3Cn6sUftxBS5nr/LgidTbD6DqFhU2p37/oSF2eXrdfXxK0N+MxRVBzYu3620e3JfBfiWKXxOvd6/R4NgLrdaCDvDVtCf1Hzubg8Uu4PL42/+dweXngqTFU1TUD8M22I4yb8QUAm3af4MFnxrbK3Y+WbmBp1k6SyWRKvu4/DUDH0CfwAAAgAElEQVSpyczvnn+baCxOrdnK/f1G4/L4iESijHzvEx5/ZTIAx8/m8/TQ6UQiUcKRKE8Pnc7hk1cAIWi7JIdOXub1dxbx6IB3eXLINN6atoRzV67pspZh7ywk59SVVkHr8Qb41ROjWo08wIsjZpFXZALu4gW6W6XFdBXt+FKSG4a2StnE5uEop1fhri3TfeNJh+T24baV4G84gFy1nHDpZBIFL6cf3FXwMuHSychVy/CbD+C2lSC5fbofQ1djdEEr1TTimTUez7zJuD/+APfSj3AvX4zz6y9wbcjCtXU9zt3bcB7ci/NYDo7Tp3BcuIjjagH2knLslTXYa5uQmpxI9t435E4IWmMjBK2xuZWgddWH8edF0Q7Fia9rL2QTa5KE9scJXI7iqg1jy9BqoUylwqWx2aryfoPCU9Uy/7eDQV6PVMlMqE9VZV25g0ninWF0QVteFyKvJERlvTH3PyFojU2mC9pKl59jkpU1zVXMbShgRPUZnqg8xI+vbeV/FWXfUsD+P4Wr+NuSjfymfA8vm44zuf4yXzSWscdm5qrDjSWNgL0Xat2pitlsi8YHZoXXahUeNqUqazsStz8ok7m/UqZ/jcwks8KyZpUDkkZJD3yw2VcF7XUkl4a3KEp4T7xNq6Xkagjti+O9FjH8B8g9npU60UHCkSgbdx1nyPj5/OyPb/D88A84mnsVgO0Hcnlj0uLWn1W1ED99ZDjRWJxNu08wbvrnrf+3Yecxps3PoqHZzi9uankK8NKbs7lSVMnWfadaBS+kpOx1QXt9Ldcz65O1rN54ABCCtk9l75HzTJ2/Gq8/2CpoC0treHbYjDY/9+6cr9h+IBe4/RfoziYz8vl1xLe9daNadsNgwofn4y09g+TOnBYGDkczLc0XCNZtQa1cSLR4dIdVsbGiEWjlcwnUfIO36TROez22Ln7yzlSMLmjtxaX4XvpN1zHgt3gHP4r39X54Rz1Py/iXaZk0jJZpo26I4MUf4Fr6Ea6vPsGZ/SWuDV/fEMGH9uE8dgRH7mkcFy/huFp4QwTXNSM1uZAcXSeChaA1NkLQGps2gtat4aoNE7gcJbQ/TmJNeyEbX5dEOxTHnxfFVS/2jTuh0a1xRNL4pEnltVqFX1Smf9P+i8rUabKLm1Ry7Knf6471GEHQllSFyb0cZtfhMKs3hln4RZjJcyK88Xa0HZNmRZi/NMzyNWE274lw+FSYS8UhKvqowBWC1tjoLWjLXD5yJAtfN5mYZb7K8OpcHqs4wL9c28L/KMy6pYD9LwWr+IeSTfyuYi+Dqk4wzZzH8qZy9tkaKXR6sGbAbXydIqfGXknji+ZU3/AXqlODHP+qE3n7D+UyfzDJDKtVmNWgsMaqctKuUd9Fa+rrgvZm7LYQgUvt2zC5q4z9GqbHo+rEbSQUjnDw+CV++fhIrlXUkb3lML98fCSPDni3lV8/+RYuj49Nu08w5aNVrb97/evSynp+8odhbX7nwWfGcjQ3j9UbD/DBx2taf+daRV2roPUHFWYsyqb/yNkMHD2Xh54bz8r1+wEhaO854UiU5Wv38MIbM/nts+P43fNv89Kbs1m98UBrG4GeiM8v8+fBU/B4A20E7cX8MgaOmtPmZ2csymb9jqMABNRohwT9PkKlR4gfmN6mhUFizyTCRfsIels6/f1uR9FQWqoI2Y4RrltNtGIGicJX08vYggHESicSrvmcsGUfqruYoOzXd/06E4kl0MIx3dehF0Gvn8CViwTOncZ/KodAzl78+7bh37EO/8ZV+LI/x79iMb4vPsS3eAb+eZPwzRqLb9pIfBOH4Bv7Et43n8E39ImuFb23gffVP+Ib3g/fWy/ge/sVfJNfxzfjLXxzJ+BbNBX/Z7PxLZuPf/Wn+NYtx79lDYHdm/Af2kng2EECZ44TunoepTCPwLUSAlUmAg0NBK12Au6eeVz71ShBLSbQiUQSlJD+6xDogBwDG0SuJIjtS5L8mvYVspuTRE8kCJUnUFxx/dfcxQS6cf8pD8TY5IrwXpPGYzUKf53uTXiFzLN1KrMsIXa7IzQqPbcfyloMQPf74F7w+GJU1sY4fyXG3pwYWRuiLPg8yrsfpJew98Lk2REWfh5l1booOw/GOHUhRnFFjCZb73xcKKHU/q/3OoyMX4no9tpXDcWIxRPddvm1wSCnPFbWOar4sLmAEXW5/KnqAP9SuoX/VnRrAftfi7L459LN/NG0n+H1ucxtLmCtvYqTHis1gYDu7x26Ao8SpdAfYbcrzKe2EGMbVZ6sUbivQum0ZcJPK2WeqVWZ0KjxhRRmvzvCtUAU7x1ctxaOEYl13/2fqSiWGOEzceI7krqvRW+MHMnh4fTFonbfH/neJ2zbd4oDxy62qZK9OR0JWrurhV8/+VaHv/POrGWtX588V9gqaOd9voEZi7Jbz3KfsShbCNquyqS5K3hm2HSyNh1k39EL7Mk5x7I1e3j0pYlMnb+6x9YxfeHX7Dx4BqCNoC0qq+HpodPb/OzE2ctbfzaoRtuihNDqrhI78RlsHNIqZZNbRhI5l41qqWr/Oz2AHHSjuQoIN+8mUv0Z8Wtvk8zvn75FQdEwopWzCNevISSdQvXWEVRCuqw7k4nGEoQicd3X0WeQw8heP0G7i2BjM8HaGoIVZQSKCwheuUjg3CkCJ3MIHt5DYN9WAt+KYH/25/hWfIz/8w/xfTwd37x38c1sK4J9I5/B99rj+F55uOdE8IDfphXB/umj8c2dgP+6CF6+oFUEB74VwYFvRXDwzHECl84RLMgjeK2EYJWJ4Lci2O9uIRhQ9b/fDEoikUwJ2gxYi6B7kQNRtNo44Qtx4ruTsJq2QnYVxLcnieTGCZniyC36r7m7Cahd87dvV6Ic8URYZA3xcn36N9jfL5N5qEphXKNKtiNEvi+S+oBKL7QoyWSa138ZhuSKUloZ5fSFKDsPxFixNsqHn0Z5e1rnQnXkO1GmzI6weFmEtZujHDgW41J+jBpzlBZ/2+vwBqPUNcXIL4lxLDfKlj0RlmenrmfijFvL3pHvRHlvdoSFS78VuAdinDofpag8SqM1hl/W/3b8LkooRiKR1H0dRkbPx78ajhGL3939H1CjVAf8nPBYWGs3Mac5n9frTvOoaT//eG0z/7Vw9S0F7H8vzOK+0q08XnWQkXW5zLMUssFRzZkWG+ZgQPf7Rm8kJcq5lggbnGHmWDSG1qs8XKXw9x0Mifxemcxfl8k8aJIZXK8wozn1PHOqJYw52P7yQ5E40VhC9+MU6IeRY26S+Pc/j+LYmXzi8QTJZJK8IhMPPDUGU20T7hY/v312HA3NdiDVT3be5xuAjgUtpNqHHjp5GYAWX5D3PlyBooYoraznwWfG4vUHiUZjjJryWaugnTBzGd9sOwJAXYOVRwe8y2ertgNC0N5z/uPJt1C1ULvvN1md/PyxET22jgeeHsNDz43noefG89tnx/Hj3w/joefG02ix829/GokWirT+7BODJlNUVgPcOMXN2ViPfPYbEltHtWlhEMpZ+P+z957hUZxpovbOzp6z+51v93x7wu45k2d2wu54PMHrsT2eWZtxGnA2M7YxTmBysMk555wzQkSJIAEiCQQiSwgQyqG71ZJa6pwlQNWVWuH+fhRoEUESGKkldT3XdV8XtKTqt6qr3+6663mfh+riNNz+mnZKvQ/hd5dRbTtLTWkscvEM6nL6PqBEwfuE84cjGpdQU55AleMKXp8r4ksHOgvRXuKg0+IP4XZW4a504zZX4Cky4cnJx3vlKr60i/hOp+I7fgz/4QP498fjj9+Gf+t6/JtW4F+zkMCymQQWTObm/LFUTxtOcHx/giM/oWro+1T1f5vqz/9Ede92FMG9XqD601e10hBD/kzViN5Ujf2C4OQhBGaOJDB/AoEl0/Gvmod/wzL8sWvxx23Bn7ALf1IivmNH8KWm4L1wHm/GFbxZOXgKDXhM5XjKHbjtftzejlOCpaOglzjounjcMtX5KsLpWsJ765vUYbtdi40kEM6FqSpScXv186A1OIIS57wSa+0iA8sFnjfd/2L558UCH5YKzLWJHHJ3vG7eHaXEgTMgYbTIXMpWOHZaYXuCzPINCtPmqwwd17wcHTwmzKS5KkvWKcTuUTiUonAxU6GoTMbxGOsLOnwShaUyadcUjqYq7EiQWR2jMGuJysgpLQvcASPDjJ2uMmeZytqtCnEHZJLPKlzKViguf7xjbS16iYPoprkSB86gRJY3QJKrkrW2YiZYrtK75DQvFB/ih/lx/JecTS0K2H/I3cITBXv5k+EY/cznmVWRRazdxEm3A4O/8/Vr6Cg4gxLZPomDLokVNpFRlhA9SwX+3Xj/hpK3+UlxDS+XCHxRJjDbKrLHK5NVU/vYSibodD6iPS5nFfPJ8Hk8/9Ywfv/OcHoNnsWZtJzGn1+4nM+7fafS4+PxvD9wJjmFZqB5QVtp99Bn5EK69x7PG59ObGwYBrBk/V5een8UHw2dw55DZ+jxsSZoc4tK6d57PO/0ncKUhVtIvZjFb3sM5kxaji5ov27cnZ16O0RJ5pUPRrfzaLS4M4MWoN/oxWzceYS6unqOnb7Ma73GNhYyvpGdTPjQxCYlDMJJ47h57RBel6dNJwh3oJqgM4eblYcImVahFoymPuvDBzTu+hilcBKCeSM3rCcIuIpxB3Xp8nXQBW1002INWr/wWERwYPZoglOHdRwR3O9Nqof8heCIjwmOu1METySwdDr+1fPxb1h+rwhOPoLv9El8Fy7gvXyXCLY4cDsCuL3tdSPr66ML2q6D1yFTnRsmdKqW2rtqrbERGmJASaqjJr2WoEnB7W+5SZiORJFfIt4pMrFC4PWS0H2bvnyvWODVEoFRFq1W4LXH1MirLWlPQXtbcF64qpB0QmFLvMLitQqT5igMGtW83Bw2QWX6QpUVm1R2JMgcO6NwOVfGVCnj7CDS2+6XKLolcI+dVtiZKLMqRmH2EpXRU1UGjGxZ4I65JXDXxCrE7df2Mz2r7QSuLmijF3tQJK8qSOp1J6usRYy1XKGXKZXfFx/k+3m7+JtWCNh/zI3ll4X76GFMZqD5AnMrc9hmL+G0x0WJX78uiwTWgESaVyLOKTLPKjKgXOC1EoF/NdzbfPJOfm0QeMcs8KUlxDK7yH6XxDWfdjMy0vuk03bo0b5RX9/Q+O/MXBMfDJoZucG0U0Rc0MYfTGX5pgSu3xAaH/P6q5m+ZCuHUtIjMqa7Ba3TE+DzEQt47s2hvD9wJsUllf/5y7fryu7uT+j8ZvwWYxtMBiI+bwXVtgvcLN2JZJhHbd6gZhp3DUYyzKemfDdV9jS8XmvEJ7OuiC5oo5sO0yTstgiucOE2W/AWmvBm5+G9cuUuEbwff2I8/vit+Leuu0sETyIwaxTBKcMIju9HcOTHjSK46vPXqP7oxXYUwS9S/dmrVPV/q6kInjKUwMxRBBZMJLBsRlMRHB+LPyEO/6FEfMePNhXB2bl4C4x4Six4Kpy4HUFcPuFrH3dd0HZefJUKN7LCiMdrqdt5b0Ov+q0NyEfquHkljL9MwXUfmaUL2qZUBiWSPSKLbBKflIb4teH+F7RPG7TmLcvsIqfasJFXW/K4Ba3VK5FrlDlzSSHxmMrGHQrzVyqMndGyoBwxWWX2Ek1O7j6kknJB4VqBTJm9a8xNdr9EUZlMepbC0dMKuxJlVm9RmL1UZfS01gnc0dNU5ixVWb1F+/ujpzWBW1QmY38EgasL2q6LLRDistdHgtPCcmsho8ou8X7JSZ4rOsh38nfyzeyNLQrY/5W7lV8XJvCm8ThDSi8yvzKXnY5SzrndWAKd5ya0joYhIHHCI7HRITGpMsRnFpEXzCG+34y4/V6xVjKhd1mIiRUhNjhEjntEijvh553OvejRflF1vYbf9hhEWYWThoYGpi3eyvzVcZEeVptHxAXtq73G8quX+/FEtz488/pgnnptAE9068NvXhvA798ZzvNvD2ukI0bNpXiqi9If25veHbxBwFXIjcpkhJL1KIUTqc/++P5ZsVkfoRSMQzCt5kbFEQKuPNyB6ohPXNGCLmijmw4jaNsLv4DbEcRT4cRTcpcIvngRX+opfMeP4j+U2FQEb1yOf/UCAstmaHJ15l0ieMj7moz97FWu94qMCK4a8j7BkR9rY5oy7C4RvEDbh63rtH1KjMd/KBH5fAqBs6n4Ll7Ee+WKdiwKTU1FsP/ri2Cdr4/fonDjahjpaB312+4VsnU7GpCS67iRGcZvad17OtoF7WWfRIxD4itLiJdMAt99wNLQd8wCUypC7HVJGP1dQxo+iqAtd8hcK5BJuSCz55C2XH/2UpURk5tf5j9gZJixM1Tmr1TYsEMh4ajKmXSFXKOM1RP5YxFpHH6J4nJN4B47o7Brv8yaWIU5y1TGTG+lwJ2qSe5VMVoG77HTCmnXFIpK7y9wdUHbebEFQqR7PexxlLPUms9Xpen0NKXwTOEB/m/eDv66Bfn6jewN/HPeNp41HuAdYwrDytJYVJlHvKOMCx4PlUH9M7+rc11QEZU6HEGJa36JA26J5XaRrywh3jUL/Mb4YHH7rSKBnxXX8GqJQP9ygXk2kV0ukYte7SZnpPdNp3Xo0b6RcOQcr/YayysfjGb45FVU36iJ9JDaPCIuaE+ev8aZtJxW0RHj67zBvV4nVY7L1Fj2IhoWEc4bRkPWXx6QFdsPqXgWN0u3UW07h89jwRUMRXySimZ0QRvdRJ2gbS98d4ngAqOWBXv5Cr4LF7Ts2NsiOCFOy56NXatl066ef5cIHqpl3474mOohf4mICK7+6EWqPn9Ny0YeepcInjVKy15eNhP/moVaVvOdIvjwfnzHj2lZ0GlNRbDbbNGypp1Vugi+A7dfIlCqcDOjFvlwHfWx9wrZ2rgGxJRarueE8T5ipmE0CVpzQOaAW2JGZYieZu0C8+6Lzu8UCbxgEhharmULpXu1mn+RHnubnGP3EbTOgERJpczlXJljZzXRt3KTVmJg2ITmJeygUWEmzlZYtEYhJk7hYIrChasKhWYZRyco+dCRuS1wL2UrHDurlUBYu1UTuGNbIXD7jwgzcorKrCUqq2O0GrrJZ1QKjQ3669MBqQwKXPB42O0sY1FlHsPK0njXmMK/F+3nn3K38Y0WBOxfZ2/g/+bt4JnCA/Q0pfBVaTpLrfnscZST7vVgDYSarUGr0/W5LWib+52KoMR5r8QOp8gcm0i/coFXSrSbls3J26eMAu+VCoy0hFhuFzngksjyd93P0s6KHnq0dURc0N6OcLgWh9sf6WE8dLTmjewO1OB3m7huPUWNOQa5aCp1OZ89oFbsB6j5IwmZlnPTcoCgIwuPPxDxyUjnXnRBG93ogrZz4/bW4HYE8FgcWh3cQgPerJymIjj5CP6kRK2ObtyWJiJYWD2LqgUTCcwcSXDykCYiuLrfm1R/+irXe72gi+C2fh39EkGjSs3FMMqBOq2B151CdhOE99YjnK6lOl/F43o8WZxdVdDagxJnPBKr7NpF5XMPyAb6hUHgo9IQ860iR9xSVDRMuS370q4pnEuvJ3aPwtL1CpPmqQwe07zkGzo2zNT5Kss2KmzfJ3M0VVtmb7B0nHqw0YjDL1FskcnIVkg+qxCfpGU3z12uMnaGysAW6vzeFrgzl6is2qyyI1HmSKrChUyFArOCXRe4jxVLoIZzbje7HKXMr8xlSOlF3jKe4NeFCfyv3K0tlh/4ZvZGvpO/k+eKDvIX00lGlV1iubWQBKeFy14ftkDLiS+6oI1uWiNom6PIr5UDWu8QmVChfY4+/4BVKLf5QZHAH0wCH5eFmFwZYrNDIsWt3TyN9PGIRvTQo60j4oJWklWmLNzSWOYAtHoTfUctJFB1I7KDa0Xc/ab1+AMEHVnctBwgZFqOmj+S+uwP7itj63I+Qy6aSo05huvWU/g9Jbj1+kSdBl3QRje6oI1uWluD1u29idvux1N+lwjOuIL3wnl8qSn4jt1PBC/Dv2oegSXTCcyf0CiCq8Z+QdWI3lQP+TPVX7zR/iK4dzeqP//THSL4E62B3dRhBGaP1hrbNRHB67UGePvj8R8+cJcIvoonJx9PkQm3uUJrqOeswuV/8EWyxyNTVaxScy6Mmlh/j5Bt2AxqYj0158JUFam4vW1zAdNVBG2OT2KnU2RcRYgeJQI/fMDFYfcSgTGWEDucItldWDrZfRJ5JpmzGQoHkhU271JYuEphXCtk3VcTVWYu1pbKx+2XOXFO4Uq+jNmmX0R3VpwBCUO5TEaOzPGzCruTVNZvV1m8Jsy46a0TuCMma+fFys0q2xNkDp9SuJipkF+iC9y7KQvUcNrjYrvdzNzKHAaaL/C6MZlfFu7jH3NjWxSwf5O9ke/n7eL3xQf5sOQUYy1XWGUt4oCzkqs+P/ag+LXHqAva6ObrCtoHYQ9KXPVJJLgkltpEhllCvGUW+OUD6rnf5ufF2ufzoHKB+VaR3U5tBYtNv/HXZuihR1tHxAXt1EWxDBq/jHxDeaOgFSWFifM3M3b2hsgOrhVRbb/AzdKtSMWzqM394oGNu8J5wxANi6ix7KXKcQWv1xHxCUbn66EL2uhGF7TRTUdrEtZVRfD1IZ8hTF6BPD+V2lUO2NC0ZEHDBhV1ow1xyzWu7zxBYP9eTQSfSMZ3JhVvWhqeq5l4cu8Swa5gsyK4JTqjoLUEJY65RRZYRXqXhXjyARd+zxgF+pULrLCJnPZI2DrA2B/rcXDJZBXJnEqT2XdYZf2tJe+jpjZfiqD/CK1e6bzlKtt217HvsEpqmratCnfHmQt02pY7a9A6AxIGi0xGribkdx/Szqd5K5TWZ+BOVpmxWGXFJpXt+2QOndRKXHRFgWvw3+Ck28FWewmzKrLoZz5Pd+MxnijYyz/kbmlRwP6XnE38MD+OF4oP0bsklQmWq6y1FZPkqiTLG8DxGARsS+iCNrppK0HbHJagxBmvxDanyEyryBdlAi+bBH7cTMmEb99qytnTLDDKEmKVXSTJpd2U1UsmfD300KOtI+KC9tk3hjQW+70taAFuCiL/8e6XERpV6+PeEgUfoRROQihZz43KZALOAtzBGxGfTHQeP7qgjW50QRvddDRB2140FcFleAqK8V7LwZtxuYkI9iUl4N+3E/+uLfhi1+Bfv7SJCA7OGEHVpMFUje1L1VcfNYrgGwM+RRwxD2X6UeqW2++pH9uw5gbhOReRx6yhpn9/rn/49aRx9Ud/pLpPd6oGvkPVsA+oGvkpwQkDCE4bRnD2GAILpxBYMYvA2kX4N63Ev20D/t3bUI4n4j9yEG9KMt4zp+8SwSW4zZW4rR7cripcgbaXBnfjDEpc8mqdp4dZQrxo0urE3n0R99PiGnqWCkyvDJHo6jpLJs02mSt5WtZj3H6Z1TEKMxarfDmxeQk7cFSY8TNVFq5S2BynZdGeu6yQZ5IbZdmjNAnT6To8TJMwZ0DCaJG5nKcJ3D2HVNZvU5i/8lZW9uhWZOBOUpm+SGXFRoVte2UO3apRfOc52VEo9Fdzwm0nxm5kekUWfc3neNVwlH8t2MPf58S0KGD/NnszP86P54/Fh/mk5AyTLZmstxVzxG0l1xfsEGJJF7TRTSQEbXMU+LUbr+vsImMrQnxQKvCssfmSCT8qEnjRJPBpaYipFSFiHRKpHonSLvL539booUdbR8QF7fNvDUNRw0BTQVt1vYanuw+M0KhaHyHTSm6W7qTKno7PWxHxSUOn/dAFbXSjC9roJloF7ePGb1G4kRlGSq6jbse9Db3qttUhHazh5ik3wYtGTQSfP4fvVAq+5MP4Du7Dv/cuEbxyLoEl0wjOG09wxldNRfDgnlpG8CevcP3D/2jHjOCX7hDBH1I16jOCEwcQnDac4JyxTUXw5pX4t28gsHs7vgN77hLB6Xgyr+HJLcBTbMZdasVt9VDirCbBKTK1IsR7pfdvRvLdIoFuJoHhlhCbHBIZnbiR1+2l5+lZCkdSNXG1bIPClHkqQ8c2L7yGjAkzaZ7K0vUKW/coHDqpkHZNobhcxuFv+bl1QRvdPIygbQlnQMJUqd1MSDmvsOewyvrtmsAdP7N1AveriVozuuUbtPdBUorC+SsKeUYZq/fx7nu+r4pjLhsb7QamWq7xmfksLxUf4acF8fw/rRCw/y0nhp8V7OZlwxE+N59lquUam+wGkl028v3VEX9tW4MuaKObjiZoH4QtqH3G73VJLLJJDC0P8XpJiF+0UDLhiWKBN0pCDCkPsdAmsdspkuHteitpvg566NHWEXFB++WUVSxYE4+sqI2C1u0NMmzySoZMXBHZwbUiIj1J6EQOXdBGN7qgjW50QfsIBCT8ZQo3r4SRj9RRv/VeIVsb14CYUsv1nDBee9sfX7fnBm6bD0+5HY+xFE9+Md5r2XgvZeA9dxbfqRN3ieAYfFtWI8auIHCXCA5OGkzVmD5UfdmLqsE9qe77uiaCH7Ps9ffqRtqo/qxduoQBe47ybJr5vhdav75i59Nj6SzdtYdTq5fhmj/xa4vg9swItvskCsyabDp4QiEmTmHRGoUJs1oWV8MnaNJq5SaVnYkyx84qZOTKlFR+/XNKF7TRzeMUtC3hDEiUVMpcyZdJuaCw95bAXbBKex8MakUJhS9vCdxlG7UbEkkntKzw3LsErjMokeMLcthlZZ3NwKSKTD4uOU03wyH+JT+ev83e3KKA/fucGP6tYA+vGY7yhfkcMyquscVm4oTbQZH/esRfu8eBLmijm84iaJujPCBx2iMR65CYXhni87IQ3UxaZu2DxO13bpU/+kupVo9+jV1rEJrXipuaXQ099GjriLigdfuqeOuzSY1Nwp57cyhPdOtDryGzcXkCkR5eixHpSUIncuiCNrrRBW10owvalnH7JYImhZr0WpSkOhpiaCpkN0F4bz3C6Vqq81U8rs5zPB+2Bm2jCC6z4TGY8eQX4b2W1VQEHzuE78BeTQTv3Iw/ZhWBdVtPIaYAACAASURBVEso2LSGXXG7GX/oNN0vGPh+/vV7lyzmBnkr+QqTY7aTOGMipv7vtX1GcN/uVA18l6rhvagafVdG8KIpBJbPJrBuMf6YVU1EsO9oEr6UZLxnz+C8cAlDShYZB4s4HlfGjg12li/2MWnqTQaObL4cwcgpKrOXqqzdqi0dT7kgc61QptzRtueRLmijm/YUtK3BbJW5mieTckGrqbxhh9bYbsJshUF33MjoN1Kl1+TrvDnfRrdVRp6OzeRne8/w3eOH+B9pcXwza1OLAva/527hFwV76WFMpr/5PLMrs9lqL+GU24nRHx3l3HRBG910BUHbHLk+icNuidV2kTGWEH82C/zWeP8SSbf5l2KBl0wCfcpCzKgMEeuUOOPRRHCk96ctiOaovlHDE936IEpyk8eTTqTRb/TidhnDzsSTTFu8tV2eK1IRcUELUFdXT3aBmaQTaZw4e5XikspID6nVEelJQidy6II2utEFbXSjC9p7cfskggaVmvNh1P31NGyiaf3YzaAm1lNzLkxVkYrb23mPX1s1CSsPaBdH82wivUqFBy5H/J2xhgHlAqvtIme9WgdoV/DrieDAyrkEFk8jOHeclhE8cRBVoz9vmhH88cvtVhbi+gd/wP/hS3h698D12bs4+/fCNexzPKMHEpj2JcG54wgsmkpgxZw7RPBG/Ht24DuwVxPBJ4/jPXsGb/olvJnX8OQV4jGU4im14rZ6cburHzojWBe00U1HE7S3sQdFrvh87HdWsNJWyJiyDD4oOcWzBUl8K3sX38za2HIN2Etb+d+nEvnhwRM8uSuN5zfk8+bqMgat8bBwY4gt8Vo2+5kMhRyDTKUn8vvd3uiCNrrp6oL2QdgCWl37eKfIApvI4HKB10tC/Ly4+ZIJTxoE3jCHGFYeYrFNZJ9L4rLvP7+zdEaiOXRB2z7RYQRtZq6JpBNpjY8Joc7xBoj0JKETOXRBG93ogja60QWthMctU1WoIpytRd1XD3cL2RhQkuqoSa8laFJwd6GlcI9D0DqDEmleifUOkSHlIf5g0jov332B86+GGv5sFphpFTng7hiNvNzuaq3kQakVd5GZ8vRC8g9nk74jg5Mrz3Jk1gkSxh4mbvA+dvfbScIXm0nqu4bkPktI/Xwu5z+bSsan47j26VcUfT6Q8i8+x963F54+7xL8rDvVvV9qVxF834zgCQMJTv/yvhnBYUN+xF8DncgQKUFrC4TI8HrZ57CwzFrAyLJL/Nl0kueKDvLtvJ18M7tlAfu/c7fxm8JE3jaeYGjpRRZU5hJTVsbeAg/H0kIkHFHZtFNh4WqFSXMUhoxpuYTCsAkqU27VdN4Sr3DguMKZSwrZBhmLM/Jz1eNGF7TRTbQK2uYwB2ROeSRiHBJTKkJ8UhriBZPAD5sRt98tEnjOKPBhqcC4ihDrHCLJbpHCTvA9MZqjNYJWUcNMmLuJV3uNpc/IhazdmsTkBTEA5BWX8ef+0+neezxvfz6Zq7lGAExlNnr2m8bKmP30H7uENz6dSHpmYeP2xs3ZwCsfjOaT4fOYvzquUdA+aHudPSIuaB1uP917j+fp7gMba9A6PQGee3MohUZLZAfXioj0JKETOXRBG93ogja6iUZB63XKVOeGCZ2qpXZ3/T31Y+u3NiAfqePmlTD+MgVXF13e5go+mqA1+CX2uEQmV4Z42yzw4wc08nrZJDDCEmKLQ+JKB+nSbvdLFJXKXMxUSErRRMyStZrEGdRCPdih41Smzb/VxGifzLHTCpeyFYwWGWdz50hAvCWCvXhKrVrma14h3sxrWkbs2TP4Th7XMmUP7MW/Z4eWQRuzisC6xVpm7aKpWkbw9C8JThhI1ejPNAE78F2q+/ag+uNHE8HysYSIvyY6kaGtBK01ECLN42W3s5wl1ny+LEvnPVMKvy08wP/J2843WpCv38jewD/nbefpov28Z0pheFkaiyvz2O0s46LHizUQeqRxmW0y1wpkTqXJJBxV2bxLqwU9aY7CkBYa8vUfEWbYOE3gLlmn1ZE+kKwJ3Kyiti9H0hbogja60QVt69HqWkscdEmstIuMulUy4d+N978ZfZufFNfwconAF2UCs6wi253aSiFLB9gnV7D9BW1DwWAa8vu3O/eL1gja+IOn+WT4PGrr6vD4q3jp/VGNQvXdvlM5lnoZgKOnMnjj04kAlFY4+MUf+5KRVQTAyfPX6D10DgB7D5/lk+HzCNfWcVMQefOzSS1ur7NHxAVtn5ELWR17gLq6+kZBCxB/MJXPRyyI3MBaGZGeJHQihy5ooxtd0EY30SBofVaZ69lhxJRaanfe29CrbkcDUnIdNzLD+C3R9V5oSdBaAxIpbolldpHPy0L8u/H+FyJPGQU+LQ2xxCZy3CNSGcF9snolco0yZy4pJB5T2LhTa0Y0brrKgJEtd5KfuVhl9RaFuAMyJ84pXM2TKW2HRm+PA7erSssINlfiKSrBk5uP52om3rQ0rWlaSjL+Iwfx79+Nf882astMER+zTmR4VEFbERQ47/EQ5yhlYWUew0ov8rbxBE8VJfJPudtazH796+wNfCtvB88WHeDPppOMKE1nmbWAvQ4Ll7xebI8oYL8upXat9nNqukLiMZXNt5r5TZqrMrQVAnfoOJXJc1WWrNUE7v5khdPpmsAt64Dzhy5ooxtd0D4erAFtBVGcU2SeVWRAucCfzNqKoeZKJvzKIPC2WWC4JcQyu0iiSyLTJ+Fox7G3dzRk/Tki3C9aI2hHz1zPrv2nGn92Z8ZrOFxLfX0DAL7AdX71cj9AE7TPvjGk8W9MZTZe+WA0AGNmrWdH4snGn63YnNji9jp7RFzQPvXaABQ1DNBE0IZr63jm9cERGlXrI9ITnE7k0AVtdKML2uimKwpav0XhxtUw0tE66rfdK2Rr4xoQU2q5nhPG2wEvnNuTuwVtpk/riDzKEuLlEoHv3acu24+KBN40h5hYESLeKVIcgQzjcocmU05elNlzWGuwNWepysgpzTfk6j8izOhpKnOXa13k9x1WSU1XyC6WqXRH/vVoT/QatNHNgwRteaCGsx4XOxxm5lXkMLj0Im8Yj/PrwgT+Z+7WFgXs32Rv5Lv5O/ldURIflJxidFkGK2yFJDoruOL1YQ8+XK3kjkKZQyarSOZ0unbjJyZOYfFahUnzVIaOa3neGTo2zKR5KotvCdzEY9rcc61QpiwCGbi6oI1udEHb9hj8Eic8EpscEpMqQ/QuC/F7k8D3mxG33ysWeN4k0LssxMQKgQ0OkWRP23zPavcIX4dwdftzn7hxM8QT3fpQI4hNHk88dp4BY5cC0H/sEo6eymj82ZbdyY1C9eT5a3z65Tx6DZ7F+wNn8uRLfQFN0P7xLyMb/+bO//cfu6RJGdSte4+3uL3OHhEXtN3+PJJA1Q2gqaAtrXDw+3eGR2hUrY9IT2I6kUMXtNGNLmijm84uaN1+iUCpws2MWuTDddTH3iVkN0F4bz3C6Vqq81U8rs67r4+b0oDMBaGOOVaR90uFBzbJ+L1JYFC5wDq7yHlv+2V4mK0yGbkyyWcVdibKrNysMn2RyvAJzcuQgaPCjJ+lsnD1raXIxxXOXVHIL1Gwd5BSCx0BXdBGJyb/DVI9TnY4zazwFjDAfIEexmSeLNjH/5cb27KAzdnE9/Pi+ENxEh+ZUhlnucJqaxEHXRVkev04OqmA/bqU3xK4Z9K17NmYOK18yuS5KsNaIXCHjA0zaa7KojUKm3cpJBxVSU3TbkS1RQa/LmijG13QRg5nUOKaX+KAW2K5XeQrS4h3zQK/ecAKpdv8tLiGV0sE+pULzLWJ7HSKXPBKj7xiKZqjrq6e37w2AIO5ssnj81fHM3VRLAAjp69ld9KZxp8tWBPPtMVbCVbf5KnXBlBudQHg9gZbJWjvzshdsn5vi9vr7BFxQbto3R4++2o+V7INPNGtD6YyG0dOXaJ77/HMWbEz0sNrMSI9WelEDl3QRje6oI1uOpugdfslgkaVmothlAN1NGymaUOvzaAm1lNzLkxVkYrb23n2rS1xBCXOeyXW2kUGlWsZGve7APh5scAHpQJzbCJJLomyNsyOdfglistl0q4pHD6lsHWPwrL1WkZaS019howJM3muyrL1Ctv2yhw+pZB2TaG4XMbRCZpzdAR0Qds1KfZdJ8XtYIvNxMyKLPqZz/Oa4Sg/L9jLP+TEtChg/2v2Jn6UH8+LhkN8XHKaiZarrLMVc8hVSbYvgLMD7GNnpNwhk12slV45cFvgrlOYMk9l2PhWCNwxYSbN0RqfbdqpCdxTaVpdXbPt4T/ndEEb3eiCtmNSEdS+q+10isyxifQrF3ilRJOzzcnbp4wC75q1uv/L7Voj1iy/1Ox8He0xf3U8n301H4fbj6qGOZ2WzTOvD6a4pBKA2D3H+WLUIurrG/D6q3nlwzFMW7y1MflSVcPU1zewYnMiT3Trg6yozQranYknG2vQVl2vocfH41vcXmePiAtaWVGZuXQ7v3ltAE9068MT3frw2x6DWbYxobH0QUeOSE9IkcQWkPjRrcnt5RKBP5sF+pcLjK8QWGAT2eiQ2OeSSPVod7za8oI1EuiCNrrRBW1009EFrdsrU1WsUnMujJpYf6+QjQElqY6a9FqCJgW3LudwBSWK/BK7nSITKwTeMIf40QOW0r1eLjLaEiLWKXGtDbJL7T6JPJPMuctaJuvmOE0wjJ+pMnBU80Liy4laxuzKzSq7ErVM2st5MmZrxz1fOxO6oO2cFPirOe6ys8luYFpFFn3MZ3nZcISfFezmv7VCwP5d9mZ+UhDPy4bDDKq8wBRLJhtsBo66rOT5qiK+f9GKxSmTbbglcI9rDQyXrleYOl9lWAurBvqPCDN4TJiJs7X5deNOhYQjKqcuymQW3H/O1AVtdKML2s5HkV8i2SOy3qF9t/uoNMTzpvuXorrND4oE/nCrZMLkyhCbHFpfAXNAbsEMdf1Q1DDLNyXw0vujeLr7QHoNnkV6ZmHjz4WQxOAJy3m111gGjV/Gis2JTF+ilSSYND+GVz4cQ6/Bs7icVcwnw+fxwaCZzQpaUVIYMW0NL/YcQa/Bs1i+KYEpC7c0u73OHhEXtA0NWmHfcLgWpyfQWO4AuKcAcUeMSE86kSTXLzV7V+pBE95vjFqX6p5mbbnB2IoQC6wiGxwie10SJ91aPb/SQMe+mNQFbXSjC9ropqMJWo9LpjpfRThdS3hvPWyiiZCtj21APlzHzYxaAmYFVxe7YfYoVAa1L+2LbSKflIYeuEzuaYNAnzKtIcVJt9bcoqUmYa2hwq0t7U1Nk9l3WGX9NoW5y1VGT21ZKoycojJnqVZDds9hlZMXtSW9Fc6Oc052VXRB2/FwBiXyfFUcdVlZbytmiiWTT0vO8Mfiw/ykIJ6/y97cooD9f3Ni+FnBbl4xHKWv+RzTKrLYbDdy3GWnwF/d+FyP2iRMJzJUeiRyDDJnMhQOnrglcDcoTJvfctmX/iPCDBodZsJshYWrFDbuUNh/LMylzDqu6je9ohJd0HYdHEGJqz6JRJfEUpvIcEuIt8xaI7LmXIYeLcftxl0A67YlsWTD3giOpvNFxAXt6Jnr7pspm1No5rVeYyMwooeLSE8ukcYckMn0aVJ1j0u7OzXfKjK2IkS/ci2r9iWTJmV/8JAy986Ojd1MAj1LBb4oExhjCTHPKrLOIbLbKXLCI3HFJ1HSzkJXF7TRjS5oo5tIC1qvQ+Z6TpjQyVpq4+5t6FW3owEpuY4bmWH8Fv08dQUl0r0Sm+9o5HW/z5sfFQm8ZRaYUhFin0vC6L//a9xaQWu2yVzJlzlxTiFuv8yqGIWZi1W+mti8GBgwMszYGSoLVmlZXYnHFM5cUsgzyli9kT+W0YwuaNsfZ1Ai2xfgkKuStbZiJlqu0rvkNC8UH+JH+fH81+xNLQrYf8jdws8L9vInwzH6mc8zsyKLWLuJFLeDYt/1Vo9FF7RdC6tHItcoc/aWwI3do7Bsg8K0BSpftjBP9x8RZtCoMBNmaXP1hh0Kew+rpFxQuJIvU1Ip49RvhnYpdEEbHViCEqc9EludIrOsIn3LQrxSoq0a1qP5OHsplx4fT0CSVURJ5r0vppJ6MSvSw+pUEXFB22/MYj4ZPo/rN7QTPhyuZfmmBH79Sj9WbTkQ4dG1HJGeQDobZQGt3EGqRyLBpXVoXGATGV8hMKBc4C+lWrmEp4zCfZeWtsT3iv9T6L53p9C1aUI33ily3CM+FqGrC9roRhe00U17C1pfpcKNrDDi8Vrqdt4rZGvjGhBTarmeE8bbBo1ROhvmgMwBt8SMyhA9zQL/ari3Dtm3iwT+wygwpDzEeodImrf5umN3clvQOgMSBotMepbC0VSF7ftklm3U6iMOHdtyZtakOVpDnC3xCkkpChczFYpKZex6yYkOiy5oHz/2oEim189BVwWrrEWMs1yhlymV3xcf5Pt5cfxNTssC9h9zY3myYB89jMkMNF9gTmU22+wlpHqcmPw3HttYdUEbXVi9msA9d1kh6YTCjn0Ka7aEmb6w9QJ3/C2Bu367tuIh5bzClTwZky5wOx26oNXRo/moq6tn1rLtvPT+KF75cAyL1u1pXDGvR+si4oK2tq6O2St28vonEziXkct7X0zljU8nUmi0RHporYpITxJdncqgRLZPu4uV6NKynxbZJCZWCAwsF3i/VCsC/rRB4F+aqSXzIL5bJPCkQeBFk1YkvG9ZiFGWEHNsIuvsWoZuskckw3tvJpUuaKMbXdBGN20qaAMS/jKFm1fCyEfqqN96r5AN764nlFpLdZ6KxxXdQtYelDjjlVhlF+lfLvDcA0oV/MKg1R6bZxU54tYyJFqzfYdPosCscOGqwsEUrUnNyo21TJitMHB08xfnw8apTJuvsmKjwvYEmaOnFTKyFUwV+oV5Z0UXtA+PLRDiitdHorOC5dZCRpdl8H7JSZ4rOsh383fyzeyNLQrY/5W7lV8XJvCm8ThDSi8yryKHnY5SznpcWAI17bYvuqCNbu6uQWv1SuQZZc5d0W6ybdsrs3yDwvSFLa+U6D8izMDRYcbNUJm/UmH9NoU9h1ROnNPqhuufEx0PXdDq6KFHW0fEBe3tiD+YypMv9eXLqas7Vfe1SE8SOk2xBiRyfBJnPBIH3BJbHBKLbSITK0IMLhf4sFTgtVtC98ctdHZ8kND9hUHLuupZLtKvQmSUJcRsq8gau0jcHULX0EIXSJ3OjS5oo5vHKWjdfomAWaEmvRY5qY6GLU2FbMNmUBPrqTkXpqpIxeOJbiGb45PY5RIZVxHi9ZIQP7zPXP39IoE/mbUVFNudItktNPKy3q5TmK51+d6wQ2H+SoWx01UGjGz+AnvEJJWZS1TWxCrEJ2nZUZn5MmWO6H6duiq6oL0XWyDEJa+XvQ4LS635jChNp6cphWcKD/CtvB38dQvy9RvZG/in3G08VZTIO8YUhpWlsbAyj3hHGec9HiqDQsT38Ta6oI1uHrZJmM0rkW+UuXBV4dAtgbtio8L0Ra0UuKO0cjfzViis36qw+5bAzciVMVh0gdve6IJWRw892joiImjjD56+L8Mnr+L5t4axa/+pxsc6ekR6ktD5etgCErk+LfvqgFsi1qEVCp9cGWJIeYhepdpF/jNGgZ88gtD9zi2h+weTVtfws7IQIywhZllFVttFdrlEjrlFLnklDAFd6HYmdEEb3XwdQev2SQQNKjXnw6j762m4q6FXQwwoSXXUpNcSNCm4o3i5uyUoccwtssAm0rssxC8f0Lzht0atpM1yu8hpj4TtPtsqs2uduVMuKOxO0oTq7CUqIye3XA92zHSVuSu0JaoJR1Sy8xvIMchUeiJ/jHTal2gUtPm+KlLcDrbZS5hfmcuXZem8Y0zhqaJE/il3W4vZr3+VvYH/k7edp4v2854phRGl6SyuzGO3s5yLHm/E9+9h0AVtdPOwgrYl7D6J/BJthcahk1qZnBWbVGYsUhkxqXUCd9ytz6d1W7XPtuNnFTJyZAzlusB93OiCVkcPPdo6IiJoe/ab1mo6ekR6ktBpX2xBiTy/xDmvxKnqMHE+mWV2kSkVIYaWh+hdFqJHicCzRoGfPoLQ/XaRwM+LBX5vEnjTHOLT0hBfWULMqAyx0i6y0yly1K01uynyax0oI31MohVd0EY3DyNoPW6ZqkIV4Wwt6r56uEvI1sc2IB+u42ZGLQGzgitKL6icQYlLXomNDolhlhAvmrSbXHfPkz8pruG9UoFpFSESXBKmW+VnnAEJU6VMRo7MsTMKOxK1C91pC1SGjW/+QnfgaK3Ry8LVWgmDgycUzl9RyC9RsN8n+7a1TcJ0uh5dSdDagyLZvgDHXDZi7EbmVGYzpPQi7xpTeLboAN/L38V/aUX9129mb+Q7+Tt5ruggfzGdZGTZJZZZC0hwWsjwerEFQhHf18eFLmijm8ctaFvitsC9mKlw+JTCtn0yKzepzFisMqKFm4t3ZuDOXa6ydqtC3AGZ5LNaqZ1ii4wjim8APwq6oNXRQ4+2jg5T4qCzRqQnCZ3I0ZoatPagRIFf4rxXIsmldYNcbheZWhFi2C2h+3pJiN8Za+7bxKa1Qvd5k8DrJSE+LgvxpSXE9MoQK2wi251arcU0r0ShLnQfK7qgjW6aE7Rep0x1bpjQqVpqd9ffUz+2bkcDUnIdNzLD+C3Rew6Z/DIJLolpFSHeK73/KoXvFGlNH4dZQmxySKR5JApLZS5kastFY3crLFmnMGmOwqAW6sEOGRtmyjyVpRu0ZaZHTimkZ2kXqQ+bZaQL2uilMwnaK14fSa4K1tkMTLVco5/5PK8bk/lNYSL/J297qzJf/yp7A/+Qu4WfFeymm+EQH5lSGVOWwQpbIfudFVzx+iK+n+2JLmijm/YWtC1hv10jPVPhyCmt1vnKzVrZnZFTWha4A0aGGTtdZc4ybVVJ3H6ZY2cVLmUrFJfrAvdudEGro4cebR0dQtCKkszZ9Bz2Hj5LwpFzXLic32nq0EZ6ktCJHG3RJMwe1ETqRa/EYbfE9ltCd1pFiOEWTcC+XhLieZPAvz2C0P1WkdbN/HmTwBslmiAeZgkxrSLEcrvINqfIIbfEhVtC194BjnNHRRe00c2dgtZnlbmeHUZMqaV2570NvWrjGhBTarmeE8Zrj866pLaA1uxxuV3kizKtJMH95qdfGgQ+MoeYahBZd1Vm9wmFTTsVFqxSGDtDZeCo5i82v5yoLQ1dtVll136Z42e1btlm6+M97rqgjV46gqC1BGpI93pIdFaw2lrEpIpMPjef5TXDUZ4s2Mf/zt3GN1ohXr9xq/nWkwX7eM1wlM/NZ5loucoqaxEJTgtpHm+7NuDqDOiCNrrpaIK2JRw+iUKzzMVMhSOp2sqSVZtVZj2EwB09TWXOUk3g7tqvrVBJz9IErj3KBK4uaHX00KOtI+KCNj2zkKe7D+Tp7gN5rddYXvlgNL9+tT/PvD6Yq7nGSA+vxYj0JKETOdpC0D4sjqBW6iDNK3HELbHDKbLSLjKjUsuk/aQ0xBvmEL83aZm2334Eofuz4hqeMwr0KBE0oVseYkpFiGV2ka1OkSSXliGc779/3ceuii5ooxe/RaG+COTjddTtuFfIhnfXE0qtpTpPxeOKTiGb5dduMI2xhPiTWWvadffc8oNCgRdzQ3yULjL8kMz4da27YBw1Vcv2WbdVYe9hlVMXZbKKZCzteKx1QRu9tLWgNflvcM7tZrezjGXWAsZartC75DR/LD7Mvxbs4b/nbmlV1utf36r7+pvCRF43JtPPfJ5pFVmstxWT5NIyX61dqPRAe6EL2uimswnalnD4tFUpadcUjqYq7EiQWRWj1WcfNbXlJpkDRoYZPVVl9lKV1VsUdiXKHD2tCdyi0q4ncHVBq6OHHm0dERe0r3wwmqQTadTW1TU+Jisq63cc5tVeYyM4stZFpCcJncjREQTtw+IIShQHtBq2x9xak7JVdpGZVpERlhCflYV4y6zVwH2i+P71H1vip8U1PGsU6F4i8FGpVpv3ttCNdUgccGk1fPM6udDVBW2UEJAIlCrczKhFPlxHfWxTIduwGdTEemrOhakqUvF4ok/Ilge0jP95VpFepVpjxPvNDU9cE3ghJcTr22Ten6vS7wHZsANHhRk3Q2XBKi17dn+ywpkMhXyjjM0b+f11BXVBG818HUFb6K/mlNvJDoeZhZV5fFWazgclp/iP4iR+nB/Pf8uJaZV8/ZucTXwvfxfPFB7gHWMKg0svMrsymxi7kWMuG9m+APagGPFj1RXRBW1009UEbUvY/RJFtwTusdOagF29RWH2UpXRrRS4o6aqzF6isipGYWeizNFUhbRrCoWlMo771HjvyOiCVieaw1Rm48mX+jbhiW59+Gra6se2/e69x9/3Z9v2nmDa4q2P5Xk6ekRc0D5IwipqmKdeG9DOo3n4iPQkoRM5OqOgfVicQQmDX2vck+wWiXOKrLGLzLaKjLSE+LwsxNtmgf8walLmu48gdH9SXMMzRoE/mQV6lQoMKQ8xqTLEUtstoeuWOOOVyPFpy6QjfUxuowvaronbLxE0KdSk16Ik1dEQQ1MhGwNKUh31WXDdrOLuYtkhLeEMahn76x0iQ8pD/O4Bmfnfzxb45YkQL+6QeWepSp9xTS/aBo8JM2mOVj82drdWT/ZCpkJRWefIuNEFbfRyP0HrCIrk+oIcd9mJtZuYW5nD0NKLvGdK4bmig3w/L47/mt1ys62/yt7A32Vv5kf58fy+WGu4NbwsjfmVuWyzl5DidpDvr8bZAY5DtKIL2ugm2gRtS9j9EkVlMulZCsfOaCUQ1sQqzFmqMnpaywK3/4gwI6doJRdWx2glGI6kak3RCs0dT+DqglZHj/+MGzUhXvlg9GNb9d6coJVkFSEUHcc/4oK235jFONz+ex7PLSplyMQVERjRw0WkJwmdyBENgvZRMPplMrwSyR6R3U6RtXaROTaRUZYQCYnKWQAAIABJREFUfctCvGsWeMEk8OQjCt0fF9fwtEHg1RKBD0sFBpcLTKwIsdgmEnNb6Ho0oWttQ6GrC9qugdsrU1WsUnMujJpYT8NmmgjZ+tgG5MN13MyoJWBWcN06p5prEtaVKPRKbDJJDMkR6ZYV4gf592lWWCDwb+dCPJcg0WOtQq8Z2kXXsPEq0xaorNiksiNRq1uXkSNjqnz4plwdDV3QRg+2QIirPj+HXJVstBuYWXmNkbZLvGk8zr8X7edbeTv4ZvbG1jXbyolp0mxrdFkGS635xDvKOONxYfDfiPj+6jSPLmijG13QPhwOv0RxucylbIVjZ7UmZGtiFeYsUxkzvfUCd+YSlZWbVbYnaA0+L2QqFJgV7O0scHVBq6PHf8bometYunFf4//zisv4c//pdO89nrc/n9wobk1lNnr2m8bSjfv4fMQC3v58MldyDIyYtob3vpjKvFW7Gn+vx8fjWbxuDy+/P5oeH49v3MadGbQPep6uEhEXtJt2HeXl90czb9UudiSeJHbPcaYv2cpL749i/fZDxB883UhHjEhPEjqRQxe0j4eSgMxln8Rxj0i8U2SdQ2SeTWS0JcQXZQLvlWpd3H9lEPhe8cML3X8pFnjaIPBKicD7pQIDywUmVggssklsdkgkurTmRdk+icqHGLcuaDsnHpdMdb6KcLqW8N562EQTIVu3owEpuY4bmWH8lge/vl1J0Fa6JbKLZU6kKyw6qdLnhMwLp0P8+Or931M/uiLwmyMiL8cqfLxSYfqt7s+7k1RSLihkFsiUdfFmaLqg7RpUBAUueb3sd1awxlrMZEsmfc3n6G48xq8KE/inVjbb+qvsDfzP3K38omAvrxiO8mnJGSZYrrLSVsg+h4WLHi/lerOtLoEuaKMbXdA+Xm4L3IxsheSzCnEHZNZu1QTu2NYK3MkqMxarrNyksm2fzOFTWgZufsnjF7i6oNVp75gwM8yYae1PS5F0Io2e/aYRDtc2PvZu36kcS70MwNFTGbzx6UQASisc/OKPfcktKgVg/JyNvN1nCqoaRlHD/LbHIAJVNzCV2fjly1+QdCINgEMp6fT4eALQVNA+6Hm6SkRc0L7dZwo9+01rFR0xIj1J6EQOXdBGBnNA5qpPIsUtscclst4hMs+qNSPqVy7wZ7PAH00CvzbcvzFRS/yoSOApo8DLJQJ/KRUYUC4wvkJggU1kk0MiwSWR6pEok+pw3NAFbUfH65C5nhMmdLKW2rh7G3rVxjUgptRyPSeM9yGkYmcTtKV2mat5MifOaRdAq7cojF6n8u4mmd/tE/m3syG+XXDv++E7uQK/OhfijaMhRh6WiT2uciZdIccgY/VEfr8ihS5oOz4l/puc93jY4yhnubWQcZYrfFxympeKj/Dzgr38Y25sq5tt/XPedn5dmEAPYzL9Ss+zyJPLOlsxB10VXNabbUUVuqCNbnRB2744/BKGcpmMHJnjZxXik1TWblWYu1xl7AyVgQ+oZX8nIyapzFikrebZvk/m0EmFC1cV8kzyQwtcXdDqtHe0dH63Fc2F3eXjP979kvJKZ5PHw+Fa6usbAPAFrvOrl/sBmqB9/u1hjb+3OvYAs1fsbPx/j4/HYyy1Yiqz8XT3gY3bCIdreaJbH6pv1DQRtA96nq4SERe0nT0iPUnoRA5d0HYOSgMymT6Jk26JvS6JDQ6RBVaRsRWa0O1pFnjZpEnZHzyC0P3hbaFr0rbVv1xgXEWIBVaRDQ6RfS6JUx6Jaz5tLJE+Hl0dX6XCjaww4vFa6nbeK2TDu+sJpdZSnaficT3669HRBK0zIGGw3FpGeFph2z6Z5RsUps5XGTpOpc/YMO8sVum2Q+ZXx0P8ICt03/P5l1khel4NMT1H4lCJjK2D1X/rKOiCNrIU+a+T6nGyy1HK4so8RpZd4sOSU7xQfIifFMTz9w/RbOs7+Tv5beEB3jaeYFDpRWZVZLHZbuSI28o1773Ntr5OkzCdzo8uaKMbXdB2LG5/97mcqwnc3Ukq67YqzF2htFrgfjVRZfoilRUbFbbtlUlKUTh/5f6NSXVBq9PeceNmZHhQ1NXV03voHOIPpt7zs5Pnr/Hpl/PoNXgW7w+cyZMv9QU0QfvKh2Maf2/dtiSWrN/b+P83Pp1IUUkFpjIbr3wwusk2n+4+EKvD20TQPuh5ukp0CEFrsblZGbOfCXM3MXL6WpZvSqCswtnyH3aAiPQkoRM5dEHbNSkLSFzza1myCS6JjQ6JBTaR8RVaNu1fSrXs2qdNIX70CEL3B0UCvzEKvGTSsn37lQuMrQgx36plA+9xiaS4JTJ9WrZwpI9HhyYg4bco3LgaRjpaR/22pkK2YTOoifXUnAtTVaTi8Ty+4xkJQevwSRSaZS5cVUg6obAlXmHxWoWJsxUG3XER0m9kmA9mq7y2UeaZgyI/SQ/xfwvvPRd/VijwrkFgjlXkoEu/gfAw6IK2bXAGJfJ8VZxw29lqL2FeRQ7DytLoaUrhd0VJ/CA/jr/N3twq+fq32Zv5YX4cvytKoqcphWFlacyryGGrvYQTbgf5vqpHaralC9roRhe00Y0uaDsXzoCE0SKTkautINp9SGX9VoX5KxXGPYzAXaiyfIPCzgSVk2frOHdFIc8oY/VGfh912pdoj/XbDzFw3FIaGhqaPB6svslTrw2g3OoCwO0NPpKg/W2PwY3bvp1Be+NmqFHQNvc8XSUiLmhPp2Xziz/25eNhc5m6KJapi2L5aOgcfvVyPzJzTZEeXosR6UlCJ3Logja6uV2D1hKUyPJrdWwTXVpd20U2iQkVWr3b90u1+rdPG4RHErrfK9bq73YzCfQsFfiiTGCMJcQ8myZ0dztFTngkrvi0er6RPi5tidsvETAr1KTXIifV0bDlLiEbA0pSHTXptQRNCm5/242lrQSt1SuRa5Q5c0kh4ajKxh3ahcTYGQ+uxfbZRJW3Vij8ca/EUxdDfO8+jby+V6zdWBhlCRHr0G4ARPr17MzogvbhsQVCXPMGOOK2ssluYGZFFgPNF3jbeILfFh7gO/k7+ZtWNtv6+5wYfloQz4uGQ/QypTKy7BKLK/PY5SjltMdFse96m+2HLmijG13QRje6oO1aOAMSpgqZy7dKQO05pLJ+u/a9a/xMlYGjWxa4X94SuMs2KMTuUTiYonDuskKuLnC7JNEc+YZyXuw5An/w+j0/K61w8Pt3hqOqYerrG1ixOZEnuvVBVtSHErS/+GNfTp6/BsCRU5d4u88U4D9r0Db3PF0lIi5o3+k7hZPnM+95/FjqZXoNnhWBET1cRHqS0IkcuqCNbh61SVhlUCLHJ3HGI3HALRHjkFhsE5lYEWJwucCHpQKv3hK6Py6ueWih+90igV8aBF40Cbxr1oTuaEuIuTaRdXZN6B73iFz2SZj8HVvoun0SQaNKzcUwyoE6GjbTRMjWxzYgH67jZkYtAbOCK9B+Y/s6grbcIXOtQCblgszuQ1o9tdlLVUZMVlvO5JihMnSrwmfHZXpcFvnFferGfqtI4N+NAp+XhVhm1zKyre14bKIBXdA2pTIocNnr46CrgnW2YqZarvGF+Rw9jMn8ujCBf87bzl+3stnWP+bG8vOCvbxsOMInJWcYb7nCClshexzlnPd4KPHfjOi+6oI2utEFbXSjC9rowhmQMFXKXMmTSTmvsP9YmNj4MAtWKYyfpTZZvfQghk9QmTZfZekGhdjdCgdPKJzN0ARuZRTX8u+sRHNMWbiFJ7r14cmX+jbh2TeGADBpfgyvfDiGXoNncTmrmE+Gz+ODQTNbLWgLTRW823cqS9bv5Y1PJ/LGpxPJKdQai91Z4uBBz9NVIuKC9unuA6mtq7vn8XBtHb/tMTgCI3q4iPQkoRM5dEEb3TyqoH1YbIFbQterCd1Yh8RSm8ikyhBDykP0KhX4k1ngGaPATx5R6D5pEHjBJPCOWaBPWYhRlhBzbCJr7SLxTpFkj0iGV8Lolx9pSXBr8XhkqgpVhLO1qPvqYRNNhGzdjgak5DpuZIbxWyLboK05QXv7C/3lXJljZxV2JMis3KRlWAyb0LyEHTgqzLgZKgtXKWzepbD+lMLsazIDikO8ZNRer7tfwx8X1/C2WWByZYg9LhFDG2YO62hEk6AtC9RwweNhr8PCSlshEyxX+bTkDK8YjvJEwV7+RyubbX0jewP/lLuNXxUm0N14jL7mc0yxZLLWVswBZyUZXi+VQSHi+9sSuqCNbnRBG93ogja6ubsGrTMgUVIpcyVfJuWCwr7DKht2KCxYpTBhlsqgVmTgDpugMnW+yrL1WumqgycUzmQoZBtkLM6OnUgRjeihR1tHxAXtG59OpMBQfs/j+YZyenw8IQIjeriI9CShEzl0QRvdtJegfVhsQYk8v8Q5r8RBlyZ0l9lFplSEGFoeondZiO4lAs8aBX76iEL3FwaBP5gE3jZrWZojLSFmWUVW20XinCLJbpFLXglDQGpW6HqdMtX5KqHUWsK76+9p6FW7swExpZbr2WF81o71JVUNN2C0KFzMVDh0UlvWtnS9wqS5KoPHNP9lfPCYMJPmqixdr/3doZPadjLLZRKdEjOtIj3NAv9quPf1+XaRduyHlIdY7xBJ8zZ/jHXahq4iaA3+G5zxuIhzlLLEms+oskt8ZEqlm+EQPyvYzT+0ttlW9ka+nbeTp4v285bxBAPMF5hRcY2NdgOHXVYyvX5sgVDE9/dxoAva6EYXtNGNLmijm0dpEma2ylzNkzl5UWbfYa101cJVChNmK60TuONVpszTvjNuiVc4kKxw5pJCdrFMuaNjfTeOBvTQo60j4oJ2d9IZfvfmUBasiSfx2HkSjp5n/uo4nn1jCDHxxyI9vBYj0pPE/9/efYdFdSf6H992t7d77+7eveW3vcUUk02vxqixRZOYYmKMDbHF2MXexR57RVARLCgiggqiiGBB+gxlYAaHMjN0VKTMnBkGPr8/SFhRyoAO38Hv5/U8n+eJouSMJ57gO5NzOHFjoJV7rhpo27v8cjNUpWZEFZsRVGCGj6kGX30ddCd9HXT7Z1XjJU0l/taBoPu/aVXoll6FVzKrMDbFjL3RVlw/VYtbB+rvC7KWQ3WoiqjFrRQril3oXQP6goZ3w544q2Cbj4IFnm2/K2KSR8M7ZjfttuJAQMM7aa8lW5CVa4GpzAxDecO7ojcbauB2owovapr/9Xs8owpDdVVYmV+D4EIzbvBWBS4xVw+0pnIzVKW3EFZoxD5DFjxzk/FFdgyGZIbj5fQg/FHljx86+LCt7yfuxu9S/PBi2omGh23porEiNwnehkycKTAguaQcxvIa4a+5s8ZAK/cYaOUeA63c60igbWvaPAvi1Baci7Yg4JQVu3wVrN7S8ADYtv6Dv9sUGybNagi467Yr8PJTcPy0gguXFSSkMeA6Y0TOJjzQAkB4VDzGzd6A/p95oNfHMzBm+lqcOndF9GE5RPRFghM3Blq596gE2vbOUG5GaqkZ0cVmBBease/roLswpxpf6KsxLLsaA7Kq8UpmFQbFV2NuhILgwFoU+TQNsrbdQKK/HdtDrPg82oK/q6ob3yH62NdBd4C2Gp/pqjFZX41FudXYZKjBAVMNThWaEVNsRlqpGcaH/Po0egsuXmt40u+GnQpmLWr5lgRT51mxbF3DPWQPnbQi7FLDvWWb+4I4ucSMgwU1mJ1Thf5Z1fhDMzH2d2lV6JPV8BC4faYaJPBWBS47kYHWUF6DhOIyhBTkwcugwbLcRIzXRWOwJgzPpwbi/1S++F7Sbofi60+SvPBnlT9eSw/CR1nnMEV3GWtyU+Br1CGiyITU0lvCf61dbQy0co+BVu4x0Mo9ZwTatqbNb/ja8lyMBQEhVuz+OuDOXa5gggMBd+IsK+atsGLttoaAeyxUwfmvA262gQG3vSNyNpcItF2Z6IsEJ24MtHJP1kDb4srMKNMpuHO1FpZgO+q8mwbZuj1A2TE7VBdsOJGiYJm+Ibx+pqvGAG1D0H0svSHQtvdduv/IqMTLmVUYkNUQiL/QV2NhTjW+MtRgv6nhnafRxQ1h2fD18RpLzUjRNDy11+dwwxN7J89pPsa6T7Nh3gortno3/K9lVxIVVFS2fA9afbkZpwtrsCq/Bp9mV+PJjOaP+zlNw0PcvjLUIKKo4X7Dws8j59CcFWjzyqoRW1yCoIIcbM/PwAJ9PMZoo9BfcxpPpx7Df7XjYVu/SPbGP9SH0TP9FD7NOo+Z+lhsyFPjkOkGoooKhT9sq6uOgVbuMdDKPQZauSci0LY1ncGC+FQLIr4OuHsOKliz9euAO9OBgDuz4bZba7Yq2OOn4FioFRGXFcSnWqBjwL1vRM4mPNBWVZtx8Pg5LN2wH/NWed03Vyf6IsGJGwOt3JM90BaWmlGeqaDyci2UIDvqvdA0yHrXwxJsx52rtSjTKih08N2gxnIz0svMuFxsRmhhDXxNNdhsqMGSvBpM0Vfj8+xqDPw66HZLb7iFQnuD7h+SqvCXy1Xodr4GT4fW4IVjZrzma8ZbXgre2aHA3UfB8kAL/C4qiEtv/ovTbx4SZio340qxGbuNZkzSV6NHZvPH9Jf0Srynq8KCnGoEFJiRWcovervyOhJo9WWViCkqRoBJj815aZijv47PtZHonRGCJ9RH8Z/JPg4/bOtXyfvwZOpRvJ0RipHaSMzTx2FLXhqOmXJwubgIOV3gYVtddQy0co+BVu4x0Mo9Vwy0ba3FgLvC6lDAnTDDhrnLG961u9tXkf5dt0TOJjzQjvf4Cm+8PwWzlu/EwrU+983Vib5IcOLGQCv3ZA+0txOtTYKs/UA9zKftqIizoVTfub8u3wTd04U18NKbsSDJjNHRZvQ/V4MXw2rw+Llq/DW6Gr+Pa3/M/SauPq+pQr+sKnyiq8aEG9VYWmDBe9pq/Cm9+Z/zemYVvtRXY6exBpeKxZ8v7uHu3kCrKa1AZFEBDpmysSFPjRnZV/FpVgTeTA9ueNhW8l6H4ut3E3fhv1MO4Jm0YxigOQM3bRQW5SRgZ34GThbkIrak5JF52FZXHQOt3GOglXsMtHKvKwbatpZtsCAhzYLzlxtuf+Dlp2DdNgXzVlgxcdb9/2dZXpH4YxY5ImcTHmi79xqDPGOx6MPoMNEXCU7cGGjlnuyBtthgQU1YLW4n2lCSL+a/pquyFIRdsmDfUQtWbVbwZQu3KHCb0vBf/zfvsSIgxIozCQoi88w4XVQDP1MNthpqsDy/BtP01RiZXY3B2iq8pml4QJcjAfex9Cp8rKuCZ14NQgtroHeB88M9vKlLbyG80Ij9Bi1W5SbjS91lfJ5zAa+mB+FPKn/8KMnLofj6b0m78buUg3gx7QTeywzDBF00lucmYm9+Jk4X5CNJsodtddUx0Mo9Blq5x0Ar9x7FQNvW7g64J87K++eeb0bkbMIDba+PpuPm7UrRh9Fhoi8SnLgx0Mo92QNtZy6v2Iw4tQWnzinY5atgyVpriw9GmDDThiVrGx6icCpCQbzagrwHfAerptSCq8VmnCmqwSFTDbYbarCpxIrDhWYklYj/9eE6NmN5DZJKynG6IB978zOxPDcRE3TReFcThhfTTuB3KQfxbw4+bOtHSV74k8ofr6YH4cOscHypu4zVuSnYb9AivNAINR+29ciMgVbuMdDKPQZauSdjoOWajsjZhAfaCzFJWLDGG2U3K0QfSoeIvkhw4sZAK/cYaJ0zncGCmHgFASFWbN5jxdzlCsZObT7GTp1nxerNCvYdteBctAVqrQJTJz1o65t70Ir+9eKaX35ZNWJLSnCyIBc78zOwKCcBbtooDNCcwTNpx/DblAP4buIuh+Lrz5P34m/qQ3gzPRifZkVgRvZV7C3T4JApGxcLC6EprRD+ernOGwOt3GOglXsMtHKPgZYjcjYhgfbZvu6Ne3HgRPzzbXd06zES/3zbvcnHnu3rLuLw2kX0RYITNwZaucdA+2AzlZmRprMg4rKCAwEWrNmqYOr85m9RMHaqDR5Lrdi424qjwVZcuq5Amyc2jjLQiltOeRUuFxfhmCkHW/LSME8fh5HaSLydEYonU4/iV8n78G0Hwuu3EnfiP5N98IT6KPpkhOBzbSTm6K9jc14aAkx6xBQVQ19W2ewxdOQhYdyjMQZaucdAK/cYaOUeAy1H5GxCAm3M9VSH5+pEXyQ4cWOglXsMtI7PUGJGQpoFIecbHj6wbF3zDx5wm2LDuOk2LFpjxY79Ck6GKYhVWZDrgg8kYKB1zrJK7yCqqBCHTDewIU+NmfpYDMs6j57pp/AP9WH8ItnbofD6ncSd+K+U/Xg69Rj6a05jjDYKC3MSsD0/A0EFOYgtLkHeAzxsi4FW3jHQyj0GWrnHQCv3GGg5ImcTfosDAKi12xv/2m6vQ4Y2t8vcl1b0RYITNwZaucdA2/xuGC24nKDg+GkFW70bngLrPq35WxRMnmOF5yYF+45YEBalQKWxwFgq/jU4Mgba9i+t9DYiikzwNeqwJjcFU3SX8VHWObyWHoS/qP3xEwcftvW9pN34P5Uvnk8NxGBNGMbrorEsNxFeBg1CC/KRUFwGg5MftsVAK+8YaOUeA63cY6CVewy0HJGzCQ+01xLS8cb7U2C318FWa8cnE5fj8TdHoXtvN0RdTRF9eG0SfZHgxI2BVu4x0JqRrrfgwhUFfsctWLddwYxFzb8r1m2KDTMXW7Fhp4JDJ624GKsgM6drx00G2n/NWF6D5JJynCkwwMeQhRW5SZiki8b7md88bMsP30907GFbP0zcgz+q/PFK+gkMyQzHF9kx8MxNxj5DFsIKjVCV3oLJBV4zA628Y6CVewy0co+BVu4x0HJEziY80A5xW4QTZ6IBAKfOXUHPD6fhVkUlIqITMMRtkeCja5voiwQnbgy0ck+mQGssMSMpw4IzkQr2+itYvsGKSR7Nx1j36TYs9LRiu4+CE2cVXEu2QF/w6IVMWQJtflk14opLEVyQh12GDCzOiYe79hLe0ZzFs2nH8T8pvviegw/b+lmSF/6mPoQeGSfxSWYEpmdfxbo8FfyMOlwoKkBGF3rYFgOtvGOglXsMtHKPgVbuMdByRM4mPNA+3Wcs7PY6AMD0JTvw1e4AAA23Ovjn23xIGOe6Y6CVe49qoNUXWHAt2YITZxVs91GwwNMK9+nNvyt2kocVyzdYsddfwZlIBUkZFhhLxL+GztijEGhzy6twtbgYgaZcbMtPx3x9HEZpL6KvJhTdUwPw63Y8bOvfk73RTX0EvTJCMDzrAjz017EpPxVHjXpcKipCdgsP2+qqY6CVdwy0co+BVu4x0Mo9BlqOyNmEB9pXB09G2c0KWBQrXhw4EUmpOgBA+a07ePmdSYKPrm2iLxKcuDHQyr1HIdBq9BZcvNZw24ENOxXMXNzyLQpmLLJi3XYFfoENtzVI13ftOPmgc/VA2/CwrSIcMeqxMT8Vs/Wx+CzrAt7KOIXH1Efwy3Y8bOs3KfvRPTUA/TSnMVp7EQv08dien44TBTm4VlyC3PIq4a+3s8dAK+8YaOUeA63cY6CVewy0HJGzCQ+0i9fvw7ujFuCDsYsxxG0R6uvrUWNWMH3JdkxbvE304bVJ9EWCEzcGWrnXlQKtsdQMlcaCsxcV+BxW4LlJweQ5LdyiYJoN81ZYsdW74UFfVxIV3DC6bogUNZGBNr3kNs4XFeCgUYe1uSmYln0FQzMj8EbGSfxV7Y+fOvqwrcRd+F+VL55LDcQgzVmM00VjSU4CdhsycKowD/Gd8LCtrjoGWnnHQCv3GGjlHgOt3GOg5YicTXigtdlqcSjoAvb4haDsZgUAoLrGghlLd+Dm7UrBR9c20RcJTtwYaOWeqwba3CIzYlUWnAxTsGO/gkWrrRjXwi0KJs6yYtl6K7z8FIScV5CQZoFBklsUPOicEWhN5WaoSm7ibKERPoYsrMxJwqTsGLyfGYaX04PwB5UffpC4x6H4+oPEPfi9yg8vpQXh/cwwTMqOwcqcJPgYsnC20ICUkpsu8bCtrjoGWnnHQCv3GGjlHgOt3GOg5YicTXig7epEXyQ4cWOglXuuEGi1eRZcuq7gaLAVG3dbMXtpy7comDrfijVbFfgesyDisoI0nQWmMvG/jl117Q20hvIaxBeXIaQgD3sMGizNScA4XTQGac7iudRA/K/KF99L2u1QfP1pkhf+qvbH6+kn8XHWOUzNvoK1uSk4aNThfFEB0ktuC//1edTHQCvvGGjlHgOt3GOglXsMtByRs7lsoA05dxUL1/qIPow2ib5IcOLGQCv3OjPQmsrMUGUpCI+2YN9RC1ZvVjBlbvMxduxUG+YuV7B5jxUBIVbExCvQGXiLgoe9uwNtXlk1rhWX4ERBDrbnp2OBPh5jtFHopzmN7qkB+E3KfnzHwYdt/TLZG4+pj+CtjFP4LOsCZulj8VVeKg4bbyCqqAhZpXeEv3aOgVbmMdDKPQZaucdAK/cYaDkiZ3PZQOt/IgLus9aLPow2ib5IcOLGQCv3nBVo84rNiFdbcOqcgl2+CpastWLCjObfFTthhg1L1lqxy1fBqXMK4tQW5BWL/7V5lHajrBLRRcU4atRjU34qPPTXMTzrAgbqTuOJ1CP4j2Qfh8LrtxN34tfJ+/BUagD6akIxSnsR8/Vx2JafjkBTLq4UF0v5sK2uOgZaecdAK/cYaOUeA63cY6DliJzNZQNtVyH6IsGJGwOt3HsYgVZnsCAmXkFAiBWb91gxd7mCsVObj7FT5lqxerOCfUctCI+2QJWl8BYFD7iM0gpEFhXA35iN9XkqTM++ik8yI9Aj4yT+pj6EnyXvdfhhW/+T4otn045joOYMxmovYXFOPHYZMhBckIe44lLkl1ULf73cwxsDrbxjoJV7DLRyj4FW7jHQckTOxkD7gERfJDhxY6CVe+0JtKYyM9J0Dfd+9T1mwZqtCqbOb/l+sbOXWrFxV8O9ZS9dV6DN4y0K2jNTuRmq0lsIKzRinyELq3KTMTlQbexdAAAgAElEQVT7Mj7IDMcr6SfwR5U/fpTk5VB8/X7ibvwuxQ8vpp1oeNiWLhorcpNw/KYe4cVGJJeUw1heI/w1c507Blp5x0Ar9xho5R4DrdxjoOWInE14oI25rsZ7oxfg2b7ueKLnqPvWmXYcCMabH0zFy4MmwWPlbtSYFQCAoaAEI6euxksDJ2KI2yIkpeoaf47oiwQnbgy0cq+lQGsoMSMhzYKQ8wq8/BQsW2/FxFnNx9hx021YtNqKHfsVBIUpiFVZkFso/rW58gzlNUgsKUNoQT68DBosy03EBF003tWE4YW0QPw/1UH8m4MP2/pxkhf+rPLHa+lB+CjrHKboLmNNbgp8jTqcKzQhtfRWi8fR3oeEcY/WGGjlHQOt3GOglXsMtHKPgZYjcjbhgbbXxzOwxy8EsUkZSErV3rfOEh4Vj/6feaCk7DZqzArGzFiLHQeCAQAjpqzCgWPhsNvrEHM9FT2GTIWt1g6AX6DLPAZauafY6mAotuJKooLjpxVs9VYwb4UV7tOaf1fs5DlWeG5S4HNYwdmLClI0FhhLxb8OV1p+WTViS0oQVJCLHfnpWJiTgDHaKPTXnMYzacfw25QD+G7iLofi6y+SvfEP9WG8mR6MT7POY6Y+Fhvy1DhkuoGoosIHftgWA63cY6CVdwy0co+BVu4x0Mo9BlqOyNmEB9pBI+aJPgQAQGpmTpMgfOBYODxW7Eb5rTt4rt941NrtjR/7YOxixCVnAuAX6DKPgVaupestuHBFgd9xC9ZtVzBrcfMh1m2KDbMWWbFhp4JDJ624eE2BRs+Qpy+rRExRMY6ZcrAlLw1zc+IwQhuJPhkheEJ9FP+Z7INvO/iwrV8l78OTqUfxdkYoRmojMTcnDlvy0nDMlIPLxUXQl1U6/fUw0Mo9Blp5x0Ar9xho5R4DrdxjoOWInE14oF2wxrvJLQNcxXiPr3A0OBJJqTq8O2pBk4/NWLoDASFRAPgFusxjoH00ZywxIynDgjORCvb6K1i+wYpJHi3fomCBpxXbfBScOKvgWrIF+gL5ol1maQUuFhbikCkbG/LUmKmPxadZ5/FmejD+rj6Mnzv4sK3vJu7Cb1MO4Jm0YxigOQM3bRQW5SRgZ34GggpyEVtS4jIP22KglXsMtPKOgVbuMdDKPQZaucdAyxE5m/BAm5mdjxe/vrfr2Jnr4T6r6UTYsf8kRk9bg1q7HVcT0jB0/NImH1+wxhu+x8IBANWWWk7S2ex1UGx24cfBdXzlt2uh1tTizIVa7Dlow5LVDdG1uRj7xWwbVm2y4WCADRcv1yLPUIdqs7jzX2m2ddrfS1tVgfM3jfAuzsQSQzw+v3EBPTNP4S+p/vhxsmMP2/pW4k78Xn0QL2WcwAe6cEzLvYK1BSnwL9Eh6lYBtFUVwv95aM/q6uphVsQfBydm9fVy//u/yiz+GHj+OREzKw3Xf9HHIfM68+ufe2ex2mG38/zLOsVmh81eJ/w4OHEjcjbhgXbQiHkYNW01vtodgO37gu5bZ6qvr4fnFj+4z1oPs8UKAEhO02HQyPlNftz0JdtxPPQSAOB2lZWTdFZbHWostcKPg3NseSYbribYcCzEhs27rZi9pPl3xbpNsWHGIiu+2mnF0ZNWxMTZoDfY7vt8Nnsdqsz3f39n7VaVFRXVtgfe7WobtBV3cL7cCJ/CTCwxJGBkdiR6Zgbjz2p/fN+BB279KNkLf1H74w3NSXySHYHpOVfxlUmFI8U3EF1eiOw7lQ/lWF1pdfVApblW+HFwYgYAd1zgOETtVpX4YxC1OzUN51/0cXBiVmmuRV09z7/Iifxasspsg81eJ/xrWk7Maiy1sNp4/mUekbMJD7R9hs5EfX296MMAAKzdfhjTl+xofAAYANyqqMQ/33ZvDLYA0G/YbCSnNdyWQfTb7Dlx4y0OXHPGUjNUGgvCohoeyOW5ScHkOc3HWPdpNsxdacWWvQ0P+rqcoOCG0bH/bV2x1aH8jiL89ToyVclNhBbkY2d+Bubp4/BZ1gX0yDiJP6n8HXrn678ne+Op1AAM0JzBRF00PHOT4WfU4UJRATJKK4S/PhHjLQ7kHm9xIO94iwO5x1scyD3e4kDu3a7iLQ5kH5GzCQ+0Y2euR/mtO6IPA/EpmRjitgg22/1vXR8zfS12+Z6C3V6H0PPX0GfoTNjtdQD4BbrMY6AVv9wiM2JVFpwMU7Bjv4JFq60t3qJg4iwrlq2zYo+fgpDzChLSLDCUdPzv7UqBNrX0Fs4WGrDHoMECfTxGaCPRM/0U/qr2xw8T97QZYH+Z7I0nU4+iv+Y0xuuisTInCb5GHS4WFiK7Ex641RXHQCv3GGjlHQOt3GOglXsMtHKPgZYjcjbhgXbvodPo/5kH1u08ggPHwuF7zzrLXE8vPNFzFLr3dmvcB2MXAwBMRWUYMWUVXhw4ER+6L0F6Vm7jzxN9keDEjYG2c6fNs+DSdQVHg63YuNsKj6VWjJ3afIydOt+KNVsVHAiwICLGgjSdBaayh3s8nRlo00tuI6zQCC+DBotyEjBKexG9MkLwN/Uh/Dip7XvA/jx5Lx5XH0E/zWm4ay9hRW4S9hu0uFBUAC0DbIfGQCv3GGjlHQOt3GOglXsMtHKPgZYjcjbhgfaDsYsxdMKyFufqRF8kOHFjoHXOTGVmqLUKwqMt2HfUgtWbFUyd1/wtCsZOtWHOMgWb91gREGJFdJwCnaFzotnDDLSa0gqcKzTB25CJJTkJGKONQp+MEPxdfRg/cSDA/izJC4+pj6CvJhRu2igsy02EjyEL54sKkFV6R/g5fRTHQCv3GGjlHQOt3GOglXsMtHKPgZYjcjbhgbarE32R4MSNgfbBl1dsRrzaglMRCnb5Kliy1ooJM5p/V+yEGTYsXmvFrgMKTp1TEKe2IK9Y3LG3J9Bmld5BRJEJPoYsLMtNhJs2Cn01oXhMfQQ/cyDA/jTJC/9QH0afjBCM0UZhSU4CfAxZOFdogkbSe8CKHgOt3GOglXcMtHKPgVbuMdDKPQZajsjZXCLQ6vMLscnrODxW7MbURdvw1e4AZOeYRB+WQ0RfJDhxY6Bt33QGC2LiFQSEWLHFS8Hc5UqLtyiYMteKVZsV7D9qQdglC1RZykO/RcGD7u5Aqy2rxIWiAuw3aLEiNwnu2kvopzmNx9VH8PPkvW0G2B8neeFv6kPolRGCUdqLWJSTgL35mQgrNCK95Lbw18rdPwZaucdAK+8YaOUeA63cY6CVewy0HJGzCQ+052MS8fibozBs0gosWOONBWu88cnE5XjqrTGIS84UfXhtEn2R4MSNgbb5mcrMSNNZEHFZge8xC9ZsVTB1fvO3KHCbYsPspVZs3KXgSLAVl64r0Oa5XvTKLqvExcJC+Bp1WJmThPG6aLyrO4un0o7il8nebQbYHybuwV/V/uiZfgojtJFYmJOAPQYNzhYakFp6S/jr49o/Blq5x0Ar7xho5R4DrdxjoJV7DLQckbMJD7SDR81HeFTcfd8fGnENQ8cvFXBE7SP6IsGJGwOtGYYSMxLSLAg5r8DLT8Gy9VZMnNV8jB03zYZFq63YsV9BUJiC2BQLcgvFv4aCcjP0ZZWIKiqCn1GHVbnJmKiLxkDNGXRPDcB/JPu0GWB/kLgHf1b54830YHyujcQCfTx2GTJwuiAfKgbYR3IMtHKPgVbeMdDKPQZaucdAK/cYaDkiZxMeaJ/t645au/2+77fV2vFcv/ECjqh9RF8kOHGTLdDeMFpwJVFB4GkFW70VzFthhfu05t8VO3mOFSs3KvA+rODsRQUpGguMpeKOXV9WieiiYhwyZWNNbgom6aIxSHMWT6cew6+S97UZYL+fuBt/VPmjR8ZJfJZ1AfP0cThYqkVYiQGqkpswucD54Tp3DLRyj4FW3jHQyj0GWrnHQCv3GGg5ImcTHmgHDJ8DdcaN+75flXED/YZ5CDii9hF9keDE7VEOtOl6Cy5cUeAXaMG67QpmLGr5FgWzFlmxfqeCQ0FWRF5VoNF3frTKLa/C5eIiHDbewLo8Fb7IjsG7mjD8M+04fu1AgP23pN34vcoPr6efxKdZ5zFHfx3b89NxqjAPySXlzQbY9jwkjHv0xkAr9xho5R0DrdxjoJV7DLRyj4GWI3I24YH2UNAFvDRwIlZt9cex0CgEhETBc4sfXhgwAV7+oaIPr02iLxKcuD0KgdZYYkZShgVnIhXs9Vew4isrJnk0H2Pdp9mwwNOKbT4KTpxVcDXJAn1B5wSqvLJqXC0uxlGjHuvzVPhSdxnvZ4bhudRA/FfKfny7jQD7vaTd+F2KH15ND8InmRGYrY/Ftvx0nCzIRWJJGYzlNe0+JgZaucdAK/cYaOUdA63cY6CVewy0co+BliNyNuGBFgDCo+IxbvYG9P/MA70+noEx09fi1Lkrog/LIaIvEpy4dbVAqy+w4GqyBSfOKtjuo2ChpxXu05t/V+yk2VYs32DFXn8FpyMVJGZYYChx3rHll1UjtrgEx0w52JCnxtTsKxiSGY4X0gLx25QD+E5bATZxF/6f6iBeTg/Cx1nnMFMfiy15aQgqyEF8cRkMHQiwbY2BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWInE14oNXqjbDV3n8P2q5C9EWCEzdXDrSZORZcjFVw6KQVG3YqmLm45VsUTF9oxbptCg4eb7itQfqNhx+d8suqcb2kFMdNOdiYn4rp2VfxYVY4Xkw7gf9J8W0zwH43cRf+V+WLF9NO4MOscMzIvopN+akINOXiekmpUwJsW2OglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkiZxMeaJ/pMxbFpbdEH0aHib5IcOLmCoHWWGqGSmNBWJSCfUcs8NykYPKclm9RMHelFVv2KjgWquBygoIbxocTmAzlNYgvLsOJghxszkvDTH0sPs46h5fSgvB/Kl98N3FXqwH2O4k78d8pB/BCWiA+yAzHtOwr+CovFcdMOYgtLkF+WbXw833vGGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajsjZhAdaL/9QLN2wv8tGWtEXCU7cOjvQ5haZEauy4GSYgh37FSxaY8W4Fm5RMHGmDUvXWbHHT0HoeQXxqQ92iwJjeQ0SS8oQVJCLrXnpmK2PxSeZEXgl/QR+l3IQ32sjwH47cSf+K2U/nksNxPuZYZiiu4wNeWocNepxzUUDbFtjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5ImcTHmj7fjobLwyYgG49RqJ7rzF4tq97k7k60RcJTtycGWi1eRZcuq7gaLAVG3db4bHUirFTm4+xU+dbsXqLggMBFkTEWJCqs8BU1r6/n6ncjKSScgQX5GF7fjrm6K/j06wIvJYehN+r/PC9pN1tBthfJ+/Ds2nH8V5mGCZnX8a6PBWOGPW4UlyMvC4YYNsaA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLETmb8EAbeSUZMddTW5yrE32R4MTtYQRaU5kZaq2Cc9EW7DtqwerNCqbOa/4WBWOn2jBnmYJNe6wIOGVFdJwCbb5jgchUbkZKyU2EFORhR3465unjMCzrPN7IOIk/qvzx/cTWA+y3vg6wz6Qdw2BNGCZlx2BNbgoOmW4gpqgYOeVVws9HZ4+BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWInE1IoO310XRU11gAAG9/MkvEITw0oi8SnLi1N9DmFZsRr7bgVISC3b4Klqy1YsLM5t8VO36GDYvXWrHrgILgcwriVBbkFbX++VWlt3C6IB+7DBlYoI/H8KwLeDM9GH9W+eMHiXvaDLD/meyD7qkBeEdzFhN10VidmwJ/YzYuFRVBX1Yp/Nfb1cZAK/cYaOUeA628Y6CVewy0co+BVu4x0HJEziYk0L7x/hR4rNgNL/9QdO81Bl7+oS3O1Ym+SHDi1lqgzTZYEBOvICDEii1eCuYuV1q8RcGXc6xYtVnB/qMWhF2yQJWlNHuLgtTSWzhbaMAegwYL9PEYoY1Ez/RT+KvaHz90IMD+e7I3nkoNwADNGUzQRcMzNxkHjTpEFRXiBgNsu8dAK/cYaOUeA628Y6CVewy0co+BVu4x0HJEziYk0MYmZWDi3I0YPnklHn9zFD77YmWLc3WiLxKcuNUodtyqtCIt24KIywp8j1mwZquCaQuav0WB2xQbZi+x4qudCg4HW3HpuoKs3H8FnvSS2wgrNGJvfiYW5SRglPYiemWE4G/qQ/hxklebAfYXyd54Qn0U/TWnMU4XjRW5SThg1CKyqAC6sjvCf70etTHQyj0GWrnHQCvvGGjlHgOt3GOglXsMtByRswm/B+3wyZ6iD+GBiL5IcJ03Q4kZCWkWhF5Q4OWnYOVGGybOaj7Ejptmw6LVVuzYpyDorILYFAtUBRU4V2iCtyETS3ISMEYbhT4ZIfiH+jB+4kCA/VnyXnRTH0E/zWmM1V7C8txE7DNk4UJRAbJKGWA7ewy0co+BVu4x0Mo7Blq5x0Ar9xho5R4DLUfkbMIDbVcn+iLBOWc3jBZcSVQQeFrBVm8F81ZY4T6t+Rg7eY4VKzcq2Ha0EjuiC7ExTYulOYlw00ahryYUj6mP4GcOBNifJnnhMfURvJ0RijHaKCzNSYCPIQsRRSZkllYI/zXhmo6BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWInM1lA23IuatYuNZH9GG0SfRFgnvwpestuHBFgV+gBet3KJixqPlbFIyYWYORG4ow+rAOI86n4JOEGLyddgaPq4/g58l72wywP0nywt/Vh9E7IwSjtRexOCce3oZMhBcakcEA2+XGQCv3GGjlHgOtvGOglXsMtHKPgVbuMdByRM7msoHW/0QE3GetF30YbRJ9keAcn7HEjGSNBWciFez1V7DiKysmefwrxo6cYcaQxSV4e50er+xS4cXjMeh+4TT+FHsUP0/wbjPA/ijJC39TH8JbGacwUhuJRTkJ8DJocLbQiLTS28JfP/dwx0Ar9xho5R4DrbxjoJV7DLRyj4FW7jHQckTOJjzQDh2/FP4nInDzdqXoQ+kQ0RcJrvnlFFpwNdmCE2EKtvsoWOhpxehZZnywuBRvr9XjlR0qPHngMv5w4ix+E3EMP471aTPA/jBxD/6i9seb6cEYoY3ESlMS9hdm4kyBAerSW8JfM9e5Y6CVewy0co+BVt4x0Mo9Blq5x0Ar9xhoOSJnEx5od/oG4/0xC/HkW6MxYc5GnLlwHRbFKvqwHCb6IsGZkZljwcVYBb6nzPDYX4IPdujx6nY1njpwBX8MDMOvw47jR5f3tRlgv5+4G39S+aNHxkkMz7qA+fo47MzPQGhBPlTNBNgaxY7bVVbhr58TMwZaucdAK/cYaOUdA63cY6CVewy0co+BliNyNuGB9hv5phJ4Hz6DoeOX4vn+4zFvlRdiEzNQX18v+tBaJfoiIdP0pVU4lVEMz8t6jDyrxhsnL+OvQeH4TVggfhSzD99KaD3A/lvibvxB5Yc3Mk5iWNZ5zM2Jw/b8DIQU5CGl5CZM7TweBlq5x0Ar9xho5R4DrbxjoJV7DLRyj4FW7jHQckTO5jKB9hu2WjsCTl3ECwMmoFuPkXj7k1k4HnrJZUOt6IvEo7S8smpcLS7GUaMea/RqjEy6gjeuhONP0YH42dX9bQbY7ybsxm/j/PB80kkMzYyAh/46tuWnI7ggD0kl5e0OsG2NgVbuMdDKPQZaucdAK+8YaOUeA63cY6CVewy0HJGzuUSgra+vR4IqC4vX78NLAyfijfenYN2OI9Dqjbh4NRn9hs3Guh1HRB9ms0RfJLrS8suqEVtcgmOmHGzIU2Nq9hUMyQzHs+pA/DrhAL7dRoD9Tvwu/Dz6IP4UGYTXL57HiOuxWJWejiBTLhKKy2Asr+nU18NAK/cYaOUeA63cY6CVdwy0co+BVu4x0Mo9BlqOyNmEB9pNXsfR6+MZ6N7bDdOXbMelayrY7XVNfow+vxDP9x8v6AhbJ/oi4UrLL6vG9ZJSBJpysTE/FdOzr+LDrHC8mHYC/5Pii++0cQ/Yb8fvwk8v+eK3p0/irwHn8eqR6xgWmIEl4fkIiC+HJl/8a7x7DLRyj4FW7jHQyj0GWnnHQCv3GGjlHgOt3GOg5YicTXigHTphGY4ER6KisrrFH2O31+Gr3QGdeFSOE32R6MwZymsQX1yGEwU52JyXhpn6WHycdQ4vpwfh/1S++G7irtYDbMJO/OSSL357Jgh/CYjAMz6xeH1rOgatzceULeXY7mtG8DkFcSoL8orEv962xkAr9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo7I2YQH2jtVNS3u5u1K0YfXJtEXiYc5Y3kNEkvKEFSQi6156Zitj8UnmRF4Jf0EfpdyEN9zIMD+4toB/F9EIP5yLAJP77uG17emof/qPHw8/yZGT1Pw5RwrVm1WsO+IBWGXFKiyFJjKxL/2joyBVu4x0Mo9Blq5x0Ar7xho5R4DrdxjoJV7DLQckbMJD7Tdeoxsda5O9EWiPTOVm5FcUo7ggjxsz0/HHP11fJp1Hq+lB+H3Kj98L2l36wE2cSd+k7Ifz6UG4v3MMLinXkGvvanovzoPHy0sx+hpCtym2Bo3c7EVG3YpOHzSiqhYBZk5j1bMYKCVewy0co+BVu4x0Mo7Blq5x0Ar9xho5R4DLUfkbMIDrS7H2GRavRFRV1Mwce5GRF5JFn14bRJ9kbh7pnIzUkpuIqQgDzvy0zFPH4dhWefxRsZJ/FHlj+8nth5gv5W4E79O3od/ph3Hu5owfJEdg7W5KThsvIHLxUXILa9q8vfLLzFj7BQrxk2zYeEqK3b4KAg6q+BaigU5hY9+uGCglXsMtHKPgVbuMdDKOwZaucdAK/cYaOUeAy1H5GzCA21LzBYrPpm4XPRhtKmzLwqq0ls4XZCPXYYMLNDHY3jWBbyZHow/q/zxg8Q9bQbYXyXvw9OpxzBIcxaTdNFYk5uCQ6ZsRBcVQ19W2f7jyZI3UDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjcjaXDbT19fXo9dF00YfRpof9mz619BbOFhqwx6DBwpwEjNBGomf6KfxV7Y8fOhBg/yPZB91TAzBQcwYTddFYlZsMP6MOUUVFHQqwXMtjoJV7DLRyj4FW7jHQyjsGWrnHQCv3GGjlHgMtR+RswgPt8dBL983/xHlMXbQNH4xdLPrw2tTe39TpJbcRVmjE3vxMLMpJwCjtRfTKCMHf1Ifw4ySvNgPsL5O98WTqUfTXnMZ4XTRW5iTB16jDxcJCZDPAduoYaOUeA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLETmb8EA7YPic+/b+mIWYvmQ7buQViD68Nt37m1ZTWoFzhSb4GLKwJCcBY7RR6JMRgn+oD+OnDgTYnyfvxePqI+inOQ137SWsyE3CfoMWkUUF0DLAutQYaOUeA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLETmb8EDb1blpo/B2RigeUx9xKMD+NMkLj6mP4O2MUIzRRmFpTgJ8DFmIKDIhq/SO8IsO5/gYaOUeA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLETmb8EBbV1ff+NdFpTex40Aw1u08glSNXuBROe7eAPuTJC/8XX0YvTNCMFp7EYtz4uFtyER4oREZpRXCLyrcwxsDrdxjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5ImcTFmhv5BVg0Ih5eKLnKHy5cAuKS2/hjfen4L3RC/DuqAV46q0xiI5ViTo8h63JTYGXQYOzhUakld4WftHgOm8MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliJxNWKAd7/EVRk1bjQsxSZi6aBs+HrcU63Yeafz45r2BGDZphajDc5joiwQnbgy0co+BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWInE1YoH35nUlQZ9wAANyuqEK3HiORmZ3f+PEbuSY812+8qMNzmOiLBCduDLRyj4FW7jHQyj0GWnnHQCv3GGjlHgOt3GOg5YicTVig7dZjJApLbjZ++7l+42EqKmv8dlHpTXTrMVLAkbWP6IsEJ24MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliJxNaKAtKv1XoH1hwAQGWq5LjYFW7jHQyj0GWrnHQCvvGGjlHgOt3GOglXsMtByRswkNtFu8A7HvyFnsO3IWT/cZi01exxu/vcU7kIGWc+kx0Mo9Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I2YYF2wPA5Ds3Vib5IcOLGQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajsjZhAXaR4XoiwQnbgy0co+BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWInI2B9gGJvkhw4sZAK/cYaOUeA63cY6CVdwy0co+BVu4x0Mo9BlqOyNkYaB+Q6IsEJ24MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliJyNgfYBib5IcOLGQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajsjZGGgfkOiLBCduDLRyj4FW7jHQyj0GWnnHQCv3GGjlHgOt3GOg5YicjYH2AYm+SHDixkAr9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo7I2RhoH5DoiwQnbgy0co+BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWInI2B9gGJvkhw4sZAK/cYaOUeA63cY6CVdwy0co+BVu4x0Mo9BlqOyNkYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRho77HjQDDe/GAqXh40CR4rd6PGrAAADAUlGDl1NV4aOBFD3BYhKVXX+HNirqdi8Kj5ePmdSXCftR5lNysaP7b30Gn0+mg6Xn/vSyzb6Itau73TXxM5pqrajNnLd+HlQZPQY8hUePmHNn6sI+e/tRCXFykAABJfSURBVM9Hrqe18/Wgv8dHTl2NGUt3dMrroI65kVeA4ZM98Xz/8Xjn87m4dE3V+LGOnH+brRYL1njj+f7j0fPDaQiNuNbpr4kc15Hzr1htmOO5B6+9Oxl9hs5EwKmLjT8nMzsfwyatQN9PZ2OI2yJcTUjr9NdEjou8koyBn8/FCwMmYMSUVcg1FDV+rLVrvEaXh76fzsaKTQebfL7Wrhnkejp6/kPPX8Nz/cYhPCre4c9Hrqel89XaNR5o+fx/Iy45E916jIQ+v9Dpr4E6rqU/+7d2/mvtdqzfdRTdeozErYrKJp/verIGA4bPwXP9xmG8x1e4U1XTqa+H2qcj7ael819fX49NXsfRb9hs9Bs2GwvWeMNssXb6a6KujYH2LuFR8ej/mQdKym6jxqxgzIy12HEgGAAwYsoqHDgWDru9DjHXU9FjyFTYau2orKrBK4O/QEp6NmrtdmzeG4hpi7cBaPgXc79hs1F2swI1ZgvGzFiLQ0EXRL5EasWKTQcxfcl2WBQrCorK8Mb7U5CgygLQsfPf2ucj19PS+XrQ3+NBZ2PQe+hMBloXN2jkfBw4Fo76+npcjkvFc/3GwWyxdvj8b/U5gSkLt8JssSLrhgEfui+BYrWJfInUio6c/+37gjBt8TZYFCtMRWXoMWQqtHpjw+cbMQ9hF+MAAGlZOXhx4MTGL/rJtRSV3sQLAyYgKVWHurp6bN4biFHTVgNo/fd4cpoOQ9wWwWPl7iaBtrV/Zsj1dPT87w8Iw+T5mzF0/NImga61z0eup7Xz1do1vqXz/w2r1YYhbovw+ntfMtC6sNb+7N/a+Z88fzO27wvCEz1HNQl0FZXVeP29LxGXnAnFaoPnFj8cDY4U8tqobR1pP0DL5z88Kg4fui+B2WKF3V6HyQu2YJfvKSGvjbouBtq7pGbmIClV2/jtA8fC4bFiN8pv3cFz/cY3+a/mH4xdjLjkTIRHxcF91vrG76+sqkH33m6wWm1YvtG3ybvwLl5NxogpqzrnxVC7RV5OgrGwtPHbX8zbjOOhlzp8/lv6fOSaWjpfD/J7/HZFFQYMn4MjwZEMtC6s1m5HwKmLjV94AcDz/ccj31Tc4fPf66PpfNdUF9HR8z9oxDyoMm40fmzt9sPYvi8I9fX1ePzNUbhdUdX4sZcHTeIf0l1UUelNhEfFNX5bo8vDmx9MBYBWf4/nm4pRY7Zgl++pJoG2tX9myPV09PxnZuejvr4eY6avvS/QtvT5yPW0dr5ausYDLZ//b2zfF4RtPkEYNHI+r/0urKU/+wNtn38A9wW6oLMxmLV8Z2ccOj0EHWk/QMvnf8eBYKzc/K+vB/xPnOef/6jdGGhbMd7jKxwNjkRSqg7vjlrQ5GMzlu5AQEgUdh8MgecWvyYfe/29L5FrKMKYGWsREZ3Q+P36/EK88f6UTjl2ejBV1Wa88f4U3Mg1dfj8t/T5yPXdfb4e5Pf4/NV7ceJMNMKj4vkv6C4kVaNHzw+nodZu79D5v1NVg6f7jIVfYAT6DfPAe6MXIPJKcme/DOogR8//U2+NQcWd6sbvPxoc2fgHs9HT1jS+0y4+JRN9hs7kLY66CO/DZxqv1458HXdvoHX06wJyTe09/y0FuuY+H7m+u89Xa9f4bzR3/nMNRRg8aj4Uq42Btov55s/+gGPn/95At2qrP5Zv9MWYGWvRe+hMzPX0QlW1uXMOnh6YI+3nbvee/wRVFt75fC5uVVRCsdow3mMDAk9Hd8ah0yOEgbYFO/afxOhpa1Brt+NqQhqGjl/a5OML1njD91g4Nnkdx4ZdAU0+1mfozMb7z8VcVzd+f2FxOV4YMKFTjp86zqJYMd5jA7b6nACADp//lj4fubZ7z1dHf4/Hp2Ri+GRP1NfXM9B2IcbCUvQb5oHLcakAOnb+TUVleKLnKOzxC0F9fT1S0rPxfP/xKCm73amvhdrP0fOfmpmDbj1GwqL8695iweFXMHn+ZgBAdo4Jrwz+Ai8NnIin+4xloO8iLselos/QmSgqvQkADn0dd2+gdeTrAnJNHTn/rQXaez8fuba7z5et1t7qNf4bzZ3/0dPW4FpCOgAw0HYhd//Z39Hzf2+gm7fKC/2GzUZhyU0oVhumLtp233+wI9fkaPu5273nHwCWbfRF915j8Gxfd4ycuho2W63Tj50eLQy096ivr4fnFj+4z1rfeFPn5DQdBo2c3+THTV+yHcdDL2GPX8h9D4d4dfBk5JuK4TZzXZN/ad/INfF/c3Jxd6pqMHzySmzxDmz8vo6e/5Y+H7mu5s5XR36P22y1eG/0gsZ3TDPQdg1ZNwzo++lsXLz6r5jWkfNfUVmNbj1GovKuB0OMnrYG5y4lgFxXe8//U2+NafKF+eGTF+CxYjcUqw1vfzILV+IbHgyWayjCG+9PgaGgpHNeCHVI6PlrGDB8TuO/vwE49HXcvYG2ra8LyDV19Py3FGib+3zkupo7Xy1d4+927/k/GXa5yY9hoHV9zf3ZH3Ds/N8b6Dy3+GP1tkON305UazF4VNM/Q5JraW/7udu95/9ocCTcZ61HjVmB3V4Hzy3+WLx+n/NfBD1SGGjvsXb7YUxfsqPJvehuVVTin2+7N7lo9xs2G8lpOkREJ+DzLz0bv7+49Bb++bY7au12eG7xwzafoMaPhUZcg9vMdZ3zQqjdFKsNn32xEn6BEU2+v6Pnv6XPR66ppfPVkd/jqZk5eL7/eLz+3pd4/b0v8eLX76LjPahdl6GgBH0/nd3kKa1Ax84/ALw4cCJMRWWNHxs9bQ0iLyc5+VVQR3Xk/L87agGuJ2saP7ZonQ/2+IUgMzsfPYY0jThjZ65HyLmrzn0R1GGRl5Pw7qgFKLtZ0eT7Hfk67t5A29o/M+SaHuT8NxdoW/p85JpaOl8tXePvdu/5n7xgC14Z/EXj139PvjUarwz+AlFXU5z7IqjDmvuzP+DY+b830PkeC8e8VV6N305UazHEbZGTjpwehva2n7vde/4nz9+MY6FRjd9OSc9G309nO+/g6ZHEQHuX+JRMDHFb1Oxb0cdMX4tdvqdgt9ch9Pw19Bk6E3Z7HaprLHhl8BeITcpArd2OZRt9Mdez4cKclKpFr4+mo6j0JiqravDRuCUIOhvT2S+LHLRj/0ks3+jb7Mc6cv5b+3zkelo6Xw/j9zjfQev6Rk5d3eRBId/o6Pn33OKHhWt9UGu3IzUzBy8OnIjyW3c69TWR4zpy/nf5nsJ4jw2wKNbGWxrkGYtxp6oGz/Ubj9TMHABAafltvDp4MjS6vE59TeSYispq9PxwWpP/oPINR67x9wba1v6ZIdfzoOf/3kDX2ucj19Pa+WrpGn+3tu5BzHfQurbW/uzvyPm/N9CV3azAy4MmIeuGAbZaO6Yv2YF1O484/XVQx3Sk/dzt3vO/yes4vly4pfE/yG7eG3jfbTGI2sJAe5e5nl54oucodO/t1rgPxi4GAJiKyjBiyiq8OHAiPnRfgvSs3MafdzUhDYNGzMPL70zCxLkbmzy5ed+Rs+j54TS88f4UrNl+GHV19Z39sshBvT6ajqfeGtPk/H/zv6l05Py39vnI9bR2vh709zgDrWszFpaiW4+RTc59995uOB+TCKBj599ssWL6ku14YcAE9P/Mo8n/Nk+upaPn32q1Ya6nF14dPBlvfzILweFXGj/nxavJeG/0AvQbNhsDhs9pfOgIuZ6gszHNnv9vznNLv8dXbzuE7r3d8ORboxu/dvzm6c2tXTPItXT0/H8wdjG693bD42+OavzaITwqrs3PR66ltfPV2jW+pfN/LwZa19ban/1bOv+3K6oaf+zd/+x88w7sS9dU6PXRdLw6eDJmLd+J6hqLsNdHretI+2nt/FfXWDDHcw/6fjobfT+djfEeG1BYwnuQU/sw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERERERERERESCMNASERERERERERERCcJAS0RERERERERERCQIAy0RERERERERERGRIAy0RERERERERERERIIw0BIREREREREREREJwkBLREREREREREREJAgDLREREREREREREZEgDLREREREREREREREgjDQEhEREREREREREQnCQEtEREREREREREQkCAMtERERERERERERkSAMtERERESPsIKiMsz19MKbH0zFk2+NxksDJ2L6kh0wFZWJPjQiIiIiIgIDLREREdEjy26vQ79hHpiycCu0eiMq7lQjMzsf42ZvQP/PPGC314k+RCIiIiIi6THQEhERET2iTEVl6NZjJG7kmpp8f/mtOwgIiUKN2YKymxXo1mMk8k3FjR/3P3Ee749ZCACIvJKMvp/Oxt5Dp/FMn7E4fPICnu4zFjVmpfHHV9dY0L23Gy7HpQIADh4/hwHD5+CZPmPxzudzcTUhDQCwYVcAhk1a0eRYElRZ6N7bDXeqapzya0BERERE5OoYaImIiIgeUVarDS+/MwkL1/q0GEDbCrQx11PxwoAJWLJ+P4pKb6LGYsVLAyfi3KWExh9/5sJ1vDp4Mmrtdpy5cB2vvTsZGdpc2O11uHg1Gd17uyHfVIIbeQXo1mMkDAUljT931VZ/TFm41Um/AkREREREro+BloiIiOgRlpSqxTufz0X3XmMwfLInNnkdhyrjRuPHHQm03XqMRFHpzcaPL1jjDY+Vuxu/PX3Jdizb6AsAGD1tDTbvDWxyDONmb8D2fUEAgI/HLcWOA8GNH3vrw+k4H5P4EF8xEREREVHXwkBLREREJIGsGwb4BUZg8vzN6N7bDZMXbIHdXudQoO3ea0yTzxVzPRUvDZyIWrsditWG5/qNQ6JaCwDo9fEMdOsx8r7N9fQCABw+eQH9P/MAAKRq9Hhp4ETYbLWd8UtAREREROSSGGiJiIiIJHMj14Qneo7ChZikFgJtRJNA+2xf9yY/v9Zux8uDJiE2MQORV5LR88NpqK+vBwAM/Hwu/AIjWvx7V1RWo3tvN6Rl5WDDrgAs3bD/4b9AIiIiIqIuhIGWiIiI6BEVHavCys0H7/v++vp6vPzOJASdjcGdqhp06zESuhxj48fX7TjSaqAFgIVrfbBqqz/mrfLCuh1HGr9/4tyNWLjWp8mPLSwuR11dfeO3py3eho17jqH30JlIStU+8OskIiIiIurKGGiJiIiIHlG6HCOe6TMWSzfsR4Y2F6Xlt5GZnY+Fa33wXL9xjfeVfWXwF/A/cR5AQ0zt++nsNgPtlfg0DBg+B6+9OxlpWTmN3x8dq8IzfcYi5roatXY7EtVavDhwIuJTMht/TNTVFLwwYAJ6D53Z+M5bIiIiIiJZMdASERERPcJSNXp8MW8zXn/vSzz51mi8PGgSJs3bBI0ur/HHhEfFo/fQmRgwfA4mzt0Iv8AIDBoxD0DLgbbWbscrg79Av2Gz7/uYX2AEen08A0/3GYuBn89FcPiV+37ua+9OxhbvwPt+LhERERGRbBhoiYiIiKhT3bxdiX++7Q5jYanoQyEiIiIiEo6BloiIiIg6RV1dPW5XVGHy/M2YvXyX6MMhIiIiInIJDLRERERE1Clirqvx1FtjMN7jK1TcqRZ9OERERERELoGBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgE+f9FXn8hCcNBGgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd93dU96Hu/+/fk5x7fXNzktzcc26a7dixT+Jjx44TVwzGFGNsTDeYDqb3ZnrvvQoQqCAB6r33NrP37K0yI400Gs3M+/uDhCimG2mD9/Na61krAiG2JK9J8vbWZ/9/iIiIiIiIiIiIiIgj/j+nL0BERERERERERETErRRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBVoRERERERERERERhyjQioiIiIiIiIiIiDhEgVZERERERERERETEIQq0IiIiIiIiIiIiIg5RoBURERERERERERFxiAKtiIiIiIiIiIiIiEMUaEVEREREREREREQcokArIiIiIiIiIiIi4hAFWhERERERERERERGHKNCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBVoRERERERERERERhyjQioiIiIiIiIiIiDhEgVZERERERERERETEIQq0IiIiIiIiIiIiIg5RoBURERERERERERFxiAKtiIiIiIiIiIiIiEMUaEVEREREREREREQcokArIiIiIiIiIiIi4hAFWhERERERERERERGHKNCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBdofqcnu1Fy6YChCa3u349ehObNQOIrtDzl+HZoz64nEMFu7HL8OzZnFYuB5Bq5DG/x5mnu//05fh+bMzNYueiIxx69Dc2a2P0QoHHX8OjRn1treTTAUcfw6NOcmMtAUaH8kp18kNOemQOvuKdC6ewq07p4CrXunQOvuKdC6ewq07p4CrSYy0BRofySnXyQ056ZA6+4p0Lp7CrTungKte6dA6+4p0Lp7CrTungKtJjLQFGh/JKdfJDTnpkDr7inQunsKtO6eAq17p0Dr7inQunsKtO6eAq0mMtAUaH8kp18kNOemQOvuKdC6ewq07p4CrXunQOvuKdC6ewq07p4CrSYy0BRofySnXyQ056ZA6+4p0Lp7CrTungKte6dA6+4p0Lp7CrTungKtJjLQnulAGw73OH0JD+X0i4Tm3BRo3T0FWndPgdbdU6B17xRo3T0FWndPgdbdU6DVRAbaMxto2zs6+e1fRzt9GQ/l9IuE5twUaN09BVp3T4HW3VOgde8UaN09BVp3T4HW3VOg1QZLLBZj+8HzvPbBZF54cSh/+PuXzF+1h2BnaED+vp5IhNMXrw3Ix5bH43igrW8yGTFpGf/vv7/g16+N7N//+NMn/Pcn05y+vIdy+kVCc24KtO6eAq27p0Dr7inQuncKtO6eAq27p0Dr7inQaoNlyYYDvPTueFIzCugIdlFR3cjwCUsY+vWiAfn7istrGT5hyYB8bHk8jgfaYeMX89WMNVxIzOA3r4/i8tUsln9/iPc/n0dLW8Dpy3sop18kNOemQOvuKdC6ewq07p4CrXunQOvuKdC6ewq07p4CrTYYWtoCvPDiUPKLq+749WBnFwdOXCbcEyEajbFy8xFe+2Ayr384hUnzNtLe0Xt9L7w0DKu5rf/P3Xy7pKKON4dOZ8Wmwwwbv5jXPpjM1bR8OoJd/Ontcfz7q58xdNwiistreWvYt0yat5GhXy/i7eEziUtI7/94V1KzeWvYt4PytXAjxwPtv7/6GR3BLgD+840x/b9+ITGDqQs2OXVZj8zpFwnNuSnQunsKtO6eAq27p0Dr3inQunsKtO6eAq27p0CrDYbLKdm8+I+vH/g+Z+Nv8N+fTCPY2UUsFmPczHUs23gQuH+gLa9u4Od/GEJqRgEAcQnp/GvUnP7/fPMO2vLqBn75ynDOxt8AYPvB83wxfVX/x5u2cAub9px+ep+w3MHxQPt/Xh+Fvz0IwO/eHNsfa8M9EX77XzqDVnt2p0Dr7inQunsKtO6eAq17p0Dr7inQunsKtO6eAq02GE5eSOHdkbMf+D6T5m1k+8Hz/W+nZhT039X6oED769dG9v96SUUdL74zDvhhoP3Fy58SjcYAMK1WfvHypwTag0SjMf7jb2OobzKfzicrP+B4oB0zbRWffLWQ9o5ORk5ezuzlO6mq83D4dCK/e3Os05f3UE6/SGjOTYHW3VOgdfcUaN09BVr3ToHW3VOgdfcUaN09BVptMKRll/D7t7584PsMn7CEE3Ep/W8Xltbwh7/3/pkHBdqb7wPc8fbdgfbuv//jL7/j2LlkMnJL+cdns37cJygP5HigtZrb+HrWOto7OqmobuTFd8bxs99/zC9e/pTj5686fXkP5fSLhObcFGjdPQVad0+B1t1ToHXvFGjdPQVad0+B1t1ToNUGg789yL+/OoLrWUV3/HqoO8yspdsJdoaYMn8TOw7F9f9eSnoBf/90BgD/+8/DMa3W/j/zs99//NiB9vb3Azh0OoERk5Yyf9Vuth84jwwcxwPt3XoiERq9Fl2hbqcv5ZE4/SKhOTcFWndPgdbdU6B19xRo3TsFWndPgdY9q7dbqbGbqLAqKbEKKLDSKWxJpj3U7vi1ac5MgVYbLBt2nuR3b44lITWHjmAXNfVeRkxaypffrgF6g+pbw74l2BkiEokydvpqVm89CsAr/5pIWnYJAKcvXuPnfxjy0EB7+WoW/xw1h1gsds9A2xbo4N9fHcHv3hyLx7AH40vgWs9EoG1pC1BQWk1WftkP9qxz+kVCc24KtO6eAq27p0Dr7inQuncKtO6eAu3zuQa7jRrbQ4VVRalVSKGVQa6VRIbvPDfM46SY+0g0tnLFWMNFYzHnjTmcM2bdc2ZnveOfj+bMFGi1wRKLxdhxKI6/vD+JF14cyovvjGPFpsOEwz39v7922zFe/3AKr30wmemLthLsDAFwJv46r30wmU/HL2Hz3jP87s2x+OzWBwZaq7mNF98Zx+/eHHvPQAsweuoK3hs9dxA+e3dzPNBu2HmSf/vjEH72+4/5tz8O+cGedU6/SGjOTYHW3VOgdfcUaN09BVr3ToHW3VOgdX73i62ZZtw9Y+v9QuvDFmcsIN5cQYKxgavGDq6ZB8myztAash3/GmjOTIFWc7NZS7ez73i805fxk+d4oP3dm2PJLignEok6fSlPxOkXCc25KdC6ewq07p4CrbunQOveKdC6ewq0T3f1tp8a20ulVU2pXUSRlUmeldwfW1ON/SSZ27hsruWCsYRzD7iz9XFja7p5mmzrMvnWNYqtHMqsMqrseupsH012xz2vV2fQunsKtJpbVdb0Pisq0B50+lJ+8hwPtG8N+9bpS/hRnH6R0JybAq27p0Dr7inQunsKtO6dAq27p0B7//Xe2eqlwr4ZW7PIs66SaV4gzTzRF1u3csVYy0VjCeeMuU8YW+dzyVjeG1vNHVw3D5J2M7b6UimysimzSqmy66h9QGx9kinQunsKtJobrdh0mD+9PY6E1BynL8UVHA+02w+eZ9Oe089tjXf6RUJzbgq07p4CrbunQOvuKdC6dwq07p5bAm2D7afGNqiwayi1iynsi61ZN2OreYBkcxtXjHVcNJZy3vtksfW891ZsTTa3993ZeopsK568H8RWk0bb2Qd0KdC6ewq0mshAczzQxiWk86u/jOBnv/+YF14cygsvDbtjzzqnXyQ056ZA6+4p0Lp7CrTungKte6dA6+49j4G2wfZTaxtU2jWUWjdjawpZ5kXSzJP3iK3znjC2zuOSsYwEY/2t2Oq7GVtTKLKyKLNKqLRre2Nrs7Ox9UmmQOvuKdBqIgPN8UD7uzfHsm77cZJv5JOWXfKDPeucfpHQnJsCrbunQOvuKdC6ewq07p0CrbvndKDtja0mlXYtpVZJb2z19cVW30mumQdINrdzxVjPJWPZj46tV4z1JJvbuGYeIM13kizzInlWCoVWFqX9sdWgwfY7/r0ZjCnQunsKtJrIQHM80P71o6lOX8KP4vSLhObcFGjdPQVad0+B1t1ToHXvFGjdvacZaBub2/tja5lV0ntmqy+VbCuedN8prpkHSTa3k/CjY+tcLhpLuWKsI9ncRqp5gDTzZmy92hdbi6m0a1wVW59kCrTungKtJjLQHA+0M5ZsIyu/3OnLeGJOv0hozk2B1t1ToHX3FGjdPQVa906B1t27X6BttNuptX1U2XWUWaUUWdnk34yt5u2xdQOXjOWc985/oth6zrgVW5PMraQa+0kzT5BlXiDPukqRlUWpXUyFXUONbdBgtzn+NfspTYHW3VOg1UQGmuOBdsr8TfzyleG889lMPp+6kjHf3LlnndMvEppzU6B19xRo3T0FWndPgda9U6B1wzruE1svk2GdJrv1CFfNHf2xNc74MbF1CVeMtSSZ2/pja2Z/bM2k1C6iwq6mxvZSrztbHZ8CrbunQKuJDDTHA+2itftYtvHgffesc/pFQnNuCrTungKtu6dA6+4p0Lp3CrTP2zqos31U2fWUWWUUWznkW9fIti6Tbp7mmnmQq8YOEo2NxJsriDMWPGFsncMFYwmXzbUkGVtJMfdxwzxOphlHnpVMYV9srbRuxlbd2fo8ToHW3VOg1UQGmuOB9nnn9IuE5twUaN09BVp3T4HW3VOgde8UaJ1bo91BnW1RZdVTbpVRbPfG1hzrCunmGa6Zh0g2dvbGVmPFE9/Zet6Yw0VjMZfNNT+IrQXNV6kP5lJqFVJpVVFje3SMgIumQOvuKdBqbtYTifCz33/MCy8N43+9/Cm/eX0Uwycsoa7R+FEf95evDMfra35KV/n8czzQzliyjVlLt99zs5fvZOOuUxSX1zp9mffl9IuE5twUaN09BVp3T4HW3VOgde8UaJ/ObsbWaquBcruMYiuXfOv6HbH1qrGTBGMjl4yVXHjCO1tvxtYrxhoSja2kmHu5YR4jw3eeXCuJQiuDUquQiv7Y2vrA636aDwl71udp9GOWG1g5dTSnltF6MR//iTSMSsvxa3NqCrTungKt5mY3A+3NmNrZ1c3MJdv5bOLSH/Vx7RY/0WjsaVziT4LjgXbWsh389r9G89K743vPoJ22ij//cwL/+cYYpszfxCdfLeR//OkTTl1IdfpS78npFwnNuSnQunsKtO6eAq27p0Dr3inQ/nCNdpA62+6PrSVWLgX9sfUs183DXDV2kWB+T7yx8kccIzCbi95FXDZWk2RsIdXcy/XbYmuBlU6JVUCFVUmN3UT9Q2Lrk+x5DbQeswOj2sJX2IidVklLQiFtZzIJHEqlY9slOtecIbToMOEZe4hM2EJs1Dr4bPU9Z18rc/zzcWoKtO6eAq3mZncHWoCU9AL+8v6k/rcTUnN4Y8g0/vzPCQwdt4jm1gAAOw/F8c13m5k0dyMfjV3A28Nn0uS1gFt30JZU1PHm0Oms2HSYYeMX89oHk7malj+4n+QzwPFAu3DtPlZvPXpHNY/FYqzfeYJNe04DcPlqFq9/OMWpS3wgp18kNOemQOvuKdC6ewq07p4CrXv3Uw+0N2NrldVAuV1OiZVHgXWDHF8CGTdjq3l7bP3uiWPrhdtia4q5hxvmUTJ85+4TW1sc/9o02c9OoPXWtWAWe7Azq2hJKqbtfDaBo9dp33GF4PqzdC05Snj2PiKTtxEbs+G+sfVBi41aR2TiVsIz9xJafITOtWfp2BaPr8jj+Ofv1BRo3T0FWm2wTZoZ5uvpg797uTvQBju7mDR3I4vX7wfA8LXw2/8aTWllPQDbD5xnzLRVAOw5eon/+7fPsZrbAJi7YhcrNh0GbgXa8uoGfv6HIaRmFAAQl5DOv0bNGbgv7jPK8UD7q7+MINgZ+sGvh7rD/O7NsQB0hbr5xcufDvalPRKnXyQ056ZA6+4p0Lp7CrTungKte/d8BdogdXYzVXYj5XY5xX2xNfdmbPUd4aq5m0RzE/HGqh8XW42FXDZWkWRs7o+tmb5z5PiSKLDSKLHyKbcrqLYbn5nY+iQbiEDr7T9KoLbvKIE8/CfSCOxJJPh9HF0rTtA97yA93+wg+tX3MOLxYysj1xAdt4nwt7sIfXeYzlWn6dhykcC+ZPyn0mm5XIB9vQJffgNGpQ+PN+D41/pZnAKtu6dAqw22YWPDjuxebgbaX/1lBL9+bST/9schvP7hFGrqvQAcPJXAsPGL+98/2NnF//zTUMI9EfYcvcSYb1b2/96uwxeYMn8TcGeg/fVrI/vfp6SijhffGTcQX9ZnmuOB9j/+NobLV7N+8OtX0/L7A218chavvjfpB+/zLHD6RUJzbgq07p4CrbunQOvuKdC6d84F2iB1zc1U98fWfAqsNHJ9iWSYZ7lhHiHltth6wVj4hLF1FheMhcQbq0k0NpNi7uaGeYQM8yw5vkQKrDSK+2PrzTtbg45/XwZrDwu0HrMdo9LCl9+Afb2ClssFtJ3OILD/Kh1bL9G5+jShhYcIf7ubyPjNxEatfaK7W6NfbqRn6k665x6ga/kJghvjaN+dgP94Gq0Xc2lOKcXKrsUsM/A26CFmT2sKtO6eAq022Nr8zuxe7r6DticSIflGHv/5xhh8ditb9p3ll68M58V/fN2/37w+Cp/dyp6jl5g0d2P/x7r97dsD7R/+/mX/+9z9tls4Hmj3n7jMz37/Me+OnM2EOeuZumATH4yZx8//MIT1O0/Q2dXNz/8whGPnkp2+1Hty+kVCc24KtO6eAq27p0Dr7inQundPK9DW2y1U202U2xWU9MXWnP7YepQUcw+JxmbijdV9sXX2E8XWOOM74o1VJJqbuGru5rqvN7bm9sfWPMrtcqrtRuqam3FTbH3ofEG8tc34ijzYGVW0JBYRiMsheiad9u2XCa47S2jxUcKz9hKZtI3Y5+uf7CiBz9cTmbSN8Ox9dC05SnD9Wdp3XCFw5Bpt57JpSSrGzqzCLPbgrWuhydL3yKkp0Lp7CrSam93rDFqAN4dO52JSBqcupN5xl+ztFGgfneOBFqCwtIZVW44wbeEWpi3cwrKNB0m+kdf/+xXVjQ5e3YM5/SKhOTcFWndPgdbdU6B19xRo3bt7Bdre2NrYF1sLKLDSyfElkek71x9bk4zNXO6/s/VpxNZdXDcP98XWBAqsG5T0xdYqu5E6W7H17nkb2jDLvFjZtTSnlNJ6MRf/8TTadycQ3HieruUn6J53gJ6pO4h+ufEJz21dS2T8ZsLf7ia08DCdq0/TsfUSgf1XaTud0XuUwI1KfAUNGFUWHqPd8a+L9uh7ngOtx2zB67EwmrwYDfWYddX4airwVRVjVeZjl+Vgl2bQXHSNlsJkWvMSaM29SFv2OfyZp/CnHSNw4xBer8/xz8WpKdBqbnavQJuRW8ovXxlObYOB1dzGf74xpv/Ig/ySauat3AUo0D6OZyLQPs+cfpHQnJsCrbunQOvuKdC6ewq07lq13USxlU+uL5HrviNcb95+W2x90mMEFnDJWEmC+T1XjV1cMw+Rbp4hx7pCgXWdYiuXcruMaquBOtt2/GvwrM3j8WNU+PDl1WNfr6A1vgD/qXQC+5Lp2HyRzlWnCC04THj6LqLjNsHINY8fXEesJvrV9/R8s4Pu+QfpWnmSzs1xRI+k4D+RRuvFPJpTy7By6jDLDTyNfse/LtrA7mGB1mO24vXaeD0GRkMjZn0tvppKfNWlWBWF2OW52KWZNBffoKUwhZb8BFpz42nLjqMt6zT+9OME0o4QuLafQMou2pO205G4mY4r6wnGr6bz4gq64hbTdW4BoTNz6D41k+6T0wgfm0TP0a/pOfQlkYOfE933GbG9Q4nt+hh2vvdUZ9ZUOP59cGoKtJqb3Qy0L7w0jBdeGsYvXv6Uv340lbiE9P73SbyWyxtDpvHqexN5e/hMsvLLAAXax+FIoP3tX0eTlV/e/58ftGed0y8SmnNToHX3FGjdPQVad0+B9qe3BruNSquaQiuDTDOOVHMvl43Vj3hn63zijRW9d7YaO++IrfnWdYrtHMrtMqqseupsy/HP9Zmb2YFRY+MrasJO7z1KoO1sFoHDqXRsi6dz7VlCi48QnrmXyMStxEave7K7W8esJzJpO92z99G19BjBDedo33mFwJHrtJ3PoSWpGCurGrPEi7f+3kcJDMRDwrTHm8fXhtdoxusx+yOoWVuFr7oMq/JmBM26LYIm9kbQnDjaMs/gzzhB4MYRAtcPEkjZTXvyzQi6oS+CrqTzwpLeCHp27m0RdDKRY+OJHfmqN4LuH0F0gCLoQCy2ewjRvcOI7h9B5ODn9Bz+ivDR8YSPT6b75HRCp2cROjuXrvML6bywlM5LKwleXkPHlY10JG6hPXkHgZQ9eD2G4/8MODUFWk1koDkSaOOTs2hpC/T/5wftWef0i4Tm3BRo3T0FWndPgdbdU6B9fldrm5RZJeT5Ukg3T5FsbueisfSBAfaisZRkcxtp5knyrKtY3VVU2Yqt95zVibeuFbPEi5VVQ3NyCa1xuQSO3qB9VwLBjefoWnac7rn76Zmyg+jYDU94lMA6IhO2EJ6xh9CiI3SuOUPHtngCh1JpO5NJS0IhdloVvsJGjGobj9nxVD4/twRajy+Ax2jB6/VhNHowGuow62rw1ZRjVRZhVeRjl2XTXJLe+yPxBUm05l2hNecibVnn8GeeJND3I/GBlD20X91Be+JWOhI2EoxfS+ellXReWEbX+YWEzs4jdHo23aemEz4+lfCxCfQc/orIoS+I7B9JdN+nxPZ8Ars+cDxyPnjvE9v98Z0R9NCX9PRH0Gm3Iui573oj6MWbEXQDHUk3I+ju3nicdhR/xgnaMs/QlhNHa+5lWgoSaSlMobkkDbs0C6s8F6uyCF91GWZtFWZ9LUZjE16PiddoxuPTXd1Pcwq0mshAc/yIg4OnEu7568HOEJv2nB7ci3kCTr9IaM5NgdbdU6B19xRo3T0F2md9HVTZjZRYueRYV7hmHiLB2EicMf8BIXYOl43VpJj7yDTjKLQyqbSqqbfvDBxP6yFhz8s8TX6MChMrt47ma+W0XsrHfzKdwN4kOjZdoHPlSbrnH6Jn2k6iX22CEU9ylMAaol9tomfaTrrnH6Jz1Sk6Nl8gsDcJ/8l0Wi/l03ytHF9ePUalicfjXHR6moHW42vv/ZH4/nNBG247F7TkznNBi6/fdi7opb5zQft+JP7GIQKp+2i/upP2pG10JGwieHkdwfhVdF5Y3vsj8WfnEzozm+6TMwifmEr42ER6jozrjaAHRhHdP5zYnk+I7f7wGQidD7kTdNdHxPYOJbrvMyIHR/dG0CPjCB+bRPfJaXSfmkHozBy6zi2gK24xnRdXEIxfTceV9XQkbqI9aTuBlF0EUvcRSDuCP/0EbVmnacuOozUvnpb8hN4IWnwDuzQTuzwHq6IQX3UprY1VdLd4MBoa8HoMvF4bj9lKk/V0/gWA9mxPgVYTGWiOBdpwuIdgZxe/fGU4wc6uHyy/pJoXXhzq1OU9MqdfJDTnpkDr7inQunsKtO6eAu2zsQa7jQqrkgIrnQzfOVLMPcQbqzlvzHngg7YSzU1c9x0h15dIiZVPtd1I4yM+UOt5DrQeswOj2sJX2IidVklLQiFtZzIJHEqlY9slOtecIbToMOEZe4hM2EJs1JMdJRAdu4GeKTvonrufrmXHCW48T/uuKwSO3qA1Lpfm5BKs7BrMUi/e+laarAH8vK2Ou84FbbjHuaA5PzwXNO8e54Km7qMjdTfRG7seci7ojHucCzp6QM8Fffo/Dv8hsT2fEN0/nMiBUUQOfdEbQY9OJHxiKt0nZxA6M5uus/PpOr+IzgvLCcavInh5HR0Jm2hP2kr71Z29EfTGIfzpx/FnnqIt+xytuZdozUugpTCZ5uLr2KUZ2GU5WJX5+KpK8NVUYNZVYzQ0YDR58XosPGYrHp/zD1R7nh8Spv34KdBqIgPNsUC773g8//NPQ/nZ7z++7z4dv8Spy3tkTr9IaM5NgdbdU6B19xRo3T0F2sFdrW1QaheTZ10lzTxBkrmNi8biBx5LcMlYzlVjB+nmafKta5RbZU/lSIJnJtBaQbx1LZjFHqzMalqSimk7n0PgyHXad1whuP4sXUuO0T17H5FJ24mNWf9kRwmMXkdk4lbCM/cSWnyEznVnaN9+mcDhVNrOZtGSWISdXoWvoA6zoglvgxejsemuc0GLsG6eC1qS1htBCxJpzb1857mgaUdvOxd0Bx1JW+i4spHg5TV954Iupevcd4TOziV0elZvBD0+mZ6j43t/JL7/XNBhxHZ/DLvedzx0PnC7PuiNoPs+JbJ/ZG8EPfwV4WMTCB+fQvep6YROzyZ0dt6d54LGr6UjYSPtiVtpv9p7LmjgxiECacfwZ56kLessrTkXac27QktBEs1F12guSccuy8aqyO/9kfiacsy6GoyGOoxGD16vD4/RgscXcP6f7Wd4CrTungKtJjLQHD3ioLOrm1+8/CklFXU/WE29l2g05uTlPRKnXyQ056ZA6+4p0Lp7CrTungLt0/R9z0sAACAASURBVF9jcztVdj3FVg7Z1mWumQdJMNZz3nv/YwnOe+dyxVhLqrGfLPMChVYWlXYtDfbA/Qj8QAVab6Mfs9zAyqmlObWM1ot5+E+kEdibSPD7OLpWnKB73gF6pm4n+uVGGPH4sZURq4mNXUt00noi09fTM28D4cXr6V61jvD6NYS3rqJ713K69y+m+8gCQifm9J0LOuW2c0HHPF/ngu66x7mgh796xHNBN/7gXNCOjKNEC88+3rmgDXU6F/QnMgVad0+BVhMZaI6fQdvdHaYnEul/OxKJUlRWQ3NrwMGrenROv0hozk2B1t1ToHX3FGjdPQXaJ1+93UK5XU6BdYMM8yxXzV1cMlZyzph93xB7wVhIkrGZ6+Yxcq0kSq1CamwPTY94LMHTnK+hlpi35NbDkQqTex+OlHvr4Uj+60fpiD9A8NROug5uIbTje7q/X0945RrCi1YRmb2S6DcriE1YQeyLlTBi1RPc3boKRi+HsYtg/HyYPBumT4dZk2HBBFjyJaz8HNaOgI1DYevAny3aezfozR+JH9t3LuhEuk980xtBz8y+dS5o/4/E3zwXdNutc0FvHMaffgJ/5mnass/Tmnup91zQgqu9PxJfktF3LmgBvuqbPxJfc+tH4m+eCzoA33+3PCRMu/cUaN09BVpNZKA5HmivZRTyuzfHEolECfdE+OeoOfz8D0N44aVhJKTmDNp1xGIxVmw6zKvvTeTV9yYybeEWOru6AahvMvn4y+/4P6+P4q1h35KVX97/55x+kdCcmwKtu6dA6+4p0Lp7CrQPW5Aa20OpVUiulcR18xhJxhYueBc94FiC2VwyVnLV2EW6eZYC6wbldjl1zc2Deu1erw+rsoiW/EQCaUcIxq+n++gcotsmwOqRsHwMLBoH8yfCzKnwzQyYNAfGLYAxS2Dkiic6SoCRK3r//LgFvR9v2re9H3/+xN6/b/kYWD2S2Pejie4cSWT/6DvPBT0+le6T3xI6M5tQ/7mgywheWtX3I/Hf950LuoNA6t7ec0HTjvWeC5p1jtbcvh+JL0y+7Ufic7Aq8vFVFd8WQetvOxe05Rn4Z21wp0Dr7inQunsKtJrIQHM80L417FuOnk0C4OSFFP749le0tAW4mJTBW8O+HbTriEtI4+3hM+ns6iYSiTJm2io27DwJwEdjF7DjUByRSJTkG/n8/q0vCff03vXr9IuE5twUaN09BVp3T4HW3VOg7V2D7afSrqXQyiLLvEiqeYArxlrOe+c94FiC+Vwx1nPNPEi2FU+RlU2VXUdj8+A8AMjb0IadU4D/yhWCxw4R2rGJnjXLiSyYT+zbmb13oo6f33tn6ujlvXeqPnZsXU3syzVEJ6+nZ+ZGwt9tIbRyB13f76Vz92E6jp4gcO48/qQEWjJvYJXm9J0LWoZZW33Hj8R7DPdF0Gd5CrTungKtu6dAq4kMNMcD7f96+VMikSgA42auY9nGg0DvUQf/+8/DB+061u04wbyVu/rf3nP0El/PWofd4uffXx1xxzEMf/90BmnZJYACrZunQOvuKdC6ewq07p7bAm2dbVNul5FvXSPdPM1VYweXjOUPfEjXRWMxScZWbpjHybOSKbWLqbGNp3pdHo8fo8KHL68e+3oFrfEF+E+l0777El3rDtO9cAeRbzcSnbCa2JgnPEpgxCpiY9fTM2Ur3fMO0LXiBLGd8QT2JuI/kUbrxTyaU8uwcmoxyw08jTpf9Kc8BVp3T4HW3VOg1UQGmuOB9j/+NgaruY2uUDe/eX1U//EBdouf3/7X6EG7jozcUv7rwym0tAUIdYcZMWkpR84kkZVfzhtDpt3xvl/PWsfBUwmAAq2bp0Dr7inQunsKtO7eTzHQNtpBqu1GSqx8cnyJ3DCPkGhuIs747oHHEsQbq0gx95DpO0eBlU6FVUmD/QTnf5odGDU2vqIm7PQqWhKLaDubReBwKh3b4ulce5bQ4iOEZ+4lMnELsdFrn/gogdjYZUQnLicyYw3hRZvpWr+P4J6z+E/foCWpGCuzGrPYg7e+hSbrznNuB+ohYdrzMQVad0+B1t1ToNXcrCcS4We//5gXXhrG/3r5U37z+iiGT1hCXaPx2B9r56E4pi/a+oNf37b/3D1//UncvN5/++OQO/bXj795Kh9/oDgeaGcs2cYbQ6bx909n8Nawb4nFYgQ7Q4ybuZavZqwZ1GuZvXwnL7w4lF++MpyPv/yOcLiH1IwC3h0x6473m7ZwCzsPxQHQHOjWXLpQOEpHV4/j16E5s3AkRqAz7Ph1aM4sGoW2Dn3/3TqAlmfgOp5kvkA79f5aylqzybUvct3aT4K5lvPG3PuG2DhjAUnm96RZhyloSaCyNZ/GtibsQNe9/x5/Ny3eAG2VJv68etqvldFxKZ/Ok2l07k0ktOk83StO0DNvP5GpO4iN3fhksXXEyr5zWxfCxLnwzUyY8Q18N53omvn0bF9N97GddF45Q3t+Gq1NjTT773PNj7iW9m797z8Xr60jTDSq77+j8zv3dwc6w4QjMee/Bpoj6+jqIRSOOn4dmnNzs5vB0+trBqCzq5uZS7bz2cSlj/2x7hdoO7u6ae94OiH87ut9XjgeaMPhHvYei+f73aewmtsA6Ah28fWsdTS3BgbtOg6cuMzwCUsIdoaIRKLMX7WHGUu2kV1Q/oPKPm7mWg6fTgSgqzuiuXSRaIxwT9Tx69CcWTQaozvs3Pe/o6vH8a+BmxeNxQiFnb8OzZnFYs/+f/+3hVrxBCupDKSR13qG6/YO4s1lDzyWIN5cxnV7B7mtp6kM3MATrKAt1EKXv5OQp5Xucg/hnGpCyUX0xGXTcySFnu2XiKw9TXThYWLf7iI2bjOMWPNkwXXMKhi3FCbMhykz4dvpMGcyfDcelo6FlaNh3XDY/BmxIxOJXFxIz7Vt9OSfJVyVRrdZQ1ewQ99/bcAWCve+/jt9HW6ek//7pzscJRrV99+tC/dEiej77+q52b2CZ0p6AX95fxIAuUWVvPbB5P7fu/3tHYfimLZwC28N+5a1247dEWi9vmZefGccmXlld9xB++vXRrL/xGVGTl7O6x9O4fvdp/o/9uHTibz63iReenc8H41dgMf8YYR9WKDNKazgrWHf8sq/JvLXj6ZyI7sY6O2Tk+Zt5M//nMBL745n4pwNdIV643xcQhp//fgbXv9wCh+NXUBVneeJv57343igfVQvvjNuQD/+mG9Wcuh0Qv/bOYUVvPKvibS0Bfjffx5OZ9etf2Py6nsTyS7oPYrB6dvsNeemIw7cPR1x4O7piAN379k54qCDKruREiuXHOsK18xDJBgbiTPmPyDEzuGyZxXX6raTU3aY8pxzNCZcpvVoMh3bLtG55gyhRYcJz9hDZMIWYqPWPVFsjY7dQGTyVnpmbiM8fyvhRRsIL1lJZNl8Yssmw/LPYc0I2DAUtnwEO96Hne/1L3JwNN2nZhKMX03g+kFa865gVeRhNHposoOOfc11xIG7pyMO3D0dceDu6YgDbbD5R71F22dvDPru5e7gGezsYtLcjSxevx94cKDdc/QS//nGGOoaTeDWHbRdoW7eHj6TUxdSgTuPOPjtX0ezeutRoPf40xdeHEqwM0Rza4AXXhpGo9cCYPqircxauv2h13u3N4ZM4/TFawCcupDaf61xCekMG7+YWCxGNBpj8br9ZOWX4zFsfvWXEdTUewHYeyyed0fOfpRv42N5bgLtr18bOaAff8Wmw3wxfVX/w8BWbj7CmG9WAjB03CI27DxJJBLl9KVrvPzu+P4Hmzn9IqE5NwVad0+B1t1ToHX3BjvQNthtVFiVFFjpZPrOkWLuId5YzXljzn1D7IWGuVwtXkJ26irKT67Ds2k97bPWEBv5+LE1NnodkYlbCc/cS2jxETrXnqVjWzztBxJoP3KJjhOn6Tyxn87jG+g+Oo+eA1/Crg/uCK53L7Z3KOFjk+i8sIT25B20ZZ6huSQds64Gjy/g+Pf4flOgdffcFGgNsxGrKZ+W+gT81UcJlG8mWLSQroJpdBbOJli0iI6SFbSXridQvhl/xW78VYdpqz5Ba+15Wuou01yfgt2QgdWYh89bimlUY5iNeH2245/fk0yB1t1ToNUGW+s7/+HI7uVm8PzVX0bw69dG8m9/HMLrH07pD5YPC7Sfjl/S/3s3A+342etZu+1Y/6/fHWhLKur6f+83r4+iweMD6L+jFeD0pWsMG7/4vtf7H38bw//77y/6N2neRqD3TtloNAaAabXyP/80FICs/DL+8PcvSbyWS6g73P/xjpxJYvTUFf1vh7rD/PwPQ57akQw3KdD26Qh2MXn+97zyr4m88q+JjJi0tP9W6UavxUdjF/Cb10fx9vCZFJbW9P85p18kNOemQOvuKdC6ewq07t5ABdr6pkYqajIpLD9PZtkeUqrWcqlhwf3vhvXO4krpHNJT5lN0YiF1W5bQ/N1yQl+vfMBDstYQHbeJ8PRdhBYcpnPVKTo2XySwNwn/qXRa4wuwr1fgy6vHLDfwVVRgl2TQln2O9qs76LywlPDxyUT3Dn1ggGXXB/Qc+pLQmTl0XNlAIO0oLQWJWJVFeD2W49/DJ50Crbv3Uwm0Xp8Xn6eQlvpk/DXH8ZdvJVi8mFD+FHpyhhPLeGvQFs38F5GsIYRzRtKd9wWh/Am3ReCFdJQsp710HYGyLfgrdhGoOkRbzc0IHH8rAjfl4vOUYHqr+iLw03+dUaB19xRotcEWa7WJtViDvnu5+47UnkiE5Bt5/OcbY/DZrQ8NtBPnbOj/vZ2H4vjN66P4xcufcuRMUv+v3x1ob38A2c23Y7EY63ee4B+fzeLdEbN49b1JDB236L7XW1xei9Xc1j9/exDovVP2gzHzeHfELN4ePpN/++OQ/j8bl5DGR2MX8Ku/jGDawi0EO0Ns2nOaaQu33PF3/Purnz3RQ9IeRIH2R3L6RUJzbgq07p4CrbunQOvuPUqg9ZjtGJUWvvwG7OsVtFwuoO10Bm0HkzEPnaTu+G5K49aRlbyUq3nziaufff+HdDXOIjl/Ltnx8yk/sJCmtUvxz1pO5PNVRL/cSM/UHXTPO0DX8hMEN56nfXcC/uNptF7MpTmlFCu7FrPMi7eh7QfX6fWYWBWFtOQnELhxmODldYROzyZyaAzsfP+BETa6bzjdJ6fReXEFgZTdtOVcwC7Nwmioo8nqcPz7NBBToHX3nodA6zV9+DwlNNen0FZ9Cn/5djqKl9BV8A3hnJGPHE4jWR/TnTeOzqJ5tJdt6L1D9iELlG+mvXQ9HSUrCBYtorNwDl0F0wjlT6Q7dyzhnJH0ZH1CNPO9QY7A7xHJGkJP9gi6c78glHd3BF5Ge+naWxG48iD+muO01Z7ri8BXsRvS8Rv5hP1VvRHY6I3AHvuHr6vaT3MKtJqb3e/IgDeHTudiUgb5JdW8+t6k/l9PSS+4I9BOmrux//d2Horjk68WUlpZz3/8bQxNfccVPEqgvZCYwRtDphHoC60n4lIeGGjvdcSB3eLnFy9/SmVtEwAew74j0N7U2tbO0HGL2Lr/LMfOJfP51JX9v3fzDtqOYNdDvnKPR4H2R3L6RUJzbgq07p4CrbunQOuy+YJ4a5vxFXmwM6ogq4K2c9kEjlyjfftlguvOElp8lPCsvUQmbSP2+XrCX62iZf5y6r9fQsnRhWQkzyehZA7nvPd/SNel6tlcy1pAbuJyKs5+T8PRfVgHzxI4kkrbuWxaEouwM6rwFXnw1jbT5Hv4Wawenx+ztorm4hu0ZZ2mPWk7XXGLCR+dSGzPJw8+hmDXx/QcGUfXuQV0JG3Bn3GC5sJUfDXleMwW578vDkyB1t1zOtB6fc34POU0N1ynreYs/vKddJSsoKtgOuGc0UQz//mI8fWjW/G1dD2ByoO01sZjN2ZhGrV4rME6ZqQDj68Zw/RgGjX4vGVYTfnYjVk0N6TSUneF1toLvaG56giByr0EyrfSXraBjpKVBIsX01k4l66C6YTyJ9Gd+yXhnFH0ZA8lkvU+0cx/DFIEfrv/TuD+CPyDO4GX3boTuHxnfwS+dSdwbwS+405gReBnagq0mpvdK3hm5Jbyy1eGU9tg4PU188tXhhPsDAEwa+n2BwbamyF2057TfPLVQmKx2CMF2j1HLzFqynIA/O1Bho1ffM+zYB8UaMurG/i/f/uc7u4w0WiM5d8f4me//5iuUDe7j1xk7bZjxGIxYrEY33y3mW37z+H1NfOb10f1X9POQ3F8MGb+j/qa3osC7Y/k9IuE5twUaN09BVp3T4H2+Z63oQ2zzIuVXUtzSimtF3PxH0+jfXcCwY3n6Vp+gu55B+iZuoPolxvvf1zAiNUEJ6/Et3QZ1TsXk3/2O66nzeNS1f3vhj3nnc3lukVcq9hIVtlBiiviqarNp97ne8LPJ4jR6MGqyKM19zKBa/sJxq+m+9QMIgdGPfgYgv6Hcc249TCu3MvPxMO4ntUp0Lp7AxloPVYbprcKuyGd1trzBCr30l6yiq6CmYRzxxDN/NcjxtcP6c79ks7C2b13hVYdoLX2Ul98rR7E+Pqs7GYE9mIatfg85VhNBX0R+Bot9Qm9EbjmVgT2l2+lvXTjrQhcNI+uwm/pLpxMtOArwjmj6ckeRiTrA6IZgxWB/953J/DH9OR8dtudwN/QWTiLYPF3t90JvPmOCNx7J/BlmuuTsRvS7orADXhNnyLwI0yBVnOzm8HzhZeG8cJLw/jFy5/y14+mEpeQ3v8+363ZyxtDpjFi0jK2HzzPX97vvaP2QYE2Eonyj89msefoxUcKtM2tAd4dOZvXPpjM0K8XkVNYwf/77y/6H1Z29/Xe7yFhU+Zv4sV/fM27I2ZxLaOQ9z+fxzufzaS5NcDIycv509vjeOnd8YybuZZgZ+9dspeSM3ljyLT+v7u+yXwKX9k7KdD+SE6/SGjOTYHW3VOgdfcUaJ+debwBjAofvrx67OsVtMYX4D+VTmBfMh2bL9K56hShBYcJT99FdNwmGLnmsR+SFfl8FW0L19Gwcx0l59aSlbmKpPJFxDXd/yFd573zuGKs55p5kGwrniIrmyq7jsbmx48jHrMVX00FzUXX8GecpCNpC13nFtBz9Gtiuz5+8F2wez4hfGwSXXGLaU/e3vcwrjTM2mo8lt/x79/zNgVad+9JA63HCmAa1diNWbTWXiRQtZ/20rV0Fs6mO/dLIlkfPGJ8fZ/u3LF0Fs6ivXQNgar9tNZewG7IwPRWKbIN8O5/Bm0HHqsFr8+LYdTi81TcFoGv01KfeFcE3oe/fFtfBF5FsHhJfwQO5U+mO/dmBP6USNaHgxyB/9UfgcO5Y+jOG09X/jd0Fsy8KwJvwl++ozcCVx+jreYsrbXxtPRH4Bx8nuK+CFzfG4Gt5/ufTwVaTWSgKdD+SE6/SGjOTYHW3VOgdfcUaAdoZgdGjY2vqAk7vYqWxCLazmYROJxKx7Z4OteeJbT4COGZe4lM3Eps9LrHjq18tprYmA1EJm2ne/Y+upYcI7j+LO07rtB8Kon6lHhK8k+TVXGAlPotXPIsu//dsMYsLhqLSTK2csM8Tp6VTKldRI3tfbzP2wpiNDRgl+XQmnuRQMoeOi+tpPvkNKL7Rzz0YVyRQ2NvPYzrxpFbD+PyPuldudr9pkDr7t0z0FrtGEYtdmM2LXWXCVQdor1sPZ1F8+jOG0ck66NHPic1nDuGroKZtJesIlC5l9ba89gN6b3x9TmPWz+FOfuQsJsR2MAw6/oicOFdEfgibTWn8VcfIVC1H3/5NgKlG2nvj8Dz+yLwFLrzxhHOHU1Pzs0I/O4gReC3iGb+k0jWR30R+HO6874mlD+1NwIXLaCjZGnvv4C4GYGrDvRF4DO01l7qjcCNaVhN2fg8RZjeyt4I7DPxWK0M1E9/KNBqIgPN8UD77oje25mbWwMPfL+C0upBuqLH4/SLhObcFGjdPQVad0+B9hFmdeKta8Us8WJl1dCcXEJrXC6Bozdo33WF4MZzdC07Tvfc/fRM2UF07IYni62j1hEZv4XwjD2EFh2mc80ZOrZdInDgKm2nM2lJKMROq8RX2IhRbdFktlNtN1Ji5ZPjS+SGeYREcxNxxncPCLGziTdWkWLuJsM8S0NnDpVWJQ126yN/PbxGM77qUloKruJPP05HwveEzs6j5/BXxHZ9+PCHcZ345raHccXd9jCudue/1y6aAq3b1oFhNGA15dJSd4X2miNEarYQLFpAKG8CPVmfPEZ8/Zyuwm/pKFmJv2IXbbXnsBvT8Hkq8Pian4HPVXvYnA20g7HgHRHY9Fbg8xRiN2b3RuC6RFprL9FWcwZ/9dHeCFyxnUDp97SXrKajPwLPuC0Cf35bBH60M5KfSgTOuBmBh/dF4HGE8qfSdTMCFy+hvWR1XwTe3vu5VB+9FYHrkmhuuIHdmI3PU4jprcTf2kRnsAWP1YKOAHLnRAaa44F2/c4TvDl0Ov/jT58wcvJyzsbfoCvU7fRlPTKnXyQ056ZA6+4p0Lp7bgy0Ho8fo8LEyq2j+Vo5rZfy8Z9MJ7A3iY5NF+hceZLu+YfombaT6FebYMTjHyXAiNVEv/qenmk76Z5/iM6VJ+nYdIHA3kT8J9JovZRP87VyrNw6jAoTT9P9f0S/3vZTYVdTaGWSacaRYu7jirGGc8bc+4bYOGMBCcYGrpmHyLGuUGzlUm010GjfGUFjMfDc/Xda7Zj1tdilWbRlxxFI2UXnheWEj08luu/TR38YV+Jm/BknaClMwVdT5tqHcT2rU6D9KS2IYXqwmgpoqUvEX32MQNlmgkULCeVPoif7U2IZbz/S3YDhnNF0FUyno2Q5/vKdtNWcobnhOj5vGV6f/Qx8rtrT2E8/0A7GbkZgE8Oox/RW4vMU9UXgG7TUJf0wApdvJ1C2ifbSNXQULyFYtICugpmE8qfSnfd1XwQeTiTro0d+UN7Ti8Af0pPzKeHc0X0ReApdhTPoLJpP8GYELv2+N2RX7cdffeS2CJxIc8N17MasvghcgWHW4fUZisDP6EQGmuOB9qa6RpMt+87y7ohZ/OovI5i6YBPXM4uIxWJOX9oDOf0ioTk3BVp3T4HW3XveA63H7MCotvAVNmKnVdKSUEjbmUwCh1Lp2HaJzjVnCC06THjGHiITthAb9YRHCXyxgZ7J2+meu5+uZccJbjxH+64EAkdv0BaXQ3NyCVZWDWaJF29dK03W438utbaPMquUPF8qab6TJJvbuGgsfcixBEtJNreRZp4kz5dCmVVCrW0+9O/yen1YlUVQfY3AjSN0XFlP6MxsIoe+gF3vP/hhXAdG3XoY17X9tz2Mqwn9n7DnZwq0z8+8PgOfp4jm+qu0VZ8gUL6VYPESQvlT6Mn5jGjmO48QYN4lnDOKroJpvWdvVu4gasbR3JCKz1uK12c5/nlqgzcF2udnHqv1tghchc9ThNWUjd2YRkt9Mq218X0R+FjvEQrlO25F4JKlBIsW0Fkwk678b/ojcCTnM6LZQwY5Ar/bG4Gz747A39JZNK8vAq8iULqx90iLyn19Efg0rbUXaam/FYGtpkJ8ngoMoxavz9sXgTsc/149TxMZaM9MoL0p3BPh4Mkr/Pq1kfzs9x/z539O4PDpxGc21Dr9IqE5NwVad0+B1t17pgKtFcRb14JZ7MHKrKYlqZi28zkEjlynfecVguvP0rXkGN2z9xGZtJ3YmPVPfpTAhK2EZ+4ltPgInWvP0rEtnsChVNrOZNGSWISdXoWvqAmjxqbJfJr/o7+DKruREiuXHOsK18xDJBgbiTPmPyDEzuGysZoUcy8ZvvMUWhlUWlXUP+AhOh5fALOuhuaSdNoyz9CevIPOC0sIH5tEbM8nj/Awrol6GNdPfAq0z8a8Pguft5TmhtTeBy+Vb6ejZBldBdMI54x8pIcqRTP/QThnJF3539BRvAR/+Tbaqk/SXJ+Cz1OC1/fDf2nzpA8J034aU6B19+4+g9ZjteE1fRhGQ18ELsZqysFuSKO5PwKf7Y3AlQfxl+/si8Br6ShZRrD4OzoLZ/VF4PGEc8fQk/MZkayPiWb+i1jG3wcpAv+DSNYH9GQPI5wzmu7crwjlT74jAneUrKK9dCP+8q29EbjqCG01p2itvUBLfcJtEbgAn6cc8ycagUUG2jMRaGOxGBm5pcxYso3/8/oofvfmWBav209ZVQNXUrN59b2JLF633+nLvCenXyQ056ZA6+4p0Lp7AxlovY1+zHIDK6eW5tQyWi/m4T+RRmBvIsHv4+hacYLueQfp+WYH0a++hxGPH1sZuYbouE30TN9FaMFhOledomPzRQJ7k/CfSqc1vgD7egW+vHqMCh8ez+AExga7lQqrkgIrnUzfOVLMPcQbqzlvzHnwsQTm91w3D5PrS6DYyqfabqLxPv+HwGjyYlXm05p3hcD1gwQvryV0ehaRg58/5GFc7/c9jGs2sdRNvQ/jytfDuNw2BdpB+Br7mvF5KmhuuNEbN8p30lGygq7Cbwnnjn6ku9eime/Qk/MZofwpBIuXECjfQlvNCZrrk/F5ivD6HvNBfn1ToHX3FGjdPSceEuax2/D6rNsicAlWUy52QzrN9cm01F2mrfYc/prjt0XgzT+MwAXfEMqbQHfuF7dF4PcGLwJn/oNI1vu3ReAvCeVPui0CL6ajZCXtZRv6IvDe3ghcfXsEvtYXgfPxecswjVoM09t3hvfgRGCRgeZ4oF2x6TAv/uNrXnhpGONmriXxWi6RSPSO96mq8/Crv4xw6AofzOn/otCcmwKtu6dA6+49aqD1mO0YlRa+/Abs6xW0XC6g7XQGgf1X6dh6ic7VpwktPET4291Exm8mNmrtE93dGh27gZ4pO+ied4Cu5ScIbjxP++4E/Mdu0Hohl+aUUqzsWswyL94G558EXmMblNrF5FlXSTNPkGRu46Kx+IHHElwylnHV3EGaeZp86xplVhl19g9/vNjja8NXU0lz8XX8madoT9xKtFNcYwAAIABJREFU1/mFhI+OJ7Z7yIMfxrX/9odx7ep/GJd518O47nkGreaKKdD+yK+f1YbprcJuyKC1No5A5V7aS1bRVTCTcO6YvmDwsP+z/zY9OZ8Syp9MsHgxgbIt+KuP0VKXhNVUgGF6GKhjQxRo3T0FWnfPiUA7GPPY/r4I3HiPCHyVlrp4WmvP01Zz4rYIvIX20nW9EbhoIZ2Fs+kqmEYovy8CZ48gkjWk707gh5/l/XQi8Dt9EXgo4ZxRtyJwwXQ6C+f2ReAVtJdtINAfgQ/TVn2yNwLXXaG5IRW7MfO2CFyDYXrw9kVgkYHmeKB9d+Rs9p+4TFvg/v/ARyJRlm08OIhX9eicfkHVnJsCrbunQOveeRr9RMoa8ScX03Y2i8Dha7Rvv0znujOElhwlPGsvkUlbiX3+hEcJjF5HZGLfUQJLjtK57gzt2y8TOJxK29m+owQyqvAVNmHUPLtP/m5sbqfKrqfYyiHbiueaeZAEYz3nvfc/luC8dy6XzbWkGvvJNC9QaGVRadfQYN9+B28Qo7EJuzyX/5+99/yO6kzzds/fcb6c7z5zxu+8b789p885/Xq63T3tscczPU44YwM2yRiDTTLJ2IAJDmCSyCCCAJFFkIRQQqCskko5pwo7Vc67wnU+SAgwKBgktsR+fmtda1FVqvKzd1U9a/mqe9+3py4P/+2ThG5sJ3Z5FYmMOaMM4/rwwWFcFRfuDeOSxj6MSwha8yIE7QjnRvUjS11otmo8Pbn4O08RaNlJuGEdsdqFJKrfH5t8rZlJ1LqUUOOmgQnrXedw9xWg2q1Isg0jL5cVgtbcCEFrbp5VQfs0GJLAsg1Z6kJxtgxK4EpcfSW4e2/ek8CdZ/C1p+Nv2z8ogX96WALXLUC3zCFe/fHgD3tPRwKLiEx0DBG0bV39Y2ayx+jNTmAcQtCaGyFozYFS348nrx7/8UIiP5wn8dXB317dumgf+qp0opvOEN6eRfBALv6TxfdaCZR1oFj7kTqm5mXyfZqbNq2NerWMSvkqt+R0bkjbuCatG1bE5kibKJL2Uyafo1Ytolmtp1u7NyzLIblRultxN5Tgq7hAsHAfkasbiJ9dRCr9w9GHcV361TCuttpxHcYlBK15MbOglaQeVHsNnp48/J1nCLTsJty4nljdlySqPxzT/9zGqz8mal1CqHHjwFCbzrO4e2+i2muRpD7Dj3E0hKA1N0LQmhshaCc/D0jgu5XAtqpBCZz3sAQeqgQeTQK/Q7LqbaPVk4gJYoigfe6F6WNmssfoTUhgHELQmhshaJ8tpE4VrbQd/7kywruuoK85PnKV67cZRH++SCgtG/+JQnwXyvHk3t9KQJoUrQTGjxDdmoMWtYFatYhS+TxF0gFynJtHaEuwjjzpZ25JR6mQr1CvltGmtdGrubCrQaT+XrTWGryWHPwlxwjn/kzs4tckMz4Z+zCuovuHcXXiUJ5Or1whaM3Lsylog0iSDdVWh7s3H1/nWfwtewk1biRa9xXxmo/HJF8T1R8Rq1tMuHHDwDCZzkzcvXmodguS/GCbkKmKELTmRghacyMErcDMiScSPPfCdP7hTx89RIWlGYDz14qH/v4Pr86j1yY99Dr1LV387Z0lj72OJ33+ZI8hgtYXCI2ZyR6jNwmBcQhBa26EoJ2aOJx+VEsP3usWgofyiG7MJLkwbVgRm1h6iMiPF/CfKMKdX4/c5MCuhCZ0SJiR9Gs+OrQeGtRqquVcbksZ5Es7ue5cP0JbgvXkS7u4I5+mRs2jUa2hU+vF4ZRQOptw1xfhLz9PMD+N6NXviJ9ZCOnvjzKMawHRK+sI5u/GX37fMC7Hw1PVjUAIWvMy9QRtCEl2oNrrcfcWDkwTbz1AqHEzUetS4jWzxnRpaKL6Q2J1iwg3rifQsht/x2k8PXlothpkqQeH6p8ExzrxCEFrboSgNTdC0ArMnLuC1qm4Hvl4KpXij39fMHR7OEEbTyRwe/1PtI4nef5kj+E9aGHgzVRdXmxO9SEme4zeJATGIQStuRGCdpKjhpFbnLgLG/Fn3CK87RLx5UeGr4hdsIfY+tMED+TivVqNWt2Nwz58NeZUF7S9mkab1opVvUOFnMUt6Qg3pJ9GHNKVK22hUDpImXyBOrWYFqWe/r56tJZKvNXXCNw6QjjnB/QLy0iemDHqMC794grCOT+NOIxrsiIErXmZbILWqcgojiZcfbfwdl3E33aQUNNWotYVxC2fkqx6cwzy9QNitQsJN3xLoGUn/s5TeHpuoNmqkaUu08jXsSAErbkRgtbcCEErMHNGE7SfrdzOcy9M59XpX+OQXfzh1XmcOJ/Hqx+u4I9/X8DeY5eBBytgk8kU2/af5eX3l/HKB8tZuj6NQHDgPP/3f/2Efcez+OSrrfz945UcO5v7yOd/+9NR/vXtr3jxzUWs2LiPeCIx0adiQmO4oL2eX84f/n2eaHEgmHIIQWtuhKCdPDj7vWjlnfguVxBKy0Zfd5LUvF2PlrFzdhBflU54xxX850pxlbQgtf/23q9TQdDatBBdmo1m1YpFKaRUOUuhvI9s6ftR2hJsp0Q+RqV8lUZnEd1dRSgNN/CXnSGUt5No1joSZz6Do++NcRjXvnvDuLp+2zCuyYoQtOblaQpap6KiOFtx9d/B252Fr+0wweYfidSvRLfMJVk5bQzy9T1itZ8TbviGQMsO/J0ZeHpy0PorkZ2dOLRnqRXLxCMErbkRgtbcCEEreNr5P6zp/O91R546j8pogtbt9fP8X2YO3f7Dq/P47ud0kskUXb0Onn9xBuFI7AHBejWvjL9/vJJQOEIqlWLR2l38mHYagN+/PIcf9gz82+Xx87uXZiMp7geen1tUyavTvyYW04nGdF6d/jVX88rG7fwbEcMF7YtvLSYzq5Bem4RTcT3EZI/Rm4TAOISgNTdC0D59HFIAxdqPJ9dKIL2A6NZzJBbvH749weL9RLeeI5CejyfXilLfj0Man+rMySRo+zQfHWoXDWoVVXI2JfJJ8qUdXJO+HVbEZksbKZD2UCqdotZ+kfbOSzitmfiKDxK5vhn93BJSxz8e+zCu2yfx1OaN+zCuyYoQtOZlvAStQ3WjONpx9Zfh7bmGrz2dYPPPRBpWo9fOI1n1zqjyNVn1LnrtZ0Tq1xJo3o6/4wSenuto/RUD8lUV8nW8EYLW3AhBa26EoBU87fxvVbsN4VG5K2if/8vMB7grSx8laBtbu4du//Mrc+l3KA8I1qXr0zh8+vrQ39yurOe1mauBAUHb3N479Nj7n20gu6D8oR600Zg+9O81Ww8NVepO1RguaP/9g+VGL+GJYvQmITAOIWjNjRC0E4vUruAqacF/9g7hHVeIrzwKc3Y8uj3B/N3E1p0klJaN73IFWnnnhA/oMkLQ9mgKrWoLdcptypVLFMuHyJV+GKUtwVZuOfdR2ZdOc9tx+moP4i7aRuzSGhKn5o4+jOvcr4ZxNZU91WFckxUhaM3LWAStQ/MiOzvR+ivx9GTj7zhBoPkXwvVridUuIFn17hjl63wiDasJNm/D156Ot+camq0cxdGOQ3EZfi7MiBC05kYIWnMjBK3gaceph3AYwKPyOBW09/egvXv7fsH6yVdbuZhdMvQ3DS3d/MvrC4EBQXt/y9M5y37i9OWCB57v9QdZuekAb3yylmlz1vHHvy9gz9FLj3m2J0cMF7Rzl/80JXrNDhejNwmBcQhBa26EoB0fHHYfanUX3qvVBA/kElt/mtSCPcNWxcaXHyG87RL+U7dwFzYitzqxq09/3RMnaIN0qv00q7VY1HzuyGcokNLIljaMIGK/Jd/xE6V9u6lr20Nn7S8oRRuIXFxMKn36mIZxhW7eP4yrYdIM45qsCEFrXpyan1TEiWarxtNzA3/nKQItOwk3rCNWu5BE9QdjkK9vo1vmEalfRbD5J3xtR/F2X8HVX4ribMWpaIYfp+DRCEFrboSgNTdC0ArMnIkQtMs37OPImeyhvympqOf1WWuAAUFb39I19Njbc78lu6Digeev35bOyk0HhvrOrtx0QAjaJ83hU9f5y7Qv2fjLcQ5mXOVQxrUHmOwxepMQGIcQtOZGCNrfiBJCbnLgzq/Hf6KIyI8XSCw9OKyITS5MI/p9JsFDeXizLaiWHhzOyTOo5kkFbb/moV3toF6toEq5Rol8nDzpF66P0JYgx7meov4fqGr7kdbazdhurcZ/aR6p9OF7wSZPznpwGFfN4DCuvp4pMYxrsiIE7TOKGkCSe1HtNbh78/B1ZhJo3UO4cT2xukUkqqePLl8rp6Fb5hKpX0mw+Ud8bYfxdmfh6r+N4mzBqajGH6fgsRGC1twIQTs8DiWMQw7jdEZwOiI47REkWwSpP4LUG0HujSD3RJC7oyidg3REUduiqK0DaM1RtKYYWmMMV2MMV30MlzWGu3YQSwxPjY6nagBvpY63XMdbpuMr0/Hd0fHdjuMvGaQ4jr9Ix1+g48/XCdzUCdyIE8wdJCdOMDtO6Hqc0LU44StxwlkJwpcTRC4liFxMELmQIHo+QfRcgvj5JGGfELRmxswZTdD6AyH+4U8fEQpHgbEJ2uyCCl6buZpQOEoikeTzVb/wy8FzwICg3bD9OAC9Npl/+ussVJf3gecvXL2Dw6cGWiR0dNt48a3FQz1sp2oMF7Svz1rDtDnrhmWyx+hNQmAcQtCaGyFoh0fq1tBK2/FdKCe0+yr6muOk5j56aFdq7k70NccJ7b6K70I5rtI2pK7JXz02VkHbrUm0aE3Uqbcoly9SJB0kV9oyYluCPNsG7nRsxGpdR/ftZWhXPiV66sORh3Fd3fBMDuOarAhBOxUJIkk2VFsd7t58fJ1n8bfuI9T0PVHrV8RrPiZV+foola9vEbfMIdW8imDTVnxth/B2XcLVV4LiaMapiMrzZx0haJ9RlHuC0XFXMN6VjP0RpL4BPLYYMTWJ3HVPMCrt9ySj1nJPMGqNMVwNg4KxbhBLDHeNjqf6PsFYMSAZfWU6vlId3537BOOtOP7CQcFYMCgY8+L3JOOvBGPoapzwlQHBGL58TzBGzt+TjNHMJLEzSWKnk8ROJdEzkugnBogfTxI/liJ+NEXiaIrEkRSJQymSBwdI7U+R2gepvQOwx3yEXULQmhkz566g/Yc/ffQQd/u+zvxyC//8ylzqGjvGJGhTqRQ7D53nlQ+W8/L7y1i1+eCQ4P39y3M4cPIq/zVjFX9+YxEnzucBPPD8mvo2/vbOEv7jo6/5+vv95BZV8ruXZpNXXP00T824xnBBO9Vj9CYhMA4haM2NELQDQ7vU2l482bUEDt8kuukMyS/2Dj+0a8lBIj9ewH+iEPfNepQGO3Zlag6Tul/Q2lwBOrU+mlQLNWoed+TTFEi7ue4cvi1BtuMbCnu+paphDS2li7HfmIP34gwSx98fYRjX9qFhXJpJhnFNVoSgnWyEkGQnqr0Bd28Rvq7z+FsPEGrcTNS6jLhlFqnKN0aRr28St3xK1LqcUNNW/G0H8XZfxNVXjOJoxKk4sWvjNyRMMDWZzIL2IcF4fwXjoGActYKxZZgKxrpfVTBWD1PBWDqGCsZHCcZrD1cw3i8Yh+Ti2UHBeHoA/T7BGD+RJH4sSTz9Prl4OEXyrmA8cE8wGi35nlVSeyG1D5IHBs/5oYH3IHEkRSI9RTw9NSCAjyfRTw6SMfh+nhkgejY58F6fHxDLkYsD1azhrEGuJAhdHZTS1wc+P8HcOMEbA5+rwM04gfx7UttfPCi6b8Xx3Y4PVNmWDXxmveUDgtxTOViVW60PSPTBil2XdfA70BBDa4gRaI+LFgcmR+Tp5fcvzxm2WvdZzqQQtHo8we3KejKzCjl+7gbFZVZ0PW70ssYUozcJgXEIQWtuTCVo1TByq4S7qAn/mduEt18mvuIIzH60iE19tpvYd6cI7s/Fe6UataoLh23qD5Xqdblo09qoV8to9GZTIqdzQ9rGNWnd8EO6bN9wu20V1urFdBXPR772CaHM6Q+0JXhwGNchvNVZYhjXJEcI2qeLU5FRHE24+krwdl3C13aQUNNWotYVxC2fkqx6c5TWA28Qt8wial1GqGkL/tYD+LrO4+4tQrXXI8kOxvpjhxC0E8T9FYxS5MHLpB8hGOWuKErXwxWMaksUrflXFYz1MVyPqmCsfrCC0TtcBWPRPdkTzI+TvJUaewXjpTFWMJ4cWwVj8oCoYJwQ0iCVNiAXU/tTwwrGxLEUqRMQH6w41U8OSOK7wjiW+SvBeOFRgnHws3JXMObcu+T+rmD03xWMhfcJxpJhBGPlvUv+hxWMg98HrSmG1jzwPVFbB743Ssc9YS93Rwe+Y70DbQmk/gHJ77QPfh+dERzS4HdVCRsyA8BIRA9agcjTixC0BqW9y8aLby7i+Rdn8NdpX/LXaV/y/IszePGtxVNieJjRm4TAOISgNTfPqqB19nvRKrrwZVUS3JdN7NsMUvN3P7oqdvYO4iuPEv4lC3/mHVy3WpA6pvolviG6NQctagO1ahGl8nmKpAPkODcP35bA+Q0FPauorF9CU9lC+vLn4sqaSSzjwxGGcRWIYVxTGCFoxw+noqI4W3H138HbnYWv7QjB5h+J1K9Et8wlWTltdPlaM5OodSmhxk34W/fh6zqHu68Q1W5Fkm3YteC4rdeMglbpjOKujeEvGRBL0bP3BKP+60uk769gHBSMooLx6fFQBePB+wTj0QHx+8gKxlP3VTBmDlPBOCidhyoYrw1TwZgXJ3DzvgrGIv3hCsbSR1QwVj9CMNY9WME4IBhjDwrG9kHJ2DUg7ocE46DUHxKM9ruCMYJDfrzvguhBa26EoBWIPL0IQWtQPvx8I9/vOEEoHBm6LxiK8N3P6cxd/pOBKxtbjN4kBMYhBK25meqC1iEHURpsePLqCRwrILL1HIkvDww/tGvRPqJbzhI4mo8ntw7F2o9DnrpDpvo1Hx1aDw1qNdVyLrelDPKlnVx3fjd8WwL7Gm61r8BS+yVtJQtw5MzGf/5jksffG2YYV5UYxvWMIgTt2HCobmRnO5qtHG/PNXzt6QSbfybSsBq9dj7JqndGka+vE6/5mKj1K0KNG/G37MXXeRZ3bz6qvRZJ6mc85euYjukZFbRybwStMYbvjk4wN070XILEkdTkEIyHxigYT0+wYCyJEyyNk7QwsmCs0cdXMPaPn2AUPBlC0JobIWgFIiITHcMF7T+/MpdoTH/o/nAkxh9enWfAin5bjN4kBMYhBK25mUqCVupQcd1uxX+2lPDOq+ir0mHOjke3J5i3C/2bE4TSruO7XIFW3oGzz2P4MTwuvZpGm9qKVb1DhZzFLekwNxxbRx7S1buK0qZl1FcuortoPsq1Twid/Zj42cUDw7gK9pGsv4K36TZKV4sYxmVChKAN49C8yM5OtP5KPD05+DtOEmj+hXD9WmK1C0hUvzeKfH2NRPVHxOoWE27cQKAlDV9nJu7ePFS7BUnqm5Q/bkxlQSvZImgtUbyVA/1AIxcTxI8nR5Wm8fQUkQsJAjcHhKTWOIpg7I4+s4JxMvegFUw8QtCaGyFoBSIiEx3DBe2f3vgCSXE/dL+kuPmX1xcasKLfFqM3CYFxCEFrbiajoHU4fKg13Xiv1RA8eIPYhjMkP98zbFVsfNlhItsu4c8oxl3YiNzsxK5OvaFTNi1El2ajWbViUQooc5yk2L6dHMf6EdoSrKWwayWV9UtoLl1If95ctGsLCF69bxhX3fDDuO4fEiYwH8+6oHWofmSpG81WjafnBv6O0wRadhFu+JZY7UIS1R+MQb5+SKxuEeHG9QRad+PvOI2nJw/NVoMs9eBQ/YYf52Odm0kuaB1yGKUjitsSw1880BM1dipJ8sDI1bCJwymiZ5MEswcuQXfVx5B7ItgV449pMiEErbkRgtbcCEErEBGZ6BguaNdvS+fNT9eSV1xNT79Ed5+T3KJKXpu5mq+/32/08kaN0ZuEwDiEoDU3hgpaNYTc7MRd0ID/ZDGRny6SWHZo+PYEC9OIbswkeCgP73ULak0PDufUkyN9mo8OtYsGuRRL/xlKe3dT2LeJ687hq2Fz7GsoaV1Obc1i2u98ga1oBVrh9/hu/XoYl/c3rUUIWnMzpQWtGkCS+lDtFty9efg6Mwm07iHcuIFY3WIS1dPHIF8/IFa7kHDDtwRaduLvPIWn5waarRpZ6pqy8nUsTApBq4SReyK46gdbEmQP9IVNHB5Zwqb2p9BPJQlfieMvjuO2xFA6olO2mtUIhKA1N0LQmhshaAUiIhMdwwVtOBLju5/T+ae/zuK5F6bz3AvT+W9/ncXKTQce6Es7WWP0JiEwDiFozc3TErTOHhdaaTu+i+WE0q6hf3OC1Nxdj25PMHcn+upjhHZdxX+uDNedNqRO1fBz9VvpUSXa7WU0dp+jumsPt7s2kde/bsS2BDd7V1HWtBRrzXI6KtZhK9+GVpUxMIyrffyHcQlBa24mr6ANIsk2VLsVd18Bvq6z+Fv3EWr6nqj1K+I1M0hVvj6KfH2PWO3nhBu+IdCyA39nBp6eHLT+SmRnJw7tt/2Y8azxNAWt1B9Ba4rhrdAJ5MUHWhIcS0EaI/ZwjR9PErk02JKgUkdrieK0i/1qPBCC1twIQWtuhKAViIhMdAwXtHeTSqVQNA82p4oeTzz0eMbFmwasavQYvUkIjEMIWnMz3oLWIQdQ6vrw5NYSOJJPdHMmyUX7hq2KTXx1kMgP5/EfL8R9sx6l0Y5dfrrDcp7oeJ0yfd1ldLadpakljaqWTdzqXEeOfe2wEva6cy1FnSupbFpDvfV7Oqy76W84i9xahtzXg0N5ev0qhaA1N8YI2hCS7ES1N+DuLcLXfQF/235CTVuIWpcRt8wiVfnGiPI1WfUusdoFROrXEmjejr/jBJ6e62j9FQPyVTW3fB0L4y1oHVIYtS2Kp0bHX6gTzkqgZyRJ7WPklgRHUkTPJQjmxvGV6bgaYsi9Eeyq8efoWUYIWnMjBK25EYJWICIy0Zk0gna0/P7lOUYv4ZExepMQGIcQtObmsQWtGkZuk3AVN+PPvE14exbxr4/A7GGGdn22h9h3pwjuz8GbVYVW1YnD5jP8+EfDoQSQe7uR2+5gqz9DR91O6q0bqWhaTWHnKq47hxexuba13OpcR3XLFppa9tHZdp6+ngockmb4cd1FCFpzMxGC1qnIKI5mXH0leLsu4Ws7SLBpKxHr18RrZpOsemtU+arXzifSsJpg8zZ87el4e66h2cqRne04VDHMbjx4HEHrUMLIXVFcdTF8t+OErseJZSZJHhq5JUHyQIrY6SSha3H8JXHctTGUzigO0RfWMISgNTdC0JobIWgFIiITHSFonzBGbxIC4xCC1tyMRdA6bT60qk68WVUE9+cQ++4Uqc+GGdo1ewfxr48Q/iULf+ZtXMXNyG3SpK6Gcjpk1PaGgTYC1Sewlf9Me8U6rDXLKGtaSl7vqpHbEvR9y+2uLdR07aWp5zzttgp6NcXw4xoLQtCam98qaJ2KhuJsxdVfirf7Cr62IwSbfyRSvxLdMo9k5bRR5Ovb6JZ5ROpXEWz+GV/bUbzdV3D1l6I4W3Eqk+fHi2edkQSt1BdBa4zhLdcJ3IgTOZ8gfnT0lgT6ySThywn8BTqeKh21NYrTIfaXyYgQtOZGCFpzIwStwOxJpVIcPnWdVz5YzvMvzuD//Y/PWLBqO919zlGf29zey9/eWfIUVjm1IwTtE8boTUJgHELQmpsHBK0cRGm0475Zj/94IZGt50l8dXD4oV2L9hHdnEngSD6e3DqUuj4c8tO7PH+sOBQfck8nrqYyvNVZBIoO4bm5CXvhctrvfIHF8iW32laQbV8zoogt7NtEad8eamxnaVTKaNe66J/ifSyFoDU39wtah+pBdraj2crx9FzH136MYPM2Ig2r0Wvnk6x6Z2T5WjkN3TKXSP1Kgs0/4ms7jLc7C1f/bRRnC05l6vWRfpaRpAgpJ3iqdPwFOuHLCfQTSVJ7GbklQXqK6PmBlgTeMh2tIYbUJ/aQqYYQtOZGCFpzIwStwOzZtPMkf3tnCXcqGwiGIkiKmx/TTvO//utzAsGRz48QtGOLELRPGKM3CYFxCEFrTqROFdedNhJXK4nuuYa++hipuTuHGdq1C/2bE4TSruO7WI5W1oGzx2X4MdwjhGSzo7bV4qm9if9OBqG8X4hdWoOeOQ/PpZn05s+jsfwLSpuXkWMbXsTmONZTZP+FcmcGFqWIZtVKt2afBMc4MQhBaw4cmg/Z2YnWX4mnJwd/x0kCLTtItn6HXreARPV7o1S+voVumUPE+jXBpq342g7h7bqMq68ExdGMUxnf4XWCcXrflTBKVxR3bQz/rTiha3FiZ5IkD47SkuBgitgZ0ZLgWUYIWnMjBK25EYJWYOZobh//+OcZNLf3PvRYn10e+reloZ3XZq7mb+8s4dUPV1BW0wQMCNqX3l3C5p0n+fMbi3jp3SVDjyWTKbbtP8vL7y/jlQ+Ws3R92pDw/f3Lc8i4eJM5y37ilQ+Ws/fY5adwtMZFCNonjNGbhMA4hKB9tnE4/ag1PXivWwgeyiO6MZPkwrThh3YtPUzk54v4TxbjLmxEbnZiV0PGH4fsQeluw9VwG1/lJYJFB4hc20j87CJS6dPh6LuEMqcjZX9Ke8kCqqxfUdj19fAi1rmRIukAFfIVrGopbVorvZr5Lq8Wgnbq41D9yFIPmq0aT88N/B2nCbTsItzwLbHaL0hUfzCKfH2TuOVTotblhJq24m87iLf7Iq6+YhRHI07FafgxCkZAHWhJ4GqM4SvTCebGiZ5PkDg6soRN7QPOcK8lQbWO2hbF4RT7gRkQgtbcCEFrboSgFTztXF2qk7X46fOolFY18m/vLR11zf/50Uqycu8AcDnnNi+/vwwYELT/158/5vy1YgAuXL/FS+8OvN7VvDL+/vFKQuEIqVSKRWt38WPaaQD+8Oo8fjl4DhiQxM+/OINQOPpWHc9+AAAgAElEQVRkJ3YSRwjaJ4zRm4TAOISgfUZQQ8gtTtyFjfgziolsu0R82eHh2xN8vofYhjMkjuUTzLGg1vTgcBg4tEsNIfX3o7Va8Fhy8ZccJ3xjG7FLK0me/BSOvjtE4vh7Q1Wx9ZWLuNO6ilz7cK0J1nFT+oXb8iksaj7Naj09mqj2u4sQtJOdIJLUh2q34O69ia8zk0BLGuHGDcTqFpOonj6ifE1VvkHcMouodRmhpi34Ww/g6zqPu7cI1d5AKubGoRn/A4xgdJz2CGpLFE+VTiBfJ3IpQfxEktQIfWFJg3h6isiFBIEbcbzlOlpTDKk/8lhDwgTPDkLQmhshaM2NELSCp53MmbohPCpZuXd4/7P1Q7cDwTB//PuCIc5kFQCg63GSyRQAsurhH/88AxgQtP/jb58MPabrcZ57YTpur5+l69M4fPr60GvfrqzntZmrgQFBe3/V7j+/Mpd+hzJ+J3mSRQjaJ4zRm4TAOISgnXo4+zxo5R34LlcQSruOvu4kqXm7hmlPsBN9dTrhXVfwnyvDdbsVqeNeL8ixDAkbt3VLLpSuZtwNxfjKzxMsSCN6dT3xzC9IpX/wgIS9SyhzOo68L2ipWUN56wby+zcMXxUrbaJIPkS5nEW9Wk671oXNNfl64k4mhKA1kiCSbEO1W3H3FeDrOou/dR+hxk1ErUuI18wgVfn6yPK1ZiZR61JCjZvwt+7D13UOd18hqt2KJNuwa8ER1/Bbh4QJJhaHHEbpiOK2DLYkuBondjpJ8sDI1bCJQymimUmC2XF8d+K4rDHk7ij2EVoSCEFrboSgNTdC0JobIWgFTzsRrzE8KuU1zfx12pdDt1OpFKrLi+rysnzDPo6eyQYgu6CC9z9bz7TZ3/DGJ2v5hz99BAwI2hffXPTAa/6Pv31CT7/EJ19t5WJ2ydD9DS3d/MvrC4EBQdtrk4Ye+/XtZy2GCdpb5VaisUfb+Udl4eodE7iax4/Rm4TAOISgnbw45ACKtR9Pbh2B9AKiW86SXLRv+PYEXx0gsvUcgWMFePLqURpsOOSRBc24Clo1gNzXg9ZShbfmOoFbRwnn/Ih+YTnJk7MeKWA5+i6p4x8TufgV0q2NtFm3U9Oxk+L+bWQ7149YFXtHPoVFKaBFbRBVsY+JELQTRQin4kRxNODuK8bXfQF/235CTVuIWpcTt3xCqvKNEeTr68RrPiZq/YpQ40b8LXvxdZ7F3ZuPaq9FkvoZTb6OBSFoDUANI/dEcNXH8JXqBHPiRM8mSBwZpSXB/hR6RpLwlQT+Ih13jY7SHsUhP946hKA1N0LQmhshaM2NELQCM8cXCPE//202lob2hx5bu/UwR89ko7l9/NNfZ9HRYwfAIWkPCNrfvTSbVOrBClqvL8jyDfs4Mih4AUoq6nl91hpACNqnludemM4//XUWs5f+yPFzN6bsSTZ6kxAYhxC0kwOpQ8Z1qwX/2TuEf8kivvIozN7x6KrY+buJfZdBcF8O3qxKtMpOnLbHa0/wWwWt06mgdjTithbiLz9L6OZuolfWkTizANLfG0bCvkfizGdEs9YRurkLpfoEnW1nqe09zW3nEW5I20apij1IhZxFvVpBu9YtqmLHESFoHw+nIqM4mnH1leDtuoyv7RDBpq1ErF8Tr5lNsuqtEVsPJKo/Ila3mHDjBgItafg6M3H35qHaLUhSH3b16XzGhaCdOCRbBK05hrdCJ3AzTuRigvixFKm9DC9h90L8WJLIxQSBm3G8lTpacxTJNv7fUSFozY0QtOZGCFpzIwStwOw5mHGVP73xBcVlVkLhKB5vgOPnbvD7l+dQUlFPW1c//89/zCcW00kmU/y09wzPvTCdSDRGc3sv/+e/fER2QQUAl3JKeHX618BA1e1rM1cTCkdJJJJ8vuqXob6zQtA+pbi9fq7dLGPV5oO8+NZinnthOi+9u4QN249RXFZHJBozamm/KUZvEgLjEIL26eKw+1Cru/BeqSZ4IJfYd6dILdjz6KrY2b8QX3GU8PbL+M/cxlXcjNwmYVfHbz2/FrQOxY/c04WruQJv1RUCxYeJZG9BP7+E1PGPh62CTZ6chX5hOeGcHwncOoq35hpKSxmdtgrqlRLK5YsUyvvIljY+UsRel74lX9rBHfk0tUoBLVojPZpi+Pv1rCME7cM4FQ3F2YqrvxRv9xV8bUcJNv9EpH4lumUeycq3R5Gv04nVLSLcuJ5A6278Hafx9OSh2WqQpR4cqt/wY7yLELRPhkMKo7RHcdfo+At1wlcS6BnJgQFcI7UkOJIiei5BMCeOr1THVR9D7omM694+6tqFoDU1QtCaGyFozY0QtAIRyLh4k1enf83zf5nJH16dx2crt2Nt7hp6fPmGfbz41mKmzf6GO5UNvDd/PW9+uhZrcxf/+dFKtuzK4OX3l/Hy+8uotrYBA+0Sdh46zysfLOfl95exavPBoUFgQtAalJ5+iYyLN1mwajt/+Pd5/Le/zuLTJT8YvaxRY/QmITAOIWgnCCWE0ujAfbMe/4lCIj9eILH04PBDu77YR3RTJoEj+XhyalHq+nBIE1tFJ9kcJOouEb25g9jlNSROzR1WwHL0XeKZXxC9+h3BgjR85edxNxSjdDbjlFx0a3aa1Vqq5VxuyydGrop1bqZYPkSFfIV6tYIOrRubJqpijeBZE7RORUOS+lCcrah2C67+Uty9eXi7s/B1ZuJrO0qgdTfB5h8JN64n1LSVYPPPRBrWoNfOJ1n1zijy9X1itQsJN6wj0LITf+cpPD25aLZqZKnL8OP/rQhBOzoOJYzcFcVljeG7HSeYHSeamSR5aOSWBMkDKWKnk4SuxvHfiuOujaF0PH5LgnE/LiFoTY0QtOZGCFpzIwStQERkojNpBC2AHk9QVdfK7qMXeendpTz3wnSjlzRqjN4kBMYhBO2TI3VpaKXt+C6UE9p9FX3NcVJzdw4ztGsX+toThNKu4btYjlbajtTtemprdShePHX5RK+se7gKNmM2scurCN/Yhv/2CTy1uWhtFqT+/qHn92te2rR2rMptyuQLo1bF3pR3UCqfplYppEVrpFdUxU4qJpOgdSoSstSF4mhEs1Xh7ivG05Mz0L+1MwN/234Czb8QatxMuH4tUety9NrPiNfMHFWsjoVE9XvE6hYQbviGQPMv+Dsz8PTkoNmqkJ2dhp+fiUAI2ntIfRG0phjecp3AjTiR8wni6SlIY/iWBGkQP5EkfDmBP1/HU6WjtkRx2ifHd2okhKA1N0LQmhshaM2NELQCEZGJjuGCtr3LRnpmDnOW/cTvXvqUF15byNL1aZy/VoxDdhm9vFFj9CYhMA4haMeOw+lHtfTiya4lcPgm0e8zSX6xd/ihXcsOEfnpIv4TRbgLGpCbHNiVkCFr11othG7uJHXsoyEhmzizgITlHB5bBw7F+9BzujU7TYNVsSXycfKkn4etis0dqoq9SoNaSYfWw3gMMRJMLOMhaB2KC0myoTjaUe21g1Wr+QPtAToz8bWnE2hJG6xa3UCkfiWxukXolrkkqqc/sVi9n2TVO8RrZqDXzidqXUqkYQ2hxk0Emrfjb92Pv+Mkvq7zeHqycfcWDVS+OjtwqA9//s2A2QSt0xlBbY3iqdbxF+iELyfQT4yhJcHRFNHzCYK5cXxlOlpjDKnv6bYkGG+EoDU3QtCaGyFozY0QtAIRkYmOYYJ22Ya9/K//+pw/vDqPBau2c/zcjaFpb1MpRm8SAuMQgvYRqGHkVifuoib8p24R3n6Z+PIjMHuY9gSf7yG24TTBgzfwXq1GrenG4Xi8oV3jidTfj//2yYEBXoNSNnViBsH8PajtVuzaQA9axeenTWujbrAqtkDeS7a0YRgZ+y350k7uyKexKIW0aE30aqrhxyp4HILEoz40pRfF0Yxmq8bVV4Kn5wberkv4O0/hbztIoGUnoaathBvWEbUuJ1b7OXHLJySq3yNV+fo4idU3SVR/gG6ZQ6z2CyL1XxNuXE+w+QcCrbvxtR3G33kGb3cW7t48XP13UO0WFGcrktSHU9Gwa8b8+DGVeRYFrUMJo3RGcdfG8N+KE7oeJ3Y6SfLgKC0JDqaInUkSunZfS4KuKA7F+GOakPMkBK2pEYLW3AhBa26EoBWIiEx0DBO0f35jEb976VMWrd3F8XO5dHTbjFrKE8XoTUJgHGYXtM5+L1pFJ76sSkJ7s4l9m0Fq/u5HV8XO2YG+Kp3wjiv4z5biKmlB6phcl+w7ZDceSy6xy2vva1/wHtGr63FbC+hRemnSLFTLOZTIx8lXhu8VmyttoVg+TOVgVWyn1ouoip0cOFQ3kmxHdnai2q1o/eW4+wrx9FzH13UWX/sx/K37CDb/TKjpeyINq4nWfYVumUe8+uNRB1399qrVjwerVpcQaVhNqHETwebt+Fv34e84cV/VaiFafyWqvQHZ2YkkO01bvToZmMqCVuqLoDXG8JbpBG/EiZ5PkDg6soRN7QX9bkuCgsGWBK1RnM7J35JgvBGC1twIQWtuhKA1N0LQCkREJjqGtjjo6nVw/NwNPvt6G//z32bzwmsLWbZhLxezS5BVj5FLG3OM3iQExmEWQeuQgygNNjw3rATS84luOUfiy/3Dtyf48gDRLecIHCvAc8OK0mDDIU9SOamG0FqqCd3YPtTCIH7ifdQbS2ht2keF4xQF8l6uOx9dFXtd+pZ8aRd35DPUqkW0qKIqduII4lRUJLkXxdmCZqvB1X8bT08e3q7L+DtO42s7RKBlF8GmrYQbviVqXUGsdiFxy6ckqt8nVfnGOMnVN0jVfEDc8imx2oVErSsIN3xLsGkrgZZd+NoO4e84jbfrMp6ePFz9t9FsNSjOFiS5F6eiIoT91GayC1qnfbAlQZWOP/++lgQj9IUlDeJHU0TOJwjciOMtv68lwSQ4psmCELTmRghacyMErbkRglYgIjLRMbwH7d3EEwlq6tvYeeg8MxZt5ncvzebVD1cYvaxRY/QmITCOZ1HQSh0KrpIW/GdLCe+4gr4qHebsePTQrvm7iX2bQWhvNr6sSrSKTpz9U6OiT+rvxV9yHH/W5zhzZtN6+3MqG5Zxs++7MVbFVqFFnKg+449lKuBQvUiyc7BqtQGtvxJ3byGenmx8Xefxd5zA37qfYPN2Qo2biDSsIWpdgl47n3jNjHEZZDVUtVr5NvHqj9Et84jWfTVYtbqRYPPP+Fv34WtPx9d1Fk/Pddx9BWj95ah2K7KzA0m241Dd2LXJNSRM8PSZDILWIYdROu5rSXBtsCXBgVFaEhxKEctMEroex3c7jqsuhvwMtyQY9/MuBK2pEYLW3AhBa26EoBWIiEx0Jo2ghYGBYUfPZPPZyu38f//5Gf/9Xz8xekmjxuhNQmAcU1nQOhw+1JpuvFerCR68QWzDaZKf73l0VezsX4ivOEJ4+2X8Z27jLmpCbpWm1JCXPs1Lm1xPS+sRLNY13G5dTrZt7TAy9rtfVcU206e5H3rNqJ5E80UNP7aJJYRT0ZCkPhRnK6rdMjjIKg9vd9bAIKu2wwRadw8OslpPpP5rYrVfoFvmkKj+gGTVm+MkV18nUf0eccsnxGo/J2pdTrhhHaGmrQRaduJvO4i/8xTerkt4em7g6itBs1WjOJqRpR6cssJ4Vq0KQWtunpqgVcPIPRFcDTF8pTrBnDjRcwkSR0ZpSbAP9Iwk4awE/kIdT42O2hbFIRl/7qY6QtCaGyFozY0QtOZGCFqBiMhEx1BBq7l9ZN24w4qN+3jhtYU898J0XvlgOZt2nuR2ZT2xmG7k8sYUozcJgXFMCUGrhJCbHLgLGvCfKCLy00USyw4N254g+cVeopvOEDh8E092LWptLw4pYPxxjJkQXZqdRrWGKjmbW/Ix8uybR6yKvSUdoVK+SqNaRafWh22MEm+yC1qH5sWpSMhSF4qjAc1WhbuvGE9PDr7uC/g7TuJvPUCg+RdCjZuJ1K8lal2KXvsZ8ZqZ41y1+haJ6unolnnE6hYTqV85WLX6E/6WNHxtR/F1nsXbfRV3bz6u/jJUWx2ysx1Jsg1VrU4mhKA1N+MtaCVbBK05irdSJ3BTJ3IxQfxYktReRm5JcCxF5GKCQF4cb4WO1hRD6hefy4lECFpzIwStuRGC1twIQSsQEZnoGCZoX5u5mudemM7vXvqU+Su2kXHxJjanatRyHjtGbxIC45hsglbqdqGVtuO7WE4o7Rr62hOk5u56dHuCubvQ1xwntPsqvgvlaKXtSN2a4cfwW+jTvLRprdSpJZTJ5yiQ0rjuXP/oXrGOtRS3r6S6dQv1/RdpHaYq9rcwkYLWobiQpH4URzuqvXawajUfb/eVwarVowRa0garVjcQqV9JrG4RumUuierpJKveGsdBVu8Sr5lFrHYBUesywvVrCTVtIdCyA3/bAfydGXi7L+LpycXVVzxYtdqELHXhVGSe1V6rQtCam8cRtA45jNIexW2J4S/SCV9JoGckSe0fuRo2cThF9GySYHYc3x0dV30MuSeCXbQkMAQhaM2NELTmRghacyMErUBEZKJjmKDdsiuD0qpGdD1u1BLGJUZvEgLjMErQOuQASl0fntxaAkfyiW7KJPnFvuGHdi09SOTHC/hPFOHOr0ducmBXQoafv7ETokuz3VcVm84N6cdhq2Lz+tZSUb+EltLPsd+Yi1b4Pa6GWziU8a0EfrSgDeJUZGSpG8XRhGarxtV3C09PLt6ui/g7M/C3HSDQsoNQ0xbCDd8QtS4jVreAuGUWyap3x1GsvkWi+kN0yxxidYuI1K8k3LieYPOPBFr34Gs7gq8zE2/3Fdy9N3H1l6Laa1EcbUhSP07FhV2bSp+Tp4sQtOZmWEGrhJG7o7isMXx34gSz40QzkyQOjdKSYH8K/VSS0NU4/uI4bksMpSOKQzb+WAUPIgStuRGC1twIQWtuhKAVmDnxRILnXpjOio37Hnps7dbDPPfCdOKJxIivcfRMNqs2H3zitRzKuDYurzMZM6l60N4fXyCEU3EZvYxRY/QmITCOCRe0ahi5TcJV3Iz/zG3C27OIrzgKsx8tYlML9hBbf5rggVy8V6tRq7tw2H2Gn6ffQr/mpU1tpU69RZl8jsKRqmKd31Eg7aaidx9tNd+jXZ2NfvIDOPou+vkl+Cov4nQqY/5vO1Q3kmxDdraj2q1otvKBqtWea/g6z+JrO4q/ZS/B5p8JNW4k0bQG3folumUeieqPSFZOG+eq1ZnotfOJWpcSqV9LqHETgebt+FsP4O84ga/rPJ6eHNy9RWj9lSiOhsGqVScObWoMa5vKCEFrblIBcDXF8JbrBG7EiVxIEE9PQRrDS9i9ED+eJHIpQeCmjrdSR22J4rSLz9FUQghacyMErbkRgtbcCEErMHPiiQT//V8/4S/TviQSjQ3dr8cTvPTuEp7/y8ynJmjDkRiB4LP5fkxaQfvNDwMWfrLH6E1CYBzjKWidNh9aZSferCqC+3KIfXeK1GfDDO2as4P4qnTCO67gP1eKq6QFqX3sInJyEKJTs9GoVlOpXB+1KjZX+oFb0lEqlWs0qNX09VbiLz5EMmM2pL8Dx98hmTmT0K2f8bRex9VXgqfnBt6uS/g7TuNrO0igZSehpq2EG9YRtS4nVruQuOVTEtXvkap8fZzk6hskqj8gXjObWO0XROq/JtzwHcHmHwi07sbXfhh/5xm83VmDVat3UO0WFGcrktSHU9EQVatTAyFon30czghqWxRPtY6/QCeclUA/mSS1j5FbEhxJET2XIJgbx1em42qIIfdGptRgRcEInwshaE2NELTmRghacyMErcDMiScSPP+XmSz+ZhfX88uH7i8qrWXxN7seqKDNzCrkpXeX8pdpX/Lh5xtxyAOFl/cLWktDO6/NXM3f3lnCqx+uoKymCYA/vfEFvTYJgGs3y/jHP88gHBkQwodPXWfD9mOigtaI9DsUahs7jF7GqDF6kxAYx+MIWoccRGmw4cmrJ3CsgMjW8yS+OjB8e4LF+4luPUcgvQBPrhXF2j/FhnYNVMW2DlXFnqVA2jNUFZvjXMNN+yqKbSu407eUyp6lNHR/Q2fXZhyd21Dbd+Fr3UOweRvhhu/QK+eTvP0Oqduvk7rzGqny8alYHahafZt4zceDVatfEWlYTahxE8Hmbfhb9w1WrZ7D03Mdd28hutuCV25EdnYiyQ4cqsfwcy14eghB+2zgUMIonVHcdTH8JXFC1+LEziRJHhy5JQGHIHY6SehaHH9JHHdtDKUzikP0hX3mEYLW3AhBa26EoDU3QtAKnnrOfg5n5j19HpF4IsE//Okjbt6qZv6KbUP3L12fRm5R5ZCgdXn8PP+XmUPzpVZtPsg3PxwGHhS0//nRSrJy7wBwOec2L7+/DIBlG/ZyKacEgG9/Osrbc7+lvKYZgM9WbufmrWohaEWGj9GbhMA4RhO0UqeK63Yr/nNlhHddQV99jNTcnY9uTzB/N7F1JwmlZeO7XIFW3omzfzJfph7CqahIci+KsxXVXoPWX4LccxFn9z5s7d/T27qc3qZ52BpmINV/hFb3Ad7adwnWvE2s6k2S4yRWB6pW3ydu+ZRY7UKi1hWEG9YRatpKoGUXvrZD+DtO4+26jKcnD1dfCZqtBsXZgiT14FRUHmeQ1UQOCRNMfoSgnVpIfRG0hhjeMp1gbpzo+QSJ9FH6wu4F/WSS8OUE/gIdT7WO2hrF6Yg81pAwwbOBELTmRghacyMErbkRglbw1HP0XWN4RO4KWl2P88e/L8DrCxKJxviX1xcSjekPVNDe3wIh68YdZn65ZeBw7hO0uh4nmUwBIKse/vHPMwA4f62YdT8dBeD1WWvIzCokLf0yAP/rvz7HHwgJQTtRuZRT8kCV7J3KBv7+8UpefGsxm3aeJJFIGri6scXoTUJgHHcFrcPpR63pwXu9huChG0Q3niG5MG3Yqtj48iOEt13Cn3ELd2EjcqvzqV766lC9OBUnsrMT1d6A1l+Ju7cIT082vq7z+DtO4G/dT6B5O6HGTUQa1hC1LkWvnU+8Zsb4DrKqfJtE9UfolnlE674iUr+KUONGwtbviN1ZTDLnPbjyFlyeRurKR0Rub8HdUYDs7ECS7ThUt2HvvxC05kYI2smH0xFBbY3iqRpsSXB5sCXBXkZuSZCeInp+oCWBt0xHa4gh9Y783gpBa16EoDU3QtCaGyFozY0QtIKnnrDHGB6Ru4IWYPWWg5y+lE92QTlff78fYEjQplIpdh+9yFuffsO02d/w0rtLmbFoM/CgoM0uqOD9z9YzbfY3vPHJ2qHXtjlVXpu5Gq8/yNtzv6XPLjN76Q909jqYNvsbQAwJm5BkXLzJP/11FjdLagDw+oP8/uU5LNuwl2Nnc/nj3xew73iWUcsbc4zeJARPETWE3OzEXdiIP6OYxI7LJJcfHlbEJhemEf0+k+ChPLzZFlRLDw6n/wnWMDA4T5L6UBxtqPZaXP2luHtv4u2+gq8zE1/bYQKtewg2/0i4cT2R+pXE6hahW+aQqP6QZNWb4yRWX0OvfpNQzTR8te/gqvsAuX46jsZPsDcvxtGyDqXjF7Suk3h6cnH13UKzVaM4mpGlHpyKzK+rVp0OGV/FBfRzXw79epc69gHhnB9wNZVhV397letEIgStuRGC1hiGWhLU3teS4HSS5IGRq2GTB1PEztzXkqDuyVoSCEFrXoSgNTdC0JobIWjNjRC0AjPnfkFbVtPEjEWbWbh6ByUV9cA9QZtTWMl/frQSfyAEwMXskocEreb28U9/nUVHjx0Ah6QNvTbA395ZwpW8UjbtPAnAKx8s50xWAT/vywSEoJ2QvPrhiqHeEgCnL+Xz7x8sJ5UaKHPOLijn1Q9XGLW8McfoTUIwMTj7PGjlHfguVRBKu47+zQlS83Y9uj3B3J3oq48R2n0V34VyXKVtSF3ar14ziFORkKUuFEcjmq0KV18xnp4cfN0X8Hdm4G/bT6D5F0JNWwjXryVqXUqsdgHxmlkkq94Zx6rVt0hUT0e3zCVWt5hI/UrCjRsINP+Aq2UrzrZN9HZ8R2vHSmo7F1PZ8yV3epdS3L+CfPtKcp1ruO5cT4GURpl8jjr1Fm1aK33ab2/J4FB9uOsLiVzbCOnvDYnZ2MWv8VZdwSm5DP8sDIcQtOZGCNoJRA0j90ZwNcTwlQ62JDiXIHFklJYE+wZbEmTd15KgLYrDOf7vkxC05kUIWnMjBK25EYLW3AhBKzBz7he0yWSKl95dwkvvLh266v2uoD1+7gZzl/8EgC8QYuaXW5g2Zx1wT9C2dfXz//zHfGIxnWQyxU97z/DcC9OHWiOs3HSAaXPWkVNYCQz0nn177reUVjUCQtBOSP7xzzNQXd6h20u+3cMPe04P3bY7VZ7/y0wjlvabYvQmIXgyHHIAxdqPJ7eOwNF8opvPkly070EJ+9nPsGgrLPue5KYf0A/tInJ5P4nSdKL1x/C1HsXfkkaw+SfCjRsGq1YXo1vmkqieTrLyrXEcZPUO8ZpZxGoXELUuJVy/llDTFgLNv+Bv24+/MwNf9wU8PTm4+orRbFUojkZkqQunImHXgti0EJ1qHw1qNVXKNYqlo+RKW7kmffNIbkg/cUs+RpWcTaNaQ5dmx66Fnui8q+31BAvSSJ6YOSRlE6fmErh1BLm3y/DPxVgQgtbcCEH75Ei2CFpLFG+lTuCmTuRigvjxUVoSpEE8PUXkQoLAjTjech2tKYbU/3TfCyFozYsQtOZGCFpzIwStuRGCVmDm3C9oATbvPMl3P6cP3b5/SNi0Oet4+f1lzFi8GUtDO3/8+wK27M54oMXB8g37ePGtxUyb/Q13Kht4b/563vx0LTDQCvW5F6ajaAPtFg5mXOX5v8wkGtMBIWgnJP/jb58MnXCAP7+xaKjdAUCfXeZ3L336VNdUVtPEy+8v43cvfcrspT/iGyzL7rPLTF/4Pf/3K3N5beZqqq1tQ88xepMQjEQQpyIjSz0ojmbczbcI3FVTZ/kAACAASURBVLlA5PoB9DObSaavJHXgC1Lpn5E6NZvUuVmkrnxMKvd9UoXvkiqdRqpivMTqmySqP0S3zCFWt2iwanU9weYfCbTuwdd2BF9nJt7uK7h7b+LqL0W116I42pCkPpyKi8eRon2ah1a1hVq1iFI5k3xpN9ek7x4pYq87N1Ag76VUPk+dUvLYVbHDIdkc+MvPEj+76F4Lg/TphHN/xtVcgV19Mun7tBGC1twIQTs2HHIYpSOK2xLDXxwnfCWOfipJav/I1bCJQymimUmC2XF8d+K4rDHk7ij2x2xJMN4IQWtehKA1N0LQmhshaM2NELQCEZGJjmGC9rWZq7l2swyA8ppm/ttfZxEMRYYev57/dFsceP1B/vj3BZTXNBON6WzYfoxTF28C8OHnGzlyJptEIklxmZUXXluIHh+YUGf0JvGs4lDdSLId2dmBarei9Zfj7ivA23MNX9dZfO3p+Fv2Emz+mVDjRiL1q4jWfYVumUei6iOSFdPGsWr1XeI1M9Br5xO1LiXSsIZQ4yb0jh2EOw7g7ziBr+s8np5s3L1FaP2VqPYGZGcnTsWJQx0/yTkcNi1Ip9ZHo1pNpXyVW9KRUatiS+TjVMk5NKkWujTbxLyPig9PXT7Rq9/B0ftaGFxahbfmGg7JuCFfT4oQtOZGCNr7UMLI3VFc9TF8d3SC2XGimUkSh0dpSbA/hZ6RJHwlgb9Ix22JobRHcciT4JhGQQha8yIErbkRgtbcCEFrboSgFYiITHQME7Rnsgr4n/82m0Vrd/KHf5831AAY+P/Ze/PgKO40z3tjY9+Nd3djd+PdiInY6emZnuntORp7+pjudY/7on21aXy7bdPmMJjDYIONMcZgDgM2YMA2NuYwCMQhEAJxCxDiEOIGCSSE7lsqHXVlSaqqrMyqysyqz/tH2QLZKolLypLy9434RFh1ZD1ZRf1c+uip58fV65U88uI0vtp6sM/q2Zd5lnc/XPudyz1tPn45ZCK6YXRc9ufxH5BbUA6ID+jfJYDDLeF0NuB2VOBpLqC18TztDSfx1mXgr9mFr2oTcsUalLJPUEs+JFT0PuHCqejXXsPIH0n0ygv3Rq7mPk/03EtEs4cTzRpF5PA4jKNvEj4xi+C5jwkUrMVfnYa3PuPrrtULSC0FuB2VX3etSnTXtaqEDNrlcJ8/x42eNiql8pu6YtfE7YrNcsa6Yi+79nHdfYEqTxWNHl+v1yhVFaJkryG6/dUbIwx2TcZ/fhuuxoYE+Hd69whBa22sKGidTUE8ZWG8uRrySZ3gfgN9WxTWEV/Crgd9W4TgAQM5W8N7RcNTHsLZ3L+fOyForYsQtNZGCFprIwSttRGCViAi0tsxTdBCTIq+vySJTWmZaJrecfmcpRuZuXh9R5dqX2TJl9v5cMVWxr6zjEeHTWfW4iTkgEp+URXPjJnT6bbvLFjDrowcwNof0B1uKda1WvgGev6rRK785R5uZPUX9PxX0a69Qej6u4QK5xDKnUfo9AeED89DT50Na96DFbNh6TxYuBDmLoKZS4m+uwJt0VaUdUfxHczDk1uDo7H9np9/bwvaWFesjVLpaqwr1rWFY910xZ50fc5513byXccokwqp97T06b8HZ1Mz/ku70NOn3hhhsG006okv8FRc7XcjDHpCCFprM1AFrd0ZRKoK0Z6v4T+toR4y0HZEiCbR/UiCLVFCew0Cx3R8lzRaS8K4GoK0SOafU28gBK11EYLW2ghBa22EoLU2QtAKRER6O6YK2nj5Zie4vsz7S5IYMnwGdlcrobDG1HmrWLxyGxeuFDNs4oJOt52zdCNb07MAaJfD1sXn60KuvkAkfyTGtdfQi95GK5lFuOxDQhWfEaxeg1q7mWBDOmrjIZSWbAKOi8iuQvxSJb62JnxuF3KpDfXkdUJbs9GX7SY6dX3nTbtuIjJrM9qXGQR3n0c5X46/1kW7P9Qn5x/SIihB/Z4cS/K30+CrpKz9LHnSbk6713K0m67Ys+4krnoOUNF2iUZfLa2ybMq/Aa/Xj1J6Cv3Igg4py9bh6Ic+QC0+gdfrM//faS+h6RFkVTPt8dv8YbwBTWASkSj4Vd30Ou4Iv4bcoqOUGwRzI4SPR9D3RIn2NJJgIxjpUcJZEUKXIiilBnKjjs+bAOfUxwCm12AmbbL5NZiGIl5/K+NXdSJR8fqbSZuJn/1kVUMzIqZ/BhWYgxLUCWni9bcyIiK9HdMFbTAU5nxeMbsOnmL3odPkF1V2GifQV1m8cjsfr0rt+Pnq9UqeHjObguIqnho9u9Ntp81fze5DpwEIBHVLE2wtRfXWo/hdKIr/1u+r6qiNHkKXKwnvu4i+KoPI7C1xRWx06nqMZbvRUk4RPlVEsLyZgC9o6rnrRoSQZtzWfeRgGJfSQq3/GkVtWVz0bOWEK35XbLb7c3I9Oyhpz8Yml+BR3Ka/5oGgRtB2Hf30aqKpN0YYRHdPIXxlJ6rHngA19j5GJEowfHuv/73Er5r/HFiZSCSKGjK/ju5QJINgrUH4WgTtdAQjI0pkW/cSlvUQ2RFFPxIhfC5CuChC0GagtJt/PolENApKAtRhFrKF1x/l69ff7DoE5qCGYuu/2XVYGb+qmfbYwbCBYYjX36qENAPdiJheh8A8RER6O6YK2uzzBfz2mSkMGjya3z37Jr9+ejKDBo/msWHTO2a89lW2pmfx/pKkjp+vXq/k+XHzaPP6+bc/TkAN3viLyZDhMygorgLEV9xuBUeTF09eLb6MPJR1WYQX7iA6eW3XIvb11WjztqGsOYJ/72VaL1bhrJVMP4eu6GnEgc0jUSGVcc19houudE45V5Pp/DBOV+wSTruSyHUdoEi6SJWnmqY+mBV7OzibbPgvpGKkT7khZbe/inLySzyVBXQ3r3cgIkYcWJtEGXHgaAkiVX49kiDn65EEqRGi6+l+JMHWKKF9BoHjOt7LGp7SMM5G88+nvyBGHFgXMeLA2ogRB9ZGjDiwNu2yGHFgdUREejumCdryahs/eXgsy9ek0eb1d1ze2OJi2vw1/Oyx8ZRX2/qsHqnVy4NPvUFFTSOabjBt/hqWr00DYOy0ZXy19SCGEeHQiYs8Nmx6xxgGsxeJRMLulHEXN9F+vAg55RShT/ZiTN8QtyvWeDeZ4Kf78G8/TVt2Me7SFlpcAdPP41a5IWhjs2JLpCtccR3hrGszx53L48+KdX7BeVcq+a7jlEvXqffYTT+XuK+pqw3vtSzCBz/oNMIgdGgB7YUnsLvu/Wzf/oIQtNamLwWt3a3irg3Rdj2M/7yOkqkT3hUhktx9N2wkOUp4VwTlqI7/nE5bYRh3XQi72/znr78jBK11EYLW2ghBa22EoLU2QtAKRER6O6YJ2ncWrGHK7C/iXj/xvc94a+6XfVgRnL5YyCMvTuM3T0/h3Q/XElCCADQ7JF55awm/euJ1Xpgwn5KK+o77mL1ImIWz2k3r+Qr8ey+hrjqMPjcFJq3quit2yleEP9pJYMMxvIeu4rlai705sbpDbxWbR6LCE+uKvdq6h9PuNd10xS7mtHNDR1dstVSTcF2xXSIpeCquoJ74gui20R1S1kh/C//FNJxNzebXmAAIQWtt7rmglVRctiCtJWF8lzUCx3VCew2MrT3MhV0PWmoENcPAn6PRnq8hVYZwOEQ3bG8iBK11EYLW2ghBa22EoLU2QtAKRER6O6YJ2sHPT+Xs5aK411+9XsmDT77RhxXdWcxeJHobu92HlF+P90g+geQThBftIvLWV113xU5chT57C+qXh/DvvkDr2XJcVc5+uot3gBpPAyXSFfJcRzjr2sRxx7JuumJXct61gwLpJGUJ3hUbD1djA/7zKRi73vjWCIPVeKquYbURBj0hBK21uVNB62gJIlWEaL+iIZ/SCB400Lf3MJJgHehbowT3GcgndLy5YiSB2QhBa12EoLU2QtBaGyForY0QtAIRkd6OaYL2/ofGYGt2xr3e7vQwaPDovivoDmP2InHPcCu4yuy05ZTgTz1DcMUBjPc2xR1PEJmWRGjZbuQtp2g/Xoj7eiN2l2z+edwBsa7YUq65T3PJtYts12qOxumKPeZcwhnnBnJdB6n2X6HJV98/umLj4HC24s3PJHxwTucRBocX0l6Yjd3tNb3GREUIWmvTnaC1u1TcNSHaroXxn9VRjuiEd0aIbOxhJMGmKOHdsZEEvgs6rUVhXGIkQUIiBK11EYLW2ghBa22EoLU2QtAKrBzdMBg0eHSnfZu+yfxPNjNo8Gh0w+j2GFvTs5i7LBmAXzw+AYe7tVdq7c8xTdAOGjy62xfE4W4VgraXcNa34rlUje9ALspXmWgfbCf6+po4m3atQVuQirLuKL4DuXgu1+BoaDX9HO6EZo9MjaeBYimPPNdhzro2cSxuV+zCm7pisymTiqj3ODodr6dNwhIWKUBr2WXUY58RTXmlQ8rqu9/GfzkdZ3P/6/41AyForY2uRfE0hWgtDuO7qBHI0gntiWBs7mEkQRJoaRHUwwb+0xrtBRpSVQi70/xzEtw6QtBaFyForY0QtNZGCFprIwStwMrRDYN/++MEHh02nWAo3HG5phsMGT6Dnz467rYErafNRyQS7dWa+2NMFbQrN+5hU1pml6zcuEcI2rvE7pSRCm20HytE3pxNaOluIm+vj79p13ubCa44gH/HWdpySnCVO2iR+ufX2m0eNxWeUgrdp7no2kW2a1Xcrtgs5xLOODeS6z5IsXSJaqmW5lZ/j4/R3wStq6EW+ewWImkTb4wwSB1L4NRapOoi0+vrbwhBax0cjiCespiIVTJ1tB0R6GkkwbYowQMG8kkdb56GpzyMs0mMJBgoCEFrXYSgtTZC0FobIWitjRC0AitHNwx++ug43lmwhqOncjsuP3OpkHcWrOnUQbv70GmGDH+PR4dN55W3lmB3xRozRQdtzzFN0A4dOfOWSPSYvUi0eNTY5jJVTtrOlOFPv4C6MgP9/a0wMc54gre+Irw4ncCmE3gzC5AKGrDb++fX9GNdsfWdu2KdS7vpiv2SC840CqRsyqUi6j3OO37s/iBoHXYJ39VDaPtn3jTCYAShIx/RVpSD3d0/X/dEQAjagYmrPkRbYRh/jkZwv4GxJX5HbGRzlNCeCIFjOr6LGq3FYVwNQVrESIIBjxC01kUIWmsjBK21EYLW2ghBK+jr/LIiwM/K+56uohsG9z80huxz+Ux+/4uOy99btI7jZ650CNrWdj8/fXQczQ4JgLnLklnw6WZACNpbiWmCdqCkrxcFR7MPz5VavIeuEEjKIvxRGtHJa+OMJ1iNNi8FdfUR/Hsv03qhEmeNZPrCdqc0eNxUSCUUunO46NrFKecqMp0L43TFfsxpZzJ57gyKpcvU3GJX7O2QsIJWkmktuUAwaznRlFE3RhjsmYb/8h6cLQ7zaxwACEHbv7G7VKTKEN7c2HiC8K4I0SS6HkuwLjaWQMnU8V3W8JSH0NU72yRMMDAQgta6CEFrbYSgtTZC0FobIWgFfZ2/LpZNoat8I2g1Ted3z76J1xcgGArzhz9PJRTWOnXQ3jwC4dCJi4ybvhwQgvZWIgTtXaa33vx2VwB3STPtJ4uRt+UQ/GQvxrsb448neHcjwU/2Im/Lof1kMe6SZuyugOmL2J3Q3CpT3dEVe4gzruRuu2KznSu54NrJNekU5VIxDXfRFXs7JJqgddeVI59OJrJjQoeUjaSOI5CzDqm6xPT6BhpC0PYfnI1BWotiG3apGQZ6SjddsZuihPYZyNmx+bDu2hAt0neP2d0mYYKBjxC01kUIWmsjBK21EYLW2ghBK+jruPQoThPoKt8IWoB5y5PZdfAUWTm5zP54A0CHoI1Go6zdeoCXXlvAsIkLGDL8PcZOWwYIQXsrESMO7jL34o3urJFovVCJf+9l1DWH0ealEH19ddddsZPXEv4ojUDSMbyHruC5Uoujuf9+Tb3B46JCKuGaO4eLrp1kO7/stiv2jDOZPFcGxVIuNVIdza2yabUngqB1ONz48vaj7Z1xY4RBygiCmUtoKz6NXeq//zYSHSFoEw+7W8VdHaL9ikbguE5od4TIxjgydh1oqRHUwzq+Czqe0jCOllsXrkLQWhshaK2LELTWRghaayMErbURglZg5dwsaC8XlDF22jKmzlvF+bxi4IagPXb6Cs+MmYNfVgA4kHVeCNrbiGmCNt7mYN8m0XM7b2i73YdU0IA3s4DAphOEF6cTeeurrrtiJ36J/v5W1JUZ+NMv0HamDFeVs8tOrv5ArCu2jmIpl1zXIc70MCs22/klF7/uiq2QSmjwuEw/h29jlqC1u/20lZwlmPkxpIy8McJg73R8uftw2BPvuRqICEFrLs7mIJ7SMP7zOuphAz01Auvouit2Y5TQ7gjyCZ32qxru6hD2u5wTKwSttRGC1roIQWtthKC1NkLQWhshaAVWzs2CNhKJMmT4DIYMfw/DiAA3BO32vSd4fdYKAHyywrjpyxk2aSEgBO2tJKFHHESjXbdXJ1K6fPNKCq5yB22nS/HvOEvw8wMY722OO54g8nYSoaW7kbecov1YIe7rjdid5nWG3i0NHhflUjHXpFM9dsUecy7ljGsTea5DFEu5VHvM7Yq9Hfpa0Eo1pQRykojsGH9jhMGO8QROb0CqKTX9+bAaQtD2EZKKuzZEe4GGnK0R2mcQ2RR/RIGeEkU9ZOA/p9NaFMZp6x2JKgSttRGC1roIQWtthKC1NkLQWhshaAVWzs2CFmDZ6h189HlKx883bxI2bNJCho6cydh3lnGtpJrfPfsmy9emCUF7C0lIQet0t7F+WwaPvzzD7FJ6jKOxDc/lGnwHclHWHUVbkEr09TVxZaw2PxXlq0x8B3LxXKrGWd9q+kJzpzS3ytRIsa7YPFcGZ5zJZDk/7qErdhfX3DkJ2xV7O/SFoHW2OPDn7kPfM+2mEQYjCR5dSlvxOezue7vxmeDWEYL23mN3BPGUh/Fd1lAydbS0CNE4XbHRJAjvihA4puPN1ZAqQ9hdfVerELTWRgha6yIErbURgtbaCEFrbYSgFYiI9HYSRtBqusGJs1eZNHMF9z80hqEjZ7JxxxGzy+o58TbtmrmJ4IoD+FPP0JZTgqvMTotbMX1RuVMaPM6OrtgLrp1kO1f20BWbTJ7rMMVSHjWe+n7TFXs79Jagtbt9tBXlEDqyCLaO6BCz2t4Z+K4cwOFwm37uAiFo7xZXQ5C262H8ORrBAwbG1vhdscaWKMH9Bv4cjbbCMK4G88WoELTWRgha6yIErbURgtbaCEFrbYSgFYiI9HZMF7S1NjuffLWT3z4zhV898Tr3/WEMJ85eNbusW44+awvhxbsIJJ/AeyQfqaAeu73/bszU3OqnRqqlWLpMnjuD0910xR51fki2axUXXbsodOdQ4SmlwWMdeXivBa1UXUTg1FdEUsfeNMJgAvLpZNx1Faafr6AzQtDeGnaXilQZwpurETimE06PEE2i667Y9aDtiKBk6vguaXjKwjgciSlBhaC1NkLQWhchaK2NELTWRghaayMErUBEpLdjmqDdl3mWEZMX8ZOHx/L6rBVk5eQSDmv84vEJ2JqdZpV12zF7kbgb6r/uii2QsrngTONkd7NiHcs469p0U1dsA82egdcVezvcC0HrbLbjv5yOvvvtDikbTRlFMGs5rSUXaJGs/RwnMkLQfhdnY5DW4q837sow0LfF74qNJEcJ7TWQs3Xa8zXcdaF+tQmiELTWRgha6yIErbURgtbaCEFrbYSgFYiI9HZME7SDBo9m2vw1SK3eTpcLQXvvaW71U31TV+wZ50aynEu66YpdzSXXLq65T1PhKcVmoa7Y2+FOBa3d7aW9MJvQ4YU35spuHY62fya+qxk47JLp5yboGSsLWrtbxV0Toj1fQz6hE9oTIZIcR8auA317BPWwgf+8TmtpGGdz/xebQtBaGyForYsQtNZGCFprIwSttRGCViAi0tsxTdCu2XKAR156h989+yZLvtxOSUU9IATt3VLvcVAuFd3UFRt/VuxxxzLOujaT5zpCiXSFGk8DLZ6A6efQX7g9QavgqbyGkr2a6PZXb4wwSJuIfGYzroZa089HcHtYRdA67EE8pWF8F3WUIzpaagTibNwV2RglvDtC4ISO94qGVBXC7jb/HHoDIWitjRC01kUIWmsjBK21EYLW2ghBKxAR6e2YOoM2EolyLreIqfNW8ZOHx/LkqFn868OvUlRWa2ZZtxWzFocbXbGXyHUf7LYrNtP5Iaecq7no2sU19xkqPGXYPKJL8265FUHrbGrCf2EHRvqbN0YYbBuFeuxTWssu0SIJId5fGXCCVlJx1YVouxbGf0ojuM/A2Bx/RIG+NYqaYeA/q9N6PYyz0VqyUghaayMErXURgtbaCEFrbYSgtTZC0ApERHo7pm8S9k08bT6S044wdORM7n9oDJNmrugXm4X1xUJQ73FQJhVRIJ3kvGtH912xzuWcdW3miusIJdJVaj02RFds7xBP0NpdbbQXHiecMb/zCIMD7+O9ehiHw2N67YK7pz8LWrtTRaoI4b2soRzV0XZGiK4n7sZd4V0RAlk63ssaUkUIu8v8czAbIWitjRC01kUIWmsjBK21EYLW2ghBKxAR6e0kjKC9OVevVzJz8Xp+/th4s0vpMffyDd/k8VEt1VAkXSLXdZAzzg0c67Yrdg0XXekUSmeokMqweYT460s6CVpJwVORj3JiJdFtYzqkrLHzdeRzW3DZ6kyvV3Bv6S+C1mUL0nY9jP+MRvCggZESvyvW2BwluN/An6PRdi2Mq75/bdzVlwhBa22EoLUuQtBaGyForY0QtNZGCFqBiEhvJyEF7Tfxy4rZJfSYO31z13vslEnXv9UV25WIjXXFnnNt4YrrCKVfd8U2i65Y01FCBj5XM/7z2zF2Tb4xwiDlFdRjK2gtz6NFUkyvU9A7JJqgtbtVpKoQ3isageM64fQI0Q1dy9joetBSIyiZOr6LGp6yMA6HkI23gxC01kYIWusiBK21EYLW2ghBa22EoBWIiPR2ElbQZhy7wNxlyWaX0WN6ehPf6Iq9SK7rAKedG8hyLo4jYz/ilHMNl1y7v+6KLafR02b6QiTojN3ZhrfgKJHD8zqNMAgfnIO3IBOHs9X0GgW9j5mC1tkUpLUkjP+cjnrIQN8eidsVG0mOEtprIJ/Uac/XcNcO3I27+hIhaK2NELTWRQhaayMErbURgtbaCEErsHJ0w2DQ4NEsXrm90+Unz+YzZfYX9+xxfvH4BBzuVsqrbTz+8owub7MpLbNfuMI7ScIK2u17jzPh3U/MLqPH3PyGrffYKe/oik3lpPOLbrpiP+Gc85uu2HxqPY2iKzaRkRRay/NQj39ONGV0h5SNpL+B/3wKrsYG82sU9Cl9ImjdKu7aEO35GvJJndBeg0hyNxt3bYugHjLwn9dpLQnjbBICsbcQgtbaCEFrXYSgtTZC0FobIWitjRC0AitHNwx+/th4fv/cW9TUN3dcfq8FrafNRyQS7VbQqsEwcmBgvh4JK2j7S3LdBzntSuqmK3ZBp67YSqmcRk+76YuL4NZw2eqQz23B2Pn6jREG20ajnviCUMM12v2J8xV3Qd9yrwWtwxHEUxbGd0lDydTRdnSzcdeGKOH0CIHjOt48DalKdMX2NULQWhshaK2LELTWRghaayMErbURglZg5eiGwc8eG8+ug6cYP/1GI+XNgjYSifLhiq388S/v8siL03h/SRK6YQDwwNBJpOw+xmszPuXRYdM5fuYK85YnM3LKIkZOWYyihoDOHbRDhs9g2eodPPzCNIYMn8HlgjKgcwfttZJqnh83j8dfnsFTr7zfcZv+moQQtJFIFKnVS7ND+g6Jni67Yt1HO7pizV5EBLePw+HBe/Uw2oH3vzXC4AO817Kwu2JjJzptEiawHHcjaF31IdoKw/hzNIL7DYwt3WzclRIleNDAf1qjrTCMyyakYCIgBK21EYLWughBa22EoLU2QtBaGyFoBX2eWZthRnLf00V0w+BfH36VSCTKc2Pnkn2+AOgsaI+fucJTo2cTDmuEwhpPjZ7NkZOXAXjwqTfYkHoYgPRDOfzssfHYmp0AvPr2UjKzY7e7WdD+68Ovsi/zLAD7j55jyPD3gM6C9pkxczh0/CIQG5M6dOTMe/0q9GlMF7RHT+Xy4FNvMGjw6C5J9BRLuVRKFTSJrtj+jSTTWnYJ9dinRLeN6pCyRvoU/Oe342yyfec+QtBam1sRtHaXilQZwpurEcjSCe+KEE0i/sZdOyMoR3W8lzU8FSHsTiEAExUhaK2NELTWRQhaayMErbURgtbaCEEr6PO89qU5dBHdMLj/oTEA5BaUM2T4DDRN/86Ig1BY6/jvDz7ZxPptGUBM0FbVNQFw6WopT46a1XG7ecuT2ZKeBXQWtL94fAKRSBQATdMZNHg0bV5/J0GraXrHbVxSOz95eOw9eerNiumC9nfPvskXG/ZQ3+jA4W79DokesxcJwd3haqhFPrOJSNrEm0YYjEE5+SWeinxaPErc+wpBa22+LWidtiCtRWH8Z3XUDAM9pZuu2E1RgvsM/Kc02q6FcdWFaJHMPyfBrSMErbURgta6CEFrbYSgtTZC0FobIWgFfR6vAt5A39NFbha0AG/N/ZINqYc7CVqvP8CcpRt5YcJ8hk1ayO+efZOvth4EYoL2m2/I5xaU88KE+R3HWvDpZjalZQKdBe0jL07rVMMvHp9AQ5Ozk6DNyslj5JRFDJu4gBcmzO9UY3+M6YL2Z4+N75g30R9j9iIhuH0cdgnf1YNo+97rNMIgdGgB7YXHsbturRtaCFprYneruKtD6CVR1GyD0O4IkY1xZOw60HZEUI7o+C7qeErDOOxC6g0EhKC1NkLQWhchaK2NELTWRghaayMErcDK+bagbbK7+c3TU9iVkdMhaBd9kcKcpRs75s7OWbrxrgTtL4dMJBrt3EHr9QU6BK2nzcfPKBbHtwAAIABJREFUHxtPTUMLAHanRwjau83Ueas4n1dsdhl3HLMXCcGtYXfLtJWcJ3h0GaSMvGmEwVv4L6bhbGq67WMKQTvwcTYH8ZSG8V3QUQ/r6KkRWEeXMjaSHCW0J4J8Qqc9X8NdIzbuGsgIQWtthKC1LkLQWhshaK2NELTWRghagZXzbUEL8HnSbh5/eUaHoJ06bxWbdx4FoKa+mUdeeofP1u0C7kzQ3veHMWTl5AFw8Nh5nho9G7gxg7aqrolfPz2ZcFgjEomyYn06gwaPJhgK994T0csxRdBuSsvs4KutB3l02HQWfLaF5LQjna775kVK5Ji9SAi6x11bRuDMRiJpE26MMNj+Kkr2ajxV1+huhEFPCEE7gJBU3LUh2gs05GyN0D6DyKb4Iwr0bVGMo1HUiwatxWGcjULUWQ0haK2NELTWRQhaa3LJpbKhSeWd+gB/qVN4pzbACpvC3haVqy7z6xP0DULQWhshaAVWTleCVlGDDH5+aoegLSiu4vGXZ/D0mNnM/ngDx89c4ZdDJnLybP5tC9qi8jqeGTOH5WvSGDpyJkNHziS/qArovEnYrMVJPPLSOwybuICLV0oYMXkRL75249j9LaYI2mGTFt4yiR6zFwnBd3HYXfjy9qPtnd55hMHhhbQXZmN3e+/J4whB2z+xO4J4ysP4LmsomTpaWoRonK7YaBKE0yMEjul48zSkyhD2r38Ru5VNwgQDFyForY0QtNZFCNqBT5UUZI9dZWGDwvOVMj8q8fPXxXKP/KFcZkRVgLl1AZKaVI45Yscy+3wE9w4haK2NELQCEZHejukjDuIlGo2iabrZZfQYsxcJQQy75KOt+DTBzCWQMqJDyurpU/FfTsfZbL/njykEbeLjagjSVhjGn6MRPGBgbO1m466tUYIHDPw5Gm2FYVwN3f9SJQSttRGC1toIQWtdhKAdeJx0qqxsVBhXI/Ob8q7l66ASmZeqZOY1KCxzhPigPsDrNQGGVga4r7R7cfvjEpmhFQEm1sgssSlsb1Y45zT/vAW3jxC01kYIWoGISG/HdEH7yEvvdHm51x/gwSff6ONqbj9mLxJWR6ouIZCzjkjquBsjDFLHomSvRaq+3quPLQRt4mB3qUiVIbx5GoHjOuH0CNEkuu6KXQdaWgQlU8d3WcNTHsbuuH3RJgSttRGC1toIQWtdhKDt3xS7VbY3K7xXJ/OnigD/0IVQ/btimccqZN6pDbCpWeHKTfPk482grfWonHSobGxW+aA+wOjqAA+Vy/ywJL64/ZtimV+Wyfy5KvZYXzYqHLSrXBPz6xMWIWitjRC0AhGR3o5pgvZ8XjHL16Txk4fHsnxN2nd4c+5KHhg6yazybjlmLxJWxNniwJ+7B33PtJtGGIwgdOQj2q/nYHf7+qQOIWhNev0bg7QWh/Gf11EzDPRt8btiI5uihPYZyNka7QUa7toQLdK9qUMIWmsjBK21EYLWughB23+o86gcdigstakMrw7w0zidrr8sk3m1WuazRoXjDhVbN58T7mSTsEK3ykG7yqrG2OzaF6pk/m9ZTNDGk7f/8PXIhNHVAebVB9jYrHLCoVJzjz7DCO4MIWitjRC0AhGR3o5pgramvpnPk3Zz/0NjmDL7i+/w7odrOXOp0KzybjlmLxJWwe720X49h9CRj2DrTSMM9kzDn7sHZ4ujz2sSgra3X3MVd02I9nwN+YROaI9BJDmOjF0HWmoE9bCO74KOpzSMs7l35ZkQtNZGCFprIwStdRGCNnG54FRZ36QypTbAH8plvt+F+PxRiZ9nq2Tm1AXY1aJS7r69dfxOBG08bF/XnNqs8LFNZVJNgKEVAQZ103X718Uy95XKDK2MjVhYZlNIa1G56Iodz+zXYKAjBK21EYJWICLS2zF9xMGq5H1ml3BXMXuRGOhIVYUo2WuIbn+1Q8pGUscRyFmHVF1sam1C0N47HPYgntIwvos6yhEdLTVCdD1dd8VujBLaHUE+odN+VcNdHcJuwtcBhaC1NkLQWhshaK2LELSJQaUUZHeLyrz6AM9XyvxTFxt5/U2xzO/LZd6oDfBVk8p5p0rzXT7uvRS03VElBTnuUNnYpDKnLsCo6gC/L5e7HMnwDd8vlvlVWWxW7rt1AVY3KRyyKxSJkQn3DCForY0QtAIRkd6OKYJ2+94TON1tHf/dHYkesxeJgYizqRn/pV3o6VNvjDBIGUHwyGLaik9jl/pmhEFPCEF7B0gqrroQbdfC+E9pBPcZGJvjjyjQU6Kohwz853Rai8I4bYkjxISgtTZC0FobIWitixC0fU+jJ/b1/s8bFcbWyDxQ1rWgvL9U5uXqAEsaYmKythdq6StBG49mj0q+S2W/XeWLRoW3awM8Vynzi1KZ73Ujb39U4ufhitgohwUNCpuaFbKdaq88RwMZIWitjRC0AhGR3o4pgva5sXMprqjr+O/uSPSYvUgMFOyudtqvnyR0aOFNc2WHo+99B1/uPhx2l+k1fhshaHt4TZ0qUkUI72WNQJaOtjN+V2w0CcK7IgSydLy5GlJlCLvL/HPoDiForY0QtNZGCFrrIgRt75PvUtnarDC9LsCQCpkfdCEc/75YZkhFrFN0a7NCfh99ZjBb0HaHTVI59/XIhMUNCq/VyDxeIfPjHkYm/KRU5slKmcm1AT6xKaS3qOS6VJoS4JwSDSForY0QtAIRkd6O6SMOgqGw2SXcVcxeJPo3Cp7KApSTX3YeYbBjPIHTSUg1pQlQY3yEoL2Byxak7XoY/xmN4EEDY2v8rlhjS5TgfgN/jkZbYRhXQ/+UXELQWhshaK2NELTWRQjae0utRyXDrrKkQeHl6gD3x9nI61dlMmNrZL5oVDjpiHXVmlFvIgva7qiUgmTZYzN6Z9cFGF4d4LdlXcvvb/jbEpkHy2X+UhVgZp3MmiaFww6FYguPTBCC1toIQSsQEentmC5of/roOMa8/THrt2VwvbQGw4iYXdJtxexFoj/ibLLhv5CKkT7lphEGIwlmfkxbyVnsbr/pNd4KVhS0dreKVBXCe0UjcFwnnB4huqFrGRtdD9qOCEqmju+ShqcsjMMxcISWELTWRghaayMErXURgvbOafbEOjzXNim8URPgd+WxObHfFoP/VOLnuUqZD+oD7LHH5KLZtX9DfxW03b0mV9wqe1pUPmtUmFob4NkqmZ/HGSPxDf9Y4ueRipg0/9CmsLVZIcepUpcA59SbCEFrbYSgFYiI9HZMF7Tl1Ta27z3BtPlrGPz8VB4YOokps79g+94T1DS0mF1ejzF7kegv2F1teK9lET74QacRBtreGfjy9uNwuE2v8XYZ6ILW2RSktSSM/5yOeshA3x6BdXS9cVdylNBeAzlbpz1fw10XomWAd1gIQWtthKC1NkLQWhchaG+dMneQnS2xjs1nKmNzULva2OqhcpkptQGSmlQuOM2vuzsGmqDtjnqPyhmnSkqLwiKbwrgamccqut6Q7WZ+VibzTKXMW7UBPmtU2GNXyXPf/QZtiYAQtNZGCFqBlaMbBoMGj+anj47r4LfPTGHO0o0oarBPa9mansXcZcl9+ph9FdMF7bdja3axY/9Jnhw1i0GDR5tdTo8xe5FIaCQFT/kV1BNfEN02+qYRBhMInN6Iu67c/BrvggEjaN0q7toQ7fkacrZOaK9BJDnOiIJ1oG+PoB428J/XaS0J42y2pqQSgtbaCEFrbYSgtS5C0HaNTVI57oh1YY6pDvCLOKMKfloqM6IqwFKbymGHQn0C1H47WEnQdkeppHLEobC2SWFmXYCXqwP8ujw2FiGeuP27Yplfl8c2cptVH2Bdk0qmQ6W0H/1BXwhaayMErcDK+UbQOtytHZdJrV7GTV/O8rVpfVqLELS9nHavTPa5fJavTWPYpIX86onXeeWtJXyetNvs0nqM2YtEIuJqbMB/PgVj1xsdUjaaMopg1nLaSs5jd8um13gv6I+C1uEI4ikL47ukoWTqaDu62bhrQ5Tw7giBEzreKxpSVQh7P/oQ3dsIQWtthKC1NkLQWhchaGPkuVU2NStMqw3wWEVMvn1byP1DscyfKmLzS7c3D4zZpULQdk+TRyXPpbK7ReXTRoUptQGeroyJ+e66bv+51M8fK2XG18gsalDY1qxw1qnSIJl/TjcjBK21EYJWYOV0JWgBdh86zdhpy7A1O3nohbc7Ll/w2RZGTF7U8fPrs1Zw/MwVrpVU8/y4eTz+8gyeeuV9LheUAbFv1j83di6fJ+1m3PTlDB05k3O5RQCEwhrvfriWR16cxojJi1i8cluHoI13vP4a0wXtk6Nm8eiw6Uybv4Zte45TXFGHbhhml3XLMXuRSBQczla8+ZmED87pPMJg30x8Vw/isEum13ivSXRB62oI0lYYxp+jEdxvYGzpZuOurVHUDAP/WZ3W62GcjUI89YQQtNZGCFprIwStdbGioK2RVPbbVRbZFF6qkhkUp0vywXKZCTUyqxoVTjljss7s2u81QtDeObUelVNOlS3NCgsbFF6tlnm4ouvRF9/wvWKZfyuTeb5S5u3aAJ83KuxtUcl3mTMyQQhaayMEraCvc8r9Odnuz/qcrtKVoHVJ7Yx6czGrkvcB8PAL07C7Yte/9NoCXnxtPuGwRjQa5ddPT8brC/DMmDkcOn4RgIxjFxg6ciYAVXVN3PeHMVy4UgxAVk4eL7/+IQBpB7IZMXkRmm7gkxWeGDWrQ9DGO15/jemC9rUZn/K7Z99kxORFfLZuFzkXruH1B8wu65Zj9iJhKlKA1rLLqMdWEE155cYIg7SJyGc242qoNb/GXiRRBK3dpSJVhvDmagSydMK7IkSTiLtxV3hnhECWjveyhlQRwu4y/7nsjwhBa22EoLU2QtBal4EuaJs8sbmjq5sUJtXEvrb+vS7E2Y9LZP5cJbOwQWFPi0pVAm3k1ZsIQds7FLlVDtsV1jQpzKiTGVYl8+9lfr7fTdft3xfL/K48NjJjdl1shvExR+9uKicErbURglbQ18l0LjCFrvKNoP2/f5rIA0Mn8cshr/Fvf5zAZ+t2oWk6ALMWJ3H0VC7tXpmRUxYzb3ky+UVVVNc188KE+QBomk4kEgVigvcnD48FYoL2gaGTOh6vvNrGIy9OA+CdBWvYkp7Vcd2K9ekdgjbe8fprTBe0AIYRoai8jk1pmbzx/uc8+OQbPDNmDh+u2Gp2aT3G7EXCDFwNtchntxBJm3hjhMG2UajHPqW17BIt0sAYYdATZghapy1Ia9HXG3dlGOgp3XTFbo4S3Gfgz9FouxbGVR+iJcG+KtafEYLW2ghBa22EoLUuA03QlrpVUpsVZtUHeLJS5odddMd+vzjW6Ti1NsDGJpXLFv7DrhC0fUujR+WSS2VXi8pym8IbtQGeqAxwfw8jE35cIjOkQmZijcwSm8L2ZoXzztis5LupRwhaayMEraCvE4rIptBVvt1BK7V6+dUTr1Nrs3fcZl/mWT5elcrJs/l8+tUu9h45w8YdR9h5IJtPv9oFxDpjR05ZxLCJC3hhwnzuf2gMEBO0f/jz1I5j3fzzuOnL2Zd5tuO65LQjHYI23vH6axJC0H6TUFgjv6iS9dsyGDpyptgkLIFw2CV8Vw+h7Z/VeYTB/vfxXj2Mw+Exvca+pjcFrd2t4q4O0X5VQz6hE9odIbKxaxkbXQ9aagQlU8d3UcNTFsbhEOKotxGC1toIQWtthKC1Lv1Z0DZIKkftKp/YFEZVB/h5Wddy6+dlMq9UB/jEpnDUnnhzQM1ECNrEodajctKhktys8EF9gDHVAR4q7/qPDN/wN8Uyv/x6ZMI7tQFWNiocsKsU3OIfHYSgtTZC0AqsnK5GHHyZvJdJM1d0/NzikBg2aSHLVu8g+3wBtTY7k9//gvc+Wsf5vGI8bT5+/th4ahpaALA7PbckaKfNX0PK7mMd1y1fk8bcZcndHq+/xnRBe+LsVZavTePl1z/kp4+M5fGXZ/DBJ5s4cvIynjaf2eX1GLMXiV5FkmktuUAwaznRlFEdUtZIm4R8bgsuW535NZrIvRK0jpYgntIwvgs66mEdLTUC6+hSxkaSo4T2GsgnddqvarhrxcZdZiEErbURgtbaCEFrXfqToL3sUtnYpDK1NsDDFXKXXxf/YYnMk5Uy79cHSG1WKBWfKbpFCNr+QaFbJcOusqpRYXpdgBeqZB4o6/o9cPOmdoPLY3+cmFsX6xY/4VCpvukPFELQWhshaAVWTleCVg6o/PrpyVy8UtJx2dCRM3l+3DzavH6i0ShPjJrFE6NmoQbDVNU18eunJxMOa0QiUVasT2fQ4NEEQ+FuBe3W9KyOGbSt7X6GDJ/B3GXJ3R6vv8Z0QfvQC28zc/F69mWe7Rgo3J9i9iLRG7jrKpBPJxPZMeHGCIOUV1CPraC1PJcWSTG9xkTgtgWtpOKuDdFeoCFna4T2GUQ2xR9RoG+LoB4y8J/XaS0O42wSMiiREILW2ghBa22EoLUuiSpoq6Qge1pUFjYo/LlK5l9Kv7vx0veKZX5dLjOpJsDqJoUzA3Qjr95ECNr+jc2jcsGpsqNF4WObyqSaAEMrAtzXw8iE+0pl/lQRYEqdwipXmLSW2HFsCXBOgr5DCFqBldOVoIWYPH321Tkdc2DnLN3YaaOuie99xitvLen4edbiJB556R2GTVzAxSsljJi8iBdfm9+toFXUEG/N/ZLfP/cWwyYu4LN1u5j98YZuj9dfY7qg7e8xe5G4Vzgcbnx5+9H2zug0wiB8cA7e/EwczlbTa0w0uhO0dkcQT3kI32UNJVNHS4sQjdMVG90QJZweIXBcx5unIVWJrtj+gBC01kYIWmsjBK11SQRB2+hROeVU+bJRYUKNzIPlXUulQSUyL1XJLLIp7Ler1IhRBXeNELQDl2op1jG7sUllbl2AUdUBBpfHOmvjidvvF8c6c1+skpleF2B1o0KGXeW6+Bw/IBGCViAi0ttJWEH7ZfJeHn95htll9BizF4m7we7201ZylmDmx5Ay8sYIg11v4D+fgquxwfQaE5lvBK2rIUhbYRj/aY3gAQNjazcbd6VECR408J/WaCsM47IJwdNfEYLW2ghBa22EoLUuZgjaYrfK9maF9+piXXxdCaO/K5Z5rEJmWm2ATc0KeUIQ9QpC0FqPZk9sRu1+u8rqFpXZTUGeq5T5RWmsKz2evP0/JX4eLpd5tVpmfoPCpmaFk87Y7Fyzz0lwZwhBKxAR6e0krKA9l1tE0vZDZpfRY8xeJO4EqaaUwOkkIjvG3zTCYDTqiS/wVFwRIwziYHepSJUhvHkageM6kT1RoknE37hrZwTlqI73soanIoTdKWTOQEIIWmsjBK21EYLWuvS2oK3zqBx2KCy1qYyoCvDTOF+9/kVpTPx81qhw3HH3u9MLbg0haK3Nt2fQ2iSVc06V1GaFJQ0Kr9XIDKmQ+XE3G5X9dbHMv5bGZj+/URvbjG9XS2xmdGMCnKMgPkLQCkREejumC9qp81bhlxWzy7jjmL1I3CrOFgf+3H3oe9/51giDeXgLsrA720yvMZFwNgVpLQ7jP6+jZhjo27rpit0UJbjPwH9Ko+1aGFddiBbxi9KARwhaayMErbURgta63GtBe8GpktSkMqU2tgN9V5sY/ajEzzOVMrPrAuxsUSlzi7XHLISgtTa3s0lYpRQkyx57f8+uCzC8OsBvy2R+0MPIhAfLZYZVybxXJ7OmSeGwQ6FYdMQnBELQCkREejumC9onR80i71q52WXcccxeJLrD7vbRVpRD6Mhi2DriphEGk/Gf346zyWZ6jWZjd6u4a0K0X9WQT+iE9hhEkuPI2HWg7YigHNHxXdQJ1UXwtt7GJmGCAYUQtNZGCFprIwStdbkbQVspBdndovJBfYDnK2X+qeS7G3n9TbHM78pl3qgJsLZJ4Zwz9hVrs89bEEMIWmtzO4I2Hs0elasulT0tKitsClNrAzxXJfPzsu5HJvyoxM8jFTJja2Q+tClsaVbIcca67s1+XgYSJa52suxNbGwsZ37dFcZW5vDH0kMMup7G/yjYiEcVn/2tjIhIb8d0Qbsh9TBDhr/HvOXJJG0/xKa0zE4kesxeJLpCqi4icOorIqljb4ww2DYG5eRKPBX5tHisOcLAYQ/iKQ3ju6ihHNHRUiNE19OljI1sjBLaE0E+odOer+Gu+e7GXd1tEiYY+AhBa22EoLU2QtBal1sVtI0elZMOlc8bFcbWxDYS6kq63F8q83J1gCUNsc2FxHzKxEYIWmtzLwRtdzRIKmecKtuaFRbZFMbXxGZLd/XHnJv5WZnM05Uyb9YG+LRRYY9dJc+l0pQAz1micd3dRqa9kfWNZcytu8KYylM8UprBP1/fwX/LT+I/XF3bLVd9kunnIDAPEZHejumC9vlx8xg2aWFcEj1mLxLf4Gy247+cjr777c4jDDLm0154HLvLQiMMJBVXXYi2a2H8ORrBfQbG5vgjCvRtUdQMA/85ndbiMM7GW5MuQtBaGyForY0QtNZGCFrrEk/Q5rtUtjYrTK8LMKRC5u+7kCg/KI7Np5xeF2Brs0K+y/zzEdweQtBam94WtN1RKqkccSh81aQysy7Ay9UBfl0e2yAwnrj9u2KZX5fH/gg0qz7AV00qmY7Yscx+LnuLa65WDrXYWGsrZXZtLqMqs/lDyQH+8fp2/sstCNj/mp/EP11P5eHSg4yuzGZObR7rGks50tJIldcnRhxYHBGR3o7pgra/x8wFwu720l6YTejwwk5S1kh/E/+FHTibmkxfxHr9OXCqSBUhvJc1Alk64Z3xu2KjSRBOjxA4puPN1ZAqQ9jv4pcjIWitjRC01kYIWmsjBK11sbeqKBE4ZI9tCvRydYD742zk9UBZ7OvInzcqnHCIDYAGAkLQWhszBW08mjyxbtk9dpVPGxXerA3wdGWsq7a7rtt/LvXzWIXM+BqZRTaFbc0KZ5yxLl6zzykesfEQEgdaGlhtK2Fm7WWGV5zg96X7+WHhdv7z1XU9Ctj/np/Ej6+n8VhpBmMrc/igLo8NtnKO2psodrd3+/hiBq1ARKS3kxCC1tbsYvWmfcxanARAJBLtN3Np+35hUPBUXUPJXk10+6s3RhhsfxUlexWeymsM1BEGzsYgrdfD+M9oBA8aGFu72bhra5TgAQN/jkbb9TCuhnsvUoSgtTZC0FobIWitjRC01qHZE9ul/asmlTdqAvy+IjYn9tuy459K/DxfKTOvPsDulti8WbNrF9x7hKC1NokoaLujzqNyyqmypVlhYUNs3MrDFbF5tvHE7feKY/Nwn6uSmVobYIVNYU9LbG5ub8/DbvIo5Drd7GupY2VDMe/WXuIv5cf5Tck+flC4jf+U37OA/Z8FG7nvehpDyg4zvvI0C+uvktxYwXFHM2Vu713VJwStQESkt2O6oL1wpZifPjqOCe9+wqDBowFocUg8MHQSB4+dN7e4W0hfLQbOpib8F3ZgpL/ZqVs2dHgh7YUnsd/l/3ASCbtbRaoK4b2iETiuE06PEN3QtYyNrgMtLYKSqeO7rOEpD2N39M0vRULQWhshaK2NELTWRgjagUu5O8jOFpU5dQGeqexaZHy/WOYP5TJTagOsb1K54DS/bkHfIASttelvgrY7itwqhx0Ka5oU3quTGVYl82B5bH2LJ29/UCzz2zKZEVUBZtcFSGpSybLf+h+kGj0Kl5wudjfXscJWxLTqC7xYcYx/L97H3xam8J+uftWjgP1fBcn8pGgXQ8uOMLHqDB/V57OlqZJsRws1kr9XnzMhaAUiIr0d0wXtk6NmcepCAUCHoAXILSjn6TGzTarq1tObC4Dd1UZ74XHCGfM7SVk9fSr+S7twNjWbvkjdLc6mIK0lYfznddTDBvr2CKyj6427NkUJ7TOQszXaCzTctSFaTPwajhC01kYIWmsjBK21EYJ2YGCTVI47VD5rVHi1WuYXcUYV/LRUZnh1gKU2lSNOBTWSOHsQCPoWIWitzUAStPFo9KhcdqnsalFZblN4ozbAE5UB/jXO+vgNPy6RebzCz8vVbUyodjCppoZXq67ybPkxHijew/eubeU/9iBf/8PVtfxVwSZ+VpTOU2WZvFF1hiX1BWxrqiLH4aDOI5v63AhBK7By2rx+Bg0ejaIGO12+L/MsY6ct65MatqZnMXdZcp88llkxXdD+7LHxGEYE6CxoNd3g54+NN6mqW8+9f+MreCryUU6uJLptzLdGGKxFqio0fWG6I9wq7toQ7fkacrZOaK9BJDnOiIJ1oKdGUA/r+C7oeErDOJsTT4QIQWtthKC1NkLQWhshaPsnV9wqm5oVptUGeKyi6811/qFYZmhFgPfqZLY1KxS7Ox8j3iZhAmsgBK21sYKg7Y4KKcDmZol361t4rtLGA6WN/KjYzveK2+OK2/9d7Oevrtv5/wor+B/X8vjf189yf8kp/lR2iinV51hWf43U5hrOOpw0SAHTz7E7hKAVWDlC0PZNTBe0Q4bPoLzaBnQWtKcuFPDosOmm1LR60z5+9+ybHT83trgYPfVj/v2J13l+3Dzyi6o6rrtXb3Znkw3/+e0Yuybf1C07gtCRj2i/noPd7TN9QbpVHI4gnrIwvksaSqaOtiP+xl2RjVFCuyPIJ3Tar2q4q0PY3eafw60gBK21EYLW2ghBa22EoE18aiSVA3aVRTaFYVUyg0q6lgcPlsc2yfmyUSHb2fNGXkLQWhshaK3NQBe0dR6ZHIedbU1VLKkv4I2qMzxVlsnPitL5q4JN3Xa+/sf8zfy/Bfv43vWz/GNxMT8usfGPJRLfK44/7/YfimUGl8uMqg4wty7AxiaVEw6V6gTdqEwIWoGVcyuCNhTWeO+jdTw6bDqjp37MquR9vL8kts/UtZJqnh83j8dfnsFTr7zP5YIyAMqrbTw3di6fJ+1m3PTlDB05k3O5RR3He/fDtTzy4jRGTF7E4pXbOgRtvOP195guaNMP5fC7Z99k5cY9DBo8mpTdx5izdCM/e2yVNKi/AAAgAElEQVQ8qftO9nk99Y0Oho6c2UnQvvLWErakZ2EYEc5eLmLw81PRdAO4uw/odmcb3oKjhDPmdh5hsGca/tw9OJvtpi9CPeFqCNJWGMafoxHcb2Bsib9xl54SRc0w8J/TaS0K47T1b7khBK21EYLW2ghBa22EoE0smjwqZ5wqa5oUJtUE+E15bKObb8uAfyn18+cqmQUNsU1vqu5gIy8haK2NELTWpr8L2hrJz0lHC1uaKvmoPp+JVWcYWnaEnxTt4n8VJPc4fuA/Xf2Kvy1M4d+L9/FixTHeqb7AClsRu5vruORy0djFRtU2T2xO944WhaU2lUk1Af5UEeC+HkYm3Fca+zbDpJoAH9ti97/gjB3PrOdPCFpBn2cbsNUEusitCNrte08wYvIidMPA4W7loRfe7hCqz4yZw6HjFwHIOHaBoSNnAlBV18R9fxjDhSvFAGTl5PHy6x8CkHYgmxGTF6HpBj5Z4YlRs3o8Xn+P6YIW4PDJS7z69lIeeekdnhg1i9dnreDs5eum1DLm7Y/JzL7cIWg9bT5+OWQiumF03ObP4z8gt6AcuIMP6JJCa3ke6vHPiaaM7pCykdSxBE6tQ6ouNn3h6Qq7S0WqDOHN1Qgc0wnvihBNouuNu5IgvCtCIEvHm6shVYawu8w/h3uN1QWtvaoBzwdv4lk0A2nZXKTPP0JavRzXhpW4U5Jwp23FtXcnrkP7cR3LxHkqG+f5CzjzruIoLMFRVoWj2obd5sLu6H+b3AlBa22EoLU2QtCaS6lbJbVZ4f36AE9WyvyfOBt5PVwR24V8Y1NspuK9eGyrC9qSmiC5hUHKaq25/glBa20SXdCWub0cszeT3FjBwvqrjK88zZCyw9x3PY3/WbCxRwH7/+Sv4weF2/hNyT7+Un6cGbWXWNlQzL6WOvKcEk1dCNi7oVqKdcxubFKZWxfgleoAg8tjnbXxxO33i2UeKJN5oUpmel2AVY0KGXaVwj74BqYQtII+T5zGt16ni9yKoJ02fw0pu491XHdzx6um6UQiUQBcUjs/eXgsEBO0Dwyd1HGf8mobj7w4DYB3FqxhS3pWx3Ur1qf3eLz+noQQtImS/UfPMXPxetq8/g5Bm19UxTNj5nS63TsL1rArIwe49Q/oLlsd8rktGDtfv9EtmzKC0JHFtBWdxi4lzggDpy1Ia1EY/zkd9ZCBnhK/K9bYEiW438Cfo9FWGMbVYJ0P7FYXtI5rRbS/+Jt7x0u/pW3EI7S9OpS2ic/R+uZfaJ0+htZZE2+I4OVzcX/+Ee41n+Da+CXulA03RPDhA7iOHcWZcwrnhYs48/JviOCaRuw2N3bnvRPBQtBaGyForY0QtH1Hg6Ry1K7yiU3hleoAPy/r+pf2n5fFvia73KaQ6YjdrzfqsYKgLawIkXMpxJ4jIdZvC/HxyhAzFoQZ95b2HaZ/EGbx5yFWJ4dI3RfmSHaIi9eClA5QgSsErbUxW9AWu9vJtDexwVbOB3V5jK3M4bHSDP7l+g7+e35SjwL2P19dxw8Lt/P70v0MrzjBrLpcVttKONDSQL7LQ3MCPMffUOBS2W9XWdkYmxv+fGVsI8e/6Ube/rBE5qFymTHVAT6oD5DcrHDSoVJ7j2oSglbQ51FMoot4fQEGDR6NX+58g/RDOYyf/gkA46YvJ+PYhY7rNqQe7hCqWTl5jJyyiGETF/DChPnc/9AYICZo//DnqR33ufnncdOXsy/zbMd1yWlHejxef4/pgjYU1li9aR/Pj5vHb5+Zwu+fe4sXX5vP+m0ZHWME+iLtXpk/jXgPT5uvk6C9cKWYYRMXdLrtnKUb2fq1yfcpWlz83naCRUcxMmZ3GmEQ2TedUMEB/G2t3d6/15E1Ao06wesG4RwDfW+U6Ea6lrHrwdgZJXwsQuhqBKXWwO81sfYEIKxHUEO66XWYhb/Ni+/yBXxnT+HNzsSXuR/vgZ1407fg3baO9o1f4F27nPaVH9K+fA7eRdNp/2Ay7bMm0D5tFO2TX6TttadpHz3k3oreW6Bt5KO0jx1K++vP0/7Wy7TPeJX2Oa/TvnAq7Utn4v1sPu2rFuNd/yntW1bj3ZGMb+92vId34zt2CN/p4wTzzhHIz8V3vRBfRTm++nr8zQ58Ut+8r72Khl/VBSYRiUIgaH4dAnMAkBOgDrPw9eL6U+LT2e4O865N5bGqAH/b1S/hpTLP1Ch80BRkrxSmIdB366H89etv9mtwN3jadcqqdc5d1tmfqZOUorHkC4135nYtYe+GGfPDfPyFxrotGrsP6WSf17lWqmNrMUx/Hu6EQDC2/ptdh5XxBsKmffZVgjq6Eem141f7/WR7mtnirODDxquMr8nhjxUZ/EvRDv5rQc8C9r8UJPHPRak8Wn6QsbU5LGy8yv/P3nmGt3FeiXpTttzdzb1779b0eNM2tpPYcWzHTmzFLZa7ldiW5SZZxSq21XvvvfdCdaqQkqhCSZSoTqqyNwAESJBoRKcKp0PlvT+GUiyZIilZ5JDEnOd5fxAkgW9mgA8z75zvnDWBUg5HfTguXTL82uFeEBVj5F7U2BFWmV2l8KlL4hWHyP0Wsd6SCb+yCrxeJtHPJbPAr7I7olF4Kcb5O3htWb2Mdrnpjr9Jyyee48qVqzz0Qncs9sqbHp+yIJFR0xMA6Ddm0U1lSqcuTGT0jNVEz1/i4Re6U+6qAsAfjDZK0N6akTtzyZYGn6+1h+GCdtCEpbzeZSQrE1PZdeAkKfszWLQ6hefeHsCwKSuabRwjp61iW+pxgJsEbV6xg9c6j7zpbweMW3zjb2uk2M2ICnJ5FpcPzYGNH96Qstc290DLSEDyln75f5oBofoyctkV1KyrxNKucnXzNVhO3SUK1sDlnVfRTlxBKb6C5LtMjdD8Y27pxC5fRdGuGD6ONoOgIpy/SE0gTI3LQ02ZgxpLMZfyc6g5e4pLGUe4dHg/NftSuLRrC5dqRfDFhPlcWDqDi/MncmHGSC5MHsiFMTeL4As9XufCRy9yoVO75hPB7/yhThF8cWQvLkzox8XrInjx1Bsi+FKtCL5UK4Jrjqdz6XQGNTnnqCksoKbURk2tCL4YqabmkmT8cYtTrl69pgvaFjAWk+bn2rU6vv/jiEvSvXnvB8QYaVGN6T6Fd511X2B/p1jgqVKRz1wSCUGF7AuafoPKKOTWcfz94RhF1hhHT8bYtucyS9fEmDg7Rt/h9QvVHv1jDB2nMXORxppNMfYcvMzp7Ms4KmJUX7z5Nc7XxCh3Xya74DIHj8XYnKKxOEF/nQGjGpa9PfrHGDxOY9q8WoG75zJHMmPklcRw+S5zsQWee4qKvqTS6HHEM0Z+/iX1Mpev3N3xvyTFsF+6yKGolzUBG+M92XxcfpTnbLv5aeEm/lfuigYF7D/lruT+oi28WJpKj/JjTPbmsiFo53h1FRU1lww/NkbjF2NkVGtsCKmM98p0dkq0KxW57zZNIr9dLPD9YoEnbQLvO0VGefTvmSPVKhU1X35+RbtC7PJVw7fTxDjiPaYsSOTDz6fg9YfRtBiHMnJ49KWelJRWApCweR8f95/O1avXCIbP89w7Axk9YzWOCi9Pvv4pmqZfQ81dkcz97TqjqFq9gnZ98oEbNWirL9TQ/r0hDT5faw/DBe3vXun9pToWAG5fiIde6N5s43jitT489ebnPPXm5/zhjc944I9deOrNz3F5A/zmTz2Qlb8e7PbvDSGv2AH8dYlbyOVEOLGWq1t63lTCQNk/jfMlGfjDNc2Teh+RCTtVzufFEI7EUFOucHXNbUoULIfLiVeR916h5uRlqks0gt62uSStKYj3EgetlrCI31eNv9KP315BoNhGILeA4JmzhDJOEDqUTmhfKuFd2wlvSyScuIbw6iWEl88lvHAakdnjiEwdwaUpgzg/+lOiQ7oR7fc+1b3forrba5z/6E+c79SMIrjjU5z/4Hm9NESvP1PdtxPVgz4mOqIXkXH9iEwZSmTmGMLzJxNeOptwwiLCG1cRTtpAOCWZUOpuQulpBI8fI3jqDMHsXAJFFgK2cgLlXvyeMP5gyynB0lIwSxzEN2aJgzvHG5U5GpRZ5JHoUS7whK3ui+VflAi84xCY5JbY6W953bxbSokDX0TG6lQ4maOSekhlbZLCnKUqo6do9B5cvxztOTDG8EkaMxerJGxW2ZmmcuKcSnGZgvce1nH0hmSKHAoZWSp70lXWJSksWKkyfqZGv5ENC9zu/WIMGqMxcbbGotUqG7cr7D2icjJHpaT83o61sZglDuKb+koc+KIy2cEIKVWVLHKXMNR5lk6lh3iqZCc/KtjI3+Yub1DAfitvFfcXbuFPllS62o8xviKbBI+NA34vlnDr69fQUvBFZXJCMjuqZOa6Jfo7RTo4BH5jrbuh5HV+UlLDs6UCH5cJTHBJbA4qZNdcvmclE0xaH/EeqhZjzvIknnmrP4+82IOOPceTea7oxu8FUabn0Dk833EQnwyZzdwVyYyZqZckGD5lJc+9M5COPcdzOruE9z+dzNufjKtX0EqySt/RC3m6Q1869hzPnOVJjJy2qt7na+1huKC9NTv1ekiycqM4cHPHFzNoAboOmMGy9bu5cuUqqYdO80LHQVy5chWAizl7ie0cdlMJg1jKYC5l7SRYFWjSCcIfVIjaVC6djSGlXSa25SrXbpcVu+oaWvJVxEOXuZgdI+JQ8RtwYtuWMAVtfNNgDdqwcE9EcGTCAKKj+rQcEdz1Fc73+gvRvu8RHfxFETyMyKwxhBdMIbx0zpdF8N7dhA4dIHT8OMHTt4hgpxe/N4I/2Ew3su4BpqCNb0xB2zDFYZlEn8SwCoGXSsU6m758v0Tg+VKB/k69VmBWK2go2pyC9rrgPH5WJWW/yqpElRmLVIZPVPmkf/1ys89QjTHTNOYu11iXpJB6WOV0noKtUsHXQqS3JyxTXCtwUw+prE9WmL9SZcJMjQGjNLr3a1jgDqwVuAsTVDZu07czM7vpBK4paOMXT1QivzpK+gUf813FDHKeoaMtnSdLdvCD/A18sxEC9l/yEvhl0VbaW/fSw36cSZW5rPGUcihQRWnYvBluBK6ITEZQZqNPYrJLonu5wAulAj+3fLn55Bf5tUXgdbvAZ06R2R6JbVUyWSH9ZqTR22TSdJjRcFxv3AWweE0KM5duMXA0rS8MF7SJO9KZszyJCxeFG48Fw+cZM3M1O9MyDRnTrYLWF4jwUd+pPP5Kb97qMe5GCjfw17qym7ohHltB2Gltkskg5FI4X6BRczyGsusKV9bX07hr/TWU3VeoybhMdaFG0GNKhKbAFLTxTYtpEnZdBFdU4bc7CRbZCObkEzxz5hYRvI1wciLhxNWEVy++RQQPJzK+P9GRfYgO6Uq033s3RHD1Ry9w/t2nm1EEP835D5+nuturN4vgkb2JjOtPZOowIrPH3iyCExMIJ20kvDOZ0L49N4vgnDyChVYCpU4CFT783ihVIeEr73dT0MY3pqC9mcqozN6AxHS3zPsOkV9b6r6gfcSiN2+Z7ZE42ISNvJqSey1oXUGZPKvC4ZMqyakay9apTJmnMmhsw4Ky7wiNCTN1Oblpp0bacZWsQoWyNnLe5wnLFJcpZGar7DmksiFZYcEqlQmzNAaMbpzAHTBaY+IsjQWr9P/fc0gXuMVlCp67ELimoG27uCMip4MhknxO5riK6F92krdKD/B48Q6+W7Ceb+Qsa1DA/mvean5dlMQr1n30cpxgSmUe670Ojvr9OCOt5ya0iY4lIrM/ILPMKzO8UuRDp8RTdpEf1CNuv1+il0zoVCYyrEJkqVdiX0CipBV+35l8GTPqjyMn82j/3lBkRUOSFd78eBTpJ7KNHlarCsMF7fMdB/GrZ7tyf7vOPPpSTx5+oTv3t+vMQy9058nXP+WJ1/rcoCVGzclEzhdn3rMPvT8sE3GoXMyKIaZfRku6yrWV1J0VuwK0rVcRD1zm4tkYkVIVf9D4iSteMAVtfNNiBG1zERbwe6MEKnwESm8RwSdOEEo/SGjfHsI7k28WwcvmEF4wlcjssbpcHXeLCO71li5jP3yeCx2NEcHVvd4i2u89fUwj+9wigqfq27B6sb5NyYmEdyajHEsjciSd0IkTBM+c0fdFke1mERz+6iLYpGUS74L2dEhmpVfmc6fIMzaB791maejrdoGRFSJbqmSs4bYhDe9G0JZ7FbIKFdKOK2zeqS/XnzBLo++I+pf5d+8XY9BYjSnzVJauU0nao3E4UyXPquAKGL8vjMYblikp1wVu6mGVDdsUFiaoTJytMXBMIwXuKF1yz1+pZ/CmHlLJyFIpdtQtcE1B23pxR0QygwE2e8uZ5Srgc0cmHWxpPFq0nf/KX8fXG5CvX8tZyn/kr+Ex63Zet6bRpyyD6ZX5JHrLOB4IUBk1v/PbOhcEDUm9gjcqkxWW2e6XmeOR+Nwp8oZd4CHr7cXtt4sFflZSw/OlAt3KBSa7JTZUSZwI6jc5jd42k8ZhRv1x5cpVxs9eyzNv9ee5dwYyffFmrl271vA/mnEjDBe0B45lcTgjt1G0xPgqH/CgV6G6WKPm5GXkPVe4vLGerNi111BSrlBzLMb5fI1QpUqVeSfOUExBG9/EnaBtLkK3iOBCq54Fe/oMoePH9ezY6yI4aaOePZuwSM+mXTDlFhHcW8++7fse53v9xRARfP7dp6n+6AU9G7n3LSJ4fH89e3n2OMILp+lZzV8Uwbu2EdqXqmdBZ9wsgv12p5417as2RbABxJOgtUcUtvtlxlaKdLDrF5i3XnR+t1jgKZtA73I9WygzqNf8M3rsTUFdgtYXkSmtVDidp5B6RBd985brJQb6DK1fwn7SP8awCSrTF6qs3KiyI03l+FmVIruCtxWUfGjJXBe4J3NUUo/oJRAWrdYF7qBGCNxufWP0G6kxfqbGgpV6Dd29hzWKrNfM49MCqYwKHA8E2OQrY3plPn3KMnjDmsZvirfx73lr+FoDAvbrOUv5r/x1PFq0nQ62ND53ZDLLVcBmbzmZwQCuiFhvDVqTts91QVvf31REZY4FZdb5JCa6JbqWCzxXqt+0rE/ePmwVeNMh0M8pMscjsb1KJjvcdr9LWytmmNHUYbigvR6x2GW8/rDRw7jjaMwH2R+WCZerXMiJIRy+jLr9CldX1y1jr62A2KarSPsvc+l0jKhVI+BvG1knbQ1T0MY3pqBt3fiDNfi9EQJOr14Ht8hCMDv3ZhG8dzfhlGS9ju7GVTeJYGHBeKqnDiMyrh/REb1uEsHnu77C+Q+e50LHp0wR3EZpq4LWE5U5HJCZ79EvKh+/TTbQAxaBdx0iU1wSu/1yXDRMuS77MrJUjmZeJWGzyqwlKsMna/QcWL/k6z0oxqgpGrOXqazdqrAnXV9mb3G2nHqw8Yg3LFPiVDiVo7L3iEpiip7dPGmOxqCxGj0aqPN7XeCOm6kxf4XGumSF3ekqx8+pFNpVPKbAvac4IzUc9fvZ4HUwpTKPXo4TvGrdz6+LkvjXvNUNlh/4Rs4yvluwnseLd/AX2wH6l51kjquIJJ+T08EQ7ojY4BhMQRvfNEbQ1kdxWC8HtMQrMbRC/x594jarUK7zw2KB39sE3isTGVEpssIrk+bXb54avT/iETPMaOowXNDKisbIaatulDkAqL5QQ5f+04hUXzR2cI2IWz+0Ab9C1KJx6XQMaf9lYpuucm0FdcrYq6uvoe64gnD4MhdyYoSdZuOu1oQpaOMbU9DGN42tQesPXsLvCRMov0UEnzpD8PgxQulphFLrEsGzCc+fTGTmGCJTht4QwdWDPqa6byfO9/oz5z9+uflFcKd2nP/oT18Qwe/rDexG9SEyYYDe2O4mEbxEb4C3LZHwru23iOCzBHILCBTb8Nsr9IZ6vmqqwg1fJBtNWxG0uSGZ9T6JwRUi7UsFfnSbi8MXSwUGOkXW+SRy2rB08oRk8m0KR06pbN+rsmKDyrT5KoMbIes+H6Yxboa+VH7jNoX9R1XOFCjY3eZFdGvFF5GxlCucylXYd0RlU4rGkrUaMxbGGDymcQK37wj9fTFvhcbaJIVdB1VOnFMpKDUF7q2URWo4FKhircfOpMpcetiP85J1L78s2sq/5CU0KGC/mbOMH+Rv4MmSHbxTepBBzjPMdxWz3VfJ2VAYT1T6ymM0BW1881UF7e3wRGXOhmSSqmRmuSX6OEVetQv88jb13K/zixL9+/mTcoEpLolNPn0Fi9u88ddkmGFGU4fhgnbU9AQ+GTKbAkv5DUErySrDpqxg0ISlxg6uEXG+UKPmaAwl5QpX1t6+RMHljdeQ91yh5uRlqkvMxl1tAVPQxjemoI1vWlqTsDYrgru/TnWft6nu9wHRod1vFsFzxhNeNI3w8nmE1ywlvOkLInj/XkKH0wlmZBA4e45A3i0iuCr6lURwaxS0zqhMql9iqkuiU5nIg7e58HvUKtC1XGCuW+JQQMbdAsZ+T/dDlUJ2scLBDIWtuzSW1C557z+q/lIE3frq9Uonz9FYs+kKW3dppGfoz1VhrnSKG75Yg9YXkbE4FU7l6UJ+0079/TR5rtr4DNwRGmNnaMxdrrF2q8LOA3qJi7YocC3hixzwe1ntKWV8RTZd7cd40ZrK/YVb+FbeqgYF7N/mLudHBRt5qmQnnUrTGeo8yyJ3CSlVlWQHI3jvgYBtCFPQxjdNJWjrwxmVORyUWeOTGOeS+LhM4FmbwI/rKZnwndqmnB3sAv2dIvM9EilV+k1Zs2TCV8MMM5o6DBe0j73ci/MXawBuCFqAS4LEH974zKBR3UHcWqJgJWjJVxHTL3MxK0bEbmbFtlVMQRvfmII2vmlpgra5uFkElxEoLCGYlUvw1OmbRHAoJYnw1vWEN6wilLCQ8JJZN4ng6Ni+VA/vSfWgLlR//u7NIvidPzRjaYg/cr7zi1T3uEUEj+5DdMJAItNGEpk7nsii6TeJYHVfMuHdOwim7SV4+NAtIrgUv70SvyuAv6qaqkjTS4Nb8UVlTgb1ztN9nCJP2/Q6sbdexP20pIYODoExlSLJVW1nyaTdrXAmX8963LhNYcFKlbEzND4bVr+E7dE/xpBxGtPmq6zYqGfRHj2tkm9Tbsiyu2kSZtJ2uJMmYb6IjNWpcDpfF7ibd2osWaMyZV5tVvaARmTgDtcYM11j7jKVNVsUdtbWKP7ie7KlUBQ+z36/h5UeK2MqsuliP8rzlj38vHAz/5y7skEB+/c5K/hxQSJ/LNnF+6WHGeE8xxJ3Cbv9LvJC0RYhlkxBG98YIWjrozCs33hd7JEYVCHytkPgMWv9JRPuKxZ42ibwgUNkVIVIglcmPSDjaCPf/02NGWY0dRguaJ94tQ+qFgNuFrTVF2p45MUeBo2q8SHtv0zN8RjVRRohlzmxxROmoI1vTEEb38SroG0u/MGL+N1hAuUeAlYHgYIviOBjRwkdTCO0dxehHVsJb7lFBM+bRGTmaKKThxAd+/nNIrhnB10Ev/9c84rgTs98QQS/Q3X/D4kO60509KdEJw66WQSvmEd47VIim9YS2r75FhGcSeBcFoG8QgIldvwOF35XgFLfeZJ8EqMqRN501N2M5HvFAu1sAp86RZZ7ZU614kZe15eeZ2ar7E7XxdXspSojJ2v0HlS/8Oo1MMbwyRqzlqis3qyy84BKRpZKSbmCtxE31E1BG9/ciaBtCF9Exlap30xIO6ayeZfGkrW6wB0yrnEC9/NhejO6OUv1z0FKmsqxMyr5VgVX8N5ue0GomtQqN8s8FkY5s/jQfoRnSnbz08JE/lcjBOw/5q7kZ4WbeNaym4/sRxjlzGK5x8LeKjcF4fOGH9vGYAra+KalCdrb4Y7q3/FbqmSmu2V6l4u8VCryQAMlE+4vEXi5VKRXucg0t8wmn8SpYNtbSfNVMMOMpg7DBe1nI+czdWEiiqrdELT+YJQ+I+bRa9hcYwfXiDB6kjAxDlPQxjemoI1vTEHbNvAHLuJ3h24RwTkET54iePQIoYP7bxHBKwmtWoCUMJfILSI4Orwn1QM7U/1ZR6p7duB8l5d0EXyPZW+4Yzsy+ndj0ayZdN+8h8cy7HVeaP36jIcPUjOZtWEzBxfMpmrKsK8sgpszI9gTkim067Jpx36VlRtVpi9UGTq+YXH16VBdWs1brrE+WSH1iMqpPIXSyq/+mTUFbXxzLwVtQ/giMqWVCmcKFNKOq2ypFbhT5+ufg08aUULhs1qBO3uZfkMiZb+eFZ53i8D1RWVyQ1F2VblY7LYwvOIc75Ueop1lJ/9dkMjf56xoUMD+c+5K/qdwMy9Y9vCx/ShjK7JY5bax3++lOHzB8GN3LzAFbXzTWgRtfZRHZA4FZBK8MmMqRT4qE2ln0zNrbyduv1tb/ugvDr0e/UKP3iA0Pw5XCZthRlOH4YLWH6rm1Q+H32gS9vgrvbm/XWc69ppAVSBi9PAaDKMnCRPjMAVtfGMK2vjGFLTxzZ3WoL0hgsvcBCx2AgXFBLOybxbBqTsJbd+ii+D1KwivnE9k8UwKly9kw8ZNDNl5iBePW/hBwYUvL1nMi/Lq3jOMWLmW5LHDsHV7s+kzgru8SHWPN6j+tCPVA27JCJ4+ksicCUQWzyC8cv5NIji0J4VQ2l6CRw7jO34SS1o2p3YUs29jGeuWepgzI8TwUZfo0a/+cgT9RmpMmKWxaLW+dDztuEJWkUK5t2k/l6agjW+aU9A2BrtL4Wy+Qtpxvaby0nV6Y7uhE1Q++cKNjK79NDqOuMArU9y0m2/lkYRz/GzLYb63byf/N2Mj38he3qCA/d95q3igcAvtrXvpZj/GhMocVntKOej3YQ1fNHxfNAemoI1v2oKgrY+8kMwuv8wCj8RAp8if7QK/tdZdIuk6/10i8IxNoHOZyNhKkQSfzOGALoKN3p6mIJ7DVubmwWe63MT97Trz+egF9+z5X+w0pM7frdmyn9EzVt+T12npYbigBbhy5So5hXZS9mew/8hZSkorjaenDvoAACAASURBVB5So8PoScLEOExBG9+Ygja+MQVtfNNUTcLKI/rF0WS3REeHcNvliL+z1tC9XGCBR+JIUO8AXRX9aiI4Mm8SkRmjiU4arGcED/uE6gEf3ZwR/N6zzVYW4sLbvyf8zjMEOrWn6sM38HXrSFWfjwgM6EFk9GdEJw0mMn0UkbkTvyCClxHevI7Q9i26CD6wj+CRwwQzTxI8l0Ugv4iAxUHA4cLvCuL3n7/jjGBT0MY3LU3QXscTlTgTCrHNV8E8dxEDy07xdulBHitM4ds5G/hG9rKGa8CeXM2/HUzmRzv28+CGDJ5YWsArC8r4ZGGAactEViXq2eyHT6nkWhQqA8Zvd3NjCtr4pq0L2tvhjuh17RN9ElPdEj3LBV4qFflFSf0lEx60CLxsF+lTLjLDLbG1SuZ06K/nLK0RM/4aF2tEnnt7AGfzrPfk+eoTtLKiIYjxsf9bjKA9l2cjZX/GjcdaywEwepIwMQ5T0MY3pqCNb0xBG9/cC0Hri8pkBGWWeCV6lYv83qZ3Xr71Aufnlhr+bBcY55LY7m8Zjbz8/vN6yQOHC3+xnfLMIgp25ZC57hQH5h1h9/j9JA3axcaeW9nUdT1JH68gpctC9naeSfpHkzj24ShOfTCYrA8+p/ijHpR//BGeLh0JdH6D6Icvcr7TM80qguvMCB7ag+iYz+rMCI5ZCgw/BibGYJSgdUdETgWDbPU6me0qpF/ZSf5sO8DjxTv4Tv56vpHTsID9t7w1PFSUzGvW/fR2nGBqZR4ry8rYUhggNUMkabfG8vUq0xaoDJ+o0mtgwyUU+gzVGFlb03lVosr2fSqHT6rkWBScPuPnqnuNKWjjm3gVtPVhjygcDMis9MqMrBB53yHylE3gR/WI2+8VCzxuFXjHITC4QmSxV2KvX6KoFZRMMOOvMWDcYmYt23rj5/ySMv7cbQwvdhrCax+NuCFubWVuOnQdzaxlW/mo71Re+2gEZ3It9B29kDc/HsXk+Rtu/F3794YwY/Fmnn1rAO3fG3LjOb6YQXu712krYbig9frDvNhpCI+82ONGDVpfIMLjr/SmyOo0dnCNCKMnCRPjMAVtfGMK2vjGFLTxzd0IWktYZnOVxIhKkdfsAj++TSOvZ20CfZ0iq7wyZ1pIl3ZPWKbYoXDinEpKmi5iZi7SJc4nDdSD7T1YY/SU2iZGWxVSD6mczFGxOhV89S2BjEi1IjhIwOHSM1/ziwiey9IzYo8cJnRgn54pu30L4c3r9AzalfOJLJ6hZ9ZOH6VnBI/5jOjQHlQP+FAXsD3e4HyX9px/7+5EsJKaZPgxMTGGphK0rohIRiDIJl85M10FfFaWyZu2NH5btJ3/zF/L1xqQr1/LWcp/5K/lkeJtvGlL49OyDGZU5rPJV8aJQBBXRLyrcdndClmFCgczFJL2aKzYoNeCHj5RpVcDDfm69Y3RZ7AucGcu1utIb9+rC9zs4qYvR9IUmII2vjEFbePR61rL7KiSmeeR6F9bMuE31rpvRl/nJyU1PFsq8HGZwHiXxFqfvlLI2QK2qSra/IL2WmFPrhV0a3YaipT9GXToOppY7PKNx97oMorU9NMA7Dl4ipc/GAaAo8LLA3/sQl6xA4AhE5fxWueRaFoMVYvx2/afEKm+iK3MzS+f/fhG0ubOtEzavzcUuFnQ3u512koYLmg795vGgoTtXLly9YagBUjckc5HfacaN7BGhtGThIlxmII2vjEFbXxjCtr4piFB64rIpPllZnskPioT+Y217guRh60CHzhEZrol9gUkKg3cJldQJs+qcPikSnKqyrL1ejOiwWM0uvdruJP8uBkaC1apbNyusP+oytl8BYendXxG/FXVekawvZJAcSmBvAICZ88RzMjQm6al7SW8ewfhbZsIb17D5TKb4WM2MYa7FbQVUYFjgQAbvQ6mVebTx3GC16z7ebg4mX/PW9Ng9uvXc5by7fx1PFa8nT/bDtDXkclsVyFbvE5OBoO471LAflUcHr32c3qmSnKqxoraZn7DJ2n0boTA7T1YY8QkjZmLdIG7ba/KoUxd4Ja1wPnDFLTxjSlo7w2uiL6CaKNPYrJLonu5wJ/s+oqh+kom/Moi8Jpd4FOnyGyPRHKVzLmQjLcZx97ccS37z4ZQX3iqQvzhjc8or/Td9HgsdpmrV68BEIpc4FfPdgV0QfvEa31u/N2ChO1MmLv+xs/t3xuC1eHCVubmkRd73HiOWOwy97frzPmLNTcJ2tu9TlsJwwXtwy90R9ViADcJ2tjlKzz6Uk+DRtX4MHqCMzEOU9DGN6agjW9MQRvf3Cpoz4X0jsj9nSLPlgp8v466bPcVC7xiFxlWIZLokygxoIFGuVeXKQdOKGzepTfYmjhLo9/I+htydesbY8BojUlz9C7yW3dppGeq5JQoVPqNPx7NiVmDNr65naAtj9RwJFDFOq+dyRW59HSc4GXrPn5dlMT/y1vdoID9Zs4yvlewnt8Vp/B26UEGlJ1irruIZF8FZ4IhPNE7q5XcUijzKmQXKxzK1G/8rNyoMmORyvDJGr0HNzzv9B4UY/hkjRm1Ajc5VZ97sooUygzIwDUFbXxjCtqmxxKW2R+QWe6VGV4p0qlM5EmbwA/qEbffLxF4wibQqUxkWIXAUq/E3kDTnGc1e8QuQOx883ObuHLlKp16TyRxR/qXfnfgWBYffDaZjj3H81aPcTz4TBdAF7TPvTPwxt8tXpPCzCVbbvz88gfDKC6twFbm5rm3B9z0nI+82AOXN3iToL3d67SVMFzQtvtzPyLVF4GbBa2jwsuTr39q0KgaH0ZPYibGYQra+MYUtPGNKWjjF0dE4bhwhYkuibccwm2bZDxpE/ikXGCxR+JYsPkyPOwuhVN5CnuPqKxPVpi3QmPMdI1Ph9YvQ3r0jzFkvMa0BbVLkfepHD2jUlCq4mkhpRZaAqagjU9s4YukB3ys89mZGyyku/047a17ebBwK/8nL6FhAZu7nB/kb+T3JSm8a0tnsPMMC1zF7Kiq4FwwjLeVCtivSnmtwD2cqWfPrtyol08ZMUmjTyMEbq9BMYZP0pi+UGXFBpWkPRrpGfqNqKbI4DcFbXxjClrj8EVlssIy2/0yczwSnztF3rALPHSbFUrX+WlJDc+XCnQtF5jklljvkzgelO96xVK8x5K1O+kxeBbXrl276fHo+Us8/EJ3yl1VAPiD0bsStL9t3/PGc1/PoL14SbwhaOt7nbYShgva6Ys38+HnUziTY+H+dp2xlbnZffAkL3YawsQvpD631DB6sjIxDlPQxjemoI1vTEEbH3ijMseCMos8Ep+U6xkadV0A/KJE4G2HwES3REqVTFkTZsd6wzIl5QoZWSq7Dqqs3qwye4mekdZQU59eA2OMmKQxe4nKmi0Kuw6qZGSplJQreFtBc46WgClo2yYloQuk+b2sctsYV5FNV/sxXrDs4ReFW/hW7soGBezf5SznvoJEnrbs5L3SQwxznmWxu4SdVZXkhCL4WsA2tkbKvQo5JXrple3XBe5ilZGTNfoMaYTAHRhj+ES98dny9brAPZih19W1u+/8O9wUtPGNKWhbJhVR/VxtvU9ioluia7nAc6W6nK1P3j5sFXjDrtf9n+PRG7Fmh+V65+t4jgJLOU936Es4euFLv7ueXKlpMa5evcbcFcnc364ziqrdkaB94I9dOHAsC4DdB0/yWueRwF9r0Nb3Om0lDBe0iqoxbtZaHnqhO/e368z97Trz2/Y9mb0s6Ubpg5YcRk9IRuKOyNxXO7k9WyrwZ7tAt3KBIRUCU90Sy7wyW6tk0gP6Ha+mvGA1AlPQxjemoI1vTEHbNikOy2zySQyrEHjZLnLfbZbSvVQuMcApkuCTyWqC7FJPSCbfpnD0tJ7JumKjLhiGjNPo0b9+IfHZMD1jdt4KjQ3Jeibt6XwFu8t8v94LTEHbOikMn2dflYflHgujK7LpbD/Cs5bd/KxwE//YCAH7Dzkr+ElhIs9advFJ5XFGOs+x1G1hT5WL/FC14dsXrzh9CjmWWoG7T29gOGuJyqgpGn0aWDXQrW+MngNjDJugz6/L1qsk7dY4eELhXGHdc6YpaOMbU9C2PorDMnsDEku8+rnduw6RJ2x1l6K6zg+LBX5fWzJhRKXIcq/eV8AeUYxWT4bGyGmruL9dZx58pstNPPZyLwCGT1nJc+8MpGPP8ZzOLuH9Tyfz9ifjGi1oi2wVvNFlFDOXbOHlD4bx8gfDyC3SG4t9scTB7V6nrYThgvaLKcy+QORGuQMASW75HwKjJx0jyQvL9d6Vut2E95BV71Ldwa4vNxhUITLVJbHUK7GlSuaAX6/n54i07ItJU9DGN6agjW9MQdv6qYzqJ+0z3BLvO8TbLpN7xCLQuUxvSHHArze3aKhJWGOo8OtLe9MzFLbu0liyRmXSHI0BoxqWCv1GakycpdeQ3bxL48AJfUlvhc98TzY1pqBtefiiMvmhavZUuVjiLmGk8xwflB7mjyW7+ElhIv+Qs6JBAftPuSv5WeEmnrPsoYv9KKMrslnhsbKvykNh+PyN17rbJmEmxlAZkMm1KBw+pbJjf63AXaoyekrDZV+69Y3xyYAYQyeoTJuvsmydyrbUGCfPXeGsedMrLjEFbdvBG5U5G5JJrpKZ5Zb41Cnyql1vRFafyzDDjKYOwwXtgHGL68yUzS2y80LHQQaM6M7C6MnFaOwRhXMhXapurtLvTk1xSQyqEOlarmfVPmPTpewP71DmfrFjYzubQAeHwMdlAgOdIpNdEou9Ept8EvsDMmdCMqXNLHRNQRvfmII2vjEFbesjMyiz4guNvOr6vrmvWOBVu8DICpGtVTLWcN3HuLGC1u5WOFOgsP+oysZtCvNXqoybofH5sPrFQPd+MQaN1Zg6X8/qSk5VOXxSJd+q4Aoavy/jGVPQNj++qExOKMLOqkoWuUsY5jxLp9JDPFWyk/sKEvm7nOUNCthv5a3iF4Vb+JMlla72Y4yryCbBYyPN76UkdKHRYzEFbdvCFZDJsyocqRW4CZtVZi9VGT1V47MG5ulufWN80j/G0PH6XL10ncqWXRppx1XOFCiUVir42tjqwXjHFLTxgTMqcyggs9onMd4l0aVM5LlSfdWwGWY0dRguaLsOnMH7n07mwkX9DR+LXWbO8iR+/VxX5q/abvDoGg6jJ5DWRllEL3eQHpBJqtI7NE51SwypEOheLvAXh14u4WGrUOfS0ob4fslfhe6bXxS6bl3oJvok9gWkeyJ0TUEb35iCNr4xBW3Lxh5R2O6XGVsp0sEu8HPLl+uQfadY4A9WgV7lIku8EhnB+uuOfZHrgtYXkbE4FTKzVfakq6zdqjB7mV4fsfeghjOzhk/UG+KsSlRJSVM5cU6l2KHgMevBtlhMQXvv8UQlzgXD7KiqYL6rmMHOM3S0pfNkyQ5+kL+Rb+Y2LGD/JS+BBwu30t66lx7240yszGGNp5T0gA9b+OI9G6spaOMLV1AXuEdPq6TsV1m3VWXhqhhjpjVe4A6pFbhL1uorHtKOqZzJV7CZArfVYQpaEzPMaOowXNBevnKFCXPX89L7Qzl6Ko83Px7Fyx8Mo8jqNHpojQqjJ4m2TmVUJiek38VKrtKzn6a7ZYZVCPQoF3jLoRcBf8Qi8N/11JK5Hd8rFnjQIvC0TS8S3qVMpL9TZKJbYrFHz9DdG5A4FfxyJpUpaOMbU9DGN6agbTl4ojKHgzLzPRLdygUev02pggcseu2xyS6J3X49Q6Ixz+8NyRTaVY6fVdmRpjepmbfsMkMnqPQYUP/FeZ/BGqOnaMxdprI2SWHPIZVTOSq2CvPCvLViCto7xx0RORMMkeyrYI6riAFlp3ir9ACPF+/gewXr+UbOsgYF7L/mrebXRUm8Yt1HL8cJJlfkst7r4EigCmekptm2xRS08c2tNWhdQZl8q8LRM/pNtjVbFOYsVRkzreGVEt36xugxIMbgsRpT5qksWaOyeafG/qN63XDze6LlYQpaEzPMaOowXNBej8Qd6Tz4TBc+G7WgVXVhM3qSMLkZV0QmNyRzOCCz3S+zyiszwy0xrEKkZ7nAOw6BF2qF7o8b6Ox4O6H7gEXPuupQLtG1QqK/U2SCS2KhR2LjF4SupYEukCatG1PQxjemoDWO3JDMhiqJwRUiL5WK/KiOufoHxQJ/susrKNb6JHIaaOTlul6nMFPv8r10ncqUeSqDxmh071f/BXbf4RrjZmosTFBJTNGzo84VKJR5zfdHW8QUtF/GHRE5GQyyxetklquAvo5MOtjSeLRoO9/OX8fXG5CvX8tZyr/nreHh4mRet6bRpyyDaZX5JHrLOBYIUBkVDN/G65iCNr650yZh7qBMgVXh+FmVnbUCd+4ylTHTGylw++vlbibPVVmyWmVTrcA9ladgcZoCt7kxBa2JGWY0dRgiaBN3HKqTT0fM54lX+7Bh28Ebj7X0MHqSMPlquCMyeSE9+2q7XybBqxcKH1Ep0qtcpKNDv8h/1Crwk7sQut+tFbq/t+l1DT8sE+nrFBnvkljgkdhQJZHqlzgZlLFETKHbmjAFbXxjCtrmwRmVSfVLTHVLdCoT+eVtmjf81qqXtJnjkTgUkHHX8VxlHr0zd9pxlU0pulCdMFOj34iG68EOHKMxaa6+RDVpt0ZOwTVyLQqVAeP3kUnzEo+CtiBUTZrfyxpPKVMq8/isLJPXrWk8XJzMv+etaTD79W9ylvKf+Wt5pHgbb9rS6OvIZEZlPpt85ZwIBA3fvjvBFLTxzZ0K2obwhGQKSvUVGjsP6GVy5i7XGDtdo+/wxgncwbXfT4tX699t+46onMpVsJSbAvdeYwpaEzPMaOowRNB26Dq60bT0MHqSMGle3FGZ/LDM0aDMwfMxNoYUZnskRlaI9C4X6VQm0r5U4DGrwE/vQuh+p1jgFyUCT9oEXrGLfOAQ+dwpMrZSZJ5HYr1PYo9fb3ZTHNY7UBq9T+IVU9DGN6agvff4ojIngzLLvDJ9nCJP2/SbXLfOkz8pqeFNh8DoCpGkKhlbbfkZX0TGVqlwKlch9bDKumT9Qnf0VI0+Q+q/0O0xQG/0Mm2BXsJgx36VY2dUCkpVPHVk3za2SZhJ26MtCVpPVCInFCG1ys1Kj5WJlTn0cpzgDWsajxVv5/sFG/jbRtR//UbOMr5bsJ7Hi3fwF9sB+pWdZLarkCSfk1PBIO6IaPi23itMQRvf3GtB2xDXBe6Jcyq7Dqqs2aowb7nG2BkafRu4ufjFDNxJczQWrVbZuF1h7xG91E6JU8Fr1ju/I0xBa2KGGU0dLabEQWsNoycJE+NoTA1aT1SmMCxzLCiTUqV3g5zjkRhVIdKnVui+VCryO2tNnU1sGit0n7AJvFQq8l6ZyGdOkTGVInPdEmt9eq3FjKBMkSl07ymmoI1vTEH71bGFFZKqZEZXiLzpqHuVwneL9aaPfZwiy70yGQGZIofC8XP6ctGETSozF6sMn6jySQP1YHsNijFyssaspfoy090HVTKz9YvUO80yMgVt/NKaBO2ZYIiUqgoWuy2McmbR1X6Ml6x7eagomf/MX9uozNe/yVnKt/JW8bPCTbSz7ORdWzoDy04x113ENl8FZ4Ihw7ezOTEFbXzT3IK2ITzXa6SfU9l9UK91Pm+FXnan38iGBW73fjEGjdGYOFtfVbJxm0LqEZWTOSol5abAvRVT0JqYYUZTR4sQtJKscCQzly27jpC0+yjHTxe0mjq0Rk8SJsbRFE3CPFFdpJ4Iyuzyy6ytFbqjK0Q+deoC9qVSkSdsAv9zF0L328V6N/MnbAIvl+qCuI9TZHSFyByPxBqfxE6/zPFaoetpAfu5pWIK2vjGFLR3hjuiN3uc45H4uEwvSVDX/PRLi8C7dpFRFonFZxU27VdZvl5l6nyVQWM1evSv/2Lzs2H60tD5KzQ2bFPYd0Tvlm133dtjZQra+KUlCFpnpIbMYIBkXwULXMUMrzjHR/YjvGDZw4OFW/m3vDV8rRHi9Wu1zbceLNzKC5Y9fGQ/wjDnWea7iknyOckIBJu1AVdrwBS08U1LE7QN4Q3JFNkVTpxT2Z2uryyZv0Jj/B0I3AGjNSbO0gXuhm36CpXMbF3geuJM4JqC1sQMM5o6DBe0meeKeOTFHjzyYg9e6DiI594ewK+f78ajL/XkbJ7V6OE1GEZPEibG0RSC9k7xRvVSBxlBmd1+mXU+iXkeibGVeibt+w6Rl+0iT9r0TNvv3IXQ/VlJDY9bBdqXCrrQLRcZWSEy2yOx2ieRUqVnCBeE66772FYxBW18Ywra+skO6zeYBjpF/mTXm3bdOrf8sEjg6TyRdzMlPt2pMGRx4y4Y+4/Ss30Wr1bZskvj4AmF7GIFZ1XzHQ9T0MYvTS1obeGLHPX72eQrY7arkEHOM3QqPcQfS3bx88LN/O+8VY3Kev16bd3Xh4qSecm6l672Y4yuyGaJu4SUKj3z1dWGSg80F6agjW9am6BtCG9IX5WSkaWyJ11lXZLC/JV6ffb+oxpuktm9X4wBozQmzNJYsEplQ7LCnkO6wC12tD2BawpaEzPMaOowXNA+9/YAUvZncPnKlRuPKarGknW7eL7jIANH1rgwepIwMY6WIGjvFG9UpiSi17BN9etNyuZ7JMa5JPo6RT4sE3nVrtfAvb+k7vqPDfHTkhoeswq8WCrwrkOvzXtd6CZ4ZbZX6TV881u50DUFbXxjCtq/Uh7RM/4nuyQ6OvTGiHXNDfdnCTyVJvLSGoW3Jml0vU02bI/+MQaP1Zg6X8+e3bZX5fAplQKrgjto/PZWRU1BG898FUFbFD7PQb+PdV470yrz+dyRydulB/lDSQo/LkjkH3NXNkq+fjN3Od8v2MCjRdt53ZpGT8cJJlTmsNJjJbXKTU4ogicqGb6v2iKmoI1v2pqgbQhPWKa4VuCmHtIF7IJVKhNmaQxopMDtP0pjwkyN+StV1icr7ElXychSKXIoeOuo8d6SMQWtiRlmNHUYLmhvJ2FVLcbDL3Rv5tHceRg9SZgYR2sUtHeKLypjCeuNe/b6JTb6JBZ6JCa4JPo5RT4qE3nNLvAHqy5lvncXQvcnJTU8ahX4k12go0OgV7nI8EqRWe5aoeuXORyUyQ3py6SN3ifXMQVtfBOvgtYX1TP2l3glepWL/O42mfk/yBH45X6Rp9cpvD5Lo/Pgmy/aeg6MMXyiXj82YZNeT/b4OZXistaRcWMK2vilLkHrjUrkhaLsq/KQ4LExqTKX3o4TvGlL4/HiHfwgfyN/l9Nws62/yVnKP+Ss4L6CRJ4s0RtufVqWwZTKPNZ4SknzeykIn8fXAvZDvGIK2vgm3gRtQ3jCMsVlCpnZKqmH9RIICxNUJs7SGDC6YYHbrW+MfiP1kgsLVuolGHan603RiuwtT+CagtbEDDOaOgwXtF0HzsDrD3/p8bxiB72GzTVgRHcWRk8SJsYRD4L2brCGFU4FZfYGJDb5JBZ5JCa6Jfo7RbqUibxhF3jKJvDgXQrdH5fU8IhF4PlSgXccAj3LBYZViMxwS6y8LnQDutB1NaHQNQVtfBMvgrYoKLPcJtMrV6JdtsgPC+poVlgo8D9HRR5Pkmm/SKXjWP2iq88QjdFTNeYu11iXrNetO5WrYKu886ZcLQ1T0MYP7ojI2VCYnVWVLPNYGFeZRT/3SV6x7uM3xdv4dv46vpGzrHHNtnJX3tRsa0DZKWa5Ckj0lnE4UIUlfNHw7TWpH1PQxjemoL0zvGGZknKFkzkqqUf0JmQLE1QmztYYOKbxAnfcTI15KzTWJukNPo+fUym0q3iaWeCagtbEDDOaOgwXtMs37OHZtwYwef4G1iUfIGHzPsbMXM0zb/VnydqdJO44dIOWGEZPEibGYQrae0NpROF0SGZfQCLRJ7HYKzHZLTHAKfJxmcCbDr2L+68sAt8vuXOh+98lAo9YBJ4rFXjLIdCjXGBYhcB0t8wKr0xyld68KCckU3kH4zYFbXzTlgRtpV8mp0Rhf6bK9AManfcrPHVI5Mdn6/5M3XdG4KHdEs8mqLw3T2VMbffnTSkaacdVzhUqlHnaxr65HaagbRtURAVOBoNs81Ww0FXCCOc5utiP8qI1lV8VJfHvjWy29Tc5S/l/eat5oHALz1n28EHpYYY6zzLPXcRWr5MTgSDlZrOtNoEpaOMbU9DeW64L3FM5KnuPqGzcrrBotS5wBzVW4I7QGDtDY95yjTVbFXYd1DNwC0rvvcA1Ba2JGWY0dRguaF/rPJIOXUc3ipYYRk8SJsZhClpjsEcUzoZk0vwym6sklnglJrv0ZkRdywX+bBf4o03g15a6GxM1xH3FAg9bBZ4tFfiLQ6B7ucCQCoGpbonlXpmkKpn0gEyZfAXvRVPQxiutTdA6PApn8xX2H9UvgBasUhmwWOON5Qq/2yrxP0dEvlP45c/Dd/MEfnVU5OU9Iv12KSTs0zicqZJrUXAFjN8uozAFbcunNHyJY4EAm73lzHEVMdh5hvdKD/FMyW5+UbiFf8lLaHSzrf/IX8uvi5Job91LV8cxpgfyWOwuYUdVBafNZltxhSlo4xtT0DYv3rCMpVzhVK7CviMqiSkai1arTJqjMWisRo/b1LL/In2Ha4ydrq/mWbtVYecBleNnVfJtyh0LXFPQmphhRlOH4YK2tYfRk4SJcZiCtnXgiCicC8kc8MtsqZJZ6pWY6pIYVKEL3Q52gWdtupT94V0I3R9dF7o2/bm6lQsMrhCZ6pJY6pXYWiVzMCCTFdLHYvT+MLk3tDRB64vIWJy1ywgPqazZqjBnqcqoKRq9B2t0HhTj9Rka7dYp/GqfyA+zxTrfz7/MFulwVmRMrszOUgV3C6v/1lIwBa2xFIcvkB7wscHrYEZlPv3KTvJO6UGeKtnJTwoT+ec7aLb13YL1/LZoO69Z9/OJ4wTjK7JZ4bGy2+8iK/jlZltfpUmYSevHFLTxjSloWxbXz31O5+kCd1OKxuLVKpPmVhIoagAAIABJREFUqo0WuJ8P0xgzXWPuMpU1WxRS0lSOnam7MakpaE3MMKOpo0UIWqfbz7yV2xg6aTn9xixizvIkyip8Rg+rUWH0JGFiHKagbZuURWSywnqWbFKVzDKvzFS3xJAKPZv2Lw49u/YRm8h9dyF0f1gs8JBV4Bmbnu3btVxgUIXIFJeeDby5SiLNL3MupGcLG70/TOrGCEHrDckU2RWOn1VJ2a+yKlFlxiKVYRNUPvnCRUjXfjHenqDxwjKFR3dI/CRT5L+Kvvxe/FmRwBsWgYkuiR1V5g2EO8EUtE2DLyqTH6pmv9/Dak8pkyty6VOWQQdbGr8rTuGHBRv5+5wVjZKvf5+zgh8VbOR3xSl0sKXRpyyDyRW5rPaUst/vpSBUfVfNtkxBG9+Ygja+MQVt68IXkbE6FU7l6SuINu3UWLJaZco8lcF3InCnacxZqrI+SePAkSscPaOSb1VwBY3fRpPmxQwzmjoMF7SHMnJ44I9deK/PJEZNT2DU9ATe7T2RXz3blXN5NqOH12AYPUmYGIcpaOOb6zVonVGZ7LBexza5Sq9rO90tM7RCr3f7lkOvf/uIRbgrofv9Er3+bjubQAeHwMdlAgOdIpPdutDd5JPYH5A5E9Lr+Rq9X+KFphK0rqBMnlXh8EmVpD0ay9bpFxKDxt6+FtuHwzRenavyxy0yD58Q+X4djby+X6LfWOjvFEnw6jcAjN6HrRlT0N457ohIVjDCbr+L5R4L4yqy6WE/zmvW/fy2aDvfLVjPNxvZbOufc1fy08JEnrbspKMtnX5lJ5lRmc8Gr4NDgSpKQheabDtMQRvfmII2vjEFbdvCF5GxVSicri0BtXmnxpK1+nnXkHEaPQY0LHA/qxW4s5eqJGxW2ZGmcvS0Sp4pcNskZpjR1GG4oH29y0gOHDv3pcdT00/Tsed4A0Z0Z2H0JGFiHKagjW/utklYZVQmNyRzOCCz3S+z0iszwy0xrEKkZ7nAOw6B52uF7o9Lau5Y6H6vWOCXFoGnbQJv2HWhO8ApMsktsdijC919AYnTIRlb2BS6d8tXEbTlXoWsQoW04wqbdur11CbM0ug7Qms4k2OsRu/VKh/uU2h/WuKBOurGfrtY4DdWgY/KRGZ79IxsV8T4fdaWMAXtzVRGBU4HQ+yoqmCxu4RRziw+th+lvXUvvy5K4j/y1/L1Rjbb+pe8BH5RuIVnLbt5v/QwQ5xnmOsuYrO3nGOBAKXhS4Zuqylo4xtT0MY3pqCNL3wRGVulwpl8hbRjKttSYyQkxpg6X2XIeO2m1Uu349OhGqOnaMxaqpKwSWXHfpUjp3SBWxnHtfxbK2aY0dRhuKB95MUeXL5y5UuPxy5f4bftexowojsLoycJE+MwBW18c7eC9k5xR2qFblAXuglemVluieGVIr3KRTo6BP5kF3jUKvCTuxS6D1oEnrIJvG4X6Fwm0t8pMtEtscgjkeiT2BuQOBWUsYaVu1oS3BapT9BeP6E/naeQekRlXZLCvOV6hkWfofVL2B79YwweqzFtvsqKDSpLDqpMyFLoXiLyjFU/Xrcewx+X1PCaXWBEpcjmKglL2Pj909aJJ0FbFqnheCDAFq+Tee4ihjrP8kHpYZ6z7OH+wi3830Y22/pazlL+PW8NvypK4kVrKl3sRxnpPMcidwnbfZWcCgapjAqGb29DmII2vjEFbXxjCtr45tYatL6ITGmlwpkChbTjKlt3aSxdpzJ1vsrQ8RqfNCIDt89QjVFTNGYv0UtX7divcviUSo5FwekzEylaGmaY0dRhuKB9+YNhFFrKv/R4gaWc9u8NNWBEdxZGTxImxmEK2vimuQTtneKOyuSHZY4GZXZU6UJ3tkdiZIVI73KRTmUiL5YKPGYV+OldCt0HLAK/twm8ZtezNPs5Rca7JBZ4JDb6JPb6JU4GZSwRuc0KXS12DatT5cQ5lZ0H9GVts5aoDJ+k0XNg/SfjPQfGGD5JY9YS/f92HtCf51y5QrJPZpxLooNd4OeWLx+f7xTr+75XucgSr0RGsO3u45ZMWxG0lvBFDgeq2Oh1MNNVQP+yk7xrS6edZSc/K9zEtxrbbCtnGd/JX88jxdt41bqf7vbjjK3IYpnHwq4qF+eCYdwR0fDtvReYgja+MQVtfGMK2vjmbpqE2V0KZ/MVDpxQ2LpLL101bb7K0Alq4wTuEI2Rk/VzxlWJKtv3qhw+qZJTolDuNQVuc2OGGU0dhgvaTSmH+d0rvZm6MJHk1GMk7TnGlAUbeezlXqxMTDV6eA2G0ZOEiXGYgja+aamC9k5xR2UKwjLHgjIpVTKrfRJzaoVun1qh+1KpyO+sNfzsLoTud4sF7i8ReNIm8Ipd5AOHSF+nyDiXxHyPxHqfxB6/TGZQpiQi420B++RWnFV6NuyO/SqLVquMmtJwVkSfoXrG7LzlGuuS9Eza03kKpZUKvoiMJ6pnRc/3SHQrF3jcWvf+e8Ai0NEhMNktscsvU26WKmgRtHRB64vKFITPk+b3ssZTypTKPD4ty+DPtgM8UZLCfQWJ/EMjm239Xc5yfpC/kceLd+jNthwnmFSZS4LHxr4qD3mhKN6oZPg2NxemoI1vTEEb35iCNr65G0HbEHaXwrlChYMnFJJ2ayxbrzJtgd4AtqEb/t36xugzWBe4MxerrNyosm2vyuFMlexiU+A2BWaY0dRhuKAFOHAsi0+GzOal94fy3DsD6TpgBrsPnjR6WI0KoycJE+MwBW1801YE7Z3iicoUhWVOBGV2+WXW1Ard0RUinzpF3isTeblU5AmbwP/UkQHaEN8pFvhFrdB92S7yvkPkM6fImEqReR6JdT6J3X6ZjKBMcfjeC12rU+Hoab3T7+ylKoPH3L4kQb8RGhNm6jVkN+3USDuu15at64Q4LySzoUpiSIXAS6UiP6pj239QLPBCqd4Ebo1PItssVdBiMVLQeqIS2cEIe6pcrPRYmVCZQ0/HCV63pvFo0Xa+V7Ceb+Yub5R8/afclfy4IJE/lKTwdulB+joymV6Zz3qvg/SAj6LwecP3dUvDFLTxjSlo4xtT0MY3TSFoG8Lu1s8tD2YoJO3RWF4rcIdPVOnVCIHbe7DGiEkaMxbpAjc5VeVQrcAt85gC904xw4ymjhYhaFtzGD1JmBiHKWjjm3gVtHeKN6oL3YygzG6/zDqfxDyPxJhKXby+7xB52S7ypE0Xs9+5Q6H77WJdBD9hE3i5VBfEnzpFRleIzPFIrPXpmacngvo4PNfHFZbJt+pde1dv1jv2fjasbhnbo3+MEZM0FiboS8tO5qhcrLl9DVpnVGavX2KqW6JTmcgvLXWP+7dWvYnbHI9EekCvN2z08TJpHE0laF0RkTPBEClVFSx2WxjlzKKr/RgvWffyUFEy/3kHzbb+T14C/1O4mWdKdtOp9BCDnGeY7Spkk6+cYwG/4c22WiumoI1vTEEb35iCNr4xQtA2hMOjkFWkkF4rcFdsUJm+sFbgDmqEwB2kl92avlBlxUaV5FSN9EyVrCIFhylwv4QZZjR1GC5oBVFmw7aDjJ+9lhFTV36Jlh5GTxImxmEK2vjGFLRNgzeqlzrIDMqk+vUSCPM9EuNcEn2dIh+WibxSK3TvL9FLKNyp0P1RrsBPMgXuPyTxUKrEY8kyf1gv8+xKlVeXqPRYrTJxu8LGoyrnSuo+Ob3eJMwXlTkZlFnulenjFGlnq3tMPymp4U2HwKgKkaQqGVvYPOltzdyNoHVGasgIBEnyOZnvKmaY8ywf2o/wvGUPDxZu5V/zVje62da/5a3hl0Vb+ZMllc72I4xwnmOBq5hkXwWZwQAVraDZVmvFFLTxjSlo4xtT0MY3LVHQNsRtBe4krVECt9fAGMMn6lm7y9ercZ91a4YZTR2GC9qeQ+fwdIe+DJ64lNEzVn+Jlh5GTxImxmEK2vjGFLQth+tCd69fYqVTZlSuzMcnZF46KPF4msQDB0V+ekLkh+fuXOZel6uPWgXalwq86xDpVS4yvkrhTbvIf5f8//buOyyqO9H/+Pa+e/eW3bu3/Hbv1rsxxfSeGGPXaKIpJsbYEFuMgAUralTssSOKoCJYUEQEFUQRwYL0GcrAgEOZGToqijBnhoHP7w9vZkUpIzp8B7+f1/N8nieCkjOecILvkHNa/zVv5dbhK91tbDfU43yF+N8j7tHu3kCrqapFbHkp9hsLsL5YjZkFl/BZXgzeyQ6/87Ct9F12xdfvp/riPzL24rmswxisOQkXbRy8ClOwvSQHx0qLkFhZ+dg8bKu7joFW7jHQyj0GWrnXHQNtRyvQm5CSZcKZC3duf+AXpGDtVgXzl5sxdfb9/2dZcbn4YxY5IkcTHmh79pmAYkOF6MPoNNEXCU7cGGjlHgOt+KnyFESdN2H3IRNWblLwVRu3KHCZcee//m/aaUZIhBknUxTEFjfgRHk9goz12KKvx7KSerjrbmNswW0M09bhTc2dB3TZE3CfyK7DJ/l18C6uR2RZPXRO8HvDPbqpq64jusyAPXotVhal46v8C/ii8CzeyA7Dn1TB+Gman13x9YdpO/D7jH14JesoPsiNwpT8eCwrSsWuklycKC1BmmQP2+quY6CVewy0co+BVu49joG2o90dcI+e4p97iBxNeKDt87EHrt24JfowOk30RYITNwZaucdA23UrrmhAktqE46cV+AYqWLLG3OaDEabMsmDJmjsPUTgeoyBZbULxQ34Hq6bKhEsVDThZXo/9xnps09djY6UZB8oakFYp/veH69wMNfVIq6zBidIS7CrJxbKiVEzJj8f7mii8knUUv8/Yhx/a+bCtn6b54U+qYLyRHYaP8qLxVf4FrCrKwB69FtFlBqj5sK3HZgy0co+BVu4x0Mo9GQMt13JEjiY80J5NSMPC1f6ovlYr+lA6RfRFghM3Blq5x0DrmOXrTUhIVhASYcamnWbMW6ZgolvrMdZtvhmrNinYfciE0/EmqLUKjF30oK1v70Er+veLa30l1beRWFmJY6VF2F6SA6/CFLho4zBYcxLPZR3G7zL24vupvnbF11+l78Lf1PvxTnY4PsuLwcyCS9hVrcF+YwHOlZVBU1Ur/PVyXTcGWrnHQCv3GGjlHgMtR+RoQgLtCwNcbXtlyFQ8398VPXqNxfP9XVu874UBriIO74GIvkhw4sZAK/cYaB9uxuoGZOWbEHNBwd4QE1ZvUeC2oPVbFEx0s8BzqRkbdphxKNyM81cUaIvFxlEGWnErrKnDhYpyHDYWYnNxFubrkjBWG4v+OZF4OvMQ/i19N75rR3j9Tup2/Gt6AJ5SH0K/nAh8oY3FXN0VbCrOQohRh4TyCuiqb7V6DJ15SBj3eIyBVu4x0Mo9Blq5x0DLETmakECbcCXT7jk70RcJTtwYaOUeA63901c2ICXLhIgzdx4+8PXa1h884DLDgkkeFnitNsNnj4JjUQoSVSYUOeEDCRhoHbO8qpuIKy/DfuNVrC9WY5YuEaPyzqB39nH8XX0A/5Tub1d4/V7qdvx7xh48m3kYgzQnMEEbh0WFKdhWkoOw0kIkVlSi+CEetsVAK+8YaOUeA63cY6CVewy0HJGjCb/FAQA0Wq22v7Zam5CjLeo296UVfZHgxI2BVu4x0La+qwYTLqQoOHJCwRb/O0+BdXVv/RYF0+ea4b1Rwe6DJkTFKVBpTDBUiX8N9oyB9sGXVXUDMeVGBBrysbooAzPyL+DjvNN4MzsMf1EH4+d2PmzrB2k78N+qQLyUGYphmihMzo/H10Wp8NNrEFlagpSKaugd/LAtBlp5x0Ar9xho5R4DrdxjoOWIHE14oL2cko23h8+A1doES6MVn05dhiffGYeefV0QdylD9OF1SPRFghM3Blq5x0DbgGydCWcvKgg6YsLabQpmerX+XbEuMyyYtdiM9dsV7D9mxrlEBbmF3TtuMtD+Y4aaeqRX1uBkqR4B+jwsL0rDtPx4DM/99mFbQfhRqn0P2/pJ6k78URWM17OPYkRuNL4sSIB3UTp26/MQVWaAquo6jE7wmhlo5R0DrdxjoJV7DLRyj4GWI3I04YF2hIsXjp6MBwAcP30RvT9yx/XaW4iJT8EIFy/BR9cx0RcJTtwYaOWeTIHWUNmAtBwTTsYq2BWsYNl6M6Z5th5jXT0sWORtxrYABUdPKbicboKu9PELmbIE2pLq20iqqEJ4aTF89TlYXJgMV+15vKc5hReyjuA/MwLxAzsftvXLND/8Tb0fvXKO4dPcGHgUXMLaYhWCDPk4W16KnG70sC0GWnnHQCv3GGjlHgOt3GOg5YgcTXigfbbfRFitTQAAjyU++GZHCIA7tzp4vj8fEsY57xho5d7jGmh1pSZcTjfh6CkF2wIULPQ2w9Wj9e+KneZpxrL1ZuwKVnAyVkFajgmGSvGvoSv2OATaopo6XKqoQKixCFtLsrFAl4Rx2nMYoIlEz8wQ/OYBHrb1z+n+6KE+iD45ERiddxaeuivYWJKJQwYdzpeXo6CNh2111zHQyjsGWrnHQCv3GGjlHgMtR+RowgPtG8Omo/paLUyKGa8MmYq0zHwAQM31m3jtvWmCj65joi8SnLgx0Mq9xyHQanQmnLt857YD67crmLW47VsUzPQyY+02BUGhd25rkK3r3nHyYefsgfbOw7bKcdCgw4aSTMzRJeLzvLN4N+c4nlAfxK8f4GFbv83Yg56ZIRioOYHx2nNYqEvGtpJsHC0txOWKShTV1Al/vV09Blp5x0Ar9xho5R4DrdxjoOWIHE14oF28bjfeH7cQH05cjBEuXmhubkZ9gwKPJdvgvnir6MPrkOiLBCduDLRyrzsFWkNVA1QaE06dUxBwQIH3RgXT57ZxiwJ3C+YvN2OL/50HfV1MVXDV4LwhUtREBtrsyhs4U16KfYZ8rCnKgHvBRYzMjcHbOcfwV3UwfmHvw7ZSffFfqkC8mBmKoZpTmJQfjyWFKdihz8HxsmIkd8HDtrrrGGjlHQOt3GOglXsMtHKPgZYjcjThgdZiacT+sLPYGRSB6mu1AIDb9SbMXOqDazduCT66jom+SHDixkAr95w10BaVNyBRZcKxKAU+exR4rTJjUhu3KJg624yv15nhF6Qg4oyClCwT9JLcouBh54hAa6xpgKryGk6VGRCgz8OKwjRMK0jA8NwovJYdhv9RBeHHqTvtiq8/Tt2JP6iC8GpWGIbnRmFaQQJWFKYhQJ+HU2V6ZFRec4qHbXXXMdDKOwZaucdAK/cYaOUeAy1H5GjCA213J/oiwYkbA63cc4ZAqy024fwVBYfCzdiww4w5S9u+RYHbAjNWb1EQeNiEmAsKsvJNMFaL/33srnvQQKuvqUdyRTUiSouxU6/B0sIUTMqPx1DNKbyYGYr/UgXiB2k77Iqvv0jzw1/VwXgr+xg+yTsNt4KLWFOUgX2GfJwpL0V25Q3hvz+P+xho5R0DrdxjoJV7DLRyj4GWI3I0pw20EacvYdGaANGH0SHRFwlO3Bho5V5XBlpjdQNUeQqi403YfciEVZsUzJjXeoyd6GbBvGUKNu00IyTCjIRkBfl63qLgUe/uQFtcfRuXKypxtLQQ20qysVCXjAnaOAzUnEDPzBD8NmMPvmfnw7Z+ne6PJ9QH8W7OcXyedxazdYn4pjgTBwxXEVdejryqm8JfO8dAK/MYaOUeA63cY6CVewy0HJGjOW2gDT4aA9fZ60QfRodEXyQ4cWOglXuOCrTFFQ1IVptw/LQC30AFS9aYMWVm698VO2WmBUvWmOEbqOD4aQVJahOKK8T/3jxOu1p9C/HlFThk0GFjSSY8dVcwOu8shuSfwFOZB/Ev6QF2hdfvpm7Hb9J345nMEAzQRGKc9hwW6JKwtSQbocYiXKyokPJhW911DLTyjoFW7jHQyj0GWrnHQMsROZrTBtruQvRFghM3Blq59ygCbb7ehIRkBSERZmzaaca8ZQomurUeY2fMM2PVJgW7D5kQHW+CKk/hLQoecjlVtYgtL0WwoQDrilXwKLiET3Nj0CvnGP6m3o9fpu+y+2Fb/5kRiBeyjmCI5iQmas9jcWEyfPU5CC8tRlJFFUqqbwt/vdyjGwOtvGOglXsMtHKPgVbuMdByRI7GQPuQRF8kOHFjoJV7DxJojdUNyMq/c+/XwMMmrN6iwG1B2/eLnbPUjA2+d+4te/6KAm0xb1HwIDPWNEBVdR1RZQbs1udhZVE6phdcwIe50Xg9+yj+qArGT9P87IqvP0rdgd9nBOGVrKN3HraVH4/lRWk4ck2H6AoD0itrYKipF/6aua4dA628Y6CVewy0co+BVu4x0HJEjiY80CZcUeOD8QvxwgBXPNV73H3rSj57w/HOh254beg0eK7YgfoGBQCgL63EWLdVeHXIVIxw8UJaZr7t14i+SHDixkAr99oKtPrKBqRkmRBxRoFfkIKv15kxdXbrMXaShwVeq8zw2aMgLEpBosqEojLxr82Zp6+pR2plNSJLS+Cn1+DrolRMyY/H+5oovJwViv+n2ocf2vmwrZ+l+eHPqmC8mR2Gj/NOY0b+BawuykCgIR+ny4zIrLre5nE86EPCuMdrDLTyjoFW7jHQyj0GWrnHQMsROZrwQNvnk5nYGRSBxLQcpGVq71tXiY5LxqDPPVFZfQP1DQomzFwDn73hAIAxM1Zi7+FoWK1NSLiSiV4j3GBptALgF+gyj4FW7imWJugrzLiYquDICQVb/BXMX26Gq3vr3xU7fa4Z3hsVBBxQcOqcggyNCYYq8a/DmVZSfRuJlZUIKy2CT0k2FhWmYII2DoM0J/Bc1mH8LmMvvp/qa1d8/ad0f/xdfQDvZIfjs7wzmKVLxPpiNfYbryKuvOyhH7bFQCv3GGjlHQOt3GOglXsMtHKPgZYjcjThgXbomPmiDwEAkJlb2CII7z0cDc/lO1Bz/SZeHDgZjVar7X0fTlyMpPRcAPwCXeYx0Mq1bJ0JZy8qCDpiwtptCmYvbj3EusywYLaXGeu3K9h/zIxzlxVodAx5uupbSCivwGFjITYXZ2FeYRLGaGPRLycCT6kP4V/TA/BdOx+29W/pu/F05iH0z4nEWG0s5hUmYXNxFg4bC3Ghohy66lsOfz0MtHKPgVbeMdDKPQZaucdAK/cYaDkiRxMeaBeu9m9xywBnMdnzGxwKj0VaZj7eH7ewxftmLvVBSEQcAH6BLvMYaB/PGSobkJZjwslYBbuCFSxbb8Y0z7ZvUbDQ24ytAQqOnlJwOd0EXal80S63qhbnysqw31iA9cVqzNIl4rO8M3gnOxz/qz6AX9n5sK3vp/ridxl78VzWYQzWnISLNg5ehSnYXpKDsNIiJFZWOs3Dthho5R4DrbxjoJV7DLRyj4FW7jHQckSOJjzQ5haU4JX/u7frxFnr4Dq75UTw2XMM491Xo9FqxaWULIycvLTF+xeu9kfg4WgAwG1TIyfpLNYmKBar8OPgOr+aG41Qaxpx8mwjdu6zYMmqO9G1tRj75RwLVm60YF+IBecuNKJY34TbDeLO/60GS5f9vbR1tThzzQD/ilws0Sfji6tn0Tv3OP6SGYyfpdv3sK3vpG7HH9T78GrOUXyYHw33ootYU5qB4Mp8xF0vhbauVvg/Dw+ypqZmNCjij4MTs+Zmuf/9X9cg/hh4/jkRa1DuXP9FH4fM68qvf+6dyWyF1crzL+sUixUWa5Pw4+DEjcjRhAfaoWPmY5z7KnyzIwTbdofdt67U3NwM781BcJ29Dg0mMwAgPSsfQ8cuaPHzPJZsw5HI8wCAG3VmTtKZLU2oNzUKPw7OvhUbLbiUYsHhCAs27TBjzpLWvyvWZYYFM73M+Ga7GYeOmZGQZIFOb7nv41msTahruP/tXbXrdWbU3rY89G7ctkBbexNnagwIKMvFEn0KxhbEonduOP6sDsaP7Hjg1k/T/fAXdTDe1hzDpwUx8Ci8hG+MKhysuIr4mjIU3Lz1SI7VmdbUDNxqaBR+HJyYAcBNJzgOUbteJ/4YRO1m/Z3zL/o4ODG71dCIpmaef5ET+bVkXYMFFmuT8K9pOTGrNzXCbOH5l3lEjiY80PYbOQvNzc2iDwMAsGbbAXgs8bE9AAwArtfewvP9XW3BFgAGjpqD9Kw7t2UQ/W32nLjxFgfOOUNVA1QaE6Li7jyQy3ujgulzW4+xru4WzFthxuZddx70dSFFwVWDff/bumJpQs1NRfjrtWeqymuILC3B9pIczNcl4fO8s+iVcwx/UgXb9Z2v/5zuj2cyQzBYcxJT8+PhXZSOIEM+zpaXIqeqVvjrEzHe4kDu8RYH8o63OJB7vMWB3OMtDuTejTre4kD2ETma8EA7cdY61Fy/KfowkJyRixEuXrBY7v/W9Qkea+AbeBxWaxMiz1xGv5GzYLU2AeAX6DKPgVb8isobkKgy4ViUAp89CrxWmdu8RcHU2WZ8vdaMnUEKIs4oSMkyQV/Z+b+3MwXazKrrOFWmx069Bgt1yRijjUXv7OP4qzoYP0nd2WGA/XW6P57OPIRBmhOYnB+PFYVpCDTk41xZGQq64IFb3XEMtHKPgVbeMdDKPQZaucdAK/cYaDkiRxMeaHftP4FBn3ti7faD2Hs4GoH3rKvM8/bDU73HoWdfF9s+nLgYAGAsr8aYGSvxypCp+Mh1CbLzimy/TvRFghM3BtqunbbYhPNXFBwKN2PDDjM8l5ox0a31GOu2wIzVWxTsDTEhJsGErHwTjNWP9ni6MtBmV95AVJkBfnoNvApTME57Dn1yIvA39X78LK3je8D+Kn0XnlQfxEDNCbhqz2N5URr26LU4W14KLQNsp8ZAK/cYaOUdA63cY6CVewy0co+BliNyNOGB9sOJizFyytdtztmJvkhw4sZA65gZqxug1iqIjjdh9yETVm1S4Da/9VsUTHSzYO7XCjbtNCMkwoz4JAX5+q6JZo8y0GqqanG6zAh/fS6WFKZggjYO/XIi8L/qA/i5HQH2l2l+eEJ9EAM0kXDRxuHrolQE6PNwpryni3ScAAAgAElEQVQUeVU3hZ/Tx3EMtHKPgVbeMdDKPQZaucdAK/cYaDkiRxMeaLs70RcJTtwYaB9+xRUNSFabcDxGgW+ggiVrzJgys/Xvip0y04LFa8zw3avg+GkFSWoTiivEHfuDBNq8qpuIKTciQJ+Hr4tS4aKNwwBNJJ5QH8Qv7Qiwv0jzw9/VB9AvJwITtHFYUpiCAH0eTpcZoZH0HrCix0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I0pwi0upIybPQ7As/lO+DmtRXf7AhBQaFR9GHZRfRFghM3BtoHW77ehIRkBSERZmz2UzBvmdLmLQpmzDNj5SYFew6ZEHXeBFWe8shvUfCwuzvQaqtv4Wx5KfbotVhelAZX7XkM1JzAk+qD+FX6rg4D7M/S/PA39X70yYnAOO05eBWmYFdJLqLKDMiuvCH8tXL3j4FW7jHQyjsGWrnHQCv3GGjlHgMtR+RowgPtmYRUPPnOOIyathwLV/tj4Wp/fDp1GZ55dwKS0nNFH16HRF8kOHFjoG19xuoGZOWbEHNBQeBhE1ZvUeC2oPVbFLjMsGDOUjM2+Co4GG7G+SsKtMXOF70Kqm/hXFkZAg35WFGYhsn58Xg//xSeyTqEX6f7dxhgf5K6E39VB6N39nGM0cZiUWEKduo1OFWmR2bVdeGvj3vwMdDKPQZaecdAK/cYaOUeA63cY6DliBxNeKAdNm4BouOS7nt7ZMxljJy8VMARPRjRFwlO3BhoG6CvbEBKlgkRZxT4BSn4ep0ZU2e3HmMnuVvgtcoMnz0KwqIUJGaYUFQm/jWU1jRAV30LceXlCDLkY2VROqbmx2OI5iR6ZobgX9IDOgywP07diT+rgvFOdji+0MZioS4ZvvocnCgtgYoB9rEcA63cY6CVdwy0co+BVu4x0Mo9BlqOyNGEB9oXBrii0Wq97+2WRiteHDhZwBE9GNEXCU7cZAu0Vw0mXExVEHpCwRZ/BfOXm+Hq3vp3xU6fa8aKDQr8Dyg4dU5BhsYEQ5W4Y9dV30J8eQX2GwuwuigD0/LjMVRzCs9mHsa/pe/uMMD+KHUH/qgKRq+cY/g87yzm65Kwr0qLqEo9VJXXYHSC88N17Rho5R4DrbxjoJV7DLRyj4FW7jHQckSOJjzQDh49F+qcq/e9XZVzFQNHeQo4ogcj+iLBidvjHGizdSacvaggKNSEtdsUzPRq+xYFs73MWLddwf4wM2IvKdDouj5aFdXU4UJFOQ4YrmJtsQpfFiTgfU0Uns86gt/YEWB/mLYDf1AF4a3sY/gs7wzm6q5gW0k2jpcVI72yptUA+yAPCeMevzHQyj0GWnnHQCv3GGjlHgOt3GOg5YgcTXig3R92Fq8OmYqVW4JxODIOIRFx8N4chJcHT4FfcKTow+uQ6IsEJ26PQ6A1VDYgLceEk7EKdgUrWP6NGdM8W4+xru4WLPQ2Y2uAgqOnFFxKM0FX2jWBqrj6Ni5VVOCQQYd1xSp8lX8Bw3Oj8GJmKP49Yw++20GA/UHaDvw+IwhvZIfh09wYzNElYmtJNo6VFiG1shqGmvoHPiYGWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjcjThgRYAouOSMWnOegz63BN9PpmJCR5rcPz0RdGHZRfRFwlO3LpboNWVmnAp3YSjpxRsC1CwyNsMV4/Wvyt22hwzlq03Y1ewghOxClJzTNBXOu7YSqpvI7GiEoeNhVhfrIZbwUWMyI3Gy1mh+F3GXnyvowCb6ov/p9qH17LD8EneaczSJWJzcRbCSguRXFENfScCbEdjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5IkcTHmi1OgMsjfffg7a7EH2R4MTNmQNtbqEJ5xIV7D9mxvrtCmYtbvsWBR6LzFi7VcG+I3dua5B99dFHp5Lq27hSWYUjxkJsKMmER8ElfJQXjVeyjuI/MwI7DLDfT/XFf6kC8UrWUXyUF42ZBZewsSQTocYiXKmsckiA7WgMtHKPgVbuMdDKOwZaucdAK/cYaOUeAy1H5GjCA+1z/Saiouq66MPoNNEXCU7cnCHQGqoaoNKYEBWnYPdBE7w3Kpg+t+1bFMxbYcbmXQoORyq4kKLgquHRBCZ9TT2SK6pxtLQQm4qzMEuXiE/yTuPVrDD8tyoQ30/1bTfAfi91O/4jYy9ezgrFh7nRcC+4iG+KM3HYWIjEikqUVN8Wfr7vHQOt3GOglXsMtPKOgVbuMdDKPQZaucdAyxE5mvBA6xcciaXr93TbSCv6IsGJW1cH2qLyBiSqTDgWpcBnjwKv1WZMauMWBVNnWbB0rRk7gxREnlGQnPlwtygw1NQjtbIaYaVF2FKcjTm6RHyaG4PXs4/i9xn78IMOAux3U7fj3zP24MXMUAzPjcKM/AtYX6zGIYMOl500wHY0Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I04YF2wGdz8PLgKejRayx69pmAFwa4tpizE32R4MTNkYFWW2zC+SsKDoWbsWGHGZ5LzZjo1nqMdVtgxqrNCvaGmBCTYEJmvgnG6gf7+xlrGpBWWYPw0mJsK8nGXN0VfJYXgzezw/AHVRB+kLajwwD7m/TdeCHrCD7IjcL0ggtYW6zCQYMOFysqUNwNA2xHY6CVewy0co+BVt4x0Mo9Blq5x0Ar9xhoOSJHEx5oYy+mI+FKZptzdqIvEpy4PYpAa6xugFqr4HS8CbsPmbBqkwK3+a3fomCimwVzv1awcacZIcfNiE9SoC2xLxAZaxqQUXkNEaXF8CnJxnxdEkblncHbOcfwR1UwfpTafoD9zv8F2OeyDmOYJgrTChKwuigD+41XkVBegcKaOuHno6vHQCv3GGjlHgOtvGOglXsMtHKPgVbuMdByRI4mJND2+dgDt+tNAID+n84WcQiPjOiLBCduDxpoiysakKw24XiMgh2BCpasMWPKrNa/K3byTAsWrzHDd6+C8NMKklQmFJe3//FVVddxorQEvvocLNQlY3TeWbyTHY4/q4Lx49SdHQbYf00PQM/MELynOYWp+fFYVZSBYEMBzpeXQ1d9S/jvt7ONgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliBxNSKB9e/gMeC7fAb/gSPTsMwF+wZFtztmJvkhw4tZeoC3Qm5CQrCAkwozNfgrmLVPavEXBV3PNWLlJwZ5DJkSdN0GVp7R6i4LMqus4VabHTr0GC3XJGKONRe/s4/irOhg/sSPA/nO6P57JDMFgzUlMyY+Hd1E69hnyEVdehqsMsA88Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I0IYE2MS0HU+dtwOjpK/DkO+Pw+Zcr2pyzE32R4MStXrHi+i0zsgpMiLmgIPCwCau3KHBf2PotClxmWDBniRnfbFdwINyM81cU5BX9I/BkV95AVJkBu0py4VWYgnHac+iTE4G/qffjZ2l+HQbYf0r3x1PqQxikOYFJ+fFYXpSGvQYtYstLkV99U/jv1+M2Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I04fegHT3dW/QhPBTRFwmu66avbEBKlgmRZxX4BSlYscGCqbNbD7GT3C3wWmWGz24FYacUJGaYoCqtxekyI/z1uVhSmIIJ2jj0y4nA39UH8HM7Auwv03ehh/ogBmpOYKL2PJYVpWK3Pg9ny0uRV8UA29VjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5IkcTHmi7O9EXCc4xu2ow4WKqgtATCrb4K5i/3AxX99Zj7PS5ZqzYoGDroVvwiS/DhiwtlhamwkUbhwGaSDyhPohf2hFgf5HmhyfUB9E/JxITtHFYWpiCAH0eYsqNyK2qFf57wrUcA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLETma0wbaiNOXsGhNgOjD6JDoiwT38MvWmXD2ooKgUBPW+SiY6dX6LQrGzKrH2PXlGH8gH2POZODTlAT0zzqJJ9UH8av0XR0G2J+n+eF/1QfQNycC47XnsLgwGf76XESXGZDDANvtxkAr9xho5R4DrbxjoJV7DLRyj4FW7jHQckSO5rSBNvhoDFxnrxN9GB0SfZHg7J+hsgHpGhNOxirYFaxg+TdmTPP8R4wdO7MBIxZXov9aHV73VeGVIwnoefYE/pR4CL9K8e8wwP40zQ9/U+/HuznHMVYbC6/CFPjpNThVZkBW1Q3hr597tGOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkiRxMeaEdOXorgozG4duOW6EPpFNEXCa71FZaZcCndhKNRCrYFKFjkbcb42Q34cHEV+q/R4XUfFZ7eewH/c/QUfhtzGD9LDOgwwP4kdSf+og7GO9nhGKONxQpjGvaU5eJkqR7qquvCXzPXtWOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkiRxMeaLcHhmP4hEV4+t3xmDJ3A06evQKTYhZ9WHYTfZHgGpBbaMK5RAWBxxvguacSH/ro8MY2NZ7ZexF/DI3Cb6KO4KcXdncYYH+UugN/UgWjV84xjM47iwW6JGwvyUFkaQlUrQTYesWKG3Vm4a+fEzMGWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjcjThgfZbJcZK+B84iZGTl+KlQZMxf6UfElNz0NzcLPrQ2iX6IiHTdFV1OJ5TAe8LOow9pcbbxy7gr2HR+G1UKH6asBvfSWk/wP4wdQf+RxWEt3OOYVTeGcwrTMK2khxElBYjo/IajA94PAy0co+BVu4x0Mo9Blp5x0Ar9xho5R4DrdxjoOWIHM1pAu23LI1WhBw/h5cHT0GPXmPR/9PZOBJ53mlDreiLxOO04urbuFRRgUMGHVbr1BibdhFvX4zGn+JD8ctLezoMsN9P2YHfJQXhpbRjGJkbA0/dFWwtyUZ4aTHSKmseOMB2NAZaucdAK/cYaOUeA628Y6CVewy0co+BVu4x0HJEjuYUgba5uRkpqjwsXrcbrw6ZireHz8Ban4PQ6gw4dykdA0fNwVqfg6IPs1WiLxLdaSXVt5FYUYnDxkKsL1bDreAiRuRG4wV1KH6Tshff7SDAfi/ZF7+K34c/xYbhrXNnMOZKIlZmZyPMWISUimoYauq79PUw0Mo9Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I04YF2o98R9PlkJnr2dYHHkm04f1kFq7Wpxc/RlZThpUGTBR1h+0RfJJxpJdW3caWyCqHGImwoyYRHwSV8lBeNV7KO4j8zAvG9Du4B+91kX/zifCB+d+IY/hpyBm8cvIJRoTlYEl2CkOQaaErEv8a7x0Ar9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo7I0YQH2pFTvsbB8FjU3rrd5s+xWpvwzY6QLjwq+4m+SHTl9DX1SK6oxtHSQmwqzsIsXSI+yTuN17LD8N+qQHw/1bf9AJuyHT8/H4jfnQzDX0Ji8FxAIt7ako2ha0owY3MNtgU2IPy0giSVCcXl4l9vR2OglXsMtHKPgVbuMdDKOwZaucdAK/cYaOUeAy1H5GjCA+3Nuvo2d+3GLdGH1yHRF4lHOUNNPVIrqxFWWoQtxdmYo0vEp7kxeD37KH6fsQ8/sCPA/tPlvfjvmFD85XAMnt19GW9tycKgVcX4ZME1jHdX8NVcM1ZuUrD7oAlR5xWo8hQYq8W/9s6MgVbuMdDKPQZaucdAK+8YaOUeA63cY6CVewy0HJGjCQ+0PXqNbXfOTvRF4kFmrGlAemUNwkuLsa0kG3N1V/BZ3hm8mR2GP6iC8IO0He0H2NTt+G3GHryYGYrhuVFwzbyIPrsyMWhVMT5eVIPx7gpcZlhsm7XYjPW+Cg4cMyMuUUFu4eMVMxho5R4DrdxjoJV7DLTyjoFW7jHQyj0GWrnHQMsROZrwQJtfaGgxrc6AuEsZmDpvA2Ivpos+vA6JvkjcPWNNAzIqryGitBg+JdmYr0vCqLwzeDvnGP6oCsaPUtsPsN9J3Y7fpO/G81lH8L4mCl8WJGBNUQYOGK7iQkU5imrqWvz9SiobMHGGGZPcLVi00gyfAAVhpxRczjChsOzxDxcMtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliBxNeKBtS4PJjE+nLhN9GB3q6ouCquo6TpSWwFefg4W6ZIzOO4t3ssPxZ1Uwfpy6s8MA+2/pu/Fs5mEM1ZzCtPx4rC7KwH5jAeLLK6CrvvXgx5Mnb6BioJV7DLRyj4FW7jHQyjsGWrnHQCv3GGjlHgMtR+RoThtom5ub0edjD9GH0aFH/UmfWXUdp8r02KnXYFFhCsZoY9E7+zj+qg7GT+wIsP+SHoCemSEYojmJqfnxWFmUjiBDPuLKyzsVYLm2x0Ar9xho5R4DrdxjoJV3DLRyj4FW7jHQyj0GWo7I0YQH2iOR5+9b8NEzcPPaig8nLhZ9eB160E/q7MobiCozYFdJLrwKUzBOew59ciLwN/V+/CzNr8MA++t0fzydeQiDNCcwOT8eKwrTEGjIx7myMhQwwHbpGGjlHgOt3GOglXsMtPKOgVbuMdDKPQZaucdAyxE5mvBAO3j03Ps2fMIieCzZhqvFpaIPr0P3ftJqqmpxusyIAH0elhSmYII2Dv1yIvB39QH8wo4A+6v0XXhSfRADNSfgqj2P5UVp2KPXIra8FFoGWKcaA63cY6CVewy0co+BVt4x0Mo9Blq5x0Ar9xhoOSJHEx5ouzsXbRz650TiCfVBuwLsL9L88IT6IPrnRGKCNg5LC1MQoM9DTLkReVU3hV90OPvHQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajsjRhAfapqZm21+XV12Dz95wrN1+EJkancCjst+9AfbnaX74X/UB9M2JwHjtOSwuTIa/PhfRZQbkVNUKv6hwj24MtHKPgVbuMdDKPQZaecdAK/cYaOUeA63cY6DliBxNWKC9WlyKoWPm46ne4/DVos2oqLqOt4fPwAfjF+L9cQvxzLsTEJ+oEnV4dltdlAE/vQanygzIqroh/KLBdd0YaOUeA63cY6CVewy08o6BVu4x0Mo9Blq5x0DLETmasEA72fMbjHNfhbMJaXDz2opPJi3F2u0Hbe/ftCsUo6YtF3V4dhN9keDEjYFW7jHQyj0GWrnHQCvvGGjlHgOt3GOglXsMtByRowkLtK+9Nw3qnKsAgBu1dejRayxyC0ps779aZMSLAyeLOjy7ib5IcOLGQCv3GGjlHgOt3GOglXcMtHKPgVbuMdDKPQZajsjRhAXaHr3Goqzymu3HLw6cDGN5te3H5VXX0KPXWAFH9mBEXyQ4cWOglXsMtHKPgVbuMdDKOwZaucdAK/cYaOUeAy1H5GhCA2151T8C7cuDpzDQct1qDLRyj4FW7jHQyj0GWnnHQCv3GGjlHgOt3GOg5YgcTWig3ewfit0HT2H3wVN4tt9EbPQ7YvvxZv9QBlrOqcdAK/cYaOUeA63cY6CVdwy0co+BVu4x0Mo9BlqOyNGEBdrBo+faNWcn+iLBiRsDrdxjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5IkcTFmgfF6IvEpy4MdDKPQZaucdAK/cYaOUdA63cY6CVewy0co+BliNyNAbahyT6IsGJGwOt3GOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkiR2OgfUiiLxKcuDHQyj0GWrnHQCv3GGjlHQOt3GOglXsMtHKPgZYjcjQG2ock+iLBiRsDrdxjoJV7DLRyj4FW3jHQyj0GWrnHQCv3GGg5IkdjoH1Ioi8SnLgx0Mo9Blq5x0Ar9xho5R0DrdxjoJV7DLRyj4GWI3I0BtqHJPoiwYkbA63cY6CVewy0co+BVt4x0Mo9Blq5x0Ar9xhoOSJHY6B9SKIvEpy4MdDKPQZaucdAK/cYaOUdA63cY6CVewy0co+BliNyNAbahyT6IsGJGwOt3GOglXsMtHKPgVbeMdDKPQZaucdAK/cYaDkiR2OgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaC9h8/ecLzzoRteGzoNnit2oL5BAQDoSysx1m0VXh0yFSNcvJCWmW/7NQlXMjFs3AK89t40uM5eh+prtbb37dp/An0+9sBbH3yFrzcEotFq7fLXRPapu92AOct88drQaeg1wg1+wZG293Xm/Lf38cj5tHe+HvZzfKzbKsxc6tMlr4M652pxKUZP98ZLgybjvS/m4fxlle19nTn/FksjFq72x0uDJqP3R+6IjLnc5a+J7NeZ86+YLZjrvRNvvj8d/UbOQsjxc7Zfk1tQglHTlmPAZ3MwwsULl1Kyuvw1kf1iL6ZjyBfz8PLgKRgzYyWK9OW297V3jdfkF2PAZ3OwfOO+Fh+vvWsGOZ/Onv/IM5fx4sBJiI5LtvvjkfNp63y1d40H2j7/30pKz0WPXmOhKylz+Gugzmvrz/7tnf9GqxXrfA+hR6+xuF57q8XHu5KuweDRc/HiwEmY7PkNbtbVd+nroQfTmfbT1vlvbm7GRr8jGDhqDgaOmoOFq/3RYDJ3+Wui7o2B9i7RcckY9LknKqtvoL5BwYSZa+CzNxwAMGbGSuw9HA2rtQkJVzLRa4QbLI1W3Kqrx+vDvkRGdgEarVZs2hUK98VbAdz5F/PAUXNQfa0W9Q0mTJi5BvvDzop8idSO5Rv3wWPJNpgUM0rLq/H28BlIUeUB6Nz5b+/jkfNp63w97Od42KkE9B05i4HWyQ0duwB7D0ejubkZF5Iy8eLASWgwmTt9/rcEHMWMRVvQYDIj76oeH7kugWK2iHyJ1I7OnP9tu8PgvngrTIoZxvJq9BrhBq3OcOfjjZmPqHNJAICsvEK8MmSq7Yt+ci7lVdfw8uApSMvMR1NTMzbtCsU491UA2v8cT8/KxwgXL3iu2NEi0Lb3zww5n86e/z0hUZi+YBNGTl7aItC19/HI+bR3vtq7xrd1/r9lNlswwsULb33wFQOtE2vvz/7tnf/pCzZh2+4wPNV7XItAV3vrNt764CskpedCMVvgvTkIh8Jjhbw26lhn2g/Q9vmPjkvCR65L0GAyw2ptwvSFm+EbeFzIa6Pui4H2Lpm5hUjL1Np+vPdwNDyX70DN9Zt4ceDkFv/V/MOJi5GUnovouCS4zl5ne/utunr07OsCs9mCZRsCW3wX3rlL6RgzY2XXvBh6YLEX0mAoq7L9+Mv5m3Ak8nynz39bH4+cU1vn62E+x2/U1mHw6Lk4GB7LQOvEGq1WhBw/Z/vCCwBeGjQZJcaKTp//Ph978LumuonOnv+hY+ZDlXPV9r412w5g2+4wNDc348l3xuFGbZ3tfa8NncY/pDup8qpriI5Lsv1Yk1+Mdz50A4B2P8dLjBWobzDBN/B4i0Db3j8z5Hw6e/5zC0rQ3NyMCR5r7gu0bX08cj7tna+2rvFA2+f/W9t2h2FrQBiGjl3Aa78Ta+vP/kDH5x/AfYEu7FQCZi/b3hWHTo9AZ9oP0Pb599kbjhWb/vH1QPDRM/zzHz0wBtp2TPb8BofCY5GWmY/3xy1s8b6ZS30QEhGHHfsi4L05qMX73vrgKxTpyzFh5hrExKfY3q4rKcPbw2d0ybHTw6m73YC3h8/A1SJjp89/Wx+PnN/d5+thPscXrNqFoyfjER2XzH9BdyOZGh16f+SORqu1U+f/Zl09nu03EUGhMRg4yhMfjF+I2IvpXf0yqJPsPf/PvDsBtTdv295+KDzW9gez8e6rbd9pl5yRi34jZ/EWR92E/4GTtuu1PV/H3Rto7f26gJzTg57/tgJdax+PnN/d56u9a/y3Wjv/RfpyDBu3AIrZwkDbzXz7Z3/AvvN/b6BbuSUYyzYEYsLMNeg7chbmefuh7nZD1xw8PTR72s/d7j3/Kao8vPfFPFyvvQXFbMFkz/UIPRHfFYdOjxEG2jb47DmG8e6r0Wi14lJKFkZOXtri/QtX+yPwcDQ2+h3Bet+QFu/rN3KW7f5zCVfUtreXVdTg5cFTuuT4qfNMihmTPddjS8BRAOj0+W/r45Fzu/d8dfZzPDkjF6One6O5uZmBthsxlFVh4ChPXEjKBNC5828sr8ZTvcdhZ1AEmpubkZFdgJcGTUZl9Y0ufS304Ow9/5m5hejRayxMyj/uLRYefRHTF2wCABQUGvH6sC/x6pCpeLbfRAb6buJCUib6jZyF8qprAGDX13H3Blp7vi4g59SZ899eoL3345Fzu/t8WRqt7V7jv9Xa+R/vvhqXU7IBgIG2G7n7z/72nv97A938lX4YOGoOyiqvQTFb4Oa19b7/YEfOyd72c7d7zz8AfL0hED37TMALA1wx1m0VLJZGhx87PV4YaO/R3NwM781BcJ29znZT5/SsfAwdu6DFz/NYsg1HIs9jZ1DEfQ+HeGPYdJQYK+Aya22Lf2lfLTLyf3Nycjfr6jF6+gps9g+1va2z57+tj0fOq7Xz1ZnPcYulER+MX2j7jmkG2u4h76oeAz6bg3OX/hHTOnP+a2/dRo9eY3HrrgdDjHdfjdPnU0DO60HP/zPvTmjxhfmBY2fhuXwHFLMF/T+djYvJdx4MVqQvx9vDZ0BfWtk1L4Q6JfLMZQwePdf2728Adn0dd2+g7ejrAnJOnT3/bQXa1j4eOa/Wzldb1/i73Xv+j0VdaPFzGGidX2t/9gfsO//3BjrvzcFYtXW/7cepai2GjWv5Z0hyLg/afu527/k/FB4L19nrUN+gwGptgvfmYCxet9vxL4IeKwy091iz7QA8lvi0uBfd9dpbeL6/a4uL9sBRc5CelY+Y+BR88ZW37e0VVdfxfH9XNFqt8N4chK0BYbb3RcZchsustV3zQuiBKWYLPv9yBYJCY1q8vbPnv62PR86prfPVmc/xzNxCvDRoMt764Cu89cFXeOX/vouO96B2XvrSSgz4bE6Lp7QCnTv/APDKkKkwllfb3jfefTViL6Q5+FVQZ3Xm/IdU3eIAAAo4SURBVL8/biGupGts7/NaG4CdQRHILShBrxEtI87EWesQcfqSY18EdVrshTS8P24hqq/Vtni7PV/H3Rto2/tnhpzTw5z/1gJtWx+PnFNb56uta/zd7j3/0xduxuvDvrR9/ff0u+Px+rAvEXcpw7EvgjqttT/7A/ad/3sDXeDhaMxf6Wf7capaixEuXg46cnoUHrT93O3e8z99wSYcjoyz/TgjuwADPpvjuIOnxxID7V2SM3IxwsWr1W9Fn+CxBr6Bx2G1NiHyzGX0GzkLVmsTbteb8PqwL5GYloNGqxVfbwjEPO87F+a0TC36fOyB8qpruFVXj48nLUHYqYSufllkJ589x7BsQ2Cr7+vM+W/v45Hzaet8PYrPcX4HrfMb67aqxYNCvtXZ8++9OQiL1gSg0WpFZm4hXhkyFTXXb3bpayL7deb8+wYex2TP9TApZtstDYoNFbhZV48XB05GZm4hAKCq5gbeGDYdmvziLn1NZJ/aW7fR+yP3Fv9B5Vv2XOPvDbTt/TNDzudhz/+9ga69j0fOp73z1dY1/m4d3YOY30Hr3Nr7s7895//eQFd9rRavDZ2GvKt6WBqt8Fjig7XbDzr8dVDndKb93O3e87/R7wi+WrTZ9h9kN+0Kve+2GEQdYaC9yzxvPzzVexx69nWx7cOJiwEAxvJqjJmxEq8MmYqPXJcgO6/I9usupWRh6Jj5eO29aZg6b0OLJzfvPngKvT9yx9vDZ2D1tgNoamru6pdFdurzsQeeeXdCi/P/7f+m0pnz397HI+fT3vl62M9xBlrnZiirQo9eY1uc+559XXAmIRVA585/g8kMjyXb8PLgKRj0uWeL/22enEtnz7/ZbME8bz+8MWw6+n86G+HRF20f89yldHwwfiEGjpqDwaPn2h46Qs4n7FRCq+f/2/Pc1uf4qq370bOvC55+d7zta8dvn97c3jWDnEtnz/+HExejZ18XPPnOONvXDtFxSR1+PHIu7Z2v9q7xbZ3/ezHQOrf2/uzf1vm/UVtn+7l3/7Pz7Xdgn7+sQp+PPfDGsOmYvWw7btebhL0+al9n2k975/92vQlzvXdiwGdzMOCzOZjsuR5llbwHOT0YBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIjoMVZaXo153n5450M3PP3ueLw6ZCo8lvjAWF4t+tCIiIiIiAgMtERERESPLau1CQNHeWLGoi3Q6gyovXkbuQUlmDRnPQZ97gmrtUn0IRIRERERSY+BloiIiOgxZSyvRo9eY3G1yNji7TXXbyIkIg71DSZUX6tFj15jUWKssL0/+OgZDJ+wCAAQezEdAz6bg137T+C5fhNx4NhZPNtvIuobFNvPv11vQs++LriQlAkA2HfkNAaPnovn+k3Ee1/Mw6WULADAet8QjJq2vMWxpKjy0LOvC27W1Tvk94CIiIiIyNkx0BIRERE9psxmC157bxoWrQloM4B2FGgTrmTi5cFTsGTdHpRXXUO9yYxXh0zF6fMptp9/8uwVvDFsOhqtVpw8ewVvvj8dOdoiWK1NOHcpHT37uqDEWImrxaXo0Wss9KWVtl+7ckswZiza4qDfASIiIiIi58dAS0RERPQYS8vU4r0v5qFnnwkYPd0bG/2OQJVz1fZ+ewJtj15jUV51zfb+hav94blih+3HHku24esNgQCA8e6rsWlXaItjmDRnPbbtDgMAfDJpKXz2htve9+5HHjiTkPoIXzERERERUffCQEtEREQkgbyregSFxmD6gk3o2dcF0xduhtXaZFeg7dlnQouPlXAlE68OmYpGqxWK2YIXB05CqloLAOjzyUz06DX2vs3z9gMAHDh2FoM+9wQAZGp0eHXIVFgsjV3xW0BERERE5JQYaImIiIgkc7XIiKd6j8PZhLQ2Am1Mi0D7wgDXFr++0WrFa0OnITE1B7EX09H7I3c0NzcDAIZ8MQ9BoTFt/r1rb91Gz74uyMorxHrfECxdv+fRv0AiIiIiom6EgZaIiIjoMRWfqMKKTfvue3tzczNee28awk4l4GZdPXr0Gov8QoPt/Wt9DrYbaAFg0ZoArNwSjPkr/bDW56Dt7VPnbcCiNQEtfm5ZRQ2ampptP3ZfvBUbdh5G35GzkJapfejXSURERETUnTHQEhERET2m8gsNeK7fRCxdvwc52iJU1dxAbkEJFq0JwIsDJ9nuK/v6sC8RfPQMgDsxdcBnczoMtBeTszB49Fy8+f50ZOUV2t4en6jCc/0mIuGKGo1WK1LVWrwyZCqSM3JtPyfuUgZeHjwFfUfOsn3nLRERERGRrBhoiYiIiB5jmRodvpy/CW998BWefnc8Xhs6DdPmb4Qmv9j2c6LjktF35CwMHj0XU+dtQFBoDIaOmQ+g7UDbaLXi9WFfYuCoOfe9Lyg0Bn0+mYln+03EkC/mITz64n2/9s33p2Ozf+h9v5aIiIiISDYMtERERETUpa7duIXn+7vCUFYl+lCIiIiIiIRjoCUiIiKiLtHU1IwbtXWYvmAT5izzFX04REREREROgYGWiIiIiLpEwhU1nnl3AiZ7foPam7dFHw4RERERkVNgoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQRhoiYiIiIiIiIiIiARhoCUiIiIiIiIiIiIShIGWiIiIiIiIiIiISBAGWiIiIiIiIiIiIiJBGGiJiIiIiIiIiIiIBGGgJSIiIiIiIiIiIhKEgZaIiIiIiIiIiIhIEAZaIiIiIiIiIiIiIkEYaImIiIiIiIiIiIgEYaAlIiIiIiIiIiIiEoSBloiIiIiIiIiIiEgQBloiIiIiIiIiIiIiQf4/DTwdZ0F1cR4AAAAASUVORK5CYII=", "text/html": [ - "<div> <div id=\"be69ea2c-522d-4f5f-a89b-779b0d122bd9\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"be69ea2c-522d-4f5f-a89b-779b0d122bd9\")) { Plotly.newPlot( \"be69ea2c-522d-4f5f-a89b-779b0d122bd9\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [26.5, 40.4, 27.5, 10.011641634355932], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [35.5, 40.48276474690653], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [43.5, 32.0, 19.9, 8.224011721298588], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.5, null], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [83.7, 81.3, 66.6, 38.91865731391849], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [33.6, 50.4, 26.2, 33.88592072413024], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [85.4, 75.2, 55.366243901138766], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2007, 2005, 2000], \"xaxis\": \"x\", \"y\": [89.2, 83.5, null, 68.9, 52.054518148465256], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Senegal<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Senegal\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Senegal\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2017, 2016, 2015, 2014, 2012, 2010, 2005], \"xaxis\": \"x\", \"y\": [null, 40.3, 47.1, 41.9, 48.9, null, 48.7, 26.4], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2011, 2011, 2011, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [71.8, 71.8, 71.6, 71.6, 57.7, 37.20176006394223], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [75.4, 79.1, 66.6, 60.24548066020205], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_only_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"548f91b9-a116-411e-bf1b-cab33d336356\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"548f91b9-a116-411e-bf1b-cab33d336356\")) { Plotly.newPlot( \"548f91b9-a116-411e-bf1b-cab33d336356\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [26.5, 40.4, 27.5, 10.011641634355932], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [35.5, 40.48276474690653], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [43.5, 32.0, 19.9, 8.224011721298588], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.5, null], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [83.7, 81.3, 66.6, 38.91865731391849], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [33.6, 50.4, 26.2, 33.88592072413024], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [85.4, 75.2, 55.366243901138766], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2005, 2000], \"xaxis\": \"x\", \"y\": [89.2, 83.5, 68.9, 52.054518148465256], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [72.7, 71.6, 57.7, 37.20176006394223], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [75.4, 79.1, 66.6, 60.24548066020205], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_only_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('be69ea2c-522d-4f5f-a89b-779b0d122bd9');\n", + "var gd = document.getElementById('548f91b9-a116-411e-bf1b-cab33d336356');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -15966,7 +14094,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 367, "metadata": {}, "outputs": [ { @@ -15989,17 +14117,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2017", - "2011", - "2006", - "2001" + 2017, + 2011, + 2006, + 2001 ], "xaxis": "x", "y": [ 26.5, 40.4, 27.5, - 48.30345508195943 + 27.22165334026072 ], "yaxis": "y" }, @@ -16016,13 +14144,13 @@ "showlegend": true, "type": "scatter", "x": [ - "2010", - "2003" + 2010, + 2003 ], "xaxis": "x", "y": [ 35.5, - 53.76048612772965 + 20.74449338352134 ], "yaxis": "y" }, @@ -16039,17 +14167,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2005", - "2000" + 2016, + 2011, + 2005, + 2000 ], "xaxis": "x", "y": [ 43.5, 32, 19.9, - 51.894103563496 + 28.93552206066888 ], "yaxis": "y" }, @@ -16066,13 +14194,13 @@ "showlegend": true, "type": "scatter", "x": [ - "2012", - "2000" + 2012, + 2000 ], "xaxis": "x", "y": [ 71.5, - 56.50975754815431 + 58.0498599283529 ], "yaxis": "y" }, @@ -16089,17 +14217,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2015", - "2010", - "2004", - "2000" + 2015, + 2010, + 2004, + 2000 ], "xaxis": "x", "y": [ 83.7, 81.3, 66.6, - 55.91131125503006 + 61.85272188475734 ], "yaxis": "y" }, @@ -16116,17 +14244,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2012", - "2006", - "2001" + 2018, + 2012, + 2006, + 2001 ], "xaxis": "x", "y": [ 33.6, 50.4, 26.2, - 49.67400671814656 + 24.80890630136319 ], "yaxis": "y" }, @@ -16143,15 +14271,15 @@ "showlegend": true, "type": "scatter", "x": [ - "2013", - "2006", - "2000" + 2013, + 2006, + 2000 ], "xaxis": "x", "y": [ 85.4, 75.2, - 66.24208937915319 + 63.25615447558266 ], "yaxis": "y" }, @@ -16168,17 +14296,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2014", - "2010", - "2005", - "2000" + 2014, + 2010, + 2005, + 2000 ], "xaxis": "x", "y": [ 89.2, 83.5, 68.9, - 52.92798233790131 + 52.35177558833146 ], "yaxis": "y" }, @@ -16195,17 +14323,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2006", - "2000" + 2016, + 2011, + 2006, + 2000 ], "xaxis": "x", "y": [ 72.7, 71.6, 57.7, - 45.77749212207978 + 50.82263058897482 ], "yaxis": "y" }, @@ -16222,17 +14350,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2013", - "2007", - "2001" + 2018, + 2013, + 2007, + 2001 ], "xaxis": "x", "y": [ 75.4, 79.1, 66.6, - 55.47795028053216 + 65.09551816600218 ], "yaxis": "y" } @@ -16791,6 +14919,7 @@ "arrowhead": 0, "arrowwidth": 1 }, + "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, @@ -17087,11 +15216,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+XcU94Hu//v3ZOZ7fTPJJDOTmXEmtmPHHseJY8eJNzAYY2yMwZjFBsyO2cy+GbPvCBCLEBJCO0hoQfu+791VXaWtpdba3e/vD8KKwWKRhSigntc5zzkXEKKQnDrc91R/+v8gIiIiIiIiIiIiIo74P05fgIiIiIiIiIiIiIhbKdCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBVoRERERERERERERhyjQioiIiIiIiIiIiDhEgVZERERERERERETEIQq0IiIiIiIiIiIiIg5RoBURERERERERERFxiAKtiIiIiIiIiIiIiEMUaEVEREREREREREQcokArIiIiIiIiIiIi4hAFWhERERERERERERGHKNCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBVoRERERERERERERhyjQioiIiIiIiIiIiDhEgVZERERERERERETEIQq0IiIiIiIiIiIiIg5RoBURERERERERERFxiAKtiIiIiIiIiIiIiEMUaEVEREREREREREQcokArIiIiIiIiIiIi4hAFWhERERERERERERGHKNCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtGPUYvdoLl2gL0h7V7/j16E5s76BEHZnn+PXoTmzwWAYs73X8evQnFk4DJ5H4Dq0hz9P69D33+nr0JyZ2d7LYDDs+HVozszu7KNvIOT4dWjOrL2rn0Bf0PHr0JybyHhToB0jp28SmnNToHX3FGjdPQVad0+B1r1ToHX3FGjdPQVad0+BVhMZbwq0Y+T0TUJzbgq07p4CrbunQOvuKdC6dwq07p4CrbunQOvuKdBqIuNNgXaMnL5JaM5NgdbdU6B19xRo3T0FWvdOgdbdU6B19xRo3T0FWk1kvCnQjpHTNwnNuSnQunsKtO6eAq27p0Dr3inQunsKtO6eAq27p0CriYw3BdoxcvomoTk3BVp3T4HW3VOgdfcUaN07BVp3T4HW3VOgdfcUaDWR8aZAO0ZO3yQ056ZA6+4p0Lp7CrTungKte6dA6+4p0Lp7CrTungKtJjLeFGhvCofDbN0byf+8NpN/e2kaG76NGP61xhaTCZ9+zb+9NI1XJy8ip7By+Necvklozk2B1t1ToHX3FGjdPQVa906B1t1ToHX3FGjdPQVa7WG2qf0nY3jx7Xk89cwkfvuXT1m5+QiBnr5x+fMGg0Gi4tLH5XPL6CjQ3hQdn8EfJ35Ja7sfq7WD/31nPjGJmQC8O2MVByJiCQZDpGYU8vSrnzIwGAT0D3Q3T4HW3VOgdfcUaN09BVr3ToHW3VOgdfcUaN09BVrtYVm38wTPvjGbtOwiugO9VNU2M+XzdUz6bM24/HmllfVM+XzduHxuGR0F2psWrN7DvuOXhn987Gw8ny7ait3WyS9fmMpgMDj8a395/ysyc8sA/QPdzVOgdfcUaN09BVp3T4HWvVOgdfcUaN09BVp3T4FWexjaOvw89cwkCktrbvn5QE8vJ84lMDAYJBQKs+m707z49jxeemc+c1fsoqt76PqeenYyVmvH8O/7/sdlVQ38edJCNu4+xeTZa3nx7XlczSykO9DL716bxS9f+IBJs9ZQWlnPq5MXMXfFLiZ9tobXpiwmNilr+PMlpuXy6uRFD+Vr4UYKtDfdHmijrqTz50kLySms5JWJC2752M+WbOfkhSRA/0B38xRo3T0FWndPgdbdU6B17xRo3T0FWndPgdbdU6DVHoaEa7k889fP7vox0fEZ/Om9BQR6egmHw8xavJ1vdp0E7hxoK2ub+KffTiQtuwiA2KQs/j5t2fD/+/snaCtrm/jF81OIjs8AYP/JGD5ZuHn48y1YvYfdR6Ie3F9YbqFAe9PF+Ou8/O4X2G2ddHR2897M1bz49jzSsot4Y+qSWz52weo9HIyIBcDq6NNcut7+IP7AgOPXoTmz/sEQHd39jv35vo4+7E7NqQVDYdq7+h2/Ds2ZhcM4fg1OznLz/cev77+b197VTzAUdvw63Dwn/+3X0d1P/2DI8X+Das7MHxigtz/o+HVozu1hOH/5Gm98uPSuHzN3xS72n4wZ/nFadtHwU613C7S/evHD4Z8vq2rgmddnAT8OtD9/7n1CoTAAptXOz597H39XgFAozG/+OJ3GFvPB/GXlRxRobwqFwmzec5rn/z6HNz5cyvYD5/jbtGXkFlXy8oQvb/nYWYu3cSoqGYC+gaDm0gVDYQaDIcevQ3NmoVCYgUHnvv+BviB9AyHNoYXD0D/o/HVozgyg/xG4DqcW6Hfv/af/5vff6evQHPr+Dw7d/52+Djcv0DeIU//2GhgMEQqFHfvzNWc3GAwR1Pff1XsYMnPLePrVT+/6MVM+X8e52GvDPy4ur+O3fxn6PXcLtN9/DHDLj28PtLf/+RM+/ZrIS6lk55fz1w9ufXhRHiwF2jvYcyyaJd8coK3Dz7/8fgo9vf3Dv/bCm3PILaoE9BI3N09HHLh7fQM64sDN0xEH7p6OOHDvdMSBu6cjDtw9u1NHHLh5OuJAexg6uwL88oWpXM8pueXn+/oHWLJ+P4GePuav3M2Bm6/oBriWVcRf3v8KgH/5/RRMq3349/zs6QmjDrQ//DiAiKgkps5dz8rNh9l/IgYZPwq0NyVczeGDOevpDvTS2GLyzOuzyC+pBmDSrDXsPHieYDBE1JV0nntjNsHg0BMUTt8kNOemQOvuKdC6ewq07p4CrXunQOvuKdC6aw22TY3dSIVVRomVQ3HbVbr6uxy/Ls2ZKdBqD8vOg+f57z/PICktj+5AL3WNXqbOXc+ni7YCQ0H11cmLCPT0EQyGmLFwC1v2ngHg+b/PGX5D+6i4dP7ptxPvGWgTrubwt2nLCIfDIwbaDn83v3xhKv/95xl4DPthfAlcS4H2poHBIPNX7uZXL37If/95BifOJQz/WrPX4t0Zq/j1S9N4bcpiisvrhn/N6ZuE5twUaN09BVp3T4HW3VOgde8UaN09BdrHfQEabIsau4Fyq5Ri6wb5VgrZZjTpZgRXzQMkGtu5bKzjkrGUS8aSH83saXwE/h6aE1Og1R6WcDjMgYhY/vDWXJ56ZhLPvD6LjbtPMTAwOPzr2/ZF8tI783nx7XksXLOXQM/QGbkX46/z4tvzeH/2Or47epH//vMMfHb7XQOt1drBM6/P4r//PGPEQAvw0RcbefOj5Q/hb+9uCrRj5PRNQnNuCrTungKtu6dA6+4p0Lp3CrTungLto7l626TKrqPcKqbIyiLfl0SWeZF08ySp5j4SzK1c9q4ZMbjebbHG1yQYm0k29pJmHCfHjqK9z3b876s5MwVazc2WrN/PsbPxTl/GE0+Bdoycvklozk2B1t1ToHX3FGjdPQVa906B1t1ToH04a7a7qbdNqq1ayqwiiqxM8qxEMs0o0s0TpJj7SDC2cNlYPeroetm7hgRzK6nmPtLNk2SZF8n3JVFkZVFuFVNl11FvmzTb3T+6Lp1B6+4p0GpuVV3XzDOvz8LfFXD6Up54CrRj5PRNQnNuCrTungKtu6dA6+4p0Lp3CrTungLtT1+z3UWd7aXKqqHMKqTIyiDXSiDLd4E04zjJxl4SjM3EGl+PMrouJc5YS6KxjVRz/83oGk2eL5liK5tyu5Rqu54G26LZDozp76BA6+4p0GputHH3KX732iyS0vKcvhRXUKAdI6dvEppzU6B19xRo3T0FWndPgda9U6B19xRob12T3UGd7aHSrqLMKqDQSifXiifTPMc18xgpxnfEG5uJNVaOKrrGGMuIM9aRaOzgqnGA6+Ypss1o8q0USqwblFtl1NgNNNg2LWOMrqOZAq27p0CriYw3BdoxcvomoTk3BVp3T4HW3VOgdfcUaN07BVp3zw2BtsnuoNZuptKupNTOo8CXRo55mQzzLNfMIySbu4k3NhLjHV10vWQs54rxDUnGTq4ah8gwT5Pti6HASqXYyqHCKqfWaqKhtdXxr8GdpkDr7inQaiLjTYF2jJy+SWjOTYHW3VOgdfcUaN09BVr3ToHW3XtcA22j3UaN3UylVUGJlUuBdZUbZiwZ5hmumodJMnZxxdhAjHf56J509a7girGBJPNbrpmHuW5GcsOMpcC6RomVS6VdQa3dTKPd7vjX4EFMgdbdU6DVRMabAu0YOX2T0JybAq27p0Dr7inQunsKtO6dAq279ygF2ga7lRqrkQqrnGIrhwIrlWzfJa77TnPVOEiSsZM4Yz2XjGWjjK4ruWJsItncTZp5lAzzLDlmHIW+NEqtfCrtSursFhrtDse/Bg97CrTungKtJjLeFGjHyOmbhObcFGjdPQVad0+B1t1ToHXvFGjdvfENtAEabJsau4Fyq4wS6wb5VgrZZjTpZgRXzQMkGtu5bKzjkrF0VNE11lhJvLGZFOM7rpnHyDTPkWvFU2ilU2YVUGlXUWd7aHJhdB3NFGjdPQVaTWS8KdCOkdM3Cc25KdC6ewq07p4CrbunQOveKdC6e6MNtM12gAbbR7VdT7ldQrGVTZ4vmSwzmnTzJKnmfhKNbcQZa39CdP2aBGMzycZe0ozjZPkukGslUGRlUGYVUmXVUGd7aba7HP+6PSlToHX3FGg1kfGmQDtGTt8kNOemQOvuKdC6ewq07p4CrXunQOvume29DASD1NsmVXYt5VYxRVYmeb4ksswo0s2TpJh7STS2ctlYPco30VrCZWM1icZWUsy9pJsnyTKjyPMlUWRlUm4VU2XXUm+bNNvdjn8t3DgFWndPgVYTGW8KtGPk9E1Cc24KtO6eAq27p0Dr7inQuncKtE/mmu0u6mwvVVYNZVYhRVYGuVYCWb4LpBnHSTb2kmBs5rLx9Sij61LijLUkGttINfffjK7R5PmSKbayKbdLqLbrabB9NNsBx78O2t2nQOvuKdBqbjYYDPKzpyfw1LOT+X/Pvc+vX5rGlM/X0dBsjOnz/uL5KXh9rQ/oKh9/CrRj5PRNQnNuCrTungKtu6dA6+4p0Lp3CrSPz5rsDupsD5V2FWVWAYVWOrlWPJnmOa6Zx0gxviPe2EyssXLU0fWysY5EYztXzQOkmxFkm9HkWymUWDcot8qosRtosG1aFF2fqCnQunsKtJqbfR9ov4+pPb39LF63nw/mrB/T57XbOgmFwg/iEp8ICrRj5PRNQnNuCrTungKtu6dA6+4p0Lp3CrTOrsnuoNZuptKupNTOo8CXRo55mQzzLNfMIySbu4k3NhLjHW10XUacsZ4kYydXjYNc950m23eJAiuVYiuHCqucGquRlra2cXyTMO1RnwKtu6dAq7nZ7YEW4FpWEX94a+7wj5PS8nhl4gJ+/7fPmTRrDa3tfgAORsTy5dffMXf5Lt6dsYrXpiymxWsB/3iCtqyqgT9PWsjG3aeYPHstL749j6uZhQ/3L/kIUKAdI6dvEppzU6B19xRo3T0FWndPgda9U6B98Gu0229G1wpKrFwKrGvcMGO5bkZy1TxMkrGLK8YGYrwrRhVdY7zLuWJsIMnYxVXzMBnmGW6YsRRYVymxcqm0Kqixm2m02+77Wkf7JmFP0ow6G19RE56WTsevxakp0Lp7CrTawzZ38QCfLXz4G8ntgTbQ08vc5btYu+M4AIavjX//348or24EYP+JGKYv2AzAkTNX+I8/fozV2gHA8o2H2Lj7FPCPQFtZ28Q//XYiadlFAMQmZfH3acvG74v7iFKgHSOnbxKac1OgdfcUaN09BVp3T4HWvVOgvb81tLZSazVRYZVTbOVQYKWS7YshwzzNVeMQScZOrhjfcMlYPsroupJ4YyPJ5m6umUfIMM+SY16mwJdGqZ1HpV1Jrd1Mk90xLn+vJyrQWj14G9rwlbRgX6+iPb6IzrOZdB1KJLAjmr61pxlYdJjQrN0wdQt8MDQrq8b5a3doCrTungKt9rBNnjHgyEbyfaD91z9M5Vcvfsg//89EXnpnPnWNXgBOXkhi8uy1wx8f6Onl//5uEgODQY6cucL0LzcN/9qhU5eZv3I3cGug/dWLHw5/TFlVA8+8Pms8vqyPNAXaMXL6JqE5NwVad0+B1t1ToHX3FGjdO/cG2gANtk2N3UC5VUaJdYN8K4VsM5rr5imuGgdINHYQZ6wjxlg2qugaa6wk3thMivEd18xjZJrnyLXiKbTSKbMKqLSrqLM94xZdR7PHIdAOR9fMmqHoei6TrsNJQ9F13Zl/RNcPtoxqoZnfMrjwEPYNBVqnr0NzZgq02sPW0enMRnL7E7SDwSCpGQX85yvT8dnt7DkWzS+en8Izf/1seL9+aRo+u50jZ64wd/mu4c/1wx//MND+9i+fDn/M7T92CwXaMXL6JqE5NwVad0+B1t1ToHX3FGjduycp0DbbARpsH9V2PeV2CcVWNnm+ZLLMaNLNk6Sa+0k0thFnrOWSsXSU0XUV8cYWUow9pBnHyfSdJ9dKoMi6TqlVSJVVTZ3tpdnucvzrMJo5FWi9je2YpR7srBraEovovJCF/2gygV0x9K6LZGDxUYKz98CHW0cXXT/dxeCCg/StjqBn60W69ifgP5NBe1w+remV+AqbMGptWnx6s7MWW4HW7VOg1dxspDNoAf48aSFxKdlcuJx2y1OyP6RAe/8UaMfI6ZuE5twUaN09BVp3T4HW3VOgde8e9UDbbHdTb5tU2bWUW8UUWZnk+ZLIMqNIN0+SYu4l0djKZWP1KN9EawmXjdUkGFtIMfeRbp4g04wiz0qkyMqkzCqi2qql3jZosbsd/zqM1x5koPU2dWCWebGza2hLKqYzKhv/0RQCu2Lp/eYsA0uOEvx8L+Fp20YXXWfsZPDLA/StOkXPlqib0fU67bH5tKZV4CtoxKixaDGf3O/TeE2B1t1ToNXcbKRAm51fzi+en0J9k4HV2sF/vjJ9+MiDwrJaVmw6BCjQjoYC7Rg5fZPQnJsCrbunQOvuKdC6ewq07p0TgbbZ7qLO9lJl1VBmFVJkZZBrJZDlu0CacZxkYy8JxmZija9HGV2XEuddQ4K5jVRzH9fNk2SZF8n3JVNkZVFul1Bt11Fv+2i29QRli33vQOtp7sQs92LdqKUtuYSOqBv4j6XSvTuW3g3n6F96jODcvYSnbR9VdA1/spPBLw7QvzKCns1RdO+Lx38qnY6YPFqvlWPlNWBU+xRdx3kKtO6eAq3mZt8H2qeencxTz07m58+9z8vvfkFsUtbwxySn5/PKxAW88OYcXpuymJzCCkCBdjQUaMfI6ZuE5twUaN09BVp3T4HW3VOgde8eVKBtsjupsz1UWdWUWgUUWtfJteLJNM9zzTxGirGHeGMzscbKUUfXy8Y6Eo3tXDUPkG5GkG1Gk2+lUGzdoNwqpcZuoMG2aFF0vb/vuacTs8LAyqmj42opocRC/MdT6f7uMr0bz9G//DjBeftGH12n72Rw/gH6V5ykZ/MFuvdewR+RRkdMLq2pZVi59RjVJh7j8ToG4kmeAq27p0CriYw3BdoxcvomoTk3BVp3T4HW3VOgdfcUaN27uwXaRruDOruFSruSUiufQl8aOWYcGeZZ0syjJJu7uWJs+gnRdRlxxnqSjB2kGge5bp4i23eJAiuVYiuHCqucGquRBrvV8a/P4zKP2YVZaWDl1tOWUkpHdA7+E1fp3hNH76bz9K84weC8/YQ/3jG66PrxDoJz99O/4gS9m87TvScO/4mrdETn0JZSipVbh1lp4DEVXR/HuSXQeow2vB4To6kZs6EOX10VvppSrKoCPGa749fn1BRoNZHxpkA7Rk7fJDTnpkDr7inQunsKtO6eAq07V2M1UmLnUOFPIsM8w1XzMEnGLq4YG0Z9nuslYwlXjG9IMnZy1ThEhnmaG2bsLdG11mqioVXR9X7nMbowqk2svHpaU8voiMnFH5FG994r9Gy+QP+KkwzOP0B4+s7RRddp2wnO3Uf/8uP0bTxH6GA8/uOpdFzMoS25BCunDrPCwNPS6fjXQBvfjXeg9ZjteD0WRrMHo6kBs74GX205VlUxdkUednk2rSXptBUl056fQEduLB05UXRmncWfEYH/2hG6Ug/QnbKH7sQdBOI303N5A70xq+mLXkFf1BL6zy9gIHIug6dnEYz4hODxDwkdnUz48AQ4+OY9Z9bXOP59cGoKtJrIeHMk0H66aOt971Hn9E1Cc24KtO6eAq27p0Dr7inQPtlrtDuotCoosK5y3XeaJGPHfQXXGO8KrhgbSDK/5Zp5mOtmJDnmZQqsa5RYuVTaFdTazTTa7n0CbdQzuzGqfVj5DbReK6cjNg//qXS698XTszmK/pURDH5xgPAnPyG6ztlL/9Jj9H5zlu7dsfiPptARdWMout6oxSz34mm+Nbo+yDcJ0x6deXwdeL02RosXo6nx5lOjFVjVxdiV+dhl2bSWXqer7BqDlal05F2m48bFm2H0FP60o3RdPUB38h66E3cRiN8yFEZj19IXvZK+qKX0n1/IQOQ8Bs98RjBiBsET0wgde5/w4Yn3FUYf5sJH3iN0fArBkx8xGPEpg2dmM3B2Pv0XFmI2NTj+/XJqCrSayHhzJNCu2nLkvveoc/omoTk3BVp3T4HW3VOgdfcUaJ+c1drNlFp55JiXuWoc4orxzR0DbJyxnqvmIcr9CRT60ii18qm0q6izW2i0Oxz/uzw28wUwaix8BY20plXQfjkf/5nrdO1PoGdLFH2rTjH45QFCM0YbXbcR/HwvA0uO0rs+ksCuWPxHk+mMyqYtqRg7uwazzIu36ad/rxRoH+w8vq5/vJy+uQWzsR5fXTW+mjKsqkLsilxayzJpK75GW2ES7flX6Mi9ROeN8/gzI/FfP4n/2iG6UvbTnbSbQMJ2eq5soufyenovfU3fxWX0X/iKgXNfMBD5OYOnZhI8+TGh41MJH51E+PA7jsfQf+wtwocnEjr2PsET0whGzGDw9CwGIufRf34hfVFL6IteSW/MGnoubyAQv4XuxJ10J++h6+oB/GlH8WecojPrHB03LtKRF0t7QSJtxam0lqRjl2VjV+ZhVRfjq6vArK/FaGrEaPHi9dp4fLqH3WsKtJrIeNMRB2Pk9E1Cc24KtO6eAq27p0Dr7inQPn5rsjuptKsotNLJMM+SbO6+y1mwy0kydnDdd5oCK5UKq4KmmwH2Qb1J2BM3XwCj1sZX2ERreiXtcQX4z2TQdSCRnq0X6VsdweCCg4Q+3TWq6MqHWwnO3sPA4qP0rosksCsG/5FkOi9k0ZZQhJ1Vg1nqwdv4cJ5KfpIC7cgvp68Y4eX0Kff5cvot9/dy+mPv33w5/VuPQBS9+cTooXcJHZ1E6PhUghHTh8LomTn0n/uS/guL6YteTm/Mavrj1hNM3kYgYQfdybvpSt2P/9ph/NdP0pkZSeeNC3TkxtBeEE9bYTKtxWm0lmVhV+RhVRfiqy3DrK/BbKzHaG7B6/XhMdtosXQm8eMwBVpNZLzpiIMxcvomoTk3BVp3T4HW3VOgdfcUaB/t1dleSq1Ccq14rpnHiDc23eWp2LWkmvvJNqMpsW5QYzfSbAfu+LldFWitAEZdK76iJuzrVbTHFdIZmUHXwUR6tl+kb80pBhYeIjTz29FF16lbCX72HQNfHaFv7RkCOy/RdTiJznOZtMcXYWdW4ytuwdvYRov1CHwdfrAHEWg9vk68Ritej4HR1ITZUIuvrhKrugSrMh+7/AatpRm0FafSXpBIe17c0Mvps8/hzzyNP+0YXVcP0pW8l+6kXQQSttITt5He2LX0Rq+k7+JS+i8sZODsPAbPzGYw4lOCJz8idHwK4SPvwaG3HQ+i/wij7wy9nP7YFIInP2Yw4lMGvn85/flF9F1cSu+lVfRcXkdP3CYCCdvoTvqWrpS9+K8dwp92DH/GaTqzz9ORE017fhztBUm0FV2ltTQDuzwHq6oAq7oEX10VZkMdRlMTXo+J12jFY43u3GC3vEmYNvIUaDWR8aYjDsbI6ZuE5twUaN09BVp3T4HW3VOgfTTW3NpFtVVLkZVBlu8CKcYeYo1VI58PaywjwdzKdfMkeb5kyu1SGmxr1H/mYx9orR68DW34ipuHouuVQjrPZtJ1KJHAjmj61p5mYNFhQrN2w9TRRNcthGbtZmDRYfrWniawI5quQ4l0ns2k/Uoh9vUqfMXNeBuci64P4uX03WmHCWUcesJfTr/gPl9OH/Hjl9MXpfz45fS1I7yc3nw8z2FWoHX3FGg1kfH2SB9xsPd4tNOXcE9O3yQ056ZA6+4p0Lp7CrTungLtw1+D7aPcKibPl0S6eYIEYwuXjKUjxthY42tSzH1kmVEUWVlU23U02w/mJcSPZKC1evA2tuErbsHOrKY9vojOc5l0HU4isPMSfWvPMPDVEYKffQdTt47qaVSeJl0AACAASURBVNfQzG8ZWHiIvjWn6Nl+ka6DiXRGZtAeVzAUXYuaMOpaabHu/NRxi62X09/15fSnZv7g5fRfDb+cvufyegJXNhNI2P6jl9P7R3g5fVvxtR+9nN5XV/2jl9N7fHo5/U+dAq27p0CriYy3RyLQFpbWcOJcAgcjYoe3bucJ/uX3U5y+tHty+iahOTcFWndPgdbdU6B19xRox3Pd1NgNFFvZZJnRpJr7uOxdc4cjCpYSb2whzThOnpVImVVEvW2O6/U9zEDrbWzHLPVgZ9XQllBE54Us/EeSCeyKoXddJAOLjxKcvQc+HGV0nbGD4Pw9DCw/SN/6o/TujKDn4GkCJyPpPn+WrthIupLP4M+408vpN43wcvr5j/zL6Tn09g9eTn/bu9Pf8eX0u255OX131mlCxdH3+XL62jG9nF579KZA6+4p0Goi483xQHsgIpb/+7tJ/HHil/x/v3uPVycv4ufPvc+Lb8/j9MUUpy/vnpy+SWjOTYHW3VOgdfcUaN09BdoHs0a7nQqrjHwrhXQzgkRjO5eMZXd4KnYlycZ3ZJrnKLSuU2XV0Nzqf+jXfL+Bdvjl9F7fLS+nt0qKaMvKoDMhia7zMfQcPUvPrmP0bTjEwIo9BL/cSWjmdvhwFMcLfLAFPtpIeOY6wnO+JvzlUsJLFsDKObB2Jmz6GLZ/ALsnwgEnniR9i/DhCT94Of0nN19OP/cHL6df8eOX06eM8HL6nKgfv5y+fKSX0zeMy8vpn6Q3CdNGPwVad0+BVnOzwWCQnz09gaeencz/e+59fv3SNKZ8vo6GZmPUn+tgRCwL1+z90c/vO35pxJ//Kb6/3n/+n4m37OUJXz6Qzz9eHA+0z7w+i5zCSgD+60+fANDh72bW4m2kZhQ4eWn3xembhObcFGjdPQVad0+B1t1ToB3tAtRYTRRbOWT7LpFqHCTOWHfHN+6KNzdyzTxCjhlHmZVPne1x9PrN+lpai9PwZ0YSSNhGOHbFzZfTzxl6Of2xTwntnUF4xwzYMBNWfwZL58KiBTBvKcxaBZ+sg6mbRhddp22EGWtg9gr4Ygl89SWs+GF0nTIUXfffPboOPTX6wdCbMJ2ayUDk5wyc/YL+81/Rd3HZzadG19NzZROB+G10J+2mK2Xf0FOj10/izzxD543zdORcoj3/Cm2FSTdfTp859HL6qkJ8NWVDT4021mM0NeP1mHiMtkfgv70H/N+CAq2rp0Dr7inQam72ffD0+loB6OntZ/G6/XwwZ/2oP9edAm1Pbz9d3Q/m63z79T4uHA+0Tz07mcFgEID/+OPHwz9vWu28/O4XTl3WfXP6JqE5NwVad0+B1t1ToHX3FGjvvEa7g0q7ggLrKhnmGZKMncR4V4z8xl3eFSQZu7huRlLgu0alXUmT3eHIdXuNVqyqQtrz4vBfO0TvhVUED82FrVNhw/Sh6Lr8++i6BGavhOk/JbpuJjxzI6F5Gwgu3sDg1xsY3LSZ/t1b6Du0g54zuwnE7sN/9Rj+zNN0Zp29+SZMl4eeGi1OpbX0Onb5DezK/Jsvp68cfnf64adGfXo5/XhMgdbdU6B19xRoNTcbKXheyyriD2/NBSC/pJoX3543/Gs//PGBiFgWrN7Dq5MXsW1f5C2B1utr5ZnXZ3GjoOKWJ2h/9eKHHD+XwIfzNvDSO/P59vCF4c99KiqZF96cy7NvzObdGavwmD+OsPcKtHnFVbw6eRHP/30OL7/7BRm5pQAMDAwyd8Uufv+3z3n2jdnMWbaT3r5+AGKTMnl5wpe89M583p2xipoGz0/+et6J44H2hTfnkpSWB8D/vjOfgpJqALq6e/jlC1Mf2nWEw2E27j7FC2/O4YU357Bg9R56eoe+EY0tJhM+/Zp/e2kar05eNPzELyjQunkKtO6eAq27p0Dr7inQDq3ObqHUzuOGeZlr5mGuGBvu+FRsnLGeq8Yhsn0xlFi51NrNtNh3f2OpBz2P2YWdX0xnwhV6Io7R/+1WgutWE16yGObfjK6frIMPRxddwx9vJzh3L/3LjtK78Szde+Lwn7hKR3QObSmlWLn1mJUGHlNvzvS4T4HW3VOgdfcUaLWHrXPaq3R88MpD30huD56Bnl7mLt/F2h3HgbsH2iNnrvCfr0ynodkE/vEEbW9fP69NWcyFy2nArUcc/PvLH7Fl7xkA7LZOnnpmEoGePlrb/Tz17GSavRYAC9fsZcn6/fe83tu9MnEBUXHpAFy4nDZ8rbFJWUyevZZwOEwoFGbt9uPkFFbiMWz+9Q9TqWv0AnA0Mp43Plx6P9/GUXE80EZeSuVnT0/AZ7ez+0gU//7yR3y2ZDsvv/sF789e99CuIzYpk9emLKant59gMMT0BZvZefA8AO/OWMWBiFiCwRCpGYU8/eqnDAwOPfXr9E1Cc24KtO6eAq27p0Dr7rkt0DbZnVRZ1RRa6WSa50g2dxNrrLxDjF1OorGd6+YpCqxUKqxymuwHdwbo7fMYXRjVJlZuPa2pZXTE5NJ1IoWeHWcYWL2f4ILthGdthmmjjK7TthKcs5v+Zcfo3XiO7u8u4z+eSmd0DuRUYeXUYVYYeDx6UtVNU6B19xRo3T0FWu1ha3/9N45sJN8Hz3/9w1R+9eKH/PP/TOSld+YPB8t7Bdoftr3vA+3spTvYti9y+OdvD7RlVQ3Dv/brl6bR5PEBDD/RChB1JZ3Js9fe8Xp/88fp/NefPhne3BW7gKEnZUOhMDD06v3/+7tJAOQUVvDbv3xKcno+ff0Dw5/v9MUUPvpi4/CP+/oH+KffTnxgRzJ8z/FAC1Bd30IwGALg5IUkvli1m237Iuno7H5o17D9wDlWbDo0/OMjZ67w2ZLt2G2d/PKFqcPHMAD85f2vyMwtAxRo3TwFWndPgdbdU6B1957kQFtnG5RZheRaCVwzjxFvbL7zU7HeNaSa+8k2oym2blBjN9Bsd4/9OsxujGofVl4DrdfK6YjNw38qne598fRsjqJ/ZQSDX+wnPH3H6I4XmLoJZnxDaM4GBpdup3/DPgJ7zuCPTKEtuQTrRi1muRdP852j6/2+SZj2ZE6B1t1ToHX3FGi1hy3cbhNusx76RnL7E6mDwSCpGQX85yvT8dnt9wy0c5btHP61gxGx/Pqlafz8ufc5fTFl+OdvD7Q/fAOy738cDofZcfAcf/1gCW9MXcILb85l0qw1d7ze0sp6rNaO4XV2BYChJ2Xfnr6CN6Yu4bUpi/nn/5k4/HtjkzJ5d8Yq/vUPU1mweg+Bnj52H4liweo9t/wZv3zhg5/0Jml380gE2vvxzOuzxvXzZ+eX87/vzKetw09f/wBT567n9MUUcgoreWXigls+9rMl2zl5IQnQP9DdPAVad0+B1t1ToHX3noRA29zaRZVdS5GVSZZ5gWRjL7HG13eIsUtJNLaSbp4k35dMuV1Cg22N7s80uzFqLHwFjbSmVdAem4//zHW69ifQsyWKvlWnGPzyAKEZO0cZXTfD9PVDb8Q1byksXEh4+ReENi6jf+8mApEH6UyJxSotwuMb+/m2CrTungKtu6dA6+4p0GpudqcjA/48aSFxKdkUltXywptzh3/+WlbRLYF27vJdw792MCKW92aupry6kd/8cTotN48ruJ9Aezk5m1cmLsB/M7Sei71210A70hEHdlsnP3/ufarrWwDwGPYtgfZ77R1dTJq1hr3Ho4m8lMrHX2wa/rXvn6DtDvTe4ys3Oo9NoP3Vix+O+5+xdMNBnnpmEr94fgoTPv2agYFB0rKLeGPqkls+bsHqPRyMiAUgHNbcOoCw/htw7Zz+/g8Mhhz/Grh5uv+7e4/b97836MfXX0VN91Vy20+TYm3jkrF05KdizdVktO6nuDOGpp5c2gc8BMPBWz5f//f3n2CYcFs34XofFNVDWgnE3CB8IpXwtzGE15+Brw7DzG9HH11nbILP1sLcZbBgESydB6tnw/oZsOVD2DUZjn5COHYF4fR9UBoDLQWE/T7C4bC+/5q+/0/o+p389w/6/rt6+v67fm42UvDMzi/nF89Pob7JwOtr5RfPTyHQ0wfAkvX77xpovw+xu49E8d7M1YTD4fsKtEfOXGHa/A0AdHYFmDx77Yhnwd4t0FbWNvEff/yY/v4BQqEwG76N4GdPT6C3r5/Dp+PYti+SoX9Lhvny6+/Yd/wSXl8rv35p2vA1HYyI5e3pK8f0NR2JAu1NJ84lMOXzdQR6+ggGQ6zcfISv1u0jt6iSlyd8ecvHzlq8jVNRyQB4Wns0ly7QF6Sjq9/x69CcWd9AiNbOPueuwXb+a+DmDQbD+Dp6Hb8OzZmFw+B9BK7jx+um1m6gxM4myxdNqrmPy8aaOx5REG9sJs08Tp6VQLldREOrgccOYNS3YhU30Xq9io4rBfjPZtB9MJGe7RfpW3OKgYWHCM0abXTdSuiz3Qwu3MfA8n0MrN7FwPqNhDYshW9mDkXXHe/DnnfhwFtw8E04+CbhQxMYiJxDT9w3+NOP0l6YiFVbitfX7sjX2Nt28wlqx7/XmhPzdQw9Qev0dbh6Dv77p/XmE7SOfw00R9Zx8wlap69Dc25u9n3wfOrZyTz17GR+/tz7vPzuF8QmZQ1/zNdbj/LKxAVMnfsN+0/G8Ie3hp6ovVugDQZD/PWDJRw5E3dfgba13c8bHy7lxbfnMemzNeQVV/Fff/pk+M3Kbr/eO71J2PyVu3nmr5/xxtQlpGcX89bHK3j9g8W0tvv5cN4GfvfaLJ59YzazFm8j0DP0lOyV1Bu8MnHB8J/d2GI+gK/srRRob5r+5SYiopKGf5xXXMXzf59DW4eff/n9FHp6/3EQ8QtvziG3qBLQS9zcPB1x4O7piAN3T0ccuHvhsPNHHDTa7VRY5eRbKaSbESQa27lkLBsxxMYaq0j27CK77iSlJZdoSkum48J1ug4lEdgRTd/a0wwsOkxo1m6YOprouoXQrN0MLDpM39rTBHZE03Uoka6IRLrOxhA4d5Kes7voj1xO8PhHw9F1pAWPf0hf1BK6k3bRmX2e1rIszKYGWuyA49/vH87TqiMO3DwdceDu6YgDd09HHGgi402B9qaNu0/xycLNw28Gtum700z/cuiMiUmz1rDz4HmCwRBRV9J57o3Zw29q5vRNQnNuCrTungKtu6dA6+493EAboMZupsTKIdsXw1XjIHHG+js/FVv3NZl5myiN207zwW/pWr4TPtw6qqddQzO/ZWDhIfrWnKJn+0W6DibSGZlBe1wh9vUqfMXNGDUGvupS2gqT8Kcdo+fyBgYi5xA+POGOETZ8+B0Gzsym5/J6/NeO0J6fgFVdgsdsc/x7er9ToHX33BZoTaMeuymbjrpoOiv3EyhdS2/RAnqKlxMoXUdX2Rb8FbvprDqEvyaCjtrztNdfpq0hGbs5E6slD5+nDNOoxTC9eKzH53/rI02B1t1ToNVExpsC7U3dgV7mrfyW5/8+h+f/Poepc9fjMYceh272Wrw7YxW/fmkar01ZTHF53fDvc/omoTk3BVp3T4HW3VOgdffGK9A22p1UNRdTXHuFrOrDpNRuJtZzh6dim5aSlrOCwuhV1O9bR+uqDQx+cpfo+ukuBhccpG91BD1bL9J1IBH/mQza4wpoTa/EV9iEUWvT4vvhE6sBjKYm7LJsOnKi6E7eTd/FZQRP3v1p2NDxqfRfWEx34k46s87SWpqB2VhPi/VoPQ37U6ZA6+49aYHW6zOwWgppa4jHX32S7rLN9BYtZDDvA8LZr47bQjf+RjBnAgN5H9Kf/yl9hfPpLV5EoGQV3WXf0FW+HX/lHvzVR+msOU1H3UXa6+NpbbyK3ZSN1VKIz1OJYTbg9Zl47LG/AeD9TIHW3VOg1UTGmwLtGDl9k9CcmwKtu6dA6+4p0Lp7ow203qYOzDIvdnYNbUnFdEZl4zsbQ0PUMUrjdpCVsY7EiuV3fCo2oXIZ2akrKT+1Gs/W9XQt3DR0vMCMnUPRddUperZE0bU/Af+Z67Rfzqc1rQJfQSNGjXVbdP3xPL5OfLXltBUm408/Tk/cJgYi5xE+PPHOT8MeeofBM5/RG7sW/7VDtBfEY1UV4zEe7yfk7jUFWnfvcQu0HqsDn6eK1qY0OuvO4q/YTU/xcvrzZxC68fd7htTB3En0Fc6nu+wbOisP0Fl1+I7zV35HV/l2usu+IVCyit7iRfQVzqU//1MG8j4kmDOB0I2/jXP4fZPB3EkM5H1Ef8Esegu/pKd4CYGS1XSXbaSrfBedlfvw1xynszaS9voY2hoSaW1Kw27OwecpxvTWYBjNeH32j76eCrTungKtJjLeFGjHyOmbhObcFGjdPQVad0+B1t0Lh8Fo7sQs92LfqKEtuYSOqBv4j6bQvTuW3m/O0r/0GME5ewnO2E778g007FlH8YWvSc9eweXGpSOG2JiWJVwtXEFu0jqqLuzEc+IYHUcu4z+VTkdsHq3XyrHyGzCqfbSY3aO+bqO5Bbs8h44bF+lO2UNf9HKCJz+++9Owx6bQf/4rAgk76Mw6R2vpdcyGOlqs0f/5T8IUaN29Ry/QdmMYjdjNObTXx9JZeZDu0nX0Fc5jMOe9ewbNYM5b9OfPJFCyCn/FHjpqL9DadB3TW4PH8o/TNQfwWG14fV5Mow6ftxyrJR+7KZO2hhTa6+PoqL1AZ80pOisP4q/4jq7yrQRK19FTsoLeogX0Fc6hP/8TBvM+IJjzDqHsv45f9M3+K8GcdxjM+4DB/BkES+YMHfNQsmLomIfyrUPHPFQepLPmFB21F2ivj/vBMQ/5+LzlmEYdXt/3xzw8/q8mcOMUaDWR8eZYoP3btGVsP3COwrJaQqHwPT++qLz2IVzV6Dl9k9CcmwKtu6dA6+4p0D6Z87R0YlYYWDm1Q9H1Yg7+46l0f3eZ3g3n6F9+nODcffDR9hGPEeiduwlzwzdUHVtLTsJKkkuWc8k78lOxcY0rSavaRm7pccorEqirK8Vjjj2IeKxOfHUVtBUl479+kp4rmxg4O5/wkffuHGIPvc3g6Vn0xqyh6+pB2vPjsKoL8Rqtjn9PHrUp0Lp7TgRar8/C5ymhrTGJzppTdJVvo7f4KwbyphG6cfcwGbrxOgN50+gtXkRX+TY6a07R1piEz1OC12c5/vV8sOvG62vFMJsxvTX4PCXYzTm0Nl2nrSGR9vqYoaeIa07QWbkff/kuuss2EShZQ0/xUnqLvqS/4DMG8j9iMHcywZy3CGe/No5P+/6dYM7EHxzzMI/e4q9GPuah9k7HPFRhGI0P9ZgHN0+BVhMZb44F2pWbD/PSO/P52dMT+M0fpzN3xS6i4tJp6/A7dUk/idM3Cc25KdC6ewq07p4C7eMzj9mFWWlg5dbRllJKR3QO/hNX6d4TR++m8/SvOEFw7n7CH++4/zfR+mgL7Su30HBoK4UJm0kvWM/lphV3OKJgKQnGFtLNk+T7kii3S2iwfWP+exnNHuyKXDpyLtGVvJe+6JUEIz65x9Ow79N/fhGB+G10ZkbSWpJ+82nYLse/T4/LFGjdvfEItB7Lj+mtobUpg47aC/grvyNQsor+glk3I+E9jiHIeY++wrl0l66js/Ig7fWx2M05GEYjLbY7n3R/oN8fuxOv6cMwGmm3qhnoKMduvkFr4zXaGhLoqLtIZ+1p/NXH8Ffupat8xz+OeShaTF/h/B8c8zCR0I03x/GYh9cI5rzFYO7k2455WEqgZM0/jnmo2j8UquvO/uCYh/SbxzyU3HbMg/4b+n4KtJrIeHP8iAPD10bkpVTmLNvJf/3pE/7ptxN5Y+oStu2LpKCk2unLuyenbxKac1OgdfcUaN09BVpn5zG6MKpNrNx6WlPL6LiUiz8ije69V+jZfIH+FScZnH+A8PSd9x1d+WAL4Y+2E5y3j/7lx+ndeI7u7y5jRyZQfzWG4qJIMmoPktiymUvGyEcUxBqrSDb2kmVeoMjKpMqupbn1p8dPj8+Pr66KtuJU/BkRBK5sZuDcF/d4GvYtBk/NpDdmNV1XD9CRdxmrqgCvx3T8+/YkTIHW3ftpgTaAYTZjteTRXh+Hv/oo3WXf0Ff4BYO5k+/rXNX+/Bn0lKzAX7GbjrpztDalYXqr8Fh6avJh7kGeQXvfxzxUHRrhmIeFtx3z8C6h7DcewjEPUxjIn05f4ee3HvNQtuW2Yx7O015/+dZjHjxlmEYthvn4HvOgQKuJjDfHA+0PhcNhyqsb2Xf8Ei+8OZefPT3B6Uu6J6dvEppzU6B19xRo3T0F2gc/j9mNUe3Dymug9Vo5HTF5+E+l073vCj2bo+hfGcHgFwcIfzLK6DptO8G5e+lfeozeDefo3h2L/1gqHVE3aEsuwbpRi1nupaW5nRq7gWLrBtlmNKnmfuK8a+74xl3xxmaumcfItRIoswqps42f/Hc3WrzYFXl05MbQlbKP3uiVBCNmwMG37vw07NHJ9J9fSCBhK/7MM7QVX8Osr9HTsOP936kCrat3p0Dr8bXi85TR1pBCZ81pusp30FO8hIH8j+7jfNTXGMydSm/RArrKNuOvOUFbQwJWSyFen/4PK4/SHv03Cbv9mIdS7ObcW4556Kg7h7/65K3HPJSudfCYhwn3d8xDzZ2OeajEMBseyjEPCrSayHh7JAJtKBSmqLyW3UeieG/man7+3Ps889fPWLB6j9OXdk9O3yQ056ZA6+4p0Lp7CrT3ObMbo8bCV9BIa1oF7bH5+M9cp3tfPD1bouhbdYrBLw8QmjHa6LqN4Od7GVhylN5vzhLYFYv/aAqdUdm0JRVjZ9dglnnxNo38/1lrstupsMrJt1K4bp4i0djOJWP5HZ6KXUmyuZsM8yyFVjqVdhWDoQE8o/xaeHxd+OqqaSu6ij/zNIH4LfSfX0D46KS7Pw0b8Sm9l1bRlbqfjtxY7Mp8PQ3r4BRo3TmP5cc0amn3ZBEyL9NZuZdAyWr6Cz4jmPPOPUNUMGcCfYWfEyhdS2fVfjrqL2E3ZWMY9fo/qjxGe/QD7fjsh8c8mN4qrJai2455iKaz9sxtxzxsIFD69Y+OeRjMeW/cj3kI3XiTwdxJtx3zsIRAyerbjnk4Tmdt5AjHPBSPeMyDAq0mMt4cC7SNLSYnLyQx86ut/Pv/fsRv/jidWYu3c/JCEg3NplOXNWpO3yQ056ZA6+4p0Lp7rg60vgBGrY2vsInW9Era4/Lxn8mga38CPVsv0vf1KQYXHCT06a5RRVc+3Epw9h4GFh+ld10kgV0x+I8m03khi7bEIuysGsxSD97G9lFcb4Aau5kSK4dsXwxXjYPEGevv+FTsFWMD18zD3DAvU2rnUWe3jPh5w2HuGGi9HgO7Mp+O3Fi6UvfTe2kVgxGfwqE7Pw0bPjqJ/vMLCMRvwZ95mraiq/jqqvH4FG4etSnQPrkzTC9WcwHt9fH4a47TXbaR3qIFDOZNIZz9l3u8BPxvDORPp6d46VD8qT1Da+NVfN6Kmy/ndv7vp419bg2047V/HPNQj89bcdsxD1foqPvxMQ/dTh3zcOOvhHLeJZT/wa3HPBQv/9ExD/6aiFuOeWhtysBqyXsijnlw+9xsMBjkZ09P4J//Z+KPlpVXBkDkpdThj//3lz+iodn40ecpKq/l+b/P+cnXMdbf/6hzLND+7OkJ/PKFD1i64SBlVQ2Ew2GnLmVMnL5JaM5NgdbdU6B19564QGsFMOpa8RU1YV+voj2ugM7IDLoOJNKz/SJ9q08xsPAQoZnfji66Tt1K8LPvGPjqCH1rzxDYeYmuw0l0nsukLaEIO7MaX4kHb+PYA0aj3UmlXUmB7xrXzUiSjF3EeEd+464Y7wqSjJ1kmGcosK5SaVfQOIqXRoZDQXz1NbQVX8OfeYZAwlb6zy8kdHTyXd6k6y2CETPojV5JV8o+OnJjsCvyMFq8zn//tfueAu3jO4/Vhs9bQWvjVTprI+kq30VP8TIG8qcTuvG3ewSavzCYN4W+4i8J1mzBX32M9vp4rJZ8DFP/G3bLFGgfh31/zEPLj495aEyivT52hGMeNo9wzMPHDOa+/xCOefjbbcc8zKW3eNFtxzx8N8IxD6kjH/Ogc6nHdW72faD1+lpH/PVwOMx//emT4R/fKdAOBoO0dfjHdB1j+f2POscC7ZnoFGYv3cFv/jid//jjx8xavI2TF5JobHl8np4F/QPdzVOgdfcUaN29xyLQWj1461vxFTcPRdcrhXSezaTrUBKBHdH0rTnNwKLDhGbuhqmjia5bCM3azcCiw/StPU1gRzRdhxLpPJtJe3wR9vUqfCUteBvaaLHG5+9WZ3sos/LJMeO4Zh4h3tx4x6di44x1pBoHyfZdotjKocZqovk+n1rxekysqgI68i7TdfUAvTGrGTw18+5Pwx55j4FzXxC4shl/RgRtxan46qrw+PzO/zehjXkKtI/yujGMeuzmG3TUX6Kzaj+B0rX0FX5OMGfCfRxD8Db9BZ8RKFmNv3IvHXVR2E2ZmEYtHmvof78/7U3CtCdlCrTuncfupKOzlZ4u7wjHPMT/+JiHipGOeZjJQN40R4556Cv84tZjHip20lm577ZjHhJobUob4ZgHi++PeXD73OxegXb6gs387OkJvDzhSzxmK//+8kccjYzn5Xe/4L/+9AnfHr4A3PoEbCgUZtN3p3nx7Xm89M585q7YRVf30Nf5X34/hd1Hopjy+Tr+9N4CDp+OG/H3L9twkN//7XOeeX0WX6zazWAwON5finHl+Bm04XCYsqoG9h6PZvLstfy/597nuTdm89W6fcQmZTp9effk9E1Cc24KtO6eAq2751igtXrwNrThK27BzqimPb6IznOZdB1OIrDzEn3rzjDw1RFCs3bD1K2jeto1NPNbBhYdom/NKXq2X6TrYCKdkRm0xxUORdfiZoy6Vlqsh/eSvOZWP1VWNYXWdTLNcyQb3xFrrLpDjF1GorGNdDOCfCuFCquMRvs+jkOwujAb6mgtScefGUkgfhv9FxYSOvb+XZ6GfZNg5PWoUAAAIABJREFUxCf0Ra+kK3kvHTmXsCtyMZo9jv+3qY3vFGidnddnYrUU0daQgL/6JF1lm+ktWshg7tR7PuUWyv4rA/kf0VO0mK7yHXTWnKatIQWfpwyPr/W+/nwFWndPgdbdG48zaD1WO16f8eNjHhpTRzjmYQ9d5dtuO+ZhLv0FD++Yh2DOO/z/7L3ndxtnlq97/4775X737Rmf6enbPXPOmXG3O9hjnw7TdrfbUbZlWZItK1hWsGjlYFm2ZGVRgQpUZhJzzjlnEswRBKpQyLGqEJ77ARQl2aREyiJBErXXetYSAAJ8qwC8Ih9u/La/ZRVq66fIbT+MeTgxfczD2HQxD4YlGfOw0PX/tMfzf7ddXXCmqycJWqvdyfO/Wzl1+d//+An7v48nGAwxNGrg+d9+iNenPCJYswpr+csHMXi8PkKhEJt2n+Fo7F0AfvnKGr47F/63xebkFy+vRjBZH7l/flkDf1yxA0VRkRWVP67YQVZh7TM7/5GoiAvaH5bHK3MjuYCX3tzCcy+siPRynliR3iQ0IocmaKMbTdBGN89a0BpHbYjdBsx1g1iLOnCk1+O8UYonNgfft8mou28S2HwR1sxRum6Ixf9VPPLhBLyns3BdLcaZXIstvw1LdR+m9nGEIfOCSteZGDEL6KQOmqUiqoTbFAonyBb2Titj84TDlIuXqRcz6ZQaGDCP8KTuDqNgQRpox9aaj6viGr6cb/AnbYL4dx7fDXtvO96C4zhr7mLtKMU03EsoMPchYRrLA03QzvP5leyIxn4s41XhjyH3XsDbdQCldf2sOs78zR8it2/HrTuKo/86tpF8pIlmBFHPsxABmqCNbjRBG90snSFhbgyzjnm4irPn/A9iHmJQ2jY/EvMQbPzbvMc8+JtXo7Su/0HMw3e4ek7/IOYhA9tIwaMxD8ZeBGFk3mMeFrr+r8azEWG6ui9on//dyke4L0unE7RdvcNTl3/16lrGDaZHBOvWA7FcuZsz9TVVDR38deVOICxodf2jU7e9s+4guSV1P8qglRV16t+7vr081am7VGtRCFq9UZoaGPZvr67lZ795n7c+2c/Za6mRXtoTK/IbsEak0ARtdKMJ2uhmNoLWOG5H1Bkx1w9hLekMS9ebpXhic/F9l4K65yaBLy4RWnt6btJ1/Tn8MdeQDyXiPZWJ60oRzqQabHmtWKp6MbWNIQxKTJgiL12nQ2920W8epkOqo07MoEyII1f4eoau2L0UCSepFu/QYiqhR+pkxGya+fElN+LoEJbuGhz19/AUnUVJ20Xw1qrHd8Pe/RQ5az/uskvYGzMx9zQh6KcfEDZhfvyQMI3ljSZofypuBGEMs74J20gujr5ruLu/RW7fir/pg1n8Iv8WSutGPF2HcPZewj6UhmW8BtE4iMHsmPf1a4I2utEEbXSzdATt/GCQnBhNEoIw9lDMQ9OPYx4Gb+P4QcyDd9qYhzd50gDGp+e1yZiHD2Yd82AfyX4k5kGa6EQ0DiAI41MxDwtdRtWDIQJMV0/TQftwBu39yw8L1lVffEtqbuXU13T2DPPr1zYAYUGrN0pTt63Zdoy76SWP3N/udBNz+BKvr9rNG2v28h9/+Yxz19Ke8mwvjoqYoC2qbGb/9/G8/NZWnnthBf/53+v58tAFsotqsTsX/sX/tBXpjVIjcmiCNrrRBG10YtA7EHuMBHr0OMq6cGQ04LxZhud8Lr6j91D23yHwRdzcBml9fJLQurP4v7yKfCgB74kM3JcLcCZWY89pwVLRg9QyitD/GDG5SBk1S/SYu2kxlVIt3qVYOEWOsG9aGZsrHKJMuES9KZ0OqZYBaQi9xTX98yBYkfo7sbUV4qyMx5d7BH/SJkLx787cDXv9fdSUbXjzv8dZfRtrewmmoR4Mprl3WmiCNnrRBO2TMZokTIYurGMlOAYTcfWcxte5C7Vl7RO7sIKNf0NtWYuvc2e4a2owAetYCSZD5+QvyJE9Nk3QRjeaoI1uol3Qzhc/innQt2Eer/9BzEMSjv7rP4h5OIivc+c0MQ9PGvr49ERzzYeg3X7wAlcTcqe+prK+g9c+2gWEBW1Hz9DUbf9Yu4/ckvpH7n/geDwxhy9N5c7GHL6kCdqnrX968QPeWXeA89fT6e4bIRQKRWopP6kivaFpRA5N0EY3mqBdRohuhCEJU9sYlsoe7LktOBOrcV8uwHsiHWX/HfzbrhD69Owcpes5/Nuvohy4i/dEOu64ApyJVdhzmiel6wjCgIhBXPqDF/RmN4PmMbqkRhrELMrFK+QLR2Yc3FUoHKdSvEWzVEi31M6weZop6JIHcWwES3ctjvp7uIvPoaTvJnh79RO6YT9BztyHu/QC9qYMzLoGhPFxnmXOmSZooxdN0Ia7qETjIJbxGuxD6Th7L+HpOoTSunFy4vnjf8ENNL2P3L4VT/e3OPquYRvJwaxvQhDGWOyDaDRBG91ogja60QTtUuKHMQ86pIkfxDwMzRTzsG+amId3CDb+I9LqKaL1JEHrdHn42W/ex+OVgdkJ2tySev66cicer0wgEGT9Vyc5GZcMhAXtwRM3ABjVi/zL7z9Cstgfuf+Gnae4cicckTAwrOe3f/98KsN2qVbEBK3TNX3r9FKryG8+GpFCE7TRjSZoFz/Gsclc1/rBB8O04ovxnM1CPpKE+lU8wY3n5yZd154hsO0yoa8TkE+k4b6Yj/NOBfasJqxl3UjNI4h9QsSPfT4ZN9volXpok8qpERMpFs6SLeyfoSv2ICXieWrFe7Sbqugz9zP+g48hG0Qr0kAnttYinJXX8eZ9hz95M6Hrj+mGjV+BmrIFb94xnFW3wt2wg7qn6oZ9GjRBG71Eh6D1IIh6pIlmbCP5OPqv49YdRW7fjr955SxiCN5EaV2Pt+tAeGDM8D0s41WYDP3zmg24EGiCNrrRBG10owlajWiu+4L2Z795/0fcz31dufkIv3p1LW1dA7MStKFQiNOXU3j13e288s42vvombkrw/vKVNVy6lcV/f/gVL76+iZsphQCP3L+5o4+X3tzCn97fwY6vL5Jf1sAvXl5NYXnTQp6aZ1qLIoN2umrvHiQ9ryrSy3hiRXqT0IgcmqCNbjRBGxkMoguh34TUMoKlXIc9qwnnnQrcF/PxfZ+Ksu82ga1xhNaemb14XX2S4KYLqLtuIB9JxhObjfNmKY70eqwlnZgbBhF1Rgz6B2LxWQ8JW5x4GDLr6ZKaaTDlUCHEky98N2NXbIFwlArxOo1iLt1SC0Nm/SOPJY6PYtHV42hIw10Si5yxh8DtNY/vhr2zFjlzL+6S8zga07Ho6hHGx4j01F9N0EYvy0XQGkwWTAYd1tEyHINJuHrO4u3cg9r6CcGGvz9Bwr6Ov+VjfB0xuHUncA7ewTpaiDTRjtEkRvzY5hNN0EY3mqCNbjRBq6HVwtUvX1kzY7fucq5FK2gPHI9/JMNisVakNwmNyKEJ2uhGE7TPEMmLcdSKqWsCc00/tvx2HCm1uK4W4z2dhXw4AX/MNYLrzz1VrqtyMAHvyYwHw7TyW7FU92FqH0cYtjzVMK3lJmjHzXb6zH20mSqpEVMoEWLJMR6YVsTmGPdTIpyjVkyiTaqgT+plzBzuijOINqSBLmxtxTgrb+DNO4qa8gWh+Pce0w37HmrKF3jzjuKsvIGtrRhpoAuDaIv4eZkJTdBGL0tF0BokJ6IwhHm8DvtwJs6+ODxdh1HaPifQ9O4sYgjeQ27/Ak/3ERz9V7APZ2Eeb0AURpiQps+GjgY0QRvdaII2utEErYZWC1eaoNXqqSrSm4RG5NAEbXSjCdonYzA4EPsEpKZhrKVd2DMaHxmope65SWDzJVhzavbidc0pAl9cQt1zE9/Re7gv5OK8VY49sxFraRdS0zBin4DB6JzXY1vKgnbYbEAntdIk5lMp3qBQ/H7Grtg84VsqhKs0mrLplJoYksbRm90I42OYexpwNKbjLjmPnLmXwJ21j+2GDd5ejZyxB3dxLI6GNCy6OsTxUSakyHbDPg2aoI1eFpOgFUQj0kQrtpFCnAO3cOu+x9exA3/LqidOxg42/AO19VO8nXvDk6yHkrGMVWAy9mKQrBE/tsWKJmijG03QRjeaoNXQauFKE7SLpKx2J3qjFOllzLoivUloRA5N0EY3UStoTR6EYTOm9nEs1X3Y8lpxJtfgvlyI92QGysEE/NuvElo3t27X4IZY/DHXkA8n4D2dhetaMY57ddgK2jHX9GPqmsA4ZmVCWgTnwLw0BK3e4qRfGqRDqqFOTKNMuEiucHD6rlhhH0XiaarFu7SYyuiRdIxLAqZBHdb2EpxVt/DmHUNN2ULo+oqZu2Gvv4s/eTPevO9wVl7H1lqENNCJQVxewkcTtNHLQgpag2TFZOzFMlaBYygFV08s3s59qK3rZjGl+jX8LR/h69iBW/c9zoFb2EYKkCZaEURDxM/jUkUTtNGNJmijG03Qamil1XxXxAStT1aIOXyJvNKGqesu3szkZ795n+deWMFfV+7EandGanmzrkhvEhqRQxO00c1yE7RGvQNRZ8TcMIi1uANHej3OG6V4YrORjySj7rpBcNMFWD3HgVpbL6Psv43v+1Tcl/JxJlRhz27GUq5DahlBGDBhEJbex2UXm6AdMYvopA5apGKqhNsUCifJFvbO0BV7mDIxjnoxkw6pjuGJNqSeeuxNGbhLLyBn7iNw95PHd8Pe+hglfTfu4rM46u9h6a5FHBtZkt2wT4MmaKOXZypoJReCMIJ5vAH7SDaO/it4uo8gt39BoGnFLGII3kFp+xxP12GcfXHYhzMwj9chCkMYpPn9FEG0ogna6EYTtNGNJmg1tNJqvitigvbw6Vu89OYWOnqGABjVC/zTix+QlFlGz8AY/1i7jz1Hr0ZqebOuSG8SGpFDE7TRzVIQtAbBhTAgIbWOYqnswZ7TjDOhCndcAd7jaSgH7hDYdnluA7U+Pklw4wXUndeRjyThOZeN63oJjrR6rEUdmOsHEbsNGMeX9qTuJxEpQas3uxgwD9Mh1VMvZlAmXiZX+HqGiIK9FAknqBLv0CIW0D9agtCVh7P6Nt7846gp2whdf/8x2bDv4k/ahC/3CM7KeGxthUj9HRiE5dUN+zRogjZ6maugNZpEpIl2rKNFOAfv4NKdwNcRg795NaGG158QQ/B31JZP8HbsxtVzBsdgEtbRUkwGHUaTJeLnIhrRBG10owna6EYTtBpaaTXfFTFB++vXNlDXrJu6fOFGBu+tPzR1ua5Zx4uvb4rE0uZUkd4kNCKHJmijm0gKWuOoDVOXAXPdALbCDhz36nDFl+A5k4X8TSLqV/EEN8TObaDWp2fxb7+KcuAu3hPpuC8X4kyqxpbbiqWqF1PbGMKQmQnRHfFzvxhYCEE7apboMXfTYiqlRrxLkXiKHGHfDF2xhygTLlFvSEA3fA99+12cFReRs/YTuPvpE7JhV6Gk7cJTdCbcDdtVjTg6xISkPdczoQna6OWHgtYg2RGN/VjGq7APp+LsvYC36wBK63qCjW89sQvW3/whcvt23LqjOPqvYxvJQ5poRhD0TJijoyN9KaEJ2uhGE7TRjSZoNbTSar4rYoL2Z795H5vdNXV57fZjnL+ePnVZMFn5pxc/iMTS5lSR3iQ0IocmaKObZy1oDUYnQr+I1DyCtawbe2YTztvluC/k4TuWirL3FoEtcYTWnp69eF19isDmi6i7b+L7NgVPbC7Om2XYMxrCA7UahxB7BQwGR8TP51LjWQpavdnDoHmMLqmRBjGLcvEK+cKRGQd3FQrHqJ64RMfQNYbbL2EtO4Z6bzuhGx/MLGLj3wl3w+Z8g6viKrbWfKT+doyC1oX3NGiCNppwIwhjmPVN2EZycfRfIzjwPXL7VvxNHzxRwAYb30Jp3YCn6xDO3ovYh9KwjNcgGgcxmLW9d6mhCdroRhO00Y0maDW00mq+K2KC9t9eXcu4wQSA6g/wq1fX0tDaM3X74KiBf/8/n0RqebOuSG8SGpFDE7TRzawEreTBOGLB1KnHXNOPLb8NZ3ItritFeE9lIh9KxL/jKqHP5jhQa/05/DuuIh9KxHsqE9fVYpzJtdjy28IDtTr1GEetUZMHGgmeVtCOm+30Sr20SeXUmJIoEc6SLeyffnCX8QBlE8dpGjxDb9sJxPIDKMnrn5AN+xFK+ld4ik7jrEsJd8OODDEhLb2c38WMJmiXF0aThMnQiXWsBOdgAq6e0/g6d6K2rCXY+LcnCNi/obaswde5E1fPKZyDCVhHizEZOjGKpogfm8azRRO00c2yFbSSF4PJi0H0YhC8GI0+jBNhhHEfwlgYccSHOCxjGpxkQEbqk5F6ZaQeGbNOxtytYO5UsHQqWDoULG0K1jYFa4uCtVnF1qRia1SxN6jY61TstSqOWhVHtYqjyo+zYpIyFWdJGFeRiqvQj6vAjzvfjzvPjzvXjyc7jDfTjzcjgDcjgC8tgC81gC8lgJwSQE4OICcGURKCKHeDKHeCqLeDqDeD+G8G8V8P4o8PEYgPEbgaInAlRPByiGBciOClEKELEDofhnPgtWqCNprRSqv5rogJ2g83fcOZq6kA3E4t4n//eR3+QGDq9it3c3jrk/2RWt6sK9KbhEbk0ARt9GKYcKBMWHC0jmAt7cKe0YDzZime2Bx836ag7r5JYPNFWH1qDgO1ThPYEoey9xa+Y6m4L+bhvF2BPasJa1k3UvMIwoC4JAdqLUdmI2iHzBN0Sc00irlUiPEUCEdn7oqd+Jqa4e/obD/MeEUMrnsfw7W3Z+iGfRt/4kZ8OYdxlV/F3pKH1NeK0SBG/LxEC5qgXVoYzA5E4yCW8RrsQ+k4ey/h6TqE0rpxVjEEgab3kdu34un+Fmf/VZAKMeubEIQxJsxaFEg0oQnaJcQj0tEXlo6Gp5GOSlg6dik4dSrqQCgsHCelo605LBx/JB1rHpKOlZPSsfTH0tGd/0A6enImyfLjzQwLR2/6pHS895B0TJqUjnfDqHeCqLcmpeONIP7robB0vDYpHe8Lx7gQoYuT0jEWiAXOacwFr0UTtNGMVlrNd0VM0Na36Pgfv/+I//WndTz3wgqSMsumbrt1r5Dnf7eSzMKaSC1v1hXpTUIjcmiCdpkhuhGGJExtY1iqerHltuJMrMZ9uQDviXSUA3fxb79K6NOzcxyodR71q3jkbxLxnM3CFV+MI7UOW2EH5rqB8ECtMVvkj19jTjwsaMfNdvrMfbSZqqgVUygRz5NjPDitiM017qV85CDNXfsYqt6KOWMV/lvvTt8Ne3MlSloMnqJTOGuTsHZWIo4MYjBpkj7SaIJ2seFBEPVIE83YRvJx9F/HrTuK3L4df/PKWcQQvInS9hnergM4e87jGL6HZawSk6Efg/TowMO5DgnTWF5EXNCaHpKODwtH/aR0HPUhjk5Kx6EHwtHU/wPpOCkcLV2TXY7tCtbWSVqUqS5HW4OKvf6H0nFSOFb6cZY/JB2LVVxFD3U55k92OeZMdjrel47pk9IxNSwdp7ock4IoD0vH25PS8dZD0vHaNNLxkiYdnwX3u0RDFyB4afLcXg53lAauhjtM/fGhcMfpzbAMVm+HO1KVu+EOVTkxGH4uU8Iy2Zcalsv3u1u9mQ+6Xt25k52w+eHXjKvQj6vogcB2lqlT3bSOKn9YdteGX4f2urAMtzWGO3KtzWq4Q7c13LFr6Qh38Jo7J+W6Lvy6l3rD7wPTQPi9IQ7JiMMy4sgDYS/oH3QPG40+DMLke87kxebUIg6inWivUCjElTs5vPrudp7/7Yf8rz+t47OvTjA8ZnzifXX9o7z05pYFWOXSrogJWgjHGKRkl9PRM/TI9ZdvZ5OcVTbDvRZXRXqT0IgcmqBdGhjH7YjdBsz1g1iLOnCk1eO6XoLnbBbykSTUndcJbrwwt4Fan5whtP0q/oN3wgO14gpwJlZhz2nBUtmD1DqKMChh0AZqLTuGzQZ0Uhs9jmKqTTcpFL6fsSu2QL+X2p7ddNd+zkTBGpzJHxCK/2FX7Nv4Ezbgyz6Eq+wK9uZczH0tGA1CxI9VY2Y0QbvwGEwWTAYd1tEyHINJuHrO4u3Yjdr6CcGGvz9Bwr6Ov+VjfB0xuHUncA7ewTpaiDTRjtE0t/eaJmjn47l9IB2N00nHsUnpOBwWKqahh6Rjbxjzw9Kx8zHSsWmyy3FSOjruS8eq6aWj62HpWODHm+8nWBx6VDpmPEE6Jkxy5yHpeL/T8X6X47VpPlp9MfTIR6s15s6UdLwY+rF0nDzv/vgQ/huTwvHWQ9Jx8nmTkx5IRyUtSDAzNPV8ezMCeLImXws5D0nHgknpWOTHVTwpHEvV8Gtr8nXmqPKHX3v3hWP9pHScfJ3eF47W1vBr2dIRFurmrknp+LBw7J98TwxNSseR8HtGGJ18D92XjgYfBqMvLPhNXiZMkX//LyW0DFqNaK/Dp2/x0ptbqG7oxO3xIZisHI29y3/+93pc7sefH03Qzq4iKmiXQ0V6k9CIHJqgjRwG0YXQb0JqGcFSrsOe3YwzoQr3xXx836ei7L9NYOtlQmvPzGGg1kmCmy6g7rqBfCQZT2wOzpulONLrsZZ0Ym4YROwxYtCHh7o86yFhGosLvcVJvzRIh1RDnZhGmXCRXGH6rtgc4x7KhnbS2rKZwfJ1SFmrUO6894iIDd38ECV1B57CkzhrE7F2VGAa7te6YZcomqB99hgkJ6IwhHm8DvtwBs6+ODxdh1HaPifQ9M4sYgjeQ277Ak/3ERx9l7EPZ2Eeb0AURp5pBnM0ClqjwYe5W8FRo+LJ8Yel40/4aHWkpd1y4LGdjj+UjjenkY4Pdzree6jT8YfSMXsa6Vg4jXSsmEY61k4jHZvVH0vHzknpqJuldBz7sXQ0Piwd5/G9sGwzaDVmhSZoNaK5zFYH//zih+j6R39029iEOPXvls5+/rpyJy+9uYU/vvcltc3dQFjQvvzWFr45fYsXX9/Ey29tmbotGAxx/GISr7yzjVff3c7WA7FTwveXr6zhdmoRa7Yd49V3t3P+evoCHG3kKqKCVlFUrtzN4c21+/jP/17Pr1/bwIebviE5q4xgMBTJpc26Ir1JaEQOTdA+YyQvxlErpq6J8ECtgnYc9+pwXS3GezoL+XAC/phrBDfEzq3bdd1Z/F9eRTmYgPdkBq4rRTiTarDlt2Kp7sPUMY4wbGHCNLeBWpqgXT6MmEV6pE5apGKqhNsUCifJFvZOK2Pzx3dR272N7roNjBeuxZH6AcHrb091wwYSPsOXdRBXWRz25mzMvS0IE8aIH6PGs0UTtE+HIBqRJlqxjRTiHLiFW/c9vo4d+FtWEWp47fExBA3/QG39FG/nXly953AMJWMZK8dk7MUgWRfsGJazoDWIXqQ+GVtDOBtTTg4QvBxaOOl4YZpOx/vC8VooLH9vPPjYu3r7wUerlcRHOx3vS8epTsfMB9LRnePHmeHHnurHmuRHuhNAvOFn4kqAsQt+hs/4Gfw+QN+RAN0HAnTsCtK2I0jLl0GavwxgzQlhm22n42yl42M6HSP9utB4gCZooxtN0GosdGVtVcn4fOGZrmoau/ivt7c+cc1/fj+GjPxqANLzqnjlnW1AWND+04sfkJJdDsC9nApefiv8eFmFtfzlgxg8Xh+hUIhNu89wNPYuAP/+x084GZcMhCXx87/9EI9X/mkndhFXxASt6g/w7mcH+dWrazl44jp3Uou4mVLItoPn+acXP2D11qOPDA1brBXpTUIjcmiCdnYYjE7EPgGpaTg8UCuzEeetcjznc/EdvYe65yaBLy7BmjkO1PriEuqem/iO3sN9IRfnrXLsmY1YS7uQmoYR+wQMRue8HZcmaJcibgbMI3RI9dSLmZSJceQZv54+osC4h9LBHTS3bGag8jPE7FX4ElaEu2FvfEAoPQZf4UmctQlYO8sxDfdhMM3f601jcaEJ2ukxSFZMxl4sYxU4hpJx9cTi7dyL2rqOYMM/ntAF+xr+lo/wte/Arfse58BNbCMFSBOtCKKBCfPc/og2b8e4TAStOCRjbVVwlqr4UgP4r80sYkMXQLkTxJMTzoE0dyqP5jn2PxiwdD/P8eFOx0e6HIVnLx1HR30M6GR6mnx0lMu05Mo0JClUXfNRelam8FuZnL0K6VsVUj5VSFypPhWpGxWyYhTGm7QhYdGKJmijG03Qaix0Pe3/Vz+V6Sojv5p31h2Yuuxye/mPv3w2RUJGCQCq6p9qthQlG//84odAWND+60urpm5TVT/PvbACq93J1gOxXLmbM/XYVQ0d/HXlTiAsaB/u2v3Vq2sZN5ie3UleZBUxQXvlTg7/+8/rMJosP7qtd3CcX726lku3shZsPTGHL/H871Y+4Lcf8qf3dwDhlu0VG77m315dy19X7qSpvW/qfpHeJDQiR1QLWpMHYdiMqX0cS3UftvxWnEk1uK4U4T2ZgXIwAf+XVwmtm+NArQ2x+GOuIR9OwHsmE9e1Yhz36rAVtGOu6cfUOYFxzMqEFPlzoAnaxc2o2UyP1E2LqYxq8Q7FxuPkGKfvis3T76JGt43O+o2MFa/FlrqS4I23CSSsQ846gLv0EvamLMy9zQj6CSbMjw4J04g+olbQSi5EYQTzeAP24Swc/VfwdB9Bbv+CQNN7s4gheAelbROersM4+y5hH87ArK9DFIYwSEvjDxxLTdAK4z4sXQqOqnD3qHorGB6kNJ2MjQX/jSDejADOCj+WdgVxdGH3uTGDl6F+H72tPrqqZdryZRpTZapv+Ci/IFP0vUzuAYXML2VS1yskfvQUv3x+pHLvM4XM7TK5+xSKjsmUxcpUXffRkCLTmifTWSnT2+xjqM/HmP7BOYj4kDCNiKIJ2uhGE7QaC10+e2SYruqadfz+jc1Tl0OhEJLFjmSxs/3gBa4l5AKQW1LPO+sO8MbqPby+ajc/+837QFjQ/vZvmx55zH99aRUj4wKrvviW1NzKqes7e4b59Wsyh9UTAAAgAElEQVQbgLCgHdULU7f98PJyq4gJ2tc+2kV8Yt6Mt99ILuCPK3Ys4IoereMXkzhzNRWA99Yf4mpCLoFAkPLadl746wZUf7i7N9KbhEbkWI6C1qB3IOqMmBsGsZZ04kivx3mzFE9sNvKRZNRdNwhuugCr5xAxsPYMga2XUfbfxnc8DfelfJwJVdizm7GU65BaRhEGTBiEpZXFqQnaxYHe7GFQGqNLaqLRmEal/iz5humzYrOFPZQMx9DU9gV9lZ8h5K7GnbwK9d42vAXHcdbcxdpRimmoF4PkeOz31QRtdLOcBa3RJCJNtGMdLcI5eAeX7gS+jhj8zasJNbz++BiCxr+jtnyCr2M3rp4zOAYTsY6WYjLoMJosET+2Z8FiFbQGwYfUK2OvU3Hn+1ESgwQvzdwVG7gawpcSwFUc/pi+aUB+5vmdesHL8KCP/g4f3bUybcU+mtJlau8oVMTJFJ9QyP9aJitGIXWTQtLHT9fpk/ypQvoWhZw9CgVHZErPylRdlalPVGjJkekok9E1hrtsR0d9P+mPvJqgjW40QRvdaIJWI5rL4fLw//3Xalo6+3902+5vr3AtIRez1cG//P4jBkYmADAI5kcE7S9eXk0o9GgHrd3hZvvBC1ydFLwAlfUdvPbRLkATtAtWP//DKjp6hma8fXjMyPO//XABV/SgxiZE/uvtrfhkBbPVwS9eXv1I3MJrH+2irlkHLL4f0DUWjqUiaA2iG2FQQmodxVLZgz2nBWdiFe64ArzH01AO3CGw9QqhT+YwUOvjkwQ3XkDdeR3522Q857JxXS/BkVaPtagDc/0gos6Icdwe8eOfLzRBu/CMm+30mnR0TGRRP3qRsrHD5BqmF7G5E7uo6tlOe+MmRko+wZy3CU/uftxll7A3ZmLuaUIY1z/1WjRBG90sZUFrkOyYDP1YxqtwDN/D2XsBb9cBlNb1BBvfemIXrL/5Q+T27bh1R3H0x2MbycOsb0YQ9CyWGIJ5PX8RFrQGkxfToIytWcVZrOK7FyDwmHiC4KUQSkIQd74fe52K1CNjMM5979KbvIyM+Ojv8tHT4KOjVKY5KyxBK6/IlJyWyf9GJmeXQvoXCslrn1K2rlFJ26yQvVOh4LBMySmZijiZursKTRky7SU+dHUyA50+RoZ96Bc4o1UTtNGNJmijG03QakR7xd3O4jevb6S8th2PV8Zmd3EjuYBfvrKGyvoO+obG+Z9/+hRFUQkGQxw7n8BzL6zAJyvo+kf5f3/9Prkl9QCk5VVONWTmltTz15U78XhlAoEg6786OZU7qwnaBarnXlgxbbzB/TKaLDz3woqFW9BDtePri9xNKwagqb2PP78f88jtn+85w930EkATtNFMpAWtccyGqcuAuW4AW2EHjtQ6XPHFeM5mIX+TiPpVPMGN5+c2UOvTs/i3X0U5eBfviQzclwtxJlVjy23FUtWLqX0cYcjMhOiO+PmPNJqgnV+GxSF6h3NpG4yjZvAbisamjyfIFvZQNBJDQ8cWdDUbGS/fgaX8KM6qW1jbSzAN6TCYnv0fCjRBG90sbkHrRhDGMOubsI3k4Oi7hqf7W+T2rQSa3n+igA02voXSugFv10GcvRexD6VhGa9BNA5iMC/fP7rNloUUtMKYD0u7grPSjzcjgP9mEGaIJwjFgnoriCfLj6PKj6VTQRibeY8aG/Mx2OOjp8lHZ0U4t7U+WaE63kfZWZnC78K5rRlbFVLWPV1ua9IqldQNCpk7FPIOKhR9L1N+Qabmpo/GNJm2ApmuapneNh9D/T70QuSf3yehCdroRhO00Y0maDW0gtupRfxxxQ6e/91K/v2Pn7Au5gTtugeNl9sPXuC3f/+cN1bvobqhk7c/PcDfPt5Nu26IP78fw5Ezt3nlnW288s62qejQUCjE6cspvPrudl55ZxtffRM3NQhME7QLVItV0BpNFn7z+kZkJRyOXNXQwRur9zzyNTGHL01lbPiUgEaUEgiEUP3BZ/u4bgXZaEPpnUCt78Nf1IY/pRr/1QICJ9MJHrhNaOtlWHt69uJ19SlCX1wiuO8WgeOpBOLy8SdV4s9vQa3tRdGNI+ut+Jy+iJ/TpUQwGEJ51s//HPDI/oifg5+M7MdjGcM0VsBw32Xaeo9QObiH3Ind04rYHMNuKvq+pLV1O0NN+xCbz+DrykQZbUG2CfiUhTsnoVAIRV0E51AjIoRCIEfw+8teO4q9F9VUgV+fjDp4loBuN8G2tYQa//Z4Cdv4N4JtawjodqMOnsE/noQqlqPYepG9tll9f48c+ecgYudeDT//z/QxnQGUkSD+lhD+oiDBxBBcZOahXddDBLJC+KuDqLog3vEgVkMAoT/AWEuAgQo/3bkBWpNU6q6oVJxWKT6skvOVStrGsDh9GuF6b71K9pcKhQdVyk+o1F5Sab6j0pUVoK8swGhjAGNvALM+iMsW+edqPlDU8P4f6XVEM5H8+UfxBwkGtec/WlH9QQLa8x/VaKXVfFdEBe3P/7CKf31pen7+h1UREbSXb2ez99i1qcvNHX0/ysLdtPs0iRmlAJgdskaU4lMDuLzqk7/W7sM6YcfeM4GzfgBXcTue1Dq88SXIZzJRv04kEHON0PrYuXW7ro8lEHMN9XAi8plMvPEleFLrcBW346wfwN4zgXXCjtke+XO1HFH8QRxuJaJrsDiVJYHV5sAxqsOiy2Gs7Tw97V/T2PUVJcMxZAvTy9jCsZ3U9uyks+NrRjrPI/ZmYR/TYbU5I348FqdCIAg2txrxdWhEBmBeH9/qcGM3D+M01uEZy8AzEIes+xq1bRPBxrefPIyreQVqx1Z8PUfxDMbjHs/DKbZgs05gcfp+8vqW0v6zmJ5/q03BMaLibgngKwmgpgQJXnlMTuxFcMcHkW4EGLkRoOOyn4rTKoXfKGTvVEn/XCFp9dPJ1pS1KhlbFHL3qhR/p1BxTqE2XqH5nkpHvkpPpcpQi8p4v4pgULE4In/eFwM2t0ogOL/vf43HE8mfax1uBcUfjPjPoBqRweVV8SmBiK9DI3JopdV8V8QEbVZh7axY6Hr3s4OU1bROXbbanfz8D6vw+pSp615+awvNHeF27Ei32WtEDq/Dh2NYQmocwlrahT2jAefNMjyxufi+S0HdfZPA5ouw+tQcBmqdJrAlDmXfbXzHUnFfzMN5uwJ7VhPWsm6k5hGEAXHJDdRajmgRBz/Egzg+ikVXj63pHkLtKYZq99LRtIUa3Tby9bumjygw7qZsaA8NvYfp7r3I4GAW4/oeFnuWpRZxEN389IgDD4KgR5poxjaSh6P/Om7dUeT27fibP5xFDMGbKG2f4e3cj7PnPI6hFCxjlZgMfRgkW8TPz3JmVhEHkhdxWMbaqmAr8ONODKBcfoyIPQu270OMHAzQtiNI+aYAGWv8s48S+Fgl7XOFrK8U8g/LlJxUqLwkU3s/t7U4PKSrv9PHyJCPiQXObV1OaBEH0Y3ZoUUcRDNaxIGGVlrNd0VM0C7W+sXLq9EbpUeu+3DTN5y7lkYgECSjoJrfv7GZQCAIaIJ22SG6EYbMmNrHsVT1YsttxZlUjftyId4TGSgH7uLffpXQp2fnOFDrPOpX8cjfJOE5m4UrvhhHah22wg7MdYOI3QaMY9ov1UuJaBW0BtGGNNCFra0YZ+UNbCXfYSzZzkDleppbN1M2uINs4/RZsXn6PVQNHaZ56CK60UwGTL3ozUvzjw2aoI1uZiNojSYLJoMO62gZjsEkXD1n8XbsRm35hGDD358gYV/H3/Ixvo4Y3LoTOAdvYx0tRJpox2gSIn780crYuI+hPh/mgVA4tzVPpjVRpeuKwlBsAMOpAI5TIYJnmT6a4Cw4j4UYPxik66sg1V8EyPnET+JHT5/bOm6I/HmJJjRBG91ogja60QSthlZazXdFTNBKFvusWMhye3w898KKqfzZ+6U3Sry3/hC/enUtr6/aTWfP8NRtkd4kNGaHcdyOqDNirh/CWtSBI60e1/USPOeykb9NRt15neDGC3OSrnx6huC2Kyj77+A9kY47rgBnYhX2nBYslT2Y2sYQBiUM2kCtZcnyFrQehPExLLp6HI3puEvOI2fuxZW2DkP+anpq1lPXvXXmrlhhD8X6r6kZO0erIZ0eUwfD5uUllTRBG92EQmCUnIjCEObxOuzDGTj74vB0HUZp+5xA0ztPjiFoehe57Qs8Xd/g6LuMfTgT83gDojDMhLQ0/3CxlNALXoYHfPS1++iqlmktlGlKC4vQ8osyxcdl8g7KZO5QSN2ocG+NSvEGP03bA/TvCWA6EkI5xYxdsd4TIYyHg/TtD9CyP0DVQZXi72TKzspUx/uoT1ZoyZXprJDpaQoP7Bp7zFAvjcWBJmijG03QRjeaoNXQSqv5rohm0M6GxV6R3iSiGYPgQhgwIbWMYinXYc9uxplQhftSPr7jaSj77xDYepnQ2jNzGKh1kuCmC6i7buD7NhlPbA7Om6U40uuxlnRibhxE7DFi0DvwyAFsLiXi50EjMiwHQWsw2TEN6rC2l+CsuoU37xhqyhZC11fgSVyBMW9SxnZtJX98ehmba9xP2cQp6ozJtEs19EsD6C3OiB/bfKMJ2uhAEA1IE63YRgpwDtzCrfseX8cOQm2rCDW89vgYgoY3UFs/xdu5F1fvORxDSVjGyjEZezBI1ogf23JCL3oZGfYx0OlDVyfTXuKjKUOm7q5CRZxMySmZgsMy2TsV0jYrJK+ZOS4g+SOV/M/81G0JoNsVwPB1EM/xx8QTnAPXxSDS9QCGe37GShQG22VGRnzoTZE/NxrPFk3QRjeaoI1uNEGroZVW810RE7QdPUOzYrFXpDeJZYfkxThmxdQ5gbl2AFtBO457dbiuFeM9k4l8OBF/zDWCG+Y4UGvdWfxfXkU+lID3ZAauK0U4k2qw5bdiqenD1DGOMGxhwjT73EtN0EY3S0fQehDGxzHrGrA3ZeAuvYCcuY/A3U/g2ltw7S28CZMytnpSxs7QGZtnPES5eJkGUzY6qZVh88QiOL7IoAna5YFBsmIy9mIZq8AxlIyr9xzezr2orZ8SbPjHE7pgX8Pf/BG+9h24dcdwDtzENlKANNGKIBpY7DnKixbJy+iojwGdjK7RR0eZTEuOTH2iQtVVmdKzMgVHZHL2KKRvUUj+VHmqIVlJH6vkb1VpPOCn//sAwpkgntgQoRlEbCgW1JtBvJl+aAZLh4KgdbxGHZqgjW40QRvdaIJWQyut5rsWbQatT1ZIy6uM9DKeWJHeJJYKBqMTsU9Aah7GWtaNPbMR561y3Bdy8R29h7r3FoEvLhFae3puA7W+uIS69xa+o/dwX8jFeasce2Yj1tIupOZhxD4Bg3F+uvk0QRvdLDZBazDZMQ31YG0vxVl9G2/+96gp2whdf39KxHLtLbyJKxByPw7L2M6tFMzUGSt8Tbl4mUZTNt1SC8NmQ8SPcTGhCdolguRCFEYwjzdgH87C0X8FT/cR5PYvCDS9N4sYgrdR2jbh6f4aZ98l7MPpmPV1hLwTGKXl3yn+LBjTh3Nbe1t8dFbKtObJNKTIVF33URYrU3RMJnefQuZ2mXufKY/ksc6aj1RS1ytkfimTeyCc21p2Xqb6ho/GVJnOXIWRAhVTjh9nmh/5dpDQxcd0xV4L4UsN4CxRsbYomAZlJia7YWc1JExj2aIJ2uhGE7TRjSZoNbTSar5r0Qnajp4h9hy9yi9fWcO/vbo20st5YkV6k4goJg/CsAVTxziWmj5s+a04k2pwXSnCezID+VAC/i+vElo3x4FaG2LxfxWPfDgR75lMXNeKcdyrw1bQjrl2AFPnBMYxKxNSZI9fE7TRTaQEraCfwNzThL0xE3fZJeSs/QTufvqIhL2PL+E9hNzV9NRtprZnN/n6fTPI2EOUiXE0iFl0Sc2ajJ0FmqBdPBhNAtJEO9bRQpyDd3DrTuDriMHf8jGhhtcfH0PQ+HfUlk/wdezG1XMGx2Ai1tFSTIZujCbzjN9zNkPCliN60cvwYDi3tbtGpq3IR2O6TM0tHxWXZIqPK+QdksmKCee2Jn78FLJ1pUrKpwrpWxVy9ioUfhvumq265qMhKZzb2lH+ILd1dMw39fOAweTF1C9ja1JxFfqRUwIErswsYoNxIeSkIO58P/YGFalXxiA+/hxogja60QRtdKMJ2uhGE7QaWmk137UoBK3d4eZGcj5/+SCG515YwYoNX5NZWIPyg2Fdi7EivUnMBwa9A7HHiLlxEGtJJ470epw3S/HE5uD7Nhl11w2Cmy7A6jlEDKw9Q2DrZZT9d/AdT8N9KR9nQhX27GYsFT1ILaMIAyYMwtIZjKIJ2uhmPgWtQXJgGu7F2lGKs+Yu3oLjqPe2E7rxwbQiNixj38dQspWu1gNUD35DwcSB6WMKhEOUiZcnZWxTVMcU/BQ0QbtwGCQ7JkM/lrFKHMP3cPacx9t1AKXtM4KNbz6xC9bf/AFy+3bcuu9w9MdjG8nDrG9GEMZ52hiC5SBo9SYvIyM+Brp86Op9dJTINGfJ1CUoVFx+KLd1l0L6F4/PbX0cyWtU0r9QyN6lUHA4/LgVl8PfpzlTpqNERlcfXsesc1slL+KID2urgrNMxZsewH99ZhEbOg/q7SCeHD+OahVzl4Kgf7r3ryZooxtN0EY3mqCNbjRBq6GVVvNdERO0oVCI6oZONu89y/O/W8kf3/uSCzcy+B+//4hRvRCpZc25Ir1JzBaD6EYYlDC1jWGp7MGe24IzsQp3XAHeE+ko++/g33aF0CdzGKj18UmCGy+g7ryO/G0ynnPZuK6X4Eirx1rcgbl+CFFnxDhuj/jxzweaoI1unoWgFfQGzL3N2JuycZXGIWcdJJDw2YwSlmtvEbz1Ec6cnYzVH6Oj5wzVo6fJNx6eoTP2IGVCHPViFp1SE0NmfcTP23JBE7TPEjeCMIZZ34RtJAdH3zU83d8it28l0PT+EwVssPFNlNYNeLsO4uy9iH0oFct4DaJxAIN5fv7/WXSCVvIyOhbuKO1p8tFRLtOSK9OQpFB1zUfpWZnCb2Vy9oY7U1OeMrc18WOV1I0KWTHhTtni4woVl8IdtI3p4Y7a7hqZvnYfw4M+9E/oRp0Ngt6HuVPBUa3iyfaj3g4SOs/0MjYW/NdDeDMCOMv9WFsVxJFn+z7VBG10owna6EYTtNGNJmg1orn8gQDPvbCCLw9d+NFtu7+9wnMvrMAfCDz2Ma4l5PLVN3E/eS2Xb2c/k8dZjBUxQfu7Nzbzwl83cOjkDTp7hqeu/9eXVmmCdg4Yx2yI3QbMdYNYizpwpNbhii/GczYL+Zsk1J3xBDeen9tArU/P4t9+FeXgXbwnMnBfLsSZVI0ttxVLVS+m9nGEITMTojvixx9JNEEb3cxW0BpMTkzD/Vg7y3HWJuApOIGa+uVju2GJfxt/4kZ82V9jqY5jWHeH1pHbVBovkyd8O2NMQakQR72YOSljtc7Y+UQTtHPDKJowGTqxjhbjHEzA1XMKX+dO1JY1BBv/9gQJ+zpqyxp8nTtx6U7iHLiLdbQYaaITo0mMyPHMt6Adm/Ax2O+jr8VHV5VMa75Mw71wpmpZrEzhMZm8/eHM1Z+S23rvs/Bj5O1XKDwmUxYb/h4N98Lfs6tKpq8lvJaxifl9vRsEL1KvjL1exV3gR04MEox7TE7slRBySgBXkR9bo4ppQMYwm+7bn7pOTdBGNZqgjW40QRvdaIJWI5rLHwjw8z+s4ndvbMYnK1PXq/4AL7+1hed/t3LBBK3Xp+ByL8/nI2KC9hcvr+addQe4kVyA1e6cul4TtF4MogthQERqHsFSrsOe1YTzdgXui3n4jqWi7LtNYGvcnAZqsfoUgc0XUffcxPddCp7YXJw3y7BnNIQHajUNIfYKGAyOiG98SwVN0EY3PxS0woQRc28L9uZsXGWX8WUdJJCwHq69PXM37M0PUdJi8BSexFmXhKm7mL7xMlpM+VSI18l/jIwtEy5RL2bSJTVqnbERQBO0j2IwOxCNg1jGa7APpeHsvYin6xBK6waCjW/NYhjXCuT2rXi6v8XRdxXbSA5mfROCOMqEefH9MXAuglYvhHNb+zt8dNfKtBX7aEqXqb2jUBEnU3xCIf/rydzWTQpJC5zbuuCYvJgGZawtCs4SFV9qgED8Y+IJLoZQEoK4c/3Ya1XMOhmjMXLvPU3QRjeaoI1uNEEb3WiCViOayx8I8PzvVvL5njPkFNdNXV9W08rne8480kGbmFHKy29t5XdvbOa99YcwiBbgUUHb0tnPX1fu5KU3t/DH976ktrkbgN+8vnHKB2YX1fLPL36I1xcWwlfu5HDwxHWtg3Y+yuOVScos4x9r9/HPL37I2u3HyCmu4+d/WKaCVvJiHLVi6tRjrunHlt+OI6UW19VivKcykb9OxB9zjeD6c3OLGFh/Dn/MNeSvE/GeysR1tRhnci22/HbMNf2YOvUYRyM/UGs5ogna6EQcHcbSWUWg9R5y8UmU1B2P74a99haBhPX4sg7iqriKvTkbc28L+olheqROmqVCKsUb5AvfPSam4CL1YgadUiODZj1Pm5up8eyIRkErGgcxj9eHYwj643HrvkNu346/+YMnxxA0/AO1dR3ezn24emJxDKVgGavAZOzFINkifmyz5X5uq10foqfBR0dpOLe1PlGh8opMyWmZ/G9kcu7ntq59+tzWtM0K2Tsfym2Nk6m7q9CUIdNe4kNXJzPQ6WNkeJa5rRFAGPVh6VBwVvjxZgZQb84cTxA6D+qtIN7MAM4KP5YOBWFs8b3HNEEb3WiCNrrRBG10owlajQWvpPWQ8MnCM035AwF+9pv3Kapo4tMvj09dv/VALPllDVOC1mJz8vzvVqI3SgB89U0ce767AjwqaP/8fgwZ+dUApOdV8co72wDYdvA8aXmVAOw7do1/rN1HXbMOgHUxJyiqaNIE7XxX/5CeQydv8O//55OpXIuOnqFIL2tWZTA4EHsFpKYhrKVd2DMacd4swxObi++7FNQ9NwlsvgRrTs1hoNZpAlvjUPbdxncsFffFPJy3K7BnNWEp1yE1jyAMiBjEpTNQazmiCdrljAdhfBRLdw3OumQ8hSdQ720jdH3FjBI2dOMD1NQv8RSewFmbiLWzHNNwPwaTkzGzlR5zF81SEZXiDQqEo9PK2BzjQUqFi9SJGXRKDQxJTz/ESGN+WV6C1oMgTiBNtGMdK8ExmISzJxZv10GUtk0Emt57ooANNbyOv+VjfB0xuHXHcQ7exjpahDTRjtFkXATHOA2Sl7GHcls7K8K5rfXJCtXxPsrOyhR+F85tzdiqkLLup+W2Zu5QyDsoU3xcpvyiTM1NH01pMq2FMl3VMn1tPoYHfOiFRXBu5ojR6MOsk7HXqrhz/Sh3g4QuPiae4FoIX2oAZ4mKtUXBNLQw8QTPAk3QRjeaoI1uNEEb3WiCVmPB6zENQPPKNHVf0Kqqn//4y2fYHW58ssKvX9uArKiPdNA+HIGQUVDNys1HwofzkKBVVT/BYAgAUbLxzy9+CEBKdjl7j10D4LWPdpGYUUpsfDoA//nf63G6PJqgXahSFJXMwho+2HiY515YwV8+iIn0kp5ccxqodR51ZzzyN0l4zmbhii/GkVqHtagDc90gYrcB49jS6SSKdjRBuzwQxsewdNfiqEvBU3gS9d6XjxWxwdurkTP3Eqi5irs1G3NvM4L+Qd7rfRnbIhVTKd58jIw9QKl4gXpTOp1SA4PSGJqMXTosJUFrkGyYDH3h+IHhDBx9V3HrvsPXvgN/y8ezkK9h/C2rkNu3T8YQXME+nIl5vB5RGIr4MU6YvYwZvAz1++ht9dFVLdOWL9OYGs5ULb8gU/S9TO6BcOZq6vqfltuaG6OSu0+haDK3teq6j4YUmdY8mc5Kmd5mH0N9Psb0S+M1MuvXksmLaUDG1qjiKvIjpwQIXJlZxAbjQsiJQdwFfuz1KlKvjGEJCuhHzoEmaKMaTdBGN5qgjW40Qaux4OW1RYZp6r6gBdh5JI67acXkltSx4+uLAFOCNhQKcfZaKn//eA9vrN7Dy29t5cNN3wCPCtrcknreWXeAN1bv4fVVu6ceW2+U+OvKndidbv6xdh9jEyKrt37H4KiBN1bvAbQhYRGpUb3I9xcSI72MJ1Zw43n8266g7L+D90Q67rgCnIlV2HNasFT2YGobQxiUMET5QK3liCZolxbCuB6Lrh5H/T08hadR0mIeG00QvPUxcsZe3KUXsTdlY+5rxWg0Tz2erAYRHA56pO5JGXuLAuHYY2VsnSmNDqmeQfMYek3GLmkWj6B1IwhjSBMtWEeLcA7cxdVzBm/nPpTWDQSa3p6VfA00vYvSuhFv1wFcvedwDCZOdsC2Igh6FjwHVvQyMuSjvzOc29pe7KMpQ6b2rkLlJZmSkwr5h2WyvlJI+/zpc1uTP1VI36KQs0eh4MhkbuvVcGRBS45MR5mMrtHHgE5mdPRBbut8DwlbDIgjPqytCs5yP96MAP7rQYhl5niC20E82X4c1SrmLgVhfDG8P549mqCNbjRBG91ogja60QStRjTXw4K2trmbDzd9w4adp6is7wAeCNq80gb+/H4MTpcHgNTcyh8JWrPVwb/8/iMGRiYAMAjmqccGeOnNLWQW1nD49C0AXn13OwkZJVN+UBO0Ws1Ykd4kNCKHJmgXJ4LegLmnEUdDGp6isyhpXxG6+eFjROxHKOm7cZecx96Yibm3BaPhx5Phx8w2eiQdraYSKsVbFJuOzyhjS8Tz1IlpdEh1DJpHNRm7DFkoQWs0SZiMPVjGKsPDt/ri8HQfQW7fhr/lI0INr88i//XvqC1rJuMHjuHou4Z9JBvzeB2icQCDZJ/f45C8jIz6GOiW0U3mtrZkP8htLT0jU3BEJntPOLc1Ze3TRQkkfayS9rlC1ldheVtyMixza+/nthaHZW9/p4+RIR968emPaTkJWkHvw9yl4KhW8eT4Ue/MnBPLOaBnslIAACAASURBVPBfD+FND+AsU7G2KYjDclTl3GuCNrrRBG10owna6EYTtBrRXA8L2mAwxMtvbeHlt7YSCASBB4L2RnIBa7cfA8Dh8rBy8xHeWLMXeCBo+4bG+Z9/+hRFUQkGQxw7n8BzL6yYikaIOXyJN9bsJa+0AQhnz/5j7T5qGrsATdBGpE7GJfPSm1sivYwnVqQ3CY3IoQnayCJMGDH3NOFozMBdHIuStovgzZUzi9ibK1HSduEujsXRmIG5pwlhYvpszHGznV6p5/9n702/o7gOfe3z+V3vXXfdT++6/4Jzzk1ykntyT05OnMR27OucOHE8ENvYYDMbMJMZzGAGA2YezGAMiHkSIIEGNKF5FprneZa6q7q6pZ6rqqfn/SCQUSwJgZFKUPu31rMWKrW6d1V3b8mPd/82VbZsCqSrpEsHR5ex0ldkSScokW8LGWsynoagtShuZKkTe185g11puNuv4mn8BrV2M4GqxYTL3p/g6tfZ6NWr8NXvxN18EldHDAPd2Sj9dUjy0+9/7elVaW9Waa6439uaqlEaq1NwQSXnW42M/Rop23QS1urELn1C2TovwO1lD3pbdTIOauSeHOptLYvTqL471NvaXK3S0arSa5na5/9ZFLQW2Y/SrOEsDeBNC6LdDBGOGqcn9kwELTaEJz3IYFkAW+uz0xM7qddRCFpTIwStuRGC1twIQSswcx4WtAC7j17hq4MXhr9+eJOwGQu38vrMtXyycjeVda3851+Xsuf41REVB+t2nOSld1cyY8EWCkvr+GDxdt6ZvxmAuNR8XnhxFjb7UN1C1NU7/PTlOWh6ABCC1pDkldRw8lKC0cN4ZIyeJATGIQTt1GC1yNibK3GWJeLN+g49fjPhK3PH3qzr8ifo8RvxZh7HVRaHvakMqc8y5v333JexlbZsCuRrpEujr4xNkr4iWzpBsXyLWqUYu2pBcRl/fQTGMBFBa7VJ2Cx1DHTn4OqIxd18Cl/9LrSazwmWfzwh+Rou+zuBqsWodV/ibTyMu+0yg12p2PvKkKUOLIr7R51Hn3S/t7X6fm/rXY2yuCER+qC3NXXHkCi9vUzn5rwnqxKIXTokbFO26WTs18j5VqPggkpprE5lqkZd3lBva3uzSs8z8NH4aS1obX5s7RoDlTrurADq7RCh82OL2MhJ0KPDeFOCuIoD2Bt0rJbp/xwYhRC05kYIWnMjBK25EYJWICIy2Zm2gvZZidGThMA4hKB9ulitduwtVTjLk/Bmn0JL2EL4yryxReylj9HjNuDLOIar9Db2ptIRm3WNRo/dRbPSTJWSQ6F8jXTp8JgyNkv6dljGttk7+ccOTi0Qxu7SDL9uAmMIBnUctnbsvfcY7ErG1XoRb+NB1NqNBCo/JVw6YwIC9i2CFXPQatbga9iDu+UUzs7bOHrysFkascq2xxpTn+ynq1OlrU6lsUSjJmuot7UkWicvSiPriMbdXRpJm3TiVunELHxC2bpoqIog6UFv6zGN/LP3e1uTNGqzh6oM2ho0uh7qbX2emC6CVupRcdTquPOD+BODBC6PU09wAgKXw/gTQ7jzgzhqdKQeIWIfFyFozY0QtOZGCFpzIwStQERksjMtBG1jazd30ouJTcr9AdM9Rk8SAuMQgvbJsEoOlNZqnBXJeLNPoyVuJXx1wbgiNnD7C3wZR3Hdu42j8R5Sb+8jH6fX7qTF/kDGRo8jY7fdl7Gx1ChFtNo76bN7Hnn/QtA+z/iQ5H6U/hoGujNxtd/E03QCf/0O9OoVhMo/muDq1/fRq5fir9uKp+ko7rZoBrvuYu+rQJK7GXfjLcVPd/fQ5lSNZSq1ORqVyUMStODc0GZWd/doJG8Z2uQqZvHU9Lb2/4je1ueJqRa0VquKvUnDWRzAmxpEvx4mfHqceoLzEdRbIdyZAQYrAtjaRT3B00IIWnMjBK25EYLW3AhBKxARmewYLmj3fnuNF16cxW/f/IxX31v9A6Z7jJ4kBMYhBO34WKQBlLYanJUpeHKi0O58RejaorFF7MVZBG6tw5f+De6SWBwNxUi93fRPoNO11+6ixd5MtZJLkRxNxjgyNlM6TpEcS41SSKu9Y0IydjSEoH12sSiD2CytOHqLcHYm4mo5i7dxH2rNeoIVCwiXvTMBAfs2wcr5aDVf4G3Yi6v1LM7OBBy9RdiszVhtjhGP2dOn0tGi0lypUpevUZWqURqrUXBRJeeERsaBod7WxHUat5bq3Jj7BKtb5wa4/ZlO4hcaKduHeltzvtMovKRSdlujOu1+b2vVUG9rzxT3tj5PTJagtdj82No0BssDeDICqLEhQufGFrHh0xG0G2G8aUGcJQGUZg2LJFbFTiZC0JobIWjNjRC05kYIWoGIyGTHcEH7i1fnkVtcbfQwnjhGTxIC4xCCdgiLPIDSVsdgVRqe3LNod3YQiv50bBF7YRaB2LX47h7GXXwTR30hck8XExGx/fYHMraFaiWXQjmaDOkbkqSto2zgtY1M6RjFcgw1SiFtSvsTy9jREIJ2uuJFknpQ+isZ6M7A3RaNp+kY/rqt6FWfESr/YIIbb32IXrUcf/12PM3f4mq/wUB3JkpfNVZLHx5bmPa6IeFZla5R/qC39ZRG5iGN1B3aUG/rcp0b85+wSmCJTsIaneStOun7NHKOaxReULkXo1OZMtTb2lSu0t6k0tPzfFYJTFeehqCVu1QGqnXcuUH88SGCl8JwgtF7Yk9A4GoYX1IQV0EQR72O9Ax09T6PCEFrboSgNTdC0JobIWgFIiKTHcMF7a/+tAifXzV6GE8coycJgXGYTdBa5EGUtnoGq9Px5J1DTdpJ6PqScUTsRwRiV+O/ewh38Q0cdQXI3Z30KxMTsf32BzK2lWolj0L5+gRk7E1qbAW0Ku30OZ6ejB0NIWiNwWpTsFkacfTk4+yIw90Sha9hD1rNWoIVc4mUvv3o6oHSdwlULkKt3YC34QADdRew1STTU1pCS04HVUluSq7r5J15qLf1y6He1SftbY1ZFCD+c53kL3XSdmtkHf2+t7XizlBva1OpSmu9SleXSp/4OPq05nEErbVfxV6v4yoK4EsKol8LEznJmKtigxciqHEh3NkBBqp05E5NyPdphBC05kYIWnMjBK25EYJWICIy2TFc0B6JiuXM1SSjh/HEMXqSEBjH8ypoLTYXtvZGBqsy8OSdR036mtD1peOI2A8JxH6OP+0g7uLrDNTl3xex4/RrjkKfw31fxuZTJN8gQz4yqoxNkraSKR2lyHaTals+rUobfY4ft5P9kyAE7SS89hQ3stSJva+cwa5U3O1X8TR+g1q7mUDVYsJl701o9WuwdDb+e58zWPw1Uu5JetJu0XQrh/LzDeR+I5O8VSd+jU7sj+htjV8VIGmjTtrXGpmHhzbhKr6mUx6vUf2gt7VWpbNdpU8y/toKni6jCVqL7Edp0XCWBvDcDaLFhAhHjVNPcCaCFhPCczfIYFkApUXDIjp+pz1C0JobIWjNjRC05kYIWoGIyGTHEEG7cO2BYZZsOMx/vLGEP324jgVr9o/43sK1B4wY3mPF6ElCYBzPuqC1KC5sHc0MVmfhzr+Imryb4PVlcP6D0WXshZkEY1biT92Pu/AqA3W5yF3t9CuPv1K1z+GmVWmj2pZPke0mGfLRMWVshnyEIvkG1YpxMnY0hKB9fKw2CZuljoHuHFwdsbibT+Kr34VW8znB8o8nVj1w7z18BUtwZGymN/4b2q5cpepEGvk7K0he1UPMPP9j97beWjrU25r6lU76AY2cE0O9raW3NKrSNOoLNFoqVdpbVXr6hz5WHgxFkAfFR8xNieIn4oDBSh13VgA1LkTw/NgiNnIS9OgwvuQgruIA9gYdq0W8dp5VhKA1N0LQmhshaM2NELQCEZHJjiGCdv+J6Akz3WP0JCEwjmdF0FpsbmydLQzUZOHOv4SasofgjeXjiNgPCN5cgT91H+6CKwzUZmPrbMVie7LKgD6Hh1alnWpbAcXyTTKlsWVspvRAxubRYm+dNjJ2NISg/YfXmd2FbG3H3nuPwa5kXK0X8DYeRK3dQKDyU8KlMx5dPXDvLfy5c7AnraE7ei+Np85QeTCBgq+KuLumhbjFjkf3ti4eWh2bvFUnfa9G9nGNgvMqpTeHeltrc7/vbe3+Eb2tQtCaA6lHxVGn484P4rsTJHAlTOQ7RpexJyB4KYw/IYQ7L4ijRkfuFq+R5w0haM2NELTmRghacyMErUBEZLJjeMVBW1f/qMc1PUBZdfMUj+bxY/QkITCO6SZoLTYPts42BmqzcRdcwZ+6j+DNFXBhDBF7/gOCN5ajpuzBnX+JgZosbJ0tWGxPLkX77B7alHZqlEKK5RgypWMkS9tGXxkrfUOhfP2+jG2h1+4y/Bo+DuYStD4kuQ+lv4aB7kxcbTdx1p7AU7Edf+kKgiUfTmj1q14wk8GUZfTHbKP13HFqj96gZFcmWRurubPcws152sje1oVDva1JX+rc3TXUB5t3RqPkuk5FokZtlkbjPZU2A3pbhaB9vrBYVZQmDWdJAG9qEP16mPDpsVfFcgG02BCezACD5QFs7RoW0RtsCoSgNTdC0JobIWjNjRC0AhGRyY7hgvYXr84b9fiA082//nH0702nGD1JCIzDMEGreJG72hmoy8VdFI0/9QDBmFVwYebYIvb6MtTk3bjzLzJYnYWtoxmL8uOEaJ/dQ6u9gxqlkCI5lkzpOEnjythoqpXcZ1LGjsZzI2gVP73dg/Q2tNJXXoyl6A7W3HMo2ftxZq/Hnz+f8L13Hl09UPIOnoz5yHEb6LxygIaT56k4cIf8rfdIW93OrcVubi/XubNBJ3WnRuYhnbzTGkVXVMriNaozVBqKNFpq7ve2TvMuTiFon00sNj+2No3B8gCejABqbIjQuXF6Yk9H0K+H8aYFcZYEUJo0LFb1sTYJEzxfCEFrboSgNTdC0JobIWgFZk4wFOKFF2fxxc6TP/je5r1neeHFWQRDoXHv4/z1FDbujgKGPKDV5piUsT7LMUzQRsdn8fa8zfzkd7N5e97mH/C7t5bx6nurjRrehGP0JCEwjkkXtIoXubuTgbp83MXX8acdJBD7OZGLH465YVfo+lLU5F248y8wWJ2JraMRi+3Hy9AhGdtJjVJEsRxLlvTtGDJ2C+nSNxTJ0VQpObTYm58LGTsa01XQ9lj8dLSqNFep1Bdq1Nz1U5PYR11sJU03Mmi/cZ2umONI8dtwpi1DL5g5odWvWu5HDCSvpO/GDlrOfkfdiRgqjmVTcqSOvGMWck6oj+xtfZ4Qgnb6I3erOKp13HlB/AkhgpfCcILRe2JPQOBKGN+dIK6CII46Haln7OdXCFrzIgStuRGC1twIQWtuhKAVmDnBUIh//eM8Xp6xClXTh48HgiFee381P315zmMJWvuAi3A4MqljfhZjmKD1qzoFpbX89KVPOH895QdEx2dhkae/UTd6khAYx1MTtIoPuacLR30h7pKb+O8eIhC7msiFj8YRsUtQk3biyTvHYHU6Sls9FnnwKZ2blzZ7J7VKMcXyrfsy9qsxZOxhCkfIWKfhz8tUMSWCVvbT2a7SWqvSUKxRnalSHq9RfE0nL0oj87BO1n4HeXuaKd5fSOXhBBpPnaH76l6UhHX4suYSvvfWI+VrsGgGnsxFKMkb6Ys/RGfcRdriUmhOLKMxrYO6XA+NZSptjRrd3U/e2/o8IQTt9MHar2Jv0HEVBfAlB9Gjw0ROMuaq2OD5CGpcCHdWgIEqHblDe+zXtBC05kUIWnMjBK25EYLW3AhBKzBzgqEQP315Diu3HCM5s2T4eE5RFSu3HBuxgvZGQjavvb+Gl2es4qPPdg57PbGC9tExvOKgsLTO6CH8qBg9SQiM4/EFrQ+5txtHQxHukhh86YcJ3FpL5MKssUVs9GK0Ozvw5J5lsCoNpa0Oizzw1M6hz+6lzd5FrVJMiXybbOkEydbxZOw1qpQcmpVmep7TlbET5bEFreKnq1ulrUGjsVSlNlujMknj3g2d/LMa2cc07u7RSNqiE/+5TuwinZh5fpJX9JLzZRWle+5Sf/wa7ReOYI3djDNtCYHC9ya2+rXwYzx5q3HkfY2t4CTyvdtI1blY2+qxWCXDr+WziBC0U49F9qO0aAyWBvDcDaLFhAifGaeeICqCFhPCczfIYGkApUXD8pSqM4SgNS9C0JobIWjNjRC05kYIWsFU55dNXn7WOPWMlmAoxD//fjYZeeUs/uLQ8PE120+QllM6LGgdg25++vIc+qwKABt3R7Fl31lACNqJxBBBu2zTEVo7+ob/PR7TPUZPEgLjGE/QSr09OBqKcZXE4kv/hsCtL4hcnD22iL22CO3OV3hyzuCsTEVprcUiPT0R22/302f30W7vplYpoUS+TZb83Tgy9hAF8jUqbTk0K030mGhl7ETxOsP0tus0V6jU5WlUpmqUxuoUXFDJ+VYjY79GyjadhLU6sUv1EZtfPSBhqUL6F40Ubs+n6nAcTVGn6InehT1xNf6c2UTuPVq+hkrfQytdgq9yC56Gw7jbrjDYlYq9rxxZ6sSiPPmmb4KxEYJ2ElH8yB0aA1U67qwAalyI4IWxRWzkJOjXwviSg7iKAtjrdayTXKshBK15EYLW3AhBa26EoDU3QtAKpjr/s9ZjCKPlgaANBIL851+X4nR5UTWd3721DE0PjFhB+3AFQsLdQuas2gMIQTuRGCJod35zie4+afjf4zHdY/QkITAOnxbCJVtxNN7Dde8WvvSj6LfXE7n08dgi9upCtMRteLKjcFakoLTWYJUcT31s38vYe5TIcfdl7PZRZexd6RAF0lWqbNk0K02mqil4QO+D3tbqod7W6rsaZXEaRZdVck9qZBzUSN2hk7he5/YynZvzfihb/5HYBV5SPu8id0sZZftSqTtxia6rh7Dd2Yg3exGhkncnsPr1bYIVc9Fq1uJr2IO7JQpnx20cPfnYLI1YbYrh186sCEH7dJB6VRx1Oq6CIL6kIIErYSJj9MRyAoKXwvjjQ7jzggxU68hdxjwHQtCaFyFozY0QtOZGCFpzIwStYKojByNIBjBaHghagE17ooiOyyQlq4T1X58CGBa0kUiE4+dv8+78LcxYsIXX3l/DJyt2A0LQTiSGVxx8ExVDaVUTgeD4hcLTNUZPEoKpQerrx95Yiqs0Dl/GcfS4jUSuzBlTxIavzEdL2Io3+xTO8iSUliqsVvskjc9Hu9JDrXKPe7Z4suWTY8rYdPngfRmbRbPS+FzK2D7ZT1eHSmvdUG9rTaZKeYJGcbRO/mmNrG900nZp3NmoE7dS5+b8R8vWHzBXJ2W1RN6uOipPZtN67Sa9Cd+hZOzAW7CSQMmHE6oeCJV/gF71Gf66rXiajuFui2agOwOlvwJJ6qHf7jX8egpGRwjax8NiVVGaNJwlAbxpQfQbYcKnx14VGzoXQY0N4ckIMFgewNamYbEZfx4PEILWvAhBa26EoDU3QtCaGyFoBWbOw4K2uKKBT1bsZtmmI+TfqwW+F7Sp2aX8ZfYG3B4fALdT8oWgfYwYLmiXbDjMr99YzC9encf81fs4ey2ZxtZuIpGp39GtuKKB12eu5ZevzWfBmv247r+oevplZi37mv/zp0X8bc4mymtahn/G6ElC8HSR+q3Ym8pxlcXjzfwWPW4T4ctji9jI1XloCVvwZp3EWZaIvbkSq2UyVzX66FB6qVNKuSfHky2dItm6Y4yVsQfIl69QacuiSWmgx/60NhGbQhQ/3d1Dm1M1lqnU5mhUJg/1thac08g+PtTbmrxFJ361Tszi0asEHsXN+QHiVurc2Tgkb3OPuai41EpTQgk9GYlIBecYLNmHr2w9gfL5hMveeaR8DZe9Q7ByPmrNeryN+3C1nMXZmYijtwibpRWL8nQrLARTixC0o2Ox+bG1awyWB/BkBlBvhQidG6cn9nQE/XoYb2oQZ3EAe5OG1Tr9r6sQtOZFCFpzIwStuRGC1twIQSswcx4WtOFwhNfeX81r768hFAoD3wvaSzF3WbTuAAAuj485q/YwY+FWQAjaicRwQfsgbV39RMdnsWb7CV56dyW/fmMxKzYfm7LHd7q9/Odfl1JS0YimB9hx+CLXbmcA8NFnOzl3PYVQKExucQ0v/m3Z8IpfoycJwZNhtcjYmytxliXizfoOPX4z4Stzx1kROxc9/ku8WSdwlidgb67A73I85iZhj4uPdqWXOqWMe3ICOdIpUqTxZOxlKpVMmuwN9Ninp/zr6VPpaFFprlSpy9eoStUojdUouKiSc0Ij48BQb2viOo1bS3VuzH0C2TovwO1lQ3UEqTt0Mg5q5J4cqisoi9OoSffTUtRHT1Ultvp0XM3ReJqO4q/bil71GaHyDya0+jVcOYtAzQr89dvxNJ3A1X6Tge5MlP4aJLmffrvP8OstmDyEoPUjd6s4anTceUH8CSGCl8MwRj1B5DsIXA7juxPEnR/EUasj9Ty7108IWvMiBK25EYLW3AhBa26EoBWYOQ8LWoDdR6/w1cELw18/vEnYjIVbeX3mWj5ZuZvKulb+869L2XP8qhC0E8i0EbQAHq+f3OIaDp26yX99uI5/+cPHU/bYsUm5fL7t+A+O2wdc/PK1BcOFxwBvzf2SkopGQPyBPt2xWhTsLZU4y+/gzT6JlrCF8JV5Y4vYy5+gx23Cm/ktrrJ47E3lSP3WUe97vE3CnoQOex/1Shn35ERypNOkSDvHkLH7KRiWsfWGydg+yU9nm0pLzVBva1W6RvmD3tZTGpmHNFJ3aEO9rct1bjxJlcCcALFLhzbaStmmk7FfI+dbjYILKqWxOpWpGnV5Gs0VKu3NKj29KlbZhs3SiKMnH2fHbdwtp/E17EGrWUOwYg6R0rceLV9LZxCo/BS1diPexoO4Wi8w2JWMvfcesrUdi92FFghjd2mGv8YFxmAmQWu1qNgbdFzFAbwpQfToMJGTjF1PcD6CejuEOyvAQKWOrV2jXzH+PJ4mQtCaFyFozY0QtOZGCFpzIwStQERksmO4oE3OLGHH4Yv8bc4mfvOXJSxce4DvLsZTUtGIX9UffQdPKTu/ucS2A+f5ZOVuXp6xinU7TuLx+imvaeEvszeMuO3KLceIjs8CxB/o0wWr1Y7SUoWzIglvzmm0xK2Ery4Yu5rg0sfocRvxZRzHVRqHvbEUqa//sR7zxwjaDns/dUo59+REsqWoMWVsmrSPfPkSFUrGpMrYPpufrk6VtjqVxhKNmqyh3taSaJ28KI2sIxp3d2kkbdKJW6UTs/AJZesinfjPdZK26Nzdo5F9TCP/7FBlQWWSRm22RmOpSluDRle3+gOpY1HcyFIH9r4yBrtScbddwdN4GLXuSwJViwmXvTeh1a/B8o/Raj7HV78Ld/MpXB2xDHTnYLPUYbVJE7pmQtCam+dR0FpkP0qLxmBZAE96EC0mRPjMOPUEURG0myG8aUGcpQGUZg2LbPx5TAVC0JoXIWjNjRC05kYIWnMjBK1ARGSyY7igfeHFWfzXh+u4eDMNr081bBxf7DzJa++vxiI70PQAyzYdYcfhixSU1jJjwZYRt92w6zTnr6cA4PQGBFOIy+nC21OPvy4NreAMweTthKMXjStiQ/Eb0LOPo1bE42srx22zPpWx6MEwfi34yNtJHpk2ZxVVjiTybWfGXhkr76NIuUzdYCZdzkYUj/PJxuYJoNgCWDqDdNcGaC0O0pARoCouyL3LOvnfBcjar5O2LUDiWp1bi59MtsYsGOptTd4UIGO3Tu7RAEXndCpuBqlLDtKUF6CjIkhfcwC5L8igawLPr0vBozTis+ah9txGbT+F3rSLYO1qwhWzJ1Y9UPY+weolBBq2oLUcReuOxt+fjtdWhXuwF6fH/1Se/2AojFcN4vIGDMHpDeD2BQUGEY6AVzV+HE+EN4jXGkJtCKMVhAneCRO+OLaI5SSErkcIpIXRSsP420J47NPgPAwEMHwMRmLq+ccvnn8z41WH5n+jx2FmBj26YX97edUgwVDYsMefzL8pBY/GrwXRg2HDxyEwDhGRyY7hgra6vo3TV+6wYM1+/v2/PuXteZv5+shl0nJKsQ+4pmwcOw5f4usjl4e/Lqtu5o3Z66mobeHPs9aPuO2KzUe5kZANgMcfEEwCXrcbf28jWn06euE5gsk7iFz/dBwRO5tQ3HoCWUfRK2+jtpfiUyyTOsZAMIyqh0YcU7wyHa4qqh3JFChnSJW+HlXGpst7KbJfot6ZSbe7gQGfc8zHcQ4GsPUG6W8M0FkWpDknQG1ikPJrOkWnA+Qc1knfGSBpvc7tzwJP1Nt6Y26AuGU6Set10r8OkPuNTlFUgPJonbo7QVpyAnSWB+lvCqD0BnEOPsE183nxObtQlTI0Swpa50X0lkME6zcSql5EpOzdCQjYtwlXzSVYv45Ay160jrNofYmochG+wVa83oEpe40GQxH8WhC3P2AILp8xjysYIhyODAnaaTCW8fDYg/jbQmilYQKpYULRERirnuAEhC9FCCSF0YvC+BtDeKXpf45GEIkM/f43ehxG4fKZ93Xhuf/8Gz0OgTF41SDhcMTwcZgZI//+8WtBgqHn7/k3+r/7nhVUPUQgGDZ8HALjEBGZ7BguaB9OOByhvrmTqKt3eH3mWl54cdaUPfb56yl8sfPk8Ndl1c38bc4mBpxu/vWP80bULbz2/moqalsA8RG3H4tFHkRpq2ewOh1P7jnUOzsIRS8eW8RenEXg1lp86Ydxl8TgaChC7u3GiA2ZHH47bYNVlMp3yJXPkDKGjE2V9pInX6BcTqNBrqW1w05LjUpDkUZ1hkpZvEbRFZW80xqZh3RSd2rc2fAje1uX6CSs0UneqpO+TyPnuEbhBZV7MTqVKUO9rU3lKu1NKj09P6wSeHx8SHIfSl81A92ZuNpv4Gn+Fn/9dvSq5YTKP5zQ6tdQ+QfoVcvw123D03QMd1s0A90ZKP2VSFIPPTYgBAAAIABJREFU/Xav4a/ZB4iKA3Mz3SoOLJKK0qzhLAngTQui3QgTPj32qtjQ2QhabAhPRpDBsgC2Ng2LzfjzeFYQFQfmRVQcmBtRcWBuRMWBuREVBwIRkcnOtBC0Hq+f/Hu1HImK5ZMVu/nla/N5feZath44P2VjUBxO/v3Pn9LU1kMgGGLF5mPsOX4VgE9W7Obb83GEQmES7hbyyoxVhEJhQPyBPlEsNie29kYGqzLw5J1HTfqa0PWlY4vYCx8RiF2D/+4h3CU3cdQXIvd00a9MvYjtt/vptFtpUCoptSWNK2NTevdwt/4i6XlpZMTUknbETtKXQ72rT9rbGrMoQPznOslf6qTt1sg6+n1va8Wdod7WplKV1nqVri6VvkmQLFabA5ulBUdvEc7OBFytZ/E27EWr+YJg5XwipW9PoHrgHYIVC1Br1+Nt3I+r5RzOzkQcvUXYLK1YlEHDX6ePgxC05sYoQWux+bG1awxWBHBnBVBvhQidH1vERk5F0K+H8aYEcRYHsDdqWK3TRyw/qwhBa16EoDU3QtCaGyFozY0QtAIRkcmO4YL2rx9v4Ce/m83LM1axYddp4lMLsNkHDRlLdmEVL72zgv94Ywmfbzs+3InbZ1X46LOd/OpPi3h73mbqmjqHf8boSWK6YVFc2DqaGKzOxJ1/ATV5F8Hry8ZZEfshgdjP8acdxF18nYG6fOTujqkXsYqfnp6hFaV1VRL3qmrIqU4hrekcyT27RpWxd9r2kJBzgdtX7xK7r56bKx2PFq7zA9xernNnw9BK2cxDOnmnh1bQlsUPrahtKNJoqVHpbFfpk6bi/L1Icjf2vgoGu9Jxt0XjaTqKv24revVSwmXvT3D160fo1Svw1+/A3XQCV/tNBnqyUPprkOR+jFjlPJkIQWtupkLQSj0qjhodd34Qf2KIwOUwnGB0EfsdBK6E8SeGcOcFcdTqSN1CxE4WQtCaFyFozY0QtOZGCFpzIwStQERksmO4oL2ZmEOvxWb0MJ44Rk8SRmGxubF1tjBQk4U7/xJqyh6CN5bD+Q/GWBH7IcGYVfhTD+AuimagLhe5q51+ZXI+st5j8dPRqtJcpVJfqFGdplF2W6PwkkruSY2Mgxop23USv7aRcLyG29GpJOSd50777lFlbGL7HuJzL3D7Whq3DtQRs8rBjbkBbn+mk/iFRupXOukHNHJODD1G6S2NqjSN+gKNlkqV9laVnn5jZIlVtmGzNOLoycPZeRt3y2l8DXvQatYQrJhDpPStR69+LZ1BoPJT1NqNeBsP4mq9yGBXMvbeUmRrOxa7y/DX5FQjBK25eZqC1mpRsTfouIoDeFOC6NFhImP1xH4LofMR1Nsh3FkBBip1bO0a/aKeYEoRgta8CEFrboSgNTdC0JobIWgFIiKTHcMF7VhxeXxYbQ6jh/HIGD1JTDYWmwdbZysDtdm4C67gT91H8OYKuDC6iOXCTII3V+BP3Ye74AoDtTnYOtuw2DxPPIY+yU9nu0prrUpDsUZ1pkp5vEbxNZ28KI3MwzppX9/vbV2hc3OM3taYVQ5uHajj9rU04nPPk9i+Z1QZm9S1i+SK89zNTiUnpZqSRIXKFI3a3O97W7t7VHxqiEGPbuzzo7iRpQ7sfWUMdqXibruMt/Ewat2XBKoWEy77+4RWvwYrPkarWY2vfhfu5lO4OmIZ6MnFZqnHapMNfx1OR4SgNTdPImgtNj+2Vo3BsgCe9CBabIjQmbHrCcJREbQbYbx3gzjvBVCaNSxTsqpe8CiEoDUvQtCaGyFozY0QtOZGCFqBiMhkZ9oK2i37zk7pJmFPGqMniaeG4kHuamegLhd34VX8qfsJxqyECzPHELEf3Bexe3EXXGagJhtbZ+ujRazip6trqC+1qVSlNluj4s5Qn2r+2aF+1bTdGskPelsXPeEmWWsdJJyo407iXZLLLpDcNfrK2BTLLrL7z1EqJ9OgVNFpt074mvm0yRe0VpsVpb+Oge5sXB0xuJtP4qvfiV69ilD57AnJ13DZ+wSqluCv3Yyn6Qju9qsMdqVh7ytHlrqwKG7jX3/PIELQmptxBa3iR+7UGKjWcecE8MeHCF4cpyf2OwhcDeNLCuIqDGCv05F6RT3BdEYIWvMiBK25EYLW3AhBa26EoBWIiEx2pq2g7bXYqKpvM3oYj4zRk8Rjo3iRuzsZqMvHXXwdf9pBArGfE7nw4Rg9sR8QvLEcNWUP7vxLDNRkYetsxqIMfaS9p1elvVmluUKlLk+jMlWjNFan4IJKzrcaGfs1UrbpJKzViV2qP5FsfVRva2WuQnl1LUVtd8npu0CqNPrK2BTpa3Lls5TakmiwVz6WjB2NHytoLXYnsrUde28Jzq4kXC3n8TYeQK3dQKByIeHSdycgYN8mWDkXrWYdvoa9uFqicHbE4+jJx2ZtwmpTjH/NPacIQWtuHghaqVfFXq/jKgziSwoSuBom8h1jytjgxQj++BDunAADVTpyp0a/Yvz5CB4PIWjNixC05kYIWnMjBK25EYJWYOYEQyFeeHEWOw5fGnE8PbecJesPPbXH+cWr87DaHDS2dvPqe6tHvc2Zq0ls3B311B5zOsVwQfubvyzBMeg2ehhPHKMniTFRfMjdnTjqCnAX38B/9xCB2NVELnw05oZdweuf4YvfhSP5Iv2pWbQkNVNx20PR5e97W1N36CSu17m9TOfmvCeQrXMD3Fqqk7huSNxm3O9tLbioUhqrUZWqUZev0Vyh0tGi0tM3chVZt91Oo1JLuZxGnnyBVGnvODL2DGW2JBqUSjrtlqd+jccXtF4kqQ+lv4qB7kxc7TfwNH+Lv347etVyQuUfTnDjrQ/Qq5bhr9uGp+k47vbrDHSno/RXIUk99Nsnp8NX8GiEoDUPUreKvXGomsCdF8SdEyB8N0Lk9Dj1BGciaDEhPBlBBssCKC0aFtET+9wgBK15EYLW3AhBa26EoDU3QtAKzJxgKMTPX5nLb9/8jLbOvuHjT1vQ2gdchMORcQWtX9XxeJ/P58NwQbv4i0Ncjk03ehhPHKMniX67D7mnC0d9Ie7im/juHiYQu5bIhVljiljt3FLsp7+m89h5qvdkkrOxiVsLvU+0ujVmsU78ap3kLTp392hkH9coODdUWVCZrFGbo9FYptLWqNHdrT7WSrFuu50mpY4KJZ18+SJpY8rYneTIUZTKd6hXKiZFxv4jVpsD1dmBVyrG2RmPq/Us3oa9aDVfEKycT6T07QlUD7xLoHIhau16vI37cbWcw9mZiKO3GNnaikVxToPXl2AshKB9fhghYHOD+JKDaDfDhC6MLWCH6wlOgh4dxpsSxFUUwN6gY7WIeoLnHSFozYsQtOZGCFpzIwStuRGCVmDmBEMhfvbKXKLjMpm7au/w8YcFbTgcYduB8/zx75/z0jsr+GLnSYKhEAD/9vpCLtxIZf7qfbw8YxVpOaVs2hPFzCXbmblkBz6/BoxcQfva+6vZffQKf3h7Ba+9v5riigZg5ArayrpW/jZnE6++t5o/f/TF8G2e1RguaL/YeZL//OtSXnt/NXNX7WXh2gMjmO6ZkslA8dPV7ae7so/erBKk+Fs4rh3Be2E94XOzxxSxvu8WYz24k+bt5yldn0HG8iZuzfeMLVsXBohbpZO0SefuLo2sIxp5URol0TrlCRo1WSqNJRptdSpdnSp98tM7x267476MzSBfvkSatG9UGZsq7SRHPnNfxpbTae+fhGvuRZK7sfdVMNh1F3f7NTxNR/HXbUWvXkq47P0Jrn6dhV69El/9TtxNJ3C132SgJwulvwZJttBv9xn+S0bw5AhB++wg9ajYmzQGy4dWwPqSgmgxIULnHy1gH2zWFbgWxh8fwpMRwFkcINQJ9l7x/JsVIWjNixC05kYIWnMjBK25EYJWMOVZdxZWR009oyQYCvEvf/iYcDjCm59sJCO/AhgpaNNySvnzrPXoegBND/DnWeu5k14MwL//+VNOXU4E4HpCFj97ZS7dfRIAHy/fRVLG0O0eFrT/8oePiU3KBeBWch6vvb8GGClo/zJ7AwlphQDEpxbw+sy1T/tZmNIYLmh3Hb3C/hPRYzLd8yRv7J6+oY/vN1eq1OUPfay/NHboY/45JzQKDvVTvreMhr1xdO8/huPoBoJnPh5TxPpPfop0cAfNO85RtiGdzOWN3Frk4vbyoTqC1B0amYc0ck9pFF1WKY/TqErXqC/UaKlW6WxT6ZvCncF77AM02eupUDIokC9zV9o/xsrYHeRIUdyT71CnlNNh73sqj2+VbdgsjTh68nB23sbdcgpf/W60mjUEK+YQKX3r0atfS/9OqPpT9IYv8TYewt12mcGuZOy9pcjWdix2l+G/QASTixC00wRlSMAqDwvY5CEBGzwfGbcP9mEBqz8sYEsCOOp05A4Nyxj/I2rcTcIEzz1C0JoXIWjNjRC05kYIWnMjBK1gyjP/G2MYJcFQiH/+/WwASioaee391QQCwR9UHGh6YPjfX+49w3cX44EhQdvS0QtAUVk9//XhuuHbbdoTxbnrKcBIQfuLV+cRDkcACASCvPDiLAac7hGCNhAIDt9GVgb5X3/45KlceqNiuKB91tMn+elsU2mpUakvHBKf5XFDIjT31JAYTd2hDfW2Lte5Mf/7FauJn8rkra6genMCHbu/xXFkI8GoT8auJji9EPuJr+g5cYaWU6nUXKilIsZJZapGXd5Qb2t7s0rPNNr9e0jGNlCpZJI/rozdSbYUxT058b6MfbKVsRbFjSx1YO8rY7ArFXfbZbyNh1HrNhGo+pRw2d8ntPo1WPExWs1qfPW7cDefxtV5i4GeXGyWeqw2mX77j98kTPBsIwTtFGGQgH0UQtCaGyFozYsQtOZGCFpzIwStuRGCVjDlcfrA6Z16RsnDghbgs43fcOpy4ghB63R72bDrNG/P28yMhVv5z78u5dvzccCQoO2zKsCQ4H173ubh+9qy7yxnriYBIwXtS++sGDGGX7w6j65eaYSgTcm6x8wl25mxYAtvz9s8YozPYqaFoL2VnMdHn+0cfgJUTefYudvDfRXTORPpaU1YpJD7eRVVX96hfdd32I9uInBmztibdV1agO/mNpzJUTiKk1Gaq7Ba7YZPSI+ixz5Ik9JApS2LfPkKd6UDY3fGSqe5JydSr5Q91spYSbai9Ncy0J2NqyMGd/NJfPU70atXESqfNSH5Gi57j0DVEvy1m/E0HcHdfpXBrrvY+8qRpS76Fc+ExiIErbkRgvYpofiReqefgH0UQtCaGyFozYsQtOZGCFpzIwStuRGCVmDm/KOg7bXY+I83lhAdnzUsaLcfusCGXaeHPd6GXad/lKD95WsLiERGrqB1urzDgtY+4OLnr8ylrasfAItkF4L2x+bstWReemcFJy8l8MKLswBQHE7e/GQjB767buzgJpCYxTpxK3XubNTJ3muj6ngVHWcTkS59h+fyl4Quzh1TxIavzENL2II3+yTO8jvYWyqxWhTDJ56J0Gt30qw0UmXLokC6Srp8cJyaglPckxOoU8pot/cxVveqRXEiW9uw95Xg7LyDq+U83sYDqLUbCFQuJFz67gQE7NsEK+eh1azD17AXV0sUzo54HL0F2KzNWG1PT3QLQWtuhKCdIOMJ2AsTF7D/2AHrqNWxtU+egH0UQtCaGyFozYsQtOZGCFpzIwStuRGCVmDm/KOgBTh48gavvrd6WNAu23SEs9eSAWjr7OOld1cO15Y+iaD9ye9mk5J1D4C41Hz+PGs98H0HbUtHL79+YzG6HiAcjnDgu+u88OIsVE2fvAsxyTFc0P72zc9o6+wDGBa0AD39Mi+9u9KgUU083uxT6PGbCV8ZT8TORY//Em/WCZzlCdibK7BaJMMnmInSY3fSrDRRZcumQLrKXenQqDI22bqDbOkU9+R46pRSOpRevpexXiSpD6W/ioHuDFztN/A0H8dfvx29ajmh8g8nuPHWTPSqZfjrvsLTdBx3+3UGutNR+quQpF767d4puy5C0JobIWjv85wK2EchBK25EYLWvAhBa26EoDU3QtCaGyFoBWbOaILW51d58W/LhgVtRW0Lr763mjdmr2f916dIyynll68tID23/LEFbU1jB3+ZvYE9x67y+sy1vD5zLeU1LcDITcLW7TjJS++uZMaCLRSW1vHB4u28M//7+37WYrigfbj492FB61d1fvbKXING9Rh5WMRe/gQ9bhPezG9xlcVjbypH6rcaPpE8Dg9kbKUthwL5GuljytjtZMsnuWcbkrGdcgs2axOO3kKcnfG4Ws7ga9iLVrOOYOV8IqVvT6B64F0ClQtRazfgbdyPq+U8zs5EHL3FyNZWLIrT8OvzMELQmhszCVqpV0Vp1hisMI+AfRRC0JobIWjNixC05kYIWnMjBK25EYJWICIy2TFc0M5YsIXE9CLge0EbiUQ4fv42b8390sCRTSyDlWnYm8qQ+p5sUysj6bG7aFGaqVJyKJSjSZcOjytjS2xx1Cr3aLf30Gf3IckWAlVLCJe9P8HVrx+hV6/AX78Dd9MJXO03GejJQumvQZKfvesnBK25eZ4E7QgBmx/EmyIE7KMQgtbcCEFrXoSgNTdC0JobIWjNjRC0AhGRyY7hgra8pplfvDqPmUu288KLs1iy4TB//Pvn/PK1+RRXNBg9vEfG6EliovTanbTYH5ax34wpY7Pk7yiR46hVSmi3d9M3Zmfs4PerX0v/TqDyU9S6TXgbD+Fuu8xgVwr23lJkqQOL4jb8GjxthKA1N8+SoBUC9ukjBK25EYLWvAhBa26EoDU3QtCaGyFoBSIikx3DBS0M9c0eP3+bL3aeZMv+c5y9loxj0G30sCYUoyeJ0ei1u2ixN1Ot5FIkR5Mx5srYr8iSTlAi36ZWKaHN3jWmjB0Lm6UBq002/JyNQAhaczOdBO1TEbBXw/gTQngygkLATgAhaM2NELTmRQhacyMErbkRgtbcCEErEBGZ7EwLQQvg8vho6+qno9uCx/vsvPiNniSGZGwL1UouhfJ1MqRvSJK2jiJkvyJbOkGxfItapfi+jJ26DbWeR4SgNTdTKWgfCNiBhwVsbIjgxacgYCXjr+WziBC05kYIWvMiBK25EYLW3AhBa26EoBWIiEx2DBe0fVaFjz7byQsvzhrmJ7+bzZxVe5BsA0YP75GZygmhz+Gmxd5KtZJHoXydTOnImDI2S/r2IRnbSb+QsU8dIWjNzdMUtOMK2BMIATsNEYLW3AhBa16EoDU3QtCaGyFozY0QtAIRkcmO4YL2nfmbWf/1Karq27BIdnotNoorGliwZj8zFm41eniPzGS9+fscblqVNqqVfIrkG2TIY8nYbWRJxymWY6lRimi1d9Jn9xg+eZkBIWjNzeMIWiFgnz+EoDU3QtCaFyFozY0QtOZGCFpzIwStQERksmO4oP3tm58RiUR+cNzl8fGzV+YaMKLHy9N4ow/LWFs+RbabZMhHx5SxmdJxiuRYapRCWu0dQsYaiBC05uZhQSv13RewlTruPCFgzYAQtOZGCFrzIgStuRGC1twIQWtuhKAViIhMdgwXtG/N/RKfX/vBcYvs4M1PNhowosfL476p+xweWpV2amwFFMs3yZSOkSxt++EGXtI2MqVjFMsx1CiFtCntQsZOM8wuaC39DpSdX2A7+y1yajJSdYPhY5osRhOw4bgIoUuPKWDjQ3jSHxKwHULAPqsIQWtuhKA1L0LQmhshaM2NELTmRghagYjIZMdwQXsrOY95n+8lNbuUhpYuahraSUgrZOaSHdxOyaelo3eY6Zjx3sB9dg9tSgc1SiHFcswEZOxNamwFtCrt9DmEjJ3umF3QWu+VM/jOf4xkxm9xLJmBsmMNtqijSMmJWKtqsUhOw8c7Hk9tBeyoAlZIvOcRIWjNjRC05kUIWnMjBK25EYLW3AhBKxARmewYLmgf3hzsUUzHPHiz9tk9tNo7qFGKKJJjyZKOkzSKjE2StpIpHaXIdpNqWz6tSht9Drfhk43g8TG7oLV0WZHjY7GdOIiyeTkDC978obB9CMen72Dftgr51GHkxDis5VVY+h1TMtYRAvYfO2C/44kEbKA9grNHFwLWpAhBa26EoDUvQtCaGyFozY0QtOZGCFqBmRMMhXjhxVn89OU5w/zmL0vYsOs0Pr86pWM5fz2FjbujpvQxpyqGC9oBpxuXxzchpmOK5Vv3Zew/itghMqUjFMk3qFbyabG3Chn7HGF2QTsaln4HUlklckIctpOHsG9diWPh2wy++5sxxe3AgjdRNi/HduIgcnws0r1yLH2PJ25/IGBTHwjY8BML2EetgH2cTcIEzx9C0JobIWjNixC05kYIWnMjBK25EYJWYOY8ELRWm2P4mOJwMmfVHvYcvzqlYxGCdpITCoUpqWgkNil3+JjH+2y8AR6WsRnSNxTK16lW8mixtwgZ+5wjBO3EsVgHsVbVIiUnYos6irJjDY4lMxic8duxV9zO+wv2L5diO74fe+wdHFmNDBa7p0zAPgohaM2NELTmRgha8yIErbkRgtbcCEFrboSgFZg5owlagBsJ2XyyYjfdfRK/f3v58PEt+8/xweLtw18vWneAtJxSKuta+ducTbz63mr+/NEXFFc0ANDY2s2bn2zk4MkbzFm1h9dnriWvpAYATQ/w+bbjvPTOCj5YvJ0dhy8OC9qx7u9ZjeGCttdi49X3VvOLV+cN1xj0WRV+9adF1DS0Gzu4CaROKaXF3kKv3WX4hCGYWoSg/fFYJBfWmnqUpAwGo2Jw77uKf+tVtE1xBHYUE9rXTeSY/mgBeyo8QsC6igM4anRs7ZPXASsErbkRgtbcCEFrXoSgNTdC0JobIWjNjRC0gqlOpu0gGbb9U85oGU3QysogHy7dwZGoWAD+8PYKLPLQ99+dv4V35m9G1wNEIhF+/cZinC4vf5m9gYS0QgDiUwt4feZaAFo6evnJ72ZTUFoLQErWPd5btA2Aq7cz+GDxdgLBEC6Pjz99uG5Y0I51f89qDBe0s5Z9zeHTNwmFwiN6Zi/FpPHRZzuNG9gEY/QkITAOIWgnjrVfRWkZWUGgxoYIXprYCtjIMT/Bg13oX+Whrr+Gf8UhvIvW4v74I5x//+NQVcLHr2Nfvwjbka+Rb15FKijE2tE3aeckBK25EYLW3AhBa16EoDU3QtCaGyFozY0QtIKpzlg1mpPNaHkgaP/3/13Av72+kF++Np9//eM89p+IJhAIArBux0mSM0sYdHqYuWQHm/ZEUV7TQmtHH2/P2wxAIBAkHI4AQ4L3f/3hE2BI0P7b6wuHH6+xtZuX3lkBwMotxzh3PWX4ewe+uz4saMe6v2c1hgvan78yF00PAIwQtIFgiP/9fxcYNKqJp9o2YPhEITAGIWi/58cK2PDpyNgrYK0PSTCbF2tDC1JGOrZLUSh7NuFY8RED7/9+7I7bj/6Ife1clINfYYu+gJybg6Wl60efsxC05kYIWnMjBK15EYLW3AhBa26EoDU3QtAKpjpa2GMIo+UfV9AqDie/+tMi2rstw7eJTcrl6yOXSc8tZ9+30cTcyeH0lTtcu53Bvm+jgaGVsTOXbGfGgi28PW8z//z72cCQoP3dW8uG7+vhr+es2jOiDjXq6p1hQTvW/T2rMVzQvvi3ZSgOJzBS0LZ09PLrNxYbNKqJ5/+rPMtPa6LZ31VDmyI6Z82EmQTtlAnYJ0XxYW1sQ8rMQLl8FmXfZhyrPmbgg5fGFrczX8a+eg7K/q3Yrp5Hzs7G0txBv+Kb0GMKQWtuhKA1N0LQmhchaM2NELTmRghacyMErcDMGa3i4JuoGBauPTD8db9VYcbCrew+eoWM/Arauy0s/uIQa746Qf69WuwDLn7+ylzauvoBsEj2CQnaFZuPceFG6vD39hy7ysbdUePe37MawwXtrqNX+HDpDorK6nnhxVk0tnYTl5rPq++tZtuB80YP75H5HxWn+aey4/xT2XH+n/KTvNeURoa13/DJQzD5PE+CdljAVum4CoJ406aZgH1SFB+Wli7k3Bxs0RdQDn6Ffe1cBj7649ji9oOXcKz6GGXfZpTLZ5EyM7A2ttFv8464byFozY0QtOZGCFrzIgStuRGC1twIQWtuhKAVmDmjCVqP18+v31hMYWnd8LHXZ67lb3M2MeB0E4lE+NOH6/jTh+vwq/rwIkxdDxAORzjw3XVeeHEWqqaPK2jPX08Z7qB1DLp57f3VbNwdNe79PasxXNCqms7mvWf52StzeeHFWbzw4ix++doC9n0bPVx9MJ3TpXg52l3Pr2pjhkXtP5Ud5+e11znQXUO7WFX73PIsCdqnImCvhFHjQnjuTiMB+2OuSVsPUl4+thuXsB3egX3dAgZmvzq2uH3v9ziWf4iyeyO2i6fwF2ThaGqh3+Yx/FwEU48QtOZGCFrzIgStuRGC1twIQWtuhKAVmDmjCVoYkqd//XjDcA/shl2nR2zUtWDN/hF7S63bcZKX3l3JjAVbKCyt44PF23ln/uZxBa3Pr/HZxm/47ZufMWPBFvafiGb916fGvb9nNYYL2gcJBIL0WZXhuoNnJQ+/YQskiTnNWfz3h1bV/reKU3zcnEmuVTJ8QhE8XaaToB1XwJ7kRwlY6zMqYJ8US6cFqbAIOeYaytHd2Dd8ysAnfxpH3L6Ifdn7KF+vx3b+O+S0ZKSaRiySy/BzEUweQtCaGyFozYsQtOZGCFpzIwStuRGCViAiMtmZFoK2u0/m6JlY1u04CUA4HOFeZeOUjiG3uIaf/G42P315zjCXYu4C0NMvM2vZ1/yfPy3ib3M2UV7TMvxzo71xO+0eDnfV8suamyNW1f6y5iaHu2rptIsVd88DUylohYA1Hku3DWtxCbZb17Ed24try2cMzH1jTHE7OOO3OJbMQNmxBlvUUaTkRKxVtVgkp+HnIvjxCEFrboSgNS9C0JobIWjNjRC05kYIWoGIyGTHcEFbUFrLT1+ew7zP9w5vEtbfmpZ2AAAgAElEQVRvVfi31xcSl5o/ZeO4k17M8i+PjPq9jz7bybnrKYRCYXKLa3jxb8sIBENDY33EmzjXKvFxcyb/reLUsKj97xWnmducTYEkVtU+yzxNQTuqgL0VInhZCNjpyoMOWkuvgnSvHDk+FtuJgyiblzOw4M2xxe27v8Hx6TvYv/oc+fQ3yHfisVZUYel3GH5OgokjBK25EYLWvAhBa27aBjTKvCHap8FYBFOPELTmRghagYjIZMdwQftfH64js6ACYFjQApRUNPLG7PVTNo7ouEw27o76wXH7gItfvraAYCg0fOytuV9SUjG0wneib+Z2xc3+rhp+VnN9xKraX9XGcLS7ni7FO2kTiWByeBxBKwTs88ejNgmz9DuQyiqRE+KwnTyEfetKHAvfZvDd34xdl7DgTZTNy7GdOIgcH4t0rxxLnxC30xEhaM2NELTmRQhac9Gq+LnR72d1h4c/NHn4n7Xf84t6D39v8bKhw8ulPh/5kvHjFUwuQtCaGyFoBSIikx3DBe3PXplLKBQGRgraQDDEz1+ZO2XjOHU5kXfmb+Yvszfw2zc/Y8Ou03h9KuU1Lfxl9oYRt1255RjR8VkA2JzaY5OvSMxqzeT/Lf9+Ve3/qDjNorYcShXlie5TMPWoehi3L4DNqWGXdQY6ArhqgniLQvjvhtBvhwlejkxIwEZOQ/BqBC0+jC8jhLckhKsuyECXjqIYf66CH6IHIzi9+mP/nKK4UKprsKckYD9zBMf21Qwsfmd8cTvvLzg2f4b9xAEcCbHYy8ux9Yu5wkhC4QgO9+M//4Lng0gElGkwDqOQp8EYjEK5//wbPQ7B5NDj1IiTVDZ0+/hj80ghO1H+0ORhbruXPb0qtyWV2gHjz+v5QjXssZ1eHT0YmQbXQGAEbl8AVQ8bPg6BcYiITHYMF7Svvb+axtZuYKSgzSyo4OUZq6ZsHGk5pRw8eYNBpwfHoJtPVv7/7L1nfFzlnbe/2eTZ8uyz++z+tzybkEYKSYAkQJJNIIAxphowGGzABdxxwb3jbtwb4N673HuVLffe1NtoRpqRps+cGcm2Tpkzatf/xWAhWRrZxpaOpLl/n8/1wlPvc0a+58x1fud7z2La/I1cuJbBB70nVXvs2JmrWL/9CAAlpeXfmhvhMEv9mTyVVb2rtkXOHjYFLaglpff1+g2BNVRm+BgaBLmcUm8FZbkVlCdXUHa6goqDFVRsAVZyRwHLaqjYVkH5oQrKzlZQnlJBWV4Fpb4KStRGsH2Ce6aiooLSsooH95paCN2WS+jcMZQtKyieM4Ybgztx/cPno8cl9HyTmxP7I6+Yi3p4J3paIuHCQsP3TSxQUQGlZcaPQ2AM9/v939QJhWPku782ysTn35woLinnzM1Spnl02uSptQrX13MVJrlDHL9RSnFpZP4vKS0nTSljV1EJUz06H9lU/mRSokrbR7Jk3rGqjHSGWBsIc6G4lBth47e/KaIZOP+UllVQUfEAj/0ETYqy8grKxecf04gSVd9luKDdfuAUz70zgPmrdvJoiy5s2HGUsTNX8cTLPdm0+7hh47qWmsNrHUeSnGHhrS7VoxaGTFzEjgOngQd3idthj5MOOcf430krKkXtfySvoV/uWa74JMPb+WvDEgjxo0yZp7JlBlkVdno0CgLGj+vb4PWEkHJ1itLC3Lz4TQRBybeNILhUQmFaGClPRBA0V+4UcfCg8PiK8aWb8CfEI61fTmDGGIKDOlLUoUX0jtturQmO6Yu0cAb+nVvwXbiI1+YyfJ81J0TEQWwjIg5iFxFx0LQpCGgc9KpMKlB5w6zwk9tE6g8yZFqaZIbbFLa5IxEHVZ9/p0XCrEGNo16NxU6VwVaFN80yv8mM3m37VLbMBxaZMTaFtS6Vcz4NRyPYT4LaEREHsY2IOBCIElXfZbigBTh4/BLdBs+k1ftDeeOj0fQd/QVnL6c16Bjy8l34A9cr/33xWiZvdRlD0Y1innqlF1ooXHnfax1HkJxhAR78AbolcJMZ+Sk8mralUtR+J3EJz2ftYaXdhCOoGj4x3eKiX6O1uXq3wMMZkQPNhQ6VdMn4Md6iPgSsbimn2F4iBGyM0lCCNiqSjDfbgu/EcaS41QRmj6dwyMcUdWwZXdx2fZXg6N5I86ch7YjDd+483jyH4fuyKSIEbWwjBG3sIgRt0+OwV2OqXaWNWeantUjSZ7NlhlojObLmQN3z+p0EbTTSJI2dHo1ZdpUeeTIvmOqOSXjOJNMtV2a6XWW7WyPJb/x+FAhBG+sIQSsQJaq+y3BBe+OmEvW+W9EHDVFzl26j98i5qFoIWdHoNXwO85ZtA6D7kFksXb+PsrJyDhy7yMsfDKvMza3PCeCg284HpgT+sUpX7X8mr2GA5RzXfAHDJ6hbmAMh1rpUuufJ/DqruNoBZkuTzDibQoJXw1WPY/C6vxawqWFuXixBOVZKaG8ZJZvrrwP2XhYJEzQ/DBe00QioeE15+E6eILBpLYG5Eykc1o2iTq2ii9vOLxEc0YPAvMlIW9bjP30aj9mGO9B4Tgg1NoSgjW2EoI1dhKBt3DiCGse8GjPsGu+aZX5WS/fqMyaZgVaFjS6VbOne5vFvK2hrwxnUuODT2OBWGZ+v0CFX4U/ZkS7e2qTtLzOLaZ2jMMCqsMChcsirYrmDUBY8WISgjW2EoBWIElXfZbigfb3TSBxuf7XbysrKWRF3gN+36t5g41A1nVHTlvP0W/14vu1AJs5ZW9k16/IG+HjgdP78Rl/a9ZpIZk5+5fMaYiIwB4qZkp/Er9I2V4rav01cwguZe1ntyGlUXbXOYKRT4bN8hWezqx9YPpYl0ytPZqNLrXHJ2J24XwFbsbKCkk3lhPZ+I2CL7jOCQAja2KbRCtpoBFQ8lgL8Z88gbdtA4MspBEf1pOjjV6KL206tKBzWjcDciQQ2rcV38gReUx5uSTF+ewxGCNrYRgja2EUI2saFM6hx0qcxx67yvkXmF5nFNcTmn7Nl+lkjEQKZ9xnF9SAFbTRswYhkXuJUGWpVaGOWebSOmIQns2XaWWRG5yuscmmc8WnYm2jkWGNHCNrYRghagShR9V2GC9rFa/fw3DsDSMvKA8Du8tOx3xRathvMxWuZBo/uztXQk8JedwHvmY7w94nLK2Xt/0tZy+Dc8yT5g4ZPWreTIml85VB51yxXy/n6UaZMG7PMXIfKVameBaynfiSKELSxTZMTtHXgzXPgO3ceaUcc0vxpBEf3pqjrq9HFbYeWFA7+iMCscUgbV+I/loA304xbkg3floZCCNrYRgja2EUIWmNxBTXO+jTmOVQ65Cr8KqumkP1DlkyfPIVVTu2Bx201hKCNRoakscejMdeh0jtP5sWcSLRYbdL2hxkyfzXJdM1VmFqgstWtkShiEu4bIWhjGyFoBbFcRTeKebRFF1QtVO323YfP0n3IrAYZw/rtRxg3a3WDvJdRZbigBTh84jJPv9mPWYs284dXezFq2nKKZdXoYd1VGTU55Eg3mZyfyC/S4qp11b6UtZ/1TgvOBuqqXbhaZ+9RnXRz3aLC6wnhytM5nxhm14kwm/eFSdhWiml9OfKKikYpYO+EELSxTXMStNHw5HvwXbyEf9dWAotmERzbj6Lub9QhblsQHNSRwIwxSOuX40+Ix5duwuO7afi2PGiEoI1thKCNXYSgbXgu+DTmO1Q6W5RaF9x6MlumZ57McqdGcj1LSCMFbW24ghqX/RqbXJGFzzpZFP6cLfNQFHH7i8xiXs2R+dSq8JVD5aD3zrm7gm8Qgja2EYJWEMslBG3DVKMQtADp2VaebzuQMTNWGj2UeyqjJwl3UGOX28Y7pnj+LnFZpaz9Qcp6hlsvkeovrLf3Tc7W6DGwhB4DSxg4pIR5n5dweGUppp1lFB36ugN2UzkVK+8sYItXVJC1vpyjW0tZty9M3IkwCdfCWHONE7B3Qgja2CYWBG00PHYJ7+UrSHu2Iy2eQ3B8fwp7tokqbq9/8DyF/T8gMG0k0upF+OIP4k3NwOO7Yfi2fFuEoI1thKCNXYSgrX8u+zUWOVW65io8llVTMv42K7KA1mKnytUG7gptbII2GvlBjeNejWVOjWE2hXcscq378ha/z5J51ywzyiazyqlxSsQk1IoQtLGNELSCWK67EbR6uISRU5bx0gfD6DJoBgtX7+az6SsASMnM5d0e43m1wwje+vgzLidnA5F1p9p2H8eXK3bQY9hsWncexbkr6ZWvN/zzJbRqP4ROn05l2vyNlYI22us19TJE0A4av7BWPuz7OY+90JX+Y+dX3tbYy+hJoipZ0g3G267xcOo3XbXfTVzKq9kHiHPm3tciXV5PCCmvSgRBQinanjK09eWULuPOi3CtoM4O2KxA5CCyY67Cz6vkh/0gQ+blHJkpdpWTPuP3cVWEoI1tYlnQRsPjDOC7eg1p3y6kJfMIThhAYa+3o4vb95+lsF97glOG41+1AP+h/XiTU/F4rxu+LXdCCNrYRgja2EUI2gfPNUljqVOje15EFN4uDx/Lkvk4V2GhQ+WiwZfpNxVBGw2TFGKfJxIR0SdP4aWc2hdSuxWT8Iwpsu+n2FU2uyOxZEZvg5EIQRvbCEEraPDaCKw3gFrqbgRt3K5jdPp0KqVlZXilQlq2G1wpVN/uOpYDCRcB2H/0Aq07jwLAYnPy2AtduXAtA4Ajp67Soe/nAGzZe4JOn06lpLSMm7LKGx+NvuPrNfUyRNBOXxB31zT2MnqSiMZ2l423sg/zvaRvump/lLqBUdbLpElFNR5fKWDTvhGw99IBeyuCoHBzOdlrSjnyRRlLxpYxeWQpA4aU0HNQCRNmhlm3PcS5azr2OmSrPRDJ2Bpqjaxme/sZ/n5WhS1uDavB+1gI2thGCNq7x+MqxJeYgv/APqQVXxGcPJTCPu24/v6z0cVtn3YEJw9FWvEV/gP78CWm4HHV3xUB94oQtLGNELSxixC090+qpLHSqfFJnsxT2TXF4G8yZTrmKnzpUDnXyE7ON3VBWxuuoMbVr2MSPrerfJSr8LQpekzCzzIjzRN98xTmOVT2ezRyYiQmQQja2EYIWkGD1x0cTL1RS92NoB0ycTEbdhytvK9qx2tJSSnl5RUA+APX+d2L3YGIoP2f1n0qn2PKtdOq/RAAhk5azLrtRyrv+2L59ju+XlOvRhNx0FTL6EniTmRI1xljvcJvr23jybPbaXvsCMMOXWDf/nxcu5R7FrChvWUoCaXcvFhCUWrdGbA2V4jj53VWbNQZ/bleGYfQY2AJnwwpYeoXOlv2hrmSFsJZxxn5Cz6N2XaVN82Rs/m3DhB/kiHznkXmK4dKigFn9IWgjW2EoL1/PN7reJNT8R/aj3/VAoJThlPYr310cdv+rxT2epvghAFIS+Yh7duF7+o1PM5Ag49dCNrYRgja2EUI2nsnQ9JY7VLpm1fzxPv3M2R+mVnMhxaFuQ6V0z7tvq74qm+ao6CNRkFA46QvItNH2mTammV+V0dMwuNZMm0tMsNtCsudGsd9kagFo7fjQSIEbWwjBK2gwUs1iFrqxk2FR1t0qbFW1PYDp+g5bA4APYbNZv/RC5X3rdx0sFKoHjl1lc79p/JB70m06zWRx1t2BSKC9oX3BlU+p+q/ewybze7DZyvvW73l0B1fr6mX4YJWD5ewaM1u3u0xnmff7s/zbQfS/pOJLN+4n5LSMqOHd8cyepK4RbUO2EslyMfurQO2/FsI2HvFXBDi8Emdhat1howNVxO2/UaEmb1IZ9dhndTs6O9nDoRY51LpnifXWCji2WyZ0fkKh7wqzgbY50LQxjZC0NYfHt8NvOlZ+I8eRlq7hMD00RQO7EDRh89HF7c92xAc3x9p8RykPdvxXr6Cp8Bbb2MUgja2EYI2dhGC9s5kSRrrXSr9rZFOzNoWqmpnkZllVznu0xrkmO1BEUuCNhrmQIgDHpUv7Cr98hReMcvV4smq8lCGzF+yi+lsUZhcoBLnUrnib9wSvi6EoI1thKAVxHKVlZXzxMs9yTLnV7t92vw4xs5cBUSiTDftPl553/QFcYybtZpg0U2efLkneQVuADy+4F0J2ts7cmcv3nLH12vqZbigHTZ5CW26jmFF3AH2HjnP7sNnWbh6N63aD2HUtOVGD++O1VCTwf0K2KodsIGEEAdP2ul14hRPnd3B/3dlNd9LWsZb2YfZ7rI12Dalm0PsideZu0Tn05HVhe3Az8LMX6Fz4LiOyVa7BHEGNeI9GmNsCs/d9gPg11nFdMuVWeOqv9VphaCNbYSgbXg8vmJ86Sb8CfFI65cTmDGG4KCOFHVoEVXcFnVrTXBMX6SFM/Dv3ILvwkW8Ntd9j0UI2thGCNrYRQjamuQEQmxyqQy2Kvy1FiH7cEZkAarpBSoJXg1HIxjzt0UI2uhckzS2uDWm2lW65Co8Y6p+5dvtfxOtcmT65EU6p/d6NLKlxv+dKgRtbCMErSDWa9r8OD4aMA2nRyIcLuHY2UT+9HpvMnPyAVi1+RDdBs+kvLwCn1REq/eHMm7Waiw2J8+0+ZRwuITy8gq+WL6dR1t0IaSH6xS067cfqcygLbxezGsdR9zx9Zp6GS5o//JG3xo5FgB2l58nXu5pwIjurR7Uf3avNyJgC6sK2H1llGwup3xV/UQQuIIaG50WXsk6wHcTl1Zm1T6cGsd42zWypIZbYd0V0LiWEWLb/jDTv9LpPbSkmrAdPiHM0nU6CWdD5Dlr354USWOBQ6WdReanty1y8HqOwgy7xvkHmGUmBG1sIwRtI0KS8WZb8J04jhS3msDs8RQO+Ziiji2ji9uurxIc3Rtp/jSkHXH4zp3Hm+e46/cUgja2EYI2dhGCVsMSCLHFHVkroIUpsqBrVfn20wyZNubIAq+HvRr2RjDmB4UQtPeGPaBx2qexyqkxyqbwnkXmiVpiLqouCPe2WWaoVWGpU+OYV8PWCLbjFkLQxjZC0ApivfRwCfOWbaNlu8H84dVefNB7EueupFfeLysavUfO46UPhvHJiLl8sXw742dHIglGT1tBq/eH8kHvSVy8lkmnT6fS/pOJdQpaVdMZOG4Bz7cdyAe9JzFv2TbGzFhZ5+s19TJc0L7VZUytt6taqDIcuDHX3f5nfiACdvPXAvbYg48gSPUXMsx6ie+nrKsUtX+XuIx3TPHsdjdcV+0tHH6NC4k6G7aHmDgrTK/B1YXt2GlhVm/WOX1ZJ99b8/nWoMZWt0Y/q1JjReA/ZMkMtirsdEcOHL/tGIWgjW2EoG0CBFS8pjx8J08Q2LSWwNyJFA7rRlGnVtHFbeeXCI7oQWDeZKQt6/GfPo3HbMMdUKu9thC0sY0QtLFLLAravIDGDnckh/TFnJqLR/04Q6a1WWFigcpBj0rBfRxbNXaEoH0wmAMhDnpV5jsiURiv5yj8IkpMwg8yZP4nW6ZDrsKEfIWNLpWLfmOiMYSgjW2EoBWIunPdWrgLYNGa3cxessXA0TS9MlzQxu1KYN6ybVy/IVfe5pOKGD97NXvizxk4srurW/9Z71vArqB2AZur43U3nARwBFXWOc20ytrP334tav8mcQm/SItjcn4iOdJNQybDfI/GyYs6K+N0Rk+tHofQa3AJk+eE2bgzxIXkEE5/zeef8mlMsau8nFO90+NnmZEDvsVOlfR7XGhMCNrYRgjaJkxAxWO24T99GmnLegLzJhMc0YOizi9FF7edWlE4rBuBuRMJbFqLfuUcktmKW1KM3x5BgyMEbewSC4LWGtTY7Y5ESL1irnmZ+g8zZF7LkRlrU9jraVwdjvWNELT1S5JfY7tbY3qBSrdcmedMMj/KrL3b9qcZMi+aZHrlycy2q+xya/d8LH+vCEEb2whBKxBVd504n8xrHUeihcKoWoh3uo0l4cw1o4fVpMpwQfvSB8P43YvdebRFF/70em+efLknj7bowhMv9+SZNp/y9Fv9KmmMVbL5LjNgVxCJINhzK4KglKK0rwXsA1qE60GT5A8yKPc8/5WytlLU/n3ict4zHWGvu8DQsZntIeJP6yxerTNsfHVh22dYCTPm62w/ECYxM4Trtk6OrIDGCqdGZ0vNs/UvmmQm5Csc8955AQMhaGMbIWibJ948B75z55F2xCHNn0ZwdG+Kur4aXdx2aEnh4I8IzBqHtHEl/mMJeDPNuCXZ8G0R1B9C0MYuzVHQ5gc19ns0xucrtM5RagixhzJkXsqJLMS60x0RuEaP2SiEoG147EGNsz6N1S6Vz/IV2ltknqwjJuE3mTJvmmWGWCMNGAneB/c3KwRtbCMErUBU3VVWVs6kuWtp2W4wrd4fysxFm6moqLjzE0VVluGC9sipqxw/m3RXNMaqWE6TFbB3iyOostqRwwuZe/lOla7aR9I2MSU/CXOg2PAxZuSG2HdU54ulOgNGVRe2/UeFmbdEZ+9RnQxL9c/CHtDY64nkqP35toO9x7JkeufJxLlU8mq5XE8I2thGCNrYwmtz4btwEf/OLUgLZ1A84VOKureuQ9y2IDioI4EZY5DWL8efEI8v3YTHZ/x8Kbh/hKCNXZqDoLUHNA56VSYXqLxplvlJLZeUv2iSGWGT2e7WyG3GkQX3ihC0jYfcgMZhr8ZCh8rAr2MSHokSk/D9DJk/fh2TMM6msN6lcsF37zEJQtDGNkLQCkSJqu8yXNDeKj1cgt3lw2Jz1rpoWGMtydr0Bey9cM0XoH/uOf4zeU2lqP2HxOW8n3OUA2674eNzByMLjiVmhdh+IMyM+Tp9hlXPrx06Psyi1Trxp3TM9uqf3VVJY45d5a3bLun7UabMOxaZuQ6VxK8jFISgjW2EoI1tbmXQegq8eC9fQdqzHWnxHILj+1PYs010cfvh8xQO7EBg+miktUvwHz2MNz0Lj6/hFmUU3D9C0MYuTVHQOoIaRzwaUwtU3rHIPFyLvHreFFmYabNbxRyInePae0UI2sZPiqSx06Mxw67RPU+mhSmSk1ybtP1JhswLJpkeeTIz7ZHnpdYRkyAEbWwjBK1AlKj6LsMF7Y1iheGfL+Hxll15tEUXHm3RhcdbdmX450vQQmGjh3fHMnqSMAp7QGG5I5tnM3dX66p9NG0LM/JTsASMyaqtDadf40JyiI07Q0yeXXPBsdGf66zYqHP8go6timzPDWhscKv0zItcLlX1gO5pk8xYp8bRgN6sVicW3D1C0MY2d1okzOMM4Lt6DWnfLqQl8whOGEBhr7ejitvr7z9LYb/2BKcMx79qAf5D+/Emp+LxXjd8WwU1EYI2dmkKgtYZ1DjmjQiqd82RvP3bxdQzJplBVoU4l0q2JITs3SIEbdPEEdQ479NY51IZa1P40KLwh6zape33M2R+lVVMa7PCIKvCIodKvCeyWJ4QtLGNELQCUaLquwwXtCOnLKNz/2lcuJaBxxfE4wty7ko6HftNYepXG4we3h3L6EmiMXDFJ9HXcoZ/T15dKWr/d9IKOuQc47DHafj4biffq3H6ss6qzTpjbltwrOegEibMDLNue4hz13TsvshzXMFI98kYm0ILU/WDuF9kFvNRrsJKpyZ+5MQQQtDGNncStNHwuArxJabgP7APacVXBCcPpbBPO66//2x0cdunHcHJQ5FWfIX/wD58iSl4XIWG74NYRgja2KUxClpXUOOkL3IF0PsWuUa+/vczZP6SXcynVoV1LpVMEVnwrRGCtnlhDWoc9WoscqoMtiq8YVb4dVb0mIQ/ZMt0tqmMsSmscamc80Xkr9HbIWgYhKAViBJV32W4oH3unQEEi27WuN0fuM6L7YYYMKJ7K6MnicaEPaCwxJ7F05m7K0Xt3yQu4bfpW5ldkEpeI8iqrY1cR4ijZ0IsXqszbEJ1YfvJkBKmfqGzZW+YK2khnF9f9pQmaazyh/kwT+Gnt+W2vWKWmWpXOe0zftsE9YcQtLHNtxW00fB4r+NNTsV/aD/+VQsIThlOYb/20cVt+79S2OttghMGIC2Zh7RvF76r1/A4A4bvm1hACNrYpbEI2rM+jXkOlQ65Cr+qRSj9MVumT57CKlf9r2wfSwhBGxukSRo73Rqz7JEr6VqaamY1V41Be84k0y1XZrpdZYdbI9lv/DYIHjxC0ApEiarvMlzQPv1WP1RNr3G7Fgrz9Jv9DBjRvZXRk0Rj5YLPRy/zaf41eVWlqP0/SSvonHOcE1634eOriyxriAPHdL5cHmbg6OrCtt+IMHMW6+yK17HaIxm0+UGNbW6N/laFJ25baOyJbJlPrQrbYnzV4+aIELSxzYMWtNHw+G7gTc/Cf/Qw0tolBKaPpnBgB4o+fD66uO3ZhuD4/kiL5yDt2Y738hU8BV7D91lzQgja2MUoQXvBpzHfodLZotSIXfp+RmRV+555MsudQg7VJ0LQxi7OoMa1YIg9RSWMz1fokKvwp+xIc0Zt4vaXmcW0zlEYYFVY4FA55FWxiHznJo0QtAJRouq7DBe0fUd/wbhZq7lxU6m8rehGMWNnrqLnsDkGjuzuyuhJorFTEFBYaM/kfzJ2Vuuq/X36NuYVpGNtpF21VUnODrHzoM7MBTp9h1cXtoPGhPlqhc6BEzomW+Sg67RPY6pd5RVz9YO2n2bItLPILHCopIhuliaPELSxTUMJ2mh4fMX40k34E+KR1i8nMGMMwUEdKerQIvoCZd1aExzTF2nhDPw7t+C7cBGvzWX4vmyKCEEbuzSUoL3sj1x23TVX4fFasjJ/lxXp2FvsVLkqhGyDIQRtbFNbBq01GMl8XuJUGWpVaGOWebSWkyhVT6a0s8iMzo90uJ/xadhF7EiTQAhagShR9V2GC1q3N8DbXcfy2AtdafHuIJ5vO5DHXujKax1HYrN7jB7eHcvoSaIpcdbro7v5FP+SvLJS1P5z8kq6mk9yyts0urscksal1BCbdoeZ/mUkAqGqsB0xMczSdToJZ0PkOUNkSyFWOjU+ylVqZMI9Z5IZY1M47I2clTd62wT3hhC0sY3RgjYqkow302NkjDkAACAASURBVIz/WALSxpUEZo2jcPBHFHVoGV3cdn2V4OjeSPOnIe2Iw3fuPN48h/Hb0ogRgjZ2qS9Bm+TXWOqMrDr/+1qE7GNZMh/nKix0qFwUQtYwhKCNbe5lkbAMSWOPR2OuQ6V3nsyLOTIPR5G2P8yQ+atJpmuuwtQCla1ujUTx/7zRIQStIJbLlGvn8ZZdq/Foiy4MGDf/gb3+qx1G1Hrfmi2HGTdr9QN5n8ZehgtagIqKCtKy8jh4/BK7D58lKd1MWVm50cO6qzJ6kmiqzC1I48mM7dW6ap/K2MG8gnTDx3a3qHoZUlGY01d01mwJMW5a9e7aHgNLGDstzOrNOqcv61i9Gvs8GsNtCn/Jri5rf5Mp0z1PZq1LxSwuf2oSCEEb2zRaQRsNScFrysN38gSBTWsJzJ1I4bBuFHVqFV3cdn6J4IgeBOZNRtqyHv/p03jMNtwB1fjtMRghaGOXByVoUyWNlU6NT/JknsquKWx+kynTMVfhS0dkISKjt1sQQQja2OZeBG1tuIIal/wacS6ViQUqHXMV/lxHTMIvMot5NUemnzUyFxz0iN8JRnDe52Oj08IMZ7IQtDGOqG/qRrFCq/ZDuJyc/UBery5Bq4XCyEps7P9GIWjLyysIFN7A5Q3UoLGX0ZNEU+eU10sX8wn+OWlFpaj9l+SVdDef4qzXZ/j46kLVIxm0VW/Lc4ZIOKezdL3OiEnVhW2vwSVMnhNm484QF1NCXPFGzqq3MUfOnFc9i/6GWWGmPZI5Z/R2CmpHCNrYpskJ2mgEVDxmG/7Tp5G2rCcwbzLBET0o6vxSdHHbqRWFw7oRmDuRwKa1+E6ewGvKiylxKwRt7PJtBW2GpLHapdI3L5JbebuIeSSzmA8tCnMdkUVGXY1gWwU1EYI2trlfQRuN/KDGca/GMqfGMJvCO5ZI13y0mITfZcm0NcuMssmscmqc8mkUiJiEb40zqHLJ72ezM49p+cn0MJ/ixax9PJwax/cSl1ZrKMqVbxo+XoFxiPqmhkxcxJylWyv/nZKZy7s9xvNqhxG89fFnleLWlGunbfdxzFm6lY8HTuetjz/jUlIWA8ct4J1uY5n61YbKx73WcQSzFm3mxXZDeK3jiMrXqNpBG+19mksZLmjjT17h6bf68WiLLrXS2MvoSaK5YA0UMys/hd+lb6v2Jfin9J3ML8gwfHy1UZugvR2TLcSBEzpfrdAZ+Fl1YdtnWAkz5utsP6BzLivEBpdKr7yauVV/zJYZbFXY5RYZVY0JIWhjm2YjaOvAm+fAd+480o44pPnTCI7uTVHXV6OL244tKRzyMYHZ45HiVuM7cRxvtgW3JBu+LQ8aIWhjl7sVtFmSxga3ygCrwtOm2jvj2llkZtlVjvtE1FFTQQja2Ka+BG00TFKIfR6NeQ6VPnkKL90hJuEZUyQKZYpdZbNb5apY86IaV3wSW51WZuSn0Mdyhpey9vPz1Lhqvz1r479S1vLnjF10zj2GRblh+HYIjKOhqyKtNxWpPRqcO9Xuw2dp230cJSWllbe93XUsBxIuArD/6AVadx4FgMXm5LEXupKcYQFgxOdLeavLGMLhEvRwCX987RMChTcw5dr57Yvd2H34LAB74s/xWseRQHVBG+19mksZLmife2cAX63cSb7Di1cqrEFjL6MniebICa+bTjnH+acqXbX/lryKTyxnuOBrPF21dyNobyc1O8SuwzqzF+n0u23BsQGjwnyxVGfvUZ0d5hDjbAov3Paj7meZMh1yFZY4VTKFrDUUIWhjm1gQtNHw2lz4LlzEv3ML0sIZBMf0pahb6+jitkMLgoM6EpgxBmn9cvwJ8fjSTXh8jX+RyGgIQRu7RBO0OYEQcS6VwVaFZ2vpkH04Q+Zds8z0ApUEr4ajEWyL4N4Rgja2aWhBWxuuoMZVv8Yml8rndpWPciMngR6KIm5/linzco5M3zyFeQ6V/Z7IfGX0vqwvkvxBdrrymVOQSl/LGV7LPsgjaZv4+8TldUrY/0hew5/Sd/J+zlFG266w3JFNgtdVbUFrkUEraOiquPauIdRVDrefZ9/uT16+q9rtJSWllJdXAOAPXOd3L3YHIoL26bf6VT5u/qqdTP5ifeW/X+s4gmxLAaZcO394tVfla5SUlPJoiy4U3SiuJmijvU9zKcMF7RMv90TVdKOH8a3L6EmiOWMJ3GRWfgqPp22t9gX6dOZultizsAcUQ8f3bQRtVZySxpW0EJv3hpnyhc4ng6vn1w4dH2bRap0tZ3Tm5Wq8b6l51vzFHJmJBSrHvcZ/XrGGELSxTSwL2mh4Crx4L19B2rMdafEcguP7U9izTXRx++HzFA7sQGD6aKS1S/AfPYw3PQuPr/F3pwhBG7vcErSWQIit7sjlyC+YamZI/jRDpo1ZZopd5bBXw94Ixi64f4SgjW0ag6CNRkFA46Qvkm09whY5IfTbOmISHs+SaWuRGW5TWO7UOO6LRC0YvR13Q6pUxB53Pl/Y0+mfe443sg/xaNoW/rFKc09t/FvyKp7K2MF7piOMsF5iiT2LeI8TS+DuYguEoBU0eJVch5KihidKlZWV06Hv58TtSqhx35FTV+ncfyof9J5Eu14TebxlVyAiaFu9P7TycYvW7Gb24i2V/27deRQZOTZMuXZatR9S7TX/8GovCpy+aoI22vs0lzJc0A4av5DzVzOMHsa3LqMniVjhsMdBh5yEal+8/568mr6WM1zxSYaM6X4F7e3YfRpnr+qs2Rpi/IwwPQdVF7ajP9dZskln3pUQ/SwKT2bXPNDqk6cQ51LJE9219Y4QtLGNELR3j8cZwHf1GtK+XUhL5hGcMIDCXm9HFbfX33+Wwn7tCU4Zjn/VAvyH9uNNTsXjvW74ttxCCNrYIy+gsdOjMcom81qeWqNb7ccZMq3NChMLIgv5iDzI5okQtLFNYxa00TAHQhzwqHxhV+mXp/CKWebnmcW1StuHMmT+kl1MJ4vCpAKVTS6Vy35jMrEzpOvsdxcwvyCDQbnnaZMdz2/Tt/J/7iBh/yV5Jb9P30ZbUzxDcy+wyJ7JIbeDHOn+s2OFoBXEei1eu4dew+dQUVFR7fZg0U2efLkneQVuADy+4LcStH98rXfla9/qoL1xU6kUtHW9T3MpQwTtmi2HK1m6fh8vfTCMSfPWsXrLoWr3rdly2Ijh3VMZPUnEGuZAMdPyk/l12ubKL+LvJC7h2czdLHdkN2hX7YMWtLdjc4U4fl5n+UadkZP1arK256ASJswKM3NviGEpGq/mVL+06ccZkbPi8xwqiX7jP7fmiBC0sY0QtPePx1WILzEF/4F9SCu+Ijh5KIV92nH9/Weji9s+7QhOHoq04iv8B/bhS0zB4yps8LELQdv8sQY1drs1xtgiQuOHt4mMH2bIvJYjM9amsNejYWsEYxbUP0LQxjZNUdBG45qkscWtMdWu0iVX4RlTzXmuakTLizkyvfNk5jpU9no0sqX7PwbKkW5yyO1gkT2TobkXaGuK5/fp2/iX5JV1Stj/k7SC36ZvpU12PINyzzO/IIP97gIypPo9kSsErSCWKzUrj+fbDkQKXq9xn8Xm5Jk2nxIOl1BeXsEXy7fzaIsuhPTwPQnax17oypFTVwHYd/Q8b3UZA3yTQVvX+zSXMkTQftBn8l3T2MvoSSKW2e8uoH3OUf6hSqbQfyavoX/uOa75AvX+/vUtaG8nJz/EoRM6C1bpDB5bPb/2kyEljF8UZsQJnfbpCr+87cz40yaZkTaZAx5V5N49IISgjW2EoK0/PN7reJNT8R/aj3/VAoJThlPYr310cdv+rxT2epvghAFIS+Yh7duF7+o1PM76+x4Qgrb5kR/U2O/RGJ+v0DpH4UeZNYXsSzkyn+UrnJLLsDaCMQsaHiFoY5vmJGhrwx7QOO3TWOXUGGVTeM8i80Qtmdq3eCxL5m2zzFCrwlKnxjFvzZNVlsBN4j1OltizGGG9xHumIzyVsYN/S15Vp4T9x6QV/CZtC62zD/Fp7lnmFaSzx51PqlRk2P4RglYQyzVmxkoebdGFx1t2rcb/tO4DwOhpK2j1/lA+6D2Ji9cy6fTpVNp/MvGuBW26ycbbXccye/EWWnceRevOo0hKjywsVjXiINr7NJcyPOKgqZfRk4QgcvZ1Sn4Sj6RtqtZV+0LmXlY7cnAE1Xp534YWtLeTmqOzO15nzhKdfiOrC9u+o8IMigvR6aLCnzKVagdTv8wspkuuwipnZHVYoz+/pooQtLGNELQNj8d3A29qBr74g0irFxGYNpLC/h9w/YPno4vbnm0Iju+PtHgO0p7teC9fwWO//1gcIWibPvaAxkGvyuQClTfNMj+5TTz8IEPmRZPMCJvMdrdG7teRBdEWCRPEBkLQxjbNXdBGwxwIcdCrMt+h0t+q8HqOwi+ixCREOm4lHk7P479SL/MPKQf5bvIm/iZxaQ0J+/eJy3kkbROvZR+kr+UMcwpS2enKJ8kfNHyba0MIWoEoUfVdhgvacLiEuF3HKv994nwy/T77kpmLNqNqIQNHdndl9CQhqM5udz5tTfH8XeKyyi///0pZy6Dc8w/8y95oQVsVV0DjanqIrXvDTPtSp/fQ6vm1vaaF6XxA48UkhR/dljX1Wo7M1AKVMz7jt6MpIQRtbCMEbePB47uJL92EPyEeaf1yAjPGEBzUkaIOLaIvUNb9DYJj+xFYNAv/rq34Ll7Ck++56/cUgrbp4QhqHPFoTC1QeaeWRTe/nyHzvCnSCbbZrWKOssq5ELSxjRC0sU2sClp3UCM/KHPS42G1I4ex1qt0yDnGHzPi+X+pR/inlLP8a2o6/5Hm4L8zbtYqbX+QfoNfZ/h40eSmb56PFY4i0iTjt+teEIJWIEpUfZfhgnbCnDW0/2QiZWXlWO0efvdid6bN30iXQTMYO3OV0cO7Yxk9SQhqxyTdYKLtGj9PjasUtX+buIQXs/ax1mF+IF21jUnQ3o7Dr3E+UWfdthATZlVfcKzr0BI+XBHitdMKv0qvfvD0ZLZMf6vCdnfTWcnVKISgjW2EoG0CSDLeTDP+YwlIG1cSmDWOwsEfUdShZXRx2/VVgqN7I82fhrQjDt+583jzHDVeWwjaxo8zGLncdoZd490oi+I8Y5IZZI0srnm3eYpC0MY2QtDGNs1d0NoDCqe9XtY6zEywXaVzznH+mrmbH6Ss5zt1xBF8L3EpD6fG8WLWPrpZTjPUlsVwm5tPrUW0s8g1Fjauym8yZd40ywy2Kix2qhz1ao02QkYIWoEoUfVdhgvaZ9p8Whk0/OWKHfT77EsgshLcc+8MMGRMi9bsrvbeDrefLoNm8Jc3+vJuj/GVWRggDtCbAjtd+bTJjud/JX3TVfv9lHUMzb1Aqv/bLy7TmAXt7dg8IU5c0FmxUWf051UWHBtUQrspYV7fqfGHqzUXBGhvkVnoUJvcGe6GQAja2EYI2iaMpOA15eE7eYLAprUE5k6kcFg3ijq1ii5uP36F4KieBL6cgrRtA6Upl/BaCnAH6idCR3DvuIIaJ30ac+wq71vkWi+//Ut2MZ9aFda5VDID3+59hKCNbYSgjW2ag6C1BxTO+bxscFqYnJ9IF/MJns/aw49SN/C3dUjY7yYu5ccpG3ghcy/dzCeZkp9EnDOXCz7fXTW+5AY0Dns1FjpUBn4dk/BIHTEJf8iS+dCiMNamsN6lcsGnGb6OhhC0AlGi6rsMF7RPvtyTsrJyAN7rOYFdh84AUFpWxhMv92zw8eQ7vLTuPKqaoP144HTWbT9CWVk5Zy+n0+LdQZSUlgHiAL0pkSXdYKz1Kj9J3VjtYOOVrANsdFpw3mNXbVMStLdjtoeIP6WzaLXO0PHf5Nd2HlXCK8tCPH1c5cepNS/9HGNTOOKJ/BA2ehuMRgja2EYI2mZIQMVjtuE/fRppy3oC8yYTHNGDos4vRRe3nVpROKwbgbkTCWxai+/kCbymPCFuG4izPo15DpUOuQq/yqr5Q/+P2TJ98hRWuTTSH9CJRiFoYxshaGObpiJoHUGViz4/m1y5TMlPorv5FC9k7uUnqRv5Xi1ZsFWvNnwodT3PZu7mI/MJJtqusc5p5ozXhz2g1MtYUySNnZ7I1Q7d82RamGR+HEXa/jhD5gWTTI88mZn2yPNSG7CJRAhagShR9V2GC9p3e4xn2/5TxJ+8whMv96ToRjEA569m8OZHoxt8PF0Hz+DwicuVgjZYdJM/vtab0rKyyse813MCV5JNgDhAb4q4ghpbnVbeyD7E96p01T6Uup6R1suk3eXqoE1Z0N5OuiXE3qM685bo9B8VEbbdBpfQZk6Yp7erPHK15uVIPfJk1rui5/Q1d4SgjW2EoI0tvHkOfOfOI+2IQ5o/jeLxfSnq+mp0cduxJYVDPiYwezxS3Gp8J47jzbbglmTDt6Upc8GnMd+h0tmi8JvMmj/en8yW6ZUns8KpkeyvnzHEkqDN90by7Q+d0FmzNcTsRTojJobpM7SE0Z/rzFmss2ZLiH0JOhcSdUz5zX9OFII2tmlMgtYV1Ljik9jqtDIjP4Ve5tO8lLWfn6fGVft9czvfSVzCf6es4+nM3XTMOcY42zVWO3I45fVQUE8S9l5xBDXO+zTWuVTG2hQ+sEQ6aqN12/4qq5jWZoVBVoVFDpV4j0bet7xKoi6EoBWIElXfZbigvZSYxV/b9OfJl3sStysBgEDhDZ56pRd7j5xv0LHsiT/HqGnLKbpRXClok9ItvN11bLXHDZ20mG37TwGxcYDenMmQrvOZ9Qo/St1QLUfpteyDbHLl1dkp2pwEbVVcAY1rGSG27Q8z4yudPl8vOPb+pDAvrA7x2xMKP6iSXfvDjEh21Gx75PIjo8ffUAhBG9sIQRvb3Mqg9dpc+C5cxL9zC9LCGQTH9KWoW+vo4rZDC4KDOhKYMQZp/XL8CfH40k14fMWGb1Nj5IpfY7FTpVuuzOO1/Dj/XZZM9zyZJU6Vqw3URdUcBa3VFeJSSogDx3RWbdKZMb/61TX3Qp+hJYyZGmbeEp1120McPKFzKSWE2d485kshaGObhha0rqBGoj/ADpeN2QWp9LGc4dXsAzyStqnagsi18Z/Ja/hzxi4+NCUwxnqFlXYTx71urIGm+31jDUYWe1zkVBlsVXjDrPDrWq6euMVT2TLvWyJXAK5xqZy7z5gEIWgFokTVdxkuaG9V1Q7ViooK8grcDfr+12/IvN5pJMGim9UE7YVrGXzQe1K1x46duYr1248AUF5eIWgGlJVXcPiGnbdzD1e79Ofh9I1M8yThD2s1nlNRUUF5hfFjbwhMlnJ2Hyhl6rxSegws4aMRJby2QOepPSo/Sax+MPS0WWG8O8Tp4jL0MuPHXl8Y/fmHS8sj7y8whFvfVUaPQ2Dc51/X/WU3iijJTCJ0ZBfqyrkUT+zPjZ5vRhW31z98nptDOiHPHYO2dQXhC8cpLcilPKwbvq21ES6pn/nHES5nS1Ep/R0af8hRavzY/q1JobddY0NhCbm6cXPgnT7/xkrRjQqyzBUcP1NO3I5SZi0oYcjYuoXruBmlLFlTyt74cq4kl2OyVFRyNbmcgwnlrNpYyrQvSxn0Wd2v1W94CVPmlrJsbSl7DpVy4Wo51vxyFM34fXO3VDThz7+5EC4pM+747+u/gQf9ui5d4XSxi5VSNiOdF2mbe5jHM7fyj0nL65awqWt4Ons3H9uOM8WdyNbCXJIUCbm0xPDj5IbEEy7nZHEZS6QSBjg0Xrao/LSWqyy+nyHz40yZlhaVfnaNBf4wx26W4dDLDf38BU0HUaLquxqNoDW6xsxYyY4DpwGqCdrkDAtvdRlT7bFDJi6qfKynUBM0M9IDRYy0XuKh1PXfdNUmLeNN02G2u624v36cqpdxQw4bPt6GpsCrcfpypMvms6lhug8uoe10nWfiVH5xrvoP6p9lynTKVVjm1MgKGj/2B4leUk7hTd24MQQ1vIUhgUGUllUg3dANH4fAGCoqwPctnudzBJCuJhLYt5vA0nkEJwyksNfb0cXt+89S2K89wSnDkVYtRDq8H39KGj7fDWP3QdGDmX/SAyFWuzR6WxX+UMsq37/JkumcqzDfqXHR3zjmPF9R5PM3ehx1YbLpnL2is+tgmCXrdCbPCfPpyOgdsX2GlTB+RpiFq8Js2xfm1MUwmbk6nuC9v7fdGyIxQ+foGZ1Nu8PMXxFm4sww/ep4/x4DSxgwOsykOWEWrQ6zZW+YY2d1krN1HH7j92dVpBs6pWUVho8jlvEYeDxZ+HUH7bd5bnqgiH3uAr6ypzMw9xxvmg7zWNoW/ilpRZ0S9v8mr+LJ9O28a4pnuPUSix1ZxHudWILFhh8LN2ZchZHvjY1ulfEFCh1zFf6ULfODKN22v8ws5nWzQn+rwkKnymGvSm4wVO01b3zdQWv0tgmMQ5So+q5GK2gXrN7Fqx1GNNj7Pf1WP557ZwDPvTOAZ9/uz2MvdOW5dwZQ4PTy1Cu90ELhyse+1nEEyRkWoHld4iaojjOossFp4aWs/Xy3SlftT1M3Ms52DZemNsuIg3vF4ghx5EyIxWt1hk0I03FsCa2W6/w2XuGh2xYaa2WSmVSgcrwZRCGIiIPYRkQcxDYVX0ccPKjX87gK8V1Nwr9/N9KyLwlMHExR77Z1i9s+7QhOHoq04iv8B/bhS0zB4y40fN/URYakscal0i9P4X9qEbKPZBbTIVdhnkPljK9xLkjpKWwcEQeugEaGJcSJCzrb9oVZsEpn/MwwfYdFl6CfjgwzaXaYxWt1dhzUOXNFJyuv4eaxXGeIS6mRTNv120N8sVRn7LQwfeoYc4+BJQwaE+bzuZFxb9sf5vh5ndTsEI56yhmuCxFxENvcKeIgS7rBQbedhfZMhuRe4O3seH6Xvo1/Tl5Zp4T956QV/C59G29nxzM49zwLCjI54LaT6b9u+DY3N6xBjWNejSVOlaFWhTZmmUejdNveyjZvZ5EZna+w0R8i+WYp9nrItxU0DUSJqu9qtIL23JV0VsQdMOS9q3bQAnQfMoul6/dRVlbOgWMXefmDYZSVlQPGH6ALGoYkf5AhuRf475R1lQdTf5e0jHfNR9jpyjd8fI2JzLwQ+xN0vlwWpu/YMG9+ofOnnRo/uVL9gOex9Mjq2ptcKtZGMO57RQja2EYI2tjmQQvaaHjchXiTU/Ef2o9/1QKCU4ZT2K89199/NnrObe+2BCYORlr2Jf79u/FdTcLjDBiyn7IkjQ1ulQFWhadNNX/4/iKzmPaWSIb5CZ+GsxF8tnf8TBpY0Dr9GimmEAnndDbtCfPl8jBjpob5ZEgdQvOzMFPmhVm+QWd3vM65azrmgsY9X+Xkh7iQFMnBXbMlxNzFOqM/1/lkcPTt7DmohGHjw0z/Smf5Bp2dh3ROX9ZJt4Rw1FMmsRC0sU3wpk5A1znscbLYnslw6yXeNR3hyYzt/Gvyqjol7D8lreCxtC28mX2YAZZzfGlPZ6+74K4XJxbULxmSxm63xhy7yid5Mi/myDwcRdr+MEPmryaZrrkKUwtUtro1Eg04YSRoeESJqu9qtILWyLpd0Lq8AT4eOJ0/v9GXdr0mkpmTX3mf0ZOEoGFxBFXWOHJombmPv61y0PXz1Dgm2q5hkm4YPsbGhCugkZQVYsdBnRkLdDrMCPPceo1fn1T47yoLjf0oXebNTIUv7CpJTeQARwja2EYI2timoQRtNDy+G3hTM/DFH0RavYjAtJEU9v+A6x88H1XcFvZsQ3B8f6TFc5D2bMd7+Qoeu/RAx5UTCBHniize8mwtHbI/y5Rpa5aZblc55r2/xVoM2/f1JGjtPo3EzBDxpyPdpXOX6IyarNOrDkE5ZFxkMc+VcTr7EyKLceU5m9e85ApoZOWFOHtVZ098ZFtnLtAZMSlc577pNbiEEZPCzFwQec6eeJ2zV3UyrSFc99H9JgRtbJAXKOaox8UyRxajrJdpn3OUP6bv5N9TVtcpYf8hcTm/TtvM69kH6Zd7lrkFaex220jxN+6rGwS14wpqXPJrxLlUJhaofGRVeTonekzCLzKLeTVHpp9V4UuHykGPijnQvObkWEeUqPquRiFoi24Uk5FjIyndXIPGXkZPEgLjMMs3GGq7wH8mr/mmqzZxGW1N8exxi67a2nBIGhdTQsTtDjN6QZhXl4Z44oDKQ8m3rbqaojDYpHDQqzbaH/BC0MY2QtDGNkYL2mh4fDfxpZvwJ8QjrV9OYMYYgoM6UtShRfSO2+5vEBzbj8CiWfh3bcV38RKefM9dvZ8lEGKrW2OYTeEFU80frT/NkHnbLDPVrhLv0bA3gn103/v4PgWtzRPiSlqIgycinaIzF0TigXoOit4lOnxCmNkLddZsjcQDXE0Pke8xfl8YjVPSSLeEOH050j27fIPO9K90ho2Pvj97DCzhk8EljP5cZ87iyGewP0HnQlKInPw7z+lC0DYfbEGZ4143K+0mxliv8KEpgT9n7Kp2XF8bf5+0jF+mxfFq9gH6WM4wuyCVHS4bif5Ao4xlETw4rn+dQZsf1Dju1VjmjHz/vWOReSwrekzC77IiJydH2mRWOjVO+jQKRExCk0SUqPouwwXt0vX7eLxlVx5t0YXHW3atQWMvoycJgXGoehnX5TCOoMpKu4nns/bwnSoHcI+kbWJKfhI50k3Dx9pYKfBqnLmis3yLTteVOn/ZqvKzC9UPah5OKaZtksJSm4ZJajxCTAja2EYI2timsQraqEgy3kwz/mMJSBtXEpg1jsLBH1HUoWV0cdv1VYKjeyPNn4a0Iw7fufPY8pzs9GiMskUu/3zo9tWxM2RamxUmFkQ6h5rjD9C7FbR5zhAXkkPsOxrp4Jz+lc7gsdEXyur1tTScu1Rnw45ItntSljE5q80Bx9fREMfPR3JrF6/V+XxumEFj6l6srM+wEsZOC/PFUp112yJC/FJqCIsjMt8LQdu0KAgonPJ6WO3IYZztGh1zjvF05m7+O2VdtWP22/le0jJ+M6W/3AAAIABJREFUlhpHq6z99DSfZnp+MlucVlIKg4TqyKAVNG9uCdpo95ukEPs8GvMcKn3yFF66Q0zC0yaZj3IVPrerbHarXJUaZ/a64BtEiarvMlzQPt92IMkZlspM16ZWRk8SAuO4JWir3nbFJ9Ev9yz/UeXs+z8kLqd9zlH2uwsMH3NjJ88ZIuFsiMnbQrTerPFYgsr306oc0KTL/OWywtBkjZMuY8cqBG1sIwRtbNPkBG00JAWvKQ/fyRMENq0lMHcihcO6UdSpFdfb/xVvxxc5PLI/E5eu5LX4K/ww9Ua1H5g/SrvJ6ykexmZL7HWr2IzengbgdkGbkx/i3DWdXfE6S9dHJOCAUdElYO+hEQE4f4XO5j1hjp/TSc3R6y0zVVCTAp9GYlbkeGPz3jALV+tMml3359ZjYAn9RoaZMDPMsnWlxO0OE3860s1s84jvAiOxBxTOen2sd1qYZLvGx+YTPJe5hx+mrq8WR3Y7301cyk9SN/JC5l66m08xJT+JTa5cLvr8OIJqre91p0XCBM2bOwna2nAFNa76NTa5VD63q3yUG8lkv/0EZ9UooJdzZPrmRRbM3O9pXA0qsY4oUfVdhgvad3uMN3oI91VGTxIC46hN0N7CHlBY6sjimcxd1Q4Gf522mWn5yZgDxYaPvymQZQ2x/aRO790h/nxA5ceJ1Q9ifnlV5r1zKotTQ1gb+MetELSxjRC0sU2zEbS3kR/U2O/RGJ+v0DqziB9lFFfv+Em9wSvx1xi/bDUHRw/E+7XIvd7+rxR1akXhsG4E5k4ksGktvpMn8JrycAdqFx1NCVdAI9MauZR+x0GdNXFlTJwVpt+I6EKv3/AwE2ZF5N+2/WFOXtLJzLu//FNB/WN1h7iaFiL+lM7GnSG+Wh5m/Iy6P+seA0sYMCrMpNmRz3vL3jAJ53SSskIU+IzfpuaAI6hywecjzpnLlPwkuplP8kLmXn6cspHvJi6NKmH/NnEJP0rdwPNZe+hiPsHk/EQ2OC2c83mxB5R7HocQtLHNtxG00SgIaJzwaaxwaoywybxrlvltHTEJj2fJtLXIDLcpLHdqHPdFvrON3iexhihR9V2GC9q12+JZEXeAYlk1eijfqoyeJATGUZegrcoln5/eljP8W5XVXf8xaQUfmhI45HYYvh1NiaTsELNPhnjroMojZ5Xq4iBZ5pmTCkNOaxzLqv8fwULQxjZC0MY2zUXQ2gMaB70qkwtU3jTL/OS2H4Q/yJB50SQzwiaz3a2RG9DwWArwnz2DtG0DgS+nEBzVk6KPX4keldCxJYVDPiYwezxS3Gp8J47jzbbglu5djtQ3Tkkj3Ry5LH7L3jDzV+qMmx6mz9DoYq7/qDCfzwmzZJ3OrsORhahMNjE3NEfM9hBX03TOXipn3fYQ85bojJla999Hj4ElDB4bZsq8SMzC9gNhjl/QSTGJ+IrbcQZVLvn9bHbmMS0/mR7mU7yYtY+HU+P4Xh0S9juJS/hBynr+mrmbzjnHmWC7ylqHmdNeLwXfQsLWhRC0sc2DFLTRMAdCHPCofGFX6Zen8IpZ5ueZxbVK24cyZP6SXUwni8KkApVNLpXLfhGTUJ+IElXfZbigPXLqKn96vTePtujC71t15/cv9ahGYy+jJwmBcdytoL1FQUBhkT2LP2dU76p9PG0rs/JTsAREVu294JQ0DqSG6HcyxP+cUngotfpBy2/OKLQ9pPHVaZ303Af/Y1kI2thGCNrYpqkKWkdQ46hXY2qByjuW2rPxnjfJDLUqbHbf2+rTXpsL34WL+HduQVo4g+CYvhR1ax1d3HZoSeHgjwjMGoe0cSX+Ywl4M814fPV/hYnDr5GcHeLo2RAbd4b4YqnO6Klheg2JLtkGjQkz7UudFXE6J8+VcyHpm1xSQewQLYPWlB/ifKLOvoTIwmOzF+mM/lyv82+q56AShk0IM/0rneUbI4L/9GWdDEsIZzONvHAFNa76AmxzWZmZn8InljO8nLWfX6TF8b+SltW5ONd/pazlzxm76JCTwFjrVVY5TJzwuskPyg02fiFoY5uGELTRuCZpbHFrTLWrdMlVeMYUybGtTdw+nBHJie+dJzPXobLHo5EtYhIeCKJE1XcZLmifbzuQxWv3cPZyOleSTTVo7GX0JCEwjnsVtFW54PPRw3yK/1ulq/afklbQKec4J7xuw7etKZLj05ibqPHWWYWfXat+oPKTKzLP7FfovyfEnjM6Zvv9H6QIQRvbCEEb2zQVQesMRlaanmnXeM9SexfOMyaZQVaFOJdaLz/gPAVefBcv4d+1lcCiWQTH9qOo+xvRxe2Hz1M4sAOB6aOR1i7Bf/Qw3vQsPL57P4lZ4NW4lhHi8EmdddtDzFmsM3JSmJ6DokuzYRPCzFygs3qzzoHjOpdTQljd3+yXu10kTNA8uddFwlwBjcy8EGeu6Ow+rLNio86M+TrDJ9T9d9hrcAkjJ0X+FlfG6ew5EunOzmoiMRnJ/iC73DbmFqTRz3KG17IP8kjaJv4+cXmdEvY/ktfwp/SdvJ9zlNG2Kyx3ZJPgdWFtJNFgQtDGNkYK2tqwBzRO+zRWOTVG2RTes8g8kR09JuHRTJk25shJ2CVOlWNeLSay4x8kokTVdxkuaN/6+DOjh3BfZfQkITCO+xG0t8gPyswvyPj/2TvzuKjOs3//0qTN2/ZN37Zv87bZ2yZNmz1p0mzNYrZmMc2eGrMa9x1xj8Z933dFRFzABURQRHFDBDUIDMPsK7PPMMMMGmVmzjKi398fJxrWwYXhDJz7+/lcfyggz5nBh+dc53nuG0+oshotUB9RZWChXYmqOFmQdkb2OVgMKWfw95NB/KHhkV1FEA/uD+GdrSzmZXIoOMFdVYMPErTShgSttIlXQeuuZVDoY7DQGUYPUxB/aUHIPq2rwxBLCBvdYWhEFD3VDj98ZeXw794J/+pFqJ08DKf6vduquP2+xws4NbQHArPGwr9+JXz5efAq1Kj2fg+rm8XJSha5hzikbBUE2KhJrdcM7ZsgyK+FqzhszBAEbrmahd17GeMmQStprlTQRsP5Q0mNIyUcsvKEJnOzlnAYGeVnt8/wCPonRjB+hvDzu2E7iz2HOJyoYGG0d+zvJIX/NHI8Nix2qDDUfAzddXtxv3IbflGRHFXC/kaegr+rd+BD/X6MsZRgtUOL/GpXpzhJRoJW2sSboG0NY4BFnjeMpc4whlhCeMMQxD2tlEm4VR3Ek7ogeppDmGwLIc0dxnc1wgNesa8jHqFQYh3RBe3kBamoUJnEHsZVR+xJghCP9hC0DSn2+vC18Qhukq+7tIi9qSIZXxoLUOj1in69nRlNgMFicxhvyUK4s0kphHuOBfHM1jD6rueQukM4ong5deFI0EobErTSJp4E7TEfg8WOMHqaQ/ibtvkN2BO6IAZWhZDiZqDqBMemq92n4CurQE1uNvxJSxCYMgKnB7zf+o7bj59D1Scf4cTno5DdaznW9N2DaQNVGDz0LPqPiOCbGTwWJ/FIz+ZxsJhFpe7aan+SoJU27Sloo+GsYVCpE+ohZ+zmsSqVw/SFPIZ/E13eDhoVwcRZws/8pkwWewuEXeBm19X9vlL7v0eux45ldjUSzMfxji4fD6m247/bkLC/kq/DI6oMvK/Px0jzCax0aLDX44TBH/8SNhokaKVNZxG0rVFRwyDDw2CWPYyvzUE8p2u9TMIff6hB368qiPmOMHZ6OscaItZQKLGO6IJ2/KxkPP56P3zcfwqGfLMUQyc0Jt4j9iRBiEd7C9qLWAJ1WGRX4VFVZqPF7mPqTCxxqOLmmFdnxRFgsNPDYIA2jAfljRcjt1cE8ejuMN5czWHSKg7bd/EoU7V8nJAErbQhQSttxBS0J3wMljvD+MIcwv2a5jdVj+mEG6pkFwN5J21CpLcKR8Kz9nJYvZHDtAU8Ro45gymD1FjdLw9ZX6/E8S/GwPzJxzj98XOtyttT/d9HYMoI+JOWoCY3G76yClS7Atc0NhK00qajBG00LpbuOFDEYmsOj+UpHKbM4zF0XHR5O2Qsj8lzeSxN5rAlm0f+URZlKhZq91ns9Tix0qHBSPMJvK/PxyOqDPyqwYaBlvjvimQ8qNyOf+v2IcF8HMvsauR67FD7vxf9fYoVJGilTWcXtC3hqGVQ7GOw3h3GN7YQPjYJ64jWyiTcpwnibWMQIywhrHKFccDLwBIH19FRUCixjuiCdt7KrViUlNEq8R6xJwlCPGIlaBtS6PXiC2NBo50Kv5KvQ29jIYq9PtFfg67AcR+DOQ4Gr6pCuE3VYBGiCuJvBSG8uJHFp3M5LFwl1I9TGAQpS4JW2pCglTYdKWhLaxiscgm7XR7UNr9ZelgbRO+qIFa7wijrRLtb3AEGarNwvDsjl8eK9Rwmz+UxaHTrkmnwWB5T5gu7CXfkCQ2VdIazqK5Uw5efB//6lQjMGotTQ3vg+x4vtC5u+76D2klD4V+1AP6cTHhPlqLa4b+scZOglTbxIGijYXWzKFUKZTs272CxZC2Pb2fz6PtNCO9Nq8ZLiw14PKUU92QcxP/lZ+HG4+ujStifVyTjPuU2vKXbiyHmYiyyq5DtsUFRc0r0axUDErTSpisK2tYwBxjs8zJY4QxjuCWENw0h3NtKmYRb1EE8rg3iE1MIE61CCaXjPqExqdjX0d5QKLGO6IK2s0fsSYIQj44QtBepCtRhgV2Bh1UZjRbO/1BlYbld06EdbLsyxgCLVHcYvYxB/EXVeBHyx5NBPJnJ4O1FPIZM5pG08RwOHOVhsJGkkyIkaKVNLAVtRQ2DJBeDPlUtN/t4QBvEV+YQVjrDKOkEO2SdfgYKA4dDxzhszeGxdC2PibN49I/S3X74eB4zFvFI2iQ8GDtWzl1xfc1q31l4VVrUHNgH/4bVCMwej1PDe+L0J62L29O9u6N24mAEVs5Dzc7t8H1XgmpbdeN/lwStpIlnQWsJ1OGQ14Nkpw7fWErRQ38QT6qzcLM8NaqEvb50LX5zaCvuyt6LhzYew3MrVXhrthM9x59Bn+ERjJjIY8ZiYTd75h6hdr/CwMHVCeaf9oYErbSRkqBtjUo/g6xqYXNL76ogXtQHcWcr0vZOtfDx3lVBzHEIX6foRA+SW4JCiXVEF7Tnz19ARm4hPh08A90+TMAz/x6MHgOnISO3UOyhXVbEniQI8ehIQduQfdUu9DQcatSE4dfyFPQ1HsUJH+2qbS9ctQz2esMYbwvh2Sa71m6rDOKhvSG8msTi0wkRjJnKY80mDgePcai6yjpvROeCBK20aU9Bq/ALHZgHVAk7UFo6TviZKYSlTmFHitjX3hrOGgYVWhb5R1ls3sFi4RoO46dz6DeidRGbOJHH7KVCl/rdBzl8V8l2yBzq1ZpQc/gg/OkpCMz/FqcSv2y9OdnH/8TpXq+jdvwA+JfNgn9HOs7Zq0R/vQlxEFvQ2mqDOFJdjfVOAyZaytDTcAhPq7Px+8oNUSXsTyuScI8yHa9pc9HfVIS5tkpkuC0o8wXgCjDQWVgcK+ew64DQaG/+Cg5jp0X//9s3IYLRk4T/w8lpHHbuE3a1q80sXJ1cwrQGCVppQ4K2ZZy1Qj38De4wJlhD6GFqeT1zkb9q6/CWMYQEi/CwOb9a2LEr9nVcDhRKrCO6oF21cReef28YliTvwK79x7Fr/3EsXpuJf74zFOk7D4k9vDYj9iRBiIdYgvYipsBZzLFV4n7ltkaL8KfUO7HSoYUjEBL9NepKVNQwWOIM4wNjEHc1WWj8pSiEf6YzeH82hz4jIvh2No/UbSyOlnKX1RWc6HyQoJU21yJo1X4Gqe4wBleF8GQLO2Tv1dShpzmERc4winwM3HFwvQ2xVTMoUwrNhzZsZzF/BYfRk3n0TYgicSbzmLdC+Py9BRzKlCxs1eJfSyP8IXh1JvgKDsOfvh6B+ZNwKvFLnP70pWbClsneLP54CVHoCEHrCIRw1OvFBqcRk61l+NxwGP/UZOPWyk24LoqEvUG2Bn9SpONl7W70MRZilk2Ora4qlNTUwFUbvqqxuAMMNFVCTeid+YKInbOUw6go/+f7DI+g34gIxk4V/t+nbOGQs1/YCa+1tFzXv7NAglbakKC9Miy1DPZXM1jpCmOEJYTuxpabmV7k77og/mMKYoI1hFR3GMfisEwChRLriC5oX+sxCnqzo9nfqw1WdP9ivAgjurKIPUkQ4iG2oG1InseBHvqD+HmDXbW/la/HQFMRSnw1oo+vq2GpZbDn+wiGWsN4qMkT4rtkQTyeHcabyzl8OSaCfokRTF/IY0s2j5JKFs4uuqtEapCglTZXImi1fgabPWEMs4TwjL75Dck9mjp8bBK6JBf4hN37Yl+fp5ZBlYvFd5Uscg8KO1xnL+WQ+G3r9WH7jYhg/HQOC9dw2Jwp7KSt0LJwdoFj0F6DBb7CI/Bv3YjAoqk4p1OKPiZCHNpL0DoCIRzzebHZZcI0mwxfGQvwgjYHdyg24yfRyhHI1uDOys14UZuDXsYjmG6TIc1lwnGfD86rlLBXi6tGKF9y5Duh9MGajRxmLOaQODF6s7L+iRGMn8ljwWoOqdtZ5B7i8J2cveIyJmJAglbakKBtH5R+BlkeBvMcYfStCuIlffPNLxe5QxPE8/ogvjYHMdseRqZH2DQj1tgplFhHdEH7xBv9ETlX3+zvI+fq8cQbA0QY0ZVF7AmOEI94ErQXMQbqMMNWgb8qt15azF8nW41/arKR5KRdte1JwyZhBT4G0+xhvGJovKi4VRXEA4fC6LaeRY8pwg3LoFERzF0uNLip0HbunSRShgSttIkmaA0BFuluYbfIcy3skP2zJoj3jUHMdoRxyCv+7hCjXTjanL2Pw9rNHGYs4jF8fOuCpX9iBBNnCbVkt+bwOHRMqEcplYdPVINW2lyJoHXWhlHiq8EWdxVmWivQ21iIlzS78UdFGm6QrWlVwl4nW43bFJvwnCYbXxgLMMVajo0uI4q8vk6zjnP4GMh1LA4d47B9F4+V6zlMW8Aj4Zvo8nbQqAi+ncVjSRKPzZnCjvtSBQuzMz5+35KglTYkaGOHq5bBCZ/wQHuSLYSe5hD+oQvi1lbE7V80dXjTEMJQSwjLnGHkecMwBWI/T1AosY7ogvY//adi596iZn+fuacQH/Wb0vEDusKIPZkR4hGPgrYhuzx2fKjfjxtlay8t+n8nT8VgczFKfZfXrZponYaCtiGaAIM1LgafmkO4u0m307+UBvHM9jDenc/j6x/qug0bx2NxEo/dB4W6bWJfF3F5kKCVNg0FrSnAYruHwShrCN30zW8m/qgO4l1jEDMdQp01hwjjdQcYaH84prwjj8OqVA5T5/MYPLZ1WTJoNI/Jc3msWM8hI5fHkRJhjpL6QyUStNKmqaB11zIo9fmx3WXBHFsl+hmP4lVtLu5WpOOGiqSoEvYPlRvxjCYbnxoO4VtrOdY7DSj0VsPeSSTs1WKrZlCuFnbZb8nmsWwdh8lzeQyJMh/1GR7BkLE8Js8TPn9LNo/9RSzK1SxsHVhKigSttCFB2/FYahkc8jJY7Qoj0RLCv41Cbf7WyiQ8qgviQ1MQ46whpLgYFPkYONpx3UKhxDqiC9pSuR6PvNoH7/f+FmOmr8Ho6avxbq+JeOSV3ig8USn28NqM2JMWIR7xLmgvYvCfxTSbDPco0xvdGLygzcE6h77Dj8R1FVoTtA1xBBhkexgkWkJ4oslOujsVQTx5MIzXVrP4fNyPNyCjJvNYlcoh/ygLU5zsGCGaQ4JWulQFGBQG6zHOGsTLhiBua6FrcXdjCFPtwo4OewcKTXeAgcrE4vAJYdfa8hQOk+bwGDiqdekxdByPaQt4rN7IIWsvh6JSDnor/Wy3Bgla6eGuZSCrCWCH24qFTiVGOk7gdd0e3Kvcgp/JWpew/0+2GjfLU/GUeic+0R/EBEsp1jn0OOz1wBKoE/264hGzk8XJSmHn7OZMFouTeHw7i8egKHNYn+ERJHwjzGOr1gtz36FjHOQ6Fo52bqxIglbakKCNH1R+4R5rgSOM/lXCeuxPrUjb29VB/FMfRC9zCDPtYWz3MJBdZZkECiXWEV3QAoDPfxrrtuRhyoIN+GZ2MtZs2g2H2yf2sC4rYk9OhHh0FkHbkJ0eK97T5ze6obhZnorhpmMo9wVEH19n4nIEbVNO+IR6S92NIdzeZPHw2MkgXstg8NEMHn0aNN4YP5PHunShxpu1mqRJvECCVjpYahnkVDOYYA3hdUOw2f/d29VBvGkI4VtrCLurGVg7YEyuGgYKHYuDxSzSs4XjwN/M4NE/Ssf1hAk8Zi0Rmvzk7OdwQsbB6KCf4SuFBG3XpbLmFLI9Viy0KzHYXIw3dXn4m3Ir/qvBSaSW+K18PR5X78BHhv0YazmJJKcWB6rdMJOEbVeMdhbfyVnsOSQ0HFywmsP4GTz6J0aXt4kTecxcLNTIzdwjrKcUBg6uqxA0JGilDQna+MZdy6CkhkG6O4wp9jA+NYfwVJQyCfdo6vC6IYjBlhCWOMPIqw7D2EaZBAol1hFd0CZMWoG6YFjsYVx1xJ6ICPHojIL2Ilr/GUyyluNPih931f5EthovaXYj1WmgXbWXwdUI2oYYAyw2uMPoXdX8qM69yiBeOxzCB6tYfNVg10jfhAimzOOxKZPFcRnXJZrvdFZI0HZdbLUM9lSHMdkWwpuGEO7QNBey3avCmGALYadHELixGovd98NR4EIOGzNYLFzFYew0Dv2iiNhRk3jMWcZh/VYOuYc4nKxkYXXTz2p7QYK2c6Pyn8buajuW2tUYZjqGt3X78IByG37ZoMlqS/yPPAWPqjLxoWE/JnvKsdKhxb5qJ4wkYUXnYgmX4jLh4dO6dA5zl3MYO5WPOlf2TRBOLc1ZKjy42pkvnCDQVLVeyoUErbQhQds5sdUyOOxlkOQSylG9ZwriAW3L0vYWdRAPa4VeAWOtQaxzMTjiYy6dhqJQYh3RBe3bX4xHWaVe7GFcdcSecAjx6MyCtiGZbiv+rdvXqFbaHyo3ItF8AhU1taKPL165VkHblH1eBt/YQvhnC13eXygL4T/ZLL6c2vjmYsDICGYtEY7zlamoNmRHQoK2a5HnDWOaPYx/G1terL+sFxbqOzwMzIHoTcKuBouHRamCxZ7DHFK3sZi7nMPoSa3XY+ybEMHYqTwWrOKwMZPFviMcytUs7B1Yi1GqkKCNf7T+M8jzOLDCoUGi+QTe0+fjEVUGbpKviyphb6pIxsOqDLyry8cI83Est2uwx+OApub7S//2lTQJI8TH5WegNrE4epLDzn0c1qZxmL2Uw6jJPPomtC5v+42IYOw0DvNXcEjZymHXAQ7HyjlUOXmwPAlaqUKCtmuh97PYVS2USRhYFcIrUcok3KIO4jldUGz1RJFARBe067bk4Y1Px2LS/PVITt+D1G37GhHvEXtiIcSjqwjai6j932OCpRR3VqZdulm5XrYGr2pzscllgot21TaivQVtQypqGCx2hPFBC7LoCVUI/ykKoX9q8110g8fyWLhK6MauMMRmbIQACdrOzQEvg5n2MN43CU28mv4/66YPYqQlhG0epsXjblcraE1O4YjurgPCjq1ZSzgkTGhdxPZLFMqcLE7ikZbF4kAxC7mOpd3zIkKCNj4wBuqwr9qFVQ4NRltK8IF+Px5TZ+LX8pSoEvYXFcl4QLkNb+v2YZjpGJY4VNjlsUPpP31Z35cEbdfBWcOgUi/U7M7cw2PVBg4zFvEYMTF6s7KBoyL4ZgaPhas5pG4XHqydkLMw2mlN0NUhQSsNTtYw2OoRHtz3NIfwtE5o+ny3pk5s9USRQEQXtB/0mYQeA6e1SrxH7AmEEI+uJmgv4q5lsNVVhTd1ebhBtubSTc2tlZsw2lICRc0p0ccYD8RS0DbEUstgu4fBEEuo2XGcP2vq8E5lCIPzWYyc3/yGImGC0CRobwEHg41uHNoTErSdi0NeBnMcDD4wtrw74ll9ECMsIWxxh6Hzt/2+tiVo9TbhuO3OfULdw+kLeQwb1/pN/8CREXw7W+hOvn0Xj8PHOaiMLFx+8V87ojEkaDuOqkAdDlS7keTUYpzlJD42HMATqiz8r3x9VAn7X7K1+JtyK97U5WGwuRgL7Upke6yobIf1CwlaaWD3MajQCnW+t+3isWI9h6nzeQwbH13eDhrN49vZPJas5bF5h3C6oVRJZWa6CiRopc0xH5U4oMQ+oghah9uH+vrzAACb0yvGENotYk8UhHh0VUHbEKX/NMZZTuJ2xaZGu2rf0OVhi9sMdxyMUSw6StA25YiPwXRHGK8aGhe9v1UdxKu6IIaWhTE5g8Woyc1vIsZO5ZG0icOhYxwsdLNwTZCgjV/ctQwKfQwWOsPoYQriL5q6ZkL2GX0QQy0hbHKHobmK0iAXLgCeAANNFYvCEg4ZuTxWrucweR6PwaNbv4EfPIbHlPlCp/HMPRyOnuSgsVB5ks4ECdr2xVobxGGvB+scekywlOIT/UE8pd6Jm+WpUSXsz2RJ+IsyHf/S7sEAUxHm2SqR6bai3BeI6dqEBK20qT3L4UzwPMpULPKPckjLYrEsmcOkuTwGj4kub4eO4zFlnvDgfEsOjwNFLMrVLGxUmqbTQIKWoFBiHVEE7cMv98b3Z4QaHo+/3k+MIbRbxJ4kCPGQgqC9iLuWQZrLhH9p9+D6Brtq71Bsxnhr6WUfDexKiCVoG6INMFjrYvCZKYR7mkioR7RB9NWHMKuYxfwUHsOb7PromyDs2EvdxuJoKUe1K68QErTxxTGfUBakpzmEv2mbC9l/6IIYVBXCencYqivcleryM1AYOBw+zmHrLh5LkzlMm3cOA0a2fiM+bByP6QuFByI784XahXT8tWtAgvbKsQdCKPR6keo0YJK1HJ8ZDuNZzU7cUrkR10WRsDdUJOHPinS8os1FX+NRzLbJsc1lwckav2gPiEnQSpu2moSZnCxKFCzyCoTGjovXcJgwk8fAUa3n1fuUAAAgAElEQVT/vugzPILh3/CYvkB4eJexm8fhYxwqqZxN3EGClqBQYh1RBO37vb/FG5+OQb/RC/DgS73Qb/SCVon3iD1JEOIhJUHbEEXNKYyylOCWyo0/3kTJ1uAt3V5sc1kks6s2HgRtQxwBBjnVDEZaQnhS11hO3aUO4kNTEDO1DFIOCN2NBzXZ5dcvMYLpC3lsyeZRUsnCSUero0KCVlxO+Bgsd4bxhTmE+zXNSxY8pguiX1UQyS4G8su8wXXWMJDrWOwvYpG2g8Wi1RzGz+DRL7H1m+rEiTxmLxW6hu8+KNQhrHLRz0VXhgRtyzgCIRR7fdjkMmGqtRxfGgvwvCYHtys24SdRJOz1sjW4S5GGbppd6G0sxAxbBba4zfjOVwNnHNa+J0ErbdoStNHQ21ickHHIPSg0g1ywisP46Rz6j4gubxO/5TFrCYc1mzjsyONwpISD0sjROk0ESNASFEqsI4qgrQl8jw3b87EsJQsPv9wbS9dltUq8R+xJghAPqQrahmx0GfGSZnejm627FGmYYOn6u2rjTdA25bsaBvMdYbxtDOL2FrqQjreGsEHJIn2XsNOvqYQaNCqCucs5ZOVxkOvoCHZTSNB2LKU1DFa5wvjaHMRD2uZC9hFtEL2rgljtCqOsjZtWm5dBmYrF3gIOGzJYzF/JYcyU1jt6902IYNRkHvNWCDfVeQUcLLYLsFXT+y9FpCxorbVBFHl9SHeZMd0mQy/jEXTT7MKdlZujliP4f7LVuF2xCS9oc/ClsQBTreVIc5lQ7PWJfk1XCglaaXMtgrY13AEGGguLolIO2fnCA785y4TfS02bwTb93TR6Mo85y4Smk9n7OBwt5aCpojVbrCBBS1AosY7oTcKWJO8QewjXFLEnCUI8SND+SEVNLRLMx/H7yg2XbsZ+WpGEd3T52OG2ij6+WBDvgrYhxgCLTe4w+lQFcV+T3YZ/09ahd1UQKfYw9pUJAurb2c1l1bBxPJYk8cg9KCz+xb4msSFBG1sqahgkuRj0qQriUV1zIfuANoivzCGsdIZR0soOWYtbOGq65xCHlC3CDe/ISa3XCOw3IoLx0zksXM1hc6ZQX1CmZeHwNf+322oSRnRdurKgdQRC+M5Xg+0uCxbalRhmOob39fl4XL0D/1e5IWo5gutkq3FL5UY8q9mJzwyHMclajlSnAUe9XtgDIdGvrb0gQSttYiFoo+H0M1AZhVrnWXs5JG3iMGuJ8LustYeKF09FjZvGYf5KDuu3cth9gMNxGQe9leTttUCClqBQYh3RBW1nj9iTBCEeJGhbZr3TgG6aXY1u3P6kSMckazk0Nd+LPr72ojMJ2oa4ahnkVzOYYA3hBX1j6XW7Ooi3jCHMdTAocDA4eEw4UjdmanOpNWoyj1WpHPKPsjA5pScqSdC2Lwo/gxQXgwFVQTzewg7Z+zRBfGYKYakzjONNhKnRweK4jENOPoe1aRxmLOYw/JvWRWz/xAgmzBS6bG/J4XHoGIdKPQvXFdT6I0ErXTq7oD1Z48dOjxWLHSokmk/gQ/1+PKXe2ahsUTRurdyEp9Q78Yn+ICZYSpHqNOCw1wNrbVD0a+sISNBKm44WtNFw1jBQ6FgcPi40qly1gcP0hTwSJkRvVjZwpPA7cOEa4RTJngIO31WyMDpoTdMWJGgJCiXWiVtBu3z9Trzec4zYw2gzYk8ShHiQoI1OuS+AoeZjjTox/0yWhPf1+cj2dP5dtZ1V0Dal0i/U8vzIFMQfm0ixx7VBjLCEkOVhoLYKi/ilyVyLi//xM3msS+dw5DsOtmrxryvWkKC9NtR+BhvcYQyual4z+RZ1EPdq6tDTHMIiZxhFPqFRoc4iNLTLyuOwagOHafN5DB3X+o3ooNE8Js3lseKHpitHvuOgNrfP7iEStNIlngWtu1Y40bLLY8cKhwZjLSfxif4g/qnJxp2Vm3FDgyafre2C/X3lBjyhysL7+nwMNx3DQrsSGW4LSnw1cHShnbBXCwlaaRNPgjYadi8DmYbFgWIWW3N4LE/hMKWN35l9hkcweDSPSXOEB5hpO1jsO8KhVMnC6qb1jqeWBC1BgpYS+4guaItPKnGuvr7Z3x8rVSE5fY8II7qyiD1JEOJBgvbycARCWOvU4TlNdqPjkX9RpmOaTQaD/6zoY7wauoqgbYillkGGh8EQS6jZsfI/a4LoaQ5hlSsMlZ9BpZ7Fzn3C8bnBY5o0HBsRwZR5PDZlCg0xumIXYhK0V4bWzyDNHcZwSwjP6psL2Xs0dfjYFMQ8exg5RhYF3wlSdXkKh0lzeQyK0gF76Dge0xYIu4ey9go1+HSW2L43JGili9iCVuk/jTyPA2ucWkywlOJzw2G8qM3BnxXp+Jksqc0dsL+Tp+JRVSbe0eVjsLkY82yV2OKuwjGfFzaJ7IK9FkjQSpvOImijYXWzKFMK8jVtB4slawUpO3h0dHk7dByPKfOF38tbc3gcKGYh07Cwe8W/po6CBC1BocQ6ogvax1/vh+feHYpZy9KhNlhFG8eFCxewJHkHnn9vGJ59ZwjGz0oGw/IAAKenBl8lzMHT3Qfhgz6TUKEyXfo6sScJQjxI0F45pT4/BpmK8L/y9ZduFm+UrcWH+v3YXW0XfXxXQlcUtE0p9DGY4QjjX8Ygbm0i1F42BDHZFsIhr1AjrVTJYtsuHjMWN+9IPGBkBLOXCsKtTNU16p+RoI2OIcBiizuMREsIz7cgZP+sCaK7OoiEcgZz8zksSuYxYSaP/omt3xwO/4bHzMVCM5ScfA4nZJxoRzJJ0EqXWAtarf8M8qtdWOfQY5K1HL2MR/CydjfuVW7BzyuS2xSwv5an4CHVdryl24sBpiLMssmx2WVCodeLqkCd6K9fZ4cErbTpCoI2GkYHi+8qhRNTGzJYLFzDYcJMHgNHtv67uc/wCBImCA1nV6UK5RYOH+dQqWO73AN6ErQEhRLriC5oWY7H4eIKjJ2ZhCffGoi3Ph+HNZt2w1Xt79BxZOUVoceAqfj+TBChMIsvh8/G2rRcAMCXw2djY+Z+1NefR/FJFV78IAGRc8KuX7EnCUI8SNBePY5ACKsdWjyjyW50Y/lX5VbMtFbA2AluIqUgaBui87NIdjH43BTCPZq6Zg2bBlQFscUdRlWAgcPHoLhMWNxPmtu8kcWQsTwWrBa6FSsMnfM1JEHbGFOARYaHwWhrCC/pmwv9u1RBPF8Swsd5DHqv4NAnys3eqElCV+qUrRz2HOJQooi/45UkaKXLtQpag/8sDns9SHUaMN0mQx9jIV7X7cF9ym246TIE7E0VybhPuQ2v6/agj7EQ022yS3VgO+uJlM4ECVpp09UFbWu4Awz0VhbHyoWGY+u3cpi/gsO4aRz6RXmw2md4BCMn8Zi1RGhwlpXHobCEg8rIwukX/7quFBK0BIUS64guaBsmEjmH4pNKTJizDv94cwA+HzoTOfnHwPGRmH9vhbYKerPj0p+T0/dg/Kxk1J4+iyfeGNCoDMOHfSejVK4HQIJWypCgbR9O+HzoZzyKX8tTLt2A/rwiGT30B5HncYg+vtaQmqBtiKOWwe5qBqOsITzVpBTCHZog3jMFscgZhuyHnRNWt9DEYm2asJhvaefF8hQOews4GGzxJeJaQ+qCtirAIKuawThrCK8YgritiZC9XRnEI0dCeHEji/fncPi6ya7qvgkRjJnKY8EqQeTvO8KhTMXC1kmOSpKglS5tCVpLoA6FXi82u0yYZZNjgKkIb+n24iHV9ka/51rj5xXJuFe5Ba9oc9HLeASTrWVY59Bjf7ULWv8Z0a9f6pCglTZSFbTRcAcYaKqEGvHZ+4RTLnOWcRg1ufkD+qblsMZMER7IJqcJD+2LSjloquL3pBUJWoJCiXXiStB6/aeQum0feg6ajkdf64vh3y7HR/2m4PWeY2CocnbYODzeAD7oMwn7C8tQoTLh3V4TG3185NRVyMgtFD43DiYKQhxI0LYv9kAIKxwaPKnOanSzer9yG+bYKmEKxNfOICkL2qaU+RkscITxjjGI25uIumf0QYyxBrGnOgzHD59vtLPYW8BheQqHEROb1zwbO5VH0iYOh45xsMTZzsmLSE3QWmoZ5FQzGGsKo5sqiNtUjd/nW5VB3H8ojOc2MXhvLo9eP+yQ7ZcYwfgZPBav4ZCWxeJAEQt5Fzj2SIJWujhqQzCw32OrqwrzbJUYYi7GO7p8PKrKxO8aNMVsjZ/JkvBnRTq6aXbhc8NhTLSUYY1Ti70eJ5T+06JfHxEdErTShgTtleGqYaA0Cg1kd+RxWLOJw8zFHBK/jV7vtl9iBOOnC30OUrex2H2Qw3EZB73ID/FJ0BIUSqwjuqANhhjs3FuEXiPm4IFuvfBx/ynYkn0YZ86GLn1O0uZcvPf1xCj/SvvlP/2n4v4Xv8LMpZtx/vwFnChXo8eAqY0+Z+LcFGzK3A8AYLh6QqKcq78A/tx50cfRFVGePYXBtiL8T+WPu41+KU9GL0sBjp/xiT4+hqtH/fkL4CP1YHhxCLHnwPL1cUctW4/sUzyG2Bncrw01knj3aoPoa2ewrZaHl/nxa+zu8zhQWI9lyREMHdd8p+XU+RFsy45Arq7H2ZD418jy9Th/4QK4iPjjiBXOQD3StBEMOMni6ZIwblM2F7L3HQ7huTQG78zj0X98BFPmRbBmwzns2leP0grhfQ2z4l9LLLhwAaKPQUzidf5pD4JcBLrg98g/7cQanxbjnSX4pOogntHuxC2KjY2aXbbETyuS8CdlGl7S70Ivy2FMdZVjQ40ehWc8sIbPgomDaySuHi4izP9ij0PKhNhzoq29+Iiw/hPr+8cMEdbRdaF6VNnqUSKrx+78eqzbHMHsxRGMmBC9ZMKgURFMmhPBiuQItudEUHi8HhpDPWpqYz9m/tx5nKu/IPo9CCEeFEqsI7qgffS1vnjxgwQsWLMdVTZ3i5/DsDwefKlXh42p9vRZjJq2GjOXboZcbcK/v5rQ6OOJU1Zix56jAIBTdRwhUbhIPUJMRPRxdGW8Z8NY6VbjCc2ORjfAj6gzsMSthPtsSLSxRc6dx9lwBKfOciLB41RdfFNbx6OwlscUB4Nuhsay9lZ1EG+agpjrZvDdKe7HrznLQ6nnsXNvBHOW8hgwqvHCvH9iBDMX88jIjaBCE0HgjDjXdv48cCYUEf01vqb35ywPszOCE7IIsvZFMCGLw7s5DB4+GMJtlU0aeymD+OuREF7YFkafDRyWp/HI2Sd8rdkRQW0n+HlsTwDgdByMg7hyAnUcVKdPI6/GgdVuLcbZT+IT00E8q83G7YpNuF62JqqAvV62BneqNuNZbTY+MR3EOPtJrHJrkVfjgPL0aQTqONGvkYgdZ0IRnD8P0cchZWpFW3dxOBuOIHLuvIhrvxgRB2v+Ruv/UxxUBh5HTgjrvZXreUydz2PYuOg7b4eMiWDyXB7L1/HYlsPh8DEeCh0PT6B9xhViIuAi9aK/PoR4UCixjuiCtvikCvX159v8vDAT2/8QRSUKWBzVl/58Uq7DW5+Pw+kzdfj7v/qBYflLH3vj0zGQq00AqMSBlKESBx1LodeLr4wFjZqo/HdFMr4wFqDA6+nw8VCJgytH6WewwhnGx6Yg/tSkFMKjuiCGWkLI8DCwNfgaZw2D4zIOmzJZTJ7XvJ7ZoNE85i4XGk/IdR1Xt6wzlThw+RmojEId4G27eCxbx2HiHB495vLotp7FQ/kh3CZv/H78QRXEgydCeO9wCFOPsthf3nnqA3cEVOIgfnHXMqisOYXd1XasdGgxznISPQ2H8JwmG3cp0nBDRVJUAXudbDV+X7kB/1Bl4X19PhLMx7HQrkSm24oSXw2ctaFrahJGdG6oxIG0oRIH4mN2sihVCLXrN2eyWJLE49vZPAaNji5vh43jMWU+jxXrOWzdxeNAMQuZloXdd/nfm0ocEBRKrCO6oD1cXNEq+wtLO2wci5Iy0HfUAgRDDCKRc5i8IBWJU1YCAHonzsOaTbtRX38eew59h9d6jLoklcWeJAjxIEErDpZAHRbalXhEldHopvpRVSYW2VWwBOo6ZBwkaK8NWy2DTA+DoZYQHmvSaOyP6iA+NgWx3BlGZZMuv9ZqFgUnhIYS42c0X4wPG8djSRKP3INCo4lYjT8eBa2zhoFcx+JAMYu0LBaLk3iMn8mjX2IEvRMi+Gg6j5dSODy8L4TbmwjZW9RB/F0eQm9lCKlWBjp/fF1bvEGCVlxU/tPY63EiyanFREsZvjAWoJtmF+5WpONG2do268D+Tp6Kx9SZeEeXjyHmYsyzVWKrqwrHfF7YA6Go37utJmFE14YErbQhQRvfGO0svpOzyD3EIXU7iwWrOYyfyaN/YvSyCQkTeExfyGPVBg4ZuTwOH+egaKFePglagkKJdUQXtM/8e3Bj3h6M+1/8Co+91hfdvxjfYeMIMxwmzk3B8+8NwzNvD8aAsYvg9Z8CALi9AXw5fDae6j4IH/WbAo3BdunrxJ4kCPEgQSs+BV4PPjMcxi8b7Kq9Sb4OvYxHUOj1xvR7k6BtX476GMy0h/G6QSh/0FAcvqAPYoI1hPxqBq4mX2d0sMgv5LByPYeRk5oL21GThQX3/iIWJmf7SUcxBa3dy6BcLewe2ZjJYsEqDmOnNtldnBDBx9N4vLKOwyN5IdxZ0VzIPq0LYaglhE3uMDRx2jE5XiFBG1t0/jM4UO1GilOPKdZyfG08gle1ubhXuQW/aDDft8av5Sl4WJWBt3R7MdBUhFk2OdJcJhR6vdf8EI8ErbQhQSttSNB2TtwBBloLi2PlHHL2c0jZwmHeCmHt1G9E6+K2b0IEoybxmLWEw9rNHHYfiKCssh4qEwunX/zrIjoeCiXWEV3QtpRQmMWS5B3IyisSeyhtRuxJghAPErTxgylwFvNslXhQub3RTfrj6h1YZlfDVhts9+9JgjZ26Pws1rkYfGEO4R5NXSOpeJ8miN5VQWx0h2EMNBekKhOLXQc4LFrNYWgLtcq+mcFjXTqHIyUcbNVXP8aOELRWN4uTlcJOkPVbOcxZxmFUCxL6Ip9M4/FuOoPnC0O4W1HXTMj+QxfEoKoQ1rvDUNGNxTVBgvbaMAXOosDrwQanETNsFehrPIo3dHm4X7kNN8nXtSlgb6pIxn3KbXhdtwd9jIWYbpMh1WnAYa8HxhifoiBBK21I0EobErRdD5efgdrM4uhJDjv3CSe0Zi/lMHpS87JaDek3IoIxU4QyW+vSOWTncygu46CxdFy5LaLjoVBinbgUtBfzQZ9JYg+hzYg9SRDiQYI2PtlX7URPw0H8vMEuq/+Rp6CPsRAnfL52+z4kaDsGRy2D3GoGo60hPK1rLB1vVwfR3RjCPEcYJ1qoIeYOMJBpWGTk8pizlMPAkc0X11Pm89icyeKEjGt2lC0a7SlojQ4WJypY5OwXbgxmLeGQMKF1Eds/MYIJM3lM2sxjWAGLdytC+JuqhZIFuiD6VwWxzsVAfgXXRrQNCdroWAJ1OOr1It1lxmybHINMReiu24tHVBn4jTylTQH784pk3Kvcgle0uehlPILJ1jKsc+ixv9oFrf+MqNdGglbakKCVNiRopYWrhoHCwKHgBIfMPTyS03jMWRbBiInR6932HxHB+OkcFqzikLqNRe5BDidkVMu/K0ChxDpxK2hDYRYvvD9c7GG0GbEnCUI8SNDGN8ZAHWbZ5PibcmujG/+n1Dux0qFps85gW5CgFYcyP4OFzjDeNQZxh6axkHxCF0SiJYRsDwNHC7sXXDUMvpOzSNvBYur85sfaBoyMYPZSDhm7eZSpou+AuBpBq7eyKCoVdmis3shh2gK+xV2+lxqgjYpg0lwey1OEMW0r4TDfEMbX5iAe0jYXso9ohd3Fa1wMymmHbEyRuqC1B0I47vNhm8uC+XYFhpqP4V1dPv6u3oGb5altCtifyZLwZ0U6uml24XPDYUy0lGGNU4u9HieU/tOiX180SNBKGxK00oYErbRpWIPW7hPq/h88xmH7LqH52LT5PIaPjy5vB44SHrIvXsNhYwaLvAIOJYr2LcNFxA4KJdYRXdCOnZHUjIRJK/DKx4kYOmGp2MNrM2JPEoR4kKDtPOR67PjYcAD/1aB5zG/kKehvKkKJr+aq/k0StOJjDjBIc4fRryqI+5vI2rs1dehpDmGNi2m1vqqtmkFhiVCL7JsWGo4NGctjwWrh2JrS2Pi9bk3QugMMNFUsjpQIjSZWrOcweW707sJDxvKYNl+olZuVx+FoKQethUVFDYO1LgZ9q4LNGqndog7iAW0QvcwhrHSFcZJ2yHYoXV3QOgIhnKzxY4fbisUOFUaYj+ND/X48qc7CLZUb8ZM2BOwNFUm4szINz2my0dNwEOMsJ7HSocHuajvkNbVwx8E1Xi0kaKUNCVppQ4JW2lxukzBbNYMyFYv8oyzSs3ksTeYwaS6PwWOjy9vBY3lMmstjWTKH9Gwe+Uc5lKlYWKtJ3sYLFEqsI7qgnbpwQzNmL0/H1pzDCDOc2MNrM2JPEoR4kKDtfBj8ZzHDVoF7lVsayYRnNNlY7dDCcQW7aknQxhfuWgYHvQy+tYbQTd9cZr5sCGKqPYzD3tb/DZOTxYFiFqs2CLXHmnX5/UZYZO8t4FATuAC1icXh4xy25PBYspbHxFnRF94J3/CYsVgoY5C9j8NxGQej/cdFt8LPIMXFYGBVCI+3sEP2Pk0Qn5tCWOZsuaQD0XF0dkHrqg1DVhNAtseG5XYNRltK0EN/EM9osnGHYjOul62JKmCvl63BbYpNeFqdjY8NBzDKUoKldjWyPVaU+QJw1YZFv8ZYQYJW2pCglTYkaKXN5QraaJicQn+BvAIOmzJZLFrN4dvZPPontr5+7DM8gmHjhIf5K9Zz2LaLx4FiFuVqFnZaD3YoFEqsI7qg7ewRe5IgxIMEbecm22PD+/p8/EyWdEk6/K98PQabilDq87f59SRo4xuln8FKVxg9TEH8qYnofFAbxMCqENLdYVii/BuaKqFu2JIkHsOilCJoyshJPOYsE3bm7jnEoaSShcXdfPeD2s9ggzuMwZYQnmphh+xftcIu4EXOMIp9TKfeddjV6AyCVlFzCns8DqxyaPCNpRSfGg7heU0O/qhIw08rkqIK2Otkq/H7yg34hyoL7+vzkWA+joV2JTLdVpT4aq7oYVZXgwSttCFBK21I0Eqb9hC00TDYhJ4EuQeF2rULV3EYP51D/xHR150JE3jMWCScxMrI5XH4BIdKPXtFvRWIy4NCiXVEFbQ1ge9RVqm/tFO2qESBXiPm4OP+U7Axc7+YQ7vsiD1JEOJBgrZroPefwRRrOe5WpDeSE89rcpDs1LUqIkjQdh7sAQY7PAyGWULNSgXcqQ7iA2MQi5xhyKIsZN0BBhVaFjvyOMxdzmHo2AjGTuUxfyWHDRks9hYIx9BsUXboav1CSYbhlhCebWGX7z2aOvzHFMQCRxhHfAxccfDaES0TD4JW7f8e+6pdWOvU4VtrOb40FuAlzW7co0xvVM6lNX4nT8Vj6ky8o8vHEHMx5tkqsdVVhWM+7zXX6O7KkKCVNiRopQ0JWmkTa0HbGu4AA20Vi+IyDjn5HNalC2vRMVOb91NoSN+ECEZN5jF7KYe1aUIPhKMnOahNLFzUq+CqoFBiHdEE7ZETcjz8cm/c/+JXePmjRJQrDHiq+yDMWpaOWcvS8Pjr/bAhI1+s4V12xJ4kCPEgQdv1yHLb8I4uv9HuspvlqRhqPoZyX6DR55Kg7bwU+xjMsofxhiGI25pI0mf1QYy1BpFXHYYzyr9xOU3CDAEWW9xhJFpCeL4FIftnjSCH5zgYHPIyUb8fEV90hKA1+M/ioNeN9U4DplrL0dtYiNe0ufircit+WZHcpoD9tTwFD6sy8JZuLwaaijDLJkeay4RCrxeWQJ3or2FnhQSttCFBK21I0EobsQRtNJx+BioTi6MnOWTt5bB2M4fZSzmMmsSjb0Lr8rbfiAjGTOUxd7kgfHPyORSXcdBWRW+SK3UolFhHNEH7n/5TMWtZGs4Gw0hO34MX3h+OHXuOXvp47oET6P7FeLGGd9kRe5IgxIMEbddF6z+DiZYy3KVIa7SrtptmF9Y7DXDWhknQdhH0fhYpLgZfmUP4i6aukUC9V1OHr8whpLiEz2v4dS0JWlOARYaHwWhrCC/pg7i1iZD9kzqI90xBzLSHsb+agSMOrp+4OtpD0JoDdThSXY1NLhNm2CrQ31SEN3R5eFC5Hb+Sr2tTwN5UkYz7ldvwum4P+hqPYrpNhg1OIw57PTCSgI0ZJGilDQlaaUOCVtrEo6CNhrOGgUIn9EvIyBVKIExfyCNhQvSyXf0TIxg/g8fCVUKphT2HOJyoYBv1TZAqFEqsI5qgfeKN/jBb3QAAno/ggW69YHFUX/q4w12DR17tI9bwLjtiTxKEeJCg7fq4axlsd1nQXbcXNzTYVfv7yg34xnkS6tOnRR8j0X44axnsqQ5jjDWIZ5rseL1NHcQbhiBm2YV6sOfqL8B+mkVWNYNx1hBeaWE37l3qILobQ5hqDyPPG4addiR0GS5H0Fprgyj2+rDFbcYcWyUGm4rwtm4fHlFl4Lfy9W0K2F9UJONe5Ra8os3F18YjmGwtQ4pTj/3VLuj8Z0R/DaQKCVppQ4JW2pCglTadTdBGw+5jINOyOFjMYusuofnYlPlt91zQmKUtaSmUWEc0QXv/i1/B6z916c9PvjUQbm/g0p+9/lO4/8WvRBjZlUXsSYIQDxK00kLt/x7fWEpxh2LzJYHyE9lqvKLNxUaXEc4u3LVcqpTVMFjoDOM9U/PyBA/oQs3+7hZ1EG8aQphoDWF3NQNrHFwDERsuXACcgRC+89Vgu8uChXYlhpmO4X19Ph5X78D/VW7AdW0I2Btla3G3Ih3dNLvwhbEAEy1lSHJqsdfjhMpPD3/iFRK00oYErbQhQSttupKgjYbFw6JMySK/kENaFoula3lMmjQwdrYAACAASURBVMNj+Hi676VQYh0StNcYsScJQjxI0EoTdy2DLW4z3jHtww2yNZdkyy2VGzHKUgJFzSnRx0i0P1UBBunuMPpXBXGf5kch+5ohiPG2EHZ6GFjiYJxE++GsDaPU50eW24YlDhUSzSfwkWE/nlLvxB3KzfhJGwL2hook3KVIw3OabPQ0HMI4y0msdGixu9qOyppTcMfBNRJXDglaaUOCVtqQoJU2UhG0ROtQKLGOqIK2d+I8DBy3GAPHLcZDL3+Nr0fMvfTn3onzSNAScQ0JWmnDRc7DcPoMxlhKcJti0yUpc71sDf6l3YM0lwku2lXbZVGG62E/Le1jXp0ddy2Dippa7PLYscKhwVjLSXyiP4h/arJxZ+XmRg9gWuJ62RrcrtiEp9XZ+I/hAEZZSrDMrka2x4pyX4D+/3dRSNBKGxK00oYErbQhQUtQKLGOaIJ26sINl0W8R+xJghAPErTSpmGTMFdtGJtdJryqzcX1DaTO7YpNGGs5CSUdV+5ytNQkjIg/FP7TyPM4sNqhxQRLKT4zHMaL2hz8SZGOn8mSogrY62Sr8YfKjfiHKgsf6PcjwXwci+wqZLqtsHBn4QyERL8+ouMhQSttSNBKGxK00oYELUGhxDqiCdquErEnCUI8SNBKm4aCtiEVNbVINJ/AHyo3/njUWbYGb+rysNVVRceauwgkaOMDrf8M8qtdWOfQY5K1HL2MR/CydjfuVW7BzyuS22zEdbM8FY+pM/GuLh9DzMWYb1dgq6sKx30+2KMI2MtpEkZ0TUjQShsStNKGBK20IUFLUCixDgnaa4zYkwQhHiRopU1rgvYiztowUp0GvKTZ3ahW5Z2VaZhgKYXa/73o10BcPSRoOwaD/ywOeT1IdRowzSZDH2Mh/qXdg/uU2/DflyFgfyNPwcOqDHTX7cVAUxFm2+RIc5lw1OuFJVB31eMiQStdSNBKGxK00oYErbQhQUtQKLEOCdprjNiTBCEeJGilTVuCtiHlvgCGmY7hZnlqowZCb+v2IcNtEf1aiCuHBG37UBWoQ6HXi80uE2bZ5BhgKsJbur14SLUd/yNPaVPA3iRfh/uV2/C6bg/6Go9iuk2GDU4jDns9MF6DgG0LErTShQSttCFBK21I0EobErQEhRLrkKC9xog9SRDiQYJW2lyJoL2IszaMdQ49XtDm4LoGkumPijR8ay2H1n9G9OsiLg8StJeHPRDCMZ8XW9xVmGerxGBzMd7R5eNRVSZ+1+CBRWv8oiIZ9yq34BVtLr42HsFkaxlSnHrsr3ZBJ+L/FxK00oUErbQhQSttSNBKGxK0BIUS65CgvcaIPUkQ4kGCVtpcjaBtSKnPj8Hm4kaS6qcVSXhPn4+dHqvo10dEhwStgCMQQomvBpluKxbalUgwH8f7+nw8ocrC7ys3NHoQ0RI3ytbibkU6uml24QtjASZaypDk1GKvxwlVHDfXI0ErXUjQShsStNKGBK20IUFLUCixDgnaa4zYkwQhHiRopc21CtqLOAIhJDm1eFazs5G4uluRjqnWcuhpV21cIhVB66oNo8wXQLbHiqV2NUZZSvCx4QCeVmfjNsUmXC9bE1XA3lCRhLsUaXhOk42ehkMYZzmJlQ4tdlfbUVlzqtM2zSNBK11I0EobErTShgSttCFBS1AosQ4J2muM2JMEIR4kaKVNewnahpT4ajDAVITfNKi9eaNsLT7Q70eOxyb6NRM/0lUErbuWQWXNKeyutmOlQ4txlpPoaTiI5zTZuLMyDTdUJEUVsNfL1uB2xSY8rc7GfwwHMMpSgmV2NbI9VpT7AnDVhkW/xlhAgla6kKCVNiRopQ0JWmlDgpagUGIdErTXGLEnCUI8SNBKm1gI2ovYAyGsdGjxlLrxrtp7lVsww1YBg/+s6NcvdTqToFX5T2Ovx4kkpxYTLWX4wliAbppduFuRjhtla6MK2Otkq/GHyo34hyoLH+j3I8F8HIvsKmS6rSipqYEjEBL9+sSABK10IUErbUjQShsStNKGBC1BocQ6JGivMWJPEoR4kKCVNrEUtA054fOhj7GwUUf7/5KtxceGA9jjcYj+OkiVeBK0Ov8ZHKh2I8Wpx2RrGb42HsEr2lzcq9yCX1Qkt9mI62Z5Kh5TZ+JdXT6GmIsx367AVlcVjvt8sEtUwLYFCVrpQoJW2pCglTYkaKUNCVqCQol1SNBeY8SeJAjxIEErbTpK0F7EVhvEMrsaT6iyGsm1+5TbMNsmhzFQJ/prIiU6UtCaAmdR4PVgg9OIGbYK9DUexRu6PNyv3Iab5OvaFLC/kafgYVUGuuv2YqCpCLNtcqS5TDjq9cJCPzdXBQla6UKCVtqQoJU2JGilDQlagkKJdUjQXmPEniQI8SBBK206WtA2pNjrw9fGI43k3C8qktHTcBD7qp2ivzZSoD0FrSVQh6NeL9JcJsy2yTHQVITuur14WJXRqB5xa9wkX4f7ldvwhi4PfY1HMcNWgQ1OIwq8HhL3MYIErXQhQSttSNBKGxK00oYELUGhxDokaK8xYk8ShHiQoJU2Ygrai1gCdVhkV+FRVWYjYfegcjvm2SphClCt2lhxJYLWHgjhuM+HbS4L5tsVGGo+hnd1+fi7egdulqe2KWB/UZGMe5Vb8Ko2F18bj2CKtRwpTj0OVLuh858R/bWQIiRopQsJWmlDglbakKCVNiRoCQol1iFBe40Re5IgxIMErbSJB0HbkEKvF18YC/DfDWqO/rIiGZ8ZDqPA6xF9fF2NhoLWEQihpKYGO9xWLLKrMMJ8HB/o9+NJdRb+ULkRP2lDwN4oW4u7FenoptmFL4wFmGgpQ5JTi33VTqj8p0W/VqI5JGilCwlaaUOCVtqQoJU2JGgJCiXWIUF7jRF7kiDEgwSttIk3QXuRqkAdFtgVeFiV0UgCPqLKwEK7kmqOXgWu2jBkNQFke2xYbtdgtKUEX1kK8Kw2G3coNuN62ZqoAvaGiiTcpUjD85oc9DQcwnhrKVY6tMj12FFZcwruOLhG4sogQStdSNBKGxK00oYErbQhQUtQKLEOCdprjNiTBCEeJGilTbwK2obkV7vQ03AIv2iwq/amimR8ZSxAodcr+vjiBXctA0XNKeR67Fjl0GC8tRSfGg7heU0O/qhIw08rkqIK2Otla3C7YhOe0WTjP4YDGG0pwTK7GtkeG8p9Abhqw6JfI9G+kKCVLiRopQ0JWmlDglbakKAlKJRYhwTtNUbsSYIQDxK00qYzCNqLmAJnMcdWifuV2xqJxb+rd2CJQwVbbVD0McYatf977Kt2Ya1Th2+t5fjSWICXNLtxjzId/yVbG1XAXidbjT9UbsST6ix8oN+PEebjWOfXI7vaipKaGjgCIdGvj+hYSNBKFxK00oYErbQhQSttSNASFEqsQ4L2GiP2JEGIBwlaadOZBG1D8jwO9NAfxM8b7Kr9lXwdehsLUez1iT6+q8XgP4uDXjfWOw2Yai1Hb2MhXtPm4q/Krfhlg2ttjZvlqfi7egfe1eVjqPkY5tsV2Oay4LjPB3sLAvZKmoQRXQ8StNKFBK20IUErbUjQShsStASFEuuQoG2QVRt3oduHCXjm34MxdmYSwgwHAHB6avBVwhw83X0QPugzCRUq06WvEXuSIMSDBK206ayC9iLGQB1m2CrwV+XWRqLyH6osrHBoWpSSYmIO1OFIdTU2uUyYYatAf1MR3tDl4QHlNvxKvq5NAfsbeQoeUWWgu24vBpmKMNsmR7rLjKNe71XV5SVBK21I0EoXErTShgSttCFBK21I0BIUSqxDgvaH7C8sw5ufjUVN4HuEGQ69R87Dqo27AABfDp+NjZn7UV9/HsUnVXjxgwREztUDoAW6lCFBK206u6BtyC6PHR/q9+PGBkf9fy1PQT/jUZzwdcyuWmttEEVeH7a4zZhjq8RgUxHe1u3DI6oM/Fa+vk0Be5N8He5XbsMbujz0NR7FDFsFNjiNKPB6YAqcbffxkqCVNiRopQsJWmlDglbakKCVNiRoCQol1iFB+0NUeisqVMZLf96YuR9jZySh9vRZPPHGAJyrr7/0sQ/7TkapXA+AFuhShgSttOlKgvYiBv9ZTLPJcI8yvZH8fFqdjVUOzTXVWnUEQvjOV4PtLgsW2BUYZjqG9/T5eFy9AzfLU3FdGwL2FxXJuFe5Ba9qc/G18QimWMuR4tTjQLUbOv+ZDn+tSNBKGxK00oUErbQhQSttSNBKGxK0BIUS65CgbSUDxi7C9l0FqFCZ8G6viY0+NnLqKmTkFgKgBbqUIUErbbqioG3ITo8V7+nz8TNZ0iVJ+lv5egw0FaHEV9Ps8521YZT6/Mhy27DEoUKi+QQ+MuzHU+qduLVyE37ShoC9UbYWdyvS0U2zC18YCzDRUoYkpxb7qp1Q+U+L/no0hQSttCFBK11I0EobErTShgSttCFBS1AosQ4J2hayakMOvh4xF+fq63GiXI0eA6Y2+vjEuSnYlLkfAHAmFCEkCn/uAhiuXvRxEOJwrv4CQuw50b7/98GO+T6Ws3WY5pThLsXmRkL1n9ocfGY6jOd12bhTubnNEgT/T7Yaf1Sk4UVdDr4wH8ZkZznWVetwsNYFw5kzor+fV8r5C0AdI977T4iL1H//n+6g+ScuCdP7L2XqmHM4f4HefzHpqPVPS4TYczhXf0H014AQB4arB3+O3n8pQ6HEOiRoG+TChQuYtSwN/UYvAMPyAAC52oR/fzWh0eclTlmJHXuOAgBC7DlCopyrPw8uUi/6OAhxqD9/ASwv3vsfFOF77q11oIf5QKsC9g7lJjyny8FnVYcw0VmKtV4dDp5yQV93RvT3q705f/4CGE78cRDicOECEI6DcYhFkBF/DGIR/uH9F3schDgwnDD/iz0OKSPG+uciLF+Penr/JQsXqce5+vOij4MQj//f3p3/RVnvbxz/f/xWVMcWLSMVEkXR1I5HU0EQCUUFEcQVM1FJj+LCsXBJwiyXzOXUIdfCJVdULHFfURRcUNaBYa7vDx3vw6Az4tBwj3xez8fj+mHmHm7v2zdzc8/FcA/gbxS0TWQuW6ek9GzrA8Ak6X7FI73+QaxV2EpS2JAUFZ4+L4k/cTM5XOLA7LT3Sxx4y6my+5p15ZgWXD2ljSWXn3rJg/YeLnFgdrjEgbnhEgdmh0scmB0ucWB2uMQBAfyNgva/jpwoVv+Y6aqvf/I3I9FJmVqeu1VOZ6O27zyo0EHJcjobJXGCbnIoaM2OyQUtoaA1PRS05oaC1uxQ0JodClqzQ0FLAH+joP2vtIwcvdQ1SkEhMVYGjJwhSSopLdfwcXP0Vni8Bsam6/ezV6yvs/sgQewLBa3ZoaA1OxS0ZoeC1txQ0JodClqzQ0FrdihoCeBvFLStZPdBgtgXClqzQ0FrdihozQ4FrbmhoDU7FLRmh4LW7FDQEsDfKGhbye6DBLEvFLRmh4LW7FDQmh0KWnNDQWt2KGjNDgWt2aGgJYC/UdC2kt0HCWJfKGjNDgWt2aGgNTsUtOaGgtbsUNCaHQpas0NBSwB/o6BtJbsPEsS+UNCaHQpas0NBa3YoaM0NBa3ZoaA1OxS0ZoeClgD+RkHbSnYfJIh9oaA1OxS0ZoeC1uxQ0JobClqzQ0FrdihozQ4FLQH8jYK2lew+SBD7QkFrdihozQ4FrdmhoDU3FLRmh4LW7FDQmh0KWgL4GwVtK9l9kCD2hYLW7FDQmh0KWrNDQWtuKGjNDgWt2aGgNTsUtATwNwraVrL7IEHsCwWt2aGgNTsUtGaHgtbcUNCaHQpas0NBa3YoaAngbxS0rWT3QYLYFwpas0NBa3YoaM0OBa25oaA1OxS0ZoeC1uxQ0BLA3yhoW8nugwSxLxS0ZoeC1uxQ0JodClpzQ0FrdihozQ4FrdmhoCWAv1HQtpLdBwliXyhozQ4FrdmhoDU7FLTmhoLW7FDQmh0KWrNDQUsAf6OgbSW7DxLEvlDQmh0KWrNDQWt2KGjNDQWt2aGgNTsUtGaHgpYA/kZBCwAAAAAAAAA2oaAFAAAAAAAAAJtQ0AIAAAAAAACATShoAQAAAAAAAMAmFLTNZK/ZovcHjFenPqOVOvsLVdfUSZKu37yjyPFz9XZ4vPrHTNfxovPW1xQcKlJE1BR16j1asRPnq/xehbVsxTf/VvePktSl31h9ujBXDU5nm+8TWqayqkYps5arU5/RCu4/Xjlrt1vLfJm/t/Uh8HibV2uf45Hj52rCzOw22Q/45uLVmxqakKE3esap97A0/XLwpLXMl/nX1zdo6ryVeqNnnLoOTNT2HQfbfJ/Qcr7Mv85Rr0kZX+rdvgkKHZSs9Vv3WF9TfOGahoz+TD0Gp6h/zHQdOHq6zfcJLbd7f6HCh6XpzV6faPi4ObpyvdRa5u0Yf+b8VfUYnKLPFn3ttj5vxwwEHl/nv33nQXUMG6X8vUdavD4EHk/z8naMlzzP/7HDhcXqEBypS9du+X0f4DtPr/29zb/B6dT85d+pQ3Ck7lc8clvfocIz6jV0kjqGjVJc6j/1sLK6TfcHz8eX7sfT/F0ulxblbFTYkBSFDUnR1HkrVVPraPN9wouNgraJ/L1H1PPjVN0pf6DqmjpFT8hU9potkqTh4+ZozYZ8OZ2NKjhUpOD+41Xf4NSjymp1jhijE79fUIPTqawVm5Q4Y6mkP38whw1JUfm9ClXX1Cp6Qqa+2bzLzl2EF58t+lpJ6ctUW+fQzdJyvffhOB09eVaSb/P3tj4EHk/zau1zfPNPBQoZlExBG+D6RE7Rmg35crlc2ne4SB3DRqmm1uHz/Jes+l7jpi1RTa1DZy9e18DYdNU56u3cRXjhy/yXrd6sxBlLVVvnUElpuYL7j9e5Szf+XN/wyfrPnsOSpNNnL+ut8HjrpB+BpbTsnt7s9YmOF51XY6NLWSs2KSpxriTvz/HC0+fVP2a6Umd/4VbQevueQeDxdf5frf+PEqZkaVDcTLeCztv6EHi8zcvbMd7T/B9zOOrVP2a6uvQbS0EbwLy99vc2/4QpWVq2erNe6hrlVtBVPKpSl35jdbiwWHWOemUsztN3W3bbsm94Nl+6H8nz/PP3HtbA2HTV1DrkdDYqYepiLc/dasu+4cVFQdtEUfFlHS86Z91esyFfqZ99obv3H6pjWJzbb80HjJyhw4XFyt97WLET51v3P6qsVlBIjByOes1amOv2Lrw9Bwo1fNycttkZPLfd+47rxq0y6/aYyVnauP0Xn+fvaX0ITJ7m1Zrn+IOKSvUaOknfbtlNQRvAGpxOrd+6xzrxkqQ3esbpWsltn+ff/aMk3jX1gvB1/n2GT9bJPy5ayzKXrdOy1Zvlcrn0f+9H6UFFpbWsU5/RvEgPUKVl95S/97B1+8z5q3p/wHhJ8vocv1ZyW9U1tVqeu9WtoPX2PYPA4+v8iy9ck8vlUnRS5hMFraf1IfB4m5enY7zkef6PLVu9WUtXbVafyCkc+wOYp9f+0rPnL+mJgm7zTwWaOOtfbbHp+Av40v1InuefvWaLZmf973xg7fc7ef2H50ZB60Vc6j/13ZbdOl50Xn2jprotmzAzW+u37dUXX29TxuI8t2Vd+o3Vleulip6QqR2/HrXuv3Ttlt77cFybbDtap7KqRu99OE4Xr5T4PH9P60Pgazqv1jzHp8xdoe9//FX5e4/wA/oFUnTmkroOTFSD0+nT/B9WVuvV0JHK27RDYUNS1W/EVO3eX9jWuwEftXT+r3SLVsXDKuv+77bstl6YjUicZ73T7siJYoUOSuYSRy+Ilet+tI7XLTmPa17QtvS8AIHpeefvqaB72voQ+JrOy9sx/rGnzf/K9VJFRE1RnaOegvYF8/i1v9Sy+Tcv6OYsWatZC3MVPSFTIYOSlZaRo8qqmrbZeLRaS7qfpprP/+jJs+o9LE33Kx6pzlGvuNQF2vTvX9ti09GOUNB6kP3VDxqROE8NTqcOHD2tQXEz3ZZPnbdSuRvytShnoxYsX++2LHRQsnX9uYJDp6z7b92+qzd7fdIm2w/f1dY5FJe6QEtWfS9JPs/f0/oQ2JrPy9fn+JETxRqakCGXy0VB+wK5catMYUNSte9wkSTf5l9SWq6Xukbpy7xtcrlcOvH7Bb3RM053yh+06b7g+bV0/kXFl9UhOFK1df+7ttiW/P1KmJIlSbpwuUSdI8bo7fB4vRo6koL+BbHvcJFCByWrtOyeJLXoPK55QduS8wIEJl/m762gbb4+BLam86pvcHo9xj/2tPmPSJyng0d/lyQK2hdI09f+LZ1/84Ju8pwchQ1J0a0791TnqNf46Uuf+IUdAlNLu5+mms9fkj5dmKug7tH6W49YRY6fq/r6Br9vO9oXCtpmXC6XMhbnKXbifOuizoWnz6tP5BS3xyWlL9PG7b/oy7xtT3w4xDsRCbpWclsxyZ+7/dC+eKWEP3MKcA8rqzU0YbYWr9xk3efr/D2tD4HrafPy5TleX9+gfiOmWu+YpqB9MZy9eF09Bqdoz4H/lWm+zL/iUZU6BEfqUZMPhhiROE8//3JUCFzPO/9XukW7nZiv+2GXUj/7QnWOen3wj4naf+TPDwa7cr1U7304Ttdv3mmbHYFPtu88qF5DJ1k/vyW16DyueUH7rPMCBCZf5++poH3a+hC4njYvT8f4pprP/4f/7HN7DAVt4Hvaa3+pZfNvXtBlLF6ruUu/sW4fO3VOEVHuryERWJ63+2mq+fy/27JbsRPnq7qmTk5nozIWr9WM+av9vxNoVyhom8lctk5J6dlu16K7X/FIr38Q63bQDhuSosLT57Xj16MaNjbDuv922X29/kGsGpxOZSzO09JVm61l23ccVEzy522zI3hudY56fTxmtvI27XC739f5e1ofApOnefnyHC8qvqw3esapS7+x6tJvrN7677vouAZ14Lp+8456DE5x+5RWybf5S9Jb4fEqKS23lo1InKfd+477eS/gK1/m3zdqqg4VnrGWTf98lb7M26biC9cU3N+9xBmZPF/bfj7g352Az3bvO66+UVNVfq/C7f6WnMc1L2i9fc8gMLVm/k8raD2tD4HJ07w8HeObaj7/hKmL1TlijHX+93K3EeocMUZ7D5zw707AZ0977S+1bP7NC7rcDfmaPCfHun3s1Dn1j5nupy3HX+F5u5+mms8/YUqWNmzfa90+8fsF9Ric4r+NR7tEQdvEkRPF6h8z/alvRY9OytTy3K1yOhu1fedBhQ5KltPZqKrqWnWOGKPfjv+hBqdTny7MVVrGnwfm40Xn1P2jJJWW3dOjymp9NCpdm38qaOvdQgtlf/WDZi3MfeoyX+bvbX0IPJ7m9Vc8x3kHbeCLHD/X7YNCHvN1/hmL8zQtc5UanE4VFV/WW+Hxunv/YZvuE1rOl/kvz92quNQFqq1zWJc0uHrjth5WVqtjWJyKii9LksruPtA7EQk6c/5qm+4TWqbiUZW6Dkx0+4XKYy05xjcvaL19zyDwtHb+zQs6b+tD4PE2L0/H+KaedQ1i3kEb2Ly99m/J/JsXdOX3KtSpz2idvXhd9Q1OJaVn6/N/fev3/YBvfOl+mmo+/0U5GzV22mLrF7JZKzY9cVkM4FkoaJtIy8jRS12jFBQSY2XAyBmSpJLScg0fN0dvhcdrYGy6fj97xfq6A0dPq8/wyerUe7Ti0xa6fXLz6m9/UteBiXrvw3Gat2ydGhtdbb1baKHuHyXplW7RbvN//Gcqvszf2/oQeLzNq7XPcQrawHbjVpk6BEe6zT4oJEY7C45J8m3+NbUOJaUv05u9PlHPj1Pd/mwegcXX+Tsc9UrLyNE7EQn64B8TtSV/v7XOPQcK1W/EVIUNSVGvoZOsDx1B4Nn8U8FT5/94zp6e43OXfqOgkBi93G2Ede74+NObvR0zEFh8nf+AkTMUFBKj/3s/yjp3yN97+JnrQ2DxNi9vx3hP82+OgjaweXvt72n+Dyoqrcc2/d55/A7sXw6eVPePkvRORIImzvqXqqprbds/eOdL9+Nt/lXVtZqU8aV6DE5Rj8EpiktdoFt3uAY5ng8FLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAAAAAAACbUNACAAAAAAAAgE0oaAEAAAAAAADAJhS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAAAAAAACbUNACAAAAAAAAgE0oaAEAAAAAAADAJhS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAaMdulpYrLSNH7w8Yr5e7jdDb4fFKSs9WSWm53ZsGAAAAQBS0AAAA7ZbT2aiwIakaN22Jzl26oYqHVSq+cE2jUhao58epcjob7d5EAAAAwHgUtAAAAO1USWm5OgRH6uKVErf7795/qPXb9qq6plbl9yrUIThS10puW8vXfr9TH0ZPkyTt3l+oHoNTtOKbf+u10JFa98MuvRo6UtU1ddbjq6prFRQSo32HiyRJX2/8Wb2GTtJroSPVe1iaDhw9LUlasHy9hoz+zG1bjp48q6CQGD2srPbL/wEAAAAQ6ChoAQAA2imHo16deo/WtMxVHgvQZxW0BYeK9GavT5Q+/yuVlt1Tda1Db4fH6+dfjlqP/3HXIb0TkaAGp1M/7jqkd/sm6I9zV+R0NmrPgUIFhcToWskdXbx6Ux2CI3X95h3ra+csWatx05b46X8AAAAACHwUtAAAAO3Y8aJz6j0sTUHdozU0IUOLcjbq5B8XreUtKWg7BEeqtOyetXzqvJVKnf2FdTspfZk+XZgrSRqROE9ZKza5bcOolAVatnqzJOnvo2Yqe80Wa1m3gUnaWXDsL9xjAAAA4MVCQQsAAGCAsxevK2/TDiVMyVJQSIwSpi6W09nYooI2qHu027oKDhXp7fB4NTidqnPUq2PYKB07dU6S1P3vE9QhOPKJpGXki8U2rwAAA5pJREFUSJLW/bBLPT9OlSQVnbmkt8PjVV/f0Bb/BQAAAEBAoqAFAAAwzMUrJXqpa5R2FRz3UNDucCto/9Yj1u3rG5xOdeozWr8d+0O79xeq68BEuVwuSVL4sDTlbdrh8d+ueFSloJAYnT57WQuWr9fMBV/99TsIAAAAvEAoaAEAANqpX387qdlZXz9xv8vlUqfeo7X5pwI9rKxWh+BInb98w1r+efa3XgtaSZqWuUpzlqzV5Dk5+jz7W+v++LSFmpa5yu2xt27fVWOjy7qdOGOpFn65QSGDknW86Fyr9xMAAAB4kVHQAgAAtFPnL9/Qa6EjNXPBV/rj3BWV3X2g4gvXNC1zlTqGjbKuK9s5YozWfr9T0p9lao/BKc8saPcfOa1eQyfp3b4JOn32snX/r7+d1GuhI1Vw6JQanE4dO3VOb4XH68iJYusxew+c0Ju9PlHIoGTrnbcAAACAqShoAQAA2rGiM5c0ZnKWuvQbq5e7jVCnPqM1evIinTl/1XpM/t4jChmUrF5DJyk+baHyNu1Qn+GTJXkuaBucTnWOGKOwISlPLMvbtEPd/z5Br4aOVPiwNG3J3//E177bN0GLV2564msBAAAA01DQAgAAoE3de/BIr38Qqxu3yuzeFAAAAMB2FLQAAABoE42NLj2oqFTClCylzFpu9+YAAAAAAYGCFgAAAG2i4NApvdItWnGp/1TFwyq7NwcAAAAICBS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAAAAAAACbUNACAAAAAAAAgE0oaAEAAAAAAADAJhS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAAAAAAACbUNACAAAAAAAAgE0oaAEAAAAAAADAJhS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAAAAAAACbUNACAAAAAAAAgE0oaAEAAAAAAADAJhS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADYhIIWAAAAAAAAAGxCQQsAAAAAAAAANqGgBQAAAAAAAACbUNACAAAAAAAAgE0oaAEAAAAAAADAJhS0AAAAAAAAAGATCloAAAAAAAAAsAkFLQAAAAAAAADY5P8BPzFCpoM6CyAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd+XcU94Hu//v3ZOZ7fTPJJDOTmXEmtmPHHseJY8eJNzAYAzbGYMxiA2bHbGbfLLOvRoBYhEAICS1IQgva933vruoqbS211u5+f38QVgwWiyxEAfW8znnOuYAQheTUYd63+tP/BxERERERERERERFxxP9x+gJERERERERERERE3EqBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBVoRERERERERERERhyjQioiIiIiIiIiIiDhEgVZERERERERERETEIQq0IiIiIiIiIiIiIg5RoBURERERERERERFxiAKtiIiIiIiIiIiIiEMUaEVEREREREREREQcokArIiIiIiIiIiIi4hAFWhERERERERERERGHKNCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAVERERERERERERcYgCrYiIiIiIiIiIiIhDFGhFREREREREREREHKJAKyIiIiIiIiIiIuIQBVoRERERERERERERhyjQioiIiIiIiIiIiDhEgVZERERERERERETEIQq0IiIiIiIiIiIiIg5RoBURERERERERERFxiAKtiIiIiIiIiIiIiEMUaEVEREREREREREQcokArIiIiIiIiIiIi4hAFWhERERERERERERGHKNCKiIiIiIiIiIiIOESBVkRERERERERERMQhCrQiIiIiIiIiIiIiDlGgFREREREREREREXGIAq2IiIiIiIiIiIiIQxRoRURERERERERERByiQCsiIiIiIiIiIiLiEAVaEREREREREREREYco0IqIiIiIiIiIiIg4RIFWRERERERERERExCEKtCIiIiIiIiIiIiIOUaAdoxa7R3PpAn1B2rv6Hb8OzZn1DYSwO/scvw7NmQ0Gw5jtvY5fh+bMwmHwPALXoT38eVqHvv9OX4fmzMz2XgaDYcevQ3NmdmcffQMhx69Dc2btXf0E+oKOX4fm3ETGmwLtGDl9k9CcmwKtu6dA6+4p0Lp7CrTunQKtu6dA6+4p0Lp7CrSayHhToB0jp28SmnNToHX3FGjdPQVad0+B1r1ToHX3FGjdPQVad0+BVhMZbwq0Y+T0TUJzbgq07p4CrbunQOvuKdC6dwq07p4CrbunQOvuKdBqIuNNgXaMnL5JaM5NgdbdU6B19xRo3T0FWvdOgdbdU6B19xRo3T0FWk1kvCnQjpHTNwnNuSnQunsKtO6eAq27p0Dr3inQunsKtO6eAq27p0CriYw3BdoxcvomoTk3BVp3T4HW3VOgdfcUaN07BVp3T4HW3VOgdfcUaDWR8aZAe1M4HGbb3ij+57VZ/NtL09n4TeTwrzW2mEz45Cv+7aXpvDp5MTmFlcO/5vRNQnNuCrTungKtu6dA6+4p0Lp3CrTungKtu6dA6+4p0GoPs03tP3GJF9+ez1PPTOK3f/mEVVuOEOjpG5c/bzAYJDoufVw+t4yOAu1NMfEZ/HHiF7S2+7FaO/jfdxZw6WomAO/OXM2ByFiCwRApGYU8/eonDAwGAf0D3c1ToHX3FGjdPQVad0+B1r1ToHX3FGjdPQVad0+BVntY1u/6jmffmENadhHdgV6qapuZ8tl6Jn26dlz+vNLKeqZ8tn5cPreMjgLtTQvX7GHf8YvDPz52Jp5PFm/Dbuvkly9MZTAYHP61v7z/JZm5ZYD+ge7mKdC6ewq07p4CrbunQOveKdC6ewq07p4CrbunQKs9DG0dfp56ZhKFpTW3/Hygp5fvziYwMBgkFAqz+dtTvPj2fF56ZwHzVu6mq3vo+p56djJWa8fw7/v+x2VVDfx50iI2RZxk8px1vPj2fK5lFtId6OV3r83mly98wKTZaymtrOfVyYuZt3I3kz5dy2tTlhCbmDX8+a6m5fLq5MUP5WvhRgq0N90eaKOvpPPnSYvIKazklYkLb/nYT5fu4MT5RED/QHfzFGjdPQVad0+B1t1ToHXvFGjdPQVad0+B1t1ToNUehoTUXJ7566d3/ZiY+Az+9N5CAj29hMNhZi/Zwde7TwB3DrSVtU38028nkpZdBEBsYhZ/n758+P/9/RO0lbVN/OL5KcTEZwCw/8QlPl60ZfjzLVyzh4gj0Q/uLyy3UKC96UL8dV5+93Pstk46Ort5b9YaXnx7PmnZRbwxdektH7twzR4ORsYCYHX0aS5db38Qf2DA8evQnFn/YIiO7n7H/nxfRx92p+bUgqEw7V39jl+H5szCYRy/Bidnufn+49f3381r7+onGAo7fh1unpP/9uvo7qd/MOT4v0E1Z+YPDNDbH3T8OjTn9jCcu5zKG9OW3fVj5q3czf4Tl4Z/nJZdNPxU690C7a9enDb882VVDTzz+mzgx4H258+9TygUBsC02vn5c+/j7woQCoX5zR9n0NhiPpi/rPyIAu1NoVCYLXtO8fzf5/LGtGXsOHCWv01fTm5RJS9P+OKWj529ZDsno5MA6BsIai5dMBRmMBhy/Do0ZxYKhRkYdO77H+gL0jcQ0hxaOAz9g85fh+bMAPofgetwaoF+995/+m9+/52+Ds2h7//g0P3f6etw8wJ9gzj1b6+BwRChUNixP19zdoPBEEF9/129hyEzt4ynX/3krh8z5bP1nI1NHf5xcXkdv/3L0O+5W6D9/mOAW358e6C9/c+f8MlXRF1MITu/nL9+cOvDi/JgKdDewZ5jMSz9+gBtHX7+5fdT6OntH/61F96cS25RJaCXuLl5OuLA3esb0BEHbp6OOHD3dMSBe6cjDtw9HXHg7tmdOuLAzdMRB9rD0NkV4JcvTOV6TsktP9/XP8DSDfsJ9PSxYFUEB26+ohsgNauIv7z/JQD/8vspmFb78O/52dMTRh1of/hxAJHRiUydt4FVWw6z/7tLyPhRoL0p4VoOH8zdQHegl8YWk2den01+STUAk2avZdfBcwSDIaKvpPPcG3MIBoeeoHD6JqE5NwVad0+B1t1ToHX3FGjdOwVad0+B1l1rsG1q7EYqrDJKrByK267R1d/l+HVpzkyBVntYdh08x3//eSaJaXl0B3qpa/Qydd4GPlm8DRgKqq9OXkygp49gMMTMRVvZuvc0AM//fe7wG9pHx6XzT7+deM9Am3Ath79NX044HB4x0Hb4u/nlC1P57z/PxGPYD+NL4FoKtDcNDAZZsCqCX704jf/+80y+O5sw/GvNXot3Z67m1y9N57UpSygurxv+NadvEppzU6B19xRo3T0FWndPgda9U6B19xRoH/cFaLAtauwGyq1Siq0b5FvJZJsxpJuRXDMPcNXYwWVjPReNZVw0lv5oZk/jI/D30JyYAq32sITDYQ5ExvKHt+bx1DOTeOb12WyKOMnAwODwr2/fF8VL7yzgxbfns2jtXgI9Q2fkXoi/zotvz+f9Oev59ugF/vvPM/HZ7XcNtFZrB8+8Ppv//vPMEQMtwIefb+LND1c8hL+9uynQjpHTNwnNuSnQunsKtO6eAq27p0Dr3inQunsKtI/m6m2TKruOcquYIiuLfF8iWeYF0s0TpJj7SDC3cdm7dsTgerfFGl+RYGwhydhLmnGcHDua9j7b8b+v5swUaDU3W7phP8fOxDt9GU88BdoxcvomoTk3BVp3T4HW3VOgdfcUaN07BVp3T4H24azZ7qbeNqm2aimziiiyMsmzrpJpRpNufkeyuY8EYyuXjTWjjq6XvWtJMLeRYu4j3TxBlnmBfF8iRVYW5VYxVXYd9bZJs939o+vSGbTungKt5lbVdc088/ps/F0Bpy/liadAO0ZO3yQ056ZA6+4p0Lp7CrTungKte6dA6+4p0P70Ndtd1NleqqwayqxCiqwMcq0EsnznSTOOk2TsJcHYQqzx1Sij6zLijHVcNbaTYu6/GV1jyPMlUWxlU26XUm3X02BbNNuBMf0dFGjdPQVazY02RZzkd6/NJjEtz+lLcQUF2jFy+iahOTcFWndPgdbdU6B19xRo3TsFWndPgfbWNdkd1NkeKu0qyqwCCq10cq14Ms2zpJrHSDa+Jd7YQqyxalTR9ZKxnDhjPVeNnVwzDnDdPEm2GUO+lUyJdYNyq4wau4EG26ZljNF1NFOgdfcUaDWR8aZAO0ZO3yQ056ZA6+4p0Lp7CrTungKte6dA6+65IdA22R3U2s1U2pWU2nkU+NLIMS+TYZ4h1TxCkhlBvLGJS97RRdeLxgquGF+TaOzimnGIDPMU2b5LFFgpFFs5VFjl1FpNNLS2Ov41uNMUaN09BVpNZLwp0I6R0zcJzbkp0Lp7CrTungKtu6dA694p0Lp7j2ugbbTbqLGbqbQqKLFyKbCuccOMJcM8zTXzMInGbq4YG7nkXTG6J129K7libCTR/IZU8zDXzShumLEUWKmUWLlU2hXU2s002u2Ofw0exBRo3T0FWk1kvCnQjpHTNwnNuSnQunsKtO6eAq27p0Dr3inQunuPUqBtsFupsRqpsMoptnIosFLI9l3kuu8U14yDJBq7iDM2cNFYPsrouoorxmaSzAjSzKNkmGfIMeMo9KVRauVTaVdSZ7fQaHc4/jV42FOgdfcUaDWR8aZAO0ZO3yQ056ZA6+4p0Lp7CrTungKte6dA6+6Nb6AN0GDb1NgNlFtllFg3yLeSyTZjSDcjuWYe4Kqxg8vGei4ay0YVXWONVcQbW0g2viXVPEameZZcK55CK50yq4BKu4o620OTC6PraKZA6+4p0Goi402Bdoycvklozk2B1t1ToHX3FGjdPQVa906B1t0bbaBttgM02D6q7XrK7RKKrWzyfElkmTGkmydIMfdz1dhOnLHuJ0TXr0gwtpBk7CXNOE6W7zy5VgJFVgZlViFVVg11tpdmu8vxr9uTMgVad0+BVhMZbwq0Y+T0TUJzbgq07p4CrbunQOvuKdC6dwq07p7Z3stAMEi9bVJl11JuFVNkZZLnSyTLjCbdPEGyuZerxjYuG2tG+SZaS7lsrOGqsY1kcy/p5gmyzGjyfIkUWZmUW8VU2bXU2ybNdrfjXws3ToHW3VOg1UTGmwLtGDl9k9CcmwKtu6dA6+4p0Lp7CrTunQLtk7lmu4s620uVVUOZVUiRlUGulUCW7zxpxnGSjL0kGFu4bHw1yui6jDhjHVeN7aSY+29G1xjyfEkUW9mU2yVU2/U02D6a7YDjXwft7lOgdfcUaDU3GwwG+dnTE3jq2cn8v+fe59cvTWfKZ+tpaDbG9Hl/8fwUvL7WB3SVjz8F2jFy+iahOTcFWndPgdbdU6B19xRo3TsF2sdnTXYHdbaHSruKMquAQiudXCueTPMsqeYxko1viTe2EGusGnV0vWys56qxg2vmAdLNSLLNGPKtZEqsG5RbZdTYDTTYNi2Krk/UFGjdPQVazc2+D7Tfx9Se3n6WrN/PB3M3jOnz2m2dhELhB3GJTwQF2jFy+iahOTcFWndPgdbdU6B19xRo3TsFWmfXZHdQazdTaVdSaudR4Esjx7xMhnmGVPMISWYE8cYmLnlHG12XE2dsINHYxTXjINd9p8j2XaTASqHYyqHCKqfGaqSlrW0c3yRMe9SnQOvuKdBqbnZ7oAVIzSriD2/NG/5xYloer0xcyO//9hmTZq+ltd0PwMHIWL746lvmrdjNuzNX89qUJbR4LeAfT9CWVTXw50mL2BRxkslz1vHi2/O5lln4cP+SjwAF2jFy+iahOTcFWndPgdbdU6B19xRo3TsF2ge/Rrv9ZnStoMTKpcBK5YYZy3UzimvmYRKN3VwxNnLJu3JU0fWSdwVXjI0kGru5Zh4mwzzNDTOWAusaJVYulVYFNXYzjXbbfV/raN8k7EmaUWfjK2rC09Lp+LU4NQVad0+BVnvY5i0Z4NNFD38juT3QBnp6mbdiN+t2HgfA8LXx7//7IeXVjQDs/+4SMxZuAeDI6Sv8xx8/wmrtAGDFpkNsijgJ/CPQVtY28U+/nUhadhEAsYlZ/H368vH74j6iFGjHyOmbhObcFGjdPQVad0+B1t1ToHXvFGjvbw2trdRaTVRY5RRbORRYKWT7LpFhnuKacYhEYxdXjK+5aKwYZXRdRbyxiSQzglTzCBnmGXLMyxT40ii186i0K6m1m2myO8bl7/VEBVqrB29DG76SFuzrVbTHF9F5JpOuQ1cJ7Iyhb90pBhYfJjQ7AqZuhQ+GZmXVOH/tDk2B1t1ToNUetskzBxzZSL4PtP/6h6n86sVp/PP/TOSldxZQ1+gF4MT5RCbPWTf88YGeXv7v7yYxMBjkyOkrzPhi8/CvHTp5mQWrIoBbA+2vXpw2/DFlVQ088/rs8fiyPtIUaMfI6ZuE5twUaN09BVp3T4HW3VOgde/cG2gDNNg2NXYD5VYZJdYN8q1kss0YrpsnuWYc4KqxkzhjPZeM5aOKrrHGKuKNLSQb35JqHiPTPEuuFU+hlU6ZVUClXUWd7Rm36DqaPQ6Bdji6ZtYMRdezmXQdThyKrutP/yO6frB1VAvN+obBRYewbyjQOn0dmjNToNUeto5OZzaS25+gHQwGScko4D9fmYHPbmfPsRh+8fwUnvnrp8P79UvT8dntHDl9hXkrdg9/rh/++IeB9rd/+WT4Y27/sVso0I6R0zcJzbkp0Lp7CrTungKtu6dA6949SYG22Q7QYPuotuspt0sotrLJ8yWRZcaQbp4gxdzPVWM7ccY6LhrLRhldVxNvbCXZ2EOacZxM3zlyrQSKrOuUWoVUWdXU2V6a7S7Hvw6jmVOB1tvYjlnqwc6qoS2hiM7zWfiPJhHYfYne9VEMLDlKcM4emLZtdNH1k90MLjxI35pIerZdoGt/Av7TGbTH5dOaXomvsAmj1qbFpzc7a7EVaN0+BVrNzUY6gxbgz5MWEZeczfnLabc8JftDCrT3T4F2jJy+SWjOTYHW3VOgdfcUaN09BVr37lEPtM12N/W2SZVdS7lVTJGVSZ4vkSwzmnTzBMnmXq4a27hsrBnlm2gt5bKxhgRjK8nmPtLN78g0o8mzrlJkZVJmFVFt1VJvG7TY3Y5/HcZrDzLQeps6MMu82Nk1tCUW0xmdjf9oMoHdsfR+fYaBpUcJfraX8PTto4uuM3cx+MUB+lafpGdr9M3oep322Hxa0yrwFTRi1Fi0mE/u92m8pkDr7inQam42UqDNzi/nF89Pob7JwGrt4D9fmTF85EFhWS0rNx8CFGhHQ4F2jJy+SWjOTYHW3VOgdfcUaN09BVr3zolA22x3UWd7qbJqKLMKKbIyyLUSyPKdJ804TpKxlwRjC7HGV6OMrsuI864lwdxOirmP6+YJsswL5PuSKLKyKLdLqLbrqLd9NNt6grLFvneg9TR3YpZ7sW7U0pZUQkf0DfxHk+mOiKV341n6lx0jOG8v4ek7RhVdwx/vYvDzA/SviqRnSzTd++Lxn0yn41IeranlWHkNGNU+RddxngKtu6dAq7nZ94H2qWcn89Szk/n5c+/z8rufE5uYNfwxSen5vDJxIS+8OZfXpiwhp7ACUKAdDQXaMXL6JqE5NwVad0+B1t1ToHX3FGjduwcVaJvsTupsD1VWNaVWAYXWdXKteDLNc6Sax0g29hBvbCHWWDXq6HrZWM9VYwfXzAOkm5FkmzHkW8kUWzcot0qpsRtosC1aFF3v73vu6cSsMLBy6ui4VkroaiH+4yl0f3uZ3k1n6V9xnOD8faOPrjN2MbjgAP0rT9Cz5Tzde6/gj0yj41IurSllWLn1GNUmHuPxOgbiSZ4CrbunQKuJjDcF2jFy+iahOTcFWndPgdbdU6B19xRo3bu7BdpGu4M6u4VKu5JSK59CXxo5ZhwZ5hnSzKMkmRFcMTb/hOi6nDhjA4nGTlKMg1w3T5Ltu0iBlUKxlUOFVU6N1UiD3er41+dxmcfswqw0sHLraUsupSMmB/931+jeE0fv5nP0r/yOwfn7CX+0c3TR9aOdBOftp3/ld/RuPkf3njj8312jIyaHtuRSrNw6zEoDj6no+jjOLYHWY7Th9ZgYTc2YDXX46qrw1ZRiVRXgMdsdvz6npkCriYw3BdoxcvomoTk3BVp3T4HW3VOgdfcUaN25GquREjuHCn8iGeZprpmHSTR2c8XYOOrzXC8aS7lifE2isYtrxiEyzFPcMGNvia61VhMNrYqu9zuP0YVRbWLl1dOaUkbHpVz8kWl0771Cz5bz9K88weCCA4Rn7BpddJ2+g+C8ffSvOE7fprOEDsbjP55Cx4Uc2pJKsHLqMCsMPC2djn8NtPHdeAdaj9mO12NhNHswmhow62vw1ZZjVRVjV+Rhl2fTWpJOW1ES7fkJdOTG0pETTWfWGfwZkfhTj9CVcoDu5D10X91JIH4LPZc30ntpDX0xK+mLXkr/uYUMRM1j8NRsgpEfEzw+jdDRyYQPT4CDb95zZn2N498Hp6ZAq4mMN0cC7SeLt933HnVO3yQ056ZA6+4p0Lp7CrTungLtk71Gu4NKq4IC6xrXfadINHbeV3C95F3JFWMjieY3pJqHuW5GkWNepsBKpcTKpdKuoNZuptF27xNoo57ZjVHtw8pvoDW1nI7YPPwn0+neF0/Plmj6V0Uy+PkBwh//hOg6dy/9y47R+/UZuiNi8R9NpiP6xlB0vVGLWe7F03xrdH2QbxKmPTrz+Drwem2MFi9GU+PNp0YrsKqLsSvzscuyaS29TldZKoOVKXTkXabjxoWbYfQk/rSjdF07QHfSHrqv7iYQv3UojMauoy9mFX3Ry+g/t4iBqPkMnv6UYORMgt9NJ3TsfcKHJ95XGH2YCx95j9DxKQRPfMhg5CcMnp7DwJkF9J9fhNnU4Pj3y6kp0Goi482RQLt665H73qPO6ZuE5twUaN09BVp3T4HW3VOgfXJWazdTauWRY17mmnGIK8bXdwywccYGrpmHKPcnUOhLo9TKp9Kuos5uodHucPzv8tjM7MaosfAVNNKaVkH75Xz8p6/TtT+Bnq3R9K0+yeAXBwjNHG103U7ws70MLD1K74YoArtj8R9NojM6m7bEYuzsGswyL96mn/69UqB9sPP4uv7xcvrmFszGenx11fhqyrCqCrErcmkty6StOJW2wkTa86/QkXuRzhvn8GdG4b9+An/qIbqS99OdGEEgYQc9VzbTc3kDvRe/ou/CcvrPf8nA2c8ZiPqMwZOzCJ74iNDxqYSPTiJ8+B3HY+g/9hbhwxMJHXuf4HfTCUbOZPDUbAai5tN/bhF90Uvpi1lF76W19FzeSCB+K91Xd9GdtIeuawfwpx3Fn3GSzqyzdNy4QEdeLO0FV2krTqG1JB27LBu7Mg+ruhhfXQVmfS1GUyNGixev18bj0z3sXlOg1UTGm444GCOnbxKac1OgdfcUaN09BVp3T4H28VuT3UmlXUWhlU6GeYYkM+IuZ8GuINHYyXXfKQqsFCqsCppuBtgH9SZhT9x8AYxaG19hE63plbTH5eM/nUHXgav0bLtA35pIBhceJPTJ7lFFV6ZtIzhnDwNLjtK7PorA7kv4jyTReT6LtoQi7KwazFIP3saH81TykxRoR345fcUIL6dPvs+X02+9v5fTH3v/5svp33oEoujNJ0YPvUvo6CRCx6cSjJwxFEZPz6X/7Bf0n19CX8wKei+toT9uA8Gk7QQSdtKdFEFXyn78qYfxXz9BZ2YUnTfO05F7ifaCeNoKk2gtTqO1LAu7Ig+ruhBfbRlmfQ1mYz1Gcwterw+P2UaLpTOJH4cp0Goi401HHIyR0zcJzbkp0Lp7CrTungKtu6dA+2ivzvZSahWSa8WTah4j3th8l6di15Fi7ifbjKHEukGN3UizHbjj53ZVoLUCGHWt+IqasK9X0R5XQGdUBl0Hr9Kz4wJ9a08ysOgQoVnfjC66Tt1G8NNvGfjyCH3rThPYdZGuw4l0ns2kPb4IO7MaX3EL3sY2WqxH4Ovwgz2IQOvxdeI1WvF6DIymJsyGWnx1lVjVJViV+djlN2gtzaCtOIX2gqu058UNvZw++yz+zFP4047Rde0gXUl76U7cTSBhGz1xm+iNXUdvzCr6Liyj//wiBs7MZ/D0HAYjPyF44kNCx6cQPvIeHHrb8SD6jzD6ztDL6Y9NIXjiIwYjP2Hg+5fTn1tM34Vl9F5cTc/l9fTEbSaQsJ3uxG/oSt6LP/UQ/rRj+DNO0Zl9jo6cGNrz42gvSKSt6BqtpRnY5TlYVQVY1SX46qowG+owmprweky8Risea3TnBrvlTcK0kadAq4mMNx1xMEZO3yQ056ZA6+4p0Lp7CrTungLto7Hm1i6qrVqKrAyyfOdJNvYQa6we+XxYYzkJ5jaumyfI8yVRbpfSYFuj/jMf+0Br9eBtaMNX3DwUXa8U0nkmk65DiQR2xtC37hQDiw8Tmh0BU0cTXbcSmh3BwOLD9K07RWBnDF2HrtJ5JpP2K4XY16vwFTfjbXAuuj6Il9N3px0mlHHoCX85/cL7fDl95I9fTl+U/OOX09eO8HJ68/E8h1mB1t1ToNVExtsjfcTB3uMxTl/CPTl9k9CcmwKtu6dA6+4p0Lp7CrQPf/W2j3KrmDxfIunmdyQYW7loLBsxxsYaX5Fs7iPLjKbIyqLarqPZfjAvIX4kA63Vg7exDV9xC3ZmNe3xRXSezaTrcCKBXRfpW3+agS+PEPz0W5i6bcbPXLgAACAASURBVFRPu4ZmfcPAokP0rT1Jz44LdB28SmdUBu1xBUPRtagJo66VFuvOTx232Ho5/V1fTn9y1g9eTv/l8Mvpey5vIHBlC4GEHT96Ob1/hJfTtxWn/ujl9L666h+9nN7j08vpf+oUaN09BVpNZLw9EoG2sLSG784mcDAydnjrd33Hv/x+itOXdk9O3yQ056ZA6+4p0Lp7CrTungLteK6bGruBYiubLDOGFHMfl71r73BEwTLija2kGcfJs65SZhVRb5vjen0PM9B6G9sxSz3YWTW0JRTReT4L/5EkArsv0bv+NANLjhKcswemjTK6ztxJcMEeBlYcpG/DUXp3RdJz8BSBE1F0nztDV2wUXUmn8Wfc6eX0m0d4Of2CR/7l9Bx6+wcvp7/t3env+HL63be8nL476xSh4pj7fDl97ZheTq89elOgdfcUaDWR8eZ4oD0QGcv//d0k/jjxC/6/373Hq5MX8/Pn3ufFt+dz6kKy05d3T07fJDTnpkDr7inQunsKtO6eAu2DWaPdToVVRr6VTLoZyVVjBxeN5Xd4KnYVSca3ZJpnKbSuU2XV0Nzqf+jXfL+Bdvjl9F7fLS+nt0qKaMvKoDMhka5zl+g5eoae3cfo23iIgZV7CH6xi/Cs7TBtFMcLfLAVPtxEeNZ6wnO/IvzFMsJLF8KqubBuFmz+CHZ8ABET4YATT5K+RfjwhB+8nP7jmy+nn/eDl9Ov/PHL6ZNHeDl9TvSPX05fPtLL6RvG5eX0T9KbhGmjnwKtu6dAq7nZYDDIz56ewFPPTub/Pfc+v35pOlM+W09DszHqz3UwMpZFa/f+6Of3Hb844s//FN9f7z//z8Rb9vKELx7I5x8vjgfaZ16fTU5hJQD/9aePAejwdzN7yXZSMgqcvLT74vRNQnNuCrTungKtu6dA6+4p0I52AWqsJoqtHLJ9F0kxDhJnrL/jG3fFm5tINY+QY8ZRZuVTZ3scvX6zvpbW4jT8mVEEErYTjl158+X0c4deTn9sFqG9MwnvnAkbZ8GaT2HZPFi8EOYvg9mrYcZ6mLp5dNF1+iaYuRbmrITPl8KXX8DKH0bXKUPRdf/do+vQU6MfDL0J08lZDER9xsCZz+k/9yV9F5bffGp0Az1XNhOI3053YgRdyfuGnhq9fgJ/5mk6b5yjI+ci7flXaCtMvPly+syhl9NXFeKrKRt6arSxHqOpGa/HxGO0PQL/7T3g/xYUaF09BVp3T4FWc7Pvg6fX1wpAT28/S9bv54O5G0b9ue4UaHt6++nqfjBf59uv93HheKB96tnJDAaDAPzHHz8a/nnTaufldz936rLum9M3Cc25KdC6ewq07p4CrbunQHvnNdodVNoVFFjXyDBPk2js4pJ35chv3OVdSaKxm+tmFAW+VCrtSprsDkeu22u0YlUV0p4Xhz/1EL3nVxM8NA+2TYWNM4ai64rvo+tSmLPqJ0bXLYRnbSI0fyPBJRsZ/Gojg5u30B+xlb5DO+k5HUEgdh/+a8fwZ56iM+vMzTdhujz01GhxCq2l17HLb2BX5t98OX3l8LvTDz816tPL6cdjCrTungKtu6dAq7nZSMEzNauIP7w1D4D8kmpefHv+8K/98McHImNZuGYPr05ezPZ9UbcEWq+vlWden82NgopbnqD91YvTOH42gWnzN/LSOwv45vD54c99MjqJF96cx7NvzOHdmavxmD+OsPcKtHnFVbw6eTHP/30uL7/7ORm5pQAMDAwyb+Vufv+3z3j2jTnMXb6L3r5+AGITM3l5whe89M4C3p25mpoGz0/+et6J44H2hTfnkZiWB8D/vrOAgpJqALq6e/jlC1Mf2nWEw2E2RZzkhTfn8sKbc1m4Zg89vUPfiMYWkwmffMW/vTSdVycvHn7iFxRo3TwFWndPgdbdU6B19xRoh1Znt1Bq53HDvEyqeZgrxsY7PhUbZ2zgmnGIbN8lSqxcau1mWuy7v7HUg57H7MLOL6YzPo6eyGMMfLOd4Po1hJcugQU3o+vH62Ha6KJr+KMdBOftpX/5UXo3naF7Txz+767REZNDW3IpVm49ZqWBx9SbMz3uU6B19xRo3T0FWu1h65z+Kh0fvPLQN5Lbg2egp5d5K3azbudx4O6B9sjpK/znKzNoaDaBfzxB29vXz2tTlnD+chpw6xEH//7yh2zdexoAu62Tp56ZRKCnj9Z2P089O5lmrwXAorV7Wbph/z2v93avTFxIdFw6AOcvpw1fa2xiFpPnrCMcDhMKhVm34zg5hZV4DJt//cNU6hq9AByNiueNacvu59s4Ko4H2qiLKfzs6Qn47HYijkTz7y9/yKdLd/Dyu5/z/pz1D+06YhMzeW3KEnp6+wkGQ8xYuIVdB88B8O7M1RyIjCUYDJGSUcjTr37CwODQU79O3yQ056ZA6+4p0Lp7CrTuntsCbZPdSaVdRaGVToZ5hiQzglhj1R1i7AquGju4bp6kwEqhwiqnyX5wZ4DePo/RhVFtYuXW05pSRsfFXLq+S6Zn52kG1uwnuHAH4dlbYPooo+v0bQTnRtC//Bi9m87S/e1l/MdT6IzJgZwqrJw6zAoDj0dPqrppCrTungKtu6dAqz1s7a//xpGN5Pvg+a9/mMqvXpzGP//PRF56Z8FwsLxXoP1h2/s+0M5ZtpPt+6KGf/72QFtW1TD8a79+aTpNHh/A8BOtANFX0pk8Z90dr/c3f5zBf/3p4+HNW7kbGHpSNhQKA0Ov3v+/v5sEQE5hBb/9yyckpefT1z8w/PlOXUjmw883Df+4r3+Af/rtxAd2JMP3HA+0ANX1LQSDIQBOnE/k89URbN8XRUdn90O7hh0HzrJy86HhHx85fYVPl+7Abuvkly9MHT6GAeAv739JZm4ZoEDr5inQunsKtO6eAq279yQH2jrboMwqJNdKINU8Rryx5c5PxXrXkmLuJ9uModi6QY3dQLPdPeZr8JjdGNU+rLwGWlPL6biUh/9kOt37rtCzJZr+VZEMfr6f8IydozteYOpmmPk1obkbGVy2g/6N+wjsOY0/Kpm2pBKsG7WY5V48zXeOrvf7JmHakzkFWndPgdbdU6DVHrZwu024zXroG8ntT6QOBoOkZBTwn6/MwGe33zPQzl2+a/jXDkbG8uuXpvPz597n1IXk4Z+/PdD+8A3Ivv9xOBxm58Gz/PWDpbwxdSkvvDmPSbPX3vF6SyvrsVo7htfZFQCGnpR9e8ZK3pi6lNemLOGf/2fi8O+NTczk3Zmr+dc/TGXhmj0EevqIOBLNwjV7bvkzfvnCBz/pTdLu5pEItPfjmddnj+vnz84v53/fWUBbh5++/gGmztvAqQvJ5BRW8srEhbd87KdLd3DifCKgf6C7eQq07p4CrbunQOvuPQmBtrm1iyq7liIrkyzzPEnGXmKN1XeIscu4amwj3TxBvi+JcruEBtsa3Z9pdmPUWPgKGmlNq6A9Nh//6et074unZ2s0fasjGfziAKGZu0YZXbfAjA1Db8Q1fxksWkR4xeeENi2nf+9mAlEH6UyOxSotwuMb+/m2CrTungKtu6dA6+4p0GpudqcjA/48aRFxydkUltXywpvzhn8+NavolkA7b8Xu4V87GBnLe7PWUF7dyG/+OIOWm8cV3E+gvZyUzSsTF+K/GVrPxqbeNdCOdMSB3dbJz597n+r6FgA8hn1LoP1ee0cXk2avZe/xGKIupvDR55uHf+37J2i7A733+MqNzmMTaH/14rRx/zOWbTzIU89M4hfPT2HCJ18xMDBIWnYRb0xdesvHLVyzh4ORsQCEw5pbBxDWfwOundPf/4HBkONfAzdP939373H7/vcG/fj6q6jpvkZu+ymSre1cNJaN/FSsuYaM1v0Ud16iqSeX9gEPwXDwls/X//39Jxgm3NZNuN4HRfWQVgKXbhA+nkz4m0uw4TR8eRhmfTP66DpzM3y6DuYth4WLYdl8WDMHNsyErdNg92Q4+jHh2JWE0/dB6SVoKSDcZREOh/X91/T9f0LX7+S/f9D339XT99/1c7ORgmd2fjm/eH4K9U0GXl8rv3h+CoGePgCWbth/10D7fYiNOBLNe7PWEA6H7yvQHjl9hekLNgLQ2RVg8px1I54Fe7dAW1nbxH/88SP6+wcIhcJs/CaSnz09gd6+fg6fimP7viiG/i0Z5ouvvmXf8Yt4fa38+qXpw9d0MDKWt2esGtPXdCQKtDd9dzaBKZ+tJ9DTRzAYYtWWI3y5fh+5RZW8POGLWz529pLtnIxOAsDT2qO5dIG+IB1d/Y5fh+bM+gZCtHb2OXcNtvNfAzdvMBjG19Hr+HVoziwcBu8jcB0/Xje1dgMldjZZvhhSzH1cNtbe8YiCeGMLaeZx8qwEyu0iGloNPHYAs97GKm6i9XoVHVcK8J/JoPvgVXp2XKBvzUkGFh0iNOrouo3QpxEMLtrHwIp9DKzZzcCGTYQ2LoOvZw1F153vw5534cBbcPBNOPgm4UMTGIiaS0/c1/jTj9JeeBWrthSvr92Rr7G37eYT1I5/rzUn5usYeoLW6etw9Rz890/rzSdoHf8aaI6s4+YTtE5fh+bc3Oz74PnUs5N56tnJ/Py593n53c+JTcwa/pivth3llYkLmTrva/afuMQf3hp6ovZugTYYDPHXD5Zy5HTcfQXa1nY/b0xbxotvz2fSp2vJK67iv/708fCbld1+vXd6k7AFqyJ45q+f8sbUpaRnF/PWRyt5/YMltLb7mTZ/I797bTbPvjGH2Uu2E+gZekr2SsoNXpm4cPjPbmwxH8BX9lYKtDfN+GIzkdGJwz/OK67i+b/Ppa3Dz7/8fgo9vf84iPiFN+eSW1QJ6CVubp6OOHD3dMSBu6cjDty9cNj5Iw4a7XYqrDLyrWTSzUiuGju4aCwfMcTGGqtJ8uwmu+4EpSUXaUpLouP8dboOJRLYGUPf2lMMLD5MaFYETB1NdN1KaHYEA4sP07fuFIGdMXQdukpX5FW6zlwicPYEPWd20x+1guDxD4ej60gLHp9GX/QyuhN303njHK1lWRhNDbTYAce/3z+cp1VHHLh5OuLA3dMRB+6ejjjQRMabAu1NmyJO8vGiLcNvBrb521PM+GLojIlJs9ey6+A5gsEQ0VfSee6NOcNvaub0TUJzbgq07p4CrbunQOvuPdxAG6DGbqbYyiHbd5EU4yBxxvo7PxVb9xWZeZspjdtB88Fv6Fq+E6ZtG9XTrqFZ3zCw6BB9a0/Ss+MCXQev0hmVQXtcIfb1KnzFzRg1Br7qUtoKE/GnHaPn8kYGouYSPjzhjhE2fOhdBk7PoefyBvypR2jPT8CqLsFjtjn+Pb3fKdC6e24LtKZRj92UTUddDJ2V+wmUrqO3aCE9xSsIlK6nq2wr/ooIOqsO4a+JpKP2HO31l2lrSMJuzsRqycPnKcM0ajFMLx7r8fnf+khToHX3FGg1kfGmQHtTd6CX+au+4fm/z+X5v89l6rwNeMyhx6GbvRbvzlzNr1+azmtTllBcXjf8+5y+SWjOTYHW3VOgdfcUaN298Qq0jXYnVc3FFNdeIav6MMm1W4j13OGp2KZlpOWspDBmNfX71tO6eiODH98lun6ym8GFB+lbE0nPtgt0HbiK/3QG7XEFtKZX4itswqi1afH98InVAEZTE3ZZNh050XQnRdB3YTnBE3d/GjZ0fCp90UvpvrqLzuyztJZmYDbW02I9Wk/D/pQp0Lp7T1qg9foMrJZC2hri8VefoLtsC71FixjM+4Bw9qvjttCNvxHMmcBA3jT68z+hr3ABvcWLCZSsprvsa7rKd+Cv3IO/+iidNafoqLtAe308rY3XsJuysVoK8XkqMcwGvD4Tjz32NwC8nynQunsKtJrIeFOgHSOnbxKac1OgdfcUaN09BVp3b7SB1tvUgVnmxc6qpS2xmM7zWfjOXKIh+hilcTvJyljP1YoVd3wqNqFyOdkpqyg/uQbPtg10Ldo8dLzAzF1D0XX1SXq2RtO1PwH/6eu0X86nNa0CX0EjRo11W3T98Ty+Tny15bQVJuFPP05P3GYGouYTPjzxLk/DvsPg6U/pjV2HP/UQ7QXxWFXFeIzH+wm5e02B1t173AKtx+rA56mitSmNzroz+Csi6CleQX/+TEI3/n7PkDqYO4m+wgV0l31NZ+UBOqsO33H+ym/pKt9Bd9nXBEpW01u8mL7CefTnf8JA3jSCORMI3fjbOIffNxnMncRA3of0F8ymt/ALeoqXEihZQ3fZJrrKd9NZuQ9/zXE6a6Nor79EW8NVWpvSsJtz8HmKMb01GEYzXp/9o6+nAq27p0CriYw3BdoxcvomoTk3BVp3T4HW3VOgdffCYTCaOzHLvdg3amhLKqEjOhv/0WQC38TS+/UZ+pcdIzh3L4Mzt9G+YiMNe9ZTfP4r0rNXcrlx2Ygh9lLLUq4VriQ3cT1V53fh+e4YHUcu4z+ZTkdsHq2p5Vj5DRjVPlrM7lFft9Hcgl2eQ8eNC3Qn76EvZgXBEx/d/WnYY1PoP/8lgYSddGadpbX0OmZDHS3W6P/8J2EKtO7eoxdouzGMRuzmHNrrY+msPEh36Xr6CuczmPPePYNmMOct+vNnEShZjb9iDx2152ltuo7prcFj+cfpmgN4rDa8Pi+mUYfPW47Vko/dlElbQzLt9XF01J6ns+YknZUH8Vd8S1f5NgKl6+kpWUlv0UL6CufSn/8xg3kfEMx5h1D2X8cv+mb/lWDOOwzmfcBg/kyCJXOHjnkoWTl0zEP5tqFjHioP0llzko7a87TXx/3gmId8fN5yTKMOr+/7Yx4e/1cTuHEKtJrIeHMs0P5t+nJ2HDhLYVktoVD4nh9fVF77EK5q9Jy+SWjOTYHW3VOgdfcUaJ/MeVo6MSsMrJzaoeh64Qb+4yl0R1ymd+NZ+pcfJzhvH3y4Y8RjBHrmb8bc+DVVx9aRk7CKpJIVXPSO/FRsXOMq0qq2k1t6nPKKBOrqSvGYYw8iHqsTX10FbUVJ+K+foOfKZgbOLCB85L07h9hDbzN4aja9sevounaQ9vwrWNWFeI1Wx78nj9oUaN09JwKt12fh85TQ1phIZ81Jusq301v8JQN50wnduHuYDN14nYG86fQWf0lX+XY6a07S1piIz1OC12c5/vV8sOvG62vFMJsxvTX4PCXYzTm0Nl2nreEq7fWXhp4irvmOzsr9+Mt30122mUDJWnqKl9Fb9AX9BZ8ykP8hg7mTCea8RTj7tXF82vfvBHMm/uCYh/n0Fn858jEPtXc65qEKw2h8qMc8uHkKtJrIeHMs0K7acpiX3lnAz56ewG/+OIN5K3cTHZdOW4ffqUv6SZy+SWjOTYHW3VOgdfcUaB+fecwuzEoDK7eOtuRSOmJy8H93je5v4+jdfI7+Fd8RnLef8Ec77/9NtD7cSvuqrTQc3k5hwhbSCjdwuWnlHY4oWEaCsZV08wT5vkTK7RIabN+Y/15Gswe7IpeOnIt0Je2lL2YVwciP7/E07Pv0n1tMIH47nZlRtJak33watsvx79PjMgVad288Aq3H8mN6a2htyqCj9jz+ym8JlKymv2D2zUh4j2MIct6jr3Ae3aXr6aw8SHt9LHZzDobRSIvtzifdH+j3x+7Ea/owjEbarWoGOsqxm2/Q2phKW0MCHXUX6Kw9hb/6GP7KvXSV7/zHMQ9FS+grXPCDYx4mErrx5jge8/AawZy3GMydfNsxD8sIlKz9xzEPVfuHQnXdmR8c85B+85iHktuOedB/Q99PgVYTGW+OH3Fg+NqIupjC3OW7+K8/fcw//XYib0xdyvZ9URSUVDt9effk9E1Cc24KtO6eAq27p0Dr7DxGF0aViZVbT2tKGR0Xc/FHptG99wo9W87Tv+I7BhccGFV05YOthD/cQXD+PvpXHKd301m6v72MHZVA/bVLFBdFkVF7kISWzVw0Rj6iINZYTZKxlyzzPEVWJlV2Lc2tPz1+enx+fHVVtBWn4M+IJHBlCwNnP7/307AnZ9F7aQ1d1w7QnheHVVWA1zv2KKwp0Lp9Py3QBjDMZqyWPNrr4/BXH6W77Gv6Cj9nMHfyfZ2r2p8/k56SlfgrIuioO0trUxqmtwqPpacmH+Ye5Bm0933MQ9WhEY55WHTbMQ/vEsp+4yEc8zCFgfwZ9BV+dusxD2Vbbzvm4Rzt9ZdvPebBU4Zp1GKYj+8xDwq0msh4czzQ/lA4HKa8upF9xy/ywpvz+NnTE5y+pHty+iahOTcFWndPgdbdU6B98POY3RhVPqy8BlpTy+m4lIf/ZDrd+67QsyWa/lUnGPz8AOEZo4yu03cQnLeX/mXH6N14lu6IWPzHUuiIvkFbUgnWjVrMci8tze3U2A0UWzfINmNIMfcT5117xzfuije2kGoeI9dKoMwqpM42fvLf3WjxYlfk0ZF7ia7kffTGrCIYORMOvnXnp2GPTqb/3CICCdvwZ56mrTgVs75GT8OO93+nCrSu3p0CrcfXis9TRltDMp01p+gq30lP8VIG8j+8j/NRX2Mwdyq9RYvoKtuCv/oEbQ0JWC1FeH2m439n7R979N8k7PZjHkqxm3NvOeaho+4s/uoTtx7zULrOwWMeJtzfMQ81dzrmoRLDbHgoxzwo0Goi4+2RCLShUJii8loijkTz3qw1/Py593nmr5+ycM0epy/tnpy+SWjOTYHW3VOgdfcUaO9zZjdGtYWvoJHW1HLaY/Pxn75O9754erZG07c6ksEvDhCauWuU0XU7wc/2MrD0KL1fnyGwOxb/0WQ6o7NpSyzGzq7BLPPibRr5/1hrstupsMrJt5K5bp7kqrGDi8aKOzwVu4okM4IM8wyFVjqVdhWDoQE8o/xaeHxd+OqqaSu6hj/zFIH4rfSfW0j46KS7PA37FoORn9B78Su6UvbTkReLXZmP16No49QUaN05j+XHNGpp92QRMi/TWbmXQMka+gs+JZjzzj1DVDBnAn2FnxEoXUdn1X466i9iN2VjGPX6/1R5jPboB9rx2Q+PeTC9VVgtRbcd8xBDZ+3p24552Eig9KsfHfMwmPPeuB/zELrxJoO5k2475mEpgZI1tx3zcJzO2qgRjnkoHvGYBwVaTWS8ORZoG1tMTpxPZNaX2/j3//2Q3/xxBrOX7ODE+UQamk2nLmvUnL5JaM5NgdbdU6B191wdaH0BjFoLX2ETrWkVtMfl4z91na79CfRsu0DfVycZXHiQ0Ce7RxVdmbaN4Jw9DCw5Su/6KAK7L+E/mkTn+SzarhZhZ9VglnrwNraP4noD1NjNlFg5ZPsucc04SJyx4Y5PxV4xNpJqHuaGeZlSO486u2XEzxsOc8dA6/UY2JX5dOTG0pWyn96LqxmM/AQO3e1p2En0n1tIIH4r/sxTtBWn4qurxuNTuHnUpkD75M4wvVjNBbTXx+OvOU532SZ6ixYymDeFcPZf7vEk4N8YyJ9BT/HyofhTG0Vr4zV83oqbL+d2/u+njX1uDbTjtX8c81CPz1tx2zEPV+io+/ExD91OHfNw46+Ect4llP/Brcc8FK/40TEP/prIW455aG3KwGrJeyKOeXD73GwwGORnT0/gn/9n4o+WlVcGQNTFlOGP//eXP6Sh2fjR5ykqr+X5v8/9ydcx1t//qHMs0P7s6Qn88oUPWLbxIGVVDYTDYacuZUycvklozk2B1t1ToHX3nrhAawUw6mx8RU20Xq+kPa4A/+kMug5cpWfHBfrWnGRg0SFCs74ZXXSduo3gp98y8OUR+tadJrDrIl2HE+k8m0lbQhF2ZjW+Eg/exrEHjEa7k0q7ggIrlQzzNEnGbi55R37jrkvelSQau8gwT1NgXaPSrqBxFC+NDIeC+OpraCtOxZ95mkDCNvrPLSJ0dPJd3qTrLYKRM+m9uJqu5H105F7CrsjDaPE6//3X7nsKtI/vPFYbPm8FrY3X6KyNoqt8Nz3FyxnIn0Hoxt/uEWj+wmDeFPqKvyBYsxV/zXHa6+OxmgswTP1v2C1ToH0c9v0xDy0/PuahMZH2+tgRjnnYMsIxDx8xmPv+Qzjm4W+3HfMwj97ixbcd8/DtCMc8pIx8zIPOpR7Xudn3gdbrax3x18PhMP/1p4+Hf3ynQDsYDNLW4R/TdYzl9z/qHAu0p2OSmbNsJ7/54wz+448fMXvJdk6cT6Sx5fF5ehb0D3Q3T4HW3VOgdfcei0Br9eCtb8VX3Ix9vYr2K4V0nsmk61AigR0x9K09xcDiw4RmRcDU0UTXrYRmRzCw+DB9604R2BlD16GrdJ7JpD2+CPt6Fb6SFrwNbbRY4/N3q7NbKLXyyTEvk2oe4Yqx8Y5PxcYZ60kxDpLtu0ixlUON1UTzfT614vWYWFUFdORdpuvaAXovrWHw5Ky7Pg0bPvIeA2c/JxC/BX9GJG3FKfjqqvD4/M7/N6GNeQq0j/K6MYx67OYbdNRfpLNqP4HSdfQVfkYwZ8J9HEPwDv0FnxIoWYO/ci8ddRewmzIxjVo81tD/fn/am4RpT8oUaN07j91JR2crPV3eEY55iP/xMQ8VIx3zMIuBvOmOHPPQV/j5rcc8VOyis3Lfbcc8JNDalDbCMQ8W3x/z4Pa52b0C7YyFW/jZ0xN4ecIXeMxW/v3lDzkaFc/L737Of/3pY745fB649QnYUCjM5m9P8eLb83npnQXMW7mbru6hr/O//H4KEUeimfLZev703kIOn4ob8fcv33iQ3//tM555fTafr45gMBgc7y/FuHL8DNpwOExZVQN7j8cwec46/t9z7/PcG3P4cv0+YhMznb68e3L6JqE5NwVad0+B1t1zLNBaPXgb2vAVt2BnVNMeX0Tn2Uy6DicS2BlD3/rTQ9F19iij6wdbCc36hoHFh+hbe5KeHRfoOniVzqgM2uMKh6JrcTNGXSst1sN7SV5zq58qq5pC6zqZ5lmSjG+JNVbfIcYu56qxnXQzknwrmQqrjEb7Po5DsLowG+poLUnHnxlFIH47/ecXETr2/l2ehn2TYOTH9MWsoitpCg9J0QAAIABJREFULx05F4eehm32OP7fpja+U6B1dl6fidVSRFtDAv7qE3SVbaG3aBGDuVPv+ZRbKPuvDOR/SE/xUrrKd9JZc4q2hmR8njI8vtb7+vMVaN09BVp3bzzOoPVY7Xh9xo+PeWhMGeGYhz10lW+/7ZiHefQXPLxjHoI57zCYN4WB/I/oK7j9mIf/n733fI/qzNN1z99xvpzvPj3jPeFMz+y9Zzzt7p722Lune2x328YBY4wJJhhjggkGTDAYg00wCBBBZBASylkIIQnlWJJKsRSqVLWqVuW0QoX7fCghwJaQTNAS1Hqu675MqVDpXauqFnD7V897cPKah9HJah6sz2TNw2zn/+k4x//dfnbWmSzTCVq318+Lv1s4cftf/riMHd+fIxaLYxqx8uJvPyIsKQ8I1vyyOv68YBOhsEQ8Hmf11h/Zn3IVgH96dQnfHUv82uXx84+vLEZwuB/4/pLKRv44fyOKoiIrKn+cv5H8srondv61iOaC9qcJhWUuZJTyh3fW8sJL87VezrTR+iKhox26oE1udEGb3DxpQWsb8WDvtuKsH8RdbsCX3YD/wi1CKQVI+zJQv7pAdM1JWHL4l0nXVSlENp9D3nON8JF8Amdv4s+ow1PSjutOH44OM4LJOavSdSqGnQJG0UCLWE6NcJky4eCUU7HFwh5u20/TYM+jU2xkwDnMdNMdNsGFONCBp62EQFUaUuFeItdXw7n3Hj4Ne2MD4dIf8NdexW2oxDHUSzz6yzcJ03k+0AXtUz6/ohe7rR+XuSbxMeTeE4S7dqK0rZzRxFmkZSFyxwaCxv34+s/jGS5BHGtFsFt4EiJAF7TJjS5ok5tnZ5OwINYZ1zycxd9z/Cc1D5tQ2tc8UPMQa/rLU695iLQsRmlb+ZOah+8I9Bz5Sc1DLp7h0gdrHmy9CMLwU695mO38X01HNWGy3BW0L/5u4QPclaWTCdqu3qGJ279+bSlmq+MBwbpuZwpnrhZO/J6aRgOvL9wCJAStsX9k4r73lu+iqKL+Zx20sqJO/PqrfacnJnWf1cwJQWuxiRMbhv3za0v51W8+ZN6yHRxNy9J6adNG+wuwjlbogja50QVtcjMTQWszexPStcGEu6ITX04D/ou3CKUUIn2XibrtItEvUokvPfLLpOvKY0Q2pSHvTid8OI/AmXL812vxFLfhqunF0T6KMCgy5tBeuk6GxRWg3zmEQayn3p5LpXCKIuGbKWTsdsqFQ9yxX6HVUUGP2Mmw0zH144tB7CMmXN21+BpuECo/ipL9FbFLi6aZhl2OnL+D4K1UvE15OHuaESyTbxA25nz4JmE6zze6oH1cggjCKE5LM57hInx9aQS79yF3rCPSvGAGNQTvorR9RqhrN/7eVLymHFzmWuy2wYkagqeJLmiTG13QJjfPjqB9OlhFPzaHiCCM3lfz0PzzmofBy/h+UvMQnrTm4R2m24Dx0XljvOZhwYxrHrzDBQ/UPIhjndhtAwiCeaLmYbZjU0NYNWCyPMoE7f0dtHdv3y9YF32xj6yi6onf09kzxL+/sQpICFqLTZy4b8n6A1zNqXjg+73+IJv2pPLmoq28tWQ7//rnFRxLy37Esz03opmgLa9uYcf353hl3jpeeGk+//bfK/ly9wkKyuvw+mf/xf+o0fpCqaMduqBNbnRBm7wIAw6ivRZ8lV34chvxX6wklFKEtP8Gyo4rRL849cs20vrkEPHlR4l8eRZ59zXCB3MJni7Fn34Hb2ErrqoexNYRhP6HiMk5yohTpMfZRZvjFnfsV7kpHKZA2D6pjC0SdlMppNLgyMEg1jEgmrC4ApM+rlVwI/Z34mkvw199DqnoWyLXVxM/9/7U07DnP0TNXE+45Af8dy7j7riFw9SD1eH7xcelC9rkRRe002NziDisXbhHK/ANphPoOYLU+RVq69Jpp7BiTX9BbV2K1PkVgZ4j+AbTcY9W4LB2jf8DWdtj0wVtcqML2uQm2QXt0+JnNQ+Wdpzmhp/UPFzH13/+JzUPu5A6t0xS8zDdpo+PTjLnaQjaDbtOcPZa0cTvqW4w8MbHXwEJQWvoMU3c9/bSrymqaHjg+3f+cI5Ne1Inemc37UnVBe2j5m9eXsB7y3dy/HwO3X3DxONxrZbyWNH6gqajHbqgTW50Qfv8IgyIiM0mPKUd+NNrCKUUIe9JJ7ruzC+Trp8eJbLhLMqua4QP5hA8VYr/Wg3eghZct42ILcMI/XbNj/dJYHEGGXSO0Ck20WjP57b9DCW2vVNWFJQJP1Btv0SLWEa32MGQc5Jd0MUQ9tFhXN11+BpuELx5DCVnK7HLix8+DXv1U+S8rwneOom3ORdnTxOC2cyT7DnTBW3yogvaxBSV3TaIy1yL15SDvzeVUNdulLbPxnc8n6aGoHkBcsc6gt378PWl4RkuwmlpRhBGmesb0eiCNrnRBW1yowvaZ4mf1jwYEcd+UvNgmqrm4etJah7eI9b0ttbqSdNMJ2j9gRC/+s2HhMIyMDNBW1TRwOsLtxAKy0SjMVZuPsShUxlAQtDuOngBgBGLnb/7/ceILu8D379qy2HOXElUJAwMWfjtXz+f6LB9VqOZoPUHJh+dftai/cVHRyt0QZvc6IL22UUwiYgtQ3jKDPiv3yF0vAh573UiG87OcDOtE8R3XUU+mE3wZElCuuY3467sRmwZxt4naH6MTxOz00Ov2EObWEmtPZ2bwo8UCDummIrdRYX9OHX2G3Q4auhz9mN2PjixarW7EQc68bSV468+T7j4OyIZa4iff9g07HzUzLWEiw/gr7mEu6MCh8mI1fH0esfuRxe0yUtyCNoQgt2CONaCZ7gEX/95gsb9yB0biLQsnEGf4DyUtpWEu3bi7z2BdygLl7kGu63/qXYDzga6oE1udEGb3OiCVieZc1fQ/uo3H/6Mu72vC9d8y69fW0p718CMBG08HufI6Uxee38Dr763ns17T00I3n96dQmpl/L574828/Kbq7mYWQbwwPe3GPr4wztr+a8PN7Lxm5OUVDbyj68spux282yemieaOdFBO1k6ugfJKa7RehnTRuuLhI526II2udEF7RxFDCMMuRBbhnGXG/BfryV4shh5XwaRL88SX/rjDATscZTtlwgfyiVwvgJvXjOuml7s3VastkTH4ZPeJGxuEsLktNAlttDoKKRKOEeJ8N2UU7Glwn6q7OdpshfRLbZicloeeCy7eQSXsQFfYzbBihTk3G1ELy95+DTslaXIedsJVpzA15SDs6cRwTyK1rv+6oI2eXleBK3V4cJhNeIeqcQ3eJ1Az1HCndtQ25YRa/zrNBL2TSIti5EMmxO7dg9cxT1SjjhmwOZ4Pj4VMBW6oE1udEGb3OiCVkfP7OWfXl0y5bTu85w5K2h3/nDugQ6LuRqtLxI62qEL2uRGF7TaYRt2IbYO467oxJ9RR/BkCfK3GUQ2zlzAqtsuEj6YQ+BcBd68psTmWl1WrNaZ9ZE+b4LW7PTS5+yj3VFNrT2TCiGFQtvOSUVsoW0HFcIx6uzXaRer6BN7GXUmpuKsdg/iQBee9pv4qy8QLt6PmvkF8XMfTD0Ne24+asZawsX78ddcxNN+E8dgN1a7R/PzMhW6oE1enhVBaxX92AUTTnM93qE8/H2nCHXtQWn/nGjz+zPYjGs+cscXhLq/xdd/Bu9wAU5zI4IwzFyvIXia6II2udEFbXKjC1odPbMXXdDqeaRofZHQ0Q5d0CY3uqB9ethG3IhtI7grOvFl1hE8VYq0L5PIpjTiy2YgYFeloG4dF7BpN/HmNuKq7sHRNTZjATsdz7KgHXJaMYptNNtLqLZfoMz+/ZRTscXCPqqEszQ5CugUmzGJZizOIIJ5FGdPI76mHIIVx5HzthO9svTh07CXlyDnbiNYkYKvMRuXsQG7eQStp2EfBV3QJi9zSdAKdhviWBue4TL8A5cIGr9HMmwk0rpo2p2xY01vo7YtJ9z5NYGeFHymTFyjVThsvVhFt+bHNlfRBW1yowva5EYXtDp6Zi+6oJ0jcXv9WGyi1suYcbS+SOhohy5okxtd0D46tlE3jvZR3Le68N2oJ3i6FOm7TCKbzxH/9Oj0AnblMdSvLiD9kE3g7E18OQ24qnpwdFqwWp6MgJ2OZ0HQWlx++sUBOsRa6u1Z3BJOUiTsmnwqVviacvsR7tiv0uqopEc0YhYFHING3B0V+GsuES4+gJq5lvj5+Q/phn0fNWMN4eLv8FdfwNNWjjjQhdX+fAkfXdAmL7MpaK2iG4etF9doFT5TJoGeFMKdX6O2LZ/BLtVvEGldhGTYRND4Pf7By3iGyxAt7Qj2STbl05kRuqBNbnRBm9zoglZHj56nHc0ErSQrbNqTSvGtxomvnbyYx69+8yEvvDSf1xduwe31a7W8GUfri4SOduiCNrnRBe3U2EY9ODrMuCu78WXVEzxdhrT/BuqWc8SXH5tWwMZXHEPdch7pQBaBM+UJAXvbiMNgxjZLAnY65pqgHXYKGEUDLWI5NcJlyoSDFAjbp5iK3UOl/RQN9jwMYj1DY+2IPQ14m3MJ3jqBnPc10avLHjoNG7u8GCVnK8Gbx/A13MDVXYd9dJgx8dmbhn0UdEGbvDxRQSsGEIRhnOZGvMMF+PrPEOr+FrnjC6LN82dQQ/A+SvvnhLr24O87hXcoD6e5Hrtgwir6NT9XzyO6oE1udEGb3OiCVkePnqcdzQTtniOX+MM7azH0mAAYsQj8zcsLuJ5XSc/AKG8v/Zpt+89qtbwZR+uLhI526II2uUlmQWsze3EYxgVsdgOBM+VIB7JQt5wnvnz6Cdj48qMTAjZ4ugxfVj3uym4cHWZs5mdjh2+tBK3FGWDAOYRBbKDenkulcIoi4ZspKgq2Uy4cpMZ+hVZ7Kf0jFQhdxfjvXCZc8gNq5nri5z98SDfs+0QyPkcq+hZ/9Tk87WWI/Z1YhedrGvZR0AVt8vJLBa3NYUcc68A9Uo5/8AoB40EkwyYiLYuJN7758BqCxr+iti0j3LmNQM9RfIPXcY9U4rAasTpcmp+LZEQXtMmNLmiTG13Q6ujR87SjmaD99zdWUd9inLh94kIuH6zcPXG7vsXIy2+u1mJpvyhaXyR0tEMXtMnN8yxobRYfjk4LrttGfDkNBM7eRPo+C/WrC8RWzmAC9tOjqJvPIe2/cU/A3urC0T6KbWTubvz0S5gNQTviFOlxdtPquEWt/Srl9sMUCl9PMRW7m0ohlQbrNYxDN7B0XMVfdRI5fwfRq58+fBr20iKUnK8IlR/F15CFq7sW+8gQY2LybgQ0HbqgTV5+Kmitohe7rR+XuQbvUBb+3hOEu3aitK0k1jRv2inYSMtC5I4vCRr34x+4iGe4BHGsFcFu4VnsZ37e0QVtcqML2uRGF7Q6evQ87WgmaH/1mw/xeAMTt5duOMDx8zkTtwWHm795eYEWS/tF0foioaMduqBNbp5lQWsd8+HoGsNV3YMvt5HA2ZuEf8hG3XqR2KqUGQnYyOZzSN9lEjxViu/GfQJ2NDmmK5+koLU4gww6R+kSm2i053PbfoYS4dspN+4qEw5wZywVgymNoY5U3JUHUG9sIH5hwdQi9tx7RK6vRircS6AqDU9bCeJABzZBn8J7FHRBm0wEEYRRnJZmPMNF+PrTiA18j9yxjkjzghnUELyL0vYZoa7d+HtT8ZpycJlrsdsG9RqCZxBd0CY3uqBNbnRBq6NHz9OOZoL2n19bitnqAECNRPn1a0tpbOuZuH9wxMq//J9lWi1vxtH6IqGjHbqgTW7msqC1Wn04OhMC1pvbROBcBeGDOajbZihgl/1IZFMa0r4Mgqkl+DLrcFd0IraOYBtJDgE7HY8qaM1OD71iD+3ibWrt6dwUjlIg7Jh84y7bTirHfqB58Ed62w9iv70TJWPlNNOwH6NkbyFUdgRffSaurjvj07ABzc/Z84QuaJ8vbA4Rh7UT92gF/sFrBHqOIHVuQW1dSqzpLw+vIWj6C2rrUqTOrwj0HME3mI57tAKHtQubQ9T82HSeLLqgTW6eW0ErhrE6wljtYaxCGJtNwjaWQDBLCKMJ7MMS9iEZx+A4AzJin4zYKyP2yDiNMs5uBWengqtTwWVQcLUruNsV3K0K7hYVT7OKp0nF26jirVfx1qn46lR8d1R8NRH8VeNUqvgrEgTKVQJlEQKlEYIlEYLFEYJFEUIFCcJ5EcK5UcK5UaTsKFJWFCkzipwZRc6IIqfHUK7FUK7GUK7EUC/HUC/GiFyMETkfI3IuTvRcnOjZONEzcWKn48ROxYmlxomfgPjxBByDsFsXtMmMHj1PO5oJ2o9W7+XHs1kAXM4q53//aTmRaHTi/jNXC5m3bIdWy5txtL5I6GiHLmiTGy0FrdXmx95txVXTizevmcC5m4QP5qJuv0Tss+PTC9ilPxLZeBb52wyCJ0vwZ9ThvmlAbBnGNqxPVM6E6QVtCJPTQpfYQqOjkCrhHCXCd1NPxY59Q+3Qd3R27MFctYnAjU8g7d0ppmHfJZL+GVLhHgJVZ/G0liD2t2OzOTQ/L8mCLmifLaxOH3bbIC5zLV5TDv7eVEJdu1HaPptZDUHzAuSOdQS79+HrTwOxHKelGUEYZcypV4EkE7qgfYZ4QDpKCelofRTpqCSkY5eC36iiDsQTwnFcOnpaEsLxZ9Kx9j7pWD0uHW/9XDoGS+5Jx1DhOPkRwnkJ4RjOGZeON+6TjtfHpePVBOqVGOqlcel4IUbkfDwhHdPGpeNd4XgqTvzkuHRMAVKAYzq/hLBLF7TJjB49TzuaCdqGViP/4/cf87/+azkvvDSf63mVE/ddulHGi79bSF5ZrVbLm3G0vkjoaIcuaJObpylorTY/dqMN150+vPnNBM5XED6Ui/L1ZWKfnZiZgP3yLPK31wmeKMZ/vRZ3eULACkNOxkTtz9+zzv2C1uz00ufso91RTa09kwohhULbzklFbJFtO7eHd9HS9TWmO+tw5i4icun9yadhLy5Eyd5MqPww/voM3J3V2IcH9WnYOYAuaOcaIQS7BXGsBc9wCb7+8wSN+5E7NhBpWTitgI01zUNpW0m4ayf+3hN4h7JwmWuw2/qxig9uXPhLNwnTeb7QXNA67pOO9wtHy7h0HJGwj4xLR9M94ejo/4l0HBeOrq7xKccOBXfbOK3KxJSjp1HF2/BT6TguHKsj+G/fJx1vqgTK75tyLBmfciwcn3S8Kx1zxqVjVkI6Tkw5Xo+h3C8dL49Lx0v3Sce0SaRjqi4dnwR3p0TjJyCWOn5uTycmSqNnExOmkXPxxMTpxYQMVi8nJlKVq4kJVTk9lnguMxMyWcpKyOW7063hvHtTr8Gi8UnYksRrJlAWIVB+T2D7K9WJaVpfTSQhu+sSr0NvfUKGe5oSE7nuFjUxoduWmNh1GRITvM7OcbluTLzuxd7E+8AxkHhv2E0y9iEZ+/A9YS9Y7k0P22wSVmH8PecI4/HrFQfJTrInHo9z5kohr72/gRd/+xH/67+Ws2LzQYZGbdN+r7F/hD+8s3YWVvlsRzNBC4kag8yC2xh6TA98/fTlAjLyK6f4rrkVrS8SOtqhC9rk5nEErdUewG604aztx1vQgv/iLcKH81B2XCa2eiYC9giRDWeR914neKII//U7eMoMiM1DCCZdwD5NhpxWjGI7Pb6b3HFcpMz+/ZRTsaWW7dT1bKW77nPGSpfgz1hA/Ny7P5+GvbYKqeAbArfP4G0twtnXhs1q1/xYdaZGF7Szj9XhwmE14h6pxDd4nUDPUcKGrahty4g1/nUaCfsmkZbFSIbNBIwH8Q9cxT1SjjhmwOb4Ze81XdA+jef2nnS0TSYdR8el41BCqDhM90nH3gTO+6Vj50OkY/P4lOO4dPTdlY41k0vHwP3SsTRCuCRC7Gb8QemYO410vDbOlfuk491Jx7tTjmmTfLT6ZPyBj1br/HImpOPJ+M+l4/h5j5yLE7kwLhwv3Scdx583+fo96ahkx4jlxSee73BulFD++Guh8D7pWDouHcsjBG6OC8dbauK1Nf4689VEEq+9u8KxYVw6jr9O7wpHd1vitewyJIS6s2tcOt4vHPvH3xOmcek4nHjPCCPj76G70tEqYbVJCcHvCDPm0P79/yyhd9DqJHv2HLnEH95Zy53GToIhCcHhZn/KVf7tv1cSCD78/OiCdmbRVNA+D9H6IqGjHbqgTW4eJmitQgB777iALWxNCNgj+Sg7rxBdc3JmAnb9GeQ96YRSivCn14wLWBPCoMiYqO/s/bSxuPz0i4MYxFrq7dlUCicpEnZN0RW7jUrTFtpa1zB4ezli/iKUKx/8ZBr2I5TsTYTKDuGvv47bUIVjaACrQ5+GfRbRBe2Txyr6sQsmnOZ6vEO5+PtOEerag9L+OdHm92awGdd85I4vCHV/i6//DN7hApyWJgRhmCdZQ5CMgtZmlXB2K/hqVUKFkYR0fIyPVmst7Z4HHjrp+FPpeHES6Xj/pOON+yYdfyodCyaRjmWTSMeqSaRj3STSsUX9uXTsHJeOxhlKx9GfS0fb/dLxKb4XntsOWp0ZoQtanWSO0+3jb1/+CGP/yM/uGx2zT/y6tbOf1xdu4Q/vrOWPH3xJXUs3kBC0r8xby94jl3j5zdW8Mm/txH2xWJwfTl7n1ffW89r7G1i3M2VC+P7Tq0u4nFXOkvUHeO39DRw/nzMLR6tdNBW0iqJy5moh7yz9mn/775X8+xur+Gj1XjLyK4nF4loubcbR+iKhox26oE1erPYgitWNr2kQb1Er/ouVhH7MR9l5leia1GkFLEsOE11/GnnPNUIphfiv1eAp6cDZNIgw4NAF7Cwz7LRjFA20ijepES5TJhyiQNg+qYwtMX9FXfd6uutXYS5bii9rAbHzd6di3yV6bSVSwW4ClafxthTi7G1FGLNpfow6TxZd0D4agt2GONaGZ7gM/8AlgsbvkQwbibQuIt74xjQ1BG+jti0n3Pk1gZ4UfKZMXKNVOGy9WMXZ27zweRa0VnsYsU/G05joxpQzosROx2dPOp6YZNLxrnBMiyfk74V7H3tXL9/7aLWS/uCk413pODHpmJeQjsGcKP6sKJ6MCK5rUcTLEeznoljPRDGfiDByNMLgwQj930Xp/SZK1/YoHVtitG+M0fpljJYvo7gL43hmOuk4U+n4kElHrV8XOvfQBW1yowtandlO/jqV3M9nn8lS29TFf767bto1/+nDTeSW3AEgp7iGV99bDyQE7d+8vIDMgtsA3Cis4pV5icfLL6vjzws2EQpLxONxVm/9kf0pVwH4lz8u49CpDCAhiV/87UeEwvLjndg5HM0ErRqJ8v6KXfz6taXsOnieK1nlXMwsY/2u4/zNywtYvG7/A5uGzdVofZHQ0Q5d0D6/WO1B7H0CzvpBPMVt+C/fJnQ0H2XXVaJfnILF0wjYxYeJrjuNvDudUEoB/itVeEracTYOIvQ7GHPoAlYLLM4AA84hDGIDDfZcKu2nKbLtnryiwLaNW4MbaWldw0D1CuwFi5CuzYe0ecQvLCCeuwmp7BD+umu4O2/jGOrH6vBrfow6s4MuaCfHKrpx2HpxjVbhM2UQ6Ekh3LkdtW05sca3p5mCfYNI6yIkwyaCxu/xD17GM1yGaGlHsM+d/8nxvAhau0nG3abgv6UiZUWJpE0tYuMnQLkSI1SY6IF0dioP9jn239tg6W6f4/2Tjg9MOQpPRjqOjEgM9kj0tkh03ZFpL5VpzpapuyRRnSpTcVimdK9M4TaF3HUKN1YopC9UH5mMJSrZnysUbFawtOubhCUruqBNbnRBqzPbeZw/tx6HyZJbcof3lu+cuB0IhvnXP6+Y4FpuBQCqGpkYtrSLHv725Y+AhKD9hz8smrhPVSO88NJ83F4/63amcOZq4cRj1zQaeH3hFiAhaO+f2v31a0sxWx1P7iTPsWgmaM9cKeR//2k5NofrZ/f1Dpr59WtLSb2UP2vr2bQnlRd/t/Aev/2I//pwI5AY2Z6/6hv++bWlvL5wC80dfRPfp/VFQkc7dEH7DGMPIgzYcTaY8JS04b9cRehYAfLua0TXnYLFh6cRsIeIrzuNuvsaoWMF+C9X4Slpw9kwiNBvZ8yu7+qtNSNOkR5nN62OW9Tar3DT9j2FtsmnYostX1FrXE9nw2eM3lyKJ2shsQvvEr22Ajl/F4Fbp/A2F+DsbUGwWBlzPrhJmE7ykbSCVgxgF4ZxmhvxDuXj6z9DqPtb5I4viDZ/MIMagvdR2j8n1LUHf98pvEN5OM312AUTVvHZ+B8cz5qgFcwSri4FX03i4+rqpVhiI6XJZGwKRC7ECOdG8VdFcHUo2Eee3nXO4ggzPCIxYJTpaZborJJpK5ZpypKpvShRlSpTcUihdI9MwVaFnLUKmZ8+nmjNXKaQ84VCwRaFkm9kbh5UuH1S5s4FicYbMq3FMobbMsYmif4uieEhCYtwb82abxKmoym6oE1udEGrM9uRvNowWepbjPz+rTUTt+PxOKLLi+jysmHXCdKuFQFQVNHAe8t38tbibby5aCu/+s2HQELQ/vYvqx94zH/4wyKGzQKLvthHVlH1xNc7e4b49zdWAQlBO2IRJu776e3nLZoJ2jc+/opz6cVT3n8ho5Q/zt84iyt6MD+cvM6PZ7MA+GDlbs5eKyIajXG7roOXXl+FGklM92p9kdDRDl3QzmEcIYR+B87GQTwl7fiv1RBKKUTenU503ekZCdjoF6dQdl0ldDQf/6XbeIracNYPYu8TsNqDj7VJmM6Tw+IMMegcpUtsosmWTZXlKKXWybtiC4RtVAxtorn9C/qqVyAULSaYsQj1xgbCpT/gr72K21CJY6gXq+h76M/VBW1y8zwLWpvDjjjWgXukHP/gFQLGg0iGTURaFhNvfPPhNQSNf0VtW0a4cxuBnqP4Bq/jHqnEYTVidbg0P7YnwVwVtFZBQuyV8darBEsiKOkxYqlTT8VGz8aRMqMEbiY+pu8YlB+28SGaAAAgAElEQVS5v9MihBkeSghNY5OE4XZCdDbeSIjP2ycTIrTkG5mCLQlBmrnsMUXrpwlhW7A1IXArDilUpSbEblNWQvR2ViXE74BRZnhEwvIE+kl1QZvc6II2udEFrU4yxxcI8f/952JaO/t/dt/WfWdIu1aE0+3j737/MQPDYwBYBecDgvYfX1lMPP7gBK3XF2TDrhOcHRe8ANUNBt74+CtAF7Szlr//j0UYekxT3j80auPF3340iyu6l9ExO//57jokWcHp9vGPryx+oG7hjY+/or7FCMy9v6DrzB66oNUQMYQwICI2mfCUdtwTsHuuEV13BpZMI2A/OUR0TSrKjiuEf8zDf7ESb1ErzroB7L0CVmH6jZt0QTv7mJ1eeh1GDGP5NIycpHJ0D4XWyadii8a+oqZnAx1NqxmuWIazeDWhoh0EK1PxNuXh7GlGsIw98lp0QZvcPMuC1ip6cVj7cZlr8A3dwN97gnDXTpS2lcSa5k07BRtpWYjc8SVB4378AxfxDJcgjrUi2C2MOZ//+hatBa3VEcYxKONpUfHfVJFuRIk+pJ4glhpHuRYjWBLBW68i9shYbZNfuyxCmKFBif5OCWODhOGWTEuhTEOGQs05icoUmfLvZYp3yeRvUsj+XCFjyWN8jPJjlRsrEhUEhdsUSvcmqgmqUxNVBc3ZieqCrhqZ3pZEpcHIiMSYqN3zrwva5EYXtMmNLmh1kj2nLufzmzc/43ZdB6GwjMcb4EJGKf/06hKqGwz0mcz8z//6FEVRicXiHDh+jRdemo8kKxj7R/h///1DiioaAMgurp4YyCyqaOD1hVsIhWWi0RgrNx+a6J3VBe0s5YWX5k9ab3A3NoeLF16aP3sLui8bvznJ1eybADR39PGnDzc9cP/n237kak4FoAvaZEYXtE8RMYxgEhGbTXjKDPjT7xA6XoS8N53I+jPElx6ZgYA9ibLzCuEj+fgv3sJb2IKzth97r21GAnY6dEH7dBmym+gdKqJ98BS1g3spH51cxBYI2ygf3kSjYS3G2s8w396E6/YB/Hcu4+64hcPUg9Xx8GnYR0EXtMnN3Ba0QQRhFKelGc9wIb6+NELd+5A71hFt/nAGNQTvorR9RqhrN/7eVLymHFzmWuy2wWemhuBpMpuCVhiVcHUo+KsjhHOjRC7GYIp6gngKqJdihPIjeG9HEOpUhppkjPUyHRUyLfkyDekKNWkSlcdkyg7IFO1UyNuokLVa4friRxet1xeNi9b1MoXbFUq/lan4UabqtEz9VYXmHJn2skRXbF+rhKlXYnRUW9H6qOiCNrnRBW1yowtaHT1wOaucP87fyIu/W8i//HEZyzcdpMN4b/Byw64T/Pavn/PW4m3caezk3U938pdPttJhNPGnDzfx7Y+XefW99bz63vqJ6tB4PM6R05m89v4GXn1vPZv3nprYCEwXtLOUuSpobQ4Xv3nzM2QlUY5c02jgrcXbHvg9m/akTnRsSEpUJ0mJRuOokZjm63gmkaPIDh9KjwW1pptIbgORMyXEvsskvvEszEDAxj8/SWzXFaIpBUTSq4jc7EBpG0IedSIFlad+DLFYHEXD5z8kR7R/Hh/7dRAh5BrBMVqCqf807b17qR7cRtHY1klFbKF1K1V9X9LWtgFT8w7sLUeRuvNQRtuQPQKSMnvnJB6Po6hz4BzqaEI8DrKGP18Oe1G8vaiOKiKWDNTBo0SNW4m1LyXe9JeHS9imvxBrX0rUuA118CgRSyaqowrF24cc9s7o54dk7Z8Dzc69mnj+n+hj+qMowzEirXEi5TFi6XE4yZRTscqJOJ6TMSwpUYyHo9TtjVC0WSH7M5XrnzyGaP1EJfszlcJNCuW7VW4fVKk7qdJ8ScWQHaW3LIrpTgRzexR7fxS3NUbAp/1zMpsoauL6r/U6khkt//6jRGLEYvrzn6yokRhR/flPavToedrRVND+/X8s4h/+MDl//x+LNBG0py8XsP1A2sTtFkPfz7pwV289QnruLQCcPlknSZHUKIGwqvk65iReGbfZg7djlEBlF6EbdUinSlC/yyS6MY34sh+nFbCx1SeI7LiMfCSX8MVbBIta8Nf34+kXcDmDmh+jEonhCyqarsHlV54J3B4fvhEjTmMho+0nMLbvpqlrMxVDmygQJpexZaNbqOvZQqfhG4Y7T2Dvzcc72oPbE9D8eFx+hWgMPEFV83XoaAPwVB/f7QvidQ7ht9UTGs0lNHAK2fgNavtqYk3vTj8F27IAtXM9Us9+QoPnCZpL8AtteNxjuPzSY6/vWbr+aP78+xTsdoWxIZURg4K5MoItO4p4MYovNYZ6bOp6AvkQ2L+N0bctStP6KOWrImQumoFoXaKS/blCwWaVkt0KFT8oVJ9QqLug0HJDxVCsYqxSGWxRGelRsI6qiE7tz+uzgCeoEo093fe/zsNxerX7e5cvqKBEYpr/HVRHGwJhFUmJar4OHe3Qo+dpRzNBm19WNyNmO++v2EVlbdvEbbfXz9//xyLCkjLxtVfmraXFkBjH1nrMXkc7kr3iwDbiRmwdxl3RiT+jjmBqCdK+DCIbzxJfOgMB+9lx1O2XCB/MJXDuJt68Zlw1vdi7rVhtc/9jtHrFwU8JYTeP4DI24Gm+ga3uMKb6bRia1lFrXE+x5avJKwpsW6kc2kZj7166e08yOFiA2dLLXO+y1CsOkpvHrzgIIQgWxLEWPMPF+PrPEzTuR+7YQKTlo2kFbKxpHkrbSsJdO/H3nsA7lIXLXIPd1o9V9Gp+fp5LxDAjI4mP5zsH4nTVJPpRm7MTfanVqYn+1NK9MkXbFCo2qTRsitC1JYpld4zA93HiR5l8w64fwbUvjmlHjLaNMW6vjpK7JELGuGjN36RQvCvR/1qZIlNzTqIhQ6GlUMZwS8bYkOiNHRqUsAhz4Fw9x+gVB8mN06dXHCQzesWBjh49TzuaCdq5mn98ZTEWm/jA1z5avZdjadlEozFyS+/w+7fWEI3GAF3QJjPPu6C1jbgR20Zw3+rCd6Oe4KlSpH2ZRDbNcAJ2VQrqtouED+YQOFeBN7cJV3UPjs4xrNYn3wk62ySroLXaPYgDXXjab+KvvoCn4jtsFRsYqF5FS+sabg1upMA2eVdssWUbNaY9tJhOYhzJY8DRi8X5+H3AWqAL2uRmJoLW5nDhsBpxj1TiG7xOoOcoYcNW1NZlxBr/Oo2EfZNIy2Ikw2YCxoP4B67iHilHHDNgc9g1P/5nGYsjzPCIxIBRpqdZorNKpq1YpilLpvaiRFWqTMUhhdI9MgVbFXLWKmR+qkw5rZq3JELV51E6NsUY3hHDsz9O9Ecm74k9CsEjcexHYgwfj9JzVqUjXaG1WMZwW8bYJNHfJTE8pIvWuYouaJMbXdAmN7qg1dGj52lHM0ErurwzYjYTDEm88NL8if7Zu7HYRD5YuZtfv7aUNxdtpbNnaOI+rS8SOtrxrAta24gHR/voPQF7uhRp/w3UzeeIf3p0ZgJ260XCP2QTOHsTb25jQsB2jWEde/YF7HQ834I2hGAexWVswNeUQ7DiOHLedgLZy7EVf0JP7UrqutdRMtVUrLCNm5ZvqB09Rps1hx7RwJBTmAPH9eTQBW1yE4+DTfRjF0w4zfV4h3Lx950i1LUHpf1zos3vzWAzrvnIHV8Q6v4WX98ZvMMFOC1NCMIwY86g5sc417EIYYaHEkLT2CRhuC3TWizTeEPmzgWJ2ydlbh5UKPlGpmCLQs4XCpnLphat03FjkUrl2gjtO6KYD8RwH46hTjERyzGInI4TTo/iL1PxNKs4BmSsDu3Pm87joQva5EYXtMmNLmh19Oh52tG0g3YmzPVofZHQ0Y65Lmhtox4cHWbcld34suoJni5LCNgt54gvPza9gF15DPWrC0jjAtaX04DrthFHpwWr5fkXsNPxPAhaq8OLY9CIu6MCf80lwsUHUDPXEj8/H/Xy+zgKFtFfs4JGw1pKR7dMsXHX11SOHaZByKRDvEOfsx+La+5XVDwuuqBNDgS7FXGsDc9wKf6BSwSN3yMZNhJvX0S88Y1pagjeRm1bTrjzawI9KfhMmbhGq3DYerGKbs2Pba5gEcIMDSY+om9skDDckmkplGnIUKg5J1GZkvhof/EumfxNCtmfK2QsefSNsNI/VrmxQiF3nULhNoXSvYlqgurURFVBS7ZMb76CJT+CKztC6GqUyJmpe2JjqXGUazGCxRG89SrOHhmbTb82PK/ogja50QVtcqMLWh09ep52NBO0hh7TjJjr0foioaMdWgtam9mLw2DGdduIL7uBwJlypANZqFvOE18xvYCNrziGuuU80oEsAmfK8WWPC1iDGZtZ7zCcjmdH0IYQzGacxka8zbkEb51Azvua6NVlkDYP0uYRvfAurtyPMd3+lOb2L7hp2jSpjC0SdlIpnKTRnk+32MaQc2wOHJ826IL2+cAqunHYenGNVuEzZRDoPUa4cztq26fEGt+eZgr2DSKti5AMmwgav8c/eBnPcBmipR3BbtP82GYbszXM0IBEv0HCWC/TUSHTki/TkK5QkyZReUym7IBM0U6FvI0KWasVri9+DNH6iUrWSoW8DTJF2xXK9sncOipTfUam/ppCc65Me7lE1x2Z3jYJU5/EqFliTLy3ZmFUwmVQ8FdHCOdFUS/FiB9n8nqC46BejBHOj0ALuAwKwqh+DUg2dEGb3OiCNrnRBa2OHj1PO3O2g1aSFbKLq7VexrTR+iKhox1PW9BaLT4cnZaEgM1pIHD2JtIP2ahfXSC2cgYCdvkx1C3nkPbfIHi6DF9WPe7KbhwdZmyjHs3P37POXBO0VocXh6kHd8ct/HcuEy75HjVzPfHzH06IWNLmET//Lt6sjxi5uYy2ljVUmrZM0Rm7g1tCCvX2LAxiAybRzFzfuGs20QXtM4IYwC4M4zQ34h3Kx9d/hlD3t8gdXxBt/mAGNQTvo7R/TqhrD/6+U3iH8nCaG4hLVmzi8zkpPjomYeqX6GuX6K6V6bgp0ZI3LlrPylQelSnfL1O8QyHvS5kbqxTSP3k80XpjVeKxincolO9P/Iyas4mf2ZKXWEN3rUxfe2Jto2O/7L1ns0o4jQreOpVgUQTlaoz4yamnYqNpcaSsKP4KFXergmNQnhC7Vlei4kLr50lHG3RBm9zogja50QWtjh49TztzTtAaekxs23+Wf3p1Cf/82lKtlzNttL5I6GjH4wpa65gPR9cYruoevLmNBNJuEv4hG3XrRWKrUqYXsJ8eRd18V8CW4rtRj/tWF472UWwjuoB92mglaAXLGM6eZrxNeQQrU5HzdxC9+ukDEvYe7xLI+BBzxWe0t2+lyrSTQtv2SWTsdm4Kh6m1p9PuqGFAND2zm3fNFrqgnTvYHALiWAfukTL8g1cIGg8iGTYRaf2EeOObD68haPwratsywp3bCPQcxTd4HfdIJQ6rEavDNeXPnMkmYZoihhkdlTD1SvS1JqZI28skmnNk6q8qVJ2WqfhRpvRbmcLtCrnrZW6sULi+6NFF6/XFKlmrE9OxRTsVyg7IVB6TqUmTEqI1PzFVa6yX6TdIDA1ImK1P9ritjjCOfhlPs0qgLIKcGSX6sHqCU3Hk61ECpRG8jSpir4zVPs3P0AVtUqML2uRGF7TJjS5odfToedqZE4LW6wtyIaOEPy/YxAsvzWf+qm/IK6tF+clmXXMxWl8kdLRjOkFrtfpwdFlx1fTizW0icK6C8MEc1G0XiX12fEYCNrIpDWlfJsFT9wSs2DaCbUTvL9SapyloraIPx1AvbsMt/LVXCZf+gHpjA/ELC6YQsfPg3HsE8tYwWvsN7d3fUz36PUW2nZNWFZTZv6dGuEyro5I+sRezU+8U/qXognb2sIpeHNZ+XKPV+IZu4O85TrhrJ0r7CmJN70w7BRtpWYjc8SVB4378AxfxDJcgjrUi2C086lT4rAlaMczIiMRgj0Rvi0RXjUx7qUxzdqIvtTo10Z9aulemcFuiV/XGCoX0jx9dtGYsVcleo5C/WaF4d6L/tfJ4YuOtxkyF1iIZQ6VMT6PEQKfEsEnCIszy60IMYx+WcLcp+CtVwjlRIuenFrHx46BeiREqiOC7o+LsUhAsj/b+1QVtcqML2uRGF7TJjS5odfToedrRTNDG43HuNHayZvtRXvzdQv74wZecuJDL//j9x4xYBK2W9Yuj9UVCRztCfhn/gJAQsHnNBM5XED6Ui7r90swE7NIfxwVsBsHUEvwZdbgrOhFbdQH7LPAkBK1gseLsbcHbXEDg1ink/F1Er62YWsKmzSN26WOUnM34bh1muCONdtM5qsdOUmLbO6mMLRG+pcp+jhaxjB6xk1Gn/tp6EuiC9kkSRBBGcVqa8QwX4utLI9S9D7ljHdHmD2dQQ/AuSttnhLp24+9NxWvKwWWuxW4bxPqUagh+qaC1OMIMj0gMGGV6miU6q2TaimWasmRqL0pUpcpUHFIo3SNTsFUhZ61C5qfKo9cGLFTJXKaQ84VCwRaFkm9kbh5UuH1yXLTekGktljHcljE2SfR3SQwPSYxNMz2qBYJFwtmp4LujEiqIoF6euieWFIicjxHOieK/HcHdpmAffrLvU13QJje6oE1udEGb3OiCVieZE4lGeeGl+Xy5+8TP7tu67wwvvDSfSDT60MdIu1bE5r2nHnstpy8XPJHHmYvRTND+7q01vPT6KnYfukBnz9DE1//hD4t0QaszJ7Da/NiNNly1fXjz7wlY5evLxFafmJmA/TINeV8GwZPFCQF704DYMoww5HpgoxKdZ4+ZClqrw49jqB935238ddcIlR5EzfpymmnYd4mkf4ZUuIdA1VncbYWYTOW02UqoES5TKhyYYhOvXVTaT9PkKKDb2cqQU9D8PD2v6IL2l2GzO3BYO3GP3MQ/eI1Az2Gkzi2orUuINf3l4TUETX9BbV2K1PkVgZ4j+AbTcY9W4LB2YXOIs3ocFiHM8JCE1xKnp0nCcDshOhtvJMTn7ZMJEVryjUzBloQgzVz2mKL104SwLdiaELgVhxSqUhNitykrIXo7qxLid8AoMzwiYXFo/5z/UqxCGLFXxtugEiyNIKfHiJ16SE/smThyZpRAeQRPk4pjQMY6C8etC9rkRhe0yY0uaJMbXdDqJHMi0Sh//x+L+N1ba5BkZeLraiTKK/PW8uLvFs6aoA1LCoHg8/l8aCZo//GVxby3fCcXMkpxe/0TX9cFrc5sYbUHsPfYcNb24y1owX/xFuHDeSg7rsxIwLL0CLGNZ5G/vU7wRDH+jFrc5QbEliGEIacuYJ9zfipohTEbzt5WvC0FBCpPI+XvInptJaS9O/U07MWFKNmbCZUfxl+fgbuzGmGknwFHP+2OGmrt6dwUDlMg/Lw3ttC2gwr7ceod2XSKjQw6LZqfk2RCF7QPYnX6sNsGcZlr8Zqy8feeJNS1G6VtFbGmedPXEDQvQO5YT7B7H76+NDzDRTgtzQjCKGPO4BNfr0UIMzQo0d8pYWyQMNySaSmUachQqDknUZmS+Gh/8S6Z/E0K2Z8rZCx5jI2wPla5sSJRQVC4TaF0b6KaoDo1UVXQnJ2oLuiqkeltSVQajIxIz+efI44wjkEZd6uCv0JFyooSPfeQeoKTcZSrMYJFEbx1Kk6jjM2m3XtPF7TJjS5okxtd0CY3uqDVSeZEolFe/N1CPt/2I4U36ye+XlnbxufbfnxggjY99xavzFvH795awwcrd2O1u4AHBW1rZz+vL9zCH95Zyx8/+JK6lm4AfvPmZxM+sKC8jr99+SPCUkIIn7lSyK6D5/UJ2qeRUFjmel4lby/9mr99+SOWbjhA4c16/v4/dEGr82SwCgHsveMCtrAV/8VKwkfyUXZeIbrm5AwmYI8Q2XAWeW86oeNF+K/fwVNmQGweQjCJhKTH2yRM59nAavcgmC04TL04+1px9iaIDNQg3zyEkrXx4dOwafOIXFuFlL+LQNVZvC2FOPtasVkFxpwhTKIZg9hAvT2LW0IKBcKOSTfxKrcfoc5+nQ7xDv3OIZ6GtNKZOXNF0FqdXqyiG5vDic1hR7DbEAQLgn0Eu2DCbhvEYe3DYTXisHYijnUgjrXitDQ/Ft7hAoLG75A7NhBpWTCtgI01vYPSvoJw5w78vSfwDd3ANVqNw9qPVfQ+8vGbrWGGBiT6DRLG+sQmVC35Mg3pCjVpEpXHZMoOyBTtTGxelbVa4frixxCtn6hkrVQo2qRStF2hbJ/MraMy1Wdk6q8pNOfKtJcnNuXqbZMw9UmMmp9T0ToDhBEJl0HBXxUhnBdFvTh1PUH8OKgXY4TzovirIrgMCsKI9u+xn73ndEGb1OiCNrnRBW1yowtanVnP9ZVwbdnsM0ki0Si/+s2HlFc18+mXP0x8fd3OFEoqGycErcvj58XfLcRiEwHYvPcU2747AzwoaP/04SZyS+4AkFNcw6vvrQdg/a7jZBdXA/D1gTTeXvo19S1GAJZvOkh5VbMuaJ92+k0Wdh+6wL/8n2UTvRaGHpPWy5pRtL5IJDNWexB7n4CzfgBvUULAhn7MR9l5legXqdNPwC45THTdGeQ96YRSivCn1+Ap7UBsMiEMioyJD988ZrpNwnTmHjariH3EhNhvwNVdh6etDF9jFv7qCwQrUggX70fO246auZbo1WXEz81/qHi9n/iFBShZGwmVHcRfl46r6w6Oof4Hfv6Q00aX2EKjPZ9bwimKhN2TVhWUCj9wx36FNrGSPmefvonXQ3gsQWluxGWuw2WuwTV6G/foLdwj5XiGS/EMF+MdLsA7lIvXlIXPlIlv8Dr+gav4By8TNV8mMJCGr+8U/t5U/D3HCfQeJdBzhKDxIEHjAYLd+wh1f0uo+xvCXTsJd25HMmxFMmxGMmxE7tiA3LEWpf1zlLZVKG0rUNuWobYuIdL6CZGWhUSbPyTa/D7R5ndntCGWlkRaP0EybCJoPIh/8ArukTLEMQM2x/RVG6NjEqZ+ib52ie5amY6bEi1546L1rEzlUZny/TLFOxTyvpS5sUoh/ZPHE603ViUeq3iHQvn+xM+oOZv4mS15iTV018r0tSfWNjp2TxbO2iZhzwg2m4TTKOOtUwkWRVCuxoiffEg9wbk4UlYUf4WKu1XBMSgz9ozUMuiCNrnRBW1yowva5EYXtDqznhn+O/SJM0nuClpVjfCvf16B1xdEkhX+/Y1VyIr6wATt/RUIuaV3WLjm28Th3CdoVTVCLBYHwC56+NuXPwIgs+A22w+kAfDGx1+RnnuLlHM5APzbf6/EHwjpgna2oigqeWW1LPhsDy+8NJ8/L9ik9ZKmjdYXiecaexCh346zfhBPcRv+y7cJHc1H2XWV6BenYPEMBOz608jfpBNKKcR/rQZPSQfOpkGEAQdjjkfbvfsuuqDVFsEyhmOoF2dvC+7O23hbCvDXpROoPEOo7BBSwTco2ZuJpH9G7NLHj/WHVPTyEtSMNci52wgX7yN48yiRhssE2wtx9rYijNl+tr5RpxujaKDZXkKVkEbxFJt4FQv7qLafp0Usp8fZxajT84vOg1aC0td/Hl/fWV1QzgFiTW8Ta5o3fp7mE2n5iEjrItTWJaity1DblifOb/tq5I4vkDvWI3VsRDJsQur8inDndsJdOwl17SbUtZdQ9z6Cxv0EjT8Q6DlMoOco/p4U/L0n8fedwtd3Bv/ARbxD+TjNjdiF4cTrUQwzOiph6pXoa01MkbaXSTTnyNRfVag6LVPxo0zptzKF2xVy18vcWKFwfdGji9bri1WyViemY4t2KpQdkKk8JlOTJiVEa35iqtZYL9NvkBgakDBbH//6k6yC1uoI4xiQ8TSpBMojyJlRomemFrGxU3Hk6zGCpRG8DSpir4xV0P44Husc6II2qdEFbXKjC9rkRhe0OrOesEcbJsldQQuw5dtTXM2+SVFFPRu/OQkwIWjj8ThH07L46yfbeGvxNl6Zt46PVu8FHhS0RRUNvLd8J28t3sabi7ZOPLbFJvL6wi14/UHeXvo1o2N2Fq/7jsERK28t3gbom4RpkhGLne9PpGu9jGmj9UXimcYeRBiw42ww4Slpx3+litCxAuTd14iuOwWLDz9cwC4+THTdKeTd6YRSCvBfqcJT0o6zwYQwYH9sATsduqB9EoSw2ZzYR4cRBzpxGevxtN/E15SNv+YiwYoThIsPIOd9jZq5nujVT4mf//C+zbTmwfl5cP4duDAPLrwDl8a5fJe34co7cPVt4hkfEM1eQqRgNUrJBuSKbUjVewjXf0+o6UeCbakEOs/jN17B15+B15SDdygPryn7nqAcvDY+QXmF4OA5fH2n8fUdx9W7H0fPNqzGNZi7lzDatRBz10eMdS3A2rkAW+eH2A0LcBk+wWtYQdCwGqljLXLHOpT2NShtn6G0r0Bt+xS1dem4oPyYSPMCos0fjAvKecQa3yLe+KbmUnBu8Aaxpr9qIiij5ksEBy/hH7iKbzAdnykD71AW3qEcvEP5eIaL8AyX4h4pwz1agXv0Nq7RalzmWpzmBpyWZsSxFkRLO+JYZ0Kg23qx2wawCyYEYRhBMCPYrdgcdmwOEavoxip6sYr+p/u+FMOMjCR6UHtbJLpqEv2ozdmJvtTq1ER/aulemcJtiV7VGysU0j9+dNGasVQle41C/maF4t2J/tfK44mNtxozFVqLZAyVMj2NEgOdEsMmCYuGoi8ZBK19WMLdpuC/HSGcGyVyPgYpTF1PcDlGqCCC746Ks1NBsMy9eoIngS5okxtd0CY3uqBNbnRBq5PMuV/Q1rV089HqvazacpjqBgNwT9AW32rkTx9uwh8IAZBVVP0zQet0+/i733/MwPAYAFbBOfHYAH94Zy15ZbXsOXIJgNfe38C13IoJP6gLWj1TRuuLxJzGEUIYcOBsGkwI2Gs1hFIKkb9JJ7r+9AwE7CGia0+h7LpG6Gg+/su38ZS04WwYROi3M2bXtoNzbgjaIFbRj1X0YHW4sDlEbIfUcBEAACAASURBVA4BwT6GIIxiF4ax2wax2/px2HpxWLsRxwyIY204LS04LU04zfW4zLW4Rqtxj1TiHrk5PkVZgme4cFxQ5uAbuoHPdB3fYDr+wSv4By7i60vD138Gf18qgZ4Ugt0HCXV8S7htB1LLZuSm9SgNq1HrPiVSs5hI9UdEqz4gdvsdYpVvEa98k3jlG4n/Vr2RoPp14tVvEK95g/id14nXjlM3Tv3rxBteJ97433NAEGqNdoLS138O///P3nt/x1Xl+dp/x33Xetdd74+XmbndM9135k7P7aGngcaXnqYT4IEGDDiCbdw2OIAxtsEZbLAB4yDnbFnZyjlaWVbOWSpV1SmlklRnn1TP+0MVwm4kY0uWjuyzP2s9a1kluWrXKdVGPN76ftoeU0F5HyyUGbT3os8boKtbpa1R0FShUpcvuJ0qKI8V3Lqkkh8hyD6ikb5PkLRdI36jRvRqbeZjA5bqRL+jEf++RtI2jbS9gqzDGnknw6I1RlCVKqjNEzSWq7TWq3R1qvR77L9WD8rjJGjdfSq+eo3RIp2JZAP96vRzYvkWjAtBAvEm/lydodsani5nzdiVgtbZSEHrbKSgdTZS0EqcnDsFrWUFWfTKRha9sgnTtIDvBe3FqHTe3nIIgNGxCZa+d4DFq3YC3wvalo5efvH8ajRNx7KCHDp+nSeeXDI5GmHrvggWr9pJak4ZEJo9+19vf8Kt8npAClpbcuRUFM++vNHuZfxo7N4kbEWZwN2moJR3MJxegz+ykIljKYh91zE3nYFV9yFg349A23UtJGAv5zGcchtfSRueFjeu+xKw9glKvecqgY4Lk4LS33yCsaZjjDV9w1jjEcYbv2C88SATDZ8xUb+Pifo9BOo+JVC3A7VuG2rtVkTNB4iaTYjq99Gq16Pdfjd8gvIdjMqVGFXLMCrfxKxYglnxKlb5y1hl/4VV/uICkIMLgbkXlCNNn6E0foqr8UO6G/9KW9MqWptX0tK8ipaWd2huWU1T62pa2zbT1b6H/s6jeDuvMtyV/FgLSqczn4K2zx2gqzMkNBvLVWrzQqKzLCYkPvNOhkRo2l5B0raQII1+Z5aidXVI2CZtDwnc7CMa+REhsVseGxK9dfkh8dvWKOjqVul7RGaIPgweRUHr8gRQmgUjZTrjaQbihol16h5zYs8EEdEmYxkGwxU63laBy0Gv8bTXUQpaRyMFrbORgtbZSEErcXLuFLQA+7++zKdfnJ/8+M6SsMWrdvLcq5t5a8N+qupa+eUf1nLg6JW7Rhxs2X2Cp17awOKVOygqq+Mvq3fx4ortAMSlFvDEk0vw+kLjFk5dSeQnTy9FaDogBa0tyS+p4cTFBLuX8aOxe5OYU5QA7g4FpaKT4Yxa/JFFTBxPQeyPxNhyluCaIwSPryd4ch3BU+8SPPMuwbNrCZ5bTfDCOwQvvoMVuQYzfh1G6gb07PfRCjYhSrYgqj5E1Hw3g3Imv+JttxhcWISk7cuYFa+GBeWbYbm7AqNyJXrlSvSKVRgVqzDKVmKUrsAoXoZxaylm0RuYBa9j5v4FK/tlgpkvEsx4gWD6iwTTXyCY9iLB1DApYZJfIpj0EiS9BIkvQeJiSFxMMPl1rNTlmBlr0HPeR8v/CFG0G7XkCyYqjzFWfQ5/ww1GWpIY6szB11uO0n8bpb8Wr6shLChbQ1Ld3YXb3YPb08+A1x0SlN5BXMqDzWh9EDp9LuqVSko9ieS6I0hx755ybmyG+zDlQ5HUDxXQ4mulb1AKU6cxE0Hb5w7Q2a7SWqfSWKpSmyOoTBaURmkUnlfJPRb61f7U3YLErRpxGzSiVs2iCGuZTsxajYTNGsk7NdIPCLK/FuSfEhRf1SiPF9zOENQXCZqrVNqbVbp7nHUacqYsaEHrDeBtFwxVafizddRYE/Pc9CI2eDKIds1iPMVgpFjH16gx4FrYp8PtRApaZyMFrbORgtbZSEErkZGZ6yxYQfuoxO5NYlYoAdydPpTKToYya/FH3WL8RCriwI2QgH3763ufgF1zyHYxaeeveGvdl1A7r8zbr3i7B3rx9LSgtFXjaypmqCabkYoE/EVXGM+NIJD+JSJxF3rMB5jX1xK8+OaMS7GCF9/EvL4WPWYLIvFTAmlfMp5zEn/hZUbLExiuzmawsRSlrR5PbzcD7kH7v58fkG7fYLjEK5V891lS3fumlLFp7s8p8FykSsmiSWmg1zdCvy+A0C18o8L25yGZf3pdAca8QTrqQ+VTNdmCykRBaaRG4TmV3G8FGYcEKbtC5VWx6zVurJyFaF2hE/uuxs0tgpSdGhmfCXKOCgrOCEqua1QkCKozQ6VczbdVOlpUenqlaJ1LFoqgdfeoDNZq+AsMAjcN9EvTjycIHgf9kkXgpom/wGCwVsPdI0XsgyIFrbORgtbZSEHrbKSglcjIzHUWhKBtbO0mMaOY6KS8H7DQY/cmcU+UAO7OQZTKLoayavFHFTN+MhXxWRTGB+cIvv3NvQXsiiNY60+gfXqFwFc38V/MYSSxAt+tVjyNA7jcY/jbLuFvvxoWlDcY7YyZLFYK/Yp3GkPdmeGxAbl3CMqSUIt8X+WCOkH5IMx4Bq0yzoDLg6erHaW1msH6IoZvpzFaGoO/4DzjWUcJpH6GSNiBHvUe5pVVBM+/NjPZev4vWJdXYNxYjxb3MWryfiYyvmYs/yz+kihGqlIYqivA11KFt7MVd/8ALu+Y7df2YdPjG6VZaeK2N5sCz2XS3QenlLEp7r3kec5Q7kmhQammy+ed9j6loH306elX6WhVaalWabglqMlSqbwZFq1nBblHBZkHBamfatz8QBCzTiNyxexEa8y60H2lfqqReTD0GIVnQ49ZeTO0hoZbgpbq0Np6+qVAW4jMt6AdGFDxNQlGinXGUw206xZWxD3GE5wLosaY+LN1hip1vB1yPMHDQgpaZyMFrbORgtbZSEErkZGZ69guaD/79ipPPLmEf//juzz78sYfsNBj9yYx0D2EUtXNUHZdSMBGpKF+FoWx9T4F7F9PoO28TOBIAmMXshlJrGCwqAVPgwvXgPy17XsxIUxGRkZx9/bi7WjE11TOUE0OI+U38d+6xljOKSbSD6Mm7kaL/RDj+jqsS2/N8lTrGvSYzeFTrV8wnnMifKo1nuHqrO9PtfZ0MTDgs/0a2UHf4BitShvVSj5Fnutkug9PKWOTB3aR6z5JqecmdUoFnb7+B3ocKWgXCEqAnh6VjmaVlqrQKdLqDJWKeEHJNY3804LsbwTpBwTJOzUSNgti1mrcWD5z0Rq1SifhfZ2kjzRSd2tkfiHIPSYoOq9SdkOjKklQmyNoLBW01ql0tqv0DiyAayV5aMyVoHV5A3jbBMMVOmOZOmq0iXl2ehFrnQoiIi3G0wxGSnWUZoHLbf/1eZyRgtbZSEHrbKSgdTZS0EpkZOY6tgvanz27nLziaruXMePM9SYw0DOEcruboZx6RmNKGD+Vjvp5dEjArj56HwL2OPrOywQOJzB2PouRm+UMFjZLAfu3KBPhU60dKK014VOt6YyWxoZPtX5LIPXz0KnW6Pcxr74NF2Z4qvXcX7AuLw+fat2GmryPicyvGcs7i7/4BiOVKQzV5uNrDp9q7XPh8srXamomaPd1U6uUUOyJIdt9lCT3Jz+Use5PyHIfpdgTQ61STLuvmz7fxKweWwrah4wSoLtbpb1JpblSpb5QUJ0uqIgTFF9WKYgQZH8lSN8vSN6hkbBJI2atRuSyWYjWt3Xi3tNI/EgjdU9o/mvu8VDxVlm0RlWKoDZX0FSm0lan0tWh0ucJrXc+S8IkC4+HIWg9XSpD1Rr+PINAvIlx0YJjTD+e4IrFRJLBaJGBr17D3Su//+xAClpnIwWts5GC1tlIQSuRkZnr2C5o/+W3bzMRUO1exowz2zf5QPcw3uqekICNLWH8dDrqwRj0j87fn4Bddwx9xyUCh+MZO5fFSEI5gwVNeOv6cblGbd/E7MDlGcbd24e3oxlfUwVDtbmMVCThL77OWO4pJjIOoybtQYvbGj7VunQWp1qXYF5bjR69CXFzJ4HUQ4xnH8dfcJHRsjiGb2cy2FCM0lp3x6nW2YlBJ9Pp66dOqaDUc5NcdwTJA9OVeB2hyHONaiWfVqWNvsGHP7ZBCtqp6fMG6OpWaWsUNFWo1OULbqcKymMFty6p5EcIso9opO8TJG3XiN+oEb1am/nYgKU60e9oxL+vkbRNI22vIOuwRt7JsGiNEVSlCmrzBI3lKq31Kl2dKv2e2T1PKWidzYMI2oF+FV+9xugtnYkkA+2qRfAE056KNc4HCcSb+HN0hqo1PJ1CzhNeQEhB62ykoHU2UtA6GyloJTIycx3bBe1Xp6I5fSXJ7mXMOD/2Jh7oHcFb08tQbkNYwGagHopF33aB4Jr7ELDvfou+/RKBL+MYO5vFaEIZg/lNeOv6cPU/5gJWmWDApeDp7kBprWWwoZjh2xmMlsXiL7jIePYxAqkHETd3okdvxLz2DsHzS2ZxqnUZRuRf0eI+Qk3ay0TGEcZyz+AvjmSkMomhujx8zZV4O5tx9/UzEVBnNoNWcl90+3w0KjWUe1LI90xf4pXuPkiB5xJV3myalSZ6fPPzvnjcBW2fO0BXZ0hoNpar1OaFRGdZTEh85p0MidC0vYKkbSFBGv3OLEXr6pCwTdoeErjZRzTyI0Jitzw2JHrr8kPit61R0NWt0mfTXE0paJ3NVILW5QmgtAhGynTG0g1ElIl16h7jCU4HEVEmYxkGw+U63lY5J/ZRQApaZyMFrbORgtbZSEErkZGZ69giaFdtPjTJmq2H+bfn1/Db17awctPBuz63avMhO5b3QBnoG8Vb28tgXiOj8aWMncn8XsCu/fb+BOzHF1G/iGXsTCaj8aUM5jXiretjoO/xEbAuZRR3Xz/ezmZ8zZUM1eUxUpmEvziSsdwzTGQcQU3aixb3EUbkX7EuL4Nzf5nZqdbzSzCvvYMevTF8qvUg49nHwqdaYxm+nRE+1VqLp7uDAZdCv/Lgp1pnXBIm+QE9vhGalUaqvNkUei6R5v58Shmb6t5Hvvss5Z5UGpUaun2Dtq35URG0fe4Ane0qrXUqjaUqtTmCymRBaZRG4XmV3GOhX+1P3S1I3KoRt0EjatUsirCW6cSs1UjYrJG8UyP9gCD7a0H+KUHxVY3yeMHtDEF9kaC5SqW9WaW7R33kTghKQetglADBQRiu0vBn66hxJsa56UVs8ARo1yzGUwxGi3V8DRoDLvm986giBa2zkYLW2UhB62ykoJXIyMx1bBG0B49du28WfH5EwAbXHEXfdgH1UFjAxpUylNuAt6aXgd4R2zeZB+e7U62dKK114VOtmYyWxYVPtR4nkHoofKp1E+a11QQvLJnxCIHvT7VuRU3aEz7Vehp/8XVGKpIYqs3F11SBt6MZd28fLs/wvF0LKWhnRt/gGC2+1nCJ1zUy3EemlLEp7t3kuiMo9SRSr1TQ6XPZvvY7mW9B2+sK0Nmm0lqr0lgiqMkWVCYKSiM1Cs+p5H4ryDgkSNmlcfNDjdj1GjdWzkK0rtCJfVfj5hZByk6NjM8EOUcFBWcEJdc1KhIE1ZmhUq7m2yodLSo9vY+eaJ0pUtA6A3ePymCdhr/AYCLRQL9sETzO1DL2GBiXLAIJJv4Cg8EaDU+3/B553JCC1tlIQetspKB1NlLQSmRk5jq2jzho6+qf8nah6ZRXN8/zah485nsR6NvOox6MYfx0BqOxJd8L2J75k4UzweX14+5z4e1sxddcxVBtPiOVKfiLbzCWd5aJzK9Rk/ehxW3DuLEe6/LyWZxqfR3z6tvoURsRCTsJpH7OeNYx/AUXGC2NYbg6g8GGWyhtNXi6OxkY8M7oVOt8IgXtj9M3WeJVTLEnmiz3UZKnKPFKcn9CtvtbSjyx1ColtPt6WOizemcqaHv6VTpaVVqqVRpuCWqyVCpvhkXrWUHuUUHmQUHqpxo3PxDErNOIXDE70RqzLnRfqZ9qZB4MPUbh2dBjVt4MraHhlqClOrS2nn4plX4MKWgfL1wDKkqTYKREZzzVQLtuYUVMfyqW86DGmPizdIYrdbztcjyBU5CC1tlIQetspKB1NlLQSmRk5jq2C9qfPbt8ytuHRvz802+m/txCit2bxHcMDPjw9HShtNUz2FjKcHUWo+Xx+AsvM55zgkDaF4jET9FjNmNeX0Pw4pszP9V6aSnG9XV3nGo9zFjuqfCp1kSGanPCp1qbcPf2zuup1vlECtofcmeJV477JMkDu6Y8HZvpPkKR5zrV3gJalXb6fA+/xGtOUQKMD1v0tWu0VIVOkVZnqFTEC0quaeSfFmR/I0g/IEjeqZGwWRCzVuPG8pmL1qhVOnEbNBK3aqTu1sj8QpB7TFB0XqXshkZVkqA2R9BYKmitU+lsV+kdWADX6jFFCtpHE5c3gLdNMFyhM5apo0abmGfvMSc2IogWaTGeZjBSoqM0C1xu9YFKwiSPF1LQOhspaJ2NFLTORgpaiZNjmCZPPLmED/ac+MHntn92hieeXIJhmve8j3PXU/ho/ykg5AEHvINzstZHObYJ2mvx2bywfDt/96s3eGH59h/wqz+v49mXN9q1vPvOw37Tu7xjuPsHQqdaW6oYqitgpCoFf0kUY/lnmcj4GjV5P1rcx+FTrSvg/AxPtV54DfPKKvSo9xAJOwikfsZ41lH8BedDp1pvpzFYX4TSWo2nq50Bl4d+Zdz2jXGh4HRB2+3z0qBUU+5JIc9zhhT33mlKvA5R4LnMbW8OzUozvb4FNNpDCdDdrdLepNJcqVJfKKhOF1TECYovqxRECLK/EqTvFyTv0EjYpBGzViNy2SxE69s6ce9pJH6kkbonNP8193ioeKssWqMqRVCbK2gqU2mrU+nqUOnzLIBrJbkLKWgXPp5ulcFqDX++QSDBxLhowTGmnhN7DPTLFhNJBqOFBoP1Gu7e6V9fKWidixS0zkYKWmcjBa2zkYJW4uQYpsk//WY5Ty9+D1Vok7frhsmiVzbyk6eXPpCg9Q2NYlnBOV3zoxjbBG1A1Sgsq+UnT73FuespP+BafDYuz8I36vd6A7vcQ7h7u/G2N+BrKmOoJpuRioTwqdaTBNK+DJ9q3YJ5fe2sTrUGL72Fef1d9NgPEIm7CaR/yXhOBP5b1xgpv8lQTTa+xjK87Y24e3twuYds3+AedZwkaHt8IzQpjVQpWRR4Lk5f4jWwn3z3OSo8aTQpdfT45uf7rM8boKtbpa1R0FShUpcvuJ0qKI8V3Lqkkh8hyD6ikb5PkLRdI36jRvRqbeZjA5bqxKzWSXhfI2mbRtpeQdZhjbyTYdEaI6hKFdTmCRrLVVrrVbo6VfqlaH1skIJ24TDQr+Jr0Bi9pTORbKBdswieYNpTscb5IGqciT9HZ+i2hqdDPPDsZClonYsUtM5GClpnIwWts5GCVuLkGKbJT55eyoYd35CcVTJ5e+6t22zY8c1dJ2gjE3JY9Momnl78Hq+/u2fS68kTtD8e20ccFJXV2b2EWcVfcJ6JzG9QUw6gxX+MEbUB68rKGYtWzr2CdWUlRtQGtPiPUVMOMJH5Df6C8/hLohmpSmWorgBfy228nW24+wds36icyuMqaPsG/eESr7xwidfhaUq89pDrPkWZJ5F6pZJO3+y/F/vcAbo6Q0KzsVylNi8kOstiQuIz72RIhKbtFSRt04h/XyP6nVmI1mU60Ws14jdpJO3QSNsfOjGbf0pw67JKeZzgdpqgrkDQXBk6advdo9Lnnf+SMMnCQgra+cflCaC0CIbLdMbSDUSUiXX6HuMJTgcRUSZj6QbD5TpKi8D1kP6RRApa5yIFrbORgtbZSEHrbKSglcx3ft40zk8b55+pYpgmf/8fb5CZX8HqD76cvH3TrmOk5ZZNCtrBYT8/eXopfQMKAB/tP8WOz88AUtDeT2wRtOu2fUVrR9/kn+/Fgs+9TrVefBPz+lr0mC2IxE8JpH3JeM5J/EVXGC1PYLg6m8HGUpS2ejy93Qy4B23fdCT3z+MgaPt8E7T5uqhVbnHLE02W+xuS3DunELKfku0+RoknjlqllA6l99736w7Q2a7SWqfSWKpSmyOoTBaURmkUnlfJPRb61f7U3YLErRpxGzSiVs2iCGuZTsxajYTNGsk7NdIPCLK/DonW4qsa5fGC2xmC+iJBc5VKe3NItD7oqbk7kYLW2UhBO4coATwdgqHbGv5sHTXOxDg/vYgNngDtmsVEssFosY6vQWPANbevjRS0zkUKWmcjBa2zkYLW2UhBK5nv/LfaMVuYKt8JWl03+OUf1jIyOo4qNH7153UITb/rBO2dIxAS0otY+t4BQAra+4ktgnbPkYt097kn/3wvFnpGy2IZqUq541RrqzzV6hAeRUHb4eujXqmgxJNAjufENCVeO8lyf8Ut7w2qBwpp7OikpW6cxhJBTbagMlFQGqlReE4l91tBxiFByi6Nmx9qxK7XuLFyFqJ1hU7suxo3twhSdmpkfCbIOSooOCMoua5RkSCozgyVcjXfVuloUenpnZ1onSlS0DobKWgfDu5elcE6jdFCg4kkA/2yRXCaObEcA+OiRSDBxJ9vMFit4em25zWQgta5SEHrbKSgdTZS0DobKWgl8x2PEcRtA1PlO0ELsO3AKa7FZZGSXcKHe08CTAraYDDI0XOxvLRiB4tX7mDRK5t4a/1+QAra+4ntIw6OnIqi7HYTunHvgcILNXZvEhL7WOiCtsvnoVGppsybTO7AGVIG9kw9qqDzC1LLr5CWnEfKqTZufjxGzDqNyBUzF603VujE/jUkbVN2aWQeEuR+Kyg8p1IaqVGZKKjJVmkoFrTUqHS0qvS47L9mD4IUtM5GCtoHwzWgojQJRkp0xtMMtEgLK2L6U7Hm2SBqtMlYls5whY63TeDy2v88vkMKWuciBa2zkYLW2UhB62ykoJU4OXcK2uLKBt5av591276ioLQW+F7QpuaU8fs3tuIfmwAgNqVACtoHiO2Cds3Ww/zi+dX87NnlrNj4OWeuJtPY2k0wOP+NbsWVDTz36mZ+vmgFKzcdZDT8TdXT72HJur3879++zZ+WbqOipmXy79i9SUjsY94FrRKgp0elo1mlpSp0irQ6Q6UiXlAc5ScnoZG0rCySyy6R1PHZlDI2sf0A8bkXiLucRfSBJm6sHb2naI1apRO3QSNxq0bqbo3MLwS5xwRF51XKbmhUJQlqcwSNpYLWOpXOdpXeAftfm/lAClpnIwXt1Li8AbztguEKnbEsHTXGxDx7jzmxEUG06xbjaQYjJTpKk8A1sPCvqxS0zkUKWmcjBa2zkYLW2UhBK3Fy7hS0lhVk0SsbWfTKJkzTAr4XtBej0nl7yyEARscmWPreARav2glIQXs/sV3Qfpe2rn6uxWezadcxnnppA794fjXrt38zb48/4h/nl39YS0llI0LT2X34AldjMwF4/d09nL2egmla5BXX8OSf1k2e+LV7k5DYx4wFrRKguztUONVcqVJfKKhOF1TECYovqxREhIqq0vcLkndoJGzSiFmrEbksfDr17QDRn7YTe6aA+LTr3Gz4cmoZ27WX+KLTxEWmEPt1DfGfKCR+pJG6JzT/Nfd4qHirLFqjKkVQmytoKlNpq1Pp6lDpe0hlOo8rUtA6GyloA3i6VQZrNPz5BoEEE+OSBdOMJwgeB/2yxUSigb/AYLBOw93z6F4/KWidixS0zkYKWmcjBa2zkYJW4uTcKWgB9n99mU+/OD/58Z0lYYtX7eS5Vzfz1ob9VNW18ss/rOXA0StS0N5HFoygBRgbD5BXXMOXJ2/wn69t4R9+/ea8PXZ0Uh7vf3L0B7f7hkb5+aKVkwOPAf687GNKKhsB+QO6kxmfMPEM6LQ1CpoqVOryBbdTBeWxgluXVPIjBNlHNNL3CZK2a8Rv1IherT3YuIDlguiPe4g5XkLczRgSa74h0TVFiVf/p6S1HSenLoGS6nJqqvtorVfp6lTpl6J1TpCC1tk4SdAOuFR8DRqjxTrjKQbaNYvgCaY9FWucC6LGmfizdYaqNDwdwpY50XOJFLTORQpaZyMFrbORgtbZSEErkZGZ69guaJOzSth9+AJ/WrqN//P7NazafIjjF+IpqWwkoGo/fgcPKXuOXOSTQ+d4a8N+nl78Hlt2n2BsPEBFTQu/f2PrXV+7Ycc3XIvPBuQP6I8Dfe4AXZ0qbfUqjWUqtbmCqhRBWbSg6IJK3glB1peCtL2CpG0a8e9rRL/9gKL1TpbpRK/ViN+kkbRDI21/6MRs/ilBYVw/BUUV5NYlkNF1gmTXdCVeX1PsiaJGKaLV10mfb9z26+g0pKB1No+joHV5AigtguFynbEMAxFlYp2+x3iCU0FElMlYusFImY7SInA55B+EpKB1LlLQOhspaJ2NFLTORgpaiYzMXMd2QfvEk0v4z9e2cOFGGuMTqm3r+GDPCRa9shGXZxCh6azb9hW7D1+gsKyWxSt33PW1W/dFcO56CgAj47pkgTA8rOPpM+hr0em8rdNSZFCfoXM73qDskkbRSZ3cwxoZezWSt+nEv6cRtWrmRViRy3Ri39VJ3KKR9olO1kGN/G91is9pVN4wqE02aMrVaS8z6G7QcXUZKF6dkbHQer1jg3SM1lI9mEKhcoZU994pRxVker6k1HedhuECev3tDI8HbL/WEh3DtBhXDUbHdVsYGdfxTxgSm7CCMK7av44ZMW4wPmCiNliIQgsj0cK6ML2IDZ4E83oQPd1ClFsE2kzGBhfA87ARwPY12Imj95+AfP2dzLga2v/tXoeTGR7TbPvZa1w1MEzLtsefy58pJT9OQBhohmX7OiT2ISMz17Fd0FbXtxFxOZGVmw7yr//5Di8s387ery6RlluGb2h03tax+/BF9n51afLj8upmnn/jQyprW/jdkg/v+tr1278mMiEHgLGALnnIjA7rKP0Grlad7mqD1kKDhnSd6ri/hhiyuAAAIABJREFUFa06yR/pxG+YnWi9sUInbp1G0gca6bt0cg5pFB7XKb2ocTvGoD5VpyVfp6vSoL9Jx9tjMDyoo+sWqmbe13MaDvjpGWuifiSbW76LpHsOTClj0z2fUey7SP1INr1jzQwH/La/HpKpMcwgAWHgD+i2MDphz+NKQlhWMCRoF8Ba7sWYzyDQZiLKLPRUC/NaEKYbT3AMrEtB9CQL7ZZFoMlk3L3wn6MdBIOh//7bvQ67GJ1w7vfFWPj1t3sdEnsYVw0sK2j7OpyMnT//BISBYT5+r7/dP1M/KqiaiW5Ytq9DYh8yMnMd2wXtnbGsIPXNnZy6kshzr27miSeXzNtjn7uewgd7Tkx+XF7dzJ+WbmNoxM8//Wb5XeMWFr2ykcraFkD+itu96OlX6WhVaalWabglqMlSqbwpKI3UKDwryD0qyDwoSP1U4+YHgph1GpErZidaY/+qcfNDjZRdGpmHBLnfCgrPqZRGalQmCmqyVRqKBS01obX1uGb+/KYrCev1jdLia+a2kkuR5yrp7qlLvFLce8jznKbMm0yjUk2Xz2P7aya5f+SIA2ez0EYcuNwqSrNgpERnPM1ARFpYEdOfijXPBlGjTcYydYYrdLxtApfX/ufxqCBHHDgXOeLA2cgRB85GjjhwNnLEgURGZq6zIATt2HiAgtJavjoVzVvr9/PzRSt47tXN7Dx0bt7WoAyO8K+/e4emth50w2T99m84cPQKAG+t38+35+IwTYuE9CKeWfwepmkBDvgBXQnQ06PS0azSUqVSXySozlCpiBeUXNPIPy3I/kaQfkCQvFMjYbMgZq3GjeUzF61Rq3TiNmgkbtVI3a2R+YUg95ig6LxK2Q2NqiRBbY6gsVTQWqfS2a7SOzD/12ZCmAyNqbT6OqlRiij23CDT8zVJ7h+WeCUP7CLHc4ISTwL1Sjkdvj77X1vJrJCC1tnYJWhd3gDedsFwpY4/W0eNMTHP3WNObEQQ7brFeKrBSLGOr0kwMLBwxPKjihS0zkUKWmcjBa2zkYLW2UhBK5GRmevYLmj/8OZW/u5Xb/D04vfYui+C+NRCvL5hW9aSU3Sbp15cz789v4b3Pzk6ORO3b0Dh9Xf38C+/fZsXlm+nrqlz8u/YvUncN0qA7m6V9iaV5kqV+kJBdbqgIk5QfFmlICJUVJW+X5C8QyNhk0bMWo3IZbMQrW/rxL2nkfiRRuoeERKtxwVFF1XKojWqUgS1uYKmMpW2OpWuDpW+BV4w0+7ro04po9QbT75yghT3p9OUeH3DLU80tcot2nxd9PkmbF+75OEiBa2zmQ9B6+5RGazR8BcYBG6a6JcsOMbUc2KPg37JInDTwF9gMFir4e6RInaukILWuUhB62ykoHU2UtA6GyloJTIycx3bBe2Nm7n0urx2L2PGme9Noc8ToKtbpa1R0FShUpcvuJ0qKI8V3Lqkkh8hyD6ikb5PkLRdI36jRvRqbeZFWEt1olZrxL+vkfxx6H6zD2vkR4Qerzw29Ph1+aH1tDUIurpU+he4aL0funxuGnxVlHuTyPWcIsW9e8pRBRnuw9zyXKNayaPF10rfoN/2tUvmHilonc3DFLQDLhVfg8Zosc54ioF2zSI43ZzYb8E8F0SNNfFn6wxVaXjbBf1yPMG8IgWtc5GC1tlIQetspKB1NlLQSmRk5jq2C9rpMjo2wYB30O5l/Ghm+ubucwfo6lRpq1dpLFOpzRVUpQjKogVFF1TyTgiyvhSk7RUkbQsJ0ui3ZyFal+lEr9WI36SRtEMjbX/oxGz+KcGtyyrlcYLbaYK6AkFzZeikbXePSp9D/qe/xzdEk6+eSiWDfM950txTl3iluT+nwHORKiWLvvFWfGNSxjoVKWidzUwErcsbwNsqGC7XGcswENEm5ul7jCc4FUTcsBhPMxgp01GaBa7H4B+/HgekoHUuUtA6GylonY0UtM5GClqJjMxcZ8EK2h2fn5nXkrCZps8doLNdpbVOpbFUpTZHUJksKI3SKDyvknss9Kv9qbsFiVs14jZoRK2a+WnWyGU6MWs1EjZrJO/USD8gyP46JFqLr2qUxwtuZwjqiwTNVSrtzSHR2q/Yv6EtFO4s8Sr0XCXD88U0JV57yfOcodyTQoNSQ7fPd9f9TFcSJnEGUtA6m3sKWiWAp1MwVK3hz9UJxJsYF6YXscHjoF+xmEg2GC3S8dVruPvkeIKFjBS0zkUKWmcjBa2zkYLW2UhBK5GRmessWEHb6/Jyu77N7mX8aGYsWlfoxK7TuPmBIOUTjYzPBTlHBQVnBCXXNSoSBNVZKvW3BM3VKu2tKj19UrQ+OOO0KR3UeAu55b1BpueraUq8dpPrPkmp5yZ1SgWdvv4fvW8paJ2NFLTO5jtB6+5V8dVrjBYZTCQZ6FcsgseZWsYeA+OCRSDBxJ9nMHRbw9MlReyjiBS0zkUKWmcjBa2zkYLW2UhBK3FyDNPkiSeXsPvwxbtuz8irYM2HXz60x/nZs8sZ8A7S2NrNsy9vnPJrTl9J4qP9px7aYy6k2C5o/8/v1zA47Ld7GTNO9DsasX/VuPmhRsoujcxDgtxvBYXnVEojNSoTBTXZKg3FgpYalY5WlR6X/ZvL40q70kudUkaJJ45s9zGSpijxSnZ/Qrb7KMWeGGqVYtp93TMq8ZKC1tlIQfv44u5T8bYLlCbBYLXGcLnOaKGBP1efxEoPEoyY/lSseSaIiDIZy9QZrtDxtsrvlccJKWidixS0zkYKWmcjBa2zkYJW4uQYpsk/PrOMf//ju7R19k3e/rAFrW9oFMsK3lPQBlSNsfHH8/WwXdCu/uBLLkVn2L2MGcfuTcLJdPoGaFCqKPMkkuuevsQr032YIs91qpV8WpU2+gbHHsrjS0HrbKSgXfgM9Kt4OgVKs2CwNixab+n4s3XG0wwCCSYiykS/YmGeC96zmGva8QQng2jXLMZTDEZv6fgaBQMD8lTs444UtM5FClpnIwWts5GC1tlIQStxcgzT5KfPLONaXBbL3vts8vY7Ba1lBfnk0Dl+81/v89SL6/lgzwkM0wTgn59bxfnIVFZs/JynF79HWm4Z2w6c4tU1u3h1zW4mAgK4+wTtolc2sv/ry/z6hfUsemUjxZUNwN0naKvqWvnT0m08+/JGfvf6B5Nf86jGdkH7wZ4T/PIPa1n0ykaWvfcZqzYfuouFHrs3CafQ4xuiSamjwpNGvvs8aQP7p5Sx6e6DFHguc9ubTbPSRI9vdM7WJAWts5GCdv4YcKl4ulSUFsFgncZwhc5ocegk63i6QeCmiYg20a9aGOeCWPc42Xo/WKeCGBdC4lWNMZlIMhhLN/DnG4wU6wxVaZg94OuTr79TkYLWuUhB62ykoHU2UtA6GyloJfOeLWdg46n5Z4oYpsk//PpNLCvIH9/6iMyCSuBuQZuWW8bvlnyIpukITed3Sz4kMaMYgH/93TucvHQTgOsJ2fz0mWV097kBePOv+0jKDH3dnYL2H379JtFJeQDEJOez6JVNwN2C9vdvbCUhrQiA+NRCnnt188N+FeY1tgvafV9f5uCxa9Oy0GP3JvE40usbpUVppsqbQ6H7CunuQ1PK2FT3PvLdZ6nwpNKo1NLtG5zXdUpB62ykoH1wXG4Vd4+Kt03gq9cYqtIYKdHx54cE6ESSgRpjol23MC4EsU4F4RgzF60RQYzzQbSrFmq0SeCmwXhaaFTBSLHOcKXOYL2G0iLwdKsMuO7/5Os9S8Ikjz1S0DoXKWidjRS0zkYKWmcjBa1k3rPiiD1MEcM0+fv/eAOAkspGFr2yEV03fjDiQGj65J8//uw0xy/EAyFB29LRC8Ct8nr+87Utk1+37cApzl5PAe4WtD97djmWFQRA1w2eeHIJQyP+uwStrhuTX+NRhvmfv37roVx6u2K7oH3UY/cm8ajT5xujTWmn2lvILU8kme4jU5Z4pbh3k+uOoNSTSL1SSafPZfvapaB1Nk4WtC5PICRa2wW+Bo2hao2R0rBozQyL1tiwaL1oYZ0OTl+cdZ9jBMzzQfQrFiLaJJBghkRrdmhkwXCFzmCthtIs8HSFRescFypKQetspKB1LlLQOhspaJ2NFLTORgpaybxnZAJGxuefKXKnoAV496MjnLx08y5BO+IfZ+u+CF5Yvp3Fq3byyz+s5dtzcUBI0PYNKEBI8L6wfPvkfe34/AynryQBdwvap15cf9cafvbscrp63XcJ2pTsUl5ds4vFK3fwwvLtd63xUcyCELQxyfm8/u6eyRdAFRrfnI2dnFexkGP3JvFoMUGH0kutUkqJJ5acaUq8ktyfkO3+lhJPLLVKCe1KD/0zKPGaa6SgdTaPg6B1eb8vxPI1CYaqNYbLwoVYWTrjKQaBeBMRaaFfsjDPzFK0ngDzbBD9soW4YRKINxlPCYvWIp3hcp3BGg2lSeDpEAz0q/R77b9OUyEFrbORgta5SEHrbKSgdTZS0DobKWglTs7fCtpel5d/e34N1+KzJwXtri/Ps3VfxKTH27ovYlaC9ueLVhIM3n2CdmR0fFLQ+oZG+cdnltHW1Q+Ay+2Tgna2OXM1madeXM+Jiwk88eQSAJTBEf741kccOn7d3sXdR+zeJBYynb4B6pVKyjyJ5LhPkeLeM02J1xFueSKp9hbQqrTT53s4JV5zjRS0zmZBCVolXIjVES7EqgnPaS0KF2KlhkVrlIl+2cI8O7NCrEnRegzMM2HRGmkRiDeZSDYYy9LxFxiMlOkM3dbwNQq8HQJ3r4prgYrWmSIFrbORgta5SEHrbKSgdTZS0DobKWglTs7fClqAL05E8uzLGycF7bptX3HmajIAbZ19PPXShsmxpTMRtH/3qzdIyS4FIC61gN8t+RD4fgZtS0cvv3h+NZqmY1lBDh2/zhNPLkEV2txdiDmO7YL23//4Lm2dfQCTghagp9/DUy9tsGlV9x+7N4mFQo9viEallgpPGnnuc6ROW+J1iEL3Faq8OTQrzfT6Rmxf+0yRgtbZzImg/U60dqkh0XpnIVaOznjaHYVYVyzMc0GCJ2dRiHUMrNNBjIsW2nULNTYsWjONkGgtDYvWBg1vm8Ddo+Ly2H/tFwJS0DobKWidixS0zkYKWmcjBa2zkYJW4uRMJWgnAipP/mndpKCtrG3h2Zc38vwbH/Lh3pOk5Zbx80UrycireGBBW9PYwe/f2MqBb67w3Kubee7VzVTUtAB3l4Rt2X2Cp17awOKVOygqq+Mvq3fx4orv7/tRi+2C9s7Bv3cK2oCq8dNnltm0qvuP3ZuEHfT6RmhWmrjtzaHAc3naEq+0gf3ku89R4UmjSamjxzdk+9ofJlLQOpsfE7QDAyqebhWlJVyIVRkqpvLnhQuxEg3UaBPtmoVxPogVMQvR+i1Yp4IYF4Jo1yzUGJOJpNDj+PMNRop1hqo0fPUa3tawaB2QcnE2SEHrbKSgdS5S0DobKWidjRS0zkYKWomMzFzHdkG7eOUObmbcAr4XtMFgkKPnYvnzso9tXNn9xe5NYq7p843RqrRT7S2gyHM9XOL1Qxmb4t5DrvsUZZ5EGpQqOn0Dtq99rpGC1hm43AHc3SretrBova0xUqJjlgUJZN1RiHXNwrhgYZ0KwjFmLlojghjngmhXw4VYNw3G0w38uaGTtMOVOoN1GkrLHYVYC+A6OQ0paJ2NFLTORQpaZyMFrbORgtbZSEErkZGZ69guaCtqmvnZs8t5dc0unnhyCWu2HuY3//U+P1+0guLKBruX96Oxe5N4uEzQ7uuhVimhxBNLtvtbktyfTCFkPyXbfYwSTxx1ShntSu8CWPv8IwXto4XLE8DdGy7EagyL1tLQzNSxTJ2JZAM1zkSLtDAuWZinZ1mIdTKIeS6IfsVCRJkEEkzG08KFWLd0hit0Bms1lGaBp1OERKti/3WS3B9S0DobKWidixS0zkYKWmcjBa2zkYJWIiMz17Fd0EJo3uzRc7F8sOcEOw6e5czVZAaH/XYv675i9yYxGzp9LuqVCko9ieS6I0hx755Cxu4k0/MVt7w3qPEW0urroN83bvvaFwJS0NqDyxvA3RcSrUqTYLBaY7hcZ7QwJD/HUwwCCSbihoV+KVyINRvRehzMs0H0SxbiRli0phgYhUEmSkyGy3UGazSUJoGnQ+DuU+l/zAqxJD9EClpnIwWtc5GC1tlIQetspKB1NlLQSmRk5joLQtACjI5N0NbVT0e3i7HxR+eb3+5N4n7p9g3SqNRS7kkl332WVPe+KUcVZLi/oNBzldtKLi2+Znp9o7avfaEiBe0s+a4Qq1OECrFqw6K1SA+J1tSwaI26oxDrBLMTrWfCojXSQo37rhArdIp2pCxciNWo4e0QuHtVXPcQrXNSEiZ5ZJCC1tlIQetcpKB1NlLQOhspaJ2NFLQSGZm5ju2Ctm9A4fV39/DEk0sm+btfvcHS9w7g9g7Zvbwfjd2bxFT0+EbDJV7Z4RKvg1OXeLkPkO+5QKWSQZOv/rEr8ZprpKD9ngGXiqcrVIg1WKcxXBGal+rP0RlPNwjcNBHRJvpVC+PcLAuxjoF1Oohx0UK7bqHGhkVrhhESrSVh0dqg4W0LF2J5Hv5zloLW2UhB62ykoHUuUtA6GylonY0UtM5GClqJjMxcx3ZB++KK7Xy49yS369twuX30urwUVzawctNBFq/aaffyfjR2bxJ9g2O0Km1UK/nhEq/DU8rYVPcecj2nKPMm0aDcpsvntn3tjzqPo6B1Dai4e1S8rQJfncZQlcZIsY4/z2As3WAi0UCN+a4QKxgqxJqpaP0WrFNBjAtBtGsWaozJRGLocfx5BiPFOkNVGr46DW9rSLQODCwcISYFrbORgtbZSEHrXKSgdTZS0DobKWidjRS0EhmZuY7tgvbf//guwWDwB7ePjk3w02eW2bCiB8t8bgh9vgnafd3UKiUUe2LIdh8leYoSr+SBT8n2HKfUG0+dUk6Hr8/2zexxZCELWpcnEBKtbQJfQ7gQqyRciJVhhAqxYk206xbGRQvrdBCOMXPRGhHEOBdEv2ohok0CN03G0w38OaGTtMMVOoN1GkqLwNOlhgqxFsB1mg1S0DobKWidjRS0zkUKWmcjBa2zkYLW2UhBK5GRmevYLmj/vOxjJgLiB7e7PIP88a2PbFjRg2UuN4BOXz91SgWlnpvkuk+SPDB1iVeW+2uKPVHUKEW0+TrpkyVe88J8CFqXN4C7V8XbIfA1ipBoLQuL1iw9JFrjTERkuBDrTJDgLERr8ASY54LoVyxEVLgQKy1UvjV6Sw8VYtVqKM0CT6dgoF+lX7H/tbADKWidjRS0zkYKWuciBa2zkYLW2UhB62ykoJXIyMx1bBe0Mcn5LH//M1Jzymho6aKmoZ2EtCJeXbOb2JQCWjp6J1mIeVhv9m6fjwalhnJPCvmes6S4905T4vUlRZ5r4RKvFvoG/bZvVE7lgQStN1yI1SFQmgSDNd8VYoXk53iKQSDeRNww0S9bmGcfQiHW2XAh1g0rJFpTwqK10AiJ1moNpUngbRe4++5diCX5IVLQOhspaJ2NFLTORQpaZyMFrbORgtbZSEErkZGZ69guaO8sB/sxFmJm8sbu8Y3QrDRSpWRR6LlEmvvzaUq8PqPAc5FKJZMmXwO9vhHbNyXHo3xfiKX2Wow3GaFCrFt6SLSmGQQSTESUiX7FwjwXJHhy5nNag8fBPB0SrVqkhRoXLsTKDJ2iHSkLF2I1aiHR2itF63whBa2zkYLW2UhB61ykoHU2UtA6GylonY0UtBInxzBNnnhyCT95eukk/+f3a9i6L4KJgDqvazl3PYWP9p+a18ecr9guaIdG/IyOTdwXCzE/9ibuG/TT4msNl3hdI2OaEq8U917yPGco8ybTqFTT5fPYvgE97gy4VDzdKkqLYLBeY7hSDxVi5YZF600DNdpEu2phnA9iRcyiEOvYd4VYVqgQK9ZkIik0D9ZfYDBSEhatDRretlAhlstt/zWSTI8UtM5GClpnIwWtc5GC1tlIQetspKB1NlLQSpyc7wTtgHdw8jZlcISl7x3gwNEr87oWKWjnOKZpUVLZSHRS3uRtY+OPxhvgzjfs9yVexRR7osmatsRrFzmeE5R6EqhXKmSJ1yxxudXvC7HqNYaqwoVY+QZj6QYTSQZqjIl2zcK4EMQ6NctCrFPBkLCNDKLHWkwkhh7Hn2cwUqwzVKXhq9fwtgo83SoDA1LiPI5IQetspKB1NlLQOhcpaJ2NFLTORgpaZyMFrcTJmUrQAkQm5PDW+v1097n5jxf+Onn7joNn+cvqXZMfv73lEGm5ZVTVtfKnpdt49uWN/O71DyiubACgsbWbP771EV+ciGTpewd47tXN5JfUACA0nfc/OcpTL67nL6t3sfvwhUlBO939PaqxXdD2urw8+/JGfvbs8skxBn0DCv/y27epaWi3d3H3kXqlghJPArnuk1OejE1y7yDbfZRiTxS1yi3afJ22bywLFZcnEBKt7QJfg8ZQtcZIaVi0ZoZFa6yJdt3CuGhhnQ4SPM7MRWtEMFSIddVCRJsEboYLsXJ0Rot1hit0Bus0lBaBp0tlwHV3IdZ8lIRJFi5S0DobKWidjRS0zkUKWmcjBa2zkYLW2UhBK5nvZHm/INN7cN6ZKlMJWo8yzGtrd/PVqWgAfv3Celye0OdfWrGDF1dsR9N0gsEgv3h+NSOj4/z+ja0kpBUBEJ9ayHOvbgagpaOXv/vVGxSW1QKQkl3Ky29/AsCV2Ez+snoXumEyOjbBb1/bMilop7u/RzW2C9ol6/ZyOOIGpmndNWf2YlQar7+7x76F3Wf+VsZmuo9Q5LlGtZJHi6/VkSVeLm8Ad19YtDYJhqo1hstC5VT+rDsKsSIt9EsW5pnZidbgCUKi9bKFiDIJxJuMp4YLsYr0UCFWrYbSLPB0Cgb67xatM0UKWmcjBa2zkYLW2UhB61ykoHU2UtA6GylonY0UtBK7XdN8MVW+E7T/6/+u5J+fW8XPF63gn36znIPHrqHrBgBbdp8gOauE4ZExXl2zm20HTlFR00JrRx8vLN8OgK4bWFYQCAne//nrt4CQoP3n51ZNPl5jazdPvbgegA07vuHs9ZTJzx06fn1S0E53f49qbBe0//jMMoSmA9wlaHXD5H/935U2rer+U+yJoUrJoklppOdxK/FSAgz0q3g6BEqzYLBGCxViFYULsVLDojXKRL9sYZ4NEjzB7AqxzoYKscQNKyRaU0JSd7TQYLhMZ7Baw9ckQoVYffYWYklB62ykoHU2UtA6GylonYsUtM5GClpnIwWts5GCVjLfEdaYLUyVvz1BqwyO8C+/fZv2btfk10Qn5bH3q0tk5FXw+bfXiErMJeJyIldjM/n822tA6GTsq2t2sXjlDl5Yvp2//483gJCg/dWf103e150fL33vwF3jUE9dSZwUtNPd36Ma2wXtk39ahzI4AtwtaFs6evnF86ttWtX9x+5N4r74TrR2qSHRWhcWrcU6/pzvCrFMRLSJfsXCPBckeHLmhVjB42CeDmJcstAiLdQ4k4lkg7FMPVSIVXpHIVa7wN2r4vIsgOv0gEhB62ykoHU2UtA6GylonYsUtM5GClpnIwWts5GCVuLkTDXi4MipKFZtPjT5cf+AwuJVO9n/9WUyCypp73ax+oMv2fTpMQpKa/ENjfKPzyyjrasfAJfbd1+Cdv32bzgfmTr5uQPfXOGj/afueX+PamwXtPu+vsxra3dzq7yeJ55cQmNrN3GpBTz78kY+OXTO7uX9aOZ7UxgYUPF0qygt4UKsSp2RYh1/XrgQK9FAjQ4XYp0PYkXMXLRyLFyIdcFCu26hxppMJBmMZRj48w1GSu4oxGoTuLtVXG77N875QgpaZyMFrbORgtbZSEHrXKSgdTZS0DobKWidjRS0EidnKkE7Nh7gF8+vpqisbvK2517dzJ+WbmNoxE8wGOS3r23ht69tIaBqk4cwNU3HsoIcOn6dJ55cgiq0ewrac9dTJmfQDg77WfTKRj7af+qe9/eoxnZBqwqN7Z+d4afPLOOJJ5fwxJNL+PmilXz+7bXJ0QcLOTN9c7vcAdzdKt62sGi9rTFSEjphOpZxRyHWNQvjgoV1KgjHmFUhlnE+iHbNQo02mUgMCV1/nsFIsc5QpY6vPlyI1a0yMCDFw48hBa2zkYLW2UhB62ykoHUuUtA6GylonY0UtM5GClqJkzOVoIWQPP3Dm1sn58Bu3RdxV1HXyk0H7+qW2rL7BE+9tIHFK3dQVFbHX1bv4sUV2+8paCcCgnc/OsK///FdFq/cwcFj1/hw78l73t+jGtsF7XfRdYO+AWVy3MGjEpc3gLs3XIjVEBatpWHRmqkzkWygxplokRbGJQvz9CxOtH4LwZPBUCHWFQsRbRK4aTKeZuDPCY0sGK7QGawLF2J1qaFCrAWwmT2OSEHrbKSgdTZS0DobKWidixS0zkYKWmcjBa2zkYJWIiMz11kQgra7z8PXp6PZsvsEAJYVpLSqcV7XkFdcw9/96g1+8vTSSS5GpQPQ0+9hybq9/O/fvs2flm6joqbl+784U9F6IlyIddlCRJmhQqxUA392qIRruEJnsCYsWjtESLQq9m9Kku+RgtbZSEHrbKSgdTZS0DoXKWidjRS0zkYKWmcjBa1ERmauY7ugLSyr5SdPL2X5+59NloT1Dyj883OriEstmLd1JGYU89ePv5ryc6+/u4ez11MwTYu84hqe/NM6dMMEwidazwTRL1mISCskWlMM/Fk6o4UGw2U6Q9UaviYRKsTqU3F57d9cJLNHClpnIwWts5GC1tlIQetcpKB1Nm1DgvJxk/YFsBbJ/CMFrbORglYiIzPXsV3Q/udrW8gqrASYFLQAJZWNPP/Gh/O2jmtxWXy0/9QPbvcNjfLzRSsxTHPytj8v+5iSytAJX7s3CYl9SEHrbKSgdTZS0DobKWidixS0zqJVCRDZH2Bjxxi/bhrjv9V+z8/qx/ivlnG2doweQrgDAAAgAElEQVRzsW+CAgcV5ToVKWidjRS0EhmZuY7tgvanzyzDNC3gbkGrGyb/+MyyeVvHyUs3eXHFdn7/xlb+/Y/vsnVfBOMTKhU1Lfz+ja13fe2GHd9wLT4bAO+IkDgUVbPwT+i2r0NiD5oRZGRcs3ENqu3XwMmYVpBBv52vv8ROgkFQFsA67MKzANZgF0r49bd7HZK5oWdEEOdW2do9wW+a7xay98uvm8ZY1j7OgV6VWLdK7ZD9z+vxwr6ff0bGNTQjuACugcQO/BM6qmbZvg6JfcjIzHVsF7SLXtlIY2s3cLegzSqs5OnF783bOtJyy/jiRCTDI2MMDvt5a8N+dh++QGFZLYtX7rjra7fui+Dc9RQAdMOSOBQrGMS0gravQ2IPwWAQw7Tv9Vc10/Zr4GSCQTBM+9chsQen//ff0fuPKV//xwm/bpE7arDHJXi+bWJK4bqodZyd/YKMEYNRPbT/q4ZFw4RB9JDObpfg9Y4A/9w4Pq20/R8NY/yhfYLNvSpnFY1bfpMRzf7n/ygSsHH/McwgwaD82d+pmFYQS77+jkZGZq5ju6C9npDNL/+wlsMRN3jiySWcj0xl674IfvrMMi5FZ9i2rrLbTSx6ZROVtS38bsndoxbWb/+ayIQcQP6Km5ORIw6cjRxx4GzkiANnI0ccOBc54uDRpksJcHNggh1dE/y2eZz//jci9f+pHeM/Gsd4v2Oca/0BWpS79/kfKwlr9wVIHQjwTe8Ef20f5z+bx/gfddOftv2nhjEWt4zxYcc4Z/omyHcH6FkA10kyNXLEgbORIw4kMjJzHdsFLcDNjFu8+dd9PPXSBn772hbe3nKIvOLqeV1DW2cfHmV48uOisjp+t+RDhkb8/NNvlhNQtcnPLXplI5W1LYD8Ad3JSEHrbKSgdTZS0DobKWidixS0jxbdvgDJrgC7uif4ffMY/98UkvSXjWOsbx/nUt8ETcq99/UfE7TTUe0NcKM/wP7uCZa1hSTw38rh7/h/6/5/9t4zvK3rQLdOu1PulDvz3Zm5Eydx4sRptuMSJ3Fc5d6b3GQ5siWrF6tXq/fee69U75XqnarsIAkCIECiV9EyT8EBVdb341gcyyJANfJQPPt9nvWDIAnsA5AbwMI+75Z4xirRskRitFthvV8lO2z8fSkQgtbsCEErEBGp7RguaM9/LSf93pXqg7rIxDlraddnIooaR5JV2vSawKS5awFo2X0cc5Zt5eLFS2zfd4KXmvSs6s01epIQGIcQtOZGCFpzIwStuRGC1rwIQVu/8cRU9gVVxrhV3rNJ/LKa1atPWCW6OGVW+BQKIzd2/TcraKvDG1PJCKks9ysMKpVp6pD5c5G+irc6cfvrggpeL5bp7JSZ7lHYGVSuWeErqF2EoDU3QtAKRERqO4YL2tf+1gePP3zVZRcvXmJ+2nYeeqFlnY1DUTX6jprH42915JnGXRgyYUnVqllfMMpnXUbz2Bsd+KDNEAqKS6t+z+hJQmAcQtCaGyFozY0QtOZGCFrzIgRt/cIbUzkYUpngVvjILnFvQcU1YvOxIomOTr1CwHKDQva73E5BmwxXTJfMs70KPZwyb9sk7ktRk/BIkcQHdol+pTILfSpHQiruqPGPTUNECFpzIwStQESktmO4oJ21ZDNPv9uZvMISANy+MJ90HMFzH3TjxNkCg0dXc4yeJATGIQStuRGC1twIQWtuhKA1L0LQGosvpnI0pDLJo9DUIfPbwmuF7KOFEu1LZBZ6VXJvUch+l7oQtMmwRFQ2B1QmehTalUg8X1x9ZcOPLRI/tUg8aZVo4ZAZWaawxq+SKWoSbhkhaM2NELQCM6f8fAX3NWqOosavunzTrqO07D6uTsawbN1uBo5bVCe3ZVQMF7QAuw6c4vE3OzJu5ioefaUNfUfNo0JSjB7WdcXoSUJgHELQmhshaM2NELTmRgha8yIEbd2TEVKZ5lFoZper3XDr4SKJViUSc70qWbUsIY0UtNXhi6mcCqus9Okbn/3NLvNYkcRPkojbewsqeKVYopNTZqpHYUdQwSZqEq4bIWjNjRC0AjNHCNq6Sb0QtAD5RU6eadyF/mMWGD2UG4rRk4TAOISgNTdC0JobIWjNjRC05kUI2trnVFhlplehhUPm/sJrJeMfCiU+d0jM8iqcruNVofVN0CajNKayP6gy16vS0yXzrl2q9r68wkOFEu/ZJPq6JBZ6VQ6JmoRqEYLW3AhBKzBzrkfQaolK+oyYy4tNetK86xhmLNrEl6PnA5BT4OC9VoN4pWlv3vrsS05lFwH6vlONWw5kyvz1tOo5nteb9eXY6fyq6+s1fDYvfNidv3UayahpK6oEbbLru9NjiKDtOmhGtXzcYTj3P9uCLwZMq7qsvsfoSUJgHELQmhshaM2NELTmRgha8yIE7e3nbERljlelZYkuCr8rD+8rkPjUoW+MlREydqx3iqBNhjUSZ2tAr4hoXyLzYnH1G6ldqUl4wirxmUNmhFthlV/hzG2ujLjTEILW3AhBK6jzrACWGUA1uR5Bm7ZxH3/rNJILFy8SjJzjuQ+6VQnVd1oMYPveEwBs25PB6836AmB3ebn/2RZknLUAsPvQGZp2GA7A6i0H+FunkVReuMjXksIbn/ar8fru9BgiaEdPT7tu6nuMniQExiEErbkRgtbcCEFrboSgNS9C0N46uRGVBV6VtiUSfyy6Vgz+rrCCpg6ZyW6FYwYL2e9ypwva6vDFVM58U5Mw3K3wqUPmcWvymoRfFki8VCzRoURmkkdhW0Cl2CQ1CULQmhshaAV1njkGUU2uR9B2HzKL5ev3VH3v2yteKysvcOnSZQDC0a948PmWgC5o//J6+6rfsTrcvPBhdwB6DJ3F0nW7q743ed66Gq/vTk+9qTi4U2P0JCEwDiFozY0QtOZGCFpzIwSteRGC9saxRFQW+RQ6lMj8uRoh++uCCprYJSZ6FA6FdGFo9JiT0RAFbTLKoioHQ7pM7+OSaGyTeDBFTcIDhRKN7RK9XDLzvCr7Q3rVgtHHcTsRgtbcCEErqPMoBlFNzn8tc1+j5tfsFbVu+yFa95wAQKue49m2J6PqewtW7qgSqrsPnaHZFyNp0m4oH7QZwgPPtQB0Qfvs+12rfufbX7fqOZ5Nu45WfW/R6p01Xt+dHsMFrZaoZObiTbzXahBPvfMFzzTuwodthzBvxTYqL1w0eng1xuhJQmAcQtCaGyFozY0QtOZGCFrzIgRtzRRGVJb5FL5w6isxvyvyflVQwft2ibFuvSfVWw/GfL2YSdAmwxaNsz2gMNmt0LFE5mWb/phWJ21/YpH4a1EFzewyw8oU0nx6b3B9lvCpEILW3AhBKzBzLl68xMMvtabQVnrV5aOmpTFg7EJArzJduWl/1fdGT09j4LhFxMq/5pGXWlNS5gcgEIpdl6D97orc8bNW13h9d3oMF7Q9h83m7Rb9mZ+2nS27j7Np11FmLNrECx92p++oeUYPr8YYPUkIjEMIWnMjBK25EYLW3AhBa16EoL2W4miclT6Fbk6ZJ6sRsvdY9JWVo8oU9gRVPPVgzDeLELTJORtRWe1XGelWaO6QecKq99hWJ27vsUi8UCzRvkRmokdhS0ClKFL/n1OFoDU3QtAKzJ5R09L4tPMovIEIiUQl+45m8ufX2lFQXArAwlU7+bzbWC5dukwoUs4LH/Vg4LhF2F1enni7E4lEJZcuXWbyvHXc16g5cS2RUtAuW7e7qoP23FcVvPpJ7xqv706P4YL2r290uKbHAsDtC/PwS60NGNGNxehJQmAcQtCaGyFozY0QtOZGCFrzIgStij0aZ7VfpYdTppFV4q7vyLefWyTetEkMK1PYEVRwR40f8+1CCNobwx1VORxSWehV6euSed8u8XA1NRdXuL9Q4h2bRA+nzByvyr6giqseHMcVhKA1N0LQCsweLVHJpLlree6Dbjz6ShuatBvKsdP5Vd+XZJV2fSbxYpOetO09kcnz1jFovF5J0G/UfF74qAdN2g3lxNkC/tZpJB+2HZJS0CqqRpeB03mmcReatBvKpLlr6T9mQcrru9NjuKB9q3n/ai9X1HhVOXB9jtGThMA4hKA1N0LQmhshaM2NELTmxYyCtiSqst6v95A+X3zt5lE/K5B4vVhmUKnMtkDD6x39NkLQ3h5s0Tg7ggrTPHoVxmvFMvcmqUm4yyLxlyKJpg6ZwaUyK3wKJ8LGVGMIQWtuhKAViNScKxt3AcxcvInxs1cbOJo7L4YL2rSNe5k0dy1fnZeqLgtFyhk0fhGb048ZOLLri9GThMA4hKA1N0LQmhshaM2NELTmxQyC1hlT2eRX6e/S+0W/e5r6Ty0SL9sk+rtkNvn1nzd6zHWFELS1S1ZYZZ1fZXSZwucOiaet+gcA1YnbX1gknrdKtCmRGO9W2OhXyY/U7viEoDU3QtAKRFLnwPFsXv2kD2o8gaLGeffzAew9ctboYd1RMVzQvtikJw8+35L7GjXnz6+145GXWnNfo+Y8/FJrnni7E4+/1bGK+hijJwmBcQhBa26EoDU3QtCaGyFozUtDFLSlMZVtAZVBpTKvF8vXCLGfWPSVs31dEhsC+opao8dsFELQ1j3umMrRkMoin8KXpTIf2iUeSVGT8PsCvWKju1Nmlldhb/D2fYggBK25EYJWIJI6Fy9eYujEJTz3QTde+KgHY2eu4vLlyzX/okhVDBe0uw+dYf/RrOuiPsboSUJgHELQmhshaM2NELTmRgha89IQBK07qrIjqDCsTOFNm94Z+91Typ+1SvR0yazx652zRo+5viAEbf3BEVXZFVSZ4VHo8k1Nwm+S1CT82CLxp29qEga6ZJb5FDJCN16TIAStuRGCViAiUtsxXNBeiZaoxO0LYXd5q900rL7G6ElCYBxC0JobIWjNjRC05kYIWvNyJwpaT0xld0BlZJnCu3aJe6qRV08VSXRzyqT5FIqFkE2KELT1n5yIyoaAyhi3SssSiUZWibuTSNuff/NhRKsSibFu/fdyU9QkCEFrboSgFYiI1HYMF7TnK2R6DZ/NA8+14L5GzbmvUXMeeK4FvYbPRo0njB5ejTF6khAYhxC05kYIWnMjBK25EYLWvNwJgtYbU9kX1AXVezaJX1bT4fm4VaKzU2a5X6Gwlns7GxJC0N6ZeGIqx0MqS30KA1wyH9tlHi1MXpPw28IKXrfJdHXKzPQopH9T7SEErbkRglYgIlLbMVzQ9hkxl2ZfjCLjrIVAKEYgFOPY6Xw+6TiCkVOXGz28GmP0JCEwDiFozY0QtOZGCFpzIwSteamPgtYXUzkYUpngVvjILnFvNad5/7lIokOJzCKfgkUI2ZtGCNqGhTOmsieoMtOr0M0p84ZN5neFyWsSHi2SaOZS6O+SWexTOBbS5a/RxyGoG4SgFYiI1HYMF7RPv9uZWPnX11wejn7F8x90N2BENxajJwmBcQhBa26EoDU3QtCaGyFozUt9EbRHQyqTPApNHTK/rUYo/bFIom2JxAJv6lO2BTeGELTmIC+issGvMs6t0LpE4jnrtV3NV/hZgcTTVonPHRKj3Qrr/SrZYeOPQXD7EYJWICJS2zFc0D7+VkcUVbvmcjWe4PE3OxowohuL0ZOEwDiEoDU3QtCaGyFozY0QtObFKEGbEVKZ5lFoZpf5fTWVBQ8VSrQskZjjVckScqjWEILWvHhjKmdjcTaXVzKoVKapQ+bPRfqmetWJ218XVPB6sUxnp8x0j8LOoCI23LvDEYJWICJS2zFc0HboN5mB4xZx/mu56rLy8xUMGLuQ1j0nGDiy64vRk4TAOISgNTdC0JobIWjNjRC05qWuBO2psH7adQuHzAPVdGXeXyjRwiEz06twSgjZOkMIWnNTXQetM6Z3Ps/2KvRwyrxtk7ivmg9RrvBIkcQHdol+pTILfSpHQiruqPHHJqgZIWgFIiK1HcMFrT8Y5Z0WA7j/2RY0eq8rzzTuwv3PtuDVT/rgcgeMHl6NMXqSEBiHELTmRghacyMErbkRgta81JagzQqrzPHqu84/VI2Q/X2BRDO7zDSPQkbI+PvBrAhBa25uZJMwS0Rlc0BlokehXYnE88US9ySRtj+1SDxp1T90GVmmsMavkik+eKl3CEErMHOsDjcPPNfiKu5r1JzOA6fdtut/pWnvar+3ePUuBo5bdFtup77HcEELcPnyZfIKS9ix/ySbdh0lK9/GxYuXjB7WdcXoSUJgHELQmhshaM2NELTmRgha83K7BG1uRGWBV6Vtid4XW90u8k0dMpM8CkdD+kZgRh+7QAhas3MjgrY6fDGVk2GVNJ/CkDKFTxwyj6WoSbi3oIJXiiU6OmWmeBR2BBRsoiahzjkeCrHCa2eMN1sIWpMj8j85XyHzwofdOZVddFuuL5WgVeMJJNkc93+9ELSXLl0meu48vmD0Gup7jJ4kBMYhBK25EYLW3AhBa26EoDUvNytoLRGVRT6FDiV6b2V1IuZDu8R4t8LBkN53afSxCq5FCFpzc6uCNhmlMZX9QZW5XpWeLpl37XqNSbKahAcLJRrbJPq6JBZ6VQ6FVMpETcJN440pnAyHWeUtYVRpNq1sh3i+cCv35Kbxo8w5fC9zdhUO6WvDxyswDpH/SfchM5kwZ03V1zkFDt5rNYhXmvbmrc++rBK3Voebxi0HMmHOGj7rMpq3PvuSk1mFdBk4nXc/H8DIqcurfu7VT3ozbuYqnv+gO69+0rvqOr69gjbZ7TSUGC5o0w+e5vG3OnJfo+bVUt9j9CQhMA4haM2NELTmRghacyMErXm5XkFbGFFZ7lfo7JR53HqtYPllgS5YRrsV9gVVPPXg2AQ1IwStuaktQZsMayTO1oDKJI9C+xKZF2uoSXjCKvGZQ2aEW2GVX+FMxPj7rD5xOhRhjdfJmNIc2tuP8GLhNn6Vm3aVgK2O/8pZwmOWjTRz7MMunzf8OATGUde5nNeOy7mt6pyasmnXURq3HEhl5YWqy95pMYDte08AsG1PBq836wuA3eXl/mdbkG2xA9B7+Bzeat6fRKISLVHJn15tS/TceawON394/nM27ToKwOb0Y7z6SR/gakGb7HYaSgwXtE+/25mpCzZQ6gkSjJy7hvoeoycJgXEIQWtuhKA1N0LQmhshaM1LMkFbHI2T5lPo5pR5qpoVsvdYJN6xSYx0K6QHVNz14FgEN44QtOamrgVtdfhiKmfCKit9CsPdCp869A+BfpJE3P6yQOKlYokOJXplyraAPl8ZfV/WFlnhGBt8pUwoy6WD/QivFu3gN3kr+fvMeSkl7H9kL+bP+Rv4qHgP/VynmecpYm/QhzNaUXXdooNWUNe5fPY9Q0gVjz/MU+98QUmp76rLKysvcOnSZQDC0a948PmWgC5oH3+rY9XPTVu4gWGTl1V9/eonvSmyl2F1uHn0lTZV11FZeYH7GjWn/HzFVYI22e00lBguaB9+qTWKqhk9jJuO0ZOEwDiEoDU3QtCaGyFozY0QtObliqC1R+Os8eunIz9rvbZD8m6LxBs2maFlCjuCijj9uIEgBK25qQ+CNhllUZWDIb3burdL4j2bxB9S1CQ8UCjR2C7RyyUzz6uyP6RXLRh9HNdDbqSczf5SJrvz+cJxjDeKdnJf3mr+MWt+Sgn779kL+aNlPe9bd9PbeZLZ7kLSA17s0eurLRCCVlDnqfwKKsvrniS5ePESTTsMJ23j3mu+t/vQGZp9MZIm7YbyQZshPPBcC0AXtC981KPq52Yu3sT4Waurvn69WV8sxS6sDjcvfNj9qut89JU2lHlDVwnaZLfTUGK4oO06aAbHz1iMHsZNx+hJQmAcQtCaGyFozY0QtOZGCFrzURJV2RBQ6euSeLVEuWa12k8tEq8Vywx0yWwNqLjqwZgFtx8haM1NfRa0ybBF42wPKEx2K3QskXnZJvGrgopqpe1PLBJ/Largb3b9w6WVPoVTYWM2KbREvmKbv4xpZRa6Oo7zdlE6f8hfwz/XIGH/NXsBD+WvpbE1nR6ODGa6C9jp91AcufXuWCFoBWbPrCWbadNrApcvX77q8lj51zzyUmtKyvwABEKxmxK0f3q1XdV1X1lBe/5ruUrQprqdhhJDBO3i1buqmLNsKy826cnQSUtZtHrnVd9bvHqXEcO7oRg9SQiMQwhacyMErbkRgtbcCEHb8HHGVDb5Vfq7dKHx02qE7EvFEl+Wymz06z9v9JgFtY8QtObmThS0yTgbUVntVxnpVmjukHnCeu089+2KlueLJdqVSEz0KGwJqBRFbv01UHHka3b6Pcx0F9DDkUFjazoP5a/lX7MXpJSw/5w1nz/kr+HtonS6Oo4zrczCNn8ZlshXtXqfCUErMHNyC0t4pnEXIrGvrvme3eXlibc7kUhUcunSZSbPW8d9jZoT1xI3JGjvf7YFuw+dAWDrnuO81bw/8D8dtKlup6HEEEHbpP2w66a+x+hJQmAcQtCaGyFozY0QtOZGCNqGR2lMZVtAZVCpzOvFMj8ruFpQ3PWNoOjjkjhQcRGHqCwwJULQmpuGJGirwx1VORxSWehV6euSed8u8XA1ndpXuL9Q79bu4ZSZ41XZF7z27AF79GvSA15muwvp7TzJ+9bd/NGynn/PXphSwv5j1nx+n7ea14t20slxlEll+Wz2l5IbKTfs/hGCVmDm9B+zgPsaNeeB51pcxV9ebw9Av1HzeeGjHjRpN5QTZwv4W6eRfNh2yHUL2nyri3daDGD8rNW83qwvrzfrS1a+vrHYtysOkt1OQ4nhFQd3eoyeJATGIQStuRGC1twIQWtuhKC983FHVXYEFYaVKbxpk/h5NfLhGasuHlb5FWzfbKqTbJMwgTkQgtbcNHRBmwxbNM6OoMI0j8IXTpnXimXuTVKToK+4jXBPfgn/lXuKf8jZwQ+zV/K9zDnXSNi/z5zHb/JW8mrRDjrYjzChLJcNvlKywjHDj7k6hKAViIjUdgwXtIlEJWkb91V9feB4Nh2/nMLYmatQ1LiBI7u+GD1JCIxDCFpzIwStuRGC1twIQXvn4Ymp7A6ojCxTeNeun7L7XanwhFWiq1MmzackPX1XCFpzIwStuTGroPXHVEpjEgcDARZ5ihngPEPT4n38yZLO/8vdzT/lHOXfcvP5jzwP/235ulppe1f+eX5nCfG81U+HkhDzPeXkRYw/rhtBCFqBiEhtx3BBO3jCYj5sO4SLFy/hdAd48PmWjJq2guZdxzBg7EKjh1djjJ4kBMYhBK25EYLW3AhBa26EoK3/eGP66bZj3CrvJdkU569FFXRyyiz1KRRcZ2WBELTmRghac9PQBa07KnM4GGSJx8Zg1xmaFe/nyYJN3JWzjO+nqCP4UeYc7slN4/nCrXxuP0wPVyG9XH46Ocv5wC7xSIqahN8XSLxpk+jmlJnlVdgTrL+d3kLQCkREajuGC9on3u5UVTQ8Zf56On45BdB3gnv63c6GjGnm4k1X3bbHH6Z51zH89Y0OvNdqUFUXBogX6GZGCFpzIwStuRGC1twIQVv/8MVUDoZUJrgVPrJL1Z5++6ciifYlMgt9Kvk3uXJLCFpzIwStuWkIgtYdlTkWCrLca2dYaSbNbQd4pnAzP8tdzg9SSNgfZs7h7pzlPFuwhc9tBxlRmkWa10FGKIQnptR4u46oyq6gygyPQpdvahJ+k6Im4dFCiY/tMgNcMst8Chkh/UwII+87IWgFIiK1HcMF7SMvtebixUsAvN96MBt3HgHgwsWLPPxS6zofT6knyOvN+l4laD/rMpql63Zz8eIljp7Kp9F7Xam8cBEQL9DNjBC05kYIWnMjBK25EYK2fnA0pDLJo9DUIfPbwmvf6D9SJNGmRGK+VyU7fHtuUwhacyMErbm5UwStJ6ZwIhRmpc/BiNIsWtoO8WzBFn6eu4IfVdMFe4UfZM7mJ7nLeKpgE5/aDjDEdZalXhtHgiHcUblWxpoTUdkQ0M92aFki0cgqcXcSaXu3ReJZq0SrEomxbv33cuuwJkEIWoGISG3HcEH7XqtBrN12iPSDp3n4pdaUn68A4PgZC29+2q/Ox9Oi2xh2HThVJWhj5V/zp1fbceHixaqfeb/1YE5nWwHxAt3MCEFrboSgNTdC0JobIWiNISOkMs2j0Mwu8/uCa9+8P1go0bJEYrZX4UwtvWk3k6AtDaqcyY+z84DG4jVxxs/U6D0kQfselfQbrjFhlsbi1XG27tXIyNSwljb8OVEIWnNTnwStL6ZyOhRhjdfJmNIc2tgO82LhNn6Vm8aPsuYmlbDfz5zNf+cs5fGCTXxSvI+BrrMs8hRzKBigrJYk7I3iiakcD6ks9SkMcMk0sesrapOttv1tYQWv22S6OmVmehTSAyol11lbcyMIQSsQEantGC5oT2YW8uTbX/DIS61J27gXgOi58/zx5TZs2X28TseyOf0YfUfNo/x8RZWgzcq3806LAVf9XI+hs1i77RBgjhfoguoRgtbcCEFrboSgNTdC0NYNp8Mqs7wKnzskHqjmzfn9hRLNHfob8pO3aYVsTTREQev0xTmZE2f7Po2FKzXGTNPoMShBqy6VN0z7HpX0H5lg0myNpevi7DigcTInjs3dMOZLIWjNTV0LWl9MJTMcZb3PxfiyXNrbj/BK0XZ+k7eSv8tMLmG/lzmb/8xezGOWjXxs3Ut/52kWuK3sD/pxRisMvx9vFmdM3+xxplehm1PmDZvM76o5e+IKfyyS+Mgu0d8ls9incOwWaxKEoBWIiNR2DBe0V/LtFaqXL1+mpMxfp7f/1XmJ1/7Wh1j511cJ2oyzFpq0G3rVzw4Yu5Bl63YDcOnSZYFJuXz5MpcuGz8OgTkf/8SFS/rtCwzhynOV0eMQGPf4Gz0GI0lU1s7840lcYnX5Bb7wqDxaLF8rZItkWpapLDpXiTV+UTz+N0j5+csU2i6z/8gl0tZfYNz0SroPSC1cB465wOzFF9iSfonT2Zew2i9XcSb7Ejv2XmLhiguMmnKBrsGYi/8AACAASURBVF+mvq6OvSoZMfECc5dcYPPOC2ScuYSz9BKyavx9c71cvoMf/4ZCovKica//vvkbuN3X69NkDlf4WBApoo/3BI0du3igYA3/mDUvtYTNXczjRZv4zLWfEf5M1pxzkCVHkC5UGv46uS4JJC5xsOIisyOVdPaovGRX+EU1Z1n82CJxd4HEc3aFjm6V6eEE+76+iEe7ZOjjL7hzEBGp7dQbQWt0+o9ZwPrthwGuErTZFjtvNe9/1c92HzKz6mcD51SBSVG0i5yXEoaPQ2AMWuUlzn2tGTeGmErwXFxgEBcuXiZyXjN8HAJjuHwZQvVgHIZRfnvmn/xonEU+lXZOmUer2eX7NwUVfGyXmeRRORKKEzD6uM/FCZXrj7/R40iF1aVx9LTGxh0JZi/VGDYhQac+yVfEtu9ZyaAxCWYsTLB2a4KDJxIUODQCsRu/bXcwTqZFY88RjZWbEkybn2DI2AQdU9x+qy6VdO6XYOiEBDMXJVi9JcG+oxrZRRqesPH357eJnNe4cPGy4eMwM4GYca/9zn2zgvZmfjc/Ws5WfxlT3fl0cRzjTesu7s9bzT9lzU8pYf9P9kIeyV/He9Z0ejlPMstTSHrQiz1WYfhr4fqM75zKibDKCr/CoDKZTxwyfy6SuCvJattfF1Twmk3mC6fMDK/CrqCCIxa/6jrPf7OC1uhjExiHiEhtp94K2umLNvJK0951dnuPv9WRp9/tzNPvduapd77g/mdb8PS7nSnzBvnjy21Q44mqn331k95kW+xAwzrFTXBjiIoDcyMqDsyNqDgwN5dFxcFNYYmoLPYpdCyR+Us1Qvbeggo+sEuMcyvsD6l468GYv0vgXP2oOPBFVSz2OAcyNNZuTTB9ocagsQk69EyxgrVPgqHjE8xarLF+h8aR0xqFJXF8tdDVWB0Ob5yTuXqn7bJ1cSbP0RgwKkH7FGNu1aWSrv0TDJ+YYNYSjbXbEuw/rpFbFMdTR7UW30ZUHJibmioOCiPn2eF3M8NdQHdHBu8UpfNg/lr+JXtBSgn7L1nzeTB/Le8UpdPNcZzpZQVs97spCH9l+DE3NJwxlX1BldlehR5OmbdtEvclWW17ZbPJD+wS/UplVoTjZH99AXcdzZmC+oeISG2n3graY6fzmZ+23ZDb/vYKWoCW3ccxZ9lWLl68xPZ9J3ipSU8uXrwEGP8CXWAcQtCaGyFozY0QtOZGCNrrozCistyv0Nkp87j12je+91gk3rNJjC5T2Bu8tW7AuqKuBa03rJJjjbP3mMbKzQmmzEvQf2SCtt2TC80u/RKMmJRg3nKNTbs0jp3VsJXV7/mquDRORpbeg7t4dZyJszT6Dddo2y35cbbuWknPQQlGT9WYt1xjw06Nw6c08u1xPLW0SZwQtOYm9rVGVNPYFfAyy11AL+dJ3rPu5hHLOv4te2FKCftPWfO5P281bxbtorP9GFPc+Wzxl5EXKTf8uAT6B4ib/CoT3AptSySeL9afo6qTtj+1SDxplWjhkBlZprDGr5JpwAdGgrpHRKS2U28FrZH5rqD1BaN81mU0j73RgQ/aDKGguLTqe0ZPEgLjEILW3AhBa26EoDU3QtBWT3E0TppP37zlqWpWyP7CIvG2TWKEW2FXUMVdD8Z8o9SWoHWHVDIL4qQf1leXTpyt0XeYRpsUgrL7QF1OLkjT2LpX40ROnBJvw5qXfFGVwpI4R89obE7Xj3XsdI3eQxMp75s23SrpPTTB2On672xO1zh6RqPAeWsrhoWgNQcl0Qr2BHzM9RTS13mKD4v38Kf8DfzfnEUpJew/ZM7jd3mreK1oBx0dR5lYlscmv4uc8DnDj0lw4/hiKifDKmk+hSFlCp86FR4vTl6TcG9BBa8US3R0ykzxKOwIKNiiDWtONjsiIrWdeiFoy89XYCl2kZVvu4b6HqMnCYFxCEFrboSgNTdC0JobIWh17NE4a/wqPV0yz1qvfdN6t0XidZvMkDL9jWpZAzgt9FYFrSsQ53RenB0H9JWiY6dr9BycoHXX5KtEew1OMG6GxpI1ej3Ambw4pQHj7wuj8UZU8u1xDp/SV8/OW64xeqpGz0HJ789WXSpp262SfsM1JszSH4NtezUysuIUl9Y8pwtB23BwxST2B/0scFvp7zzNx9a9PGbZyH9mL04pYf8+ay6/zkvjlaLttLcfYXxZLut9LjLDUXz14LgEtcdX33TQlsZU9gdV5nr157937RL3FyavSXiwUKKxTaKPS2KBV+VgSG0Qz4dmRESktmO4oJ2zbCsPPNeC+xo154HnWlxDfY/Rk4TAOISgNTdC0JobIWjNjVkFbUlUZUNApa9LP/3zJ9Wc9vlqscQAl8yWgIqrHoz5dnO9grbEGycjO87WPfoKztFTNboNSL5RVptvpOHEORrL18VJPxwnq9CYntWGgOebaoj9x/Xe2llLNIZPTNC1f+rNytr3rGTAqAST52gsXasL8ZO5cewefb4XgvbOoiwqcygYYJGnmIGus3xSvI/HCzbx3zlL+X4KCfujrLn8MjeNFwq30dp2mNGl2az2Osk5FyOeooNW0LC5ImiTfd8aibM1oDLJo9C+RObFGmoSHrdKfOqQGe5WWOVXOBNRheSv54iI1HYMF7TPNO5CtsVe1el6p8XoSUJgHELQmhshaM2NELTmxiyC1hnTO/n6u2RetulvKL/9BvMnFokXiiX6umQ2BPSfN3rMtc13BW1xaZxjZzU2pmvMWaZLwM59k0vAtt0r6T8ywdR5CVZtTrDvmEZusYZXiNg6oyykklkYZ+/ROKu2JJixSGPo+NSP25VN1gaPTTB36QXSNiVIP6xxJj+OKyCeC4zEHZU5GgyxzGtnqOssn9kO8HTBZn6au4wfpJCwP8ycw89zV/BswRZa2g4xojSLlT4HJ0JhPDGl2tuqaZMwQcOmJkFbHb6YypmwykqfwnC3wqcOvZP9ux9wXuGXBRIvFUt0KJGZ5FHYFtDFr9HHLtAREantGC5o32s1yOgh3FKMniQExiEErbkRgtbcCEFrbhqqoC2NqWwLqAwqlXm9WOZn39nZ+i6LxHNWiV4umbV+veLA6DHXBb6oSoFTP5V+/Q6NxWkXGTIuQcfeyYVeh166zJuxSF/BefCEhsVxa/2ngtrH6Y9zJi9O+iGNFRviTJ2XYNCY1I91qy6VdO6bYOh4/fFevSXB3mMaWYVxykLGH1NDwBNTyAiFSPM6GFGaxee2gzxbsIW7c1bww8w5SSXsDzJn87Pc5TxTuJnmtgMMK81kudfOsVAQd1S+4XEIQWtubkbQJqMsqnIgpDLfq9LbpW+Y+YcUNQkPFEo0tuvPv/O8KvtD+nO20feJ2RARqe0YLmiXrE1nftp2KiTF6KHcVIyeJATGIQStuRGC1twIQWtuGoqgdUdVdgQVhpUpvGmT+Hk1bwqftkp0d8qs9CkUN3Ah642o5Nv00+JXb0kwbYHGwNEJ2vdILua+6Jtg2AT9FPoNOzWOnNYocjbs+8ms2NxxzuRpHD15iaXr4kyardF/ZOq/j1ZdKuk2IMGISfrfyLrtCfZnaORYRX3Fd/HGFE6Gw6zyljCqNJtWtkM8X7iVe3LT+FEKCfv9zNnclbOMJws20ax4P4NdZ1jisXE4GKTsJiRsKoSgNTe3U9AmwxaNsz2gMNmt0LFEP3vlVwUV1Urbn1gk/lpUwd/sMkPLFFb6FE6FRU1CbSIiUtsxXNDuPnSGP7/WjvsaNeehF1ry0IutrqK+x+hJQmAcQtCaGyFozY0QtObmThW0npjKnqDKyDKFd+3Vd+M9YZXo4pRZ4VMojBg/5lq5H8Iq2UVx9hyNs2JDnMlzNPqNTNCme3LJ1uXLBCMna8xfoXHw6CUyMjVsbjEHmI1kHbTW0jjHMzW27tU3Hhs/U6PfcC3l31TrrpX0HJxg9FSNeSs0Nu7SOHxKw2KP422g/3u+mMqZUJS1PidjS3Noaz/CS4XbuDcvjf+VNTfl5lz/lbOExywbaVq8lwHOMyz0WDkQ9FMak+ps/ELQmpu6ELTJOBtRWe1XGelWaO6QecJ6be3QFe6x6D3x7UokJnoUNgdUikRNwm1BRKS2Y7igfaZxF2Yt2czRU/mczrZeQ32P0ZOEwDiEoDU3QtCaGyFozc2dImi9MX2n6bFulfft1a/CeaxIoqNTZolPwdLApFBZUOWsJc6ugxpL18WZMEujz9AErbsml2Y9ByUYM01j4SqNbfv0DaJcvv/5X7/eTcIEDZMb3STMF1UpKIlz5LTGpl264B8zTaPX4NR/h226VdJnaIKx0/VN5jbv1jh6RqOw5M6oycgOx9jodzGxLI+O9iO8WrSD3+St5O8z56WUsP+RvZg/52/go+I99HOdZp6niL1BH85oheHH5I8JQWt2jBS01eGOqhwOqSz0qvR1ybxvl3i4KHlNwn0FEm/bJHo4ZWZ7FfYFG+ZmnrWJiEhtx3BB+9ZnXxo9hFuK0ZOEwDiEoDU3QtCaGyFozU19FbS+mMqhkMpEj0ITu8SvqxGyjxZKtC+RWehVyW0gQtbli3MqJ862fbpYHTNNo+eg5J2hrbtW0ntoggmzNJas1QXumfw4pcGab0sIWnNzo4I2FZ5vKjUOntTYsEPfZG7UFI0eKf52r2w0129EgomzNJasibN9n0ZGVhxbWd0+J+VGytnsL2WyO58vHMd4o2gn9+Wt5n9nzU8pYf89eyF/tKznfetuejtPMttdSHrAiz36teGPb00IQWtu6pugTYYtGmdHUGGqR6GTU+bVYol7k9Qk3GWR+EuRRFOHzOBS/eyZE2H9A16jj6M+IiJS2zFc0A6esJisfLvRw7jpGD1JCIxDCFpzIwStuRGC1tzUJ0F7LKQy2a3Q1CHzu8Jr34A9UiTRukRinlcl6w7vvLS542Rk6qsJ56/QZVbX/sllVptvRNbkORor1sfZcyROdtGtdX8KQWtubqegTYUnrJJTpPchr92aYNZijeETE3T5MrW87dCzkgGjEkyem2DZujg7D2icyonj8N7c85Ul8hXb/GVMK7PQ1XGct4vS+UP+Gv65Bgn7r9kLeCh/LY2t6fRwZDDTXcBOv4fiSP2XsKkQgtbc3CmCNhlZYZW1fpVRZQqfOySeKkpek/ALi8TzVok2JRLj3Qob/Sr5DeRD3VtBRKS2Y7ig7TdqPo++0oYP2w6h05dT+aL/1dT3GD1JCIxDCFpzIwStuRGC1twYKWgzQirTPQqfOmTuK7j2TdUfCiU+d0jM8iqcvkOFrNWlnxK+YafG7KUawyYk+KJvcjHVvkclA0clmDpf39xr/3GNPJtWKz2eQtCam7oStKm4Ut2x50icVZsTTF+oMWRc6v+RVl0q6dQnweCx+v/Jyk0J0g/HOZMfx+L7mp1+DzPdBfRwZNDYms5D+Wv51+wFKSXsP2fN54G8NbxVtIuujuNMK7OwzV+GJfKV4Y9TbSEErbm50wVtdbhjKkdDKot8Cl+Wynxo1z/YTVaT8PsCiTdtEt2cMrO8CnuCKs56cBx1hYhIbcdwQTtu5iomzV2blPoeoycJgXEIQWtuhKA1N0LQmpu6FLSnwyqzvPpqlwcKq++U+9QhM92jkBEy/r65XnxRFYtDP7177bYEMxZpDB6boEOv5JKpY68EQ8YlmLlIY932BIdOahTUcSenELTmpj4I2lS4fHFO5+m1HcvXx5kyL8HA0Qlafynz7rAAz00u5tGFp7l37V7+K30Df398UUoJ+49Z8/l93mpeL9pJJ8dRJpXls8lfSm74nOHHagRC0Jqbhihok+GIquwKqszwKHRxyrxWLPObJDUJV+qTPrbLDHDJLPUpHA/pG5MafRy3GxGR2o7hgvZOj9GThMA4hKA1N0LQmhshaM1NbQrarLDKXK9Kq5LqN/v4XWEFTR0yk90Kx+4AIeuJqOQWa+w7prFqc4Kp8xIMGJWgbYrd7Tv3TTB8YoI5S/Wd7Y+e0bCW1o//NyFozU19FrTOaAX7gn7me4r40nmaJta9/MWygf/MXpxSwv7w9Dz+fd8qfr5pJ39YeoynZubz+mgPTfudp1WXSroNSDBisr6afd12jQMZGrnFGt47dIX+rSAErbkxk6BNRk5EZUNAZYxbpWWJRCOrxN1JpO3dFv37LUskxrj137vTu+9FRGo7hgvaS5cus3bbIT7pOIJn3+/K4291pEn7YazddsjooV1XjJ4kBMYhBK25EYLW3AhBa25up6DNjeg7MLcr0VegfPcNzq8LKmhil5joUTgU0jcCM/r4q8MTVskqjJN+OM7y9XEmztHoN1yjTbfkIrZr/wSjpuh9slv2aJzIvvmuzLoiZLVz6evzho9DYAxGC9rSmMTBQIBFnmIGOM/QtHgff7Vs4v/lLEkpYf9X1lzuzUvjpcJttLUfYWxpDmt9Ts6EonijKkXOOMfO6v+HC1dpjJ+h0WdY6v/f1l0r6TUoweip+v/wxl0ah09pWBzxWqkXqQ8IQWtuhKCtHk9M78Nf4lPo75JpYq/+9cwVfltYwes2ma5OmZkehfSAvmLX6OO4HkREajuGC9pZS7fw9LudmTJ/PVt2H2fL7uNMnreOJ9/+grSN+4weXo0xepIQGIcQtOZGCFpzIwStubkVQWuJqCz2KXQskflLNStkf1VQwft2ibFulf3B+reTcmlA5UyevvnQkjVxxs/Q6DU4QeuuyUVOr0EJxk7XWLw6zvYDGqdz4zj99fP/J1AWJJSZTXj3TiJpi4hOGUFsQEfK2zXmqyZP89WHT6Id3Gn4OAXGUBeC1h2VORwMssRjY7DrDM2K9/NkwSbuylnG91NI2B9lzuGe3DSeL9xKK9shRpVms8pbwslwGG9Muamx+KIqBSV6J/TGdF3Ejpmq0bOG//k23SrpMzTBuBkaC1fqG/sdO6tR6KzbSpLbjRC05kYI2hvDGVPZHVCZ6VXo5pR5w1b9ZqZX+GORxEd2if4umcU+/Syh+laTICJS2zFc0L7UpCdWh/uayy3FLt74tJ8BI7qxGD1JCIxDCFpzIwStuRGC1tzciKAtjKgs9yt0dso8br32Dck9FonGdolRZfpmG/XlzUiJN86JnDjb9mosSNMYPVWj+8Dk/bBtulXSZ5jGhNkaS9fGST+kcdYSp6we1jAELcWEDx8mvGE1kbmTiY3szbmuzShv9iJfffhkSs61eZvE/m2GH4PAGG6XoHVHZY6Fgiz32hlWmklz2wGeKdzMz3KX84NUdQSZc7g7ZzmNCjfTwnaQ4aWZrPDaOR4K4blJCXuzeMN6fcnBE3r1wZylGiMma3QfkHqzsrbdK+k3MsGE2RqL18TZtk9fPW8rq//PqULQmhshaG8PeRGVDX6VcW6F1iUSz1klfp5E2v6sQOJpq7756egyhXV+vQrKqLGLiNR2DBe0f3q1LZUXLl5zeeWFi/zp1XYGjOjGYvQEJzAOIWjNjRC05kYIWnOTStAWR+Ok+fTVIk9Vs0L25xZ9B+RhZQo7gwpug1eT2cr0U5s37dKYt1xjxKQEXfolFyxtu1Xy5YgEU+YmSNuUYO/ROLlF8frTRxlVCDq9hE6fIbxzO5Hl84lOGsq5fu041+btGgVsebMXOde1GbGRvYnMnUx4w2rCR44QLLQTCJ0XHbQm50YErSemcDIUZqWvhJGuLFraDvFcwVZ+kbuCH2XOSSphv585m5/kLuOpgk18ajvAENdZlnptHAmGcEdlw++D68EdUskuirPvmMaaLfrGfsMmJOj6ZWp526FnJQNH6fPL8nX6Sv3TuXEcnvrxfCsErbkRgrb28MZUMkL6B9qDSmWaOmT+XCRxVxJx++uCCl4rlvnCKTPNo7AjqGCP1v48ISJS2zFc0H7Udigbdx655vJ12w/xQZshdT+gG4zRk5nAOISgNTdC0JobIWjNzbcFrT0aZ41fpadL5lnrtW8mflYg8XqxzKBSmW0BlVIDxuuLqhR+c5ry+h0asxZrDB2foGOf5LKkfc9KBo1JMH2hLlj2Z2jk2+vH6cmBQDmhvCJCBw8QWZ9GZNYEYsN6cK5LU8o/eS61hG3yNOXtGhMb0JHolBFE0hYR3r2TUGY2gbJgzbctBK2p+a6g9cVUTocirPE6GVOaQxvbYV4s3MavctP4UdbclBL2v3OW8njBJj4p3sdA11kWeYo5FAxQdodI2JulNKBy1qL3Va/clGDaAo3BYxN0SjEftepSSac+CQaP039+5aYEu4/EOWuJUxqsu7ELQWtuhKCte5wxlX1Bldlehe5OmbdsEr8vSN5v+3CRxPt2ib4umYVelSMh9bZ+EC4iUtsxXNCezrby0IutaNxyIL2Hz6HX8Nm802IAD73QkkMZOUYPr8YYPWkJjEMIWnMjBK25EYLWvJREVQ5JF+nrkni+WOIn33lz8FOLxMs2vUNtk19/c1FXY/NFVfLtcfZn6FJ1+kKNQWMStO+ZXHp07JNg6PgEsxbr8vbIaY3CEoNFbEQmaC8jdPIk4e2biSyaRXT8IGJ9W1Pe8o2aV8F+9jLnejQnOrofkflTiWxeR+jYcYLWEgKhilsamxC05sMXU8kMR1nvczHRk0cPdwavFG3nN3kr+bvM5BL2e5mz+c/sxTxm2cjH1r30d55mgdvK/qAfZ/TW/g4bKg5PnFM5+srZ5eviTJ6bYOCoBB1SzGGtulTS9csEwyYkmLVIn/v2HdPILorjvs0VK0LQmhshaOsP+RGVTX6VCW6FtiX667F7kkjbn1oknrRKtHDIjCxTWONXybzJs35ERGo7hgtagFCknAUrdzBkwhK+HD2fOcu24vaFjB7WdcXoyUlgHELQmhshaM2NELTmwRlT2RxQ6e+SeaVYf6H/7Rf+P7Hobwz6uiQ2BHSBW9tj8oZVcovi7D0aJ22TfjrwlyMStE2x43qXfglGTEowb7leZ3DsrGZo52PAGyOYayG8by+R1cuIzBhDdEhXznVqQnnTRqkF7MfPcK7jh8QGdyYybTSRVUsJ79tNMDuPgCdSu+MWgrbBkhM+xya/i4lleXR0HOW1oh38Lm8V/5A5L6WE/f+yF/GoZT0fFO+mj/MUcz2F7An4cAgJe1uxlcU5kR1n+z59g8IJszX6jUjQtntqedt9QIKRk/WO3HXb9c7c3GLtpmpZhKA1N0LQ1m98MZWTYZU0n8KQMoVPHDKPpahJuLeggleKJTo6ZaZ4FHYEFGw11CSIiNR2DBe0XQfNoEJSjB7GTcfoiUhgHELQmhshaM2NELQNl9KYyvaAwuBSmdeKZX72nVPp7rJIvORQ6OmSWeNXa7XzrCz0zanAh/SNtybO0ugzTKNNChHbfWCC0VP1jb227tU4kROnxGvA32pEImBzEjqeQWTLBsILpxMd059zPT+nvMWrNa+CbfEq53p+TnRMf8ILpxPZsoHQ8QwCNif+iGTY34cQtHc2+ZFytgbKmFpmobP9GG8W7eL+vNX8U9b8lBL2/2Qv5OH8dbxfvJvB/rPMdBeyK+DBJiSs4VypcDl6RmPzbn3uGztdo8/QRMq5snXXSnoOTjBmqsb8FRob0/UzCApSnEEgBK25EYL2zqQ0prI/qDLXq9dRvWuXuL8weU3Cg4USjW0SfVwSC7wqB0MqZd/MCSIitR3DBe2bn/bjTI7V6GHcdIyecATGIQStuRGC1twIQduw2BFUGFam8Jat+hfrT1olujllVvoUiqPxlJuE3QxOf5zTuXG279dYvDrO2OkavQYl72Ns3bWSXoMTjJuhryTbeUDjTF6c0kDd3m8BT4Rgdh7hfbuJrFpKZNpoYoM7c67jh5R//ExqAdu0Eec6NSE6pCuRGWOIrF5GeN9egrkWAt6Y4X8TSY9ZCNp6T2HkPDv8bma4C+juyOBdazoP5a/lX7IXpJSw/5I1nwfz1/JOUTrdHMeZXlbAdr+bgvBXVdd9I5uECYzHG1Gx2OMcPqWxcZfGvBUao6dq9BycoHXX5PK2TbdK+gzTGD9DY+EqjS179LMOSjwJ4gkhaM2KELQNC2skzpaAXpPQvkTmhRQ1CT+2SDxVJBmtnkRMEMMF7YKVO3j1kz4MGr+I+WnbWbx611XU9xg9sQiMQwhacyMErbkRgvbOZk9QZWSZQmO7xC+qeRH+uFWis1NmmU+hMHLt79+soLV79FN0t+zRV2yNmqLRtX9yEdumWyX9hmtMnKP3MaYfjpNVGMdzk91pN0ogVEHQWkLo2HEim9cRmT+V6Oh+nOvRnPLPXq55FWzLN4j1bU10/CAii2YR3r6Z0MmTBO1l+CN35kZIQtDWD2zRCnYFvMxyF9DLeZL3rLt5xLKOf8temFLC/u+s+dyft5o3i3bR2X6MKe58tvjLyIuUX9ftCkHbcPCEVXKsemf3uu0JZi3RGDEpQbcBqTcra9+zki9HJJg4W2PxGv2DtYzsuKGVMYK6QQhac3AqrLLKr39w39Qh89eiCn5skfhVQYXR6knEBDFc0L7XahBN2g9LSn2P0ROIwDiEoDU3QtCaGyFo7yz2BVXGuFXes1W/OuJPRXoH2WKfgqUaIftdahK01lL9dNuNu/Tew+ETE3Tum/xNf9vulfQfmWDqvASrNusb3NxsR+KNEigLEsrMJrx7J5G0RUSnjCA2oCPl7RrzVZOnUwvYT57jXJemxIb1IDJrApH1aYQOHiCUV0QgcH3C605DCNq6oyRawZ6Aj7meQvo6T/Fh8R7+lL+B/5u9KKWE/YfMefwubxWvFe2go+MoE8vy2OR3kRM+d8tjEoLWHJSFVLIK9Z7v1VsSzFikMXR8gs79UsvbDr0SDBydYMq8BMvXx9l1UON0XhyXT7xeaAgIQWtujoVExYFI7ccQQev2hbh48RIApZ6gEUO4bTF6ohAYhxC05kYIWnMjBG39xRdTORRSmehRaGKX+HVBxTVC9o9FEm1L9G6x3OsQst/l8mXwR1UKSuIcOqmxdluCmYs0Bo9L0LFX8jfwHXolGDRWrpGjEAAAIABJREFUf7O/dluCgyc0LI7kfYe3g0DoPMFCO+EjRwhvWE1k7mRiI3tzrmszypu9WOMq2HNt3uZcv3ZEJw0lsnw+4Z3bCZ0+Q9DpxR9VDH+86xohaG8vrpjE/qCfBW4r/Z2n+di6l8csG/nP7MUpJezfZc7l13lpvFy4nXb2I4wrzWGdz8XZUBRfLY5XCFpzE/ta47x0iTP5cdIPa6zYEGfafI1BYxN07J1a3n7RN8GQcQmmL9RYuTnBniNxzlrilAaNPy7B9SEErUBEpLZjiKB98PmWfHVe7/B49JU2RgzhtsXoSUJgHELQmhshaM2NELT1i2Mhlclu/VS03xVeK2QfKpRoWSIxx6uSdYOrUr0Rldxijf3HNVZtSTB1vsawcRdo1yP1G/FhE/RTZjfs1DeeKXLW0t9LVCHo9BI6fYbwzu1Els8nOmko5/q141ybt2uuIWj2Iue6NiM2sjeRuZMJb1hN+MgRgoV2AqHzhj+29Q0haG+csqjMoWCQxZ5iBrnO8rfi/TxRsJEf5yzl+ykk7I+y5vLL3DReKNxGa9thRpdms9rr5FQ4UqsSNhVC0JqbmjYJs3vinMyNs+OAvrHj5Dka/UcmaN8z+fNFqy6VdPkywfAJCWYt0li7NcH+Yxo5RXVXZyO4PoSgFYiI1HYMEbSNWw7k1U9606bXBB54rgVtek1ISn2P0ZOEwDiEoDU3QtCaGyFojSUjpDLdo/CpQ+a+gmsrC+4vlGjhkJnpVTh1nW9wPWGV7KI4u4/EWbE+zqTZGv1GJGjTPfWb6pGT9T7ZzekaGZkaNvft/7sIBMoJ5RUROniAyPo0IrMmEBvWg3NdmlL+yXOpJWyTpylv15jYgI5Ep4wgkraI8O6dhDKzCZQFDX8s7zSEoK0ed1TmaDDEMq+doa6zfGY7wNMFm/lp7jJ+kELC/jBzDj/PXcGzBVtoaTvEiNIsVvocnAiF8cTq3wptIWjNTU2CNhXW0jgZmRrb9uqbQU6YpdFvuEbbbqnlbfeBCUZN0ZizTGP9Do2DJzXybBqemzj7Q3BrCEErEBGp7RgiaMPRr1iyJp1pCzfw4PMtmbpgQ1Lqe4yeJATGIQStuRGC1twIQVu3nA6rzPIqfO6Q+EPhtUL29wUSzewy0zwKGaHU11UaVDmTH2fnAY0la+OMn6nRe0jqHb17DkowZpq+m/f2fRp252VKb2enYEQmaC8jdPIk4e2biSyaRXT8IGJ9W1Pe8o2aV8F+9jLnejQnOrofkflTiWxeR+jYcYLWEgKhCsMfv4aEmQWtKyZxJBgizetgeGkmLWwHebZgC3fnLE9ZR/C9zNn8NHcZzxRu5jPbAYa6zrLCa+doMGT4Md0oQtCam1sRtMnwRVUKnHGOnNbYlK6xIE1jzDT9ealNCnnbumslvQbrz03zV2hs2qVx+LRGQUnt1uaYGSFoBSIitR3DNwmbMn+90UO4pRg9SQiMQwhacyMErbkRgrZ2yQqrzPWqtCqReLjoWiH728IKmjpkJnkUjiYRsk6ffqrp9n0aC1fqb3h7DEreEdi6ayW9hyYYP1MXt7sOapzJr74fsKZNwqoj4I8RzLUQ3reXyOplRGaMITqkK+c6NaG8aaMaVsE+Q3n794kN7ERk6kgiKxcT3pNOMCuXgCdi+ONlJhqyoHVHZU6EwqzxOplYlkdn+zEaW9N51LKe/8pZkrKO4PuZs/lxzlKeKNjI34r3M8h1lsWeYg4Hg5RFZcOP7XYhBK25qQ1BmwpPRCXfpnedb9ipMXeZxqgp+nNZqg8V23SvpO8wjfEzNRat0ti6R+N4pobVJeTtrSAErUBEpLZjuKC902P0JCEwDiFozY0QtOZGCNrbS25EZaFXpV2JxKPVrJC9t6CCj+wSE9wKB0Mq3m/9rs0d53imXjEwb4XGiMkaXb5MLmLbdK+k34gEk+dorFgfZ8+RONk32PVXraCNSARspYQyThLetonIwhlExw4g1rsV5Z+/XvMq2Bavcq7n50TH9Ce8cDqRLRsIHc8gYHPiD0uGP0YCnTtd0J4KR9jodzHZnU93RwbvW3fzmEXvg61pFez3MmdzV84yHrNs5GPrXvo7T7PYU8z+oB9XzBx/o0LQmpu6FrSp8IRVcovi7D+ubzo5a4nG8IkJuvZPvVlZ+x6V9B+ZYOIc/cPI7Qc0TuTEa6Wep6EhBK1ARKS2U28F7fRFG3mlaW+jh1FjjJ4kBMYhBK25EYLW3AhBe2tYIipLfAodS2T+Us0K2V8WSDS2SYx2K+wLqnhiKkXOOIdPa2zYoTFricaw8Qm+6Jv8jWj7HpUMHKVv6rV6S4L9x/XePu8t9PYFPBGC2XlUnjxIdNVSItNGExvcmXMdP6T842dSC9imjTjXqQnRIV2JzBhDZPUywvv2Esy1EPDGDH9MBNf5N1CPBa0vppIVjrHFX8YMdwF9nKf42LqXJws2cXfOcn6UOSelfP1+5mz+X84S/pS/gcbWdLrYjzGxLI+1PicnQ2HcDWgl7M0iBK25qU+CNhVlQZXMgjh7jsZZtTnB9IUaQ2p4zmzVpZKOvRIMGpNgyrwEK9brZ5Kczovjup2VPncwQtAKRERqO4YL2qOn8rhw8eI1lx87nc/8tO0GjOjGYvQkITAOIWjNjRC05kYI2hujMKKywqfQxSnzhPVaIXuPReIdm8SIMoW1xXH2ndR3sp6+UGPQ2AQdUuyA3bFXgiHjEsxcpLFue4JDJ2++gy8QqiBoLSF07DiRzeuIzJ9KdHQ/zvVoTvlnL9e8CrblG8T6tiY6fhCRRbMIb99M6ORJgvYy/BEhtxoCRgvavEg5O/xu5ngK6e88TbPi/TQq3Mwvc9P4u8y5Na6A/Y/sxTycv463i9Lp6DjKuNIcVvpKOBYKUmqSVbC3ghC05uZOEbSpcPninMnT5euK9XGmzNOlbMdeqeXtF30TDBmvPy+v2pxgz9E4mQVxyqqpAWqoCEErEBGp7RguaB99pQ1PvfMFo6alYSl2GTaOy5cvM2X+ep5+tzNPvN2JfqPmo8YTAHj8YZp3HcNf3+jAe60GkZVvr/o9oycJgXEIQWtuhKA1N0LQpqY4+v+zd97hUZ1n3k6yTt/s923J7qYnm3xxYidx1kns2LGNccXGFRcMtunFYHo3mN57lQDRQXQhigCJIoTo6n1GM9KMNCNNH4ky0hQhuL8/ZhBVBcnDEZznd133xSWNGJ1zXs0759zznOf1sbm8mqGGKp69g5D9eZ6HV/Kr6J/mZVqCn3lRAcZOC9BnaP0XhwNHB5gyL8Dy9X52HfRzItWPtuTux8BaasOenokj4QDO6DW4Fk7FPa4/lX3f5XzHZxsWsJ3bUjGoE54ZI3FFzMW5Mxr7sUTsORqs1krFj7sQfsItaAucF4i3lrHKpGW8MY1uumO8ULCX3+Zs5rsZUY0K2P+TuZo/5m7jNc1++uqTmV6SycYyPUk2G8UuWTCupYigVTcPgqBtCJ3Jx5msYNuDddt9zFvuZ+y0AJ8Nq/+9ueegGgaPDb4/R6wNtls4espP1l22DrofEEErSCThjuKC1ucPcPREBqOmreCJ1z/j9U9Gs3zDXsqsznu6HTH7k+nYdxLnL3ioqvbRZdAMVm7aB0CXQTNYvyOB2tornDiXS5sOg6m5HKz6VXqSEJRDBK26EUGrbkTQ3oze5WO7xcsIYxVttR5+fIuQ/Wmeh6dSqnhnfzVdI330GNHwhd70hcFVqfcc8nMm00dRWdOPtdV+AVuBHkdyMo6YrThXLMA9bSQVgz+h8pOXGq2Crej9FhVj+uKaPwnnxigcB+Kwp6RiM5RhcVVjcTdvkTDhwaClgrbQeZGjNgtrzYVMKUmnpy6JVzVx/D5nKz9ogoD954wofp+zlVcK4uipS2JySTprzYUcsVkodF5U/Pg86IigVTcPuqCtj3KXF63Rx8m04IJja7b4mbPUz+jJfno38MFqz0E1DBsffE9fsSHYoijprJ9cnQ9zC9oNKYUIWkEiCXcUF7Q3pqbmMifO5TB25ir+9lpfPhkwjd3xJ/EHasL+u7MLitEWmeq+joqOY8z0KNyVF/lru743tWF4r9cEUjK1gAhaNSOCVt2IoFU3ahe0xS4vMVYvo41VvFjo4Se3CNkf53j4w3EPz2zy8tbsAN3u0KJgxPgAs5b4Wbs1WK2Tku3DYGnCMXVVYzOUYU9JxXEgDufGKFzzJ1Expi8Vvd9qvA3BJy9RMfgT3NNG4lyxAEfMVhzJydgK9FjtF5q0/yJo1UtjgtbgukSSzcbGMj3TSzLpq0/mdc0B/pi7jf+bubpRAfvdjCh+m7OZFwr20k13jPHGNFaZtMRbyyhwNu3vUwgfImjVjVoFbUOUu7zkFwd7xMceDH64OnOxn+ETAvQaXL+47T2khpETA8xcHPw/sfF+klOa36LoXiCCVpBIwp1WJWhtzgrWbj1Ip35T+PPLvRj05RLe7z2RVzuNpLDYfM+2w2Jz0aHneBKSUsnI1fN2t3E3PT5sUgTb9yUFf7YVTBSCMoigVTciaNWN2gStwe1lt9XLKH01z+d6+EnuLW0Lcj08fKyKp6OreWtugK7Dr1+AjZrsZ26kn/XbfcQn+UnL81Fqb/j3WW3nsedosB9LxLkzGmfEXNyTh1ExqBOVnds2LGE7Pktl33dxj+uPa+FUnNFrcCQcwJ6eibXU9pUcDxG06sXkrqLQd54tZcXMLsni86ITvKWJ58+5O/iPzLWNCthvpa/gf7KjaVOwm08KjzLWkMJycwH7LSZynNImo7UjglbdiKC9O8ocXnJ0fo6d8bNzv5/lG/xMW+Bn6JcN97vtPbSGMVP8zFkW/BB372E/p9Kb19boq0QErSCRhDuKC1pPlZddB5LpNmQmjz7fjQ/6TGRz7FEuXKyq+5kVG/fxTvdxDTzLV5cP+0zikTZdmbZoI1euXOV0Wh4d+0666WfGzVrNhh0JAHj9tYJKuVx7lcDlK4pvh6AMtVeuEqipxRtQhirfZXyBWkEhrly9ir9G+e0IF2ZXLZsKauh7zsffz1bzk5ybhex/53p4+HgVT22p5o35AXqMruHLGTVErLnMrv21nEm9TImplipvPb/Dfxmf3UZ1biZVR/fj2RLFpUWTuTC2L+d7NV4Fe77Ly1wY0YWLs7/g0rolVB3cRXXaGbymUnzV/rAfn6tXUXyMlORBnn88/ho0nvPEV5pZbi9gjPksHxUf5qmCXfwoez1fb0TAPpS+nF/mbOR57R66Fh9lYlka6xxajp23YKy+iLcV7KPQfPw1wflf6e1QM1W+y4qdewVqgud/Sv3+sKHAefSlqlqKS2o5m17L3vhaVm2sYcaCGoaMbbhlQr/hNYyfWcPSqBq27a4h6VQt+YW1ONzh3+bA5Stcrr2q+DWIoBwSSbijuKD988u9aNNhMHOXb6O4pPyOP+P1BfhD2273bJvclRcZPjmSaYs2kpmn582uY296fOjEZeyMOw5AxSW/oFL8NbVUeWsU3w5BGWouX+FidQ0VF/0KEaDikqAUV67AhaoaxbejJbgvBigy13A6vYaYgzWMjfHz9m4vfzpcxU+ybl/Y6/8lV/H0jmq6rPczb2OAmP01nEipQVdSg/sOf4+VrvNUaDRUHk+kMiaayuVzqZwylMqBHzWhCvY5zvd7j8rxA6hcMp3K7euoTDxEZW4uFTaX4scOoLIVjKFw97gu+cmtrGS/w0RkeQGjS8/xkf4wTxfE8tPsDfxT+vIGBew30iP5Wc5GnirYRUf9IUYZz7KsPJ84h4nsygqcl/yK76MQPi5U1XDlCopvh5pxK3be5edidQ01l68oeO4XJlrBefWN2Cr85BYGOHY6wPZ9NSxbE2DSnAADRzdcefv5yBomzAqwZFWArbv9HD0ZIFsTwOL6araryluDv6ZW8eMjKIdEEu4oLmhPnMultvZKoz9X7Q3vCyL5bDYGk7Xu63OZGl7/ZDSVFy7x+Cu98foCdY+16zySzDw9IC0O1Iy0OFA30uJA3dxPLQ7KnF5ydT6OnvKzdU+Axav8jJsZoOOsAM+v8fHH+Cp+knm7kP39WQ/tE6sZm+RjX6qfglv7wjk9WHUl2E+fxbEvFufqpbhmjcM9sieV3V9vvBdst3ZUDO+Oa+ZYHKuX4NwTg/3Uaaw6AxaHR/Hj1hDS4qD1Uu72kuWoYK+1lGWmAkYbztGp8AjP5Mfyi+xNPJSxokEB+/X0SP4zax1/zY3hXW08g/QnmVeaw/ZyA2fsDszuqhYtEibc30iLA3UjLQ6Up8jsIyXbx8Fjfjbu8LFwRYAvZwToN6JheTtwdICJcwIsXeNny54Ah074SC9ovOXSjUiLA0EiCXcUF7RHT2TUS0JSyj3bjvkrttNr+Fw8VV5qai4zYe5ahk5cBkCPobNZvmEvtbVXiDtyhpc7Dq+TykpPEoJyiKBVNyJo1U1rFLRmh5dMjY9DJ3xsivGxYEWAMdMC9B5aQ4/BNbw/JUDb1X7+dLCKn95ByP4xy8PHWdVEFHvJDa2ubDU7sWXm4DiSgHPLepyLZ+CeMJCK/h9Q+dFzDQvYTm2o+LwjromDcS6diXPrBhxHDmPLzsNa5lb8eLUEEbTKkuus5IDFzApzAeMMqXyqS+T5/D38Ojuab6evbLQP7L9nruHPuTt4U3OQ/kUnmFWSxebyYk7Y7JS4G/5woLFFwoQHGxG06kYEbetGV+rjTKaPfUf8rN3mY26knzHTAvQZ2nDbhMFjA0yZFyBinZ/t+wIcPeUnW+PD7Lj5+UXQChJJuKO4oH3qzf4380Z/HmnTlf99uRftPx1zz7aj2utn3KzVPPvOQJ56oz99R83H5qwAoNzmosugGTzZvh/v955IfmFJ3f9rrznAJ4VHGW04x+LSPHaWGzlttys+eQjhRwStuhFBq26UFLSlNi9pecHqkfU7fMyN8DNq0i2rJQ+u4YPJAV5c5eex/VX8PON2IfvnfA+99ZdYpbGQczoV5+4dOKMW4ZoxhophXans8krjVbA92uMe3QvXnPE410TgiNuN/exZbPpSLM4qxccpXIigDS8FzgskWMtYZdIywZhKN90xXizYx29zNvPdjKhGBey/ZK7i0ZyttNPsp68+maklGWws03PMaqXYdalF2yaCVt2IoFU3ImjvT8pdXgoMPk6m+dmd4Gf1Zj+zlwbPnXoPqV/c9hpcw/DxAaYv9LNyo5+9h2pIzaolV+/D7FR+v4R7j0QS7iguaO+UqmofC6N2ErM/WelNaTQN3SL3H5lr+VPudtpp9tNDl8SXxjQiTQXssZSSandhdlcrPskIzUcErboRQatu7oWgNZb7OJcVrARZs8XPzMV+ho+v/xa+jpMCvLnRxzPHqvh11qXbhOxjWW56ncgjanssOTO/pLLvu5zv+GzDArZzWyoGdcI9eRjOiLk4d0ZjP5aIPUeD1areFedF0LYMvesiiTYL68w6ppZk0Et3nHaa/TySs5UfZK5qVMD+c0YUv8vZwisFcfTQJTG5JJ015kKO2CwUOi+GddtF0KobEbTqRgTtg0eZ00tekY/j5/zsOugnapOfGYv8jBh/ywfft9B7SA0jJwaYtcTPqmg/sfF+TqT6yTfc0g5KeKCQSMKdVilor6VDz/FKb0Kj2VCmZ5oxg8+LTvCONp4n8mL4afaGRi8urvFfWev4S95O2msO0E+fzCRjGlFmDfstJjId9/ctoA86ImjVjQhadfNVClqdycfpDB+7E4IXBtMX+hk8tn4R23tIDWOm+Bm7wc/nR7y8nXaJ3+VcvE3IPppqoceOg0TNnEbWZx/WK2Erer9FxZi+uOZPwrkxCseBOOwpqdgMZVhc8kHinRBB2zAG1yWSbDY2lemZXpJJP30yr2sO8Fjudv5v5upGz42+nb6S3+RE0zZ/L110iXxpTGOlWcNBaxl5zvOK7psIWnUjglbdiKBVF2UOL9mFfhJP+9kRFyBqU4CZi2sYMq7hfrd9QudpcyP8rN3qY99hP6fT/RSWtK7WWMLdI5GEO61W0FZV+3ju3UFKb0ajqe/Fe22RigMWM6tMWiaXpNNHn8wbmoM8nreT/85azzeaIHAfyljBz7I38mTeLt7VxtO/6ATTSzJZZ9Zx2FZOvkPZCxU1I4JW3YigVTfNEbRao4/klGCFRuR6P5PnBhjQwIrEfYbWMHZagEUrA+zaYmXP7lwWHkqn5/E8/pRmu03IPpJiocv2g0TOmUVGv07Xq2A/eYmKwZ/gnjYS54oFOGK24khOxlagx2q/oPixvB9Ru6AtdVVxym5na5mBOaXZDCg6yduaeB7P28kPM9c2em7zzYwV/Co7mjYFu/m48ChjDSlEmgrYbzGR7WzdldkiaNWNCFp1I4JW3dzYg7bUHuz7f/ikn217gouPTZ4TYNCYhuXtZ8OD53YLlvtZv93H/kQ/Z7N96M0ib+8HJJJwR3FBO2rqitsYPH4pL34wlAFjFym9eY2mJS9ws7uaVLuLPZZSIk3BhS66647xqiaOP+Zu498z1zSpCvc76Sv5n+xonsmP5cPCQwwpOsXc0mw2lxeRZLOG/XY/tSKCVt2IoFU39QnacpeX/GIfx84GF5pYusbPhFkNry7cb0SAKTMusWlxIYnLk8mL3Ip54Xxy509lTcQy+m7Zy+OnDLcJ2YdTrXy88zCL58/jzNhBuMb1xzV/Ms5Nq7DH78eemoHVaFH8WD2IPOiC1uSq4pzDyc5yIwtMuQwpOsV72gSeyItp0gfMD6Uv5+dZG3k6fxcfaQ8zynCOpaZ89lhKyXC4KW8F+9hcRNCqGxG06kYErbpp6iJhJVYvqbk+4o/7iI4NsCjKz/hZAfqPalje9h8VYPysAIuj/ETHBog/7ic114fRKvK2tSCRhDuKC9pJ89bdxowl0WzZfZRqr1/pzWs04Z4ESl1VnLbb2VluZHFpHqMN5/ik8CgvFOzldzlb+Jcm9Gr7WnokP8iI4rc5m3k+fw+dC48w0nCWhaZctpcbOGm3NbpqsXA7ImjVjQhadeOvuUp+kZ+jJ/1s2R2sch03PUDfYfUsNDEowLjhFlZNSCd+6j4ypq3AOHEi9hF9qOj5Juc/+Ae6Hm+xccp4Pt8Yw9+S9bcJ2d9kOPnwaCbz4hJJOpiA9cQJbBo9Vrt8CHevud8FbZm7mnSHi1hLCUtK8xlhOEtH7WGeyo/lZ9kb+af05Q2eU3wjPZIfZ23gybxdvF+YwNCi0yw05RJTXkKK3flA99gXQatuRNCqGxG06qapgrYhisp8nM32cSDRz4YdPhYs9zNueoDPhtcvbnsOqmHg6ACT5gQ/+N+6J8DhEz4yCnyU2pU/LmpCIgl3FBe093uUniQs7mCvt+M2G1vKiplXmsOwotN8pD3McwW7+U1ONN9rworHX0uP5F8zV/NozlZeLthHV10iYw0pLDPlE2sxctbhwOS6+xW5TfYgpfbgyuMltuCniiVWL0arD4PFh7HchyFEcVmQIrOPorIgerMPnSlE6XUKS3xoS3xojUE0Bh8FBh8FxT7yDSGKg+QV+cjTB8nV+8jV+cjR+ckuvE6W1ke2JkiWxkdmiIyCIOkFPtLzfaTlBSk01JJbGCA110dqjo+Ua2QHF/Y5m+3jbFaQM1k+Tmf6OJMZ7DV5OsPH6XQ/p9L9nEwLciL1Oskpfo6nBP9NTvFz/FyQpLN+jl3jTLAn0tHTfo6euoGTfo6c9HP4Gid8HDrh41Cyj4QQ8cd9xB/3E5/k5+Cx6xxIDLI/RFyin7ijfvYd8RMXYt9hP3sP+9l7yM+eELsT/OyODzbIjz0YZFd88FbuXQf9xBwIsd/Pzv1+dsQFezntiAuwfV+IvUG27QmydU+ALdfYHWDz7gCbYwNEh9gU42PTTh8bd/rYuMPHhh0+1m8PscPHuu0+1m7zsS7E2q1B1mzxs/oam4ON/VdFB3t/3sjKa2z0s2KDn+Ub/CxfHyRyvZ81my+zYkOAiLX+IGv8LFvjZ+kNLFkdZPEqP4uigiyO8rNoZYCFKwMsXBFkwYrgrU7zI/3MWx4i0s/cSD/zIoI9rOZG+JmzzM+cpcGVZ2ctuc7MxSEWBZkRYvrC60xb4GfqAj9T5weYMk9oKaMm3qHyYeAFvuynZfnARPaPjCZt1FyKhg7F3vcjKju1va33a3G39myZNJZB67fz9+Pa24Tsr3Iu0CHHwQx9JYdtXsyt4P1GCHI/CNpsRwVxFhMRpny+MKTQufAIz+bv5pfZm/hmxooGzwe+nh7Jf4Z65L+rjWeg/iTzSnPYVmbgjL155wMPCiJo1Y0IWnUjglbdfBWCtiG0JcFrxL2H/azb5mP2Uj9jpvgbFLc9B9UweGyAqfMDRKzzs31vgGNn/GRrpOo2HEgk4Y6igtbhOk9qlrauUjb5bDbdhszkgz4TWb8jQclNa3KUniSaisZ5gaM2CxvL9MwqyWKg/iTvaRN4Kj+WX2Rv4lvpDV+sXbtg+2HmWh7L3c5rmv101STx5MoMXlhQyJvTyvjoi/P0GNzwrRuCIAj3K70H+RjxeRkz+6YS1WsP+z+LILXfOAx9euL89PV6F+G6hqHfB2xbupgh+47zdGrZbUL2l3ke3tJ5mGqq5qDNi6kVvHcId6Y1CNo853kOWstYadbwpTGNLrpE2ubv5Tc50XwnfWWj7+n/nrmGx3K386bmIP31ycwqyWJzeREnbHaMcldNvYigVTciaNWNCFp1E25BWx/lLi8FxT5OpAYLYlZFBws0Rk4K0HtI/eetvQbXMHxCgBmLgkUnuw4GC37y9D7KnMofz/sRiSTcUUzQHjudyZ9e6MEjbbrywvtDScsu5Mn2/Zi+OJrpizfxl1d7s257vFKb1+QoPUl8leQ4K4m3lrHGXMjUkgz66ZN5WxPP33Jj+En2Bh5q5JbHr6VH8o3U5Xw/eQP/dXAXv45J4E8bT/KP5dm8sqCIDtOsdB17ic+GBRuk9xse7L3lcW1hAAAgAElEQVTYb0SA/iMC9B8Z7M3zeYgBo4MMvIFBYwIM/iLAoC8CDB57nSHjAgwdF2Dol0GGjQ8wfHyA4RMCjBgfZPiEACMmBBg5McDISUFGTQowarKf0ZODn1DWMTXAmGkBvpgaZOy0IOOmB/gyxMRZNUycVcP4mcF+QeNnBZgwK8CE2QEmzg4wcU6QSXMCTJ4TYPLcAFOuEarCmzo/xIJgheONFY/XqiBnLrqhQnLx9arJ2aFKyjlLg5WVcyOC1ZbzIkKVl6FqzPmRQRYs97MgVLG5MFTBuWhlsM/RoqhglefiVderPm+sBF22JlghGrHWT8S660SGKkqXhypMV2wIVpyu3HR7Req1StVV0cHK1dVb/KwJca26dd22YNXr2m3BCtj1oarYDaEK2Y07ghWzm3b6ghW0McHeTptjgxW2W64RqsDddgPb916v1r1WvbsjLljRG7P/epXvtarfXTdUA8fGB0+Ididcrxo+mlzLgcQA+w7fUF18JFhxHHdDFfK1quQbK5Xjk/zBCubjwWrmhORghfOhEz4OXyNUCX305C0V0qeDldPHzoQ4G6ysvlZlffzczRXYN1ZmX6vWPhWq3j6d7ud0RqiyO8SZUNX32VAl+LmsYFV4Sk6wUjw19zrXqsnT80OEqs0zb6hAz7pWla713VSxnqPzk6sLVrPnhqrb84quV73nhyrhC4pDlfGGYJW81hisnC8MUVdVb7qO/loFvvl6VX5xWbBK31gerNw3WII9vUqswcr+0hCmEiflaTnYDiXg2Lwex6IZuMYPpKL/B1R+9FyDArayUxsqPu+Ia+JgnEtnUrxzK9tOpDMsp5xnNRdvE7I/z/Pwuq6KiaXV7LdWU+pS/n1AaBr3QtAWOi9y2FbOGnMhk4xp9NAl8XLBPh7O2cL3Mxq/M+ZfMlfxh5xttNPsp48+mWnGDDaU6UmyWSlyXVL8GN6viKBVNyJo1Y0IWnWjlKBtCLPTS67ex/FzweuYlRuD14/DxwfoNbiBooMhNYycFGDWkuC12e744LVCQbGPcjkfrReJJNxRTNB+2GcS0xdv4qKnmqjoOJ57dxA7447XPb7v0GnafzpGqc1rcpSeJO4l13rW7bOUssJcwARjKj11Sbym2c9judv5YeZavt6EVgrfSl/BL7I38VR+LO9pExioP8mskiw2luk5arOgcd4fq4pLD1p1Iz1o70+s9kvYtMXYT57CuXsHzqhFuGaMoWJYVyq7vNJoFWxlj/a4R/fCs2gS7nWROOJ2Yz97Fpu+FL2jmu0WLyOMVbTVevjxLUL2p3ke2hV6GGesYo/Vi7EVHA+heXwVgrbIdYljVisbyvRMLcmgjz6Zdpr9/CFnW5P6y/9zRhS/y9nCywX76KFLYpIxjTXmQg7bymVx0DAiglbdiKBVNyJo1U1rFLQNYXZ4ydb4OHoquHBtxDo/U+YFi5saumOsz9AaxkwNMC8iWEQTdyRY0KErlbYJEkm4o5ig/Wu7PhQZywEIBGp49PluGEzWusdN5Q4ee6mnUpvX5Cg9SbQ2TK4qzjocxFqMLDPlM9aQQlddIi8X7OPRnK38a+bqJvXD/V5GFL/Jiea5gt18pD3MsKLTzCvNYUtZMcdtNgytoPpHBK26EUHberGW2rCnZ+JIOIAzeg2uhVNxj+tPZd93Od/x2YYFbOe2VAzqhHvyMJwRc3HujMZ+LBF7jgartbLud1yuvUpppY8Yq5fRxipeLPTwk1uE7E/yPLxY6GFMSRUxFi+GVnBshK+Gpghao9vDCZudzeVFzCzJor8+mTc0B3ksdzv/lrmm0ffB76Sv5P/lRNM2fy9ddYl8aUwjyqzhoLWMfMd5xY+BWhFBq25E0KobEbTq5n4TtA1RaveSXhC8a2/LnuDiYxPnBO9YbUje5hepW9JKJOGOYoL2kTZdsTkr6r5+4vXPKLe56r62OSt4pE1XBbbs7qL0JHE/UuL2cNJuY3u5gYWmXEYaztK58AjP5+/htzmb+UETbt28dvvm73K28ELBXj4pPMpowzkWl+axs9zIabud0jAvYiKCVt2IoA0fxS4vhS4fBS4vOU4vGQ4vqU4vZxxeTtq9HC+/xLGCUo6eySD+4CEObt3GvpXL2TN3FrsmjWXHhFFsnfgFG6eMZ920SayeMYUVs2awbM5sFs+bz7wVUczatJ2pew4x6fAZJp3KY2KmkYmFLiaUVDWJ7qXe21oW/CjPQ1uth1FGDzssXorkFrEHlqtXweyq4ozdwbYyA/NKcxioP8m72nj+kreT/8xa1+gdJd/MWMGvsoMfRH5ceJQvDClEmgqIs5jIdlYqvo/CnRFBq25E0KobEbTq5kEStA1hsATbmsUn+dkU42PRygDjZwZbDSq9bUojkYQ7ImhbGKUniQeVQudFkmxWNpcXMbc0myFFp/iw8BDP5MfyP9lNWwDl2iIof8zdxquaOLrrjjHOkEqEKZ89llJS7S7M7upmb6MIWnVzrwWt0R0UfoUuH/k3ikvHdXGZZPdyxOYlweplv62avVYvuyxedli8bLFUE11ezbryalaXeVlR5iWirJol5mrmm6uZa6pmhqmaaaZqJpVWM85YxZiSKkYYqxhqqGKQoYr+xVX0LfbQo9hDt6IqPtFX0amoig/0Hjroggtcva6r4tXCYOXo81oPz2g8PKX18DeNh8c1Hv5U4OHRAg+/K7jEb/Iv8as7SM77iWc0HoYYqthiqUbnUndVwYOG2V1Nit1JTHkJC025DC06zfuFCTyZt4uf5WzkG428/zyUvpyfZW/k6fxddNQeZqThLEtN+ey2lJDhcFPeCvZRuHtE0KobEbTqRgStulGLoBXqRyIJdxQVtD2Gzuaz0Qv4bPQC/vhCd7oPmVX3dY+hs0XQCg2S7zjPYVs568w6ppdk0r/oBO9q44MXz9kbeShjReOLmqVH8t9Z63k8bydvaA7SR5/M5JJ0Vpm0HLCYyXJU1HsRLYK2dXBNXGqdQXGZHRKXKQ4vp+1BcXksJC7jbxCXMSFxubm8mk23iMtlZdUsDonLOSFxOdVUzcSQuBxtrOLLch/DS6sZGBKXfULismtRFR+HxOX7IXH55g3i8oWQuPyH9rq4/N+QuHwk38PDIXH5y1YgH5Xil5lufp3u4OFUK4+eLeNPZ0p5/GQxT5zQ8VSShmcT83j+WD4vHdfw6kkd7c8aeSvNzLvZdt7XVPKRvorORVV0LaqiR7GHPsUe+hVXMcBQxRBDFcNDYzjWGFyga6qpmhmlwbGebw6O/bKyapaXeVld5mVt6G9kc3mwx2yMxcvJS5fRVYiQvZ8pd3vJcLjZYyllqSmfUYZzfKQ9zD/yY/l51sZGF8b8RnokP8paz5N5u3hPm8DQotMsMOUSU17COYezRR8ACq0XEbTqRgStuhFBq25E0AoSSbijmKCdNG9dk2jtUXqSEOqn3O0ly1HBAYuZVSYtk0vS6RPqAfh43k7+O2t9oxVQX0uP5KGMFfwseyNP5u3iXW08/YtOML0kkx1OA8kuK3nO1tcL0Oy+XVzeWHF5TVw2VnF5q7iMuEFc3lhxOfEOFZcD71Bx+fEdKi5fK2xaxeXDN1Rc/rQVSMR7yY/zPPws38Ov8jz8Jv8Svyu4xKMFHh4rCB6jJ0LH7Flt8Bb7FwuDi1G9rqvibZ2Hd3UePtB76BSqeu1e5KFnsYe+xR76h6pjhxmqGGkM9kv90ljFpNJqppVWM9PkZa6pmgWmYLVtRFk1K0Picn15sCp3i6WanZbg386+0N9SgrWaY3oryak5nD10lNStW8iKWEDelFEUDvoUY9fXMHV5FcvHL2Hv9DzuW3rDVn76EhVDP8U1fTTOlQtxxG7HfuIENo0eq135BZAu117FcV4EbWsn21nJfouJSFMBYw0pfFx4lDYFu/lVdjTfSm/4Q7yvp0fyw8y1/CVvJ+9o4xmoP8nc0my2lRnQ+y5gDnMbHaF1IoJW3YigVTciaNWNCFpBIgl3FBO0D0qUniSEu8PkDopLvcuH1ukjx1lNvNXN2rIyppXoGVCcwwe6c7TRHOeR3EP8MGsf386M4VuZsXwrcw/fztzHtzPj+E7Wfr6TdZDvZiXw3azD/Et2Ij/LPc0f8tN5WpPPq4V63teb6Fpko29xBUMNlxhhDFbvDTRU0e8OFZcf6W+uuHytsIpXdLdXXP71DhWXvw5VXKpRXP4877q4/H1+UOb+WePhLwVBcfl0SFy+oPXwUkhctg+Jyw46Dx+GxOWnRUFx2avYw2fFVfQ3VDE4JC5HGT18ERKXk0PicqkjwCKLjwWmapaGxGVUmZfV5UFxubm8mq0WLzFWL7EhcXnAVs0hm5ejdi/HQ5L8bKi/aqbDS67TS4HLi87lo9jlpdTlpawVvG7qw2pxY8vJx370CM7tG3FFzME1aQgVAzpS2altg4txne/4HJWfvYf7y89xLpqGc/NaHIfisWVkYzU5FN+3xhBB2zoocF4g3lrGKpOW8cY0uumO8ULBXn6bs5nvNqGf+b9lruGx3O28oTlIf30yM0uy2FxeRLLNjtHtqff3NmWRMOHBRAStuhFBq25E0KobEbSCRBLuiKBtYZSeJJRmtzUooLZZvESXV7OhvJo15UFRFVlWzTJzNQvN1cwzVzPL5GV6aTVTTNWMLwneXjzK6GFY6Lbjzw1VfFZcRa9iD92LPHQpClZbdgxJy3f0Ht4IicuXC4PC7TltUMA9GRJyf9Z4+EOBh9/ne/h/+Zf4n3zlJaKS3CouHyu4XVy2vYO4fPcO4rLnHcTlyDuIy5kmL/PM1TeJy5V3EJc7LXcQl7bbxWXGHcSl0n/3FrdKFglzerDqSrCfPotjXyzO1UtxzRqHe2RPKru/3rCA/eAfVHZrR8Xw7rhmjsWxegnOPTHYT53GqjNgcdQvv+4HRNDeGwqdFzlis7DWXMjkknR66pJ4pSCO3+ds5Z+bIGD/JXMVj+ZspZ1mP711x5laksGGMj3HrFaKXJeavV0iaNWLCFp1I4JW3YigVTciaAWJJNwRQdvCKD1JKInGeedVzFszP83z8Is8D/+T7+G3IXH5x4JgRepfCjz8XXOJp7Ue2miDlasvF3p4vbCKN3Qe3tV7eE/voaPeQ+eiKnqWeOljrKJ3sYfexR4+LarkA72DN3TlvKA18mRBIY/m5/CLvDT+Nfsk389K5nvZSXwvO5HvZR3hu1mH+W7WIb6TFc93sg7w7cw4/j37IL/NTeSpgpO8pU2lZ1EeY41FLDaXsc3i4oStinMOL+kOL1nOoLjUOH3oXD4Mbi+mViIv1cCDImitZie2zBwcRxJwblmPc/EM3BMGUtH/Ayo/eq5hAdupDRWfd8Q1cTDOpTNxbt2A48hhbNl5WMvciu9bOBFB+9VQ7LpEks3GxjI900sy6atP5nXNAf6Yu43/k7m6UQH7/YwoHs7ZwssF++ihS2KSMY015kIO28opdIavFYYIWvUiglbdiKBVNyJo1Y0IWkEiCXdE0LYwSk8SSmJwe3kjVNl6o7jsEqq47B2quPw8VCE7zFDFaKOHscYqJpRUMcVUzfTSamabghW2i8zBitvIsmpWlXlZU17NxtDK89tCt4rvtnrZb63moM3LYZuXRLuXZHuwp+o5h5c0553FZTj2/24XCdM4L3DUZmFjmZ5ZJVkM1J/kPW0CT+XH8ovsTY32Q7yxJ+Jjudt5TbOfnrokJhhTWWEuYJ+llHSHizJZmOaecL8IWqv9EjZtMfaTp3Du3oEzahGuGWOoGNaVyi6vNF4F26M97tG9cM0Zj3NNBI643djPnsWmL8XiVG8PThG0TaPUVcVJu43N5cXMLsmif9EJ3tLE8+fcHfxH5tpG57zvpK/kNznRtM3fSxddIl8a01hp1nDQWqZo/28RtOpFBK26EUGrbkTQqhsRtIJEEu6IoG1hlJ4kBOW4W0HbFHKclcRby1hjLmRqSQb99Mm8rYnnb7kx/CR7Q6Orin8tPZJ/Sl/Oj7M28NfcGN7SxPOZPpmpJRmsMRdy0FpGtrNS8WP3INCaBK211IY9PRNHwgGc0WtwLZyKe1x/Kvu+y/lbFt+6TcB2bkvFoE64Jw/DGTEX585o7McSsedosFrlb6U+RNAGMbmqOGt3sKPcyLzSHAYXneJdbTx/zY3hv7LW8fVG5qtvZqzgl9mbeK5gN50Lj/CFIYUIUz5xFhPZjgrF968+RNCqFxG06kYErboRQatuRNAKEkm4I4K2hVF6khCUIxyCtjHK3NVkONzEWUysNGuYaEyjl+44r2sO8OfcHfxn1jq+0YgQ+Vp6JN9KX8HPszbx97xYOmgTGFB0kpklWWwo03PEZqHAeUHx49vauZeC1mq/iE2jx37iBI7Y7ThXLsQ1fTQVQz+l8tOXGq2Crej5Ju7RfXDNm4Bz3XIccXuxnUvBVmzG4pKK6+agFkFb5q4m1e4i1mJkUWkeww1n+aDwEH/Pi+Un2Rv4p0Y+NHoofTk/y97IU/mxdNQeZqThLEtK89ltKSHd4aK8FexjcxBBq15E0KobEbTqRgStuhFBK0gk4Y4I2hZG6UlCUA4lBG1TMLmqOOdwEmspYZmpgHGGVLrpjvFKQRx/yNnGv2WuaVTgfi09ku9lRPHr7Giezd9NR+1hhhadZl5pDlvKijlus1HcggV2HgS+akFrNVqwp2Zgj9+Pc9MqXPMn4x7bj4o+73D+w2caroL9+EXcgzvjnjoCZ+R8HDFbsB9PwpanxWpT7jbwB5kHRdCWu71kOSrYay1lmamA0YZzdCo8zDP5sfw8axMPZTTceuUb6ZH8KGs9T+TF8J42gSFFp1hgymVnuZFzDicm14PZBkMErXoRQatuRNCqGxG06kYErSCRhDsiaFsYpScJQTlaq6BtCiVuD6fsdraXG1hoymWk4SydC4/wfP4efpuzmR80YXX0ayuk/y5nCy8U7OWTwqOMNpxjcWkeO8uNnLbbKX1A5YzFffeC1mo7jy1Pi/14Eo6YLTgj5+OeOgL34M5Ufvxiw1WwHz5DRZ93cI/th2v+ZJybVmGP3489NQOr0aL4sVAj95OgzXVWcsBiZoU5+IHNp7pEns/fw6+zo/l2+spGX+c/zFzL43k7eUcbz4Cik8wtzWZrmeGBf403hAha9SKCVt2IoFU3ImjVjQhaQSIJd0TQtjBKTxKCctzPgrYpFLkukWSzsrm8iLml2QwpOsWHhYd4Jj+W/8mO5rtNlLj/nrmGP+Zu41VNHN11xxhnSCXCFLzFOcXuxHyfLmp2m6B1VWMrNmM7l4Ijbi/OdctxzZuAe3QfKnq+2fhiXJ++RMXQT3FNH41z5UIcsduxnziBTaPHag/favRC82hNglbjvMAhazmrzVomGFPprjvGiwX7+G3OZr7XhNfpv2Wu4bHc7byhOUg/fTIzS7KILisi2WbHoPJK+foQQateRNCqGxG06kYErboRQStIJOGOCNoWRulJQlCOB13QNoV8x3kO28pZX6ZjRkkmnxed4F1tPE/m7eLnWRv5ZiO3R1+7Rfq/stbxv3k7aK85QG/dcSYZ04gya9hvMZHpcLeaPpVWixtbTj72o0eo3ruFyuVzcU0aQsWAjlR2atuwhO34HJWfvYf7y89xLpqGc/NaHIfisWVkYzU5FN834e64l4JW77pIos3COrOOqSUZ9NIdp51mP4/kbOUHmasafY39IHMVj+ZspZ1mP711x5laksH6Mh3HrFb0LpH/zUEErXoRQatuRNCqGxG06kYErSCRhDsiaFsYpScJQTlE0DZOudtLtqOCg1Yzq81appSk01efzJuag/wlbyc/ylrf6CJDX0uP5KGMFfw0ewNP5MXwjjae/vpkphkzWGsuJMFaRq6z8qvZZqcHq64E++mzOPbF4ly9FNescbhH9qSy++uNV8F2a0fF8O64Zo7FsXoJzj0x2E+dxqozYHF4FB8P4avjqxS0BtcljttsbCrTM6Mkk8/0ybTXHOBPudv518zVjb4+vp8RxcM5W3ipYB89dElMNKaxxlzIIWs5WlnwLyyIoFUvImjVjQhadSOCVt2IoBUkknBHBG0Lo/QkISiHCNqvBrO7mjS7i73WUpabCxhvTKOHLol2mv38KXc7/5G5lq83oZXCt9NX8qvsaP6RH8sHhYcYXHSKOaXZRJcVccxqpdAZrBS0mp3YMnNwHEnAuWU9zsUzcE8YSEX/D6j86LmGBWynNlR83hHXxMFcWjmHyh0bcRw5jC07D2uZW/FjKdw77kbQlrqqOGW3s7XMwJzSbAYUneRtTTyP5+3kh5lrm/S3/ZucaJ7P30MXXSLjDKmsNGs4aDWT55RF4JRABK16EUGrbkTQqhsRtOpGBK0gkYQ7ImhbGKUnCUE5RNDeO0yuKs7YHcSUl7CkNJ8xxhQ+1SXyYsE+fp+zlf/ThCrDr6VH8s9nlvBwwkxe2Pkln64ZxheLPmPZ1C7sGfEeaX1fw97pOSp7tMc9uheuOeNxronAEbcb+9mz2PSlWJzXF0S620XChAeLGwWtyVXFWYeDneVG5pfmMqToFB20CTyRF8N/Z63nG438XX4zYwW/zN7Es/m76Vx4hDHGFCJM+eyzlJLtqGg1LT6E64igVS8iaNWNCFp1I4JW3YigFSSScEcEbQuj9CQhKIcIWuWwmhzYMrJxHIrHuXktzkXTKJ84gJQxXdg9+kOWTenCmMX9+GTtMNru/JLfHprB988sbpLE/b+Zq3kkZysvFeyjiy6RLwwpLDXls8ti5KzdgSm0ar0IWvVQ5q4m3eEi1hL8gGCE4SxdDYk8XRDLz7I3Ntqm45/Sl/PT7A08lR/Lh4WHGGE4y5LSfGItJaQ7XJTdpwvlqRkRtOpFBK26EUGrbkTQqhsRtIJEEu6IoG1hlJ4kBOUQQRs+rPaL2DR67CdO4IjdjnPlQlzTR1Mx9FMqP32p0V6wFT3fxD26D655E3CuW44jbi+2cynoigwkWsvZVKZndkkWg/Qneb8wgafzd/HL7E18O31lowL36+mR/DBzLY8X7KC9dj89dEmMN6ax3FzAXmspaXYXZhFu9xXXeiXvs5QSYQpWaHcuPMKz+bv5ZfamRhe7+0Z6JP+dtZ4n8mLooE1gSNEp5pfmsrPcyFnHdakvPDiIoFUvImjVjQhadSOCVt2IoBUkknBHBG0Lo/QkISiHCNqWYTVasKdmYI/fj3PTKlzzJ+Me24+KPu9w/sNnGu4F+/GLuAd3xj11BM7I+ThitmA/noQtT4vV1rKenLnOShKsZaw1FzLNmEF/fTLvaON5Ii+Gn2Zv4KEmLGr2T+nL+VHWev6St5M3NQf5TJ/M1JIM1pgLOWgtI9tZKbet32PynOc5aC1jpVnDl8Y0uugSaZu/l9/kRPOdJoj5H2au5fG8nbytiWdA0UmWOwvYYTVwym6nVASs6hBBq15E0KobEbTqRgStuhFBK0gk4Y4I2hZG6UlCUA4RtA1jtZ3HlqfFfjwJR8wWnJHzcU8dgXtwZyo/frHhKtgPn6Gizzu4x/bDNX8yzk2rsMfvx56agdVoUXS/yt1eMhxuTlywsdZSyERjGr10x3ldc4A/5+7gP7PWNdpz9Frf0Z9nbeLvebF00CYwoOgkM0uy2FCm54jNQoHzguJjeD9R6LzIYVs5a8yFTAotNPdywT4eztnC9zOiGh2Pf81czWO522mvOUA/fTIzSjKJLiviuM2GwXXptt93N4uECQ8eImjViwhadSOCVt2IoFU3ImgFiSTcEUF7QyLW7+H59wbz1Jv9GTVtBdVePwBmi4Oug2fy9/b96NBzPBm5+rr/o/QkISiH6gWtqxpbsRnbuRQccXtxrluOa94E3KP7UNHzzUbbEFR++hIVQz/FNX00zpULccRux37iBDaNHqv9ovL71wgN9aA1uao453ASaylhmamAcYZUuumO8UpBHH/I2ca/Za5pUj/c72ZE8evsaJ7N301H7WGGFp1mXmkOm8uLSbLZKL6DOHxQKXJd4pjVyoYyPVNLMuijT6adZj+P5mzlXzJXNXosf5C5ikdyttJOs59euuNMLclgfZmORJsFvevu/95E0KobEbTqRQStuhFBq25E0KobEbSCRBLuiKANJSEpldc+HoXDdZ5qr58ew2YTsX4PAF0GzWD9jgRqa69w4lwubToMpuZyLSAn6GpG7YLWduZMwxK243NUfvYe7i8/x7loGs7Na3EciseWkY3V5FB8+1tKSxcJK3F7OGW3s6PcyKLSPEYZzvFx4VHa5u/l4Zwt/KAJ0vGaeHw4Zwtt8/fyceFRRhnOsag0jx3lRk7Z7ZS4PYofq6ZgdHtIttnZXF7EzJIs+uuTeUNzkMdytzdJaH8vI4rf5mzmpYJ9dNcdY6IxjdVmLYes5WjCUI0sglbdiKBVLyJo1Y0IWnUjglbdiKAVJJJwRwRtKLlaIxm5urqv1+9IYNTUFbgrL/LXdn25XFtb99h7vSaQkqkF5ARdzahd0Fp1Riq7taNieHdcM8fiWL0E554Y7KdOY9UZsDjuDzHYXFoqaJtCkesSSTYbm8uLmVeaw9Ci03TUHubZ/N38Ojua7zbh1v2vpUfyb5lr+EPONl4piKOb7hjjDKksMxUQaynhnMN5TxaxMrmqOGN3sK3MwNzSbAbqT/KONp6/5O3kh5lr+Xoj+/Dt9JX8Ojua5/P38KkukXGGVFaYCzhoNZPrrLzn4y+CVt2IoFUvImjVjQhadSOCVt2IoBUkknBHBG096TtqPtv2JJKRq+ftbuNuemzYpAi270sC5ARdzahd0KqdeyFom0KB8wJHbBY2lOmZWZLFgKKTvKuN58m8Xfw8ayPfzFjRqMD9Rnok/5W1jv/N20F7zQF6644zyZhGlFnDfouJTIe70UXNzO5qUuxOYspLWGjKZWjRad4vTODJvF38OGtDo315H8pYwS+yN/Fs/m46FR5hjDGFZaYC9llKyXJUtLpF1UTQqpatWvQAABcLSURBVBsRtOpFBK26EUGrbkTQqhsRtIJEEu6IoL1DItbtpvuQWVyureV0Wh4d+0666fFxs1azYUcCABeqagSVErh8Fa+/VvHtEJThcu1VqnyXFfv95z1N/1ndhYscc1vYaNMzsyyLwYaTvKOL58n8Xfwoe32TqnC/lh7JT3M28FRBLO/pEhhsOMnH+qM8q4nl5zkbm/z//1Gwm05FR/jClMJySwEHXSbyz59XfDzvlitX4ZJXufEXlEXt7/+VdzH/PHBUy/irmUvey1y5KuOvJHdz/vNVU+W7zOXaq4ofA0EZvP5aApdl/NWMRBLuiKC9IVevXmX64k30HjEXry8AQGaenje7jr3p54ZOXMbOuOMAVPkuCyrlcu0V/DW1im+HoAy1V67iCyg3/p6v+Pm0ly6QWFnOeruOaeUZfGZM5g3dAf43fwc/zFrXJAH7o+x1PFmwi45FhxhlOkukNZ8DbhP5FysVH6+vmitXruL1K78dgjJcvQrVrWA7lMLjVX4blKI6NP5Kb4egDF5/cP5XejvUzFd9/nM3+AK11Mr4qxZ/TS2Xa68ovh2Cckgk4Y4I2hsye9kWhk6MqFsADKDywiUef6V3nbAFaNd5JJl5ekBucVMz0uJA3bSWFgf3kjN2B7ssRpaU5jPWkMLskiy2lBVz0m5TfNvuNdLiQN1IiwP1Ii0O1I20OFA30uJA3UiLA0EiCXdE0IaSmqWlQ8/x1NTc/slIj6GzWb5hL7W1V4g7coaXOw6ntvYKICfoakYErbpRo6AVriOCVt2IoFUvImjVjQhadSOCVt2IoBUkknBHBG0oY6ZH8Ye23XjspZ51vNdrAgDlNhddBs3gyfb9eL/3RPILS+r+n9KThKAcImjVjQhadSOCVt2IoFUvImjVjQhadSOCVt2IoBUkknBHBG0Lo/QkISiHCFp1I4JW3YigVTciaNWLCFp1I4JW3YigVTciaAWJJNwRQdvCKD1JCMohglbdiKBVNyJo1Y0IWvUiglbdiKBVNyJo1Y0IWkEiCXdE0LYwSk8SgnKIoFU3ImjVjQhadSOCVr2IoFU3ImjVjQhadSOCVpBIwh0RtC2M0pOEoBwiaNWNCFp1I4JW3YigVS8iaNWNCFp1I4JW3YigFSSScEcEbQuj9CQhKIcIWnUjglbdiKBVNyJo1YsIWnUjglbdiKBVNyJoBYkk3BFB28IoPUkIyiGCVt2IoFU3ImjVjQha9SKCVt2IoFU3ImjVjQhaQSIJd0TQtjBKTxKCcoigVTciaNWNCFp1I4JWvYigVTciaNWNCFp1I4JWkEjCHRG0LYzSk4SgHCJo1Y0IWnUjglbdiKBVLyJo1Y0IWnUjglbdiKAVJJJwRwRtC6P0JCEohwhadSOCVt2IoFU3ImjViwhadSOCVt2IoFU3ImgFiSTcEUHbwig9SQjKIYJW3YigVTciaNWNCFr1IoJW3YigVTciaNWNCFpBIgl3RNC2MEpPEoJyiKBVNyJo1Y0IWnUjgla9iKBVNyJo1Y0IWnUjglaQSMIdEbQtjNKThKAcImjVjQhadSOCVt2IoFUvImjVjQhadSOCVt2IoBUkknBHBK1EIpFIJBKJRCKRSCQSiUQikSgUEbQSiUQikUgkEolEIpFIJBKJRKJQRNBKJBKJRCKRSCQSiUQikUgkEolCEUErkUgkEolEIpFIJBKJRCKRSCQKRQTtLYlYv4fn3xvMU2/2Z9S0FVR7/QCYLQ66Dp7J39v3o0PP8WTk6uv+z4lzubzVbSxPvdGf3iPm4qq4UPfYqs37efGDoTz7zkAmL9jA5drae75PkqbFU+Vl5JTlPPVmf9p0GExUdFzdY80Z/4aeT9L60tB4tfQ13nXwTIZNirgn+yFpXopLLXwyYDp/e60vb3w6huNnsusea87419RcZtys1fzttb60fX8IcYfP3PN9kjQ9zRl/f6CG0dNX8szbA3i543C27z1W93+0RSY695/Kq51G0qHneE6n5d3zfZI0PYmnMmn/6RieeP0zugyaQYnZVvdYQ3O8Rl/Kq51GMnXhxpuer6E5Q9L60tzxjztyhr+260NCUmqTn0/S+lLfeDU0x0P9438tKZlaHmnTFYPJGvZ9kDQ/9V37NzT+l2trmbt8G4+06UrlhUs3Pd+5TA2vfzKav7brQ99R87noqb6n+yO5uzTH/dQ3/levXmVh1E7adR5Ju84jGTdrNV5f4J7vk+T+jgjaG5KQlMprH4/C4TpPtddPj2GziVi/B4Aug2awfkcCtbVXOHEulzYdBlNzuZZLnmqefutzsvKLuFxby6JVMQyZsBQIvjG36zwSV8UFqr0+egybzebYo0ruoqSBTF24kaETl+HzB7DYXDz37iDSsguB5o1/Q88naX2pb7xa+hqPPXiClzoOF0HbyvNm17Gs35HA1atXOZmSy1/b9cHrCzR7/Jes2cWgL5fg9QUoLDbzfu+J+AM1Su6ipIE0Z/yXrY1lyISl+PwBym0u2nQYjM5QFny+Ll8QfywFgLxCI0+271d30i9pXbE5K3ji9c/IyNVz5cpVFq2KoduQmUDDr/HMPD0deo5n1LQVNwnahv5mJK0vzR3/ddvjGTB2ER37TrpJ0DX0fJLWl4bGq6E5vr7xv5ZAoIYOPcfz7DsDRdC24jR07d/Q+A8Yu4hla2P5Q9tuNwm6C5eqePadgaRkavEHapi+eBPb9iQqsm+SxtMc9wP1j39CUgrv956I1xegtvYKA8YtZvmGvYrsm+T+jQjaG5KrNZKRq6v7ev2OBEZNXYG78iJ/bdf3pk/N3+s1gZRMLQlJKfQeMbfu+5c81Tz2Uk8CgRqmLNhwUxXesdOZdBk0497sjOSuk3gygzKrs+7rz79YxM64480e//qeT9I6U994teQ1fv6Ch9c/Gc3WPYkiaFtxLtfWsn3vsboTL4C/vdYXU7m92eP/4gdDpWrqPklzx//NLl+QXVBc99jsZVtYtjaWq1ev8ujz3Th/wVP32FNv9peL9FYam7OChKSUuq81+lKef28wQIOvcVO5nWqvj+Ub9t4kaBv6m5G0vjR3/LVFJq5evUqPobNvE7T1PZ+k9aWh8apvjof6x/9alq2NZemaWN7sOlbm/lac+q79ofHxB24TdLEHTzBiSuS92HTJV5DmuB+of/wj1u9h2qLr5wPRu47I9Z/kriOCtoH0HTWfbXsSycjV83a3cTc9NmxSBNv3JbFi4z6mL95002PPvjOQErONHsNmczg5re77BpOV594ddE+2XdKyeKq8PPfuIIpLyps9/vU9n6T158bxaslrfOzMVew6kExCUqq8Qd9HydUYaPv+EC7X1jZr/C96qvnzy73YFHOYdp1H8U73cSSeyrzXuyFpZpo6/n96oQcXLlbVfX/bnsS6C7PuQ2bVVdqlZml5ueNwaXF0n2T1lgN183VTzuNuFbRNPS+QtM7c7fjXJ+ju9HyS1p8bx6uhOf5a7jT+JWYbb3Ubiz9QI4L2Psu1a39o2vjfKuhmLIlmyoIN9Bg2m5c6DmfM9Cg8Vd57s/GSFqcp7ufG3Dr+admFvPHpGCovXMIfqKHvqHnE7E++F5sueYAigraeRKzbTfchs7hcW8vptDw69p100+PjZq1mw44EFkbtZN7y7Tc99nLH4XX9506cy6n7vtXu5onXP7sn2y9pfnz+AH1HzWPJml0AzR7/+p5P0rpz63g19zWemqXlkwHTuXr1qgja+yhlViftOo/iZEou0LzxL7e5+EPbbqzctI+rV6+SlV/E317ri8N1/p7ui+Tu09Txz9UaeaRNV3z+673F9iScYsDYRQAUGct5+q3P+Xv7fvz55V4i6O+TnEzJ5eWOw7E5KwCadB53q6BtynmBpHWmOePfkKC99fkkrTs3jlfN5doG5/hrudP4dx8yizNp+QAiaO+j3Hjt39Txv1XQfTEjinadR2J1VOAP1DB4/NLbPrCTtM401f3cmFvHH2Dygg089mIP/vJqb7oOnklNzeWwb7vkwYoI2lty9epVpi/eRO8Rc+uaOmfm6Xmz69ibfm7oxGXsjDvOyk37blsc4h9vDcBUbqfn8Dk3vWkXl5TLbU6tPBc91XwyYBqLV8fUfa+541/f80lab+40Xs15jdfUXOad7uPqKqZF0N4fKSw282qnkRw7fV2mNWf8L1yq4pE2Xbl0w8IQ3YfM4tDxNCStN3c7/n96ocdNJ+Zbdh9l1NQV+AM1vPLRCE6lBhcGKzHbeO7dQZgtjnuzI5JmJe7IGV7/ZHTd+zfQpPO4WwVtY+cFktaZ5o5/fYL2Ts8nab2503jVN8ffmFvHf3f8yZt+RgRt68+drv2haeN/q6CbvjiamUs3132dnqPjrW43X0NKWlfu1v3cmFvHf9ueRHqPmEu1109t7RWmL45mwty14d8JyQMVEbS3ZPayLQydGHFTL7rKC5d4/JXeN03a7TqPJDNPz+HkND4dOL3u+3ZnJY+/0pvLtbVMX7yJpWti6x6LO3yGnsPn3Jsdkdx1/IEaPv58GptiDt/0/eaOf33PJ2mdqW+8mvMaz9Ua+dtrfXn2nYE8+85AngxV0UkP6tYbs8XBq51G3rRKKzRv/AGebN+Pcpur7rHuQ2aReDIjzHshaW6aM/5vdxvHuUxN3WPj56xh5aZ9aItMtOlws8TpNXwu+w6dDu9OSJqdxJMZvN1tHK6KCzd9vynncbcK2ob+ZiStMy0Z/zsJ2vqeT9I6U9941TfH35hbx3/AuMU8/dbnded/f3yhO0+/9TlJp7PCuxOSZudO1/7QtPG/VdBt2JHAFzOi6r5Oz9HRoef4MG255KvI3bqfG3Pr+A8Yu4gdcUl1X2flF/Fqp5Hh23jJAxkRtDckNUtLh57j71iK3mPobJZv2Ett7RX+f3v3+hxVYcdx+P+hamrrqKgtAkGQANYRtSqKEESDqQVtIGhGrC0qliJeqBVFq1gdK1V7cxTwlkKlChZDEbAIKijKRUCICNnk2xcOOwaaQKNyVniembzInrMn5+wveyb5ZHP2Lwv+kQEXXpdSqT27W/fktGFX59VlK9NWKuXnMx5O49QvTszLWtak//kTsmnztny6qzXnj52Sp55tPtKHxWGa9dDTuXnGw/9zWU/m3932qDxdzevreI57BW3lG/nTWzu9Uch+PZ3/1DvnpmnanLSVSmlZtS6n1NRl6yc7j+gxcfh6Mv97H/5Trpw4PXs+31u+pMG7Gz7Kzl2tOWnQlWlZtS5Jsnnr9pw+rD5vvf3uET0mDs+OT3en7/Dxnf6gst/hnOMPDLTdfc9Qeb7q/A8MdN1tj8rT3by6Osd/2aGuQewVtJWtu9/9D2f+Bwa6Ldt2pPfQcVm99v3saytlwpRZuf03j3/jx0HP9KT9fNmB879j9pP5SdOd5T/Izrx/3kGXxYBDEWi/pHHq7BzX9/JUVdeWP84bc2OSZOOmLbnsmltySk1dhl8xJf9evb58v8Wvr8jQyyan95BxqWuc0emdmx98/Nn0HT4+Pzz3mtx2z2Npb+840ofFYep//oSc0G90p/nv/zeVnsy/u+1Rebqb11d9jgu0lW3Dh5vTq8/ITrOvqq7NgualSXo2/8/27M2EKffk5MFX5exLJnb6t3kqS0/nv3fvvjROnZ3Th9XnrB//LM88t6i8zRcXv5Efjbohgy5uyOARk8pvOkLleerZ5v85//1z7uo5fuvdv09VdW2O7zeq/LPj/ndv7u6cQWXp6fzPG3Njqqpr850zLy//7PDcS/885PaoLN3Nq7tzfFfzP5BAW9m6+92/q/lv37GrvO6Xv3f2vwL75X8sT//zJ+T0YfX52c2/ye7WPYUdH93rSfvpbv67W/dk0tT7MvCihgy8qCFXTpyeDz92DXL+PwItAAAAAEBBBFoAAAAAgIIItAAAAAAABRFoAQAAAAAKItACAAAAABREoAUAAAAAKIhACwAAAABQEIEWAAAAAKAgAi0AAAAAQEEEWgAAAACAggi0AAAAAAAFEWgBAAAAAAoi0AIAAAAAFESgBQAAAAAoiEALAAAAAFAQgRYAAAAAoCACLQAAAABAQQRaAAAAAICCCLQAAAAAAAURaAEAjmIfbNqSxqmzc+Z5P83x/Ubl1Jq6TJgyKxs3bSl61wAAgAi0AABHrVKpPYMunphrmu7Kmnc2ZMfO3Vn1n/cytmF6zr5kYkql9qJ3EQAAjnkCLQDAUWrjpi3p1Wdk1q7f2On2rZ/szBN/fimtn+3Jlm070qvPyLy38aPy8kf/uCDnjm5Kkryw6I0MvKgh9//+rzlxwJg89vTCfHfAmLR+9nl5/d2te1JVXZu//7MlSfLIk89n8IhJOXHAmAy5tDGLX1+RJJl+7xO5eNwvOu3L68tXp6q6Njt3tX4jjwEAAFQ6gRYA4Ci1d+++9B4yLk3T5nQZQA8VaJuXtOTkwVdlyq8eyqbN29K6Z29OranL8y+/Xl7/bwuX5PRh9WkrlfK3hUtyxjn1WblmfUql9ry4+I1UVdfmvY0fZ+27H6RXn5F5/4OPy/e95a5Hc03TXd/QIwAAAJVPoAUAOIota1mTIZc2pqr/6Iyon5o7Zj+Z5SvXlpcfTqDt1WdkNm3eVl5+w20PZOIvf1v+fMKUe/LzGQ8nSUaNvy0z75/XaR/GNkzPPQ8+lSS5YOxNmfW7Z8rL+g2fkAXNS7/GIwYAgG8XgRYA4Biweu37mTtvfuqvn5mq6trU33BnSqX2wwq0Vf1Hd9pW85KWnFpTl7ZSKZ/v3ZeTBo3N0jfXJEn6X3BtevUZedBH49TZSZLHnl6Ysy+ZmCRpeeudnFpTl3372o7EQwAAABVJoAUAOMasXb8xx/W9PAubl3URaOd3CrTfH3hFp/u3lUrpPXRcXl26Mi8seiN9h49PR0dHkqTm0sbMnTe/y6+949PdqaquzYrV6zL93idy0/SHvv4DBACAbxGBFgDgKPXKq8vzy5mPHHR7R0dHeg8Zl6eebc7OXa3p1Wdk3l63obz89lmPdxtok6Rp2pzcctejmXzL7Nw+6/Hy7XWNM9I0bU6ndT/8aGva2zvKn4+/8e7MuO8Pqb7wuixrWfOVjxMAAL7NBFoAgKPU2+s25MQBY3LT9Ieycs36bN66Pav+816aps3JSYPGlq8re9qwq/PoHxck+SKmDryo4ZCBdtFrKzJ4xKSccU59VqxeV779lVeX58QBY9K85M20lUpZ+uaanFJTl9f+taq8zkuL/5WTB1+V6guvK7/yFgAAjlUCLQDAUazlrXdy9eSZ+cGPfpLj+41K76HjMm7yHXnr7XfL6zz30mupvvC6DB4xKXWNMzJ33vwMvWxykq4DbVuplNOGXZ1BFzcctGzuvPnpf8G1+e6AMam5tDHPPLfooPuecU597nxg3kH3BQCAY41ACwDAEbVt+6f53llXZMOHm4veFQAAKJxACwDAEdHe3pHtO3al/vqZabj53qJ3BwAAKoJACwDAEdG85M2c0G90rpz46+zYubvo3QEAgIog0AIAAAAAFESgBQAAAAAoiEALAAAAAFAQgRYAAAAAoCACLQAAAABAQQRaAAAAAICCCLQAAAAAAAURaAEAAAAACiLQAgAAAAAURKAFAAAAACiIQAsAAAAAUBCBFgAAAACgIAItAAAAAEBBBFoAAAAAgIIItAAAAAAABRFoAQAAAAAKItACAAAAABREoAUAAAAAKIhACwAAAABQEIEWAAAAAKAgAi0AAAAAQEEEWgAAAACAggi0AAAAAAAFEWgBAAAAAAoi0AIAAAAAFESgBQAAAAAoiEALAAAAAFAQgRYAAAAAoCACLQAAAABAQQRaAAAAAICCCLQAAAAAAAURaAEAAAAACiLQAgAAAAAURKAFAAAAACiIQAsAAAAAUJD/Ap/waRhlQtcwAAAAAElFTkSuQmCC", "text/html": [ - "<div> <div id=\"caae7d18-0cae-4aa6-bd7d-776022f1ec66\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"caae7d18-0cae-4aa6-bd7d-776022f1ec66\")) { Plotly.newPlot( \"caae7d18-0cae-4aa6-bd7d-776022f1ec66\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2017\", \"2011\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [26.5, 40.4, 27.5, 48.30345508195943], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2010\", \"2003\"], \"xaxis\": \"x\", \"y\": [35.5, 53.76048612772965], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [43.5, 32.0, 19.9, 51.894103563496], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2012\", \"2000\"], \"xaxis\": \"x\", \"y\": [71.5, 56.50975754815431], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2015\", \"2010\", \"2004\", \"2000\"], \"xaxis\": \"x\", \"y\": [83.7, 81.3, 66.6, 55.91131125503006], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2012\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [33.6, 50.4, 26.2, 49.67400671814656], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2013\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [85.4, 75.2, 66.24208937915319], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2014\", \"2010\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [89.2, 83.5, 68.9, 52.92798233790131], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [72.7, 71.6, 57.7, 45.77749212207978], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2013\", \"2007\", \"2001\"], \"xaxis\": \"x\", \"y\": [75.4, 79.1, 66.6, 55.47795028053216], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"d37705bf-9c91-4109-8543-2802164f9077\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d37705bf-9c91-4109-8543-2802164f9077\")) { Plotly.newPlot( \"d37705bf-9c91-4109-8543-2802164f9077\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [26.5, 40.4, 27.5, 27.22165334026072], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [35.5, 20.74449338352134], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [43.5, 32.0, 19.9, 28.93552206066888], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.5, 58.0498599283529], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [83.7, 81.3, 66.6, 61.85272188475734], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [33.6, 50.4, 26.2, 24.80890630136319], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [85.4, 75.2, 63.25615447558266], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2005, 2000], \"xaxis\": \"x\", \"y\": [89.2, 83.5, 68.9, 52.35177558833146], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [72.7, 71.6, 57.7, 50.82263058897482], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.W_all=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [75.4, 79.1, 66.6, 65.09551816600218], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.W_all\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('caae7d18-0cae-4aa6-bd7d-776022f1ec66');\n", + "var gd = document.getElementById('d37705bf-9c91-4109-8543-2802164f9077');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -17134,17 +15263,48 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 368, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Benin', 'Burkina Faso', 'Ethiopia', 'Gabon', 'Malawi', 'Mali',\n", + " 'Namibia', 'Rwanda', 'Uganda', 'Zambia'], dtype=object)" + ] + }, + "execution_count": 368, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Find countries for which there is a missing value\n", + "df[df['Buy.from.shopkeeper.with.AIDS.M'].isna()].reset_index().Country.unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 369, "metadata": {}, "outputs": [], "source": [ "# Select those in a dataframe\n", - "missM = df.reset_index().set_index('Country').loc[df[df['Buy.from.shopkeeper.with.AIDS.M'].isna()].reset_index().Country.values]" + "missM = df.reset_index().set_index('Country').loc[df[df['Buy.from.shopkeeper.with.AIDS.M'].isna()].reset_index().Country.unique()]" + ] + }, + { + "cell_type": "code", + "execution_count": 370, + "metadata": {}, + "outputs": [], + "source": [ + "missM.Survey = missM.Survey.astype(int)" ] }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 371, "metadata": {}, "outputs": [ { @@ -17167,17 +15327,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2017", - "2011", - "2006", - "2001" + 2017, + 2011, + 2006, + 2001 ], "xaxis": "x", "y": [ 31.6, 44.5, 36.7, - 43.117715660745624 + 42.84612926788617 ], "yaxis": "y" }, @@ -17194,13 +15354,13 @@ "showlegend": true, "type": "scatter", "x": [ - "2010", - "2003" + 2010, + 2003 ], "xaxis": "x", "y": [ 42.9, - 34.99696361745937 + 35.16663129012852 ], "yaxis": "y" }, @@ -17217,17 +15377,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2005", - "2000" + 2016, + 2011, + 2005, + 2000 ], "xaxis": "x", "y": [ 51.6, 47.1, 26.1, - 32.80721200883463 + 32.957470413688526 ], "yaxis": "y" }, @@ -17244,13 +15404,13 @@ "showlegend": true, "type": "scatter", "x": [ - "2012", - "2000" + 2012, + 2000 ], "xaxis": "x", "y": [ 71.7, - 69.57207895753851 + 69.50735329316193 ], "yaxis": "y" }, @@ -17267,17 +15427,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2015", - "2010", - "2004", - "2000" + 2015, + 2010, + 2004, + 2000 ], "xaxis": "x", "y": [ 87.5, 90.2, 83.9, - 73.27977952076182 + 72.55544324389314 ], "yaxis": "y" }, @@ -17294,17 +15454,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2012", - "2006", - "2001" + 2018, + 2012, + 2006, + 2001 ], "xaxis": "x", "y": [ 42.2, 55.2, 36.7, - 46.545528659115774 + 46.01222163399134 ], "yaxis": "y" }, @@ -17321,15 +15481,15 @@ "showlegend": true, "type": "scatter", "x": [ - "2013", - "2006", - "2000" + 2013, + 2006, + 2000 ], "xaxis": "x", "y": [ 84.9, 72.3, - 67.91461681851463 + 67.93636699956508 ], "yaxis": "y" }, @@ -17346,80 +15506,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2014", - "2010", - "2007", - "2005", - "2000", - "2014", - "2010", - "2007", - "2005", - "2000" + 2014, + 2010, + 2005, + 2000 ], "xaxis": "x", "y": [ 92.1, 89.9, - 82.24363123253028, - 79.8, - 63.151939695501895, - 92.1, - 89.9, - 82.24363123253028, 79.8, - 63.151939695501895 - ], - "yaxis": "y" - }, - { - "hovertemplate": "Country=Senegal<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>", - "legendgroup": "Senegal", - "line": { - "color": "#FF97FF", - "dash": "solid" - }, - "mode": "lines", - "name": "Senegal", - "orientation": "v", - "showlegend": true, - "type": "scatter", - "x": [ - "2018", - "2017", - "2016", - "2015", - "2014", - "2012", - "2010", - "2005", - "2018", - "2017", - "2016", - "2015", - "2014", - "2012", - "2010", - "2005" - ], - "xaxis": "x", - "y": [ - 47.693668685983106, - 37.6, - 43.7, - 38.6, - 43.6, - 43.38431171312834, - 43.8, - 36.1, - 47.693668685983106, - 37.6, - 43.7, - 38.6, - 43.6, - 43.38431171312834, - 43.8, - 36.1 + 63.224267549675346 ], "yaxis": "y" }, @@ -17427,7 +15524,7 @@ "hovertemplate": "Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>", "legendgroup": "Uganda", "line": { - "color": "#FECB52", + "color": "#FF97FF", "dash": "solid" }, "mode": "lines", @@ -17436,21 +15533,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2011", - "2011", - "2011", - "2011", - "2006", - "2000" + 2016, + 2011, + 2006, + 2000 ], "xaxis": "x", "y": [ - 80.1, - 79.5, - 80.1, + 80.3, 79.5, 75.1, - 63.65204916406636 + 63.98945399904411 ], "yaxis": "y" }, @@ -17458,7 +15551,7 @@ "hovertemplate": "Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>", "legendgroup": "Zambia", "line": { - "color": "#636efa", + "color": "#FECB52", "dash": "solid" }, "mode": "lines", @@ -17467,17 +15560,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2013", - "2007", - "2001" + 2018, + 2013, + 2007, + 2001 ], "xaxis": "x", "y": [ 80.4, 83.5, 72.5, - 80.95207762610593 + 80.82017338703842 ], "yaxis": "y" } @@ -18307,13 +16400,13 @@ 1 ], "range": [ - 0, - 15 + 2000, + 2018 ], "title": { "text": "Survey" }, - "type": "category" + "type": "linear" }, "yaxis": { "anchor": "x", @@ -18333,11 +16426,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOy951uUd96///07vk9+z3Pv93azJblzb8nuqptE12STTdnNJtFYYoklRsWuGHsviBoVsYANJCqiqCDSld6k9zadgYFhCjPz+j1gmQjMAO+B4ZqR13kc53GE/mG4uJzrzIf39X9ACCGEEEIIIYQQQgghRBH+j9ILIIQQQgghhBBCCCGEkKkKAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhCgEAy0hhBBCCCGEEEIIIYQoBAMtIYQQQgghhBBCCCGEKAQDLSGEEEIIIYQQQgghhChEQAfa/JJqpZdACCGEEEIIIYQQQgghfiMgAq3NZkddUzsqaprcpmYX4dfvLFJ6aYQQQgghhBBCCCGEEOI3FA+0mbml+J/ZS/Ha23MH+d9/mY/N+84rvTxCCCGEEEIIIYQQQgjxG4oH2r9/vRmRNx7A2NmN33+wHKZuM9Kfl2D5pmNoalUrvTxCCCGEEEIIIYQQQgjxG4oH2l/OXAi7vQ8A8Lv3l7tfX17diK9W7lFqWWOmTd9LBdr6nNB2WhVfRzDJ40ymwWSDxeZQfB3BZI+lD509dsXXEUz2OVzQGC2KryNYVHVY4HS6FF9HMGnstsFs5blMYq/VgY5um+LrCCadLkBlUH4dwaLGaEGfg+cyiZ09dvRY+hRfRzBpsTlg6OL1kkReL8nUdVph63Mqvo5gkxB/o3ig/eOHK907Zad/shoqrQEA4HA48Zt3Fyu5tDGh9Eki2GSglcvjTCYDrVwGWrkMtDIZaOUy0MploJXLQCuTgVYuA61cBlq5vF6SyUDrm4T4G8UD7b6TV/H7D5ajo9OErQci8M+lP+D67WRs2H0Wc+ZuUnp5o6L0SSLYZKCVy+NMJgOtXAZauQy0Mhlo5TLQymWglctAK5OBVi4DrVwGWrm8XpLJQOubhPgbxQOtw+HE9dvJsNrs6O7pxdofTmH6p9/jq5V7UFbZoPTyRkXpk0SwyUArl8eZTAZauQy0chloZTLQymWglctAK5eBViYDrVwGWrkMtHJ5vSSTgdY3CfE3igfaYEfpk0SwyUArl8eZTAZauQy0chloZTLQymWglctAK5eBViYDrVwGWrkMtHJ5vSSTgdY3CfE3igdae58Dj9PycOHafZy+dGeYgY7SJ4lgk4FWLo8zmQy0chlo5TLQymSglctAK5eBVi4DrUwGWrkMtHIZaOXyekkmA61vEuJvFA+0K7Ycx1tzluGL5bsxf/X+YQY6Sp8kgk0GWrk8zmQy0MploJXLQCuTgVYuA61cBlq5DLQyGWjlMtDKZaCVy+slmQy0vkmIv1E80P754+/QY7YovQyfUfokEWwy0MrlcSaTgVYuA61cBlqZDLRyGWjlMtDKZaCVyUArl4FWLgOtXF4vyWSg9c3JwuVyIfLGA8z6Yj2mTZ+PP/1jFXYfj4K51+qXr9fncCD+UZZfPjeRoXig/WzJDvQ5HEovw2eUPkkEmwy0cnmcyWSglctAK5eBViYDrVwGWrkMtHIZaGUy0MploJXLQCuX10syGWh9c7I4ePo6Zny2Bpm5pegxW1BT34pFaw9i/vf++Qvz8upGLFp70C+fm8hQPNBm573A2h9OITk9H4VlNSh6UTvIQEfpk0SwyUArl8eZTAZauQy0chloZTLQymWglctAK5eBViYDrVwGWrkMtHJ5vSSTgdY3J4OOThOmTZ+PkvK6Qa8391pw/XYy7H0OOJ0uHDsXi1lfrMfsLzcgZNcZdPf0r2/ajAXQGTrdHzfwckVNEz6cvwVHz8ZgwZoDmPXFeqQ/L0GP2YK/fLwav3n3G8xfvR/l1Y34aMFWhOw6g/nf78fHi7YjMSXH/fmeZBbgowVbJ+WxmIooHmgPn7mB196e69VAR+mTRLDJQCuXx5lMBlq5DLRyGWhlMtDKZaCVy0Arl4FWJgOtXAZauQy0cnm9JJOB1jcng+SMAkz/9PsR3ych6Rn+/vVmmHstcLlcWL09HIfP3ADgPdBW17fgv/40D5m5pQCAxJQc/GvpD+7/HthBW13fgl+/swgJSc8AAJE3HmDFluPuz7d533mcjYqfuG+YDELxQPu/73+LnMIKWG12pZfiE0qfJIJNBlq5PM5kMtDKZaCVy0Ark4FWLgOtXAZauQy0Mhlo5TLQymWglcvrJZkMtL45Gdx5mIHPluwY8X1Cdp1B5I0H7pczc0vdu1pHCrRvzFrifn1FTROmf7IawPBA+/rMhXA6XQAAjc6I12cuhKnbDKfThd+9vxzNbZqJ+WbJMBQPtMG+PVrpk0SwyUArl8eZTAZauQy0chloZTLQymWglctAK5eBViYDrVwGWrkMtHJ5vSSTgdY3J4PnBRV4+6NVI77PorUHcTsxw/1yWWUD/vSP/o8ZKdAOvA+AQS8PDbRDv/7cVXsRdz8NuUWV+PSb0PF9g2REFA+00XFJOH81AeZei9JL8QmlTxLBJgOtXB5nMhlo5TLQymWglclAK5eBVi4DrVwGWpkMtHIZaOUy0Mrl9ZJMBlrfnAy6us34zbuLkZ3/YtDrrTY7Qg9FwtxrxYbdZ3HxZqL7bRk5pfjHwm0AgF/9dRE0OqP7Y157e6440L78fgBwMz4Fi0MOYffxK4i8/gDEfygeaGd+tgbTZizAa2/PxW/fW4w3Zi0ZZKCj9Eki2GSglcvjTCYDrVwGWrkMtDIZaOUy0MploJXLQCuTgVYuA61cBlq5wXq9VKtvRLW+akIt0CWNarEhGV02g+Lff7A5WZy+dAd//HAlUjIL0WO2oKFZhcUhh7BqaxiA/qD60YKtMPda4XA4sXLLCZyIuAUAeOdf6/C8oAIAEP8oC//1p3mjBtrk9Hz8c+kPcLlcHgNtp6kHv3l3Mf744Uq0q/WT8RBMWRQPtE8yC5D2rMSrgY7SJ4lgk4FWLo8zmQy0chlo5TLQymSglctAK5eBVi4DrUwGWrkMtHIDPdC26I0THhXLdLljCoverOl5Oux1qZoLE+oT9SncV4e+MtZ2Zyl+LAWbk4XL5cLFm4l4798hmDZ9PqZ/shpHz8bAbu9zv/3khTjM/nIDZn2xHlv2R8DcawUA3EvKxqwv1mPhmoM4F30Pf/xwJbR644iBVmfoxPRPVuOPH670GGgBYNnGo/h82c5J+O6nNooH2mBH6ZNEsMlAK5fHmUwGWrkMtHIZaGUy0MploJXLQCuXgVYmA63cQAq0Su1WlJitjUWWPhLp2okLi4nqvYrHQOrZJ+pwpKojJtR8zSNkaKJG/LmnayKg6a1X/Hcy2JzKhB6KxNWfkpRexiuP4oH23c9DMOuL9R7925cbMP/7/bh0MxH2PofSS/WI0ieJYJOBVi6PM5kMtHIZaOUy0MpkoJXLQCuXgVYuA61MJQJtIO5W9KS3OJihi0SmPnLK71Z8lUxU75nwqJitiUG+5pHPVnenDH+drmpCrdU3Kn4O8maDXoUyXS4yNdEew+wTdThyNPGo1lWhTc8ZtL46ValtaMX0T1bD1G1WeimvPIoH2uu3k/HHD1di/e4fcfFmIi7HPMSmvecw/ZPViLr1CKcu3cafP/4Oh8/cUHqpHlH6JBFsMtDK5XEmk4FWLgOtXAZamQy0chlo5TLQyvVnoA2W3YqSaJimvYBsw0XuVgxS/bVbcSIt1eVAZa5Do7F6wsJii96o+LnG306166UWvRFlulxka2ORpDk67Fh/rD6CbE0MynXFHn/+DLS+ORU5ejYGf/l4NVIyC5VeypRA8UC7OOQQnmQWDHt9anYRQnadAQBU1jbjLx+vnuyljQmlTxLBJgOtXB5nMhlo5TLQymWglclAK5eBVu5EBNpg360oNbvjItK4WzGgDcTdih53MHqJg81dtWjrrn2ldiv620CfQRuIToXrpXJdCXI09zyerxPVe5ChiUKpLgcNetWon4uB1jcJ8TeKB9pfzlzoHmj8MjabHW/MWgIAMPda8au/LvLrOlwuF8Ii4vDnj7/D/8xeiiM/3nS/rblNg7mr9uJ/Zi/FRwu2Ir+k2v02pU8SwSYDrVweZzIZaOUy0MploJXJQCtXGmhfxd2KnK0Y3AbLbkVJNKwzVEFraZjyuxUlBtIM2mCRgVbuq3i9VKtvdP8POU/n2AxNFIp1aT79zwwGWt8kxN8oHmjf/TwEh8/cQI/Z4n5dr8WGkxfi8N6/Q9DncODQ6Rv4bMkOv64jIekZ3p+3CQajCTpDJ/725QY8ePIcAPDVyj24eDMRDocTac9K8PZHq9wzcZU+SQSbDLRyeZzJZKCVy0Arl4FWprdAO9V2K3K2YuAb7LsVpeptDajRT+3dihJ5kzC5DLRyGWjlvgrXSw16FYp16SPOkR04/4/3azHQ+iYh/kbxQJtfUo235izD//vL1/jjhysx/dPvMW3GArw+cyFSMgtht/fh7Y9WobCsxq/r2LzvPC5cu+9++epPSVi1NQz6ji785t3F6HP8fJOyfyzchucFFQCC/x+CyZaBVi6PM5kMtHJ7LH2w5sbAlH0Dpuwb6Mq7C3114ahq68f/BDFY7bC1o66jmrsVacD4Ku5WlM5W5AxaubxJmEwGWrkMtHIZaOUG4/XSWObI5mjivc6RHY8MtL5JiL9RPNACgN3eh+y8F7jzMAO3EzOQ9qwEnV097re/HEf9xdBAG/84Cx/O34L8kmp8MG/zoPf9PjQcN+6mAADUHRYq0O5wwmCyKb6OYJLHmUxjjx1Wu0PxdQSTZqsDhviFPtmatBQ1mStGtbJwx5gsrwpHZuOBUc1oOzkm09XnkKLhbsVA9aF6D9I0ERPqM00sCrSPJ9RaQ9WE2mBoGvX3sstsR68tUM9l1gBYw3AtNgc6zXbF1xFMOl2A1qj8OoJFfZcVDodL8XUEkyZzH8zWCTyXTYHj1Wp3wNjN6yWJwXC91N7RiUpDKfK09zw+N32o3oNnmli80Oeg2aD261o6TDbYHU7FH5NgkxB/ExCBNhC4l5SNOV9thL6jC51dPfj6u32Y9cV6ZOaW4rPFoYPed/O+87h0MxEA4HC6qECXi4+ZVB5nMp3OqXGcWe3OCftcLpdL8VAXbKa37MOzpoNezW49imzVydHV/IhsfSSy9ZGoND2ZUJvNhdBZGyZUq6PX5+OM5zKZgXwum8jzz0TqcgHOAFhHMMnfS7kuPmYina7+5xkT9fmsdofi35O/5blMbqCey3S2BlR3P0W24aLH55O5HVdR35MNo7190tcWqM8xAllC/I0igfatOcvcN9p6a86yEZ0snE4Xjp+PxTv/WofPluxA+MXb+OfSH1BQWo05czcNet/V208iJv4pgOD7Uwql5YgDuTzOZHLEgdweSx8ytBfwRB2uePgcyWfl6z1anP+91527hviF6Prpa+DS50Gt4+YKWON3jKo5+aR7VMVITvYYC94kTK70JmGUIw580ckRByI54kAuRxzI5YgDuYFyvVSrbxxxjuzA+KCJmCM7HjniwDcJ8TeKBNqktHx0dJrc/z2SSnH+agJCD19ER6cJv/rrIvRabO63vfv5OhSU9gdmpU8SwSYDrVweZzIZaOWO5SZhtfpGj/Mfy3XFXudNZmtivM62VDr2pjRs9hp8vcXe1qSlXkc99F39YlBIdUYvGBJXQz3quLlC8fg7ETqjF4wYjm33dsD1YCes8TvGFJBN2TfGFJD11YWK//74SwZauQy0chloZTLQymWglctAK1ep66UGvWrEObJP1OF+myM7HhlofXMq0+dw4LW352LajAX45cyFeHP2UixaexBNrepxfd5fv7MIKq1hglYZ/Cg+4iBk1xmPr+/u6cXikMOTto7k9Hx8s+4QeswWNLdpMP2T1Sh6UQsAmL96P05fugOHw4n4x1mY+dkaOBxOAAxnUhlo5fI4k8lAK3csgXaybNCrvN4MSBKC09vCkd4SpngIftSyzWMEzq7YiNKiUFQW7HBbUbwHLyrDUVl+Bi1Fkf2WXUVDfRKaKuLQUhQJY85VdOXdgb6q0KPG4iSYsq6NandqhNdo/LL2uBDF4+9EaY9bP6ZdyN2pF8YUkA0vssYUkNUtzT79LjDQymWglctAK5OBVi4DrVwGWrmTdb3UojeiXFeCHM09PFEPnyP7WH0E2ZoYlOpy0KBXKf64eJOB1jenMgOBdiCm9lps2H4wEt+sOzSuz6vv6IKT4yPcKBZoG5pVSMksxC9nLkRKZuEwI288wC9nLpy09dj7HNiw+yzemLUEf/xwJa7fTna/rVWlw1cr9+DN2Uvx8aLtKKtscL9N6ZNEsMlAK5fHmUwGWrmBFGgnS2kILmi7jZzmCKS3hCG9JQzZ7SeR2XwEmQ37kdmwPyBCcFZN6GBrdyKz8QCKqk7gRWW425Lm6yhpvo4XjbfQUJ+EhvokVOurBind5aFS6b1GY31VIQw1hXC1v4C+qnBMAdmUdW1MAdkaH6p4+J0oh46x6EvYAcf9H4JmjEUgyEArl4FWJgOtXAZauQy0cv15vVStr0KBLgmpmgvDnn8lqvcgQxOFYl0aavWNij8OY5WB1jenMkMDLQBk5JTivX+HuF9OySzEB/M246//XIv5q/fDYOz/q/lLNxOxae85hOw8g69W7sHHi7ajTaUD8PMO2oqaJnw4fwuOno3BgjUHMOuL9Uh/XjK532QAoFigTc0uwufLduK1t+fijVlLhvnHD1ciLCJOqeWNGaVPEsEmA61cHmcyGWjlTsVAO177HC5ojJZR389bCK5tzUFR47VBFtddRml5GPKqfw6/mXV7kVUd6vZRq7Ih+GFbf/R92fS2k0hvO4n8pivu+FugS3JbrEtHjaEaelvDuEPweNTWV40YkQfsyrszpoBsSTwwpoA8VcZYvKxSYywYaOUy0MpkoJXLQCuXgVbuRF4vvTxH1tNzoUCZIzseGWh9c7IJ2W7H91smX08MDbTmXgtCdp7BgVPXAABqbQfe+tsyVNY2AwAirz/A8s3HAQBRtx7jf9//FjpDJwBg59HLOHo2BsDPgba6vgX/9ad5yMwtBQAkpuTgX0t/8N+DG6AoPuJg3nd7lV7CuFD6JBFsMtDK5XEmk4FWLgOt3LEG2klT3YaGuseDbKy6h9bCCFS+OIXS8jCUloehrOwIyvNDUZ4fitLin8Pvs/KQQT5q2ar4ruCB8JvedhJp6nNI1VxAquYCsrWxgwLwyw4NwAMG8p8ZDqhuaR4Uirvri2FtLvV5jIU5OWzKjbFw3tmAvoTgGWMRCDLQymSglctAK5eBVu54rpdeniPr6cZegTpHdjwy0PrmZLNgpV0RPTEQaH/73mK8MWsJfvHneZj95QY0NKsAADfupmDBmgPu9zf3WvDff5kPe58DUbceY/mmY+63XY55iA27zwIYHGjfmLXE/T4VNU2Y/slqfzysAY3igRaAu7ID/eMEIm88QHJGgYIrGjtKnySCTQZauTzOZDLQymWglRtwgdYPepxx+zwarYURg1Q/DYX6aShqc0Pd8bc6Y4Xb8uerhgXgQArBA+F3qEqH4ECbQTvaGAv3OIuyTI6x8OLQMRbenMwxFgy0Mhlo5TLQymWglSu5Xnp5jqynG3u9PEf2VQmyQ2Wg9c3JprNLGT0xdAdtn8OBtGfF+P0Hy6HVG3H+agJ+/c4iTP/0e7dvzl4Krd6IqFuPEbLz53tPvfzyy4H2T/9Y5X6foS9PFRQPtJdjHuLN2UvhcDhh7OzG795fjg/nb8HvP1iOc9H3lF7eqCh9kgg2GWjl8jiTyUArl4FW7lQItBOpqsPinkE72jgBS+IBmB+EusOv+mko9PeXwRC/EIb4hWhI/XZQAH5VQ3BpRzLazfVBuyNYCW3NpeiuL570MRbO6PmKx98J2YEcBGMslJaBVi4DrVwGWrmjXS8NzJH1dGOvl+fITpV/XxlofXMq42kGLQB8OH8LHqXm4u7DzEG7ZF+GgXbsKB5oZ3y2xn3TrcjrD/Dxou1wuVyoqW/FX/+5VtnFjQGlTxLBJgOtXB5nMhlo5TLQymWglanqsMDpnNio4WmmrLfgO9Jc2IHwO9SWpCUeQ3B1xgqvIfhJ/eaADcGZmmivO4LLdSUeQ3Aw3fCkTR/4M2iHjrHwJsdYeHesAXmix1ioVHq06RlofZGBVi4Drdyh10tjnSMbbP/OTZQMtL45lfEUaHOLKvHrdxahsUUNnaETv/9guXvkQUlFPXYduwyAgVaC4oF22owFcLlcAIAFaw4g4loCAMDpdGHajAVKLm1MKH2SCDYZaOXyOJPJQCuXgVYuA61MfwTaidZTPPMUyjxFsbHcCGy8ITi7YoN7ZnByk7IR+L46FE/UpwIuBAd6oA1EXx5xwDEWY9PR9kLxn1swyUArl4FWbq/DiDJdLjI10aPOkVV6rYEgA61vTmUGAu20GQswbcYCvD5zIeZ8tRGJKTnu93maVYQP5m3Gu5+vw8eLtiO/pAoAA60ExQPtjM/WoLy6EW0qHaZNn+8u7nVN7UHxA1H6JBFsMtDK5XEmk4FWLgOtXAZamcEQaCdaT8HXU9jqTo2Y0B2PkhA8MDN4IPxmVYcis+GA26SWXUEVgiu6UlDakfzK7AieDINtBu1YArK/x1gw0MpkoJXLQDu6A3Nks7WxU3aO7HhkoPVNQvyN4oH2SuwjTJuxAL+cuRDrd/8IADB2dmP2lxtw6PQNhVc3OkqfJIJNBlq5PM5kMtDKZaCVy0ArcyoG2vE69CZhnnY3jjX4+mOHoqcIrE3eiNaMHe7wW54firKyIyitOInSipN4VncImQ0HkN58HOmtYW5T2o4EVQgesEyX6/WGcUofP2M12AKt0nLEgVwGWrkMtJ6t1lchR3PP4xzZR5q9yNBEoVSXM2XmyI5HBlrfJMTfKB5oAaCmvhUFpdVwOJwAAHufA9dvJ7tfBoCquhalljciSp8kgk0GWrk8zmQy0MploJXLQCuTgVbu0EDrDz3tPBzrn6lPxp+S2+PWQ5+8A+qnP9v+7ChaCyPRUHLeHX5LaiJQ1HgN5W03UNpyHVktZ5DWfgap6ohBPlGHKx6CkzRHvc4JViIEM9DKZKCVy0Arl4G234E5sqmaCx7Pp6nqCBTr0lCrb+T1klAGWt8kxN8ERKAdC2/MWqL0Ejyi9Eki2GSglcvjTCYDrVwGWrkMtDIZaOVORqCdaMf6p+ae/qz85T8h99vs0Jsrht1Mypx8EqbsG1AVXEJrYSRaCyPRVH4LDfWP0VD/GDUN91HUeA2FzbHI1zwaZIYmalgEDrYQXN3zFIWv0I5gf8tAK5eBVu5UDbQNepX7xl4jzZGt1g0/J/F6SSYDrW8S4m8YaMeJ0ieJYJOBVi6PM5kMtHIZaOUy0MpkoJUbjIF2otXWV4mCr/P+DvQljP3GbePVGb1gWPC1JB6AKfvGILvy7kJfXQh9dSGa656iof4x6pvSUa2rGuTQADxgtibGYwhOVUcETQge647gQJ8VyUArl4FW7lQJtC36/ht7jTZHtlxXPOq5gddLMhlofZMQf8NAO06UPkkEmwy0cnmcyWSglctAK5eBViYDrVwGWrm9Vgc6um1e3+7pxm3G4qRhwdecHDZsh69Swdcav2NY8DVl33AH35d9+Xtt0KuGBWBPIbjKlIICbeCH4ET1Xq8hOEdzz2MILtalT3gIZqCVy0Ar91UOtOW6Eq9zZBPVe3yeI8vrJZkMtL5JiL9hoB0nSp8kgk0GWrk8zmQy0MploJXLQCuTgVYuA63c0QLtRDueG7fZ40ImZY7vaMHXVXQL3dk3YHiRNSz4qlT6UR+DsYbgYNkRPFoILtInoar7qd9D8KskA63cVynQ1uobUaBL8jpHNkMT5Z4jO56vw+slmQy0vkmIv2GgHSdKnySCTQZauTzOZDLQymWglctAK5OBVi4DrdzJDrQT7ViDr9I3bhsafLtTLwzb4etr8PASVYAAACAASURBVPWmLyE4RxPvNQQnqvcEdAierB3BkyEDrdxgDrRjmSObr3nkcY7seOT1kkwGWt8kxN8w0I4TpU8SwSYDrVweZzIZaOUy0MploJXJQCuXgVZusAdaf+jpxm0vh15XYSy6s5ULviPduO1ljUVJw4KvuqV5wh+vFr3Rawgu1qWhUPcYlV1PgiYE31eHeg3B2dpYr3OCvYVg6Z+dt+kZaH0xmAJtg1416hzZHE38mObIjkdeL8lkoPVNQvwNA+04UfokEWwy0MrlcSaTgVYuA61cBlqZDLRyGWjlMtDKdboAlWHs7y+9cdvLOqPnB0zwffnGbQNq60ff0TdRM2hHC8HBtiN4pBCca4hDeecTv4fgV8lADrQteuOoc2SzNTE+zZEdj7xekslA65uE+JugCbR/+PsKpZfgEaVPEsEmA61cHmcyGWjlMtDKZaCVyUArl4FWLgOtXGmgnWjHGnwD5cZttns74Ew+NGHB199OdAh+rD4SsCF4snYET4aBFmir9VVe58gO3Nhr3HNkdb1ob+2CulYLbVkr9Hl1MKRXwvioGF13c2C6mYnui09gPvMAlmN3YN0bA/u2KDhCLsC58jQQ/1zxxymYZKD1zalMn8OB196ei2kzFuCXMxfizdlLsWjtQTS1qsWf69LNRGzZHzHs9Reu3ff4el8YWO8v/jxvkHPmbpqQz+8vFA+0NpsdUbceu19OzijAso1Hse/kVZh7LQqubGwofZIINhlo5fI4k8lAK5eBVi4DrUwGWrkMtHIZaOUqHWgnWnVL87DgayxOCpjgO5Ybtw04NPjqqwsVf3xH0lsIru7MQ5kx2WMMDsYQnKmJ9hqCy3UlHkOwNFwqHWhr9Y0jzpFNVUd4nCPb3t4FdZ0O2rI26PLrYciohDGpFJ3xeTDFZKH70hOYzySi9/hdWPfFwB4ajb71kXCuOgMsDgO+OeG711MV/x0IJhlofXMqMxA8VVoDAKDXYsP2g5H4Zt0h8efyFmh7LTZ090zM4zx0vcGC4oF228EL+OSb7XA4nKhrasd//2U+dh+/grmr9mLzvvNKL29UlD5JBJsMtHJ5nMlkoJXLQCuXgVYmA61cBlq5DLRyX7VAO9EOvXGbsaYQzobcYcG3OzViWPC1x4UEVPCd6Bu3jdWJnkHrLQSX6nK83jAukEPwE/WpYRE4Sx+JbO1Vv4fgAd1zZNUxSFINf0ye1h9BUcEFND6MQVdkAnpPxMO6Pxb2HVfRt+EinN/9CCwZZ2D95gRcy0/DsTYC9q2XYdt9A5bDP8F8KgE9F5JgupaGrtvPYXxYhI7Ucuif10Fb0gJ1jQaqlk7AxecYEhlofXMq4yl4ZuSU4r1/hwAAil7UYtYX691ve/nlizcTsXnfeXy0YCtOXogbFGhVWgOmf7IaecVVg3bQvjFrCa7dTsaS9Ucw+8sN+PHKXffnjol/inc/D8GMz9bgq5V70K4ZHmFHC7SFZTX4aMFWvPOvdZjz1UY8KygHANjtfQjZdQZ//edazPhsDdb9cBoWqw0AkJjyHHPmbsLsLzfgq5V7UNfU7vPj6Q3FA+3/vv8ttHojAODo2Rgs23gUAKDv6ArYsQYvo/RJIthkoJXL40wmA61cBlq5DLQyGWjlMtDKZaCVy0Arc7wzaIcGX31VIQxlmcOCrylLuRu32ePWDwu+3akXfA6+wXqTsFctBD+tPYLMimPIfHEUWaWHkVV8EFmFB5BW6n1+cX7KHrSePgTD3iOD7Np+1HNgXRYOx5pz6NtyGbad12E5FIfe8HvoiXgMU3Qqun56js7EQnQ8fQH9s1poi5uhqVJD1dyBNk3PuH5evF6SyUDrm5NN19KP0PnNB5OuJ4YGT3OvBSE7z+DAqWsARg60Ubce4/cfLEdTqwbAzztoLVYbPl60HXcfZgIYPOLgrTnLcCLiFoD+Njht+nyYe60wGE2YNmMBWlU6AMCW/REIPRQ56nqH8sG8zYh/lAUAuPsw073WxJQcLFhzAC6XC06nCwfCryG/pBrtaj1++95iNDSrAADRcUn4bMmOsfwYRSgeaF+fuRAOhxMA8I+F23ArIRVA/wP6y5kLlVzamFD6JBFsMtDK5XEmk4FWLgOtXAZamQy0chlo5TLQymWglTlRNwmbSIcGX31VYUAFX2fMCvSq6hR/nALVWn3jzwFYU4Ga1lKo20rRUJOBoopbKC69iZLCayjNjUJp1kWUpUXgecExZBUdRFbBfmTn7UN2zh48e7Yb6UU7FQ/BnnYEjzYaokyX63VO8FgfR14vyWSg9c3JxvjJ7xTREwPB87fvLcYbs5bgF3+eh9lfbnAHy9EC7cI1B91vGwi0a3acwskLce7XDw20FTVN7re9OXspWtq1AODe0QoA8Y+zsGDNAa/r/d37y/GHv69wG7LrDID+nbJOpwsAoNEZ8d9/mQ8AyC+pwp/+sQpPs4pgtdndny/2Xqp7MykAWG12/Nef5k3YSIYBFA+0Hy3Yiht3U/DgyXP8cuZCdHSaAPRvl/7blxsUXt3oKH2SCDYZaOXyOJPJQCuXgVYuA61MBlq5DLRyGWjlMtDKDMRAO9GO9cZtlsQDsMaHwhk9f9RIa2kqUfz7mhS1ZqiajdBUq6EtaYH+eR06UsthTCxC1+3nMF1NQ8+FJJhPJcBy+CfYdt2AfctlONaeh+vbU+MfEbD0JJzfnUXfxovQh0eiJv5H5OQf8xhS0xtOoaj6J1TVZqGg5T7yVQ+H7QjO0ER53BH8RB2ueAhO0hwdFIAf18e6/9ufIfhVkYHWNycbl1EPV4du0vXE0B2pfQ4H0p4V4/cfLIdWbxw10K774bT7bZduJuLN2Uvx+syFiL2X6n790ED78g3IBl52uVw4dek2Pv0mFJ8tDsW7n4dg/ur9XtdbXt0InaHTbVe3GUD/Ttkvlu/CZ4tD8fGi7fjFn+e5PzYx5Tm+WrkHv31vMTbvOw9zrxVno+KHjWD9zbvf+HSTtJFQPNBm573A795fjtdnLkTUrUcAAJ2hE7/66yLcTsxQeHWjo/RJIthkoJXL40wmA61cBlq5DLQyGWjlMtDKZaCVy0ArcyoE2pHUVxeiK+8uzMknYY3f4TXIOm6ugCXxAExZ19DTUAKzqVPxtY9JXS9UrV1Q12qgLW2BPqcehrQKGB8Vo+tuDkzX0tEdmQzz6fuwHLkN656bsG+9AkdIBFzLxx9YsTgMzlVn4NoYib4d0bDuj0Hv8bsw/5iI7sspMMVkoTM+D8akUhgyq6DLb4D2RTvU9To0trf0z5HVxnq8sdcTdThyNPEo1xX79TEctCP4Jct1xV5HQ0hCcEzVMVzKicTh2CfYerIU3+9uwYKVdixYaceKrVrsOJeH82nX/BaCXzaYQzADrW9OZbyNDPhw/hY8Ss1FSUU93v08xP36jJzSQYE2ZOcZ99su3UzE19/tQ2VtM373/nK0/WdcwVgC7cOnufhg3maY/hNabydmjBhoPY040Hd04fWZC1Hb2AYAaFfrBwXaAYyd3Zi/ej8iriUg7n4avt14zP22gR20PWbLKI+cDMUD7QB9Dof7v10ul/vBCnSUPkkEmwy0cnmcyWSglctAK5eBViYDrVwGWrkMtHIZaGVOpUD7coy1x60fYWZtiDvG6quGz6Gd7Bm07W1dUNfqoH3RBn1eHQzplTA+KkFXfC5MNzPRffEJzGcewHLsDqx7Y2DfFgXH+gtwrjwNLB5vYD0B58rTcKy/APu2KFj3xsBy7A7MZx6g++ITmG5mois+F8ZHJTCkV0KfVwftizaoa3Vob+tyfw8WmwOGrpGvl1r0RpTrSpCjuYckzdFhYfGx+giyNTEo1eWgRW9U/HiSWlZnQWa+BVFxNoRFWLHzsM0dYsfqrpNtuJpUgqymJ8jXPEK2JsbrnOBA2xE83hA82s+cgdY3pzKegmduUSV+/c4iNLaoodIa8Ot3FsHcawUAhB6KHDHQDoTYs1Hx+Pq7fXC5XGMKtFG3HmPphiMAgK5uMxasOeBxFuxIgba6vgX/+/63sNnscDpdOPLjTbz29lxYrDZciX2Ekxfi4HK54HK5sGnvOVy4dh8qrQFvzl7qXtOlm4n4YvnucT2mnlA80Cal5Xs1MeW50ssbFaVPEsEmA61cHmcyGWjlMtDKZaCVyUArl4FWLgOtXAZama9ioFWp9NBXF8KUfQOWxAOjxlhzchi68u5AX1U4ps8vDbTt7V1Q1+ugfdEOXX4DDJlVMCaVojM+D6aYLHRfToH5x0T0Hr8L6/4Y2EOj0bc+Es5VZ4DFYeMfE7D8FBwhEbBvvQLrnpuwHLkN8+n76I5MhulaOrru5sD4qBiGtAroc+qhLW2BulYDVWsX2nQT8zPxFmir9VUo0CXhifrUsMCXqN6DDE0UinVpaNCrFD+uxmpda3+IvXXfinNRo4fYNVtt+OGQDVdiLbiXbEVmXv/jBAB5Lyy4EmvBpl3DP8fm3Tbcum9F3gvZc7cGvcrrDeO87QgO5BCcqN6LVM0FpGsvIMsQOSgE52jueQzBxbp0n0Pwq+ZUZiB4TpuxANNmLMDrMxdizlcbkZiS436fvWHR+GDeZiwOOYzIGw/w3r/7d9SOFGgdDic+/SYUUbcejSnQGowmfLZkB2Z9sR7zv9+PwrIa/OHvK9w3Kxu6Xm83Cduw+yymf/o9PlsciqzcMvz721345JvtMBhNWLL+CP7y8WrM+GwNVm8/CXNv/y7Zx2l5+GDeZvfXbm7TTMAjOxjFA+1bc5YN9m/L8Nrbc/H6zIWYzRm0r5wMtHJ5nMlkoJXLQCuXgVYmA61cBlq5DLRyGWhlBnugHRpjHTdXeI2x1vhQcYxt0/eiXd0NdYMBmvJ26AoaYc6tgzWjAp0J+TDFZqP7Sgp6zj5E74l4WA/EwrbjKvo2XoTzu7NwLT05/sD67Sk41p6Hfctl2HbdgOXwTzCfSkDPhSSYrqah6/ZzGBOL0JFaDv3zOmhLWqCpVkPVbESb1qz4z6hN/3OgrdU3oliXjlTNBY+xLVUdgXzNI9TqGxVf81gcGmKXhXiPscvW9YfYc1FWxCb0h9i6Vu/Pu4ZeL5XV9Qfcg+HW4ZF3W//nTcoMnGvSVzUEezKYQzAh/kbxQOuJHrMFR8/GDBoYHKgofZIINhlo5fI4k8lAK5eBVi4DrUwGWrkMtHIZaOUy0MoMpkCrbmmG4UUWTNk3YI3fMWqM7U6NgLE4CbqaCqiaOqCpVEFX2AR9dg06UsrQeb8AplvPYIp+ip7zj9Abdg+Wg7dg23kNfZsuwrn6LFxLw8cfWJeFw7HmHPo2X4Jt13VYDsah92QCeiIewxSdiq6fnqPzQSE6nr6APrsGuqImaKrUUDV3oE3To/jjPh4b9CqU6XKRY7iGh+p9w6LXZM2RHa+Z+RYkJFsRFWfDzsM2rNk28q5YSYj15mjXS0kZVoRFWLFs3eC1LAvpH6GQkOzb1w02B0JwfUc1NL31YwrBOZp4ryE4Ub1nSoVgQvxNQAbaAT5asFXpJYyK0ifZYJOBVi6PM5kMtHIZaOUy0MpkoJXLQCuXgVYuA63MQA20g2LsnR1wXvwGODMfCP8GOL4UOLwcOPAdXPs2oO/AftgPnoLt4EXY9l2Fbed19G25DMeac3Atm4DAuvQknKvPom/Txf54ezgOfacT0HPuEUxRT2G69Qyd9wvQkVLWH1gLG6GpUEHVaEC7ulvxx3IyHZgjm62NHXGObLmuOGB2EL5s3gsLkjJlITYswoorsRZk5llRVjdxz6Mk10t5Lyw4F2X1OAph5+H+UQgTubZA1N8zaFv0Rq87got1aR5vFOdpdEcgmaq5oGR2IlOEgA20PWYL/vjhSqWXMSpKn1yDTQZauTzOZDLQymWglctAK5OBVi4DrVwGWrkMtDInJdDqzFC1dEJdo4G2pAX653XoSC2H8WERum4/R8/Fe7CGXYF9zyk4txyCa90e4Lu9wPJDwNKj4w6sWBIG53c/om/DRdh3XIV1fyx6T8Sj5+xDdF9JgelWNjrv5aMjuRSGzCroChqhKW+HukGPdpVp2Pcz2TcJC3Sr9VXI0dwbcY5sfXcB2js1iq91wJdD7KFwKzbvHjnEbtplw8Hw/hCblDE5sdPX66WyOgtiE0YehSCdWzsRtuiNXnd5jmaZLtfrjcXcu0gNyag0pQx7fbY21uuO1NFMVO9VPKL6W0L8jeKBNmTnmWGu2hqG6Z+sxvJNx5Re3qgo/Q9msMlAK5fHmUwGWrkMtHIZaGUy0MploJXLQCuXgVbmmAKtrheq1i6oa7TQlrVCn1sHQ1oFjI+K0XU3B6br6eiOTIb5zH1Yjt6GdU8M7FuvwBESAdeK0+MPrN+cgHPlafStj4Q9NBrWfTHoPX4X5jOJ6L70BKaYLHTG58GYVApDRiV0+fXQlrVBXadDe3vXhD9mUz3QjmWObLEubdAcWW83CfO3ZXX9N+yKiuvf6SoNsf4OmbX6Rq9R0mD3/rZqfRWKdemjRsvslqe4mlSGA+dbsHRd76DvdUlID3afq8CV9Md43BQ15mipdFAMFp+ow72OURhNb6MZxqK3Xb7eJMTfKB5oQw9FDnPPiShc/SkJ5l6r0ssbFaX/0Q82GWjl8jiTyUArl4FWLgOtTAZauQy0chlo5TLQera9vQvqWh20L9qgy6uHIaMSxscl6L6XB2f8c3RffALzmQfoPXYH1n03Yd8eDUdIJJyrzgCLxx9Ysew4sPwgsHofsHYXsCEU2LwV2L4Rrv2h6Dt5GJYrkTDdT4bhWTm0Za1Q12rR3tqFNp3yj9/LTrVA26BXoViXjkxNtMcdhQNzZKt1VV4/hyTQ+rLDMreuHg/zavHjrVocON+CbYe1I4bY77aYsPWQFqdjq3E1qQxxuU993mXpaZRDoHr5eST2XsnEii26YY/J1pOlOBF/HzFVx/zytRPVe3wOlhmaqFHDZJHuMSq6ngx7fakuRxwtBwzEMRwTLSH+RvFAG+wofZIINhlo5fI4k8lAK5eBVi4DrUwGWrkMtHIZaOW+qoG2XWWCul4PTXk7dAUNMGRWwZhUis57eTDFZqH78hP0nE1E7/F4WPfHwB4ajb4NF+H87kdgSdj457AuPwXHugjYt16BbfdNWI7chvlUArojk2G6lg7ztQRYrl6F9VIYHOe3AacWAme/BiK+HHTzLntcCCyJB2DKugZ9VSFUKr3ij63UyQ60DXqVz38aPpZdlt7M1ESPGh+fqE9N6i7LO037cCknEifi72PvlQxsOFSDxSEmryF2ybpurD9Yi4M3k3H6URwuP49UPJIOjdveouQzQ+SI0TJHEz+uXZa5tfW4ek+NDbt6hj1uG3f3IPKWFullDcOipdK/f9709wzaV1VC/I0igTbq1uMxG+gofZIINhlo5fI4k2kw2VDT4EBmvmWYr/rAf19loJXLQCuTgVYuA61cBlq5gRpo2zXdUDcYoKlQQVfQCEN2NTqelKIzIR+m2Gx0X0lBz7mH6D0RD+vBW7D9cA19Gy/B+d1ZuJaeHH9g/fYUHGvOw77lMmy7bsBy+CeYwxNgjnwM561MdN1+DmNiETqevoD+eS20xc3QVKuhajKiTWt2fx8qlR766kKYsm/AkngA9rj1gwLs0BhrTg5DV94d6KsKJ/Tx9DVYlutKfA6WOZp7SNVcQIYuEpn6yFd2l6XSDgTImzn3cCY+CwevFGPToWYsCRkeEn8OsT3YdLAVx6/U40J8BeJzcpHVNHw3pTfHs8uyQa/yyzljMq+X6lotuJfcP7d22brBYyDWbOsfD5GUGdjXuwy0vkmIv1Ek0H44f8uYnSxcLheOno3Bu5+vw7ufr8PmfefRa7EBAJrbNJi7ai/+Z/ZSfLRgK/JLqt0fp/RJIthkoJXL40ymwWTD3qPe/0zLmzsP2zwaFtF/UwRPeorAmfkW1LUGV7hjoJXLQCuTgVYuA61cBlq5/gq07ZoeqJo6oKlSQVfYBH12DTpSytD5oABdcc9gin6KnojH6A27B8vBW7DtvI6+zZfg+P4cXEvDxx9Yl4bD8f059G2+BNvO67AcjEPvyQT0RDyGKfoptAkpaM54jMacp2goykR9RQ7q6gtQ01qKam2l12BZ11GNZnORxyBZqH6AkubreFEZjoriPajOWY+azBWDzC9ei2fl65FVE4rMut3IaDqE9NaTvAHPBPpYfcTnPw33tssyQxM14tfM0EShWJfmc7Qc+vsz0oiDzHwLEpL7n5vuPGzDmm0jz4n94VD/c9nYBCsy86xB9xx1rCp5vZSUYcW5KCvWbB3+szgUbkVCcuA97gy0vkmIv+GIg/+QmPIcHy/ajl6LDQ6HE8s3H8fpS3cAAF+t3IOLNxPhcDiR9qwEb3+0CvY+BwCGM6kMtHJ5nMk0mGy4crP/CelQPT1xmkyXhXiOwDsP998l1lMEvnXf6vcQzEArl4FWJgOtXAZauQy0cl8OtINuwKOtQk1rGerqC1FXmYOGkiw05qaiOTMJLU8S0XL/Ltru3EL7zetQRUWh8n44qu6eQHXcUdTcPISaawfGZPlP+/Ds2W6PZufsRXbePmQVHkBW8UFklR5G5osjyKw4hsyqE3haf0TxGBgs+hosx3MDnoFg2dxVi7bu2oDYZTlWB27sNdIc2YE/fffH17fYHCitsiEps/+54aFw65hD7JVYCzLzrFPur8YC5Xop74UFV2It2LRr+M9r8+7+5/X+vpnaWGSg9U1C/E1ABNrnBRXYGxaN1dvDsWbHKRw4dQ0FpdWjf+AEEn7xNnYdu+x+OerWY3wfGg59Rxd+8+5i9Dkc7rf9Y+E2PC+oABAY/xAEkwy0cnmcyfR1Bm1mntWj95L7n+wO9VyU1WME/uGQbdifO022a7Z5D8GeInBsfB+S0uxeQ7DSP9NAlIFWJgOtXAZauRMdaFv0Rp//NLxMl+vzn4Zna2N9vgEPd1mOTckuy7T2M0hvPo7MhgPIqg5FceE6VGesGGZV1mqU54eirOwISmojUNgcOyxaluuKp9wNeILhJmENehXKdLnI1sZ6HK/wWH0EOZp4lOuKJ+XnUFLu8Pocb9MuGw6G9z83TcqYeiHWm4F4vVRW9/MoBE/P1c9FKTcKgYHWN6cyfQ4HXnt7Ln7x53nDzCnsb2Nx99Pc7//WnGVoalUP+zyllfV451/rfF7HeD8+0FE80J6NisfrMxdi0dqD2LzvPDbsPosvV+zG//vL14i88WDS1pFbVIm/fbkBHZ0mWG12LA45hNh7qcgvqcYH8zYPet/vQ8Nx424KgMD7hyDQZaCVy+NMZiDfJKyu1eI1BMcmeA7BYRHeQ7CSEXhgJ4CnCHwo3PtYiKRMzzuCA2E3gUQGWpkMtHIDNdAO2mUp1NdgWaBLGlOczNJHIkM3+HVP1KcUj4HBYnrRTjzL3uU2+/luZOfuRXb+/v/sYj2EzNLDyCw/iszKY8ioPoGM2pNIrw9HUVUcCuvuoqA5AfntieIb8Phirb5xwo9vbX0VjEVJ6E69AGv8Dq/zYp3R82GND4Up6xoMZZlQtzQr/rsZqAZioG3RG1GuK0GO5p7Hc0Sieg+yNTEo1eUospu3Ve3E2q2DQ2ywPU+abIPheikpw4qwiOFza5eF9O9+nsxRCAy0vjmVGQi0Kq3B49tdLhf+8PcV7pe9Bdo+hwMdnaZxrWM8Hx/oKB5o35qzDLWNbcNen/asBP8ze+mkrmXHkUuYNn0+fv3OIsxdtRd2ex8yc0vx2eLQQe+3ed95XLqZCADoczjpGHV018BVuQWOpkjF1xJM8jiT6XC64HS5FF+Hv7XaHXA4XR7V6Fwor/JsXELfMH9K6MP5K33Yd2y42/b2KR6Ct+/rw/7jwz1/pQ+37zs9Wl7tWY3O82Mm1QVMyOeZSoKPmUin04Wanqeo7vZsUedPyDZc9MkU3THFY2Aw+EizF9n6SJ8sMsahsiMJlZpEVLUloKrxDqpq4lBVEYOq4muoyo9C1bOLqEqPQNWTH1H18BSqEsJQdfsoWiKOwbD3iE/2rTr+8yzWlWeADZFw7bgK14FbcJ28C9eFh3BeewrnnWy4HhcCWeVwFtTBWdkCZ7MWDm0XHD1WOBzK/w74/XdM3wBnTSqczy/B9WCn1xiL2JVwPfgBzsIYOBtz4erWKr72YNLpcsHlmrjPZ7U5fHrepLU2oKo7BdmGSI+/6zkdV1HXk4UOW7viz/EGHi+l1xFMBtv1Un2zE9Exfdi2d/jz3v3H7XiY4oBa57+v73D2/14q/TgEm1OZ0QLt8s3H8drbczFn7ia0awx4a84yRMclYc5XG/GHv6/Aj1fuAhi8A9bpdOHYuVjM+mI9Zn+5ASG7zqC7pz+E/+qvi3A2Kh6L1h7E37/ejCuxjzx+/A9HLuGv/1yL6Z+sxsY9Z/HyX74HI4oH2vf+HeLx9TabHW9OYqC9fjsZi9YehLnXCofDid3Ho7Dt4AUUlFZjztxNg9539faTiIl/CgBQd1joGO1oy4Ur9yPYXmxXfC3BJI8zmcZuG6w2h+Lr8L+9UBstE2Kv1QFTb5/44worrMguGG5Klg1RcVaPHjpl9bjrVun5wAtW2rHriM2jEVetuPqTbZC37ztx56EN2YVWjzaqrBP283kV1HZa4XS6FF9HMNnQVaZ4oPRkiiYcaZoIn8zTxaNA99gnaw1Vo6oy16PZVDvodQ0dTT7/DDTabmibDdBXtcNQ1AhjdjU6U0phul+A7rhs9EQ9Re+5RFhOxMO2/xbsP1yFY+NFOFf/CCwJG/+NrpafhmNtBPq2XoZtzw1Yj95G7+n7MF9MQveNdHTfzUHX4yJ0plegI68OhrJW6Oq00LZ3jfnfCKcL0AbA8e5vO2qLYMqPR++TcPT9tN5rjHXcXAHrwwPofnYdHTWF0GoNgz6PvssKB89lIk29fei1Oibuc3b0jul5UoOhCSX6DGRpovHQw+iPNE0ECrT95xbl1HeB/AAAIABJREFUn9MN1mpzwGiyKr6OYDKYr5cq6q2Iu9//F2ieRiFERFtRWD6xx4Ohq38HrdLfe7A52fx/JZfxf4svTrqeGC3QdnSaMG3GAvfLb81Zhp1HL8PpdKG+qR3Tps9Hr8U2KLAmJD3D37/eDHOvBS6XC6u3h+PwmRsAgDdmLcGh0/3/bTCa8Jt3F0Ot7Rj08Y9SczFn7ibYbHZYbXbMmbsJCUnPJuzxVwLFA+2W/RF4mlU07PXXbydjb1j0pK1j+aZjuBmf4n65sKwG7/xrHTo6TfjVXxeh12Jzv+3dz9e5Z+Qqvc0+mNS39AdaV+5H6Cv8Bj0Vh2FsfACNqk7xtQWyPM5kBvKIg0A10G8SJp0PfCXW4nUshNIh2JcbxSUke79RnNI/m7HKEQdy6zpL8VCz9z9/brt32J+Fl+pyfP7TcKVvwOMvh86gbdd0Q9VogKZCBV1hI/TZNeh4UorOhHyYbj2DKeopes49Qm/YPVgP3ILth2vo23gJztVn4Vp6cvyB9dtTcKw5j74tl2HbeR2WQ3HoDb+HnguPYYpORddPz9GZWIiOpy+gf1YLbXEzNNVqqJqMaNP0TMpj5nzpJmGvivrqQnTl3YU5+STscd5jrD0uBObkMJiyrkFfVQiVSj/q59YYLehz8FwmcbJGHIw2R/aJOnxS58iOR4vNAUMXR8JJfFWul+pa++fWjjQKISlz/KMQOOLANyeb/5N3ShE9MRBop81YMMiBWOop0L6oanC//ObspWhp1w4KrCG7zgwaa5qZW4qPFmwF0B9oK2qa3G/7YvluJKY8HzaD1mqzu/9728EL7p26wYrigTZk5xlMm7EA78/bhG83HsPikEN49/N1+O17i7Fqa9gg/cnRszFYseW4e0v0sXOxWL7pGABg/ur9OH3pDhwOJ+IfZ2HmZ2vg+M8Wd6VPEsGkRt0AR9UeOPK/dIdad7At+Brm8gPobLgLbXuN4msNJHmcyWSglRvogXYylM4HjrvXh4irr86N4vw9H5iBVq6x2wZNbxsS1Xv+ExdOBXxUmHA1PVA1dUBTpYKuqKk/sD59gc4Hhej66TlM0U/RE/EYvScTYDkYB+eeG3BsuQzH9+fgWho+/sC6NBzO1WfRt/lSf2A9eAu9YffQc/4RTNFPYbr1DJ0PCtCRUgZ9dg10hU3QVKqgaupA+yQF1vEazIFWpdJDX10IU/YNWBIPwHFzxagxtivvDvRVhT5/TQZauf4KtC/PkfV2Yy8l58iORwZaua/q9VJmnhXnoqweNxgcCrfi1n3fbhTHQOubk43Kbka7AnrClx20L8+gHXj55cC6aO1B3E7McL9PWWUD/vSPVQD6A22rSud+25L1R3Djbsqgj+809WDzvvP4eNF2fLZkB/7w9xU4femOj492YKB4oN159DL2nIgak/6kx2zB+t0/4p1/rcM7/1qHxSGH0K7pP/haVTp8tXIP3py9FB8v2o6yygb3xyl9kgg2B24Spm2vQWfDXZjLD6CvYMGwYOvInwtz+V50NfwEraoSbXqz4mtXSh5nMhlo5TLQyvX1JmFldd5DsLfdwK/CjeKi/zMWYqQQzDtRD3bgJmG1+sbgjbRaM1TNRmiq1dCWtED/vBYdT1/AmFiErtvPYbqahp4LSTCHJ8By+CfYdt2AfctlONaeh+vbUxMQWE/C+d1Z9G28CNuOq7AeiEXviXj0nHuI7ispMMVmozMhHx3JpTBkVUNX0AhNhQrqBgPa1d3KP36TYLAEWkmMtcaHojs1Ytwx1pMMtHInMtAO3GzQ2429MjRRKNal+eUGcpMpA63cqXC9VFZnQWyCFZt2DX/+t3l3//Otsf5PdQZa35zK+CPQbth9Fhf/c28nAMjIKcU/Fm4D0B9oSyvr3W/759IfkJiSM+jjdx27jM37zrs3WW7ed56BdrJY98NppZfgEaVPEsHmQKAd+nqNuhHGxofoqTgKe+ESD8H23+gt24muuljo2srQpg+OnSkTIY8zmQy0chlo5foaaCdLbyE4KcN7CD4Y7jkEe7oQmGy97QYOi/A8FiIqzuZ1LMRk3SF5vA4E2jZ9L2r1jXiiDndH2knbDaYzQ9XSCXWtBtrSFuhz6mFIq4DxURG67uTAdC0d3ZHJMJ++D8uR27DuuQn71itwrIuAa/n4AysWh8H53Y/o23AR9tBoWPfHoPf4XZh/TET35RSYYrPQeS8PxqRSGDKrYC1vRVeNGup6HdpVJsV/hsFgIAZadUszDC+yYMq+AWv8DjijF4waY43FSdDWV/l9bQy0cscTaGv1jSjWpSNTE+1xJnaqOgL5mkdBH2SHykArd6pdLw2MQjgYPnwUwpptP49C8PbxDLS+OZUZLdCaus34xZ/nwdxrBTC2QJuYkoOPFmx13wdq5ZYTOBFxC0B/oN19vH+TZlOrBq/PXAidoXPQx6/aGobI6/0jEmobWjH90+/dM2yDlaAJtG/MWqL0Ejyi9Eki2PQWaIeq0qrR0ZSM7spw2IpWDAu2zrzPYSndDlPddejaitCue3UvxHicyWSglctAKzfQA+1kmfdibCE46pYVPyX0vXLzgW/d9z4feLwh+OVA26bv/3PegUibqN475iDR3tYFda0W2rJW6PPqYEivhPFRCbric2G6mYnui09gPvMAlmN3YN0bA/u2KDjWX4Bz5ekJCKwn4Fx5Go71F2DfFgXrvpvoPXYH5jMP0H3xCUw3M9EVnwvjoxIYMiqhy6uH9kUb1LU6tLd1iR+zoTNo6egqHWjHGmOd0fNhjQ+FKevapMVYTzLQypUE2pfnyCZ6uLHXy3Nklf6+/CkDrdypfr2UlDHyKISE5MFzaxlofXMqMxBof/HnecMcmPu6YM0BvDl7KYpf1I4p0LpcLpy8EIfZX27ArC/WY8v+CHfgfWPWEpy/moAP52/BXz5ejei4JAAY9PEFpdV451/r8P68Tdi09xwepebiN+8uRlJa/mQ+NBMKA+04UfokEWyONdAOVaXVwdCcDlPVOdiK18CV+/HgYJv7T1hKN8NUGw19az7a9fILu0CVx5lMBlq5DLRyGWhljncGrfRGceeign8+8I07dsTecyA6phcPErrwLEmH7AfNuJEZg0s5kbiSfRlZ0c/RfTkF5h8T0Xv8Lqz7YmAPjUbf+kg4V50BFoeNf0zAitNwhETAvvUKrHtuwnLkNsyn76M7Mhmm6+noupsD46NiGNIqoM+ph7asFeoaLVStXWjTTe5xxkArdzIDrba+CsaiJHSnXoA1fofXXbEvx1hDWSbULc2KP04DMtDKHSnQSubIBtV4l3HKQCuX10s/m/ei/7mQt1EIt+5bUVxpY6D1QTJ5vDFridfduq8yDLTjROmTRLDpa6AdarvOCH3rc3RVR8JasgHO3E+H7LD9FNaSDeiqjoS+9TnadcH7pI7HmUwGWrkMtHIZaGUGw03CpDeKGy0EKz0W4v9n773fo7zu/P2/4/sveLPx7ibf7VknthOzdpxkHSckGBsMxoDpvRswvZomuuhCoEITRQgVJBBCvffepj7S9F7uzw+DZAkkMUft0UjndV33dUUaPHpmdPLAufXW62xbrGH/4hb2L2ll37I29q3oYO+qTo6uayNhRw0JexqIP9BM3JE2bp7QcPO0nsxELS8f63mZ0cWLbCvZBaN3UNx4IAWtOGMlaMOVsf64JbiS909IGTsQUtCK87qgrVNqydPff2uPbKQd7DWaSEErjtwvDUxF409VCK//O2HNVi/nrg1dhSDpj8z4RQraCR4paCcHoyVoX0ejWFA6CrE2xuKq2EKg4O+v1SJ8jrtsNda6c3S1Z6MxdKn+XoSLXGdiSEErjhS04khBK0YkCNrB0OhsaFu70ddoMRa3oOTU051RgflhEdbEl1hjnmI/n4Lz+H3c+xPx7IjFt/ESgRVnCS6MemMi1Tj/EjULEgfkznfZb3B7cQ7nl1ezd3kHe1Z2sme1lj3rdGze2cqKnR2qi+DBDoobTj/wSA+Kk4JWnNEQtEpdMZaCezjSTuC9tS4sGavUFqPVKqq/flGkoB0G1nZqLS/I1F+YUj2yI0EKWnHkfik8Up+7OR7tZtGaN2uejke/WYUg6Y/M+EUK2gkeKWgnB2MlaN/EjrGzHEtjAs6KHfgLZ74mbP+Mp2Q51prTdLdmojUYVX9vBkOuMzGkoBVHClpxpKAVQ1VBq7ejbetGX6vDUNqG8rKB7qeVmB8VY7mdizUmE3v0E5xR93EdvIVn5w18my7jX3WO4HdvClbhioCFUQRWnMW38RKeHbG49yfiPH4f+7kUrDFPsSa+xPywiO6MCpSceozFLeirtZi1Fhz2oWVjjj6+V3KUG/P6PRZuP3CkHxTXtx848b6fm3e9Y94PPJkQFbThyljvrbU40o5HtIwdCClo305Pj2y2PmbIHtk6ozo9wpGAFLTiyP2SGEazm4bWAOeuuQf8O37HodDfoyP9welkQ0ZmrCMF7Qij9k0i0hg/Qfs6DgzaWsxNd3FU7sNX+PUbB495SxZjq4miuzUNrUGn+nvVg1xnYkhBK44UtOJIQSvGiASt0YG23Yy+ToehrB0lt5HuzCpMj0uw3MnFej0L+4VUHCcf4Dp0G8+um3i3XMG/OprgopMjP+hqwXECy8/gW38Jz/bruPcn4DyWhP3sY2xXM7Am5mC+X0h3WjldL+owFrWgr9Kga1bQaId/gOXrh4QNRrkxr1d85Onvj/v3VrQfeLIdFPcgbXARrPb/78JhMEGr1SoodcVYc27iSt6PP27JW2WspeAuSm2x6q9pLJGC9k16emRzDAkD9sim6g9T2JVIlbF0SvXIjgQpaMWR+yUxXj8krKLRRcKDgasQVn0f+jswUuqOxhIZmbGOFLQjjNo3iUhDPUH7JnpdE6aWR9irD+Er/vZNYVu8EHv1UUwtKeh06nWiyXUmhhS04khBK44UtAIYneg0VgIGC4aKDpS8JrqyqjGllGK5l4f1xjNsF9NwnH6I6/Ad3Lvj8G65in9tNMElp0YuWOcfJ7DsNL51F/Fui8G9Nx7n0Xs4ziRju5KBNf4F5qQCTKnldD2vwVjYhKFSg67JiEaj3oGT4QraTqW/pM0xJKj/PR9lwu0Hjr/nJfaOZ9IcFNeX1OyBRfBIN8yBIOh14ctYd9I2bJnRU0LGDoQUtCHC6ZEtN+bRrGiHPCRMMjBS0Ioj90tivC5o+9LYEeqtPR7tfuPvy54qhNTsqVmFICMz1okYQXs5LlntSxgwat8kIo2JJGhfR6fvxNSSiq3mBN6SRW8IW1/xPOzVhzC1PEKvaxq365LrTAwpaMWRglacqSZoNZ0WdA1GDJWdGAua6Hpeg+lJGZakfKxx2dgupeM4/Qjnkbu498bh3RqDf90FAktPwfwRCtZvjxFYegr/ugt4v7+Ge088riN3cZx+hO1SOta4bCxJ+ZhSyuh6VoNS0IihogNdgwFNp3qCdaSICNpOJSRpk3W7J62kDYeRdtAOJYIHmwY+Hj1xD4obqB945wE7hw/riT9Xxq2j6dw9cJu7e+N6KTp6kJoTP1Bz4gfKr1ykOPE+BY8LqC0Zv3/3TGSmqqBtUFooMqYO2SNbaswasEdWClpxpKAVR+6XxBhK0L5OdoGbc9fcA/6Wy8Eo95SqQpCRGeuoImiXbTkeNhM9at8kIo2JLGhfR2sw0t2aibXmDJ7SFQTz/9xf2BZ9jaNqP+bmexg09WN2HXKdiSEFrThS0IoTaYJWo7Wia1IwVGowFjbTlV2LKbUc8/0CrAkvsF1Jx3EmGefRe7j3xePdFoNv/SUCy8/A/OMj72FdfArWXcC75SqeXXG4Dt/BceohtotpWGOfYbmbhymlhK6sapS8Jgzl7ega9GjbzXQaHaq/f2ogKmg7lZBE6ZG06bqTU+7XiSPlkLCKxqnRDzycg+Im+kTWVBG0zYqWUuOzUemRlYJWHCloxZH7JTFEBG1feqoQBvq7Z9Ou0P19MlchyMiMdVQRtLuPXQubiR61bxKRRiQJ2tfRGLvpas/BUheNu2wdgYK/9BO2/sKvcFTuxtJ0C4Ommk7FPipfV64zMaSgFUcKWnHGW9BqdDZ0zV3oq7UYi1royqmjO60c84NCrAk52K5mYD/3GOexJNwHEvFsv45vwyUCy88SXHhi5IJ10Un8q8/j3XwFz86buA7dxhH1APuFVKzXs7DcycWUXEL300qU3AYMpW3o63Ro20x0GhzqHhIWoQxH0HYqU1vSRoqgHQsMTbWYSlKxZV7AnbQdLs+g9fR6ak7s6Ef1qX3kRcdy80wJsZeauX3bwrXEydkPPBYHxU1WQduumKgw5g/aI/tEd5g8fdKwemSloBVHClpx5H5JjOEK2r70VCEciHqzCmHV9z9VIaj9WkcTGZmxTsRUHEzUqH2TiDQiWdC+jkaxoHQUYm2IwVW+iUDB314Ttl/grPgBS2M8xs5yhits5ToTQwpacaSgFUdU0Gr0drSt3ehrtBiLW1Fy6unOqMD8qAjLrZdYY55iP5+C8/h9XAcS8ey4gW/TZQIrzhJcGDVywbowCv/Kc/g2Xcaz8wauA7dwnniAPfoJ1pinWG69xPyoOCRYc+oxlrSir9Wibe2mUz/yHzZJQSvOcAVtpxKStOm6qCknaaeKoFXqit+QsQPhj1uCK3k/1hexdFVko2t/s09/sEPCRBA9KC6S+4Gv3/Zw+2FgUhwUV2UsG7JHNkcf39sjO5KvIwWtOFLQiiP3S2KMhqB9ndTnQ1chPEiL/N5aGZmxjqw4GGHUvklEGpNJ0L6B0YaxoxRrYxzOiu34C7/oJ2wDBTNwVXyPtTEWY2cxGmN4p3vLdSaGFLTiSEEbBgYH2lYT+jodhtI2/BVtWLKqMCcXY7mdizUmE/uFJzij7uM6eCskWDdfwb/qPMFFJ0dBsJ4gsOIsvg2X8fwQi/tAIs7j97GfS8F67SnWxJeYHxTSnV5OV04dxuIW9NVatC1daPQ21d8/KWjFGYmg7VRCE3E9kjZZt2fAbsjJxmQUtEpdMZaCezjSTuC9tS4sGavUFqPVKmE9/2gI2vEg3IPiwhXBatdCDNQPvOOQh4NRg9dCjPSguDqldsge2ef6a4P2yI4EKWjFkYJWHLlfEmMsBG1fCipD9+HBqhASH7ojsgphqicYDHLxxiM++XI9734wh//6w2KWbD5Kc5v2rf9tdX0rH/19zThcZWRHVhyMMGrfJCKNSS1o38COQVONpfk2jqo9+Atn9Re2+dNxlW/CUn8VpaMAjTLwYTZynYkhBa04U0LQGh1o283o6vUYytpR8hrpzqzC9LgEy51crLFZ2C+k4jj5ANfhO3h2xeHdcgX/6uhQf+oIBSsLjhNYfgbf+kt4t1/HvS8B59Ek7GeTsV1Jx5qYg/l+Id1p5XRl12IsakZfpUHXpKDRhvfDnImMFLTijFTQdipTT9JGsqDVapWwZaz31locaceFZexARIqgHS8G6wfuOSgu5pabW/d9YR0UNxH6gdftMrPpYAfrDzay/mB9L9vPFXA04SWnE+q5mGgIqx94uIcASUErjhS04sj9khhjLWj7UtH4UxXCQL+1cO5a5FQhTPXsPXGdj/6+hhf5FdgdLnSGbg6dvsn//N9SbPah3x8paMPLhK44iI59oPYlvDVq3yQijaklaN9Er23E3Hwfe9UBfMXzXpuw/SvusnVY6i/S1f4SjTH0K6lynYkhBa04ESFojU40HRZ09QYMFR0o+Y10ZVVjSinFci8Pa1w2totpOE4/xPXjHdy74/F+fw3/2gsElo6CYJ1/jMCy0/jXXsS7NYbgwUTcx+7hOJ2M7XI61vhszEn5mJ6U0fW8BmNhE4aKTnSNRjSagX/4MpWQglac0RC0nUpI0ubo43slbTiH+kQqkSJoe2SsNecmruT9+OOWvFXGWgruotQWj/q1SEErxmh10BZUTo2D4s5dcxN3z0dCkm/M+4EnE1LQiiP3S2KMp6B9ndTnbo5Hv9lb+93aUG/tRK5CmMpRui38/P05VNe3vvFYW6e+938XV9Tz2dwtfPT3NXz61QZeFlUBIUE7bcYa9p24zvufr2DajDW9jwUCQY6cS+Djmev45Mv1rN15ulf4/uvHC4i9k8aCdYf55Mv1nLl6bxxerXqZEIK2rKqRG3fSuByX3MuBUzf4l9/NU/vS3hq1bxKRxlQXtK+j07fS3ZqGreYE3pJF/YRtMP8z3KWrCTYewlG1H2vdeSxNCXS3pmPsLEGnm9yTUMNFClpxxkvQajQWdI1GDBWdGAub6Hpeg+lJGeakfKzx2dgup+M4nYzz6D3ce+Pwbo3Bv/YigWWnYf4IBeu3xwgsPYV/7QW831/DvTse1493cJx+iO1SOta4bCz38jCllNKVVY2S34ihogNdgwFNh4VOY//XMt6HhEU6UtCKM1qCtoceSftQt41yY57qr28smIiCVtfeFraMdSdtw5YZPWYydiCkoBVjIh0S1q6YhuyRfaI7zK28DB7lV/O0QAmrH3iyHRQXqf3AUtCKI/flYqgpaPtSUBmqoxnoB007DoV+mDPc6f2xYLzzYK2XpJXjz0DJKajkf79Y+9Zr/uPsTSSlvADg3uNsPp65DggJ2n98/2tuPcwC4PajZ0ybEXq+B6kv+dPXm3A4XQSDQVZsjeLQ6ZsA/Men33EsOhEISeJ3P5iDw+ke2Rs7gaO6oL0Ul8zP35/DH2Zv5B/f/5rP5m7hn3/7DR/PXEfC/Uy1L++tUfsmEWlIQTs0WoOe7tanWGtO4ylZ+oawHQh/4Vd4SpbhrNiOrfoY1oYYzC0P6WrPwaCtRas3qP66xhMpaMUJV9BqtFZ0TQr6Kg3Goma6smvpTivHfL8Qa8ILbFfSsZ9Nxnk0Cfe+BLzbr+Nbf4nA8jOw4PjIe1gXn8K/Ohrvlqt4dsXhOnwHx8kH2C+kYo3NwnI3D1NKCd2ZVSh5jRjK2tHV69G2m+k0Okb1PZOCVgwpaMUZbUHbqUx+Sau2oNW1t9FV+QJrzk3cSdsJxMx9q4w1laZiaFJvqlkKWjHUFrRD9cgm63aPWY/sULytH/jGHQ9x97yT5qC4segHfh0paMWR+3IxJoqg7UtFo4uEB0NXIajdWzveiZ/rVYWBkpTygpmLd/Z+bLM7+dWflvQSl5QBgNfrIxAIAqA3mvj5+3OAkKD9xUfzeh/zen28894sus1W1u48zcWbj3qfOzu/nM/mbgFCgrbv1O6/fbKQdo1h9N7kCRbVBe0Hf1lBYVkdAL/60xIAzFY7K7aeIOtlqZqXFlbUvpFFGlLQiqExdIGlFFNLMtbGWGw1J3BW7MBTugJ/4eywBG4P3uIFuMo2vprGjcbSlPjTNK6+VfXXOlpIQTvEetLb0LZ0oa/WYixqoSunju70cjypJbjv5WG99hT7uRScx5JwH0jE80Msvg2XCaw4S3DhiZEL1kUn8a86j2/zFTw7buA6dBtH1APsF55gjcnEcjsXc3Ix3U8rUXIbMJS2oa/ToW010WkYXcE6UqSgFUMKWnHGQtB2Kk7KjXm9QqfImKr66xxNxlPQGppqw5KxgZg5uJO2YX0RS1dFtqoydiCkoBVjvAVtg9JCqfEZ2foYknV73pCymbpoCvUpE7q6ZLQ6aIcSwYNNAw/WDzzRD4pLvO/nxh1v2CJ4Ik0YqoXcl4sxEQVtXxo7Qr21Q1UhpGaPfxXCeMdlVoeBkltUzW+nr+r9OBgMYuwyY+wys37XWS7HJQOQnJHHzMU7mT5/G5/P28rPfjMbCAnaD/6yot9z/uKjebS065i3+gB3kp/3fr6ipplf/3kZEBK0rR263sde/3iyRXVB++6Hc/H5/QD85x8W9X5ebzTx6Vcb1LqssKP2zSvSkIJWnKHXmR2drh1jZxndrU+xNN/GUheNvfogrvJNeIu/I1Dw97Alrr9wFp7SFTgrfsBWcwJrw3VMLY/oan8ZmsY1GFV/P97GZBa0Gr0dbWs3+lotxpJWlJx6up9WYn5UhOXWS6wxT7FHP8F54gGuA7fw7LiBb9Nl/CvPEVwYNXLBujAK/8pz+DZdDgnWA4k4j9/Hfj4Fa8xTLLdeYn5URHdGBUpOPcbiVvQ1WrSt3Wj0dtXfv9FECloxpKAVZ6wEbafSX9LmGBJUf62jxVgJWkNTLaaSVGyZF3AnbR90KvZ1Gatrb1P9PXkbUtCKMdaCtlnRUmHMJ8eQMKCQTddFkadPospYSrtiUv39CIdIOyRssIPiJls/8PHogWshhjoobqL2gnYqUtCKMtEF7etkF7g5d809YNXKwSj3uFUhTOVYbA7+//+dT3FF/RuPbT1wkctxySjdFv75t9/Q0NIJgEan9BO0v5w2n2Cw/wSt2WJn/a6zXHoleAGe55Xz52++B6SgHfdMm7GWjOxiAH7/5XpKKxuA0Mj0L6fNV/PSworaN6tIQwpacUZjnWkNXei19SjteZhaHr+axo3CWbkTT+lKfIVfE8z/c1gSN5D/tz7TuAew1p3D0nSL7raMV924bWiM6p06P6EFrcGBts2Evk6HobQNJbeB7qeVmJJLsNzJxRqTif3CExxRD3Aduo1n5028m6/gX32e4KKToyBYTxBYfhbfhkt4fojFfSAR57EkvBef4L6eiTUhB/ODQrrTy+nKqcNY1IK+WouuuQuNzqb++zeBkIJWDCloxRlLQduphCRtsm73pJK0oyFolbrisGSsP24JruT9WF/EotQWR4SMHQgpaMUYbUHbt0c2Vf/jgD2yOfp4yo15NCta1V//cIg0QTteDHVQXEKSl9jbbwrhydQPPNoHxcl9uRiRJmj70lOFMNAk/KZdofU1VlUIUz3RsQ/4zefLyXpZhsPpxmS2cS3xCf/68QKe55VT19TOf/5hER6Pl0AgyOEzcbzz3ixcbg/V9a38w69nk5yRB8Ddx8/5dNZGIDR1+9ncLTicbvz+AEs3H+vtnZXsIAyjAAAgAElEQVSCdpxz62EW77w3C4Ni4uy1JP7j0+9YuS2KT7/awDerDqh9eW+N2jeoSEMKWnHGb529OY1rrYvGXnWgzzTu30Y8jat05GLQ1I3ZNO6YClqjA227GV2DHkN5O0peI92ZVZhSSrDczcMa+wzbxTQcpx7iOnwHz644vFuu4l8TTXDxyAUr848TWH4G3/pLeLfF4N4Xj/PoPexnk7FdScea8ALz/QJMqeV0ZddiLGxGX6VB16Sg0Q4uzcfrkLDJhBS0YkhBK85YC9pOJfTr0z2SNlN/IWIm8gZDVNAqdcVYCu7hSDuB99a6sGWsVquo/lpHCyloxRgNQdvTIzvQwV5q9ciOJVLQijOaHbSD1UIM56C4idwPfPdRYFIdFDfWRLKg7UtPFcKBqDerEFZ9/1MVwmh9PRmIvZPGp7M28u6Hc/mPT79j8aajlFU39T6+ftdZPvjrSqbP38aL/Aq+WLSTv3y7lbLqJv44exP7o2L5eOY6Pp65rrfqNBgMcuLCLT75cj0fz1zH5n3RvQeBSUGrQhpaOvH7AwDcvJfBht1nOXHhFmaLXeUre3vUvilFGlLQijPR1pnWoGDQ1KO05/bpxh3JNO5CXOU907jnX03jPsXYUYpO10anUWxyc0hBa3Si6bCgazBgqOhAKWik61kNppQyLPfysMZlY7uUjuP0I1xH7uLeE4/3+2v4114gsPTUKAjWYwSWnsK/9iLerTG498bhPHIXx+lH2C6lY43LxpyUj+lJGV3PazAWNGGo7ETXYESjsYzZ91QKWnGkoBVDClpxxkPQdir9JW267mRES9rBBK1Wq4QtY7231uJIO46l4O6kk7EDIQWtGMMRtH17ZF8Xsn17ZCeLkH0dKWjFibRDwt52UNxAEniog+LUroUYqh94vA6KG2smi6B9ndTnQ1chPEgbWRWCjMxYZ0II2nDyeqHwRInaN6FIQwpacSJynRltYzaNa686hr3yEtbSBCyFjzBnZ2JOz8OcVIA1/gXOmKf4o1NwHr2He2883m0x+NZdJLDsNMw/PvKagCWn8K+NxrvlKu7dcbh+vIPj9ENsF9Ow3niG5V4eppRSurKqUfIbMVR0oKs3oO2w0GmcAN+bAZCCVhwpaMWQglac8RK0nUpIIKXroiJe0jrdfkzd3Sh1xVhzbuJK3o8/bknYMlbt61cDKWjFCEfQivTIqv16xgMpaMWJNEE7XgzWD5xd4ObOQ/+kOShuOP3AotJxsgravhRUhqoQBuqC3rQrVLMhKtBlZMY6ESNo//XjBWpfwoBR+8YTaUhBK85kW2carRVds4K+SoNSVI055xm2zNs40y7gSf0RT8r3eJ+swP/0GwLPwz/gLJjzOcHULwje+5pg7AKC0cvg2FrYuwU274CV+2H+UYKLT+FfHY13yxU8u27iOnQbx8kH2C+kYo3NwnInF9PjErozq1ByGzGUtaOr16NtN9NpdKj+/o0FUtCKIwWtGFLQijOegrZTCXVh9kjaZN2eiJzm87SVDypj3UnbsGVGYypNnbIydiCkoBVjIEHb0yObY0h4a49spP7wYyRIQSuOFLTijOZ+aah+4MlyUNyuwx6uxfvGpR94IlDR+FMVwkDVGeeuhVeFICMz1pGCdoRR+2YTaUhBK85EW2canQ1tSxf6ai3G4haUnHq6MyowPyzCmvgS67Wn2M+l4Dx+H/f+RDw7YvFtvERgxVmCC08MoxbgaEiubt4Rkq0n1uO/sgr/raX4H88nkDmLYO5fBKZxZ7+axt0R6sZtjMXUkozSnotBU4/WMLl/nXUgpKAVRwpaMaSgFWe8BW2nEvmS1un2vyFjDU21ql/XREYKWjF6BG2dUkue/v5be2Qj9WCv0UQKWnGkoBVnou2XwmE0+4Ej8aA4NfuBU5+7OR79ZhXCd2s9vVUIA8loGZmxjhS0I4zaN/ZIQwpacUZ9nentaNu60dfqMJS2hQTr00rMj4qx3M7FGpOJPfoJzhMPcB24hWfnDXybLuNfdY7gd1EjrwhYGEVgxVl8Gy/h2RGLe38izuP3sZ9PwRrzFGviS8wPi+jOqEDJqcdY3Iq+Rou2tRuNbvA+2p5uXKsuH68u9VU37gmcFTvwlK7AXzg7bIkbKPgb3uLvRrUbdyIjBa04UtCKIQWtOGoI2k4lJGlz9PG9krbOGDmCU/SQMIkUtOHS0yObZbgwJXtkR4IUtOJIQSuO3JcPzkASOLfYw6O0gWshhuoHnsgHxQ23H7igMvSaB5p23nEoNFHcUyEhIzPWkYJ2hFH7hhtpSEErzhvrzOBA22ZCX6fDUNaOkttId2YVpuQSLHdysV7Pwn4hFcfJB7gO3caz6ybezVfwrz5PcNHJURCsJwgsP4tvwyU826/j3p+A81gS9rOPsV3NwJqQg/lBId1p5XS9qMNY1IK+SoOuWRlSsI4WQx8SZkOna8PYUUp321MsTbew1p3HUXUAV/lGvMULBbtxJ8c0rhS04khBK4YUtOKoJWh76JG0D3XbKDfmqf5+hIMUtOJIQTswPT2y2fqYIXtkI+kHGGohBa04UtCKI/flYox2B+1QB8UNNg08kfuBB5PDMjJjHSloRxi1b66RhhS04vCkGO+Wq/jXRBNcPHLByrfHCCw7jX/tRbxbY3Dvjcd59B6O08nYLqdjjX+BOSkfU2o5Xc9rMBY2YajoRNdoRKOxqP5+vI0hBW2YaA1GDJo6lI5cTC2PRmkadxP2qgNY66KxNN+mu/Upxs4ydLp21adxpaAVRwpaMaSgFUdtQdupRJ6klYJWHCloQ4TbI1vbVYbLp/71RhJS0IojBa04cl8uRqQeEjbUQXHj0Q8sIzPWkYJ2hFH7JhVpSEErDtczRlfI7o5/kz3xuA7ewnk0Cceph9ijn2C7koE19lmociApH1NySWgq9lkNSm4jxqJmDBUd6Gu16JqMoUO0JsD7NRqCNizCmcbND3ca98/4Cr/GU7oSZ+VObDVR4zqNKwWtOFLQiiEFrTgTQdB2Kk7KjXm9kqrImKr69QyFFLTiTGVBW2Use2uPbLkxr1+P7ECHhEmGRgpacaSgFUfuy8WIVEE7Xgx2UJyMzFhHCtoRRu2bR6QhBa046Ex0Pa+hO6MCU0op5vuFoa7YuGxsVzOwX3iC4/QjnMfv4zp8B/feeDw7buDdchXf+kv4V50jsPTUqEzehl2DsPgk/pXn8K27iHfLFTw/xOLeG4fr0G2cx5JwnH70SgKnY73xDMutl5iTCjA9LqE7o4Ku5zUouQ0Yi1peSWAduiYFbcfbJ3jHTdCGyRvTuA3XX03j/vBqGnfW6E7jKnbha5SCVhwpaMWQglaciSJoO5X+kjbHkKD69QyGFLRiNNW5sCtTR9A2KC0UGVPJ1A/eI1tqzBqyR1YKWnGkoBVHClpx5L5cDCloh4eMzFgnYgRteU2T2pcwYNS+SUQaUtCKM6rrzOBA02FB19wV6rCt7MRY3IKS1/iaBC4YXAIfuj24BF5wfHwE8MITBJaewr/qPL71l/BuuYpn5w3c++LxHLmL//RDHKeTsV9IDfXixmVjuZ2L+X4hppRSup9W0pVdi5LXiLG4FUNFJ/o6HbrmLjSdFjqNjvH9PvdM43aW0N2WMUbTuI9R2vPQa+vRGrr6fX0paMWRglYMKWjFmUiCtlMJSdpk3e4JLWmloP2J1lYXdWUuyjPdFNxzk33ZRfoRD4+2e7iz3EP8N17i53opivVPWkHbrGgpNT4bske2UJ8i1CMrBa04UtCKIwWtOHJfLoYUtMNDRmaso5qg/WLRzrCY6FH7JhFpSEErTqStM43ejrbDgq5ZQV+rw1DRgbGoBSW3oY8ELsGcVIDl1kusN55hu5KOPfqVBD6W9EoCx+HZEYt3yxV86y7iX3mO4JJTMH8cJfCy0/hXn8e34RLe76/h2XED974EXIfv4DzxAMeZkAS2XnuKNT4by51czA8KMaWU9ZHATRhLWjFUatDV69G2doe6fIchgUd3GvfvvdO43vrDuBovYm6+Q3dr5oimcacKUtCKIQWtOBNN0HYqoQnEHkmbqb9Au2JS/Zr6MpUEbWOti+pcN8WP3by86SHzlJuUvW6S1rlJmB+Sr2/j7koP5bcmj6BtV0xUGPOH7JHN0ydRZSwd9tqVglYcKWjFkYJWnEjbL6mNFLTDYyrH5/fzznuz2LD77BuPbT1wkXfem4XP7x/yOS7HJbN5X/SIr+VC7MNReZ6JGNUE7c9+M5t//2Qhy78/zrXEJ9y4kzYgEz1q3yQiDSloxZHr7E00OhvadjO6JiP6Wu1PEvhlA7acOrwvqjEll2BOysea+BJr7DNsVzJeSeCHOI8m4Tp4C/eeeDw/xOLdfAX/2osEVpwluPgUzB+nKoiFUa8kcDS+DZfxbo3Bs/Mm7v0JuI7cxRl1H/vZZGwX07DGPMUa/yIkgR8WYXrySgK/qEMpaMRQ2oa+SoOuXoOhuR6lpYDu1p5p3HOhadyyjXiLF4zpNO5UQQpaMaSgFWciCtpOpb+kTdednFCSdrII2pZWF7WlLsqfuim46+b5RTdpP7p5uM3D7WWesOTrrYUe7m/08GSfm6yzbvLiPZSmuKnJd9FU76LDEPpakd5B+7Ye2Rx9/Bs9siNBClpxpKAVRwpaceR+SQwpaIfHVI7P7+dffjePD6evwuX29H7e6/MzbcYa3v1w7rgJWqfLg80+Ob8fqglaY5eZy3HJ/OXbrfz3Hxez6+g1Kmqa1bocNu09z7sfzv2JD+bwh9kbAWjr1DNr2R7+/ZOFfDZ3C4Vldb3/ndo3iUhDClpx5DoTY7Q6aDV6G9o2E7pGI/oaLYbydoyFzSg59XRlVdOdVo45uRhLjwS+noXtcjr28yk4Tj7AefQergO3cO+Ox7v9Or7NV/Cvu0Bg+VmCi06OnwT+LorA8jP410Tj23QZ77YYPLtu4jkSi/vcJdzXzuC/cxz/o/24n2zFm7ka34uFBHJnDmsa1159EEtd9GvTuB1MtmlcKWjFkIJWnIkqaDuVkKRN10VNOEkbCYK2Q+ekscZFVY6b4mQ3L6+7yDzpJmWPm6S1HhK+DWP69ZvQ9Gvydg8ZRz28uOKi8J6bimdu6stdtLWFf2+KNEFbp9QO2SP7XH/trT2yI0EKWnGkoBVHClpx5H5JDCloh8dUjs/v590P57JyWxSP0nN7P5+ZU8LKbVH9Jmjjk54ybcZaPpy+iq+W7kaj7wL6C9riino+m7uFj/6+hk+/2sDLoioAfvP5clo7dAA8THvJz9+fg9MVEsIXbzxi19GrcoJ2rNPcpuV49C2mzVjD779cz9lrSb3fRLVy5FwCUZfuAPDV0t1cikvG7w+Q9bKM9z5bhtcXWnxq3yQiDSloxZHrTIyJdkjYUGh0NrStJnQNRvTVWgxl7RgLm3olsCm1HPOjYiz38rAm5mCNycR2KR37ub4SOBHPrji822LwbbqMf+0FAsvPhCTwSAXvgiOwaj9s2QF7t8CxtQSjlxKMXUDw3tcE02YQzPk8PJGb9xmBnJn4ni3Am7kG99OduDOP48i6iu15EqaX2SiFVRjK2tFXa9E1GNG2mtBorap/nwZCCloxpKAVZyIL2k4l9OvkPZI2WbdnzISYCBNB0La0uKgrdlGe4abgjpvnF0LTr4++93BnaXjTr4mLXk2/7neTdS40/VqS6qa6oP/062gw0QVtg9Iy6j2yI0EKWnGkoBVHClpx5H5JDCloh8e4J2EpxH03/gwQn9/Pz34zm7RnhSzacKT382t3niYlM79X0HaZrLz74Vw6tEYANu+LZtvBi0B/QfvH2ZtISnkBwL3H2Xw8cx0A63ad4e7j5wD8cPgyf1v4A7lF1QAs3nSUtGeFUtCOZ8qqGtl97Brvf76C2cv3qHINbZ16/veLtbjcHpRuC7+cNr/fuPafv/m+d5GofZOINKSgFUeuMzEiSdCOBxqtFW1bN7oGQ0gCl7ZhLAhJ4O7MKkyp5XjSS3E9LMSa8OInCXz2MY6oBziP3MW9PxHPrps/SeA10SEJ/F1USOQuPQzrd8MP2+DwRji9kuDVRQQTvyH46EuCWdMJ5oU3jRt88ReCqV8QvDsnJILPLYNj62D/NoI79+PfdhLf95fxbr+Oe3ccrgO3cB69h+PkA+znU7BdTsd6PQtrQg6WpHzMycV0p5XTlVWNklOPsbA5JIFrtOgajWjbTGj0NuH3VQpaMaSgFWeiC9pOZeJJ2rEWtB36UZp+XeUh+QcPGcfdZF91UZjkpuK5m/oKF22a8X3PJpqgbVa0Q/bIpuuiRtwjOxKkoBVHClpxpKAVR+6XxJCCdniMey7PUIcB0iNovV4fv/rTEswWOy63h1//eRluj7ffBG3fCoSkJy+Yu2p/6OX0EbRer49AIAiA3mji5+/PAeDWwyy2H74MhLxbfNJTTl+5B8D//N9SrDaHFLTjFb3RxIXYh/z12238+s/L2B8Vq8p1bNxzjpt30wEoLKvjj7M39Xt85bYobt7LAORfBKJIQSuOXGdiSEErjt3lw2z3Du+/NzrRaCxoW7vR1RvQV2kwlLahFDTSlVNH99NKTE/KMD/Mx3Y/BUdSPK575/DcO4znwVZ8yavxpy4kkPUVwZfhT+MGM6cTfDiLYPw8gpcWw8lVcHAjbN8O6/bCosNi08LzjxFcfIrAirP4117Eu/kKnu3Xce+Jx3XwFs6jSThOPcQe/QTblQwCt19gv/0Sc1I+puSSkAR+VoPysgFjUTOGig70tVp0TUa07WY0OnEJPJmQglacSBC0nUpI0ubo43sl7XhNMg7EiASt0UlLs4vaIhdlGS7yb7l5Fu0m7bCbh1s83F4SZvfrIg8PNnlIPeDm2Xk3+QkeStNc1BS6aG4c3enX0UBtQduumIbskX2iOzzqPbIjQQpacaSgFUcKWnHkfkkMKWiHx7jHaVKHAdIjaAG27I/m5t10kjNy2bjnHECvoA0Gg5y8fIe/fruN6fO3MW3GWuas2Af0F7TJGXnMXLyT6fO38fm8rb3P3aE18tncLZitdv628AfaOvXMX3uQxlYN0+dvA+QhYWMau8PF7UfPmLNyH7/4aB6rtp8k62Upfn9AlevRGrr4zefLcXu8AGTnl/cuhJ5s2nuey3HJANhdPokA/kAQp8ev+nVEEnKdieHy+PH5A6pfx1hjG8Xn8voCeLwT4z1zOEw4zY24jPl4NCl4W2PxNEThq9yOv2QZgcJZYXfjBnOnE3j+NYG0RfgfrsafuIXg1Z0EzxwgePBHgltPEFxxGnomgcea+ccJLjlFcNV5AhsuEvj+Kv5dN/AfSMB35C6+k/fxnX+M93Ia3thMPLde4L2fhyelGE9GOe4XNbgLGnCVNuOq7sDZqMPZ1oVDZ8FhcmC3e1T//g36fXX7CAaDql9HJOH2Ttx7mc355ucKuxJ7pVqjpVCV6/L5A7i9A/8bw2LxoW/201LkoybdR1G8lxdnvaTt9XJ/nYfE+W+XrwnzvNxf4yF1t5fsU14Kb3qpfuKjudCHrjn0NdT+3ogSDIJjnL9mp72RKnM62crFN4TsY90eXiox1Fqy0Tk6VH9/XsfpDk38qH0dkYTHG8DrG7172Wj++2ei4vMHcMn9khByvySG0+PHL+9lwkzl9BW0L4uqmLNiH8u2HOd5Xjnwk6B9/DSfP87ehNXmAOBO8vM3BK3SbeGff/sNDS2dAGh0Su9zA3z09zXcT81h74nrAHzy5XrikjL48Ww8IAXtmCQzp4TVP5zkFx/NY+biXcQnPZ0QJ7FdiH3YO1INUFRex6ezNvb7Myu2niA+6SkAZrtXIoA/EMTm8ql+HZGEXGdiONx+fP6g6tcx1phso/dcHl9oI6D2awobmxOruRO7sRyHJhNX2x1cjdF4ag/grdiIv2QBwYLpYYrcP+MvnoOvbA2eyp24q0/gqb6Ku+oOzvI0nCW5OPMrcGTX4Mwox/W4GFdSPsGkXDyxWbgvp+E5l4L35AO8R+7iO5CAb9dN/FuvEdhwicDq8wSXnoaFJ8ZHAi84TnDpaQKrzxHYcAn/1mv4d97Etz8B74938J58gOfcY9yXU3HHZuK+lYMrKR/X42KcGeU4nlfjyKvHXtyCraodW70Oa6uCVWPBotgxWz3D+p5ZHCERpPraiSCcbj8e38S8l3UPcv/JV36StHXmgvF/z6xBGl74KLnrI+eSh4zDHh597+X2kjCqB+aG/tyj771kHPaQc9FDyT0ftVleWsu96Dsm579dgoDFMbZfo9PaTrXpBS+N1wc+2MtwgbKuVNosDaq/H2/D6vQRkPcyIVwePx5fYNSebzT//TNR8fmDOOR+SQi5XxLD7goNTql9HZHGVE5fQRsIBJk2Yw3TZqztHazsEbTXEp+wcP1hACw2B3NX7Wf6gu3AT4K2rqmd//zDIjweL4FAkMNn4njnvVm91Qib9p5n+oLtPH6aD4S6Z/+28AdyCioBKWjHJO+8N4v/+sNiVm0/yZ7jMew+dm1AxjtfLtlFZk5J78fdZiv/8rt5vSfHAUybsYai8jpA/iqFKLLiQBy5zsSQFQfi2F0jqDiYwGj1BgzaWrraczC1PMLaEIOt5jjOiu14SpbjF5jGDRTMwFvyHa7yTdirD+FvvYKt5S7dbVkYO8vR6TvoVOxDX5PBgabDgq5ZQV+nw1DZibG4BSW3ka7nNXRnVGBKKcF8vwDL7VyscdnYrmZgv/AEx+lHOI8l4Tp0G/feeDw7buDdchXf+kv4V50juOQULDg+LhI4uPAEgaWn8K86j2/9JbzfX8Oz8wbuffG4Dt/Befw+jtPJ2C+kYr32FGtcNtY7uQTTyzCllNL9tJKu7FqUvCaMxa0YKjrR1+nQtnSh6bTQaXSovnYmApFScfA65ca8XvFWZEwd169taPEPLmC/9XJvtYfknR4yoty8uOai6IGbyhdu6itdtGvVf+/UYCwqDvr2yA52sJeaPbIjQVYciNMjg9S+jkhCVhyII/dLYsiKg+ExldNX0ALsO3GdHT9e6f247yFh0xds5+OZ65izch/FFfX86k9L2H8ytl/FwfpdZ/ngryuZPn8bL/Ir+GLRTv7y7VYA7j5+zjvvzcKghOoWomMf8O6Hc3t/y10K2jHItoMXw2K888tp83tPnOvJnBX7OHX5Ln5/gKQnL/jt9FW9PylQ+yYRaUhBK45cZ2JIQSvOZBW04aAxWtHpWzF2ltDdmo6lKRFr7XkcVftxl23AW7yAQH6407if4yuag7t0Nc7KXdhqT2JtuImpJQWlPR+9thGNsXtsX4/ejrbDgq5JQV+rw1DRgbGoBSW34ScJ/LgEc1IBllsvscY+w3YlHXv06xI4Ds8PsXi3XMG37iL+lecILj4J88dLAkcRWHYa/+rz+Da8ksA7buDel4Drxzs4TzzAceaVBI55ijU+G8udXMwPCjGllP0kgfMbMZa0YqjUoGvQo23tRqOx0GlUf+29jUgVtJ1Kf0mbY0gYt69rs/jJ+NHD8/Nu8m95KEsPdcq2NMkD/QZjNARt3x7ZgQ72mmg9siNBClpxpKAVRwpaceR+SQwpaIeHjMxYR/UO2okUu8PFO+/N6jXzPenQGvlq6W7+7ZOFfD5vKxU1zb2PqX2TiDSkoBVHrjMxpKAVZyoL2nDpO41rbnlIoOMmjppjr6Zxl+Ev/EpgGvfveEsW4SrfjL36EJb6i5ib7tLVloWxsyK8aVwV0ehsaNvN6JqM6Gu1ryRwM8rLBrqe1dCdVo4puQRzUj7WxJdYY7OwX80geC0dx6mHOI8m4Tp4C/eeeDzbr+PdfAX/2osEVpwluPgUzB+HKoh+Ejga38ZLeLfG4Nl5E/eBRFxH7uKMuo/9bDK2i2mvJPCLkAR+WITpySsJnFOHUtCIobQNfZUGXb1h1CRwJAvaTiUkaZN1u8dV0o7okLApynAFbZ1SS5ExdcCDvZJ1u3muv0apMSvihezrSEErjhS04khBK47cL4khBe3wkJEZ60hBO8KofZOINKSgFUeuMzGkoBVHClpxfP4gelP/qTyN0YpO14Kxs3iIady/Rsw07mii7XYRCIQvNTQ6G9o2E7pGI/oaLYaydoyFzSg59XRlVdOdVo45uRhLUj7WhBys17OwXU7Hfi4Fx8kHOI/ew3XgFu7dcXi3X8e3+Qr+dRcILD9LcNHJ8ekD/vYYwe+iCCw/g39tNL5Nl/Fui8Gz6ybu/Yk4j9zFEfUA+7nH2C6lY43JxJrwAsu9PMyPinBkVuLOq0PJqcdY0BSSwNVadA0GtG3daLRW1b+vb6NBaemVtJn6C2P+6+xS0IoTrqBtUFooNT4jWx8zYI9spi6aQn0KDUqL6q9pLJGCVhwpaMWRglYcuV8SQwra4SEjM9aZsIL2WHQiH/19jdqX8daofZOINKSgFUeuMzGkoBVHClpxBhK04fL6NK61IQZb9VhN43YyEaZxRQXteKDRWtG2mtA1GNFX90jgJpScerozqzCllmN+VIzlXh7WxBysMZnYLqVjP/e4VwK79yfi2RWHd1sMvk2X8a+NJrD8zPhK4EUnX0ngC70S2L07DteBRJxH7+E4+QD7uZQ+EjjnlQQuxpRaTldWdUgCFzZhKGt/JYGNaFtNaHS2Eb/PfSVtuu7kmEpaKWjFGUzQ9vTIZutj3tojq/ZrGE+koBVHClpxpKAVR+6XxJCCdnjIyIx1JqygfZZbxtlrSWpfxluj9k0i0pCCVhy5zsSQglYcKWjFGYmgDYc3p3ETsNaeezWNux5f0XzBady5uMtW46jcja321Ktp3CcoHQXjMo07EQXtmGN8JYHbutE1GNBXaTCUtmEsaKIrp66PBC7CcjcPa8KLkAS+mIb97GM8px7hP56E+0Ainl03QxJ44yX8a15J4O+ixkcCz38lgVecxb/uAr7NV/Buv457dzyuA7dCEvjUQ+znU7BdTsd6PQtr4kssSfmYk4vpTrO/K9gAACAASURBVCunPS+HjLYjPNRtI6PjOJq6VnSNRrTtZjT6kUvgHqSgFadH0Pb0yOYYEt7aIxtpB3uNJlLQiiMFrThS0Ioj90tiSEE7PGRkxjoTVtBGStS+SUQaUtCKI9eZGFLQiiMFrThjLWjDRWvQY9DWjNI07owxm8adkoJ2hITbQavRWNC2dqOr12Oo1GAsaUXJb6Qru5bup5WYUsowPyjEcicXa3w21pin2C+k4jiTjPPEA1yH7+DelxCSwN9fw7fhEv7V5wksOz2qote37CjPSnbwULeNlObtWLb++OYkcB8J7Nl+HfeeQSRw7JsSuCurGndVuxS0AtQptVRakqdcj+xIkIJWHCloxZGCVhy5XxJDCtrhISMz1lFV0LZ26OjQGns/1hq62HX0Ght2nyXtWaGKVxZ+1L5JRBpS0Ioj15kYUtCKIwWtOBNF0IbD+E/jvjldJwWtOBPmkDCjY2AJnNc0uAS+NrAEduy/TlZFqO4gpeUHzLtPEFx4YvTqHtZflIJ2CHp6ZDP1FwbtkS01Zk36HtmRIAWtOFLQiiMFrThyvySGFLTDQ0ZmrKOaoH1ZVMW7H87l5r0MALw+P598uZ7ff7meJZuP8o/vf83jp/lqXV7YUfsmEWlIQSuOXGdiSEErjhS04kSSoA2XftO4zQ+w1F/FVn0UZ8W2V9O4X4pP41ZswV59GGv9JYK6R3S1PcOgqUCn1zARunEnMhNG0I4y7YqJHH38qynNPdQZa+lUnGg6LOiaFfR1OgyVnRiLW1DyGul6XkN3RgWmlBLM9wuw3M7FGpeN7WoG9gtPcJx+hPNYEq5Dt/FFp0hB24dwemQrLY+oV2pVv9ZIQQpacaSgFUcKWnHkfkkMKWiHh4zMWEc1Qfvlkl0cOn2z9+PHT/P57z8uxu5wAXD++gO+WLRTrcsLO2rfJCINKWjFketMDCloxZGCVpzJKGjDQWO0ote1YOwsors1bRSmcb/BXbYmNI1bcxprY9xbp3GnCpNV0PbQI2kf6rZRbswbleec6h207YqJCmP+W3tkq4ylvT2ygx0SJhkYKWjFkYJWHCloxZH7JTGkoB0eMjJjHdUE7b/8bh7tGkPvx9sOXWLrgYu9Hze3afnltG9VuDKxqH2TiDSkoBVHrjMxpKAVRwpacaaqoA2X16dxrQ3XCDSdGJVpXEvdRcxN9yb9NO5kF7SdyuhL2qkoaKuMZeTp7w/ZI1tuzBu0R1YKWjGkoBVHClpxpKAVR+6XxJCCdnjIyIx1VBO0734wh26ztffjP329ibuPn/d+rDV08e6Hc9W4NKGofZOINKSgFUeuMzGkoBVHClpxpKAVY6AO2jemcRsTsNaexVG5LzSNW/wtgYLRmMYtfDWNa1b9fRBhKgjaTsVJuTGvVygWGVNH9FxTQdA2KC0UGVNHrUdWCloxpKAVRwpacaSgFUful8SQgnZ4TOX4/H7eeW8WG3affeOxrQcu8s57s/D5/UM+x+W4ZDbviwbgFx/NQ2voGpNrjeSoJmh/97fV5JfUANDWqecffj0bnaG79/Gcwko++OtKtS4v7Kh9k4g0pKAVR64zMaSgFUcKWnGkoBVjJIeEaQ16DJpqutpfjLgb11/4Bd6Sxa+mcX/EUncJc/M9utqeY9BUvprGdaj+fnUqU0fQdir9JW2OIWHYzzMZBW2zoqXU+GzIHtlCfUpvl68oUtCKIQWtOFLQiiMFrThyvySGFLTDYyrH5/fzL7+bx4fTV+Fye3o/7/X5mTZjDe9+OFdI0CrdFgKB4JhecyRGNUF78NRN/jB7I9dvp/L5vK0sWHe49zGrzcFXS3ez7eBFtS4v7Kh9k4g0pKAVR64zMaSgFUcKWnGkoBVjJII2HDSKZdJN404lQduphCRtsm73iCTtZBC04fTI5umT+vXIjgQpaMWQglYcKWjFkYJWHLlfEkMK2uExlePz+3n3w7ms3BbFo/Tc3s9n5pSwcltUvwna+KSnTJuxlg+nr+KrpbvR6EOTsnKC9u1RTdC6PV427D7LB39dyYJ1hzEopt7Hln9/nGkz1qA3moZ4hokRtW8SkYYUtOLIdSaGFLTiSEErjhS0Yoy1oA37OvpN497HUn8Fe/VRnOVb8ZQsHeVpXC0jmcadaoK2Uwn9+n6PpM3UXxAWkJEoaNsV01t7ZHP08UP2yI4EKWjFkIJWHCloxZGCVhy5XxJDCtrhMd75ZY2df6oefwaKz+/nZ7+ZTdqzQhZtONL7+bU7T5OSmd8raLtMVt79cC4dWiMAm/dF9w5eSkH79qgmaIdKa4cOr9en9mWEFbVvEpGGFLTiyHUmhhS04khBK44UtGJMFEEbDqFp3GaUjlGaxi3+BnfZWhxVe7DWnMbSGI+pJTU0jatrGnQadyoK2k6lv6RN150UkrSRImjrlNohe2Sf668J9ciOBCloxZCCVhwpaMWRglYcuV8SQwra4THe+f/KbaowUHoErdfr41d/WoLZYsfl9vDrPy/D7fH2m6DtW4GQ9OQFc1ftB6SgDSeqC1qX28PzvHJu3k0nPukphWW1b+2umEhR+yYRaUhBK45cZ2JIQSuOFLTiSEErRiQJ2rBf0yhP43pKlvSbxnW238dteDkq07iRRoPSQrouSljSTlRB26C0jGmP7EiQglYMKWjFkYJWHCloxZH7JTGkoB0e4x29L4hOBQZKj6AF2LI/mpt300nOyGXjnnMAvYI2GAxy8vId/vrtNqbP38a0GWuZs2IfIAVtOFFV0KY9L+K//7iYd96bxa/+tIT//MMi3nlvFr+dvorcomo1Ly3sqH2TiDSkoBVHrjMxpKAVRwpacaSgFWMyCtpw6D+Nm9pnGncv7rJ14zaNG4m0K6ZeSZus2xPWNOlEEbTNinbIHtl0XdSo9siOBCloxZCCVhwpaMWRglYcuV8SQwra4TGV01fQviyqYs6KfSzbcpzneeXAT4L28dN8/jh7E1abA4A7yc+loBWIaoK2ur6Vn78/h/1RsXSbrb2fb+vUs2JrFP/022+orm9V6/LCjto3iUhDClpx5DoTQwpacaSgFUcKWjGmqqANDwdag+7VNG527zSuq+4YvurtI5jG/f7VNO5lzM1Jr7pxq9AaImcaV1TSqiVo39Yj+0R3eEx7ZEeCFLRiSEErjhS04khBK47cL4khBe3wmMrpK2gDgSDTZqxh2oy1+P0B4CdBey3xCQvXHwbAYnMwd9V+pi/YDkhBG05UE7Qrt0WxeOORQR+fv/YQSzcfG8crGl7UvklEGlLQiiPXmRhS0IojBa04UtCKIQWtOK930I7mNG6g4C/4iueFpnEr92KtOfPmNK4yMaZx2xUTOfr4Xkk7VA3AeAranh7ZwQ72Gs8e2ZEgBa0YUtCKIwWtOFLQiiP3S2JIQTs8pnL6ClqAfSeus+PHK70f9z0kbPqC7Xw8cx1zVu6juKKeX/1pCftPxkpBG0ZUE7TvfbaMrJdlgz5eUFrLf/z+u3G8ouFF7ZtEpCEFrThynYkhBa04UtCKIwWtGFLQijO8Q8IGmMatu4y9+giu8q14SpfgL5wZkdO4PZL2oW4b5ca8Af/MWAravj2yAx3slamLVq1HdiRIQSuGFLTiSEErjhS04sj9khhS0A4PGZmxjmqC9me/mU1rh27QxzU6hXfemzV+FzTMqH2TiDSkoBVHrjMxpKAVRwpacaSgFUMKWnGGJ2jDIzSN24TSUTjENO5fRjSN292aNurTuG+TtKMpaPv2yA52sNdE6ZEdCVLQiiEFrThS0IojBa04cr8khhS0w0NGZqyjmqB9571ZQ440aw1dUtBOQqSgFUeuMzGkoBVHClpxpKAVQwpaccZS0IbHaE/jzsRTugRX+Vbs1UdeTePep6s9G4OmOuxp3FJjVq8kLTKm9ntsJIK2b4/sQAd79e2RjWQh+zpS0IohBa04UtCKIwWtOHK/JIYUtMNDRmaso6qgPXo+gQuxDwfk6PkEKWgnIVLQiiPXmRhS0IojBa04UtCKIQWtOOoL2vDQKOY+07hpWBrjsdaceTWNuxZf8bxRn8YtN+b1itMcQ0LvtYgK2nB7ZCfawV6jiRS0YkhBK44UtOJIQSuO3C+JIQXt8JCRGeuoJmg/nrkuLCZ61L5JRBpS0Ioj15kYUtCKIwWtOFLQiiEFrTiRImjDRafXYtBU0tX+AnNz0qtp3B9xVXyPp2QJ/sIvhLpxncXfoi+bRVvVXNpqt2BuTsKjFA4paHt6ZDP1F4bskZ3oB3uNJlLQiiEFrThS0IojBa04cr8khhS0w0NGZqyjmqCdLFH7JhFpSEErjlxnYkhBK44UtOJIQSuGFLTiTDZBGw4jncYNlMztJ2h7emSz9TFv7ZFV+7WrhRS0YkhBK44UtOJIQSuO3C+JIQXt8JCRGetIQTvCqH2TiDSkoBVHrjMxpKAVRwpacaSgFUMKWnGmoqANl77TuMbmGOprFtFWOZf2mmU0mivIMSRMqR7ZkSAFrRhS0IojBa04UtCKI/dLYkhBOzxkZMY6qgnabQcvhsVEj9o3iUhDClpx5DoTQwpacaSgFUcKWjGkoBVHCtrwaVBaeKI7PGiPbLkxb1L3yI4EKWjFkIJWHCloxZGCVhy5XxJDCtrhISMz1lFN0C5YdzgsJnrUvklEGlLQiiPXmRhS0IojBa04UtCKIQWtOFLQitGumMg0nuS5IZpSY9aU6pEdCVLQiiEFrThS0IojBa04cr8khhS0w0NGZqwzoSsOgsGg2pfw1qh9k4g0pKAVR64zMaSgFUcKWnGkoBVDClpxpKAVx+n2D3lImORNpKAVQwpacaSgFUcKWnHkfkkMKWiHh4zMWGdCClqdoZszV+/x0d/XqH0pb43aN4lIQwpaceQ6E0MKWnGkoBVHCloxpKAVRwpacaSgFUcKWjGkoBVHClpxpKAVR+6XxJCCdnhM5fj8ft55bxa7jl7r9/nUrEIWbzwyal/nFx/NQ2voorq+dVAfeCH2IZv3RY/a15xImTCC1uvz8ySrgAXrDvOz38zm45nrOH/9gdqX9daofZOINKSgFUeuMzGkoBVHClpxpKAVQwpacaSgFUcKWnGkoBVDClpxpKAVRwpaceR+SQwpaIfHVI7P7+eff/sN//N/S2lo7uj9/GgLWqXbQiAQHFLQOl0ebPbJ+f1QXdA2tmo4cOoG//3HxfzbJwv5h1/P5klWgdqXFXbUvklEGlLQiiPXmRhS0IojBa04UtCKIQWtOFLQiiMFrThS0IohBa04UtCKIwWtOHK/JIYUtMNjKsfn9/NPv/2Gm3fT+WbVgd7P9xW0gUCQHw5f5nd/W80Hf1nBht1n8fn9APzrxwu4Ev+Yb9cc5MPpq0jJzGfL/mhmLt7JzMW7cDjdQP8J2mkz1rDvxHXe/3wF02as4WVRFdB/gra4op7P5m7ho7+v4dOvNvT+mUiNaoL21sMsvli0k5+/P4eF6w+TnJGLx+PlFx/No7VDp9ZlCUftm0SkIQWtOHKdiSEFrThS0IojBa0YUtCKIwWtOFLQiiMFrRhS0IojBa04UtCKI/dLYkhBOzzGPesvwpro8WeA+Px+/vH9rwkEgvzfnM2kPS8C+gvalMx8Pp21EY/Hi9vj5dNZG3mQ+hKA//j0O87F3AcgLimDf/rtN73e7+vle3mYFvpzfQXtP77/NbceZgFw+9Ezps1YC/QXtH+cvYmklBcA3Huczccz1432d2Fco5qgfee9WazYGoWxy9zv81LQTm6koBVHrjMxpKAVRwpacaSgFUMKWnGkoBVHClpxpKAVQwpacaSgFUcKWnHkfkkMKWiHx7jn22PqMEB8fj8/+81sAHKLqpk2Yw1er++NigO3x9v7v78/cIEzV+8BIUFb19QOQE5BJb//cn3vn9uyP5pLcclAf0H7i4/mEQgEAfB6fbzz3iy6zdZ+gtbr9fX+Gb3RxM/fnzMqb71aUU3QRl26wwd/Xcmv/rSE3ceuUVHTDEhBO9mRglYcuc7EkIJWHCloxZGCVgwpaMWRglYcKWjFkYJWDCloxZGCVhwpaMWR+yUxpKAdHuMeswPM9vFngPQVtABLNx/jXMz9foLWbLWzae95Pp+3lekLtvOrPy3h1OW7QEjQdmiNQEjwfj5va+9zbTt4kQuxD4H+gvaDv6zodw2/+GgeLe26foI2OSOPmYt3Mn3+Nj6ft7XfNUZiVO2gDQSCPMstY9mW4/z8/Tn8/sv1/OP7X1NW1ajK9bwsquLjmev45bRvmb/2EBabA4C2Tj2zlu3h3z9ZyGdzt1BYVtf736h9k4g0pKAVR64zMaSgFUcKWnGkoBVDClpxpKAVRwpacaSgFUMKWnGkoBVHClpx5H5JDCloh8dUzuuCtl1j4L/+sJib9zJ6Be3OI1fYtPd8b+/spr3nRyRofzltPsFg/wlas8XeK2iVbgv//NtvaGjpBECjU6SgHa0o3RaiYx/w8cx1/Ow3s1mw7vC4HhZmttr51Z+WkFtUjdvjZdfRq9y4kwbAV0t3cykuGb8/QNbLMt77bBle3/9j773DmzyzvP93dmff/e2+O1vf3f1NJpPMzGZKSCZl0pkkJJAEQgIEhjIQEhN6770EQiiBUEII3XSDMS200Am9Y+MmyZIs2WqWLAts/BRZsuTv+4eQsI1cjrD0SPic6/pcF5bkR7cebt3W/dF5zglMOqUXiUSDBS0dnmc0WNDSYUFLhwUtDRa0dFjQ0mFBS4cFLQ0WtHRY0NJhQUuH90s0WNBGRnOO2oIWAJau3YW2PSeEBO2oGcuxcccRAEB+gRVtuo/F4tVpACITtE+91QdHT18DAOw/dgEdkqYCuFeDVme0oGXHYfB4vPD7q7BkzU60aJUEd4UneiciyhE3grZ63MjSYtLcNXj+3f4xe869h89h/OyV993uun0HL7YbFPoWAAD+0v9zXM3QAOA/BFRY0NLheUaDBS0dFrR0WNDSYEFLhwUtHRa0dFjQ0mBBS4cFLR0WtHR4v0SDBW1kNOcIJ2gl2Y1WXUaFBG1Gjg5te05Axz5TMXX+Ohw/ex0vthuEk+fSyYI2W2NEpz7TsHBFKtr3noT2vSeFrmSvXuJg8ty1aNN9LHoMmoVL13Px8bA56Dbw3rETLeJS0Aaj/G6JgVjEvG9TMHvJZvQduwDv9BiHyXPXQhBlpGfr0KnPtBqPHTtrBdIOnAbAfwiosKClw/OMBgtaOixo6bCgpcGClg4LWjosaOmwoKXBgpYOC1o6LGjp8H6JBgvayODgiHbEraDNVhtw4NjFmD3flHlr0a7XBBQV30KFx4tRM5Zj7rKtuHg9Bz0Gzarx2GlfJWPz3S5zt8o9DIFKfxXuSF7Fx5FI8DyjIciV8Fb6FR9HIlHh9UOq8Ck+jkTC7wfKRF7LGkup6EVVFa9lFER3JSq8vJZR8Hj9EN2Vio8jkagCUCooP45EoUz0wu/ntYyCVOFr2rXsjvKvKdp4K/0QZP6MQYH3SzTuSF5U+qsUH0eiwcER7YhbQTvnmy149p1+MXu+uctSMH/5ttDPN7K06NhnKjJydKFaF8EYM/M77Dp4BgDg9vgYAn5/FSq8fsXHkUjwPKPhqfTD569SfBzRRnRXNtmxKn1+eCv5fUnBX1WFCq/y40gkqqoe/vdlU+KN47WsKdefpsTnr4KH1zISVVX8GYNChTew/is9jkTCW+lHpa/p3pfxuv40JT5/FTy8XyLB+yUaHq8f/jj9jBHPcHBEO+JW0MY6Nu88iinz1oZ+vpGlRZd+M3C7rBx/em8AZPe9b0za9ZqAjJxA/Qul0+wTDS5xQIfnGY1b5VzigAqXOKDDJQ5ocIkDOlzigA6XOKDDJQ5ocIkDOlzigI7bwyUOqPB+iQaXOIgMDo5oBwvau1FyqwyvdRiKvHwzvJU+jJm5AgtXpgIA+o5ZgFWb98Pn8+PgiUt4t8c4+Hx+APyHgAoLWjo8z2iwoKXDgpYOC1oaLGjpsKClw4KWDgtaGixo6bCgpcOClg7vl2iwoI0MDo5oh+KCVme0YPi0ZWjfexLadB97H7GMM5cy0abbGPy543CMn70SouQGAFjtJfh05Dy88sEQdB0wE7l5BaHfUXqRSDRY0NLheUaDBS0dFrR0WNDSYEFLhwUtHRa0dFjQ0mBBS4cFLR0WtHR4v0SDBW1kcHBEOxQXtB2SpqLv2AVIO3AaB45dvI94D6UXiUSDBS0dnmc0WNDSYUFLhwUtDRa0dFjQ0mFBS4cFLQ0WtHRY0NJhQUuH90s0WNBGBgdHtENxQftM674oKxeVHkbEofQikWiwoKXD84wGC1o6LGjpsKClwYKWDgtaOixo6bCgpcGClg4LWjosaOnwfokGC9rI4OCIdiguaLsOmAmDqUjpYUQcSi8SiQYLWjo8z2iwoKXDgpYOC1oaLGjpsKClw4KWDgtaGixo6bCgpcOClg7vl2iwoI0MDo5ohyKCNifPGOLwqSv4dOQ8HD51BdkaY437cvKMSgyPFEovEokGC1o6PM9osKClw4KWDgtaGixo6bCgpcOClg4LWhosaOmwoKXDgpYO75dosKCNDA6OaIcigrZFq6RGE++h9CKRaLCgpcPzjAYLWjosaOmwoKXBgpYOC1o6LGjpsKClwYKWDgtaOixo6fB+iQYL2shozlHp86FFqyQ8+06/EK93Go5pXyVDkt0xHcvmnUcxfcH6mD5nrEIRQVvh8TaIu8IDQYz/N4HSi0SiwYKWDs8zGixo6bCgpcOClgYLWjosaOmwoKXDgpYGC1o6LGjpsKClw/slGixoI6M5R1DQ2p23QreV3CpDv3ELsXBlakzHwoI2itGm+9iwt5eVi3jtw6ExHg09lF4kEg0WtHR4ntFgQUuHBS0dFrQ0WNDSYUFLhwUtHRa0NFjQ0mFBS4cFLR3eL9FgQRsZzTnCCVoA2HXwDPqOWQCT1YG3u44O3T5r8SZ8PGxO6Ochk5fg+NnruJmrR5d+M9C25wR0+HQKrmSoAQAavQmd+07H0rW70G/cQrTvPQnnr2YDCCR4jp+9Em26jcHHw+Zg7rKtIUFb1/ESNRQTtBeu5WDhilQ807ovFq5IvY8R05fh5faDlRpeo0PpRSLRYEFLh+cZDRa0dFjQ0mFBS4MFLR0WtHRY0NJhQUuDBS0dFrR0WNDS4f0SDRa0kRHr+NG5FKeci2NOuAgnaItLSvHJiLlYvn4vAKB11zEoKg7c333gLHQbOBMejxdVVVVo2XEYyu6I6NRnGg4evwQAOHDsItr3ngQA0BkteOqtPrh4PQcAcPT0NfQcMhsAkLrvFD4eNgfeSh/uCBI++GRySNDWdbxEDcUEbX6BFUvX7sLTb/fB8Knf3Mf42Stx9nKmUsNrdCi9SCQaLGjp8DyjwYKWDgtaOixoabCgpcOClg4LWjosaGmwoKXDgpYOC1o6vF+iwYI2MmIdhx2zFCFcBAXtS+8PwsvtB+PFdgPxp/cGYPHqNHi9lQCAyXPX4siPV1FaJqD38LmYsXA90rN10But6DpgJgDA662E318FICB4n2ndF0BA0FZP0NToTWjTbQwAYOysFdi082joviVrdoYEbV3HS9RQvMRB0LYnaii9SCQaLGjp8DyjwYKWDgtaOixoabCgpcOClg4LWjosaGmwoKXDgpYOC1o6vF+iwYI2MmIdFX5BEcJF7QzakltleOWDITCYikKP2Xv4HOYv34aT59KxaFUa9vxwFsnbf8COfaewaFUagEBmbO/hc9Bj0Cx0HTATT7/dB0BA0L71l1GhY1X/ud+4hdh7+FzovvWpP4QEbV3HS9RQRNDqjBZIckXo3/UR76H0IpFosKClw/OMBgtaOixo6bCgpcGClg4LWjosaOmwoKXBgpYOC1o6LGjp8H6JBgvayGjOEa7Ewbfr92DwpCWhn232EvQY/AUWfLcdpy5kwGAqwrAp32Dil6tx4VoOXLfv4Pl3+yO/0AYAKHK4GiVox8xcgS27joXuW7giFdMXrK/3eIkaigjaFq2ScDVDE/p3fcR7KL1IJBosaOnwPKPBgpYOC1o6LGhpsKClw4KWDgtaOixoabCgpcOClg4LWjq8X6LBgjYymnOEE7SCKKNlx2G4dD03dFv73pPQpd8M3C4rR1VVFT74ZDI++GQyZLcHOqMFLTsOg8fjhd9fhSVrdqJFqyS4Kzz1CtrNO4+GatDeKi1Hu14TMH3B+nqPl6ihiKC9I0io9PkAAMWuUtwRpDqJ91B6kUg0WNDS4XlGgwUtHRa0dFjQ0mBBS4cFLR0WtHRY0NJgQUuHBS0dFrR0eL9EgwVtZDTnCCdogYA8/eizaaE6sNO+Sq7RqGvQxMX4dOS80M+T565Fm+5j0WPQLFy6nouPh81Bt4Ez6xW0klyBkdO/xZudR6LHoFlYvDoNU+evq/d4iRqK16B99p1+6DN6PtZsPYAsVT58Pr/SQyKF0otEosGClg7PMxosaOmwoKXDgpYGC1o6LGjpsKClw4KWBgtaOixo6bCgpcP7JRosaCODgyPaobig1ehNSNlzAmNmrkCrLqPwcvvBGD71G6TsORGqJRHPofQikWiwoKXD84wGC1o6LGjpsKClwYKWDgtaOixo6bCgpcGClg4LWjosaOnwfokGC9rI4OCIdiguaGuHyVqM7d+fxIefTOYatA8hLGjp8DyjwYKWDgtaOixoabCgpcOClg4L2sZhcMk45ZCxySpheYkHaUUytCW8njUGFrR0WNDSYUFLh/dLNFjQRgYHR7QjLgRtaZmAU+fTsXBlKnoM/gKvfDAEn46ch6Vrdyk9tAZD6UUi0WBBS4fnGQ0WtHRY0NJhQUuDBS0dFrR0WNDW5JxDxjarhPkmGYPzRbyfJ+JplYCf54TndbWA0QYRG6wScpzKjz8eYUFLhwUtHRa0dHi/RIMFbWRwcEQ7FBe0H34yGe/0GIcxM1dg6+7jyMkzhhqIJUIovUgkGixo6fA8o8GCwJGf1QAAIABJREFUlg4LWjosaGmwoKXDgpZOcxS0Fx0ydtlkLDBJGG4Q0VEr4Hl13RI2SEuNgPZaER8ZZbybF/4xL6gE9M8X8J1ZwnmH8q81HmBBS4cFLR0WtHR4v0SDBW1kcHBEOxQXtAMnLMIbH43Ax8PmYPHqNJy+eBNl5aLSw2p0KL1IJBosaOnwPKPBgpYOC1o6LGhpsKClw4KWzsMoaC0uGdecMnbbZCw1SxhtENFFK+AltYBH6xGwj+YIeFVdjm46AWMNIr41S/i+SEZ6sQxrteMHa9AWuGQcLJIw2yShs07Ab3LvP+ZTKgEf60QsNks45QiMTenzE2tY0NJhQUuHBS0d3i/RYEEbGRwc0Q7FBS0A+Hx+ZGuM2JB6GEOnLMVrHw5Fpz7TMHvJZqWH1mAovUgkGixo6fA8o8GClg4LWjosaGmwoKXDgpZOogpaq0tGRrGM/UUyvjNLGG8U0UMn4DWNgF+GEaVBfnE3y7WLVsAoQ0Cc7i6ScbVYhrmRz11XkzCzS8YJu4yvTRJ66kU8GWYcT+SWo4tWwJxCCYfsEgpLlD+X0YYFLR0WtHRY0NLh/RINFrSRwcER7YgLQRuMCo8X6dlarNl6AO17T+ImYQ8hLGjp8DyjwYKWDgtaOixoabCgpcOClk68C9psp4xDdgmrLDImF4jopRfxhkbArxsoR/CcWkAHrYChBhELTRJSbYHSBqYmEKJ1CdpwXHQEBHLf/PBlFB7LEdA+T8RUo4jdRTL0D6GwZUFLhwUtHRa0dHi/RIMFbWRwcEQ7FBe0J87dwMKVqeg5ZDaebdMXbXtOwOdfb8APJ6/AdfuO0sNrMJReJBINFrR0eJ7RYEFLhwUtHRa0NFjQ0mFBSyceBK22xI1jdhnJFhnTjSKS9CJaawLZpvVJ2KdUAbk5KF/AvEIJKVYJZx2B0gPRHC9F0NYm0ykj2SpjmEFES034DN+3NALGGERstUpQPQSNx1jQ0mFBS4cFLR3eL9FgQRsZHBzRDsUF7dtdR2PS3DXYe/gciopvKT0ccii9SCQaLGjp8DyjwYKWDgtaOixoabCgpcOClk6sBG1+iYyTDhkbrRK+KAxklL6bJ+APqvol7B9U5Xg3T0DffAFfFErYaJVw0hE4nlLn7EEEbW00Tje2WQMlGtrkha+R+4pawOB8EWssMq4VKz9nqLCgpcOClg4LWjq8X6LBgjYyODiiHYoL2kQPpReJRIMFLR2eZzRY0NJhQUuHBS0NFrR0WNDSaUpBa3TJOOuQkWKVMLdQwqD8QIbrU6r6yxE8kVuO1hoBSXoR040iki0yjtkDmbVKn59wNKWgrY3BJWOvTcaMAhEfagX8Ksz5ekYVOFffmAMZw9YojKMpYUFLhwUtHRa0dHi/RIMFbWQ099AbrRg4YRFe7zQcLTsOQ49Bs3Dpeq7Sw6oRL7cfDLsz8RI/gxG3gvbAsYuYvmC90sNoMJReJBINFrR0eJ7RYEFLhwUtHRa0NFjQ0mFBS4cqaE0lgbqqqTYZC0wShhpEdNAKeLYBCfvrHAFvaAT00ouYXCBilSVQWzY7AS/hj6agve98u2QcLZIx3ySjm07A78KUffhdbjm66QTMM0k4UhT4HaXPUXVY0NJhQUuHBS0d3i/RYEEbGc093v94IrZ/fxJ+fxWqqqpw9PRVvNB2AMruiEoPLRQsaKMUKXuOY8D4r5UeRoOh9CKRaLCgpcPzjAYLWjosaOmwoKXBgpYOC1o64QSt2SXjarGM3UUyFpsljDKI6KIV8IIqUCO1Lgn7y1wBr2kE9NAJGG8U8Z1Zwv4iGRnF8Z/lSSGWgrY2VlcgS/kbs4QkvYhnwojxX+UI+EArYkaBiL22QFaukueLBS0dFrR0WNDS4f0SDRa0kdGcw1vpQ4tWSSi5VVbjdqOpCD6fHwBw+uJNdOozDe/9dTz6jlmAW6XlAIDNO49i6vx1mPjlanw6ch66DpgJm70EAGAwFSFp1Hy06zURHZKmIlttCB173bZDaNN9LLr0m4G0A6fRpvtYAIDfX4XZSzbjvb+OR5tuYzBl3lpU+nwAWNA+cIyasRzlgqT0MCIOpReJRIMFLR2eZzRY0NJhQUuHBS0NFrR0WNA2HqtLRnqxjBO3vVhZ5MZYg4huukC903B1UIM8miPgJbWALloBow0ilpol7LbJuOaUYYmD1xULlBS04bhWLGONRcbgfBGvqMP/n7XOEzDOKCLFKkHtjO06zIKWDgtaOixo6fB+iQYL2siIeWwFsFkB6oghk5eg64CZOHj8Epyu0hr3OZy38dqHQ5GXbwYAbNxxBMOnLQMApOw5gZYdh4Xk7pdLt2Dp2l2oqqoKyNf9PwIAsjVGvNl5JLyVPuiNVrzcfjCcrlJ4PF4MGP812vacAAA4fvY6OiRNhcfjRYXHiw5JU/HDySsAWNA+cHz4yWRcu6lRehgRh9KLRKLBgpYOzzMaLGjpsKClw4KWBgtaOixo7yfLKeNgkYQVFgmTjAJ66kW01Ah4vB4J+0iOgOfVAjppBQw3iPjaJCHNJuNScfxdPq8E8SZoa6NyythikzDaIOItTeD/s/b/8WsaAUMNgXq/6VFuPMaClg4LWjosaOnwfokGC9rIiHmsUog6osLjxdbdx/HJiLl49p1+6Nx3Oo6evgYASDtwGv3GLQw9VpLdeKZ1X3grfUjZcwLDp34Tum/LrmOYPHctCsx2PP9u/1AGLgB0GzgTVzLUSN13KiR4gYCUDQra4FiC8fnXG7Bm6wEALGgfONZtO4R2vSZixsL1WJtyEBtSD9cg3kPpRSLRYEFLh+cZDRa0dFjQ0mFBS4MFLZ3mKmhVJTIO2wNZlFONIj7Ri2ilEfCb3Prrwv5RJaBTvoThBRLmmSSkWCWcd8goLFH+NcUz8S5oa6MrcWN3UWBuvJ8n4rEwc+F5tYDP9AKWmwNzoCmfnwUtHRa0dFjQ0uH9Eg0WtJER85AUohHhrvDg4PFLeKHtAGSp8pG8/Qe80HYA2nQfG+KVD4bA6SpFyp4TmPjl6tDvBn/OVhvw9Nt9avxOy47DcPT0VazZeqBGT6osVX5I0JaVi5j2VTK6DpiJHoO/wBsfjcCqzfsBsKB94OjSbwZ6DP6iTuI9lF4kEg0WtHR4ntFgQUuHBS0dFrQ0WNDSeZgFra7EjRN2GclWGTMLJXymD1y2/tswTaOq82SugLZ5AvrnC/jSJGGzVcKPjnt1SalNwpjEE7S1KXAFGrTNMUnorBXwRJg59AdVOXrqRSw0SThhD9QljvT5WNDSYUFLhwUtHd4v0WBBGxnNOYocLvx4MeO+2weM/xo79p3CgWMXa2TJVo+6BK3deQuvfDCkzt8Z/fny0M8nz6WHBO2cb7Zg2lfJobqz075KZkHLEQilF4lEgwUtHZ5nNFjQ0mFBS4cFbcNonGW4UVyCM3Y7DtstKPJIio8pkUh0QWtwyfjRIWOzNSDPBuQH5OqTDWTC/ja3HK3zAhmQnxeISLbKOGEPSN2GnpMFLZ1EF7S1sbhknHTIWGSW0Esv4qkwjcd+nRMoeTGrMND4zUg4PgtaOixo6bCgpcP7JRosaCOjOYfRVISX3h+EY2euw+fzo6qqClczNHjtw6HQ6E0ouVWG1zsNR4HZDiBQT3bON1sA1C1oAeAv/T/HoZOXAQC3SssxfvZKiJIb2WoDWnYchttl5fB6KzFo4uKQoB01Yzk27jgCAMgvsKJN97FYvDoNAAvaJgmfz4+rGRrsPXwudJsgJsYbQOlFItFgQUuH5xkNFrR0WNDSedgErdklQe0swzVHCU7bi3DIZsIOiwHrzXn4tjAX8woyMM1wDaP0F9BPexp/1RxHB/VhvJ27Hy/n7MZTWal4PHMr/m/GBvxD+lr8rxsr72OdU6X460wkEkHQFpbIOO+QkWKVMN8UaOzUXivij2GkWG1B1kojoLdOxFSjiDWWQFmD3AcsR8CCls7DJmjDcalYxgqLhH75Al4IMzcfzRHwbp6ASUYBO2wytPV8GcCClg4LWjosaOnwfokGC9rIaO5x6XouPh42B699OBQtOw5Dj0GzcPJceuj+M5cy0anPNLTrNQFdB8xEerYWQP2CtsBsR9Ko+WjbcwLa954UahgGAAtXpOLtrqPx1yGzsf37k2jXKyBoM3J0aNtzAjr2mYqp89fh+NnreLHdIJw8l86C9kHDUuRE254T8ELbAWjRKgkAYLWX4JUPhiBbbVB2cI0IpReJRIMFLR2eZzRY0NJhQUtHaUFrdAnIdt7G5eJinLTbsM9WiG3WfKw1q7HElI0vC9Ix2XgVw/Tn8Jn2R3TLO4b31YfQSvU9Xs7Zjd9nbccvM7fg3zKSw8rUpuD/pK/Ff93ciN9kpuCP2Tuw57ZR8f+3RCJeBK3JFRBcabZAVuJwg4hO2kCdz3ANm4I8niOgpSbQyGuiUcB3FgkHiyRkOqM3Vha0dJqDoK1NtlPGBquEEQYRr6vDz9/X1QJGGERssErIrjZnWdDSYUFLhwUtHd4v0WBBGxkcsQ2/vyr076sZGnQbOFO5wcQoFBe0SaPmY1nybvh8/pCgBYCUPcfx6ch5yg2skaH0IpFosKClw/OMBgtaOixo6VAFraGkHFnO27jkKMYJuw3f2wqQYtFjjVmNxYXZmF1wA5MMVzBUfw5J2lPomncU7dSH8Ebu93g+Zyd+l7UNv8jcjH/JSMZP01c3uUz92xur8M8Z6/DIzc34bVYKnsveiddz96Kt+iC6aI7iU+0pDNGdxQTDZXxRcAOLCrOwyqzCVosOe21GHCuy4qLDgcziW9CXlN/3+rkGLZ1YClqLS8Y1p4zdNhlLzRJGG0R00Qp4SR3ILqxLwj6aI+AVtYCuOgFjDSK+MUvYa5Nxo1iGVYFzxoKWTnMUtLXRlriRapMx0RjIpA03519QBWofr7ZJ0LpZalBgQUuHBS0d3i/RYEEbGRyxi1ul5Xix3UDojVZUVVVh+oL1mLtsq9LDinooLmiff7c/KjxeAKghaL2VPrz0/qCYjePclWw89VYfPPtOvxApe04AAMy2YiSNmo9XPxiCLv1mID1bF/o9pReJRIMFLR2eZzRY0NJhQXs/upI7uFl8CxccDhwtsmCPzYgtFh1WmlT4ujATi+yZmGi8jMG6s/hEewqdNUfwnuog/py7F89mp+GJrBT8/OYm/CxjHf72xqomF6p/l74a/5qRjEczN+P3Wdvxp5xdeFP1Pd5XH0LXvKPoo/0Rw/TnMMlwBV8WpGOJKRtrzGpss+qxz1aIE3YbLjuKke28DUMYodrUsKCl09SC1uqSkVEsY3+RjO/MEsYbRfTQCXhNI+CX9dSFfeSunOqsEzDSIGKRWcIum4wrxQ/WbCkasKClw4L2foyuwPtkZqGEjtpASY7a74sWuQJ66QPvh5OOwJccSo87XmFBS4cFLR3eL9FgQRsZHLGNtP0/4p0e49Cm2xgMm/INbpeVKz2kqIfigrZVl1EouVUGoKag1RktaNlxWMzG8cPJKzW6xFWPT0fOw6adR+Hz+XHuSjZadRkFb2WgY5zSi0SiwYKWDs8zGixo6SS6oLW6ZOQ57yC92IWzdgcOF1mwy2rERrMW35lUWFBwEzOM1zFWfxEDdWfRK+8EPtIcwTuqA3g1Zy+eyU7DbzJT8F83N+Kf0tfiJ1G43P/vb6zBf2Ssx2M3t+DJrFS8lL0bb+XuwwfqH9BDcxx9tacxQnceUw1XMbcgA98U5iDZrEGqxYADtkL8WFSEqw4ncotLUVgiKn7OqbCgpROpoM12Brrar7LImFwgopdexBua8JKpOs+oBHyoFTA0X8RXJhnbbRIuOGSYHrAubCxhQUuHBW3DmF0yjttlLDBJ6KkX0SJMWYQncsvRRStgjknCIbuEgjgYd7zAgpYOC1o6vF+iwYI2Mjg4oh2KC9qvvtuOT0bMxeUbKrRolQSN3oT9xy6gbc8JmL1kc8zGkbb/R0xfsP6+21237+DFdoNQ6fOFbvtL/89xNUMDgP8QUGFBS4fnGQ0WtHRiLWgtdxtSXXeU4LTdjkM2E9Ks9xpSzS+4GWpI1V97Bj3z7jWkeiVnT6gh1X/W05DqQfnH9LX4z4wN+FXmVjydtQOv5OxBa9V+dFQfQc+84xhZeB5jDRcxzXAN8wtuYrkpF+vNeUizGvCDzYzTdjuuO0qgcZbB4pIU/z9WGha0dOoTtNoSN47ZZSRbZEw3ikjSi2itCUii+iRsi1wB7+eJGJgvYE6hhK1WCWccMgxx8HqbAha0dFjQ0gjWoD3vkPGtWcJnegHPhRG2j+UE3mtTCkTsssnQ1dN47GGHBS0dFrR0eL9EgwVtZHBwRDsUF7TuCg9mfr0Rz73bHy1aJaFFqyS82G4QFq1KC5U+iEWs23YI3QbORKc+0/Bm55GY9lUyRMmN9GwdOvWZVuOxY2etQNqB0wCAolsyQ8BT6UdJWYXi40gkeJ7RuH1X0Co9jqjjarpjBQVtXfcX3hKgcpbiarETP9ptOFhUiFRrPtaZNVhmysHcgnRMMV7FSP159NWdRve8Y/hA8wPeUu3Dizm78WR2Kh7L3IJ/v7kef39jTZPL1L+5sRL/lL4W/323IdUz2WlombsX76gO4CPNEfTOO4mB+rMYm38RMwuuYUHhTawwq7DZqsVumxFH7BacdziQ4XRBW3IHtkacs0pfFZylbuXnQYLguCtolR5HQlHuwdXySmyySphdGOhA/26egN+r6pewv8stxzt5AvrlC/iiUMJGm4RTDhn5Tbhm2JrwWE1JUNAqPY5Ewl8FOG4rP45EwXlX0Na+Pd0pY51VxlCDiNc04UuFtNIIGGMUsdUmQRWn76FoEBS0TXbMZnDu3B4fbt/h/RIF3i/RcN0VtEqPI9Hg4Ih2KC5og+H1VsJqLwmVO4h1HD97HUvX7kJpmYBbpeXoO3YB5i7biovXc9Bj0Kwaj532VTI27zwKAKiqYigAQBWfN/o5i4NxJAxoHufMW+mv8z7JVwmHV0a++w5uSi6cKy/CkTsm7Lydj/UlGiwrzsacohuYaLmMoYXn8GnBSXTOP4J3tAfwqmYPnspNxePZAaH6d1FqSPUvN5PxaNZmPJm7HS+pd+HtvP3oqD+Mjw0nMajwLMabL2F20XUscWRiXYkaO27rcaisEGfKbUgXS6B1l6HII0HwVSpy/nktI9JM3pdUZD+gkv344U4lvnV6MNrixkcGGX/UiPVK2CdUAt7TSxhocmO+3YOdpZW4LvrhqqyKybg99aw/SgKeZxGdM6XHkFA0co7dqgQO36nEDFsF2uol/CLM+7ilVsRoixs7blfCWBGb964SNPX7sr7PPw8L/BkjwnMWB+NIGPjvZURwcEQ74kLQXs3QYP7ybRgzcwXGfbESC1emIiNH1/AvRjGuZ+ahXa+JyMjRoUPS1Br3jZn5HXYdPAOAL6WgwiUO6PA8o5GIJQ70JeXIvNuQ6liRFXvvNqRaZVZhUWEWZhmvY4LhMoZUa0jVVn2vIdVvo9yQ6qfVGlL9LmtbqCFVu2oNqYZWa0i1uPBeQ6rvbQWhhlRZMWpIFQsqfVUoLm2+l6xSac4lDkwlMi46AjVdF5gkDDWI6KAV8Kyq/pqwv8oV0EoroqdexCSjiBWWQG3LbKfyryle4RIHdLjEAY1giQPq7xlcMnbbZEwzimivFfF4mPf8H1UCPtGLWGoOlB6xxsHrbQq4xAEdLnFAh/dLNLjEQWRwcEQ7FBe0a1MO4vl3+2PA+K8x7atkTJ67Fp+MmIs/tv4MG9OOxGwc+QVWFJeUhn6+dD0XHZKm4nZZOf703gDIbk/ovna9JoQEstKLRKLBgpYOzzMa0Ra01RtSnavWkGqT5V5Dqs+N10INqT7OOxlqSPVa7r2GVP99tyHV30SpIdW/V2tI9WK1hlTd846FGlJNMVzFHGM61tjV2GLXYbslHwdshThlt+FKceI2pIoFLGhpPOyC1uyScbVYxi6bjMVmCaMMIrpoBbygEsJmzgX5Za6AV9Xl6K4TMM4o4luzhH1FMtKLZdyOsElYc4YFLR0WtDQiFbS1MZXI+MEuYW6hhL/owteP/m1uObrqBMwrlHDYnlgN+6rDgpYOC1o6vF+iwYI2Mjg4oh2KC9rXOgxFfqHtvtvPXcnGqx8Midk4Fq1Kw6CJiyDJbgiijAHjv8bi1WkAgL5jFmDV5v3w+fw4eOIS3u0xDj6fHwD/IaDCgpYOzzMatQWtxSVBU60h1Q82c6gh1XLTvYZUo6s1pOqoPoLWqkBDqqezduBXdxtS/WOUGlL9w92GVI9nbsVTWamhhlQd1IfRM+84+mvPYJT+Qqgh1beF9xpSHbKZQg2p1BE2pIp1k7CHARa0NB4GQWt1BcTpXpuMZWYJYw0iuukEvKIW8Gg9EvYXOQFR21krYLRBxGKzhN1FMq4Vy7DU83z1NQljwsOClg4LWhpNJWhrY3XJOO2QscQkobdOxNNhMux/lSOgvVbEdKOIPbbEae7HgpYOC1o6vF+iwYI2Mjg4oh2KC9r3P54Y9naPx4tXYihoJbkCk+auwWsdhuLNziMx8+uNoaxZq70En46ch1c+GIKuA2YiN68g9HtKLxKJBgtaOs1tnhWWiMgtLsVVhxM/FhXhgK0QqRYDks0afFOYg7kFGZhquIoRuvPoqz2NHprj+ED9A97K3YeXsnfjqewd+FXWFvxHRnQaUv3kbkOq/6rWkOrVnHsNqXrlncBA3VmM1V/EDON1LCi4ie9MKmw0a7HLasThIgvO2h1IL3Yhz3knLi5hZEFLhwUtjUQStFlOGQeLJKywSJhkFNBTL6KlRgh7SXJ1nlML6KgVMMwgYqFJwg5boLRBpFlvLGjpsKClw4KWRrQEbTiuFMtYZZExMF/AS+rwX/60zhMw1iBim1WC2hmff5NY0NJhQUunue2XHhQWtJHRnON2WTlatEqCJLtr3L738Dn0HbMgJmPYvPMopi9YH5PnUioUF7TTF6zHmUuZ992+Y98pzF++TYER0ULpRSLRYEFLJ97nmaGkHNnO27jsKMYJuw37bIXYZtVjjVmNJaZsfFmQjkmGKximP4c+2h/RNe8o3lcfwpuq7/GnnF34fdZ2PJq5Gf+akRy1hlQ/y1iHn9/chCeyUvBsdhr+nLsX76kOorPmCD7RnsJg3VmMN1zGLON1fF2YiZUmFbZYdNhjM+JokQUXHA5kFt+CruSO4uc7GrCgpcOClka8CVpViYzDdhlrLDKmGkV8ohfRSiPgN7n1S9inVALezxMxOF/EvEIJKVYJ5xwyCqIwRha0dFjQ0mFBSyOWgrY2OU4Zm6yBEipvagQ8EmaNek0jYEi+iGSLjBvFyp8vm4sFbSSwoKUT7/uleIMFbWQ052BBG5tQXNBO/HI1nn2nHzr2mYphU77BoImL0K7XBLz0/iCMmrG8BvEYSi8SiQYLWjpNPc+CDakuVmtItbVaQ6ovCm6EGlJ9qj2FLpqjaKs+iNdz9+K57J34bVYKHrm5Gf8cxYZU/5KRjF9Ua0j1Ru69hlRJ2lOhhlSzC26EGlKlWAINqc667FAJpQ9VQ6pow4KWDgtaGkoIWl2JGyfsMpKtMmYWSvhMH8g2+22YWo/V+YOqHO9pBfTLFzDbJGGjVcIpR+wvJ2ZBS4cFLR0WtDSUFLS10Za4sdMmY5JRRNu8QE3rcJn9n+kFfGuWcN6hzDhZ0NJhQUuH9+U0WNBGRnOOxgjaCo8XE79cjXd6jEPSqPlYvn4vpsxbCwC4matHl34z0LbnBHT4dAquZKgBABq9CZ37TsfStbvQb9xCtO89CeevZoeON372SrTpNgYfD5uDucu2hgRtXcdL9FBc0H65dAvmfZvSKOIxlF4kEg0WtDSsLhnlfi8y7jakOlJkwW5rATZZtFhhysXCwsxQQ6pB1RpSvVutIdX/RLkh1f++sTrUkOoPWdtDDanaV2tINVx/ryHVUlM21pk02G7Jx/6iew2pcpylKHAJD3zOot0k7GGEBS0dFrQ0oiVoDS4ZPzpkbLZKmGOS0D9fQNs8AU82kAn7RG45WmsE9NGLmFEQyDY7bg8ID6XPVRAWtHRY0NJhQUsjngRtbQpcgfIss00SOuvCXxHwB1U5eugELDBJOG4PNDiM9rhY0NJhQUuH9+U0WNBGRqyjKmsQqjL7xZxw0RhBm7LnBD4eNgeVPh/szlt4u+vokFDt1GcaDh6/BAA4cOwi2veeBADQGS146q0+uHg9BwBw9PQ19BwyGwCQuu8UPh42B95KH+4IEj74ZHKDx0v0UFzQJnoovUgkGg+7oK3ekOpMtYZUG6o1pJpuvF6tIdWJehtS/SRKDan+b7WGVC/n7MbbuYGGVH/VHEc/7elQQ6p5BRmhhlQ7LPcaUl2725DKHEFDqmjDgpYOC1o6LGhpPIigLSyRcd4hI8UqYb5JxuB8Ee21Iv4YpolOdX6dI+ANjYCPdSKmFIhYZQl0Tc9xKn8+GgMLWjosaOmwoKURz4K2NmaXjBN2GV+bJPTUi2G/uPp1TqB29sxCCfuKZBijMA4WtHRY0NLhfTkNFrSREeuout5FEcJFYwTtmJkrsGXXsdB91TNevd5K+P1VAIDiklI807ovgICgfbn94NDvaPQmtOk2BgAwdtYKbNp5NHTfkjU7GzxeokdcCNrvj5zHpyPnhf4j3BUerNi0D5U+n8IjaziUXiQSjXgTtGaXBJWzLNSQ6qDNFGpItaxaQ6qR1RpSfag+HGpI1SIrFY/d3Ir/yFiP/y9aDakyAg2pfp2Zgj9m7wg1pOqkvteQakyNhlS51RpSmeOuIVW0YUFLhwUtHRa0NBoStCaXjEvFMtJsMhaZJQw3iOikFfC8OnydxSCP3a25+FediAlGAd+ZJRwoknEzQSRsfbCgpcOClg4LWhqJJGjDcdEh4zuzhL75gfW19pr6aI6Ad/IETDAKSLU1zVUFzVnQ2u1uuDQV91FsQWWkAAAgAElEQVR+rvI+pCOVqNjtR8VuPyrP+lnQEuF9OQ0WtJER8/CWAt7bsSdMlN0R0aJVEsoFqcbtOw+eRv9xXwMA+o1biAPHLobuW7ftUEioHj19Db2Hz0GPQbPQdcBMPP12HwABQfvWX0aFfqf6z/3GLcTew+dC961P/aHB4yV6KC5oN+44gjbdxmBtykG0aJUEACi5VYbOfadjyZqdyg6uEaH0IpFoPKigNbqEQEOq4mKcDDWkysfaag2pJhuvhhpSdcs7FmpI9UK1hlT/FuWGVP9/tYZULXP3hBpS9c47GWpINbNaQ6rN1RpSnXfYcfNuQyqriz9wUGFBS4cFLR0WtDTst92o9FfhmlPGbpuMpWYJow0iumgD3ckfrUfCPpoTeMxfdALGGEQsNUvYbZNx3SnDEgevLVqwoKXDgpYOC1oaiS5oa5PpDNTpHmYQ0VITfg3+s0bAcIOI9VYJ2RF8+ZUogjacSC294Q0rU4MitTr+5CpgFZoEf1oVC1oivF+iwYI2Mppz+Hx+PPduf6i0BTVun7ssBdO+SgYAjJqxHNv2ngzdN+/bFExfsB6u23fw/Lv9kV9oAwAUOVyNErS1M3IXrkht8HiJHooL2jc7j0R+gRUAQoIWAMy2YrTpPlahUTU+lF4kEg63iG1Feqw0BRpSzTJex/i7Dak+0Z5CZ80RtFUfxJ9z9+LZ7DT8NisFP7+5CT/LWNfkMjXIP2eswyM3N+O3WSl4LnsnXs/di7bqg+iiOYpPtacwRHcWEwyX8UXBDSwqzMIqswpbLTrstRXgWJEVFx0OZDpvQx+lhlQ8z2iwoKXDgpYOC9rwWF0yMopl7C8KZGmNN4rooRPwmkbEY/XUhX0kJ5DN9ZFOwAiDiEVmCWk2GZeLA9m1Sr8uJWBBS4cFLR0WtDQeNkFbG43TjW3WwNrdJi/8l2d/Ugvomy9ghUXCxUY0HmtqQeswNz4r1b3fd59I9W73N5lIbRIZm1yFil1+uPf7UH7WizuXvfCYOIOWCu+XaLCgjYzmHnOXpeCTEXNhKXLC4/HixLkbeOn9QcjNKwAAJG//AZ+N/gp+fxUcztto030spi9YD53RgpYdh8Hj8cLvr8KSNTvRolUS3BWeegXt5p1HQzVob5WWo12vCQ0eL9FDcUH7QtsBodoR1QWt7PbguXf7KzSqxofSi0SiscGpeWCh+q8ZyXg0czN+n7UdL+fsxpuq7/G++hC65R1DH+2PGKY/h8nGq/iyIB1LTNlYa1Zjm1WPfbZCnLTbcNlRjGznbRiboCFVrP4QKD2GRIIFLR0WtHSau6DNdso4ZJewyiJjcoGIXnoRb2gC9Qzrqwv7R5WA9loRQ/JFzDcF6sqedwTqzCr9muINFrR0WNDSYUFL42EXtLUxuGTstcmYUSDiQ234Nf7JXAE99YEv1k7aa17Z4NJUQDRUwl3gC4nUO1fuz0oVToTPSo2lKK3Y5b8P6XAlys96H3g8tQWsS+OBM79uAcs1aOnwfokGC9rIaO5R4fFi8eo0vN11NF5oOwA9Bs3C+avZofsFUcagiYvxTo9xGDhhEZas2YkZCwMlCSbPXYs23ceix6BZuHQ9Fx8Pm4NuA2fWK2gluQIjp3+LNzuPRI9Bs7B4dRqmzl9X7/ESPRQXtD0GzcKhk5cB3BO0VVVVWLl5H/7S/3MFR9a4UHqRSDS2u/T4WXr4bNh/z1iPX2ZuwR+ytuND9WHMLriBI0UWXHU4kVtcqvjYlYLnGQ0WtHRY0NJpDoJWW+LGMbuMZIuM6UYRSXoRrTUCnsgtr1fCPpkroG2egAH5AuaYJGy2Sjhb7IbYjKRGU8CClg4LWjosaGk8rILWmX9/RuqtbM99IrXsXCWKv/fBlOZH7g4frm734eJ2H8wbYidTfZurwsrU8rPe+7iV5YFLU5NwYjT4+oPyOJh529iyBbXHEHyuSP8/WNDS4f0SDRa0kcHRcASTLwHguw17sXBlqoKjSbxQXNCmZ2vxQtsB6D18Dlq0SsLwacvw3l/H48V2A3ElQ6308BoMpReJRCNYg/ZKsRPJZg1G6S+gjeoA/vvmxrDS9qc3VuH3WdvRNe8ovii4gT02I7RRKiUQr/A8azzpxTImmSQWtERY0NJ5WARtfomMk3YZ660SZpsCjWPe0wr4XQMS9onccrTOE/CZPtD9O9ki45hdhq6OhjINNQlj7ocFLR0WtHRY0NJQWtDW1XQqXFZq9aZTSmWlXtrmw6VtPmSn+mDc4YMzzY/SE5X3idRgVmlt7Pam+TsbLIsQrClLFbDe7QEBK9wde1D8Ruv/mQUtHd4v0WBBGxkc9cepCxlo12siZLcHkuzGR59Nw/Gz15UeVkKF4oIWCNSbXbl5H6bMW4tZizdh444juFVarvSwGhVKLxKJRn1NwrKct7HNqscUw1V8oP4Bj2duxU/CSNuf3FiJxzO34kP1YUwxXMU2qx7ZztuKv7ZowfOsYTRON8YbRTx2Vx6tL+YPtRRY0NJJJEFrdMk465Cx1SphbqGEQfkC2ueJeEpVfzmC3+QKaKUR8IlexFSjiDUWGYftMlQRlCNgQUuHBS0dFrR0WNDSoAjacFmplKZTvi1N13SqsQKyOsFL8huTleow3/t7eK1YxhqLjMH5Il5Rh685/qZGwCiDiM1WCTkRNB6rTVBcB89vUE439hwGs3JrC9imEsRUWNDS4f0SDRa0kcFRf/h8fsxatBFvdx2NNt3H4qvvtqOqqqrhX+QIRVwIWgDweithKXIqPQxyKL1IJBr1Cdpw5DnvYI/NiC8KbqBr3lH8Pms7fnpjVdhs2/++uRFtVAcwWn8B6815uFLsVPz1NgU8z+rG6JIxr1DCb+9m+z2SI2CAUYRBiv9uwfEEC1o68SZoTSUyLjpkbLdJWGCSMNQgooNWwLMNSNjHcwS01ATqB04yBpq+HCySkNUEG+bqsKClw4KWDgtaOixoaU2n5KM+VO2DYk2ngg2laiOEyUotTQ+flRrr81tQ7sEelwejDSLe0gQ+q9X+W/SSWsDAfAGrLDKuFN9/jKCADZZdCNasbey5DwrYYE3Z4LmpLpbjCRa0dHi/RIMFbWRwcEQ7FBe0stuDqfPX4ZnWfUM1aG+VlqPP6PkouVWm7OAaEUovEokGVdCGo8Al4HCRGQsKbqJ33kk8l70Tf39jTVhp+y8Zyfhz7l4M0p3FdyYVztjtsLgkxc8DBZ5n92NxyVhpkWrIp85aAeccXIM2EljQ0lFC0JpdMq4Wy9hlk7HYLGGUQUQXrYAXVAJ+UY+EfTRHwCtqAV11AsYaRCwzS9hrC5QEscZo7Cxo6bCgpcOClk6iCdpwIjVcVmpdTacae0l7tLJSg4KwNuFEarzKQyplohei+94X5/oSGbuLZEw1imifd+/qpy4XZHS5IGPRDx6sOOyBeocPxSmNE7BBcU1pxBXPsKClw/slGixoI4ODI9qhuKCd9lUyBk5YhExVfkjQSnIFJs1dg3FfrFR2cI0IpReJRKMpBG04zC4JPxYV4dvCXPTXnsGrOXvxs4zwzcj+IX0tXsjZhSTtKSwqzMLRIgsKS0TFz01d8DyrSapNRkvNPfnUSiPggO2edGdBS4cFLZ1oCVqrKyBO99pkLDNLGGsQ0U0XEKyP1iNhf5ETELWddYHLRhebJeyyBYSuOQ7OFwtaOixo6bCgpRMtQRsuKzVc06nq9UDjLSs1nEgtz/DCZ0GDTaeYewQFbbDkQ+2yDo39f8pN9cG0wwfdaS9uX0psAdsQLGjp8H6JBgvayODgiHYoLmhfbj8Yt8sC9WaDghYA7ggSXu80XKFRNT6UXiQSjWgJ2rq45CjGWrMaI3Tn8XbufvxnxobwzcjSV6NFVip6aI7jy4J07LMVQh8nzch4ngU4ViShXd49IfWiWsBGq3RfBiALWjosaOk8qKDNcso4WCRhhUXCJGOgxEBLTaDkQH0lCZ5VCfhQK2CoQcQCk4TtNgkXHYESB0qfk/pgQUuHBS0dFrR0/FXArbzGNZ2qKys1ViIVqxBWpIbLSo1W0ymlm4TFM0EBG5w7QfFelUz7v71z1gvjaS/SMisw55o7bL30x3MEvJ8XqI++2xbIylX69TclLGjp8H6JBgvayODgiHYoLmhf+3AoKjxeADUF7a3ScrzQdoBCo2p8KL1IJBqxFrThuFl8C1stOkw0XMH76kN47OaWsNL2b26sxG8yU9BJfQTTDNeQajFA5SyL+Xib+zy7VCyjp14MfShvkStgqVmCqY7Hs6Clw4KWTmMEraok0FRrjSVwKWdvnYhWmkDzrfok7FOqwMZzUL6AuYUStlolnHEEai4r/bojhQUtHRa0dB52QRuu6VRdWalKN50K1vyMtOlUvGZGNmdBG8yKrt2Iq7FlI4IlHyJpxHWpWMYKi4T++YGrRcJdRdJaEyjjk2KVoGriOuqxhgUtnea+X6LCgjYyODiiHYoL2uFTv8G8b1PgrvCEBG2Rw4WhU5Zi8KQlyg6uEaH0IpFoxIOgDUee8w52WY2YabyOzpoj+F3WNvxtHc3IHrm5Ge+pDmKc4TI2mrW47iiJ6tia6zzLdsoYmi+GLuv+Ta6AzwtE5DeQJcGClg4LWjpBQasrceOEXUayVcbMQgmf6QW0zhNCjevq4veqcryTJ6BvvoAvCiVssEo4aZcbnN+JCgtaOixo6cSLoA02NGpM06mg5FIyK9XTyKZTdWWlKn2+Y8nDLGiD87a2gG2s2K/diCsoYO+U1qxB2xRkO2VssEoYYRDxujr839lX1eUYnC9irUXG9QQTtixo6TTX/VKksKCNDA6OaIfigrao+BY+/GRyqEnYKx8MQYtWSegx+AvY7CVKD6/BUHqRSDQuXPNBZ0qMD/OGknIctJkwv+AmeuWdwDPZafjfN1aHlbb/nrEeb6q+x1DdWawyq3DeYW+y5jvNbZ7pStyYahTx62oNjkYYROQ2UlyxoKXDgrZ+DC4ZPzpkbLZKmGMKZPB8mC/hyTBZPNX5n9xyvK0R8KlexHSjiHUWGUeLZKidD0fjFwosaOmwoKUTiaANl5UarulUXVmpSjedqisrtbFNpxKtSZjSJLKgDQrYYNZ1sGRFY+v91hawpeneRjUzq90kLBpoS9xItcmYaBTwbl74mu3PqgT00QcaZZ5zxK5JZiSwoKXT3PZLDwoL2sjg4Ih2KC5oAcDn8+NGlhZ7D5/D4VNXkJtXoPSQGh1KLxKJgs7sxrxvKtBvpBf9RnqxcHkFzl9PvA8ephIRJ+02LDVlo6/2NF7J2YN/Sl8bVtr+n/S1eDlnN/pqT2OpKRsn7DaYImhG1lzmmalExiKzhCerXf7dWyfiajHtOCxo6bCglVFYIuO8Q0aKVcJ8k4zB+SLaa0X8sQEJ+6scAa+rAzVkJxeIWGmRcMguITvBsnWiDQtaOixoaxKu6VTtrNTKK1VwX/TFbdOpcFmpQcmlVFYqC1oa8S5oa78vKHM/OG+D0j+YMf2g5SZiIWhrY3TJ2F8kY1ahhI5aIfSlf+0rWbrrBMw3yThml+ssnaUELGjpNJf9UlPBgjYymnNo9CY8/XafGrRolYQR05c12fHb9pwQ9r4NqYcxfcH6JnmeeA/FBW3KnhNhby8tEzD68+UxHg09lF4kEoEzVyowYpInJGerM3GWBwdPVMDkUH6ckWJ1ybjgcGC1WYVh+nNopfoe/5GxPqy0/d83VuOZ7DT0zDuBeQUZOGgzwdBAM7KHfZ5ZXYHLw6vXFGuXJ+BEkRTR8VjQ0mkugtbkCtSxS7MFvgwYbhDRSSvgebWAR+qRsL/MFfCaRkB3nYDxRhHLzRLOlPuQ7XLHdQZOPMGClk4iC9pwIjVcVmpdTaeUzkoN13SqrqzUB206pTQsaGkoLWhrN+KilsQIzvGmFLANoYSgrY3ZJeO4XcYCk4S/6kT8QXV/GaJf5wjooA2U0/q+KHD1jFLjZUFL52HfLzU1LGgjg+NelJWLaNNtDK5kqJvkePUJWtntgSA2j/OvuKB96y+jsHBFKqqqqkK3nbuShTc7j8QnI+YqOLLGhdKLRLyzduu9rNkZX3lgd/pxJdODRSsraoja4ZM82LDDjbyCxN7oVCe92IVNFi3GGy6jnfoQfpG5uc5mZL/NSkFnzRF8bryGnVYj8px3avwhUPq1RIs9Nhlvae59OH5dLWCn7cGOyYKWjuiuhGioDCtV4o2GNpIWl4xrThm7bTKWmiWMNojoohXwkjr8JY/VG4y8qBbQWStgtEHEEpOE3UWBY1nCPE9jmoQx92BBSycWgjZcVmpdTafCZaUq3XQqKJqCeC/7IV/0JVTTKaVhQUsj2oK2toANvu+ojbhqf6mg5DmLB0EbjvMOGd+aA7XjnwtTx/bRHAFt8gJfzG6zStDEsDwRC1o6D/N+KRqwoI0MjnsxZuZ3+HrVjtDPN3P16NJvBtr2nIAOn04JiVuN3oTOfafj61U78OnIeejw6RRcTldh5PRv8dFn0zDnmy2hx7XrNQELvtuO1l3HoF2vCaFjVM+gret5HpZQXNAWl5Si64CZGP35cpSWCZi1eBOee7c/Nu44Ar+/quEDKBxKLxLxSmZeBSbPDkjYAaO92LbXA4uzZpOwvAI3NuxwY3i17Nr+o7xYtKoClzIeTvGhcpYhzWrAdON1fKQ5gieyUvA3YaTt/7qxEr/M3IJ26kP4sugGtlh0yCh2KT7+puJHu4QPtPc+BD+vFrDW0jT1wFjQ0pFLfDGTLEzd+LZUhc0mfBjw7PED61HjNuHE/RIwEbmV7YnKlxFCfiUqCv31PiYoceKt6VQ4kRouK7WuplORZqXGS5OwRIIFLY0HFbTBL0UibcQVFLDBchnBLyPiOZM7XgVtbW4Uy0i2yBiSL+I1Tfgvc1tqBAwziEi2ysiMYimj2oK2rhIvzD1gg6LPX9eXm/GKdMEHbykLWiqxjokzvRg7PfY0FHsPn0PnvtPh9VaGbuvUZxoOHr8EADhw7CLa954EANAZLXjqrT7IyNEBACbMXoUOSVPh8XhR4fHixXYDUXKrDBq9CX9s/Rn2Hj4HAPj+yHm06zURQE1BW9fzPCyhuKAFAinLoz9fjmfb9EWXfjOQX2BVekiNDqUXiXhk96EKDBwdEK7jZnhwLfveh8bqgjaIySHjwIkKTJ1TswzCtLkeHDxVATOxBmmikV9Sjv1FhZhbkIG/ao7j6awd+Lv08M3I/jNjA97K3YcRuvNYa1bjkqNY8fFTuO6U0Ucv1qj/tcAkobAJO9ezoKUj23yo3FMV8WXFdWW2PSjiLj9cO32wpflg3OGDOtUH/ZbYiiaGYR4+/MkP75ch0hHaJr3qOiBESQDUVcIikfHs8aNqH8i/96DZ5t7t0XtNSr8fGYZRhkozX9lEJdYRrkRkLKgvzLZivN5p+H3OzuutDCVYFpeU4pnWfQEEBO1rHYaGHrcseTe+WLI59HO7XhOg1hVCozfhhbYDQsfweivRolUSbpeV1xC0dT3PwxKKCFqd0XIfWoMFI6YvQ5d+M6DRm0K3x3sovUjEE1pTzUZgK9ZXoKCo5mPCCdrqXEx3Y+mamqJ22EQPNqW5oS2M3+yApsZUIuJYkRWLC7Mx3HQOL2Xvxj/W0YzsZxnr8GrOXvTXnsG3hbn4sagIZldk9VujhcopY7RBxC9z7zVWmmQUoS1p2v/TgiIZJ8+zoKVSuwatS+PBrSwPys96IR2uRMWuxl1eGdxAlp+rxJ0rXrg0FQ12d9aWuHHMLmOdRcZ0o4gkvYjWGgFP5N5fH646T+YKeE8roF++gC9NEjZZJZxyxK5mXDRKHAQyZO7PJryVdX9WRu3LzWPZACmckG+o8VH5lUpUXasKW9ez/Kw3IHKqHc+3OfqXzteVsaz0hikcdTWdijZKv26GYRgmel+EP0xgX/irN2JFsLleY1Di81v1euvu/T5I5ys5gzYCYh1ld5ShrvD5/Og5ZDZS9hy/776jp6+h9/A56DFoFroOmImn3+4DIOD+2nQfG3rcdxv2YuGK1NDP7XtPQk6eERq9CW26jalxzBfaDkChxVFD0Nb1PA9LKCJoW7RKajTxHkovEvHC2asVoVIFQ8d7cPJ8eAnbkKANklfgxsa0muUPBoz2YslqDy5nNh9Ra3Pdq6lkdck4Z3dgpUmFIbqzeCP3e/xbRnJYafv3N9bgueyd6J13EgsKbuJwkRkFLiHmYze4ZMw2Sfifu7LtFzkCBuULTXpZmKVYxo+XKrB0tQeDxgbmitYQ/5fSxROiuxJlF8+iyHqrwcdGKm/Lt/th3+nDmZNe7DvuwbgrMj66KtUrYZ/ILUfrPAF99CI+LxCRbAk0+WhqsR8JjRW0tS+BC9coqbYgjFaDpHCSr3ZX+XCXnDfF+XrQGrThLuGPZf3TSDdBDW3cwgn54JcaidwkTCkaW+LAbg//ZcjDQGl64wRBkKprgHCO9juNpa4SFvFO7bU5knU2+J5PhHMQ7fdlopQ4oGIqkXHYLmNuoYS/6MJ/sfybXAEf6QR8USjhQJGMgkYem2vQ0on1vrx22YnqJYdqXz3QVJ9Xan+Oq/0Zrvr7uqEECa5BG/k8a86xYuP3GDD+6xr9owDAdfsOnn+3P/ILbQCAIocrIkH7YrtBoWMHM2jL7oghQVvf8zwsoYigvSNIjSbeQ+lFQmlMDhmrNt3Lmp29yANNPY2+Gitoq3Pg+L16tkEmz/Hg4Mnm8cGloXl2zVGCDeY8jNVfxLuqA/j5zU1hpe1Pb6zC77O2o2veUXxRcAN7bEZoS8qjMmazS8Zys4SnVPc+pHbXCbjgaLrnuJThxurNFRg6sWbG9fjPPbiZy1KDguB0ofSvb+J273fgXLkIdl0h+RhGl4x0bQWOZ1Xg3AkvTh3yIHu7D7YNDW9u7Rv9UO/w4cIPXtw4VYnLORXI1yv7/m5IrPqvAZ49/qh8AG8qsapETcK66uQJ5ytRdQ31ZgHHOhO4+nltquetfel89Tq7wazyIA1tnljQ0uEatHSaYw3a2o24qCK26vtApl51KcJN6OrmYRW0tbG6ZJx2yFhikvCJXsTTqvu/eP5lroC2eYGryNJsdX/hzIKWTqT78vrqyNb+nBKNL3Jrf4Fb+wqkaJ0vFrSRz7PmGpmqfLzZeSScrtL77tMZLWjZcRg8Hi/8/iosWbMTLVolwV3hIQnap97qg6OnrwEA9h+7gA5JUwHcq0Fb3/M8LBEXNWgl2Y1T59ORuu8U0vb/iDOXMhPmJCu9SChJhtqNCbM8oezWtP0eWBuoJRqJoA1yMcONxSsrMGD0PRk3crIHW3a5oTUpn1EXLSKZZ7nFpdhuycc0wzV0VB/BrzNT8JMw0vYnN1bi8cyt+FB9GFMMV7HNqke28/YDjTfFKuFV9b0sgnfyBPxQ1DQlFzLzKrAxzY1xM2pK2ZGTPVi7tQJXM91cgzYCBFUOSvt9gNJufw5RMncSHBcv1XicqUTGRYeM7TYJC0wShhpEfKgV8GyYTUh1HssRkHRdwuxrbpw47kHmES9cO/3wbGpYaAYvQw+KLpemot6NcHDjXV/ThliWB6gtVsM1SqotVhsSd01FOJEarulUXXUkYyVSw53Hus5lXVmpVFldu9xE9eMHM8dDl1U21Wusdm6lI5VwX/TBe6UqNO+DsAiqGxa0dB5GQRv8oii4ngXX/MZenRCUJ7XXFJvrwZuENUeai6ANx5ViGassMgbmC3hJff/no0dyBLyhETDSIGKjVULO3SvMWNDScJjdNZqExSKbtXbZiQfJZlUCFrSR0Zxj6vx1aNEqCU+/3acGL7cfDACYPHct2nQfix6DZuHS9Vx8PGwOug2c2WhBm60xolOfaVi4IhXte09C+96TkJ4daCxWvcRBXc/zsITigvb81Wy80HYAXmg7AO/2GIc23cbg2Xf64aX3B+FKhlrp4TUYSi8SSmAtkZF2wBMSpRNmeZChbtwfngcRtEHyCtzYtNONEZNqlj9YtrYCV7Pi7w/gg9JU80xXcgff2wrwZUE6uucdQ4usVPy0jmZk/31zI9qoDmC0/gLWm/NwpdjZ4PEP2SW0rtb19mW1gM3WBxezeQVupB3w3NdEbsh4D75NrsCZqxWwVCuZwIKWjuiuRFmZjOIjh+Ca0A+Zg7pj/5QxWLboa4xJO4TO10z4k6r+mrA/zwlsPrpoBYwzilhqlrDbJuNaI8pZOPMrUJruJcvSaJUCqL5BryvDwX+1CqXa2IjV2tK5vm7B4bJSY1kKoK46ecK5+2vQBruPVyfR5WPtS+fvXK67zm5Tzd/qzYPc+3015sOtbE+NeaP0+Yk2LGjpJKKgDQrY4JUN1LInwfU9KFSCa1FjvshhQUunOQva2uQ4ZWy0ShhtEPGGJvxnqRdUAkaYpGYpaOu7cqn655um/GK9vs96tT+nKH1+mhIWtJHBwRHtUFzQtuk2BnsPn0Olzxe6zV3hwYpN+/BOj3EKjqxxofQiEWu0hW7MXnRPlK3aVAET4bL1phC0QczFMg6eqsC0uTXF3edfeXDkdAUsxcqfr6YgmvOssETEkSILFhVmIUl7Cn/K2YV/qKMZ2b9kJOPPuXsxSHcW35lUOGO3w+KScMEho5vu3gfLp1UCvjNLMD/AuIxWNw4cr6gx1/qN9GLAGC8WfleBY+fcdc47FrQNY3XJSC+WsdcmY5lZwhSzjB75Il5RC3i0HgH7SHY5/pR7Bx/pBIwwiFhklvCD3g2VqgLF1T5U15aGwc2zko2YQg3MwnzgjkQKhqtBG5BzjctKDXdO4iErtXYGSH01FClZqQ9ag7Y5UP3clqZ7Axm0lwNztvr/UVM1UKvdJK36/Cy94U1IscuCls7/Y+/Nw5s677z9aScznb59O53p+3Y6na0z/XXeTmnTpE2zl5CELIQkJBASkjSNWWMgAQyEfYewhgQIu9nCHvYtLGE1uwHbeF9kvC+yLWMby9plfX5/OJItIdnr9l0AACAASURBVMn6Ch8dSf7c13VfV8DEPpLPeXTOraPnCcdA6xxLnW9EOe+ACzTAOt8oct5l7/zIcEe8icZAK5eB1rd5OhN2VxgxsagJL+bqXYvpvqCJ3EDrOdWRv0/kdNQblfbNDrdFwtqey3iew4Tj3axqyEAbnIQojeqB1leENVus+P3zg0O8NXLUHiRC6dkrrfN9fjTBgvPX5CcOHRlo23rlpgmfr/aY/mCSBdv3W5BfFtkvxKHez8pqDUjQarGiJBOxmvN4MnM/fuRlMbLvJn+JH6emtX6MPfMOPirQIVfXFNTPLa024uQFEz5dacaQ0Va3MDt7sQWHTppxK4DfJQNtq6k1RhyuNGJFmQETCpvwlkaPJ769Y+NXqU3oc8no5rSTFiw+asGqYxZsO2HFmcMmlGyqR80XRWhcnA3bvBTFYqG3Oy89Q6HnvFyedykGOpeoc55Qw3H3uwy9LeDlbREv895mYIMyz4PPuBzgolPe7koNh4sRBlq5gc5B23KHdcvv2rmAn1PTIbuq8+yGeh5kBlq5agVabwE20H3UcyGujgyw7clAK5eBVuaRSgO+qbeqHmgj7W7WznZdfq8y0AYnIUqjeqAdOGYhyipr7vr7lAwNhk74XIUtkqH2IBEKi7VGrNzQukjX3CXmoOd8VSrQOs0rNuHLXR7TH4y24ov1ZiRlqR8pgjFc9rPE6hpsKM3F8Pyr+G1GJn6W3oCfZejxzxl38Pc3r+M7yRtaFiNLXoMuaTvRL+ck5hQl42BFMfJ9LEZWrjPiwnUzlm8wY/jH7nfLTv7Egl2HLcj1s+icN6M90HrepVmUbUb25ZbFtU6fsmLfN1bsOWxB4g47LrfxTrwyH3O3rzPBvMcuDquBPl5fi055C6lt70oN5cf6PaNBIHel+orNau9fiu23DLRilV4krG3YVWue3bbHr2QBNV8y0MpVKtB6jtWSTwl4BljnHXDhMAUKA61cBlq5HTUHrVp3s/o6B1LybtZwuV6KFBlog5MQpVE90K7ZchjP9h2NT5ZuwZe7T2D9jqOYtmgDnukbh5WbDmDbvlMuwxG1BwmlTco0Yez0lnD2QZwVe4/e28mC0oHWaWm1EV+fMWOqx/QHMxZZ8M15E0oDmBczXAyX/axYZ8SCEiP+X2brXKTvaO5geVkRJhVcw8vZR/Hz1K1eFyP7btIq/CJ1G17LPo4pBdexIq0Ay75qxKjJ7r+fj6dZ8OUuE1Jzg99HwjnQekZGb3dshmr+0LYx0b7fAds+x10h0dtH26uvJEE3bwLq+3V1LSh2e/ibqN67A7VpjQE9Rl+LTik5p6yn3u5KlTx3zWccaEyxqnKXYCTKQCtX6UAbrJ4LqIXTPLvmymYGWqHBBlrn3NieC3EFHOs93tCLlDepGGjlMtDK9Qy0kXY3qxqGy/VSpMhAG5yEKI3qgfbVmMnoPXBqQIYjag8SSlmuM2LHwdaFwCbONt9TNHMaqkDb1qs3Tfh8jcVt+oO4KRbsOGgJ6CPzaqv2flZWa8TaMiMebLP67OsaPc76mAM2T9eIfRWFmFWUhL65J/A/aTtwX9Jqr/Pa/iBhM/7r0Nd49UQiFt3U4EaV7p63V4lA67lIk5phFauBK9vtLhO327H3sAX7v7HgzEkLks5YkXPRiuJs3/OFet5RYSqyw5Br93pXqrdFpzryAiCQGOrtrlRvH+/3dleq9I4r5yJP9cnuHxEP6GKmTTxyzuHJePvt88pAKzZcA23Q+4DHAmrOY8ypEvPstg270TLPbkfrK9A6Xyc8A2yg0d1zIa5wCjn3IgOtXAbaFiV3szo6aBolte5mVUO1r5ciTQba4CREaVQPtOHIio370fX1Ea4/l1ZUI2bUfDz28jD0GTQNyeka19fUHiSUMKfIhJmLWu9sjN9qRmkHLbilRqB1mldswubd7tMffBBnxfINZqRkh+9JiZr72e4KI/7UJsx2y9HjcIUh4P8/v8yEfcfNmPKpEa/NrsCfVqTjf7afxT+d2IO/ub7Wa7T9ccoGPJV1AMM157G6NAsXq7QoF2xz20DrGVad8935C5BKxkfTnmY07G5G1S47Sr5qxtWDNmw/0TLn6+KjLb5xyehyQIIJo86Y8dYlIz68asTs6yasTTLi4kUrNOesqDrf/l2poQqpWA3Y5t10aV12C5bNDa5FWjp60Sk1bBtvm685YD7MeBvwc8dAKzbaAu296C/stp1nt3mXMguohdM8ux2lMxY5cgF9myliAn1z0TPAOu+oi9TnI1AZaOVGU6D1nGZKjbtZPc+r2t7NGg7TgKhltF6XKyUDbXASojRhEWgLSiqxJH4Pxs9Zg1HTluOzNbuQX1iuyrYUlWrR870JboH2/ZHz8OXuE7Dbm3EhMR3d+oyC1WYHEH0vBKcvts4FOnKiBRdvdOwLvZqB1mlptRFHz5gxdZ77x+tnf2rByYtmlIXZ9Adq7GenKg3okdsaZh/K0mNDuSGgUFqkNeLYWTPmL3NftG1InBULl5tx4rwJxVVGlNYacLayEl8UZ2JIXgIey9iPH6asw18lrcJ/XtmKbucOunwx4Qjij2bj4IkiXD1djYJzjTActIUsrHp+HN7XAk2NF2xouGBDWYIN1xKtOHDDjKMnrdh5woI1x1sj7GWP+WEv77CjbGPoYqrnHRXOKQ4CXXTK6wWAzoCqhHOonT7CNfVB/ZtP4vbo91F95BAqqxpUP5Y6Upvdger61hDR0XfeRvqdLJ4y0MploJXrOQetvwXUlJhn13MBNSXm2Q1UZ0jyXIgr0ADrfJ1wxqBQLsQVzjLQyg3HQOv5Br6v+eyVnJvV3xvXZn3HzEHbmYzG63IlZaANTkKURvVAe+pCEn7zdH+8O3wOpixYjykL1uPtYbPxu2cH4lpKTsi3p3/cfBw7k+gKtLV1d/DHHrGw2e2uf/PG4OmubVN7kOgoiyqNWLaudSGw+cvMyFfgJDwcAm1br6aasMRj+oPRUy346qAFBeXhcRESyv3sWrURf9Y0ucLsrzP1+KzUgBKd//+vtMaIc1fN2LjWis+m2LBoYqvnl9mR+5UddWe8n/gqeZent7Dqeaep884ob/MbetvWUN+VGuiiU77uSg3k995ksqGhydph+5E2S4OaZfNQ9+6zrlBbN6AnajaugrawXPVjqiP0DLR+n49v460zEDnDUCAXfc6PaLe9cy8SAwkDrVwGWrkdtUiY5zy7bcdapebZbfsa42+e3bZvkLWNS87XtkDfrHROH+M4BugvMMAGKgOtXKUCbXt3syr1Jn4o7mbtqEXCOpPRdF0eChlog5MQpVE90PbqPxknzl276++PnLyCfrEzQ7otB45fxIS5a1HX0OgKtMnpGrzWf4rbvxszcyV2HT4HIDpeCK6nmzB2WsvdpLFjrDj4jXInBOEWaJ3mFZuwZbcJIye23lUbO8aKlZvMuJmj7sVKKPaznEoTliaZ0PeSEX0uGfH2JSOOJlhwu52P0NvilZln1XmXQdsL36rdRhR8dQdVm4zAaqBoYyPObatwidVAwrYKXNtRhayv6lC0qxHWdaGLqVlbml3zwibtsCNjhx1pe224dNqKjLNWlJ6zosFjMZRwmfurowOt08rSGtTs3Iy62N6tofbtp6BbNBXa9CxVj6t7VRJo27MzxFsGWrkMtHI7KtAGq+c8u20XUFNqnt2AQuy30ddbNAp2kbDOKgOt3PYCbbjfzarGtB0MtHKj5bo8VDLQBichSqN6oH3oxSFud6c6sdrs+GOP2JBtR32DHi/9eTxq6+64BdrLNzLuCsVTFqzH5t0nAAAWqz1iNZnt2HfEisGjWoLktHlWlFU2K/ozmx0OWG3K/ox70WCy48IVG2YtsrpNf7BgmRXXUuwwW0K/Te3tZ7aSZjftqQ7Yr7XxfDOaDzrcRActPtBROjpo3sBAtK5vhmm/Dc0HHGg+4IB5vwMNex3IOWVHwlkbDp6y4ssTFiw7akHcGbPbnLBOf5ahx/3ZTeh1y4CRpUYsrTLjUJ0VaXo7Gi3NsFiV12ixw2Jr7hDtzQ7Y7Y4O+353abHCeOUc7kwb5jb9wZ1pw2C8eg4Wi1W5n62QDgdaxjKFtZU6YLv17bF8qmWfDeT4dexqOdbt1xywpzpgK3XAWq/e82X99jlT+/cWSdrszWhuVvC4vAc7cvzpSJubHbDZ1d+OQLVWtRyb9tTQvzY7tqLlZx4CHAc9zhu+HTOcWgzqP1fhIscyHxqa3fYZe3br/uS4DjgOwnUO2pHnfM5zueYDLa+R9sRWbfmt22PVOkJybtZRNjc7YLOF8meqfw2m9PUSdddqa0azw6H6dkSahCiN6oG253sTkJZ1666/T826hR7vjg/Zdkyevw57jiQAgFugTcnQ4NWYyW7/dvSMFa5/W9Ngjkg1xRZMX9h6t+iXu8zQ3lb+51ptzajTW1R//IGYlGHB0nUWfNBm+oOx0y3Yd9SK0up7//71GqubjTdtMFyyu2nd1wwcAqz7mmHdF/jccdGibacD1r3NbpqO29F00XaXDRoravJMSMnRYX9GIeZeT0bX1P342+Q1+E7yevxNyh58/+Y3+N83L+MfUjPwz2kl+NeMetd0Dt78n6xGvJCnx+CCJnxSasSWShMSdGaU1Dt/jyZV1TWYO0STxY4mk63Dvp8/a7OycXvJbNS983TrXbWxvVG3awt0lbUh2YaO0N7sQJ3eouo2NGisaMy0wXDRBtNxO6x7A7srz7bTAeu+ZhjPtIwzDRor6ousyv7eGy1wOByq/94iSb3RBpO1WfXtiCTN1mY0GkMzlgViXYUFDRor9N++vpsPt7yWO9bLXgONZ+wwXLShMbPlta7tz6gvsqJBY3UbD5xaDru/fnZI2F3fek7Sdhxx6tyWBo0VdRXqjpGK/E71Ftibo3csa7s/NWisbr9b0wm72+8+0P24Pe2b3c/12u7DTdfc96lanQU19eqffymt2WpHQ5MlhD9T/euuezWSr8vVsF5vgdXWrPp2RJqEKI3qgXb7/tN47OVhmPfFNuw+cg67Dp/D3GVb8UjPoYjfdiRk2/H4q8PR9fUR6Pr6CPzptY/wm6f7o+vrI1BcpsUfXhgCo8ni+rc93h2HlAwNgMj8KMXRM2YMcy4ENsmCKymh++iOxRaeUxz4M6/YhC17Wqc/mDnOhs+m2HBooxUF16yuBTh8zXslWZQjUvX8qJi3j4w5dc5z1+6iU0Jv6Yw4XWXEtioTFlWaMfCWHs/l6vGrrEa/Efan6bfxf9OK8Q+pGfhxaiLuz7iKvrlJWFScg7OVlSitNai+DyqtUlMc+LOyWIuaretwe3Cv1lD77rOo+WI+tLkFqj8n7dmRUxwooXNxpLZzZgYSb52r1zvnZvac8zJYOcWBXE5xIDfUUxy0zFXbOvel8+PY0oW4nPOKO+evDMVHqp3z7DoqgNu5/hdQU2KeXc8F1HzNsxtuRsIUB2rMzeqc09jb3Kymy3aYiuwdes4X7XKKA7mRel2ulroGTnEQjIQojeqBFgBOnLuOD8Ytxkt/Ho/ub43BwNELceibS6ptT9s7aAFg4OiFWL35EOz2Zhw5dQXP9xsLu70ZQGS9EBRUmLB4VetCYIuWm0O+EJaagdZzjitvYdV0yK7YogLhonOe1JQddlTvcj+RbkiwomCfDZdX2bBrVjMWTbJj0SQ7Fk+2Y8cKK64ds6KkTL0oVVhrxPkqI7aWGzC32IDYW3q8lNuE32T5DrA/y9DjvzL06Jqjx7v5TZhY1ITVZUasK9dhcUkuPsy/gG5ZB/B/Ujbgr5JW3eX3ktbiwfTdeC/3NBYW3cSxylIU1epVP547UjUCrdPKqkZUH/8ateMGuU1/UDtrDKouXVb9ufFluAdaf6oRbxlo5TLQyu3oQOsMXc7zBelCXM4A63yNDceFuKRz0PqbZ9dzAbWOmmfXOd92ewuo1eYof34ZykDb9rzV85zVc27WjjpH9Fxc1d8b7IG+kaDUImHRLAOt3Ei7LldbBtrgJERpwiLQhhuegbZcq8P7I+fh0ZeHoe+QGcjMLXJ9Te1BIlCvppoQN6XlDtBhY604ckadF/1gAq3zDhVfCwh4O1GNhrDqvLDDwdYVY02H7F7vSm27aqznolMXqozok9caKx/I0mN1mRFl3z6/5TojLt4wY+UGM4aPs7jNvTtrkQUHjptxK4RRtkRnxOUqI3ZUGLCwxIDhBU14Ja9lu/1F2H/P1OPxHD3eudWEqeVGrCg14FClESnVRpQH+LOTq2vxZVkePi64ih7ZX+NfUzd7jbb3Ja3Gr9J2oG/uCcwqSsK+ikLk6RpVP86DVc1A21Ztcip0i6ai7u2nXKH29sh3UHNwDyq19apvX1sjOdD6s6PirTOauH63DLRiGWjlBhNo255XSAOs865B52uzc3GhcAqw7RnKRcLanqPUJyu/gJpzXHLa9ryxPsnqdl4ZaGyUBlrPu1nvJPq+m7WjPm3l725Wz4VKQ3E3KwOtXAZauZF0XR4OMtAGJyFKo3qg1TcZsWXPN5i5eBMmzYu/y3BH7UGiPUtrjPhyl8m1ENjUuRZk3grNhYO3sGq/5oDhkt1nWO3IuwBCpXWNA/lLmpG72IHcxQ5oPnOgcm0zdF/b7gqpnivDOm3vhSCY5z+52oiBt1oD5n9nNmJeiQGF3349KdOEDTvMrnDvdOIcC746aEGWgvtJaa0RidVG7Kkw4rNSA0YVNKG3Ro+HsvT4Vz8R9t8y9Hg4W48+eXrEFTRhSakBeyuMuF7TGpxvN1pgsnRc1MiuacCu8gJMK7yB13OO45dp2/BdL9H2O0mr8PPUrXgl+xgmFVzD9vJ8pNfUqT4GBGK4BFqn2sJy1GxYiboBPVunP4h5ETXxS6EtLFd9+ypqozfQ+tMZb513zJn3BBaymtc7YNnXDMcZh9d4S73LQCvXW6B13oXoGcQCfY33FmCj6SPaoQy0weoce2pzLLid5j4dg+mQ3RUiO/Tj+m3OS51vPDVesEF/zYbmAkTs3axqyEArl4FWbiRcl4eTDLTBSYjSqB5oY8d/hqd6j8THs1dh6sINdxnuqD1I+DPzlglT57bEt8GjrNiy24TSmvb/P893+7294++8y6StHTVHmaIx1eNk199dqd5Cqq+7YkqrjTh21oxpC9xj5/ylZiQkmlGuu7cXAsm/z6kxYUxBE/7j26j58ww9xhXqkVNjQtYtE3YctGDibLPbdo6easGmr0xIye64E/zyWiOSqo3YX2HEslIDxhQ0oa9Gj0ezW0Krrwj7Lxl6/D5bj9fy9PiooAmflhiwq8KIK9VGlATwczs60Hrzlq4RhyqLMbcoBe/knsRv077C3ySv8Xq37U9vbkL3rMOIy7+EDaW5SKyuUX1s8DTcAq3TyqoGVH99ELdH/6U11L79FHSLpkKbnKrqtnXGQOtP53yWwcTbtvNRMt62ykAbmM4AeyfRCluiA5YjsnMSz/gVyBun0WQkBNpgdY5LTv3Ns6vUeWe43c2qhgy0chlo5Yb7dXm4yUAbnIQojeqB9oHuA1FcVqX2ZgSN2oOEp86gevmwFZ9NtWHDNDu+WWRH2deRFVY9T2ili06peXF1LdWEZfFmDIlrDaDjZlqw75gZhZXyoBPoflZQa8QnxQb8MrPRFToH39LjcokJB46bMXORezz+aIIFq78040qK6Z4CcmqNEUcqDVhZZsCEQj3eyW/CEzktYdjflAT3Z+nRM68JQ281YV6JAdvKDbhYZUTxPWxLRW1oAq03S3RNOKktx2fF6RiQdxYPp+/FD5LjvUbbH6Wsx5OZ+xGrOY8VJVlI0GpRpuJiZOEaaNuqTbwG3bwJqO/XtXWe2nGDUH3iKCqrQj+9BANt4FaVmnA7zwJHKhhvBTLQtu4/3hbiCvTcxfnGrOdCXGo/rnAxmgNtsPqbZ9dwxgbHAUTs3axqyEArl4FWbjhel4ezDLTBSYjSqB5ou785GrfrG9XejKDpqIPd845VzxVXPeep6si5qu5VbyHV8w4Bp7ZSBxo0neNENq/EhK17TRg1qTWMDvvYgvitZtE0E+3tZ6W1RqwsM+D+NnO09snTY+NFExZ84R6Kh46xYslaC85eMaOsOvDHkqkz4pjWiLVlRkwubMJ7miZ0y2lZfMtfhP11ph4v5raE4jklBmwuN+BsVUtMVup5VyvQerO81ogL2iqsKsnCMM15dM08gH9MWe812n4/OR4PZexBTN4ZLC5Ow4nKMhTrmkKynZEQaJ1qNcWoiV+KupgXW+epHdwLNdvWo7I0dHcnM9AKf28+5qD1vPPW+XHlgF572iwY5JxPMppeTzpLoHV+asczwAZ6jtN2IS7r1WY0Zdui+tyio2WglRnKRcKiRQZauQy0cjvyurwzyEAbnIQojeqB9vSFZExZsB662w1qb0pQtF1h1dsqq40XbC0XnGEQVp0XMYHclept0amO+OhVMIuERbpl305/MN1j+oMFX5iRcK395wLwfcKxvdyAx3Nag+gTqU34eKcRQ8e2/pwhcVbMX2bGsbNmFGl9/xyNzoRTWiPWlxsxo9iAAfl6PJvbMnetvwj735mNeDZXjwH5ekwvasL6ciNOaVu+nxrPdzgFWl9er9JhY2kuxuRfxgtZR/Czm196X4wseQ26pO1Ev5yTmFOUjIMVxchXYDGySAq0Tiu19ajZsx23h7/ZOv3Bu8+i5ov50GZpFP/5DLQyg1kkzHkXm3Mxoc4Wb6Ml0DoDrPP8SLoQV9sA2/ZuRW9TDgWzSFhnl4FWJgOtXAZauQy0cv1dL9G7ZaANTkKURpVA+9CLQ1w++vIw/OGFIejSLQZ/eGGI29ceenGIGpsnI4R3pTo/nue56FRNlgXHt1qwaJIdiybZ8eXnNmjyw/NFvTMG2rZeSzNhabwZQ0a3BtQJs8w4cNx3PAXuPuH4ptKA53JbI+lvkvTovcrkFoBnLLJg/zEz8staL2ILao04W2XE5nID5pQYMPhWyx2uv870fyfsf2Xo0S1Hj/c0TZhc2IS1ZS131Gbe43QEShgJgdabmdX12FlWgCkF19Er+zh+kboN3/ESbb+btAq/SN2G17KPY0rBdewsK0BWTcM9/exIDLQudQZUJZxD7fQRrlBb/+aTqJ0+AtUJCajQKTN1BAOtzGACrd/v1wnibSQFWueb1G0/8RNogHVOadQRC3Ex0MploJXJQCuXgVYuA61cb9dL1LcMtMFJiNKoEmgvJKYHbLjj7a5UX4tOebsr1deiU4GarjFh0hyL607JHQct9zSfqNJ29kDrNK/EhG37LRjZZvqD4eMsWL/djCyP6Q+A1hOOK9VGvK1pcoXT/7yhx3NrTBjw7TQGE2ebseWQBUfzTdhWbsC8EgOG3mpCz7wmtykQvPnzDD2eyGmZQ3Z8oR4ryww4UmlAagALy4WTkRpovanR3cGBiiLMKUrGW7nfoEvaTtznYzGyf7m5GS9kHcHYgqvYVJqHG1W6gH9ORAfaNmqzNKhZNg917z7bOv3B8DdRvXcHKrX1HfqzGGiFv5sODrR+f1YHxds7iS3x9l5fp4M1nAKt89NCnlMuSd90vtcA254MtHIZaGUy0MploJXLQCu37fUSbV8G2uAkRGlUn+IAAGx2u+u/7fZmZOUVRcy8tGoOEAe/MSN2TEuYGzvdgqTM8I8FDLTullUbcfycGdMXtobawaOsWLTcjIs3Wp4nAEitMWJQrsEtqD50wICeS8x4aasJvc43oUdGE36f7T/C/ixDj0ey9eidp8fYwiYsKTVgf4URNyIswvozmgKtN4t1TTheWYbFxWmIyTuDP2Tswfd9LEb245QNeCrrAIZrzmN1aRYuVmlR7uV7RkugdVpZWoOanZtRF9u7dfqDmBdRE78UWk1xh/wMBlqZoQy07VmbY8HtNIvbSu6BLDhl3dESJUMVb0MZaJ0B9k6i1W1qpkAX4vKcMkmtxToZaOUy0MpkoJXLQCuXgVau2tflkSYDbXASojSqB9orNzLxVO+RsNubYbXZ8faw2fjN0/3xwHODcO7yTbU3r13UGBjyy0xYtNzsCnorN5hRVKn+gBWIDLS+vZ5uwrJ1ZrdpCibONuP9iyb8W2r74bWtf8jWo7dGjxEFTVhUYsDeSiOuChYFi2SjPdB6s6zWgAStFitKMhGrOY8nM/fjRz4WI/tBcjweydiLgXnnsKQkHae0FWgwWqIq0Lqs0aP61EnUThraOv1Bv67QzZsAbXLqPX1vBlqZ4RRo/RlO8bYjA23LYmx3L8QVaIC17nCfasn5iaBwmxqCgVYuA61MBlq5DLRyGWjlqnVdHqky0AYnIUqjeqDtM2ga9h09DwA49M0lPNM3DnUNjTh5/gb6DJqm8ta1T6gHhQvXzRj17cfiPxxvwemLkfXizUDbvnklJmxvM/3Br083eY2w92fp8UqeHsNuNWF+iRFfVRhxsUr97VfbzhhofZlYXYMNpbmIy7+E7lmH8dObm7xG2+8lr8GDmbvxTu4pzCtKwZGKEhQosBiZmmrTs6D7bBbq3n66dZ7acYNQfeIoKqvkj5WBVvj8R0ig9WdHxttAPt4vCbSeC3E5A2ygi5J6LsQVrgG2PRlo5TLQymSglctAK5eBVq4a1+WRLANtcBKiNKoH2gefHwy7vRkAMHrGSny2ZheAlqkO/vBC+C8SFsoBYf321rsrP/ncjNyiyLpwqqhloJV6PMGE2MMWvHG9CbMKDNhSYcDpqpbFvtTetnCVgda/6TV12F6ej0kF1/BK9jH8PHWrz8XI/jttG3rnHMf0wuvYXV6I3Jo7qm//vVpZrEXN1nW4PbhX6zy1g3uhZtt6VBZrA/4+DLQyoyHQ+rNtvNWfaom39s3tx1H7FgfMe7+9M/WCzS3etg20ngFWfyq4hbicAbY+2doh8+CHmwy0chloZTLQymWglctAKzfU1+WRLgNtcBKiNKoH2id7fQTd7QaYzBY8+vIwkrcsygAAIABJREFUJKdrAAC1dXfw+CvDVd669gnFQJCaa8bE2S1xdshoK3YfCe+FwPzJQCs3VPtZtMhAK7fKYMQxXQlmFSWhb+4J/E/aDtyXtNrr3bb/nroFPbK/xviCRGwp0yClulb17Q/GyqpGVB//GrXjBrXOU/v209B9NgvaLE27/z8DrcxoD7T+bJnfVR5vm7c4YD8Q2B2wzgDrXKRUyYW4wlkGWrkMtDIZaOUy0MploJXL6yWZDLTBSYjSqB5op3+6Ea/1n4I3Bk9Hn0HT4HA4YDCaMXrGCsRNX6725rWL0oPAvuNmfDC65a7ZcTMtSMmO7CDAQCs3FPtZNMlAK9fbImFFtXocqyzFouJUvJd7Gg+m78bfJa31Gm1/krIRT2cexAjNRcSXZuNKVbXqj0miNjkVukVTUff2U63TH0wfgeqEBFToDF7/HwZa4XPciQOtPyXx1ttCXJ0twLYnA61cBlqZDLRyGWjlMtDK5fWSTAba4CREaVQPtFarDdv3n8barYehu90AAGgymDBm5krcrm9UeevaR6mDP6/EhLlLWqc0WLPZjJIomF+UgVaukvtZNMpAK9dboPVmaa0BZysr8UVxJobkJeCxjP34Yco6r9H2hynr8FjGfgzOS8AXxZk4W1mJ0lrvsTNc1BaWo2bDStQN6Nk6/cHwN1G9dwcqy2+7/VsGWuFzy0ArtrHECnMxL54kMtDKZaCVyUArl4FWLgOtXF4vyWSgDU5ClEb1QBvpKHHgn79mxkcTWhaI+miCBeevRc8LNAOtXKX2s2iVgVZuoIHWl1erqrGuJAcjNBfxTOYh/CRlo/fFyJLW4sH03Xgv9zQWFt3EscpSFNXqVX/8nlZWNaD664O4PfovrdMfvPccalYthlZTjIpaBlqpDLRyJYuE0RYZaOUy0MpkoJXLQCuXgVYur5dkMtAGJyFKE7aBNj27AIe/uaz2ZrRLRx7wJVVGrN3Setfs3CVm5JVEVwBgoJXb0ftZtMtAK/deA603b1bfxtYyDSYUJOKl7K/xHze3eI229yWtxq/SdqBv7gnMKkrCvopC5OkaVX9OnGoTr0E3bwLq+3VtibX9ukI3bwLMWakMtJLnkYFWLAOtXAZauQy0Mhlo5TLQymWglcvrJZkMtMFJiNKEbaD9ZOkWPPDcILU3o1066mBPyTZh3MyWu2Y/GG3FvuPR+aLMQCu3I/ezziADrVwlAq03c2vuYE95IWYU3kCfnBP4f2nb8ddeFiP7TtIq/Dx1K17JPoZJBdewvTwf6TV1qj5HWk0xauKXoi7mRdS/+SQaRvRDdZ36v7tIkYFWLgOtXAZauQy0Mhlo5TLQymWglcvrJZkMtMFJiNKEbaCNFO71IC/XGbH7iBlDvl0IbOJsM1Jzo/cFmYFWbkfsZ51JBlq5oQq03izQNeLrihLML7qJd3NP4YH0XfjbpDVe77b96c1N6J51GHH5l7ChNBeJ1TUh395KbT2q9+6E+WoC76AVyEArl4FWLgOtXAZamQy0chlo5TLQyuX1kkwG2uAkRGkYaO+ReznA84pNmL3Y4prSYP12M0qr1R94lJSBVu697medTQZauWoGWm+W6JpwWluBpcUZGJR3Do9m7MP/To73Gm1/lLIeT2buR6zmPFaUZCFBq0VZCBYj4xy0Mhlo5TLQymWglctAK5OBVi4DrVwGWrm8XpLJQBuchCiN6oG2rLIGc5dtw9AJn2Pg6IV3Ge4Ee3CfvWLG8PEtcXbkRAsu3ugcL8IMtHLvZT/rjDLQyg23QOvN8lojLldVYU1pFj7Mv4CnMw/i/6Rs8Bptv58cj4cy9iAm7wwWF6fhRGUZinVNHbo9DLQyGWjlMtDKZaCVy0Ark4FWLgOtXAZaubxekslAG5yEKI3qgfaNwdMx5ONP8cWGfVi9+dBdhjvSg7pYa8TKTa0LgS1abkZ+aee5yGeglRvMftaZZaCVGwmB1pfJ1bXYXKbBxwVX0SP7a/xb6mbvi5Elr0GXtJ3ol3MSc4qScbCiGPn3sBgZA61MBlq5DLRyGWjlMtDKZKCVy0Arl4FWLq+XZDLQBichSqN6oH3xnXFwOBxqb0bQSA7opEwTxk5vuWt26BgrDp3sfC+8DLRypftZZ5eBVm4kB1pvZtc0YFd5AaYV3sDrOcfxy7Rt+K6XaPvdpFX4Reo2vJZ9HFMKrmNnWQGyahoC+hkMtDIZaOUy0MploJXLQCuTgVYuA61cBlq5vF6SyUAbnIQojeqBdtDYRaitu6P2ZgRNIAdyuc6Irw5aMCSu5a7ZqXMtyLzVOS/sGWjlBrqf0RYZaOVGW6D15i1dIw5VFmNuUQreyT2J36Z9hb9J9r4Y2b/c3IwXso5gbMFVbCrNw40q3V3fj4FWJgOtXAZauQy0chloZTLQymWglctAK5fXSzIZaIOTEKVRPdAWlFTi1ZjJmL98O+K3HbnLcKe9gzinyISZi1rumh08yopNu0worVF/cFFLBlq5gexntFUGWrmdIdB6s0TXhJPacnxeko4BeWfxcPpe/MDHYmQ/TtmAp7IOYLjmPFaXZiHbWIcqBtqAZaCVy0Arl4FWLgOtTAZauQy0chlo5fJ6SSYDbXASojSqB9oPxi3GIz2Hot/QWXh/5Ly7DHf8HcCnL5ox/OOWOBs3xYKrqbyYZ6CV295+Rt1loJXbWQOtN8trjbigrcKqkiwM15xH18wD+MeU9V6j7Q+S4/FIxl4MzDuHJSXpOKWtQEkHL0YWLTLQymWglctAK5eBViYDrVwGWrkMtHJ5vSSTgTY4CVEa1QNt19dHoFFvUHszgsbbgVtUacTyDa0LgS1eZUZBBeNsRS0DbTD62s+odxlo5TLQtu/1Kh02leZhdP5lPJ91GP+S5n0xsr9KWoXfpe/CO7knMbcoBYcrilFwD4uRRYsMtHIZaAM3X9eIz0vSMbc8mYFWKAOtTAZauQy0chlo5fJ6SSYDbXASojSqB9p+Q2fBZrervRlB43nQXk83Yey0lrtmh31swdEzfHFtKwOtXG/7GfUtA61cBlq5NrsDubUN2FlWgCkF19Er+zh+kboN3/GxGNl/p21D75zjmF54HbvLC5Fbc0f1xxBKGWjlMtD6t6zWgK/KCtAn5wT+17dTk/xt8hqU3eFd7BIZaGUy0MploJXLQCuX10syGWiDkxClUT3QHjl5BXHTlyPhSiqyNcXIyS9xM9xxHqxlNUZsP9C6ENi0BRZkddKFwPzJQCu37X5G25eBVi4DrVxfi4RpdHdwoKIIc4qS8VbuN+iSthP3+ViM7N9Tt6BH9tcYX5CILWUapFTXqv64lJKBVi4DrXcvVmkxPP8C/vnml65j6X8lx+ONnBM4drsEt3kHrUgGWpkMtHIZaOUy0Mrl9ZJMBtrgJERpVA+0XbrF+DXcqag1IuuWCdMWtC4EtnWvCWWdeCEwfzLQynXuZzQwGWjlMtDK9RVovVmsa8KJyjIsLk5DTN4ZPJSxB9/3sRjZT1I24unMgxihuYj40mxcqapW/bF2hAy0chloW82qacCcomQ8kL7Ldax8J2kVnsjch6XFGcj/dhoRzkErl4FWJgOtXAZauQy0cnm9JJOBNjgJURrVA22TwQSzxerTcOf0RTOGjW25a3bsNAuup/OuWX8y0MoFeMIhkYFWLgOtXEmg9WZZrQEJWi1WlGQhVnMeT2bux498LEb2w5R1eCxjPwbnJeCL4kycraxEaa1B9edAIgOt3M4eaIt1TVhXkoMXso643YX+X6nbML4g0esd5wy0chloZTLQymWglctAK5fXSzIZaIOTEKVRPdACgNVmx+UbGdhzJAHb9p3ChcR0WK02tTcrIJwLga3cYEZRpfqDRrjLQCsX4AmHRAZauQy0cu810PoysboGG0pzEZd/Cd2zDuOnNzd5jbbfS1qLB9N3473c01hYdBPHKktRVKtX/XnxJQOt3M4aaI9UlOD9vDP4hzZvWPx9yjq8l3sahyuK/f6/DLRyGWhlMtDKZaCVy0Arl9dLMhlog5MQpVE90OYXlqP7m6PxQPeBeL7fWDzfbywe6D4Q3d8ag3KtTu3Na5f5S804eYF3zQYqA61cgCccEhlo5TLQylUq0HozvaYO28vzMangGl7JPoafp271uhjZfUmr8au0HeibewKzipKwr6IQed9+9FttGWjldqZAe6NKhwkFifhF6ja3/bl71mGsKc0K+M0HBlq5DLQyGWjlMtDKZaCVy+slmQy0wUmI0qgeaN8fOQ/zl2+HwWhy/V2TwYQ5S7Zg2MTPVdyywFB7kIg0GWjlcj+TyUArl4FWbigDrTfzdI3YX1GI2UVJ6Jt7Av+TtgP3Ja2+K9p+J2kVfp66Fa9kH8OkgmvYXp6P9Jq6kG8vA63caA+0Gt0dfF6Sjscz97u94fDrtJ2YUXgDGTX14u/JQCuXgVYmA61cBlq5DLRyeb0kk4E2OAlRGtUD7aMvD/M616zRZMHjrw4P2XY4HA4sid+Drq+PwBO9PsTEufEwmiwAgNKKasSMmo/HXh6GPoOmITld4/r/1B4kIk0GWrncz2Qy0MploJWrdqD1ZlGtHscqS7GoOBV/yTuDB9N34++S1nqdIuGnNzehe9ZhxOVfwobSXCRW1yi6bQy0cqMx0JbVGrCj7BZ65xx3WyjvJykbMSQvAae0Fff0/Rlo5TLQymSglctAK5eBVi6vl2Qy0AYnIUqjeqB9pm8cqmrq7vr7qpo6PP3GqJBtx96vz6Nf7EzUN+jRZDDh/ZHzsHbrYQAtd/l+ufsE7PZmXEhMR7c+o2C12QHwhUAqA61c7mcyGWjlMtDKDcdA683SWgPOaSvxRXEmhuQl4PHM/fhhyjqv0fZHKevxZOZ+xGrOY0VJFhK0WpR10GJkDLRyoynQXqzSYpjmvNucyn+btAavZB/D5jJNhy16x0Arl4FWJgOtXAZauQy0cnm9JJOBNjgJURrVA+0nS7fgzQ9m4PSFZBSXVaGoVIuT52+gz6BpmDx/Xci2IzXrFnLyS1x/jt92BBPnxqO27g7+2CMWNrvd9bU3Bk/HtZQcAHwhkMpAK5f7mUwGWrkMtHIjJdD68mpVNdaV5GCE5iKeyTyEn6Rs9Bptv58cj4cy9iAm7wwWF6fhRGUZinVN4p/HQCs30gNtVk0DZhcl4f70r9z2qT9k7MGCopvIrbnT4T+TgVYuA61MBlq5DLRyGWjl8npJJgNtcBKiNKoHWqPJgjlLtuD3zw9Gl24x6NItBg8+PxhTFqx3m5c2lFRodegzaBpOnLuO5HQNXus/xe3rY2auxK7D51r+bRgMFJEkA61c7mcyGWjlMtDKjfRA682b1bextUyDCQWJeCn7a/zHzS1eo+19yWvQJW0n+uWcxJyiZBysKEZ+O4uRMdDKjcRAW6xrQnxpNp7POuw2J/K/pm7GSM1FXK2uVvTnM9DKZaCVyUArl4FWLgOtXF4vyWSgDU5ClEb1QJtXUAarzQ6Hw4Ga2nqUa3Wu6QPU4K0PZqJLtxh8snQLmpsduHwjA/1iZ7r9mykL1mPz7hMAgEajjQq0NztgMNtV345IkvuZTKPFDpvdofp2KO0dQ8d9L6utGWZrs+qPKZJsdgBNJvW3Q2nLmww4VluKeWUp6Kc5iV+n78Bfe1mM7LtJq/DL9G14Q3MCs8uScEhXjJKmJtf30ZtscDg4lkk0WeywhulYdsdgdfvzqdvlGHDrLP4hZYNrn/hBSjzezT+Fr2tLcCdE22WzO2Cy8BxDogOAPgy2I1JsMrWM/2pvRyRptjbDauu4cwzP8ScatdkdMPJ6SSSvl2QazHbYm8PzHCOcJURpVA+0v39+sNc5aNWktu4Oxs5ahU+WbkFKhgavxkx2+/roGSuw50gCAKDRYKUC7c2OlqgRBtsSKXI/k2k022GzN6u+HUp7x9hxx5HF1twSNcLgcUWKzZ14LKvWG3G2thxLy9MQc+sMfp+5G99LXuP1btt/Td2MnrlfY3LpNRyqL0JOQ73q2x8pmiz2lqgRBtvi6R2DDTkN9Zhacg2/SNvqFuqfyj6AtZVZqNYbQ75dVlszjBzLRDocgN6o/nZEik0mG5qbHapvRyRpsthh6cCx7E4YPCaltdmbYTR3znOMYOX1kkyDqeXGKbW3I9IkRGlUD7Tx245g5uJNqkfa81dTUVBS6fpzYko2er43AXUNjfjDC0NgNFlcX+vx7jikZGgA8KMUUjnFgVzuZzI5xYFcTnEgNxqnOLgXS2sNOK2twNLiDAzKO4dHM/bhh8nxXqPtj1M24KmsAxiuOY/VpVm4WKVFeRg8hnAzHKc40Oju4LPidDyasQ/fafM7/f9St2Fi4TWkVNequn2c4kAupziQySkO5HKKA7mc4kAur5dkcoqD4CREaVQPtC++Mw6P9ByKLt1i8ED3gXjoxSFuhorP1uzC4LGfQt9khNVqw/RPN2L0jBUAgIGjF2L15kOw25tx5NQVPN9vLOz2ZgB8IZDKQCuX+5lMBlq5DLRyGWjbt7zWiMtVVVhTmoWPbl3EC3mH8X99LEb2g+R4PJKxFwPzzmFJSTpOaStQEsRiZNFkuATasloDtpfn4/Wc4/i7pLWu39mPUtbj/bwzOFJRovo2OmWglctAK5OBVi4DrVwGWrm8XpLJQBuchCiN6oH2zKUUXEhM92moMBjNmLJgPbq+PgKPvzIcseM/g7bmNgCgXKvD+yPn4dGXh6HvkBnIzC1y/X9qDxKRJgOtXO5nMhlo5TLQymWgldl2kbDk6lpsLtPg44Kr6JH9Nf4tdbPXaPu3SWvwu/RdeCf3FOYVpeBIRQkK2lmMLJpUO9AmaLUYqjmPf7q5qXWBuKTVeC7rMOJLs1EchgGdgVYuA61MBlq5DLRyGWjl8npJJgNtcBKiNKoE2olz42G2tMzhMWlevBqb0GGoPUhEmgy0crmfyWSglctAK5eBVmbbQOvN7JoG7CovwLTCG+idcxy/TNuG73qJtt9NWoX/TtuG3jnHMb3wOnaXFyK35o7qj08J1Qi0GTX1mFl4A79J2+n2vP8mbSdmFSUho6Ze9efFnwy0chloZTLQymWglctAK5fXSzIZaIOTEKVRJdA+/FIsdh48g9SsW/j984ORmnXLp+GO2oNEpMlAK5f7mUwGWrkMtHIZaGW2F2i9eUvXiMMVxZhblIJ3ck/i/vSv8Dc+FiP799Qt6JH9NcYXJGJLmUb1uVA7wlAF2qJaPdaUZqF71mHcl7Ta9Zz+JGUjYjXnkaDVqv5cBCoDrVwGWpkMtHIZaOUy0Mrl9ZJMBtrgJERpVAm063ccxR97xKJLt5h2DXfUHiQiTQZaudzPZDLQymWglctAKzOYQOvNEl0TTmrL8XlJOgbkncXD6XvxAx+Lkf0kZSOezjyIEZqLiC/NxpWqatWfB4lKB9qDFcX4c+5p/H3KOtdz9r2ktXg1+xi2lmlQWmtQ/TmQykArl4FWJgOtXAZauQy0cnm9JJOBNjgJURpV56C125vx0ItDYLPbfRruqD1IRJoMtHK5n8lkoJXLQCuXgVZmRwVab5bXGnFBW4VVJVkYrjmPrpkH8I8p671G2x+mrMNjGfsxOC8BXxRn4mxlZdiGSCUC7bWqGowtuIqfp251e17+mL4Xi4pTkRfhc/wy0MploJXJQCuXgVYuA61cXi/JZKANTkKURvVFwgxGs9qbcE+oPUhEmgy0crmfyWSglctAK5eBVqaSgdaXN6p02FSahzH5l/FC1hH8y03vi5F9L2ktHkzfjfdyT2Nh0U0cqyxFUa1e9eesowJtnq4Ri4vT8GjGPnynzeP+t9TNiMu/hKvVkXVnsT8ZaOUy0MpkoJXLQCuXgVYur5dkMtAGJyFKo3qg9cXhby5j6sINam9Gu6g9SESaDLRyuZ/JZKCVy0Arl4FWphqB1puZ1fXYWVaAKQXX0Sv7OH6Rus0tWjq9L2k1fpW2A31zT2BWURL2VRSG/O7Sewm0pbUGbCvLR6/s4/he0lrX4/pBcjzeyv0Ge8uLUB4G+0VHy0Arl4FWJgOtXAZauQy0cnm9JJOBNjgJUZqwDbTb9p3EkI8/VXsz2kXtQSLSZKCVy/1MJgOtXAZauQy0MsMl0HpTo7uDAxVFmFOUjH45J9ElbSfu87IY2XeSVuHnqVvxSvYxTCq4hu3l+UivqVNsu4IJtKe0FfhAcx4/Sdno2u7vJq1C18wDWF6SiYIIn8KgPRlo5TLQymSglctAK5eBVi6vl2Qy0AYnIUqjeqDtFzsT2/adxO36RrU3JSjUHiQiTQZaudzPZDLQymWglctAKzOcA603i3VNOFFZhsXFaYjJO4OHMvbg+z4WI/vpzU3onnUYcfmXsKE0F4nVNR2yDYEG2oyaeswovIEuaTvdtuuXadswueAaUqtvq/58hkoGWrkMtDIZaOUy0MploJXL6yWZDLTBSYjSqB5oV20+iN4Dp+L+Zwdg6ITPcfR0Ikxmi9qbFTBqDxKRJgOtXO5nMhlo5TLQymWglRlpgdabZbUGJGi1WFGShVjNeTyZuR8/8rEY2Y9S1uPJzP2I1ZzHipIsJGi1KBMuRuYv0BbV6rGqJAvPZB7CXyetdv3cf0hZj5i8MzhaUar686WGDLRyGWhlMtDKZaCVy0Arl9dLMhlog5MQpVE90DopKa/G+h1H0S92Jh5+KRaT5sXjalIWHA6H2pvmF7UHiUiTgVYu9zOZDLRyGWjlMtDKjIZA68trVTXYUJqLuPxLeC7rMH56c5PXaPv95Hg8lLEHMXlnsLg4DScqy1Csa/L5fb0F2v0VRXgn9xR+mLKudb7c5DV4IesI1pfmoMTP9+sMMtDKZaCVyUArl4FWLgOtXF4vyWSgDU5ClCZsAq0Tq82OXYfO4pGeQ9GlWwxeePtj7DmSELahVu1BItJkoJXL/UwmA61cBlq5DLQyoznQejO9pg7by29hUsE1vJJ9DP+ZutX7YmTJa9AlbSf65ZzEnKJkHKwoRv6388Q6A+21qhqMyb+M/7i5xe3/vT/9K8wpSkZWTYPqjzdcZKCVy0Ark4FWLgOtXAZaubxekslAG5yEKE1YBFqHw4EbqbmY/ulGPPbyMDzVeyQWrdyJvIIynL2cgh7vjsOilTvV3kyvqD1IRJoMtHK5n8lkoJXLQCuXgVZmZwu03szTNWJfRSFmFt7AGzkn8GuPOWPb+l+p2/Bq7jE8lrXP7e//6eYmDNecxzltpeqPJxxloJXLQCuTgVYuA61cBlq5vF6SyUAbnIQojeqBdkn8HnR/awweeG4QRs9YgYQrqbDbm93+TUFJJR5+KValLfSP2oNEpMlAK5f7mUwGWrkMtHIZaGUy0Pr2WGUpFhbdxPt5Z/BA+i58L2ntXcG2d85x7Ci7pfq2hrsMtHIZaGUy0MploJXLQCuX10syGWiDkxClUT3Q9hs6CzsPnkFDY5PPf2O3N+OzNbtCuFWBo/YgEWky0MrlfiaTgVYuA61cBlqZDLQyz2grsKYiG6u0Wcj7dsoD2r4MtHIZaGUy0MploJXLQCuX10syGWiDkxClUT3Q3tEbfHq7vlHtzWsXtQeJSJOBVi73M5kMtHIZaOUy0MpkoJXrbZEw6l8GWrkMtDIZaOUy0MploJXL6yWZDLTBSYjSqB5ou3SL8Wu4o/YgEWky0MrlfiaTgVYuA61cBlqZDLRyGWjlMtDKZaCVyUArl4FWLgOtXF4vyWSgDU5ClEb1QKspLHMzr6AM5y7fxLCJn+PMpRS1N69d1B4kIk0GWrncz2Qy0MploJXLQCuTgVYuA61cBlq5DLQyGWjlMtDKZaCVy+slmQy0wUmI0qgeaH1hNFnw9rDZam9Gu6g9SESaDLRyuZ/JZKCVy0Arl4FWJgOtXAZauQy0chloZTLQymWglctAK5fXSzIZaIOTEKUJ20DrcDjQ/c3Ram9Gu6g9SESaDLRyuZ/JZKCVy0Arl4FWJgOtXAZauQy0chloZTLQymWglctAK5fXSzIZaIOTEKVRPdDuOZJwl9v2ncKoacvxxuDpam9eu6g9SESaDLRyuZ/JZKCVy0Arl4FWJgOtXAZauQy0chloZTLQymWglctAK5fXSzIZaIOTEKVRPdD2fG/CXfYeOBWjZ6zAreIKtTevXdQeJCJNBlq53M9kMtDKZaCVy0Ark4FWLgOtXAZauQy0Mhlo5TLQymWglcvrJZkMtMFJiNKoHmgjHbUHiUiTgVYu9zOZDLRyGWjlMtDKZKCVy0Arl4FWLgOtTAZauQy0chlo5fJ6SSYDbXASojRhFWibmx24kZqLhCup0DdFxgGg9iARaTLQyuV+JpOBVi4DrVwGWpkMtHIZaOUy0MploJXJQCuXgVYuA61cXi/JZKANTkKURrVA22QwYfbnmxEzaj627j0Jq82Ov4yYiy7dYtClWwye6RvHKQ6iUAZaudzPZDLQymWglctAK5OBVi4DrVwGWrkMtDIZaOUy0MploJXL6yWZDLTBSYjSqBZop3+6Ec/0jcO8L7bhpT+Px6R58YgdvxgNd5rQcKcJH05aihFTl6m1eQGj9iARaTLQyuV+JpOBVi4DrVwGWpkMtHIZaOUy0MploJXJQCuXgVYuA61cXi/JZKANTkKURrVA+1TvkbiQmA4AKCypRJduMUjJ0Li+np5TiCd6fajW5gWM2oNEpMlAK5f7mUwGWrkMtHIZaGUy0MploJXLQCuXgVYmA61cBlq5DLRyeb0kk4E2OAlRGtUC7W+f6Y9yrc715z+8MARllTWuP2trbqNLtxgVtkyG2oNEpMlAK5f7mUwGWrkMtHIZaGUy0MploJXLQCuXgVYmA61cBlq5DLRyeb0kk4E2OAlRGtUCbZduMdDW3Hb9+ZGeQ92CLQNtdMpAK5f7mUwGWrkMtHIZaGUy0MploJXLQCuXgVYmA61cBlq5DLRyeb0kk4E2OAlRGlUD7fmrqcjILURGbiH+2OMDnL2c4vqzL9mDAAAV/0lEQVTz+aupERFoCSGEEEIIIYQQQgghJFhUDbSBSAghhBBCCCGEEEIIIdGKaoFWd7shIAkhhBBCCCGEEEIIISRaUS3QEkIIIYQQQgghhBBCSGeHgdaDlV8exNNvjMLjrw7H+E/WwGA0AwBKK6oRM2o+Hnt5GPoMmobkdI3r/7HZ7fh09Vfo0i0GdQ2Nrr+fsmA9HnhuUKvdB6JX/8khf0xKom8yYtzs1Xj81eHo1mcU4rcdcX3tQmI6evWfjMdfGY4hH3/qdkf07fpGDPn4U7wac/fzka0pxovvjMOcJVtC8hhCza3iCrz30Vw8/FIsXvnLRCRcSXV9bd32r9H9zdHo+voIzPp8M2x2OwDAbLFiwty1+NNrH+H5fmOx69BZ1/9jtdowZcF6PPxSLJ7pG4cjJ6+E/DEpja/j0t/z4u+Y9bf/RQP+jstgxjJ/z3O04O+49DeW+TpmszXFeGfYbDz8UixejZmMC4npIX9MSnPmUgpe/stEPNJzKN4fOQ9FpVrX13w9L4DvMb6yqhYxo+bjoReH4PUBU5CTXxKyxxIqOnIsu5CYjt883d/tPGPbvlOqPC6lCHYsC+a1NFoIdizzdVz6+37RQrBj2ZFTV/DHHh/gxLnrrr+zWKzo0i3G7bgcPWNFSB9PKAhmLPO3/zlZsXE/ur4+ImSPI1QEO5b5Ol9tuNOEuOnL8eI749DzvQnY9NXxkD2WUBHM9RLgeyzrzOdl7b32eRvL2nItJQddusWgoKRS8ccQaoJpP77Gss7QfojyMNC24cS563jpz+NRrauHwWjGwDELsfLLgwCA90fOw5e7T8Bub8aFxHR06zMKVlvLi8FHk5dixcb9+O0z/d2ihidL1+11fb9oYc6SLRg9YwVMZgsqtDo81XskbqTmolFvwBO9PsTNzHzY7HYsXbcXcdOXAwCaDCa8+v4kLF69664TjpQMDfoMmobxn6yJ2kD7asxkfLn7BBwOBy5eS8cfe3wAo8mCayk56PHuOOhuN8BgNGHgmIXYvv80gJYT1rjpy2EyW1Cu1aFbn1HIKygDAHyxYR9GTv0CRpMFubdK0XfIDJgtVjUfYofi77j097z4Omb97X/Rgq/jEghuLPP3PEcLvo5Lf2OZr2PW4XCg+5ujcfiby3A4HDh7OQUPvxQbVceltuY2Huk5FMnpGjQ3O7B03V70j5sPwPfzAvgf49/7aC427jwGq82O/ccuYNK8+JA/LiXp6LHs6OlE174YrQQzlgX7WhotBDOW+TsufX2/aCHYsWzTruP4aPJS9Iud6RY1dLcb8ESvD1V5LKEimLHM3/7npKhUi57vTYjKQBvMWObvfHX255sx6/PNAFpibfe3xiA5PS/kj0tJgrle8jWWdfbzMn+vfb7GMicWixV9Bk1D19dHRF2gDab9BDKWOYnG9kOUh4G2Dek5hW4vbl/uPoHxc9agtu4O/tgj1u3duTcGT8e1lBwAcN3l4y/QllZU46U/j4fJHD0ntQBw5mIyyiprXH/+cNJS7DmSgBPnrmHIx5+6/r5Rb8ADzw2CxWKFwWhCSXkVktPz7jrhKCmvgsFowurNh6Iy0Nrsduw6dNYVxADg4ZdiUVJehdmfb3Z7R/3s5RS8P3IeAODV9ychNeuW62sLV+zAio37AQDd3xztdrdHtOHruAR8Py/+jll/+1+04Ou4DHYs87f/RQP+jkt/Y5mvY9ZktuDgiUtuP+PB5we7/U4iHW3NbZw4d83152xNMZ5+YxQA+B3LfI3xZZU1eKZvHJqbHSF6BKGno8eyXYfOYurCDaF7ACoQzFgW7GtpNBDsWObruPT3/aKFYMeynPwSOBwODBy90C1qFJZU4sV3xoVo69UhmLHM3/7npH/cfBw7kxiVgTaYsczf+Wr/uPn4JuGG68+jpi3HVwfPKP9AQkSw10u+xrLOfl7m77XP11jmZMXG/Vi+YT9ejZkcdYE2mPYTyFgGRG/7IcrDQOuH2PGf4auDZ5CcrsFr/ae4fW3MzJXYdfic29/5C7ST56+Lyo/StUXfZMRTvUfiVlE51mw5jLnLtrp9vevrI9xCor9AFq2B1pP07AI80zcONrsdA8csxMnzrSdbBSWVeKr3SADA754diIY7Ta6vfXXwDD6evQp39AY8+PxgbN17Ej3eHY/XB0zBmUspIX8cocR5XAK+n5dAjtloDrRtaXtcBjuW+Xqeo5W2x6W/sczfMevEarNj58Ez6D1walTHx/U7jmLMzJUAENDz4jnGn76QjP5x8zFt0QZ0f2sMBsQtiLoLAU/udSxbt/1rvPnBDLzWfwqe6j0SUxasR5PBFNLHEEoCHcuCeS2NVgIdy5y0d+7V9vtFK9KxzDNqpGXdwlO9R6J/3Hw82esjDByzMKrfRAcCG8va2/8OHL+ICXPXoq6hMSoDbVuk52XezldXbT6Ij2evgtVmR7WuHs/3G4tbxRWh2HxVCPR6yYm/sawznpcF8trnLdAWlWrRq/9kmC3WqAy0ngTSfgJ5LQU6R/shysBA64OVmw5gQNwC2Ox2XL6RgX6xM92+PmXBemzefcLt73wFWm3NbTzTNy6qPkbhiclsQez4xfhiwz4AwJL4PVi8epfbv3m+31i3OQU7e6Atq6xBj3fH4+K1ljmQ3h0+BxcS01xfr6yqxSM9h8Jqs6NLtxi3d+AOnriEjyYvRblWh98+0x9rtx6Gw+HAzcx8PPxSLKp19SF/PKGg7XHp73kJ5JjtDIHW87gMZizz9zxHI57Hpb+xzNcx6+Ts5RT85un+6P7maGTmFoVk+9Xg4rV0PN9vLLQ1twH4Hsva4jnG7z92Ab9/fjCuJmfB4XBg067jd50cRxMdMZadPH8DS+L3oL5Bj9v1jRg4ZuFdFw3RgmQsC+a1NBqRjGVO/J17eX6/aCSYscwzatwqKseMTzehoKQSZosVn6/dzbFs8lK/+199gx4v/Xk8auvuRH2gDea8zNv5qtFkQd8hM/DwS7H47TP9sSR+j/IbrxKBXi+1xddY1hnPywJ97fMWaAfELcCVG5kAEPWBNtD2E8hraWdoP0Q5GGg9cDgcmLtsK4Z8/Klrjq2UDM1dL4yjZ6zAniMJbn/nK9Bu3HnMNU9QNHJHb8B7H32CZev3uv5u7dbDd70wPtnrI7ePxXXmQJt7qxQvvjMOZy+33u06aOyiu07ynR9N+d2zA932rR0HTmP8nDVoaGxCl24xaNQbXF8bELfA7WNP0YC34xLw/bwEcsxGe6D1dlwGO5b5ep6jDW/Hpb+xzN8x68Rub8blGxn402sfobKqVtkHoAJHTl1Bz/cmuI3tgTwvnmP8qQtJ6DNomuvPdnszHug+EPUNegW3PvQoMZY5uZGaix7vjldu41VCOpYF81oabUjHMie+zr28fb9oI9ixzNfHgp1YbXY80H1g1L1xLh3L/O1/k+evc41p0Rxogz0v83a+OmbmSizfsB/NzQ406g14d/gcHDkVfYsES6+XnPi7juyM52WBvPZ5jmUHjl90+zfRGmil7SeQ19Jobz9EWRhoPVi4YgdGz1jpNudNXUMj/vDCELcTkB7vjkNKhsbt//UVaP8yYi7OX42+VW+BllUh//zhJ9i696Tb3588fwN/GTHX9eeqmjr84YUhbh+L66yBtrSiGi++M85tNUgAmLtsK5ZvaJ0L78jJKxg0dhEA4LX+U5CYku362rRFG7B262EAwKMvD0O5Vuf62oC4BThzMVnJhxByvB2XgO/nJZBjNpoDra/jMtixzN/+Fy34Oi79jWW+jlnd7QYcOel+ofSXEXNx9HSisg8ixJy5mIzX+k+5ayVuf2OZE88xPie/BN3fGuP6s93ejN89O9DtzadooCPHsltF5W7R58qNzKgb04IZy4J9LY0WghnLnHg79/L1/aKJexnLPKNGTW09bhWVu/5ssVjbXUQ4EpGOZf72v8dfHY6ur49A19dH4E+vfYTfPN0fXV8f4faR7EjnXs7LvJ2vPtJzKIrLWoNQ/LYjUTcneTDXS048x7LOfl4WyGuf51j20ZRleKLXh65j8/5nB+CJXh/i3OWbyj6IECNtP4G8lkZz+yHKw0Dbhus3c9Bn0DRYrba7vjZw9EKs3nwIdnszjpy6guf7jYXd3uz2b3ydgP2xR6xbQIsmVm46gNle3iFqMpjwRK8PcTU5Cza7HbM+34yJc91X5O6sgTZm1Hy3SdydJKfnofubo6GtuY1GvQFvfjAD+49dANDyfMSOXwyT2YL8wnI80etD14nZ3GVbMXXhBtjsdqTnFOLRl4ehtu5OSB+Tkvg7Lv09L+0ds9EcaH0dl0BwY5m/5zla8HVc+hvLfB2zdQ2NePilWNfJWe6tUjzScyg0hdGzWnxDYxOe6Rvn9bXN31jmxNsY//qAKdh/7AIcDge27PkGb34wQ8mHEHI6eixbvHoXYscvhsFogr7JiCEff4rP1uy663tHMsGMZcG+lkYLwYxlTrwdl76+X7Rwr2OZZ9S4kJiG7m+ORrlWB7u9GcvW70W/obMUfxyhJJixLJD9D4jeO2jv5bzM2/nqu8PnYNOu4wBa3gQYELfgrumqIp1grpeceI5lnf28LJDXvvY+DRCNd9AG034CGcuiuf0Q5WGgbcPEufH47TP98cBzg1y+MXg6AKBcq8P7I+fh0ZeHoe+QGa55a+ob9K5/26VbjOu/ne9cNRlM6NItJmrnIOn+5mj87tmBbs/Z/OXbAbTMq/Tq+5Pw+CvDMWzi566Pqp66kNTyb7sPdD1nrw9omZ9r/vLteOC5Qbj/2QGu38UnS6Mn1JZV1rjtJ05PXUgC0PKRiGf6xuGp3iOxYMUO1+T1FosVE+fG48leH+GFtz92W4nUaLJg9IwVeKTnULz05/FR9xFEf8elv+fF1zHrb/+LFvwdl8GMZf6e52igvePS11gG+D5mLySm47X+U/BIz6F4rt/YqFpdGWiZM9bbc+Z8bnw9L/7G+JLyarwxeDoefXkY/vzhJyiMsguBjh7LDEYzJsxdi8dfHY6neo/EjE83ud3tEQ0EM5YBwb2WRgPBjmW+jsv2vl80EOxY9sbg6XjguUH4zdP9XfuoMybFbzuCp98YhcdfHY4hH38adRfqwY5l/l5LnURroA1mLPN3vlpQUon+cfPx4jvj8OI74zDr881eI1OkEuz1kr9zjM58XubvuPQ3lrUlGgNtMO0H8D+WRXv7IcrDQEsIIYQQQgghhBBCCCEqwUBLCCGEEEIIIYQQQgghKsFASwghhBBCCCGEEEIIISrBQEsIIYQQQgghhBBCCCEqwUBLCCGEEEIIIYQQQgghKsFASwghhBBCCCGEEEIIISrBQEsIIYQQQgghhBBCCCEqwUBLCCGEEEIIIYQQQgghKsFASwghhBBCCCGEEEIIISrBQEsIIYQQQgghhBBCCCEqwUBLCCGEEEIIIYQQQgghKsFASwghhBBCCCGEEEIIISrBQEsIIYQQQgghhBBCCCEqwUBLCCGEEEIIIYQQQgghKsFASwghhBBCCCGEEEIIISrBQEsIIYQQQgghhBBCCCEqwUBLCCGEEEIIIYQQQgghKsFASwghhBBCCCGEEEIIISrBQEsIIYQQQgghhBBCCCEqwUBLCCGEEBLFVGh1mDg3Hk+/MQr3PzsAj708DKNnrES59v9v595/q6wPOI7/P822ymYcOBYitAMply0xEBHWCZXZ0hmUFIo2k21KxHWITMKGMjZhGma9ZJmLAsrsIHTchBIuRS4iKMplgFARetrPflhykoYwTaY8UF6v5PzwfC/P+T7Pj++cnJNFHw0AAIhACwAwYJVKvRk1aXYeaFmcroNHc/bchex970imN7Xmzntmp1TqLfqIAABw0xNoAQAGqGPHT6ZiWG0OHD7Wb/zUv89l9V/Xp/uzizl5+mwqhtXmyLGPy/OrXl6bH01tSZK8tWF7Rt7dlGf//LcMqq7LC6+uyy3Vden+7PPy+gvdF1NZNS3//FdnkuT5l97M6MlzMqi6LmOmNGfjll1JktalqzOp4Vf9zrJlx75UVk3LufPdX8s7AACA651ACwAwQF26dDlDxjSkZcHyqwbQLwq07R2duW30/Xn01yty/MTpdF+8lME19XnzH1vK619f15HvjWtMT6mU19d1ZOj4xuzuOpxSqTdvb9yeyqppOXLskxx4/8NUDKvNBx9+Ut47f/GqPNCy+Gt6AwAAcP0TaAEABrBtnV0ZM6U5lSOmZnLj43lq2UvZsftAef7LBNqKYbU5fuJ0ef6RJ57L7Md+V75+8NFn8ouFf0qS3DvziSx6tq3fGaY3teaZP7ySJJkwfV6W/PG18tzwux7M2vatX+ETAwDAjUWgBQC4Cew78EFWtq1J48OLUlk1LY2PPJ1SqfdLBdrKEVP73au9ozODa+rTUyrl80uXc+uo6dm6sytJMmLCQ6kYVnvFp/nxZUmSF15dlzvvmZ0k6dxzMINr6nP5cs+1eAUAAHBdEmgBAG4yBw4fyzfu+EnWtW+7SqBd0y/Qfmfkff3295RKGTK2IZu27s5bG7bnjrtmpq+vL0lSM6U5K9vWXPW7z356IZVV07Jr36G0Ll2dea0rvvoHBACAG4hACwAwQL2zaUceW/T8FeN9fX0ZMqYhr/y9PefOd6diWG32Hzpann9yyYv/M9AmScuC5Zm/eFXmzl+WJ5e8WB6vb16YlgXL+6396ONT6e3tK1/P/Plvs/D3f0nVxFnZ1tn1fz8nAADcyARaAIABav+hoxlUXZd5rSuyu+twTpw6k73vHUnLguW5ddT08v/K3j5uRla9vDbJf2PqyLubvjDQbti8K6Mnz8nQ8Y3Zte9QefydTTsyqLou7R0701MqZevOrny3pj6b391bXrN+47u5bfT9qZo4q/zLWwAAuFkJtAAAA1jnnoOZMXdRvv/Dn+Wbw+/NkLENaZj7VPbsf7+85o31m1M1cVZGT56T+uaFWdm2JmN/PDfJ1QNtT6mU28fNyKhJTVfMrWxbkxETHsot1XWpmdKc197YcMXeoeMb8/RzbVfsBQCAm41ACwDANXX6zKf59g/uy9GPThR9FAAAKJxACwDANdHb25czZ8+n8eFFafrl0qKPAwAA1wWBFgCAa6K9Y2e+NXxqfjr7Nzl77kLRxwEAgOuCQAsAAAAAUBCBFgAAAACgIAItAAAAAEBBBFoAAAAAgIIItAAAAAAABRFoAQAAAAAKItACAAAAABREoAUAAAAAKIhACwAAAABQEIEWAAAAAKAgAi0AAAAAQEEEWgAAAACAggi0AAAAAAAFEWgBAAAAAAoi0AIAAAAAFESgBQAAAAAoiEALAAAAAFAQgRYAAAAAoCACLQAAAABAQQRaAAAAAICCCLQAAAAAAAURaAEAAAAACiLQAgAAAAAURKAFAAAAACiIQAsAAAAAUBCBFgAAAACgIAItAAAAAEBBBFoAAAAAgIIItAAAAAAABRFoAQAAAAAKItACAAAAABREoAUAAAAAKIhACwAAAABQEIEWAAAAAKAgAi0AAAAAQEH+A3tk16mosj1pAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd91/b570+/s/f03O+J+1pT3t62tO0TdKmSZOcpBlthu14r9jxnon3duI94m08wQZjY8wwey+xQeyN9F7aEiAh6fr+IBmDF9hY3OD39Xw8rscjDMMtibzjXNzv1/3/QERERERERERERERC/D/RCyAiIiIiIiIiIiLSKxa0RERERERERERERIKwoCUiIiIiIiIiIiIShAUtERERERERERERkSAsaImIiIiIiIiIiIgEYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBWNASERERERERERERCcKCloiIiIiIiIiIiEgQFrREREREREREREREgrCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC1oiIiIiIiIiIiIiQVjQEhEREREREREREQnCgpaIiIiIiIiIiIhIEBa0RERERERERERERIKwoCUiIiIiIiIiIiIShAUtERERERERERERkSAsaImIiIiIiIiIiIgEYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBWNASERERERERERERCcKCloiIiIiIiIiIiEgQFrREREREREREREREgrCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC1oiIiIiIiIiIiIiQVjQEhEREREREREREQnCgpaIiIiIiIiIiIhIEBa0RERERERERERERIKwoCUiIiIiIiIiIiIShAUtERERERERERERkSAsaImIiIiIiIiIiIgEYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBJnVBa6huEr0EIiIiIiIiIiIiooiZFAWt1+tDa6cJxubOoWQXVuKXf50jemlEREREREREREREESO8oM0vrcF/v7sAP3t9+oj8x59nYsPuM6KXR0RERERERERERBQxwgva//t6A85HJ8Fmd+H3HyyG0+VBbnE1Fq8/iM4eSfTyiIiIiIiIiIiIiCJGeEH787dmw+cbBAD87v3FQ++vb+rAtCU7RS1rzHq1Pkan8Qz4YXN5ha+DEZMBXwCaY0D4OhgxGfQHIdv6ha+DEZNgEDBNgnUwEx+TJfT6i14HIyayrR+D/qDwdTBiojkGMOALCF8HIyY2lxeeAb/wdTDiQhRpwgvaP3y4ZGin7BufLINZsQAA/P4AfvX2PJFLGxPRFwlGXFjQ6jssaPUdFrT6Dgta/YYFrb7DglbfYUGr77CgZYgiTXhBu/voVfz+g8Ww2p34bu9Z/HPBVlyPT8faHafw3vT1opc3KtEXCUZcWNDqOyxo9R0WtPoOC1r9hgWtvsOCVt9hQavvsKBliCJNeEHr9wdwPT4dA14fXO4+rNx6HG98uhzTluxEbUO76OWNSvRFghEXFrT6DgtafYcFrb7Dgla/YUGr77Cg1XdY0Oo7LGgZokgTXtBOdaIvEoy4sKDVd1jQ6jssaPUdFrT6DQtafYcFrb7DglbfYUHLEEWa8ILWN+jH/ZwynLt2Dycu3n4sk53oiwQjLixo9R0WtPoOC1p9hwWtfsOCVt9hQavvsKDVd1jQMkSRJryg/WbjIfz2vYX4cvEOzFy257FMdqIvEoy4sKDVd1jQ6jssaPUdFrT6DQtafYcFrb7DglbfYUHLEEWa8IL2Tx9/C7enX/QyXpjoiwQjLixo9R0WtPoOC1p9hwWtfsOCVt9hQavvsKDVd1jQMhMlGAzifHQS3vlyDV57Yyb++I+l2HHoMjx9AxH5foN+PxJSCyLyten5CC9oP5u/BYN+v+hlvDDRFwlGXFjQ6jssaPUdFrT6Dgta/YYFrb7DglbfYUGr77CgZSbKvhPX8eZnK5BfWgO3px/NbT2Ys3IfZi6PzB3m9U0dmLNyX0S+Nj0f4QVtYVkdVm49jvRcAypqm1FZ1zIik53oiwQjLixo9R0WtPoOC1p9hwWtfsOCVt9hQavvsKDVd1jQMhPBanfitTdmorq+dcT7PX39uB6fDt+gH4FAEAdP38Q7X67Bu1+txertJ+Fyh9b32puzoFrsQ3/uwdvG5k58OHMjDpy6gVkr9uKdL9cgt7gabk8//vzxMvzq7bmYuWwP6ps68NGs77B6+0nMXL4HH8/ZhOTMkqGvl5Ffjo9mfTchz4UeCS9ofzgZjZ+9Pv2pmexEXyQYcWFBq++woNV3WNDqOyxo9RsWtPoOC1p9hwWtvsOClpkI6XnleOPT5c/8nMS0Ivzf1xvg6etHMBjEsk3H8MPJaABPL2ib2rrxb3+cgfzSGgBAcmYJ/rVg69A/P9hB29TWjV/+dQ4S04oAAOejk/DNxkNDX2/D7jM4dTnh5T1gGkF4Qfs/7y9CSYURA16f6KW8ENEXCUZcWNDqOyxo9R0WtPoOC1r9hgWtvsOCVt9hQavvsKBlJsLtlDx8Nn/LMz9n9faTOB+dNPR2fmnN0K7WZxW0v35n/tD7jc2deOOTZQAeL2h/8dZsBAJBAICs2vCLt2bD6fIgEAjid+8vRlev/HIeLD1GeEE71bdHi75IMOLCglbfYUGr77Cg1XdY0Oo3LGj1HRa0+g4LWn2HBS0zEYrLjXj9o6XP/Jw5K/chPjlv6O3ahnb88R+hP/OsgvbB5wAY8fajBe2j33/60l2Iu5eD0soGfDp38/geID2T8IL2SlwazlxNhKevX/RSXojoiwQjLixo9R0WtPoOC1p9hwWtfsOCVt9hQavvsKDVd1jQMhPB4fLgV2/PQ6GhbsT7B7w+bN5/Hp6+AazdcQoXYpKHPpZXUoN/zP4eAPCff5kDWbUN/ZmfvT79uQva4Z8HADEJmZi3ej92HLqE89eTQJEjvKB967MVeO3NWfjZ69PxX3+bh1+/M39EJjvRFwlGXFjQ6jssaPUdFrT6Dgta/YYFrb7DgvbVSrfmQKfFgg5NQpvWixatA81qCxrVBhjVGtSrFahVS1GtFqBKzUGNJRNOr0P4uhkxYUHLTJQTF2/jDx8uQWZ+BdyefrR3mTFv9X4s/e4IgFCh+tGs7+DpG4DfH8CSjYdx+GwsAOCv/1qF4nIjACAhtQD/9scZoxa06bkG/HPBVgSDwScWtHanG796ex7+8OESmCRtIp4C3RJe0GbklyOnqPqpmexEXyQYcWFBq++woNV3WNDqOyxo9RsWtPoOC9rIpsfiQrdmQ6emol0zoVXtQovahiatEQ1aHYxqFWpVA2rUIlSpeahQslCupqFMuYcS+Q4K5TgUyNHIk68gR7qIbOksMuWfkC4fRZp0EKnSfiRLu5Bk3oZ70uYXitzXJfx5YsSEBS0zUYLBIC7EJONvX6zGa2/MxBufLMOBUzfg8w0OffzouTi8+9VavPPlGmzccxaevgEAwN20Qrzz5RrMXrEPp6/cxR8+XAJFsz2zoFUtdrzxyTL84cMlTyxoAWDhugP4fOG2CXj0+ia8oJ3qRF8kGHFhQavvsKDVd1jQ6jssaPUbFrT6jh4L2i7Njk5NQ7tmRqvajWatHU1aExrUetSr1ahTDahRS1Cl5KNSzUa5mo5SJQklcgKK5FsokGOQL11DrhSFbPkssuRTyJCOIU06hPvSD0iRdiPJvOOFC9PxJMm8HSnSbqRK+5EmHUKGdBSZ8k/Ils8hV7qIPPkqCuQYFMlxKJYTUKElweG1Cn9NGDFhQcvo2eb953H1VproZbzyhBe0b3++Gu98ueaJ+ftXazFz+R5cjEmGb9AveqlPJPoiwYgLC1p9hwWtvsOCVt9hQavfsKDVdyZDQdutOdClWdGhyWjTetCqdYZvy29Eg1qLeq0CtWoZatRCVKk5qFAyYZBTUConoli+jSL5ZniX6WXkyOeRLZ1BpnQCGdIRpMkHkCrtRYq0E/ekrQJK021IlnYiVdqH+9JBpMtHkCWdRJZ0FrnSBeTLV1AgR6NIjkWJcgelciIMcioqlSxUqbmoUYtQpxpgVCvRoNWhSW1Ei9qKVq0L7VovOjQFXZoNPRbnCz33nEGr77CgZfSqpb0Hb3yyDE6XR/RSXnnCC9rr8en4w4dLsGbHT7gQk4yoGylYv+s03vhkGS7HpuL4xXj86eNv8cPJaNFLfSLRFwlGXFjQ6jssaPUdFrT6Dgta/YYFrb7zpIL22bfl1w+7Lb94xG35pY/dln91xG35GdKjt+VvF1CYbgkVpuY9uC/9iHTpMDKl48iSTiNHPo88+RLy5esoVG6iWI5HiZyIMjkZFWoGqtQcVKsFqFVLUa9WwKjWoFFtQJPWjBatA21aLzo0CZ2aBd2aA72aR/jrO1pY0Oo7LGgZPTpw6gb+/PEyZOZXiF6KLggvaOet3o+M/PLH3p9dWInV208CABpauvDnj5dN9NLGRPRFghEXFrT6DgtafYcFrb7Dgla/YUE7+dOjedClOcK35Uto1XrQorWjSWtGo2qEUa1GnVqOGrUE1WrB0G35ZXIySuS7KJJvoVC+EbotX76EHPlc+Lb840iXDiNd+REp5j1IlnbgnrRlEtyWfyx8W/5Z5EpRw27Lv4USOQGlShLK1TRUqtmoUvJRoxajVjWgXq1Gg1qPJq0JzVobWtVutGtmdGoqujU7ejW38NdysoUFrb7DgpYhijThBe3P35o9NNB4OK/Xh1+/Mx8A4OkbwH/+ZU5E1xEMBnHkbBz+9PG3+O93F+DHn2KGPtbVK2P60l3473cX4KNZ38FQ3TT0MdEXCUZcWNDqOyxo9R0WtPoOC1r9hgXti2X4bfntWu8ot+XnjrwtXxl5W36ufGHkbfnS5LgtP+WR2/KzpTOj3JafOey2/DLUD7stv1ltRavWOey2fOsL35bPvLywoNV3WNAyRJEmvKB9+/PV+OFkNNye/qH39fV7cfRcHP72xWoM+v3YfyIan83fEtF1JKYV4f0Z62GxOaFa7Pj7V2uRlFEMAJi2ZCcuxCTD7w8gp6gar3+0dGgmruiLBCMuLGj1HRa0+g4LWn2HBa1+86oUtD3ayNvy29TuEbfl1w+/LV8ZeVt+sZww4rb83Mduyz80iW/LP/fwtnz5xmO35Veq2UO35dep5Y/dlt9l64HbZwvflm/HVLgtn3l5YUGr77CgZYgiTXhBa6huwm/fW4j/789f4w8fLsEbny7Ha2/Owi/emo3M/Ar4fIN4/aOlqKhtjug6Nuw+g3PX7g29ffVWGpZ+dwSa1YFfvT0Pg/6Hh5T9Y/b3KC43Apj6f0FnXjwsaPUdFrT6DgtafYcFrT5iNkmQO1qhNlfDUl8EW2U6HGW3gcpYOIvjYDckwF6RAltVJqy1ebAYS6A1VUBtqYPS3gy5qwNSTy/MZg0mxfHM7/Xobfltj92WX/PM2/KL5fhn3JZ/CPelyXpb/jnkSheH3ZYfh+Jht+VXKNmoUvKG3ZZfhQbt4W35bY/clt+juSL6MzEZDgljxIUFrb7DgpYhijThBS0A+HyDKCyrw+2UPMQn5yGnqBp2h3vo48PL0Uh5tKBNuF+AD2duhKG6CR/M2DDic5dvPoboO5kAAMnaz+g0fV4/HB6f8HUwYuIdDMDq8gpfByMmfn8QmmNA+DoYMQkGAXkSrENcps7Pvqzaofb2QutogrW5Ava6PDgqU+EqiYM77zL6Mk+gP2U/vHe3YvDWGvhjFiN4+Wvg4udPjOfGDFgSZkO5NxfmlLnoSZuPzoyFaM9ehJbcxWjMXwJj4RLUlnyLasMyVFSuQFn1ShTXrkJh/WrkNa1HdusGZHZ8h7Su75HSu0nADtNQUqRdSJX2Ik0+gHTpCDKlE8iWzyBXvoB85TIKlWgUK7EoUW6jTElEuZKKSi0TNVouarUi1FvK0GCpRJNWh2ZLI1otrWi3dKHT2otuq4Jeqw0mq1P4z8DLjOYYgN8fFL4OXccm7ntbXV54BwPinwNGSBweH/q8fuHrYMSFKNImRUE7GdxNK8R709ZBszpgd7jx9be78c6Xa5BfWoPP5m0e8bkbdp/BxZhkAIA/EGR0mmAQCEyCdTD6fP0HfAHhz4GeE+T1X9fR+3//hVx/+l0I2M0IKM0I9FYj0JqPYH0KgpVxCBRHIZh7HMG0vQgmbkYwfiUQPf+pJeuzMnj1K9jjZ8KUMg+tBctRXbUeRU2bkNkV+cI0uWcT7nd9h4z2DchqXY/c5nUoaFiD4vrVKK1ZifLKlagyLEdN6beoL1qKhoIlaM5bjLacxejMWIjutPkwpcyDnDQX2t3ZsN6ZBUfCPLgSFqEvYSkG7q6E7+56BBO/RzB5W+j5yjyIYM4xBApOI1B8EQHDdQQr4xCsuYugMRXBpiwE2goQ6CxDoLcGAcmIgNqKgLUbAYcMv8cG/4BH+M/kRIbXf7EZ8PmFfe9AIPT3P9HPAcPXnxETokgTUtD+9r2FQwdt/fa9hc/MRAkEgjh05ib++q9V+Gz+Fhy7EI9/LtiK8pomvDd9/YjPXbbpKG4kZAHgiAM9hyMO9B2OONB3OOJA3+GIgxeM6gqPDWiD2jJybIAz/yrc2WfQd/8g+hN3wHt7AwZvfIvA1dnAxS9eqGzFxc8RvDQd/usL4ItbiYGEzehP3gst9zC6DSfRXH8KVS0/oajjGLJ7DiLFvGPUEjVV2o9Cy1nkSBeRJ19BoRyNQjkOJfIdlCn3wrflZ6FKzUONWoRa1QCjWhU6/ElrRIvciDZzAzp7jOjpqoW5owZqcw20xnJY6otgrc2BrSoD9vKk0PNSdBPO/Ktw5V6AO+sUPGlH0Zd6EP3JezGQuB3eO9/Dd2sdBmNXwB+zBP5r8xG8MhPBqK9e+Dl74ec66isEr8xE4No8+GO+wWDscvhurYP3zvcYSNyG/qQ96Es9AE/aUbizTsGVcwHO/CtwFt2Eo+w27OVJsFWmw1qbA0t9EbTGcqjNNVDaGiF3tkPq7oHZrMAk29Cripn9yhEH+g5HHOg7HHHAEEWakII2LccAq9059M/PiihnriZi8w8XYLU78Z9/mYO+fu/Qx97+fBXKa0IFs+iLBCMuLGj1HRa0+g4LWn1H7wWtSbZB6u6B0t4IrbEC1to82CtS4CiOgzMvCu6ME+hL2Y+Bu1vgixt9bMBYErgyE/6YJfDdWouBxG3oS/kR7syf4My7DEfJLdgqU2GpzYfWVAlzRz3ae2tgVMtQoWShSL6FHPk80qSDSJK2jjIrdQfS5SPIky+hRL6LKjUPDWotWrUe9FhcU+uQMNUNk2yF2SRD6u6G3NEGpa0Baks1tAYDLPWFsNZkw1aZBnv5PThK4+EsugFn3mW4cs7DnXkKnvQj6Ev5Ef1JuzGQuA3e29/Dd2sNBm8ugz/mGwSuzQu9tlEvXqK/ePn+FQJXZsF/fQEGY5bCF7sCvvh1GEjYjIHEHehP3ou++wfhST8Gd/YZuHIvwJl/Fc7iWDjK7sBekQxbVQasNbmwGIuhNVZAbamF0t4UKoR7emE2qTApDw8DY0Gr77Cg1XdY0DJ6Nuj342evT8drb87Cz9+ajd+8uwBzVu5DZ480rq/7y7/OgVmxvKRVTn3CRxys3n7yie93ufswb/UPE7aO9FwD5q7aD7enH129Mt74ZBkq61oAADOX7cGJi7fh9weQcL8Ab322An5/AMAU+Qs6E5GwoNV3WNDqOyxo9Z1Xo6D1wGzWIHd1QG2pg9ZQCmt1JuyGRDiLYuDKPg9P+hH0J+2G9/b3oR2a1+YjeGkcOzOjvkTg6lwM3lwG7+2N6L+3E560Q3BlnYWzMBp2QwJsVZmwGIuhNtdC7myD2aygV3WPWHuP5kG7Zkaj2oAatQilShLy5evIkk4iRdo9hl2w+5AtnUGhfAPlahpq1TI0ac3o1NRRn7cpVdBOcEyKCybJCrNJgtTdCbmjFUqrEWpzFbSGMljqCmCtzoKt8j7shkQ4Sm7BWRQDZ94luLLPwZ15Ep60w+hL+QH993Zh4O4WeO9shC9udagQjl6EwNU54bJfQCEcNR2Bq7MRvLEIgze+hS92Fby3N4R2Zt/bib6U/fDcPwR3xnG4s87AmRcFZ2E0HMMOlLNWP+tAOdOYDpRjxIUFrb7DgpbRswcF7YMyta/fi037zmPuqv3j+rqa1YEAx0cMEVbQtneZkZlfgZ+/NRuZ+RWP5Xx0En7+1uwJW49v0I+1O07h1+/Mxx8+XILr8elDH+sxq5i2ZCd+8+4CfDxnE2ob2oc+JvoiwYgLC1p9hwWtvsOCVt+ZTAWtSXkwNqAVanM1LPWFsFWmwVEaHhuQdRp99w9iIHEHvPHrMRiz9OWMDYheCF/sqqGxAZ70Y6EdikU3YS9PgrU2B1qDAUqbEVJ3F0yS9bkeV5fmQIvWAaNaiQolG8VyPHLlC0iTDuHeqLtgtyNDOoJc+RKK5QRUqbkwqjVoVbvRY3GO7/lmQTtpYlIdMJs1SL1myN2dUNqbQ79saKqE1lAKS20+rNWZsFWkwl52N1QIF0bDmRcFV9ZZuDNOwJN2CH0p+9F/bycGErbAe3sDfHGrMHjjW/ijF4YK2UvTJ7wMDv17NgOBa3Pgj16EwZvL4ItbDe/tjRi4uyVcCP8AT9phuDNOwpV9NlQIF8XAURIPe9ld2CpTYa3OhKWuAJqxFGpTJZTWeijtLZC6OyH1mmGWLDAp4/t3Qk9hQavvsKBl9OzRghYA8kpq8LcvVg+9nZlfgQ9mbMBf/rkSM5ftgcUWumv+Ykwy1u86jdXbTmLakp34eM4m9JpVAA930BqbO/HhzI04cOoGZq3Yi3e+XIPc4uqJfZCTgLCCNruwEp8v3IafvT4dv35n/mP5w4dLcORsnKjljZnoiwQjLixo9R0WtPoOC1p9JxIFrUm2Qurufjg2oCYX9opkOIvj4Mq9+MjYgNXwRy96iWMD1oXGBqQeeGRswH1Y6gpCxU57M6QeE0zqy9rd50GHJqFRbUSNWowyORkFcjQy5Z/GtAs2RdqHLOk0CuQYGORU1KqlaNKa0KkpEX3tWdDqNybFDlXW4HeGdp6HCuFaaI0VsBhLYK3Ng60qE/aKZDjKEuAsjoOz4FpofnD2GXjSj6Pv/kH0pezDQOIODCRshjd+PXxxKzEYsxT+6wsQuDILwahpE18IR32B4OWvEbg6F/6YxaFC+NYaeG9/h4G7W9GftBt9KT/Ck34E7syf4Mo+D2fe5VAhXBoPu+EebFVpsNZkhQrhBgPU5moobUbIHa2QurtgNsmhX9Q8siN+KoUFrb7DgpaZaKs3+bB848TnSR4taD19/Vi97ST2Hr8GAJAUK37794VoaOkCAJy/noTFGw4BAC7H3sf/vL8IqsUOANh2IAoHTt0A8LCgbWrrxr/9cQbyS2sAAMmZJfjXgq2Re3InKeEjDmZ8u0v0EsZF9EWCERcWtPoOC1p9hwWtvvPUglb1wGxSHx8bUHY3PDbgHDxph4eNDVgemuE5ngOdho8NuLMR/fd2wZN2OLSjbsTYgBKoLbWQO9vDYwMif8hSt2ZHq9YJo1qFSjUbxfJt5EoPdsFuG3UXbLp0GLlyFErkO6hSc2BUq9Gqdo17F+x4woJW35m4GbQemGQbzGYFUncP5M42KO2NUJtrX4kD5RD15RMOlFv7+IFy6Y8cKFd8E47SJxwo12B45EC57lAh/JIPlGNBq++woGUm2qwlPiF5kgcF7X/9bR5+/c58/PufZuDdr9aivcsMAIi+k4lZK/YOfb6nrx//8eeZ8A36cTn2PhavPzj0sagbKVi74xSAkQXtr9+ZP/Q5xuZOvPHJskg8rZOa8IIWwFDLDoTGCZyPTkJ6XrnAFY2d6IsEIy4saPUdFrT6DgvaVzsmxRW6bbqjFWpzFSx1BcPGBlxBsPAc+lIPhkqPEWMDxnc78/CxAX0p++BJP/6UsQENkLq7n3tsQCTSoclo0hpRo5aM2AWbat4zhlmwe5Eln0KBHA2DnIIatQRNWhM6IrwLdlw/GyxodZ1X9pAwXRwoN/OxA+W8dzY9fqBc1unHD5QrDx0o5zTmw9dZHjpQrvkJB8rJNjw4UI559cKClplodoeYPMmjO2gH/X7kFFXh9x8shqLZcOZqIn751zl449PlQ/nNuwugaDZcjr2P1dsenj01/O3hBe0f/7F06HMefVsvhBe0UTdS8Jt3F8DvD8Bmd+F37y/GhzM34vcfLMbpK3dFL29Uoi8SjLiwoNV3WNDqOyxop0aGxga0NUJrLIe1Ngf28uFjA46HxgYkbIEvbtVLGhswK1QAjBgbcCo0NqA0/pGxAS2Qes2TegZkt+ZAq9aF+ge7YJXbyJUuIk06PIZdsNuQLh1CrnQRxcptVKk5qFer0ap1oVubmgchsaDVd17ZgnaCE7kD5dZMqgPlHhbCww6US9zx2IFyrtyLjx0oZ6vigXKTLSxoGT170gxaAPhw5kakZpfiTkr+iF2yw7GgHTvhBe2bn60YOnTr/PUkfDxnE4LBIJrbevCXf64Uu7gxEH2RYMSFBa2+w4JW32FBO4F5ZGyAxVjycGxAYfQjYwO+w+DNZeMeGxCM+gqBa/OeOjYAxhTYqh8ZG2BSJ2RsQCQyfBesQU5BoRyNLPkUUqW9o++CNe9BpvwTCuRolA3tgm1EhyYLf1yRCAtafYcF7dTMyzpQzpu6H4HU3ZP7QLkb38IXt+qRA+X2w5N2aOSBcoXRjx8oV5v/2IFyMg+UGwoLWkbPnm99KUMAACAASURBVFTQllY24Jd/nYOObgmqxY7ff7B4aORBtbEN2w9GAWBB+zyEF7SvvTkLwWAQADBrxV6cvZYIAAgEgnjtzVkilzYmoi8SjLiwoNV3WNDqOyxonz8mxQmp1wylveXh2ICqtNCtsnmX4c48hb7UAxhI3A5f/LrQ2IArs8b9P63+6EXwxa3CQMKWkWMDimNhL08OjQ1oLH+usQGROCQskumxONGqdsGoVqNKzUGJcge5UhTSpcNIMj97F+w9aRvSpEPIkS6iWL6NSjUbRrUKrVrnlN0FO66fYxa0ug4LWn1nrDNoTYodZpMKqaf3OQ+Uu/jYgXL9k+xAOaW1QfjrICosaBk9e1DQvvbmLLz25iz84q3ZeG/aOiRnlgx9TlZBJT6YsQFvf74KH8/ZBEN1IwAWtM9DeEH75mcrUN/UgV6zitfemDnUuLd2mqbECyL6IsGICwtafYcFrb6j54LWJD0YG9AArcEwbGxALFy5F0L/Y5myDwMJmx+ODbg0Y1z/Qzg0NiB+HQYSt6Mv9eDIsQFVaaGxAc1VoRPDIzw2YDIWtJ2agiatCbVqKQxyKgrkmDHvgk0ZsQs2GTVqMZrURnRoEjhP8ZGffxa0ug4LWn1nch4S9jwHyiU/4UC50891oJzc2TYJHrOYsKBliCJNeEF76WYqXntzFn7+1mys2fETAMBmd+Hdr9Zi/4lowasbneiLBCMuLGj1HRa0+s6UL2gfjA3obIfaUguLsSS0m8eQEB4bcDY0NuDeLnjvbBwaG4CoL1/O2IDb36E/aXd4bMA5OAujYS+7G7rF0lgCtaUOclfHpB0bIKKg7bE40aZ2w6jWoErNRYl8B7nyg12w20cpYbciTTqEXPkCiuX48C7YSrRoHejS4S7Y8YQFrb7DglbfmZwFLTNRYUHLEEWa8IIWAJrbelBe0wS/PwAA8A36cT0+fehtAGhs7Ra1vGcSfZFgxIUFrb7DglbfmSwFrUl1QOoxhcYGNFWGxgZU3g/NzxsxNmAbfLfWwR+zBIErM8c3NuDy14+MDdgPd8bx0CEnxXGPjA1oDI0NkEcfGzCVEqmCtlNT0aQ1j9gFmy2dRqq0b/RdsNJuZEknUSBfR6mShBq1CI1qA9q5C/alhgWtvsOCVt9hQavvsKBliCJtUhS0Y/Hrd+aLXsITib5IMOLCglbfYUGr77zsgjY0NqALSptx2NiAJDiLbobHBhx7ODYgdhX80QvHfRhJ4Orsx8cGZJ2CM/8KHKW3J3xswFTKixa0oVmww3fBJiBPvoQM6ciou2CTpK1Ikw4iRz6PIvkWKpQs1GsV4V2wduHPiV7CglbfYUGr77Cg1XdY0DJEkcaCdpxEXyQYcWFBq++woNV3nljQqm6YzQrkzjaozbWwGItHjg3IOgtP2iH039v5cGzA1bkvZ2xA7HJ4b38/cmxAUcyUGhswlfKsgvbBLtg6tQzlahoK5RvIls4gVdo/6i7YZGkXMqUTyJeuoVS5N2wXrBk93AU7KcKCVt9hQavvsKDVd1jQMkSRxoJ2nERfJBhxYUGr77CgfXXzcGxAM7SmSlhq82GrTB02NuAnBDIPwpu4Hb5ba1/y2IDVGLj7hLEBFcmw1uRCa6x4ZccGTJX0WFxwDapoVGtRpeahRL6LPPky0uWjSDLvGKWE3YI06QBy5HMokm+hUslCvVqBZq0d3dwFOyXCglbfYUGr77Cg1XdY0DJEkcaCdpxEXyQYcWFBq++woJ38MUuWkWMDarJhL78HZ/HDsQH9yXtDYwPiVsJ/fQGCUdPHUbR+MTQ2wBu/HgOJO9B3/5GxAZVpsNQXQm2uHjY2wCX8uWJGplPT0Ky2oE41oFxNR6Fy8zl2we4c2gVbptxDtVqIBtWIds2EHs0t/LEx4wsLWn2HBa2+w4JW32FByxBFGgvacRJ9kWDEhQWtvsOCdoKiumE2yZA724eNDciAoywBzoJrcGedged+eGzA7QdjA+YAUV+8+G7WS08YG5B+BK7s80NjAwIt+bA1lT4cG2DWODZgCqVHc6FN60WDVocqJX9oF2yGdBTJ0ui7YDPVg8iRz6FQjkOFkok6tRzNWhu6NO5qftXDglbfYUGr77Cg1XdY0DJEkcaCdpxEXyQYcWFBq++woH2+mBQ7pJ7e8NiAClhr88JjA+LhzLsEd+ZJ9KX8iIG7W8NjA75BMCJjA07AmRcFx6NjA9obIXX3wCTbxvR4XvYhYczLT6dmQbPaitrwLtgi+SaypbO4L/2Ae9KWZ5awKdJOZEjHkSdfRamciGq1AA1qPdq1XvRo7hc+JIyZ+mFBq++woNV3WNDqOyxoGaJIY0E7TqIvEoy4sKDVd/RZ0HrCYwM6obQaoTWUwVqTBbshPDYg5wI8aUfRn7wX3jub4Itd8fLGBtz49pGxAafhzL8KR9lt2CrTR4wNMJukiI8NYEE7GeJGm9aDBq0O1Uo+SuVE5MtXkCEdQ7K0c9RdsPelH5Etn0WRHIsKNQN1qgEtauuYdsGyoNVvWNDqOyxo9R0WtPoOC1qGKNKmTEH7v//3jeglPJHoiwQjLixo9Z0pXdCqrmFjA2pgqS8Kjw24A2f+1UfGBmzA4I1vEbg2/rEB/mvzMRi7At47TxgbYEiEtToLWsMjYwMm6cn1LGgnJp0WC1rUVtSpBlSoGSiSY5Etn8N96cdRd8EmSzuQIR1DnnwltAtWyUeDFtoF2zvOWbAsaPUbFrT6jh4KWnOnFWplJ6xZdXDEF8N1Ph19B2/Dt/kKAt/+BLW8Q/gaRYUFrb7DgpbRs0G/Hz97fTpee3MWfv7WbPzm3QWYs3IfOnuk5/5aF2OSsXHP2cfef+7avSe+/0U8WO+//2nGiLw3ff1L+fqRIryg9Xp9uBx7f+jt9LxyLFx3ALuPXoWnr1/gysZG9EWCERcWtPrOZChoTbItPDag6eHYgIpUOEpuwZkXBXfG8LEBa0JjAy5/Pf6xATGL4YtbEx4b8MMjYwNSYK3Ne6GxAVMpLGhfVtxo13rRoNWjWi1AqZyIPPkqMqTjY5oFe1/6AdnSWRTJN1GhZqBWNaBZbUWnZonoulnQ6jcsaPWdKV/Qym7ITRK0klbYUqvgjMmH56dkDOy5icF1FxFccAyYe/iZsWbUin8cgsKCVt9hQcvo2YPC06xYAAB9/V5s2ncec1ftf+6v9bSCtq/fC5f75TzPj653qhBe0H6/7xw+mbsJfn8ArZ0m/MefZ2LHoUuYvnQXNuw+I3p5oxJ9kWDEhQWtvvPyCloPzGYNcncnlNZ6aMbSh2MDim7AlXMenvSj6E/a88jYgGkvZ2zA7Q3of+rYgCKoLdWQO9pgNknoVSM7NmAqhQXt2NOlWdGitqFOLUeFkolCOQ7Z8tnn2AV7FHnyZZTIiahS8tGg1aFN60WPJu7nkQWtfsOCVt+Z7AWtudsOpbYHlrwG2BPK4LqUib7DCfBuuw7/itOjlq+YexiBJSfg++4S+n+4BffZ+3DEFcGaUQO1vANSm4peVfzjFBUWtPoOC1pGz55UeOaV1OBvX6wGAFTWteCdL9cMfWz42xdikrFh9xl8NOs7HD0XN6KgNSsWvPHJMpRVNY7YQfvrd+bjWnw65q/5Ee9+tRY/Xboz9LVvJGTh7c9X483PVmDakp0wyY+XsKMVtBW1zfho1nf4679W4b1p61BUXg8A8PkGsXr7Sfzlnyvx5mcrsGrrCfQPeAEAyZnFeG/6erz71VpMW7ITrZ2mF34+n0Z4Qfs/7y+CotkAAAdO3cDCdQcAAJrVMWnHGgwn+iLBiAsLWn3nsYL2wdiAjjaoLdWhsQGV6Q/HBmSfQd/9g+hP3DFybMDFcYwNiJr2yNiAPfCkH4Ur55GxAcZSKK31kLs7J/XYgKkUFrQP06O50a6Z0KAaR+yCzZSOj2EW7GakSvuRJZ1FoXIT5Wo66lQDmtUWdGqa8Mf2tLCg1W9Y0Oo7Qgta1QOpRYVqaIc1vQbO2CK4z6Sif38cfBujEFx8fPQCdt5h+FeegXfbdfQduQvn5SzY7xpgyW+EUtcLk8kh/DmezGFBq++woGUmmmPBR7DP/WDC8ySPFp6evn6s3nYSe49fA/DsgvZy7H38/oPF6OyRATzcQds/4MXHczbhTko+gJEjDn773kIcPhsLINQNvvbGTHj6BmCxOfHam7PQY1YBABv3nMXm/edHXe+jPpixAQmpBQCAOyn5Q2tNzizBrBV7EQwGEQgEsffYNRiqm2CSNPzX3+ahvcsMALgSl4bP5m8Zy8v4XIQXtL94azb8/gAA4B+zv0dsYjaA0BP687dmi1zamIi+SDDiwoJWf5E7WmGtzoQz7xICyTsxeGsN/NGLXs7YgOhF8MWtDo8N2B8eG3ApPDYgGdaa3Fd+bMBUit4K2i7NhmYttAu2UslEkRyHHPkc0uQDo+6CTTLvQLr8YBfsXVQpeWhQa9Gm9QjdBTuesKDVb1jQ6juRLGhNkgtyvQmWwibYk8rhvJINz/FEDOyMgX/1OWD+kVEL2OCi4xjccBED+2LhPpUC540C2O5XQytthdQso1fhL2jHExa0+g4LWmai2T75nZA8yYPC87/+Ng+/fmc+/v1PM/DuV2uHCsvRCtrZK/YNfexBQbtiy3EcPRc39P5HC1pjc+fQx37z7gJ0mxQAGNrRCgAJ9wswa8Xep673d+8vxv/+3zdDWb39JIDQTtlAIAgAkFUb/uPPMwEAhupG/PEfS5FVUIkBr2/o6928mz20mRQABrw+/NsfZ7y0kQwPCC9oP5r1HaLvZCIpoxg/f2s2rHYngNB26b9/tVbw6kYn+iLBiAsL2lc3JsUOtbkajrI7cGecgPf2xjEVrUNjA+LXY+CpYwMKw2MDWkNjAybB42WeP69aQftgF2yjakSNWohS5R7ypWvIlE4gWdo1pl2w2dIZFMo3UK6moU4tQ5PWjE5NFf7YIhEWtPoNC1p9ZzwFrbnDArVi5OFb/Qdvw7cpdPjWmMYPLDsF35ar6Dt0B64LGXDcKYE1ux5KVRfMXdbIP35zM9TeciimOsjmFkhSF8yyApNqF/7aTERY0Oo7LGiZiRa0aQha1QnPkzy6I3XQ70dOURV+/8FiKJpt1IJ21dYTQx+7GJOM37y7AL94azZu3s0eev+jBe3wA8gevB0MBnH8Yjw+nbsZn83bjLc/X42Zy/Y8db31TR1QLfahOFweAKGdsl8u3o7P5m3Gx3M24d//NGPozyZnFmPakp34r7/Nw4bdZ+DpG8CpywmPjWD91dtzX+iQtGcRXtAWltXhd+8vxi/emo3LsakAANVix3/+ZQ7ik/MEr250oi8SjLiwoH01IvX0wlJfBGfxTfQn78XgjW+fWsD6ry9A/72dcOZdxmBbMewdRshdHeGxAeIfCzNxmYoFbbdmR4vWjnqtApVKForkW8iRz+O+dBBJ0tZRdsFuR4Z0BHnyJZTICahSc2FUa9Cq9aDH4hT+2CY6LGj1Gxa0+s7TClrTg8O3iocdvnUyGQN7bmBw3YUxHb4VXHAUg2vOY2B3DDwn78F5LQe25Epohc2QG8wwSZG948CsqFBMRli6cuBoi4Oz8RQ8dTsxUL0SfsNXCJZ+NGoCZZ/Db5iOwfJ58FZ+g4Hqleiv2YC+2i3w1O2B23gArsbjcDadhbPlChytN2FvuwNbRwqsXVmwdBdC6ymH2lsL2dwcKoAVGSZ1ctw1xIJW32FBy+jZ00YGfDhzI1KzS1FtbMPbn68een9eSc2Ignb1tpNDH7sYk4yvv92NhpYu/O79xegNjysYS0GbklWKD2ZsgDNctMYn5z2zoH3SiAPN6sAv3pqNlo5eAIBJ0kYUtA/Y7C7MXLYHZ68lIu5eDhatOzj0sQc7aN2e/lGeuecjvKB9YNDvH/rnYDA49GRNdqIvEoy4sKCdYlHdUNqbYavKgCv3AgYStyFwdc6Ty9ioL+GLXQHP/UNwlMRDayh7rIR9eYeEMVMxk7Gg7dE8aNfMaFQbUKMWoVRJQr58/Tl2we5DtnQaBXIMDHIqatXSV3oX7HjCgla/YUGrz5i77VBqumHPb0QgrRKuqIzw4VvX4F/+nIdv/RgP97n7cNwqhjWzNnz4lhbxw7ckuRdqbzWsnelwtsbA1XAMfbVb4K38BoGyz8dUwIpOoOyfoQK4Yi58lYsxUDW8AN4Nt/FHuBqOw9l0Go7mS3C03oC97XaoAO7MgKW7AFqPAWpvDRRTMySpA2ZFgkkd2+5jFrT6DgtaRs+eVHiWVjbgl3+dg45uCWbFgl/+dQ48fQMAgM37zz+zoH1QxJ66nICvv92NYDA4poL2cux9LFj7IwDA4fJg1oq9T5wF+6yCtqmtG//z/iJ4vT4EAkH8+FMMfvb6dPQPeHHpZiqOnotDMBhEMBjE+l2nce7aPZgVC37z7oKhNV2MScaXi3eM6zl9EuEFbVqO4alJziwWvbxRib5IMOLCgnbyxiTboDZVwl52F5704/DdWodg1LQnz3+9MhPeO9/DnX0GtopUKK31MCmj7whkQavviCpouzQ7WrQO1KuVqFCyh3bBpo1xF2y6dBi5chRK5DtDu2Db1G5d7oIdT1jQ6jcsaF/BqB5ILQpUQxtsaTVw3iyE+3Qq+vc9OHzrxBgO3zoC/8qz8G6PRt/RRDivZMGeGD58q7YXJnPkr7GS1AGtxwBbRwqcLVfgNh5Ef81G+CoWjLH8/Be8ld+gr3YLXA3H4Wi9AWtnBtTeakiyaQxrcMOkWmFWzJClDiimJqi91dB6ymDpzoe1MwO2jmTY2+LhbI2BozkKzsYzcDUchdv4Azz1u9BXuxn91evhrVoOX+UiDFbMgd8wDYHSf05gATxtqAD2Vq1Af8169NVuhqduN/obDmCw7WS4AI4aVgAnhwvg/GEFcFO4ADaHC2DO/53qYUHL6NmDwvO1N2fhtTdn4RdvzcZ709YhObNk6HN2HbmCD2ZswLzVP+B8dBL+9kVoR+2zClq/P4BP527G5djUMRW0FpsTn83fgne+XIOZy/egorYZ//t/3wwdVvboep92SNjaHafwxqfL8dm8zSgorcUXi7bjk7mbYLE5MX/Nj/jzx8vw5mcrsGzTUXj6Qrtk7+eU4YMZG4a+d1ev/BKe2ZGEF7S/fW/hyPx9IX72+nT84q3ZeJczaJlJHBa0kyNSdzcsdQVwFsWgL2U/BmOWPn1EQfQi9CfthjP/Kqy1eZC7Ol74+7Kg1XciV9B60K5JaFQbh3bBFsjXkSmdRIq0ewy7YPciSz71yC7YJnRqivDn7FUKC1r9hgXt1IvJ7AwdvlXQBPu98OFbxxLh3RED/+qzwLyxH77l3ReHwMU0OG8WwJZWA62sFVJL5A/fMmkOyOYWWLqLYG+/C0fzeXjq92Ggei0Gy2cjWPqPUctHv2EavFXL4anbCWfjKTja4mDpyoFiMsKsTIU7JTzhAliCJHdCMTVD7a2B1mOApbsA1q5M2DpSYG+7DUfrDTiaL8HZdBquhuNwG3+Ep243+mq3oL9mPQaqVsJXuRiDFXPhN0xHoGyCCuDSz+A3fIXBijnwVS6Ct2o5BqrXoa9mEzz1u+A2/gBXw1E4G0/D0XQRztYY2NvjYetIgrUzHZauPGg9ZVB7q6GYGyFL7ZDkBwWwexK8Rq92WNAyRJEmvKB9ErenHwdO3RgxMHiyEn2RYMSFBe0ER3VBaW+ErTINruzzGLi7BYGrs5+8KzbqK/jiVsGTdhiO0tvQGitgliwvdT0saPWd8RS0XZoDLVoHjGolKtVsFMvxyJUvIE06hHuj7oLdFtoFK0WhRLmDKjUH9Wo1WtUu7oKdwLCg1W9Y0E6+SO0jD99yn0tD/4F4+L6/jMDSk2M+fMu75Sr6DiXAdTF0+JYlxwiluhvmzofzT8dzSNiz8rT5r96q5fAbpo2h/PsHBstnY6B6LTz1++BoPg97+11Yuosgm1tg0hzCX6epEJNqg1mRIUldkM3NUEy14QK4ENauLLh6UjFovgdH6004W67A2XQWrsbjcBsPwFO3J1wAb8BA9Up4q77BYPm8cAH8+ZhK9PEXwJ+GCuDy2fBVLoS3ahkGqteiv2YTPHU74Tbuh6vhSKigb7oIZ0s0HO23YO+4B2tnWqgA7i6F2lMFxdwAWWqDJJtgVixgAcyClmFBS5E3KQvaBz6a9Z3oJYxK9EWCERcWtJGLSbJCa6yAo+wOPOlH4Ytbg+Clr55YxgauzMJAwma4ss/CVpUGpa0RJiWyB2n0aixo9Z5nF7QedGgSmtRG1KjFKJOTUSBHI1P+CSnmPWPeBVsoR6NMTkGNWoImrREdmiz8cTOhsKDVb1jQTvDzLbshN0rQiltgS62E83ouPCeTMLD7BgbXPsfhW2svYGD3DXhOJsF5LRe2lEpoRS2QG5/v8K0XK2g9ofmvPVUvPP81UPopfBUL0F+zEW7jQThbrsDWkQKtxwBJ6gDLs4nJeGfQmlQ7zLISLoBboZjqoPWUw9JdBGtnFmwd92FvTwgXwFfhaDoLV8NJuI0H4anfi77abeECeDW8lUvgq5iPQcPXCJT9C8HSjydgBMSn8Bu+wGD5LPgqFsJb+W2oAK79Dn11O+Cp3weX8XC4AD4PZ+t1ONriYG9PDO8AzoHWXQK1txKKyRgugHtgVjSY1Mn/S2YWtAxRpE3agtbt6ccfPlwiehmjEn2RYMSFBe3LidTdCWttHpwF19CfvBf+mG+ePqIgZgn6k/fCWRgNS10BpO5uYetmQavvDAx60WHtglGtCu+CvY0c6SLSpMO4J20bpYTdhjTpMHKkiyhWbqNSzUa9WoVWrRPd3OU0JcKCVr9hQftyY+6yQanuhiXHCEdCKVxRmeg7lADv1uc4fGvpSfi+vxw+fCvt4eFbFR2Q2l/u4VtPLmjdT5j/egD9NRvgq5iPQNmnYyi+/gVv1bPmv3J+6WTIZD8kzKQ5YFZUSFJPuACuh9pbAa2nGNaunHABfBeOtlg4W6/B0XwezoaTcBsPwVO/D31129Ff+124AF4KX8UCDJZ/Db/hiwkpgIOlH4cL4K/hq1gAb+VSDFSvDhfA28MF8CE4G06G1t56DY62WNjb78LWcR/WrhxoPcVQeytCBbC5FZLUA7OivpRd5CxoGaJIE17Qrt528rEs/e4I3vhkGRavPyh6eaMSfZFgxIUF7fPFpLigtBlhq0yFK+ssBhI2I3Bl5lNGFEyD79ZaeNKOwlGWAK2pEiZ5bCfsTlRY0L766dBkNGmNqFFLUCanoDC8CzZ1DLtgU8x7kCn/hAI5GmVyMmrUYjSp3AX7qoQFrX7DgvY5onggNStQy8KHb8U+OHwrFoMboxBcdHxsh2+tOgvvjmj0Hbv78PCtgiYodaYJOXzLpNmH5r86OxPh77r0AvNfp8NbtQKe+l2h+aLtt2Dpyp1C81+ZXm3yF7SRjkl1wqxokOQHBbARam8ltO4SWLpyYOtIg709MTSmo/V6aBdtw09wGQ+HC+Ad4QJ4DbyV38JXsRCD5bPgN3yBQNknE1IAB8r+hUHD1/BVzIe3ckmoAK7ZgL7abfDU74XbeBCuhpNwNJ0N7WJuuwl7ewJsHffhMeVgQC2D2lsOxVQXLoC7YJYVmDS78NeHiXyIIk14Qbt5//nHsvPwZVy9lQZP34Do5Y1K9EWCERcWtE+PWbJAazDAURoPT9ph+GJXAVFfPnlEwbU5GLi7Fa6c87BVZUBpb0avOvlv1WNBO/XTrTnQqnWhXq1GlZqDYuU2cqWLSJcOIcn87F2wSdJWpMuHkCtdQLEcj0o1G8ahXbD8S/qrHha0+g0L2mHPhdkJpS58+FaiAc4rWeg7dhfeHdHwrxrj4VuLT2BwYxT698XCfToVzthC2NJqoJa1QWpWIn74Vq/2kua/VoTmv7rr98HRFJr/qvUUQza3cv7rKxS9F7SRjxtmxQJJ7oUstUExN0DtqYLWXQpLVy6snWmwd9yDo/1WaH5u0wU4G0/B1XAEbuN+eOp2or/2ewxUr4W3ahl8lQsxWD4bfsOXCJSOvpN9/PkHAmWfw2+YgcHyefBWfYOB6pXhAngrPHV74DYegKvxOJxNZ+FsuQJH603Y2+/A1pECa1cWLN2F0HoMUEy1kM3NoQJYkWFSbYJfG6ZXY0FLkSe8oJ3qRF8kGHFhQduHXs0DuasD1tocOPOvoD9pN/zRi546omDwxrfoS/kBzqIbsNQXQerpnQSP4cXCgnZqpENT0KQ1oUYtgUFOQYEcjSz5FFKlvaPvgpV2I1M6iQL5+tAu2Ea1Ee2ahEF/4IUPCWOmfljQ6je6KWjVPkjtGtSKDlgza+G4FT5868fnO3zLv/w0vFuvoe9wAlxRmbAnlD48fKtrIgqHlzv/1dNwCIGeGNg6UkPzX+VOcP6rfsKCdqrHDZNigSSbIUvtUMyNUHurwwVwHqyd6bB1JMHeHh8ugC/C2XgaroajcBt/gNe4C4PGLRioXhcugBdhsGI2/IavECj9bAIK4NA4FL9hOgYr5sJXuRgDVQ8K4C3w1O2G2/gjXA3H4Ww6A0fzJThab8DedjtcAGfC0l0ArccAtbcGiqkZktwJsyLBpFrBUSqjhyjShBS0l2PvjzmTneiLBCMueitoTaoDaksd7BUpcGedhvf29whe/vrJIwouTYc3fj3cGSdgNyRCba6GSX61fvPLgnZypMfiRKvaBWN4F2yJfAe5UhTSpcNIMm8fpYTdijTpIHLl0C7YCiUb9WolWrQOdI2y4+nZh4Qxr3pY0Oo3r0pBa5JckBvN0IpaYEuphPPag8O3YsKHbx0dw+Fbx0KHb+0JH751PRe21EpoxS2QGyWY5AkoLlUX5IjPf334/V7skDDmVQkLWn1n9Bm0HphUK8yKGZLUAcXUFCqAewywdOfD2pkBW0cy7G3xcLTegKM5Cs6m03A1HIPb+AM8dbvRV7sZ/dXr4a1aES6A58JvmIZAj6pEvgAAIABJREFU6T8npgAu/Sf8hmkYrJgDX+UieKtWoL96PfpqN8NTvwtu4w9wNRyDs/FMaP2tMbC3xcPWkQxrZwYs3fnQesqg9lZDMTVBljpgVszhAnjq/zKLKNKEFLQfztw45kyUYDCIA6du4O3PV+Htz1dhw+4z6Ov3AgC6emVMX7oL//3uAnw06zsYqpuG/pzoi4To9NVugdt4AI6mC3C0xcHamQ6txwDZ3PLKz9R6lQtas1mDZiyFo+QW+u4fxGDsCiDqi6eMKJiHgcTtcOVehLU6E3JHK3rVV/83sCxoJy6d4V2wtWopDHIqCuQYZEmnkSLtG3UXbLK0C1nSSeTL11GqJKFGLUKj2oB2zYyecewUYEGr77Cg1W+mSkFr7nzk8K2LGaHDt7ZcRWDZqec7fOtA+PCt+GJYs+qgVnRCardMzPOt2aGYmmHpLoS9/Q4cTefhqd8bnv86c0yFg98wDd6q5fDU7YSz6SwcbXGwdBe80PxXFrT6DgtafWcyHBIWKoClYQVwTbgALhhWAN+Go/UGnC1XhhXAPz4sgGseFMCLHxbAZRNTAIeuyV9isHw2fJUL4a1ahoHqdeiv/R6eup1wG/fD1XAEzsZToR3MLdFwtN+CveMerJ1psHTlQusuhdpTBcXcAFlqgyT3wqxMzH+TiCKNIw7CkjOL8fGcTejr98LvD2DxhkM4cfE2AGDakp24EJMMvz+AnKJqvP7RUvgG/QAm/1/QIxmzbB7DroRPMVgxG96qFeEy9xAcTefhaL8Fa2dGuMxthVnRhD+e582rUdB6IHe2w1qTBWfeJfTf2wn/9QVPGVHwBQZvLkNf6gE4i2NhMZZA6jVPgscgJixoX15Cu2C7YVRrUKXmolhOQK58aUy7YJOkrbgvHUSOfB5F8i1UKFmo1yrQorVHdBYsC1p9hwWtfjMpCtrw4VtaWWvo8K2bBXCfTsHA3lgMbrg4tsO35h+Bf/VZeHfEwHMsEc4r2bDfK4elsAly/cQcvtWrPWv+6zL4DV+N4X/2P57Q+a8saPUdFrT6zmQoaCMdk2qHWZEhSV2QzS1QTLXhArgQ1q4s2DpSQ78sa70ZLoDPwtV4Am7jAXjq9qCvdiv6azZgoHoVvFXfYLB8HvyGGeFxMqMfqDj+ERCfPiyAKx4UwGsfFsD1+4YVwBdCBXBbXLgATv//2Xvv9yjuNG/3/B3nl/P7nH13rg3v7M57zp7ZSWuvvZ6dd8YzHueAbYxzAptkwARj40DOSSILIQQCJZRzzjnH7qqu6lbnqq50nx+qEWCEESCpBV3Pdd3XhdRq8e2q6kLcer6f54YAnmyZQQCHE6mrnEqSWhSCtrapm692neKjdXv4ZMNevtl7hqb2vrs/cQ5rz/FMNm1Pnf745IVrfLx+D7IvwD8/vhTdMKYf+/PrX1Db1A0kt6B1SX68Y2X4h68QHDhNqGcPkc4tqG2fx7eV3T3X68fYP2SvuEnmpixamfuwCVqXJ4DU34G/KYdw8QFil9bcOaLg5KvELq0hXHwAf1MO0kAHLo8z5OJmHEF7b4zKEn1yPx1SA01SAVViGqXCIfJn2QVbLOyjUjhDvSebdqmaXqmbYdn1QF2wD4IjaJMbR9AmLwshaF3uIJ6OSbyVvTeGb+2+SmzTOYxPZz98S1uTirItg/DhfILp1fgK25EahxAGPAu200UQJ5AmW/CNFsTzX3cT7ViP1vIuZsOzs/rZ8Hr+a7h7O8HBM0yN5CFPNCEIIwt+/h1Bm9w4gnbucIlRXEIUt1vB7YozqSBMKAjjCsKogjCmII7EGVLxDMYZUPH0q0h9KlKvjdyjInfFbDpieDtjeNtjeNtieFtj+FriNMeYatKYaozToOGv1/DXxqnRCNRoBKo0ApU6wYo45TpKpUE09GgL2nk/77cJ4E7kiSZbAI/+WACfJnCzAO765jYBrDW/FRfAs/v35EFJ5tINg5/96mX+7tev3EZds+3GMrLLpr/+l0+9zeiEcNv3ae8Z4rFnl9/3Oh70+Yu9Ei5oD57M4h9+/zpvfLqN1VsP8/nmg7z43mb+x29e5di5nAVbR31LD//14uf4/EHUmMbSFd+SfqWUxrY+/vuV1bd87cfr93DucjGQ3IJ2tojCiD2cYawM/3AWwYFThHp2x2XuyrjMvfeb6g2Z++W0zPUPZ+IbK0aabIrL3Pnb7rCYBa0w6cbbXUew9gLR/B/Q0z+ClJkjCoyzy1CytxCsOIGvvRRxdAgnJP7uOIL2Via8IQblCXqkDlqlcurELCrEExSKu8hxb76LhN1AgfgDZeJRasQMWjzFdEpN9MvDjMmLM7vYEbTJjSNok5cHFrRSFGFIRmq6efjWtRvDt97fN7vhW58cIrbx+vCtIvxZDXjLe/C0j+Men7/dAz9GFIbj+a+5N+W/rkFrfmuW3U6zz39dDDiC9iFFiuLyxBGjuATldjE4PoMYHFZvEYP+EQ3NZS24GAyW6QRLNILFNqEijVChTuiaTTg/Tq5OJEcnkh3nqk70ikE0yyB62Ua5ZKBkGigZBmqGgXohznmTWJpJ7FycsybaGRPttIl2ykQ/ZaKfNNFPWOgpFkaqhXE8zlEL80icwxbWIQvrIFgHbNgP7Hs0iHodQbuYccl+3B4JQRhHdA/icXUhTTYhT9TiGy1lauQa/uErBIbSCQ6eIdB3lFDPfsLdO2wB3LkJpX0NatsKYi0foDW/hd70KmbDc5gNf3tQ5fRQ13VB6/Z4Z3zcsiz+7Y/vTX98J0GrGwY+f/CB1vEgz1/slXBB+8un3mZgZPK2z5fVtPGvTy5b0LVs+D6Fn//2Nf7psTd4+YOv0DSdyvp2nlm6/pavW731MClpuQDohukwV+gqRtSFEejG9FZjijmYE2cxhvZj9G3F7Pocs3UZVuM9ytyGZzBbl2J2rsDo24IxuAdj7BSmcBVTrsQIdGJEJ9BjoXtar2lZGKaV4GNmYPjGMAcqMOtOYeVtgXNvzRxRkPo81sVPMUt3YbZfxphoRY8GE3/eH1KsBJ9/VTMwTGvBUQ0FUR2gP1RGy1QGVfJRCj3f3rULNl/8ijJpPw2+s3QF8xmJ1COqA4Q0OSGv40GxIOFrcEgcJPn5VzUz4WtYtOc/pmO6fJgdo1hlnZiZ1VhH87C+TcdadRxmMXyLt/dgrUnB+i4D89g1rMu1WBVdmF3jmMIUxkLd/w0VMzKKOdWIJeZijKViDnyH2bUSq+X12W1XbX4Fs2MFZv83GKPHsISrmL46zMgQhhZK+Lm8H+7r/h+zMFQLQ7EwohZGxMIIWxghCyNoYQQsTL+FOWVh+ixMr4UpW5iShemxMEULU7Aw3Ramy8KctDAnwBwHcwzMUTBHwBwGcxDMATD7wewDsxfMHjC7weoCqxOsDrDawWoDqxWsFrCawWoEqwGserDqwKyzMGsszGoLs8rCrLQwKyzMcguzzMIstTBLLMxiC7PQwiqwsK5ZWPkWVp6FlWth5VhY2RbWVQvrioWVZWFdtrAuWViZYF0E6wJY6WCdBysNrHNgnQXrTJzTYJ0CToKVakMKcBw4ChwBDgOHgIMkXOI5zIKD8fN1OH7+jgLH7HNqpcTP84k4J+3zb50B66yFdc7CSrOwzltY6RbWBQsrw8K6aGFlxq+ty/Fr7YqFedXCzLEwcy3MPAsz38K8ZmEW2NetWWhhFsWv45L4dV0Wv84r4td+tYVZa2GqCf6/n0NCSea6m6B9d/UOfvarl3nq5VW4RC+/fOptTmUU8NRLK/m3P77HgROXgVs7YE3TYvuhdJ544TOefPFzVmzaTyhsZ/3+43+8wcGTWbzx6Tb++OpqTqTnz/j8L79P4T/+9im//ctHrNxykJt3vj+MlXBB+5/Pr5jx87GYxr8soKA9m1nIG59uIxJVMQyTzTtO8sW2ozS19/HUy6tu+dqP1u3mfFYJAIJPcUgAojeIJI7gdbXinygnOJJFcOAk4d7dKJ2bibWtQG95654Dz836v6E3v0msbQVK5ybCvbsIDpwgOJyFf7wUn6sVyTOM6PURVQ0C4djCvWbJj2+gnWBTNtHifWiZq7BOvHyHiILXiGV9QaTkEIGWfLzD3YhyMOHn7VFC1Ux8QTWBa4giTCnzzrBvnA5vLbXSBQqFXT8pYa8J31PmOUqtJ4MWuYhubxNDviEmpnwLstaFxDAt5ICa8HU4JAbLAnERrCNRiL7kvfaliSmsEQ/+8m6CWfWEU4pQdlxG+/I05sezHL714QG09adQd1wiklJI6HId/rIuvO1jeMYX7n7pkSW8Qjf+iXJCwxcJ9x8k2rWFWNvs81+NhtfRGleiNn5HtDmFaEsO4dYGgi0jBFoiBJo1Ak0agUaNQKNOsF4nWKcTrNUJ1cSp1glV6YQqdcIVOuFynVCZTrhUJ1yiEy6yiRTqRAp0Itd0Ivk6kTydaK5hk2MQzTZQrhooVwyULBv1UpyLBmqGSexCnHST2HkTLc1EOxfnrIl+xkQ/baKfstBPWBgnLbtTMMXCOG5hHrPgOJjxjkHrsIV1iOluwYRLL4e7Yh2In69DYB6Od30etTGOx891qoVxwkY/adndo6dNjDMWZpqFdjZ+zaTFr6X0+HWVYaJeNFEzb1x7yuX49XjFvj6j2XFyDKJ59nUcuRanQCdcGL/mi21CJTqhUvt9Ea6w3yehyvj7ptp+LwXr4tTrBBp0+/3WpBFo1vA3a/hbNPytGv42DX+7xlRHnC4NX3cMX08MX2+cvhje/hjegRjeQRt5KIY8HEMeUZHHVKQxFWlcRZpQkSZVPC4VjzuOoCKKKqJHQZSUhP+8PpcEwjGiqpHwdTgkjoWu/6stlf+z9fiCM1PdTdD6/EF+/rsl0x//8qm32fhDKqZpMTTq4ue/fY2oErtFsF4tqOGPr64mElWwLIuP1u3hu/3nAPjFE2/x7T77z96pIP/8+FIEj++W5+eX1vPUy6uIxTTUmMZTL6/iakHNnB3/RFTCBe2ar49QUtVy2+fPZhby1a5TC7aOd1dtJy2rePrj5o5+Hnt2OT5/kH/8jzeIKrHpxx5/bvl0Rm6i2/gdZrHVQfIhCsPxDLRSO9emP9XOQevcjNq2Ar1p6b1Pr2z8G0bzUjtmoXMzoZ7dBPpT8Q9fxjdaijTZgigM45J897xmYWISb1cNwZrzRPO+Qz//4R0Gdz2Hce4dlJytBCtP42svRxxb+Ey2ZORRjDgYk310S+00iLmUikfIFbbMKGKLhD3Uipm0eSrpkboYlicTvvaFxok4SG6ciINHFE8EYUBErh9k6lobwfNVhA/moW671+FbR1G3pBHZGx++ldOEXN1vD98SQgv0eiII4gTyaAv+/kLCnWlEWvagNm1Ar38Ps34Wu5Fqn8EqfwercD1W9h7ITIPzxXCyA46KsN9MuGx7mLAO2kxLwbgYNI7dJAZTLPRUWw7rJ29sL9fO2MTOxbehp5mo503UdNPenp5hb1lXLsa3r1+6aVv7FYPolfiW9xybcK5OOO/G1vjQNZ1QgU6oUCNYdGMrfbBUs7fXx7fbByp1ewt+tb0d318T355fZ2/Xn2q4sYXf12xv6/e12njb4lv/O2LInXG6Y8jdKlJPPDKgz8YzEI8VGLIjBsRh1Y4ciMcPCGOKHUcwYccTuCftyAKXW7EjDDzz875yMmiTm2QYEubw0yx0/R8NexPCTHVd0P78d0tu4bosnUnQdvYOT3/8L08uY9zluUWwrti0/5ZY08r6dv60ZC1gC9ru/tHpx154dzO5xbW3ZdCqMW36z19sOzrdqfuwVsIF7YqN+/n575bwh1dW8c7K7Sxd8S2PP7ec//mfS/lg7a5bmM/64eB53luzY7olevuhdN5dtR2A1z76mn0plzAMk6xrVfz+mU8w4i3uib5JOMwttswdQppsxjdagn/oMoG+FEI9u4h2bkJtW47e/CZm/T125jY8i9b8FmrbCiKdW+Iy94Qti3szCbWcIlK+F/Xqeswzb8zcFZv6IlrGciIFOwnUX0LubcItzF/GrsNP87AL2gk5TL88RKungirxHAXC9pmjCYRvqBBP0uIppk/qZXyOJ2I/rDiCNrlxBO3DicsVwNMZH751pZHgyRKiu64Q23g2Pnzr7t2v1rt7Yf1JlG8zCB+5RvBCTXz41jDCoDSnw7fcbgVhVMEzZAssb3sMX5MtxIIVKuHSCZTiFmKFBehFZ9GLdmKUrsWsWoZV99e7/3xS/TxW2YdY1zZjXT0IFy/C2Qo40QuHp26Ri+YRO3dSO31dDBq3isFMm+s5l9EsWwxGrt6Uh/kjMXg9PzNUGBeDP5aC5TOLwWkpWBuXgvU35Xo2xcVgPPfT+2Mx2BHPCu2OIffcKgY9/TeJwcEZxOCoguxSMQLWDSnoiotBwRaDib7GHeYXR9AmN46gdVjocmsRXAlgprqfDtqbM2ivf3yzYH3j021k5lZMf01HzzD//ucPAFvQTril6cfe+ux7zl0uvuX5/mCY1VsP8/Qb63jmrQ382x/fY1/Kpfs82oujEi5oN/6QypadJ2fFfFY4ovDZ5gM89uxyHnt2OUtXfItLtC++CbfES+9v4V+eXMbTb6yjo2d4+nmJvkk4JI5oJEjAN2rL3LES/EOXbJnbvfNHMveZe+vMrf0TVtXTGFUvoFUvQ2lcS6RzL/6hy3jHypAmWhGEEVyOKEsoD5ugHZU9dEkt1ItXKRUOkePeNIOQ3UixeIA6MYtOqZFh2Z3wdS9WHEGb3DiCdhEiRRGGJHv4VlE7gYwae/jWdxfR1p64h+Fbh4ltPEt01xVCJ4rxX2nAW9GDp2MC97h/dkPCpCjuSVvqeQZU5G5bEk412nIxWGELyXCePcBHyTCInbM7JY3j9oAdDsTg+BicboQLuViXT2Dlfo9VvBKr8nWsulnkv1a9glWyArPgG4zcYxi5V9Cya1BzB4nm+QkV2MOHAtV256Ovxe5qlPpsKSlMONLxxzhDwpIbR9AmN46gdUjmmg9B+/nmgxyPz3YCqKhr58+vfwHYgra9Z2j6sb8t+5Lc4rpbnr9peyqrtx6ebrJcvfWwI2gXqpZ/uS/RS5ixEn2TcEgcEdVgKhSb8TFhfBxvZxXB6nNE87ZhpL8LZ56F9L9B5jOQ9Ves7L9i5T+NWfIcRvWLGHUvYNY/fY+duc+hNS9Dbfs83pm7l+DAKfzDV/COlcenII/ikoIJP16PGotZ0E54Q/TJ/bRIpVQKZ7gmfHfHzNgq8SytUhn90gAT3oXaevvw4wja5MYRtAuPSwwhdruRq/vx5zYTPFNGZF826lfnMVYcw5rF8C1r2R70lSmo36QTOZBLMK2SqfxW5LpBxD6BSTGMS4zL1REFqU9F7rQ7Maca7O7NUJmOVQGRHJ3oZbuDNHbORD9hYhy1J5fPasv7oSCkDsLZGsjIwrpyFCv/a6yST7CqXrr7zwB1T2PUvYFWtwq14XsiTamE23Lw99ThHRpEmAwxKSX+vD1qOII2uXEEbXLjCFqHZK67CdpgKMLf/foVIlEVmJ2gzS2u409L1k7PgXp/zU52HrkA2IJ28w67SXN0QuQffv86ktd/y/M/WLuLY2ftiISB4Ql++9ePpzNsH9Z6aATtL554K9FLmLESfZNwSBwR1WAqEMUz1MtUSwGh0qOoWRswT79+h4iCl9AufkakYDeBhizkvhZcwu35tG6PF9E9iDzRhG+sGP9wJoG+44S6dxDt+BK19VP05jcw62exffG2mIW3bZnb9RWh3r0EB07HZW6FI3PvkcUkaIdlF51SI3Wey5QI+8kWvrxNxua4N1MiHKHBk0231MqoLCV83Q8zjqBNbhxBO/e4R314WsfwlXYRuFxH6HgR0R2X0dafwvxwlsO3Pj6KvvEi6o4iokcbiKT1Er48QSjfR7AkSrBYI5xvb7dXLhmo6QbaGRM9NT7waa6GPO23MFMlzPNdGFmlGPnpaCV70Su/xKh5D7Pu7vmvZv0zaM1vo3SsJdS9g+DgGaZGriFPNCEIY0zK4YSfs2TEEbTJjSNokxtH0Dokc10XtH/361du43ru65JPvuFfnlxGa+fArAStZVnsPprBky9+zhMvfMaar49MC95fPPEWh09f5X+/tobfPP0RpzIKAG55flN7H489u5w/vLKKVV8dIr+0nn9+fCkFZY0LeWjmtBxB+4CV6JuEw8LhEnzIvc0EGi4RKdyFeekzSH1xRhlrnnkD9coGQmXHmGotwjPcz6Q09/+ZcnvkuMxtxDdaRGD4IoG+Y4S7dxDt2ECs9RP05tcxG+5V5j4Xl7kriXRuJdS7j+DgGfzDV+Mytx1BGEtqmZsoQTsmB+iVemiWiqgQT5Dv/nrG7tgCYSfV4nnapCoG5BEm5LnLRXRwBG2y4wjae0QMI/SLyHVDTOW3ETxfSfhgLuo36eirjmO9sweWHYB3j8MHp+HjdFieBZ/nweoSWFuFtaEB85tujO2jGHtFjIN+jMNRzMM61sG5G1Zl7QfzqD2kSTtjD2CKXjaI5Nh5qcFSDVoMgvXjhJqbCLfmE247SaR1O2rrGvTmtzAb/nLXf2eNxueJtXxAtGMjod59BAbT8Y0VI0224/Y48TKLFUfQJjeOoE1uHEHr4NTC1S+eeOuO3bqPcjmC9gEr0TcJh/lBHB/F11FBsPI0Ss7XGGnvzihiSXkO/fyHRPO+JViThrerBmFicU60d3uk22Vu/zHC3dvjMvdj9KZ7l7lG4/N2l0/bqltl7kh2XOZ22N0+0qO1fX6hBO2gNE67VEuNmEGRsJtsYcNtMjZX2EK5eJxGMZ8euZMx+fbObIe5xRG0yY0jaG9CiiIOBvHWCwSujRC+0ItyrB1tdwvGt01YmxthQxNs7IAtffD1CGxzw/de2BGG3drcydWDYByz0E/a0+7VDFuuhnPtQVTBcp1ATXzCfKs9LMrTb+etuieV6UgAl+TH4+rHO15tD/PsO0Kk6xvUthXoTa9h1d89/9VofBm19VMinVsJ9h7GP5yJd6wCj7sXt8cZ8Pmw4gja5MYRtMmNI2gdnFq4cgTtIi9H0DrMBy5PEM9gN1Mt+YRLDhO7vA7r1Gt3iCh4mVjmKsJFe/E3XEGd6MbvfzQ7SG2ZOxCXuYUEhjII9B0l3P1DXOZ+hN60ZFZdQrfJ3Ja3UdpXEen8mlDPfoKDZ5kaycE7XonH1YEgjD8UMnc+BO2Y7KNH6qBRzKNMPEausGWG7tgNFAl7qBEv0i7VMShPJPxYJCOOoE1uHhVB6xKjCBMK4rA9xV7uiOet1msEqjSCJRqhazrRSwrq2QhaSgjjUBhzfwRrrwp7jDmTq+ZhCyPFQjtlEkszUS4aRK8YhPN0gkUawXIdf60tV73tMeQeFc+gijCm4Hbd23vRLXrwuLrwjZURGMog2HOAaOdmYq0fYTS+OIt/z55Gb34DtW0l4e5vCfQdxz98FXm8FtE9mNS7Sx51HEGb3DiCNrlxBK2DUwtXjqBd5OUIWocHxe2WkXsaCdRdJFKwAy3jU0h94Q4RBUtRr24iVJ6Cr60YcWSQSenWLeI/NSQsmXCLHkR3f1zmFvxI5q6Py9zXsO5xAJrR+AJayzu2zO36hmDPfoID5+IytwqPqxNBmEiYzH1QQTshRxiQR2iTqqgWz1Mg7JwxqiBf+IYK8QTNUhG9Ug/jsj/h59zBEbTJzmIQtG63gjCm4BlUkXpVvB0xfM0x/LUawQr9Rt7qVR0l00A9b6KdNjFS7LxV9jM3cnWvCbsUrJ1BzD1TGPu96Ee8xE74UNIDhHLCBCpi+Os0fM0xvB0xpN64XB1XcAlz/T6KIIgTSJMt+EYLCA6cI9Szm2jHerSWdzEbHiz/VRTHsCxH0CQrjqBNbhxBm9w4gtbBKafmuxxB+4CV6JuEw0xEEEeH8XWUEaw4iZL9Fca5t+8QUfA8evpHRPN/IFh7AW93HcLk7LLfHEF779hdS/3IEw1xmXuBQN8RW+a2r4vL3FfvQ+a+GJe5q+My90Bc5ubiHa+2Za44wVwOVblXQTsqS3RLrTR4sikRjpDj3jyDkP2SYmE/deJlOqRGhmVXws+Zw8w4gja5eSBBK0VxTyqIowqeARW5O4a3LcZUo4a/xparoUKNcJ5O9IqBkmEQO2einTIxjltYh6w561pljw47I/CDD74V4Osx+KofNnXasQTramBNOda6Uoyt5cR2VhM92kAoow1/YR9S8zju0QWOVJFCiMIw8kQDUyO5BPpPEO7+AaV9NdoC5L+6vPb5T/Q16JAYHEGb3DiCNrlxBK2DU07NdzmC9gEr0TeJZMclBZAGOvE35xIuOUjs0lqsk6/OHFFw8lVil9YQLj6AvykHqb8Dlydw33+3I2jnkwhuj4jH1Yc8Xh+PWUgn2HeEcPf3KO3riLV8+AAy9924zN1GsPdgXObmxWVuF4I4yd1k7k8J2glviH5pgFapjErxLNeE72fsjr0mfEelcIYWqZQ+uZ8J7+KPdnCwcQRtcuISbblqTWFHAnTGIwEaNALVGsEynVCBTiRHJ3rZQI3LVf2EiXHUwjrI3OWtHrIwjlnoqTpaqoJ2PIh2RELfN4a+vRdzazOsKYeV+bDiCnySAR+cgfdS4O1D8OYueHMn1rLdGCuOoX51nsi+bIJnyvDnNiNX9yN2u3GJC3tfunv+62zu86+gtsXzX/sO4R+au/xXR9AmN46gTW4cQZvcOILWwSmn5rseGkGbkpab6CXMWIm+SSQTbpeE3F1PoDaD6LXt6Bc+htTnZ5SxxtllKNlbCFacwNdeijg6zOQcT7F3BO1i4VaZOzVSEJe5hwl3fxeXuR+gN96fzI21vHerzB1MY2okD83biN/TiyC6GJYn6ZQaqROzKBYPkC1svE3G5rg3USocpl68SrfUwqjsWQTHzuF+cQTtw4dLUBDGFcSheCRAZzwSoE4jUHVTJEC2jnLJQE030M6Y6Kl2JIB1gLmRq/vuMVIiAAAgAElEQVTjeaupFtppE/W8iZJpELmqE8631xGssPNW/TVR/GUygbxRQhc7iaRWo+zOI7bxLMYnh2HpTnjzpzHf34e29gTKdxcJH71GIKMGX3EHUtMIwpA8PRhrobDv1534RksJDF24z/zXN1HaVhHu/o5AXwr+kWzk8boFyX91BG1y4wja5MYRtMmNI2gdnHJqvishgvaDtbtmzWKvRN8kHk0iiCND+NpLCFakolzdjHHmrZkjClKfR7/wCdFr2wnUXUTuacDtlhdknY6gfRiJ4PYIeNy9yON1TI1cIzCYTrDvkC1zO74g1vIBRuMrs5rSfTNq418ItDyL1PYSE52vMdL9PqMDXzI+fBDXRC6iqxNBdDOXMQsOicMRtAuL23VT3mqPirc9xlSTZuetlt+Qq9ErOspFg1haPBIgxcI8PHeRANZ+7PzWU6CdMVEvGEQvG0RydELXdIIl9nAtf72GryWG3GnnrYpD8bxV8abXJUUQBiWkxmF8he0EL9QQPnIN5dsMtLWpWO/uvat8ZelOjE+PENt4lujuqwRPluC/2oi3shdP5yQu1/3vErk/IgjC9fzXwhv5r+3r0FremX3+a8vbKB1fEOreOZ3/Kk02IQhjJPoe6gja5MYRtMmNI2iTG0fQOjjl1HxXQgTtlp0nZ81ir0TfJB52XB4/Un87/qZswsX7iV1ajXXilZ+IKPiCcMkh/M15eAa7cEkL/Z/PGziC9lEngtvjZsJdz8h4GoND3zPQv4KBnjcZ73wNT/tLBFqeQ238C+Y9iFyr/s8YjS8Ta3kfpWMt4a5tBHsPExg8z9RIPvJ4LR53jyNzFzmOoJ0l1/NWRxQ8/SpyVwxvazwSoMaWq6FCnXCuTjTrpkiAkybGsTmOBDgIxjEL/aRJ7JyJmmHL1XCuvYZgmU6gRmOqUcPXGkPuiuHpVxFHFNyTCi7Pjdc1mwxalxBC7HIhV/fjz2kieKqUyN6rqFvSMD47Cm/tuquAtd7Zi746BfWbC4QP5hFMr2LqWhty/SDCgMikZ253htwNlxScIf/1e5T21ehNS+c9/3Ux4Aja5MYRtMmNI2iTG0fQOjjl1HzXQxNxsFgr0TeJhwlhwoW3u45gTTrRvO/R0z+ClDtEFJx7ByVnK8HKU/jayxHHRhK+/h/jCNpHj3HZT4/cRZNUQJmQQq7w1QzZsRsoFHfTPHWJHl8dQ9I4k3IYQXTjcfcgj9cyNZJPYPA8wd7DhLu2oXSsJdbyPkbjy/fYmfsjmdv9LcG+QwQG0+2J4uN18UxFN3Md4eHw0ySDoHWJUYQJBXFYtfNWO+J5q/V2l2iwRCN07aa81QsG2lkT/YSFedTC2s+cyVXzsIWRYqGdMomlmSgXDaJXDMJ5OsEiW/T643LV2x5D7lHxDKoIYwpulzLn2/gtC4QRL1LLKL6STgKZtYSOFaJsv4S2/hTmhwfu3v365k7Mjw4S23Ca6I7LhI4XEbhch6+0C0/bOO6xBR6+Jc9//qtLWvjXNOfHyBG0SY0jaJMbR9AmN46gdXDKqfkuJ+LgASvRN4lFiRTBMzyAr62YUPlx1KsbMU+/OXNXbOqLaBnLiRTsJFCfidzbhFt4sAEeC4UjaB92IgzKo7RJ1VR70ikUds44yCvP/TXl4gmapSJ6pR7GZLtr+6eGhP00cZnr6kaeuFnmHrJlbvsaYq3vxWXuvXbmvkKs5QOUji8Id393B5kr4MjcB2exC1q3+6ZIgF4Vb0c8b7VWI1B5U97qVR0l00A9b6KdjkcCHLFgjuSqdcCOBNBTLDsSID2et5qtE75mryNQqeOv0/A1x/B22JEAnsF4JIA7McfYJYYR+wTkukGm8lsJplUS2Z+L+nU6+srj8Paeu3e/LtuN/tkx1K1pRPZnEzxTzlRuC3LNAGKPG5ew8EMBH/b818WAI2iTG0fQJjeOoE1uHEHrkOxlWRbHzubw5Iuf8/Pfvsb/84d3eW/NDobH3Hd9bnf/KI89u3wBVvlwlxNx8ICV6JtEonGJU0j9rfgbrhAu2ouWuRIr9eUZZax5aglq1npCpUeYarmGZ6gHl+fhnVrvCNqHi1HZS7fURr0nh1LxCLnClhmE7JeUCPup81ymU2pkWHbd8fvdv6C9F8IIoguPqxvveA1TI3kEB9MI9h4k0rUNpX01sZb3MBpfukeZ+zR646u2zG1fF5e5hwkMpTM1UoA8Xo/H1YfbI+LI3JmZN0F7PRJgVMEzoCJ3q3jbYkw1avhr7OFRoUKNcJ5O9IqBEo8E0E6ZGMctrENzmLd6AMyjFvoJi9jZeN5qli1XQ9d0gqUagWqNqYab8lb7VMRhFWHiR3mriwz3uB9PxwTe8h78WQ2EUouI7switvEMxieHZtf9+v4+tC9OonyfSfhoAYGLtTeGbw0v/PCtu+e//m0W+a9/W9T5r4sBR9AmN46gTW4cQZvcOILWIdlr6+7TPPbscqrqOwhHFASPj+/2n+P/+9/vEwr/9PFxBO3salFHHBw5czXRS7hrJfomsZAI4xN4u2oI1qQRzfsWPe2DmQd3pTyHkfYeSu43BKvP4e2oRBgfS/j65xpH0C5eJuQQA9IgrVI5VeI5CoQfZuyOzRe+pUI8TYtUSp/cx4R39t1fCyNo74UwgjgZl7nVM8pcreXdWXbJ/UjmNr1KrOXDuMz9nmDfEQJDF/CNFsZlbn/SydyZBK3LcyNvVepTkTvjkQANtsgMlumECm6KBLiet3rCxDg6x3mrhyyM4xb69UiADFuu2nmrP4oEaIshd8fwDKiIo/MTCbCgSBGEAQmpccgevpVeTfhwPsq2DLQ1sx2+tQtj+RFim84R3XOF4Kmbhm91TGKp+l0zaOcaO/91CHm8nqmRHAL9qfef/9q5iVDP/nj+awnSZEe8u34RnL9FjiNokxtH0CY3jqBNbhxB65DMJfsC/P1vXqO7f/S2x8Ymxek/N3f086cla3ns2eU89dJKapq6AFvQPv7ccr7efZrfPP0Rjz+3fPox07TYfiidJ174jCdf/JwVm/ZPC99fPPEWZzILeeuz73nyxc85cOLyArzaxNWiELRtXYOczSwkJS13mm37zvKP//FGopd210r0TWJekMJ4hvuYai0iVHYM9coGzNOvzxxRcOJFtIufESnYTaAhC7mvGZfw8GfMzQZH0C4eRmSRTqmJOvEKJeJBctwbb5OxOe5NlAqHqBev0iU3MyKLD/R3Lj5Bey+EEcQJPK6uuMzNJThwjmDPASJd38Rl7jv3KXNfI9b6EdH2dYS7fyAwLXMLkCcabJkrehbBMZg9wpiC3G13sQbLbMFqXbLQz5ro1yMB5kis3jlvVSecb0cCBMt1/LUaU0123qr047zVRXDM5hOXO4jY5cJb3Yc/+8bwrdjmNIwV9zZ8S9l2gfChPIIXqpkqaEduGETo99x1+NZshoTd8+uS/HhcfXjHq/APXSZ4S/7rq7N6D+qNr6K2LSfS+TXBvsP4hy7hHa98ZPJfFwOOoE1uHEGb3DiCNrlxBK3DQtfVFRpZHy88M1V1Qyf/+fyKu675v19ZTVZ+FQCX8yp54oXPAFvQ/o/fvEpGdhkAF3PKefw5+/tdLajhj6+uJhJVsCyLj9bt4bv95wD45VNvs/PIBcCWxD//7WtEouqDHdhFXAkXtMfTcvn737zGH15Zxf/4zav8acla/uH3r/PEC5+RfqU00cu7ayX6JvGguAQfcl8LgYYsIgW70S5+hnXixZkjCs68gXplA6GyY0y1FuEZ7mNSSt7tjo6gTQwT3iB9ch/NnlIqxNPkC9/O2B1bIGynSjxHq6eCfnmIiTnemvtwC9p7IYwgTOBxdcZlbs4dZO4L9yRzzYa/oDctsWVux/q4zD1KYCjD7sydaER09+P2SPP+GsURBbkzhr/eHnwVuaqjnrcjA+5Zrh6x0FPjeasXDJRL8bzVfJ1giUag6kbeqtxl562KQ/G8VeHRl6uzQRj2IjX/aPjWD5lo605hfrB/9sO3vjxDdEcWoZQiAln1eMu67eFbo1MPvMb7EbS357/uJ9q5iVjLh7N8/8TzX9tv5L9OjeQgj9cjCkNJkf+6GHAEbXLjCNrkxhG0yY0jaB0Wus4v0RLCTJWVX8UL726a/jgUjvJvf3xvmrSsYgA0Tcc0LQBEaYq//81rgC1o/+mxN6Yf0zSdn/3qZXz+ICs27efYuZzp711Z386flqwFbEF7c9fuvzy5jHGXZ+4O8iKrhAva3/7lIxrb+gD4tz++B4A/GOajdbspq2lN5NJmVYm+SdwLwvgY3s4qgtXnUHK/wUh7744RBXraB0TzviVYk4a3qwZhfCLh619sOIJ2YRiWJ+mQGqgVL1Es7CNH+PI2GZsrbKZMPEqDmEu31M6YPP+dYskjaO8BKRSXuR14x6tsmTt4lmDPfiKdX6O0r4rL3OfvU+Z+TLRjgy1z+4/FZW5RXOYOzChzXZ4onkEVb7s9ICtYrBHNsqMFjKOzE7DGMYvYOZNolkGwWMNfq2GMgG8whjii4J5UcHkWwfF/CHCJYcReAbl2kKn8lvjwrRzUr8+jf34ca9lshm/tQf/8OOrW80T25xA8W85UXgty7QBi78IM37pd0Dr5r8mCI2iTG0fQJjeOoE1uHEHrsNCl+BPDTFXb1M3vn/lk+mPLspC8fiSvn883HyQlLReA3OI6Xnh3E88sXc/Tb6zj7379CmAL2t/+5aNbvuc/PfYGI+MCb3y6jczciunPd/QM8+9//gCwBe3ohDD92I8/ftQq4YL2579bgm4YAPyvP7wz/XlRmuKpl1YmalmzrkTfJGbC5QnhGephqrWAUOkR1Kz1mKeWzBxRkPoyWuZKwkV78TdcQepvwyU+eHdRMuAI2rlnTPbTK3XTJBVSLqSSJ2ydsTu2SNhFjXiBdqmGQWmMRGSfOoL2AZFCCMI40mQH3vHKuMw9Q+i6zG1bhdby9j3LXKvur5jVb2CWf4pZuBErZzfW5ZOQcQXOVcDJDjg2AYdCtoDdD0aKhXreJJJtd7lO1WvInbZ8vZN4nbchYQ857rEpPO3jeMu68WfVE0ottodvfXkG4+NZDt/6YP/tw7dKOpGaRxCGvQnJx/1x/qs5ccbJf01SHEGb3DiCNrlxBG1y4whah2SuQCjC//zPpTR39N/22Lptx0hJy0X2BfiH37/OwMgkAC5BvkXQ/vPjS7GsWzto/YEwn28+yPG44AWoqGvnz69/ATiCdsHr8edWUFzZDMB/vfg5rZ0DgN0y/c+PL03k0mZVib5JuAUvcm8zgfpLRAp2omUsx0q9U0TBUtSrGwmVH8fXVow4MsiklDxDfeYaR9A+KBEGpTHapRpqxAsUirvIFjbcJmPzhK2UC6k0SYX0SN2Myf5FsHZH0C4U7kkFT38Ef+sk4epu1OIa9Gv5mLlpmNkHsfK2YRWtxip7B6vmHmMW6v+K3vw6auunRDu+JNy9g0DfcfzDmfHO3CZE9yBuj3zbupJS0HoiCAMepIYhpgraCV6oJnzIHr6lr0nFenff7IZvrThCbPM5Inuu2sO3spvwVvUhdrlwuROzTX/+81+dX3w+KjiCNrlxBG1y4wja5MYRtA7JXkfOXOXXT39IWU0bkajKlD/EyQvX+MUTb1FR107f0Dj/6w/vEItpmKbF9wfS+NmvXkZRY3T3j/J///sr5BbXAXApr4KnXl4F2F23f1qylkhUxTBM3l+zczp31hG0C1wZ2WX87Fcv45GnOHgyi18+9TYfr9/DUy+t5PVPtiV6eXethbwhiGMj+DoqCFaeRsnZinHunTtEFDyPnv4R0bzvCdak4+2uQ5h0J/yG9qjhCNp7Y0z20S210yDmUiYeJVfYfPsgL+FLioV91IqX6JAaGJYnE77uO+EI2rlBGFeQelV8zTGCFTrhPB0lw0A/aWId5K7xA9ZB0E+aKBkG4TydYIWCv3mSqa5OpgYq8Q9ftTtze/cS6dyK2rYSrfltzIbn7kPmvhGXuRsxBncTGkjBP5SJb6wYafK6zPUm/JjeLy53EE+nC2/V9eFbJUT2XCW2+RzGiiOwdBbDt97dh74mFWVbBuFD+QTT7eFbUsMQwsDdh2/NF3b+awe+0RICQ+kPnP9qjp/G7+S/JiWOoE1uHEGb3DiCNrlxBK2DU3Ams5CnXl7Fz3+3hF8+9Tbvrt5BW/fQ9OOfbz7Ib//6Mc8sXU9VfQfPv7OJv7y5jrbuIf77ldV8s+cMT7zwGU+88Nl01KllWew+msGTL37OEy98xpqvj0wPAnMEbQJqYGQSwzABOHe5mJVbDrL7aAb+QDjBK7t7zccb3+UJ4hnsZqo5n3DpYWKXv8A69drMEQUnXiF2aQ3h4gP4m7KR+jtweQIJv3klA46gvTMTcph+eZhWTyVVYhoFwvYZowryhW+pEE/T7CmlT+5jwvvwSA5H0M4CKYowqiB3q0w1agTLdSI5OuoFAz3VwjrA3YduHbbQTpkomQbhfJ1AlYavNYanX8U9+WAdrC4piCCOIk224R2rwD98heDAaUI9e4l0fYXa9jla8zLMhmfvUeY+g978Jmrbp/Z29u6dBPpS8A9dim9pb7Kl3kLKXOn68K0Re/jWxVrCRwtQvs9E++LkrIdvGR8fIrbxDNGdWYRSi/FfH77VPo57LFFdouF4XEYzUyMFBAfPEurZhXLP+a/voLSvI9Szi+DgWaZGCpAmmxGEcX6c/3o/Q8IcHg0cQZvcOII2uXEEbXLjCFoHp5ya71oUgnY29eNA4cVSD/omd7tl5J5GAnWZRK7tQLvwCaS+MKOMNc4uQ8neQrDiBL72EsTRYRKRvelg4wjaG4zKHrqkFurFq5QKh8lxb7q9O9a9iRLhEHXiVbqkZkZkMeHrfhAcQWsP4BJHFOTOGFP1GsESjUi2jnrexEixYD93F7BHLLQzJtHLBqECnUCNhrcthmdQxe1ePBECLimIIIzEZW45pphHePCULXM7t9wkc++1M/dvcZm7PJ5Nuisucy/jGy1BmmyOd2j+9OA7lxBC7HUj1w4wlddC8Gy5PXxr6z0O31p5HPXr+PCttEqm8luQawcRewVcYmKGVP04/zXQn0q4+zuU9lXozW9i1T89i/zXF4i1fEi0cxPBnv0EhtLxjZbgcXXg9tz7vcgRtMmLI2iTG0fQJjeOoE1uHEHr4JRT810PjaD9xRNvJXoJM9bs39ARxNEhfB1lBCtOomRvwTi7bOaIgtTn0S98QvTadgJ1F5G763G7b89AdEgsySpoJ7wh+uR+WqRSKoUzXBO+m7E7tkD4gSrxHK1SOQPSII/aBPJkELQuTxRxSMXbEcNfqxEs1oheMYilmRjHrLvKV/aBccwids4kesUgWKThr9XwdsQQh9Q7DuB6GPipDFqXHLBl7kQr3rGyeGfuKUI9e+Iy9zO05rfuvTO37hmM2iXole+iFX2ClrUS/cxqrH1rYMtaWLsRPv0a3vnhzsO31p1C+SGT0LFCApnXh2+N4h5JXDSDS5qao/zXFUS6viHYdwT/0GW841V4XH3zkv/qCNrkxRG0yY0jaJMbR9AmN46gdXDKqfkuR9A+YM30xnVJAaSBTvxNuYSLDxK7vAbr5KszRxScfJXYpS8IlxzC35yHNNCJS3IiCh4GkkXQDssuOqRG6sTLFAv7yRa+vE3G5gpbKBWPUO/JoVtqY1R+eHM4Z8ujIGhdYhTPoIq3LYa/RiNUqBPNMtDOmphHZiFg94ORYhE7bxLJ1gkWa/jrNeTOGOKI8lAL2LsxV0PCXHIA0TWMt7uaYMMlouVHUQq+JZazGj37A8zcJVhFz2NV3b1L9BaZW/tXjJrX0Go/RGlaT6hrJ4H+E/iHL+MbK0OabEEUhu/amTsXzHX+a6AvhakE5786gjZ5cQRtcuMI2uTGEbTJjSNoHZxyar7LEbQPWG63B7mnnmBtBtH87ejpH91hcNdzGOfeQcnZSrDyFL72csSxkYTfZBzun0dR0I7LfnqlHpqlIirEE+S7v56xO7ZQ2EmNmE67VM2gPEoyRm08DILW7VLw9Kv4WmIEqjTC+TpKpoF22sQ8fHcBax0APdVCvWAQydEJlulMNWrI3SrCmMKklPjXmCjuRdBOD9+q7MV/tZHgqRKie64Q23QOY/lsh2/tRVt/FHVPCsqZVKI5qUTKjxBu2Ee4bTvRjs3xjtOls8pcvUXmNjyL1vwWattnRDq3EOrZQ3DgFP7hLLxjZUgTrYjCCC55pl8ezkH+a8O95b8uBhxBm7w4gja5cQRtcuMI2uTGEbQOTjk13+UI2getmbpiU19Eu7CcSMFOAvWZyL1NuIVHv6Mw2XgUBO2gPEG7VEuNmEGRsJtsYcNtMjZP2Eq5kEKTVECP1MW47E/4uhcDi0HQChMKUq+KrzlGsEInnKejZBjop0ysg8xOwJ40UTIMwnk6wXIdX3MMqVdFGF88+a+LkWlBK0URhmWkphF8xR23D996f9/shm99cojYxrPx4VtF+LMa8Jb34OmYwD1+7+85l8eLKAwhTbbgGyvBP3SJQP8JQt07iXZuQm37DL35Tcz6Z+5T5q6I57/e/TlG4/PEWj+JZ+zuJzCYHh+W1oHbIyT8XN4PjqBNXhxBm9w4gja5cQRtcuMIWgennJrvcgTtA5Z+/kPUrPWESo4w1XINz1APLk8o4TcPh/nnYRO0Y7KPHrmTRjGfcvE4ucKWGbpjN1Ak7KVWzKRDqmdInkj4uhcr8y5opSjCmILcozLVqBEs14nk6KgXDPQTFtYsBnBZhyy0UyZKpkH4mk6gSsfXGkPqU3FPOgJ2Uo7iHptC6Pfg6XQhNY8g1w7iLetmqqAd/9VGAhdrCaZVEjxbfgvm0WsYnx+blXzlzZ3x4Vvptw7fqrOHbyX6GLg8XkT3INJkc1zmZhLoT7VlbsfGaZn70/mvnxHp/JpA31H8Q5fwjtfgcffikh7NX+g4gjZ5cQRtcuMI2uTGEbTJjSNoHZxyar7LEbQPWIm+STgkjsUsaCfkCAPyCG1SFdXieQqEnTNGFeQJ26gUT9HiKaFP7mV8xi3MDjPxwILWE0UcVZC7Ykw1aARLNCLZOup5EyPVglkIWPOIhXbGJHrZIFSgE6jR8LbF8AyouN2PnoB1TwQQhiTEbjee1jHkuiG8FT34Ctvx5zQTyKwleL6S0Iliwofziey9irL9EurX54ltPIO2JhVjxRHMD/bPWqzOhjsO32pJ7PCteTkH0zK3BVEYSvh6EoUjaJMXR9AmN46gTW4cQZvcOILWwSmn5rscQfuAleibhEPiWEyCdlSW6JJaafBkUyIcIce9+TYZm+PeSIl4kDrxCp1SE8Ny4jv3HmbuJmhdnijisIq3M4a/TiNYrBG9YhA7Z2Icm8UArn1gHLWInTOJZhmEijT8tRrejhieQRWXmPhj8FO4XAGEYS9ir4CnbRypYQhvVR++4g6m8loIZNUTTK8ieKqE8NECIvuzie64jLrtArHNaWhrT2CsOIb54UGst/fMqVC9Ra6+vw/j08Poq46jbTiN+tV5lO8uEt19lfDBPELHiwieLSdwsRb/1UamCtrxlnVjdI3j7XXhEpwdE8mII2iTF0fQPryMu6OMTSqMjSuMjiqMjCiMDCsMDyoM9SsM9SkM9igMdKkMdCr0tyv0tSr0NSv0Nin0NCr0N6pE/I6gTVYcQZvcOILWwSmn5rseGkHb3jOU6CXMWIm+STgkjkQJ2glviH5pgFapjCrxLNeE72fsji0Qf6BKPEerVE6/NMiE7IikuUSNmvjHYnjbY/hrNEKFGtHLBrGzJuaRWQjY/WAct4idN4lc1QkWa/jrNeTOGOKIgsuzcK/FJYZwj/kQBkQ8HZNITSPI1f34SruYym/Df6WR4IUagqfLCB0vInIgl+iuKyjfXUTdkoa2/hT6yhSMTw5hvbsXls6PTLXe3YfxySH0lcfR1p1C3ZKG8m0G0Z1ZRA7kEjpWSPBUKcELNfivNDCV34qvtAu5uh+paRhP5yRCv4h71PfAYvVehoQ5PHo4gjZ5WTBBK0WZFKNMCFHGXFHGJhRGxxRGRm+VioP9CoO9CgPdKv2dCv0dCn1tCr0tN6Rid71Cd51KV41KZ5VKZ6VKR7lKe6lKe4lKW5FCa4FCa75KS55Kc65Kc7ZK0xWVxssqjZdUGjJV6jNi1J2PUZsWo+ZcjOrTClUnFSpPKFSmKFQcUyk/qlJ+RKXskErpAZXSfSole1WKd6sU74xRtD1G4Q8qhd+rFHyrcu0blWtbVfK/UsnbHCNvY4zcDTFy1sfI+SJG9toYV1fHuLIqxpXPVbJWxLj8qU3mRzEufhDj4nsxMt6LceGdGBeWaaQv1Tj/psb51zXOL5l7xhocQZesOII2uXEErYNTTs13JUzQPv/Oplmx2CvRNwmHxLFQgnZYdtMpNVInZlEsHiBb2HibjM0VNlMqHKHek0OX1MaoLCf8+DzsuCcVPAMqvpYYgWqN0DUd5ZKBdtrEPHx3AWsdAD3FQr1gEMnWCZbpTDVoyN0xhDF7uNR9rc0TwT3uRxiQELtcSM2jdm5qeY+dm5rdZG/1P1tOKLWY8KF8onuuoHyfibr1PLENp9FXp2AsP2IPsHpr1/zI1Lf3YH50EP2zY2hrTxDbdA71mwtEd1wmsj+H8NECgqdKCF6oJpBVz1ReC76STrxVfUgNQ3jaxxF7BYRhLy7X4ovecARtcuMI2p9m3P3TUvG2TsUZpGLP3aRisUJr4eykYn26LRbnSiqW/aDfJBVVcjfFyP1ydlLx0scxMj+8g1ScB5nocIP0NzUuvKVx4R372F98zxa8mR/FuPRJ/BytiJH1mcqVlSpXVsW4usY+pznrbXGcvymG2OsIumTFEbTJjSNoHZK5dMPgZ796mZVbDt722Lptx/jZr15GN4yf/B4pabms+frIA6/l6JnsOfk+i7ESJmj/7tev8K9PLuPDL3Zx8lu9PpkAACAASURBVMI1zmYWzshir0TfJBwSx3wI2nE5QJ/cS4unhArxJHnCthm7YwuFHVSL52mTqhiQR5iQIwk/Hg8bwoSC1Kvia44RqNQJ5+soFw20UybWQe7eAXsQjFMWaoZBOFcnWK7ja9KQelWE8bi4k6K4JgMIQzJijxtP2zhy/SDeyl58xR34c5sJXK4jeL7Kzk09co3Ivmyi2y+hfpNObNNZtLWpGJ8dxfzwANay+dnqby3bjfnBfowVR9HWpBLbeAb163SU7ZeI7L1K+Mg1QieKCaZVErhUhz+nGV9hO96KHuS6ITytY4jdboQhCfdE4P7l80OEI2gfIW7qVByPS8WxsbhYHJm5U9E/YTFwXSq2KvQ2z7JT8bpUvDZ7qVh7LkbNaYXqU7OUintUinepd+lUvEkqboiRvW52UjHz/bhYXKBOxaTmdfvYzoVUzNsYI29zjPyv7Gvg2tcqBdtUCr9TKfzBvlaKd8Yo3m1fQ6X7VEr3q5QdVCk/bF9nFcdUKlMUKlNtwV19WqHmnN1NW3c+Rt2FGPUXVRouqTRcVmnMUmm6qtKUY1/rrfkqrQUKbUUK7cX2e6Kj3H6PdFapdFWrdNeqdNfb76XeJlvY97XZAn+g0xb6gz224B/qt9+bI8P2LwBGxxT7veuyf0EwIUSZmIedKE4GbXLjCNrkxhG0DslcumHwj//xBr975hMUNTb9eU03ePy55fz8d0sWTNBGlRih8KN5PhImaCWvn5S0XP7y5jr+3/9+l807TtLRM5yo5bB662F+/rslN/jta/zhlVUAjE2KvPzBV/zrk8v405K1NLb1TT8v0TcJh8QxF4J2SJ6kQ6qnVsykSNhLtrBhhu7YrygXjtMo5tMjdzImTyX8tS96pCjCmILUozLVqBGs0Ann6qgZBvoJC+sAd++APWihH48ROxVGOeNFOe8ikjZI5Gw7oZNVGCeLUQ7mEt2ZhbLtArHN59C+OIn++XHMjw5ivbN3fnJTl+66kZu6OsXOTd2ahvJ9pp2beiiPUEoRwTO356bKtQNIzSOIXS6EAQ/usSkmPY7cvx8SLmjvQyresv3ZkYqOVFwAqZjxdoyMd2cvFbO/iJE9a6moUrwjRvGuWUrFE/b1OFup2Jyn0jKDVOysUHG3WbdIxZ77kYojCycVHeYOR9AmN46gTW4cQeuQzKUbBj//3RI+Xr+HnKLa6c+XVrfw8fo9t3TQns8q4fHnVvC7Zz7hpfe34BK9wK2Ctrmjnz8tWctjzy7nqZdWUtPUBcCvn/6Q0QkBgOzCGv7+N68RVWwhfOxsDpt3nHA6aOe7hsfc7DqSwePPLee/Xvycgyezpk9iomr7oXT2HM8E4KX3t3A8LRfDMCmraeNXf/oATbcvvkTfJBwSx70K2nHZT4/cRZNUQJmQQq7w1QzdsRsoEvZQI17k/2fvzqOjPO8E39/b3efe6dOnz8ydmdN3ujOTnsztyfQQx44Td5ykO8E2XgiOd2xijA0GxGJ2MLsJi9nEZoPNjthBZgcBQiCEkNi0IKF937datdVe71tV3/tHQRmCQLKN9Ep+fr9zvudYVaL0UKV6o3x49bz5tgyq7A2G/z17ZVYPlio3zdlO2lMcuM468B52ou3zENyhweYu7AG70U9ovZ3Q6mpCS3Phk1SYeQamxML4rY9239TpX++b6l92176pWx6wb+rlwq/3TS1o+HrfVJPD+Of+u9QJKtZUeamu6CIq3vRSnOH9Zqh4ruuoeH2/l+t7H4yKaTt0UjaFcejS+jAqXuwmVDw+3s+xcYKKRqDiyQegYsIn2n2oeG5x+HXuMipu9JGyqYuo+NU3Q8Wciz5yOzlT8W5ULLsVvhhSl1CxNnyRJVVRUS4SpnYCtGonQKt2ArRSj8/RyXD4o56vg9EDAR57dgRJV7KYMPfzyO2zlm7hQkpmBGibWx088fwoGkw2AD6JjmHRml3AvUD72oj5nL5wHYC489cYNGw2ALOXbeXU+asALFm3hz+OX0J6djEAE+evJ+lKlgBtT05eUSXLN+znucHTGDF1hSFrqGu08Pv3ZuH1+bG3tPPUwLH3nK791ug/Rb5JjD5ISMb1cKB1U2mvJd92gzTLUZLMGzrcquCCeRVXLfvJsSZTZiul3t779tp8JNlu75taeXvf1Jxa7BnhfVNbkvJpO3d739TD13DuvYRr+0W8Gy/jX38dfV0WgbWFBNdWEfrMDF+4YFMnALsJ2OCGNSZYXgaLbsL8y/BxHEzeD2M7Prs19NFGglO3EZh1e9/UT78K75v6eRzuTfE4tyfSvieFtoPX8Z+5RfuZPGxnCzFfKKcpuZrG1AZqb1ipymih8pbj4ah4I4wlXULFs2GEuRnXNVS8ttvH1c7OVPwuqDi366h4dIzG0ahegHDft74FKnZ0pqKg4rdL9qBVNwFatROgVTsBWrUToJV6fPYMNaYO5g7QaprOb1+fRFu7C6/PzzNvTcHn1+45g/buLRBOJ15n1IxV4b/OXUCraTrBYAgAi62Vx58bCcDx+FQWr9sDhN3tyOnLbNkbB8Dv3piMw+kWoO2psdha2RkbzztjFvHMW1NYtTHWkHXMW7GdQ6cuAZCVV8ZrI+bfc//0RRs5FJcMyA/oKnc30Nbamym25ZFpPUeKJYYE8/IOQPZTki1bSbecpsCWRbXd1H3rs3losIR72JmKVeVeqkrvulhLwW3wyGyn8lozVZfMVCc0UBtXRd2RMhoOFtG0OxfT9kwsG29g/SwF++pEWpado21xHI4Fx3HN+QrPx/vxT9mFPnErwXEd7Js6dhNMPgAzT8O8y7AoKwypa83whafzs183hWC9k9BqE4EVFfgX5+H5Uwbtc69gn3WJpqkJ1E5NpHJqCmVTr1M0LZO8aTlkTyskfVoZ16fWkDK1gaQpFhImtXBmkpMTE3yCikaj4tQw9nYVFROW+jm/vJtR8XjHqFh5JUjexa9RMS85jOxdRsV8LxUFXUTFRm8YFS1qnanYmxOgVTcBWrUToFU7AVq1E6CVenw8rcbUwdwBWoAFq2I4dOoSCcnpzFuxHSACtKFQiE17TvLOmEUMGbuIgUNnMXJaNHAv0CYkZzBs4lKGjF3E4KiFkcduMNl4c9QC2hwu/jh+CXWNFsbOWkNlbRNDxi4C5CJh3Tout5cT564wcno0v3gpihmLN5GalksgEDRkPSZrM88OnorPrwFwLTM/8o1wZ+av3MGewwkAuLy69Kjy6DhdOg6njqNNp71Fp61Zp9Wu02LVaTYHsDcFsDcEsNUFsNYGsFQHMFfpNJXrNJbpNJboNBTp1Bfo1OXp1Obo1NzSqc7Wqb6pU5URoDItQMV1nfKrOmWpOqWXdUov6ZRc0im+qFN0QacwQacgXif/jE5+nE7eSZ3c4zq3jmpkH/ORHl/DtavXSco9TEL1Zx2eHXuuah0Xsg5x6cI1Lh+sJuVLD5c/85O8ViN5jcal1RpJKzUurtBIXKZx4VONC4s1zi/USFigcW6+Rvx8P2fn+jkz28+ZmX5Oz/ATN03j1BSNk5M0TkzQODXew9nxDhLG2EmMMpE8qo4ro6u4MbqEzNH53Bp9i/yoDIpGX6Es6hJVoy9QH3UG0+gT2KIO0xp1AGfUbrxR29CjNkHUI/jV/o+2wdRYmHUW5qcSWpxDcEU1wbV2Ql/4O9//dVMI32d+2qLdmD91ULWgnYLZDtKmOkn8yMXx0d4ehcWjYzSOjdU4Nl7j+ASNExPDr8GpqRpx08Kvy5mZ4dfp7Fw/8fP9nPtEI+FPGucXaZxfEn59E5eFX++k6PDrn7xGI3mtRsrnflI3+LnypZ+rGzWubda4vlXj+naNGzs00nZqpO/WyNijkblf4+ZBjZuxGlmHNLKPaOQc08k9oZN3Sif/dPj7tiA+/H1cdCH8fV2SpFOarFOaolN2Raf8mk7F9fD7oSojQPXN8Puk9pZOXa5Ofb5OQ6FOY3H4fdVUpmOq0DFX6Viqw+8/W30AW2MAuylAsyX8Pm2167S16LS36rS3h9/PTlcvOL484oLBEB6f8euQjCkUUvt//50e49cgr79kRB5f+Phv9DpUzmng1/b6AwTk9Vc2nxZADwQNX4dkXCrP3UCbll3EyGnRTFnwBVcz8oGvgfb85UxeGzEfh9MNwMmEq/cBrb2lnSdfGE1FTSMATWZ75LEBXnp3Jmcu3mDllwcBePn9ORw+ncxn244AArTdMik3cvh4ySZ+8VIUwyYu48jpy73iSmw7Y+Mjp1QDZOeX8crwefd8zrSFX3Lk9GUA2lware0aLW0aLS0azc0adquGzaJhNelYG3Us9TrmOh1TjU5TtU5TpU5juUZDqUZ9sUZtkUZtgUZNnkZ1jkZVtk5llk5lpk5Fhk55mk7ZdZ3SqzqlqRollzWKL2kUJWkUXtQouKBRkKCRH6+Td0YnN04nJ04n56TOrWM6WYf93DzkJzPWT+YBPxn7/aTv9ZO228+NXRo3YsIQdG2rxpUtGqmbNFK/1EjZ4Ofy536S1/m5tCZc0io/F1f6SVyucWGpxoUlGucXayQs1Di3QCN+vsbZeX7OzvFzZpaf0zP9xM3wc2qan1NT/BFUPD4+jF3Hxvb+MxWPzWjmxGd5nDwaz+n0HZytX3ofxp6tW0bcjZ2cOpLAiXUFHJ3a2vFjjfJyapSDs6NaOD/KQtLoelJHV3N9dBkZowvIHn2LvKhMCkdfpXR0MpWjE6kbfZam0SexRh2lJeogjqg9eKJ2oEVtIRT1xaO/CFXUBgJjN+Mbtx33+N04JhykddIR7FNOYJ52hqaPz9M09yqmhTlYlpdjX91I6zo7zvVOfBv9BDvbfmAzBDeDd2sIR0wI++4gpgNB6g4FqTweoOR0gIKE8Pd14UWNoksaxckaJSkaJVc0Sq+G3w/laeH3R2Vm+P1Sla1Tk6tRm69RVxiuvjj8Pmss12iqDL//TDXh96OlQcfapGM16dgsGnZb+P3b0hJ+P7e2a7S5HpweCP+A/rDP6c5ancZ8XSlcMAQOj3Gvv2RsAO29YB1G1aLw8afdrUV+/pPUy+HRCYbk9TcyI3/+cXl19EDI8OdAMiaPL4Bfl9df5VSeu4E2GAwxcOhMBg6dFTmx8g7Q7j+WyPg56wBod7oZNWMVQ8YtBr4G2rKqen7z6gT8fo1gMMS6rYfp1394ZGuE+St3MGTcYs5fzgTCe8/+cfwSbtwsBARou2X69R/Ov746kRmLN7HiiwMs37C/w3p63p+0jJQbOZGPW9oc/PzFqMiV4wAGDp1Jdn4ZgOF4+H3raFQXf/15pp/Ts/1d+vXnCyt9XIgO77F5cU14z80H/vpzjIuUExUkJadyIecg52rWdHh2bGL5Wm6k7yT/7DEqY87TFJ2MdVkizUviafvTKRzzj+KeE4v34334p8YQmLCF0LgvHz2mjtlAaHx431T97n1TVx/Dsz4O95Z4XDsTcey/jOPoddrjMmhNyKEluYDma6XYb1ZizavHUmrCXG2nqamdRpsHc70XW4mP1mwNx1UdV4KO73gAfV+Q0FY6PwN2ewjtYBDviQCuCzrt13RacvzYynyYGg288v0jzKcFsbf7DF+HZEx6IISl9fvxvSx982SLA3WTLQ7UTrY4UDvZ4kDtZIsDSeW5G2gBor88yKef7Y18fPdFwoaMW8ygYbMZOT2aWwXl/Pb1SazaFHvPFgdzlm1jwDvTGTJ2EdczC3hvwlLeHrMQgFPnr9Kv/3Cs9vB2CzGxZ3ni+VGR33IXoO2GWbRmV5fq6Xlq4NjIFefuzMhp0Wzec4pAIMjpxOu8MGRG5F8K7kPF8eEL5HQJFeeHL7zTVVRM+ix8YZ8H7al4dUf4wkDXdvu4vjd8waAH7ql48t49FW+dC1+Q6O4LtdzZUzE/1UfB1dtXSr/hoyjNR3FG+IJHD91TsfT2nooV4T1PH7inouURHDBtHpqa2jFXN2MpNWHNq8d2s4rma6W0JBfQej6H9rgMHEev4zhwGdfORNxb4mneeYTaYzHkJq3nSt4KzjV1cCGvmsWkX11KWWw01jVr0aau/w6Y+iXBKVsIzIpB/2Qv/k9j8UUfwfvZSdybzuLacQHn3ks4Dl+j/WQ6beeyaUnKp/lqCfaMSqy5dViKTZgrbZga2mm0ub/Vc2Wu82Iv8tOapeFI1XGf0/EdDRDYE+oSwAZjQmixQTxxAZyJOu03NJpz/VgrfJia1EArAVq1E6BVOwFadROgVTsBWrUToFU7AVpJRqa7x/A9aHvTuNxe+vUfHpH5O9NgsvHB5OU8/fJ4BkctpKCkOnKf0QeJvlqTyYGptgVzuQVrQQO27GrsN8ppuVxI64Vc2s7cxHEsDceBFJy7knBvScCz4TTe1cfxLzuMtvAA+pzdBKZvJzRxc5dwVJ+0Hnv0WsoPRpOZuozEqsX3nx1rWsSV3E/JP7OC+q1rcCz+gsDMHejzdqMtOoBvxRG8a0/g+eIM+q5EvPuSccSm0n4inbazWbQm5tGcWow9rQJbdg3WwibM5VZMta00mZ0989xaPVhqvNgL/LRlajiSNdxndfyHgwR2d779AJshuDOE/1AQz+kAziSNtjSN5nw/1kofTY8C1L8HCdCqnQCt2gnQqpsArdoJ0KqdAK3aCdBKMjLdPQK033GMPkj0SFY3prpWzBVWLEVN2G7VYE+voDm1mNaL+bSdzaL9RDqO2Cs491zCte08ni/P4l13Et+KI2iLD6LP30Pg4x0EJ2+Gsd2wb+qYDYQmbCI4bRv6nN1oC/fTvGkvVSd3kH39Cy6XRxNv6mCrgoblXK/aTl5ZHJWlGZjK6zHVttBkcnT6vLh9AVqd/h5/PZosHqyVPprz/bSlaziTNDynA/gPBQnu7BrABnaH8B8O4j6r40jWaMvQsBf4sVT7aJKrxHcpAVq1E6BVOwFadROgVTsBWrUToFU7AVpJRqa7p9cC7YaYY7z07kyjl9HpGH2QuC+bB1NDO+YqG5ZiE9bcOuwZVTRfLaElKZ+2c7doP5WB4/A1nPuSccUk4t50Fu/np/BFH8X/aSzaJ3sJzNpJcMoWQuO7c9/UrQTu7Ju69K59UzfftW/qkS7sm9rYTp29hRJbATct50m17OS8eXkHe8cuIdm8hQxLHAW2LKrtTd/pue4uoDU1ebFW+GjO9dOepuFM1PHEBdBigwRjOgfY0FYI7AnhOxrAfU7HkaLRmqVhL/JjqfXSaOsF36ffgwRo1U6AVu0EaNVNgFbtBGjVToBW7QRoJRmZ7p5eC7RX0vPYtv+00cvodL7rm/zrfVPNWPNv75t6vSz8q/7nc2g/nYnj2I3b+6ZexL3lHJ71cfhWHcO/9BDagn3os3cRnLaN0EcbuwlTb++bOvP2vqlLYvGtvL1v6sazuLY/fN9UW07t1/um1rd9u31T76rB7qLcXk2u9RrXLYe5aF7f8YW8zGu5Zo4lx5ZCmb2chuZHu8XAtwVaU6MXW5mPlhw/7dd1XBd0vCcDaAeChLZ3DWD1fSF8xwO4EnQcV3VaszVsJT7MdQJGPZUArdoJ0KqdAK26CdCqnQCt2gnQqp0ArSQj093Ta4G2r4w9reLrfVNPP3jfVN/yw2h/2v/1vqkTNnULpjJmA6GJmwjM2I4+d09439TlX++b6t6agHP3JRwHU3EcS6PtTBatF/JoSSnCnn5n39RGzBUWTHUtPbZv6sOqtVspsuWQaTlLinkH50xL78PYc6alpJh3kGk5S5Eth1q7tdvX9SCgNdd7sZX6aMnWcFzRcSXo+I4H0PcHu3QBrtA20A4E8Z4I4Lqg035NpyXHj63Mh6lRQKi3JECrdgK0aidAq24CtGonQKt2ArRqJ0Arych09xgKtLUNZhpMtsjHJmszy9bvZ+7ybSRdyTJwZd9gHtW+qbN3of1pP/5lh/GtOoZn/WncW87h2nkRx4HLOI7doP10Jq0Xcmi5XEjz9TJsWVVY8+uxlJkx1TTT1NRu+EHru9bQ7KTMXk6OLYVr5lgSzWs7PDv2onk91y2HybVeo9xeTYPd1TNrtHkw13mxF/vxFwTxXgvgjtfxHQug7wl1CWCDO0JosUG8pwI4E3Xab2i05PqxVvgwNQn49JUEaNVOgFbtBGjVTYBW7QRo1U6AVu0EaCUZme4ew4A2LbuIJ54fxaG4ZAA0PcDL78/hD+/PYdIn6/npcx9y/nKmUcvr8njXHMfz+Sncm87iiknEuS8Zx5FrtJ/KoC3hFi2Xbv+q/81KrLl14V/1r7LT1ND3MfVRVG1vosCWRYYljmTzFuLNS+7D2PPm5aRadnHTcp4SWwF19pZuW0+T1YOlxou90E9bpoYjWcN9Vsd/JEhgdwi20DnA7gzhPxTEExfAmaTRlqbRnO/HWuWjyWL8cy49mgRo1U6AVu0EaNVNgFbtBGjVToBW7QRoJRmZ7h7DgPb9SctYu+VQ5OPzlzP5t9cm4nJ7Adhx8CzvTVhq1PK6PEYfJPpS9fY2Sm0l3LJd4qplHxfMqzo4O3YxSZYvuWE5Tr4tnSpb/SNdQ5PVg7XSR3OBn7Z0DeclDc/pAP5DQQI7O9//lc0Q2B3CfziInhDCmxqgLUPDXujHUu2jyWr88yz1TAK0aidAq3YCtOomQKt2ArRqJ0CrdgK0koxMd49hQPvzF6Oob7JGPl60djcLV++KfFxdZ+KpgWMMWNk3G6MPEr25SnsD+bYM0iwnuGTeSLx58f1nx5qiuWLZS7YtiVJbCXX273ZmscnkxVrhoznPT3uahvOijicugBYbJBjTBYDdAoE9IXxHg7jjdRwpGq03NexFfiy1XhrvAthve5Ew6fuRAK3aCdCqnQCtugnQqp0ArdoJ0KqdAK0kI9PdYxjQPjFgJC1tjsjHr384n1Pnr0Y+NlmbeeL5UUYs7RuN0QeJ3lKdvZUSeyFZlgtcsewmwbzi/gt5mZeQbN5MuvUUhbabVNsbv/HXMTV6sZX5aMn1035dw5Wo4z0ZQDsQJLS9c4ANbQV9Xwjf8QCuBB3HVZ3WLA1biQ9znZdGW9fXIkCrdgK0aidAq3YCtOomQKt2ArRqJ0CrdgK0ksqjBwL06z+cucu33XffwtW76Nd/OHog8NDH2HM4gU+iYwD4xUtRmKzN3bLWvjyGAe2Lf/yYzJwSAOoaLfzkmRGYrS2R+29kFTLgnelGLa/LY/RBwoga7G4q7DXk2a5zw3KEi+YNHV7I64J5DVctB8mxpVBmL6Oh2dHpY5vrvdhKfbTc8uO4quM6r+M9HkDfHyS0jc4BdhtoB4J4TwRwXdBpv6bTcsuPrcyHueHRYooArdoJ0KqdAK3aCdCqmwCt2gnQqp0ArdoJ0Eoqjx4I8PMXo3h+yAy8Pn/kdk0PMHDoTJ54ftQ3Alp7SzvBYKhb19wXxzCgXbP5EK+OmMfBExcZHLWQcbPXRe5zON18MHk5i9bsMmp5XR6jDxI9Ua3dTpEtl0xrPCnmGBLMy+4/O9a0lBTzdjItZymy36LGbrn/sWwezLVe7MU+WrM0HKk67nM6vmMB9L0hQlvp/AJcO0JoB4N4TwVwJuq039BoyfFjrfBhauxZLBGgVTsBWrUToFU7AVp1E6BVOwFatROgVTsBWknl0QMBnnh+FNMXbeTcpfTI7Sk3cpi+aOM9Z9AeOX2ZgUNn8fyQGXwweTlNlvCZsnIGbedjGND6/Bpzl29jwDvTGTd7HVZ7a+S+qX/6goFDZ2KxtT7kEXrHGH2QeNQ1NDspt1WQa0vluuUrEs3rOjw7NtH8Odcth8i1XqXcXkWj3UWT1YOlxou90E9rpoYjWcMdr+M7EiSwJwRb6Bxgd4bwfxXEExfAmaTRlqbRnO/HWuWjyWL883N3ArRqJ0CrdgK0aidAq24CtGonQKt2ArRqJ0Ar9fQ8VeLiZ8U9X0ejBwI89uwIkq5kMWHu55HbZy3dwoWUzAjQNrc6eOL5UTSYbAB8Eh0TOfFSgLbzMQxoHza1DWY0TTd6GV0aow8S37Vqu5lCWzYZljMkW7YSb/70PoxNMC8j1bKTLNMFqirLsBY4aEvXcFzS8JwJ4D8cJLCrCxfg2gyB3SH8h4J4zgRwJGu0ZWjYC/1Yqn00WY1/Pr5JArRqJ0CrdgK0aidAq24CtGonQKt2ArRqJ0Ar9fT8fb7TkDqaO0CraTq/fX0Sbe0uvD4/z7w1BZ9fu+cM2ru3QDideJ1RM1YBArRdGcOB1uvzczUjn0OnLnHk9GWy8ko73buiN43RB4lvUr29nTJ7KTnWy1yzHOC8efW9e8bWr+Rq6Rbybp2h5noOtotNuE670b4KEozpAsBugcDeEL4jQdzxOo7LGq03NexFfiy1Xhr7GMB2lgCt2gnQqp0ArdoJ0KqbAK3aCdCqnQCt2gnQSj09Fj2E2YA6mjtAC7BgVQyHTl0iITmdeSu2A0SANhQKsWnPSd4Zs4ghYxcxcOgsRk6LBgRouzKGAm3S1Wz+7bWJ9Os/nN++PonfvDqBfv2H88KQGaRnFxu5tC6P0QeJh1Vlb6TAlkm65SSXzJu4WLeaayXbyM4+TPHV81SfT8dyogzXgRYCO/TOL8C1BfR9IXzHArgSdBxXdFqzNGwlPsx1Xhptxv+dezIBWrUToFU7AVq1E6BVNwFatROgVTsBWrUToJVUnruBNi27iJHTopmy4AuuZuQDXwPt+cuZvDZiPg6nG4CTCVcFaL/BGAa0xeW1PP7cSFZtjKWlzRG5va7RwrSFG/nZC6MpLq81anldHqMPEneqt7dRUV9GaWkmJTdTKUu9TO25TKzHynHusxHYpnUOsNtAPxDEezyA64KO46pOyy0/tlIf5gaBiD9PgFbtBGjVToBW7QRo1U2AVu0EaNVOgFbtBGglleduoA0GQwwcOpOBQ2cRCASBr4F2/7FExs9ZB0C7082oGasYMm4xIEDblTEMaKcv2sjEeZ8/8P6xs9Yy+ZMNPbiibzc9dkCweTDXgVg5QwAAIABJREFUebGX+GjN8tNypY2Wcxbajlrw7G0juCXQ+QW4doTQDgbxngrgTNRpv67RkuPHWu7D1CTQ8E0ToFU7AVq1E6BVOwFadROgVTsBWrUToFU7AVpJ5bkbaAGivzzIp5/tjXx890XChoxbzKBhsxk5PZpbBeX89vVJrNoUK0DbhTEMaPu/OYXUtLwH3n8zt5Rf/+GjHlzRt5tH9oa3erDUeLEX+Wm9qeG4rOGO1/EdCaLvCRLa0vkesFqMF1dsG+1xrbQnuWhL02jO92Ot9NFkMf6A9n1LgFbtBGjVToBW7QRo1U2AVu0EaNVOgFbtBGglGZnuHsOA9rFnR1DbYH7g/U1mO/36D++5BX3L6eqbucnqwVLlo7nQT1uGhiNZw3MmgP9QkMCuLlyAazN4dzloPVRP4+l8qpMyqEy7SVVBAXWV9TRanYYfsFRLgFbtBGjVToBW7QRo1U2AVu0EaNVOgFbtBGglGZnuHsOAtl//4Q89pdlkbe5TQNtk8WCt9NGc76ctTcOZpOOJC+D/KkgwpnOADW0J4d3tpPlwDQ1ncii/lEJe+inS8/eSWrGZVNMuMq3nKLblUWtvNvzgJAnQqp4ArdoJ0KqdAK26CdCqnQCt2gnQqp0ArSQj091jKNCu33GUnbHxHbZ+x9E+AbRabJDgjq6dAavvDeI+5sZ+zkRtSh4FmedIK9xFctXnxJsXRUoybyDNcpR82w0q7bU02t2GH4yk+xOgVTsBWrUToFU7AVp1E6BVOwFatROgVTsBWklGprvHMKAdNGx2l+rtE9pK+AzYbaDvD+I9HsB1XsdxVcd6q4Wq0mJu1Z4n2byZc+Yl90BsvHkRCeYVpJr3kG27SIm9iHp7m+EHHqlrCdCqnQCt2gnQqp0ArboJ0KqdAK3aCdCqnQCtJCPT3WMY0H5fxlrpw9Topc7eTqmtmGxbElcsezlvir4PY+PNi7lk3kS65SQFtkyq7I2GH2Skb58ArdoJ0KqdAK3aCdCqmwCt2gnQqp0ArdoJ0EoyMt09ArTfcdIsx7lk/qIDjF3EBfMqrlr2k2NNpsxWSr293fCDivToEqBVOwFatROgVTsBWnUToFU7AVq1E6BVOwFaSUamu8cwoF20ZleX6u1zN8gmW7aSYTlNoS2LarvJ8AOI1L0J0KqdAK3aCdCqnQCtugnQqp0ArdoJ0KqdAK0kI9PdYxjQjpu9rkv19im0ZVFuqzD8YCH1fAK0aidAq3YCtGonQKtuArRqJ0CrdgK0aidAK8nIdPf06i0OQqGQ0UvodIw+SEjGJUCrdgK0aidAq3YCtOomQKt2ArRqJ0CrdgK0koxMd0+vBFqztYWt++J46d2ZRi+l0zH6ICEZlwCt2gnQqp0ArdoJ0KqbAK3aCdCqnQCt2gnQSiqPHgjQr/9wlq3ff8/tF1OzmDjv80f2dX7xUhQmazPF5bUP9MCdsfF8Eh3zyL5mb5peA7SaHiAx9SbjZq/jsWdHMGjYbHYcPGv0sjodow8SknEJ0KqdAK3aCdCqnQCtugnQqp0ArdoJ0KqdAK2k8uiBAE++MJrfvTGZiuqGyO2PGmjtLe0Eg6GHAq3H68fp+n6+HoYDbWVtE6s3f8W/vTaRp18ez0+eGUFi6k2jl9XlMfogIRmXAK3aCdCqnQCt2gnQqpsArdoJ0KqdAK3aCdBKKo8eCPCzF0Zz6NQlRs9YHbn9bqANBkMsWbeHF//4MQPensbc5dvQAwEAfjloHHuPnGfMzDU8P2QGF1IyWbAqhmETlzJs4jLcHh9w7xm0A4fOJPrLgzw3eBoDh84kLbsIuPcM2lsF5bw5agEvvTuTVz6YG/mcvjqGAe3x+FTem7CUx58byfg560hITsfv1/jFS1HUNpiNWtY3HqMPEpJxCdCqnQCt2gnQqp0ArboJ0KqdAK3aCdCqnQCt1OMzZxfMjOn5Ohg9EOCnz31IMBjijZGfkHQ1G7gXaC+kZPLK8Hn4/Ro+v8Yrw+dx9mIaAL9+5SO2HzgDwOHTyfzshdER9/tw6krik8KfdzfQ/vS5DzkenwrAiXNXGDh0FnAv0L42Yj6nL1wHIO78NQYNm/2oX4UeHcOAtl//4UxbuBFbc9s9twvQSn0lAVq1E6BVOwFatROgVTcBWrUToFU7AVq1E6CVenzGbDCmDkYPBHjs2REApGcXM3DoTDRNv2+LA59fi/z3n1bvZOu+OCAMtGVV9QDcuFnIH96fE/m8Bati2H04AbgXaH/xUhTBYAgATdPp1384LW2Oe4BW0/TI51hsrTz+3MhH8tQbNYYB7cbdJxnwznR++/oklm/YT0FJNSBAK/WdBGjVToBW7QRo1U6AVt0EaNVOgFbtBGjVToBW6vFpc0Obq+frYO4GWoDJn2xg+4Ez9wBtm8PF/JU7GBy1kCHjFvPb1yexec8pIAy0DSYbEAbewVELI4+1aM0udsbGA/cC7YC3p92zhl+8FEVNvfkeoE1IzmDYxKUMGbuIwVEL71ljXxxD96ANBkNcSc9jyoIvePy5kfzh/Tn89LkPySuqNGQ9adlFDBo2m6cGjmHsrLW0O90A1DVaGD5lBb96eTxvjlpAVl5Z5M8YfZCQjEuAVu0EaNVOgFbtBGjVTYBW7QRo1U6AVu0EaCWV58+Btr7Jyr++OpFDcckRoF36+V7mr9wR2Xd2/sod3wlonxo4llDo3jNo29pdEaC1t7Tz5AujqahpBKDJbBegfVRjb2knJvYsg4bN5rFnRzBu9roevVhYm8PFb1+fRHp2MT6/xrL1+/jqZBIAH0xezu7DCQQCQVLT8uj/5hQ0PfxNZ/RBQjIuAVq1E6BVOwFatROgVTcBWrUToFU7AVq1E6CVVJ4/B1qAz7Yd4aV3Z0aAdsqCL9j11TkAKqobGPDOdNZuOQR8O6D9yTMjSEjOAODU+au8Mnwe8PUetGVV9fzm1Qn4/RrBYIh1Ww/Tr/9wvD5/9z0R3Ty9Bmjvnpu5pcxetpUnXxjdY1/zeHwqHy/ZdN/t9pZ2nho4NvKvAABvjf4T6dnFgPyArnICtGonQKt2ArRqJ0CrbgK0aidAq3YCtGonQCupPB0Brdvjpf+bUyJAm51fxkvvzuTVEfOYt2I7F1IyeWrgWC6mZn1joM0rruK1EfNZtTGWQcNmM2jY7Mhvst+9xcGcZdsY8M50hoxdxPXMAt6bsJS3x3z92H1teiXQ3hnH7S0GemKWb9jPknV7GDk9mueHzGDOsm04XR6y8sp4bcT8ez53+qKNHIpLBuQHdJUToFU7AVq1E6BVOwFadROgVTsBWrUToFU7AVpJRqa7p9cCbV5RJXHnr/XY15u7fBsDh86kydKMz68xZcEXLFu/j2uZ+QwZu+iez52/cgd7bl9lrtnhlxTNpwVxeXXD1yEZkxYI4fBohq9DMqZgENpc8vqrGkBLL1iH1PO1OP3y85/Ctbk0gkF5/Q2t3biv7fBoaIGQ8c+BZEgur45PCxq+Dsm4ZGS6e3ot0C79fC9PPD+qx77esvX7WfHFgcjHN3NLeXXEPLLzyyJ7XdyZaQu/5MjpywB4/QFJ0QLBEJoeNHwdkjEFgyH8mnGvv8urG/4cqFwwFMKnGb8OyZhCIbX/91/144/qr7/K+bTw8d/odaickccfvxYkGJTXX9U0PUhAXn+lk5Hp7um1QNvTs+dwAnOXb4t8fDO3lDdHLaClzcHPX4zC4/36X0wGDp1Jdn54/wujT7OXjEu2OFA72eJA7WSLA7WTLQ7UTbY4UDvZ4kDtZIsDtZMtDiQZme4eAdrbY2tu49evfERJRR2aHmDawo2s2hQLwMhp0Wzec4pAIMjpxOu8MGQGgUAQkB/QVU6AVu0EaNVOgFbtBGjVTYBW7QRo1U6AVu0EaCUZme4ew4G2rKqeifPXM2jYbAa8M/2+enIuX89hwNvT+NdXJ/Lxkk243F4AGkw2Ppi8nKdfHs/gqIUUlFRH/ozRBwnJuARo1U6AVu0EaNVOgFbdBGjVToBW7QRo1U6AVpKR6e4xHGhfGT6PkdOjORSXTNz5a/fV28fog4RkXAK0aidAq3YCtGonQKtuArRqJ0CrdgK0aidAK8nIdPcYDrSPPzeSNofL6GV86zH6ICEZlwCt2gnQqp0ArdoJ0KqbAK3aCdCqnQCt2gnQSjIy3T2GA+3gqIVU1jYZvYxvPUYfJCTjEqBVOwFatROgVTsBWnUToFU7AVq1E6BVOwFaSUamu8cQoM0vqYoUn5TGB5OXE5+URl5x1T335ZdUGbG8bzRGHyQk4xKgVTsBWrUToFU7AVp1E6BVOwFatROgVTsBWklGprvHEKDt1394l+vtY/RBQjIuAVq1E6BVOwFatROgVTcBWrUToFU7AVq1E6CVVB49EKBf/+E88fyoSP/22kTmr9yB2+Pt0bXsOZzAJ9ExPfo1e2oMAVqfX+s0r8+P09X73wRGHyQk4xKgVTsBWrUToFU7AVp1E6BVOwFatROgVTsBWknluQO0Jmtz5DZbcxujZqxi1abYHl2LAG03zoB3pnd4e5vDxa//8FEPr+abj9EHCcm4BGjVToBW7QRo1U6AVt0EaNVOgFbtBGjVToBWUnk6AlqAI6cvM3JaNLUNZp4dPDVy+6K1u3lvwtLIx+PnrONCSia3Csp5c9QCXnp3Jq98MJe07CIAistreWPkJ3y27QijZqxi0LDZXEnPA8IneH68ZBMD3p7GexOWsmz9vgjQPujx+uoYBrRXM/JZtTGWx58byaqNsfc16ZP1/HLQOKOW1+Ux+iAhGZcArdoJ0KqdAK3aCdCqmwCt2gnQqp0ArdoJ0Eo9PZesn5FkXdvjdTQdAa3F1sr7k5bxRcxxAJ4bPI0mS/j+d8Ys4u0xC/H7NUKhEL95dQJt7S5eGzGf0xeuAxB3/hqDhs0GoKyqnp88M4JrmfkAJCRn8O74JQDEnkzivQlL0fQA7U43L78/JwK0D3q8vjqGAW1FdQOfbTvCY8+OYOK8z+/r4yWbSLmRY9TyujxGHyQk4xKgVTsBWrUToFU7AVp1E6BVOwFatROgVTsBWqmnJ968yJA6mjtA+y+/H8svB43jqYFj+PmLUazdcghN0wGYs2wb5y6l09rmZNjEZSxYFUNWXhnlVQ0MjloIgKbpBIMhIAy8jz83EggD7d0naBaX1zLg7WkATF+0kd2HEyL3rdt6OAK0D3q8vjqGb3FwR9v76hh9kJCMS4BW7QRo1U6AVu0EaNVNgFbtBGjVToBW7QRopZ4eX9BpSB3Nn59Ba2tu4+mXx1NZ2xT5nOPxqaz44gAXU7NYs/kQx86msOPgWb46mcSazYeA8JmxwyYuZcjYRQyOWshjz44AwkD7zFtTIo9198ejZqzieHxq5L6Y2LMRoH3Q4/XVMQRoy6rqcXt8kf9+WL19jD5ISMYlQKt2ArRqJ0CrdgK06iZAq3YCtGonQKt2ArSSytPRFgcbYo4xbva6yMeNJhtDxi0m+suDJF3NprK2iQlzP2fWp1u4mpGPvaWdJ18YTUVNIwBNZnuXgHbawo3sPXI+ct+qjbF8Eh3z0Mfrq2MI0PbrP5z07OLIfz+s3j5GHyQk4xKgVTsBWrUToFU7AVp1E6BVOwFatROgVTsBWknl6QhonS4Pv3l1AtczCyK3DRo2mzdHLaClzUEoFOLl9+fw8vtz8Hj9lFXV85tXJ+D3awSDIdZtPUy//sPx+vwPBdo9hxMie9A2tzoYOHQmn0THPPTx+uoYArTtTjd6IACAxd5Ku9P9wHr7GH2QkIxLgFbtBGjVToBW7QRo1U2AVu0EaNVOgFbtBGgllacjoIUwnr7+4fzIPrDzV+6450JdY2et5YPJyyMfz1m2jQHvTGfI2EVczyzgvQlLeXvMwocCrdvjY/InG/jdG5MZMnYRa7ccYt6K7Q99vL46hu9B+8TzoxgxdQVb98WRW1hBIBA0eknfaIw+SEjGJUCrdgK0aidAq3YCtOomQKt2ArRqJ0CrdgK0koxMd4/hQFtcXsv+Y4lMW7iR/m9O4ZeDxjFx3ufsP5YY2UuiN4/RBwnJuARo1U6AVu0EaNVOgFbdBGjVToBW7QRo1U6AVpKR6e4xHGj/fGobLBw8cZE/vD9H9qCVenUCtGonQKt2ArRqJ0CrbgK06pZu8bC3ycMGq5+9jW4umT1U9oJ1ST2XAK3aCdBKMjLdPb0CaFvbnCRdyWLVpliGjFvM0y+P54PJy/ls2xGjl9bpGH2QkIxLgFbtBGjVToBW7QRo1U2AVo2yLB72N7iZV+Xi9TInPy5w8Pf5zg57rNDJoBIXYyucLKtxs7fRTbLg7fcyAVq1E6CVZGS6ewwH2j+8P4fnh8xg2sKN7Dt6gfySqsgFxPrCGH2QkIxLgFbtBGjVToBW7QRo1U2A9vtXgc3DoUYPC6pdvFXmpF9BxxD7vwodDCp18Xqlh0GlLn5T3PHn/Tne/r7ExbgKF0tr3BxocHPZ7KGqF/y9pW+eAK3aCdBKMjLdPYYD7ZiZa/jt65N4b8JS1m45RPK1W7Q5XEYvq8tj9EFCMi4BWrUToFU7AVq1E6BVNwHavl2x1cvRJg+f1rp5t9zFE4Udw+qPCxy8XuZkbrWL/Q1usizhP//ne9A22MNn255s8vBFnZuPq1wMKXPym2InP+wEbx8vdPJyqYvxFS6W14bxNtXsoboXPE9SxwnQqp0ArSQj091jONACBAJB8oqr2Bkbz0dzP+PXf/iI10bMZ8m6PUYvrdMx+iAhGZcArdoJ0KqdAK3aCdCqmwBt36nM5uVkk4fltW6Glbn4eVHHUPr/FTh4udTFzConuxrcpFse/Jjf5CJhDXYPNy0eTjR52FDnZsZtvP11F/D2iUInfyh18lGFixW14e0WrgjeGp4ArdoJ0EoyMt09vQJo74zPr5GVV8rWfXEMGjZbLhIm9eoEaNVOgFbtBGjVToBW3QRoe2eVdg9nTG5W17r5sNzJLx+AsT/KdzKwxMm0Shc76j1cM4chtatf55sA7cNqsHvItHo43uhhfZ2b6ZUu3rmNt//tAVss3OlnRU5euY23K2s9HLiNtzU241+H73sCtGonQCvJyHT3GA60iak3WbUplnfHL+GJASN56d2Z/Gn1Ts5eTMPe0m708jodow8SknEJ0KqdAK3aCdCqnQCtugnQGl+13UNCk4d1tW5GV4S3E/iHDiDzh/lOBpQ4mVTpYnO9hxSzh/rv+LUfFdA+rHp7GG+PNXr4/Dbevl3m5FdFjofi7T/kO3myyMmrpU4+qnQRXevmYKPg7aNMgFbtBGglGZnuHsOB9tnBU5m9bCvH41NpsjQbvZxvPEYfJCTjEqBVOwFatROgVTsBWnUToO3Zam0eLprC+7uOq3Dxu2In/7UDnPyv+U6eKXYyvsLFl3VuLpo91HbDenoCaB9Wvd1DhtXD0UYPn93G28FlTp4u6vh5+XO8fa3UyYRKF6tq3cQ2erhqDj/HRr/OfSUBWrUToJVkZLp7DAfavj5GHyQk4xKgVTsBWrUToFU7AVp1E6DtvursHi6bPWyqdzOh0sVzJR3/uv8P8p38a7GTqAonn9W5uWDquTNEjQbazp6/DIuHo7fPLp5W6eKtsvB2D53h7c9v4+3EShera9181Rje/kHw9t4EaNVOgFZSeVraHPTrPxy3x3vP7cfjUxk5LbpH1rDncAKfRMf0yNcyanot0Madv9YnnnyjDxKScQnQqp0ArdoJ0KqdAK26CdA+mhrs4bM3t9d7mFrp4sVSJ//9AYD4qyIHH5Y7WVPn5qzJTaWB6+7NQPuw6uwe0u/C26mVLt4sdfIvXcDbXxQ6eb0svFXEmjq18VaAVu0EaCWVR4C2Z6bXAu3+YxeI+ni10cvodIw+SEjGJUCrdgK0aidAq3YCtOomQPvtSrN4iGlwM6PKxe9LXPyPB+yl+otCJ++Xu1hR6yGuyUN5L0PAvgq0D6vu9utzpNHD2row3r7RBbz9we3X640yJ5Nv4+2hRg/XLd2zvURvSIBW7QRoJZWnK0Dr82vM+nQLzw+ZwfApK/gi5jhzl28D4FZBOW+OWsBL787klQ/mkpZdBEBxeS1vjPyEz7YdYdSMVQwaNpsr6XmRx/t4ySYGvD2N9yYsZdn6fRGgfdDj9fUxHGinLPgCh9Nt9DK+9Rh9kJCMS4BW7QRo1U6AVu0EaNVNgLbzblo87G10M7vKxaulTv5ngaND4PtZkZN3y10srXFzrNFDqa33H1O/j0D7sGrtHm5YPBy+jbdTbp95+1RRGGg7w9s3S51MuY23hxvDj9WX8VaAVu0EaKUen33AHgPqYLoCtPuPJfLehKXogQAmazPPDp4aAdXXRszn9IXrQPi35QcNmw1AWVU9P3lmBNcy8wFISM7g3fFLAIg9mcR7E5ai6QHanW5efn9Op4/X18dwoP3D+3PIuFVs9DK+9Rh9kJCMS4BW7QRo1U6AVu0EaNVNgPbecqweDjS4mV8VPuvyfz/gzNifFDp5u8zJopow1BVajV/7t0k1oH1Ytfbw2bKHGz2sqXMzudLFG2VhmH0Y3v7X/DDwvlHqZGqli7V1bo40hs/i7e14K0CrdgK0Uo/PZoPqYLoCtNMWbmTvkfOR++4+41XTdILBEAAWWyuPPzcSCAPtLweNi/yZ4vJaBrw9DYDpizay+3BC5L51Ww93+nh9fQwH2u0HzjBw6CwWrIph2/7T7IyNv6fePkYfJCTjEqBVOwFatROgVTsBWnVTGWgLrWGMW1Tj5p0yJ48Vdgxw/7sgfObk/CoXBxrc3OqjGNtRArRdq9YW3qf20G28nfQN8PZfisLfP3fw9mhTeP/cul7w9xKgVTsBWqnHx21QHUxbu4t+/Yff99vvh08nM3pGeGvSUTNWEXf+WuS+7QfOREA1ITmDYROXMmTsIgZHLeSxZ0cAYaB95q0pkT9z98ejZqzieHxq5L6Y2LOdPl5fH8OB9s1RCxgybvED6+1j9EFCMi4BWrUToFU7AVq1E6BVN1WAttTm5Vijh6U1bt4td/FkUceg9j8LHLxS6mR2lYu9jW4yv0cY21ECtN+9O3j7VaOH1bVuJla6eL3Myc+Lwhclexje/rLIyVtlYbxdV9vzeCtAq3YCtJLKEwgE+dkLoyksrb7n9mXr9zN/5Q4gvH3pgeMXI/ct37CfT6JjsLe08+QLo6moaQSgyWzvEtD++Rm5qzbGdvp4fX0MB9q+PkYfJCTjEqBVOwFatROgVTsBWnX7PgJtuS18Qa6VtR4+KHfx1AMw9n8UOPl9iYsZVS5iGtzcsBi/9p5OgLZ7u4O3sY0eVt3G29dKnTzZBbx9usjJ4DIn0ypdfFbn5mijhwyLh/pHuD4BWvUqtznItti5bDKRaGsQoFU81WfZ+v28P2kZ9U1W/H6NxNSb/Mvvx1JQUg3AjoNn+XDqSoLBEGZrCwPemc4n0TGUVdXzm1cn4PdrBIMh1m09TL/+w/H6/A8F2j2HEyJ70Da3Ohg4dGanj9fXp1cAbSAQJD27+J7Tl52uvvEGMPogIRmXAK3aCdCqnQCt2gnQqltfB9pKu4ezJjdr6tyMrHDy6+KOweu/5zt58favmW+r93DF7KGhF6zf6ARojavG5uGq2cPBRjfRtW4mVIYvQtcVvP1VkYPBZU6mV7r4vC58UboM6zfHWwHavlWd3U2utYWrZjPxTXV8VV/J9tpi1tbksagqk2nl1xhVmsw7JecZWHSGfy04zk/zvuIfc/bxH7Nj+KusLfwfNzfdU5XLafjfSzIu1cfn11i75RDPDp7KL16KYsjYRVxJz4vc73R5GDtrLc8PmcGYmWtYt/UwC1aFtySYs2wbA96ZzpCxi7ieWcB7E5by9piFDwVat8fH5E828Ls3JjNk7CLWbjnEvBXbH/p4fX0MB9r6JisvvTuTX7wURb/+wwFoMNl4+uXx5BVVGru4LozRBwnJuARo1U6AVu0EaNVOgFbd+hLQ1tg8XDB5+LzOzZgKJ/9W1PH+n/+twMlzJU4mVLrYWO8m2dw79vvsjQnQ9s5qbOF/RDjQ4GZlrYePKl28UurkZw84G/zu7/1fF4cvYDe90sX623ib+QC8FaDt2fKsLVwzmznXVM/Rhmpi6kpYV5vH4uqbzKi8QVTpZf5YfIHfF53h3wqO80TeIX6Us5//lB1zH6x+l/5z9k5+lLOfJ/MPU+FqN/x5kYxLpvO5c+EugC93HmfVplgDV9P3xnCgHT5lBet3HCUQCEaAFmD/sQt8MHm5cQvr4hh9kJCMS4BW7QRo1U6AVu0EaNWttwJtrd1DktnDl/VuPqpw8Uxx+MzBjs4m/F2xk3EVLjbUuUk0hXHL6PX3lQRo+1538Hb/HbytcPGHUidPPOAid3+Ot++UOZlRFX6/nLZ4qfQE5GzyTmqweyiytpFmsZJoauRYYxW76krZUFPA0qosZlWmMa4shaElibxSFM8zBSd5Mv8w/5S7n7+7tYu/ztr2SGD1r7K28B+zY/jHnH08nneIfy04zsCiM7xTcp7RpZeZXn6NRVWZrK3JY3ttMYcaKolvqueq2UyutYU6u/uev5fsQSvJPHySrmYzcOgsPF4/bo+X1z+cz4WUTKOX1afGcKB98oXR+PwawD1Aq+kB/uX3Y3tsHalpefzkmRE88fyoSPuPJQJQ12hh+JQV/Orl8bw5agFZeWWRP2f0QUIyLgFatROgVTsBWrUToFW33gC09XYPqWYPW+o9TK50MaDEyQ87AKZ/yHfym2InoyqcrK1zc67JQ1UveA77cgK036+q7eH30oEGNytqPYyvcPFyqatTvP1hfhhvh5Q5+fg23p5o8pBl+X5sBVJibSfDbCPJ1MiJxmr21pfxZW0By6uzmVuZzkflqbxfmsRrRed4tuAUT+Ud5ce5B/j7W7v5m0eEq395czP/IXsHP7y1l5/kxvKr/OO8WHiawSUJjCxNZkr5VRZUZbKmJpetdUWTg0F6AAAgAElEQVQcrK/gTGMtKSYzOZZmKm2OR/68CNBKMg+fQCDIojW7eHbwVAa8M52VXx4kFAp1/gdlImM40PZ/cwq25jbgXqC9s/FvT83Zi2lM/dMXHd73weTl7D6cQCAQJDUtj/5vTkHTA4AArcoJ0KqdAK3aCdCqnQCtuvU00DbYwxdN2lHvYXqli4ElTn70ADT6ZZGTEeUuVtW6OdPkpkLOjH3kCdCqU5XdQ8rtM2+X17oZV+HiD2Uuflbkeije/uPtfxj5Y5mLmVVOvqhzc7IH8bbM1k6WxU6yycSpphr215ezqbaQ6OpbzK/MYGL5FYaXJvFG8TmeL4zj6fxj/HPuQX6Qs4e/zd7OXzwCXP2Lm5v42+zt/CBnD/+ce5Cn84/xfGEcbxSfY3hpEpPKrjC/MoPo6ltsqi1kf305cY01JJtMZFnslNl65zYCArSSjEx3j+FAu/LLg7w/aRk3bhbSr/9wistrOXX+Ki+9O5Ml6/b02DoOnbrEJ9Ex991ub2nnqYFj0QOByG1vjf4T6dnFgACtygnQqp0ArdoJ0KqdAK26dTfQZlg87G5wM7PKyculLv6pwNEhAv28yMl7ZS6W14TP3Cu1yfGoJxKgVbs7e9BW2j1cvoO3NWG8/X2Ji592cubtHbx9t9zFrConX9a5OdXkIfs23lbaHNyyNJNiMnOmsZaD9RVsrStidU0OC6oymVJ+lZGlyQwuSeDFwtP8Kv84P8mN5Ye39vLvs3fwlzc3P5KzV/8maxt/f2s3P849wFN5R3m24BSvFZ3j/dIkPipPZW5lOsurs/mytpC99WWcaKwmydRIhtlGibV34uqjSIBWkpHp7jEcaL0+PwtX7+JnL4ymX//h9Os/nKcGjmXN5kORrQ96YrYfOMPbYxby2oj5/O6NycxfuQOX20tWXhmvjZh/z+dOX7SRQ3HJADQ1eyRFuwO0Rq9DMiafFqS53WfcGuzGPwcqpwdCWFu9hq9DMqZQCEy9YB1G1ajw8cfUchvoH8FjZVs9HGh0M6/axetlTv5XYccY+3hh+Gy8T2vdHG3yUGyTY49RWW8DrdHrUDoDjz/Nt4G2o/vqm93k2Vq4ZLGwtaGJedUNvF/ewAsljTxZaOFH+S0Pxdv/ktfKf86t5//JLeRvb6Xx1zmJ/F/Zx/mLrD3fCFf/Omsbf3drF/+UG76o1TOFJ3mlOJ73ShMZV5bC7Mo0llVnsaG2gN31pRxrquKiqZF0i5ViWxuNRr++vbg7QGv0OiTjkpHp7jEcaO+Mpuk0mGyR7Q56ei6kZPLZtiO0tjlpbnUwcno0y9bv41pmPkPGLrrnc+ev3MGewwkAhEKSqt0Zo9chGff6hwx8/TU9aPhzoHJGv/5SL3j9e8E6jMqv+PHn27z+Vi3EBUeAaLOfodUeHnvAr0k/VuRiaLWHaLOf844AVi1k+N9Xuiv52c/wuuPnn0AohFXzUu5t56bLyiVHAydaq9hlL+ZzSy6LmzKZVneNkTWXeKsigQElcfxL0RF+nH+A/zdnF/931pauAWrWNv4q+yv+3a2z/E1OKv8+5xb/KbeSv8uzPhRvf5Dfzj8X2vh1aROvVdTxUX0d0eZ6jrY2cdNlpdzbjlXzEgjJ8aI7k//vJ8nIdPf0CqBNzy5mxRcHmLZwIzMWb2LVpliy88s6/4PdOJk5JQwcOovs/DJeGT7vnvumLfySI6cvA7LFgcrJFgdqJ1scqJ1scaB2oZBscaBqTc2db3FQZPVytMnDklo3fyxz8fgDfu35fxU6eL3MydxqFwca3GRZjP/7SQ9PtjjofTXYPRRZ20izWEk0NXKssYpddaVsqClgaVUWsyvTGFeWwtCSRF4piueZgpP8PP8I/5S7n7+7tYu/fkQXtfqrrC38x+wY/jFnHz/N+4rfFBxjYNEZ3ik5z6jSZKaVX2NhVSZra/LYXlvMV/WVxDfVccVsItfaQpndzSWzhz0NbpbWuhlT4eT3JS5+0sm2CT/Kd/Lb29smzK5ysbE+vAd1jtX41+b7lmxxIMnIdPcYDrTb9p/myRdGE/Xxauav3MGcZdt4f9Iyfvrch+w6dK7H1lFR3YDF1hr5+HpmAa8Mn0dLm4OfvxiFx+uP3Ddw6MwIIBt9kJCMS4BW7QRo1U6AVu0EaNXtz4G21OblRJOH5TVu3itz8fOijhHlnwocvFwavmjQ7gY3GYKxfTIB2kdfibWdDLONJFMjJxqr2Vtfxpe1hSyvzmZuZToflafyfmkSrxWd49mCUzyVd5Qf5x7g72/t5m8eEa7+5c3N/PvsHfy3nL38JDeWX+Uf58XC07xVnMCHpZeYUn6VBVWZfFafywFbGQcaKjjTWEuKycwtSzMVNke3PkcVNg9J5vD+1J/WuomqcDKwxEm/gs7x9nfFToaWu5hT7WLTbbzNFbz9VgnQSjIy3T2GA+2vX/mIiprG+25PTcvjVy+P77F1rNl8iLGz1uD2eHG6PER9vJq1Ww4BMHJaNJv3nCIQCHI68TovDJlBIBAEBGhVToBW7QRo1U6AVu0EaNWswubhjMnNFpvGiHIXv3wAxv4oP4wn0ypd7Kj3cM3cM1dvl7o/Adp7K7O1k2Wxk2wycaqphv315WyqLSS6+hbzKzOYWH6F4aVJvFF8jucL43g6/xj/nHuQH+Ts4W+zt/MXjwBX/8+bm/jbrG38IGcP/5x7kF/mH2VAYRxvFJ9jeGkSE8uvML8yg5XVt9hUW8j++nJONdWQbGripsVGma3rF7W6c5Ewo5/3uyu3ebho9rCrwc2SWjejK5y8VOLkf3cRb98rczG32sXm+vDxLU/w9oEJ0EoyMt09hgPt79+b1eHtfr/G0z0ItG6Pj9nLtvLrVz7id29MZuHqXZGzZhtMNj6YvJynXx7P4KiFFJRUR/6c0QcJybgEaNVOgFbtBGjVToD2+1+V3cO5Jg9r69yMqghfef0fOkCOH+Y7GVDiZFKliy31HlLNHup7wfql7un7BLSVNge3LM2kmMycaazlYH0FW+uKWF2Tw4KqTKaUX2VkaTKDSxJ4sfA0v8o/zk9yY/nhrb38h+wd/OXNzY/k7NW/ydrGf7m1mx/nHuAX+Ud4tuAUrxWdY1jJRT4qS2FuZTrLq7P/f/beO66qM9/3v2fO3NPuuefMOffO+d2ZyZTMybQkk0wmyWSSmfSYOGZSTNcUK/beC9i7qFiwIFawISKCgiBYQETpsHtl9w4qq2/Rz++PB40OZYMCa+N6vq/X+/WKQPZ+9mbzrLXe63k+X2yxq7HPaUSGux6FXjfKfEHoA9d79eZHNArajjAFeRR4eexukbcjzAzeNkSWtz9XM3hVx+ArI4t5Vipvb0MFLUXJpTPZ8eTrQ+/h8VeHYGLsxm57/HcGzWzze7sP5SB29a5ueZ5oL9kFbezqXTh/qabV1w9nFmLl5gMyjKhrJfckQZEPKmiVDRW0yoYKWmVDBe3DhS3I44yXxyYHhzFmFq/oGDzShrR4RMXgNR2DGU4RW5wcCn087FEwfkrvES2C1hHiUBtoxEWfDzkeJw47Ldhp12GdrQ6LrOWYZirBCMM5fKbPQ3/tSfxJnYGn6o7gpzUp+M+qXfhuZ5taReCfKnbg+1W78VhtKp5RpeFVzXH8VZuDQfozGGO8gFmWy1haX4mNNhX2OAw45rYi3+tCqd8PTeBan1tZ3tcEbUcYgwLOeHnscnFYbOMw3MygXydW3v63ugmv6Rh8bSLydruTxykvB5UC5C0VtBRa39a1JhZvfjoVl6u03fJ4HQlaXpDAsMp4/2UXtLOWbsfTb43A+0PnYfzcBIyeFY/+g2fi+b+MxuS4zfcQjSX3JEGRDypolQ0VtMqGClplQwVt38UR4nHOxyPRyWG8hcUbegY/bkNI/EjF4E86BqPMDBIcHPK9ROR2pkkY5eGlOwStM8RB7b+KSz4/TnucOOqyYpdDjwSbCkvqKzDDUopRxgsYpM/HAO0pvKw+jqfrjuDnNan4ftVu/ENF98jVf6jYjv9btRuP1qTi6boj+LM6AwO0p/CFLh8xhvOYbinF4voKbLDXYZdDjzSXFbkeJy75/FAFrsIZ4mT/ffQ2D5Og7QhDi7xNdvFY1CJv39Iz+LWmqUN5+5i6Ca/rGHxjYjHfymKHk0eOl4c6KP9r6g6ooKXQ+ramLtyCtdsO3/l3tdqEj0bE4Z1BM/HeN3PviFudyY6Bw2OxdtthfDNpBd77Zi5KKzWYFLsJHw6bj2UJ++/8XP/BM7F6y0G88clU9B88885j3L2Ctr3neVhKdkG7dMN+rNiU2imiseSeJCjyQQWtsqGCVtlQQatsqKDtG7hCPIp9PJKcPKZYWLxtYPCzdsTCH7VNGG5mEO/gcMrLwdLOY1JBq2x8VwUEJAGX/QGc8bpxzG3FHocBm2xqLLNWYrblMsYYL2Cw/gze0+bgNXUmfq86isdqU/Ff1Xvwz93U1Oq7FdvwH1XJ+El1Cn5bdxgvqY+hv/YkPtXnYbjhHKaaSrDQWo54Wy2SHFocclqQ43Gg2OdFTaAR1hAj+3vZF1GKoO0IQ1BAfou8XWjjMMxE5O2vOiFv39AxGNIib5OcJEamL8lbKmgpvV23akfjVs2IXidSZeQUYeDwWITDN+587YOh85GdfwkAkJVXggFfzQYAGK1OPPHaUFSpjACAmUu24b0h8yBJYYhSGM/1H4VgwzXoTHb89o1hyMgpAgAczy1G/8EkDvVuQdve8zwsJbug7esl9yRBkQ8qaJUNFbTKhgpaZUMFbXRS6ifbdadbWQzQs/h5O1t1n9OSFV6r7DyyPCSnsbPPQQVt30YfuI4yXxCFXjeOu+ux32nEFrsGK+qrMNdyBeNMRfjaUIgPdbl4XX0Cz9Wl45e1B/CD6r34126Sq9+p2Ip/r0rGj2v24/HaQ3hBdQz9NFn4WHcawwxnMclYjFhrOdbYarDdocEBlxnZbjvOe72o9jfAHGyS/X1UKlTQdow2ICDPyyPZyWNBPYthJpLR/Ut1J+StnsFQE4tYK4udTh6nPTw0USZvqaCl9HbdKv9IFjoqh9uPP38wAeZ61z1fD4dv4ObNWwAAf/AqnnpjOAAiaF98b9ydn9uYnI7F6/fd+Xf/wTOhNdqgM9nx7Dsxdx4jHL6Bx18dgsZrTfcI2vae52GpqBC0x3OL8c2kFXjz06kAAEGUkLg3Ezeam2UeWeSSe5KgyAcVtMqGClplQwWtsqGCVn7KAzz2uznMtrJ4z0Au8Nu68H9Gy2CQicUyG4djbrL660Gelwpa+TAGr6PSH8I5rxdZbhtSnSZstWuwur4a8y1lmGgsxhBDIQbqcvGWJgsvqI7hN7WH8KOaffjfVTvxnW6Qq39XsRX/VrUTP6zeh1/VHsQfVOl4U5OFgbpcfGMoxHhTEeZbyrCqvhqJdjVSnEZkum045/Wgwh+EgcrVPg0VtPePJsDfkbdx9SyGmkjEzC8iyNtf3CVv4+pZJDvJ42hkyLylgpbS6xW+CoQbe592qrn5JgaNXYLUY/mtvnf6XBm+mrAMn49ehE9iFuLJ14cCIIL2zc+m3fm5LbszsCbx0J1/D/hqNlR6K3Qm+x0feLuefScGNqfvHkHb3vM8LCW7oN1zOBdvfjoVSanZePzVIQCAYMM1DBwei/U70uQdXCdK7kmCIh9U0CobKmiVDRW0yoYK2t6lOsDjgIvDfCuLjzroQP6khsFnRgaLbBzS3D1zAU8F7f1hCTahxt+AC14fTrrtOOg0Y4dDi3hbLeKs5ZhsuojhhnP4RH8ab2uy8UdVBp6oPYSfVO/H96qS8fcV27pl9eq/VCbh/1XvxS9rD+BZ1VG8ps7E+9pcfKUvwDjjBcyxXsHy+ipstquxz2lEhrseBV43rvgC0AWuwRclTcIo8kAFbc+gCZIVszudPGKt38rb9m683eaX6ia8qWcwzMRgwV3yVhvomfMzKmgpSq/EPccRM2Mtbt26dc/XQ43X8Uy/kTDb3AAAjy90X4L2uf6j7zz27RW0166zdwRtR8/zsJTsgvaVgZPuLI++LWgBsnT67l9ktJbckwRFPqigVTZU0CobKmiVDRW0PYcmwCPNTbINPzUyeELT9oX5b9QMBhoYzLeyOODiUN1Lq6mULmg1gWs46rIiqUWuLrSWY6qpBMMN5/CpPg/9tSfxJ3UGflt3GD+pTsF/VCV3i1j9HxVb8Y8VO/D9qt34eUtTq1c0x/Gu9hQG6fMxyngBMyylWFpfiQSbCrsceqS76nHa40Spzw+1/2q3vP7uaBJG6btQQdv7qIMkqzbJyWO+lcUQE4s3dJHl7a8038rbhTYOyS4e+d4H20VBBS1FyVWjMeOVgZMQCF1t9T2j1YmX3h8PSQrj5s1bWL8jDY+/OgSCKHVJ0D7x2lCcPlcGADiRdxHvDZkH4NsM2o6e52Ep2QXt3TkTdwtaXpDwu34jZRpV50vuSYIiH1TQKhsqaJUNFbTKhgra7sEQFHDMzWOZncMgE4vfadvf4vq+gcFsK4v9bg7lMmxtvY3SBO05rxfxtlp8rsvHL2pTH0iw/mfVLvy0JgVP1R3Bn9QZ6K89ic/0eRhpOI9pphIsspZjna0OO+06HHVZkeNx4qLPh9pAo+zvw22ooFU2VNBGF+ogjxwvjx1OHvOsLL4xsXi9E/L215omvKVnMNxMdlwku3ic6YS8pYKWouSat3InHn91CJ58feg9/GHAGADAnOVJePOzafh89CJcKlfjy/HL8OmohZ0WtHU6Kz4YOh9rEg9hwFezMeCr2aisI43F7o44aO95HpaSXdB+PnoRThaUAvhW0N66dQtb92Xi45ELZBxZ50ruSYIiH1TQKhsqaJUNFbTKhgrarmMKkoZcK+08vjaxeLadlbE/VzP4i57FdCuLXS4Ol/3yj/1uHnZBe8Jjw3xLGfppsvDv7ax+/b3qKN7WZOMT/WkMN5zDVFMJ4qzliLfVYodDizSXFSfddlzw+lDjb4DlIcpdpYJW2VBB23dQBXic8nLY3iJvvzaxeE3H4L8jyNvfqBn0a5G3i20cdrk4nPHyMAYFKmgpcqsnWgoo2QVtZZ0Bz74Tg68mLMPjrw7BhPkb8fYXM/Bc/1G4XKWVe3gRS+5JgiIfVNAqGypolQ0VtMqGCtqOsYR4nPRyiHdwGGZi8Edt2xfEP1MxeNvAYIqFRZKTx0UfD1cUjL8jHiZBqw1cw16nAeNMRfiDKh3/ULG9lYz9XlUy3tJkYZ7lCjLc9agPMbKPW06ooFU2VNA+HNQFyDFqW4u8/crI4lUduUHYkbx9XMNggInFCDODJXYOu10cCrzkBqTcr4nSO9Ci1dMlu6AFSN7s1n2ZmLsiCYvW7cWew7louNok97A6VXJPEhT5oIJW2VBBq2yooFU2VNB+iy1ImrJscHCIMTP4k47Bj9q4sP2xmsEbegbjLSwSnRzO+3g4omD8XaUvC9qLPh822OswSH8Gv6hNxd+1sTr2ZzUp+FSfh7W2GpzzemUfc7RBBa2yoYL24edueTu3nsWXRhav6Bg82oG4vb3y9h09g5Et8naPi0OBj8rbhw1atHq6okLQAqRLm9MTkHsYXS65Jwm5GWRiMdnCYrWdw3432QKiVsiBiApaZUMFrbKhglbZKFnQFnh5bHZwGGMmWX/tXay+rGMw2sxgg4OcG8g97u6irwhae5BFttuOBdYy9NeexP+t2t1Kxn63cjueUaVhlPECkh061EVR1mu0QgWtsqGCVtkYrkk4fzWMRCeHufUsBplYvNxJedu/Rd4uu0vemhVyzfwwQYtWT5fsgpYXJMxbuRNPvTH8TgZtw9UmDJ2yEsGGa/IOrhMl9yQhJ7V+rt0D0aMqBi/pGHxsZDDRwmKlncdeF4d8L7kzKffYuwMqaJUNFbTKhgpaZaMEQesM8bjg47HNyWOihcWbegY/aeN4/8OW4/0IM4P1dg6nPTzqo2D8PUW0Clp94Dr2O42YYCrGC6pj+MeKHa2E7L9XJeMNzQnMsV5Bhtuq+LiC+4EKWmVDBa2y6SiDtibAI9vDIdHJYba18/L2CQ3JXY9pkbf7XBzO+khUkNyvl9IaWrR6umQXtPNXJWPUzHjUaMx3BC3Hi5i9fAemL94q7+A6UXJPEnJiDhLputJOLt4+NpKLtEgHoh+oGPxURTLpPjIwGGdmsbylg2aOlxzg5H5tnYEKWmVDBa2yoYJW2TyMgvaij8dOJ49pFhb99eQ43dbx+3ktgyEmFqvsPE56OMVdREaLoL3k82OjTYXB+jP4Ze2BNuMKflKdgo91p7HGVoNzXk/U5/v2BaigVTZU0Cqb+20SVuUn8nbLXfL2T7r2j7N3y9sBt+WtjcjbQipvZYUWrZ4u2QXtHwaMQeM1kjd7W9ACwHWGw58/mCDTqDpfck8S0YomwKPAxyPVxWGNncMUC4vPjQxe0TF4LEL3zB+oyCqdP2gZfGBgMMbMYqmdQ7KTZAJV+aOjiQgVtMqGClplQwWtsunrgvaKn8ceF4eZVgbvGth2u1r/XsvgSyOLFXYOmR7SxVruscuNHILWHmRxyu3AQms5/qI9ie+3E1fwu7o0xBjOY6ddh1oaV9AjUEGrbKigVTb3K2jbwxUi8jbLw2OLk8MsK3NH3v4swrXyky0rb0ebGSy3cUhxcThH5W2PQ4tWT5fsgvbFv46DKIUB3CtoG6424dl3YmQaVedL7kmir6IPCjjn43HAxWGdg8M0C7mb+LqOwa80kQXuIyoGz2oY/NXAYJSZwSIbhx1Ocneywt87jUeooFU2VNAqGypolU1fErSVfnKzdG49iw+NDH7Zjox9SsPgCyO5IZru4aEL0M93W/SGoNUHriPFacREYzH+qMrAP7URV/BvVTvxuvoEZlsuI91VDyuNK+gVqKBVNlTQKpvuFrQd4QqR4/cJD48tDnJDdZCJxUudWHn72xZ5O8bMYkWLvD1P5W23QItWT5fsgnbCvASs2JQKQZTuCFqPL4RxczdgzOz18g6uEyX3JPGwYgnxKPLxOOwmnaFnWskqnjf0JGg9ksD9kYrBM1pycBphZhBXz2Krk6wAKvPzsHfDGKmgVTZU0CobKmiVTbQKWlWAxyE3j7h6Fh8Z2j9ePq5m8ImRwYJ6Fofdymnu2R30hKAt9fmxyabGV/oC/Kr2YDtxBfvxke40VtVXo9DrjoqdREqEClplQwWtsulNQdsRt+Vtpoc07ZxhZfGFsXPy9ikNgwGGFnlr55Dq4nDBx8MaBe9vX4AWrZ4u2QWtx9+Av349506TsBfeHYvHXx2Cz8cshtsblHt4EUvuSUKp1IdIXt5RN49NDpLnM8TEop+e5PVEErg/VDF4WkM6ag4zMZhnZbHFyeGYm0epn4e9ExerVNAqGypolQ0VtMomGgStNiAg3cNjiZ3D50ayYqat492vNE0YaCTHuQMuDpV++d+/vsyDClpHiEOOx4HF9RV4V3sK/1W9p3VcQcU2PF13BCMM57DDoY2auAKLW0CNXsSVGgEGmzLnPypolQ0VtMomWgRtR9yWt8c95Bp5hpXEDL6oa7vR59/K23cNLMaaSYPvAy4ORb6Hu/FnV6FFq6dLdkELAM3NN1FRa0BGThFyCi9Dra+Xe0idLrknCUrb2IM8Lvl5pLtJps88K4thJiJkn9IQQRtJ4j6pYdBPT5qhzKlnsclBtn2WtByoqKBVNlTQKhsqaJVNbwtaQ1DAcQ+PFTYOg00sntG2fdx6TN2EvxoYzLIy2OviUEZlbLfTVUGrD1zHAZcJk00X8ZL6GP65MqmVkP3fVTvxmjoTMy2lOOqywhJs6vXXpbYIKK0RkF8kIP2UiN2HBCQkiVi2XsSsRRLGTA9jxKR7GT0tjNgVEuK3idhzREDWGRGXqgTo6x/euZEKWmVDBa2y6QuCtiNcIR4Vfh4Zbh4bHRymW1l81iJvfxxhh+rTLdGC41rkbaqLQ7EC5S0tWj1dsgva1GNn2vz61WsMpizY3Muj6XrJPUlQ7g97iDRJyfTw2OrkEGslUQh/0ZML3x91QuA+oWHRz8DiKyOLWVYGGxwcjrh5FNOMH0VABa2yoYJW2fSkoDUHeZz0kAabQ0wsnm9Hxj6qIsesaRYWyU5y85Bue+95Ignay/4AttjV+MZQiN/UHsJ32ogreKRmHwbqcrGyvhoFXjecIa7HxmuwCShXCThXKuJEnoj9RwUk7haxcqOIecskTJgttRKv3cGoqWHMXy4hfquIPYcFZOWLKKkUoLP27XmTClplQwWtsunrgrYjnCEe5QEex1rk7TQLi0+NDP6obYoob3+nZfCegcE4C4tVLStvi308bA9hfBItWj1dsgva1z6ejDWJh3Dr1q07Xyu6XItXBk7C1xOXyziyzpXckwSlZ3CEyEEq20Oajy20cRhlJncOn9WQJmWRBO6vNU14Q0cC3adbWaxzcDjoJiHt5ofwgKU0qKBVNlTQKpvuErTWEI9cD491Dg7DzWQVS1s7PH6qYvCWnsEkC4vtTpLR7oyC90GJ3C1oHSEOuR4nltZX4j1tDv6/NuIK/r5iG56qO4LhhnPY7tCgxt/QLeOwugRU6wQUlYk4VSjicKaEpBQRa7eKWLBawtRYCTFTOidTY6aEMTVWwsLVRKgmpZDHO1UoorhcRI1ehNXVer6zugSU1QrIPS/iQIaEjTtFLFwdWfqOmRbG3KUS1m4lK3Wz8kVcrBChswpwRfn5ERW0yoYKWmXzMAvajnCGeJQFyM7UhBZ5+0mLvO3omviHLT1h3m+Rt6vt5Fr4Yh+Wt7Ro9XTJLmj9wav4JGYhpizYjKvXGCxatxe/6zcSew7n4ubNW5EfQOaSe5KgyIMrxMPE3kBBSESyk8dSO4cxZhYfGBj8QRs54+cHKga/UDfhVR3pmj3VwmKtncMBF4dCH8kWlPs1UjqGClplQwWtsrkfQWsL8jjjJStTRpsZvKxre7fGIyoGr+vINmLAY+MAACAASURBVMItTnJM6I7GlpQHxxBswiGXGXGuMvxJnYF/aSOu4F8rk/Cq5jhmWEpxxGWBuYtxBQ4/D7VZwKVqAXlFAtJPEom5MUnEkngJMxdJGDOt8ytZJ86WMG+ZhFWbRCTuEZGSLuBEvoizpSIq1AIM9p6Roha3gLI6AbnnBRw4LmFTsoiFayRMjCBvR08LY85SCfGJ5HWfyCOSWGOJDnlLBa2yoYJW2ShV0HaEM0QacKd7SGPvqRYWHxsZvKDteEHTbXn7gYHBeAuLNXYOh9ykx0xnesHIBS1aPV2yC1oA4AUJUxZsxtNvDsdHI+JgrnfJPaROl9yTBEU+OsqgdYV41AbIyqhdLg7LbRzGWUhX7Rd1DH7WCYH73+om/FnL4FMjg8ktW0b2uzmc8dKO29EAFbTKhgpaZRNJ0DpCPM75eCQ6ydz/Rjv5bj9SMfizlsEoM4MEB4d8b99dVfIwUuYLItGuxhBDIR5vJ67gRzX78KEuF8vrq5DvdbUbV+AKkriBsjoBhSUiMvNE7E8TkLhLxMoEEXOXdi1uYOwMCbMWk4zYjTtJjMCxHBH5xSIuVwvQmAU4ozSD2OohsQt5FwQcPC5h8y4Ri9dImDSn49c/akoYc5aIWLNFRPJB8h4WlYlQ96K8pYJW2VBBq2yooO0ajhCJFEz38Fhv5zCl5Vr4D52Qt7/XMvjQyGBCyyKmw24S5SS3vKVFq6dLFkFrtDpbYbA4MTF2Iz4aEQedyX7n69Feck98FPl40CZhqgCPfC+PvS4OK+08JrZsF3lJx+DnEbJ+bucPvqRj8JGBHLxW2DjscXHI8/KoC8j//jzsUEGrbKigVTZ3C1pniGSP73DymGxh0U9PIgnamrdf1DEYbmYQ7+BwysvRvPIowhnikOdxYWl9Jd7X5uIH1XvbjCt4svYwxtuKsNWuQZU/BHeIh9kpoFor4MIVEScLRRzMlLBjv4i1iSLiVkmYMl/CyMmdjBuYGsb0OAkL10hY1xI3cCRLQs5ZEgNQaxBR75X//eop6r08KtRk9fChTAlbdolYvFbCpLkdy9uYqWHMXixizWYRyQdEHM9tkbfm7pW3VNAqGypolQ0VtN2HI8Tjcou8Xef4Vt4+3wl5+6yGyNuJFhbxjt6Vt7Ro9XTJImgff3VIp4n2kntyk5uyWgFqswCrR3mi4kEFbSQ0AR4FXtIlc03LXcfPjWRb7GPqpogC96cqkg000Ei2yi6zcUh28cjx8qgO0GYyDwoVtMqGClpl4grxuOTncezaDUy3sBigZ/FoO3Pwc1oG35jI7ocsDw8TXRkbVRiD13HIacE0UwleVh/H/2ojruB/VezAi2WHMfrcCWxKP4X8Ldm4sOQgDiUYsCRewvQFEkZN7XzcwKQ5EuYv/zZuIDVDQla+iPOXRVRoSNyA3O9LNGPz8ihXCci/S94uiY8sb0dMCmPWIvK+J6WIyMgRceGKCJWx6+83FbTKhgpaZUMFbe9gD/Eo9fM46ibydrKFxUADOa/qSN7+qEXeDjSSzP74lgbel/zdFxVFi1ZPlyyC9jrDdZpoL7knMDmp9/CtOvZOjZUQu0LCigQRCUkidqaKOJRJLkAKLoq4VC2g1iDC7IyOLLEHoacFbST0QQFnfaRTZnxLYPsgE4vXdAx+pYkscH+sJncp3zcwGGNmscTOYaeTx0kvh0o/bUATCSpolQ0VtMqgLMBjn4vDbCvpUNzezbFntKQh5DIbhww3D0OQfjaiCY+7AdUGPbZXn8Xwy0fwZGky/r68dVzB/zufgL8eXIzlq8fi/IT30fDZn3H10z+1Yu/wg/ec/4ybKWHOEhHLN4jYlCxizxEBGTkiCopFXKkVoLUIcNCdLT2KzcejUiPgTLGIIyckJO4m8nbK/Agrb6eEMfMueXss91t529bvjApaZUMFrbKhglZ+bsvbNDeP+BZ5+1FLE++2cv3/Vt5+ZCDRgescHNLc5LG6Im9p0erpiooMWo4XUFhciUOZhThy4izOX6qBIEpyD6tTJfckJScGu4DY5RKmzu/aCpK/XU0yZ4mIpevIVr7t+0SkHBVwLFfE6QsCLlaIqNIKMNii72JXbkEbCUuIxwUfj8Nukvsz08rgSyOLN/QMftOJCIVHWg5k7xpYxJgZLLRx2O4kK8HKAmRrityvUU6ooFU2VNA+fFT5yY6FeVZysv/rdm50Palh8HU9j8U2DkfdZLeD3GNXEl6rC746HXyll+EvyIc/KwOBg3vhT96E4Ial8C2eCffMMTgTOwqr1o3Hxymz8MjZta1k7HfKt+DJnOUYmTQFyQsGQzXi7VYi1vNZP9QP/giGocOgHjUJtVNiURe7BnXHylFSKaDOIMDmk/89oXSMzcejSiugoKRF3u4RsXS9GFHejpgUxowFElYmiNiRIuJYjojiMgkuLxW0SoUKWmVDBW10Yw+R1bJHWuTtJAuLgcbI8vaRll1PAw0MprTI26NuEsHwt/KWFq2eLtkFbfGVOjz7TgyefScG/T6fjjc/nYqn3xqB5/8yGpertHIPL2LJPRFFE/VeHmoLaYBx/rKIU4Ui0rJF7D5MmmCs2Sxi4WoJMxdKGDez840w7lmlMot0MF60RsLaRLJFcM8RAUdPisg5S1Y9lKsEaCwCHD3cHCPaBW1nKPaRO5AJDg5z61l8bWLxpp7BE5rIAvcHKga/0zL4i57FcDODuHoWiU6yeqw0ShuTdCdU0CobKmj7NuoguXm10MbhE2P7c96vNU34yEDmtwMuDtUtMjZSkzBKBAIsPHY/vFojfOWV8J8/D/+pLATSUhHYvRXBzasQXDUPoQUT0TBtCBpHD0TjV2+1uZr16qd/gmfwq8ic+THmJozB60dj8a8lG1sJ2X8p3YQ/HluBkVsWIz52MbLGrkLehEScnpOC08tPoGDLORSlVuBKrhG15T6YbGybY/c0kN+/7O8hpVtw+HlUawUUXBSRli1h617SeG1aXMfnqSMnhzF9AdkxtiNFRPopEedKSUZwtDZnozw4VNAqGypo+zYlPh6H3DzW2jlMsLD4wEB2QEW63r0tb6dZWLnVEy0FlOyC9s1PpyIjpwg3mpvvfE0QJSTuzcRbn0+XcWSdK7knmr6MI8BDXy+gUiOguJysmD2WK2L/UQHb9omI30a2p81ZImLi7M432LibMdNIs424lRJWbiRbD5MPijicKSHrjIjCEtLtuM4owOLqmmx5GARtJEp8JLx9s4OsKhtqYvGOnsFvOylwf6th8LaBwVATi3lWFpsdHNI95HHlfm0PChW0yoYK2r6DLiAg3cNjmZ3DIBOLp9qZvx5TN+E9A4O59Sz2uzmUd7Aylgrab/G4Q/AY6uGtroOv+CL8eTnwHzuMQMpOBLauQzB+AYKLpiA0ayQaxn2GxqHv4Go70QGRaPj0FTg/G4CLI77B6sWz8EnySvwiZxO+U9Y6ruB7F5PxfF4mvs4tQ3yBG/kl5Aayrl6A8wFWPVNBqxwcfh7VOrLyNi1bxLZ9IlYkSJi5MNzhOenIyWHMiCPydvs+EeknRZy9JKJGL/b44gFKz0IFrbKhgvbh5aKPx0E36fsy3sLi/XbkLS1aPV2yC9r2JKwohfFMv5G9PJqul9yTiZJwBXmYnAJq9CJKqgQUFIs4kSfi4HEJO1NFbEwSsSJBxPzlJHNs1JSuC92YKWFMnidh3jIJyzeI2LBdQlKKiAMZEo6fFpFfLKKkQkSNVoAv1IzGpodb0Ebisp9HpodHopNDXD1ZSTtAz+J3nbgb+QMVWbX2toHB1yYWc+tZJLTkARX3AYFLBa2yoYI2OjEGBWR6eKy08xhkYvH7duaiR1VkrpppZbDXxXV51f/DKGg9viZ4rS54VTp4L1+Br+AMiQ84tA/+nRsR2LAUweWzEJo3FqHJg9Ew4j00fvHafYnWq5/+Cd4v3oZ18MeoGzQcpV9NRuE3C3ByyFocGbYDe0YcwZaYHKwdfRGLxtZiWKwab2wtw28y8/C9i/taxxVUbMUvqw7hK10httjVuOIL9Nz7RAWtormdQevw86jRE/GafpKI2BUJIqYv6HhBwcjJZOHA8g1E+KZliygoEVGt6/mdX5QHhwpaZUMFrTIpbokM3OSI/v5ItPp+yS5oh09bDacn0OrrVSojxsxeL8OIulZyTxiUjrF6BKjNAq7UCjhbKiK7UMSRLAm7DwnYvEvEqk0iFqwinZjHzri/2IUJsyXMXixi8VoJa7eK2LpXxL40AcdyROSeI7ELFWoBOquyTr4dIR7lAZJZu8NJthLHmBn8tSXIvaMunLf5jZrBG3qSnTvTymC9ncNhN48iH8nYlfP1UUGrbKiglR9LiDQ1jHdwGGZi8EI7MvZnKnIjaIqFxU4nWSXhesDnjmpB283xAZEIDXodnm8+gG3419DGjEfZqLkoGLkSGcMSkTIiFdtjsrB+1HksG1OJeePMmDwhgJhJwj3Casp8CXGrJMQnitiSwiI214avL17BH8pP4F8rd7aOK6hMwkvqY5hsuogDLjMMwaZee3+poFU2nWkS5vTzqDWIOFtKog92pHRO3o6YFMa0OAnL1pNzybRsCQUXRVRrlXX+GM1QQatsqKCl0KLV0yW7oN2+PwtvfDIVyxL2Y2/aaSQfPIW4Nbvw+idTkLjnOFKPnblDNJbckwSle3H6eeisAirUAi5cEZF7njSF2JcmYOteEWu3iliylgjZibPvrzHa2BkSZsRJWLCKdA3evEvE7kMCjmRJyC4kJ/RXaolYtrgfXgHkCvGo9BPBkuzkscTOYYyZ5AE9r2Xw4040MvuVpgmv6Uj39GkWFvEODgdcHM75eOh7uIs6FbTKhgra3qU+xCPPy2ODg8NIM4OXdAx+2Mac8OOWmzoTLCy2Ojmc9/VMQ8PeErS9GR9w9fNX0DhsAAJjv4B76ijUz5oJ7dwlKJu7AYXz9uD47HTsnnYGa8eXIXasDtPHezBmIhvxBubcpSRiKHGXiP1pAjLzSLxQuYo0AK3xNyLJocUIwzk8XXcE363Y1krI/lf1HryrPYUl9RXI8TjhCHGyfRapoFU2nRG0HeEI8KgzkF4Nx3JEJKWIWLlRxIwFEmIi7PyaOl/C0nWkydmRLAkFxaSRLm1U13tQQatsqKCl0KLV0yW7oH1vyDwMHB7bKaKx5J4kKPLBiSTiwGAXUK0TUFIpIL9YxPHTJBIhKUXEhh1kG9u8ZRImz4t88t0Wo6aQ1UXzl5M8s41J5IT+4HEJJ/JEFBSTyIcavQiTU4ArKP970x24QjxqAjxyvDx2uTgss3EYZyHd1f+obcLPOrEC9zF1E17WMfjcSFbPrbFzSHVxKPA9eOd1KmiVDRW0PYc9yKPAx2OLg9y0eVXX9or7R1QMXtUxGGMm+dYFXvL/9sYYuypoezs+oOGbfmgc8zEapg9DaMEkBNbEwpOwBpbN26Haegil204hb3MRDm+oReLqeixeHMLE2Z3fRTJmehgzF0lYEi9hYxK5yZh+SkRekYBL1eQGY1sr/lwhHmc9Hqyqr8ZHutP4SfX+VjL27yq24le1B/G1oRCb7WqU+v2yfybv+V1SQatoHlTQdoQjwENlbJG3ud/K25mLIp8/TplP/h4Td4s4ckLCmWIRlRoqb7sbKmiVDRW0FFq0erpkF7TRWFt2Z+DlDyfe+bfD7ceQySvxx3fH4qMRcaisM975ntyTBEU+7rdJmNUlQGUUcLlaQGGJiKwz5GR610HSxGzlRhFxKyVMj5MwZnrXhe7IyWFMnE2aqy2JlxC/jeSc7T9KmrCdviCgqIycuOvrBTgeUFTKSV2AR76Xx14XhxV2DhMtLD42ktV1j3ZC4P5cTX72EyODSRYWK+089rk4nPHyUEV4X6igVTZU0HYPjhCPCz4eW52ko+4begY/aeNv9Ycq8rc60kyiTk57yKraXh9zS3xAs9sBfy/EBzQOfh0NMR+gYfJXCM0fh+CKOQhsXIFA8mYEDu+D/2QmnHlnoc+rQFmuEfkn/ThynEdSCtnxsWC1hKmxnb85GDMljKmxEhaslhC/lQiiw5kSThWKKCojTY6sXWioaQ0xSHfVY7blMl5Xn8C/VbWOK/jnyiS8qM7AJGMxUp0m6APXZf9cdgQVtMqmJwVtRzgDPFQmAeeviMjIEbEzlcR0zeqEvJ08T8KStRISd5G/5/wiARUaATav/O9nX4MKWmVDBS2FFq2erqgQtBa7BxuSjmLW0u2YHLcZ67YfgcnqkmUs9Q4vBnw1+x5B+82kFdibdhrNzTdRdLkOr340GeEbzQDoCbqSuV9B21Ucfh4ai4ByFYldyDlLGlLsTROQuEfE2kQRi9dImLVIwvhZ95ejO26mhJkLJSxcLWHNZrIVdfdhAWnZIk4Vijh/WURZnQC1RUB9Hzqh1wR5FHh5pLg4rLZzmGJh8ZmRwcs6sro2ksB9VMXgRR2DgQYG4y0slts47HYROeQQmqmgVTBU0HYdV4hHiY/HTiePKRYW7+jbv5HygpbBMBODtXYOJ71cj2ROyxEf0DDhc4Rmj0Jo6QwE1y1GYPsGBFJ3I5B5FP78PPhKSuGtVcNrdsDpuga1maxIzSsSkH6SrFTdmERuvs1cJGHMtM7P8xNnkwaYKzeKSNwjIuWogBP5JFanQi3AYH/wHRh1gUbstOsQYziP39Wl4buV21sJ2e9X7cYA7SksspbjlNsBe5CV/bPZpc8NFbSKRi5B2xGuIA+1mZwjHs8l8nb1ZhGzF4uImRpB3s6VsHithM27RBzKlJBXRM436z3yv65ohApaZUMFLYUWrZ4u2QXtmaIKPPHaUAwetxTzVyVj/qpkfDF2CZ56YziuVOl6fTxDp6xETuHlO4I21Hgdz/UfjRvNzXd+5uORC+6MTe5JgiIfvSVou4ozwMNgE1ClFXCxgmw5zcgVkZIuYMd+Eeu3S1i6XsScZRImz72/2IXR08gqq9gVElYmiNi4U0TyAbIyIytfRMFFEaXVAuoMAszO6JVYuoCAsz4eqS7SaGiahcUgE4vXdAx+2QmB+xM1EUkfGhmMNbNYaid5uqe8HKr8D96IiBK9UEEbmSt+HrtdHGZYWQwwsPjvdv6mntUw+MrIYoWdQ6aHh7GL+dFyxAdcH//JnfiA4JpYBBPXILBnG/zpB+HLPQl/0QX4Kqrh1VvgcQTuGa8rSObosjqyiyIzj2SzJu4SsTJBxNylEiZ0IW5g7PQwZi0WsXQ9mYv3HCZNKvOLRZTWCNCYBTh7oMGQK8TjnNeDNbYafKI/jZ/WpLQZV/DL2gP4Ul+AjTYVSn3RFVdwP1BBq2yiUdB2hCvIQ20hO6eOnxaRfFDEms0i5iwRMSrC+d+kORIWrSHy9uBxCacvEHlr9Sj32EcFrbKhgpZCi1ZPl+yC9v2h83D63JVWX8/Ov4TPRy/q1bEczy3G7OU70Hit6Y6grawz4oOh8+/5uWmLEnEk6xwAeoKuZKJV0N4PZieRqaXVAgouisjKJyspkg+QC/6VCSJiV5CtsqO7sGLr7m2zk+dKmLOMyOH12yXsSCHSOCOXSOSLFaRTscEmwBklsQuWENl+fcjNY72diKbBJrIN+3EtG1HgPqJi8JyWwXsGBqPNDBbZOCQ5eZz0cKjw83BGwWuk3B9U0N5LhZ+sVJ9TTxr9tXeD42kNaeq31M4h3UNuktx5nJb4AK/WCF+UxAf4zhbCd6UMXrUBHpsX7gADd6j9DFqzU0C1lqxkO1ko4mCmhB37yU6HuFUSpsyP3MX9zrw5NYzpcRIWrpGwriVu4MgJCTlnRRSXi6g1iL0qSupDDDLcVsy1XMGbmiz8e1VyKyH7TxU78ILqGCaYipHiNEZ9XMH9QAWtsulrgrYjXEEeGrOA4nIRJ/JE7DpI5qo5S0SMirDyduJsMjdtSiZ9F3LPk5tOD3NzW3eIClqlQwUthRatni7ZBe2z78Tcszr1doVvNOO5/qN7bRxXrzH4y5ezEGq8fo+gLSlXtRLF81clY1/aaQCAFG6mKJTmm7dwo/mm7OOQgya2GR7/TRgszaiqa0bRpRs4daYZhzPCSE4JI2FbGEvXhTFnsYQJs7oudMnJfxhzl0hYvj6MTTvC2HUgjLTMMHILmlFcegPVqmaYrM3wBprB8b3/Hty8eQtN4ZtQszdw+uoN7ApIWOQSEGPj0d/E4snOClwdiw8sHMbbeaz0iEgNhnH++g2YuGbw4ZuQ2oGXmiHduEmRiVu3gHAUjEMOPEIzTl4LY4VHxBdWrt2bFU9qmjBIE8DKGitOXq6AMy8LbNpuMLsS0LRxMa4vn4Zrc2NwbcLnuDas/wPFB1wd8S6uTRqEa/NHo2nlLDRtXgZmzyaw6fvA5x0HX3IWQk0FBIsRUsAHiRO69JpZ/iZcvpvQGG6ipLwZpwtv4sCxG9i6+wZWbAhj9qJwlzLDp8wPY9GqMNZvC2P3wRvIONWMcxebUVV3E2b7TTRcvQkxLO/v2S2wSGuwYIr9Iv6gTcf/bCOu4L9q9uADYw7WeKpx8boXbPiG7J/P3gCA7GOgyEP4Bpn/5R5HTyOGb8IXvIk67U0UFjfjUMYNbNoRRuyKyHPdxDlhLIkPY/teMrcVX2mGwXITjde7Z2y82NzuuVFPE75xEzdv3pLt+XsO+a8t+gI3mm+i+eYt2cdBkQ9atHq6ZBe0A76ajVqNudXXazRm9B88q9fGMW/lThzNPg8A9wjaKpUR7w2Zd8/PTl245c7PBq6JFIUiSM1o4sKyj6Mv4G0UYXZKqNWLKK2SUHBRQmaehNRjInakSNiwXcSydRLmLJEwcU7nV5jdzZjpYUxfQJrbrN4kYcsuCXsOiziaHUbOWQkXLkuoUEnQWSQ4fA/+mqQbN3GNlRC4JrSL+6qAK0EemT4e21w8Ym0chptZ9DcweEoTuYnZD1UMntEyGGBgMdLCItbGYbubR5aPR3lIgOeqiOA1ihw037yFRkaSfRw9jSnAIdMawHKNB4NqPHiqpqHNz+qvK334OPcKFuxKxdFFc6Eb8eH9rWr95m00jv0YjTOGoWHRZDSsjUPD1rVo2LcdDRmHEMo/hYaSIoSqaxEy1SPoCT3Q6/O3zE1VagkXSsPIzpeQclRE4m4JKzdKmLs0jPFduMk0bga5sbQygcxB+4+KOJEn4fylMKrUEkx2Cb5G+X+vbVES9GGDow5fGPLxaG37cQVfGwuwxalGWTAg+5jlIHRdxK1bkH0cFHloZCQ037wl+zjkJHBVhNkh4Uq1hFMFEvaliVi/TcS8ZeGIudgTZklYtFrC5p0SDh4TkX+BzL92T+ePp4GrYofnXj3JNVaCdOOmbM/fc8h/rdAXaOLCEKRm2cdBkQ9atHq6ZBe0BzIK8Md3x2LFplSkZZ/DkaxzWL4xBX8YMAZJqdm9No4X3xuHlz+ciJc/nIg/fzABT7w2FC9/OBE2pxe/fzsGvCDd+dn+g2eiSmUEQLe4KZmHKeIg2nAFeZicAmr0IkqqBBQUk+13B49L2JkqYmOSiBUJIuYvJ1uGI+WotRu7MI80zVm+QcSGHRKSUkQcOC7h+GmS31hSKaBaJ8DoaN08RwzffOAmYfYQj8t+Hsc9PBKdHOZbWQw3MxigZ/GMlsGPIgjcH6gY/FbD4G0Dg6EmFnPqWWx2kK3jJT4etgds+ENpnz4XcdCJ+ID6dYuRnbgRq/em4uvjZ/H7i5Y2P3OPVfjwQfZFzNuxG4cWzoVq1MfdGh/QXZgcJIv7whUR2QXkb3vbPpK/GLdSwuR5nb8ZNGpKGDPiJCxeI2H9dgkH05uRliUh97yIkgoRdUYBNl8U/J47SX2IwXF3PeZbyvCWJgvfayOu4B9b4grGm4qwz2mENnBN9nFHAzTiQNk8TBEHPYW+XkBJpYCsMyL2HBEQv03EvGVSxJW342ZJiFspIWGHhP1HBZwqFHG5mpyDyf2abkMjDpQNjTig0KLV0yW7oAWA0+fKMGpmPP7y5Sy8+dk0DJ+6GifyLso2nrtX0ALA8KmrsW3fCTQ330T2mUvo9/l0NDeTLW5yTxIU+aCCNrqwegSozQKu1Ao4Wyoiu1DEkSwJuw8J2LxLxKpNIhaskjB9gYSxMzrfgOc2IyeHMWG2hNmLRSxZK2FTUhhJ+yXsSyMNeXLPiygqE1GhEaCr756mPI4Qj7IAjywPj+1OHgttHGLMDN41sHhWQyISIgncJzQM3tQz+NrEYraVQYKDQ5qbR7GPhzUKfm99FTkFrccdgsdQD291HXzFF+HPy4H/2GEEUnYisHUdgvELEFw0BaFZI9Ew7jM0Dn2nVXyAZ/CbyJ8xBhvWr8fwQ9n4Q5Ghzc/Po5VBvHu6HLMOZGDv9h2oSFiFwLrFCGzfgEDqbgQyj8KfnwdfSSm8tWp4zQ54vD0r8mw+HnVGASUV5O/uSBa5cbN+OxGoM+I6f9Nm5GRyoyZupYQ1m0Vs20dEbnaBiAtXRFRpBZjakAPtZdBGK2r/Vex26DHGeAHPqo62GVfwf6p2ob/2JOKs5chy22APsrKPOxqhglbZUEH7YBhsAkqqBGQXiNibJmD9NnKzfWwkeTuTzNMbtpPzrlOFpBmtwd67x2EqaJUNFbQUWrR6uqJC0EZb/a2gdXmD+GbSCrzw7lh8ErMQan39ne/JPUlQ5IMK2r6N089DZxVQoSbdjXPPiziWI2JfmoCte0XEbyUidvZiERNm31/swtgZ0rexC5tFbN4lYvchAUeyJJwsFHGuVERZLRHL99PsxxniUenncdLLYaeTxxI7hzFmFu8bGDyvZfBjdWSB+xs1gzd0DAabWMywsljn4HDIzeO8jzRJk/v3FK10h6D1+JrgtbrgVengvXwFvoIz8GdlIHBoH/w7NyKwYSmCy2chNG8sQpMHo2HEe2j84rUuxwb4Br2Os9NGYePGBMSkn8ZLF834YV3rJl4/rbuOftVeTK52IUnnQbEt1KuN7BwBHlqLgCs1ZNX8ruJzPwAAIABJREFUsVyy+mpTsojlG0jjmnFduLkybpaEOUslrEggf3t7j5CmhAUXyd+drv7+GxJGu6At8voQb6vF57p8/LwmtZWM/R8VW/FYbSoG6fOx3l6HYp9X9jH3FaigVTZU0PYcBpuAS9UCThaS+Xr9dgmxK6SI8/7YGRJil5PdDXuPCMguFHGpmjSd7e4xUkGrbKigpdCi1dMlu6BlWB77j+ZhUfwezF2R1IpoL7knCYp8UEGrLFxBHgY7iTwoqRRQWnET2WckHMgg0QgbdpCohHnLyNbpmPuIXRg1JYyp88mFxooEEuWwM5V0gj+RT8RSSRWJfjC1EbvQaswhHjUBHjleHskuHstsHMaZWXxkYPBHbRN+2okVuL9UN+FVHYNBJhbTLCziHRxSXRwKfTx0gejZdtjb3CNoOxEfEFw1D6EFE9EwbQgaRw9E41dv3V9DrAjxAe4jKTh75hw2l6owptqBl+sa24zKeETF4HUdg3FmFolODmd9ZMV2T/3tGB0CKjQCzl8WkX1GRGqGhK17ycr22OUSJs/tvHgdPS2MGQskLFlLVlMlHxSRli3i9AUBl6oEqEwC7D0cNxBNgtYWZJHptmG+pQxva7Lxn1W7WsnYf6jYjufr0jHOeAF7nQZoaFzBfUMFrbKhglYeDHYBpTVk5ez+NAEbtpMVteNmRpC308OYv1zCuq3khl92gYhLVQL09fd3/kIFrbKhgpZCi1ZPl+yCdvSsdXhl4CTMWLIVsat3tSLaS+5JgiIfVNAqm85k0FpdAlRGAZerBRSWiMg6I+LICQm7DorYlCxi5UaShTl9QeRstva2Z0+aI2HOEhFL4skFyPZ9IlKOCsjIIcKquJxs0zbYBDjaWC1YF+CR5+Wxx8VhhZ3DBAuLj40MXtIxeLQTAvcxdRP+rGXwmZHBFAuL1XYOKS4OZ7w8NH0wA7ez8QHX545C4/i24wM6zeevoHHYADRM+Byh2aMQWjoDwS7EBzhCPM76SH7xODOL13Vtx178SMXgz1oGo8wMNjrI76a78omtHgG1BhHF5SJyzpLPd1KKiHVbRSxcI2F6nISYqV2MG1glYW2iiB37yc2Jk4UkbqBaK8DsjI6bAnIKWk3gGvY4DBhnvIDn69LxDxWt4wr+s2oX3tZkI9ZajhMeG2w0rqDboIJW2VBBG30YHeQ8K+esiP1HBSTsIMeRcbM6lrdjpocxb5mE+K0idh8WkH2G9B7Q1bd/A5wKWmVDBS2FFq2eLtkF7dNvDofN6ZN7GPddck8SFPmgglbZdEeTsL/F4eehsQgoVwk4f4UIr/STJKctcY+ItYkiFq+RMGuRhPERLjw6ynGbuVDCwjUS1mwRkbibrCpJyxZxqlDE+csiyuoEaMwC6lsk6xkvjxQXh9V2DpMtLD4zEuH3mLr1NvlWGaYqIns/NjKYaGGxws5hr4tDnpfI4Z76/fRWfMBtGr7ph8YxH6Nh+jCEFkxCcE0sgolrENizDf70g/DlnoS/6AJ8FdXw6i3wOAJdej3OEMkN3uHkMcnC4i090+YK6B+qGLyoYzDczGCdg0OO9/6yhp1+HhozWbGUX0ziP/YcFrBxp4il60XMWixGzAy8mwmzJcxdKmFlgojEXWQF1PHTIgpLyOfNYIu8Ijya6E1BW+zzYr29DoP0+Xistu24gp/XpOILXT7W2epQ5PXJ/v48zFBBq2yooO1bmBwkNifnrIiUdAEbk0g/ggmzOz6HGj0tjLlLJazdSqKpsvJFXKwQYXZIECQqaJUKFbQUWrR6umQXtG9+OhUNV5vkHsZ9l9yTBEU+qKBVNj0haLuKM0Ay26q1Ai5WiMgrIhmbKekCdqSQpklL14uYs4xsIb+f2IXR08KYFke2Eq7cSFb+Jh8QcThTQvYZEScuSThQK2CbjsdKC4+pFhaDTCxe1ZF4hEgC92cqErfwkYHBOAuLZTYOu1xELNYEeLiiKD4gcHgf/Ccz4TtbCElTg6DOAI/NC3eA6dbfqyvE45KfxFJMs7D4i55tdzXzc1oGQ0xk5XK2h4M5UuxFS1RHuYo00zuRT1ZcJ+4hK7rnLZMwMcKF6z0rkKaFMXORhCXxpPP27kMC0k+Sz+KlapKv7OiGhnnRRk8JWnuQRZbbhjhrOfprT+L/tBFX8D8rt+O5unSMNV7AboeexhX0MlTQKhsqaB8ezE4BZbUCcs+T2J2NO0UsWN05eTtnKdnpsfuQgBN5ZBeJxtK3bjRSug4VtBRatHq6ZBe0BUWVmL8qGcGGa3IP5b5K7kmCIh9U0CqbaBC094PZKaDOIKC0WkDBRRFZ+US2Jh8QsXGniJUJImJXSJgWJ2H0tK4L3ZgpYUyaS1ZLLlsvYvVOCUvSBczLFzH1/HWMKAngoyt+vFrhx29qGiMK3J9WN+KFC3oMPFGECfuOYuXmLdi/ZAEKpo+CdsSHaGwvXuAB4wMi0R1Nwm5TFuCx18VhlpXBXw3tr0x+RkuauS23cchw8zAE731+q4vkExeVkdXQhzNJ3MDareSic2ps5yV9TEse8oLVZAVRUgp5vFOF5PGrdQKsruiIG5CD7hK02sA17HMaMd5UhBdUx/CPFTtaCdn/qEpGP00W5lvKcNxdj/pQ994QoHQNKmiVDRW0ysDiFlBWJyD3vIADxyVsSiaxPRPndCxvR00JY84SEWu2iEg+KCIzjxwz1VTePhRQQUuhRaunSxZB++w7MXd44d2x+P3bMXj81SH4/dsx93zv2Xdi5Bhel0ruSYIiH1TQKpu+Kmi7Sr2Xh9pCLlTOXybiL/0Ei4N73TiwUY/9y8qxf24hDkzOxOHR+3Fs6Gac/mY5ir6ejYovx0E76EvYP38PwU/bjg/wDXodFeMG4cTcqdi6ZhXmb9+FoUdOod/pcjxx2RFR4P649jqerQ7gvSoPRte4sEjrQ5KlEdkeDuWBnmt8db+CtsrP44CLwzwri4FGBr/StC1jn9Qw+NzIYLGNwxEnjxIzWZGaV0RWqO4+RLZqLomXMHORhDFdkOkTZ0uYt4ysiE7cQ1bQnsgTcbZURLlKgMFOLyQjcb+CtsTnQ4JNhcH6M/hFbSr+ro24gkdrUvGZPg/xtlqc93plf62Ue6GCVtlQQatsQtdFXGNuolwl4PQFAQePS9i8S8SiNRImRZC3MVPDmL1YxOrNZCfS8VySr64202NuX4EKWgotWj1dsgjaost1nSbaS+5JgiIfVNAqm4dC0PZyfEDwi9fh/PIDmL75GjVDx+Pi0LnIGbIKx4YmImVEKrbHZGH9qPNYNqYS88aZMXlCACOmCPg8TsIHayT02ybgzyk8nj/B4bfnGfx3eeQmZj9qWXn6Fz2LEWYGsVYWW50cMj08rvh52O/zveuMoFUHeRx281hQz+ITI4MnNG2P8Vd1DN6pYjG8hMOcXB6rUshK5rlLI2+1vJux08OYtZhkxCYkkczYYzki8otFlNYIUFsEOB/CuAE56IygtQdZnHTbsbAlruD7VbvbjCv4veooRhsvYJdDD7X/quyvjdIxVNAqGypolU2kJmH1Hh7lKnIz9WAmkbeL15KYqUi7VmYtFrFqk4idqSIyckWcvyJCZRLg7MG8fkrXoIKWQotWT5fsEQcAcKO5+c5/NzffhMZQ32dyaeWeJCjyQQWtsok2Qetxh+Ax1MNbXQdf8UX483LgP3YYgZSdCGxdh2D8AgQXTUFo1kg0jPsMjUPfwdX24gEi0Y3xAa4gaeJRoxdRUiWgoFjEiTwRBzMl7EwVsTFJxIoEEfOXS5gyX8Kov9miP2xKGF/EhfHBaglvJwr48z4ezx3n8EQ+h0dLGfygNoLErWPweC2D12sZDFazmGnksNnB4Zib5MDa21nV8reCVhcQkO7hsdTOYZCJxVPqdjJ3q5rw7FkWb6Tx+GuCiMHzOxc3MC2ONHaL30biBo6ckJBzluTe1ehFWD3KjRuQg7YErT5wHSlOIyaYivGC6hj+qY24gu9VJeNNTRbmWa4gg8YV9EmooFU2VNAqm0iCtiNsXh4VGgH5RQIOZ0pI3CViyVoJk+dFlrczF5FdL0kpIo7lkoauKqMAB5W3vQoVtBRatHq6ZBe0l8rVeGXgJDQ330T4RjO+GLsET7w2FE+/NQLnSqrlHl7EknuSoMgHFbTKpqcErcfXBK/VBa9KB+/lK/AVnIE/KwOBQ/vg37kRgQ1LEVw+C6F5YxGaPBgNI95D4xdtxwd0hoZv+qFxzMdomD4MoQWTEFwTi2DiGgT2bIM//SB8uSfhL7oAX0U1vHoLPI6A7O+9xS1AZSKdmc9eEpFdKOJIFmlQtXkXWYGycI2EGXESxk4PY9D8MD5cJeHtLSJe3sfj2WMcnshj8eilyCtwf6Bi8PNKBs+XMninhMWQEg6zLvPYqWnGpDIeb1/m8JvKtv+/R6oYPJ7P4aUDHAZsEPFFXNtxA/OXS1i1icQNpGZIOJFPLr4q1CRuQO73m9KaW7eAUp8fG20qfKkvwC9rD7QZV/DTmhR8qs/DWlsNztG4gocCKmiVDRW0yuZBBG1H2Hxk5W1+sfitvI2PLG9HTApj+gIJKxNE7EgRkX6SnD/UGqJnAcHDBBW0FFq0erpkF7QfjYjDsVMXAAAn8i7i9U+moPFaE/IvlOOjEXEyjy5yyT1JUOSDClplE1HQ9nJ8QOPg19EQ8wEaJn+F0PxxCK6Yg8DGFQgkb0bg8D74T2bCd7YQvitl8KoN8Ni8cAeUs3pPaxFQoRZQVCYi95yI9FMi9qcJSNwjIm63iLHJIj7ZK+CtVB7Pp3N48jSLn5d0TuDe5jcFLF48yKH/FhFfLhcxa7GI5RtI87U9R0jcwJliEVdqBGjMVLz2JexBFjkeBxZZyzFAewr/r2ZPKxn73crteEaVhlHGC0h26FAXaJR93JTuhwpaZUMFrbLpKUHbETYfjwq1gDPF5GZ04m4RS9eRXUWR5O2MOAkrEkTs2C8iLZvI2xo9lbf3CxW0FFq0erpkF7S/6zcSzc03AQBTFyZi3fYjAEjUwe/fpk3CKNELFbTKoa34APZUOhoPJEd1fADl/jHYBdRoBZRUCjh8UUD8WQHTzgj4Op/HO2c4vHiBxYA8DmNyeaw/LSLnrIiLFWTVis0r//gpD4Y+cB2pThMmGYvxojoD/1yZ1ErI/lvVTryhOYE51is45rbCSuMKFAEVtMqGClplI4eg7Qi7j0eVVkBhCYk+StxDcuindkLeTm+Rt9v2iUjLlnCuVES1jt487ggqaCm0aPV0yS5o//T+BAQbrkEQJbzw7lhU1hkBAKHG63jxr+NkHl3kknuSoMgHFbR9DxofQOkuOtMkjNJ3KPX7sdmuxteGQvy69iC+00ZcwU+qU/7/9u47PMo7Mfd+ctI2ZXNy3jflJO9mk5M9yXlD1sva675rYxuwKQZ3s+Aiqimmmg42YNOLKaaL3k2vpncQVb0X1HsBUyTNjDToPn8AYwnUGDz6jfT7fq7rvq6VBOIZPasH6evhkd6JO6jpqWGKLLlq/JiZmRFo7R6B1u75W6CtbRn5pQqPdeho0J1nzy5efedf9Qz9wqWeg2oOtz0H3Ym3k+fci7dOHQ26E28zLP9BowRaBvia8UA7buZKvdF1rN7pOU5v9/hCFRUVKil1asj4BRo8br7pw6uT6YsEMzcCrcH5we0Dbi6ermsrF3D7AEtHoG28yygq0f6cTH2VGqzXY/frH8KquV1B8GI1j9ysngknFZgRq4j7bldQ3Q8JY3aMQGv3CLR2rzEF2tqWkV+q8HinjgU5tXWfU0vW3I2342qPtz0GlmnI5y5Nmu3UotV3brlw9KxTYbEOpeeZf1y+HoGWAb5mPNCWlZVrw46jWrpujwqvXpckFZc49NmEhbr6/U3DR1c30xcJZm4E2h9n1d0+IH/7typYt8yvbx/gqx8SxhrHCLSNZwmFN7Uh64oGJ53Vb6N36C+quV3BT0OX6aXoXRqZfEHbslKVXHiz1vdJoLV3BFq7R6C1e00l0Na2zLvx9vj5O/frX7rWqSlznRpWxzNvewws05CxLk38+s6tFjbvcenoGadCYx1KayLxlkDLAF8zHmgbO9MXCWZuBNqqy8m7qdzkTOVFxCrv/AXlHz2sgt3bVbhhlQoC56pwzkQVTRquotF9VDSwi672eF3XOrfw/lmtH7+qq33fVdGwbiocP0iFM75QwcKZKlizVPnbNin/wD7lnT6t3JBw5SQkKyez6Ed9vARau0eg9d9dzCvQgvQYBSQc039GbKr2dgX/HL5Wb8cd1LTUMB3LzVbWQ/4ZBFp7R6C1ewRau2dDoK1tmfmlikxw6MR5p7bvdypwnVNT5zo1bJxLvQbXHm8HjXHpq1l3fsjZt7tcOnLGqZCYxhVvCbQM8DW/DbSRscnacyjI9GHUyfRFgpmb7YE2NyreZ7cPKJg3RQXL5z94+4CoeOWk5hh/7NlFBFrbR6D1j2UUlehgTqYmpoaoQ+x+/c+w1TXerqBHwgktzYhVeP6j3z+WQGvvCLR2j0Br92wPtLUto6BUkYkOnbxQKd7Oc2r4+HrG25kuLVxxJ94ePu1QcIxDqX72Q1cJtAzwNb8NtJPmrlXzVj1MH0adTF8kmLlZH2ij4312+4DGMAKt3SPQmlli4Q1tykzWkKQg/S56h/6yutsVhATqpehdGp58XluyUuq8XYE3I9DaOwKt3SPQ2j0CrXfLLChVVJJDpy46teNuvJ32jVMjJtQj3o526cuZLs1f4dTGXS4dOu3Q5SiHUnMa/nEQaBnga34baBsL0xcJZm62B9qc3OvKCw5TbnyycjILjR9PQ49Aa/cItA2zy3mFWpgera4Jx/VfEZv0R8GLHwiyPwtfo7fiDmhKaqiO5GYrs6jE58dFoLV3BFq7R6C1ewTaH3+ZBaWKvnI33h5watl6p6bPd2rEl071GlJ7vB04yqUJM+7G250uHTx1J96m5Pjm6zMCLQN8jUD7iExfJJi52R5obR+B1u4RaH/8ZRaV6HBulialhOiN2AP6p7A1D8TYPwperMciv1X3hBNanBGj0Pwf997S9R2B1t4RaO0egdbuEWgbdlmFd+Lt6UtO7Tzo1PINTs2Y79Sor5z6pI5n3g4Y6dL4GS59s9ypDTtcOnDSoUuRDqVkef+1G4GWAb5mPNBm5hRo8rz16jNytroPmf7A/J3piwQzNwKt3SPQ2j0C7aPvSuFNfZuZrKHJ5/VizE79VTW3K/irkEC9GLNTQ5PPa3NWsq744HYF3oxAa+8ItHaPQGv3CLT+s6zCUsVccejMZad2HXJqxUanZiy4G2/reOZt/5EujZvu0txAp9bvcOnACacuRTh0JbP2r+sItAzwNeOB9p2e49Rr2Ex9s2K7Fq/Z/cD8nemLBDM3Aq3dI9DaPQLtwy80v0iLM2LUPeGEHov8ttrbFfxT2Bq9GXdAk1NDdTg3q0FuV+DNCLT2jkBr9wi0do9A2ziWVViqmOQ78Xb3YadWbnJo1kKnRk1yqfdntcfbT0e4NG6aS/MCnVq31aH9x526GO5QUqaDQMtMpydYwHigfa3zcFVUVJg+DK+ZvkgwcyPQ2j0Crd0j0Na+zKISHcnN1pTUUL0Vd0A/C6/+dgW/jPhW3RKOa1G6udsVeDMCrb0j0No9Aq3dI9A2/mUVliouxaGzwU7tOezUqm8dmrnIqdETXepTZ7wt04TpZZqz1KW1Wx367phT58MdSszg60FbBvia8UDbY+gMFV27YfowvGb6IsHMjUBr9wi0do9AW3XJhTe1JStFw5PP66XoXfppNbcr+MuQQL0QvVOfJQVpU2ayEgtvGD9ub0egtXcEWrtHoLV7BNqmv7hUh4JCHNp7xKmV3zo0a7FTYya51Gdo7fG23zCXvpjq0pwlLq3ZcjfehjmUkM7Xik1pgK8ZD7TJ6TnqEDBGU+dvUOD6vQ/M35m+SDBzI9DaPQKt3bM90IbnX9XSjFj1SDihX0Vu1h9Xc7uCfwxbrY6xBzQxNUQHczKV4ae3K/BmBFp7R6C1ewRau0egtXsZOWWKjHNr71GnVm9x6OtFTo2d7FLfOuJt32EufT7ZpdmLnVq92aG9x5wKCnUoIc3eryMb6wBfMx5oPxk+S0+366NOfb7UxwOnPDB/91VqsOakR2p9ZpIO5WQ1qn+iyR5tBFq7R6C1e7YF2qO52ZqaGlbj7Qr+IHiR/jNik7olHNeC9GhdzCswfsy+HIHW3hFo7R6B1u4RaO1ebfegTUhz6FzYnfi6erNDs5fcibJ9h7lqj7dDyzR2sktfL3Jq1WaH9h516lyoQ/Gp9nyN2ZgG+JrxQPvCmwN081aJ6cPwWnXfpP5B8CL9j9Dl+o+IDfpt9A69GXdAPRNOamzyJU/MPZiTqRBibqMegdbuEWjtXlMOtMmFN7U1K0Ujky/UeLuCPw8J1PPR2zUkKUgbsq4oofCm8eNuyBFo7R2B1u4RaO0egdbueftDwhLSHTofdue2B2u2ODRnyZ3bIfSrI972GVqmMZNcmrXozu0W9h5xKijYqbhUh7IKzX88bBzga8YDbac+X6rc7TZ9GF7rl3Rab8cd1AvRO/X/R2zU34aurDHa1hVzn4/erjdi78TcMckXNTs9UusyE4m5fjoCrd0j0Nq9phRoIwquKTAjVr0STqp55OZq/576+7BVah/7nSamhmh/TqbxYzY9Aq29I9DaPQKt3SPQ2j1vA21tS8xw6MLdeLt2q0Nzl96NtyNqj7e9PyvTqEkuzVzk1MpNDu057NTZYKdik4m3vhzga8YD7d7D5zR43HydPBeu2MQ0xSWlV5m/q+4TN6vozje8R3OztSkzWfPTozUu5ZL6Jp7SO3EH1SJmp5pFbNLfha7UH1Vz376a9oc1PDN3TPLFB56Z25Tu9eevI9DaPQKt3WusgTarqFQncnM0PTVM78Qd1M/D1j3wd81/u3u7go8TjmlBerQu5Dft2xV4MwKtvSPQ2j0Crd0j0No9XwTa2paU6dDFcIf2H3dq3VaH5gU6NW6aS5/WEW8/GVKmURNdmrnwTrzdfcipM5ediiHePvIAXzMeaJu1CKh1/u5RP8nvxdxjudn6NjNZCyrF3HfjD+ql6F2PHHPvPTO3R8KJKs/MPUDMfaQRaO0egdbuNZZAm1J0S9uzUzQq5aJeidmtvw5dVuPtCgYlndWGrCTFF9wwftz+PgKtvSPQ2j0Crd0j0Nq9hg60te1KpkMXIxw6cMKp9Ttcmhvo1LjpLvUfWUe8HVymUV85NWOBU8s3OrXzoFOnLzkVTbyt1wBfMx5oi0sccrrKapy/a8gLQlZRqSILrul4To4n5o5Puax+iaf0XvwhvRS9S/8VsUl/H7aq2p+oXVvM/ZvQ5fr3iPV6LnqHJ+aOTr6or9N+iLnB+YVKLyw2fmH0lxFo7R6B1u75a6CNLLim5Rlx+iTxlB6P2qI/DllS4+0KvkwN1v6cDP4jnRcj0No7Aq3dI9DaPQKt3fOnQFvbUrIcuhTp0IGTDm3Y4dI3y50aP92lAXXE215DyjTyS6emz3dq+Qandh5w6tRFp6KvEG/vDfA144FWksrK3Qq6HKWte09q/fYjOn0hUmVl5aYPq15MXyRqWuWYuzkrWQvSYzThvpj7y4hv9Q8PGXP/IHiR/nulmNsx9oC6V4q5azMTtT8nU5fzmn7MJdDaPQKt3fOXQHsiN1cz08L1Xvwh/Wv4g7cr+MPgRfo/ERv1YfxRfZMWrfP5+caPuSmMQGvvCLR2j0Br9wi0dq+xBNralpLj0KWIO/F248678XZG3fG2x8AyDZ/gUlyq+a99TQ7wNeOBNiklSy3fG6LmLburdaehat1pqJq37K6W73+mrNxC04dXJ9MXiR9jWUWliir4Xidyc7QlK+WHmJt0Wu/HH9LL0bsfKeb+74j1ejbqh5g7KuWiZqVFaE0jj7kEWrtHoLV7JgJtatEt7chO1Zjki2oVs0d/E7r8gWvuT4KX6tmoHRqQeEbrM7ldga9GoLV3BFq7R6C1ewRau9cUAm1tS80p1eUohw6dcmjjLpfmr3DqyxkuDRr9Q7xNzzN/nCYH+JrxQPvxwCmaOn+DSkodntcVlzg0cc5a9R012+CR1Y/pi4SJRef/EHMXpkfry9RgfVop5j4W+a3+Z9jqav9pbW3769BlnpjbIXa/uiec0MjkC5ViboYu+VHMJdDaPQKt3WuIQBud/71WZMSrT+IpPRG1VX9SzTX170JXqm3sPk1IuazvsjP85vrY1EegtXcEWrtHoLV7BFq719QDbW1LzS1VcIzdz57NLiLQwveMB9pn2vet9l6zpQ6XnuvQr8GOo6KiQnMCt+qFNwfo+Y6fatTkQJU6XJKkjOx8BQyaqmfb99XbPb5QSGSi5/eZvkj4++7E3FxtzUrRovQYT8ztFHdYr8Ts1q8iN3sdc38Rvl7PRG3X6/fF3NWZCfou2/cxl0Br9wi0ds8XgfZUbp5mpUXo/fhD+l/h66u9XcF/RGzQB/FHNS8tSufyuF2BqRFo7R2B1u4RaO0egdbu2Rxo2Z0BvmY80L787mDlFVx74PV5Bdf00juDGuw4tu07pU69J+j767dUXOLQxwOnaOm6PZLuPMt39ZaDcrtv6/SFSLV4e5DKyt2S+AL9x1xMwXWdzM3VtqxULUqP0VepweqfdEa/rxRz/zFsdbXPIqttPw1dpn+rFHO7JRzXiOQLmpkW7om5F/MKHjrmEmjtHoHW7j1qoE0tuqVd2Wkam3xJrWP26H9Uc7uCPwteqmeitqt/0hmtzUzkdgV+NAKtvSPQ2j0Crd0j0No9Ai0DfM14oJ00d63e+2S8jp4OUVpmnlIzcnX41GW93eMLjZm6rMGOIzzmiuKS0j0vB67fq1GTA1V07YaebNNb5W63523v9Byni6FxkvgC3dRiK8XcxRkxmpgaogGJd2Juy5g9ah65Wf8UtuaRYm772O/UtVLMXZVWZdChAAAgAElEQVSRoH3Z6Z6YS6C1ewRau/ewgTam4LpWZSSob+IpPRm5TX8a/OC16W9DV6pN7D6NS7mkvdnp3K7Aj0egtXcEWrtHoLV7BFq7R6BlgK8ZD7SlDpcmzlmrx1v3VLMWAWrWIkC/bt1TY6ctr3Jf2oaUnVuot3t8oYMnLikkMlFvdB1b5e2fTViozXtO3Pm1fnChYLUvtuC6TuXmaXt2ipZUirmd4w+rVaWYW10wqSvm/iJivZ6O2uaJucOTz2tGpZh7Ib9AaUSWJjkCrd2rK9CeycvV12mR+n3cYf2ihtsV/HvEenWOP6I56ZEKyssz/phY/UegtXcEWrtHoLV7BFq7R6BlgK8ZD7QJyZkqK3eroqJCBUXfKyu30HP7ABPe/2SCmrUI0KS5a3X7doWCLkepU+8JVX7N2GnLtWbLQUnSzdJy1oSWWVyskOtF2l+UoTV5CZqZFa5hqecUcOWY2sTv0xPRW/SziDX6s4d8Zu5fhSzTLyLX67nY7eqYsF89k0/o84yL+iYnSpvyr+jY1WxF3bimohKX8Y8Bq9/ctytU6nQb+/NvlJj/GNi82xVSsePO/y4qcenI1SxNzApR+4R9+n/DVj5wDfhJyFI9F7tdg1ODtKUgWRnFxcYfA/N+knTLD47D1G6UlBk/BlO7dff8mz4OZmbFjjvXf9PHYfNMXn9KnW65b1cY/xgwM3O43Cpzc/5tHuBrxgPt4617VnsPWpOKrt3Q0C8XadLctQqNSlSHgDFV3j5k/AJt3XtSknSzpIxZugJnqSJuXtWBonStzUvQrKxwDUsNUsCVY2obv1e/id6qf45Yo5+ELH3omPtvEev0bPR2dYzfr55XTmhs+kXNy4rQxrwkHSvKUtT1qyosdhj/GNi8cneFSpzlxv78G6Xm/mzbl3HrlnZ/n6ohaUF6LmZ7tf/B5m/DVqp9wj5NygzR0aJMFRU7jR83+/FWUWH33/83Siy+/pRy/m1esaNct29XGD8Om3fD4J9d4ixXuZvzb+scLrfKym8bPw5mboCvGQ+0gev3asKsVcYj7anz4UpOz/G8fCE0Vu0+HKlr12/qiVd7qdTh8rytTZfhCo1KlMQ/cbN5D3MP2viCGzqTl6sd2alamhGrSSkhGpR0Vl3ij+jVmL36deQW/Sx8jf4s+OFi7l+GBOpfw9fpqchtahu7Tx8nHNPQ5POanhqmFRnx2pOdpvN5+UotumX849XUxi0O7NnZvDzNSY9U5/gj+veI9frDaj4XfxG+Xp3jD2t2eqTO5OUaP2bm23GLA3vHLQ7sHrc4sHvc4sDucYsDBvia8UD7WufherpdHzVrEaDmLbvrN6/1qrKG8vWSzeo5dKZuFZeqrKxc42au1JDxCyRJ3YdM1+I1u+V239beI+fUutNQud23JfEFus3z1Q8JqxxzAzNiNTk1VIMrxdzHo7bon8PX6idexNx/CV+nJyO3qU2lmDvtbszdnUPMfZgRaJvm0guLtTc7XeNSLqlN7D79beiDtyv40+Alej52hz5NOq1VGQmKKbhu/LhZw45Aa+8ItHaPQGv3CLR2j0DLAF8zHmiPnQ3V6QuRNa6hlJQ6NXbacr3w5gA993o/9R7xtXILrkqSsnIL9fHAKXqmfV+922u8ouNTPb/P9EWCmZuvAu3DLL7ghs7m5WlndqqWpcd5Yu4H8Uf1WuxePRG11auY+xchgfp52A8x96OEY/osKUhTK8Xcc3n5Siy8Yfw8mBqBtmksvuCG1mYmqn/SGT0Ttb3aZ7H/P6Er9GrMXo1NvqRd2WlKKyyu84eEsaY9Aq29I9DaPQKt3SPQ2j0CLQN8zUigHTU5UE7XnXt4jJ4SaOIQfjSmLxLM3Pwh0D7MEgpvKigvT7uy07QsPU5TUkM1JClIH1aKuT8PW6s/Dwn0Kub+Jmqr2sTu04fxRz0xd3lGnHZlN82YS6BtnDuXl695aVHqEn9E/xGxodrbFfxb+Hp1ijusWWkROp2bV+37IdDaPQKtvSPQ2j0Crd0j0No9Ai0DfM1IoH2qbW9t2nVM4TFX9HjrngqPuVLj/J3piwQzt8YWaB9miYU3PDF3eUacpqaG6bO7MbdN7D79Jmqrfh627qFj7p+HBOrnYWv1RKWYOyQpSFNSQz0xNygvTwmFN41/DOoagdb/l15YrO+yMzQh5bLaxu7T31Vzu4I/CVmi30RtVZ/EU1qZEa/o/O/r9b4JtHaPQGvvCLR2j0Br9wi0do9AywBfMxJol2/8Tk+26a1mLQLqnL8zfZFg5taUA+3DLLHwhs7l5Wt3TppWZMR7Yu5HCceqxNy/eMiY+5PgpZ6Y+1rsXn1QKeYuS4/TzuxUnTUYcwm0/rf4ghtan5mkAYln9GzUjmpv7fE3ocvVKmaPxiZf0s7sVK/vuUygtXsEWntHoLV7BFq7R6C1ewRaBvia0XvQut239ZvXeqnc7a5x/s70RYKZG4H24ZdUeFPnK8XcaalhGpp8Xh/fjblPRm7Tv4Sv0196EXP/OXytHo/aoldj7sTcwUlnNTk1VIEZsZ6YG1/w491mgUBrfufz8/VNWrQ+jD+q/xOxsdrbFfxr+Dq9H39Is9IidDI390f7swm0do9Aa+8ItHaPQGv3CLR2j0DLAF8z/kPCSkqdpg/hkZi+SDBzI9D6dqlFt3Q+L197su/E3OmVYm7b2H16KnKb/tWLmPtnwUv1s/A1npjbJf6IBlWKuTuyU3UmL7fOmEugbdhlFJVof06GvkwNVvvY7/T3YaseOLd/HLJET0RtVe/EU1qREa/Igms+Ox4Crd0j0No7Aq3dI9DaPQKt3SPQMsDXjAfamuw5FKTPp68wfRh1Mn2RYOZGoPWfpRbd0vn8fO3NTvfE3GHJ5xWQcEztYr/zxNy/8jLm/jpyi1rH7PHE3EkpIdpYmKS9+Wn1irns4RdfcEMbspI0KOmsno/eXu39jv976HK1jNmj0ckXtSM7xevbFXgzAq3dI9DaOwKt3SPQ2j0Crd0j0DLA1/w20K7ffli9hs00fRh1Mn2RYOZGoG2cSyss9sTclRnxmpEWruGVYu7TUdv0v8LX66cPGXP/NHiJ/r9KMbdz/BENTDyjiakhWpoRqx3ZKTqdm6e4guvGPwb+uAv5BVqQHq2PE47pPyM26b9V8zH+l/B1ejf+oGakhetEbq6yDB4vgdbuEWjtHYHW7hFo7R6B1u4RaBnga8YDbafeE7R++2Fd/f6m6UPxiumLBDM3Am3TX1phsS7kF2hfdrpWZSR4Ym7XhON6K+mAno3e/kgxt3nkZrWK2aPO8Yc9MXdJRoy2N/GYm1FUogM5mZqYGqIOsfv1DzXcruDXkVvUK+GklmfE+fR2Bd6MQGv3CLT2jkBr9wi0do9Aa/cItAzwNeOBdtGaXXqr++d67JVu6jNytr47ekEOp8v0YdWb6YsEMzcCrd27/x606YXFuphXoO+yM7QqI0Ez08I1IvmCuiUcV/vY7/RM1Hb9W/h6/TR02UPH3H8KqxpzB9yNuYvvxtxTuXmK9eOYm1B4Uxszr2hIUpB+G71Df1FN0P7r0GV6OXq3RqVc1PbsFKU04O0KvBmB1u4RaO0dgdbuEWjtHoHW7hFoGeBrxgPtPelZ+Vq+8Tt16j1BT7XtrdFTAnU+OEYVFRWmD61Wpi8SzNwItHbvUX5IWOWYuzozQbPSIjTybsx9PXa/nonarl94EXP/JOSHmNsyZo9+H3dY/ZN+iLnbslJ1MjfX5zH3Ul6hFqZHKyDhmJrVcLuCn4et1TtxBzU9NUzHc3KM3q7AmxFo7R6B1t4RaO0egdbuEWjtHoGWAb7mN4H2nrJytzbvPq6n2/VRsxYBevX3w7R170m/DbWmLxLM3Ai0du9RAu3DLL2wWJfyCrU/J0NrMhM9Mbd7wgl1qBRz/9qLmPuPYav1q8jNeiVmtyfmfpUarEXpP8TcmDpibmZRiQ7lZGlSSog6xh7QP4atfvB2BcGL1Txys3omnFRgRqwi/Ox2Bd6MQGv3CLT2jkBr9wi0do9Aa/cItAzwNb8ItBUVFbocHq9xM1fq2fZ99eJbAzVj4SYlJGfqeFCo2nQZrhkLN5k+zGqZvkgwcyPQ2r2GCrQPu0t5hVWemTsq5aK6J5yo8szch425fxC8SP8QtkqPRX6rl6N36/34Q+qTeEq/q+F2BT8NCdRL0bs0LPm8tmalKLnwpvGPy489Aq3dI9DaOwKt3SPQ2j0Crd0j0DLA14wH2jmBW9Xy/c/UvFUPDRm/QCfPhcvtvl3l1ySn5+iptr0NHWHtTF8kmLkRaO2evwbah9n9z8y9F3M7xO7Xs1E79L8j6hdzfxa+Rm/FHdDk1FAdyc02/rgaYgRau0egtXcEWrtHoLV7BFq7R6BlgK8ZD7Sd+nypTbuO6frN4hp/jdt9W18v2dyAR1V/pi8SzNwItHavKQTah9nlvELtz8nUhqwrmpUWodHJF7UsPU7h+VeNH5uJEWjtHoHW3hFo7R6B1u4RaO0egZYBvmY80N64VVLjrn5/0/Th1cn0RYKZG4HW7tkWaFnVEWjtHoHW3hFo7R6B1u4RaO0egZYBvmY80DZrEVDr/J3piwQzNwKt3SPQ2j0Crd0j0No7Aq3dI9DaPQKt3SPQMsDXjAfaxJTMKktIztSJoDD1HTVbx86Gmj68Opm+SDBzI9DaPQKt3SPQ2j0Crb0j0No9Aq3dI9DaPQItA3zNeKCtSanDpd/3/cr0YdTJ9EWCmRuB1u4RaO0egdbuEWjtHYHW7hFo7R6B1u4RaBnga34baCsqKtTyvSGmD6NOpi8SzNwItHaPQGv3CLR2j0Br7wi0do9Aa/cItHaPQMsAXzMeaLfuPfnA1m8/okFfzNc7PceZPrw6mb5IMHMj0No9Aq3dI9DaPQKtvSPQ2j0Crd0j0No9Ai0DfM14oG334cgH9lb3zzVk/AJdScs2fXh1Mn2RYOZGoLV7BFq7R6C1ewRae0egtXsEWrtHoLV7BFoG+JrxQNvYmb5IMHMj0No9Aq3dI9DaPQKtvSPQ2j0Crd0j0No9Ai0DfM2vAu3t2xW6HB6vk+fCdau4cXwCmL5IMHMj0No9Aq3dI9DaPQKtvSPQ2j0Crd0j0No9Ai0DfM1YoC0uceir2WsUMGiq1m07rLJytz4aMFnNWgSoWYsAvfzuYG5xwPx6BFq7R6C1ewRau0egtXcEWrtHoLV7BFq7R6BlgK8ZC7TjZq7Uy+8O1pRv1qvtByM0ekqgeo+Ypes3inX9RrE+HT1XAz6fZ+rw6s30RYKZG4HW7hFo7R6B1u4RaO0dgdbuEWjtHoHW7hFoGeBrxgLti28N1OkLkZKklPQcNWsRoNCoRM/bI+NS9HzHT00dXr2ZvkgwcyPQ2j0Crd0j0No9Aq29I9DaPQKt3SPQ2j0CLQN8zVig/eXLXZWVW+h5+YlXeykzp8Dzcm7BVTVrEWDgyB6O6YsEMzcCrd0j0No9Aq3dI9DaOwKt3SPQ2j0Crd0j0DLA14wF2mYtApRbcNXz8tPt+lQJtgRa5u8j0No9Aq3dI9DaPQKtvSPQ2j0Crd0j0No9Ai0DfM1ooD11PlxR8SmKik/Rk20+0fGgUM/Lp86HN4pACwAAAAAAAADeMhpo6zMAAAAAAAAAaKqMBdrCq9frNQAAAAAAAABoqowFWgAAAAAAAACwHYH2PgtX79JL7wzScx36acSkJSopdUqSMrLzFTBoqp5t31dv9/hCIZGJnt9z+kKkOnYdo+de76dew2ZWeebvsg371PK9IXrhzQH6cvYalbvdDf6YUD+3iks1/KvFeq5DP7V4e5AC1+/1vM2b81/b+4P/qe18PerneMCgqfpswsIGeRzwzpW0bH3Yf7Keattbr380SifPhXve5s35Lysr19hpy/VU2956+d3B2nv4XIM/JtSfN+ff6SrTyMlL9bs3+qt1p6HavPu45/fEJaWrS7+Jeq3zcL3d4wsFXY5q8MeE+jt2NlTtPxqlp9v10ccDpyg1I9fzttqu8bGJaXqt83BNnLO2yvur7ZoB/+Pt+d975JyebPOJDp64VO/3B/9T0/mq7Rov1Xz+77kYGqdmLQKUnJ7j88cA79X0vX9t57/c7dbMxd+qWYsAXbt+s8r7uxAaq3YfjtSTbT5R7xFf68atkgZ9PHg43rSfms5/RUWF5gRuVZsuw9Wmy3CNnbZcpQ5Xgz8mNG4E2koOnrikth+MUH7h9yopdar7Z9O1cPUuSdLHA6do9ZaDcrtv6/SFSLV4e5DKyt26eatEz3f8VGHRSSp3uzV32TYNHjdf0p2/mNt0Ga7Cq9dVUupQ98+ma8OOoyYfImoxcc5aDRm/QA6nS9m5hXrxrYG6HB4vybvzX9v7g/+p6Xw96uf4jv2n1arTUAKtn+sQMEartxxURUWFzlyM1JNtPlGpw+X1+f9mxXYN/PwblTpcir+SoXd7jZfTVWbyIaIW3pz/BSt3aPC4+XI4XcrKLVSLtwcpITnzzvv7eLQOHL8oSYqKT9Ez7ft6vuiHf8ktuKqn2/VRSGSibt+u0Nxl29R18FRJtX+Oh0Yl6u0eX2jEpCVVAm1t/5+B//H2/K/afED9x8xVp94TqgS62t4f/E9t56u2a3xN5/8el6tMb/f4Qi+8OYBA68dq+96/tvPff8xcLVi5Q798uWuVQHf9ZrFeeHOALobGyekq0+R56/TtrmNGHhvq5k37kWo+/wdPXNS7vcar1OGS231b/cfO0+I1u408NjReBNpKIuNSFBKZ4Hl59ZaDGjFxiYqu3dCTbXpX+a/m7/Qcp4uhcTp44qJ6DZvpef3NWyVq3qqHXK4yfTV7TZVn4R0PCtXHA6c0zIPBQzt2JkSZOQWelz8dPVdb9570+vzX9P7gn2o6X4/yOf799Vtq9+FIbdp1jEDrx8rdbm3efdzzhZckPdW2t9Kz8rw+/y3fG8KzphoJb89/h49HKzzmiudt0xds1IKVO1RRUaH/eqmrvr9+y/O25zr045t0P5VbcFUHT1z0vBybmKaX3hkkSbV+jqdn5amk1KHFa3ZXCbS1/X8G/sfb8x+XlK6Kigp1HzL9gUBb0/uD/6ntfNV0jZdqPv/3LFi5Q/NX7FCHgDFc+/1YTd/7S3Wff0kPBLod+09r2FeLGuLQ8SPwpv1INZ//hat3adLcH74eWL/9CN//4aERaGvRe8TX+nbXMYVEJuqNrmOrvO2zCQu1ec8JLVm7R5PnravythfeHKDUjFx1/2y6Dp+67Hl9cnqOXnxrYIMcOx7NreJSvfjWQF1JzfL6/Nf0/uD/Kp+vR/kcHzN1mbZ/d0oHT1ziL+hGJDI2WS+/O1jlbrdX5//GrRL9unVPrdt2WG26jNCb3cbq2NnQhn4Y8FJ9z/+vXumu6zeKPa//dtcxzzdm3QZP8zzT7lJYnFp3GsotjhqJ5Ru/81yv6/N13P2Btr5fF8A/Pez5rynQVff+4P8qn6/arvH3VHf+UzNy1bHrGDldZQTaRube9/5S/c7//YFuyjfr9dXsNer+2XS16jRUoyYH6lZxacMcPB5ZfdpPZfef/8vh8Xr9o1G6dv2mnK4y9R4xS9v2nWqIQ0cTQqCtwcJVO9Vt8DSVu90KuhylTr0nVHn72GnLtWbLQc0J3KpZizdXeVvrTkM99587fSHC8/qcvCI93a5Pgxw/vOdwutR7xCx9s2K7JHl9/mt6f/Bv958vbz/HL4XF6cP+k1VRUUGgbUQycwrUpssInbkYKcm785+VW6hfvtxVS9ftUUVFhcKik/RU297KL/y+QR8LHl59z39kXIqatQiQw/nDvcV2HTyr/mPmSpKSUrL0fMdP9Wz7vvp1654E+kbizMVIte40VLkFVyWpXl/H3R9o6/N1AfyTN+e/tkB7//uDf6t8vsrK3bVe4++p7vx3GzxN5y5HSxKBthGp/L1/fc///YFu9JRAtekyXDn5V+V0lWnQF/Mf+A928E/1bT+V3X/+JenL2WvUvGV3/ea1XgoYNFVlZeU+P3Y0LQTa+1RUVGjyvHXqNWym56bOoVGJ6hAwpsqvGzJ+gbbuPaml6/Y88MMhftuxv9Kz8tRj6Iwqf2lfSc3inzn5uRu3SvRh/0mat3yb53Xenv+a3h/8V3Xny5vP8bKycr3ZbaznGdME2sYh/kqGXus8XMeDfohp3pz/6zeL1axFgG5W+sEQ3QZP06GTlwX/9bDn/1evdK/yhfnGnUc1YuISOV1levX3w3T20p0fDJaakasX3xqojOz8hnkg8MreI+fU7sORnr+/JdXr67j7A21dXxfAP3l7/msKtNW9P/iv6s5XTdf4yu4//zsPnKnyawi0/q+67/2l+p3/+wPd5HnrNXX+Bs/LwREJ6ti16veQ8C8P234qu//8f7vrmHoNm6mSUqfc7tuaPG+9xs1c6fsHgSaFQHuf6Qs2asj4hVXuRXft+k098WqvKhftNl2GKzQqUYdPXdZHAyZ7Xp9XcE1PvNpL5W63Js9bp/krdnjetvfwOfUYOqNhHggemtNVpg8+naR12w5Xeb2357+m9wf/VNP58uZzPDIuRU+17a0X3hygF94coGfuPouOe1D7r4zsfL3WeXiVn9IqeXf+JemZ9n2VlVvoeVu3wdN07EyIjx8FvOXN+X+j61hdCI31vO2LGSu0dN0exSWlq8XbVSNOz6EztedQkG8fBLx27EyI3ug6VoVXr1d5fX2+jrs/0Nb2/xn4p0c5/9UF2preH/xTTeerpmt8Zfef//5j5+n5jp96vv577JVuer7jpzoRFObbBwGvVfe9v1S/839/oFuz5aBGTwn0vBwckaC3e3zhoyPHj+Fh209l95///mPmasveE56Xw6KT9Frn4b47eDRJBNpKLoXF6e0eX1T7VPTuQ6Zr8Zrdcrtva++Rc2rdaajc7tsqLnHo+Y6f6nxIjMrdbn05e41GTb5zYQ6JTFDL94Yot+Cqbt4q0XufjNeO/acb+mGhnhau2qmvZq+p9m3enP/a3h/8T03n68f4HOcZtP4vYNDUKj8o5B5vz//keev0+fQVKne7FRmXomfa91XRtRsN+phQf96c/8Vrdqv3iFlyOF2eWxqkZebpxq0SPdmmtyLjUiRJBUXf67cd+ys2Ma1BHxPq5/rNYr387uAq/0Hlnvpc4+8PtLX9fwb+51HP//2Brrb3B/9T2/mq6RpfWV33IOYZtP6ttu/963P+7w90hVev67kO/RR/JUNl5W4NGb9QMxZt8vnjgHe8aT+V3X/+5wRu1YDP53n+g+zcZdseuC0GUBcCbSWjJgfqly93VfNWPTx7p+c4SVJWbqE+HjhFz7Tvq3d7jVd0fKrn9wVdjlKHj0frudf7qe+o2VV+cvPKTfv18ruD9eJbAzVtwUbdvl3R0A8L9dTyvSH61Svdq5z/e/9MxZvzX9v7g/+p7Xw96uc4gda/ZeYUqFmLgCrnvnmrHjpyOliSd+e/1OHSkPEL9HS7Pmr7wYgq/2we/sXb8+9ylWnU5ED9tmN/vfr7Ydp18KznfR4PCtWb3caqTZfhavfhSM8PHYH/2bH/dLXn/955rulzfOr8DWreqocee6Wb52vHez+9ubZrBvyLt+f/nZ7j1LxVD/3XS109XzscPHGxzvcH/1Lb+artGl/T+b8fgda/1fa9f03n//vrtzy/tvL/d+49A/vkuXC1fG+Iftuxv4Z9tUjFJQ5jjw+186b91Hb+i0scGjl5qV7rPFyvdR6u3iNmKSefe5Dj4RBoAQAAAAAAAMAQAi0AAAAAAAAAGEKgBQAAAAAAAABDCLQAAAAAAAAAYAiBFgAAAAAAAAAMIdACAAAAAAAAgCEEWgAAAAAAAAAwhEALAAAAAAAAAIYQaAEAAAAAAADAEAItAAAAAAAAABhCoAUAAAAAAAAAQwi0AAAAAAAAAGAIgRYAAAAAAAAADCHQAgAAAAAAAIAhBFoAAAAAAAAAMIRACwAAAAAAAACGEGgBAAAAAAAAwBACLQAAAAAAAAAYQqAFAAAAAAAAAEMItAAAAE1Ydm6hRk0O1EvvDNJjr3TTs+37asj4hcrKLTR9aAAAAABEoAUAAGiy3O7batNlhAZ+/o0SkjN1/Uax4pLS9cnwWWr7wQi53bdNHyIAAABgPQItAABAE5WVW6hmLQJ0JTWryuuLrt3Q5j0nVFLqUOHV62rWIkDpWXmet6/ffkRvdf9cknTsbKhe6zxcyzbs0+Ote2rjzqP6deueKil1en59cYlDzVv10JmLkZKktVsPqd2HI/V46556/aNRCrocJUmatXizuvSbWOVYLofHq3mrHrpxq8QnHwMAAADA3xFoAQAAmiiXq0zPvd5Pn09fUWMArSvQnr4Qqafb9dH4mauUW3BVJQ6Xnm3fV4dOXvb8+u+OXtBvO/ZXudut745e0O/e6K+YhFS53bd1PChUzVv1UHpWvq6kZatZiwBlZOd7fu+Ub9Zr4Off+OgjAAAAAPg/Ai0AAEATFhKZoNc/GqXmLbvrw/6TNSdwq8JjrnjeXp9A26xFgHILrnrePnbaco2YtMTz8pDxC/Tl7DWSpG6Dp2nusm1VjuGT4bO0YOUOSdL7n0zQwtW7PG975d0hOnI6+Ed8xAAAAEDjQqAFAACwQPyVDK3bdlj9x8xV81Y91H/sPLndt+sVaJu37F7lfZ2+EKln2/dVudstp6tMT7b5RMERCZKklu9/pmYtAh7YqMmBkqSNO4+q7QcjJEmRscl6tn1flZWVN8SHAAAAAPBLBFoAAADLXEnN0i9f7qqjp0NqCLSHqwTa37zWq8rvL3e79VyHfjofHKNjZ0P18ruDVVFRIUlq/9Eordt2uMY/+/rNYjVv1UNR8SmatXizJsxa9eM/QAAAAKARIdACAAA0UafOh2vS3LUPvL6iokLPvd5PO/af1o1bJWrWIkCJKZmet89YuKnWQCtJn09foSnfrNfoKYGasXCT5+xJvRsAAALhSURBVPV9R83W59NXVPm1OXlFun27wvPy4HHzNXvpFrXqNFQhkQmP/DgBAACAxoxACwAA0EQlpmTq8dY9NWHWKsUkpKqg6HvFJaXr8+kr9GSbTzz3lX2+46dav/2IpDsx9bXOw+sMtGcvRandhyP1uzf6Kyo+xfP6U+fD9Xjrnjp9IULlbreCIxL0TPu+uhQW5/k1J4LC9HS7PmrVaajnmbcAAACArQi0AAAATVhkbLI+HT1XL7w5QI+90k3PdeinfqPnKDYxzfNrDp64pFadhqrdhyPVd9Rsrdt2WB0+Hi2p5kBb7nbr+Y6fqk2X4Q+8bd22w2r5/mf6deueav/RKO06ePaB3/u7N/pr3vJtD/xeAAAAwDYEWgAAADSoq9/f1BOv9lJmToHpQwEAAACMI9ACAACgQdy+XaHvr99S/zFzNfyrxaYPBwAAAPALBFoAAAA0iNMXIvSrV7qr94ivdf1GsenDAQAAAPwCgRYAAAAAAAAADCHQAgAAAAAAAIAhBFoAAAAAAAAAMIRACwAAAAAAAACGEGgBAAAAAAAAwBACLQAAAAAAAAAYQqAFAAAAAAAAAEMItAAAAAAAAABgCIEWAAAAAAAAAAwh0AIAAAAAAACAIQRaAAAAAAAAADCEQAsAAAAAAAAAhhBoAQAAAAAAAMAQAi0AAAAAAAAAGEKgBQAAAAAAAABDCLQAAAAAAAAAYAiBFgAAAAAAAAAMIdACAAAAAAAAgCEEWgAAAAAAAAAwhEALAAAAAAAAAIYQaAEAAAAAAADAEAItAAAAAAAAABhCoAUAAAAAAAAAQwi0AAAAAAAAAGAIgRYAAAAAAAAADCHQAgAAAAAAAIAhBFoAAAAAAAAAMIRACwAAAAAAAACGEGgBAAAAAAAAwBACLQAAAAAAAAAYQqAFAAAAAAAAAEMItAAAAAAAAABgCIEWAAAAAAAAAAwh0AIAAAAAAACAIQRaAAAAAAAAADDk/wICAtLzicq0ZgAAAABJRU5ErkJggg==", "text/html": [ - "<div> <div id=\"a96cb143-c056-4c5b-9394-b1f4056c2a45\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"a96cb143-c056-4c5b-9394-b1f4056c2a45\")) { Plotly.newPlot( \"a96cb143-c056-4c5b-9394-b1f4056c2a45\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2017\", \"2011\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [31.6, 44.5, 36.7, 43.117715660745624], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2010\", \"2003\"], \"xaxis\": \"x\", \"y\": [42.9, 34.99696361745937], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [51.6, 47.1, 26.1, 32.80721200883463], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2012\", \"2000\"], \"xaxis\": \"x\", \"y\": [71.7, 69.57207895753851], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2015\", \"2010\", \"2004\", \"2000\"], \"xaxis\": \"x\", \"y\": [87.5, 90.2, 83.9, 73.27977952076182], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2012\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [42.2, 55.2, 36.7, 46.545528659115774], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2013\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [84.9, 72.3, 67.91461681851463], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2014\", \"2010\", \"2007\", \"2005\", \"2000\", \"2014\", \"2010\", \"2007\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [92.1, 89.9, 82.24363123253028, 79.8, 63.151939695501895, 92.1, 89.9, 82.24363123253028, 79.8, 63.151939695501895], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Senegal<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Senegal\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Senegal\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2017\", \"2016\", \"2015\", \"2014\", \"2012\", \"2010\", \"2005\", \"2018\", \"2017\", \"2016\", \"2015\", \"2014\", \"2012\", \"2010\", \"2005\"], \"xaxis\": \"x\", \"y\": [47.693668685983106, 37.6, 43.7, 38.6, 43.6, 43.38431171312834, 43.8, 36.1, 47.693668685983106, 37.6, 43.7, 38.6, 43.6, 43.38431171312834, 43.8, 36.1], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2011\", \"2011\", \"2011\", \"2011\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [80.1, 79.5, 80.1, 79.5, 75.1, 63.65204916406636], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2013\", \"2007\", \"2001\"], \"xaxis\": \"x\", \"y\": [80.4, 83.5, 72.5, 80.95207762610593], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"a6e2ba6a-90d5-4d97-8ff3-0f6e341643a3\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"a6e2ba6a-90d5-4d97-8ff3-0f6e341643a3\")) { Plotly.newPlot( \"a6e2ba6a-90d5-4d97-8ff3-0f6e341643a3\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [31.6, 44.5, 36.7, 42.84612926788617], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [42.9, 35.16663129012852], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [51.6, 47.1, 26.1, 32.957470413688526], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.7, 69.50735329316193], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [87.5, 90.2, 83.9, 72.55544324389314], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [42.2, 55.2, 36.7, 46.01222163399134], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [84.9, 72.3, 67.93636699956508], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2005, 2000], \"xaxis\": \"x\", \"y\": [92.1, 89.9, 79.8, 63.224267549675346], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [80.3, 79.5, 75.1, 63.98945399904411], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [80.4, 83.5, 72.5, 80.82017338703842], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all_plus_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('a96cb143-c056-4c5b-9394-b1f4056c2a45');\n", + "var gd = document.getElementById('a6e2ba6a-90d5-4d97-8ff3-0f6e341643a3');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -18373,7 +16466,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 372, "metadata": {}, "outputs": [ { @@ -18396,10 +16489,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2017", - "2011", - "2006", - "2001" + 2017, + 2011, + 2006, + 2001 ], "xaxis": "x", "y": [ @@ -18423,8 +16516,8 @@ "showlegend": true, "type": "scatter", "x": [ - "2010", - "2003" + 2010, + 2003 ], "xaxis": "x", "y": [ @@ -18446,10 +16539,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2005", - "2000" + 2016, + 2011, + 2005, + 2000 ], "xaxis": "x", "y": [ @@ -18473,8 +16566,8 @@ "showlegend": true, "type": "scatter", "x": [ - "2012", - "2000" + 2012, + 2000 ], "xaxis": "x", "y": [ @@ -18496,10 +16589,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2015", - "2010", - "2004", - "2000" + 2015, + 2010, + 2004, + 2000 ], "xaxis": "x", "y": [ @@ -18523,10 +16616,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2012", - "2006", - "2001" + 2018, + 2012, + 2006, + 2001 ], "xaxis": "x", "y": [ @@ -18550,9 +16643,9 @@ "showlegend": true, "type": "scatter", "x": [ - "2013", - "2006", - "2000" + 2013, + 2006, + 2000 ], "xaxis": "x", "y": [ @@ -18575,10 +16668,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2014", - "2010", - "2005", - "2000" + 2014, + 2010, + 2005, + 2000 ], "xaxis": "x", "y": [ @@ -18602,10 +16695,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2006", - "2000" + 2016, + 2011, + 2006, + 2000 ], "xaxis": "x", "y": [ @@ -18629,10 +16722,10 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2013", - "2007", - "2001" + 2018, + 2013, + 2007, + 2001 ], "xaxis": "x", "y": [ @@ -19198,6 +17291,7 @@ "arrowhead": 0, "arrowwidth": 1 }, + "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, @@ -19494,11 +17588,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAHCCAYAAABoh8BRAAAgAElEQVR4nOzd+X9VhYH//8/f05nvODOdaWfpdFNbq20dW1unrggioMgiAiqorAqICIKIyL4n7Fv2kJ3s+77vuefcc7Ld5Ga5ubmv7w+BWBRJIOSewHk/H4/341GSGE4SeiqvnnvO/0NEREREREREREREwuL/OX0AIiIiIiIiIiIiIm6hICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiICsiIiIiIiIiIiISJgqyIiIiIiIiIiIiImGiIDtF7faA5sJ1dA4QCunn79b5h4J09w07fhxa+Gd2DzISDDl+HJozGwqMYvcOOX4cWvhn9w4xFBh1/Dg0ZzYSDGF2Dzp+HFr41903jH8o6PhxaM4sFIKOGXAcmjMTmW4KslPk9ElCc2YKsu6egqx7pyDr7inIuncKsu6egqx7pyDr7inIunsi001BdoqcPklozkxB1t1TkHXvFGTdPQVZ905B1t1TkHXvFGTdPQVZd09kuinITpHTJwnNmSnIunsKsu6dgqy7pyDr3inIunsKsu6dgqy7pyDr7olMNwXZKXL6JKE5MwVZd09B1r1TkHX3FGTdOwVZd09B1r1TkHX3FGTdPZHppiA7RU6fJDRnpiDr7inIuncKsu6egqx7pyDr7inIuncKsu6egqy7JzLdFGSnyOmThObMFGTdPQVZ905B1t1TkHXvFGTdPQVZ905B1t1TkHX3RKbbjA6y+SU1Th/ChJw+SWjOTEHW3VOQde8UZN09BVn3TkHW3VOQde8UZN09BVl3L1xCoRAHI6J58sWVPPLobH7558Vs3HEM/8DQtPx+zW0G+SXV0/K55e7MiCA7PBygvrmDytrm8aVkFvHj3851+tAm5PRJQnNmCrLunoKse6cg6+4pyLp3CrLunoKse6cg6+4pyLp74fLpV6d47LllZOSW0u8fpLahjbnvfMrstzdPy+93KDKGvccuT8vnlrvjeJDNyC3lP55awI9+8cot+6dfz2bVpn1OH96EnD5JaM5MQdbdU5B17xRk3T0FWfdOQdbdU5B17xRk3T0FWXcvHLp6fDzy6GxKKupvebt/YJBTFxIJjATp6e1n6Udf8sTzK/j9S+/y1eGL4x/3yGNzsDp7vvfrytpmnpm9ms/3nmbOsi08+eJK0rJLyMwv5z9//wb/879vse3rSCpqmvjTnA9YsWEPs9/ezLNzPyImKWf8813LKOBPcz6Y/m+ESzkeZP/31VUcjIimu6ePnz29EF+fn7TsEha+v53mNsPpw5uQ0ycJzZkpyLp7CrLunYKsu6cg694pyLp7CrLunYKsu6cg6+6FQ2J6AY/+9e07fsyarQdZvXk/oVAIX5+fJ55fTmpWCfDDQbamoZV/+OUsMnJLAYhJyuFvC9YBsP7zI+NXyNY0tPLj387lakIWAAcjonlr9Y7xz7dq0z5dTTuNHA+y//z4awQCIwD89x8Xjr+9oqaJlxd97NRhTZrTJwnNmSnIunsKsu6dgqy7pyDr3inIunsKsu6dgqy7pyDr7oXDxdh0npu/9o4f86tnl1Be3Tj+68/3nmbTrhPAnYPsT56cP/72ytpmHv3LUuD7QfZfHn+N0dEQAKbVzb88/hq+Pj+joyH++48LaWk378vXKt/neJD9+TOLxq+EffQvS/F4OwEIBkf5tyfmOXlok+L0SUJzZgqy7p6CrHunIOvuKci6dwqy7p6CrHunIOvuKci6e+GQXVDJL/60+I4f88hjc+gw7PFfHzwVzYr1e8bf90NB9pd//vbz/v2vvxtkv/v7v7L4E85FpZJbVMVfX18ztS9Q7sjxILtp1wl+9vRCunp8fLBlP/+3YB2nLiTy7sa9/OGV950+vAk5fZLQnJmCrLunIOveKci6ewqy7p2CrLunIOveKci6ewqy7l449Pb5+bcn5pGZX37L24eGA6zZehD/wBCP/mUpFTVN4+/7fO9pNt+4QvZffzMX0+oe/2d+9ItX7jrI/v3HAUReTmLeiq1s3HGUg6ei7/8XLeMcD7LB4CinLiQyNBygr3+Ad9bt5tG/vs3Liz6mrKrR6cObkNMnCc2ZKci6ewqy7p2CrLunIOveKci6ewqyD89a7R6abYtG20O91Uqt3UiNXUOVVUmlVUK5VUCplUOJdZ0iK4WyriR8g/rZu3UKsu5euHx1+CI/f2YRSRmF9PsHaWzxMG/FVhZ/sBMYC6gffnoAgJ7efh5/btl4wP3t35aTXVAJwOW46/zDL2dNGGQ/2Xmcz/ZEfO/tN/X4+vm3J+bx82cW3XJlrtx/jgfZB53TJwnNmSnIunsKsu6dgqy7pyDr3inIunsKstOztk4fLXY3zbaXRruDequFOquBGruaKruCCquYMiufUiubYm8GRVYKBVYiud5ocswrZJnnyTRPk2GcJM08Qqp5gGRzL9eM3SQaO4g3thHn2UyM8TFRxlqijDX3tK6Bbse/V5ozU5B198IlFApxKDKG372wgkcenc2jf1nK53tPjz9rqbfPzzvrdvPkiyv5/Uvv3nLV6pWETJ58cSWvLfuUb45f4efPLMJrd98xyGbklvJvT8zj7TVf3jbIArzx3uc8/8b6af7KxfEgGxgJEp+ax4GTUXx1+OL3NtM5fZLQnJmCrLunIOveKci6ewqy7p2CrLvnliA7dvVoJ022QYPdTp3dRK1VR7VVRZVVRoVdSJmVR6mVSbGVRpE3iXwzjlzzKjneS2SZZ8k0I0g3j5NqHCbF2E+SsYdEcxcJxnbijK3EGJ8Q7dlwz3F0qosxPibOs5l4YxuJxg6uGbtJNveSah4gzTxChnGSTPM0WeZ5cswrFHXG4hvqd/xnozkzBVl3z83WbD3IifMJTh/GQ8/xIPvW6h385x/e4MWFG5m9dPP3NtM5fZLQnJmCrLunIOveKci6ewqy7p2CrLvnTJDtp8Xuodm2x15eb7dRZzdSY9dSbVVSaZVSbhVQZuVSYl2n2Eql0LpGnhlLrnmVbPMiWeYZrpsRpJvHSDMPkWLsI9nYwzVjJwnG58Qan964enS9I3E02rOeGOMT4oxPiTe2k2juJNnYQ4qxjzTzEOnmMa6bEWSZZ8g2L5JrXiXfjKXQm0SxlUqJlUmZlUuFVUilVUq1VUWNXUud3USD3UajbdBs27TYvbTZ/nv6Oegesu6egqy751Z1jW08+pel+Pr8Th/KQ8/xIPurZ5fQ7x90+jDumdMnCc2ZKci6ewqy7p2CrLunIOveKci6eyPBEEZP3318ef3RsZfXG9+QZOwm0fjivr28fmqBdCOxxibijc9IMHZwzfiSJPNrUswDpBmHSTdPcN2MINM8R455iTxvFPlmHIXeZIqtdEqtLMqtfCqtIqrscmqsamqteurtZhrtdppskxa7i1a71/Gf6WSnIOvuKci6e270+d7T/PrZpSRlFDp9KK7geJB9bv5aRoJBpw+DUCjEzv3n+NWzS/iPpxaw7evI8fe1tJu8svgT/uOpBfxpzgfkl9SMv8/pk4TmzBRk3T0FWfdOQdbdU5B17xRkZ9r8tNq9NHd20mSbNNht1NvNN15eXz328nqriHIrj1Ir68bL65PJN+PI80aRY14i0zx34+rRE6QZh0kxD5Bkfs0140sSjB3EG58Ra2xy7OX10cY6YoyNxBlbbry8/guSjN0kG9/ceHn90e+9vD7XG02BlUiRlUKxN4NSK5tyK58Kq4Qqq4Iau4Zau4EGq5VGu4Nm26LV7qats28G/Exn5hRk3T0FWXdPZLo5HmQz88p5Z91uEtPyKSyrpai87paFy9WELP446306u31YnT38/qV3ib6WDcDLiz7mUGQMweAoqVkl/OJPiwmMjEVkp08SmjNTkHX3FGTdOwVZd09B1r1TkJ1o0/fy+kRzJ/HGduKMT2/cf9Shl9cbd//y+jwzlkLr2o2X11+nzMql3CqYxMvrdc/SmTIFWXdPQdbdE5lujgfZz/ZE8KNfvPKDC5dVm/Zx4GTU+K9PnE9g8Qc7sbt6+bcn5t1yFe+fX/uQ7IJKQEHOrVOQdfcUZN07BVl3T0HWvXvQgmxbZx+t0/3yemMLMcZGoo11D9TL64u8yRRbaTdeXp9HhVVElVVGtVVNrVV325fXu+WhXtr3pyDr7inIunsi083xIPtff3yTnMJKhoYDjh7Hd4Ps5fjrPDN7NfklNTw9a9UtH/v2mi+JuJQEKMi5dQqy7p6CrHunIOvuKcg+nPN0mJhNDVi1pXRWZNFdfI3evMv4MiPoS96PP2EHwzGbGI1ez2DUxwzEbsWfsIP+a1/Rl7wfX/oRfJkR9GafoyfvCt2FcXSVJNFVlk5nZQ52TSFmXQmepnLaWitobq+g0VNFnbdqGl5ev/GBfnl9mZVPhVVMlV1BjV1NndVAvdVy4+X1XsdeXq8g694pyLp7CrLunsh0czzI/mnOB04fAgBXEjL5w8vvYXf10tPbz6tLNvHkiyvJyC3luXlrbvnYVZv2cTgyBoBO35DmwnX5hgiFHrSf/7B2nzYUGKV/cMS5Y+gdpqtPc2K9/gCjozh+HJozGwmG6BsYcfw4HJtvBhzDD6y7u5sesx1fWzV99YX0V6XjL4ljIP8cg9ePMJTyFcPxnxGIWkfwwkpGIxcSOvYqHH7+jus/Owvv1bk0Jb1BTcZbVGQtpixnCcX5b1NYtIy8knfILltOZuVK0qvfJbX2fZIaV5HQvJq41g8ciaM3F+vZSLyxiUTjM5KML0gxd5Pm3Ue69xCZ1nGy7Qhy7LPk2xcpsKMo6oynrCuJ8u40KruzqO7Oo7a7iPqeMhp7q2nurafV10x7bzsenxfT14XV53P8Zx+OjY5Crz/g+HG4dU7+O1//4AhDgVHH/91Tc2ahEHTd1T/j9N/3tPs5kenmeJA9fi6BfSeu4h8YdPQ4RkdD7Nh3ht/+bTnPzV/Ll4cu8H8L1lFQWsMfXnn/lo9d+tEuTl9OBmBgKKi5ccNBQqEH7ec/ot2njQRHGQ449z3tGxyZ4p8F7V43OBxkNBRy/Dg0ZxYcDTEUcP44nFp/GM49gz02Q94WhtoqGG7IJVCVRKDkKoHcCEYy9jOStJNg7CeMXv6A0NklhE6+PmFUvdMGI16mM2ohbekrqCn4kMKKdVxv2EBC2/29T2lMxxri2j4isflDkhtXk1q/iozqd8mqWEFO6XLyi5dRVLiMkryllOcsoTJzETXpb1GftpDG5DdpubaAtoT5eGJfxxv1Ovbl1+i+OIfe86/Sf2YWg5EvM3zyZYLHXpzU1x06MYfQqfmETi9i9PwyRi++x+jVNQRjNhKM30IwcTsjKbsZSf+GkczDBHJPMVJwjkDJFQJlcQSqkhmuTWe4Pofh5iKG2ioY8tQx5G1hsNPDYI/NYJ/P8T+z92ujoRCDw84fh1vXN+Dcv/MNB4KMBEcd+/01Zzf29727+Wec/++Ldv8mMt0cD7KPP7eMRx6bw49+8Qr//rt5/OTJ+bfMKftOXGXNZ4fo6vHxr7+Zy8Dg8Pj7nnh+OQWlNYBesu7W6ZYF7p5uWeDe6ZYF7p5uWTCZ+fF4bMzWZrz1ldhVeXSVJtNTEIUv+wx9aYfwJ37JQOynDF1eQ+DccoIRbxI6OmtKYTV07FWCEW8SOLeCoStrGYjdSv+13fRkHMBTdJz6yhOUNxwjr/kgGW17SPB8PqmQGm9sI8U8QI51jipfEoXeFIq96eMvr6+0iqmyy2+8vL6eervlxv1HvbTYXbR1+ib8fnV4e/B0WBht7ZgtTXgba7HqyrFrCumszKGrLJ3u4iR6CmPpyb9Mb/Y5fJkR+NKP0Je8n/5rX+FP2MFA7FYGoz5m6Mpahi+uJnBuBSNnlhKMeJPRE3NvXBH8wpS+z/e0Iy8QOvYqoydeJxi5kJEzSwmcW8nwpdUMXVnLYNQnDMR+hj/hC/qT9tCXcgBf+lF8WZH05lwYuw1E0dhtIDrLMrCrcrFrirDqyvE21mK2NGG0deDx2HR4e6flz7VuWeDe6ZYF7p5uWeDuiUw3x4PstYwCUrNKfnDhkpiWz+vLt9LvH6Sl3eTRvyylqLwOgNlLN/PV4YsEg6Ncjr/O488tIxgcBRTk3DoFWXdPQda9U5B199wUZDu8PRhtHWNxsKaIzvLrdBfF05t7AV/6MfqT9zIQt52hqxsZvvA+I5GLGT3x2pSCX+jIS4yenMfImaUMX1rNYNTH+BN2jN2n9fpJevMu0118jc6KLKy6EsymBjo8HhqtVqqsSkqsTHK9UWQYJ0k29hBrbJr4Zf3GJpKMPVw3T5HrjabUyqLaqqTR7rjlSfcP2kO97vyz9eExOjHaPRitzZhN9XjrK7BqirArc+ksv05XSTLdRfH05F+lN+c8vqxIfOnH6Es5SH/S1/gTdzIQu43B6E0MXV3P8MUPCZx/l5GzbxOMfIvRk/MIHZ9N6MhL4Q/Ah58ndPQVRk+8RjDiDUZOLyFwdjnDF1cxdHkNg1c3jt0HOH4H/dd205+8j760w/iun8SXfY7evMv0FMbQXXyNrtI0OiuzCbaX09VQjrexGrO5AaO1DY/HS4fZTbvld/xnqk3fFGTdPQVZd8/NRoJBfvSLV3jksTn88+Ov8dOnFjD3nU9pbjOm9Hl//Nu5eLyd9+koH3yOB9mZIjAS5N2Ne/nJk/P5+TOLOHUhcfx9bR6Llxd9zE+fWsCzcz+irKpx/H1OnyQ0Z6Yg6+4pyLp3CrLu3gMXZC0/ng4Ls6UJq6587GrLkiR68q7gy4qkL+Ug/sRdDEZvZvjShwTOLiN4agGhI69MLYYdn00w8i0C51cydGUdA7Gf0X9tD770I2MPviqMpas0Dbu6EG9DNUZrKx1m1w9+Hc22Ta1VR7mVT4GVSJZ5hhTzAPHGNqKMtXd+2JRnA4nGF6QZR8jxXqLISqHCKqbebqbV7pn09/JhCrLh/3PYT4fZhafDxGhtxWxqwNtQhVVXgl2VT2dFFl1lqXQXJdJTEE1v3kV8WWfwZZygL+0Q/cnfjF1VHb+dwZgtDF3dyNDlNQxfeJ/AuXcYiVxM8NQCRk+8NuU/u/cegF9i9PhsgifnE4xcxMjZZQTOv8fwpY8YurqBwZgtDMRtx5+wi/7kvfSlHsKXcRxf9hl6cy/SUxBFd1ECXaUpdFZkYlflY9WW4G2oxGyqx2htwdNh0GF00eEN/0PN3DwFWXdPQdbdc7ObQfZmPB0YHOajTw/y+vKtU/q8dlcvo6Oh+3GIDwXHg+wTz6/gyRdX3na/f+ldZr+9mcORMQRGZuY9PJw+SWjOTEHW3VOQde8UZN09p4Jsh9mN0dqGt7Eau7pw7CXshXFjVy6mH6U/aQ8DsdsYurqewPl3CUYuYvT47KkFpiMvEzw5n5Gzyxi++CGD0ZvwJ3wx9nLyzAh68q6MvYS8MgerrgyzuQGPx0u71X/XX1+r3Uu93UKlVUKxlUq2eZk08yiJ5k6iPRsnuMp1LfHGZyQb+8k0T1NgJVBu5VFj19JsW/ftZ6Ag+yDNT4fZ/e1tIJob8TbWYNWVYVff220gQjHrCXz3NhAn59641cYMuQ3E+ZUMX/yAoSvrGIzexEDsthl9G4gHZQqy7p6CrLvnZt8NsgDpOaX87oUV479Oyijk6Vmr+M3/vcPspZvp7PYBsPD97Xx56AJvvPc5z879iIWrdoy/wvzmFbKVtc08M3s1n+89zZxlW3jyxZWkZYfvFfIzheNB9tSFRH7+zCJWbvyaQ5ExHDkdy/uffMOjf1nKsbNx7D58gV89u4TP9kQ4fai35fRJQnNmCrLunoKse6cg6+5NKchafXg6TMzmRqzaUjors+kuvkZP/mV8mRH0pezHn/AFg1GfMHzxA0bOLB172fcUX/I9enwOI5GLCVx4j6Gr6xmI+5z+pK/xpR+jN+cC3UVxY0GmphBvYy1GW/vYy7Dv4/etzfbTaHuotqootbLIM2O4bkaQZH5NnGfzxA/EMj4hyfiKdPMEueZVSqzrVNkVNNhttNnhuVpQQdbdm+gesh1WLx6PjdHuGbt/cmPdfboNxMqxAHzzNhDHXoUjk3tw2/2/CvgVRk/OJRjx5thtIM7dvA3EWgajPr7r20DY1YVYtWUz/jYQCrLunoKsuxdOg0Pw9upA2LdqQ+C2x/PdIOsfGGTF+j1s2X0SAMPbxX/+/g2q6loAOHgqmoWrdgCw+IOdzFryCSPBIKFQiD/Oep/0nFLg2yBb09DKP/xyFhm5Y2+PScrhbwvWTev3eCZyPMjOW7GVaxkF33t7SmYRKzbsAaCqroVfP7s03Ic2KU6fJDRnpiDr7inIuncKsu7eUGCUzs5ujNYWvA1V2FX5dJWl0lMQgy/7HH1ph+m/tpuB2K0MXVlL4NxKgpELbzxMaWohJHhqAYFz7zB86SMGY7bgT9hFX+pBfFmn6cm/SldJMnZlLlZdOWZLE54OK6xRo7mzkzqrnnKrgEJvElnmOVLNA8Qb24k21k0QXdeTYOwgzThEtnmBQm8KFXYhdXYjLfb9jcP3OgVZd2/GPdTL6qfDuJ+3gdjA8KWPCFx4j8DZZd/eBuL4HEJHXnYmAB95mdHjcwieWjD2fyqdXUbgQvhvA6Eg6+4pyLp74TQwAHMWBcK+hSvvHGT//Xfz+MmT8/nHX83iqZfepbHFA0DEpSTmLNsy/vH+gUH+6dezCYwEWfzBTg5Hxoy/b+GqHZyLSgVuDbI/eXL++MdU1jbz6F9mZvObTo4H2X9+/DX8A0Pfe/vwcGD8B+QfGOJffzM33Ic2KU6fJDRnpiDr7inIuncKsg/HOry+sSvZmuqxakvorMikuyhxLFpknKA/Zd9YqIj6mOGLq8auVj0xF45M4aXJR15g9ORcRk4vGbuq7OpGBuK305/8Db6M4/TmXqS7OIHO8utYNUV4G+sw2j10WDPj5cJtnT7q7TaqrDKKvenkmFdIN49xzfiSGGOi2wqsIc74lGTjG66bkeSbsZRaOdTY1TTZJu32zLka7oemIOvuzbggG/bdj9tA7MYf/+1tIIYur2X44ioC55YzcnrJDLgNxItjt4E4OY9g5Fvjt4EYufwBwegN9/c2EDPkvK5NPAVZdy/cenrDv17f7Y/lu1fIjgSDpGYV87OnF+K1u9l34io//u1cHv3r2+P76VML8NrdLP5gJ6cvJ49/rr//9d8H2V/+efH4x3z3127heJB94vkVfLYngn7/4PjbBgaH2XXgHL97YQUjwSBbv4rguflrHTzKH+b0SUJzZgqy7p6CrHunIDuT5sfjscdeHlxfgV2VR1dpMj35Ufiyz9CXegh/4pdjV39dXkPg7HKCEW/e+Mv+FK7aOvYqwYg3CZxbztDltQzEfoo/cTd9aYfwZZ2hpyCartIU7Kp8vPWVGK3NeIxOZn509NNkm9TY1ZRaOeSbsVw3I0k2viHO+HQStxXYyDXjSzLM4+SYVyj2plNllVFvt9HW6ZsBX9/UpiDr7inIhn/3fhuIo/SlHKA/aQ/+hC++vQ3ElXUMX/xght0GYtY03gaiEaOtHU+HdeM2NDP9f4Nm5hRk3T03u909ZAGemb2auJRcLsVmsPD97bf9ZxVkJ8/xIJtfUsN//uEN/r9fv8rPn1nEo399m0cem8O/PP4aSRmFBAIj/OJPiyksq3X6UG/L6ZOE5swUZN09BVn3TkH2/q/D7MZoa8fbWItdU0hnWQbdRXH05lzAl36M/qSvGYj7fOyBVRfeYyRyMaPH50z5L8KjJ+YycmYpwxdXjf3FN347/Sn78GWcoDfvIt1FiXRWZGLVloy9vLXd49hDve7XWuxu6uxGKuxCCr0pZJsXSDMOkWDsIMpYf8fgGm2sI97YTqp5gCzzHIXeJMqtAuqsepo7Ox3/2qZ7CrLunoKsOzZ2GwgDo7UFs6keb0MlfU3lDDUX01mRSVdpCt1FCfTkR9GbewFf1umx20CkHqQ/aS/+xF0MxH3OYPTmsfsAX/qQwPn3GDm7jGDkIoIn50/5gYtT/t++47MJnjTZmYEAACAASURBVJxPMHIRI2eXETj/HsOXPmTo6noGozczEPc5/sRd9CftpS/1IL15lxz/uTg5BVl3z81uF2Rzi6r48W/n0tRqYHX28LOnF47fwqCksoEN248ACrJ3w/EgCxAIjJCZV87F2HQuxKSTmlVCT2//+PtHgkEHj+7OnD5JaM5MQdbdU5B17xRkf2BWP54Oa+yBVXXlYy9fLUmiJ+8KvqxI+lIO4k/cyWD0ZoYvfTj2l9NTC6Z8b8LQsVcJRr5F4PxKhq6sZSD2M/qvfYUv/Qi+7HP0FMbQVZqGXV2At6Eao7WVDqPrnr/OmR5k2+w+Guw2quxySqzr5JpXSTdPkGTsJsb4ZOLbCng2k2R+zXUzgjwzhlIri2qrikbbQ5vLr65SkHX3FGTdu+m7h+xEt4HIpqs0bezhj4Ux9OZdxpd9Dt/1k2P3K0/ed5e3gbi3/50dObfc8Z+Bk1OQdffc7GaQfeSxOeMXTP7h5feIScoZ/5jk60U8PWsVTzy/nGfnfkR+STWgIHs3HAmyNQ2t4/eNrWloveNmOqdPEpozU5B19xRk3buHPch2GF0Yra14G6qxqwvoKk0b+4tg9jl86Ufpv7aHgdjPGLqyjsD5lQQj3yJ0H672GT05b+xq1UurGYz6BH/CF/Ql78eXGUFv3mW6i6/RWZGFVVuK2dyIp8N05PszE4Jss+2lxq6lzMqjwEog0zxNsrGfeOMzooy1d77K1bORa8ZO0syjZJuXKbZSqbRKqLdbaLV1T8M7TUHW3VOQde8epod6dXhv3AairQOzpQlvYy1WXTl2TdH4fYC7SpLoLoyjJ+8KvTnn6SmMdfy4nZyCrLsnMt0cCbI/+sUrZBdUjv/nO22mc/okoTkzBVl3T0HWvXsggqzVh6fDxGxqwKotpbMii+7ia2NX12RG0Je8H3/CFwxGfcLwpdVjD6w6OY/QkZem+DLIOQQjFxE4/x5DV9czELuN/qSv8aUfpTfnAt2FcXSVpWNXF+JtrMFoa79xX7sZ8D2b5MIRZFvsXurtZiqtYoqsFLK9F0kzjpBofEG0Z8MEV7muJd7YRop5gCzzDAVWIuVWPrVWHc225fj370Gegqy7pyDr3j1MQVa7+ynIunsi082RINvb5x+/DUFvn/+Om+mcPklozkxB1t1TkHXvwhlkPUYnRmsL3oZK7Kp8uspS6SmIwZd9duzlitd2MxC7laErawmcW0EwcuHYw0mmcguAI68QPLWAwNllDF/6iMHozfgTd9GXchBfViQ9+VfpKknCrsrFqivHbGnC02HRbrnj5ez3I8i22f002h1UW5WUWpnkeqPJME+RZOwh1tg04W0FYo1NJBlfkWGcJM8bRYmVSZVVQaPdTrvd7/j36GGdgqy7pyDr3inIunsKsu6eyHRz/B6yKzbsue3b+/oHmLfiszAfzd1z+iShOTMFWXdPQda9u9sg2+H1jT0huqkeq3bsoSDdRQn05l3El3GC/uRvGIjfzuDVjQxfXMXI6SWMnpgLR16YQlh9gdETrzFyegnDF95n6OpGBuK205+8F1/6MXpzL9BdnEBn+XWsmiK8jbUYbR10eHsc//7O9E02yDbbNrVWHWVWPoXWNbLMs6SY+4k3tk3itgLrSTR2kGYcJtu8SJGVQqVVRJ3dRIutn5FTU5B19xRk3TsFWXdPQdbdE5lujgXZxhYPSRmF/PPjr5GUUfi9HYyI5p8ff82pw5s0p08SmjNTkHX3FGRdNsuPx2NjtjTR1VhJsLWYrtJkevKj8GWdpi/1EP6EXQzGbGHo8hoCZ5cTjHhjSg/R4PDzhI7OIhjxJoGzyxm6vIaB2E/xJ35JX9ohfNln6CmIoqs0BbsqD299JWZrMx6PTbvLH740nbsZZFvtXuqtFiqtUoqtNHLMy6SbR0k0dxFjbJz44VnGVlKMfWSap8k34yizcqmxa2iyvY5/jdrtpyDr7inIuncKsu6egqy7JzLdHAuyKZlFPP/Gen70i1f4yZPzv7efP7OInfvPOXV4k+b0SUJzZgqy7p6C7IO5DrMbo60db2Pt2AMsyjLoLoqnN+c8vvRj9CftZSDuc4aubiBw4T1GIhczeuI1ODyFq1WPvMjoibljD6y6uIrBqI/xx++gP2UfvowT9OZdpLsokc6KTKzaEsymeox2Dx1en+PfLzevzfbTaBtUW9WUWtnkmTFcNyNIt78hztwyidsKfMw1Yzfp5nFyzasUezOosstpsNtp6+xz/OvT7n4Ksu6egqx7pyDr7inIunsi083xWxbMWvKJ04cwJU6fJDRnpiDr7inIOjirH4/Hi9nciFVXNvZU4JIkevKu4MuKpC/lAP7EnQxGb2L40oeMnF1G8OR8QkdentrVqsdeJRi5kJHzKwnFrGcgdiv9176iL+0wvuxz9BTE0FWWil2Vj7ehCqO1lQ6jy/nvl/aDa7G7qLMaKLcKKPImkWWeJ9U8SIKxnShj3QTRdR0JxnZSzYNkmecp8iZTYRVSazfQYuvn/jBOQdbdU5B17xRk3T0FWXdPZLo5HmQBqupaxv9zm8fiYEQ0iekFDh7R5Dl9ktCcmYKsu6cgO/V1mF0Yra14G6uxqwvpKk2jpzCW3uxz+NKP0H9tDwOx2xi6so7A+ZUEI98idHz2FB9Y9RKjJ+fduFr1AwajPsGf8AV9yfvxZUbQk3+Z7uJrdFZmY9WWYjY34ukwabe+vaIxnA/10qa2ts4+Guw2qqwyir0Z5JhXyTCPc834kljj40ncVmALyeZeMs0I8sxYSq1sjIEG2nu96LYQ7puCrLunIOveKci6ewqy7p7IdHM8yB45HctPn1pAMDhKd08f//3HhTwzezU/e3oh3xy/4vThTcjpk4TmzBRk3T0F2Ruz+vB0mJhNDVh1JXRWZNFdfI3evMv4rp+kL3k//oQdDEZ9wvCl1YycWcroyXmEjrw0pbA6enw2wchFBM6/y9DV9QzEbqM/aQ++9CP05pynuzCOrrJ07OpCvI3VGK1tdJj356pFBdmZtSbbpMaupszKJd+M47oZSYrxDXHG1gmDa4yxkURzF+nmMXLMyxRbaVRapTRYrbR13v6WEZN9qJf28E1B1t1TkHXvFGTdPQVZd09kujkeZB97bhllVY0AHDwVzbNzPyIUClHb0MZv/u8dZw9uEpw+SWjOTEHW3Xu4gqwfj9GJ0dqMt6ESuyqfrrJUegqi8WWfpS/tEP3XdjMQu5Why2sJnFtBMOJNQsdeneLVqi8TPLWAkbPLGL70IYPRm/En7qQv5SC+rEh68q7QVZJEZ2UOVl35jatVLdotZ69MVJAN71rtHursJiqsIoqsFLLNC6Qah0kwviDas36C6LqWBPNzUsz9ZJlnKbSuUWblU2vV02zb93Q8CrLunYKsu+eWIOtp6cJb0kpnaiW9l3PxHUtm4IvLWPkNjh+bU1OQdfcUZN09kenmeJB95LE5hEIhAOYs28L+k1cBGB0N8chjc5w8tElx+iShOTMFWXdvJgbZDqsXo92Dt7EOq7aYzvLrdBcl0Jt7EV/GCfqTv2EgfjuDVzcyfHEVI6eXMHpyLhyZwgOrDr/A6InXGIlcTODCewxd3cBA3Hb6k/biSz82drVqUTydZRnYNUV4G2sx2trp8PY4/v261ynI3u/102i3U2VXUGJdJ9e8SoZxkiTjK2KMTyZ+eJZnM0nGHq6bp8j1RlNqZVFtVdJod9Bm99/341WQde8UZN29hyHIdhh9mNUe7Ox6uuOK8UVm4P86hqEtZxh5/xChN3fD61/cdj1X8hw/fqemIOvuKci6e242Egzyo1+8wiOPzeGfH3+Nnz61gLnvfEpzm3HXn2vh+9u5FJvxvbfPX7nttm+/FzeP9x9/NeuW/eGV9+/L558ujgfZx55bRkVNE+0ei0cenU1jiweA+uYOfvnnxQ4f3cScPklozkxB1t2btiBr+fF0WJgtTVh15diVuXSVJNOTH4Uv6zR9qQfxJ+xiMGYLQ5fXEDj3DsGINwgdfWVqV6senUUw4g0CZ5czdHkNgzFb8Cfsoi/1EL7sM/TkR9FVmoxdmYu3vgKztRmPx8aN99FUkL37NdsWNXYt5VYeBVYimd4zpBj7iTc+I8pYe8fgGu3ZQKLxBWnGEXK8lyiyUqiwiqm3m2m1wx/2FWTdOwVZd+9BCLJGo41V2ERXcjm9F7LpO5jIwPaLDK87yeiSvT8YW/9+oTd3M7LqMENbztK/Nxbfmet0xxVj1hiOf31OTUHW3VOQdffc7Gbg9Hg7ARgYHOajTw/y+vKtd/25fijI9vb5GRoOTPlY4fvH+6BwPMgePRM3Xt1XbvwagO6ePp566V22fhXh8NFNzOmThObMFGTdvYmCbIfZjdHWjrexFrumkM6yDLqL4ujNOY8v/Rj9SV8zEPc5Q1fXE7jwHiORixk98dqUoipHXmD0xFxGTi9h+OIqBq9uZCB+O/3J3+DLOEFv3kW6ixLorMjEqi3GbKrHaPfQ4b39vTK1209B9vtrtXuot5upsIoptlLJ8V4izTxCovEF0Z4NE95WIN74jGRjP5neMxRYCZRbedTYtTTbluNf23enIOveKci6e04H2Q6PD7OiAzuzlp7oQnwnUvF/FcXQpkhG3j1EaMGuiYPrvJ0El+9neEMEA7uu4juWTM+VfDrTq/CWteFpfXBfvTKdU5B19xRk3T03u13gTM8p5XcvrACgqLyOJ19cOf6+v//1m+9tZ/s3Z/jVs0vIyC29JcimZpXw278tx+7qveUK2Z88OZ+TFxKZv3IbT730Ll8fvTT+uU9fTuaJ51fw2HPLeHnRx3SY34+uEwXZwrJa/jTnA377t+X84eX3yCqoACAQGGHFhj385v/e4bHnlrF83VcMDg0DEJOUzR9eeZ+nXnqXlxd9TH1zxz1/P3+I40EWoLahjYLSGoLBUQACI0FOXUgc/zVAdX2rU4d3R06fJDRnpiDr7gVKYxhKP4A/4QsGozcxfPEDRs6+zejJeVOLqoefJ3TsVYIRbxI4t5yhy2sZiP0Uf+Ju+tIO4cs6Q09BNF2lKdhV+XjrKzHGr1Z1/vvihrkxyLbZ/TTaHVRbVZRaWeR6o7luniLJ/JpYz+ZJPDzrE5KMr0g3T5BrXqXEuk6VXUGD3Uab3ef413c3U5B17xRk3b1pDbKWH6POwspvpOtaKb3nsug/EM/gtgsEPjzG6OI9k7q6dXTxHgIfHmNw2wX698fjO5tFV2IpVn4jRp3z92B/UKcg6+4pyLp7YTXgp+f1p8O+3sV/u+3hfDdw+gcGWbF+D1t2nwTuHGQXf7CTFxduYGBwLGzeDLINzR08+te3qW1oA269ZcF//uENvth/FgC7q5dHHp2Nf2CIzm4fjzw2hzaPBcDqzftZs/XghMf7XU/PWsXluOsAXIrNGD/WmKQc5izbQigUYnQ0xJYvT5JfUkOHYfPvv5s3/gr+4+cSeG7+2sn8JO/KjAiyk/GTJ+c7fQi35fRJQnNmCrLuXE9BNMFTCyYVVkdPvM7ImaUMX1zNYNTH+ON30J+8D9/1k/TmXaK7KJHOiiysuhLMpno8He59OeCDtIc1yDbbndRa9ZRZ+RRa18gyz5JqHiDB/HzC2wpEGetJMHaQZhwi27xAoTeFCruQOruRVrvb8a/tfk5B1r1TkHX3phJkPa09eMva6EyvoudK/tiDsr68wvDGCIIr9sP8nRPfSmDBLkZWHmTok9P4v4rCdyKVnugCOjNrMCs66PDo1S7TNQVZd09B1t0Lp5C/j+6//HfY1/PKb297PDcD57//bh4/eXI+//irWTz10rvjgXKiILv32OXx9y18fzvHzyXwh1feJyO3dPzt3w2ylbXN4+/76VMLaO3wAoxfsQpwOf46c5Zt+cHj/e8/LuR//vet8a3YsAcYuxJ2dHTs2VWm1c0//Xo2APkl1fzyz4tJvl50y+0TzlxJ4Y33Ph//9dBwgH/45Sz6+u/vnwsF2Sly+iShOTMFWXetuziJkdNLxmNrMP5TBvPP01MYQ1dZKnZ1Id6GaozWVjqMLsePV5u+PahBtq3TR4PVSqVVSrGVRo55hXTzGNeMXcQYH094lWuc8SnJxjdcNyPJN+MotXKosatpsk3Hv7ZwTkHWvVOQdfd+MMia/Ri1JnZuPd3xJfjOXKf/m1gGPz1LYPURQgt/+EFZt1zdunQvgTXHGdh+kb6DifReyKYruRyrsBmj0abdmt6vz+O18Xqq6GxJp6fhAr6affjLNzNUsoKRglcJ5T7LaN7fCOa/wkjh6wSKFjJcvIzBkvcZKFuDv+IT+is/o69qF77qb+itOYyvLoLehnP0NEXR1ZxIZ0sqdms2VnsR3o5KTE89htGKx2vR4cA9wSc7BVl3T0HW3Qu3UJcV/nXf/orS715xOhIMkppVzM+eXojX7p4wyEZeThp/38L3t/PTpxbwkyfnj18dC98Psn//wLCbvw6FQuw+fIG/vr6G5+at4YnnVzB76eYfPN6Kmiaszp7x9fb5gbErYV9cuIHn5q3h2bkf8Y+/mjX+z8YkZfPyoo/599/NY9WmffgHhth77DKrNu275ff4tydev6eHmt2JguwUOX2S0JyZgqw71lmRReDcivEQO3zpQ7z1FdP3UC9txm/mBlk/TbZBjVVNqZVDnhlLphlBsrmXOGPLJG4rsJFrxpdkmMfJMa9Q7E2nyiqj3m6jrVNXXt2cgqx7pyDrznmau/AWtzCaV0fflTz6jiQx8MVlhtefJLjsm8k9KOuNLxl5/xBDW87g3xODLzKD7rgi7Ow6zGoPHcZ037qlH8NoxWovoqs5EV9dBH1VuxgoW8tw8VuM5v2NUO6fZsD+fPvoW+ps9FWQdfcUZN09N/uhWwA8M3s1cSm5lFQ28MTzK8bfnp5TekuQPX05efx9C9/fzq4D5zh9OZln537ESDAITC7Ixibn8vSsVfhuhNULMel3DLK3u2WB3dXLvzz+GnVN7QB0GPYtQfam7p4+Zi/dzP6TVzkXlcqb720ff9/NK2T7/YMTfOfujoLsFDl9ktCcmYLswz2rtpjhi6vHQ2zgwnvYVXnj71eQde+cDLItdhe1dgMVViFF3mSyzPOkmgdJMHYQZay7Y3CNNtYRb2wn1TxAlnmOQm8S5VYBdVY9zZ2djn9fH5QpyLp3CrIP3zrMPswqD3ZWHd2xRfhOpeHfE83Q5jOMvHeY0BtfTuJBWV8QXLaP4fWnGPjiMn1HrtFzOZfO1Eq8Ja14Wqb/VTMddg+mp5bO1ix6Gq/QW3OI/opPGSx5n5HCuZOKoaN5fyNQ9CaDpR/RV7UTX10E3U3x2G35E66zNZOulmS6m+LoabxMb/0ZfHUn6K05gK9qD/2VO/BXfMpA+QYGyz5gqGQlw0VLCBS+wUjBawTzXwxr+B3N+7+/i75vMlz89tiVvqUf4S//mP7KrTei7156aw4z2BRBoO0SPY1X6W5KoGs8+hbi7aj4NvqaXjqsmXulr3ZvU5B199zsdoEzt6iKH/92Lk2tBh5vJz/+7Vz8A0MArNl68I5B9mZ4nfvOp3x58DwwuSB77Gw8C97dBkBvn585y7bc9l6udwqyNQ2t/Ncf32R4OMDoaIhtX0fyo1+8wuDQMEfPxLHrwDlCoRChUIj3P/mGAyej8Hg7+elTC8aP6XBkDC8u3Hjv39AfoCA7RU6fJDRnpiD7cM7bUMXQ1Y3jIXbk7DK6ytK/93EKsu7ddAbZts4+Gux2quxySrwZ5JpXSTdPcM3YTexkbivg2UyS+TXXzQjyzBhKrWyqrSoabQ9tth7mcj+mIOveKcg+YLMGMBpsrMImupLL6b2QTd/BRAa3XySw5jijS/ZO7urWt74au/XA9gsM7IvDdzaT7oRS7Lx6jFqTdrN/2r8Wj9eD1V5GV0syvQ1n8FXtYaB8I8PFSwnmvzSpCDmS/ypDJe/gL9+Er3ofPY0X6GxJw9tRicdrOf/zsgdot/10WF14vAaG2YzpqcXbUfZt9G1Oprspfiz6NpzBV3+S3tqD+Kr20DcefTfeiL7vMly8lEDRzej7EqO5z4XxSt/n7/5K38bz37nSN+c7V/q2zfjbOzyMU5B199zsZuB85LE5PPLYHP7l8df4w8vvEZOUM/4xn+w8ztOzVjFvxWccjIjmdy+MXTF7pyDbYXbyX398k/LqxkkF2c5uH8/NX8uTL65k9tubKSyr5X/+963xh4t993h/6KFe727cy6N/fZvn5q3hem4ZL7y5gb+8/hGd3T7mr9zGr59dymPPLWPpR7vwD4xdBRufmsfTs1aN/94t7eZ9+M7eSkF2ipw+SWjOTEH24ZrZ3MhA7NZv7xEb+RbdRQk/+ERiBVn3bqpBtsn2UmPXUGblkm/GkWmeJsXYR5yxdcLgGu3ZSKK5kzTzKNnmZYqtVCqtEurtFlrtXse/N26Ygqx7pyA7s9bh8eEt76Dzeg09UQX4jqfg332VoY9PE1xxkNCCXRMH1/k7Ca44wPDGSPxfXsV3PJmeq/l0ZlTjLW/H0/bteXUqD/W649dh+TCNRuy2PLqbYvHVHae/cjuDpasJFL4xqYg4mvtXAoULGCxdTX/l5/jqjtPdFIPdmotpNNBh6bYz3+770ddqv3P0HWg4zHDD3hkffYeK31H0nYYpyLp7ItNNQXaKnD5JaM5MQfbhmNHaij9xFxx5YSzEnpxPT94VOrx3vp+bgqx7N1GQbbF7qLObqLSKKLJSyDYvkmYcJtHYQbRn/QTRdS3xxjZSzANkmWcosBIpt/KptepotmfKFUzunoKse6cgG8Z5/Rh1Xqz8BroSS/GdzaJ/fzyDn50n8MFRRhd9NbkHZS3eQ+DDYwxuu0D/gQR6z2fTda0Uq6ARo976wf/T9Xa71yDr8Vp4Oyr/7mFZ39x4WNbyGw/Lmji+BfNfYrhoCQPlG+ir2kNv/Rm6WpKw2ksxTI/zP6+HfHd/D9nJRN+4W6/0vXF7h77v3d7hRvQtfFCjb9oDH30VZN09kenmeJC9+dSzifzP/741zUdyb5w+SWjOTEH2wZ6nw6Q/ZR+hoy/B4ecZPfEavuyzdHgn9y+HCrLundHtxxewqbIqKLEyyfNGkWGcJMn4ilhj04RXucYam0gyviLDOEmuN4oSK5Mqq5JGu512e/pf+qpNbQqy7p2C7P2bp6Ubb2krnelV9FzJo+9oEgM7rzC8/hTBd/bDvJ0T30pgwZeMvHuIoU2R+PdE4TuZSk9MIXZmLWbl/X9Q1u2D7M2HZRV+52FZaxgueovRvOcnEb2eZaRwLkMl79Ff8Sm9NQfpabxCZ2sWpqdW9ySdAZuZD/V6OKPvcNFbMy76Ksi6eyLTzfEg+8hjc1i0+gviU/MIBEacPpy75vRJQnNmCrIP5jweG1/6EUJHZ8Hh5wkdexVf+jE6jLt76IaC7MO9Ztui1qqj3MqnwEokyzxDinmAeGMbUcbaCW4rsJ5EYwdpxmGyzYsUWSlUWkXU2U20PCBXg2g/PAVZ905BdnLrMPsxawzsnHq644rxnc6gf28sQ1vOMrLqMKE3d0/u6talexlee4KBHZfoO3SN3os5dCWXYxU142kKz4MIO6xvH5Y1asbSVzf2sKyhkvduPCzr2YlvJ5D3PMNFbzFQtmYsKtVF0N2UgNVeiGG0oP8jbuZvZgbZcOzW6Ovt+E70bflO9P27B7k9UNG3fNMdoy+dqXQ9BFf6avc2kenmeJDNK67m4y+O8etnl/Kfv3+DNVsPkl9STSgUcvrQJsXpk4TmzBRkH6x1mN34ss8wenzOWIg9+hJ9yfvxeLz39PkUZB/stdq91NstVFglFFup5JiXSDOPcs3YSbRn44RXuSZ4PyPF2EemeZp8M44yK5cau4Ym+97+PGkPzhRk3TsF2bF5mjrxFrfQlVJB76Uc+g5dY2DHJYbXniD49jeTe1DWm7sZWXWYoU/P0r83Bt/pDLrjirGz6zGrDTrC8KCsdnsAw/RgtZfS1ZJEb/3Nh2VtuIeHZS0fe1hWzTc3HpaVPsMelqVNZe4NsuHYfY6+RUu+E33/+kBE367mhAmu9NVzApyayHRzPMjeFAqFKKmoZ+tXETz+3DIee24ZO/adobXD6/Sh3ZHTJwnNmSnIPhjr8ProzbvM6Ml5Yw/sOvIC/oRdGG3tU/q8CrIze222n0bbQ7VVRamVRZ4Zw3UzgiTza+I8mydxW4GPuWbsJt08Tq55lRJvBlV2OQ12O0Z3/5Qe6qU92FOQde/cEGQ7jD7MSg92Zi09MYX4Tqbh3xPN0KbTjLx7iNCCLycOrvO+IPjOfoY3nGJg5xX6jibRczmPzrQqvKWteJq7w/O1WD5Mo+HGw7Jibjws6/MbD8taMKlQM/awrDcYLF1NsH4n/fXH6W6KxW7LwzQa9bAsl0xB9kFf/7fR12i6c/StvzX69lfuYLRu28yLvgXzvhN91yr6TtNEptuMCbI3lVY1sO3rSH7y5Hx+9vRC/vU3c1mxfg89vn6nD+22nD5JaM5MQXaGz+qnuyieYOTCsRB7+HkGYj/DbGm6L59fQdb5NXd2UmfVU24VUOhNItM8R6p5gATjc6KNdRNE13UkGDtINQ+SZZ6nyJtMhVVIrd1Ai33n21dM9FAv7eGegqx798AHWWsAo8HCKmiiK6mM3vPZ9B9IYPDzCwQ+Os7okq8ndyuBRV8R+OAog5+dp39/PL4zmXQnlGLlNWDUemn3Tv5BWVPZtw/LSqOn8QK+6n34yzcxVPIOI/l38bCs4qUMlG/EN/6wrGSs9lI83lsflnWvD/XSHvwpyLp7k7uH7NSi761X+q78TvR9cYZG3323RN/upuiHMvqKTLcZEWRb2k2+PHSB372wgkcem8OSD3eSlFFIMDhKZ7ePhe9vZ/7KbdN6DKFQiM/3nuaJ55fzxPPLWbVpHwODw+PH98riT/iPpxbwpzkfkF9SM/7POX2S0JyZguxMszCS8QAAIABJREFUnZ+uslRGziwdD7GDVzfibay9r7+Pguz0r63TR73VSpVVRrGVTo55hXTzGNeML4kxPp7wKtc4YwvJ5l4yzQjyzFhKrWxqrGoabYN2+96DgYKsu6cg697N9CDraevFW95OZ0Y1PVfz8R1Pxv/lVYY3RhJccQDmT+ZBWbsIrjzA0MeR+HdfxXc8hZ6oAjozqvGWtdPREa6/TPdjGC1Y7QV0NyXgqz81/rCsQNHCu3hY1utjD8uq3Pqdh2XV3fV9HxVk3TsFWXdv5jzU62b09UwQfS8p+t7H77vIdHM8yP5twTp+9ItX+OvrazhxPuG2V8J29/TxyKOzp/U4YpKyeXbuR/z/7L3nd1Rnmq/9/gnv5/cvOMsTvKa7T8/0OTPjdtvdZux2R9rY2BgMxmQDxgQDNtgYbMAGk6MQEiCCCAIBEgIhkZVzzrFyzrXT9X6oopCQDEJI2hL7ude61nKpgp7aVfWYuvTb9x0KR1EUlYVrdrAv5SIAH366iaNnslEUldsFVbzyt8VIsgIIIWdUhJAdfzjri5AurEqI2OjFtdiba0bldwkhOxIE6XBYaXI0Um0votR6jfvW0+RbDnHNsvWpwjXbspFc627uWo9TZM2k0n6Hens1bfZuepyjdxqpELLGRghZ46KrkLUFsbRYcZS04r5Rje/cAwKHcwj/cB7py1S0RfuGlm5dcgBp/QnC2zMIHLmB90Ihrrwa7GUdWNoc9NrH5vmY7B5spiYcPYWxxFjTEYKJYVkfD+lLvVoyFali4SDDsiriw7JGds1CyBoXIWSNzfgRsmODye7CYjVjtXRgMzVh762OS9/7uLrycHdcw9P2UPqewNuUhL9xH4H6nwjWbYlJ3+q1RKpWEK1YHJe+M1FK3x8j4fvw/xHvJXr6ShULiVYuI1y9JtbTt+67wds7tJ2Pt3fIxdl1G0d38aj6J1GiYBwI2R/3n6alo/eJt1FVjdsFVaO6jj1HM/j2p9TE5ePnrvPZ+j04XF5+NWkOsqIkrvv7x19RWFYPCCFnVISQHT/Ym2uIXlybELHS+ZU46wtH9XcKITs0uhxumh3t1DnKKbflU2jN4I71KDcsO7hq2fAU6fo1N6zbuW09QoH1HOX2m9TYS2m2t9LpcOj2nISQNTZCyBqX0RSy5k43tqpunLfr8WQW40+9SWhnJtFvT6F8fhjmDGFQ1rw9yF8cJbI5neD+LHwn7+DOrsDxoBlrvRmT1T9mx8piNWHvrcLVeRNvazr+xn2EajYQrVg85C/lsWFZK2LDshoPx4ZldT/QbViWELLGxShC1mQNYbKEMJvDmE1xesNYesJYusNYOsNYusJYO+K0RbC1xmmJYGuOYG+KYG+M4WiI4KiP4qiL4qiJ4qyN4qyO4qyK4qyM4qqIUx7FXSbhLo1TIuEplvAUximQ8BZIeO9LeO/J+O7GuSPjuy3juyXhy4vhz5Xw58r4r8cI5MgErskEsmWCWTLBq3GuyIQuK4QyFUKXYoQz4pxXiJxXiJxTiJxVoNpYQnZM3ms254SRvqJEjXbpImSPn7s+ZMaqiisa+OO0Vbg8PiJRiTkrfuDs5VuUVjXx5xlr+t32s/V7OH0pDxBCzqgIIas/tvZmwlc3JUSsfHYprup8nud09KEyHoSsyak/vU4/7c4eGhy1VDvuU2y9wj1rGnmWvUNqK3DNspl8y37u205RYsui2l5Ak6OedqeJXmdA9+c3GLa4kNV7HQJ9iEgqTm9E93XoxXjZe/TAGReyz3o/s9WPrcmMs6gFT04l/jP3CB7MJrLlLPLqo2gL9g4t3frZIaRvThLamYk/9SbeS0W4btdhr+rC0uUa02Nhs7Ti7C3B05GFt+UYgfpt8WFZc4f8JVcqn0e45ksCDdvxt5zA05GNs7cUm7VN99d6MGRFw+YO676OFwp7CLM9hNkWxxLGYg5jMcWw9oax9oSxdsdFYGdcBLbHJWDb4CLQ3lcE1sZFYM0jGdhXBLrKHknAhAgs6i8Cw8UKUqkWk4F3+ojA/D4i8GZcBt6Ii8DHZWA/ESj3F4EX4yLwQlwEPpSB6SrRdJXo6TinVKSTKlKainQihnxcRT6mIadqKKkaSoqGclRDOaKhHtFQkzTUwxraIQ3tIGgHYrAf2CcYEneFkJ2IDJS+VU+Uvr7HpW/NBkI164dokl7MkhWFl16Zzj+/OmMAReWxcOL5q7cTt//N2/Pp7LEMeJzqhjbeeG/5sNfxvPcf76WLkP3rzLVDZizr620pvPzaTH75xmymL/4OSZK5V1zNlDn9P4xrvj9MyplsINZ7VmBUxOuvC14zWt5PCRFL+kJouommKvqvbYyIyiqaxpgSVDyYwjXUeXN44Ewm1/bjENoKfMst+26KnMep9l6hLXgfS6QBr2RBVqNj/hxGhPj/B3Rfh0AXIPYe0HsdeqHH3jNuGOyzr4LmDqK1WqCkGXLK0E7eQtt7BTaegmWHhiRbWbQP1h1H256BlpILl4vgfj009KBZPWhjedwlH1qgDdwFYL2M2nkUtXkrWt0KtPKhDcvSyj5Eq12G2vQ9akcSWC6C6z6avxlNcuv/WiaeK2hR0CKghUELgRYEzR/HG8cNuEFzgeYAzQ6aDTQraBbQzKD1xqAnThfQCXQA7UAb0Aq0AM1AE9AINAB1cWriVAGVQAVQDpQBpUAJUAxaIWgFoD0A7V6cO6DdBu0WaPmg5YF2E7Rc0G6Adh20HNCugZYNWhZoV0C7DFomaJdAuwhaBpABXADOA+eAs0A6cAY4DZwE0oATwHHgGJAKpABHgWTgCJAEHAYOAQfRX6wJnszB+Gt1OP7aHYm/lkfjr21q/LU+Tuy1TyP2XjhN7L2RTuy9co7Ye+cCkAFahoZ2UUO7pKFlamiXNbQrGlqWhpatoV3T0HI0tOsa2g0NLVdDu6mh5Wlo+RraLQ3ttoZ2R0O7F+eBhlagoRVqUEzss1FK7LNSTuyzU0nss/Twc/Xwc9ZA7LPXROyz2ELss9lG7LPaQeyz2wX0xD7/ev+7X6AfRq6HQtZscw56vaZp/NdfFiUu/5yQlRUFl8f3XOt4nvuP99K9ZcF4qVMZucz+fCvBUARFUdm44zhfbT1CWXUTb09f3e+2S9ftJj0zHxAJSaNicoqE7Fhj6eklmLsHUt+HlKmoaZ/gLbmIyTZ6/UJ/jvGQkB1Nuh0eGu0NlNtvcseayjXz5p+VrtctP5JvSeKBNZ0y+w1q7CU0OZrpdNh0fx6jgWhZYGxEywJjYTL7sNaZcDxoJpBTgXzuPsF9V4l8l4686ijavN1Pl61zdqEsTyL67WlCu6/gO56P53IJzrsN2Gp6MHc/23Cp56PvsKzr8WFZuwhVr0OqWIBa8t7TZWvRZJTCT5AfrCF6fxuRO8eI3soinFdC6EYHgWvB2KnBWYOcGpzZPw34+KnBkXSV6Jk4p1WkvonAtIdpQBU5VUNO6ZMGTO6TBnwsEai75BI8Fe0AsfTmodhrl3gdj8ReW+Vo7LWWU2JJUPmYinzi0ftCOhl7r0RPP3r/RNLV2HvqXOw9Fj4ff89lxJOp8fdj6LJC8Er8vRp/3way48nWnBiRmwrSbRV/7qNErC9fiqVk7zw6hd57T46dVv8glq5NnHJfLOEu7nNKfpkUS+fGk7rOyvhp/NWxNK+jJp7urYviaOiT/G2KpYFtLY9aBVjbIljbI1g7YiliS2e8vUBPrN1AovWAOYzJEsJk1X9fnWhomkjIGhkj19OE7MI1O3jplem8PX01JquT37w9nxPnb/D2h1/wX39ZxIFjl4D+CVePN8DSdXuYNHUFf5y2KjGzCeAXf5jNweOZzP58K3/5aA3HzuYMuL/d6WH251t5473lvD5lWeI2E7nGhZCtb+7kam4B56/eHsBY1cLVP3EmMy9xubymmTfeW47L4+MXf5hNKBxNXDdp6nLKqpsAIeSMihCyY4fZbMN/Kwkt9UNImYp2Yia+gjOYrG7d1vSiCdkWRwdV9vs8sJ3lpmX3zw7RumVJotiWRb29ijZHr+7r1gMhZI2NELIvEPYglhY79tJ2XLnVeM8XEDhynfC2DKSvjqMu3j+0VgKf7kP68hjhHy8QSLqO71wBrtxq7KVtWFps9NpGv42OyRLC0h3G1urDXd+Cr6qQYPkVwkVHiRb+iFzwBWrhx2hFk58uXAumot1ejHbjW7QrB+DCOThzG47Vw2EH7Fd1F3h6iEDtOLFTw4cjAjOGJwL91+VYP8y+IvDWE0RgwSAisGQURWC8l+iLLgKN0kNWMDhCyBqbsSyfKvH/VR4dc/5XTdqg63makHV5fLz8+qzE5d+8PZ8N21NRVY22ThMvvzaTUDjaT6iu/yGZtZuT0DQNnz/IpKnLE7Oifv3mXH7YdxoAp9vHrybNwWJz9bv/xh3H+HJLEgBdvVZefn0WVrt7ZF4AnUp3Ibt13yn+6bcz+O3fF/PGe8sHMFa1/WA6i9buSAzv+unQWRau/gmAmUs3sy/lIoqiknn9Pr+fsgxFUQEh5IyKELJjcIwtLnx3j6Md/ygmYo9Nx3/nKGazfgOdHjKRhWyHw0KdvZxi6xVuWQ6TZd446ECtm5Y9FFjPU20vpNXexVj05p0ICCFrbISQnTiYuz3Yanpw3m3Ac7kU3/F8QruvEN14GmVFEszZNYRBWbuRVyYT2ZROZP9V5LP38GSV4XzQhLXOhMn8/GdomHtjvTFtLREc9RGcVVHcpTGx5rsr47spEbgW6zsZuWRHymxAuXQH7XIGatZBtOvfod1aivZg2tDaCdybhZa3Cu3aj2iZKXDuCpwsgpR21GQ/SoqGdCLWuzJ8QSF0OSYHfXkjLAKrBxGB9cMQgV1jIwLFUC/jIoSssRFC1tiMZXmUKP9Pyd4x5/8tPzzoeh4K2Zdfn9WPh45uMCFb29ieuPzvb82j22TrJ1Rfnbyk3222H0zn+90xIfzrN+dS39yZuO6DhRvJzivsd39FUZEkOXGbSVNXJIKSE7V0F7K//fti2rvMei+DQDDMyo0HEiJ4zoofMFljfw3oMdv58NNN/Ptb85g8ex01De2J++m9SQj0QQjZUTy2Ng++wvOoaR/HRGzqNAJ5BzGbrLqv7SETRcgmWg/Y8rhrPc41y9afbTtw15pGue0WTY5Gepxj3wZioiCErLERQnacYA1gbbLgKG7Ffb0K39n7BA5dI7z1HPLaVLSFQxyUteQg0voThH66iD85F29GIa78WuzlHVjaHfTaH/1OR3yo18PLJmsIS09swJC9KYKjNiYb3SWxU5Z9t2X8N2LJx9ClWFoyejp22r2SPMjp9PtlSDbBiUpIv4F28SRa1i603K/Q7s5DK3rn6bK1cArqvQUod9Yh3dqFdOskkds3CN2twF/Qg7s4jKsyNujI3hQ71dnSE57Q6cWxQghZ4yKErLERQtbYjHWZpOCYY5EHf57DScj27SH78HJfofry67MwWRyJ2ySfymLFhv1ATMj2mO2J6+au3MbpS3n97l/f3Mm8VduYPHsdU+Z+zb/9/mNKqxqHebTHR+kuZP88Y43eS3iu0nuTEOiDELKjcExtfjwll1FOzo0P7Hqf4I0dWLq7dV/b44xHIdvjCMZbDzygwHqWm5ZdXLV8PUjrgU3csiZRbLtKvb2STof+ieOJhBCyxkYI2bHB3OnCVtmF61Yd3ktF+FPzCO3MJLrhJMoQB2Vp8/cgf5FCZPNZgvuz8Z25hzunAkdhC/YaK9a2ILbW2ER2Z3Vs2rqnMJ5KzZMI5MT6n4YzYr1N5ZMa2jFQk7ThTSg/5IPUVjhVAOcz0TKT0XK2oOavQHswY0jpVrX4Q6TSpYQrNhGoOYCv6TyuznxsphrMNovur9uLjBCyxkUIWWMjhKyxMXKNhpB97R9LqWvqSNxm+8F0NvdJyFY3tCWue3feN2TnFfW7/59mrO7X1vT3U5YJIfu8tXHHcfLuleu9jGGX3puEQB+EkB1B7EHcFTdQziyKi9iphLO3YO1s139tP8N4ELKi9YA+CCFrbISQfX5MVj/WBjOOghbc1yrwnbpDcH8Wkc3pyF+koM3b84QBWXth/mFYnIq6+iLy93lEd5UQOdJA5GQXoXN2ghd9BDMjQ0ulPmf/UfWIhnxMQzotE71oJpJdTTTvJtE7p4k82INUuB65eCFq8btDEK6Tkcs/IVy9mkD9j3ibjuJpv4KjpxCruRWTw6v7a2dkhJA1LkLIGhshZI2NketpQtbnD/LPr84gGIoAQxOyG7an8tXWI0BswNfvpyzjQWktEBOyG3ccB6Czx8q//f5j7E5Pv/v/5u35ibPVL994wP/+nzmJHrQTtXQXsl9sOsgv35jNX2euZc6KH5m7cls/xnvpvUkI9EEI2ZHBVXMX+dyyhIiNXvoKW1uD7ut6GmMtZEXrgfGDELLGRgjZp2APYWlzYC/rwJVXgzejEH9yLuGfLiJ9k476+QlYfAKWnoXPL8GqbFidB1/eg/XF8E0lbKxH29yO9pMFdY8bdV8Ibb8M+7URk6nq4diwJiktNogp1itVIXBNxn8zlpL1FMT6nzqrojjrffhbW5G7S/C2ZOJtPEKwbiuRqlXIZR+jFT99WJZaMpVo5SJCNV/jb9iDr/UMrs4b2HsrsFh6EH8sG98IIWtchJA1NkLIGhsj10Mh+8+vzhjAgWOXAJi1bAv//tY8KmtbhiRkvf4gn3+zlzc/WMkfp60i+VRW4va/fnMuh9Ou8NeZa/nd5KWcOH8DoN/90y7c4NXJS/jbrC9JPpXF9oPp/OefF9Lbp9XBRCvdhezm3Wn8uP/0zzLeS+9NQqAPQsg+H476YqSMLx6J2ItrcDSU6r6uoTKaQnborQc2xlsPZInWA2OIELLGxohC1mSLD57qCGOvD+K558SfZSKU3kkkuQVpXxPy9kbULY1o3zXD5g7YaobtTtjph90S7GVkUqn746nUVA3ppErknEL4okLwamwivS9PwntfxlMcGyLlrI1ib4wNg7J0hzFZBhNqQSzWXuy9Vbg6b+JtTcffuJdQzQaiFYtRSt8fQrr178hlM4lUrSBYtwVfUxKetos4u+9hMzditon9eaIjhKxxEULW2Agha2xEjV39+s25P5vGfZFLdyE70UvvTUKgD0LIDg9bax3RS18lRKx0/nOctfd1X9ezMpJCdvitB/Q/DkZECFljM9GErNkcm0Jva41NrXfWRHGVR/EUSXjvxXulXpcJXo31So2ekpBTIqiHo2gHZNinjuAp/irKERXpuEr0tEr4vEIoUyGQLePPlfDdiadSSySclVEcdVFszRGsHWHMveF+A7aeBZPdh9XciqO7CHdHFt6mFAL12whXr0Eqn4ta8vRhWWrxu8iVC1Dq1xGo34GvJQ13xzUcPaVYLR302v26v9aC0UUIWeMihKyxEULW2IgauxJCVsdq7TSx/WA6KzbsZ/GXu/hx/2ma23r0XtaQSu9NQqAPQsg+G9aOVsJZ3ydErHxmMe7Km/TaJ+YpmsMVst0Or2g9MMERQtbYjJWQ7ZtKtTVHcNRFcVZGcZdIeAti8tKfKxHIlgllKoTPK0TPqEgnVJSjGtqhkTu9nz0K7AzBTx7YZkPbZkbd2YO8r4doUi/hNDPBiw58uR7cJWGcNX1SqV1hzObRlVhmmxWbqRZX1228befxNR4kWPcd0cplKKXThzQsSyn9kGjlZwRrN+FrPIi37RyuzlvxYVlWeh0hHN4IEUnV/T0o0AchZI2LELLGRghZYyNq7EoIWZ3q+u0S/um3M5g6fwNrvj/Mmu8P8+68b/jX382ksKxe7+U9tfTeJAT6IITs0LB0dxLK+SkhYpVT8/CUXsVkm9hpoqEI2eG0HqgTrQfGPULIGpuhCFnTUFKpOfFU6kWFyFkF6aSKnKqhJmlo+xk5mbpXRtsdhJ9c8IM51k5gUxNsqIGvy+CrAlhzC764DiuuoK25jLwpm/DOXALJd/FmlODKr8Ve3oml3anDMQ9gsXbi6CnF3XEdX+tJ/PU7Cdd8hVSxALXk6cOy1JJ/IJfN6TMsKyU2LKv72YZlCSFrbISQNS5CyBobIWSNjShRo126C9k/zVhNdl7hgJ9n5txnypz1Oqzo2UrvTUKgD0LIPhlLr5nAzX2Q+gGkTEVN+xhv0QVMNo/uaxsJBhOyz9Z64IJoPTBBEUL2BcYeT6V2hrG1xFOpVVHcpRKegtigJ/mORjgnNgAqfF4helpFShv5VKp2ANQkDTkl1is1ekoiejJEJM1DNMVC9FAH8u46lC3FaOtyYfml2KCsxSdgYTLMPwBzdsInj9AW7EVek0Jk6zmCB7LxnbmHO6cSR2Er1kYLJsvY/6HMZHdhMzfi7L6Pp+0S3qYkgnVbiFStjA/L+vvQhmVVfBoflrU3PiwrNzYsyzpyw7KEkDU2QsgaFyFkjY0QssZGlKjRLt2F7C/fmI2sKAN+LskKv5o0R4cVPVvpvUkI9EEI2cExm+z4byWjpU6HlKloxz/Cdy8Nk8Wl+9pGEl84TIenSbQeMCBCyI5PTJYwlu4w1rZ4KrU2iqsiiqc4NuTJly/hvy4TzJIJXVKInFOQTqnIxzTUIxraAUZOph4EJVlDjvdKjZxXCF1SCGbJ+G/I+G7LeB/EeqW6KqI4q0K4Ch248zvwXanBl3aX4P4sIt+nI686ijZvTz+xOihzdqJ8fpjot6cI7bqM/1gensxinLfrsVV1Y+506/C6BLFYe7D3VOLqzO0zLOubZxyWNeuxYVmX+gzLGrvUrhCyxkYIWeMihKyxEULW2IgSNdqlu5B984OVVNa2DPh5RW0Lk6au0GFFz1Z6bxICfRBC9rHjYXXhu5eGdvyjmIhN/RD/rSOYzTbd1/a8PN56INc61NYDepzeKxhthJAdYewhzKY+qdT6galU/02JwDU5lkq90KdXaoqGengEe6Xuj6VSlRQNKU0lkq4SzlAIXpEJ5MRaDSglGoESGVeZhLM6ir2hT69U0yCyxh7C0mbHXtaBK68G74VCAkduEN6WgfTVcdQlB54uWz/ZifrpPqQvUwn/cJ7A4Rx8Zx/gvlGNvaQNS4uVXtvY9+M2ObyJYVmejqvxYVk/Eq5eg1w2B7XkH0MaliVVzCdc8xX+xLCsHBw9pVjG2bAsIWSNjRCyxkUIWWMjhKyxESVqtEt3IXvi/A3+4615bNp5nDOZeZy+lMfGHcf49ZtzOXg8U+/lPbX03iQE+iCEbPw42L14iy6gnpwd6xOb+gGBm3ux9PTqvrbh0uGwUOd4euuBfNveROuBNnu37usWjA1CyD7CZAn1S6U6+qVSpUep1KuPUqnRsUylZvZJpd6SHqVSK6M4aqPYmyJY2yNYesKYrEN7zo/3kDX3eLHV9uK814jnSim+E/kE91whuvEMyoojMHfXU2WrNm83ysojRDadIbjnCr4T+XiulOK814itpheTaWg9TkeaxLCszluPhmXVbiJa+dkzDMua/tiwrPPxYVm1iWFZEwUhZI2NELLGRQhZYyOErLERJWq0S3chC5CdV8Qny3/gf95fwWvvfMbMpZu5eO2u3ssaUum9SQj0wehC1mTz4ym7inJqXmJgVyhnO9auDt3X9ix0O7w02huG1HrgnuUkFfZY6wF/JPLUoV6CF5MXQsjGe6Vauh6mUiM4q/ukUu/I+BKpVHnwVOpIDZ7aD+phDSVVQzqhEo2nUkOXH6VSfXdkPIUS7ngq1dEQwdbSJ5VqH6XjZA1gabHiKGnFfaMa37kHKCm5RLddQPoyFW3RvqGlW5ccQFp3gvD2DAJHbuC9UIgrrwZ7WQeWNvvorf+J7wE/FktHfFhWDr6WNPz1O+LDsuajFj/LsKw1j4ZldVzF0V30TMOyJgpCyBobIWSNixCyxkYIWWMjStRo17gQskOp5d/s03sJg5bem4RAHwwrZO1B3JU3kc8sTojY8NVN2Nqb9V/bU+jfeuDcE1sP3LYeeWLrgcGGegmMgd5C1mSNp1LbI9ibIjhqorgqo7gfplJv9emVmhlPpZ5WkY+pKEc0tIOM6OAp5YiGfEwjekolci7eK/WqjP96rG+r976EuzjWK9VRE0+ltkWwdA89lTpamLtc2Kq6cd6ux5NZjD/1JqGdmUQ3nEJZdnjAUKzB0617kFcdJfJ9OsH9WfhO3sGdXYHjQTPWejMmqz6n3JttzviwrHt42i7hSwzLWoFcNmtIw7KU0veJViwmVPMN/oa9eFvTY8OyeipHdFjWREEIWWMjhKxxEULW2Agha2xEiRrtmjBC9tdvztV7CYOW3puEQB+MKGSdNfeQzn+eELHRi2uxN9fovq6fo8NhHVLrgZuWPc/cekAIWeMybCEb75Vq6Qpja43gaIinUsskPIWxXqm+PIlAjkzwikw4QyGariKlqSipI5xK3RdPpabEU6lnVMIXFEKXFQLXYj1bfXdlPAUS7lIJZ1UUR30slWrtDGPuHcVU6ghhsvixNppxFLbgzqnAd+YewQPZRLacRV59FG3B3iGlW5XPDhH95iShHZn4j95EySnDd68BW2UX5k69hhXGh2X1VuDqzMXXegZ/w15CNV8TrfgUtWTqMwzLWkmwbgvexLCs+9jMjZjsL9YgxpFACFljI4SscRFC1tgIIWtsjF6appF8Kou3pq3i5ddm8n//tJBFa3fQ3mV+6n3rmzt5473lY7DKiV1CyD5n6b1JCPTBSELW0VBK9OKahIiVLqzCWV+k+7r6MrzWA030OH3D+n1CyBoXuzWC0oVuqVT2xQZPyaka0slYKjV8MZZKfXiKv/e+jKdIwlUexVkbxd4YHzzVHcZkfgGEgj2Epd2JvbwTV34t3oxC/Mm5hH66iPR1GurSg0OSrdqCvchrUohsOUfg4DV86fdx51TiKGrF2mTBZA0M+N2P95AdDR4NyyrE036lz7Cs1UMfllXyLlLFgviwrJ34Wk/i7rj+aFiWY+BzEzwZIWTV5EdcAAAgAElEQVSNjRCyxkUIWWMjhKyxMXp9vzuNN95bzv3iGgLBMBabix/3n+a///op/sCTj48QskMrIWSfs/TeJAT6YAQha2utI3rpq4SIlc8uxVVzG71PUx3J1gPDRQhZY2FviuC7LRM9rT7fKf6HNJSjfXqlxgdPBbJl/LmxXqnegtjgKWdlFEd9FFtzBGtHPJU6Do7FWGAy+7DWmXA+aMKTVY4v7TbBfVeJfJeOvDIZbd7upwvXObtQlicR3XCK0K7L+I/l4blcgvNuA7aaHsxd7mGtbSSErNlmwWaqiQ/LOvfYsKwPn2FY1rL+w7K6bk/IYVkTBSFkjY0QssZFCFljI4SssTFyOVxe/vV3M6lv7hxwXVevNfHf5TXN/G3Wl7zx3nLe/vALCsrqgJiQnTR1OZt3p/G7yUuZNHV54jqPN8DSdXuYNHUFf5y2in0pFxOP9+s353IyI5e5K7fx1rRVHDh2aZSfqb4lhOxzlt6bhEAfXmQha+1oJZy9JSFilTOLcFdcp9euT6Jq6K0H9j5z64HhIoTsi43ZFMZdKhG6rKAmaQPFajqPUqkPe6Xe65NKremTSu0KY34RUqkjhT2IpcWOvbQdV241vnMFBI5cJ7wtA+mr46iL9w9tUNan+5C+PEb4xwsEkq7jO1eAK7cae2kblhYbvbbR+cPRU4Ws3Y81MSzrGr6WNAL1OwjXfIlUPvRhWVL53PiwrG14m1Jwd2Q9GpZlH16yX/B8CCFrbISQNS5CyBobIWSNzViWHIbMz6QxJ3uNNOh6HpTU8j/vr3jquv88Yw2ZOfcBuHTtHm9+sBKICdl/+d1HnL96G4ALWXeYNDX2eOt/SGbt5iQ0TcPnDzJp6nJuF1QB8Ju357Mz6RwQk8IvvzaTYCjyfAd3HJcQss9Zem8SAn14EYWspbuT4PUdkPI+pExFPTkHb0kmJtvYffl/vPVAzii3HhguQsi+YNhD2Bsj+PIkpFMDU7DqEY3gVRlXeRS7NaLrUK/xjrnbg62mB+fdBjyXS/Edzye0+wrRb0+jrEiCObuGMChrN8qKZCKb0gnuvYLvxC08WWU47zdhqzVhMusnJKNhHx57E86uu3jaLuJrOtxnWNbMZxyWtQF/48NhWTfjw7J60fssBMHgCCFrbISQNS5CyBobIWSNzViWFIL0WdKYk7FwcCGbmXOfDxZ+m7jsD4T4r78sSnAmMy+2bklGVTUArHY3//q7mUBMyP7yjdmJ6yRJ5qVXpuPy+Hh18hJqG9sTj739YDrf704DYkK2byr339+aR7fJNmLHebyVELLPWXpvEgJ9eJGErKXXTCBvP1rqtJiIPTELX+FZTNbhndI7VB62Hqh+ptYDVSPaemC4CCE78TH3hnGXSIQyldjArL4Sdj9E01V8d2VsLf3TkMMe6vUiYA1gbbLgKGrDnVOF7+x9AoeuEd56DnltKtrCfUNLty45iLT+BOGfLuJPzsWbUYgrvxZ7eQeWNoeOA8MCWCwPh2XdiA/L2hMbllW56BmGZX0cH5a1NTYsqz0+LMvUJIZlTWCEkDU2QsgaFyFkjY0QssZmrCvsGXsi3sHXUlhWz++nLEtc1jQNu9OD3elh1caDpJzJBiA7r4gPFn7LlDnrmTx7Hf/86gwgJmRf+8fSfo/5yzdm09Ft4eXXZ2GyOBI/Tz6VxYoN+4GYkO3ssSSue/zyi1ZCyD5n6b1JCPThRRCyZpMd/52jaMemQ8pUtGMz8N1NxWx2jMrvG0rrgSzLN31aDxSNeuuB4SKE7ATEFsJRH0/Bpg1MwSpHNYJZMq6K6BMHX73IQtbc6cJW2YXrVh3eS0X4U24S2plJdMNJlGWHhjYoa/4e5C9SiGw+S3B/Nr5Td3Bfq8BR0IK1wYzJ6tft+SWGZfU8HJZ1NDYsq2o1cvknaMWTny5cS99FrlxIuHrdY8OyyrBYOxHDsl5chJA1NkLIGhchZI2NELLGxsjl9Qf53/8zh/Ka5gHXrduaTMqZbBwuL//2+49p6egFwGRx9BOyv5o0B03rn5D1eAO89o+l1DV1JB5v+8F0NvdJyAohOw7roYEfb6X3JiHQh4ksZE1WF74Hp9FOzIyL2GkE8g9hNo3cIJi+rQfuWU88ofXANl1bDwwXIWQnBpbuMJ5iidAlBe1Q/xSsdgAiZxW892RsbUMf0jRRhazJ6sdab8ZR0IL7WgW+U3cI7s8isjkd+YujaPP2DEm4KssOEd1wktDOTPypeXgzi3HdqsNW2YW5U9/0p9lmwd5bg6szH2/bWXwNBwjVbiRaufSZhmVFKj8nWPfdY8Oy6jDbrCMy1EswMRFC1tgIIWtchJA1NkLIGhujV9LJK7w6eQm3C6oIhiK4PX6On7vOr9+cy92iaprauvk/f1pANCqhqhrbDpzhpVemE45EqW/u5J9+O4PsvCIALl67y9vTVwOwYXsqX209AsQGfP1+yjIelNYCQsiOWb2/4NshMd5L701CoA8TUcia7F68xRmoabPjA7veJ5i7C0v386ZQg7Q6Op/aeuCaZdO4az0wXISQHZ+YbCEcdVH8uTLSiUFSsKkagWsyzqooJuvwfse4FLL2EJY2B/ayDlx5NXgvFOJPziX800Wk9SdQlxwYWrp14V6ktamEt54jcOgavrP3cV+vwlHciqXZSq9Vx/Sn3Y/V0t5nWNaJx4ZlTRnCsKx3+g/Lak6ND8sqHvKwLCFkjYsQssZGCFnjIoSssRFC1tiIgpMZubw9fTUvvz6L37w9n4VrdlBV35a4ftXGg7z2zmdMmbOe+8U1vL/gW/7xyTqq6tv484w1bNlzkjc/WMmbH6yktKoJiKVvP/9mL29+sJI/TltF8qmsxOMJITtG9c+vzuA/3prHkq92cfzcdU5l5A7KeC+9NwmBPkwoIWv34ynLRjk9Py5ipxK69gPWzvZhPd5wWg+0jtPWA8NFCNnxg6UzjKdQIpyhoB1kYAr2vIL3gYS1fWQkmh5C1mT2Yas14bzfhOdqGb4TtwjuvUJk0xmUFclo83Y/XbjO3YWyIonoxtOE9lzGdzwfz+VSnHcbsNX0YO726Po6mm0ObOaG+LCsjNiwrNrN8WFZHw0x3dp3WNa+R8OyeqtGbFiWELLGRQhZYyOErHERQtbYCCFrbESJGu3STcjanR5SzmTzj0/W8Z9/XsjGHcepaWjXaznDLr03CYE+TAwhG8RVlYecviQhYiNXNmBraxjyY7zorQeGixCy+mGyhXDURvFfl5GPDUzByqkagRwZZ83wU7BPYsSFrC2IpdmGvaQNV241vnMFBJKuE/7xAtKXx1A/HeKgrMX7kb46TnhbBoEj1/GeL8B1sxp7aTuWFju99ueXkcMngMXSHR+WlYuv5TT+ht2xYVkVi1BL3huCcJ2MXP4xkapV8WFZR+LDsh7Eh2WN7hDChwgha1yEkDU2QsgaFyFkjY0QssZGlKjRrnHRQ7a9y8yupPNMmrqcP05bxcHjmZisTr2XNaTSe5MQ6MN4F7LOugdI55cnRKyU8QX25sqn3M94rQeGixCyY4u1I4y3QCJ8XkE7QP8U7EEIX1DwFEhYukb/y/KzCllzlxtbdTfOOw14MkvwH8sjtOsy0Q2nUD5Pgjm7nt5KYN5u5FVHiXyXTnDfVXxpt/FkleN40Iy1zoTJrO8fQEwOD1ZzC87uAjztl/E2JROo/+GZhmWpJe8hVSyIDctq2NV/WJali/EyLEsIWeMihKyxEULWuAgha2yEkDU2okSNdo0LIdu3qupa2bTzOL+bvJQZS77TezlPLb03CYE+jFcha2+uRMr44pGIPb8cZ92DQW8rWg8MHyFkRxeTNYSzOkogR0ZO0QamYI+r+G/IOGqjmGxju7a+QtZkDWBttOAoasWdU4kv/R6Bg9lEtp5DXpOCtmDv0NKtSw8ifZ1GaMcl/Edv4s0oxJVfi728E0u7k177KBxjmxOzzYLF0oXV3IrN3Ii9txp7bxmOntInUIK/YT+h2m+JVixBKZ029GFZVStiw7KaDvcZllWL2TZyAwVHGyFkjYsQssZGCFnjIoSssRFC1tiIEjXaNa6ErNXu5sjJq7zzyXp++/fFbNlzUu8lPbX03iQE+jDehKytrYHIlQ0JESunL8FVlcfDnokPWw9UiNYDI4IQsiOPtS2C975E5JyCtp/+KdhDGuGLCp6isUnBDoalzYH7RjXBI9fRNp1GXXpwaIOy5u9B/iKFyOazBPdn4ztzD8/1IpxF1djrG7BaOrCam7GZ6rD3VuDoKcHZ/QBX121cnTdwd2Tjab+Et+0cvpbTeJuP4W1KwtdwAH/DbgL12wjWbSFU+y3h6nWEq9cQqVpBtGIJUsUC5PJPkEs/Qil9f0iDr4ZL/2FZx/oNy9L7vTWSCCFrXISQNTZCyBoXIWSNjRCyxkaUqNEu3YVsIBjmQtYdZn62mV++MZtlX+/ldkEliqLqvbQhld6bhEAfxouQtXa2E7q2NSFildPz8ZRl02pvG3LrgRJrNvUGbT0wXISQfX5MlhDOyiiBbBllkBSsdELFf1PCUTfyKVizzYnZZh6QDnX0lOHoLsTZdRdv5WVCuSlIZ7ahHfoKdn8O+5ahHVqClvQp2tGFaMfmo6YvQMlchJyzCDn/U+R7nyIVLkQqmY9UNge57GOU0g9RS6aOmgwdDmrJeyil05DLZiGVzyVasYho5WdEqlYRrl5DqOZrgrWbCNZtJVD/E/6GvfgaD+FtTh5kWJb+76exQghZ4yKErLERQta4CCFrbISQNTaiRI126SZkbz2o4PNv9vLLN2bzwcKNpGfm4w9MvDe93puEQB/0FrKW7m6CN3ZCyvuEz0zHlPspFU17uGU59LOtB/Iseym0ZojWAyOAELLDw9YawX83QPSCF+2IE45Y4GgXpLaipdUTvVZJoLgIT+udx9Kh55+SDt1I6OfSoWUfoZR+gFr8ru4SNCFDi99FKf0Auewj5PJPkCoWEK1YQqRqRUyGVq8jVLuRYN0WAvXb8DfsxtdwAG9TEt7mY7Fj0XYOT/sl3B3ZuDpv4Oq6jbP7AY6eUuw9ldhMdVjNzVgtHVisvZht9jEbfPUiI4SscRFC1tgIIWtchJA1NkLIGhtRoka7dBOyL70ynf/7p4Us+3ov3+06waadxwdlvJfem4RAH3QTsqZeeop203pnEaWVn5PbuVa0HtCBiSpkTQ7vz/YO7ZsOdXXl4e64jqf9Cp72DLyt6fha0vA2HcXXeBh/414C9TsI1G0lWPcdoZqvCVevJVK1imjlMqKVi5DK5yGXfoxa/CFq0VS0on/oLkJjydB/xNKhxdNQCqaj3pqOljMN7ep0tMwZaBmz0M5+jHp2HvKVZUTy1hEs+RFfwyG8TUcJtJ1ENWXgacvA03EVd8d1XF15OLvu4uguwt5bhr23Bpu5EaulDYulC7PNgsnmxGQXn8OJjhCyxkUIWWMjhKxxEULW2Agha2xEiRrt0k3Irv8heUiM99J7kxDow9gI2SCtjs5Y6wHzafK7NnLVPFC+Pt56oMvh0v34vOgMV8ia7C7MVhsWa8/P9w7tvPUzvUNT8TUl4WvY/zO9Q1cTqVo+5r1Dn4miv6MVvotaPA2l9CPksjmxdGjl0p9Jh26PpUMbD+JtOtInHXoeT3sm7o5ruDpzcQ5Ih9ZjNbdgsXRgsZqw9JpwPajBd+IW0Y2n0ebtGdDrVVl2mNCuy3gul2Cr7f3ZQVp9h3oJjIcQssZFCFljI4SscRFC1tgIIWtsRIka7dK9h+xEL703CYE+jIaQ7XBYqXOUU2y9Qr4lafDWA+Z13G7/liLTGdF64FlfM4d3kN6hDQPToZ03cXfk4Gm//Fg6NBlf4yH8DXuRWnYSafhxkHToZ0QrFiGVz32sd+hk/WVo8d9QS95BLZmKUjodufxjpPL5RCs+JVL5OZGqLwjXfEmoZgPB2u8J1P+Av34H/sZ9+JoO4W1Kwdd6Em/r2X7pUHfbLfzlD4jcKEM7XQupzXC0A5JNkGRHOuvGf9uLvSnws5JzpDF3unHl1+JPzkVafwLm7BogYOUvjhLcn407pxJrk2XIjy2ErLERQta4CCFrbISQNS5CyBobIWSNjShRo11CyMZrzfeHefn1WY94bSZ/mrEagK5eK9MXf8d/vDWPv836ktKqpsT99N4kBPrwvEK22+Gl0d5IhS2Pe9YT5Fi2Dtp64Gb7WsoqltF2eyHm+z9g7mnT/bkPC7v/sXRoOzZTMzZTbSwd2l3cJx2ai7sjC0/bJbxtZ/G1nnosHbqLQP2PBGs3x9KhNV/1SYcuRqqYj1z+CUrpjPGVDi3+O2rJu/FBSjORyuciVSzsnw6tWd9nkNJ2/A17EulQX8sJfK1n4unQy4+lQwti6dDeqng6tDWRDo31DvWM4GsZwt4UwXdLInpaHTCMSz2iEbwq4yqPYjaNzZdXS4sVd04VgYPZyKuPDpCvzNmJ9NVxAkdu4Mqvxdw5/BS5ELLGRghZ4yKErLERQta4CCFrbISQNTZGLllReOmV6Xyx6eCA69ZtTealV6YjK8oTH2Ph6p+4dO3ec69l7sptI/I447HGrZDdmXSON95brtvv/+nQWfYczQDgw083cfRMNoqicrugilf+thhJjr359N4kBPrwbEK2T+sB6zlyrbu4avn6Z1sPVLYcxpy7FOnkNEiZSjjre6wdrc+3XocHs82Bxfp4OrQKR08pjp5CnF13+qVDve0X4unQE3ibk/E1HsTfsJdA/U8E67YSrN0UT4euIVK1kmjl0j7p0FkopdNQS94bP+nQ4r7p0NnxdOhiIlWfE65a/Vg69Ef89TvxN+zH13T4sXToRaLm6wR7c3F15uPsvo+juxh7bzk2Uw02U1O8d2gPZpsVk9014XuHmnvDuEslQpcV1CStv4TdD9EzKr67MrbmsRFVtloTniulhHZfQfk8aYCA1ebtJvrtaXwn8nHea8TU6x2x3y2ErLERQta4CCFrbISQNS5CyBobIWSNjZFLVhR+8YfZvD5lGeFINPFzSVaYNHU5L78+a8yErNcfJBKVnvtxxmONWyF7p7CKg8czdfndXb1W/uf9FYQjURwuL7+aNKffm+3vH39FYVk9IISsUXmSkH289cA187dcM3/FDdNabvauIb/nC+52r6ak+3vqug7S3nUGc3c2gcrDqFmfwKUpcGkKys35BGr3xWRg02H8Dfvx1+8cmA6tWk2k6vNYOrT88XToO7qL0BiTY4OUSqchl816LB26Mp4O/XrwdGhzckwKt6bjbb/QJx16E2fXHRw9hQPTodZOLFYzZpsDk2ME06FxJupQryFjD2FviODLk5BODkzBKskawSwZV0UUs3mUv6DagtjLO/FmFBLeloG65MBAAbtwH5EtZ/Gl38dR3IrJ6h+19Qgha2yEkDUuQsgaGyFkjYsQssZGCFljY+SSFYWXX5/FZ+v3kHWzMPHzWw8q+Gz9nn4J2fTMfCZNXcHrU5bx4aebMFmdQH8hW17TzN9mfckb7y3n7Q+/oKCsDoBXJy+hs8cCwNXcAv71dzMJhWMCOPlUFht3HBMJWaPV6u8OcfriTQBKq5r484w1/a7/bP0eTl/KA4SQnQj0S4daO2PpUFP9z6RDr8XSoW3n8bWeeSwduodA/XaCdVsJ1W5CbdxAuHo1waolBCs/IVA+nWD5e4TK3iFa8g/kksmoxX8fBzI0lg5VSt9HKZ2BXP4JUsXj6dCvCNV+S7B2cywd2rALX7906Cm8bWfxtF3C3ZGFq/PxdGgFNlMtNlMzVkt7v3Ror3305JhevIhC1tITxl0iEbqkoB7un4LVDkDkbDwF2zq6Mspk8eMoasV35h6RzWfRFuwdIGDVJQcI/3QR78UibJVd9NqCY3achJA1NkLIGhchZI2NELLGRQhZYyOErLEZ05JCcGb+2HNh2aDLkRWFf351Brl3SlnwxU+Jn6/4dj85t4oTQtbp9vHy67PoMdsBWLs5ifU/JAP9heyfZ6whM+c+AJeu3ePND1YCsHLjAS5euwvAN9tSeHfeN4nw48I1O8i9UyqE7GhVZ48l8cIBmG1ONu44zhebDpJ7p1SXNZltTl6dvCQRib5XXM2UOev73WbN94dJOZMNQDiqCJ5EJEI47CcSchEJWIn4e4h624l6Gom6a4g6y5EchUi2u0iWPCTLdWTTFeSeDOTuM0idx5E6jiC1HURq2Y3c/BNy0xbkho0o9etQalej1CxHqV6CWjkfteIT1LIZaKXvo5WMn3SoVjoVtfRD1PKPUSvnolR9ilqxEPXeB2h5k9HyJqPe+gClcg1yy06k1v1I7UlInanIXaeRe84jmzKRzdlI1lwk620kewFRZylRVxVRTz1RbysRXxeRgJlIyEEk5CMcCen/HngBUVQNSVZ1+/3BiPz8jxNWiHaqyHdV1FPagBSslgpyrorUpBIOjOLz8YSQSluQT99G3XQa5u0emIBdeQTlYDZyXhWRTruur31UUtA0Tdc1CPRDVTWiOn729SYY0X8NehGVVVRVfPaNiqZpRCX912FURuTfPcNEklUU8dk3LJomvu8bmTEtKQgpU8eetI8HXc5DIStJMv/1l0V4vAHCkSi//ftiIlGpX0K2b0uDzOv3mbVsC9BfyEqSjKpqAFjtbv71dzMBOH/1Nl9vSwFiZ6KnZ+azP/USAP/910/x+YNCyI5GFZTV8fLrsxJJU0lWeGvaKv44bRWL1u7gX373Edfyi8d8XUdOXk28IQDKqpt4e/rqfrdZum436Zn5ADi8EcPisVQjVa9AqlyKXLkQuXwOSvlHqKUfoBa/Ow5EaJ+EaOkHKGUzUMo/Qa6Yj1S5BKn6c6LVq4nWriNSt5Fw/WbCjdsINe4i2HwAX8s+7K07MLVsoq1lDXUtS6huXUxF2xLK2pdS0rGMws4VlHdtoq73CO2Wq5jtFbicJlwuO06PZ/Dj1t1CNGtTYhNUzyzCX3MThyes+2sqGBrhqII/JOm6Bqcv+sy4LRLBMoVopop2iAEpWOm8SrBQwdMtDevxh7QGkxf/nTrCR2+gfHUc5uwcIGCVtamEk3II5Nfg7nKO2lqGtf6AhKKi+zoE+iApGr7g6H0+xjvD3XteBHxBCUnRdF+HQB8UFdwB43729cbh0e/fW/6QRDiq6P5vT4E+aBo4x8E6BPow5hVyjz1hz6BLeShkAb7cksTpizfJzitk9XeHABJCVtM09qZk8M4n65kyZz2Tpq5g5tLNQH8hm51XxAcLv2XKnPVMnr0u8dg9Zjt/m/UlHl+Ad+d9Q1evlTkrfqC105QIRgohOwo1bdFGftx/OnH5Wn4x//nnhQSCYQAOp13h/QXf6rKuWw8qEpddHh+/+MPsRB8LgElTl1NW3QQYu2WBo7tgiL1Dp6KUfohc9jFS+TyilYuIVi4jUrWKcPXaWO/Quu8I1G0lUL8Df+NefI2H8DYl42tJw9uajqc9A0/7Fdwd13F15eHsuoujuxBHTxn23mps5sb4ZPkuzDYzZpsTk2Pog3y6HV4a7Y1U2PK4Zz1BjmXrgKFbVy3ruW7Zxj3rKSrtt3BGu+hxDv10fGtXB6FrPyZErHJyLp6Sy5hsL94p/S86E6VlgckWwlEbxX9DRj4xsBesnKoRyJFxVkcxWUdnDdZGC+6cCoL7s5BXHR0gX5mzC+nrNPxHb+K6VYe5y637cXvi8xEtCwyNaFlgXBxe0bLAyIiWBcZFtCwwNqJlgbExcvUVsgVldcxcupnFX+7iblE18EjIXssv5s8z1uDzBwHIyL47QMg6XF7+7fcf09LRC4DJ4kg8NsAb7y3n8o0HfL87DYC3pq3iTGYe2w+mA0LIjkr94g+z6TbZEpfX/3iUdVuTE5fbu8z8atInY76uX02a06+NAsDMpZvZl3IRRVHJvH6f309ZhqKogLGFrNlmH9g71NqD2WqL9Q4dB2scnCCtjk6q7Q8osJ4j17qbq5avB8jXbMsmbluTKbFmU2+vpsvx6Dk9aajX41h6egnm7obU92OJ2LSP8RWew2Qb+WFTgrFhPAtZS1cYT4FEOENBO8iAFGz4vIKnQMLaMQpfLO0hbDU9eDJLCO3MRFl2aGD7gXl7iGxKx5d2G8eDZkxmn+7H7FkQQtbYCCFrXISQNTZCyBoXIWSNjRCyxsbI1VfIqqrGpKnLmTR1RcKDPRSyx89dZ96qbQB4/UFmLdvClLlfA4+EbFNbN//nTwuIRiVUVWPbgTO89Mr0RKuDNd8fZsrcrxNnyC9cs4N3533Dg5JaQAjZUamXX5uJy+NLXP7LR2sSzXwh1sv15ddnjemaAsEwL70yPdE/9mH1mO18+Okm/v2teUyevY6ahvbEdXpvEoKn0+GwUmevoNh6hXxLEtmWjQPka5blG/Is+yi0ZlBtL6LV0fPExxyKkDWbbQTyD6MdmwYpU9GOf4Tv7nFMlvEsqwVDYTwJWZM1hLMmiv+6jHxsYC9Y+ZiK/7qMozaKyTbSvzuAvawd37kCwj9eQP1038ABXJ/uI/zDeXznCrCXtmOyBnQ/Zs+DELLGRghZ4yKErLERQta4CCFrbISQNTZGrr5CFmDz7jQ2bE9NXO471GvK3K9584OVzPxsM+U1zfzXXxaxZe/Jfi0LVm08yGvvfMaUOeu5X1zD+wu+5R+frAPg4rW7vPTKdGwONwBJJ6/w8uuzEl5OCNlRqD+8+znFFQ0AdPVa+affzsBicyWuf1Bay2vvfKbX8oZcem8Sgv4MtfXADet27llPUWG/RZOj+ZlaD/Q6nixkzWYHvrvH0I5/FBOxx6bhz0/CbLbpfnwEI4PeQtbaHsFbIBE5r6AdoH8K9iCEMxQ8hRKWzpH98mgy+3AUtOA7eZvId+lo8/cM7P/62SFCOzPxZBZjq+6m1x7U/fUa0WMvhKyhEULWuAgha2yEkDUuQsgaGyFkjY0oUaNdugnZH/ad5k8zVpN24QaTZ69j7h0DC1MAACAASURBVMptiet8/iAffrqJ9T8k67W8IZfem4Sxedh6oGDYrQeGy2BC1mR14ys4i3piVqxPbOr7BG/sxtLTOw6OlWAkGWsha7KGcFZHCeTIKCkDU7BSmoo/V8JRN7IpWHO3B+ftevwpN4l+nQZzdw0QsPLKZIL7s3Bfq8DaaNb9tRlthJA1NkLIGhchZI2NELLGRQhZYyOErLERJWq0SzchG4lKfLEpFlueu3JbIp4MsOSrXUyauhyr3f2ERxgfpfcmYSSetfVAjb2Ytqe0HhgufYWsyebDU5qJenJOYmBX6No2rF0duh8zwegwFkLW1hrBe18mcm6QFOwhjdAlBU+xhKV75L4gWtocuHKrCRzOQV6bOnAA1yc7kb48RuDIdVx5NZg7jdd+QwhZYyOErHERQtbYCCFrXISQNTZCyBobUaJGu3QTsk+qzh4LkiTrvYwhld6bxIvKwNYDP/xs64H7z9F6YLiYnCE0VcVdeQPlzKKEiA1f2YitvVn34ycYXUZDyJrMYVwVUQLZMsrRwVOwvjwJR0OE3hFKwVrrzXiyygnuvYKy8sggA7h2E91wCv+xPJx3GzD3eHU/9nojhKyxEULWuAgha2yEkDUuQsgaGyFkjY0oUaNd40LIBkMR2jpNE0rEPiy9N4kXA/1aDwx3ve6a23BhWULERi+uxd5cMw6OpWAsGCkha2uJ4LsrE0lXYT/9BKyapBHKVHCXSph7R+BLoD2Iraob76UiQjsuoS45OFDALthLZHM6vjP3cBS1YrKMzR84JhJCyBobIWSNixCyxkYIWeMihKyxEULW2IgSNdqlq5Dt6rUy/4vt/MvvPuKlV6bz0ivT+cUfZrNy4wHsTo+eSxty6b1JTETGU+uBZ8VZX4R0YVVCxErnV+KsL9R9XYKxZbhC1myKpWCDWTJK8sAUbPSUii9fwt4Yodf+fGs0Wf3YS9rwnb1PZMs5tIV7BwhYdfF+wtsy8F4oxF7eSa/txRrANRoIIWtshJA1LkLIGhshZI2LELLGRghZYyNK1GiXbkLW4fLy33/9lHfnfUPOrWJaO000t/Vw7sotXp+yjNfe+QyHy6vX8oZcem8S452+rQfuDqH1QKX99pi2Hhgq9uYaohfXJkSsfHYptN+n1yEElhF5FiFra47guyMTPT14CjZ4RcZdJmE2Pd8XPZPJi/NBE74Tt4huPI02b88AAat8nkRo9xU8V0qx1Zp0P44TESFkjY0QssZFCFljI4SscRFC1tgIIWtsRIka7dJNyG7aeZy/fLQGSVYGXBcKR3nzg5V8+1OqDit7ttJ7kxhfPGvrgWs6tx54Orb2ZsJXNyVErHJ6Ae7yHEyOQGKol8B4PEnImk1hXGUSwSsyatJjKdj9ED2t4rsjY2t+Pqlj7nTjyq/Fn5yLtP4EzNk1QMDKq48SOJiNO6cKS4tV9+P2IiCErLERQta4CCFrbISQNS5CyBobIWSNjShRo126CdlJU1dw+caDn73+xu1Sfjd56RiuaHil9yahJ0NpPXB1nLYeeBrWrg5COdsTIlZN+wRvyUVMNh+9jvhQLyFkDUs/IWsPYW+M4MuXYinYx9oQKMkawSwZV0X0uVKwlhYr7pwqAgezkVcfHSBfmbMLaf0J/Mm5uPJrMf//7L13cFTnuq85dapmqs7M3KlbNVNz65x9wpx7zj3nbnbw9vZO3mfb2MYYjLdzwAQDFkEkk3MwGJMNmChARJERWWSBEAgEIglQzrnT6qBWr+7VuZ/5Q3YbISEJkLQkvu9X9VShbmnpXavVn7sfv/1+lbW6X6fnESlkxUYKWXGRQlZspJAVFylkxUYKWbGRkWnv6CZkX+gRQ3FZzWPvrzYq/OK1IR1Y0dNF70Wio/hp9MDlLj16oCXMNQY8KXGwa0C9iN0bgysjEaOlodySQlZsNGcIz4MQ2qlQk12wvkNhXNeCKCVPL26UXCPO03fR1p8mNGVb4w24Rm3AvygR194r2G8UYTTW6X5dREAKWbGRQlZcpJAVGylkxUUKWbGRQlZsZGTaO7oJ2W7dB2NS7I+936TY6dZ9cMcV9JTRe5FoH1o7emBJlxk90BImk4J6ZRuRXYMgoT+R3YNRryZgMtma/H4pZAVD0bAW+HClBgjsb6ILdmcE97n6Llij6SnesCkerPcqqTt+E++q44THb2osYMfG4f3uCK4jN7DeKcNo6Vr/s+N5QQpZsZFCVlykkBUbKWTFRQpZsZFCVmxETjAUolv3wcxcHN/ovnnf7aBb98EEQ43Hjz6csbNWk3Q+HYCXeg1v1v+JGl2F7JUb98kuKGuSKzfuSyHbQTzZ6IETXWr0QEsYzQ5c6XuJ7PmyXsTu+gJ3ajwmY/PzNqWQff4xV3upvR1AOxkivPWRLtjNEDwWpu56EKX0yeWM0axiu1WKKzEd37LDRMbENRKw4YnxaGuSqEu6hZJVjcEqN5DrDEghKzZSyIqLFLJiI4WsuEghKzZSyIqNyAmGQvz2reG82XcyXp8/ensgGKJ3/6m88ObQJxKyNkcd4XCkXWvuitFVyLaGzh69F4knpdpWR1FrRg+Yu/bogZYwKk5cN48S3jfshzmxA/BcXIO5urp1Py+F7HOHUdGw5flRUwIE9jbRBZsQwZ0cxJ7tx+N+/KZeTR67pg77tQLU3an4Fx4gMmp9IwEbmr4dT9xpnOfuYck36X49JE0jhazYSCErLlLIio0UsuIihazYSCErNiInGArxwptDmTR/A2cv3YzefuXGfSbN39CgQ/bQycv07j+NN/tOZtC4xRgt9Z2wskO25egmZK12Z6vo7NF7kWge8UYPtIRRUXHePU3owKjohl3ec8uxVJY/2XGkkH0uMFd5cd4M4D0RIhJPAwEb2Qy+oyHqMgJYyhsKmAabejWBqdKBIzUH9/YLBObuhti1jQRsYM4u3FuTcaRkYy63634tJK1DClmxkUJWXKSQFRspZMVFClmxkUJWbDoyahh+k+/ucF4p8jRZTzAU4pevDyHl6l3GzFwdvX3awk0kX7kdFbL2WhcvvDmUGpMVgDnLtjF/xQ5ACtnWRDch+7xE70XiYR4ePXCl1aMHDLrX3SFYPdTeTyGUOC4qYn2nFqCUFTzV8aSQ7ZoYFQ1bjh/1YpDgnsZdsMHdEdQLQey5foyWxx/nUSFrKTRTm3wfz6azBGfsbCRfGbkO/4L9qLtSsV8twFTt1P1aSJ4OKWTFRgpZcZFCVmykkBUXKWTFRgpZsenI1IXh77LVDuc/ctUm6/lRyAYCQV754CucdW68Pj+vfTwenz/QoEP24ZEGJy9cZ+jk5YAUsq2JbkJ2/oodraKzR6/F4clGDxz8afSA7fkaPdAaHDnXCB6ZHBWxgeMzsRY/eKZjSiHbdTBXeXFmBPAea6ILNh68x0M4bwYwV7XyjZZVw1tqQTubibb2JKHJWxpvwDV6A76libj2X8WWUYLR5NL9OkjaBilkxUYKWXGRQlZspJAVFylkxUYKWbHp6JiDkQ5HCTY91/VHIQswd/k2Dp64xLnUm8xasgUgKmQjkQhxCcf5bMR8+sbOp3f/acRMXAZIIdua6CZkR05f1So6ezpmMZCjB54GW8Ed/Mdn/SRij07Bnnu9TY4thWznxWjRsOf4cV8IEtwVadwFuzeMmhLEluvHqLTmeG6smeW4jmTgXXmM8LiNjTfgGr8J78pj1B3NwJpZgcHi1v06SNoHKWTFRgpZcZFCVmykkBUXKWTFRgpZsRE5DwvZjMw8YiYuY/zcdVy7lQ38JGTPX77N+0Nm41LrRx8cP3dNCtkniBxZ8Ixpjyf+j6MH7ihn5OiBp0ApzcOf9HVUxAYTx1P74BIGW9vtUi+FbOfCUu6j7kYA39EQkc007ILdEkFLCuG81bouWKPJhe1GMa79afiWHCIyekPjDtgp2/DHncZ56g5KTg0Gq/7XQNIxSCErNlLIiosUsmIjhay4SCErNlLIio3IeVjIhsMRevefSu/+0wiFwsBPQnbPkQuMmlHfSFmnehg6eTl9R34DSCHbmnRaIZuZXcTspVv1LqPFPOuT/GlGDxRbS4QcPdASlopSvGeXRkVs6MAonJlnMFjb/lpJIasvRouGPcuP+3yQUBNdsIF9YVyXAtjyfS12wZqqndjT8lETLuH/Zh+MXNdIwAZn7MSz6Ry1yQ+wFJlb3NRL8vwihazYSCErLlLIio0UsuIihazYSCErNiLnYSELsGz9Pr79flf064c39eo78hv6DJxOzKRl3Msp5pUPvmJ53H4pZFuRTiVkbY46tu8/wztfzOAXrw0hdtoKvUtqMU/2pG796IGrlp3claMHWoW5uhLtwuqoiA3vG0bdrWMYrXXt9julkO14lFIfdelBfEcad8GGt9Z3wdbeCWCuaf4Nk7nMhiMlG/fWZIJzdjXegCt2LYGv9+DefhHH5VxMlY2ff1LIiosUsmIjhay4SCErNlLIiosUsmIjhazYyMi0d3QXsqFQmCs37jNuzlp+/UYM3boPZuWmg13Gnjf3BK6wWchvxeiBy+ZNcvTAU2A2mHBf2gS7BkJCfyJ7vsSVvg+juf0FthSy7Y/R5MVx34/7XJDQzia6YPeHcaUGsBb6mh0ZYMk34Tx7D0/caULTtjcePzBqPf5vD+Daexl7eiFGQ8siXwpZcZFCVmykkBUXKWTFRgpZcZFCVmykkBUbGZn2jm5CtspgYfWWw7z28Xhefnc0C1YlcD+3hJd6DaeyxqxXWU+cH5+scvRAx2EyWlHTdhDZNbhexO4ahHplByaT0mE1SCHbPiglPlxXg/gPhWETDbtgt0XQTgWpvRvAZHjMmyKrB+VBFXVJt9DWJBGeEN9YwI7diG/5YVyH0rHdLsVoefLnoBSy4iKFrNhIISsuUsiKjRSy4iKFrNhIISs2MjLtHd2EbLfugxk983supt0lEAxFb+9qQjbDcuyH0QON5es582LSLDu4a0mWowfaAKPFgSt9H5E9X9aPJ9g1EPelOMw1Hd9VLIVs22AyenHc8+M5EyS0vXEXrP9gGFdaEGtR012wRouK9U4ZrsPX8S0/QmRsXCMBG56wGe/qE9Qdv4nyoAqD8uybu0khKy5SyIqNFLLiIoWs2EghKy5SyIqNFLJiIyPT3tFNyA6ZsITfvjWc8XPX1UvZQBDoekL2YQGbat7ILUvSD6MHanRfQJ4XjNY66m4dJ7x/eHROrJb8PZaqCv1qkkL2qbEW+XClBfEnNtEFuz2C50wQxz0/JmPjNz5GYx32G0W49l7Bv+ggkVEbGgnY0LRteDacxnkmE0uesV3OQQpZcZFCVmykkBUXKWTFRgpZcZFCVmykkBUbGZn2jq4zZCtrzKzanMirH47j5b+O5ptVCbzw5tAuJWRzrLcpshXrvlg8l1hVnJlnCB0YFRWx3jNLUMr1v95SyLYek9FL7d0AntNBwtse6YLdBP5DYVzXgigljSWHqbIWx+Vc1B0pBObthdh1jQRscHYC7i3nqb2YjbmkY8ZWSCErLlLIio0UsuIihazYSCErLlLIio0UsmIjI9Pe0X1TL4BgKMTFtLvETlvJL18fwjtfzGD7/jPYHHV6l9Zi9F4knk881D5IJZg4Pipi/SfmYC3O6QS11SOFbDNYNayFPlyXAwQOhBuNIQjtjOA5G8Rx34/R1PDNjbnYQm1yFu74cwRn7WwkX4ldR+Cbfag7L+G4koepqlaXc5RCVlykkBUbKWTFRQpZsZFCVlykkBUbKWTFRkamvdMphOzDMSsO4hKO82bfyfz6jRi9y2kxei8Szxv23OsEjk6JitjAsRnYCm7rXtejSCHbEJOhvgtWOxkivLVhF2xkM/gOh6hLD6KUNRQZSq4R5+m7aOtPE5qyrfEGXKM24Ft8CNe+NGw3ijGaXLqfq8EmhazISCErNlLIiosUsmIjhay4SCErNlLIio2MTHun0wnZHxOJRLh2K1vvMlqM3ovE84K1+AGB4zOjIjZ4eCKOnDQMtmffgKk9EF7IKhq2Ah+u1ACBfU10we6K4D4fxJ7lx2j58Wc8WO9VUnf8Jt5VxwmP39R4A65xG/GuOIrrSAbWu+UYzar+59oEUsiKixSyYiOFrLhIISs2UsiKixSyYiOFrNjIyLR3Oq2QzcorJel8ut5ltBi9F4mujlJWgO/UgqiIDSV+Re39Cxisbt1raw4Rhay52ovzdgAtKURkSxNdsEdD1N0IYCmvlxVGs4rtVimuxHR8yw4RGRPXeAOuSVvQ1pzEefI2SnY1BmvnFPCPIoWsuEghKzZSyIqLFLJiI4WsuEghKzZSyIqNjEx7p9MK2YWrd/HCm0P1LqPF6L1IdFUsleV4zy2Pitjw/licd09iVDrHR9JbQgQha1Q0bHl+1JSmu2CDuyK4LwSx59R3wRpr6rBfK0DdnYp/4QEio9Y33oBr+g48m85Qe/4+lkKT7uf4tEghKy5SyIqNFLLiIoWs2EghKy5SyIqNFLJiI3KCoRDdug9m0Zo9DW6/mHaXsbNWt9nveanXcEyKnfziSnr1m9rk94ycvqpLNGs+TTqtkO0q0XuR6GqYqyvxXFwDCQPqRezeobhuHsZo0WdzpqfleRWy5kovzpsBvMdDROJp2AUbD95jIZwZAcxVXkyVDhypObi3XyAwd3fjDbhGrCUwdzfubRdwpOZgqnTofn5thRSy4iKFrNhIISsuUsiKjRSy4iKFrNhIISs2IicYCvFiz2G8+uE4Ssprore3tZC1OeoIhyPNCtk61YPPH2iz39mZIoXsM0bvRaKrYDaYcKduJrLrC0joT2T3EFzXdmEy2XSv7Wl4XoSsUdGw5fpRLwQJ7m6iC3ZPGPViEFuuH6XAQm3yfTybzhKcsbOJDbjW4//2AOruVOzXCjDV1Ol+fu2FFLLiIoWs2EghKy5SyIqNFLLiIoWs2EghKzYiJxgK8Zuewzh44hLDJn8Xvf1hIWu1Oxk+5Tt69ZvKm30ns/twcvT7/tBnJLsOnWfE1BW82XcyyVduM3f5NgaOXcjAsYvwaD6gYYds7/5TWbZ+H298MpHe/aeSkZkHNOyQvZdTzEdD59Kr31TeHTQz+j1dNboL2aKyasbOXkOfgdPp8dmkRnRkMjLz6DNwOr/rPYLYaSupUz0AVBksDB6/hD+9M4qPhs7lblZR9Gf0XiQ6OyajFfXqTiK7B/8gYr/AfWUrJqNF99qeha4sZC0VXpwZAbxHQ0Q207ALdksE74kQzpsBbHdNOE/eQVt7ktCkLY0F7Jg4fMsO4UpMx3aztNNuwNUeSCErLlLIio0UsuIihazYSCErLlLIio0UsmLTofH6Yeq2jufr3U2WEwyF+NUbXxIOR/gwZg4p1zKBhkJ20ZrdzF2+Dah3Zi+8ORSLtRaAl98dzZa9pwBIPJnKb3oOo7LGDMCXE5ZyJiUDaChkf/XGlxw9kwbAsbNX6d1/GtBQyL4/ZDYnk68DkHQ+nT4Dp7ft49DB0V3Ivjt4FjGTlnEwKZWk8+mN6Kg4XW5e+eArbmbm4/MHWLRmNweOpwAwaNxidiaeIxQKk5aRRfePxhMIhoCuKeQ6AqPFgevGQSJ7Y36YEzsAT8o6zNXVutfWJufXhYSs0aJhz/bjTg4S3BVp1AUb2BtGvejHedmE68hNvCuPER63sZGADY/fhHfVceqO3cR6rwKD0jU24GoPpJAVFylkxUYKWXGRQlZspJAVFylkxUYKWbHp0Gj+JkcAtjvjNzVZTjAU4pevDwHgZmY+vftPJRAINhCyoVCYQCAY/Zne/aeRmV3fvPjyu6MpKqsG4MadXP76xYzo981dvo2dieeAhkL2pV7DCYcjAAQCQbp1H4zD6WogZAOBYPR7LNZafv1GTJs9BHpEdyH76zdicLrcepfB0TNpTFkQ1+h2m6OO3/WOJRgKRW/7eNjX3MzMB7qGkOtIjNY66m6fILxveHTDLu38CiyV5brX1qbn2cmFrKXMR931AL6jISKbaCBgw1sjaCcCuE9ZUPdl4FtyiMjoDY0W59CUbWjrT+M8fRclx4DBqv95dRakkBUXKWTFRgpZcZFCVmykkBUXKWTFRgpZsenwON0dT52nyVIeFrIA4+asZcveUw2EbH5xJaNmrOKT4fPoO/IbXuw5jLtZhUC9kK0xWYF6ofvJ8HnRY81fsYPt+88ADYVsj08nNqjhpV7Dqag2NxCy51JvMXDsQvrGzueT4fMa1NgVo7uQ/WT4PEorjXqXweK1e1iwKoGYSct4s+9kZiyKR3Vr3M0q4v0hsxt876T5GziYlAp0XiHX4VhVnPfOETo4JipifacXopQV6F9bO9DZhKzRrGF/4Md9Pkgooaku2BDaISva9rv4v9kPI9c1ErDBmQm4489Rm5yFubhrj5Rob6SQFRcpZMVGCllxkUJWbKSQFRcpZMVGClmxETmPCtlqo8J/vjeWg0mpUSH73pBZ0REDAD37Tn4mIfu73rFEIg07ZJ117qiQtTnqeLHnMEoqDAAYzTYpZJ8m2QVlUc6kZDBo3GLOpGSQlV/W4L7sgrIOq2nm4nh695+K0WLH5w8wfu46Fq3ZTfrtbPrGzm/wvbOXbiXhhxbrWtUvOD48+VcIH54QFbGhE7NQK3I6QW3tiNtPJKLv4++qCuC9GSJ4NAyPzoLdGiG4z0lwaw6heYcafzQhdh2hb/bh23UJT3o+TrNL/2vahfAFwni8Qd1+v8Plx+kOSHTApQUJR9C9Dok+BEMR3N6g7nXohUPVvwa9cHuDBEMR3euQ6EM4Ai5N3Oe+3jh0fM3n8QbxB8K6v/aU6IPe7/ck+iJyHhWyAN/HH6JXv6lRIfvyu6PJKSgH4NTFG/z+7VjSMrKi9z2pkP3Fa0M4l3oLgBPnr/Hu4FnATzNki8qq+fN7Y/D7A4TDEVZtTqRb98F4fV33sdJFyHbrPrjVdFQWrdnDknV7o1/feVDIe0NmkZldFP1D+DET563n0MnLALi9QWHxld0mfHxaVMSGj0/DV3Zb97o6Ao83SCTSsY+/xxXEVxAmcDFMpIku2MgOD+FNxUS+PgkjHumAHb2B0NJE/Ieu4b1Xisep6X4NuzLBUBhfIKTb73dp+l8DUdF89XOL9K5Dog+hcASvX7/nvt6oAq89Xn+IkHzuC0s4HEHz6V+HqLi0gG6/2xcIEQiFdb8GEn2IRMDTCeqQ6IPIaUrIejQv3T8aHxWy+45d5PVPJvDR0LnsOHCW7+MP8Zf3x2IwWZ9YyGbll/H+kNks37CfPgOn02fgdO5m1c+jfXhkwYxF8fT4bBJ9Y+dz/XYOA8Ys5NMRPx27q0UXIevzB1pNRyUh8RwzF8dHv77zoJCPhs7F4XTx27eGo3l/su69+0+NDivWu41eD6zFDwgcnxkVscFDE3BkpWKwibPJU0eNLFBKfLiuBfEnhuGRWbCRzQGCG6qJfJ0Co+MbCNjI2Dh8y4/gOnID650yjBZV92v2PCFHFoiLHFkgNnJkgbjIkQViI0cWiEutKkcWiIwcWSA2MjLtHd1nyE5b2PSubqpbI3bayg6rw2p38vK7oykoqSIQDDFx3gaWx+0HIGbiMjYmnCAUCnPywnV69p1MKBQGxBKySlkBvtMLfxpNcHA0zsxzGKziyb72ErImoxfHPT+eM0HC2x/tgo0QXm+Db27ChAMQ+5OADU+MR1uTRF3SLZSsagxWceS4HkghKy5SyIqNFLLiIoWs2EghKy5SyIqNFLJiIyPT3tFNyJZXmUhNv8dveg4jNf1eI3YcPMtveg7r0JouX79Pj08n8p/vjWXKgjjcHi8ANSYrg8Yt5o/vjOKT4fOiczJADCFrqSxHO7/ip9EE+4ZTd/s4Rmud7rXpRZsJWauGtciHKy2I/2C48RiCDRqRRXkw7SyM2hQVsKHp2/HEncZ59h6WfJPu10M0pJAVFylkxUYKWXGRQlZspJAVFylkxUYKWbGRkWnv6CZkr9y4T//R39Kt+2D+0GdkI179cBzrth3Vq7xWR+9Foj0xV1fjubgWEgZAQn8ie2Nw3TiI0eLQvTa9eRYhazJ4qb0bQDsVJLztkS7YuDB8VwNz02H8vqiADczZhXtrMo6UbMxlNt3PX3SkkBUXKWTFRgpZcZFCVmykkBUXKWTFRgpZsZGRae/oPrJgyIQlepfwTNF7kWgPTEYL7stbiOz+ol7E7hqMmrYTk9Gqe22dhScSslYNa6EPV2qAwP7GXbCsccG32TD1FIzcCCPX4V+wH3VXKva0fEzVTt3PV9IQKWTFRQpZsZFCVlykkBUbKWTFRQpZsZFCVmxkZNo7ugjZorJqPJov+u/m6OzRe5FoS0wmG65ru4jsHlI/nmDXQNypmzAb5EfiH6UlIWuu8VJ7J4CWFCIS/4iE3RCCZVUw5yqM20Nk9AZ8SxNx7b+KLaMEo8ml+/lJmkcKWXGRQlZspJAVFylkxUYKWXGRQlZspJAVGxmZ9o4uQrZb98HczMyP/rs5Onv0XiTaAqOlFlfGIcJ7Y36YEzsA7cJqzNWVutfWWXlUyBoVDVu+D1dKgGCCv3EX7GonLHgAU08SnrAF78pj1B3NwJpZgcHi1v18JE+GFLLiIoWs2EghKy5SyIqNFLLiIoWs2EghKzYyMu0dXYRsneohGApF/90cnT16LxLPglFxUXcnifD+2OiGXd6zS7FUlOpeW2fHaNeIuMCZ4cO/301kU+iRLtggLK2A2VcIz0hEW3cK56k7KDk1GKz61y95NqSQFRcpZMVGCllxkUJWbKSQFRcpZMVGClmxkZFp7+g+Q3bg2EVs2HmczOyiqKTtStF7kXgqrG5q7ycTShwbFbH+pK9RSvP0r60TY1Q07Pc8aIfshDe7G3fBfu+Ab+4R+uYCnk3nqU1+gKXIrHvdkrZHCllxkUJWbKSQFRcpZMVGCllxkUJWbKSQFRsZmfaO7kJ216HzjJ+7jlc++Irf9Y5l1IxVJCSe6xLzB2NwCwAAIABJREFUY6GrCVkPjuwrBA9P/EnEHp+FreBOJ6itc6IUOPEcMxLcbK3ven1YwK4PwJJSQktv4dl2DcflXEyVDt1rlrQ/UsiKixSyYiOFrLhIISs2UsiKixSyYiOFrNjIyLR3dBeyD6e8ysThU1eYuTienn0n88oHX+ldUovRe5FoLfb8WwSOTY+K2OCRyThyruleV2dDybPgPl5GYGMFkbV1TXTB2gitzEdLeAAPKjDW1Oles6TjkUJWXKSQFRspZMVFClmxkUJWXKSQFRspZMVG5ARDIbp1H8wLbw6N8pf3xzJ76VY8mrdDaxk7azVJ59M79Hd2VDqNkK1TPVy+fp+Vmw4yYMxC/tBnJP1GLdC7rBaj9yLREtbiHPwn5kRFbChxHLX3UzBYPbrXpjtWDSWnBtexHAIbcoisqG6iC9ZPaG0N3t0lOK5XYrSoGGyNN/WSiIUUsuIihazYSCErLlLIio0UsuIihazYSCErNiLnRyFrUuzR26x2J0MnL2d53P4OrUUK2XbMN6sSeH/IbF79cBxfzVnD9v1nyMwuwu8P6F1aq6L3IvE4lPJivKcX/SRi94/EeecURkXVvTa9MFrcWDPLUY/cIrDmBpHFObD6kS7YOAhvcOLbZcB51YLB3LS4lkJWbKSQFRcpZMVGCllxkUJWbKSQFRcpZMVGClmxETlNCVmAQycvEzNxGYdOXmbat5uit7/zxQy+jz8EQDgc4U/vjKLWqXIvp5iPhs6lV7+pvDtoJhmZeQDkF1fyYcwcvo8/xNDJy+kzcDpXb2YBUGOy8vmoBbz1+RQmzlvPiKkrokL2ccfrqtFdyP6u9wj++sODl5aRheruWn/4ei8Sj2KpqkA7vyoqYsP7huG6eRSj4tS9to7GaHJhu1GMa38a/mXn4et0WF4FG0INJGwkLkAgwYEr1YnJ0LoX21LIio0UsuIihazYSCErLlLIio0UsuIihazYSCErNh2ZYMRPirKyw7liXd90PU0IWYu1li++WsS6bUepMlh46/MpANhrXXw+agGDxy8B6mXrR0PnAvD+kNmcTL4OQNL5dPoMnA5AUVk1v3htCOm3swE4l3or+gn5ifM2sGLjQQAKSqp44c2hUSH7uON11eguZIOhEFl5pWzbf5qR01fx8l9H89HQuSxas5tzqTf1Lq/F6L1I/Ii5xoDn4nrYNQAS+hPZ8yWua3swmsXZZMpU7cSelo+acAn/gkSYfhq+zYY16iNdsBGC2zXUc26shT4M1if/XVLIio0UsuIihazYSCErLlLIio0UsuIihazYSCErNh2ZYMTHGfP8DifZsrTpen4Qsr9/O5Y/9BnJ73qP4LdvDWflpoMEAkEAenw6EZujjuQrt1mz9TAffDmbQDDE3qMXWb6hfqxBIBAkHI4A9UL312/EAPVC9g99RkZ/X35xJT0+nQjAKx98RV5RRfS+z0ctiArZxx2vq0Z3IftofP4A+4+n0GfgdLp1H6x3OS1G70XCZFJQL28jsvuLehG7axDq5W2YTIrutbU35jIbjpRs3FuSCc7ZBeP3wdx0WF4DceGGXbDxIbQTfmozA5iMz/6CWgpZsZFCVlykkBUbKWTFRQpZsZFCVlykkBUbKWTFpqPjC6sdjj/sbrKWRztkrXYnf3xnFKWVxuj3zFwcT8rVuyxeu4e0jAdMX7SZrLxSJs3fQFrGA6C+83Xg2IX0jZ3PJ8Pn8cvXhwD1Qva1j8dHj/Xw179+I4YakzV6X+y0lVEh+7jjddXoLmSddW4uX7/P9/GH+OKrRbzYcxi9+09j/oodnL0kO2Qfh9HswHVtD5E9X9aPJ9g1AE/KBsw1Bt0XrvbCkm/CefYenrjThKZth1GbYNpZWJgLa90Nu2A3gv9ACNfVIEpx2795lkJWbKSQFRcpZMVGCllxkUJWbKSQFRcpZMVGClmxETlNjSxYu+0II6evin597OxVVm46yKcj5lGnejhwPIWdiefo2XcyHs2LzVHHiz2HUVJhAMBotrVKyP7l/bHkF1dG7/tk+DySzqc3e7yuGt2FbLfug+nx6URmLo7n+LlrmBWH3iU9UTp6UTAqTlwZhwnvGxadE6udX4WlqkL3BatNsXpQHlRRl3QLbU0S4QnxELsWJhyAr2/ACiPERRoI2NCOCJ6zQRz3/W3SBdvs4yCFrNBIISsuUsiKjRSy4iKFrNhIISsuUsiKjRSyYiNymhKyqlvjz++N4frtHKBeiH4yfF50Xmx+cSWfj1rAwLELgXrJ+uf3xuD3BwiHI6zanEi37oPx+vzNCtmxs1ZHZ8g+yC3hhR4xJJ1Pb/Z4XTW6C9nKGoveJTxTOmoxMCoqzjunCO+PjYpY7+lFKOXFui9UbXJ+FhXbnVJch6/jW36EyNg4GLEWRsfD9POwKB/Waw27YDeB71AY17UgSknHvkGWQlZspJAVFylkxUYKWXGRQlYcqm0aaWaNzdUaE0rd9CpQ+ddclRfzVN4tVBld4mZJpcbeGg9XzBqlnaBmSfshhazYSCErNiKnKSELkJB4jg++nB2d49qr31TmfbcDgHA4wu96x7Ju29Ho989YFE+PzybRN3Y+12/nMGDMQj4dMa9ZIVteZeKT4fPo/tF4xs9dx7g5azl29mqzx+uq0V3IPi5J59OZs2yb3mW0mHZfCKweah9cJJT4VVTE+k/MwVqco/sC9SwYDXXYbxTh2nsZ/6KDREZtqBewI9bBxESYl0FktbVxF+zOCO5z9V2wRpN+nQpSyIqNFLLiIoWs2EghKy5SyD6fNCVf/yVb5e+ekF/lqrxd4Ca2RGVhhYeEGg8pZo2Sp9g4VtK5kEJWbKSQFRsZmfZOpxWye44kM3zKd3qX0WLacwFwZF8leGRSVMQGjk7Hnn9T94XpaTBV1uK4nIu6I4XAvL314wdG/MDoLTAzmfCqciIbAw0349oMviMh6q4HUUo7z5tgKWTFRgpZcZFCVmykkBUXKWSfD66YNTY9JF//+TGC9cU8lX7FbhZWeDhs1EhzhTht1jhs1Pi+ysPkMjefFqm8nN+yrP15jkrvApWYEpVvKjxsrdFINmkUWuUIhK6AFLJiI4Ws2MjItHd0F7J7jlxA83bdmQ/t8cS3FdwmcGxmVMQGD0/EkX0Fg82j+6LUWszFFmqTs3DHnyM4M+En+TpiLcSuIzL5CKGVuYQ2uxptxhVKiOBODmLP9mO06H8uTSGFrIbl7CksJ09gvpaOKacQo8Gme00dhRSy4iKFrNhIISsuUsh2LZ6k8/W3eSr9f5SvBo18pbEobW6GbI1N465F47hRY32Vh2ll9TL3L3ktd9v+R66LHgUqXxarzC13s6Va46xRI0d21nYapJAVGylkxUZGpr2ju5D983tjKK8y6V3GU6ctn/DW4hz8J+ZERWzo4Bhq7yVjsLp1X4xaQskx4Dx9F239aUJTtjUUsCPWEpmwk+CqOwS22YjEhxt3wR4NUZcRwFLeNd7oSiGrYZ84iNpP/7MBjoFvYh/bF9ucMVhXzEPZug7LkQOYUy5iunsfU2k1BqXz/z23hBSy4iKFrNhIISsuUsh2XtpavjbFs2zqdV/ROGX0EFftYWa5m4FFbl7LV/nXHFezsvbfcly8nq/yRbGbWWVuNlZrnDJ5eKDof81FQgpZsZFCVmxkZNo7ugvZo2fSGD7lO04mX+deTjHZBWUN6Oxpiye6Ul6M98ySqIgN7xtB3Z0TGBWX7otQkygerPcqqTt2E++q44THb2okYMMT4vGvvoZvl5HgTn+jLtjg7gjqhSD2nM7bBdscUshqKLvisS6djX1GLPaRnzSSs81hH/4etqkxWBdNx7p+Ocq+nVjOnMJ8/QamvCKMplrdz685pJAVFylkxUYKWXGRQrZz0BHytSmeRcg2R7aiccakEV+tMafMzZBiN28UqPx7C7L2X7JVXsmv78SdXqayvtrDCWN9p25NJ3icniekkBUbKWTFRkamvaO7kO3WfXCzdPY8yxPcUlWBlvz9TyJ2bwyujESMls4lo4xmFdutUlyJ6fiWHSIyJq6RgA1N2Yp3fQrawSp8B71EtjTcjCsSD97jIZw3A5iruv7MLClkH3NdKi2YsnKxpF1BOXEEJWEzyuqFWOdPwD7hCxxD3m61tHUMegvb+P7Yvh6HddUClO1xKMcSMadewnQvC2O5EYNVnzEeUsiKixSyYiOFrLhIIdvx6CVfm6K9hGxz5Clekk0aW2s05ld4iClReauwfiZtc7L2n7NV/pyv0rdIZXKZmzVVHo4YNG4p9ddU78e1qyGFrNhIISs2MjLtHd2FrOrW8PkDj6Wz52me2OYaA+5LcbBrICT0J7J7MOrVBEymzjGD01hTh/1aAeruVPzfHiAyan0jARucmYA7Phn3iTLcpz0E94Qbd8HuDaOmBLHl+jE+Zx+vkkL2Ga6duQ5jYSmmjJtYzp1GOZCAsnEl1iWzsE0fgWPkRzj6dW+dtO3XHcfIj7BNH4F1ySyUjStRDiRgOXcaU8ZNjIWlGM11bX4OUsiKixSyYiOFrLhIIdu+dCb52hR6CNnmKLZqXDRr7KzxsLDSw4gSlT4Fbn6Z27ys/YdslT/mqXxcpDKh1M3KKg+HDBo3LBqVneC8OiNSyIqNFLJiIyPT3tFdyAKEQmFuZuZz9Exa9DbV3TWeAE/yhDaZFNQr24nsGlQvYnd9gTs1HpPRoutCY6p04EjNwb39AoG5uxvJV2LXEpi3F3VHCs4LxdSlaXiPhYjE07ALdksELSmE89bz0QXbHFLItjNWD8ZyI6Z7WZhTL6EcS0TZHod11QJsX4/DNr4/jkFvtb7bdsjb2Cd8gXX+BJTVC+s7d08cwZJ2BVNWLsbKJ3sOSiErLlLIio0UsuIihWzb0dnla1N0NiHbHKU2jctmjT01HhZXehhV4uavhSq/yWte1v4sW+WlXJUPi1S+KnXzXaWH/QaNa2aNCoE3GZNCVmykkBUbGZn2ju5Cttqo0KvfVF7qNTw6oqDGZOWP74wiK69U3+JakdY8kY1mB670fUT2fPnDeIIBeC6uxVxdrcvCYik0U3v+Pp5NZwnO2Nl4A65RG/AvOohr72Uc6cXY73lwJwcJ7o406oIN7AvjuhTAlu977rpgm31MpZDtFBhNtZjyijBfv4HlzCmUfTtRNnyHdfF0bFOHYh/+PrV9X21lt+3r2Ed9gm3mSKzL5qBs/h7l0B4sF85hvnUHY1EFBouKwSaFrMhIISs2UsiKixSyT0dXlK9N0ZWEbHNUWDWumjX2GTwsr/QwttTNB0X1IvZnzcjav89WeTFP5d1CldElbpZUauyt8XDFXC+A9T6v9kQKWbGRQlZsZGTaO7oL2cHjl7Bm62FCoXCDmbF7jiQzaNxi/QprZZp7AhsVJ3U3jxLeNyw6J9Z7bjmWyvKOW0isGkpODc6Td9DWniQ0aUtjATs2Dt/yI7gOX8d6pwyl1EPdjQC+oyEim2kgYMNb67tga+8EMNd0/RemT4sUsl0IxY2ptBrT3fuYUy5iOXIAZes6rCvmYZszBvvYvjgGvtn6btuYd3BOGULtwiko65ag7NmK5dRxzFevYcrOx1ht1f+cJe2GFLJiI4WsuEgh2zLPi3xtiudFyDZHpVXjukUj0aCxssrDhFI3HxWq/CGvftRBc921v8qtH5kwokRlYaWHnTUeLprrRyvofV7PihSyYiOFrNjIyLR3dBeyL/YcFp0V+7CQDQRD/P7tWJ2qan2aeuIaFRXn3dOEDoyKiljfqQUoZQXtvmgYLW6smeW4jmTgXXGU8LiNjQRseEI82pok6pJuoWRVYzR7sGf5cScHCe1qogt2fxhXagBroQ/Dc/DCqk2usxSyzx1Ggw1TTiHma+lYTp1A2bMN67ql2L6dgn3yl9iHvkvtZ39pnbQd0AP7mL7Y5ozGuuJrLFvXYjm8H8vFZMx3MjGVVGFQVN3PWfLkSCErNlLIiosUsg15nuVrU4ggZJujyqZxy6Jx2KCxusrDpFI3nxWpvJyv8k8tyNqf59RvRhZTojK/wsPWGo1kU/2mZXqfV2uQQlZspJAVG5HjcLro1n0wHs3b4PajZ9KImbisQ2oYO2s1SefTO+R36RXdhWz3j8ZjtTuBhkK2qKyaP783RqeqWp8GT1qrh9oHlwgljouK2MDxmViLH7TbImE0ubDdKMa1Pw3fkkNERm9oJGBD07fjiTuN8+w9LPkmDDYNpdRH3fUgviNNdMFui6CdClJ7N4DJ0DVeLHU0UsgKiqJiKq7EnZOFM/UCyqG9KPGrsS6fi23WaOyjP8PR/43Wddv2fQX78PewTY3Bumga1g3LUfZux3I6CXP6dUy5RRiNDv3PWdIAKWTFRgpZcRFZyIomX5tCdCHbHDU2jbsWjeNGjfVVHqaVqfQrdvOXvMf/nfzIv+e4eKNAZUixmzllbuKrNc6YNLI70Rg0KWTFRgpZsRE5Ush2THQXskvX7+OLrxZx404u3boPJr+4khPnr9Gr31QWrErQu7wW8+OT1ZFzjcCRyT+J2KNTsOdeb/NFwVTtxJ6Wj5pwCf83+2DkukYCNjBnF+6tyThSsjGX2TDYNIwmL477ftzngoR2Nu6C9R8M40oLYi2SXbCtQQpZsWlphqyxUsH8IA9zWhqWpKMou7agrFmM7ZtJ2CcOwvFln1aPSLAP6ol9XD9sX3+FddV8lG3rsRw9iPlSCqbMBxjLDBisHt2viShIISs2UsiKiyhCVsrXppFC9um5r2icMnqIq/Yws9zNwCI3r+Wr/FuOq1lZ+685Ll7LVxlY5GZmuZu4ag+njB7ud7CslUJWbKSQFRuR0xohazBZ6T/6W3r1m8rMxfFMnLeeo2fSALiXU8xHQ+fSq99U3h00k4zMPADyiyv5MGYO38cfYujk5fQZOJ2rN7OA+r2kPh+1gLc+n8LEeesZMXVFVMg+7nhdPboLWa/Pz7zvdvCbnsPo1n0w3boP5ne9Y1mx8WB0lEFnjq3wHoFj06MiNpg4ntoHqW22CJjLbDhSsnFvSSY4Z1cj+crIdfgX7EfdlYo9LR9TtTP6s0qJD9fVIL5DYdhEwy7Y7RE8Z4I47vkxGeULzCdFClmxaYtNvYxmF8bCMsw3b2E5fxbl4G6UTd9jXTob+4xYHCM/xvH5a60bkfD5q9hjP8Q2fRjWxTNQ4lag7E/AcvYU5hsZmPJLMJqdbXLuoiOFrNhIISsuz6OQlfK19Ugh2z5kK/UdsfHVGnPK3HxZrNKjQOU/cpuXtf+SrfKXvPpO3GllKuurPBw31nfq1rRxjVLIikeOpZYbZgvnjTWU+VxSyApMhyYAJOjA/qbLaY2QHT93HSs2HgTg6s0sXnhzaFSgvj9kNieTrwOQdD6dPgOnA/WfhP/Fa0NIv50NwLnUW/QbtQCAifM2RI9XUFLVquN19eguZH9MIBCkxmSNji/oMvlBxIYOjMKZeQaD9dnmQlryTTjP3sMTd5rQtO2NN+AavQHfkkO49l/FllGC0eSK/qzJ6MVxz4/nbJDQ9ke6YDeB/1AY17UgSol8M/msSCErNm0hZFuLscKE6X4OlsuXUY4fRtmxEev332KdNx7b+AE4hvRq/YZkQ3phGz8A67zxWL//FmXHRpTjh7Fcvozpfg7GCpPu17azI4Ws2EghKy5dXchK+fpsSCHb8RRavVwwaWyr8fBNhYehJSq9ClS65TQ/BuGfsutn235WpDKp1M3qqvq/41uW+lm4T1qHFLJdh2qbh1zFyQ2LhWRTDUcMZWyvKmBNRTbflt9lWmkGI4uu0L/gAu/mneG1nOP8NvsQ/+PBHv7bvR3873fj+V/uxDVgavV1KWQFpkPjp9GnmDuEbU2X0xoh+5f3x5JfXBm97/0hs6MCNRAIEg5HALBYa/n1GzFAvZD9Q5+R0Z/JL66kx6cTAXjlg6/IK6qI3vf5qAUtHq+rp1MI2ZuZ+SxZt5eJ8zYw+Zs4lsftJzO7SO+yWhXv2aXU3TqG0Vr35E9yqwflQRV1SbfQ1iQRnhDfeAOucRvxrjxG3dEMrJkVGC3uBsewFtV3wfoTG3fBhnZG8JwN4rjvx2SSLyLbEilkxaYjhWxrMJqdmPJLMN/IwHL2FMr+BJS4FVgXz8A2fRj22A9xfP5qK7ttX8Mx8mPsM2KxLp2Nsul7lIO7sZw/i/nmLYyFZRjNLt3PWS+kkBUbKWTFpSsJWSlf2x4pZDsXxVaNFLNGQo2HhRUeYktU3i5w86vc5mXtP2Sr/CFP5aNClQmlblZWeUg0aFy3aFQ+ZmSbFLIdx8OdqUcMZWyrKmD1DzJ1aukNYouu0K/gAn/NO0P33GP8Ifsw//ZgD//vvR38bRMy9Wn5vzK38A/3E/j5g/2sMt+XQlZgOjweHXjMaTrr3HTrPhiX6mlwe+LJVIZN/g6AX78Rg0mxR+97eMTAudRbDBy7kL6x8/lk+Dx++foQoF7Ivvbx+OjPPPz1r9+IocZkjd4XO21li8fr6tFdyMbvOcmLPYcxfMp3zF66lRmL4vniq0X86o0v2XHwrN7ltZgneUIbLSq2O6W4Dl/Ht/wIkbFxjTfgmrwFbe1JnKfuoOTUNJrnajJ6qc0M4DkdJLytYRdsZDP4DoeoSw+ilMk3jO2JFLJi09mEbKuwejCWGTBlPsB8KQXL0YMo29ZjXTUf29dfYR/XD/ugnq3vtv2yD/aJg7B9MwllzWKUXVuwJB3FnJaG+UEexkpF/3NuB6SQFRspZMWlswpZKV87Bilkuw6lNo0rZo29NR6WVGqMLnHzbqHKi3kqf9+MrP1ZtspLuSofFKmMLXWzvNLDPoOHOw4ftV4pZJujqc7UHVWFz9SZ+jT8zUMytduD/fwx+wg9c5P4KP8cQwov8VXRVWaX3mJZ+T3iKnPZU13MCWMFqSYjdyxWCq2NGw7kDFmxETmhUJjf9BxGbmF5g9sXrdnD7KVbAXj53dEUl9VE7/swZg5J59OxOep4secwSioMABjNtlYJ2Uc7bj8ZPq/F43X16C5kX353dPTCPpy0jCz+9M6oDqsjLSOLX7w2hBfeHBplz5ELAFQZLAwev4Q/vTOKj4bO5W7WT927zT2BjYY67DeKcO29jH/RQSKjNjQSsMEZO/FsOktt8gMsRebGx7FqWAt9uC4H8B8IN2oxDyVEcJ8PYs/yY7Tov2iJghSyYtMlhWwrMRodmHKLMKdfx3I6CWXvdqwblmNdNA3b1Bjsw9+jtu8rrZO2/d/APvozbLNGY10+FyV+NcqhvViSz2O+dRdTcSUGy7ONeelopJAVGylkxaUzCFkpX/VDCtnngwqrxjWzxn6DxneVHr4qdfNhUb2I/VkzsvbvslV+k6fy10KVUSVuFld62FPj4bK5XgDrfV7PwuNk6tqKHN1k6s/bSKa2BVLIio3oWbRmD198tYhqo4LfH+BC2h1+/3YsOQXlAMROW8H67UcBuH47h9/0HEbS+XSKyqr583tj8PsDhMMRVm1OpFv3wXh9/maF7NhZq6MzZB/klvBCj5gWj9fVo7uQfXvAtCZv9/sD/LEDhezpixlM+Hpdk/cNGreYnYnnCIXCpGVk0f2j8QSCIaChkDNV1uK4nIu6I4XAvL0Q+8gGXLFrCXy9B/f2izhSczBVOpp84psMXmrvBNBOhprugj0aou5GAEu5fFOoF1LIis3zLGRbhaJiKqnCfCcTy8VkLIf3Y9m6FuuKr7HNGY19TF8cA3q0vts25h3skwZjWzAZZd0SlD1bsZw6jvnqNUzZ+Rirrfqf8w9IISs2UsiKS0cLWSlfOxdSyD7/VNo0blg0Dhk0VlZ5mFDq5uMilT/lq/xjC7L2l7kqfQrcjChRWVjpYWeNh4tmjSJr+/7NdGaZ+mYnkKltgRSyYiN6fP4AKzcd5PVPJvBSr+H0jZ3P1ZtZ0fuLyqr54MvZvD1gGvNX7mTUjFXRjbdmLIqnx2eT6Bs7n+u3cxgwZiGfjpjXrJAtrzLxyfB5dP9oPOPnrmPcnLUcO3u12eN19eguZOcs28bl6/cb3X7geApL1u3tsDoOnrjEnGWNJxrbHHX8rncswVAoetvHw77mZmY+AI6UbDybzxGcndCo+5URa/EvOoi6OxV7eiHGmsfMmVU0rAU+XKkBAvsbd8EGd0VwXwhiz5FdsJ0FKWTFRngh20qM1VZM2fmYr17Dcuo4yp6tKOuWYFswGfukwThi3mm9tB3QA/uYvtjmjMa64mssW9fWi+CLyZjvZGIqqcKgtH+3rRSyYiOFrLi0p5CV8rXzI4WsuNSqflRfiFuKxhGDxpoqD5PL3PQtUvlzvso/tyBrf56j8lahSkyJyvwKD1trNJJNGtnK42XqwjL9ZeqH+We7vExtC6SQFRuZlvPjRltQ38jYlNuTeXx0F7LTvt3EC28O5b0hsxgzczWx01bQu/9Ufv92LOPnrmtAe2bL3lN8OmIe7w+ZzasfjmP20q24PV7uZhXx/pDZDb530vwNHExKrf/iIfkaGb0B3/LDqInp2G+XYrJrj0Wp8VJ3O4D3ZIjI1ke6YOPBdzyE62YApcrb7HEk+mB21P8HWu86JPrg8YVwuv361uHwPh9Y3ZhLKlHu3EW5eB7r4b1Y41djXT4H+6yROEZ/gqPf660Tt31fwT78PexTY7AtmlY/amHfdpSzSVhuXMeSX4TZXPtM9VrrfARDEf2vm0QX/MEwDpdf9zr04zlae54Qh8uPPxh+5uMYHF6uKl7iDRoTytz0Kmxevg4odrOoysNRk0ahzaf7dRCVYCiCtU5ef93Q8fWW012/qdfDtxnsHvKtTm5aLFww17C1ppKvyyuIKangnYIK/pBn4D9yFH6W5WxW1v63LBv/94Ny/uv9bP7Pe9f523vn+V8zD/E3d3c8+czUrIc/5n+WIYUpfFV8lbllt1hecY9NVbnsrS7mpLGCy2YjmYqVYptL99fUnZ1IBMydoA6JPsg0n2XhsIDVAAAgAElEQVTr9zF1wUYikQgV1Wb+0Gckiq1W77K6VHQXst9+v4vFa/e0ivZM8pXbfB9/iFqnir3WRcykZSxas5v029n0jZ3f4HtnL91KQuI5AMJ7LxE5n0m41EQoHHk8wQjhaginR4gcoFEXbGQ/hK9FCFdCKNjMcSSdhkgE3WuQ6PXYRwjr+Pt9gTDhcEQoQnVOghXFBDJv4LuQhHZwG+6NS3AtmkTd5ME4Y/q0utu2dvBb1E0cgGvBeNzrv0XbtwnvuaP4b10lWJJPyG4jHHr8NQZ0vx4SfYhEIBzRvw69EHHtiRL54fF/gp8JhiPkeUMccASZZfDy1xIP/z2naTHz+wI3MRUaqy1+LrlC2AOd4JwlUeS6ry++QKjNXkMFwmGUgJcSr5O7HoVLrhqOOcrZaS1krTmLbw13mFSVztDyS3xaco63CpP4U/4R/mfOPv7+wU7+j8wn60z9m7s7+N8yD/O395L5L/eu818fZPP/PKjgv2XZm5W1/5jj5Fd5Nl4vtNC/3Mx0g5nNVguXVDvlPhe1Qb/ur4dFQL7fExuZ5mO1O4mZuIzXP5lA7/5TOXH+mt4ldbnoLmQ7a27fL6B3/2lkZhfx7uBZDe6bOG89h05eBpr/yLq50ovzZgDv8RCReBp1wXpPhHDeCmCukh+B6mrIkQViI0cWdE6M5jqMhaWYMm5iOXca5UACysaVWJfMwjZ9BI6RH+Ho1711IxI+fxV77IfYpg/DungGStwKlP0J2M6fxpediSm/BKPZqfs5SzoWObJAXFoaWSDHDjzfyJEFnYPmZqYuLLvL9NIMRun8Mf/BhSmMLa7/mP/S8ntsqMx57Mf8c6waZ40aW6o15pa7+bJYpUeByn/kupqVtf9ftsp/5qv0K3YztUxlXZWHY0aNOxaNmk7wOD1PyJEFYiMj097pFEL22NmrDBq3mB6fTgTA6/OzYefxBnNb2zsl5TVYrD+1V1+/ncO7g2fhcLr47VvD0bw/7eDWu/9UMrOLgIZCzqho2HL8qBeCBPc0ngUb2BtGvRTAlufHqOi/wEieHilkxUYK2S6M1YOx3IjpXhbm1EsoxxJRtsdhXbUA29fjsI3vj2PQW62fbTukF7bxA7DOG4/1+29RdmxEOX4Yy+XLmO7nYKww6X/OkjZDCllxeVjISvkqHlLIPjtdVaYmmktIcRg6fGZqodXLBZPGthoP31R4GFqi0qtApdtjuux/5J+yVV7OV/m0SGVSqZvvqzwcNmrctGhUdYK/g66GFLJiIyPT3tFdyO44cJYen04kfs9JunUfDNS3Pn8YM4dVmxM7rI4VGw8SO20FHs2L6tYYPuU7Vm46CEDMxGVsTDhBKBTm5IXr9Ow7mVAoDIClwoszI4D3WIjIZhoI2PDWCFpSiNrbAcw18kXc84QUsmIjhezzj9FUiymvCPP1G1jOnELZtxNlw3fYF0+nbsZw7MPfp7bvq63stn0Nx8iPsc+Ixbp0Nsqm71EO7sZy/izmm7cwFpZhND/fm2I8L0ghKx4/ytdtJi8zqr1SvgqK6EK2tTJ1QMHFTiVTd1cXcdxQwSXj08vUWrV+hqzej8HDlFg1UswaCTUeFlZ4iC1RebvAza9ym5e1/5Ct8vs8lQ8LVcaXullR5eGgQSPdrFFp1f+8OiNSyIqNjEx7R3ch++qH4ygprwGIClmAKoOFHp9N6rA6PJqP6Ys28/K7o3n1w3HM+25HtCu2xmRl0LjF/PGdUXwyfB45BeU//eCjXbD7w7hSA1gLfBjkf9ieW6SQFRspZMXFUlu/uYvBpmFQ3JhKqzHdvY855SKWIwdQtq7DumIetjljsI/ti2Pgm63vtv2yD/aJg7B9MwllzWKUXVuwJB3FnJaG+UEexkpF9/MXHSlkn29k56vkcXRlIfskMvW9vLOdUqbeNlspUOp0uX6dUcg2R6lN44pZY2+NhyWVGqNL3LxbqPJinsrfNyNr//6Hde39QpUxpW6WVXrYW+PhqlmjvBOcl15IISs2MjLtHd2F7Eu9hkeH5T8sZDWvn9/0HKZTVa1P4EAY7VSI2rsBTIau+UJN8uRIISs2UsiKSwMh20qMBhum3CLM6dexnE5C2bsd64blWBdNwzY1Bvvw96jt+0rrpG3/N7CP/gzbrNFYl89FiV+NcmgvluTzmG/dxVRciUFRdb9OzytSyD4/PKl8/aLEzSqzT8pXQdFLyNbYtE4jU/9L5hZ+1sVkalvQ1YRsc1RYNa6ZNfYbNL6r9PBVqZsPi1ReylX5WTOy9u+yVV7IVXmn0M3IEjeLKzzsrvGQaq4XwHqfV3sihazYyMi0d3QXsn1j53Pq4g3gJyEbiUSISzjOx8O+1rGy1kXvRUKiD1LIio0UsuLyNEK2VSgqppIqzHcysVxMxnJ4P5ata7Gu+BrbnNHYx/TFMaBH67ptP/sL9qHvYp/8JbZvp2BdtxRlzzYsp05gvpaOKacQo8Gm+7Xsikgh2zVpi87Xljb1kjzfPI2Q7Ywy9X8+2CeUTG0Lnich2xyVNo0bFo1DBo2VVR4mlLr5uEjlT3ku/rGFubW/yK0fmTC8ROXbSg87ajxcNGkUWbv+/7ySQlZsZGTaO7oL2btZhbzUazgDxy6kW/fBjJ29hrc+n8Lveo8gIzNP7/JajN6LhEQfpJAVGylkxaXdhGwrMVZbMWXnY756Dcup4yh7tqKsW4JtwWTskwbjiHmn9SMSBr6JfWxfbHPGYF0xD2XrOixHDmBOuYjp7n1MpdUYFLfu17wzIYVs56e9xg5IISsWj8rUlLoadtUUNStTX+oAmfqH7MP0kDK1QxFFyDZHtU3jtqJx1KCxtsrDlDI3nxe5+XO+yj+30Fn78xyVngUqMSUq8yo8bK3WOG/SyO0iG1xLISs2MjLtHd2FLNTPi41LOM7MxfHMX7mTHQfOYq916V1Wq6L3IiHRBylkxUYKWXHRW8i2CouKsagC8607WC6cQzm0B2Xz91iXzcE2cyT2UZ/g6Pd668Rt31exD38f29ShWBdPR9nwHcq+nVjOnMJ8/QamvCKMplr9z7mDkEK2c9GRM1+lkO06PE1nqpSpkschhWzz1Ng0Mi0aSUaNDdUeppe56V/s5tX8x6/HP/I/cly8UaAyuNjN7DI3m6s1Tps8ZHUiWSuFrNiInPziSn75+pAGdOs+mK/mrGmz4/fqN7XJ+0ZOX0XS+fQ2+T2dPZ1CyAIEAkGqjYreZTxx9F4kJPoghazYSCErLl1CyLYSY6UFU1YulrQrKCeOoCRsRlm9EOv8CdgnfIFjyNut77Yd9Ba28f2xfT0O66oFKNvjUI4lYk69hOleFsZyIwarR/dzflakkNUPvTfckkK2Y3hamfrvD/a2q0z9z/yjvJlXL1MHFaYwpjhNylRBkEL22chSNE6ZPGyq1phV5mZQsZs38lX+LcfVrKz97zkq3fNVBhS5mVHuZkO1h5NGD5mW+nWio+qXQlZsZH6K0+Wmx6cT2+xT7M0J2TrVg88faJPf09mju5D9/9l7z/A4zvNeP3Gc2CeJz8n/SpwcO45jOfY/sWRbLooV25KoYlnN6rJoNVKi2CUSJMFOgl0EC8QqsIK99wISIEGwACwAQfS+ABbAFmwF2GZ35p1luc+HsWjRAAGwLAbAvL/ruj9wBe2+MwBezN77zPOoms74+JX8+Mk+N3rINl24zPvD4gk2XTR3ce2I2ZuExBykkLU2Ushal+4kZNuDx3cJj82ON/ss/kMHCWxdR2DppwTjx9M4pj/nB77G+bd6tE/avtWD8wNfo3FMf4Lx4wks/ZTA1nX4Dx3Em30Wj82Ox9e5JYYUsh2D2fK1JaSQbZu7kan/t2Bth1Smfi5Tx9vPEn8bMtWsoV4S85FCNnqUBVUOeVSSXCqT6kJ8UK3wm0qF/yprXdZ+p0ThVxUKf6gKMbI2xCJnmN0NRlsF1z1eoxSy1kbmTxk++TPmLt16498FpdW89mEcz7w1ihd7jbshaiuqHbzaZyJzl26l19CZvNhrHFl5ZQyduIhXPpjAjAXrb3zds2+PYvZnm3nyjeE8+/aoG8/xxQrZW71Od4npQnbCrCT6j0qgsKzmhpANq4IxnywnduoScxfXjpi9SUjMQQpZayOFrHWxmpBtF8EwnjoP3oJifMePEdizncDqJQTnTaNx0lAaY97mfK/ftr/a9v3naBr2HsEpwwgsmGFU7u7bhT8zA29xGR6H37RjlUL23tMZ5WtLWFnIpnicTK/LY2BVBm9XHuHF8pRmA6j+1z2SqX+Ru4Sv5a3gmwXr+M+izfx38U6eLNvHKxWpvGc7Skz1KcbZzzKzLp/PHKWsd1Wxp6GOo94GcqJYmSqFrHWRQtYcbEGNI16V1e4w0xxh+tYoPFtpDBBrTdb+W6kxiOyNKoXh9hDzHGF2elSy/cbgsttdhxSy1qZDc03leuGHHU/JkDaXtjslk1f7TCQSuXLjsZffn0By2hkA9h8+zfPvjgGgqtbFA4+/T35JFQCjpi3lxd7j0fUIQo/w0LP9CTZdpKLawY+e/IDdKZkA7Ek9ybNvjwZuFrK3ep3uEtOF7C+eH8j5i0a/2M+FLBhlyo+8/LFJq2p/zN4kJOYghay1kULWukghe+d4vBfwllfhO5OFP+UAgc1rCSTOJThzDI2jPqSp38tc6PlYO6ttn6Bp0Bs0jhtIcPZEAsvnE9ixEf+RQ/hycvFU1dPgV+75MUghe3d0FfnaElYRsuWBi6x12RhSdZKHS3bx1dzlUZOp61xV7O4AmXovkELWukgh2/moCaoc86msbwjzSX2YgTUhnreF+HEbsvZbJQoPlSu8ZlMYag+R4AyztUHltE/FEWz5taSQtTYdmqthrp97rePJf7fVZTkb/Dzy8sfU1LlvejwSucK1a9cB8Acv8OMn+wCGkP3li4NvfN3CpJ1Mnbfuxr+ffXsU5VX1VFQ7+Pkz/W48RyRyhft79Ob8xcs3CdlbvU53ielC9pe/G3yjP8QXhWzThcv8/Jl+Jq2q/TF7k5CYgxSy1kYKWesihWyUCYTw2l148wrxHU3Hv2srgaTFBBMm0zjxI5o+7sn5d3/T/mrbPi/QNKI3jdNiCSyOJ7AxCf+BvfhOnsJbUoHHFbyt9Ukh2366snxtie4qZI97vSTUF9GzIo3vF21sUbL+a+E6Xi5PbSZT9zTUkd4FZOq9QApZ6yKFbNeittH427PRHWaWQ2WwPcRLNoWflit8sxVZ+80S42tesikMtoeY5TCeo1y7Rl0nOC6JOXR4Iuc7nisXbrmcq1ev8dagaWzcldbsvx06nsO7H8+g54ApvNFvMj984n3AELJPvTnixtd9tno3cxK33Pj38++OoaSylopqB0/9fvhNz/nzZ/pR7/LdJGRv9TrdJaYL2Y/HL2Dmoo1oQr8hZD2+RgaPm8/AMfPMXVw7YvYmITEHKWStjRSy1kUK2c6Bp6ERb6kN36nT+A/sI7BxFcHFs2icPpKm2A9o+vBFLrz5SPuk7TtP0fRRTxonDiaYMAl/0iL8O7fgT0/Dl5uPt8ZJQ8CotpVCtmW6m3xtie4gZGuCl9nhrmWMPZsny/bxf/KTmsnXL+ct46cl2+lnO8EKZzmF/ibT190ZkELWukgh231wBI1q2K0NKgnOMEPtIV6zGVWz32pF1n6jROHHZQrP20IMrAnxSX2Y9Q1hjvmMal2zj0sSPayexDV76DdyLtevX7/p8cbzl/jp032pqW8ADH93J0L2oWcH3HjuzytkL14K3RCyrb1Od4npQtbjb+J37429MdTr4RcGcX+P3vQcOJUGb9Ds5bUZszcJiTlIIWttpJC1LlLIdiECCt5qB76cPPxphwns2ERgxQKCc+JoHD+YpsFvcv7tJ9tXbdvzUZr6vcTFsR9yfuZogolzCGxajf/gfnynz+Atq8LjOW/+MXcAVpCvLdEVhexZX4BERykf2I7xo+KtfDl3aTMB+4/5q3imPJkJ9hz2NNRR13jvW310B6SQtS5SyFoDR6PRZ3anR2WeI8xwe4g3qhQesYX4t9LWZe0DZUZ/2741CtMcYVa7wxzxGn1wzT4uyd1h5RSW1fDYq0MJNDavoK2qdfGrlz5C1yNcu3adecu3c3+P3mhCvy0h+8Dj73PoeA4A+w6f4sXe44E/9ZBt7XW6S0wXsmCUQucW2didkknK0WxKK+vMXlK7Y/YmITEHKWStjRSy1kUK2e6HxxHAV1SOLzMT//7dBNavJLBwJo1TR9A0vBfnP3i+3S0Smno9TdPQt2icNITgvCkEVn2Gf/c2fMeO4s0vwlPbQEMwbPoxt5fbka8/7UbytSU6u5B1BEMcbHAytS6XF8oP8i8Fa5rJ1y/lLuE/izbzTmU6C+pLOOXzmb7uroIUstZFCllrc/06uBtVzgVUdjeoLHKGGVkb4g9VIX5VofCdNipr/6vsMr+pVPigWmFSXYgkl8ohj0qZrKztElg54+NXcn+P3vzwifdv4hfPDwRg7CcreOrNEfQcMIUz50p556MZ/L7/5HYL2eKKWl5+fwJzErfw/LtjeP7dMeQVG4PAvtiy4Fav011iupDduOtIi49fuKgwbNLiDl7N7cfsTUJiDlLIWhspZK2LFLLWxOO7jMdWi1ZSyPn0wwS2bSCwbD7BWRNoGjuA8wNf5/wfHm9fi4Q/PEbTgFdpHNOX4MyxBJYkENiyDn/qAXxZ2XgravD4Lnb4Mf65fP2trf3ytbybydeW6GxCttR/gTVOG4OrM3m4ZBdfaWH41t/nreDR0j0Mrz7NJndNt+/zGk2kkLUuUsham7aGerkbVfL9Kvs9KomuMGNqQ7xdHeKxCoXvtlFZ+73SyzxZodCrOsT42hDLXCoHvGGKA+Yft8RARibaMV3IPv56DHMSt9zUlyIzu4jHXh3Ke0M+MXFl7YvZm4TEHKSQtTZSyFoXKWStTVs9ZD31XryFpfhPnCCwdyeBNUsJzp9OcHIMjTHvcP79Z9o/kOz9Z2iMeYfg5BiC86cTWLOUwN6d+E+cwFtYiqfee8fHIeXr7WOmkHU3qhzzeJhTX8jvKw9zX2HLw7e+XbCB1yoOEV9XwBFvA67GrlON3dmRQta6SCFrbdoSsm1RHDAk6zKXyvjaEL2qQzxZYcjY1mTtfSUKj1UYf3/H1IZIdIXZ7zHkr7sTnBerICMT7ZguZP3BC7zRbzLDJi3mwkWFKZ+u5SdP92XN1lSuXbve9hOYHLM3CYk5SCFrbaSQtS5SyFqbezHUy+O7iLeiBl9WNv7UAwS2rCOwJIHgzLE0julL04BXOf+Hx9pZbfs45we+TtPYAQRnTSCwbD6BbRvwH07FdzYHj60Wt++SlK/3gI4UslXBS2xz2xlpz+Lx0r18LX9lM/n6N7nL+HnJDgZUZbDKWUlRwBo9jM1CClnrIoWstblbIdsaZUGjfUGSS2VSXYgPqhV+U2m0OWhN1v57icKvKhT+UBViZG2IRc4wuxuMtgquTnDOuhMyMtGO6UIWQNV0hk1azINP9eG1D+OoqXObvaR2x+xNQmIOUshaGylkrYsUstbmXgjZdhEM46ltwJtfhO/YUfy7txFY9RnBeVNonDSEpqFv0dTr6eY9bN98lJyP3mHNjCmMXLWRZ1PPcl9esGX5mh/g3TwXn5S42GVvlPK1DaIpZLP8fj5zlNLbdpQHirbwVy0M3/p6/mqeLT9AXO059nnq5fCtDkYKWesihay1iaaQbQ1bUOOIV2W1O8w0R5i+NcbgsAfKWm+D8G+lCv9Tfpk3qhSG20PMc4TZ6VHJ8huDy8w+n10NGZloxxQhW1XraobN7mLIxIW89mEcFdWOG4939pi9SUjMQQpZayOFrHWRQtbadJiQbQeuRpVM1wVWlLkZnlfHM7lu7iu80OIbtJ+drOG97anMXriIA2OHUtfruebVtm89QdOgN2gcN5Dg7IkEls8nsGMj/iOH8OXk4qmqp8FvXQl4r4RsfTDE/oZ6JtXm8Fz5Ab6ev7rF4Vv3F22hl+0oix2lZPn8ph+/1ZFC1rpIIWttzBKyrWFvVDnuU9ngDjOzPszAmhAv2EI82Ias/VaJws/LFF6tUhhiDzHXEWZLg8opn0q9HDLWIjIy0Y4pQvb+Hr3bTWeP2ZuExBykkLU2UshaFylkrY1ZQvauer76Q3hrnPhy8/Gnp+HfuQV/0iKCCZNonDiYpo96cv6dp9rf27bPCzSN6E3jtFgCi+MJbEzCf2AvvpOn8JZU4HEFTf8+RYM7FbLFgfOsclYysCqDh4p38je5y5oJ2K/lr+Tx0r2MtGex1WWnKmje8C1bvca5Eo1jZwT7Dgs27NRIXCOYtUiQsESweqvGvjTByXOCshrrCEopZK2LFLLWpjMK2daobVQ56VPZ5A4z2xHmI3uIl20KPytX+GYrsvabf7x+eNGmMLgmRLzDeI4MnyGAzT4us5CRiXZMEbKXlHC76ewxe5OQmIMUstZGClnrIoWstekIIWvWwC2PK4i3pALfyVP4D+wlsDGJwOJ4GqfF0jSiN+f7vNB+afvOUzR91JPGiYMJJkzCn7TIEMHpafhy8/HWOGkIdK1q2/YIWVdjmHRvA7PqCni94hD/XrihxeFb3yncwBuVh5hdV8BRb0OHDGixOTRyyzROZAuSjwg27dFZulYwZ7Fg0iydmPE6Hw6N3BFjphrCNmmTYHeK4ES2oLiqe8lLKWStixSy1qarCdnWcARVTvtUtjWoJDjDxNhDvGpT+O9yo3q2teraH5UpPFcZYkCNwoz6MOvcYY76VGq6eWWtjEy00yl6yIIhaWvqG6h1eFBCXeeH3+xNQmIOUshaGylkrYsUstbmXgtZs+TrHeNX8FTV48vJxX/kEIEdGwksn09w9kQaxw2kadAbnH/rifaJ256P0tTvJRpH9SH4yWiCiXMIbFqN/+B+fKfP4C2rwuPpPIOqWhKytuBlNrtqGFF9msfK9vC1vBXN5OtXcpfzi5KdDK7KYLWzklL/hXu6rmqnRn65xomzguSjgi17dZavFyQkCibP1hk+8fZE65AxOuNn6MQvFCSuFqzfrrFh559Yv0NjUZJg6hydmHFtP/fIOJ2ZCwRL1wm2JwvSTwsKyrue2JRC1rpIIWttupOQbQ1no8pZv8pOj8p8Z5gR9hC/r1L4ZYXRl7Y1WXt/qcIzlQof1ihMrQ+zyh3miNfog2v2cd0tMjLRjulC1u0N0mvozJvaFDzw+Pt8GDsHX+C82ctrM2ZvEhJzkELW2kgha12kkLU2dyNku5x8vQs8Dj/e4jL8mRkE9u0isG45gQUzCE4ZRtOw9zj/fvMetreiqdfTNA19i8ZJQwjOm0Jg1Wf4d2/Dd+wo3vwiPLUNNATDUT+mxkuC8tAFFtaX8G5lOv9VtJkvtVD9+i8Fa3ih/CBTas9xoMGBIxi6o9erdWsUVhqtAVKOCbbt01mxQfDpEkOGjozT6T+s/aL14zE646brxC8QfLZKsG67xu5UQfopwdkijXK7hjNw++us96rkl2uknxRs26+zZK1gxjzBiDidvjGtr2n4BJ1pCTqJqwVb9+qkZWrklmrUecz/Gf5zpJC1LlLIWhurCNnWcDWq5PpV9nhUFjvDjKpVeKs6xK8rFL7TRmXtf5Zd5qlKhQ+qFeLqQqx0qaR6VEq7SGWtjEy0Y7qQ/X3/yYyPX0lhWQ0eXyMuT4Ds/HIGjP6UngOnmr28NmP2JiExBylkrY0UstZFCllr014hayX5eqd4fJfw2Ox4s8/iP3SQwNZ1BJZ+SjB+PI1j+nN+4Gucf6tH+1ok/OExmga8SuOYvgRnjiWwJIHAlnX4Uw/gy8rGW1GDx3fxttZX16iwt6GeibXneLb8AP9U0Hz41l/lLuWHRVt533aMREcpZ32Btp/Xq1Js0zidK0g9IdierJO0STB/mSEnR03WGTii/aJ18GidsdMEn8wXLEoyerzuShGknRRkFWqU2jWcfnO+x06/SmGl4FiWYFeKYMUGQfxCwagpOv3akMlDxuhMnqOzcKVg426d1OOCs4Ua1S5zfj+kkLUuUshaGylkW8fdqFIQUEn2hEl0hRlbF+KdqhA9KhS+20Zl7fdKL/NEhcJ71SHG14ZY6lI54A1TdAcfDkYLGZlox3Qh+9irQ7l+/Xqzxy8pYX7ydF8TVnR7MXuTkJiDFLLWRgpZ6yKFrLVpSchK+RpFgmE8dR68BcX4jh8jsGc7gdVLCM6bRuOkoTTGvM35Xr9tf2/b95+hMeYdgpNjCM6fTmDNUgJ7d+I/cYKSwgJW2vLoX5XBz0p28Nd5zYdv/UPBKp4o3cdoezbb3bXUBC/fWKvDp1JSrXE6X+NwhsbOA4LVWzQWrhBMnycYPVUwaGT72wcMGqkzeqpg+qc6C1cYz7XzgOBwhvEaJdUaDl8n+B7dIa6ASmmNRmaOYM8hQdJmwdxEwdjpOgPaENKDR+lMnKkzb5nO2m0ayemCM/kaFXUa7ihVXUkha12kkLU2UsjeHcUBlYPeMMtdKhNqQ/SuDvFkpcL3Sy+3KmvvK1F4tMKoxB1Tq/CZK8w+j0qeX+2QvuufIyMT7ZguZF/vO4mwKpo97vE38WqfiSas6PZi9iYnMQcpZK2NFLLWRQpZa6NGrpHVpEn52snweC/grajGl5WFL/UAgS3rCCxJIDhzLI2j+9HU7+WbxGxjz0fI+PhF5sZ/wBvrR/Pto3NaHL71vYxF/CF1MbP3r+Hg7gPkZDaxK8WoQl2UZFSljp0mGDy6/aJ14IgIIyfpTJurM3+ZUR27PVkn9YTgdK6g2KZR5zX/nJqJO6hSUadxOs+QrWu3a8xbKpg4U2dwG1J7wIgIY2fozE0UrNos2HtYkJkjKK3RcN1F1ZUUstZFCllrI4Vs9CgLqBz2qiS5VCbXh+lTo/B0pcIP2qis/fcShV9VKPSsUoitDbHQGWZXg0pOwPiQ/F6uUUYm2jFdyO5JPUm/kdm4XlkAACAASURBVHM5fOIc5VX1FJfbSU47w7sff8LeQ6eoqnXdoDPG7I1MYg5SyFobKWStixSy1qGlytdb3X4n5WvnpjJwiU1OG8NK03kkdxN/d25pM/n61ezF/HLPNIYv/oit496ktteTzSpsZw44e0sR2H9YhNhJOlPm6Hy6xLg9f9s+nZRjRh/YwkpBrVv+XNwLqpwaZws1Uo4JNuzUWLjSGGA2ZEzrsrbfsAijphgDy1ZsMNooHM8yvjeuNto6SCFrXaSQtTZSyJpDVVAj3auyxh1muiNMvxqF5ypDPFDWuqz9VonCw+UKr1cpDLOH+NQZZkeDSpZfxXEH65CRiXZMF7JfHObVFp0xZm9WEnOQQtbaSCFrXaSQ7Z7cTtuBn0n52qlxBVQO2X1MKizmhbPpfDt7M3/ZQvXr32Ws5b6dqfzP0gJentbABzHCaBUw5DLjBtuJH3iWJf0OsLnvWtL6zSW332iSFrlZvkGwZa/OgaOCjLOCgnKNaqf8Gegs1Ho0zpVoHM7U2LpXJ3GVYFqCzrAJrcvavjERYuN0ZswTLFlrDChLPynIL9eo90kha2WkkLU2Ush2PuyNKsd9KhvcYWbWhxlYE+IFW4gH25C1/1qi8PMyhVerFIbYQ8x1hNnSoHLKp1J/i3Y3MjLRjulC9vzFy1xSwu2iM8bsDUliDlLIWhspZK2LFLLdgxM+lWUulRh7iGcqjdvfblX5+lZ1iBmOMDs9Kj6tfUO9JPced1DF5tDILdU4niXYn2YMe1q4PsygdfU8uTWH+5KT+erp5sO3vpSzlH86tJ0HNpzgifmV/GHcBfrGRIgZrxMXrzPnM8HSdYJNe3T2HxGcyBbklmnYHH/qSdp4SSAi10w/D5I7x+FTKSjXSD8t2J5sfM9nLhCMjNPpG9N6q4nhEyJMS9BZvEqweY/OoQyNnGJNVj1bAClkrY0Usl2PTJ/KlgaVWQ6VwfYQr1QZ13OtydpvlCj8pFzhdzaFQTUhZjrCbHJ3Tv8k071iupAFiFy5yulzJexIPsHGXUfIzC4mErli9rLaFbM3HDNJ9oS574+bV48KhZdsCu9UhRhcE2JsXYh4h0qiy9jMDnjCZPiMKYxmr/teIIWstZFC1rpIIdv1uFP52lLla0tDvSR3T7VLI79cI+OsIDndEF7L1gkSEgWTZukMn6DTb5ghxt4ae5EnP7XxwPoMvp66gy/lNB++9dXTSXw/JZlnd+cwbEc9q3Yp7EsTHDsjOFeiYau//eFPUsh2b5wBleIqjRPZgt0pgpUbBbMWCcZMFfQb3rqs/XiMTtwsnQXLddbv0Dh4VJBVYAh9s49LcvdIIWttpJDtXpz2qexoUElwhhlqD/GqTeGhVmStjEy0Y7qQra5189Tvh/PgU314umcsT/eM5cGn+vDUmyNwe4NmL6/NmL2pmMnmhnCbnzS11oz7x2UKj5QrvGAL8VZ1iIE1IUbXKnxSH+YzZ5j1DcY0xWM+Y6JidZQm594JUshaGylkrYsUsp2bz+XrsHbK1+mtyNeWkEL29qhxaRSWa2TmCA4eFWzdq7NigyBhqWDyHJ3YOL1V2dVnmM7LUz38ckkh391xiK9lrmsmX/8ydwnfztnES/lHmFlZzIkGX1SORQpZ6+IOqvgD1zmTJ9iXJli9RSNhiWD8DJ2Bsa3L2kGxEcbP0ElYKlizVWN/mtFTuMx++x8KSMxBCllrI4Wsdcj2q+xsUJnnCBNbG+KDailkZaIf04Vsr6EziV+8ibCq3XgsFNaYPn89g8bOM3Fl7YvZG4fZ2IIaOQGVdK/Krgaj8fZCp9F8O7Y2RL8ahTerFJ6tVPhlhcIDZUaz7TsVud8uUfhhmTFZ8fnKEH+oCtG/RmFkrVHVtMgZZq07zO4GlXSfyrmA0RT8Xh+3FLLWRgpZ6yKFbOfgdnq+3qh8vQc9X6WQNbA3aBRWGmIp5ZjRb3PlRsG8ZTpT5+rETtLp30ZV4Rf5aLTO2Ok6cZ9dZsD2an535BQPZO3mK7krmgnYv81bwa9KdzG06iQbXFVUBi51yDFLIWttWusha6vXOFOgceCoYP12jfnLjVYYH41uvW9t/2ERxkwVzF5sVOTuTjH6EpdUaTi7yR1l3QEpZK2NFLLWRkYm2jFdyD78wiCEHmn2uKrp/PLFwSas6PZi9ibRVakOGlWvx3wqez0q6xuMqthP6sOMrlUYWGNUzT5XGeLXFQo/Krt1pVN7+FaJwv2lhhR+plLh91UKH9YojLCHmFofZr4zzCq3USl1xKuS41epDGq4b7F+KWStjRSy1kUK2Y7HLPnaEt1dyNZ7jdu2T+dppJ7Q2J4sSNosWLBcZ1qCzqgpbVcEfpHBI3VGTxVMnydYsMKoLNx5UHA40xBYyVU+5tYW81ZlGt8r2tji8K1vFa7jlYpUZtTmccjjwtkYNuXcSCFrbe50qFeNSyOnyPh92rRHZ1GSYOocnZhx7RgyNkln5gLBsnWCHQcE6acFheUaTr/558NKSCFrbaSQtTYyMtGO6UL2iTeG4Qucb/a4L3Cex1+PMWFFtxezNwmrYW80+tBm+IwetpvcYRJdYeIdKmPrjP61b1eH+J1N4bEKo7/trd64t4dvlij8V9llflGu8JtKhddsCh9UKwyrDTHHp/OpM0ySy+hFc9irkuVXKQsYAsHscyWJHlLIWhcpZKPLF+VrjMnytSW6qpB1+lVKawwJejjTkKKrt2gsXCmYMc/okzl4ZOuC6IsMjI0warIhaecv10nabAxJSj1hyNziKo16781rsAcvs9Ndx9jaszxVtp9/yE9qJl+/nLeMn5Zsp5/tBCuc5RT6m0w/d58jhay1uVMh2xr1XpW8Mo0jJ40q88Q1xocXI9oxZGzYBOP3L3G10QokLdMYeFfnMf9cdTekkLU2UshaGxmZaMd0ITtjwXp+338y6Zl51Lt81Dm9pGWc47UP4xgfv9KUNX22ejePvjLkxr+dDX56x8TzPy8M4rUP48grrrrx38zeJCTtwxFUKQ6onPSpHPCG2dwQZplLZY4jzPjaEB/bQ7xXHeJlm8ITFQo/K1f4XunlOxa53yhR+H7pZX5epvBkpcKrVQq9q0MMsYeYUBtiriPMCpfK1gaVFK/RYLwkoOLoBOdK0jZSyFoXKWTvHZ1dvrZEZxOyLr9KWY1GdoEhdXalCtZs01i8ypgeP3Z627dN33QL9fAII+N0ps7RmbfUuI16236dlGNGe4LCSoG9oX3nPscXZImjjD624/y4eBtfzl3aTMD+Y/4qfluWzAR7Drsb6qhrVEw/p7dCCllrEw0h2xpOv0phpeBYlmDnQcHyDYL4hYJRk/804O5WDBmjM3mOzsKVgo27dVKPC84WalS75JCxO0EKWWsjhay1kZGJdkwXsqqmM33+en76dF/u79Gb+3v05idP92XCrKSb+sp2VOqcXp5/d8xNQrbX0Jms3X6Iq1evkZldTI/XYohcuQpIIdvdcTaqlAYNYZrqUdnWoLLSZUxmnO3TibGHeL86xGs2Q7w+VK7w/5de5pt3IXL/o/QyPy1XeLxC4SWbwrtVIQbbQ4yrCzHbEWapS2WTO8wBb5iTPpWigEq9HAzRoUgha12kkL0zuqJ8bYmOErLOgEpFrXGrc/opwZ5UwbrtGomrDCkzfobOkDHtF639hkcYEaczebZOwhLBig1GVd3Bo4LMHEFBuUbNXcgaRzBEisfJtLpcfleewv8tWNtMvn4pdwn/WbSZdyrTWVBfwilfdIZvRQspZK1NRwvZ1nAFjIr3jLPG3pC0WTDnM8HYaaLN3s2DR+lMnKkzb5nO2u0ayemCM/kaFXVyyNitkELW2kgha21kZKId04Xs57l+/TqBxgu4vcEbstOMvD8snpSj2TeEbOP5Szz07ACuXP3Tml7vO4mz+RWAFLJWpa0esq5GQyJk+1XSvCo7PSpJbmNq45T6MMPtIfrUKLxepfB0pcLD5Qo/KFX417sQufeVKDxYpvBohcILNqMH76CaEGNqQ8x0GK0dNrrD7PcYk8jz/UYLCLPPZVdEClnrIoVs23QX+doSdytk3UFjANC5Eo1jZwT7Dgs27NBIXCOYtUgw8ROjt2RbtyvfEK3DjFuX42bpzE00ek1u3qOTnC44kS3IK9Ooct570VIWuMhal42PqjN5uGQXX81d3kzA/n3eCh4t3cPw6tNsctd02PCtaCGFrLXpTEK2NdxB48Oc07mC/UeMivlPlxh7y6A22pIMGBFh7AxjL1m1WbD3sPGBTWmNhsvCQ8akkLU2UshaGxmZaKdTCNmKagcH07PZnZLZjI7MntSTjPlkOecvXr4hZPOKq3j5/Qk3fd2IKYls238ckELWqkRzqJctqJETUEn3quxqUFnjDrPQGWa6I0xsbYi+NQpvVik8W2kMKXugzBhadqci99slCj8sU/hVhcLzlYbIHVCjMKpWYUZ9mMXOMOvcYfZ4VI76VHL9KlXBzv+mJJpIIWtdpJC9me4sX1viVkLWHVSxOTRyyzROZAuSjwg27dZZus6oXIuL14kZ337R2jcmwtBxRiXb7MWCJWsFG3Zq7EszbmE+V6Jhq++YijZ3o8pxr4e59YW8WXmY7xZubCZf/yJ3Cd8uWM+rFanE1xVwxNuAy6ThW9FCCllr01WEbFtUOY0WJynHjD1lwQrBpNltV9z3GxZh1BSd+IVGhf2uFMHxLKONSXcfMiaFrLWRQtbayMhEO6YL2blLt3J/j9489upQnnlrVDM6KhcuKjz3zmgaz1+6SciePldCzwFTbvraCbOSWLf9EAAick1iQfTItU73/W8S16hVr5KvXOXYpSvsOR9hTUBnvk8wya0x1KnSu07lpZowPWwhHiwP8Z3SOxe5/1ai8EBZiEdsYX5XE+Ld2jAfOVTGuzQSfIKVAZ0dTRHSLl7h3OWrVIWvEhDX0DrBubpbrl67zpWr5r1+WFw1/RxYFf3KNa5f71y/+x2FGrlGUegqmxojjHFqPF8T4ru32EN+XhGid53KPJ8g7eIVfJr5679Tmi5cw+64Rn7JNTKzr7Ev9Srrtl5h4YoI0xIixMZF6N9GT8cvMnRchEnxET5NjJC04Qo79l0h7cRVzhZcw2a/hq/xGqow73jPC51DF1xMdufw28r9/ENB8+FbX8lbxsPlO4mpP8W2xhpcWsj071O0iVy5xrXr101fh8Qcrl8H/Yr564gmF5VrVNde48y5q+xLvcrKDVeIXxBh+IS2P0AaNSnC7IURVm++woG0q5zNM/bNy+F7szYzr3uuXDWu+8z+/kjMAUDvBOuQmPf9l5GJZkwXsj9/ph+Z2UVmL4Px8SvZkXwC4CYhm19SxYu9x9/0tcMnf3bjaxsv6RIL0nRZ7zbff/clnbILOlmNgkMBwTafxgqPxly3xkSHyse1Yd6rCfNSVYgelSF+Wn7rCrj28K8lCj8oU/ifCoVnbAq/rwnRrzZEbH2Y6U6VRW6NtR6NvT7BsaBOXpNO9QWdQCc4V58jItdQ1CumvX6wE5wDq3JB0bl6rXv87rdG4JJOVpNglVcwoi7Ms1W3/r3/WbnCuzVh4l0q+/yCmgvmr789uPw6ZdU6WfkRDmdE2JEcYdVmnfnLdKYm6IycpLfZj/HmQToRxs+IMGuhzpLVOht36uw/HOFEVoT80gjVzgj+8+Yf959T0NTEcnc5H1Yf50fF2/irFoZvfb1gNS9UHGSqI5dUvwvPRdX0dXc0l8IRIlevm74OiTlcvQYXFPPXYRbeJp3Sap2M7Ai7UyKs2KATv8DYJ9uq/I8ZrzMtwdgXt++LcPSUTkG5jttv/nG1B0W9gohcM30dEnMAaOoE65CY9/2XkYlmTBeyD78wyJThXX+eX744mEdfGcKjrwzhkZc/5oHH3+fRV4ZQ7/Lys9/2Q9X+9Av57NujyC+pAmTLAqsSzZYFXQVHUKU4oHLSp3LAG2ZzQ5hlLpU5jjDja0N8ZA/xXnWIl20KT1QY0uZ7pZfvWOR+o8QYmPZQuTFA7TWbwvvVIYbaQ0ysDZHgDLPCpbK1QSXFawxiKw0ag9nu9bHLlgXWpTu2LOhubQdqPRpFNsGpXEHqccG2/TpJmwTzl+lMm2sIhAEj2i9aB4/UGTNVMGOeYNnaK6zfbtyum5apkVWgUVqjdZlbduuDIZIbHEyuPcfz5Qf554I1LQ7fur9oC71sR1nsKCXL5zd93Z0B2bLA2nSXlgXRwOVXKbYZ7Vp2pRotDWYtEoyeKujXxodaH48xemAvWK6zfofGwaOCrAKjJYvZx/U5smWBtZEtC6yNjEy0Y7qQXbxqN6u3pJi9jJvyxQpZgD7DZ7N03T6uXr1G8pEzPN0zlqtXjRJ2szcJiTlIIXvnOBsNUXrap5LqUdnWoLLSpZLgDBNXZwjW96tDvGYzxOtD5YaI/eZdiNzvlV7mZ+WGGH7ZpvBetSGMx9eGmO0Is9Slsskd5oA3zEmfIZodrfRmlELWunR1IduV5Wu9T6WkSuNMvsahDI0dBwSrt2gsXCGY/qnO6Ck6g2LbL1oHxho9EaclGDJg1WbBjgOCQxnGa5RUadT7bl6DUSV150O9OpriwHlWOSsZVJXBfxfv5CstDN/6Wv5KepTtIdaexRaXHVvwsunr7oxIIWttpJC9M9xBlbIajZPnjCGGq7dozF0iGDddZ2AbH4wNio0wfoZOwhLBmq0a+9MEJ88Jyuwd0z/7c6SQtTZSyFobGZloxxQhO3DMvBt8PGEhv37pY154bywDRn96038bOGaeGctrJmTd3iC9hs7k4RcG8Ua/yZRW1t34b2ZvEhJzkEK243E1GkIo26+S5lXZ6VFJcqvMc4SZUh9mmD1EnxqF16sUnq5UeLhc4QelRouEOxW595Uo/KRc4bEKhd/ZFN6uDjGoJsRkl0ZCg0qiK8wmd5hkT5gMn0pBQMXeCc6VJHp0JSHbVeSr069SWmNUm6ZlauxKEazeqrEoSfDJfMHYaYLBo1ofOPPnk8JjJ+lMnaszb5nOyo1GlWzqcaNqtsgmsDfc2fF1ZiHragxz1NvA7LoC3qg8xHcKN7Q4fOs7hRt4o/IQs+sKOOptwN0J1t4VkELW2kghGx1s9Rqn8zUOHBWs264xf5lOXLzO4NGt7/n9h0UYM1Uwe7Fg5UbB7hRBxllBcZWGM3Bv1yiFrLWRQtbayMhEO6YI2U+XbWs3nT1mbxISc5BCtmthC2rkBFTSvSq7GlTWuMMsdIaZ7ggzwh6ib43Cm1UKz1Yq/LJC4YEyhW/dhcj99xKFH5Up/LpC4bnKEG9VhxhQozCqVmFGfZjPnGHWN4TZ61E55lPJ86tUd2C1h+TO6axCtjPKV5dfpcyucbZQI/2k8YZ57TaNxasEMxcIxs7Q+biNyd43TfkeHiE2TmfyHJ2EpcZtsVv36hw8KsjMERSWa9S4oitMOpOQtQUvs8VlJ9aeRY+yPXwtb0Xz4Vu5y/lFyU4GV2Ww2llJqf+C6evuqkgha22kkO14qp0aOUUaqScEm3brLEoSTJmjM3Rs6383+sYYH8rNXCBYts648yH9tPE3wuG7/XVIIWttpJC1NjIy0Y7pLQu6eszeJCTmIIWsNagOGrL0mE9lr0dlfYMhUz/1CsY5wgyoMcTWc5Uhfl1hSNh/vwuR+60SQwb/ssKQw29WKfStURhhDzHdYUjkNe4wuxoMuZwTMGSz2efJSnQGIWu2fHUFVCrqNHKKNdJPC/YcEqzfoZG4WhC/UDB+hs6Q2xGtwyIMn6AzaZZOQqJg+XrB5r06yelGxVN+uUZ1lEVrezFTyGb5/CyqL+U921F+ULSFL7VQ/frPBWt4vvwgk2vPcaDBgSMYMv2cdRekkLU2Ush2Luq8KrllGmknBdv26SSuMVrXDJ/Y9t+eYROMVjWJq40P9dIyNc6VaNR5Wn4tKWStjRSy1kZGJtoxXcg2eIPExC2+8e+5S7fy0LMDeO3DOOwOj4kra1/M3iQk5iCFrLVpq4esvdFoX5DhU0n2GG0NEl1h4h0qY2qNtgdvV4f4nc1oh/CT8lsLtfbwryVGe4aHy412Da9XKfSpURhuDzGlPsw8R5gkt9HmIc2rku03xJyrE5zLrkZHC9mOlK/uoHH76LkSjWNZgn1pgo27dZasNW4LnThTZ+i4tidqf7FKKWa8cfvpnMWCJWuN59ufJjieJcgt1bA5OrYX4N3SUUK2rlFhn6eeuNpzPFt+gK/nr24mX/8qdyk/LNrK+7ZjfOYoI9sfMP38dGekkLU2Ush2HZx+lcJKwbEzgp0HBMs3COIXCEZO0uk3rPW/W0PG6EyerbNwpfH3KuWYoKg8QuC8FLJWRQpZayMjE+2YLmT7xs5l0tzVXLt2nazcMh56tj9pGeeYk7iFfiPnmr28NmP2JiExBylkrU20hno5gsZAsZM+lQPeMJsbwixzqcxxhBlfawwie686xMs2Y0DZz8qNgWV3KnK/WWIMTHuo3Big9qpN4YNqhRh7iLi6EAnOMCtdxuC1VI8xiK00aAxmM/t7YBbRFLLRkq/uoEqVUyOvzJiCvf+IYPMenWXrBHMTBXGzdIZNaPuN6hcZOlZnwic68QsFiauNCtm9hwVHTwtyijUq6zRc97iPX2cgWkK2KHCeJGcFA6oy+HnJDv46b1kzAfu/81fyROk+Rtuz2e6upUYO3+pQpJC1NlLIdg9cAZWSao0TZwV7UgVJmwRzFhu9yvsPb/3v3uCROhNnGr3J127XSE4XnM7TqKjrWh8sSm4PKWStjYxMtGO6kH3o2QGEVQHAlIQ1TJiVBICq6Tz8wiAzl9aumL1JSMxBCllrEy0he6c4Gw1RetpniNNtDSorXSoJzjATa0MMtYd4vzrEazZDvD5UbojYOxW53ygxRPDPyhWerFB4pUqhV3WIj+0hxteGmOMwRPLmhjAHvGFO+gzR7OgGb1julZC9V/K1xqVRUK6RcVZw4Khx++WKDYKEJYLJs3VGxN2eaP14jM7YGUbvvcWrjJ6vu1MF6acEZ4s0yu33fmBKV+JeCFlXY5g0r5uZdfm8WpHKtwvWtzh86z8KN9KzIo2E+iKOe71y+JbJSCFrbaSQ7f64gyrldo3TuYLkI8ZwyU+XCOLiIwwa1fYwybHTdeYmClZtNlr5ZOYISmu654eTVkIKWWsjIxPtmC5k//u5AaiazvXr1/lNz1iOnswDDCH70LP9TV5d2zF7k5CYgxSy1qazCdk7xdVoyL1sv9HKYKdHJcmtMs8RZnJ9mGH2EH1qjBYIT1caLRF+UGq0SLhTkXvfHwVjjwqFF20K71SFGFwTYmxdiHiHSqLLaPGQ7AmT4TNaP9R1gnP1OXciZO9Evk6pCbOqQiMl17hlctt+nZUbBfOWCqbO0RkZp7dZzXNTZc8onbHTBJ/MFyxKMt5o7koRpJ0UZBVqlNo1nH7zz29n506EbGXgEpvcNQyvPs2jpXv4+xaGb301dzkPl+zio+pM1rpslAUumn6skpuRQtbaSCFrXT7vIWtzaGQVahw8KtiwQ2PhCsGkWW0Pp+w3LMKoKcYdJSs2CHalGG17CiuF/LvbBZBC1trIyEQ7pgvZvrFzGR+/kmnz1vHoK0MQeoTr16+TtPkg73w0w+zltRmzNwmJOUgha226i5C9G2xBjZyAMVxsV4PKGrcxdGyaI8wIe4i+NcZQsmcrjSFlD5QZQ8vuVOR+p0Thx2UKj5QrPG8L8VZ1iIE1IUbXKnxSbwxbW98QZq/HGMKW51epiUJFbltC9nbk6wOFCr/NDvFeusrQbYLxC3VGTdYZOKL9onVQbITRU3Smf6qzcIVg9RaNnQcEhzM0TudrlFRr1N/BVGlJy7RHyJ7y+VhQX8I7len8Z9HmFodvfaNgLS+WpzCtLpcUj1MO3+oCSCFrbaSQtS7tGeplbzD6rx/O0Ni8V+ezVYJpc3Vixrcua/vGRBgRpzNjntFnfdt+nfSTxjDLeq/5xy6RQtbqyMhEO6YLWbc3yLBJi/kwdg55xTYAgk0Xefz1GIrL7Savru2YvUlIzEEKWWsjheydUx00ZOkxn8pej8r6BkOmzqgPM6pWYUCNUSH6XGWIX1co/KhM4d/vQuT+W6khg39VofBcZYieVQr9ahRia0NMdxgSeY07zK4GlXSfyrmAIZtvtf4vCtkvytch1SGeLFP4TnHL6/iPswo/OxDm8TUaL83Rea8dtz+OnKQzba7O/GU6SZsE25N1Uk8ITuUKimyCWo+UAx3NnwvZukaF3Q11TLDn8NuyZP4xf1Uz+frl3KU8WLyNPrbjLHWWcc4XNP04JLePFLLWRgpZ69IeIdsa9T6V/HKN9FPG3/Gla427VWIntT0kc+g4nalzdRavMnq/H8rQyCnWqHXLn8WOQgpZayMjE+2YLmRvlatXr5m9hHbF7E1CYg5SyFobKWQ7HnujSr5f5YRPJdkTZqM7TKIrzMz6MGPrjGrZt6pDvGAL8WiFwoNlt65MbS8/KDXaNDxTqfBqpULPohDvng3z5imVh84ofKuw5f/vu1kKP0kO02ONxsstyNfYOJ3Jc3QSlhq3L27dq3PwqNFvrrBco8Yl32h1VhyqwpqGSvrZTvDTku18uYXhW/+Qn8RTZfsZW3uWXQ212OXwrW6BFLLWRgpZ63K3QrYtCiuNFga7UoxrgviFglFTWq+s/XBohMGjdeLideYv11m/Q+PAUcGZAg1bvfw5vZdIIWttZGSinU4rZIvL7ew/fNrsZbQZszcJiTlIIWttpJDtWhQFVE76VA54jf60S10qsxwq42tDDLaHeLcqxEs2hccrFB4sVbjvFlWubcnXtz4TjP5UJyFRsHy9YMteneR0QcZZ4/bDailauxTOxjCHPC5m1ObxSkUq3ypc10y+/mXuEr5ftJG3KtP4tL6YDK/P9HVLooMUstZGClnrEm0h2xqlNRqZOcaQsNVbNOYmCsZO1xnQRmujgbERxs/QG1eutgAAIABJREFUmbtEsGarxr40wclzgrIa+TN8u0gha21kZKKdTitkZyxYz4O/+dDsZbQZszcJiTlIIWttpJDt2tR7Vc6VaKSeMAZzzFsqGD+jeTXKu2Mi/GGSznsLdfpt1PgoRWPAMY3BpwSzMjQOnNXJLdWwOeQbnO5AZeASG1xVDK06ya9Kd/G3LQzf+rv8FTxStpuhVSfZ4KqiXA7fsgxSyFobKWSti5lCtjUq6jTO5GskpwvWbdeYt0xn4kydwSPbrq4dPVUwa5EgaZNgV6rgRLag2CZ/vltCCllrIyMT7XRaIdtVYvYmITEHKWStjRSyXQNbvcbpXMHew4KVGwXxCwQj4lp+o9J/WISxM3TmLRWs36GRekIjt7T5UI22hnpJug6ZXh/zHMW8VXmE7xdt5C9bGL71rcJ1vFKRyozaPA55XIQjV9sc6iXpnkgha22kkLUunVXItka1U+NskUbqccGm3TqLkgST5+gMHdv2kLHYSTozFwiWrRPsOCBIP220U3JYdECoFLLWRkYm2pFC9i5j9iYhMQcpZK2NFLKdB2dApchmvGHYts8YfDF5ts7g0S2/6fh4jM6UOTqJq4zhGseyBCXVGu5g+15PCtmuiT14mV0NtYyzn+U3Zfv5//KTmg/fylvGT4q309d2guXOcgr9Tc2e58+HekmsgxSy1kYKWevSFYVsa9R5VHJLNdJOGj3sE1cLpn+qM3xC25W1wyboTEswrqG27tVJy9Q4V6J16yGjUshaGxmZaMd0IevyBPhk4UYGjplHn+Gzm9HZY/YmITEHKWStjRSyHY+9QSOnSOPgUcHa7RpzlwjGThP0G9bym4bYOJ34hUZl7L40wZn8e9NaQArZrsE5X5ClzjL62I7zYPE2vpy7tJmA/cf8Vfy2LJkJ9hx2N9RR16i0+bxSyFoXKWStjRSy1qW7CdnWcPpVCio0jp42qmOXrxfMXCCInaTf8nrrc4aM0Zk8W2fhSsHG3TopxwRnCzWqnF3790YKWWsjIxPtmC5kX+87iX4j57Jo1S6WrtvXjM4eszcJiTlIIWttpJCNHhW1xgCLXanGG4EZ8wQx42/RZmB4hHHTdeYt09nweZuBMo36KN5WJ4Vs58MRDJHicTG9Lo8Xy1P4RsHaFodv/WfRZt6pTGdBfQmnfHc2fEsKWesihay1kULWulhJyLaGM6BSUqVx4qxgd6rxgfecxcaH4/3bkLWDRxr9bectNT5UT04XnM7TqKhr/x1KZiGFrLWRkYl2TBeyz7w1iuvXr5u9jDuO2ZuExBykkLU2UsjeHU6/SmG5cbvc5j06C1YI4uJ1BsW2fCH/8RidqXOM2+q2JwuO32abgXuJFLLmUxa4yDpXFR9Xn+R/Snbzv1oYvvX3eSt4pHQ3w6pPscldQ2Xg0j15bSlkrYsUstZGClnrIoVs27iDKuV2jVO5gv1pgtVbNRL+ODD1Vtd2nzNgRISx03XmJgpWbRbsOSTIzBGU1mi4AuYfmxSy1kZGJtoxXch+GDuHxvOXzF7GHcfsTUJiDlLIWhspZNtHjUsjq1Bj/xHB6i0asxcLRk3W6RtzizYDk4w2A0mbjDYDp/M7361uUsh2LO5GleNeLwn1RfSsSOM/Cjc2k69/kbuEbxes59WKVGbW5ZPmdeNqDEdlPVLIWhcpZK2NFLLWRQrZu8fm0MgqMNpOrd+hsWC5zqRZOh+Pab1vbb9hEUZNMa4NV2wQ7EoRHMsSFFYKnP6OWbsUstZGRibaMV3I2h0eXuw9nvjFm1ixMbkZnT1mbxISc5BC1tpIIfsn3EGV0hqNE9lGv7HENYJpc3WG3OIiu//wCONn/LHNwE6NQxkaeWVdZ3qvFLLRpSZ4mR3uWkbbs3midB//p4XhW3+dt4yfl+xgQFUGSc4KigLnO2x9UshaFylkrY0UstZFCtnoUuvWyCk2rgc37zGGs06dqzN0XOuytm9MhBFxOjPmCZasFWzbr5N+UpBfrlHvvXfrk0LW2sjIRDumC9n+oxL4xfMD6TlwKr2GzmxGZ4/Zm4TEHKSQtTZWFLL1PpXcMuOCecMOjXnLdMbP0Ok/vJU2A3N1EtcYovZEtnH7WWfvFdYWUsjeW876AiQ6SvnAdowfFW/lr1oYvvX1/NU8W36AuNpz7PPUt2v4VrSQQta6SCFrbaSQtS5SyJpHvU8lv1wj/aQhXJesFXwyXxAbd+u7rT5n6Dij3dXiVUZ7rNQThvitcd3e77EUstZGRibaMV3IPvrKEC4rYbOXcccxe5OQmIMUstamOwtZm0PjdJ7GvsPGwIb4BcaF762qE0bG6cxaJEjabPQNO1OgUX2bF7tdCSlk7xxHMMSBBgdTas/xQvlB/qVgTTP5+qXcJfygaAvv2Y6yqL6UMz6/6ev+IlLIWhcpZK2NFLLWRQrZzonLr1JkM+YK7EoxWhrELxSMmqLTr40hYx+N1ombpbNguc767UYrhawCDVt9899xKWStjYxMtGO6kO05cCpXrl41exl3HLM3CYk5SCFrbbq6kHUFVIptGkdPGxUHn60STJ6tM3h0y+J1wAijzcD8ZTobd+sc7mJtBu4lUsi2n1L/BVY7KxlclcEvSnbyldzlzQTs1/JW0KNsD7H2LLa47NiCl01fd2tIIWtdpJC1NlLIWhcpZLseroDRTiszR7D3sDEsbG6iYOwMnQEjWpe1A2ONa96EJYI1WzVOnL7GqXOCMnvXv8tLcvvIyEQ7pgvZ5LQzDJu0mBNnCimvqqei2nETnT1mbxISc5BC1tp0FSFb6zFuz0o5Jli7TSNhiWDsNHHLyoEhY3SmdcM2A/cSKWRbxt2ocszjYU59Ib+vPMx9txi+9Z3CDbxReYjZdQUc9TZEbfhWtJBC1rpIIWttpJC1LlLIdi/cQZWKOo0z+RrJ6YK12402XBNn6gwe1Xrf2v7DIoyZKpi92LiLbHeKIOOsoLhKwxkw/9gk9x4ZmWjHdCF7f4/erdLZY/YmITEHKWStTWcTshW1RhXA7hTB8g1Gf62Y8bduMxA7yWgzsGqzIPmIcZvW7fbUsipSyBpUBS+x1WVnpD2Lx0v38rX8lc3k61dyl/PfxTsZVJXBamclxR04fCtaSCFrXaSQtTZSyFoXKWStRbVL42yhUcywcbfOinVXmTzn1sNq/7yN18wFgmXrBNuTBemnBYXl1ryjrLsgIxPtmC5kQ2ENoUduSWeP2ZuExBykkLU2ZghZp1+lsFzjyEnB5r06C1cK4uJ1BsW2fGE4YESECZ/ozF+us2m3zuFMjfxyDaff/PPXlbGqkM3y+VnsKKWX7Sj3F21pcfjWPxes4fnyg0yuPUdygwNHMGT6uu81UshaFylkrY0UstZFCllr88UesnUeldxSjbRMja17dRJXC6Yl6Ayb0Lqs/XBohGETdKYl6CSuEmzdq5OWqXGuRKPWI/eVzoyMTLRjupAFiFy5yulzJexIPsHGXUfIzC4mErli9rLaFbM3CYk5SCFrbaIpZGtcGlmFxm1Uq7dozFlsDCi41TTZIWOMC7wlawU7Dxi3TpXKPldRwwpCtj4YYn9DPZNqc3iu/ABfz1/dTL7+Ve5Sfli0lfdtx/jMUUa2P2D6ujsCKWStixSy1kYKWesihay1ae9QL4fPKJxIP220/Vq2TjBzgSB20q2v4b94LT95tlFssWGnUZ17tlCjyin3HLORkYl2TBey1bVunvr9cB58qg9P94zl6Z6xPPhUH556cwRub9Ds5bUZszcJiTlIIWtt7lbIuoMqpXaNE9mGRF2y1viEfejYW7cZGPnHNgOrt2jsl20GTKM7CtniwHlWOSsZWJXBQ8U7+ZvcZc0E7P/OX8kTpfsYbc9mu7uWmk4+fCtaSCFrXaSQtTZSyFoXKWStTXuFbGs4AyrFVRoZZ432Yis3Gn1ox0wV9L/FXIfPGTzS6G87b6nR7zY5XXA6T6OiThZfdAQyMtGO6UK219CZxC/eRFjVbjwWCmtMn7+eQWPnmbiy9sXsTUJiDlLIWpv2Ctl6n0pemcahDI0NOzXmL9MZ38qE14EjIkz8RGfBH9sMpMk2A52Ori5kXY1hjngbiK8r4LWKQ3y7YEOLw7e+W7iRNysPM7e+kONeD+5OsPbOgBSy1kUKWWsjhax1kULW2twLIdsa7qBKmV3j5DnBvjTBmq3GEN7xM3QG3qIt2Rfbk42drjM3UZC0WbDnkCAzxxjI65JDxu4JMjLRjulC9uEXBrXYK1bVdH754mATVnR7MXuTkJiDFLLW5s+FrM1hTGvdd9j41Dt+oXGL0q0uoIaONdoMLF0r2HlQcOKsoKxGftLdFehqQtYWvMxmVw0jqk/zWNke/j5vRTP5+tXc5TxcsouPqjNZ67JRFrho+ro7K1LIWhcpZK2NFLLWRQpZaxNtIdsWtnqNrAKNg0cF67drLFiuEzdL56PRrfet7TcswqgpOvELBSs2CHalCI5lCQorhSz0uA1kZKId04XsE28Mwxc43+xxX+A8j78eY8KKbi9mbxISc5BC1nq4/ni70bEzgv2Hr7Jsrc7kObe+IOobE2HUZJ3Zi402A8npgqxC2Wagq9PZhexpn4+F9SW8W5nOfxVt5kstVL9+o2AtL5anMK0ulxSPs1sO34oWUshaFylkrY0UstZFCllrY7aQbY0al0ZOsUbqCY3Ne3QWrxJMnaMzdFzrsrZvTIQRcToz5gkS1wi27ddJPynIK9Oo95p/XJ0JGZlox3QhO2PBen7ffzLpmXnUu3zUOb2kZZzjtQ/jGB+/0uzltRmzNwmJOUgh232p86jkFBsN9ddu05i7RDB2mrjlRc1NbQb2/KnNgNnHIYkOnUnI1jUq7GmoY4I9h2fKk/mnFoZvfTl3KT8u3kYf23GWOss45wuavu6ujBSy1kUKWWsjhax1kULW2nRmIdsa9V6V3DKNIycN4Zq4RjB9nmD4xNZl7YdDI8SM05kyR2dRkuBcibX3PRmZaMd0IatqOtPnr+enT/fl/h69ub9Hb37ydF8mzEq6qa9sZ43Zm4TEHKSQ7fpU1Bn9mnanCpZvEHwyXzBswq0vUmLG/bHNwDpBSvpVsvMjlNllmwGrYaaQLfQ3sdJRQf+qDH5WsoO/zms+fOsf8pN4qmw/Y2vPstNdh92iw7eihRSy1kUKWWsjhax1kULW2nRVIdsaTr9KYaXRwmDnQaOlQfxCwagpOv3+bMjYiWxr73syMtGO6UL281y/fp1A4wXc3iCRK1fNXk67Y/YmITEHKWS7DoXlxqfDm/fqLFghiIvXGdRKk/zP2wys2Wq0Gcgu0LC7b74Yae9QL0n3o6OErLMxzGGPm0/q8nm1IpV/K1zfTL7+Ze4Svl+0kbcq0/i0vpgMr8/089PdkULWukgha22kkLUuUsham+4oZNuipFojM0ewJ1Vgc1h735ORiXZMF7KPvPwxTRcum70Mrl+/zvwVO3j0lSH86qWPGPvJClRNB8DZ4Kd3TDz/88IgXvswjrziqhv/n9mbhMQcpJDtXNjdGtkFGslHDZE65zPjU96+MbdoMxAbYeJMQ9Bu3qNz5KSgsFxrd5N7KWStS7SEbGXgEhtd1cRUn+LXpbv5uxaGb/1t3gp+VbqLoVUn2eCqolwO3+pwpJC1LlLIWhspZK2LFLLWxopCVvInZGSiHdOF7EfjFrBpd7rZy2DngQx6DpjChYsKobBGr6EzWb5hPwC9hs5k7fZDXL16jczsYnq8FnOjitfsTULy/9q70/CozsPs42/btE2XJG2TpknbJG+bt2lCHGMnXuIkNsYGg8ELtomJ8cJuFmMQYMRqMGY3GGObfRe7WMS+CYRA7KB1tEuMdmm0ARIgzYw00v1+wFYQSEIIZs7A8/9d1/1BM9LwHJ15zpm5GT3HmlDI+j55JZVKsDt19My1P69ZuMqlj2e7NWR048sMDBnj1uRP3VoUdO3qokfPuJRkv/M3VBSy5uZuFbLHCh36LNum7ikH9bO4dfqLBi6+9R+xQXo5aZ8mZ0ZpX0GuckorLN9+00Mha24oZM0Ohay5oZA1OxSyZgfwNssL2THTlujJLu+rY/eR6jtilgaMmlMvvhKbeF7J6dl1Xy9Zu0ujpy5R6cVyPdKxv6o9f15G4bW+E3QmOlkShZypoZD1XrILKxWV6NSBo06tDXHrs8VujZvqVv/hjV8pNPAjtz6Zd+3TsbvDXDoT61RGnvfeOFHImpuWFLIZpVcUkp+hsfYzap+4U/8Svfzmi29FLdJDtk3qm3pEi3OSFF1Uavm2kptDIWtuKGTNDoWsuaGQNTsUsmYH8DbLC9kZ89br00XBjcYK+Y4SvdrnQ+0PP6soW5pe7jmu3v3DP5qv4J3h177XDw4UxPehkL3zpGY7dTLaqR2hLi1bd20x+Q8+bHyZgYEjqvThdLc+X3ptPdiDx1yKSXYqt5nLDNzNUMiam+YUstFFpVqUk6g+qeFqbQvWNxq4+Na/RC/Xc4m7NM5+ViH5mcosvWL5tpFbh0LW3FDImh0KWXNDIWt2KGTNDuBtlhSyo6cukctdJenaJ2T9yevvfqRWbXpoytzVqqmp1Ylz8erW/6N63zNuxjIFbdovSWqXvFMvpOzRn9JD1fd8uIZlHNeEnHOamRur+QUJCnKkamtRpkJLc3XyQqFsZRdlL7+ssqtV5B5OeUWVamtl+Tj8PRcvVyk9u1onI6u1bW+1Fq+q0sezq/T+qMYvqhUwzq1pc91atrZKuw9W62xstbLzqy3fluvjrq5Rpata5VerLEnZ1SpdrqgmFuSqs1o1tap329ELDs3Ki1WX1H3699hVN5Wv/ydygX5uW69e5w9rYUGiIi+VWr4dpGXx1NSqwuWxfBxWxeRjT4XLI09NreXjINakpla66rR+HKbm0hW3Za+5Kl3VclfXWPbve/O1JLl1amvF78vgAN5mSSH76PP9tWF7mGITz+vh9n0Vm3i+0Vih9GK5RkxaoClzVys6Pk0v9hhb7/5hE+dp864jktTgG+/byT9HL9eP4oLUyrZBTyRtVdvk7XopdY+6px9Uf3u4ArNO6qPcc5qdF6tFjgStLUzTjpJMhV3I1ZlLRUoqv6icq1d0pbKK+Di1tbJ8DP6SC5eqlJRWpfATVdq4za3Pl7g1bkqV3h3WcOnaL6BKoz9267NFbq3b4tbh41VKSK1SyUXrt6U5qaqukdPt0eXKKktSXmHNv0uqlFdxVTsvZWlE5gk9mbxN34xafPPFt6KX6KmkbQrMOqltJZnKv3rV8nGTu5NqT60qXdWWj8OqlFeYu+2VrmpVe2otHwexJjU1tdcKWT8Yi4mx8nWP0+1RVXWN5b+Dux2rX0vfK+H9ntkBvM2SQnbZ+j16pGN/tWrT45bxlaOnYmXPLqj7+nR0kjq9NUoXyy7r18/1U6XTXXdfx+4jFR2fJknamGvXkpwkzcm2aXJmlEZnnNF76RHqmXpYXVP2q2PSbj2ZsE2/jt+sn8Wt03/EBuk70cvuuMhtvOBdph/FrtbP49brsfgtejphuzol7dHrKQfUOzVcAenHNdZ+RlMzozU3K17LcpK1IdeuXfnZCncU6GxhCVfubkZMXbIgJdOpY+dcCtnn0pI1Lk39zKVh4xq/qNbAD9z6cLpbXyxzacN2tw4dcyk2xWXJMgN3MyxZYE7CHQ7NzopTt+RQ/SxuXYPH3R/FrtYrydcuvrW/INfyMRPvhSULzA1LFpgdliwwNyxZYHZYssDsAN5m6RqyHk+NftOhn6o9nkbjK58uClbfEbN05WqlqqqqNWHWCg2bOE+S1HvYTC0M2iGPp0a7Dp5U+24j5PHUSLqzQi6z9Iriiy/pdFGxwhz52lGQpXV555tV8D4cv6lewfuNyIV3vdz928jF+m70cv04Zo1axW3QY/Fb1DZhh15I2qs/JYeqT2q4hqYf1zj7WU3PjNGX2QlanpOi4Dy79uTn6IjDociiEqUUlyv3Prs6+P1cyOYWVSo2xaVDx6+VqF8sc+nDGW4N/KDx4nXoWLemzHFp8WqXQva6FHHWpeSM+/eNC4Xs/Rl7yWVtycvUKPtpPZO4Q//UwH+e/XXUIv02aav6px3VspxkxRVftHzcxHehkDU3FLJmh0LW3FDImh0KWbMDeJvlF/WqqHRZPQRJ18YxbsYyPdnlfT3xwiD1D/xUjuILkqQ8R4neGTJNj3ceqK79JiohJbPu56w+SFyfjNIrshVf1KmiIh1y5Gt7fpbW5aVrcU6SPs2y6ePMSI2yn9ag9Aj1SA3Ta8nXCt4/JIToIdu1gvffY4L07eil+isvFLzfjFys70Wv0E9i1+iXcRv0ePxWPZO4Qy8l7dMbKaHqm3pEAenHNT7jnGZkxmhedoJW5qRqU16G9hbk6KijUFFFpUopLleexb/r+6GQtec5dSbWqd1hLq3c6NQn81wK/MitfgGNLzMQOMml2fNdWhns1J4wl87GOWXPN+8NCoXs/ZGzhSVakJ2o3qnhetAW3OB/bP1r9Ap1TNqt8RnntD0/S7kXr97yol7k/g2FrLmhkDU7FLLmhkLW7FDImh3A2ywvZBtjS7Jr54ETVg/jlqw+SHgz9pLLiiu+qJOFRTroyNe2/EytzU3XopxEzc6K06TMSI20n9KgtKN6JzVMrybvV4ekXfp9Qoha24L1P3Fr9cOYVfqWlwrev49aon+NXqH/G7tGD8Rt1OPxW/Vs4k69nLRP3VMOql/qEQ1LP6EPM85pZmaM5mUnalVuqrbkZWpvQa4iHIWKLipVasnl2y5475VCNq+kUonnnTpyxqWte11auMqlj2e7NXTMLZYZmHHtk7Ebt7t16Pj9sczA3QyF7L2X7JKr2pOfo0mZkXohaa9+EHPzxbf+MnKBfhG3QW+nhumLrASdLCy66XGKLjkpZA0Ohay5oZA1OxSy5oZC1uxQyJodwNv8tpCdMne1WrfrY/Uwbsnqg8S9lPMllxVbfFEnCgsV6shTSH6m1uSmaeFXBe9HGef0gf2UBqYd1dupYXoleZ+eS9yl3yVsVWtbsH4au1Y/iFmlb0Ut0V/e5XL3LyIX6B+iluj7MSv1X7Fr9SvbRv02PkTtEneqS/I+vZlySP3Tjmp4+glNyDirT7Jjtf5CmoJy07Q1P0P7C3J1rNChmKILSisp9/nvNruwUtFJTh2IcGpdiFufLXZr3FS3BgxvuHT9epmBqZ+5tHjNtTVhj51zKTmTNxvNCYWs/yexuEwrc1I1KD1Cj8dv1Tcjb7741reilqhN4jaNsJ/Shly7Uksu3/JxKWTNDoWsuaGQNTsUsuaGQtbsUMiaHcDbLC9kZy8MVqo91+phtJjVBwmTk15yWbFFF3S8sFD7C3IVkp+h1blpWpCdqFlZsZqYcU4j7Kc0IO2o3ko5pFeS96l94k49kRCiB23B+u/Ytfq3mJX6x6gl+gsvFLz/GLVE/xazUj+NXasHbcF6IiFE7RN36pXkfXor5ZAGpB3VB/ZTmphxTrOyYrUgO1Grc9MUkp+hAwV5OlFYqNiiC0q/riRKy3HqRLRTO0NdWrbepemfu/TBh271Hdr4MgOjJrk0a4FLqzZ9tcyAzamMAt5U3EkoZP0reaWVCncUaFZWrF5POaD/jl3b4Lz8SewavZa8XzMyYxTmyG/R2tYUsmaHQtbcUMiaHQpZc0Mha3YoZM0O4G2WF7K9AmbogbY91aXXOK3YsFdFJZesHtJtsfogQe5e0krKFVN0QccKHdpXkKut+RkKyk3T/OwEfZIVqwkZZzU8/YTe/arg/ZM9VO0Sd+q38SH6lW2j/it2rb4fs1L/4I2C99wC/c2ppfr7iFX6Ttg6fW//Jv1wd4h+vG23frrpgH658bB+t+WYOu8+rXcORWnEKZtmJiYrKDtNIfmZCnXk6WRhkWKLL+p8Mz4FSJoOhay1SSspV3CeXSPtp/R0wnZ9O3ppgxclfNS2RQPTjmp5Topsd+niWxSyZodC1txQyJodCllzQyFrdihkzQ7gbZYXspJ0seyytuw+qv6Bs/VQ+77qPWymQvZG6GqF0+qh3ZLVBwliTW61hmxeaaVSSy4ruqhUEY5C7S3I1Za8TK3KTdW87ETNzIzR2PRz6htzUq+cOKKnDx/UQwf26af7dumHe0L03QPB+vbhNfq7Yyv0jdNL7vr6u38VuVDfil6qH8as0v/ErdVDtk36fUKIOiTt0qvJ+/VOapgGpR1VoP20Ps6M1OysOC3KSdTa3HRty8/UQUe+ThUWyVZ8UXYDC14KWd/mVFGR5mUnqEdqmH4Zt6HBNam/H7NSnZL2aGLGOe3Kz1ZWyVWvjIVC1uxQyJobClmzQyFrbihkzQ6FrNkBvM0vCtnrlV+p0NqtoXqs0wA93L6vxk5fqvOZeVYPq1FWHySINbmdi3qlZDp17JxL2/a5tGSNS9PmujRsfOMX1eoXUKXRH3+1zECwU3sPu3TG5lR8Xrmiikp11FGovQU52pSXoZU5qZqXnaAZmTEan3FOAenH1Tf1iN5IOaiXkvbpmcQdejx+q34Zt0E/iV2j70Wv0N9F3f2C9xuRC/Xt6KX695gg/SxunR6O36QnE7apY9JuvZa8Xz1SwzQoPUKj7Kc1OTNKc7JtWpyTpHV56dqen6VDjnydKipSfPElZZZesXz/3ioUst5LVslV7crP1sSMc+qUtEffj1nZ4H8oPBC3UT1TD2tedqJOFxX7bHwUsmaHQtbcUMiaHQpZc0Mha3YoZM0O4G1+U8hWOt3adfCkBoyao9bP9lbXfhO1dmuoZs5br0c69teugyetHmKDrD5IEGtyYyGbW1Sp2BSXDh13aeN2t75Y5tKEGW4N+qDx4nXQSLcmzHTry+UuBe9w69AJl+JSXcop9v7480orlVJcrsiiEh1xOLQnP0fBeXatyEnRl9kJmp4Zo3H2sxqaflx9UsP1p+RQvZi0V20Tduix+C1qFbdBP45Zo+9GL9ffNnBDUDZbAAAes0lEQVSxpDsueKMW6TvRy/QfsdcK3l/Hb9ZTidv0fNJudU3Zr56ph/VeeoRGZ5zR5MwofZZt09LsZK3LO68dBVkKc+TrdFGxEooueeWTkhSydy+24otanpOigWlH9ahti/4mctFNz4dvRy/V0wnbNdJ+SsF5dkuX3aCQNTsUsuaGQtbsUMiaGwpZs0Mha3YAb7O8kD1+Nl6jpi7WIx3f1VOvDNEnCzYoPaP+J2IjTsepzatDLRph06w+SBDfJiPPqTOx1y6OtWm7R7PmuxQ4yaV+AQ2Xrn2GVGnYOLemzb326dht+1w6HulSatb99aI+t7RCycVlOldYonCHQ7vzs7Ux167lOSn6IitB0zKjNc5+VkPSjql3ari6JYfqhaS9ejphux61bdEv4jboxzGr9S/Ryxss5O40fx21SP8UvUz/GRuk/41br9/Eb1abxG3qlLRHr6ccUK/Uwxqcfkxj7Gc0JSNKc7PitSwnWRty7dqZn6XDBQU6U1isxOIy5ZRWUMjewfPkkCNfMzJj9Fryfv0kdk2D++u/Y9fq9ZQDmpUVq3BHgfL8YOxfh0LW7FDImhsKWbNDIWtuKGTNDoWs2QG8zfJC9qH2fTVs4nwdPRUrj6emwe+pqvao24BJPh5Z81h9kCB3P3kllUq0O3XkjEtb97q0MMilyZ+6NWRME8sMDLu2zMDsBS4Fbbq2zMBZm1OZBdZvz72YnNIKJRWX6WxhicIdBdqVn60NuXYty0nW51nxmpoZrbH2M3r/q4L39ZQD6pS0R08nbNcjti36edx6/Sh2tf45epn+OuruF7x/G7VI341Zrh/FrtbP49brEdsWPZ2wXZ2T9qhbcqh6p4br/bRjGms/o6mZ0fo8K17Lc1K0MdeuXfnZCncU6GxhiZKKy5RbWmH579tbSS25rA25do2wn1KbxG36VgPLZXwzcrEej9+q99IjtCo3VYnFZZaPu6lQyJodCllzQyFrdihkzQ2FrNmhkDU7gLdZXsiWX6mwegh3xOqDBGl5cooqFZ3k1IEIp9aFuDV3sVvjp7o1YHjjn3YdFOjWxK+WGdh7sEZhJ1yypTqV64NlBsgd7OvSCiUWl+lMYbEOFxRoZ36W1uee19LsZM3NiteUjCiNsZ/R4PRj6pV6WH9MOaDnk3arTeI2/SZ+s/43br3+MzZI/xS9TN/wRsEbuVjfjV6uH8es1i/iNujRrwreF5L26k/JoeqTGq4hacc0zn5W0zKj9UVWgpbnpCg4z649+TkKdzh0rrBEyRYXvCcLi/RFVoLeTg3TL+I26C8b2NYfxKzSC0l7NSkzUnsLcpTtpYtveSsUsmaHQtbcUMiaHQpZc0Mha3YoZM0O4G2WF7Kv9B7faF58Z4zVw7slqw8S5NZJz3XqZIxTuw66tGy9SzO+cGnEBLf6Dm1imYHx1y0zsN+lEzcsM3A7F/Ui918uOt2yl13W6aJihTnytaMgS+vyzmtJTpI+y7ZpcmaURmec0XvpEeqZelhdU/arY9JuPZW4Tb+O36yfxa3Tf8QG6TvRy/SNyIV3veD9ZuRifS96hX4Su0at4jbosfgtapuwQy8m7dUbKaHqm3pEAenHNc5+VtMzY/RldoJW5KRoU16G9hbk6KijUJFFJUopLm90uYDM0ivanp+l8Rnn1DFpt/41ekWDF3t70Bas3qnhWpCdqLOFJZbvuzsNhazZoZA1NxSyZodC1txQyJodClmzA3ib5YXs2q0Hb0ioPpm/QR3eGKm1W0OtHt4tWX2QINeSV1Kp+HSnwk+5tGmXS/NXuDTpE7cGj7rFMgOT3Zq90KXVm5zaF+7SuXinMh23/vcoZM3O3V5D1l5yWbbiizpVWKSDjnxty8/U2tx0LcpJ1OysOH2cGalA+2kNSjuqd1LD9GryfnVI2qU/JIToIdsm/U/cWv0wZpW+Fb30rpe7Nxa8v4zboNa24Aa/79vRS/VM4g4F2k9rc16G7BZefMtboZA1OxSy5oZC1uxQyJobClmzQyFrdgBvs7yQbUyeo0QDRs2xehi3ZPVBwrRkOip1Lt6pfUdcWr3ZqU8XuDR6ilvvNnFRrUGBbk38xK15y10K3unW4ZMu2dLubJkBClmz4+8X9TpfcllxxRd1srBIoY48heRnak1umhZ+VfBOyozUSPspDUw7qrdTw/RK8j49l7hLv08IUWtbsP5f3Fr9IGZVg2u+Xp+fxa1T95SDmp0Vp3BHgeXb7YtQyJodCllzQyFrdihkzQ2FrNmhkDU7gLf5bSErSR27B1o9hFuy+iBxvyY1y6njkdeWC1iyxqVpc10aNr7xT7v2GVKl4R9eW2Zg6VqXth/4apmBbO+8eKaQNTv+Xsje7aSXXFZs0QWdKCzUgYI8bc/PUpKfX3zLW6GQNTsUsuaGQtbsUMiaGwpZs0Mha3YAb7O8kM3OK7wpaRm5WrMlVO26jbB6eLdk9UHiXk5uUaViU1w6dNyljduvXShrwgy3Bo1svHh9N6BKo6e49emCr5YZOHJtmYGsZiwzcDdDIWt2TCtkyZ9DIWt2KGTNDYWs2aGQNTcUsmaHQtbsAN5meSHbqk2PBvP7lwbrYESk1cO7JasPEvdCMvKcOhPn1J4wl1YGOzV7vkuBk1zq18QyA+99tczA/OuWGYi/w2UG7mYoZM0Ohay5oZA1OxSy5oZC1uxQyJobClmzQyFrdgBvs7yQLblQdlPKr1RYPaxms/og4S/JK6lUot2po2dc2rrXpUVBLk2e49KQMU0vMzDiQ7emf7XMwI4DLp2IcnptmYG7GQpZs0Mha24oZM0Ohay5oZA1OxSy5oZC1uxQyJodwNssL2SvV1NTq3OxKTpyMlZXrt4bE8Dqg4SVOWtzau5it8ZPdWvA8MZL1z5DqjR68lfLDGy2bpmBuxkKWbNDIWtuKGTNDoWsuaGQNTsUsuaGQtbsUMiaHcDbLCtkr1Y49fGcIPUYOl1rtoSqqtqjt9+fWrdkQduuATqflW/V8JrN6oOElQk/5axXug4e5dZHn7g1f4VLm3a5dfiUS/HpTuWVWD/Wux0KWbNDIWtuKGTNDoWsuaGQNTsUsuaGQtbsUMiaHcDbLCtkJ8xaobZdAzTti7V6/s1AjZm2RP0DZ6us/KrKyq/qvTFz9f74z60aXrNZfZCwMqnZTu044NLJ6HtjmYG7GQpZs0Mha24oZM0Ohay5oZA1OxSy5oZC1uxQyJodwNssK2SfemWIIk7bJEkZ2QVq1aaHouPT6u63JWfody+9Z9Xwms3qgwSxJhSyZodC1txQyJodCllzQyFrdihkzQ2FrNmhkDU7gLdZVsg+0Lan8hwldV//+rl+yi0orvvaUXxBrdr0sGBkt8fqgwSxJhSyZodC1txQyJodCllzQyFrdihkzQ2FrNmhkDU7gLdZVsi2atNDjuILdV8/1mlAvYKWQpb4cyhkzQ6FrLmhkDU7FLLmhkLW7FDImhsKWbNDIWt2AG+ztJA9eipW8SkZik/J0CMd39XhE9F1Xx89FUshS/w2FLJmh0LW3FDImh0KWXNDIWt2KGTNDYWs2aGQNTuAt1layDYn/s7qgwSxJhSyZodC1txQyJodCllzQyFrdihkzQ2FrNmhkDU7gLdZVsiWXChrVvyd1QcJYk0oZM0Ohay5oZA1OxSy5oZC1uxQyJobClmzQyFrdgBvs6yQvV9YfZAg1oRC1uxQyJobClmzQyFrbihkzQ6FrLmhkDU7FLJmB/A2Ctk7ZPVBglgTClmzQyFrbihkzQ6FrLmhkDU7FLLmhkLW7FDImh3A2yhk75DVBwliTShkzQ6FrLmhkDU7FLLmhkLW7FDImhsKWbNDIWt2AG+jkL1DVh8kiDWhkDU7FLLmhkLW7FDImhsKWbNDIWtuKGTNDoWs2QG8jUL2Dll9kCDWhELW7FDImhsKWbNDIWtuKGTNDoWsuaGQNTsUsmYH8DYK2Ttk9UGCWBMKWbNDIWtuKGTNDoWsuaGQNTsUsuaGQtbsUMiaHcDbKGTvkNUHCWJNKGTNDoWsuaGQNTsUsuaGQtbsUMiaGwpZs0Mha3YAb6OQvUNWHySINaGQNTsUsuaGQtbsUMiaGwpZs0Mha24oZM0OhazZAbyNQhYAAAAAAAAAfIRCFgAAAAAAAAB8hEIWAAAAAAAAAHyEQhYAAAAAAAAAfIRC9gbzV23X068N1RMvDlLglEWqqHRJknLyi9Rj6HT9tvNAvdrnQ0XZ0up+JuK0TS/1HKsnXhikfh/MUsmFsrr7lq7brWf/OExPdnlfk+YEqdrj8fk2oXnCjker89uj9VinAXpnyDRl5jjq7mtsP7rcVRo1dbH+8PJgte82QsE7Djfr8eBfrlyt1MiPF+qJFwepzatDtWTtrrr7Wjr3v9Zj6HQN/2i+T7YDLdOSud/U86KgsFQ9hk7Xbzr0U5de45Scnu3zbULzNDX3W3JuLyu/qoAJX6rDGyPV6a1RWrlxn8+3Cc3X2Nxv6twuSbsOntQjHd/V/vCz9W5vzjkB/uF8Vr7eGjxVjz7fXy+8PVpHTsbW3dfUfrxw6bL6fTBLL/YY2+zHg/9p7P1eU3O/2uPRrIUb1apND10su9zg485bEaInu7zvk21Ay7R07ielZanDGyM1+bPV9R6vqqpa42Ys06PP91fbrgHaFXrSZ9uC29eSrqexuV9bW6vPlmxWx+4j1bH7SI2bsUyVTrfPtwn3NgrZ6+wPP6vn3wxUUcklVVS61Hv4TM1ftV2S9M6QaVq1ab88nhpFnLapzatDVVXt0eUrFfrdS+8pJiFd1R6P5i7dooAJX0qSzkQnq2P3kSq5UKaKSqd6D5+pdSGHrNxENMJRfEGPdRqgKFuaampqNXfpFvUMmC6p6f04b0WIAiZ8KafLrTxHidq8OlSp9twmHw/+Z/JnqzVs4jw5XW7lO0r01CtDdC42RVLL5v7XQvZGqF23ERSyfqylc7+x54UkvTV4qlZs2Kuqao9C9kZozLQllm0fmtbY3G/puf3jOUGaNCdI0rVy9tnXhyvKlmrZ9qFxTc39xs7tkrQyeJ8Gj52rbv0/qlfINuecAP/xYo+xWrVpv2pra3XsjE2PdHxXlU53k/vxaoVTL74zRrMXBt9UyDb2ePA/Tb3fa2ruDx47V/NWhOiBtj0bLGQzcxzq9NYoClk/15K5Hx2fplf7fKjAKYtuKmS/WL5VQ8Z/oUqnWynnc9S130S53FVWbBpuoSVdj9T43N8ffkZd+01UpdMtj6dGg8d9roVBOyzZNty7KGSvY0vOqPfGadWm/QqcvEilF8v1SMf+9T7d+lrfCToTnaz94WfU74NZdbdfvlKh1u36yO2u0sdzgup92ubwiWi9M2SabzYGt8VRfEH7w8/UfZ2UlqWnXxsqSU3uxxffGaPYxPN1982ct17zVoQ0+XjwP2HHopRbUFz39Xtj5mrzriMtnvuSdKnsijq9NUobtodRyPqxlsz9pp4XuQXFats1QDU1tb7bCLRYY3O/pef2ngHTdeDIubr7hn74pTZuD/PBluB2NTX3Gzu3S1JyerZqa2vVe9jMeoXsrc4J8B/VHo+Cdxyue7MtSY8+31/ZeYVN7seKSqey8woVZUutV8g29XjwP42935NuPfclNVrI9gyYrr1hpylk/VhL5352XqEqKp1aGLTjpkL22T8O468g7xEt6Xqkxuf+/FXbNWXun58Pa7ce5D0fbhuFbBP6B36qjdvDFGVL08s9x9W7b/hH8xW8M1yLVu/U1M/X1LvvyS7vKzPHod7DZyr06J/fmNmzC/TUK0N8MnbcmWXr99QdUJvajw8+01tl5Vfr7tu4PUwffLygyceDf7tytVJPvTJE5zPzWjz3JWns9KXauueo9oefZd/fQ5oz95t6XhyKiFLPgOn68JPlevb14eoVMEP27AKfbgNa5vq539Jz+4Kg7frg4wWqqvaoqOSS2ncbofNZ+T7dDrTM9XO/Oef2GwvZW50T4L9sSXa17Rqgao+nWfvxxkK2qceD//v6/Z7UvLnfUCG7bd8xjZq6WBfLLlPI3kNud+7fWMiWX6nQQ+37as2WUHXsHqguvcYp7Hi0z8aPO9Ocrud6N879c7EpeuHt0bpYdlkud5X6B87Wlt1HfTF03EcoZBsxf+U29QqYoWqPRyfOxatb/4/q3T9uxjIFbdqvz5Zs1uyFwfXua99thJLTs9V90GRFnI6ru72gsFSPdRrgk/Gj5Y6dsal9txFyFF+QpEb3Y1W1R63a9JDT9ec/Sdu+/7gGj53b5OPBfzldbvUPnK0vlm+VpBbP/bMxyXpr8FTV1tZSyN5Dmjv3m3pehOyN0MPt++pUVKJqa2u1MnjfTS/y4H9unPstPbdXOt3q2m+iHn2+vx5o21OfLdnsu41Ai10/95t7br+xkG3qOQP/lVtQrI7dA3XsjE1S8/ZjU4XsjY8H/3b9+73mzv0bS5lLZVf0/JuBKr1YTiF7D2nJ3L+xkM1zlOiBtj21eM1O1dbWKiYhXY8+319FJZd8sxFoseZ2Pddr6D9jJs0JUutne+s3Hfqpx9Dpqqqq9vrYcX+hkL1BbW2tpn6+Rv0+mFW39lN0fNpNL7yGTZynzbuOaPGanTf96cLvXxqs7LxC9RnxSb0X6+cz8/izdT+36+BJdXprVL0/M2tqPz74TO96B+b12w7V/dlTY48H/1R+pUJvDZ6iz5dtqbutJXP/fGaeuvQap/OZeZJEIXuPuJ2539Tz4mBEpF7t82Hd7R5PjVo/21uXyq54fyPQIg3N/Zae24d/NF9fLg9RTU2tLl+pUPdBk7XrIBf48GcNzf1bndulmwvZpp4z8E8p53PU4Y2ROnziz59oa85+bKyQbejx4J8aer8nNW/u31jKjJ2+VJt3HZEkCtl7REvn/o2FbNnlq2rVpocuX6mou61XwIx6SxfBv9xu13O9G+f+xu1h6vfBLFVUuuTx1Gjq52s1YdYK728E7isUsjeYOW+9hk2cX29tmYtll/Xr5/rVO2F37D5S0fFpCj16Tm+/P7Xu9sLii/r1c/1U7fFo6udr9OXykLr7doWeVJ8Rn/hmQ3Dbwo5F6eWe4266KnJT+/HlnuN0Ojqp7r4PP1muxWt2Nvl48D8ud5XefG+K1mwJrXd7S+b+1/87/mSX9/Vkl/f1eOeBeqh9X9aP9mO3O/ebel4kp2fr2deH193u8dTowWd613uxDv/R2Nxv6bn9sU4DlJX75zdvS9bu0viZy728FWipxuZ+U+f2r91YyDb1nIH/yckvUoc3Rta7krbUvP3YUCHb2OPBPzX0fk9q3ty/sZR54sVBda/5/vDyYP3y6Z56ssv79ZY+gP+4k7nf0Bqyj3ceqDxHSd3XvQJmKOxYlJdGjzt1u13P9W6c+4PHztWmXeF1X8ckpKvDGyO9N3jclyhkr3M2Jlmv9vmwwY+a9x42UwuDdsjjqdGugyfVvtsIeTw1ulrh1O9eek+nohJV7fFo0pwgjZ567YraUbZUPfvHYXIUX9DlKxX647sTFbI3wtebhWYou3xVbbsG1Duhfq2p/bgwaIf6B86W0+VWekaefvfSe8rKLWzy8eB/5q/cpo+/ujL6jVoy96/HJ2T9W0vnfmPPC0nq0mucQvZGqLa2Vqs3H9Af353oy03CbWhs7rf03N590GStDN4nSXK7q9QrYMZNf/IG/9DU3G/s3H69GwvZ5p4T4B96DJ1e76JuX2vOfmyokG3s8eB/mnq/15y539hFvSQ+IXsvuJO531AhO/XzNRo/c7mqPR7ZkjP0eOeBKr1Y7tVtQMu0pOu53o1z/7Mlm/X++M/rSvu5S7fctMQJcCsUstcZPXWJHmjbU63b9anLa30nSLq2Rsw7Q6bp8c4D1bXfRCWkZNb93Ilz8XrxnTF64oVBGjh6Tr0/TV2xYa/adg3QU68M0Yx567nytp8K2RuhVm161Nv3rdv1qduXje1Ht7tKo6cu0e9fGqzn/vSBtu8/3qzHg3959o/D9OAzvevtq+lfrpPU8rn/NQpZ/9bSud/U8yI7r0iv9Z2gxzsP1JvvTVEGF/XyW03N/Zac2+3ZBeoZMF0d3hipDm+M1KQ5Qawn5qeamvuNndula1debt2uj375dM+6587Xb+6bc06A9XILihvc9wcjIiU1vh8PRkRe+95ne9f9fJde4275ePAvTb3fa2zuXyq7Uve91+/rGz9dTyHr31o696d/uU6t2/XRr57pVffcmTL3WjFb6XRr2MR5eqzTAD3/ZiBLlvixlnQ9Tc39qxVOjZq6uO41X//A2Soo4poxuD0UsgAAAAAAAADgIxSyAAAAAAAAAOAjFLIAAAAAAAAA4CMUsgAAAAAAAADgIxSyAAAAAAAAAOAjFLIAAAAAAAAA4CMUsgAAAAAAAADgIxSyAAAAAAAAAOAjFLIAAAAAAAAA4CMUsgAAAAAAAADgIxSyAAAAAAAAAOAjFLIAAAAAAAAA4CMUsgAAAAAAAADgIxSyAAAAAAAAAOAjFLIAAAAAAAAA4CMUsgAAAAAAAADgIxSyAAAAAAAAAOAjFLIAAAAAAAAA4CMUsgAAAAAAAADgIxSyAAAA96F8R4lGT12ip18bql8900u/7TxQwybOV56jxOqhAQAAAEajkAUAALjPeDw16tg9UEPGf6FUe67Kyq8qOT1b746creffDJTHU2P1EAEAAABjUcgCAADcZ/IcJWrVpofOZ+bVu730YrmCd4arotKpkgtlatWmh7LzCuvuX7v1oF7pPV6SFHY8Wh3eGKml63br4fZ9tX7bIT3Uvq8qKl1133+1wqnW7fro2BmbJGn15gPq9NYoPdy+r154e7ROnIuXJM1eGKzugybXG8u52BS1btdH5VcqvPI7AAAAAPwVhSwAAMB9xu2u0hMvDNL4mcsbLTxvVchGnLbpsU4DNHHWSjmKL6jC6dZvOw/UgSPn6r5/z6HT+v1Lg1Xt8WjPodP6w8uDlZiaKY+nRodPRKt1uz7KzivS+ax8tWrTQzn5RXU/O+2LtRoy/gsv/QYAAAAA/0UhCwAAcB+KsqXqhbdHq/WzvfXW4Kn6bMlmxSaer7u/OYVsqzY95Ci+UHf/uBnLFDhlUd3XwybO06Q5QZKkXgEzNHfplnpjeHfkbM1bESJJev3djzR/1fa6+57pOkwHIyLv4hYDAAAA9wYKWQAAgPtYyvkcrdkSqsFj56p1uz4aPO5zeTw1zSpkWz/bu95jRZy26bedB6ra45HLXaVHOr6ryLhUSdKzrw9XqzY9bsroqUskSeu3HdLzbwZKkmxJdv2280BVVVX74lcAAAAA+BUKWQAAAEOcz8zTA2176lBEVCOFbGi9QvY3HfrV+/lqj0dPvDhIpyITFXY8Wm27Bqi2tlaS1Pnt0VqzJbTRf7vs8lW1btdH8SkZmr0wWB/NXnn3NxAAAAC4B1DIAgAA3GeOnorVlLmrb7q9trZWT7wwSCF7I1R+pUKt2vRQWkZu3f2fzN/QZCErSeNnLte0L9ZqzLQl+mT+hrrbB46eo/Ezl9f73oLCUtXU1NZ9HTDhS81ZvEntuo1QlC31jrcTAAAAuBdRyAIAANxn0jJy9XD7vvpo9kolpmaquPSSktOzNX7mcj3S8d26dWF/99J7Wrv1oKRr5WmHN0bespA9fjZend4apT+8PFjxKRl1tx89FauH2/dVxOk4VXs8ioxL1eOdB+psTHLd94SfiNFjnQaoXbcRdZ+sBQAAAExDIQsAAHAfsiXZ9d6YuXqyy/v61TO99MSLgzRozGdKSsuq+5794WfVrtsIdXprlAaOnqM1W0L14jtjJDVeyFZ7PPrdS++pY/eRN923Zkuonn19uB5q31ed3x6t7fuP3/Szf3h5sD5ftuWmnwUAAABMQSELAAAAn7hw6bJ+/Vw/5RYUWz0UAAAAwDIUsgAAAPCqmppaXSq7osFj52rkxwutHg4AAABgKQpZAAAAeFXE6Tg9+Exv9Q/8VGXlV60eDgAAAGApClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwEQpZAAAAAAAAAPARClkAAAAAAAAA8BEKWQAAAAAAAADwkf8P4gbqYvSGcbUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd93tU95k+/s/fk93vOtlkk91NNk5iO3HZxGvHNomNDaaYYkw1xRQDplfTexVFSICQUO+9t1HvXZo5Z86ZXjT9/v4wwyAwRSCkt+Dcr+u6r8sqiDMz8jHcfut5/h+IiIiIiIiIiIiISIj/J/oCiIiIiIiIiIiIiLSKBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC1oiIiIiIiIiIiIiQVjQEhEREREREREREQnCgpaIiIiIiIiIiIhIEBa0RERERERERERERIKwoCUiIiIiIiIiIiIShAUtERERERERERERkSAsaImIiIiIiIiIiIgEYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBWNASERERERERERERCcKCloiIiIiIiIiIiEgQFrREREREREREREREgrCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC1oiIiIiIiIiIiIiQVjQEhEREREREREREQnCgpaIiIiIiIiIiIhIEBa0RERERERERERERIKwoCUiIiIiIiIiIiIShAUtERERERERERERkSAsaImIiIiIiIiIiIgEYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBWNASERERERERERERCcKCloiIiIiIiIiIiEgQFrREREREREREREREgrCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBO0EjqpvRaFyeACwOr/DrYMTE4wtCtXmEXwcjJv5ACLJlVPh1MGISCgH6aXAdzNRHbwq//qKvgxET2TIKfyAk/DoYMVFtHnh8QeHXwYiJxeGFyxMQfh2MuBBNNha0EyT6JsGICwtabYcFrbbDglbbYUGr3bCg1XZY0Go7LGi1HRa0DNFkY0E7QaJvEoy4sKDVdljQajssaLUdFrTaDQtabYcFrbbDglbbYUHLEE02FrQTJPomwYgLC1pthwWttsOCVtthQavdsKDVdljQajssaLUdFrQM0WRjQTtBom8SjLiwoNV2WNBqOyxotR0WtNoNC1pthwWttsOCVtthQcsQTTYWtBMk+ibBiAsLWm2HBa22w4JW22FBq92woNV2WNBqOyxotR0WtAzRZGNBO0GibxKMuLCg1XZY0Go7LGi1HRa02g0LWm2HBa22w4JW22FByxBNtmld0NY2doq+hKcSfZNgxIUFrbbDglbbYUGr7bCg1W5Y0Go7LGi1HRa02g4LWmaqhEIhXIxLx7sz1+K1N+bgD39fhh2Hr8Ll9kzK7+cPBJCcVTYpX5uezbQoaL1eH3oG9GjrGoimsFyHX/5lvuhLeyrRNwlGXFjQajssaLUdFrTaDgta7YYFrbbDglbbYUGr7bCgZabKvpM38OaMVSitboLTNYqu3mHM/3Yf5qzcMym/X2tnP+Z/u29SvjY9G+EFbWl1E/7zvUX42euzHsi//WkONuw+J/rynkr0TYIRFxa02g4LWm2HBa22w4JWu2FBq+2woNV2WNBqOyxomalgttrx2htz0Nja88D7Xe5R3EjMhc8fQDAYwqGzt/DuzLV47/N1WLP9FBzO8PW99uZcKCZr9Nfde7utawAfzNmIH8/cxNxVe/HuzLUormyE0zWKP320Ar96+yvMWbEHrZ39+HDuJqzZfgpzVu7BR/M3IyO/Kvr18krr8OHcTVPyXGiR8IL2/77cgItx6bBYHfjd+0tgd7hQXNmIJesPYWBYEn15TyX6JsGICwtabYcFrbbDglbbYUGr3bCg1XZY0Go7LGi1HRa0zFTILanDG5+sfOLnpOZU4P++3ACXexShUAgrNh/HgVNxAB5f0Hb2DuFf/jAbpdVNAICM/Cr8c9EP0X++d4K2s3cIv/zLfKTmVAAALsal45uNh6Nfb8PuczhzNfnFPWB6gPCC9udvzYPP5wcA/PZvS6Lvb+3sxxdLd4q6rHETfZNgxIUFrbbDglbbYUGr7bCg1W5Y0Go7LGi1HRa02g4LWmYqJGWWYMbCrU/8nDXbT+FiXHr07dLqpuip1icVtL9+d2H0/W1dA3jj4xUAflrQ/uKteQgGQwAAWbHgF2/Ng93hQjAYwm//tgSDI/KLebD0E8IL2t9/sDR6UvaNj1fAYDQBAAKBIH719gKRlzYuom8SjLiwoNV2WNBqOyxotR0WtNoNC1pthwWttsOCVtthQctMhcq6Nrz+4bInfs78b/chMaMk+nZzex/+8Pfwr3lSQXvvcwA88PbDBe3Dv/+sZbuQkFaEal07Pvlqy8QeID2R8IJ297Hr+N37S2C22rFp73n8Y9EPuJGYi3U7zuCvs9aLvrynEn2TYMSFBa22w4JW22FBq+2woNVuWNBqOyxotR0WtNoOC1pmKtgcLvzq7QUor2154P0erw9b9l+Ey+3Buh1ncCk+I/qxkqom/H3e9wCAf//zfMiKJfprfvb6rGcuaMd+HgDEJ+djwZr92HH4Ci7eSAdNHuEFbSAQxI3EXHi8Pjicbnz7wwm88clKfLF0J5rb+0Rf3lOJvkkw4sKCVtthQavtsKDVdljQajcsaLUdFrSvVgZVKwZUFX2qAT3qMLrVPnSqXehQ2tCmNKFFqUOzUo1GpQwNShGaTPmwe23Cr5sRExa0zFQ5eTkJv/9gKfJL6+F0jaJv0IAFa/Zj2aajAMKF6odzN8Hl9iAQCGLpxiM4cv42AOAv/1yNyro2AEByVhn+5Q+zn1rQ5hbX4h+LfkAoFHpkQWu1O/Grtxfg9x8shV5Sp+Ip0CzhBe3LTvRNghEXFrTaDgtabYcFrbbDgla7YUGr7bCgnbwMm+wYVC0YUI3oU/XoUQbRrfSiU+1Au9qKVqUBzUotmpRKNBhLoVMKUafkotqYjio5BRXyHZTLN1EqxaJYvoIi+QIKpLPIl04gVzqCbOkgsqS9yJB2IF36AWnSlueK7B4U/lwxYsKClpkqoVAIl+Iz8M5na/DaG3Pwxscr8OOZm9HdTaFQCMcuJOC9z9fh3ZlrsXHPebjcHgBASk453p25FvNW7cPZayn4/QdLYVQtTyxoFZMVb3y8Ar//YOkjC1oAWPzdj/h08bYpePTaJryg9fkDyC6qwYXYNJy8nPSTTHeibxKMuLCg1XZY0Go7LGi1HRa02g0LWm1HSwXtoGqLnC6V0KsOo1vtj5wubUeb0oRWpT5yurQcDUoR6o35qJWzUC2notKYhAr5NsrkOJTK11AsXUKBdB750inkyseQIx1ClrQfGdIupBu2P3dZOtFkSDuRZdiDbOkgcqXDyJNOoEA+gyL5AorlGJRKsSiT41Eh30GVnIx6NQM2r1n4a8OICQtaRsu27L+I63dyRF/GK094QfvNxsP4r78uxswlOzBnxZ6fZLoTfZNgxIUFrbbDglbbYUGr7bCg1W5Y0Go7ograYZMDQ6oFA6qCPlWPXmUIXWovOtVOtCutaFUa0aLUokmpQuOY06U1cgaq5BRUyonh06XyDZTIV1AkX0ShdBb50knkSkeQI/+ILGkvMqWdSJvA6dKJJN2wDRnSLmRJ+5AtHUKufBQF0ikUSudQLF9CiXwVZXIcKuRbqJSTUC2nokbORL2ShwalCI1KGZqVarQodWhTmtChtKFT7UK32ocedRh9qgEDqopB1YoR1flcrwNn0Go7LGgZreruG8YbH6+A3eESfSmvPOEF7R8/Wg6na1T0ZTw30TcJRlxY0Go7LGi1HRa02g4LWu2GBa22Ey5ogxhSbRgwmdCvyuhVh9GjDqBL6UaH0oF2pRmtig4tSg2alAo0KMXQGQtQK2ehxpiGKvkuyuUElMlxKJGvo1i6jEL5AvLl08iTjiNHOoxs6QAypd1IN+xAmrRVQGG6FRnSDmQa9iBbOoAc6QjypOMokM+gUD6PYikGJfL1yOnSBFTKyag2pqFOyUG9sQANSgmalAq0KLVoU3RoV1vQqXSgS+lBjzqAPnUE/aqMQdWMIfXlmenKglbbYUHLaNGPZ27iTx+tQH5pvehL0QThBe2MhVvhDwREXwZCoRCOnk/AHz9ajv98bxEOno6PfmxwRMasZbvwn+8twodzN6G2sTP6MdE3CUZcWNBqOyxotR0WtNoOC1rthgXtdIxzXMuempQqNCpl0CmFqFfyIqdLU8OnS423UCbfQIl8NXK69BzypZPIk44iR/oRmdI+ZEg7kSZtE/Tj+NuQIe1EprQPOdKPyJOOIl86iULpHIrki5HTpTdQbryFSjkRVXIqauQM1Ct50CmFaFTK0KRURU6XNqJdaUOn2okutQ89ylDkdKmCIdWKYdUxDV7T6RkWtNoOC1qGaLIJL2jLa1rw7Q8nkFtci/rmLuhauh/IVEnNqcDfZq+HyWKHYrLifz9fh/S8SgDAF0t34lJ8BgKBIIoqGvH6h8vg84dLZdE3CUZcWNBqOyxotR0WtNoOC1rthgXt0xNe9mRGv2pEnzqCHnUQ3UpPZNlTC9oeWPZUgnpjIeqUnMiyp2RUyHdQJsdHlj3FhJc9yWeQJ51ArnQ4vOzJsCdSmIo4XboF6YYdyJR2R06XHkaedBz58mkUyhdQLF2OnC6NQ7mcgCr5LmqMaaiVs6AzFqBBKY6cLq1Bq6JDu9KMDqUDXUo3etQB9KrD6FdlDJhMkdOlLuGvKRMOC1pthwUtQzTZhBe0B07F4Wevz3pspsqG3edwITYt+vb1OzlYtukoVLMNv3p7wQOnfP8+73tU1rUB4B/QtRwWtNoOC1pthwWttsOCVrt52QraYdX5nMueMl+iZU8/IFPaiSxpL3LkH5ErHYmcLj0bOV16BaXyDZTLNyOnS1NQI2egTskNny41lkZOl9aiVWlEu9IaOV3ai15lCH2qPnK61ALJ4tTMkjDmp2FBq+2woGWIJpvwgva///Y1qurb4PH6hF7HwwVtcnYZPpizEbWNnXh/9oYHPnflluOIu5sP4OX5Azrz4sOCVtthQavtsKDVdljQvpox6BXIg/1QulugtlfD3JgPa20q7BU34Si6CFfuMYxm7EUoYztGU3fAnbkP7uxDcOWegLPwHBzFl2Avi4W98jZsNXdhrcuApSEP5uYimForoHbUwditg76vGcODLRgYbkWvvg3dcnvkdGkrWh84XXp/2VP4dGkKKuQ74WVPUiyK5Svh06XSWeRLJ5ArHQmfLpX2IkPagXRhy562R5Y97UeOdAi58jHkS6dQIJ1HsXQJpfK1yLKn26g0hpc91cqZqDfmR5Y9laNZqUarUh9Z9tQeWfbUj151GH2qFFn2ZMPwFJ8uFbUkjJkeYUGr7bCgZYgmm/CC9sO5m0RfAgAgJaccf/3iO6hmG6w2J75cvhvvzlyL0uomzFiw5YHP3bD7HC7HZwAATHYPo9F4fAE43T7h1zH+eJkXGJ8/CLvLJ+4abF6YHYyoBIOAzeUTfh2MmACAZRpch7DYp8E1PCYWqw1Wox624S44ehvg7CiDqykb7rpEuCuuw1N0Gt6cH+FL3w5/4ncI3lyK0LW5wOVPnxh3/CyoyfMwmLsIXaXfoK18GZqrlqOxdgXq61eituFbVDWvRnnrWpS2r0NR93co6F2P3P6NyBrahIyRzYJOl25BhrQNWYZdyDHsQ550CAXyMRQZz6BYuYAy4xWUK7GoUm6iRr2DWjUFOlMGmsy5aDYXos1ShnZLFTqtdeixNqLX1oYBaxcGbf0Ytg3BYJcg2VUYHTaoDqfw13+yY3P5EAxC+HVoOSL/7Gd3+eDzB4X/GZQRE+eoHx7fs7z+ov/ux7zoEE024QXttYQcnLueCpd7VOh1BIMhHD53C3/552rMWLgVxy8l4h+LfkBdUyf+Omv9A5+7YvMx3EwuAAC4PQFGo/EHQvD6g8KvY/zxMy8wgWAIHp+459Ux6p/A9wIz0QRDIYx6xV8HIyahkLb/+++cgvvPqM0Ej3EQnpE2eHtr4OsohK8xDf7aW/CXXYC/4BgCWbsRTPkewYSVCN1Y+NSS9Unxxn4Oc8pijBSuRlf1JuhafkBFz3bkDb34pVBZw5uRM7gZ+f2bUNS9ESWd36G8bS0qm1ejpvFb1OtWoaF2JZqrlqO1Yhk6Speiu+Qb9BZ+jYH8xRjKWQh95gLI6V9BSZ0P8925sCbOgeP2bLjjZ8Fz4wv4r38+vsd+7UuEYr9CKH4JQgkrEExai2DyJgTStyGQtRuBnIPwFxyDv/g0/GUX4au8Fn4NdEnwNaXD15oLX0cRvD0V8PbVwTvYBI++Ax6pD6PKCEYtRozarXA7XcK/b1/I96U3fP8XfR1ajsMt7s9+Hl8AgWBI2O/PiI3XF4A/EHyGXyP+3xfmxYZosgkvaN+asQqvvTkXP3t9Fv7jnQX49bsLH4go566nYsuBSzBb7fj3P8+He9Qb/djbn65GXVMnAI440HI44kDb4YgDbYcjDrQdjjgYT1wwGFRIQwMw9rRBba+FuakQ1rp02CtuwVF8Ca7cE3Bn7ocneSt8CWsQiPsaoatfTqhoDV2ZhUDcYvhur4YneQtGM/bClXMMtpKLMNRdRV/LdbR2X0Nt/2WUDZ9GnuEwMqSnz07NlPahQD6DcjkO7fbc51z29OTnTK/Yws/ZiAHy0ACMfd0w9rRC6dRBbauGqaUM5sYCWHTZsNamwlZ1B/aKeNhLrsJReBHO/NNw5R6FO/MgRtN3w5O6Dd6k7+G7sw7+2ysRiP8GwdgFCF2bg1DMOAvcF5xQzCwEr89D4MYi+OOXwZfwLbyJ6+FJ3gJP6g6MZuyNjI04DmfB2fDYiNLrsFfcgq0mCda6dFh0uffHRrTXQuluhLG3HXJ/L6ShIRj0MvSSGSOK44V/X3PEgbbDEQfaDkccMESTTXhBm1dah6KKxsdmquQW1+Kr1fvhdI1icETGGx+vgK6lGwAwZ8UenLychEAgiOTsMrw1YxUCgSAAFrRaDgtabYcFrbbDglbb0VJBqzdaIQ2PwNjXBbVTB1NLGSy6bNiqE2EvuQpnwRm4sw7Bk7oD3sT18N9cjuD1ecDlz56/yIuZieD1+fDfWgFv0gaMpu2EO/sQnIXnYC+9DltNEiy6HJhay6F0NUDu74FhRI9+ZQQdSgealErUyBkol+NQIJ9BlrR3HAXsTuRJx1EqX0OVnIoGYwnalWb0qMMYNtnvPx8v2ZKwJ0ZxQS+bYdDLkIaGIA/0wdjbAaWrCWpHHUytFTA3F8HSkAdrXQZsNXdhr7wNe+l1OIovwVl4LlyyZx+CO3MfRlN3wJO8Bd6kDfDdXg3/zeUIxC1G8Po8hK7MElIII2YmQle/RDB2AQLx38B/awV8d9bCm7QJnpQfMJq+G+7Mg3DlHIEz/xQchRdgL7kCe0U8bFWJsNakwKLLgrkxH6bmUlg6qxHQt0LpboGxrwvyYD+kYT0MBhV649NLeOblDgtabYcFLaNl/kAAP3t9Fl57cy5+/tY8/Oa9RZj/7T4MDEsT+rq//Mt8GIymF3SVLz/hBe104fMHsG7HGfz63YX4/QdLcSMxN/qxYYOCL5buxG/eW4SP5m9Gc3tf9GOibxKMuLCg1XZY0Go7LGi1nZeuoFWcMBiMkAd6oXQ3w9RWFV6AVZMCe0U8HIUX4Mo9itH03fDe/R7+26sQuLEIoZgvJnZa8tocBOK/ge/OWnhStsKdeQDOvJOwl8TAXpkAa30GzM1F4eVZve2QhobCJx8f8zgGTCZ0K71oUeqgM+ajQk5AkXwR2dKhcSzE+gE50iEUyRdRId+BzliAFqUOXWovBtXH/54P55UqaAVEb4ycEh7WQx7sh7GvK7yUrVMHtb0apuZSmBvzYdFlwVqTAltVYuSU8BU4Ci/AmX8Krpwj908Jp/wAb9Im+O6shf/WivunhK9+CcTMFHNK+ErklHDcYvhvLofv9mp4kzaET3Q/brlc6fUnLpdTuppg7O2APNB3/5SwbMaIMrVL0rQeFrTaDgtaRsvuFbT3ylT3qBeb913EV6v3T+jrqmYbgsHQi7jEV4LwgvbtT9fg3ZlrH5n//Xwd5qzcg8vxGfD5p+fMD9E3CUZcWNBqOyxotR0WtNqOqIJWL5khDQ3B2NsOtaMO5uYiWOszYK9MgL0kBs68k3BnHoAnZSt8d9YiEP8NQtfmTPBH0r9AIHYh/LdXwZv0PUbTd8OVcyR80rA8LnzCsCEfprYqKF3NkAd6YdDLGFGcz/z4hk129ChDaFOa0KCUoEpOQYl8FXnScWRIO8Y9hqBMjkONnIkmpQqdSgf6VQkj6ospsljQvmRRHNBLY04J9/fC2NsOpbsRanvt/VPCulxY69Jhq0mCveLW/VPCBWfhyj0Od/YhjGbshTdtJ0LpP8CbuB6+hG/hj1+GwI1F4VPCMbPEFMIxnyN0bc79U8K3V8J3Zx28Sd/Dk7rt/inh3KNw5p+Go/Ai7CVXI6eE78BamwqLLhvmxgKYWsqgtlVD6dTB2NMKY1835KEBSCOG8ClhRdunhFnQajssaBkte7igBYCSqia889ma6Nv5pfV4f/YG/Pkf32LOij0wWewAgMvxGVi/6yzWbDuFL5buxEfzN2PEoAC4f4K2rWsAH8zZiB/P3MTcVXvx7sy1KK6cup+ony6EF7Q3EnPx+w+WYu2O07gUn4GYm5lYv+ss3vh4Ba7ezsKJy4n440fLceBUnOhLfSTRNwlGXFjQajssaLUdFrTazkQKWr3RHp4x2t8DpasBptZyWHQ54WKo9DqchefCZVDaTniTNsB/awWC1+dP8DTgZwhenwd//LLwvM/U7XBnHYIz/wzsJVdhq7oDiy4bpuZSqJ06GPu6IA2PQC9bXvBz50KfKqEzOoYgE2WRMQSZ0r6nFrAZ0g7kScdRIl9FlZyCBiUyhkAZemAMwWSGBa228/QZtC7ojVYY9Aqk4ZGHTgnXh0+vN5eET7DXZ8JamwxbZQLs5XGwl8TAUXAezryTcOUchjtzP0bTdsKTshXepI3wJawJnxKO+xrB6/Mjp4QnMEpkAveT0JXZCMbORyDu6/Ap4YR7p4S3hkeSZO6HK/swnHkn4Cw4B0fxZdjLYmGvTICtJhnW+sgp4aZimNoqoXbUQ+lqhrGvA/JAL6ShYRgMxsg9aPqcEmZBq+2woGWm2prNPqzcOPV5lIcLWpd7FGu2ncLeE7EAAMloxn/972K0dw8CAC7eSMeSDYcBAFdvZ+O///Y1FJMVALDtxxj8eOYmgPsFbWfvEP7lD7NRWt0EAMjIr8I/F/0weU/uNCW8oF2wZj/ySut+8v7Cch3WbD8FAGjvHsSfPlox1Zc2LqJvEoy4sKDVdljQajssaLWdUDAESa9AHuwPFy9t1TA3FsBamwZ7xU04ii7BlXMMoxl74UneAt/t1QjELUboyuyJnZS7+iUCcV/DlxBegOXO3AdX7vHwj0hX3oK1Lg3mpgKo7TUw9rRBHhqAwaBiKguOQdX80BiCOyiSLyJHOoS0ZxpDkACdMR8tSh26lV4MmEzCX/cRlQWt1jMdl4TpjXYYJBOkEQOkoQHI/T0w9rRB6WqA2l4TXi7XVABLQw6stWnh+dEVN8PL5Youwpl/Bq7cY3Bn/YjR9D3h5XJ3v4fvznfhcSfxSxGIXYjgtTkIXRG1XO4LBK/Nvb9c7vYq+BK/g/fuZnhSt4eXy2UdgivnGJwFZ+AougR76TXYK2/BVp0Ea10aLLocmJsKYWotDy+X62qEsbcNcn8PpKFBGPQS9JIZeuPjl8uxoNV2WNAyU23uUp+QPMq9gvY/3lmAX7+7EP/6x9l47/N16Bs0AADi7uZj7qq90c93uUfxb3+aA58/gKu3s7Fk/aHox2JuZmLdjjMAHixof/3uwujntHUN4I2Pp2cHOJmEF7Q/f2seXG7PT97v9fqiL5DL7cG//3n+VF/auIi+STDiwoJW22FBq+2woH01opctkIaGYezrhNpRD3NzCSz1WeG5lyVX4Mw/DXfmQXhSt4XLivhlCF6bO+EfRw7GLggvwLq7EaNpO+HKOQxnwTnYy2Jhq7kLS0MeTK0VULobwwuw9NITS4OpzLDJjh51GO1KMxqM4TEEpfK1cY8hyJL2okA+g3I5DjVyBpqUSnQoHehTJQxPo5Nyj/2eYUGr6UzHgnbKo7igly0wGIyQhoYhD/TC2NcBpasZakc9TG2VMDcVh5fL1WfAVpMcHsNSFgtH8WU4C87BmXcCruwxp4STt4aXyyXcWy73NYKx8yf8P7WeOzGfhZfLXf8Kgfgl4eVyCWvhT96IYPo2jKbtgjvzQHi5XN4pOArPh2drl8eFx0bUpMBSH14uZ24ugamtCmpn/UPL5UZg0CvQG62YTqeEmceHBS0z1aw2MXmUh0/Q+gMBFFU04HfvL4FRteDc9VT88i/z8cYnK6P5zXuLYFQtuHo7G2u2nYp+rbFvjy1o//D3ZdHPefhtrRBe0L796RocOBUHp2s0+j73qBfHLiTgnc/WwB8IYP/JOMxYuFXgVT6e6JsEIy4saLUdFrTaDkD/nroAACAASURBVAvaaRTFAYNehtzfC6WrCabWClga8sKlQHkcHAXn4co5gtG0XfAmbQqPDIhdgFDMxE6CBaMLsNbBk/ID3JkH4cw/BXtJTPgv6PWZMDeXQO2oh7GvI7wASx7/MipxcaE/OoagCrX3xhBIZ8c5hmAn8qRjY8YQFKNNaULvFI4hmMywoNV2WNCKiV6JLJcbMUAeGoCxrxvGnlYonTqobdXhU8KNBbDosmGtTYWt6k5kudxVOAovwpl/Gq7co/eXy6Vugzfpe/jurIP/9sr7y+WuzZnwfxue/3/eRZbL3TslnPBteCRN8hZ4UneETwlnH4Ir9zicBWfvL5eruAVbTRKsdemw6HLvL5drr4XS3Qhjbzvk/t77y+Uk83PNCGdY0DKcQfvwDFoA+GDORmQVVuNuZukDp2THYkE7fsIL2trGTvzXXxfj//vTl/j9B0vxxicr8dqbc/GLt+Yhv7QePp8fr3+4DPXNXaIv9ZFE3yQYcWFBq+2woNV2WNC++BgMavgv3j2tUNtrYG4qgLUuDfbKW3AUXwov6sncFx4ZkLAagbivwzMYJ/iX4sCNReEFWHcjC7Byj4YXYFXEw1qTAnNjZAFWd2QBlsEobEnYi8qgakaXem8MQcGYMQSHnzqGIF36AdnSIRTJF1AhJ6DemI8WpRbdSg8G1OkxhmAyw4JW22FBq508armcra8ZvqHGZ14u50ndAU/ylp8ul5vgT2RMuBR+xClh792N8KRsfewpYWnEIPy1ERUWtIyWPaqgrda145d/mY/+IQmKyYrfvb8kOvKgsa0X2w/FAGBB+yyEF7QA4PP5UV7TgqTMEiRmlKCoohFWmzP6cX8gIPDqnkz0TYIRFxa02g4LWm2HBe2jozdaIQ2PwNjXBbVTB1NLGSy67PDMw5KrcBacgTvrEDypO+BNXA//zeUIXp8HXJ7AopuYzxCMnQ//zeXwJm3AaOoOuLMPwVlwFvbSa7BVJ8HSkANTS1l4M3lfN6RhPfTG599GPt0L2p+OIUiNjiHIlHaOewxB2QNjCNrRpxpeijEEk/o9zoJW02FBq+1M3gza8S+Xs9RnwVqTEj4lfG+5XOF5OPNOwZVzBO7MAxhN2xVeLnd3Y3g0w60VCMQvQfD6VxNeLif3dwt/HUSFBS2jZfcK2tfenBs9UPnXL75DRn5V9HMKynR4f/YGvP3panw0fzNqGzsAsKB9FkIK2s7eoejc2c7eoSdmuhN9k2DEhQWttsOCVtt51Qtag16GPNAHpasZprZKWBryYa1Nhr0iHo7CyMiA9N3w3v0+/OOhsQtfyEme+wuwtkYWYJ0I/xhnxb0FWIVQ22sfWoA19c+P+ILWhX5VRqc6dgxBPAqks8ga1xiCHciV740hSI6OIehRBjGkPn9xrYWwoNV2WNBqO6/akrDHL5erfexyOVH/3Z0OYUHLEE02IQXtz16fhcq6tug/PynTneibBCMuLGi1HRa02s7LUNDqJTOkoSEYe9uhdtTB3FwEa31GeFlLSQyceSfhzjwAT8pW+O6sRSD+G4SuzZlYyXolsgDr9kp4kzaFRwbkHAn/aGR5HKy1yeEFWG2VULqaIA/0waCXMaJMjwVY481UFLT3xhC0KvWoj4whKJYvRcYQbHvqGIIc6UcUyRdQLiegXslDi1KLLqUHA6p2/3L9IsKCVtthQavtvGoFLfNsYUHLEE02IQWtzeGKji2wOVxPzHQn+ibBiAsLWm2HBa22M1UFrd5oDy9F6e+B0tUAU2s5LLqc8Ly70utwFp4Lz7hL2wlv0obwAqzr84GYmRMqWoPX5oaXlNz5Dp7UbZEFWKdhL7kCW1VieDt1dAFWJ6ThEehli/DXZaryIgraYZMDvdExBKWollNRIl9DnnRi3GMI8uXTY8YQVHAMwRSEBa22w4JW22FBq+2woGWIJpvwGbRrtp965PsdTjcWrDkwxVfz7ETfJBhxYUGr7bCg1XaeqaBVXDDoFciD/eF5cu3VMDcWwFqbCnvFTTiKLsKVcyy8SCR5C3wJ3yIQtxihK7MmeJp1NgJxi+G7vRqe5C0YzdgLV84xOIouwV5xE9baNJgbC6C2VUPpboE82A+DXsGIwnLvaRlfQfvwGIIslMnxKJTOIkva/wxjCK6gMjqGoJFjCASHBa22w4JW22FBq+2woGWIJpuwgrZv0ID80nr8/K15yC+t/0kuxqXj52/NE3V54yb6JsGICwtabYcFrfaily2QhoZh7OtEYKQF1tZSWOqzYKtKhL3kCpz5p+HOPAhP6jb47nwHf/yyiW9ojpmJ4PX58N9aEV6AlbYzvACr8Bzspddhq0mCRZcLU2s5lK5GyP09kEYM0Bvtwp+vVzn3CtpB1YIutQ+tangMQaWcOO4xBGnSVuTI4TEEFfJt1Ct5aFZq0aV0cwzBNA4LWm2HBa22w4JW22FByxBNNmEFbWG5Dp8u3oafvT4Lv3534U/y+w+W4uj5BFGXN26ibxKMuLCg1XZY0L6kURzhBVj9vVC6mmBqrYClIQ+2mmTYy+PgKIgswErbBW/SpvDIgNgFCMV8PrHTrNfmIBD/DXx31sKTshXuzANw5p2EvSQG9soEWOszYG4ugtpRB2NvO6ShIegls/jnS+OJjiFQW9AYHUNwHcXqKWSMZwyBYU90DEG1MX3MGAI9hlWn8MfHPHtY0Go7LGi1HRa02g4LWoZosgkfcTB7+S7RlzAhom8SjLiwoNV2WNCKjAsGgwppaADGnjao7bUwNxXCWpcOe8UtOIovwZV7Au7M/fAkb4UvYQ0CcV8jdPXLiZWsMV8gELsQ/turEErbAk/Gbrhyj8JReAH2inhYa1JgbsyHqa0KSncz5IFeGAxGjCgs4qZz7o0haFaqx4whODeuMQTphh3IlY+iODqGoAitSiN6VI4heFXDglbbYUGr7bCg1XZY0DJEk014QQsA7d2D0X8eNii4GJeO3JI6gVc0fqJvEoy4sKDVdljQTjx6oxXS8AiMfV1QO3UwtZTBosuGrToR9pKrcBacgTvrEDypO+BNXA//zeUIXp8HXP5sAkXrZwhenwd//DJ4E9fDk7od7qxDcOafgb3kKmxVd2DRZcPUXAq1UwdjX9cjF2BN1ZIwZuIZVC3ojo4hKAyPIZAuIUc6Mq4xBNnSQRTK5x8YQ2D2DmGQYwg0GRa02g4LWm2HBa22w4KWIZpswgvamJuZ+M17ixAIBGGxOvDbvy3BB3M24nfvL8HZaymiL++pRN8kGHFhQavtsKCNRHHCYDBCHuiF0t0MU1sVzI35sNakwF4RD0fhBbhyj2I0fTe8d7+H//YqBG4sQijmi4mdZr36JQJxX8OXsBqe5K1wZ+6DK/cEHMWXYK+4BWtdGsxNhVDba2DsaYM8NACDQcXIC9puz4J2+mRYdaBXHfnJGIJ86QQypF1PPQWbadiDfOkUyuQbY8YQtD1xDMH4loQxr2JY0Go7LGi1HRa02g4LWoZosgkvaN+csQrN7X0AgIs30vHR/M0IhULo6h3Gn//xrdiLGwfRNwlGXFjQajuvWkGrl8yQhoZg7G2H2lEHc3MRrPUZsFcmwF4SA2feSbgzD8CTshW+O2sRiP8GoWtzJjgy4HMEYxeEF2Dd3YjRtJ1w5RyGs+Ac7GWxsNXchaUhD6bWCijd4QVYBr0EvdEh/PliQTu1CY8h6IyOISiXbz7DGILtyJOOoliOQZV8d8wYggEMqdbnuh4WtNoNC1ptR0sFrdRnglI/AHNBC2xJVXDE5MF9+C7kNoPwaxMVFrTaDgtahmiyCS9oX3tzLkKhEABg7qq9OB+bCgAIBkN47c25Ii9tXETfJBhxYUGr7UzHglZvtEMaMUDu74HS1QBTazksuhzYapJgL70OZ+E5uLMPYTRtJ7xJG8ILsK7PB2JmTqhoDV6bg0D8UvjurIMndRvcmQfhzD8Fe0kMbFV3YK3PhLm5BGpHPYx9HeEFWPLLvQCLBe2LzZBqDY8hUHTQKeExBEXSZeRIR5BuGO8YgguokG+hTslFi1KLLqUbA6oyKdfLgla7YUGr7bwqBa3eYIfcqoda3gVrej3ssUVwnUqDZ3c8/OsuIbToOPDVkUfGVNIu/PpFhQWttsOCltEyfyCAn70+C6+9ORc/f2sefvPeIsz/dh8GhqVn/lqX4zOwcc/5n7z/QmzaI9//PO5d77/+cfYD+eus9S/k608W4QXtmzNWobWzHyMGBa+9MQd9gwYAQM+AHn/4+zLBV/d0om8SjLiwoNV2Jq2gVVww6BXIg/1QulugtlfD3FgAa20q7BU34Si6CFfOMYxm7IUneQt8Cd8iELcYoSuzJniadRYCNxbBd3sVvHc3YzR9D1y5x+AovPjAAiy1vRpKdwvkwX4Y9ApGlBczMuBlCwvaZ0t4DMFweAyBUjZmDMHJ8Y0hkHajQDqFUvkGqo1paFLK0R4ZQzDymDEEkxkWtNoNC1pt52UpaKUuI5TaXphzm2C/XQHn+WyMHrgD36YrCC49+djydWyCS0/Ct+kKRg/cgfNcFuy3K2DJaYLUZxL++ESFBa22w4KW0bJ7hafBaAIAuEe92LzvIr5avf+Zv9bjClr3qBcO54t5nh++3peF8IL2yq2saAu/dsdpAIDF6sB7n6/D/pNxgq/u6UTfJBhxYUGr7TytoNXLZkhDwzD2dUDtqIe5uQSW+izYqu7AXnIFzvxTcGcehCd1G3x3vkMgfimC1+ZOqGRFzGcIxs6H/+ZyeJM2YDR1B9zZh+AsOAt76TXYqpNgaciBqaUMSqcOxr5uSMN66BVum3/WsKD9afpVY3QMQZ2SEx1DkC0dGNcYglzpCIqlGFQZ70KnFKJVaUCPOoBBdfp9f7Kg1W5Y0Go706GgNQxaYGwagqmkHdaUGjiu5MN9NAXe7XEIrD4PLDj61PI1tOgY/GsvwrPrJlwn02C/Vghreh1M5Z2QW/XQG+zCn+vpGBa02g4LWkbLHlV4llQ14Z3P1gAAdC3deHfm2ujHxr59KT4DG3afw4dzN+HYhYQHClqD0YQ3Pl6BmoaOB07Q/vrdhYhNzMXCtQfx3ufrcPrK3ejXvplcgLc/XYM3Z6zCF0t3Qi//tIR9WkFb39yFD+duwl/+uRp//eI7VNS1AgB8Pj/WbD+FP//jW7w5YxVW/3ASox4vACAjvxJ/nbUe732+Dl8s3YmeAf1zP5+PI7ygBYCu3mHUNXUiEAgCAHz+AG4k5kbfBoCOniFRl/dEom8SjLiwoNVu9LIZgaYUuIvPw5V9ODIyYGNkZMBXEytZx7UAKz2yAKsWxp42SNEFWOKfG61EiwVteAxBP9qiYwiSUCRdRq50ePxjCKTzKDfeG0NQg061a9LGEExmWNBqNyxotZ3JLmj1kgNyhwS1sgeWrAbYb5bCeSYDnn234d9wGaGvT4zv9OuKM/BtvQ734btwXMqDLakK5oIWKPUD4ROwivjn8mUMC1pthwUtM9Vsiz6E9av3pzyP8nDh6XKPYs22U9h7IhbAkwvaq7ez8bv3l2BgWAZw/wTtqMeLj+Zvxt3MUgAPjjj4r78uxpHztwEAqtmG196YA5fbA5PFjtfenIthgwIA2LjnPLbsv/jU633Y+7M3IDmrDABwN7M0eq0Z+VWYu2ovQqEQgsEQ9h6PRW1jJ/SSiv94Z0H0J/6vJeRgxsKt43kZn8m0KGjH49fvLhR9CY8k+ibBiAsLWm3GVpmA4PV545vN+sACrF1w5RyGo+A87OVxsNUkP7QAqxcGvST88THjy6tY0N4fQ9AaHUNQKsU++xgCKRY1xjQ0KuVoV1rRp45AxBiCyQwLWu2GBa22M6GCVnlo8VZiJRyXwou3fFuvI7jizLjK19DXJ+DfcBmefbfhPJMB+81SWLIaoFb2QO6QoJfEL9J8VcOCVtthQctMNcvHvxWSR7lXeP7HOwvw63cX4l//OBvvfb4uWlg+raCdt2pf9GP3CtpVW0/g2IWE6PsfLmjbugaiH/vNe4swpDcCQPREKwAkZ5dh7qq9j73e3/5tCf7n/76JZs32UwDCJ2WDwfAuLFmx4N/+NAcAUNvYgT/8fRkKynTweH3Rr3crpRCLv/sx+rbH68O//GH2CxvJcA8L2gkSfZNgxIUFrbZirUlB4MaiaPkaKDgGV20iLPVZ4QVYnfcWYA2/9AuwmKfnZS1oB6JjCGqiYwgKpPORMQRbxz2GoNKYBJ1SiDalAd1qPwZVq/DHNpVhQavdsKDVdp5U0OoNdhhb9DCVd8KaXgf7tUK4TqbBs+sm/GsvIrTo2NML2AVHEVh9Ht7tcXAfS4XjSj6sKTUwlbTD2DQEw6Bl0h+jwSjDqG+BebAItt4E2DvOwNW6C96GVQjUzkKo+u8I1nyKQO1s+OsWwKv7Bp6GbzHatB7u5q1wteyGs+0AHO3HYO84C1vnZdi742DruwNrfxrMA7kwDRZDHaqCMqKDUd8G2dADSRqGwahAP43/e8KCVtthQctMtZBFRcisTHke5eETqf5AAEUVDfjd+0tgVC1PLWhX/3Ay+rHL8Rn4zXuL8Iu35uFWSmH0/Q8XtGMXkN17OxQK4cTlRHzy1RbMWLAFb3+6BnNW7Hns9bZ29kMxWaOxOVwAwidlZy7ZjhkLtuCj+Zvxr3+cHf21GfmV+GLpTvzHOwuwYfc5uNwenLmajA27zz3we/zq7a+ea0nak7CgnSDRNwlGXFjQaiCKC5aGPPjjl0WL2dGMvZAH+iZvSRjzUmS6FrSDjxhDUCxdRq50BOmG7eMYQ3AABdExBDlojo4hMAp/bNMpLGi1Gxa0Go3RBanLCHNdH4Ll7c+/eGvZKfi+v4rRg4lwXsiG/XYFzLlNUGr7IHUrGDFO8uJNxQFZ6oc6XAtLfxbs3dfhaDuM0ebv4dMtRrD6HwhVfzgNcq8EngV//Vfw6ZbA27AqUgJvgat116NL4N4EWPtSIyVwEdShSigj9TDqWyMl8BAMshF65flKYBa02g4LWkbLHjcy4IM5G5FVWI3Gtl68/ema6PtLqpoeKGjXbDsV/djl+Ax8uXw32rsH8du/LcFIZFzBeArazIJqvD97A+yRojUxo+SJBe2jRhyoZht+8dY8dPePAAD0kvpAQXuPxerAnBV7cD42FQlpRfj6u0PRj907Qet0jT7lmXs2LGgnSPRNghEXFrSvdszNJfDdXhUtZj2p22DsbY9+nAWttiOuoHWiTx1BuxIeQ1BjTIuOIciUdj91DEGGtAv50skxYwjK0K6GxxAMq/yx2PGGBa12w4L21YxhwAJj4xBMRW2wJlePWbx1A4FvzwMLxjF6YNFx+Nddgmd3PFyn0mCPLYI1vR5qedeULd4yGBUY9W0wDZbA2pcIW+cFuFr2wNO4Fv66L8dVjgZqP4NXtxTu5q1wtJ+ArecmzAO5UIdrnxrTUBnMg/mw9GfC2ncXtp5bsHdfh63zPBztp+BsOwxX6164W7ZjtHkTPI1r4dUth69+Mfx1cxGonTmlRXCw5h8I1H4Bf/18+HRfw9uwEqON6zHatBmulp1wtu6Do/0o7B1nYOu8DHffDQT0SbD2pcDSnw3zQCFMQxVQh+tg1LdANnRDkgZhMMrQK5N/2pmZ2rCgZbTsUYVnta4dv/zLfPQPSTAYTfjlX+bD5fYAALbsv/jEgvZeEXvmajK+XL4boVBoXAXt1dvZWLTuIADA5nBh7qq9j5wF+6SCtrN3CP/9t6/h9foQDIZw8HQ8fvb6LIx6vLhyKwvHLiQgFAohFAph/a6zuBCbBoPRhN+8tyh6TZfjMzBzyY4JPaePwoJ2gkTfJBhxYUH7akZtr4E3cX20mPUlfgelq+Enn8eCVtuZzII2PIagCy33xhAYbz3DGIJtyJUOo1i6jEr53hgCnSbHEExmWNBqNyxoX76EF28ZoFZ2w5Klgz2+FK7TGfDsvQX/+kvjXrwVWHkWvh9iETyREl68dTeyeEs3AEO/aQoeixOSNAhlpB7mgVzYu+PgaD8Gd/NWeHXfIFjzz3GUkh/BXz8PnsZ1cLXug63zAqx9d2EaKodR3zmNSkUX9IoZBqMESR6AbOiCUd8cKYHLYR4ogKU/G9a+ZNh6b8HeEwtb10XY20/D0XYYrtZ9cLfswGjz9/A0roO3YQV8usXw189DoPbzKT0p/KgS2NP43f0SuG3/mBL4Yvix9Cb8pARWRh5XAk/yqWsmGha0jJbdKzxfe3MuXntzLn7x1jz89YvvkJFfFf2cXUev4f3ZG7BgzQFcjEvHO5+FT9Q+qaANBIL45KstuHo7a1wFrclix4yFW/HuzLWYs3IP6pu78D//9010WdnD1/u4JWHrdpzBG5+sxIwFW1BW3YzPvt6Oj7/aDJPFjoVrD+JPH63AmzNWYcXmY3C5w6dks4tq8P7sDdHfe3BEfgHP7INY0E6Q6JsEIy4saF+tGHta4b37/f1iNmENTK0Vj/18FrTazkQK2vtjCBrCYwiMSSiWYp5pDEGhdA7l8s0xYwg60c8xBFMWFrTaDQvaaRbFDalXhVLXf3/x1sVcuA8lwbflGoLLx7l4a8lJ+DfGYHTfbTjPZMJ+swyWrEaoVb2QOyXo5fCiwwktCXva95ZihVHfBdNQebh47LoIZ+s+eBrXwV8/H6Hqj8ZRBn4Kn24J3E2bwz/+33MDlv5sKCN1kKRBvGoLGyeWeyWwDEkahGzojpTAdTANVcA8UBgpgVNg670Ne08snD2X4O89B0fbEThb98HVshOjTZvHlMBfw18/H4HaL6a2BK7+BwK1n48pgVfA07gOo83f3z8J3HYE9vbT4SK7Jxa23ttjSuCCMSeBmyEbuiDJA5ES2AyWwOGwoGWIJhsL2gkSfZNgxIUF7asRY18XRtN2RYtZ/60VMDcW4Gl/GGVBq+08uaAdO4agPDqGoEA69UxjCErk66iWU6NjCHrVYY4hmCZhQavdsKCd4udbb4OxeQSm0g5Y0yKLt06kwrMzHoE141y8tfAoAmvOw7sjDu7jKbBfLYA1pTa8eKt5GIah8f90wfMXtC5I8giUkUaYB/Jg67kJR8dJuFu2w6tbNu4f7ffXfQlP42q4WvbA3nkW1r5EmAZLYNS3wWBUhL9er3qefQatC3rF8lAJ3AJlpA7qcOVDJXAC7D03wqdoO87A0X4Uzrb9Y0rg7+BtWBkpgb8Kl8A1U1kCz4iUwPPg0y1+oAR2t+yAq3UfHG2HYW8/NaYEvgVrXzIs/VmRErgc6nAtlJFmGPX3SmDppSmBWdAyRJNNeEF7b4va0/zP/30zyVfyfETfJBhxYUH7ckce7Ic782C0mA3EfQ1LfRZGlPGdLmFBq+04fXb0mLsjYwhyUW68hULpPLKlg+MaQ5AjHUGRdBmVciJ0SiFaI2MIhjiG4KUIC1rthgXtC4zshNQtQ63pgSWnCfZb5XCey8Lo/gT4NsWMf/HW8tNjFm/lwJZQAXNeE5S6Pkg9CkaUF1f8PK6g1as2yIYeqENVsPanwdZ5Gc62gxht2gBf/UIEaz4ZVwHmq1+M0eZNcLYdhr37Giz9mVCHayFLfdArkz/DlnlypuuSML1iHVMC98Cob4UyUh8ugQeLYOnPgbUvdUwJfClSAh+Ds+0AXC074W7ajNHG9fA2rIJPtyRSAs8a5+iMF1wC182Dr34xvLrlkRJ4E9wt2+Fq3Rf+d6P9FGydF8LzjXtuwdp3N1wCD44tgZvCJbDUD4PRECmBJ3aCnAUtQzTZhBe0r705F0s3HkF2UQ18Pr/oy3lmom8SjLiwoH05Iw2PwJV7HIj5DLj8KYKxC2CruQu98dn+4sOC9tXOoGpDjzqA1sgYgirj3WcYQ7AFWdL+6BiCWjkLzUo1xxC8QmFBq92woB1/DAPm6OItW3I1HDH5cB9JhnfbDQRWnRv/4q3vLsGz+yZcp9Jhjy2GJUMXXrzVZoBempqfKjAYJRj1zbAOFSFouAt7xxm4WnbC27ASgdpZ4yqfArWz4G1YCVfLzvC80d7bMA8UwqhvhsEoCX+9mKdnuha0UxG9YoVBNkKShiIlcFu4BB6qhGmwCOaB3PD/nOhNgL07DrbOy7B3nL1fArfugrt5C0ab1sPT8O1DJfCnCFX/fYpK4E8QqJ0Jf93cMSXw2jEl8F442w7D0X4Kts7zsHdfi5bArpFseI3FMA2VjSmBOyFL/ZBkA/RGEzhG5NUO0WQTXtDWNHRg55Gr+NNHK/Bf/7sYW/ZfRG1jB0KhkOhLGxfRNwlGXFjQvlwxGIxwFpxD6Mrn4WL22lzYK25CLz/fQgwWtC977o0haEOTUo5qYxpK5RvjHkOQJe9GgXzi/hgCYyna1Rb0qiMcQ6CBsKDVbljQRp4H2QG5zQC1ohuWTB3sN4rhOpUOz55b8H93GaHFx8e3eGvVWXi3xcJ9OBmOy5HFW4WtMDYMwjBgnprHotghS31Qh2th6c+EvfsanG2HMdq8Cb76xQhWz3h66VPzCXz1CzHatAHOtoOwdV6GtT8N6lAVZEMP9KpN+GvGTDxaLminInrVCoNRgSQNjymBdVCHqmAaLIZ5ICdcAvfdGVMCnxtzEng33M1boyWwV/cN/HULEKidHSmBnz7H+YWUwDWfIFD7Gfx1cyIl8DJ4GtdgtGkj3M3bIiXwITg6TsI+tgTuvQtLfybMA3kwDZVGSuBGGA0dkKU+SLKeJbDgEE024QXtPaFQCI2tPdh/Mg5vzViFN2eswuFztzCkN4q+tCcSfZNgxIUF7csRg0GFveQKQle/BC5/itCV2bCXxMBgUCf0dVnQTv8MqAo61S60KLWoU3JRId9CoXxhXGMI0qTwGIJi6RIq5UTUGwvRqtajW+3DoGqZ0JIw5uUPC1rtRhMFreKG1KuEF2/lN8N2pxLOCzkY/TERvs3XEFx+epyLt07AtzEGo/sS4DybBfutMliyG6FW90DulDAiT03JYDAqMOrbYBosgbUvEfbOO0egnwAAIABJREFUs3C17IGncTX8dV+O8/TrTHh1yzDasg2BvjOw9dyEeSAPykgjJHkEL8P8TGbiYUH78kev2sIlsPxwCVwN02AJzAM5sPSnh+8VPfGwdcVESuDj8HT8CF/H3kgJvAGexm/hbfgGvvqFkRL4n1NYAn88pgReNKYE3jCmBP4Rjo4TsHeei5TAN2HtTYKlP2NMCVwzpgTuhSTrYTCaOFLlMSGabNOmoL2nqb0XB0/H49fvLsTv3l+Cf//zfKzZdgpWu1P0pT2S6JsEIy4saKd39LIF9oqbCF6bGylmP4ez4BwMevmFfH0WtOIzpFqjYwgalKLwGAI5BnnS0WcaQ1Amx48ZQ9CBfvXp3yMsaLUdFrTazatQ0BqGrDC2RBZvpdbCfq0AruOp8O6IR2DNBWDh0XEu3roA7454uI6nwn6tANbUWphKO2BsGYFheKpOjDohSYNQRupg6c+GvecGHO3H4G7aDJ9uSeTU3NPKjo/gr58PT+M6OFv3wdZ1Eda+ZJiGymHUd0Gv3J8N/vxLwphXISxotZ3xzqDVK3YYjGq4BJZ6YTS0QxluGFMC54ZL4N4xJXDnWTjaT8DZ9uOYk8Ab4GlcDa9uKXz1C+Gv/XJKTwKHqj+KlMBfwle/EF7dUngaV0dK4B/gatkTLoHbwyWwretKpAROhKU/PVwCD5ZAHaqGMtwAo6E9UgKPwGBUX8oSmGiyTYuCdnBExvFLiXjnszV47c25WP79UeSX1iMQCMJksWPJ+kNYuPbgpF5DKBTCj2du4u1PV+PtT1djw+5zcI96o9c3a9ku/Od7i/Dh3E2obeyM/jrRNwlGXFjQTs/ojXbYau4iGLsgvAAs5jO4co5BGh55ob8PC9rJz7DqRJ+qR0d0DEE6SuUbyJdOIdOw56kFbIa0E3nS/TEEDdExBMMYNk1sDAELWm2HBa12M+0LWtkJuVOCWt0DS3Yj7LfK4DybidF9CfBtjEFoyYnxL97afA2jP0YWb92phDm/+f9n7z2/ozjXfO337zhf3u979hmvmb3fPTPnnDneceyxx3vvsbGxARsMxoBJxjbBBJMxwdjknASIIJKQQEgIBSQhlHPOqburuqpbnXPX9X7opkGWMCJIJajnXutai1arW09XddcSl37PfaNU9SB1KZiUcTreyiBWcxu2/vs4utNwtp3A27SDQN0KwtWfjUpURCs+IlizEF/DOtwt+3B1XGSw5w6KqRpJ6uNptgsLQWtshKA1NhNpSNhDCWyKS+BWFFPdIxI4l8GeTBxdqTg7L+FsP4Or7Rju1gcSeBu+hg1xCbzsoQSu+pRI5VSiFe+PmwSOVkwhXBmXwLULH5HA6/E2bsXT/GNcAh+NyezOFBzdDyRwzkMJbKp5RAIPYLEqL7y9jChRY126C9qP5m3gV69P54PP13Hu2p0Rk7KDDjev/WnmmK4jM6+USbPX4vMHiUSiLFi1m4NJ1wH4ZNEWTqVkEolEKSip4/V3FxMKR4AJ/Au6YMwRgnaCoXhwVGcRuTg/JmaTpuDL+hG5r2dMfp4QtC+GXlWhXemgIdGG4MpTtiHYTaH8oA1BPk1KNe1qN33q2PYuFILW2AhBa1z0FrSWXjvW2j7sd5twppXhTsrFtzud4MbzRL4+OrrWA1/sJ/xtEoFtl2ODty4UMpj1yOAtefz6aEvSAMpALfbeO7g6U3C3HMDXsJ5gzSIilVNH9R/8cNWnBOqW423chqvtKI7u1Hj6tRmLVXmh6xWC1tgIQWtsJpKgHS+GSeCBWtSBikck8K3hErhlJAm8dJgEHh8B/OAPdVOIVE4nXP05wZqFBGq/iUvgdXibvsfTvDP2B7zWo7Hexh0XcXZfw9GTEZfABaj95WPqo0SJggkgaHceukhHj+kXvyca1SgoqRvTdew/lcqmXacTt89eyeardftR7U5+++YcwpFI4r73PvuO0qpmQAhaIyME7UTBi70un/ClLxNi1p+xBWt3+5j+XCFoR8fDNgR1sTYEchqF8pl4G4LNo2hDsIO70tFEG4J6peyRNgT69fwTgtbYCEFrXMZS0Jql+OCt++04MqtxnY8P3tp6ifCKU2jzRjF4a84eIl8fI7jxAr496bhP5+FML8dW0Iy1rn/cBm89QLZ0oPaX4ei+gbPtFJ7mnfjrVxKu/nx0/6kun0yo+gv8Dd/had6NqyOZwZ4s1IFKZKl73M+/ELTGxiiC1izHsfixmP1YTDGkAT9Svx+pL4bc60fu8SN3B7B2BrB2BbB2xFDaAiitcVoCqM0B1KYgamMMW0MQW30QW10Qe00Qe20Qe3WMwcoQgxUxHOUhHGUhHKUhHCUhnCUhnPdDOItDOO+FcRWGcRWFcRWEcd0N4cqLkxvCnRPCfSeMOzuMJzuM53YYT1YYT2YY760w3owYvhthfOkRfGkx/Ncj+FMj+K9F8F+NELgaIXAlQvhqFJ/TWIJ2PLBYbUiyGVnqfpgEHqjE1n/vkSTwdZydl3B1JA9NAjdtx9ew8ZEk8GJC1fMIV80cEwksStRYly6C9uyV7FEzXlVe08J/fbwCu8NFIBhizrIfuHzjLpV1bfxtxqoh3/vVuv1cTMsDhKA1MkLQ6o+t6T6hq0sTYjZ4fTVKe8O4/OyJIGjNNv0x2Tx028y0qc3UKyVUWG9RbL1AvnyYLOnJbQiypC3kyvu5JydTZr1JnXKPVqWBbtsAJrtL99f3OMIRDeugX/d1CPRB08AyAdahFxPl+qMHFntc0D/tY1UvcpeCWtXNYF49rmslscFbP6YS+u4s0cWHRpd+XXiQ8JrT+HdexXPsNq4r9xnMqUet7ETukDFbPeN2LCSrBcVcz2BfHq6uy7hbD+Fr3ESw9hsilR+P6j+7kcrpBOqW4mvcEtu+2nUFe99dFEsDkiLpfr5/jjUuaPVexyuH4sOi+LBY40h+JIsfyRzH5Ece8CP36ysGvWURIlXacDGYP7ZiMHA5SvBSlGBKlODFGKHzUULnooSSY4TPRgmf0Qif1ogkxTmlETmpET2hET2uET0WQzsC2mHQDgGHgIOC0eKzCUH7MmJ+ogTOwtGVhrPzclwCH8fdehBP866EBPY1rBudWHpFKxyJ8KvXp/PrP8wYRll1LLx4NaMg8f3/9s4X9A5Iw56nvqWLNz5a+szreN7HT/TSRdD+98zVo2Y8a/2PSbz2p5n85o3ZTF/8PaFQmHvl9UyeM/TDuGrrMZJSMoFY71qBQDDOSM1wY1VCzJK+Cky1+q9rHAmGo2ga40og4kUKNNPiyqHElkSu9acnCtgMaR35ym5KbKepc6TT6SnC7G9gMGgiGPWN+2t4UQBo6L8OgY7nfwKsQy/0uP5MJEY8/54AWp8CtV2QV4d2+R7akUzYfglWnBjd4K15++DbU7DjMtqxLLSrxZBfB3XdaP0qmj80fq8zGkbzm8FVB0oOmC4S7dpHtHktWt18tIrJTxawFR+g1c0j2vwd0c69RAfOg3IHnLVoPlPsZ0yA86mFQQuBFgQtAJoPNC9oHtDcoLlAc4LmiMEgaDbQVNAU0KygyaBJoJlBM4E2AAwA/UAf0Av0AN1AF9AJdADtQBvQCjQDTUAj0ADUA3VALVADVANVQCVQAVoZaKWglYBWDNo90IpAKwStALS7oOWDlgdaLmg5oN0BLRu026BlxskA7SZoN0BLBy0NtOugpQKpwDXgKnAFuAxcAi7GOQ+cA5KBs8AZ4DSQBJwCTgIngOPAMeAougs2wSg5Ej9fx+OcjJ/TpPg5PhM/58nE3gPngQvE3hcpxN4nV+JcI/Zeug7adQ0tTUNL19BuaGg3NbQMDe2WhpapoWVpaLc1tDtxcjW0PA0tX0O7q6EVaGiFGlqRhnZPQyvW0O5raCUaWpkG5cQ+I5XEPjM1xD5DdcQ+Uw3EPmNNxD5zLcQ+f23EPo+dcbqJfWZ7iX2G+4EB0Pv3f4G+GLkeCFqL1Tbi/Zqm8e9/X5i4/ThBG45EsDtcz7WO53n8RC/dWxxMlLqQmsPsb3bg9QWIRKJs3n2W73acoKq+jXemrxzyvUvW7uNSej4gErRGRiRoxx9rVwuBmxsTYjZ85Svs9YW6rGUiJGjHkgGbiza1lWprPvfkZLKlnb+Qgt1BvnSU+/JFKuQs6pVS2tRWulVJ99cxVogWB8ZG00SLAyNhfjB4q6wTR3Yd3CjDcySLwPYrhFefRltwcJSDt44QWpeMf9d13CdzcKaWYs9vjA/eUsdt8JZJ9WGRrVjNzdj6CnB2X8PVegxv41YCdd8Qqfx0dO0HSj8hUrKE0P3NBIqOECy4SuBuIf7cJrzZVjyZoURS0Hvzl9OCgZHSgvGkYPDCE9KCpx+fFtSOaom0oO7CS/BEtMPEztfReNrzeJwTsXMbORU71+Gk2LkPn4kSTo6/N87F3ycX4u+blBiBS1ECl+PvrauxZKr/Wuy950uLxN6T6RF8NyJ4b8bfr7dieDLjydfbMXw5EcIFGu6cRxKz+aHY1voHidqiMM574dgW/Pux9K2jJJ7ELQsxWB6KJXUrQwxWhWLp3ZqHaV5bXTzh2xBEbYgnf5uCqM2xRLDSGksJW9vjqeHOGHJXALk7EEsW9/qReuOtCPpjrQkspni7Aosfs+SPtTCw6n99fZkwYg9awVCMXE8StAtW7eZXr0/nnekrMcs2/u2dL0i+eod3PvmWf//7Qg6fSQOGJmCjUY1dRy/z1rTlvP3xCpZtOoTbEzvO//wfszlyNp3Z3+zg75+u4szl2yM+fsOPSfzHh9/wp/eX8O2WI0Nak76MNSEEbXN7Lxk5JVzNKBjGeNWClbtISc9L3K5uaOeNj5Zid7j45/+Yjc8fTNz35pSlVNW3AULQGhkhaMcPuacTf+b2hJiNpCxisOYOJkW/HqSvmqDtVHupV0oolVPJlQ6MKGJvWTaRLx2lXL5Jk1JDp9LPgM2l+9r1QAhaYyME7auFpceGUtOLPb8R5/Uy3Kdy8e1OI7j+HJGvRjl4a/4BwitPEdh+Ge+hTFwp9xi8XYNa2oHcMn6DtywmP3KPF1tbP876WjzVOfgrLxIo20+oZD2RkgVEyz56soAtnYRWNActdxVa5i60tLNwOQvOVcGpPjgc1F3mjbkYPKEROfFQCkZOa0TOaGjJED77UBY/EIPBC49I5UtxMXjloXx+IAX91x9K6mFiMCMuBTPjUjA7tk3efSeMOyeMO/cRMXg3FNteX/hwu72zOC4GfyYFHeUPt+4PVoaw/0wM2mrjUrA+iK3xUSkYRG15pGXA48RgT6zlwIPepMOkYEIM+jDL+n/mnxWj9KAVjIwQtILxrv+37jT/o/bUuDNSPUnQ2h0uXvvzrMTtf3vnCzb+dJpoVKOr18xrf5qJzx8cIlhv3inh75+uwuvzo2kaS9buZ+ehiwD87q25/HAw9m/boIvfvjkHyWof8vjbd8t5Z/pKgsEQgWCId6av5Oadkhd2/PUo3QXtjoMX+Iffz+D37y3mjY+WDmO86qcjl1i4enfCuO86epkFK3cBMHPJNg4mXScSiZKeXcxfJn9NJBIFhKA1MkLQjj1Sfy/e7N2QNDUmZi/Mw1F5E7N1/CZMP46XWdD2qFaalRoqrBnclU+QKW0ZUcjmSHu4b71MnVJMh9rNgI5DuSYaQtAaGyFoXx7MFhdykzk2eOtWNa5zBXgPZRDYmvJ0g7e+OUZw0wV8+26gXSrC8ejgrb7nH7xlscTElrUzJsJsDbGemI6y+CCc/BCe2zGBF0h3EUzvIpJWRjT9FtGbSWhZO9HyvkW7Nxut7L0nC9j7U9EKFqPd2YR28zBcuwIpBXCmGe2UQuRUhPDZmGwMXI2JRO+tmChMiMER0oKPFYPxxOCDXp/22hHSgg/EYPPwtKDS9rDHqLVrhLTgSGLQFJeCFn9i6NHznicxJMzYCEFrbISgFYx3/T8VB3RhpHogaF/786whPHB2IwnaxtbuxO1/eXse/WbrEMG6bNMhTl68lfiee+X1vDtrDRATtM3tvYn7pi3YTGZe6bAetIFgKPHv73acSCR1X9bSXdD+/r3FdPdZ9F4GHq+f5ZsPJ8TwnGU/YJZjfx0YsCh8smgL//L2PCbNXktDS3ficXpfJAT6IQTt2CGZLHhyD8HpaZA0hei5z3CWXsVsdei+tge8LIK2X3XSqrRSY82nSE7mtvTDY9sUFMlnqbbm0aq00K9OnGM9ERGC1tgIQTtBsHqROqwolV3Yc+pxXSnBczwb/85rPM3greiig4TWnMG/8xqe49m4rpQweKcepaILqd2Kyfrwj1NmW+z8J9agPEit+rF2xIYR2Wpjw4YcJSFcRWHcOSE8mWF8N2Lbq4MXY6nLyKlYWnNImvNQFI6pcKY5JkxTr6LdPIKWvQmt4Eu0kmlPlq9l7xG9/xmRwuWEC34gmH+K4N0b+ApL8BZ34iwdxF4VwlYfRGmJpSCl3ljKUfdzOsERgtbYCEFrbISgFYx3WUJezDowUj1LgvbRHrQPbj8qWGd/s4PUzKLE9zS0dPP79xYDMUE7YFES981d/iMX0/KGPN7h8rBq6zEmzV7L5Lnr+fe/L+Rg0vVnPNoTo3QXtH+bsUrvJTxX6X2REOiHELQvHotZwV1wEu30dEiagnb2U1z3zmGWnj+d9KKZmILWG29VcJ8S+Qo58j4ypPXDZGymtJl86XisVYFaTY8qT4C1v1wIQWtshKAdHyx9g1jr+7EVtuC4UYH7TB6+vTcIbrxAZOlxmPPkwVvavH2El58ksOUS3gM3cSXfxXGrCltxG0qtBbnL8/jUat7D1Kr/eoTA5Qih81FIhugJLTYB/Wm30x8Owqn+WKuAy1loacmxFgK5q9HuzUErm/Tk3q/lHxKuWECgei3eur14Ws/j6LqNOlCJJPVgUvTfZfKqIgStsRGC1tgIQSswco2FoF2x+QinUjIT31NUVs97n30HxARtfUtX4r4P520gM69syOM37TrNqq3HErvgV209JgTt89bm3WfJu1et9zKeufS+SAj0QwjaF4dZsuO6dw7t7KcxMXt6Ou6Ck1jMiu5rexwTQdD2qBJNajXl8k3uSse4Zdk8Qjp2PTnyPkrkK9QrJXSqvZhEq4LnRghaYyME7fNjltzIrRJqaSeDt2txpdzDcySTwI4rhFcloc0/8AstB/bDF0dh4Wm0FVeJfJ9DcG8ZgWNN+JN78V+24k114k3340t/JLWaHEutake1F9K39EHv0ujx2NCi0Pkowas2ghktBHMLCd69RuDeYUIlmwmXfUW07ONRDd+KVM4gUPsN3satuFqP4uy6iq2vAKu5CYtV/EFNT4SgNTZC0BobIWgFRq4nCVqX28uv/zADry8AjE7QZuaV8e6sNXh9ASKRKItW72HP8StATNBu3n0WgN4BmX/6y2coNseQxy9es5eTF2ItEjq6B/jTB18leti+rKW7oP12yxF+88Zs/nvmauYs28nc5T8OYaKX3hcJgX4IQfv8mK0OnKVXiZ77LDYA7PQ0PLmHkEwW3df2JMZb0ParDlqVFqqVXIrks2RJO0ZsVXBb+oEi+RzV1nzalFb6Vafux+pVRAhaYyME7RNQfEjdKkp1fPBWainukzn4dqcR2nCJ6LJzsCgZllyCpWmwPBNW5sLqIlhbBhtqYVMz2rYutJ8sRPcNEj3oRTsUgoMvUK4egcgpjXDy0F6rnszYQCZXQRhnSbx3ak0QtcmLvbUHzLU422/hbDuDp/kn/PWrCFXPI1r+wSjSrx8Qqp6Hv34VnuafcLafYbDnFmp/ObLUhVkx5uDFlwUhaI2NELTGRghagZHrgaD99R9mDONB39dZX2/nX96eR21jx6gEraZp7Dtxlbc/XsFb05azetvxhOD93VtzOXbuJv89czV/nLSE5Kt3AIY8vqq+jTc+WspfZ6xk5fdHuX23nN++OYc7BZXjeWheaOkuaLftO8fOQxcfy0QvvS8SAv0QgvbZMVvdOCpuELkwLyZmk6biy96F1N+r+9pGy1gK2gHVS4faTZ1SzH3rZXKkPSPK2ExpM3fl45RbM2hWaulVVd2Pi1EQgtbYGFHQmq0Pe60qzV4c92y4b5nxXeolcLKD0ME2wrtaiW5vRfu+Hbb1wA8W+MkGu92wLwgHeLGp1dOx1GrgchT/9QjejNjUe1derEWBoyw2lMrWEO+12hVA6osNjhrpNVqsMlZzE/a+ApxdV3G1HsXb9D2B2m+IVM4YZfr1Y4K1S/A1bsbVcghn52XsffkopnokeeL/8VHwywhBa2yEoDU2QtAKRI1f/e6tuY9N677KpbugfdlL74uEQD+EoH0GFC+DNXeIpCyMi9kp+G9tQ+7p1H9tT8mLFLTdqoVGpYoy+QZ3paPcsmwasVVBrrSfEvka9UopnUqf7sfAyAhBa2xeNkFrscQm3Fu7Aigtj/RaLX2k12p2vNfqtQjBCyHCSQGix4Joh8MvNrV6OErkRJTw2SjBlBFSq4WPpFZrg6hNQaztAeQePxaTH7P1GY+D4kaSelAHKhnsuY2r8zzu5t34G74jVDOfaMWHoxCwkwhXf47WvBpP806cbadwdN9AHShFtnRgFsMVX3mEoDU2QtAaGyFoBaLGr4Sg1bE6e838dOQSyzYeYvGavew8dJH2rgG9lzWq0vsiIdAPIWifBi/2hgLCV75KiNnAjQ1YO5smwNqejWcVtH2qgxaliSolh0L5DLel7SOmY7OlH7knnadGuUub2saATWx7nUgIQWtsxkvQmmUf0kA8tdoWQG0KYq8JMlgRwlkSwlUQk5qezDC+tAiBeK/V8INeq0d4YWKV/RHY44NdDvjRGms9sGeA8IEBgsdN+M9Z8F5XceU4GKzwx1KrrQGsnb+cWn1RWKwqVksrtr4iHF3XcbUdx9u0nUDdMsJVs9DK3xtF+nUqwZpF+BrW4245gKszBXtvDoqpBkkawKR6Mdti51/v96BAH4SgNTZC0BobIWgFosavhKDVqbILKviH389gyhcbWbX1GKu2HuPDeRv4xz/OpLSqWe/lPbH0vkgI9EMI2tFhay4jdG1FQsyGUr9Faa/VfV3Py2gE7YDqoV3totZ6j2I5hRxp92NaFWyhQD5JhZxJs1JHr2rT/fUJfhkhaI3NaAStxexH6vVj7YynVuuD2KtCOEpDuIriqdXbYbw3w/hTIwQuRQmdixJO0oge19AO8+Lk6oEQ2l5vrN3AD5ZY+4EtbbCxAdZVwnclsOourMiGZTfRVt0gtDkT/54cPCeLcKZWYM9vRKnpRerW4/rkQZL6UUzV2HtzcHVcxN2yD1/DeoK1C4lWfDSK9Ot7hKs+I1C3HG/TDpxtx3F0pWHrL8ZqacWs2Ee1FiFojY0QtMZGCFpjIwStQJSosS7dBe1fZ6wkM6902NfTbxczec46HVb0dKX3RUKgH0LQ/jJKewPB66sfitkrS7E1Fuu+rhfFSIK2WzXToFRSJqeTLx/hlmXjCEJ2A3nSQUrlVBqUcjrVAd1fi+DpEYL21SWRWu0OxFKrjY+kVu/HUqtaEXhv/Sy1ejZK5OSLTa1qh4b2Wg1eCBE47yWQPEgwSSJ4pJvw3kYi20rRvsuBb67HBm8tSob5J2DeIZizBz5/iLbgIOFVSQS2X8FzJAvXpWIGb9eilnUit0mYZc/4H3PFgWxpx9Z/H0f3DZxtJ/E07SBQ922spUD5pCcP36r4iFDNfPz1a3G37MXVeZ7BnmzUgSokuReT+mJelxC0xkYIWmMjBK2xEYJWIErUWJfugvY3b8wmHIkM+3ooHOG3b87RYUVPV3pfJAT6IQTtyFi72/Hf3JwQs+FLX2Kvy8OkenVf24vEE/TROdhElXKHQimJLGnriOnYO9JPFMsXqVUKaFPbGbC5dV+74PkRgnYCosRTq31Pn1qNxFOrHOLFydWjGpFTGqHkKMGLUfxDeq2GcBWGcZSEGKwIYasNYqvxYi+x4sjtwplWi+tsId4DNwlsSSGy/ATavH1DROuIzNlLZNlxgpsu4tt3E9fZfBw3KrEVtWBtGMDSr0ePVC+SbEYx1WHvzcXZeRl360F8jZsI1nxJpHLaqIZvhSs/JVD3Dd7Grbhaj+HsvoatrxCruRmLbB231yMErbERgtbYCEFrbISgFYgSNdalu6B9a9pyahs7hn29prGDN6cs02FFT1d6XyQE+iEE7VDk3m58WT8kxGzk4nwc1ZmYlJdfSA6obtqVTmqVQorli9x5bKuC7ymUTlEpZ9GiNNCnjm7LrODlQwjaF8uIqdXaoalV953w+KVWTzxMrQauRPBfj+DNCOO5HZO81ICjLIS9Ojis16p5pF6rsgepXUat6GTwTj2uK/fxHLuN/4erhNacRlt48Mny9fM9RBcfIvTdWfw/puI5kY3zagn23HqUym6kDgWTMv5/CDMrLmRLJ2p/GYM9t3C2n8bT/CP++lWEqucSrfjgyenX8smEqr/AX78aT/MuXB3JDPZkog5UIEtdmJWJ04NbCFpjIwStsRGC1tgIQSsQJWqsS3dBm3z1Dv/69jy27DlLSnoeF9Py2Lz7DL97ay5Hzqbrvbwnlt4XCYF+CEEbQ+rvx5uzF05PhaQpRM99jrP8OmbFqfvanpVu1USjUkGZNY08+TAZ0vBWBbekjdyVD1FmTaNRqaBLtCowFELQxvlZalWNp1YHR5NaPf3iU6vRY/HU6rkowZR4avXGI6nVonhqtTKWWlWbglg7Asg9fiwmPyZldK/75z1oLb12rLV92AqacaaX4z6dh29POsGNF4h8fWxYm4GR0ObtJ7ziFIGtl/AeuoXrfAGOzGrU++3ITWbMFn0kpcUqYzU3YO+9i7PrKq7WI3gbtxCs/ZpI5fRRpV8jlZ8QrF2Ct3ELrpbDOLsuY+/NRzE1YLFa9H8fPwVC0BobIWiNjRC0xkYIWoEoUWNdugtagMy8Mj5f+gP/OXUZf/rgK2Yu2cb1rCK9lzWq0vsYyQ52AAAgAElEQVQiIdAPowtai1nGk38E7czHMTGbPBNXSQpmeVD3tT0NfaqdFqWBSvk2hdIpMqXvH9OqYHe8VUEh7UonvlDoiUPCBK8ur4KgNcs+pP5HUqsN8dRqeQhncQjX3RDu7HhqNT1C4Eo8tXpmDFKrh+Op1TMPU6u+tFhq1Z0dxpUfwlkcxlEeT602PpJa7X9MavWFHSc3crMF9X47g1k1uC4Uop3MJrDtEuFvk9C+2D+q9Gvkq6MEN5zHtzsdd1IuzrQy7HebsNb2YenVKW2vuJGlHtSBSgZ7snB1nMPTvBt/wxpCNV8QLf9wFL1f3ydcNQd//Uo8zTtxtiXh6L6J2l+KbOnErL68f6wb8f0gBK2hEYLW2AhBa2yEoBWIEjXWNSEE7Whq6YaDei9hxNL7IiHQD6MKWotFxV2YhHZmOiRNQTszA3dhEhaLqvvankSsVUEHtUoBxfJFsqVdI8rYLGkrhdJpqpQ7tKiN9KvD+zaONCRMYBx0FbSKD4vJj9zrx9oRQG2Op1YrQzhKYr1NXbmx1KrvRhj/tQjBS1FCyfHU6rExSK0mPZJavRZPrWaFcef+LLVaF0RtjqdWe58utTpWx1LqUlCqerDnNeC8VornxB38P6USWptM9MvDo5Kv2oIDhFefxr/jCp6jWbguFzN4uw61rEu3wVsm1YfFqmA1N2PrK8LRlYqr7Sjexm0E6pYRrvp0lOnXqQRrFuNr2IC79QDOzkvYe3NRBmqR5AFetf7iT0IIWmMjBK2xEYLW2AhBKxAlaqzrpRG0v3trrt5LGLH0vkgI9MNogtYs23Hdv4iWPDMuZj/Gk38Ui1nWfW2Po0sdoEEpp1S+Tp50kAxpw/BWBZaN5MtHKJPTaVAq6VbNo3puIWiNzbMKWrMUT612BVBa46nVmiCOB6nV/HhqNSPea/VKhOCFKOEzGpETGtphxia1euGR1OqtR1OroVhqtSaIGk+tyl3x1Ko08RPEln4H1kYTtnutOG5W4krOx7v/JsHNKUSWnYC5e58sYOfuJbLsBMHNKfj238CVnA/5ddh1Hbzlw6R6kKQ+FFMVgz13cHVcxN2yD1/DOoI1C4lWTBmFgJ1EuPozAnUr8DbtwNl2Akd3Grb++1jNbZiVl2tHxHggBK2xEYLW2AhBa2yEoBUYvTRN4+SFW7z98Qpe+9NM/vdfF7Bw9W66+yxPfGxzey9vfLR0HFb5cpcQtM9Zel8kBPphFEFrVpw4y1OJnpsdGwB2eirenL1I/f26r+1R+lQ7zUo9FXImBfJJMqUtI6Zjc6Td3JcvUWu9R7vaxYD6bMk2IWiNTcSs4WgIPUytFsV6nHqywvhuRB6mVs9FiSTFU6svSKwO67V66Qm9Vh9NrT7otToBjuFzI3uQ2yTUsi4Gs+twXS7GczQL/44rhFafRltwYHSDt748TGhtMv6fUvGcuIPzWin2vAaUqh6kzpEHb/28B+1YYFYGsZrbsPXfx9GdjrPtBN6mHQTqVhCu/gytfNIo2g9MIVSzAF/9Wtwt+3B1XmCw5w6KqQpJ6sP0jNc/IyMErbERgtbYCEFrbISgFRi9tu47xxsfLaW4vAGP149ktbPz0EX+738vwu355eMjBO3oSgja5yy9LxIC/XjlBa3ixlGVSeTiFzExmzQFX9YPyL3duq9twOaiTW2jRrnLPfkC2dKPI8rY29J2iuQzVCk5tCjN9L3AXohC0BoLqc+PoyyE/3rkuXqvPja1Otpeqy9BavVF8WDwlv1uE860MtxJufh2pxPccJ7I10dH13pg3n7C354isO3B4K1CBjNrYoO3mi2YZfczre35Ba0XSTahDNRi783F2XkJd+sBfA0bCdYsJlI5dVTtB8JVnxKoW4q3cRuutqM4ulOx9RVhNTdjsSq6n8NXESFojY0QtMZGCFpjIwStwMil2p384x9n0tzeO+y+PpOc+Hd1QzvvzlrDGx8t5Z1PvqWkqgmICdo3pyxl275z/HHSEt6csjRxXzSqsevoZd6atpy3P17Bsk2HEsL3d2/N5XxqDnOX/8jbH6/g8Jm0cXi1+pUQtM9Zel8kBPrx6gpaL4O1eYRTFifEbODmZqzd7bqtqUvpp14po0S+Rq50gFsjtirYxF3pKGXyTRqVKrrVsZ0MLgTtq4/aEMSdHSaUHB0uWs9CIPVJvVYDD3utmo0jVkeDWXo4eMuRWY3rfAHeQ7cIbL1EeMUptHmjGLw1Zw+Rr48R3Hge35503KfzcKaXj8vgrScJWrPqRLZ0ovaX4ujJwNmWhKd5J/76VYSr5hCteP/J6dfyyYSqv8DfsAZP825cHckM9mShDlQiS92YFZfu59GICEFrbISgNTZC0BobIWgF4103l4VI/2r8GanuVzTyn1OXPXHNf5uxivTbxQCkZd3jrWnLgZig/Z9//JSrGQUAXLtVyJtTYs93804Jf/90FV6fH03TWLJ2PzsPXQTg3975gj3HrwAxSfzan2bi9QWe78BO4BKC9jlL74uEQD9eRUFraywmdPWbhJgNXl+N0t4wrmvoVVWalFrKrbcokE+QKW0eIR27nlxpLyXyZeqUYjrUHgbGeVCNELSvHnKPH0dJCP+14SlZ7TAErkZw3g8hdwf0HRI20VG8SB0KSlU39tx6nFdL8JzIxv9jKqHvzhJdfGh06deFBwmtOY1/x1U8R2/junKfwTv1qOWdSO0yJp0Gb5lUH1rIgWJqwN6bj7PrCq6Ww3gbtxCs/YpI5SejHL41nWDtV3gbt+BqPYKz6wr23rtYzQ1YrJL+51EwIkLQGhshaI2NELTGRghawXjXpVkhXRip0m8XM23BpsRtt8fHv/99YYKU9DwAQqEw0agGgKwM8o9/nAnEBO1v3piduC8UCvOr16djd7hYtukQJy/eSjz3vfJ63p21BogJ2kdTu//y9jz6zdYXd5AnWAlB+5yl90VCoB+vkqBVWyoJXl+VELOha8uxNZeN+c+NtSpopdp6lyL5HNnSzse0KthBkXyWamserUoL/apeQ3keIgTty49Z9mGrD+K5HSZ8eniP2PAZDXd2GFtDELM89LFGFrSWfgfWhgFsRS04blTiOpuPb99NgpsuEll2HOY8efCWNm8fkeUnCGxJwbv/Jq7kfBw3K7Hda8XaaMIy8OLakTz1+0JxIUtdqAMVDPZk4epIxtO8C3/DGkLVXxAtnzyK3q8fEKqei79+FZ7mH3G2JeHoyUDtL0O2dGJ+ge1WBOP8/hCC1tAIQWtshKA1NkLQCsa7/A59GKlKq5r5y+SvE7c1TUOxOVBsDlZsPkJSSiYAmXllTFuwiclz1jFp9lp+/YcZQEzQ/un9JUOe8zdvzKanX2L2NztIzSxKfL2hpZvfv7cYiAna3gEpcd/Pb79qJQTtc5beFwmBfrwKgtba2UQw7buEmA1fXoK9oQDTmKRRvXSqfdQrJZTIV8mV9pMhrR8mYzOlzeRLxymXb9Kk1NCjyrofp5EQgvblxNoZwFkcInAlgnaIoSnZI+BPjeAoDSH1/rJ8fVUFrTkxeKuTwdu1uC4V4zmSRWD7FcKrktAWHBz94K11yfh3Xcd9Mmfo4K0uBZOi32u0WBWs5mZsfYU4ulNxtR7D27iVQN1SwpWfjir9qlV9TLBmMb6GjbhbD+LsvIS9NxfFVIckmxiba6hgIiAErbERgtbYCEFrbISgFRi5nG4v/99/zqG6oX3YfWt3nCQpJRPV7uSf/vIZHT0mAMySOkTQ/vbNOWja0AStw+lhxeYjnIoLXoCisnre++w7QAjaCVtJj5ywiVR6XyQE+vEyC1q5pxP/ra0JMRtJWchgTTYm5cVtGe5RZZqVGiqsGdyVjpMpbXlMq4J93JevUq+U0Kn28rKIDSFoXw7MFj/2miCezDCRU8NTsqFzUdw5IdSmIGbr6J/3ZRW0UrcNpaYXe34jzutluE/l4tudRnD9OaJLjoyu9cAX+wl/m0Rg22W8hzJxpdxjMKsGtaQDueXZB2+9GDxIci/qQBWDPdm4Os/jbtmLr34toZr5RCs+GoWAnUS4ejaBuhV4mnbgbD+JozsdW/99rOZ2zIrjBQwJE7ysCEFrbISgNTZC0BobIWgFRq/j52/yh0lfUlBSh9cXYNDh5uyVbH731lyKyupp6+rnf/11PsFgiGhU48fDKfzq9en4A0Ga23v5h9/PIDOvDIDrWUW8M30lEEvdvjtrDV5fgEgkyqLVexJ9Z4WgHaeaOn/TqJjopfdFQqAfL6Oglft68N3e9VDMnp+Lo+IGZuvzDZvpV520Kq3UWPMokpO5Lf0wYquCbGknRfI5qq35tKmt9L/E23yFoJ24WDsCuArDBC5F4Wcp2egxDV9ahMHyEFL/swvWiShozRYXcpM5NnjrVjWucwV4D2YQ2JrydIO3vjlGcOOF+OCtXBzp5dgKmrHW9WPpG7vBW6N6jYodq6UVW38xju40nG3H8TbtIFC3gnDVZ2jlk0bRfuAjgjUL8TWsw92yD1fHRey9OSimaiSpD5P65D9UCUFrXISgNTZC0BobIWiNjRC0AlFwPjWHd6av5LU/z+Lf3vmCBat2U9fclbh/xeYj/OmDr5g8Zx3F5Q1Mnb+J9z9fS11zF3+bsYrt+8/z1rTlvDVtOZV1bUCsXcK+E1d5++MVvDVtOau3HU8MAhOCdpzq13+Ywb++PY8vv9vL2SvZXEjNGZGJXnpfJAT68TIJWmnAhDfnAJyeBklTiJ77DFfpFczWp+/lOqB66VB7qFfuUyJfIUfe+9hWBXfl45Rbb9Gs1NKrqrofhxeJELQTB4vZj706iDcjTOTECCnZ81FceSGUlsAL21o/7oLW6kXqsKJUdmHPqcd1pQTP8Wz8O6891eCt6KKDhNacwb/zGp5jt3Fdjg/equhE6pAxWfVMsHuRpAEUUw323hxcnSm4Ww7ga9hAsGYRkcqpo0i/vke4aiaBumV4m7bjajuGoysVW18RVksLFqvyQtYqBK1xEYLW2AhBa2yEoDU2QtAKRIka69JN0Co2B0kpmbz/+Vr+z98WsHn3WRpauvVazjOX3hcJgX68DILWYrHivnsc7fQnkDQF7eynuIrOYpZGn4LrUSWalGrK5ZvclY5xy7J5mIy9JW0gVzpAiXyNeqWULqVf99c+1ghBqyOKD6UtgKsgTPBidJiQjR7X8N0IM1gZwmIaG4n6ogWtpW8Qa30/tsIWHOkVuM/k4dt7g+DGC0S+eYrBW8tOEthyCe+Bm7iS7+LIqMJW3Ia10YzZrG9i3aw6kC0dqAOlOLpv4mw7had5J/76lYSrPyda8f6T06/lHxKq+QJ/wxrczbtxdZxjsCcLdaASWerBpIxPewUhaI2LELTGRghaYyMErbERglYgStRY14ToQdvdZ2Hv8au8OWUp//XxCo6cTccs2/Re1qhK74uEQD8msqA1S3ZcRWfRzn4aE7OnP8F99zgWi/UXH9evOmhVmqlWcimSz3Jb2v6YVgU/ck86T41ylza1jQHb87VIeBkRgnZ8sZj8DFaG8N2IED3+s5TsIQimRHEVhFHaxuecPI2gNUtu5FYLaml88FbKPbyHMwnsiA/emn9glIO3jhBal4zvweCt1FLs+Y0o1T1I3aqug7dMqg+L1YJiqsfel4+z8zKulkP4GjcTrF1CpPLjUQ3filROJ1j7Nd6m73G1HsHZdRV7XwFWcyMW68QZGCgErXERgtbYCEFrbISgNTZC0ApEiRrrmhCC9tGqa+pky56z/HHSEmZ8+b3ey3li6X2REOjHRBS0ZnkQV8llouc+i/WZPT0NT+4BpAHTsO+NtSropk4p5r58iRxpz4gyNlPaQoF8kgo5k2aljj5V3x6UEwUhaMcYqw+lJYArL0To/PCUbOSkhjcjjL0miMU8/r1gE4JW8SF1qyjVPbHBW6mluE/m4Nt1ndDTDN6af4DwqiQC2y/jPRwfvHW7FrW0A7nVgll68clQszKIxaogySZkqQfZ0o7V3IwyUIs6UPmLDPbcwtP8E/76VYSq545Kvmrl7xKqnou/fhWe5h9xtp/B0ZOB2l+GbOnU/z33FAhBa1yEoDU2QtAaGyFojY0QtAJRosa6JpSglZVBTpzP4IPP1/H79xazff95vZf0xNL7IiHQj4kkaM1WF86KdKLn5yQGgPlu70Lu60l8T7dqoVGppEy+Qb50lFuWTSMI2Q3kSQcpla/ToJTTpQ7o/tomKkLQvnikfj+O8hC+tAjRY0NTstphCFyO4ioKY+3U57ibLS7U++24zhei/XCFyPKTo5KvfB4fvLUpNnjLdTYf54372AurUeuasPa0I1s6sVpaUEx1qANVqP2l2PqKsPfmMthzG0f3DRzdqTg7L+HqOIez7SSu1qO4Ww7gad6Fp2kH3qbv8TWsx1+/Gn/9SoK1XxGsXUioeh7hqs+IVH5CtGLKqGXq0xKpnEawZjG+xk24Ww/i7LyEvTcXxVSHJA//I9HLjBC0xkUIWmMjBK2xEYLW2AhBKxAlaqxLd0Hr8fq5dquQmV9t4zdvzObr9QcoKKklEonqvbRRld4XCYF+TAhBq3gYrLlNJGVBQsz6b23F3NtCi9JElZJDoXyG25Ztj2lVsIti+SK1SgHtSgcD6vj0b3wVEIL2+TFbfahNQdw5YULJI6RkkzQ8WWFstUHM0gv+2Yodi1VGkgaQpS6s5jas5gYUUzVqfzm2/mIG2+/gKTpPIG0/0VMbYe9SOPA12uElaMcXo51ciHZ6PtGL84mkLiScuYhw7iLChYsIlSwkVD6fUOVcwtWfE6mcMcohV+NLpHIqkcoZhKs/J1TzBcGaxQTqvsFftxJ/w3f4GjfhbdyGp3kn7pa9uFsO4Wo7hqsjGUd3Orb++1jN7ZiVpx84+DIjBK1xEYLW2AhBa2yEoDU2QtAKRIka69JN0N69X8M3Gw7wmzdmM23BZi6l5+P2vHxver0vEgL90FfQerHX5xO+vATtzFQcqTPpLF1LSf9J7jy2VcH3FEqnqJRv06I00KcO6n4MX2aEoH02pD4/zhIPgTQH2kk7nJDh5AAkdaEltxLKqMVbUo6j9UF6NAtH9w2cXVdxdabg6kjG2X4SV+sR3C378TT/hLdpB97GLfH06CoCdcsJ1i4hVLOAUPVcwlWziFR+TLTiI7TySbpLUa38XaIVHxCtmEKkcjrh6s8IVX9BsGYRgdpvCNR9i79hDb6GDXgbt+Jp/gF3827crQdxtR7D2XYKV+d5nJ2XcXSl4ujJYLAnG3tfHra+ItT+MhRTFYqpAaulFdnSiST1YbFKmK02zIrxeka/aISgNS5C0BobIWiNjRC0xkYIWoEoUWNdugnaX70+nf/91wV8vf4A3+9NZsuesyMy0Uvvi4RAP/QStObWPPoKV9JY+iXFLSvINK8dQchuJE8+TJmcRqNSQbf6am0vngi8rILWrLgwW21YrBKS1BffWt+KYmpAMVWh9pfFttb35THYk42jJwNHV2ps6FPn+ZgcbD2Gu/Ug7ubdeJp/wNu4FV/DBvwNawjUfUug9huCNYsIVX8R21pfPp1o6VS0sg90F6MxJhGt+IhI+TQiJdOJFk0neucTtFufoN2YgZY6E+3KZ0QvzSGStpjgnZX47m/D3XQwJoc7komar+Luvoaj+waDPVnYe3Ox9RVg6y9BHahEMdVhNTfH5KjciySbsVgVwyVNX1WEoDUuQtAaGyFojY0QtMZGCFqBKFFjXboJ2nU/nBwVE730vkgI9GM8BG2/6qBFbaRKucO9/oNk948kY9dxR9odb1VQRIfSKVoVjAPPJGgVd2xrvWxFkgeQpW6s5nas5kYUUw3qQAW2/vvYe+9i781hsOcWju40nF1XcHVcxNl+GlfbcVwth3C37MPT/CPepu34Gjfhr1+Lv34lgbqlBGu+JFQzn3D154QrPyVSOZVo+eQJIEbjlE0mWj6NSMWn8a318+Nb65fir1+Jv35tbGt90/bE1npXyyFcbcdjx6DjIs6uyzi60hjsuYW9Nwd7711s/fdR+8tRTDVYzY1Yze3IUjeSPIDFYkGtbsN57T7+H1OJLj40fFDXgoMEtl3GlXIPtazrFwdzJYaETYD3omD8EYLWuAhBa2yEoDU2QtAaGyFoBaJEjXXp3oP2ZS+9LxIC/XjRgnZAddOudFKrFHJfvsgdaffIfWP71lLcs4cqazYtaiP9qkjkjRaz4sBiVZFkC5LcG0uPmpvjg5kqUQdKsfUVDttaHxvMNHRrfbhzD/6WH0bcWh+sWTjBt9Z/9Jit9Sses7X+wMhb67tvMtiTzWB3Hu7qYvy5lUQvN8DpNkjqgZMmOG4lnGLHk+vA1uTBbB2nc21xoZZ24LpQSGDrJbT5B4YJ2eiXh/Hvuo4ztRSlpheT1Tvq5xeC1tgIQWtchKA1NkLQGhshaI2NELQCUaLGuoSgjdeqrcd47c+zHvKnmfx1xkoA+kwy0xd/z7++PY93Z62hsq4t8Ti9LxIC/XheQdulDtCgVFBmTSNPOkSGtHF431jzOopbltNUspj+vK+Q6q5hUl7OdOzQrfX9scFMP99a338Pe1/+Y7bWJ+FqOzrC1vqNI2+tr55NpHI60YopRCsm2Nb6yo8JV80kVD2XUM0CgrVLCNQtx1+/Cl/DOryNW/A27cDT/BPulv24Wo/gbDuBqyMZV2cKzq6rj2ytz3nM1voOJKlnzLbWWzsDuIrCBC5H0Q4zZLhX9JiGLz2CozyE1D8+EtPS78BW0Iz7dB7BDedh7t5hQjay7ATeAzdx3KpCbjI/188TgtbYCEFrXISgNTZC0BobIWiNjRC0AiNXOBLhV69P59stR4bdt3bHSX71+nTCkcgvPkdSSiartx1/7rWcOJ/xQp5nItaEFbR7jl/hjY+W6vbzdx29zP5TqQB8smgLp1IyiUSiFJTU8fq7iwmFY28+vS8SAv14GkHbp9ppURqolLMolE+RKX0/Yjo2R9pDieksHVXbcaTOQjs9lei52TjLrmFWnM+13p9vrZct7VjNTSNsrb/DYE/msK31zrbjuFoOP2Zr/SoCdctG2Fo/jWj5hxNAjMbTo+WTiVROJVz56c+m1v9sa/0jU+uHbK3vvJDYWh+WsnEP5Ma31hePvLVeGsBilTEr9pdWrD/AYvZjrwnizQgTOakNEbIchND5KK68EEpLANM4pGSlLhV7Tj2eY7cJrT49TMby+R5Cq0/jOXYbe049Upf6Qn++ELTGRgha4yIErbERgtbYCEFrbISgFRi5wpEI//wfs/nz5K/xB4KJr4fCEd6cspTX/jxr3AStzx/E7Xk1z8eEFbSFpXUcOZuuy8/uM8n859Rl+ANBVLuT3745Z8ib7b3PvqO0qhkQv6AbmccJ2gGbmza1nVqlgGL5Inekn8iUviPbsoYc02ryTCspGPiW+/1rqe3fTXv/Gfr707B13iRQuB7SPoS0DyBjKoHS9bjbkh7ZWn8AT/OuEabWryBY+9UE31r//ohb64O1X4+4td7zuK313Q+31j86tV4dqEIx1Q+bWm+x2jCrzye3R+JlHRL2NChtAVyFYYIXo3CIoSnZ4xq+GxEGK0NYTGMvKuUmM45bVXgP3CSy7MRwITt3L8GN53GfzsVW2IKlf2xbfwhBa2yEoDUuQtAaGyFojY0QtMZGCFqBkSscifDan2fx1br93MotTXz97v0avlq3f0iC9lJ6Pm9OWcafJ3/NJ4u2YJZtwFBBW93Qzruz1vDGR0t555NvKalqAuAPk76kd0ACICOnhH/840x8/pgQPnnhFpt3nxEJWqPVyu+PcvF6LgCVdW38bcaqIfd/tW4/F9PyAPEL+suAWXHF0qNWeYSt9dWo/eVPubV+J97GrYRbNhNs/A5f3Td4a+fjqZmFp2oq3qrJBCrfJ1QxiUj5e7qL0Ydb6z98zNb6ZS/V1vqJwqsoaC0mP4OVIbw3w0SPD0/JBi9GcRWEUdoCmJQxXIvVi1LTizO1FP+u60S/PDx8oNf8AwS2XsJ1oRC1tAOzxTWux0oIWmMjBK1xEYLW2AhBa2yEoDU2QtAKxr0uL4KUL8afESocifDrP8wgp7CS+d/uSnx92aZD3L5bnhC0tkEXr/15FgMWBYDV246z7oeTwFBB+7cZq0i/XQxAWtY93pq2HIDlmw9zPasIgA0/JvHhvA2JcOSCVbvJKawUgnasqndASpw4AIvVxubdZ/l2yxFyCit1WZPFauMPk74kEAwBcK+8nslz1g35nlVbj5GUkgmAPxgRPAm/h4BvkIDXSsBtJuDqIehoJzjYSNBeQ0gtJ6QUE5LzCUl3CFsyCJuuE+6/TKjvHKGeU4S6jhLqPEC4fTfh9h8It35PuHk9kabVRBqWE6lfQrRuAdGaOUSrZxKt+hit4kO0iSJIKyYTrZpGtOrT2Brr5hOpW0y0fDZawftoeZPQct8nUvIF4ZbthDr3E+o6QqjnJKHes4T7LxE2pRI2ZxCSsmPHylpESC0jaKuOHUtHG0FnDwH3AAGPTMBnx+/34A8E9X8PvIJEoxrBcFS3n+8NhJ//eQIRgv1RwsVRoinDhax2EiLZGqHmKAHXGL4eb5BgQx/h6yVEd16FhQeHC9kvDxPZk0Y4o4Jgmwm//wW8/udA0zSCIf1+vkBfNA0CE2AdeuEN6L8GvQiEYudf73UI9CEYil3/9V6HkXkhv/886/kPR4lGxfk3KqFwlIg4/4Zm3Ctpij6MUA8EbSgU5t//vhCHM+YZfv/eYgLB0JAE7aMtENKzi5n19fbYy3lE0IZCYaJRDQBZGeQf/zgTgKsZBaz/MQmI7Vy/lJ7PodNpAPzf/16Ey+0VgnYsqqSqidf+PCuRRA2FI7z98Qr+6+MVLFy9m//5x0/Jyi8f93WdOJ+ReEMAVNW38c70lUO+Z8nafVxKzwdAdQYMi23QTrBhOaG6JYRrFxKumUukaibRxNb6CSBGE9vrpxCp+oRI1afGGI0AACAASURBVGeEa+YSrllEqO4rgg0rCDasIdC0gUDTFvwtP+Br3Y2v7SDe9iMMduxF7vyB3o51tHZ8Q33nQmq7FlPd9SWV3V9R3vsNFX1rqB/YS7vlMv3WImy2Huw2GdugHZvDNcJxc+GtTEU7Pzt+EZxKIHcvdsmk+zkVjJ5gOIrTE9R1DTZX8KkZlEN4qiMEb0TRjjFUyh6G0JUovpIIzt7QMz3/aLBb3bhL2vCdu0t48wWYt2+YkI0uPU7gYAberGocbdKYreVZiURh0DN2x0gwsQF0X4OePOv151XB6OffyAx6QkSi4vzrierQ7/cupydIMBzV/XdQgT64fSH8wYju6xDox7iXb1AfRqgHghZgzfbjXLyeS2ZeKSu/PwqQELSapnEgKZUPPl/H5DnreHPKMmYu2QYMFbSZeWVMW7CJyXPWMWn22sRzD1gU3p21BofLw4fzNtBnkpmz7Ac6e82J4KQQtGNQHy/czM5DFxO3s/LL+T9/W4DH6wfg2LmbTJ2/SZd13b1fk7htd7j45/+Yneh7AfDmlKVU1bcBxt7iZraqo5Cj7z3D1vp9j9lanz7y1vqB2sdsrR98qtfTpfRTr5RSIl8jVzrALWnDsCFemdJm7krHKZdv0utpQHaNfvCQ2erGUZlB5MK8xF+nfFk7kHu7dT+XgqfnZWlxYLb6UJuCuHNChJKjw1KykSQNT2YYe20QszQ2a5C6bdhz6/Eczya05syIA73Cq5LwHM1i8E49UrtV9+P2JESLA2MjWhwYF9HiwNiIFgfGRnWKFgdGRrQ4EBi5HhW0JVVNzFyyjcVr9lJUVg88FLRZ+eX8bcYqXG4vAKmZRcMErWp38k9/+YyOHhMAZklNPDfAGx8t5cad+2zddw6Atz9eQUp6Hj8duQQIQTsm9c//MZt+szVxe93OU6zdcTJxu7vPwm/f/Hzc1/XbN+cMabsAMHPJNg4mXScSiZKeXcxfJn9NJBIFxC/oiqkaq7khNphJ6kKS+h9OrZ8A63scvapKk1JLufUWd+XjZEqbh8nYDGk9udJ+7stXqVdK6FR7ManexHM8bkjYMBQvgzU5RFIWJcRs4OZGrF0tuh8HwbMzkQWt1OvHURrCnxpBO8LQtgWHIHA1grM4hNw1NuuXWywMZtbgPZRBePnJEQd6hdafw30qF1tBM5a+p/tjykRACFpjIwStcRGC1tgIQWtshKA1NkLQCoxcjwraaFTjzSlLeXPKsoQXeyBoz17JZt6KHwFwur3M+no7k+euBx4K2raufv7XX+cTDIaIRjV+PJzCr16fnmiNsGrrMSbPXZ/YUb9g1W4+nLeB+xWNgBC0Y1Kv/Wkmdocrcfvvn65KNAOGWC/Y1/48a1zX5PH6+dXr0xP9Zx/UgEXhk0Vb+Je35zFp9loaWroT9+l9kRA8mX7VSZvaSrU1nyL5HNnSzhFk7DqypZ0Uyeeott6lTW2lX3X+4vOORtDaG4oIX/k6IWZDqd+itNfqfkwEz89EErTm/5+9946O6kz3NSf9MWHNzJq1Zu7MPeHek26i+7Q7+HQ6pxu3Q5vGbbvttk2bYDBJZAyYDAZjcrLJQiBAAgESWQIhRBCIJBASQjln7apdu6okVdiV65k/ZJcREkiApC3xfb+1nrVQlarqrSrV1+rHr97XomMr8uG8GCBwsGOXbCA+jOtiAFuhD0Xt4cfX3FjyG2hNvou+JZnQrJiO82On7MC75hiOI5lYb1f0+UKv3kAKWrGRglZcpKAVGyloxUYKWrGRglYich4WtADrth/mq6/jI18/vCRs2KQvGTpyPmNnr+N+YQW/+dN01u880m7EwYJVMbz20WyGRS3nVnYhI6au5MOJywA4c+EGgwaPxmJtG7cQe+QcL70+LuLppKDthfz+L5+TnVcKQH2Tyg9eGYPZYo9cfzuniNc+mm1Ued2O0YeE5FHcVFnrKNCyuK2e5Ip5O6nmLzsdVZCp7iPbcp5i7QF11u6PKviOJwlaa2k2/lMLvxezJ+dhK87qB6+PpKcwWtCqtR5as/x4TgYJ76Z9l2wMeE4HacnyY67vWYmoqE6s96pwHL+Fd/0JwtN2dpwfOzMaz6ZTtJ7MQsutRVFdhr9fPY0UtGIjBa24SEErNlLQio0UtGIjBa1ERqa3Y5ig3bgrkXfGLOLwqUt8MGEZk+ZvjlzncLr5ZMZqlm/cb1R53Y7Rh4To1FpVirU8stVzXDN3PqrgvHkFGeadZKmnKNDuUq019MhjdyZotYpCfGeWRMRs4Pgs7AVXeXg0guTFoK8FraLq2PJ9uNIDBOPCHbpk/QkhnJcDWIt8KJYefNymVmy3ynEkXMW3KpHw5B0dhGzw873o287ScjYHS1ETTZrx709vIwWt2EhBKy5S0IqNFLRiIwWt2EhBK5GR6e0YJmi9Pj8LV7e1NU+avznSvgzw2RfbGDJ8LqrW+Qa5/hSjDwmRaLC2UqaVkmfJ4KaaQLp5w2NGFWzmpnqUPO0a5dZyGm298+fUDwtaS00FntTVETEbTJpG8/10mrQXr3NQ0kZfCFpLtZfWmwG8Jzrpkt0TRk8O0pLtx9zQc6LQVGfHfrUI175L+L84BFGdLPRadABXTBrN6fmYK1TD3wsjkIJWbKSgFRcpaMVGClqxkYJWbKSglcjI9HYME7RPSl2jGb8/YHQZ3YrRh8SLSqPVTaW1lnztNlnqcS6r2x4zqmANmep+7qlplGgF1Fv7bjmZ2xuk1dyAfmFzRMyGjkTRei8FxTLwZ2xKnkxvCFqTyYP9gQ/3+QDBA510yR4J4cjwYy310tRDXbJqmZnm9Dzc0ecJLDjQcaFX1Db8yxNw7r+M/WoRprqBt9CrN5CCVmykoBUXKWjFRgpasZGCVmykoJXIyPR2+oWgdetequuUASVmv4vRh8SLQo3VTLF2/9tRBXs5b+o4qiDVvIIM8y7uqGco1LKptjYaVq+5oYHAtV0QP6JNzCaMw3HnOIoq5ZUo9JSgtVR4cdwI4EsKQTTthGwoNox+Nkhzjh9TUw/IQE3HUthIS8o99K0pBOfs6bjQa/IOvKuTcCRca1vopTx5WZ6oSEErNlLQiosUtGIjBa3YSEErNlLQSmRkejuGCtr6JpUpC7/mn1/9lEGDRzNo8Gh++vsJzF+1G83WYmRp3Y7Rh8RApN7aSplWwn3tCjfUQ6Sb1z9mVME33FITeaBdp0KrpNHqNLx2k6LiuraX8MFREDec8KFPcdw4iMn09EvGJAObZxW0JsWDPdePOzVAaF/HLllfYghHZgCt3Pvcs1wVsxMtpwbHiSw8G08SmrGr40KvGbvwbDyJ40QWWk4Nitn4z9lAQApasZGCVlykoBUbKWjFRgpasZGCViIj09sxTNBa7a389r0Z/GXyCtKvZVNVp1BR3ciJc9d4fdgcXvtoNlZ7q1HldTtGHxL9nUarmwprDfnaLW6rx7hs3tqpjL1gXkumOY4cNZ1SrZB6a//qRDWZrDhuxBM+OKZNzB4chf/WPlpsNsNrkxhDtwWtpqOVeXFc9eM7GuogZIP7wrhTA9jv+zApzyf8FKUV6+0KHAnX8K5O6nyh15w96FtTaEm5h6WwUYiFXr2BFLRiIwWtuEhBKzZS0IqNFLRiIwWtREamt2OYoF299RB/+nQx/kCww3W6x8fQkfNZ+U28AZU9XYw+JPobNVYTRVoOd9WzXDXv4bxpZSdC9isy1N3cVZMp0nKosTYZXvfjUNRmHFlJhBLGts2ZjR+B+/IOzI1N7ZaEScTjSYLW1OShOcePnhIktPeRLtlo8B4L4bgewFL5fCMSTHXN2K8V4zxwBf/yBIja1nGh14IDuKPP05z+ALXcbPjr9qIgBa3YSEErLlLQio0UtGIjBa3YSEErkZHp7RgmaIcMn8fZS7cfe/2lzBxe/WBWH1b0bDH6kDCSemsLpdZicrXLXFfjSTet67Q79pJ5C7fUJB5YblCpVdFkdRlee1coWiut2WcIHZ4YWQCmX9iMWl8b+R4paMXmYUGrWHSsJV4cV/z4D3fSJXsgjCstgD3Ph2J6dqlnrlBpTs/HFZNGYFFnC7224v/iEK59l75d6NV3S/NEQwpasZGCVlykoBUbKWjFRgpasZGCViIj09sxTNC+9NpYKqobH3t9g2LhB6+M6cOKni1GHxJ9h4tKrZoHlhvcUpO49LhRBaZ1XFfjydUuUWotpt7a0g9qfwo0Jy330wgmTo2IWU/qaiw1FR2+VwpasfE1h3DlBPCcCRLe075LNhwN3hNBWm/5UaufsUtW07EUNdFyNgd921mCn+/tdKGXb1UijoSr2G6VozTJhV59hRS0YiMFrbhIQSs2UtCKjRS0YiMFrURGprdjmKAdNHg0JovtsdebLDYGDR7ddwU9Y4w+JHqLGmsTRVoOd9QUMtTdnDd91UHGnjet5Koaw1317LejChTD63523NjzMwgc+ywiZn3JX6BVFD72NlLQioVi0bEW+XBeChA41LFLNhAfxnUxgK3Ah6I+w2OoLrTcWlpP3cGz+TShmdEdhez0XXg2nMBx4jbavWoUVS70MgopaMVGClpxkYJWbKSgFRspaMVGClqJyAkEgwwaPJqFq2M6XLdsw34GDR5NINhxfOnDiUtKY8m6WAB+9uaEJ/pAUWOooL12O4+C0upOuXY7TwraPqLe2kyptYgcNZ1McxwXzGs77Y69bN7KbfUY+ZabVFhraBwAowq6g63oFv4TcyNi1n96IdaS7C5vJwXti49a66Ely4/nVJBwDO2l7B7wnQnRkuVHrX16UaeYHFizKnEcuY53bRLhKR0XeoVmxaBvSaE1JRtLfgNNmtvw10TShhS0YiMFrbhIQSs2UtCKjRS0YiMFrUTkBIJBfvr7Cbw+bA4ery9yuT8QZMjwubz0+rinErRWeyuhULhXax6IMVTQdof+HqMPiael0eqkQqvkgXad22oil8zfdCpj083ruaEe4r52hTKthHrri/en09bSHHxnFkfEbODEHOyFN7p9eyloXzwUVcdW4MOVHiAQH+7YJZsQwnkpgLXIh9f7+CVhnWFqaMGWWYIz7gq+Lw/DpE4Wes3fjzs6lea0PNRSk+Gvh+TxSEErNlLQiosUtGIjBa3YSEErNlLQSkROIBjkpdfHMXv5Ds5fuRO5/NrtPGYv39Gug/ZYylWGDJ/H68Pm8MmM1ShqW6es7KDtOoYJWs3W0i36e4w+JLqi2tpIoXaPO5YzZJijSTV3NqpgFdfMe8lWz1Gs3afG+mJverdUFeNL/iIiZoNJM2jOu/zU3YlS0L4YWKq8tN7y4z0RJBxN+1mye8LoyUFa7vox17eXcQ8vCesMc6WF5ksFuPakE1gS3/lCr6UHce27iD2jUC70GmBIQSs2UtCKixS0YiMFrdhIQSs2UtBK+jovl7r4cUnf01kCwSA//N0YLl/PYerCbyKXz1sZTfq17IigtTU7eOn1cTSaNACWrItl+cb9gBS03YlhgvZFidGHxMPUW+2UaAXkqBe4rh4gzbymk+7YL7msbiNLPUG+dptKay2NVjH+bFqtrcJzft33YvboZFpyzqFYnm2OpxS0AxPF5MGe58OVFiB4oGOXrP9wCEeGH2uplybL4+/nUUGrFiu0pObi3nGO4LzYThZ6bcf31VEch65iu1mG0vjidaWLhBS0YiMFrbhIQSs2UtCKjRS0YiMFraSv8+8LnIbQWb4TtH5/gN/8aTotrS48Xh+v/HkmXp+/XQftwyMQUi7eYtyc9YAUtN2JYYJ2+cb93aK/x6jDodHmpNxawQMtk1vqUS6Zv37MqIKN3FATyLNkUKaV0fACjiroCnNDHfrFbyJiNnR4PK13T6FYWp7rfqWgHThYKr04rgfwHgvBI12yodgwekqQ5nt+TE3dFG4WN/5yE+6UbDxfnyb02e6OQnbaLrwbTuA4dgtrdpVc6PWCIQWt2EhBKy5S0IqNFLRiIwWt2EhBK+nrqIEwZgPoLN8JWoCl62NJPHOFtIw7LFqzByAiaMPhMDvjTvPRxOUMi1rOkOHzGDtrHSAFbXdimKCdNH9zt+jv6avDoMraSIF2lzvqaTLMuzhvXtFBxqaZV3PNHMs9SyolWh61VtXwQ8xIzI1NuK7sgviREDec8KFPcdw8jKL2zJ+SS0HbfzEpHuz3fbhTAwT3deyS9SWGcFzzo5V5adK6vj/F7MR6twpH0k28644Tnrqz40Kvz2LQtyTTmnwXy4N6mixidKaLihS0YiMFrbhIQSs2UtCKjRS0YiMFrUTkPCxos3KLGTtrHTOXbuPG3QLge0F74Wo2745ZjMPpBuB02g0paJ8icsTBc6Y3Pvh1VhslWj731DQy1X2kmVd3OqrginkHWepJCrQsqqz1NAkyqqArTCYLzmv7CMd/0iZm40fjzNyPSdF69HGkoO1HaDpauRdHZgBfYqiDkA3tC+NODWC/78OkdC3VTI2t2G6U4jyYge+ro4Qnb+/YIbtgP97oVFrO30ctkQu9REMKWrGRglZcpKAVGyloxUYKWrGRglYich4WtKFQmCHD5zJk+DyCwRDwvaA9dOIikxe0NVq2Ot2Mm7OeYZO+BKSg7U76raDNLShn8dq9RpfRZZ73Q95oc1BuLSdPu8ZN8xEumjd3OqrgonkTN81HuG+5Rrm1jEabw/ADqr+hmO04biYQPvRp2ziD+JG4rkRjbuodeSYFrbGYmjw05/jRzwYJxT7SJRsNvmMhHDcCWCofv8jrO8w1NuyXC3DFXsS/tJOFXhO34l8ajyv2IvbLBZhrbF0uCZO82EhBKzZS0IqLFLRiIwWt2EhBKzZS0EpEzsOCFmDd9sN89XV85OuHl4QNm/QlQ0fOZ+zsddwvrOA3f5rO+p1HpKDtRvqVoLXaW9l3JJW3Ri3gB6+MIWreRqNL6jJP+6Gu0uop0O6QpZ7iinkHqeYvO8jYC+bVZKr7yLacp1jLp85qM/ww6s8olhYcd04QOjz+2zmzI3Bf3IK5oa5XH1cK2j7GoqOVenFk+PEf6dglGzwQxpUWwJ7nQzE9WZypJSZa0u7j3pVKcN7+xy70ch7MwHajFFMnC72koBUbKWjFRgpacZGCVmykoBUbKWjFRgpaiYxMb8dwQRsMhrh2O48ZS7byo1fHMmjwaDZFJw4Ym/6kD3Cd1UqJ9oBsSyrX1FjSzKs6yNjz5hVkmHdyRz1NgXaXKq3B8INnoKBYHLTcO0vwyKTIAjBP2nrU2qo+eXwpaHsfc4OHlmw/enKQ0N72XbLh3eA9EaT1lh9L1RNEqebG8qCe1uS76FuSCc2K6Shkp+7Eu+44jqSbWO9WoZi7XuglBa3YSEErNlLQiosUtGIjBa3YSEErNlLQSmRkejuGCdr6JpVv9hznlT/P5FdvT2HF5jjyiir52ZsTqGs0G1XWU+e7D2uDtZVyaxn3LVe5oR7monlTp6MKLqlfc1M9Sp52jXJrBY02udn9qdFcNOddJJg0PSJmvWdXYKku7dM6pKDteRSLjrXYh/NyAH9Cxy7ZQFwYV3oAW4EPRX3MfahOrNlVOI7dwrvhBOFpnS302o3n69O0nr6Dllf3TAu9pKAVGyloxUYKWnGRglZspKAVGyloxUYKWomMTG/HMEE7aPBopiz8mkuZOfgDwcjlA03QZqmnuKxu71TGpplXk6nuJ0e9QIlWQL3VbvihMrBxYy/MJHB8VkTM+k8vRKt4YEg9UtD2DOZ6Dy1Zfjyng4RjaN8lGwOeU0FasvyotZ3LMKWxFdvNMhwJV/GtTOx0oVdwXizuHedoSc1FLVZ6pG4paMVGClqxkYJWXKSgFRspaMVGClqxkYJWIiPT2zFM0I75bA0//f0EZi7d1iZp/QFg4Anah4VshnkXd9VkCrVsqq2Nhh8gLxK2kjv4T83/XsyenIut+LahNUlB+2woqo6t0IcrPUDgYLhjl+yhEM5LAayFPhRLx9ub6uzYMwpx7buE/4tDENVxoVdgSTyuPek0XyrAXG3tlechBa3YSEErNlLQiosUtGIjBa3YSEErNlLQSmRkejuGzqCtazSzeXcSv31vBr/64xS+3BzHS6+PG1CCtlDLpkKrNPyweFHRKgrxnVkSEbOBY59hz8+gyfr0f5Le00hB233Uai+tt/14TwYJ76Z9l+yeMJ4zQVru+jHXdxReapmJ5gt5uKPPE1hwoIOMZdI2fCuO4IzPwJZZgqmhpU+ekxS0YiMFrdhIQSsuUtCKjRS0YiMFrdhIQSuRkentGL4kDCAQDHIpM4eoeZv44e/G8NaoBew7korV3mp0aV3G6EPiRcVSXYr33KqImA0mTqXlfhpNWv+Z2SsF7eNRzDq2Bz5cFwIE4zp2yfoPh3Bc8WMt8bbvktXcWAoaaEnJRt+aQnD2ns4Xeq09huPodax3KlFMDkOeoxS0YiMFrdhIQSsuUtCKjRS0YiMFrdhIQSuRkent9AtB+3DMFjs7407z+rA5/OjVsUaX02WMPiReNNS6GvQLGyNiNnR4Iq3ZZ1C0VsNrexQpaNtjqfLiuBHAezzUoUs2tDeMnhKkOcePqel7qaWYnWg51TiO38az4SShGbs6LvSaGY1n82laT91By62lSXUZ/lybrFLQio4UtGIjBa24SEErNlLQio0UtGIjBa1ERqa30+8E7XcJh8PcuFtgdBldxuhD4kXB3NCA+9JWiBvRJmYTxuLISkJRmw2v7XGILmhNigd7ng93aoDg/o5dsr7EEI6rfrQyL01a220UpRXb7XIcCdfwrUoiPHlHx4Ven8eibz9Hy7kcLIVNkdv2N6SgFRspaMVGClpxkYJWbKSgFRspaMVGClqJjExvp98K2vziKpIv3DS6jC5j9CEx0DEpKq6MGMLxoyBuOOGDY3DciMdk6p3FTj2JiIJWK/fiuB7AlxiCaNp3ye4L404NYM/1Y1LaxJWprhn71SKc+y/jX54AUds6LvRaHIcr5gLNF/MxV6qGP8fuIgWt2EhBKzZS0IqLFLRiIwWt2EhBKzZS0EpkZHo7/VbQrvwmnpdeH2d0GV3G6ENioGJSNJzXDxA+OPpbMTsK19U9mJSBI+hEELSmJg/NOX7c5wKEYh/pko0GX1IIx40Aloo2UamWm2lOf4B7dxqBhXEdF3pFbcP/5WGcB65gv1aMqb7/dkh3hRS0YiMFrdhIQSsuUtCKjRS0YiMFrdhIQSsROYFgkEGDR7Nqy6F2l1/KzGHaom967HF+9uYETBYbJRV1vPnx3E6/Z9+RVJasi+2xx+xP6beCdqDE6ENioKGodhy3EwknjG2bMxs/Avfl7ZgbGgyv7Wl5IQWtpqOVeXFk+PEfCXUYWxA8EMZ9PoA9z4dJ8WApbKTl7D30bWcJztnbcaHXlB14Vx/DcTgT6+0KwxZ69QZS0IqNFLRiIwWtuEhBKzZS0IqNFLRiIwWtROQEgkF+8sZ4fvveDCprGiOX97SgtdpbCYXCTxS0useH0/Vivh9S0D5njD4kBgqK1krr3VOEDk+ILADTL2xCrasxvLZn5UURtOZGD833/OjJQUJ723fJhneD90SQ1lsBLBU6Wm4trSez8Gw6RWhmdMeFXjN24dl0CseJLLTcGpR+stCrN5CCVmykoBUbKWjFRQpasZGCVmykoBUbKWglIicQDPLjN8aTeOYK4+dsiFz+sKANhcKs2BzH7//yOa99OIuFq2MIBIMA/HzoJOKPXWDi3I28PmwO6deyWbo+lpHTVjJy2ircuhdo30E7ZPhc1m0/zKsfzGLI8Llk5RYD7Tto7xdW8P64pbz58Vze/mRh5HsGagwXtOXVDUxbvIWhI+fz2kezO9CXycotZujI+bw8ZCJR8zbR6nQDUN+kMnrmGn751mTeH7eUnPzyyG2MPiT6PZqTltxUgkcnR8Ss59wqLDUVxtf2nAxUQatYdKzFPpyX/fgTOnbJBuLCuNID2PN0bDercBzJxLvmGOEpnSz0mrMXfdtZWs7ew1LY2G8XevUGUtCKjRS0YiMFrbhIQSs2UtCKjRS0YiMFraTPs2A/zI3tezpJIBjkn1/9lFAozHtjl3D5Ri7QXtCmX8vm7dGL8Pn8eH1+3h69iHOXsgD41dtT2JNwFoCklAx+/MZ46hrNAHz62VpSL7d938OC9p9f/ZSTqZkAnDp/nSHD5wHtBe27YxaTkn4LgOQLNxk6cn5Pvwt9GsMF7dujFzF29joSkzNIvnCzA32VFoeL3/xpOndyS/D6/KzacpCjpy8D8MmM1RxISiMYDJGZlc/g92fiD7T9lwCjD4l+i+am+cEVAkkzI2LWd2YJWkWh8bX1EANJ0JrrPLTc8eM5HSQcQ4cuWc/JII5MndaLlTgPXMH/5WGY1MlCr4VxuHen0Zz+ALXcbPjzMhIpaMVGClqxkYJWXKSgFRspaMVGClqxkYJW0ud5dJ9LX9FJAsEgP/zdGADu5JYwZPhc/P5AhxEHXp8/8u8vNuxj98FkoE3Qllc3AHD7XhF/HLUg8n1L18dyICkNaC9of/bmBEKhMAB+f4BBg0djb3G0E7R+fyDyParWzI9eHdsjL71RMVzQ/ujVsbQ4XEaXwcnUTD5fsbPD5VZ7Ky8PiYq0ZgP8efwX3MktAeQv6J1hL7yB/8SciJj1n1qAreSu4XX1NP1Z0CoWHVuRD+fFAIGDnXTJHgrhPuvGlVyDa89FAosfs9BreQLO/ZexXy3CVDdwF3r1BlLQio0UtGIjBa24SEErNlLQio0UtGIjBa2kz9PihhZX39NJHha0ADOWbGVPwtl2grbF4WLx2r18MGEZwyZ9yW/+NJ1dcWeANkHbaNKANsH7wYRlkftavnE/+46kAu0F7WsfzmpXw8/enEBtg7mdoE3LuMvIaSsZFrWcDyYsa1fjQIzhgvaDCcuoqlOMLoPVWw+xYnMcY2ev4/Vhc1iwKganSycnv5x3xyxu972zl+8gMTkDkL+gP4y19B6+6K7iYwAAIABJREFU04siYjZwfBb2wkyarG7Da+sN+pugVWs9tGb58ZwMEt5N+y7ZPWG8SR48R+vx7LhMcG5sx4Vek3fgW5WEI+EattvlKEqr4c+pPyMFrdhIQSs2UtCKixS0YiMFrdhIQSs2UtBKRM6jgrZBsfCv70wjMTkjImhXfhPP4rV7I82Ni9fufS5B+/KQKMLh9h20La2uiKC12lv5yRvjqaxtAkAxW6WgfZYUlFZHSL2cxSczVpN6OYv8kup21xWUVvdZTQtXxzBk+FwU1YbX52fm0m2s2nKQm9kFDIta3u57F6/dS9y3LdjNTp/wOBpKCZz9IiJmQ0nTcRddodnhMby23sTrD+H2BAx7/JYWH66SAN7LQULx4Q5dsqE4P4GDCsGtNwnP2tNRyM6Ixr/pFJ7TWTjz62hu1g1/TQcS/kAIp+437PHtDh8tLr/EIEJhcOgBw+uQGANgeA1GYncaX4NhuOX7LzIOPUAoLN9/I7Eb+LufU/fjD4YM/x1UYgxuTwCvX77/IiNyHhW0AF/HHOPNj+dGBO3MpdvYf/Q8AJU1jbz20Ww2RScCzyZof/DKGNIy7gJw5sIN3h69CPh+Bm15dQO/fmcqPp+fUCjM5t1JDBo8Go934L5XhgjaQYNHd5u+yqoth1izLSHy9b0HZbwzZhG5BeWRH4TvMmvZdo6lXAXA5QkIi26uIXBhXUTMho9OxldwHpfba3htfUEgGMLrD/bta24K4ssOETwdhke7ZGNChPZbCX9zDz470FHIztlLYOdZfBdy0StNuHS/4a/hQCYYCuPx9e37/zAO3fjXQGRCoTC61/g6JMYQDoO7H9RhFE6Bzx/3t++/0XVIjEH3tp3/RtchMg4Df3/1+IIEg/L9FxWvP0ggGDK8DolxiJzOBK1b9zD4/ZkRQZtbUM6bH8/lnTGLWLRmD+nXsnl5SBSXMnOeWtDml1Tz7pjFrN9xhKEj5zN05Hxy8suB9kvCFqyK4bWPZjMsajm3sgsZMXUlH078/r4HWgwRtN5vt7p1h75KXFIaC1fHRL6+96CM98ctxd7i4Ke/n4Du+d7CDxk+l9yCth8Oo9vsjUCtr0W/sPn7jtnD43HcOYliaTG8tr6kL0YcmEwe7A98uM8HCB7o2CUb3N1KcFMh4TnHYWL7pV6BBQdwR5+nOT0PtUzshV69gRxxIDZyxIHYyBEH4iJHHIiNHHEgNnLEgdg0O+WIA9GRkentGD6Ddt7K6E4vd7p0ouZt6rM6NFsLv3p7CqWV9fgDQWYt28H6nUcAGDtrHbvizhAMhki5eIs3hs0hGAwBYv2Cbm5swn15B8SPaOuYPfQpjpsJKGa74bUZQW8JWkuFF8eNAL6kEETTvkt2l4/QpipYcAGmPDS2IGor/i8O4dp36duFXmK+J32JFLRiIwWt2EhBKy5S0IqNFLRiIwWt2EhBK5GR6e0YJmhr6k1k3LzPj98YT8bN+x3Yn3ieH78xvk9runorj9c+nMW/vjONz1fsxOX2ANBo0vhkxmp+8dZkPpiwjMLSmshtjD4k+gKTyYLr6l7CB0e1idn4T3Be24fJZDG8NiPpKUFrUjzYc/24UwOE9j3aJRsm/LUZvrgNnx2FqO8Wem3HtzIRR8JVbDfLUJrkQq++RgpasZGCVmykoBUXKWjFRgpasZGCVmykoJXIyPR2DBO0127nMXzKVwwaPJqfD53Ugd++N4NtsSeNKq/bMfqQ6E1MJiuOGwcJH/q0bZxB/EhcV3ZibmwyvLb+wDMLWk1HK/PiuOrHdzTUYWwB21ywsgjmp8Lk6DYhO20n3vUncBy/hfVeFYrqNPz5i44UtGIjBa3YSEErLlLQio0UtGIjBa3YSEErkZHp7Rg+4mDMZ2uMLuG5YvQh0RsoajOOrGOEEsZF5szqF7/B3FBneG39iacRtKYmD805fvSUIKE9j3TJ7gzB+gZYcgNmJsDErYRmxaBvSaY1+S6W/AaaNLfhz1fSHiloxUYKWrGRglZcpKAVGyloxUYKWrGRglYiI9PbMUTQllc34Na9kX8/if4eow+JnkSxOGi9l0zoSFREzHrOr0WtrTK8tv7IkwStYtGxlnhxXPHjTwh27JL9phW+yoe5Z2HyLgLz9+OOTqU5LQ+11GT4c5N0jRS0YiMFrdhIQSsuUtCKjRS0YiMFrdhIQSuRkentGCJoBw0ezZ3cksi/n0R/j9GHRI+guWi5f4Fg4tSImPUlf4Glqtj42voxjwpac72Hlrt+PCd8hHc/MrpgRwDW1cKSTJh+EP/Sg7hiL2K/UoC5xmb4c5E8PVLQio0UtGIjBa24SEErNlLQio0UtGIjBa1ERqa3Y4igbXW6CQSDkX8/if4eow+J58ONPf8qgWOffS9mzyzGWprTD2rr/7j1IK6KAO4UF8E9no5dsl/b4cv7MC8Z38oknAczsN0oRWmUC71eBKSgFRspaMVGClpxkYJWbKSgFRspaMVGClqJjExvx/AZtCOnrWLHgdPkFpRHpO1AitGHxLNiK76N/+TciJj1n/wcW9Etw+vq76g1HpwXmgnsb4Fdj4wu2O6HNVWwNBPfhlQcx25ivVstF3q9oEhBKzZS0IqNFLTiIgWt2EhBKzZS0IqNFLQSGZnejuGCNv7YBWYu3cZv/jSdl4dEMXnBZuKS0gbE/FkYeL+gaxUP8J9eGBGzgaSZND/IoMkql1B1hklx0XrJjG+/ifAOV8cu2c1Wwqvy8G25SeuZbCwP6mmyyNdSBKSgFRspaMVGClpxkYJWbKSgFRspaMVGClqJjExvx3BB+3Bq6k0cP3uNhatjeGPYHH7zp+lGl9RljD4kuouluhTvua8iYjaYOIWW3PM0abK782GUplZartTi3V9FaIsZdjzSJbvNS3hDNb5d+fjTS3BUqYbXLDEGKWjFRgpasZGCVlykoBUbKWjFRgpasZGCViJyAsEggwaP5qXXx0X4t3ensXjtXty6p09riUtKY8m62D59zL5KvxG0rU43V2/lsSk6kRFTV/LzoZP4ePIKo8vqMkYfEl2h1lbhSVsfEbOhwxNovXsKRZNzUJusOqY6O81XSvDszSe0qQK2ONsL2Z0Q3mLFt7sKx9kqzFXWyG0fXRImEQspaMVGClqxkYJWXKSgFRspaMVGClqxkYJWInK+E7Qmiy1ymWZrYdyc9azfeaRPa5GCthfz5eY43h2zmN++N4PpS7aw70gquQXl+Hx+o0vrVow+JB6HuaEO98UtEDcC4oYTThiL43Yiimo3vDYjUcvNNKc/wBN9i9CaHNjQCDtD7aRseIcX/x4zrhQFterxIlsKWrGRglZspKAVGyloxUUKWrGRglZspKAVGyloJSKnM0ELcCzlKmNnraOu0czvPvgscvnyTQcYMXVl5OvJCzaTfi2b+4UVvD9uKW9+PJe3P1lIVm4xACUVdbw3dglfxxxj3Jz1DB05n+t38gHw+vx8vmInr304ixFTV7Jqy8GIoH3c/Q3UGC5oXx4ykT+OWsDXMcfIzMrH6RpYP/hGHxKPYm4y4boSDfEj28TswdE4rx/ApGiG19bnaDqWwkZaUu7h2ZZGaNkVWFkMW92PzJINE9zjQD9jRyvt/v1LQSs2UtCKjRS0YiMFrbhIQSs2UtCKjRS0YiMFraSvc8XyNZctm/qcztKZoFW1ZkZNX8W22JMAvPrBLBS17fqPJi7nw4nL8Pn8hMNhfv3OVFpaXbw7ZjEp6bcASL5wk6Ej5wNQXt3AD14Zw83sAgDSMu5G/qL+yOnLjJi6En8gSKvTzVujFkQE7ePub6DGcEEbCAbJL64i9sg5Js3fzK/+OIX3xy1l1ZaDpGXcMbq8LmP0IfEdJkXDmbmfcPzoNjEbPwpXRgwmRZwZqYrqQsutwXEiC8+m04Tnn4Qv7sBGE+wMt5Oyod0+PMec2HN9mJRnkyxS0IqNFLRiIwWt2EhBKy5S0IqNFLRiIwWt2EhBK+nrpJqXG0Jn+U7Q/ssfovj50Em8PGQiP/39BDZFJ+L3BwBYsCqG81fu0NziZOS0VSxdH0tOfjkV1Y18MGEZAH5/gFAoDLQJ3h+9OhZoE7Q/Hzop8nglFXW89uEsAGYv38GBpLTIdZt3J0UE7ePub6DGcEH7aLw+P0dOX2boyPkMGjza6HK6jNGHhGK247h5mPChT7+dMzsC96WtmBsaDK+t15+7yYH1dgWOw5l4Vx8jPG0fLEyHVWWwzdO+SzY6jO+wl9abASxVPSPVpKAVGyloxUYKWrGRglZcpKAVGyloxUYKWrGRglbS1/GGnIbQWR7toNVsLfzirclU1SmR7zmZmsmabQlcysxh465ETpy7xt7D5zh6+jIbdyUCbZ2xI6etZFjUcj6YsIwf/m4M0CZoX/nzzMh9Pfz1uDnrOZmaGbku9si5iKB93P0N1BguaFtaXVy9lcfXMccYNX0VP3ljPEOGz2P5xv2cvyI7aB+HYmmh9c5JQofHRxaA6Rc2otbVGH5w9Ramumbs14pxHriCf3kCRO2A2cdheTZstsBO2knZ4P4grgsBbPk+FHPP1yMFrdhIQSs2UtCKjRS04iIFrdhIQSs2UtCKjRS0EpHT2YiDrbEnmDR/c+TrJpPGsElfsm77YS7fyKWqTmHqwm+Y91U0N+4WYLW38pM3xlNZ2wSAYrZ2S9DOWraD+GMXItet33GEJetin3h/AzWGC9pBg0fz2oezWLg6htNpNzBb7EaX9FTp60NBsThpuXeW4NHJETHrPbcSS3Wp4QdWT2OuVGm+mI8r5gKBxXEwcStM3QcLL8OaStjua7/ca3cY78kgrbf9qDW9L86koBUbKWjFRgpasZGCVlykoBUbKWjFRgpasZGCViJyOhO0TpfOr9+Zyq3swshlQ0fO5/1xS7G3OAiHw7w1agFvjVqA7vFRXt3Ar9+Zis/nJxQKs3l3EoMGj8bj9T1R0MYlpUVm0NqaHQwZPpcl62KfeH8DNYYL2rpG1egSnit9diBobprzLhFMmh4Rs74zS9AqHhh+UPXM89OxFDbRci4Hffs5gp/HtgnZSTtgzin4Mhe+tj2y3AsCB8M4LwawFflQ1L6tWQpasZGCVmykoBUbKWjFRQpasajUdM4qbjbUufm0wsmvSlz8Q6GTX5c4GVbuZE61iy31bk406dy16NT3g5olvYcUtGIjBa1E5HQmaKFNnv7p08WRObCL1+5tt6grat4mPpmxOvL1glUxvPbRbIZFLedWdiEjpq7kw4nLniho3bqXGUu28tv3ZjAsajmbohNZtGbPE+9voMZwQfu4JF+4GZkr0Z/T+weBG3thJoETsyNi1n9yPrbiLMMPqOdCdaHl1tJ66g6ezacJzYxuE7ITt8L0A7DoKuENtbAz2L5LNgY8p4O03PFjrjNWjkhBKzZS0IqNFLRiIwWtuEhB++JS8YiM/WWxg78qcPLvn4K/KXDyi2In75c5+azKxaZ6N0lNOrdUnTrN+OcoeT6koBUbKWglMjK9nX4raA+dSGfC5xuMLqPL9OYBYCu5i//UgoiYDRyfhb3gGk1Wt+GH09OimBxY71TiOHod79pjhKfu/F7IRu2EucmE1hQS3unq0CXrPxzCedmPtdiHYjH+uXyHFLRiIwWt2EhBKzZS0IqLFLQvBuWah2RFZ12dmzEVLn5V8njp+kqJk0mVLr6pd3PWrJPpCJKs6BxsdLO6zs2kShdvlbl4qahrgfvTYid/KncypcrFujo3hxrdZPbCngRJ7yAFrdhIQSuRkentGC5oD524iO4ZuDMieuODr1UU4juzJCJmg0nTaM5Lp0lzGX4odRdTQwu2zBKc8Rn4VhyBSdu+F7ITt8KMQ4TW3CW4SyMcHW4nZEN7w+jJQZqz/Zgb+q8AEV3QKk1WLIkHUS+cx3znLkpZteE19SVS0IqNFLRiIwWtuEhBO/B4VMb+orhzefq3hU5eLXEypdLF9no3l0w6tY90vXY1g7ZW07lu1jnSpLOhzs30KhfvlTv5WZGTv+5C3r5U5GRomYtJlS5W1bqJb3Jzxdw2ZsHo11DShhS0YiMFrURGprdjuKD99TtTqak3GV3GM6cnP/CWmgo851ZFxGzoSBSt91JQLA7DD6OuMFdbab5UgGtPOoEl8e1l7MStMDma4Jpr+GMaCe3xd+ySPRLCkeFHK/XSNEB+ERVd0Jru59P84b92wP7pUGyzRmH9cjaWLauxxO9BTT6JOTMT84NilDqL4bX3BFLQio0UtGIjBa24SEHbvynTPJxRdNbW6YyucPHzx8jY/1Dg5NXStk7W7Q1uLpm7N4LgeZaE1Vl1bqs6xxWdzXVuZlW5+KC8bZTC3xY+Wd7+oMjJkFIn4yqdfFnrJrbRzUVT2/M1+jUXCSloxUYKWomMTG/HcEF7MjWTCZ9vICX9FvcLKygorW5Hf09PfNDVuhr0C5u+F7MJ43BkHUdRmw0/hB5bc7FCy/lc3DvPEZy3r4OQDU/egW/dRXz7a/Af1AlH075LNjaMfjZAc44fU9PA/OVSeEFbUoFl2xqsX32Obc4YbOP+2Kmw7VTiDv8dtikfYl00GW39Eiwx32BJOoSafh7z3WyUshrDn19XSEErNlLQio0UtOIiBW3/oUzzcFrRWVOn80mFi3/pQsZOrXKxo8HN5W7K2M54HkH7JBqsOtkWnVOKzrZ6N3OrnXxc4eJfS5z8XRedt/+lyMFrpU7GVLhYUu0ipkEn1aRT0I/Ggr0oSEErNlLQSmRkejuGC9pBg0c/kf6e5/mAmxsacF/eBvEjIG444UOf4rhxCMVsN/zwaYfFjZZXR+vpO3i+OUPos90dhGxoxi68m1LwHK7Ac8xBcH/7sQVEgy8phCMzgFb+Ykgt0QVt5z8rTkyV9Zizc1AvpqMeP4y6ZwvahqVYF0/BNnUY9hGvdV/kjn0L2+zRWFfMwbJ1DZaDe1BTTmHOvI45vwSl3rhuXCloxUYKWrGRglZcpKA1hjLNwylFZ3Wdm1EVLl5+jIz9jwVOXit1Mu1bGXvF3Na52lN19JagfRKNVp37Fp0Uxc3OBjcLa1yMLHfxSomTfyx0PFHe/mOhg1dKnIwod7Ggpu01SVHc3Le03a/R7+tAQwpasZGCViIj09sxXNA6XTpen/+x9Pc8ywfbpKi4ru4hfHBUm5iN/wTn1VhMpv7xp9+K2Yn1bhWOpJt41x1vv9DrW4Jz9qBvTcF5ogR3qgNfYgge6ZIN7g/jTg1gz/NhUl48kSEF7XP8jDVYMRWUYr5+AzXlDJZDsWjb1n7bjfsptnFv0/zRv3VP4o54DdvUYVgXT0HbsBR1z5Y2MXwxHXN2DqbKeposzh5/DlLQio0UtGIjBa24SEHb+5RpHk426ayudTOy3MXPHrN86z8WOHm91Mn0Khc7G9xk9LCM7QwjBG1XFFjaOmb3NOgsrXHxaUWbpP4vRU+Wt39X4ORfS5z8pdzF59Uutta7OdnU1snb0A+eV39EClqxkYJWIiPT2zFc0AIEgyHu5JZwMjUzcpnTNTA+AE/zgTaZrDivxxE+OLptnEH8CNyXd2BubDL0oDE1tmK7UYrzYAa+lUcJT97eQcgGFh7AHZ1Gy/kiWjNbcZ8LEIpt3yUb3g3e4yEcNwJYql58cSUFbS9jcWIqr8V8Nwc1/QKWYwlYYr5BW78U66Ip2KZ8hH34q93rxv3o37CNexvbnE+xfvU52ra1WA7FoqacwXz9BqaCUpQG61PVJwWt2EhBKzZS0IqLFLQ9S4nFw4kmnVW1bkY8Qcb+XScytt6AevujoH0SZZqHiyad2EY3K+rcjK9sm2X7g8e8zg8vTPtlsYMPyp18VuViU72bY01tM3R7W4L3Z6SgFRspaCUyMr0dwwVtg2LhzY/n8rM3J0RGGjSaNH7x1mTyi6uMLa4b6c4HWVHtOLKSCCeMjcyZ1dO/Rq2vNeRgMdfYsF8pwBV7Ef/Sgx0XekVtxb8sAef+y9ivFmPLc+DI8OM/Euqw3CsYF8Z1IYDtgQ/FbPyh2ZdIQds/UOotmPNLMGdeR005heXgHixb12BdMQfb7NHYx77V/ZEKT9GNKwWt2EhBKzZS0IqLFLTPTonFw/EmnZW1boZXuPjpY8YU/F2BkzdKncyocrGrQeeqQTK2MwaaoH0SlZrOFbNOfJOb1bVuJlW6eKvMxUtdyNu/LnDysyIn75W3jZJYX+fmcJOb62ad2gGy6PdZkYJWbKSglcjI9HYMF7SjZ65hy97jBIOhdjNnD51I55MZq40rrJt50gdY0VppzT5N6PCEiJj1pK7BUlPRpweJWmKiJe0+7l2pBOft73yh16okHAnXsN0uR6120HzPj54cJLS3ky7Zk0Fab/tRa8SWU1LQDiBUJ0pZDea72ajp57EkHcKy+2u0dUuwLpyEbfIH2D/+XfdE7rDfYJvwDi0LxmFfPQ9tx3osCftQzyVjvnkLU1E5StPTdeNKBh5S0IqNFLTiIgVt9yjupoz9+wInvy9zMrPKRXSDzrV+JGM740UStE+ixqpz3ayT0OhmXZ2baVUu/lTeJmb/uoulZT8udvLHMieTKl2srnVzsLGt47mqHzyv50UKWrGRglYiI9PbMVzQ/uSN8ZFZsw8LWn8gyL/8IcqgqrqfTj+8mpOW3DSCiVMiYtaX/AWWquLePzg0N5b8BlqT76JvSSY0K6ajkJ2+C8+GEzhO3Ea7V43J5MRa7MN52Y8/oWOXbOBgGFd6AFuhD0U1/mDsL0hB++Kh1FkwPyjGnJmJmnwSS/weLFtWY/1yNrZZo7B/OrT73bgjX8c2bRjWJVPRNi7Dsncb6vEjmC9dxHzvPqbKBposLsOfs+TZkIJWbKSgFRcpaDtSZNE5ruisrHPzcYWLnzxBxr5Z2vYn87sbdDLNA2/WqSiC9knUaTq3VJ2kJp1N9W4+q3Lx53Invyh28jddyNsfFDn5Q6mLCZVOVtS52dfo5qKpbRSD0c+rO0hBKzZS0EpEjr3FwaDBo3HrnnaXn0zNZOysdX1SQ1xSGkvWxfbJYxkVwwXt4PdnotlagPaCtry6gV+/M9Wgqrqf9h9aN80PMggkzYyIWf/phVhLsnvtkFBUJ9Z7VTiO38K7/gThaR0XeoVmxaBvSaE1JRtLfgNNmhtznYeWO348p4OEY2jfJRsDntNBWu74MdcPjF+YjEAKWjFRzA6Usir0gjzsl9KwJMZjid6MtnYR1gVR2Cf9GftfXulmN+5vsU14F+vccWir5qNtX4+WsB/1XArmm7cxFZWhKHbDn7OkI1LQio0UtOIiuqD9TsZ+1Q0ZO+RbGRvT0NaNOdBkbGdIQftkGqw6dy06J5p0ttS7+bzaxV/KXfy6pG2p25Pk7X8tcvB6qZNPK5wsrXGxp0HnvKJT2I/GJkhBKzZS0EpEjhS0fRPDBe3a7YcZNX0Vt+8VMWjwaEoq6jhz4QZvfjyXFZvjjC6vy3z3YbUV3cJ/8vOImA2cmIO98EaPHwpKUyu2m2U4Eq7iW5nY+UKvBQdwR5+n+UIeapmp7XYWHVuRD+fFAIGDHbtk/YdDOC/7sRb7UCzGH34DASloxaarGbRKrRnTg0LUa9ewnDmBJW43lm9Woi3/DNtno7CP+UO3u3Ftn7yBbcbHWL+YjrZ5OZbY7agnEzFfuYwpNw9TdSNNmtvw10QkpKAVGyloxUUkQVuo6Rxr0lnxrYz98RNk7B9KXcyqapNqL4qM7QwpaJ+dRqtOrqqTrOjsaHAzv9rFiHIXg0uc/EPhk+XtPxU6+F2Jk1EVLhbWtC2KO6u4yevj/88iBa3YSEErETndEbRen595X0Xz+rA5jJ65hm2xJ1m4OgaA+4UVvD9uKW9+PJe3P1lIVm4xACUVdbw3dglfxxxj3Jz1DB05n+t38iP39/mKnbz24SxGTF3Jqi0HI4L2cfc30GO4oPV4fSzbsJ8fvzGeQYNHM2jwaF4eEsXGXYmR0Qf9Oday+/hPzY+I2WDSDJofXOmxQ8BUZ8d+tQjXvkv4vzgEUZ0s9PriEK59l7BnFGKq+77bTq310Jrlx3MySHg37YRsaG8YPSVIS7Yfc4OUDM+CFLRi0xNLwhRzK0pZFaY7d1EvpD5XN679L7/FFvUe1vnj0VYvwLJzI5YjcZjPn8V8+zamkgoUU7Phr9uLghS0YiMFrbi8qIK2UGv7k/Uva938pfzxi6L+odDJ0FIXs6tc7G3QufECy9jOkIK298i36JwzudndoLO42sWYChevljr5z4WOJ8rbvy9w8m/FTj6ucDG32sm2ejenFJ17as//bEpBKx4VmoNc1cpVk4mLWqMUtILT5zkIxBlAJ+mOoD104iIjpq4kEAxistj43QefRYTqu2MWk5J+C4DkCzcZOnI+0PaX8z94ZQw3swsASMu4y8eTVwBw5PRlRkxdiT8QpNXp5q1RC7q8v4EewwXtd/H7AzSatMi4gwGT78Ts0cm05KSifLvh/VlRy8w0p+fhjj5PYMGBThZ6bcf31VEch65iu1mG0tgaua2i6tjyfbjSAwTjwh27ZI+EcGT40Uq9NMku2edGClqx6QlB212UWhOmvALMVzOwnD6GZf9OtK+/Qls2E+vMEdjHvNn92bif/B7rjOFt3bibvsQSuwPLqSTMGVcw3c9HqVFkN243kIJWbKSgFZcXQdAWWHQSm3SW17oZVu7kR4+Rsf9Y6GgnY2+a27ogja7fSKSgNYZii4d0k87exraf27GVbfOMB3XRefu3hU5+VeLkw3Ins6tcbK5zc1zRyVJ16p6hDiloBxYPy9WUpjoSGiuJri9iQ20eS6uzmVlxg7FlGXxQmsabxSn8qvAkP3xwlP9w/yD/V+5e/qd7u/jv7u1sR7Xr+f6/vmRg0+fZZRCdpDuCdtayHcQfuxC57uGOV78/QCgUBkDVmvnRq2OBNkH786GTIrcpqajjtQ9nATB7+Q4OJKVFrtu8O6nL+xvo6ReC9k5uCWu2JTC6mJk8AAAgAElEQVRr2Q7mfLmT9TuPkFtQbnRZ3Yrn/Fpa755CsbQ8/Ydcc2MpaKAlJRt9awrB2Xs6CtlpO/FuOIHj2C2s2VUoavv/UbBUe2m9GcB7opMu2dgw+tkgzTl+TE1SJPQ0UtCKTV8K2u6gmFswlVZhyrqDmnYOy9E4LLs2oa1ZhHX+ROyT3sf+8eCe68Y1P8OZ9wIhBa3YSEErLgNN0BZYdI426SyrdfNRuZN/foKM/YOUsV0iBW3/o0LTuWzWiWt0s7LWTVSlk6Flrsf+h4fv+JsCJy8XO3m/zMmMKhcb6twcaWrrCq99zNxbKWj7jjLNwT1VI8OkcEap5VBDBTvrilhXc5/FVXeZXn6dMWVXeL8kjTeKkvllwUkGPTjC3+bF83/m7u0gVp+H/zt3H3+fd4ifFCRR6Wo1/LWRGEefx20QnaSl1cWgwaNxONt/Q1JKBuPnbABg3Jz1JF+4GbluT8LZiFBNy7jLyGkrGRa1nA8mLOOHvxsDtAnaV/48M3Kbh78eN2c9J1MzI9fFHjnX5f0N9BguaGMOpfCTN8Yz4fMNLF67lwWrYhg1fRX//Oqn7E88b3R5XeZpPtCK2YmWU4PjRBaejScJzdj1mIVeybQm38XyoL5DJ5vJ5MH+wIf7fIDggY5dsr7EEI7MAFq5l6Z+NFT/RUQKWrHpb4K2W2hulBoF0/18zBlXsJxKwhK7A23Tl1i/mI51xnDsn/y++924Y97EOnME2rKZaF9/hWX/Tiynj2G+moEprwCl1vTCduNKQSs2UtCKS38WtHkWnSNNOl/UuPiw3MkPHyOo/qnQwdAyF3OqXextlDL2aZCCdmBRbdXJNOscanSztk5nSpWLd8qc/LTYyV89Qd7+VYGTnxQ7ebvMyZRKF6vr3BxqdHPL6qHZJwVtVzytXP1FwYl2cvV/7KRz9Vn4n+/t5v/J3cc/5h3ix/lJ/LboFG8Vn+Pj0nQmll/j86rbrKi5x9d1+cTWl5LUWM15pYGbZjP5Fjv11va/w8oZtBKREwyG+PEb4ykqq2l3+aoth1i8di8AM5duI+Hkpch1q7ceYsm6WKz2Vn7yxngqa5sAUMzWbgnaRzty1+840uX9DfQYLmh/9faUyAv7cDKz8vnlW5P7rI7MrHx+8MoYXnp9XIRDJy4CUN+kMnrmGn751mTeH7eUnPzvu3uf9AFWlFastytwJFzDuzqJ8OQdHYRscN5+3LtSaUm7j1pi6vR+LBVeHDcC+JJCEE07IRvcF8Z9PoD9vg+TImVBXyIFrdgMSEHbTRRTM6aSCsy3b2M+fxbLkTgsOzeirV6Adf54bFHvYf/Lb7sncT8ejH3S+1jnT0RbswjLrk1Yjsahpp3DlHUHU2kVinngdSNIQSs2UtCKS38RtPctOoeb3CytcfFBuZMfPEHGvlXm4vNqF7GNbm6pUsY+D1LQvjjUaW3/cSKxSWdjvZuZVS7eK3Py8+K27tondd/+sKhtFvPESidf1bnZ3+jmkkmnXBv4vxeUWlrJNmtcURRON9VysKGcHXWFrP1Wrk6ruM7ossu8V3Ke17+Vq//twRH+Ji+O/yN3D/9DD3Wt/i85Mfy7+/v5pwdtnauDi07xx+JUPi69SFT5NeZW3earmhy+qS0gtr6UY43VpCkN3DKrFFiaabD2fIOAFLQS0bNqyyFGTV9Fg2LB5/NzMfMe//KHKApLawDYe/gcn362llAojNli57WPZrNkXSzl1Q38+p2p+Hx+QqEwm3cnMWjwaDxe3xMFbVxSWmQGra3ZwZDhc7u8v4EewwXtH0bM6/Ryn8/PL/pQ0J67lMVnX2zr9LpPZqzmQFIawWCIzKx8Br8/E38gCLT/Bd1U14z9ahHO/ZfxL0+AqG0dhKx/6UFcsRexXynAXGPr9INvUjzYc/24UwOE9rXvkg3vBu+xEI4bASyVL6YcGihIQSs2L7Kg7RaaG1N1I6bcPMxXLqOeTMQSux1t83KsX0zHNuNjbJ+88RTduH/A9tkotOWfYflmJZa43VjOnEC9dg3Tg0KUWrPxz/khpKAVGyloxcUIQfs0MvaPZU7mVjvZ1+jmtpSxPY4UtGJQb9W5q+ocb9L5pt7N7CoXH5U7+ddSF3/Xxdzb/1bo5I1SJ2MrnSyrdbO3QSdN0Snqg79sfFSuxjeUs72uiDU191lUdYepFZl88q1cfa0omZ8XHOe/PjjMX+fF8b/3oFz9X3Ni+H/v7+c/PTjETwuO8Urhad4uTmV46UUmlV9jXlUWX9XksKW2gH31pRxvrOGC0shts0qh2jtytSeQglYierw+P5uiE/ndB5/xszcnMCxqOdfv5Eeud7p0ouZt4vVhc5g4dyObdyexdH3bSIIFq2J47aPZDItazq3sQkZMXcmHE5c9UdC6dS8zlmzlt+/NYFjUcjZFJ7JozZ4n3t9Aj+GCdsm6WK7eyutw+dHTl1mzLaHP6kg8cyUyz+LhWO2tvDwkikAwGLnsz+O/4E5uCQDNlwpw704jsDiug4xl4lZ8Xx3FGX8F280yTI2P6RLTdLQyL46rfnxHQx3GFgTjwrjSAtgf+FDMxh9MkjakoBUb4QVtN1EUO6aiMsw3b6OeS0FL2I+2fT3aqvlY547DNuFdmod1sxv3L69gn/RnrAui0NYuwhK9GUtiPOqFVEx37qKUVaGYHX3yvKSgFRspaMWltwVtrqqT0OhmSbWLPz9Bxv6nQgdvlzmZV+1kf6ObLNX410YEpKAVG2urF48/RI6qc0bR2d7gZn61k48rXPymxMnfd9F5+0+FDl4tcfJJhYtF1S52NeicNbnJs7TJ1btmjcumJk411Ty1XP3ve0iu/m85Mfx/9w/wnx8k8LNv5eo7xecZUXqJyeXXmF+VxcrqHLbWFrK/vowTTdWkmxq5raoUWVr6rVztCaSglch0ne8WdwFs33eS9TuPGFjNwIvhgnbeV9G89Po43hmziKkLvyFq3kaGDJ/Lv/whiplLt7WjN7Mn4SwfTlzGu2MW89v3ZrB47V5cbg85+eW8O2Zxu++dvXwHickZbV88vNBr8g6864/jTLqJLbsKs+rEZNM7RVU8tOT48ZwNEtr7SJdsNHhPBnHc8qPVeB97HxJjcXuDtDh9htchMQavP4TNYfDn0+55MbC6Mdc2oeY9wPLtbFxt3w6sm7/E+sUMbDOGY3+abtyxQ7HNHoVtxez/n73zjI/qPPP2ZpPtu+/m3fpuEqdnk9hOcezEseNeMY5j44Y7vZreTe9geu/FoldRBIjeu3obaaqmdwnQKXNGIF3vhwPYWCAJkDiC8/x/v+sDkph5zhnpmZlr7nPfxGaNJ7ZyMbG0VKLHjhIpKCbsi932mi9eqiZ2QTP+3AkMoboawk1gHcZxD+0/N0n4nP74N8Rt5cQSrAmqDC1VeMt244n0Pyus4C9WmYGlMikBlbNR48+DWYld0Lh4qdrwdZgaA193lVXoQ8K++rVgmYo1dp6MSJQDoQAr/B5Gedx0dHh4zerhMYufXxZGuK/gXK3y9r/zy/mPfC/fzi3iX3JO8Y85+/jb7FS+mZVyy3L12aKtvF6czkcl++lqO8Ig52nGl2Yx21NIis9KatDF/rCfM5EIxbHzBJvA6+umzHlZF7RGr0NgHCK158DxbJp9MAA1kURRE7zRZgh7j2QYvay7KoYL2jHTVzB+1qp60ZjZeySD6Ys2cu68RNm5Ctr2+ZxxM1dyIqOAlp1GXvOzQyYuIWXDbgCqVh2kek82Vc4Ql6qqb8zFaqr81VSdrKZ6PTWqZKtXQ9XRaqrccClZy+0ImgzV1dVUVRu/DoGBj7+B969VVlFVVW0uVJWLPjeV+Zloh9NRU1egLJmKNGkQFwa153yn1znX8sn6idwPnuVCt3eoGNYVafpwlJTZJNLWkzxxgIvFeVwMB6m63NfoegDGnw+BYZj98Tfl/nObj79Xq2Ln+YuMD2m851J4wCJfV9L8okjibafCmKDGtnMXcSXMfa6bImb/+zcarfJSg72WulhVTawygTNxgWwlxqEKP1vPlZIStzI7UsDYYBb9vCfoUHqIlo49NLOm8XhxKvcXrOV7eTdfufqNrKX8TfZG/j57N/+ce4Jv5+bx73ku/js/Xqu8/W7BBX5pKeNJa5i3nSF6+8PMjEbYeaEMW+ICscoEFxvonAhuTFWV/vrf6HUIjEOk9ly6VMXIKct59u1ePP9uHybOWUN1tThvNxPDBW1TTUZuCc0+GEB2gY3XWg2+5nu9R8xhY9phoPZL3MLeBOfPVpLYdonqxV+rkl0Eia2XOH+6krBXXCZ7NyJaHJgb0eKgiRKVCDl8hDNzCO/fR2TTWqJLZhObMoL40E8p69aS8o9eqH81bpvmlPX+mPioPkRnjie6YjGR7aloWaeJFRYT9ESNP2bBHUe0ODAv9WlxkBnRp8YPdsm8adV7Ul5Puvy8qILXrRIDXTIpfoWzok1Bk0e0OGg6+OIKRdHznIpE2BvyszngYrnXyix3IWNdWQx0nqaL7QgfluznL5Z0nincysMFG/nfvNX8v5wv+KesRQ3SEuAbmfP4l6xFfCcnhZ/nreH3+Zt4rmgbbxSn87H1AF3tR/nMeYbxpdnM8RSS4rORGihlfyjAmXCU4uh5/HF9wNj+sMoXfoWxHoWODn0Q2YM3aHNyhe8VSPzeItHCKtHTKTPFq7AuoA9A89yBvrdmQrQ4EIiINHaahKDdkn6MT3qM5/l3egOQ0JLM/WLrNX1fGzuOUj+R2Lmr/z6ZUchrrQZTfr6C373UATXx5US4Zh/0J7vABlz7Aj0YVYkXJZH2X+Tiqpq9ZCtXVyEduEi8KEkwavwGI7g9hKA1N0LQ3t0EA3FCBSWEjx0nkraN6KqlxGZPJD6mH2V921DW7jXOvftE/STuB89R1vVd4oO7Eps0jOiiGUQ3riaydw/hs1mEbG4CEcnwYxY0HELQmpevC9qMqMpKv8JnpTItbBK/KKq4QWVsBW/YJAaVyqwIKJwVrwPvSoSgbRh8cYXCyDlOhSPsCfrZ5C9lmbeEme4CxpRmMcB5ms62I3xQso/XLLt4pnArvyvYyM/yVvHfOcv5x4aUq9mL+W5uCr/IW8MfCjbxfNF2WhSn84n1AJ/ajzLYeYYJpTnM8RSxNmjn4LkAB0IBzoZjlEQv3JFBfM64ypGw3p96gkelq0PmNavEQxaJ79Qib79ToP/MX6wSXZ0yEz36bRwJ67dp9O/B3YYQtAIRkcaO4YJ2+bp0nn+nN4tWpXH/060AiJWdp0XboUxbuOGOrWPK/PV0GjAFRU0gySod+k1m6oL1ALTt/TnzU7Zx6VIVaftO8mLLvly6VAVAxJ3g/OlKElsuUb2Ia6tkF1ejbr/E+YxKwj5RJXuvIQStuRGC1gREJUIOL+GMLCL79hLZtIbI4pnEJg+jYkQ3yj9tSfmHz99Eb9xXKevTivjovkRnTSC6cjGRtC2Ejx4jnF9M0Cuqce8WhKA1J2ejKisDCmNDSd6oQ8a2sEl8Viqz0q+QIWTsPYMQtLpcLYie42Q4wu6gj41+F0u9Jcy4LFf7O0/RyXaE90v28WfLLp4u2sJDBRv4ad4q/itnOf/QQHL1r+shV4c4zzKxNIe5nkJW+mxsDbg5GAyScVmu3uyxxy/oPWiNfgy+ijumV8uuC6hM8Sr0cOqV+49Y9Ora2qpvf1Uk8UqJTCeHxFi3whd+hf1hFbuovL0uQtAKREQaO4YL2qda9MBR6ge4KmgBvIEIz7/b546tQ1E1Bo5byGOvdeWpFj0YMXn51apZfyjGJz3G8+irXXi7wwgKS0q//I9fr5JdW0XFoUpiJRoB8YL8nkYIWnMjBK25uXipmsg5/YO3oDdKOL+Y8NFjRNK2EF25mOisCcRH96WsTyvK275af4n74fOUfdqS+JCuxCYPI7J4pi6G9+0lnJFFyOElEBXVuEYjBO29z9mISopfYaBL5nWr3o7geoLjl4USb1olBrtkVvkVMkWbgnuau13Qem9Crr5q2clTRVv4bf4GfpK7iv/MXsbfZy5sMLn6f7IX873cFH6Zt5ZHCzbzwmW52sp6gG72Yw0uVxuCpihoa8MTVzkTUdkUVJnuVejjlHnHJvFYscT365C3vyyUeMkq0dYhMdKtsMSvsiekUmTi97dC0ApERBo7hgvah1/ucLXh/lcFrZpI8tsX2xu0qvqncl0V6o5LnMuqJBQQVbJmQghacyMErbn5qqCtFxGJkM1N+GwWkb17iG5cTXTRDGKThhEf3JWyru9S/sFz9RO57z5BWbvXKOvbhviYfsRmTyS6aimRtG2Ejx0nVFBCMBA3/BzdywhBe2/xpYzVLwX+38JaZKxNYnwoyWq/QpaQsabDSEHrjSvkR8s5EQ6THvSx4bJcne7JZ3RpJv2cp+hoO8L7JXsbVa5+M3M+/5q9hPtyV3D/Zbn6YtF23izeTWvrQbrbdLn6eWkO8zxFrPLZ2RZ0cygUJDMSwxqrMPxxvFXuNkFbG/643i97a1BljldhgEvifbvMExaJH9Uhb39WWMFzJRKt7DJDXDILfSo7Qgr597i8FYJWICLS2DFc0LbsNJId+08BXwra6upq5qVs5a32ww1cWf1i9CYhMA4haM2NELTm5qYFbT1p0Grcj16grFtL4kM/JTZlBNEls4lsWkt4/z7CmTmEHD5RjXuLCEF793Imog/huSJjf3YDGXv/5crYIZcrY6/I2PoMCRPcu9yqoC2NS+RFyzkeDrMr6GO938kSbzHTPPmMKs2kr/MUHayHea94L80tO3mycAu/yV/Pjy/L1b9rQLn67ewlfD9nBQ/kreWPBam8VJTGW8W7aWM9SA/bMYa6MpjkzmW+t4jVfjvbA24OhUJkReLYYsZUrjYV7iVBWxe5UV26zvepDHbJfGyXebZY4qc32DOv8ONCiaeKJT6wywx0ycz1KWwLqmRF1DvSr7cxEYJWICLS2DFc0GblW3n45Q581G0s9z/dim5DZvLSe/14pFlHTmdbjF5enTF6kxAYhxC05kYIWnPTWIK2XkQkgtZSwmcziOxNJ7phFdGF04l9PpT4Z50p6/I25e8/Wz+R2/JJyjr8hXj/tsTGDSA2dxLR1cuI7NxO+MRJQkU2UY17HYSgbfr44yqnIyrL/Xpl2Gu1yNgHiiTeskkMdcms9itk11IZKwSt+XDFJXKj5RwLh9gT8bH7nI/FnmKmuvMZ6cqgj/0E7a2HaVm8l1csO3iiMJXf5K/nR7mr+I/sZfxt5oIGkavfypzP/81ewvdzVvJg3joeK0zlZUsab5fspq31ED3txxnmymCyO5cF3iJW+x2kBTwcDoXIjsSx38WVq00FMwna2iiMqewOqizxqQwvlWljl3ih5MZ9ua/wgwKJx4slWtok+rpkZnoVNgX0qxi8TeC46kIIWoGISGPHcEELer/ZeSlb+Wz8IkZO/YLl69IpO1dh9LLqFaM3CYFxCEFrboSgNTeGCtp6EvRECedZCB89SmR7KtEVi4nOHE98VB/Ken9MeZvmDVyNKxt+zHcKIWibFv64yqmIyjK/Qn+XxJ+tN67yuhkZez2EoL27cMYqyI2UcTQUZmfAy1qfk0VeC1PceYxwZdDbfoJ21kO8W7KHZpYd/KkwlV/nr+eHuSv59+yl/E1WA8nVrAVCrt4DCEFbN9ZYgn0h/cOxMR6FDg59ENkDRbW3TfhegcQfLPqVC72cMlO9ChsC+gA0TxMZWiYErcDMKbZ7ePDZ1tdw/9Ot6D50ZoPd/svv97/u95at3cXQz5c2yP009TQJQQtQWXkRXzBq9DJuOkZvEgLjEILW3AhBa27uBkFbH4LhCoJWJ6EzZ4ns2UV0/QqiC6YRmziY+KBOlHd+i/L3nqlnNe5TlHV4nXj/dsTGDSQ2ZxKx1cuJ7EwjfOIUoSIrwWC54cfcEAhBaxz+uMrJiMpSv0I/l8yrVrlWGfu2TWJYqcyagEJOA/RHFIL2zuGIVZATKeNIKMyOgIc1PgcLL8vV4a6z9LIfp631EO9clquPF27mV/nr+EHuSv4teynfakC5+m/ZS/lB7kp+XbCOZ0q20Myyg3dK9tDWeohe9uMMd51lijuPhV4La3wOdgQ8HAmFyYmU4RBy9Z5BCNrbwxlXORRWWeVXGO9R6OKQ+bNV4reW2uXtdwskfmeReN0q8alT5nOPwmq/wtGwiusOrl8IWoHIlzlfIfP8O70b7Kr32gStmkgiyeY4/4YLWjWRZPCExfz6ubZXe9CWnaugda8JxMrOG7u4esToTUJgHELQmhshaM3NvSJo60vQHSaUV0jkyBGi2zYTTVlIdMZYYiN7UdbrY8pbv1LvatyyT16krMf7xId3JzZtJNGlc4ikrid88ACh7FxCLj+BmGL4MdeGELR3Bn9cr55a4lfp65JpXouMfbBI4h2bxPBSmbUBvX9iY6xJCNr6YY9VkB2JczgUIi3gYbXfwQJvEZPduQxzZdDzslx9u2Q3L1vSeKwwlQfz1vH9nJX83+wlDSZX/yZrAf+evZQf5q7k1/nr+VNhKs0sO3i3ZA/trIfobT/BCFcGU9x5LPJaWOtzsjPg5WgoTG6kDOfX5KqRQ8IExiMEbePhjqkcC6usCShM9ih0d8q0sEk8XKQL2toE7q+LJJpbZTo7ZMa5FVYEFA6EVRwNXHkrBK1A5Mv0HjGHyfPXXf13TqGdN9sN4+X3+/PaJ59dFbfFdg8t2g5l8vx1fNJjPK998hmnsoroMXQWb7QZwtgZK67+XLMP+vP5nDU893Zvmn3Q/+ptfLWC9kb3c6/EcEE7ZOISOvafQm6R46qgVVSNgeMW0nfUPGMXV48YvUkIjEMIWnMjBK25MZugrQ/B8AVCJU5Cp88Q2b2T6LoUovOnEpswmPjAjpR3fpPy95+uX0uF956irFML4gPbExs/iOi8KUTXphBO30H41ClCxXaCoXOGHasQtA3PVRnrU+njlHmlROYnN5CxvyqSeNcmMcKtsC6gUnAHJ4ebWdDmRspY6LXQ236CNtaDvFW8m5eK0vhjQSoP5K3l+zkr+Hb2kgYRq1eoTa72uUm52hAIQWtuhKA1Bk9cb2OzMaAyzaPQ2ynztk3ij5YK7iusXd7eXyjxcolEO4fEKLfCUr/CvpCKJXrzr+GEoBXc6VTndaI6t90dp66k7jpKi7ZDqay8ePVrr7ceQtrekwBs33OC5h8NBMDm8vHAM63JLrAB0H/0fF5rNZhkshItWckjzToSKztPsd3Dr55rQ+quowBsST9Gsw8GANcK2hvdz70SwwXtH5p3pvy83m/2iqAFuCApPPF6N4NWVf8YvUkIjEMIWnMjBK25EYL2FokpBN0hQrkFhA8fIrp1I9Hl84hNH0NsRE/iPT+kvPXL9e+N+8lLxHt8oFfjTh1FdOlcols2ED50kFBOPsHSYKNU4wpBe3v44yrHvyJjm5fI/PgGb7J/XaQPlBnpVlh/h2Xs9TCToN0V9DGmNIvXLel8NzelUeTqVHc+iz3FrPM52RX0ciwcIjdajisuGX7810MIWnMjBG3TwxdXyYiqpAZUZnn1PuTv22X+VCzxwzoqb/+3sILnSiRa22WGumQW+VR2hVTyb/A8IwSt4E6nOuNNQ6gt3kCEJ17vhqPUf83XKysvUlVVDUAkdo5fP9cW0AXtY691vfpzM5dsYtS0lKv/bvZBfyw2N8V2Dw+/3OHqbVRWXuT+p1tRfr7iGkF7o/u5V2K4oH3sz13RkpXAtYK27FwFD7/cwaBV1T9GbxIC4xCC1twIQWtuhKBtXILh8w1Xjfv+05R3fpP4wI7EJgwmOn8q0XUpRHbvJHT6DKESJ8Hw+ZtanxC09ccX1y9bXexT6X25MvZGMvY3RRLv2WRGufXhMIVNZDDMNb+b96igtUTPk+Kz0d12jMcKU/m7zIU1hOvfZy7k0YLNfGo/ysivyNWNftc1ctXoY2lMhKA1N0LQ3l344yo5UZW0oMJcn8JnpTIf2WSeKZZueIXGFX5SWMHTxRIf2mQGlcrM9SnsjWk45Iv4m8CxCYzhjqfyHFSW33lukEuXqni/y2hWbd5b43u7D53lo25jadlpJG93GMGDz7YGdEH7/Lt9rv7cnGWpTJq79uq/m380kIISF8V2D8+/0/ua23z45Q64feFrBO2N7udeieGCttvgGYyftYqElrwqaIPhOF0/m07ngdOMXVw9YvQmITAOIWjNjRC05kYI2iZATCFYGiSUk0/40EGiWzYQXTqX2NRRxId3J97jA8o/ean+1bitXybe80NiI3oSmz6G6PJ5RLduJHz4EKHcAoLu0NVqXCFor8/1ZOyPbvDm97cWvcpptEdhYxOVsdfjXhC0/rjKoVCIKe48Whbv5Se5q/jGdSpgv5ubwuuWdMaUZpEe9OGNN+3e0HcCIWjNjRC09xYFUb1idpFPZVipTBu7xPMlEj8vql3e/rBA4vFi/QPFfi6ZWV6F1IDK2aj+PGj0cQkaD7Nn7vItdOg3merq6mu+Hi+/wEMvtsfhDgC6z7sVQftIs05Xb/tKBe35C/JVQVvb/dwrMVzQBiNl/PnjQVeHhD36ahfuf7oVLTuPIhCKGb28OmP0JiEwDiFozY0QtOZGCNq7h2DoHKFiO+FTpwin7yC6NoXovCnExg8iPrA9ZZ1aUP7eUzdVjVsxtHMt1bgXDD/mO8EVGbvIp9LLKdOsRKqXjN0UVCkyuE3Bbf0+3YWC1ha7wAa/iwHO0zxbuI1/vU6f2G9lLeChgg20tx5moddCdiRu+LqbIkLQmhshaM2DNZZgX0hlqV9hlFuhvUOiuU3iQYtcq7y9r1DiUYvEWzaJXk6ZqV79Q8hTEb2XrtHHJbg9zJzcIgdPtehBNH6uxvdsLh+P/+VTkslKqqqqmbZwA/c/3YqElrwpQfvAM63ZfegsANv2HOe1VoOBL3vQ1nY/90oMF7Sgl0pn5llJ3eJTaMMAACAASURBVHWUXQdOU1hSavSS6h2jNwmBcQhBa26EoDU3QtDeY8QUQi4/oexcwgcPEEldT3TpHGLTRhIf3p2yHu9T9smLN1GN+wplvT4mNrIX0RljiaYsJLptM5EjRwjlFRJ0h40/5pvAG1c5GlZZeFnGvlyLjH3osowdcw/I2OtxNwjaU5EIczyFtLIe4IG8tXwzc34NIfsf2ct42ZLGEOdZtgRKKW2iPV+bGkLQmhshaM3NlR60jpjKwbDKioDCOLdCZ4fMq1aZ3xTV3vP2uwUSDxdJvGGT6OaUmeRRWBNQOBZWKW0CxyeoGzNn8ITF3P90Kx58tvU1/KF5ZwAGjVvE8+/2oWWnkZzMKOTDT8fyTscR9Ra0+cUuXm89hElz19L8o4E0/2ggWfn6YLGvtji40f3cKzFc0K7avO+6Xz93XqLX8Nl3eDU3H6M3CYFxCEFrboSgNTdC0JqTYLCcUJGViwVZRHamEVu9nNicScTGDSTevx1lHV7nXMt6VuO+9wzlnd8iPqgTsYmDiS6YRnT9CiJ7dhE6c5ag1Ukw3PBT6OvCG1c5ElZZ4FPp6ZR5yXrjQStXZOzYyzL2VqZi3200NUFbGpfYFnQz3HWWVyw7+M/sZTVk7F9nzuOXeWv52HqAWe5CToTvrg8ImhJC0JobIWjNTX2GhJXG9atLVvsVPvcofOqUecOmi9nv1jG07DdFEq9aZTo7ZMa7FVb6FQ6FVZxN4NgFOiIijR3DBe0zb/Vk0ty11/SxOHo6j6da9ODj7uMMXFn9YvQmITAOIWjNjRC05kYIWnNTaw/aqEzI4SOcmUN4/z4im9YSXTKb2JQRxId+Slm3lpR/9EL9q3HbNKes98fER/UhOnM80RWLiWxPJXz0KOE8C0FP9JaPwxtXORxWme9T6eGUebHkxjL2dxaJD+wyY90KmwLmkLHXw2hBmxctZ4m3mE62IzxcsJG/zVxQQ8j+S/Zini7aQl/nKdb6nFhjd17036sIQWtuhKA1N/URtLXhiamcjKhsCKhM9Sr0csq8ZdNbInyvDnn7QJFEsxKJ9g6J0R6FZX6FfSG9FYPR58VMiIg0dgwXtJHYOd7uMIJew2dz7rzEyKlf8NsX27N8XTpVVdV134DBMXqTEBiHELTmRghacyMErblpiCFhwUCcUJGN8ImTRHZuJ7p6GbG5k4iNG0C8f1vKOvyFcy2frGdv3Gcp6/I28c86E/t8KNGF04luWEVkbzrhsxkEraV4IxKHwirzfArdnTIvlEj84AZvBB8u0idXj3MrbA6oFJtUxl73cbuDgtYbV9gT9DOuNJsWxel8P2dFDRn7V5nz+FHuKt4p2cMkdy4Hg0ExYbwREYLW3AhBa25uV9DWhi+uDxnbHFCZ6VXo65J5zybzePGNn6uv8POiCp4vkWhjlxhWKrPYp5IevHuGb95NiIg0dgwXtABqIkmv4bP5zfNtebPdMBylfqOXVO8YvUkIjEMIWnMjBK25EYLW3DSEoK0XUemWqnFj7z3Fye6fsGT8aHotX8uLuzP4QU7Zdd/YPZId4eNMHxPy/WxxlQkZWweNKWhLohdY5bPT036cPxWm8k9Zi2rI2L/PXMijBZvpaj/Kcq+Vwsg5w8+JmRCC1twIQWtuGlPQ1oY/rpIdUdkeVJnrUxjokvnALvN0scSPC2uXtz8trOCZYomPbDKflcrM8ynsCCrkRlXxYd4tICLS2DFE0NpcvhpYnT66D53Jm+2GUWz3XP16U4/Rm4TAOISgNTdC0JobIWjNzR0TtPXAE1c56C1nXqGPbpluns8M8P2889d9o/aHo1Zar9/JlBkz2DWwG96PX65ZjfvBc5R1fZf44K7EJg0jumgG0Y2riezdQ/hsFiGbm0DEvAOlGlLQHgmFmerO5/2SvfwsbxXfuE517P/kfMFrll2MLs1kV9CLJyYbfg7MjBC05kYIWnNjlKCti/yoys6QwkKfyhCXTCu7zHMlEv9bWFGrvP1RgcSfivVe8v1dErO9CluCKpkRvaLX6ONqioiINHYMEbT3P92q3jT1GL1JCIxDCFpzIwStuRGC1twYJWg9MZX9YZU5PoWuTv0N2Pdv8MbrEYvEJ3aZCR6VrUEVa0Qm5PASzsgism8vkU1riCyeSWzyMOJDulL2aUvKP3y+/r1x275KWZ9WxEf3JTprAtGVi4mkbSF89Bjh/GKC3lvvjduUuVVB64xVsMlfyiDXGZ4v2s63s5fUkLHfylrAb/LX0856iAXeIjLCMcOO0xlIkFuicSxDY9dBjfXbkyxepTFtQZIJMzTmLte/tu+YRlZRAnfI+MfmTiAErbkRgtbcNFVBWxuWaIK9IZUlfpWRboW2DomXrBL311F5e1+hxB8tFbxtk+jtlJl2eRjo6Yj+wbDRx2UUIiKNHUME7QVJqTdNPUZvEgLjEILW3AhBa26EoDU3d0LQXk/G3neDN1S//7qMvY2hIUFvlHB+MeGjx4ikbSG6cjHRWROIj+5LWZ9WlLd9tf4S98PnKfu0JfEhXYlNHkZk8UxdDO/bSzgji5DDSyB6d1Xj1lfQnglHmesppI31IL/KX8e3MufXELL/lr2UF4u2M9h5htSAC1e88c+FO6SSb01wIlMj/XCCDWkay9YmmL4wyegpSfqPSNK5byXtetw8PT9LMmpykllLNFZvSZJ+WONMXgK7997ZK4WgNTdC0Jqbu1HQ1oY9pnIgrJLiVxjrVujkkHilRObXRbXL2+9d7lXfwibR3Skz2aOwNqByPKzivsf73oqINHaaRA9a0KWtwx3A5QkiyXfPL7/Rm4TAOISgNTdC0JobIWjNTUMLWndMZX9IZY5XoatD5rniG8vYP1gkWtllJnpUtgVVbEZMcI5IhGxuwmeziOzdQ3TjaqKLZhCbNIz44K6UdX2X8g+eq5/IffcJytq9RlnfNsTH9CM2eyLRVUuJpG0jfOw4oYISgoG44Y/5Fa4naN0xmbSAh5GuDF617OS/c5bXkLF/nTmPn+et4cOS/cxwF3A8HG7QdXnCKgW2BCezE+w5kmDTDo3l6xLMXKQxdprGgFEaXfol6y1bO/eppP8IXdpOX5BkyWqNlZsS17BktcbEWRoDR2l13l7XfkmGTUwybUGSlA0J0g5onMxOUFJ6d+2jQtCaGyFozc29JmhrwxVXORpWWeVXmOhR6eqU+YtV4iGLxHdqkbffKZD4rUXiz1aJLg6Z8R6FVX6Fw2EVZxM4rttFRKSxY7ig9YdifNJj/DVtDR54pjXt+k4iHC03enl1xuhNQmAcQtCaGyFozY0QtObmdgStO6ayL6Qy26vQxSHzbC0y9lGLRGu7zOcehe1GydjbIOiJEs6zED56lMj2VKIrFhOdOZ74qD6U9f6Y8jbN61+N+9ELlHVrSXzop8SmjCC6ZDaRTWsJ799HODOHkMN3R6pxg2UqkUqVpd4SutiO8Pv8Tfxd5sIaQvafsxbxVNEWettPsNrvoCR64ZbuzxtRKXQkOJWbYO8xjc27NJatSzBrica46RqDRmt0HVB/8dqpTyX9huuVrtMW6G0L1m9Pkn5Ib2eQW6LhDNz875k/pmJxJjieqbF9r77GKfM1hoxL1imGO/ep5LMxSabM1at5t+7ROHpWo9CRwN/EqrGEoDU3QtCaGzMJ2trwxFROhFXWB1SmeBV6OmVaWPWreb5Xi7z9nwKJB4r0Kt0ODokxHoXlfoX9odu78udOIiLS2DFc0L7TcQSDJywmt8hBMBzHF4xyOttCpwFTadl5lNHLqzNGbxIC4xCC1twIQWtuhKA1N/UVtFdk7CyvQmeHzDPFN37z8kdLBW3sEpM8CmlBBXsTE1ONRTBcQdBaSvhsBpG96UQ3rCK6cDqxz4cS/6wzZV3epvz9Z+sncls+SVmHvxDv35bYuAHE5k4iunoZkZ3bCZ84SajIRjBYflPr88UV9oUCTCjN4a3i3fwgd2UNGftXmfP4Qe5K3irezcTSHPaHAvjiSu23G1EpciQ4k5tg/zGN1F0aX2xIMHupxvgZGoPGJuk2sP7itWOvSvoOTzJyUpKp8zQWrdRYvy3JzgO67MwpTuD0G7dnWT26ZN51UGPlxgQzFmkM/zxJ9zqOsUOvSvqPTDJhpn5Mm3dpHDyli2Rv5M4fhxC05kYIWnMjBG3deOMqZyMqmwIqM7wKfZwy79okHiu+cc/8K/yiqIIXSiTa2CWGl8os8ansDqoUNaHXQyIijR3DBe1TLXpQXV1d4+sXJIXfvtjegBXdXIzeJATGIQStuRGC1twIQWturidoS+Mqe0MqMy/L2KdvIGO/U6C/UWljl5jsUdhhIhl7OzRkNW7ZJy9S1uN94sO7E5s2kujSOURS1xM+eABbdhZrrTn0th3nycIt/HPWohoy9u+zFvKHgk10tR1hmbeE/OiX0tcbVSl2JTibl2D/cY0t6RopGxLMWaoxYabG4LF1S8lrBGXvSvoMSzLi8yRTLovXtVuT7DigceSMRo4lgcN3d+9FrmCCjIIEe44mWLc1ydylGqOnJOk1pPbz1L6nfm7GTLs8tGybPrQssyhBaSMNLROC1twIQWtuhKC9PfxxlayI3p5pjk9hoEvifbvMk8USP6pD3v60sIJniyU+tssMdsnM96nsCCnkRe/sMYiINHYMF7RvtR+Oomo1vh6MlNGi7VADVnRzMXqjExiHELTmRghacyMErblJVMHekF4d0skh8VQdMratQ2KKV2FHSMEhZGyjErQ6CZ05S2TPLqLrVxBdMI3YxMGUDepEeee3asjazE7NmDv6Yz5Z2ptfpI/nGxlzawjZ/zk+m9f2zmTE9sVsSN1M7mE3W/dorNiYYO5yvQ/rkHFJegy6CfHaq5LeQ5IMn6hf2r8gRWPNliRp+3Xxmm1JYPM2vUv87zSesEquJcH+Exobd+jnafwMjb7Dk3ToVffQspGTLg8tS22YoWVC0JobIWjNjRC0jUt+VJeuC3wqg10yn9j1nvw/LayoVd7+qEDiCYsuewe4JOZ4FbYGdRnsb+A1iog0dgwXtFvSj9Gh32T2HM7AYnOTb3GStvckH3Ubx9bdx7G5fFdpijF6IxMYhxC05kYIWnMjBK15cMX1S+ymexU6OiSerEXGPi5kbJPGFZdIDbgYXHyEF7PW8W8ZNXvHfuvsHH69cwIdF/Zk6fAPKWj3Ug2pu6rt8lqrOnsOTjJsQpJJszXmf6HLwbR9GodPa2QWJrB6hHhtCLxRfTDa4TMaqekaS1ZrTJqt9+Xt2LuOoWX99cdo2oIkX6xPkLZfH1pWXFr7YyMErbkRgtbcCEFrHEVRlT0hlSU+lRFuhbYOiRdLJH55gx7+V/j+5Q/K37FJ9HHKTPcqbAqqnIno7Rhudh0iIo0dwwXtV4eD1UVTjNGblcA4hKA1N0LQmhshaO9NXHGV9KDKNI9CB4dekVFfGXsvTCe+l/DHVA6XxplQYOGts4f56en1fDNjfg0h+3fHl3Lf1jQeWZxB8/FeWvdWr0q8AV09jO2cyZwOu1nZbhXp7adxuv1gNow9wdzlGis3Jdi2V+PgSY2MggRWtxCvTYUrQ8tOZGqk7dNYvj7B1HkaQ+sxtKxTn0oGjUkyea7GkjUaW3brVc2FjgShMiFozYwQtOZGCNqmiS2WYH9Y5Qu/wliP/mF68xKZB4tql7ffK9AHm71plejhlJniVVgX0AeguW/wXC4i0tgxXNCWn6/ggqTUi6YYozckgXEIQWtuhKA1N0LQ3v044yo7QwpTvQrtLlfG3uhF/BOWL2XszpCCUlW/IWGCxsHuS5BtSXDkjEbaAY01W5PMX6HSI8XPy2uy+d+t6fzTkS9qDvPKmMe396/h52sP8OSsQt4eGqNdj0q6D0wyeKw+iGruMr11wZbdGvtPaJzN16sqfZf73AXL9B7ERp8Dwe1h8yY4nXN5aNmmBDMXa4yo59CyQaMqmTBTY+FKjU07dUFv1NAywZ1FCFpzIwTt3YczrnI4rLLarzDeo9DFIfOaVeK3ltrl7f8USDxkkfiLVaKLQ2a8R2G1v2n6KJF7K4YLWoDKi5c4kVHAxrTDrNq8j6On86msvGj0suoVozcdo/mfAokHi/RKoldKZN6zyXR0SPRzyYz1KMzyKnzhV9gSVNkfVsmI6p9yGb3uhkAIWnMjBK25EYL27uLrMvaJWl6YP2GRaOeQmHpZxl6vMvZ6Q8IEt4/DlyDnsnjdeUBj3dYki1ZqTJmny7O+w5J0uHzp+kf9K3hxkoNff3Gc/7czlW+ertmu4G9OL+KHu7fwXOoJum50MH9jBanpGvuP671ILc4EvpuUakLQ3vtcGVq298rQsmX60LLedQwta9ejkt5Dk4yZmmTucv33d+8xva1FadD44xLcPkLQmhshaO89joVV1gdUJnsUujtl3rRKPFxL5a2ISGPHcEFrd/l5/p3e/Ob5trzYsi8vtuzLb55vy/Pv9sEfihm9vDpj9KZiJAVRtc5Pnmrj/kK9J0yzEr0vTDuH3htmtEdhuldhqV9hU0BlX0jvE1McbVoyRAhacyMErbkRgrbp4ozrQyYme/QeZX+qpTL2yWKJ9pdlbHpQb3FQn/sQgvYmHxN/gpziBMcyNHYd1Fi/TRevU+dpjJyUpN+wJB1rGfjUtmeSN0eE+dOcPH62fh//emhVzerYzHn8z9mVvJy1m6GWHHb7/fjiSoMfixC05iYYS+ANVHHghMamHRoLV2hMmKHRrx5Dy7oPTDJiUpKZizVWpSbZdVDjTK4+DM7o4xLUDyFozY0QtObiVERl0+W2V31dMm3sQtCKNH4MF7Sf9BjPhNmrUdTE1a/JSoIx01fQZdA0A1dWvxi9cRiNI6ZPSDwUVtkWVFnpV5jjUxjvVhjokujskHnfLvOqVebJYonfFOmTFm9V6n6nQOIXRRX8wSLxQoneM6aNXaKXU2Z4qcxUr8ISn8qGgD7U5WREpSh2a03A60IIWnMjBK25EYK2aeCI6TJ2ileXsY8X688T1+sz9mSxREeHxHSvwu6bkLHXQwhaHWcgQW6JxvFMjfRDGuu3J1m8SmPagiSjJyfpNzxJpz61S6uvD24aOEpj2CyJrutcvLHvFL85uZV/zFhcQ8b+beYCHsnfRGfbEZZ6S8iLlt+RYxaC1tzUNiTMF1UpsOtDy7ZcGVo2p55Dy/olGTouybT5er/c7fs0TmQlKHaJvsZNCSFozY0QtAIRkcaO4YL20Ve7oCUra3xdTSR57LWuBqzo5mL0JnG34o6p5EX1ywp2hPSeLvN9Kp97FAa7ZD51ynxsl3ndKvFsscTvLBI/Lay4rYrdnxZW8HCRxHPFEm/YJD6xy3Rzygx2yUzyKCzwqawJ6MNejoVV8qMqnlpeFAtBa26EoDU3QtDeeb4uYx+rRcY+VSzRySExw6uwJ6RS2sBrudcFbWlIJd+W4ERWgvTDCTak6cOSpi9MMnpKkv4jk3TuW3/x2qVvJQNG6pd+z1yksWxtgk07NHYfSXAyO8HOkgjTXAV8VLKfX+St4a+vUx37XznLaW7ZyQhXBtsDbtwx2ZBzIwStualN0NaGP6ZS7NL/prbv0/hiQ4Jp8zWGjk/StY6hZR17VzJotC57l6zW5e/hMxoF9gTeqPHnxEwIQWtuhKAViIg0dgwXtM++3YtwtLzG18PRcp55q6cBK7q5GL1JmA1vXKUwpk9XTA/qPWMW+1SmeBWGlcr0dOqXH7SwSjxfok9m/HlRxXXfxNeXHxXojcSfKpb4s1XiA7tMF4fMCF+CKQGVuT6FVX6F7UG9CXl2RBXTvE2AELTmRgjaxsUeU9kR1NsUtLHXLmOfLtav1pjpVdjbCDL2etytgtYd1iv8TmQn2HNEl6TL1iaYsUhjzDSNAaO0Oifcf5XOfSrpP0KXttMXJlmyWmNDWpL0wxonMjXyrQlKQ9euoTQusSVQyhDnWV62pPHv2UtryNhvZs7nwbx1tLYeZI6niNORqOHn7gpC0JqbWxW0dWH3JTiTqw8tW5Wqt0EYMal+Q8v6DU8yfobebmHjDo0DJzRyLQkxtKwREILW3AhBKxARaewYLmjHzljBOx1HsP9oFm5fmFJviL1HMniz3TAGT1hsyJrmLEvlyTe6X/23NxChVc8J/PHVLrzZbhhZ+bar3zN6kxDUD39c72F7JqL3tN0UVFnq13vdjnIr9HHKtHPovXBfLtFlwP2F+pv/WxW73//KALXmXxmg1t8lMdatMNurkHJ5gNqBsEpm5N4ZoGYGhKA1N0LQNhz2mEpaUGHSZRn7R8v1r5b4qoyd5VXYF9KvxjBizU1N0HojKoWOBKdy9MFGm3dpLF+XYNYSjXHT9Uusu/avv3jt2LuSvsOTjJqsX3K9eJXevmDXQY1jGfrEepe/fr//2ZE4C70W2lsP89v8DXwra0ENIfuv2Ut4rmgbA52n2eh34YhVGH5Ob4QQtOamsQRtbZQGVTILE+w9pg8em7tcY8zUJL2H1v033WuI/gHK3KX6/91zVB+A5gqK569bQQhacyMErUBEpLFjuKBVE0nGTF/BQy+25/6nW3H/06347YvtGTJxyTV9ae9USr0hmn808BpB+0mP8XyxYTeXLlVx9HQ+T7/Zk8qLlwDxAt0M2GIJMiO6RN0SVEnx63J1SkjjM49CJ4fE+3aZV0pk/lQs8asiiR/chtj93lcGqL38tQFqo9xfGaAWvHaAmr8JnCszIQStuRGC9tawxRJsD+rtbFrbZR613HgffKaJyNjrcacErTeiUuRIcDonwb5jGpvT9UujZy/VGD9DY9CYJJ8OuAnx2ksXryMmJZkyX2PRSl3a7DygcfSsXnXn8N3677U3rrAr6GNMaRavW9L5bm5KDRn7jcx5/CxvFe+X7GWKO4/DoZDhj+fNIAStuTFC0NaGN6KSW6Jx8KTGpp0aC1fqQ8v6j6jn0LLPk8xYpLFyk169ezongdUjnttuhBC05kYIWoGISGPHcEF7JdXV1UTj5/CHYlflpxFp3WsCuw6cvipo4+UXeKRZJy5e+nJNb7UfzpnsYkC8QDczdfWgdcZVcqIqR8J6ddhqv8Jcn8IEj8qgUpmuDpkPbTKvWfWqsIcsEj8uvL0Baj8vquD3Fr29Q4vLA9R6OmWGlcpM8Sos9ultIdKDepuIwkYaoGYGhKA1N0LQ1o0tlmBbUGWiR6WVXeYPN5Cx9xXqvca7OGRmN0EZez1uV9B6oyoWZ4IzeQn2H9d7SqZsSDBnqS5XPhuTpFsdlzZ//TLn3kOTDP88yeR5uqRZuzVJ2gG9V2W2JYG9ESbFF0XPk+Kz0c1+jD8WpPIPWYtqCNl/zFrE44Wb6WE7xkqfDUv0vOGP3+0gBK25aWqCtjZ8Ub2y/sgZjS279T7Sk+fqH+zUNbyvS78kQ8YlmTpPY9m6BGn79GGAFqe5h5YJQWtuhKAViIg0dpqEoC22e9i5/zSpu47W4E5mS/oxBo5bSPn5iquCNivfxuuth1zzc31GzmX99kOAeIFuZhprSJgnpg8ouzJAbU1AH2A26fIAtW5OmU/sMm/Y9IFnDxc1zAC131l0SfK6VeJjuz6obbBL5nOPPsBttf/LAWp50aYvUBobIWjNjRC012L9moz9fS0y9rliia4OmTlehf13gYy9HjcStL6oSnFpgrP5Cfaf0Ni6R2PFxgRzl2lMmKkxeGySHoNuTrz2GpJk2MQkk+dqLEjRWL0lyfZ9GodPa2QVJbB574ww8cdVDoWCTHbn0rJ4Lz/JXVVDxv5V5jzuy11Bi+J0xpVmszvowxtXDH+8GhIhaM3N3SRoa8Mf0/eqk9kJ0vZrfLE+wbQFSX1oWR3tUDr20oeWfT5bb3+SukvjyBmNfNu9P7RMCFpzIwStQESksWO4oJ08fx33P92Kp1r04OX3+9fgTuXceYlXPhxAvPzCNYL2REYBLTuNvOZnh0xcQsqG3QBolVUCk3KpqpqLl4xfxxXUyipCiUtYlEucunCJ9HMXWRevZH40yYSgxiBfgs5ulfecCs3sMo+VyPzSIvHd2xC7Py6UeMgi86xN5g2nQqtSlV7eBCP8CWaENZbHkmwtr+TQhYtkS5coVS9xLmn8uWoIqqqrqbxo3P0r2iXDz4GZqa6GpIGPv5HEtCoOXrjIrEiS9m6VP5bI190fflAo8aJdpo8vwfJYkkzpEtJd+vefSFYRLavC7qoiI6+Kwyeq2Jx2kaWrLzJtXiUjJlbSa3Al7XvWT7y271lJ7yGVjJxUyYz5lSxbc5HUnZc4cPQSmXlVOEqriJXr92vUMcc1jfRzXkb4z/JSyXa+nbOkhoz926wF/MGyiR7u46yLOfCokuGPVWOTrKwSr/9MTPKivv8bvY7GpuxcFSWOKo6dvsSWnZdYmHKRsdMq6flZ3XvbgBGVTJ5dyfK1F9m57xJncqpweauoUBpmbUa+/qm8qL/+M/rxERjDxUv6+z+j1yEwDhGRxo7hgvbhlztw9HSe0ctg8ITFbEw7DHCNoM0usPFaq8HX/GzvEXOu/mz8QlJgUrTKKiT1ouHruF1iF5K4zifJLUtyJKaxLaKxMpRgTiDBeJ9K/1KFTk6Z9+wyr9gkHi+RecAicd/tDFArlPiVReKJYplXrTIf2BU6u2QGuhUm+lTmBRKsDiVIi2gcjWvklydxnzf+XH2VykvVXFAqDX3cjD4HZuZSFZyTjF9HY1N6PsmOqMYkv0orp8Lvi2/8N/2CVaZHqcLCYIJjcY1QE/ubvR6x80ncgUryS5KcyKgk/WAl67dWsmhFkilzkgyfWEmvwcmbEq89BycZNr6SSXOSLEhJsiY1yc79lRw7W0muJYnLX0n0nPHH/nWy4nHm+y20sR/kgfx1fDNzfg0h+585y3i1eCejPJmkR3wEz6uGr/tOU1aRFK//TMw5Sd//jV6HkQTjSfKtSQ6dqmTTjkoWpCQZNz1Jn6F175W9BicZOzXJvOVJNm6vjRnbJgAAIABJREFU5ODxJHnFSfxR44+rPlxQKqm8VG34OgTGIKkX0SqrDF+HwDhERBo7hgvaR1/tYsgwsK/nsde68uQb3Xnyje488Xo3HnimNU++0R23L8TvXuqAmvjyD7LZB/3JLrAB4hI3M9NYLQ7uJuwxlayIysGwytagyoqAwhyvwji3wgCXPuDnfbtMc6vMExaJXxdJ/PA2B6j9slCf8v6SVeJtm0Rbh0Rvp8xIt8I0j8ISv8qmoMrekMrpiIolmsDXCMeuv0ATLQ7Myr3Y4qA4miA1oDLerfCRTebhouv/Hf6gQO9z3c0pM9encDCs4mkC6/8q/piKzZsg26L3X0zbr7FmS5IFKXoPxuETk/QeUvcQna8P1Bk8NsmEmRrLVl1ixYYEW3Zr7D+ucTYvQbHr7rm8tzQusS3oZpgrg2aWHfxn9rIaMvabmfN5IG8trawHmO0p5FQ4Yvi6mwKixYG5uVdaHDQWV4eWndKHli1aqbd36T+y7v2228AkwycmmblIbw2z84DGqSY2tEy0ODA3osWBQESksWO4oJ29NJVla3cZvYxr8tUKWoC2vT9nfso2Ll2qIm3fSV5s2ZdLl/QSd6M3CYFxCEF765TGVXKjKkfDKjuCCqv8CvN8ChM9Kp+VynR1ynxkk/mLVZ/k/pBF4ie30Wf3OwUS/1tYwSMWiedKJN60SrS2y/Rwygx16QPUFvlU1gVUdoX0AWoF0dqlkxC05uZuF7TF0QSbAyrj3Aof1iFjXyiR6O6UmedTONQEZKzdmyDnsnjdcUAfhrVwpcaUeRojPk/SZ9jNidduA5MMGptk/AyN2Uv1XoypuzT2H9M4k5ugyJnAF7l2Dbc7JOxOkxspY7GnmI62I/yuYCN/k7WghpD9P9mLeaZwK/2dp1jvd2KLXTB83U0RIWjNjRC0t86VoWVHz+r9uZeu0ZgyV2PQ2CSd6xpa1reSwWOTTJmnsXxdgm17NY5laBQ57uzQMiFozY0QtAIRkcaOIYK288BpV+k2ZCZ/+ks3Xv14EJ0GTL3me50HTjNieTUErT8U45Me43n01S683WEEhSWlV79n9CYhMA4haO88nrguTk+EdZG6LqCyyKcyxasw1KUL19Z2mTetuoh9xKKL2dsZoPaTwgoesuii+C9WiY9sukAeHdCY4k8wz6cL5h1BhaNhXTyXNoFzJWhc7iZBa4km2BRQGetW+MAu87sbDPD64XVkrPcOrtPpT5BTrL9533lAY93WJItWakydpzFyUpK+w5N0vAnx2nVAkkGjNcZN15i1RJ9EvnmXxt5jGqdyExQ6E3gjt7bWpixovXGF3UEf40qzaVGczn25K647zOsnuatoWbyXKe48DoVC+JvA2u8GhKA1N0LQNh4lV4aWHdA/KJu+IMmwCUm6Dqh9aFmH3pUMHKUxcZY+tGxzuj5EMd9a88O120UIWnMjBK1ARKSxY4ignbpgfb1p6jF6kxAYhxC0dw++uC6pTkf01gebgipL/CrTPAoj3Qq9nTJtHXrLhJeseguFXxbqLRVuVez+sEBv6fCERaK5VW/10NkhM9AlMd6tMMensNKvsC2ociist4pw3IXT7M1KUxW0lmiCTUGVsR6F9+0yD9UiY18skejhlJnvUznciDLWGUiQW6JXO+06qLF+e5LFqzSmLUgyarIuXjvVUT11jXjtl2TgKI2x0zRmLNJYtjbBpp0ae44mOJmToMCewBNu3PPclAStJXqelT4bPWzHeLxwM/+YtaiGjP2HrEU8VphKN/sxUnw2iqLnDV/33YoQtOZGCFpjsHsTnM1LkH5YY/WWJLOWaIyalKTnZ7XL2/Y9K+k7PMm46Rrzv9DYkJZk/3GNbEsC9y08TwhBa26EoBWIiDR2DG9xcLfH6E1CYBxC0JoDayxBRlRlf1glNaDyhV9hlldhWlhjoFumo0PiPZtM8xKZx4slHiyS+P5tiN37CiUeKJJ4vFjilRKZljaJDg6Jvi6ZMR6FmV6F5X6FzQGV/SGVs1F9jUafJ7PRFARtUVT/sGFMHTL2RwX6Bw89nTILfCpHGkjGloZU8q0JTmRqpB/W2JCmsWSNxvSFSUZPSdJ/RJLOfesvXrv0raT/SP3/zliYZOkajY07NHYfSXAiK0G+LYE7ZPxjH4gbK2gPh0JMcefxfslefpa3im9cpzr2u7kpvG5JZ0xpFulBH964Yvg5u1cQgtbcCEHb9HCHVLKKEuw7pn8AOHe5/gFen2F1Dy3rOVj/oHD2Ur1P+e4jCc7mJ3D5r//8LgStuRGCViAi0tgxXNAGQjF6Dpt99d+T56/jkWadeLPdMJyeoIErq1+M3iQExiEErbmpqwetM66SHdErE7cHVVb5Feb6FMZ7FAa6ZLo4ZD6wy/zZKvFUscRvLbpIu1Wx+93LA9QeteiVkW9dHqDWyykzwq0w1auwxKeyMaCyJ6RyKqILvsYYoGYG7rSgLYrqj93oyzL2t7XI2JdL9Md9oU/v83yzj7E7rFJg0y813X0kwaYdepXqzEUaY6YmGTAySZd+tVctfZXOfSrpNzzJ6MlJpi9IsmS1XsWUfkjjeKZGnlXDFby7PmS4U4LWEatgo9/FQOdpnivaxr9mL6khY7+VtYCHCjbQwXqYhV4L2ZG44efnXkYIWnMjBO3dxZWhZYdOaWze9eXQsgH1GFr26YAkwyYmmb4wyYoN+tCyzIIk0TIhaM2KELQCEZHGjuGCtn3fyQyfvIyqqmpOZRbxSLOO7D2SwaS5a+nQb7LRy6szRm8SAuMQgtbcNNaQMHdMJS+qciyssiOksNqvMN+n8rlHYbBL5lOnzMd2mdetEs8WS/zOIvHT2+yz+7PCCh4u0vv2trBJtLLLdHfKDHHJTPYoLPSprA2o7AwpHA+r5NcxQM0MNKagLYzVX8Y2uyxjF/n035naZKw3og9oOZmTYO9RvR/r8nUJZi7Wq40GjtLo2r/+4rVj70r6DUsyalKSafP13n/rtyXZdVBvZ5Bbot2wCulup7EE7elIlDmeIlpbD/Jg3jq+mTm/hpD9j+xlvGxJY4jzLFsCpZTGJcPPh5kQgtbcCEF77+CPqRQ6vxxatmxtgilzNT4bU/fQss6Xh5ZNnqf/v2179Oe9QuedHVomuLMIQSsQEWnsGC5oH2nWCUXVABg5ZTlDJi4BQE0kefTVLkYurV4xepMQGIcQtOamsQTtreKN62LvRFglPaiyPqCy+PIAtWGlMj2dMm3sEi2sEs+XSPzeIvHzogq+cxti98eFEg9ZJJ4ulnjNKvGhTaarQ2ZQqcwEj8pcny6Y78UBag0laAtjKhsCKqPcCu/ZZH5TdGMZ+0qJTG+nzOKvyVhvRH+TeSpXv8Rzc7rG8vUJZi3RB2QNGpPk0zqGrHx94ErfYUlGTNInZi9aqQ/s2nlA4+hZjVxLAofv3hSv9aUhBK07JpMW8DDClUFzy07+K2d5DRn715nz+GXeWj62HmCWu5CT4Yjhx252hKA1N0LQmgerO8GJ7AQ7DmikbEgwfWGS4ROTdBtY93PogJFJJs7Snz8379IrePOsWoMPLRPcWYSgFYiINHYMF7S/f6UTaiJJdXU1L7Tsy4FjWYAuaB9p1tHg1dUdozcJgXEIQWtumpqgvVX8cZXiaIIzEZV9lweoLfUrTPcqjHIr9HHKtHNIvGPTL51/rFji/kYaoDbAJTHOrTDHq7AioLA1qHLw8gA1exOrSLkVQVsQ1cX5SLdCS5t+Dm4kvpuXyPR2yMy0qWzOV9l3XCM1XZ9sPXupxvgZepVPt4E3IV57VdJ7qP4Gc8pcjYUrNNZsTZJ2QOPwGX1oit3k4rW+3IqgzYuWs9RbQmfbER7J38TfZi6oIWT/JXsxzxRupa/zFGt9TqyxCsOPVXAtQtCaGyFozc2VHrQOn96rNv1wgjVb9B62oyYl6VGfoWXDkoydpjHvC71n7v5jl4eWNZEe64IbIwStQESksWO4oG3fdzKDJyxm9LQUnnyjO1qykurqapas2cmHn441enl1xuhNQmAcQtCam3tF0N4OtliCzIjKgbDKlqBKil9htldhrFuhv0uik0PifbvMKyUyfyqW+FWRxA9uQ+x+r0AfoPZYsX5p/7s2ifYOiT5OmdEehRlehWV+hU0BXTafjaiUxBL4G+HY6xK0eVGVdQGVEW6Fd236sV+3MjZf4slMmXcOy3TelmDA4gSDxybpfhPitX1PfdDJsAlJJs3RmJ+iT7nevk/j8GmNzKIEVo+47LIhqUvQ+uIKe0N+JpTm8Gbxbr6fs7KGjP2rzHn8KHcV75TsYZI7l4PBYKP8rgoaFiFozY0QtOamPkPC3CGVbEuC/ZeHls37Qr+apW89hpb1+ExvGzR7qf48nn44wdk8cdVKU0EIWoGISGPHcEHrD8XoNXw27fpOIivfCkCs7DzPvNWTfIvT4NXVHaM3CYFxCEFrboSgvXWccZWcqMqRsEpaUG+DMNenMMGjMqhUb5PwoU3mNavePuEhi15VejsD1H5RVMEfLBIvlEi8aZVoY9d7tw4vla8OUNsQUNkdVDkZUSmK6W0jbnQMXxW0uVG9R+8wl0yLYon7b7CO+3IkfrVf5rE1Cs1mabw3PEm7Wt6ste+pv1kbOj7J57P1apuVmxJs26tx8JRGRkECq1uIVyP4uqAtiV5gtd9OL/txnihM5Z+yFtWQsX+fuZBHCzbzqf0oX/isFEbOGX4cgptHCFpzIwStuamPoK0NX0Qlz6p/eHplaNnEWZeHlvWuXd52HaB/EDt9QZKUDQnSDmicyE5QUirk7Z1CCFqBiEhjx3BBe6NculRl9BLqFaM3CYFxCEFrboSgNYb8rwxQWxNQWOBTmeRRGOKS6eaU+cQu8//bu/O4KM8ET+DTPd3TvbPbO9M7s/OZme7tnd2dTe/Yh510jk66E2OiidFojDFtaxIvvE8QRbxPvKN44IGgIuKJqHghigiKyg3FfR/FXaggx/u+RcFv/yitgEUBosVT8Py+n8/vDygsn9cHHt/68db7jMyuwwcZdfh92otvoPbvqY/xWrp5Q7aR2XX4MrUeY2Pr8c1dBe9G1eN/xdsohRPq0C+0AW8HmMvYMavaXhE7d7GGpes1bNypwstXhf8ZBedCVNyIUhGjU5DBF1wOnYzGR9hRpMO4zOt4JTkA32vn6th/STyC4elXsLYgDlfKilFkqBc+bubFw4JW7rCglTsvWtB2ltTc7zYtO3yy65uWTV9ghPs6DVu9zJuWnQtRERGtIjWX5xIvMyxoGSJ7c9iCVpeeh+BrUaKH0SnRiwQjLixo5Q4L2t6VNIP5ytiQMvOVsj76Rnxb3IBVhQ1wfrKB2qisOnyUVYfX0+rwiq7rxe7PE+rwq9AGvBPQgJF7FczaYb5H7G5f88YiQVdV3LijIjpZQVoeXyz1tuQZHuNsaT6W5EVjUFowfprgY1XG/iB+P/rrTsEpKxz7i9OQUFktfNyMfcKCVu6woJU79i5oO0rrTcuOPtm0bMVGDbO6sAnoolXmXwgf8FcReFnFzbsqkjJ5Dvu8YUHLENmbwxa06z2Pov8gJ9HD6JToRYIRFxa0cocFbe+PLktBWJT5HnF7fFWs3mL9Qmf8IiPGLjNi3GYVTodUzDyvYFZYI6bdUbAiQoHfXRX3ExWksnjtM4mpMGBvURomZ4Xjt7pT+EHcPqtC9h+TDuGjtItYmheNoNJ85FfXCR830zNhQSt3WNDKHZEFbUfJL1EQnfz8m5Y5zTNvHrpuuwqvwypOntcQeltFXKqCAm5aZhUWtAyRvTlsQdtbiF4kGHFhQSt3WND2juSXmXdavnJTxZFTCrbtVeG+VrV5rzfXlearTHwCVFwIVXE3wbzB1rPP29kmYUzvSJGhHpdLi7GmIA6fpl/BPycesSpjvx+3F79MPo6vMm/AszAFdyoqOt0kjOm7YUErd1jQyh1HLWg7SmHFk03L7qg4fVHDvqeblq3swqZl7hpWb9Gwy0dFQJCGq+HmdwPlSLppGQtahsjeWNC+INGLBCMuLGjlDgtax0p6nvm+bWevqjhwVMX67SrmL23/ypHpC4xYut680YZ/oIKQCAXxaQoKK7r+97Gg7Z1JrXyEQ8WZmJUdgTdTAvGjuANWhexP4r3xXto5LMiJwnF9LjKraq2ehwWtvGFBK3dY0Mqd3ljQdhR9pfndRLfum8+fLJuWrbH9i2zLpmWLzJuYbt+v4chpBRdvmH+pnVHQdzcvZUHLENmb8IJWX1YFj53HMGPxdkx22WwVRyd6kWDEhQWt3GFB2/MprjRfBRIaqSDgnIad3iqWb9Aww7X9Fw9zF2tYu1XD3iMqAi+Zd01OzX05LxxY0Dp+9NUNuFFeis0FiRidGYJ/S/K3KmP/Km4v/i3JH19khGBTQSJulJdCX93Q6XOzoJU3LGjlDgtaudPXCtqOUmJoRFqugtux5ncUHT5pfhfS0vUaZto472pv0zKf42qbTcv0VeKPrbthQcsQ2ZvwgvaLKSsxdeFW7PI9i31+F6zi6EQvEoy4sKCVOyxo7ZfsYvNGGMGh5hP7TbtsvxVvynzz5hebd5t3Lg6+ruJekoJcO7/9jgWt4yWzqhbH9blYkBOF99LO4Sfx3lZl7I/iDuDNlEDMyo7AoeJM6KoeduvvYkErb1jQyh0WtHJHpoK2s2QVKbiXqOBymIqjZxR4HtCwcpOGOYs7vu/tVOcnm5Z5Ptm07JJ507LEDAXFleKPq6OwoGWI7E14Qfvx2EVoaWkRPYxuE71IMOLCglbusKB9seirGpGSreDmPfM90bwOmTfpsnViP8PViOUbNHh6qzh+zryJRWK6uJN5FrTic6eiAp6FKfg68wb+X/JxfL+dq2P/OfEIPk2/gtX5sbhUWoQiQ/1L+btZ0MobFrRyhwWt3GFB27Xkl5jv/38tQsHx8+aNWNdu1WzeeqrNpmXLNKz71nxeePK8htBIxbxpWZn442JByxDZm/CC1sl1C6of1ooeRreJXiQYcWFBK3dY0HYtrTfp8jutYNs+Fe7rNJv3Npu/1Lyb8H4/FWevqIiMUZGe53hFKAvaHv4+qq5DUGkBluXF4KO0i/iHBF+rMvYHcfvwW90pTM4Kx96iNMRUGOw2Hha08oYFrdxhQSt3WNC+eAorGpHYetMyP/OmZQtXdL5p2dzFGlZt0bDzoIpjQRqu3FQRnaQgu7hnzsdY0DJE9ia8oM0rKsPwCUuxcXcAvI9dtIqjE71IMOLCglbusKBtm4x88yZdQVfMb1nz2KHCeVn7V0pMdTbCbY2KrV4qDp8yvz0uOllBXmnvKTxZ0No3CZXV2F+cBqescPTXncIP4vdbFbI/TfDBoLRgLMmLxtnSfOQZHvfY+FjQyhsWtHKHBa3cYUFr3xRXNUKXbd60LOiKioPHVGzerWLxGhXTnDvZtGyhhuUeGrbvM59bBl9XERWnIiP/5W1axoKWIbI34QXttEXb8ObQGRgzYw3Gz9tgFUcnepFgxIUFrdyRsaAtrjRf9RB623ybAU9vFSs22t4sYtZC8/3IdvmY36Z2446KpEwVege/x1hXwoL25aXIUI8rZXqsK4jHiPSr+NdEP6sy9ntxe/FKcgDGZl7H9iIdIssrhI6ZBa28YUErd1jQyh0WtOJSYmhEWp6CO3EqgkNVHDppfldWVzYtm+ZihPtaFVt2q/AJUBF0VcWtaBUp2QqKn2PTMha0DJG9CS9o3x05F4/rGkQPo9tELxKMuLCglTt9uaDN0Su4m6jg4nUVvk826VpoY5Oup/cL89ihwttfxbmrKm7Hqsgs6NvlJQva7ietqgZH9FmYnROJt1LO4sdxB6wK2f8c740/pQbBOecOAkpykFlVK3zcrcOCVt6woJU7LGjlDgtax01WkYJ7SeZ3ZfmfUbDTW8XKzV3btMx1pYYNnubba525pCIsSkVSuoKiirZ/BwtahsjehBe0Y2asQZPJJHoY3SZ6kWDEhQWt3OntBW2JoREpOW036VrTwSZdU12McF+nYds+871kr4ariE1xjE0bRIQFbddSUt2Im2Vl2FqYhD9nXsP/TjpmVcb+Vdxe/CLRH6MyQrCxIBGh5SXQVzcIH3tHYUErb1jQyh0WtHKHBW3vTF6pgtgUBdciFZw4r8HLV8XabV3btMx5mYa128x/5uwlI+7ENCE2RUF+Gc8BZQyRvQkvaC+G3oXzyt24dTcJ6dmFyMgpahNHJ3qRYMSFBa3c6S0FbUFZI2JTzIXq0dMKvt2rwn29ZvNeXrPdzBswePmqOBWs4eZdFbpsBfrneAuYDGFB236yDbU4qc/Dwrx7eD/1PH6ScNCqjP2buP14XReIGdkR8C3ORHLVQ+Hjft6woJU3LGjlDgtaucOCtu+l6OmmZVEqTl80X0W7wVOFawfvHGu9adnKzeZbfvmfMW+Iey9JQVYRzw/7aojsTXhB22/AhA7j6EQvEoy4sKCVO45W0GYUKLgda76vlveTTbpcbGzS5TTP/HaujTvNGzBcuKbibgJPKJ8nLGjNuVtRiV2FqRifFYZ+ySfw/Xaujv2nxMMYmn4Zq/JjcbG0CIWGeuHjftGwoJU3LGjlDgtaucOCVq4UVzUiJVtBRLT5/PrICQ079pnvZ9vZpmUzF2pY5mF+59mhkwqCQ1XciVORlvfyNi1jej5E9ia8oK1vUKBqRptxdKIXCUZcWNDKHREFbXFlI5LSFVy/reL4eQ07Dz7ZpGth+0XsNBcjlq7XsGO/Bv9ABSERCuLSFBRW9NyY+2pkLGgLqutwvrQQy/NjMST9Ev4x4ZBVGfvXcfvwG91JTMy6iT1FabhfWSV83PYIC1p5w4JW7rCglTssaOVO63vQlhgakf5k07KL180l7Ld7VSzzsH1ebjk/dzaXvJt3my+UCLqiIiLa/I6159m0jOn5ENmb8IIWAIxNJkTFpuDMxVs4dvY6Iu/rYDQ2iR5Wl4heJBhxYUErd+xZ0ObqFdxLVBB8XcWhEwo271axaJXtt1rNXaxh7VYNXofNmxvcuq8iNZe/obdnZChokyofwLs4HVOzbuHVlNP4Yfx+q0L27xN88EHaBSzOu48zJfnINTwWPu6eCAtaecOCVu6woJU7LGjlzvNsEpZVpOB+ovm2B/6BCjy9VazarGFuJ5uWTZlvxMIV5k3L9vmZb7tw446KxHReYOEIIbI34QVtTn4JPvzSBf0/nIzBY1wxeIwr+n84GR/+eQFKyg2ih9cp0YsEIy4saOXOixa0TzfpCr9nPvnyOqxizVbbJ25T5huxcKWGzbvNpW3wdRX3EhXk6vt2Seio6WsFbXF1A0LK9FifH4+RGVfx8yQ/qzL2e3F78X+Tj2FsZii+LdThVnm58HGLCgtaecOCVu6woJU7LGjlzvMUtB0lv+y7TctOttq0zLmDW5M9zfyl5osy9via3013LUJBjE5BXmnfOSd15BDZm/CCdvy8Ddi4OwANjYrlc/UNCtbtOIqZ7tsFjqxrRC8SjLiwoJU7XS1oC8qfbNJ1S8XRMwq271OxZJ3tTbpmuBqxfIOGnd4qAs5pCL1t/q15caX4Y2a+S28vaNOranBUn4252bfxdmoQ/jbe26qQ/dt4b7yTehbzsm/DX5+N9Koa4eN2lLCglTcsaOUOC1q5w4JW7rysgrajPL2dWViU+V1xB46aNy1buFLD1E7ueztnsYaVm8yvIY6eUXA5zHwxB/eYeHkhsjfhBe1bw2a2e6/ZRkXD28NnCRjR8xG9SDDiwoJW7jxb0GY+2aTr3JNNujZ4qnBZbvs34fOWaFi33bxb7Nkn955Ky+MJVG9JbypoS6obEV5ejm2FyfhLRij+PfkYvtfOZl7/I+koPs+4Co+CBFwrK0FxdYPwsTtqWNDKGxa0cocFrdxhQSt3eqKg7SjFVeZ33916smmZT4CKLbtV86ZlLp1sWuZq3pdi214Vh08quBCq4nasijTeEu25QmRvwgvagaOdUVH10OrzFVUP8f4X8wWM6PmIXiQYcWFBK1/0lY1IzFBw47aKC1dN8DqkYcUm25sBTHU2wm2Niq1e5s0DLoepiE5WkF/SO4o9xnYcuaDNNTzG6ZJ8uOXdx8DUC/i7BB+rMvaH8fvx+5QzmJ4dgYNFGUiueih83L0pLGjlDQtaucOCVu6woJU7ogvajlJiaERGvoKoOBXB11UcPmV+195yDw2zOtm0bKqL+fXKpl3mi0zOXjXvZ6HLUqDnO/jahMjehBe06z2P4stpq3AjMh6F+goUFJcjNCIWo5xWYOnGg6KH1ynRiwQjLixo+25sbdJl87fSC81F7S4fFSfPa7hxW0VihmOWd8zLiSMVtPcqK7GnKBUTs27i18kn8ddx+6wK2f+ecAhD0i9hRX4sLpQVoqC6Tvi4e3NY0MobFrRyhwWt3GFBK3ccuaDtLK03LTsWpMHTW8XKLmxa5jTPCNcVGtZvV7H3iIrsYsc49xUVInsTXtA2KhrW7TiKVwdPQb8BE9BvwAT8bvAULNvk0+a+tI5K9CLBiAsL2t6dEkMjUnMV3LpvvseT12EVazvYpMtpnhEuyzR47DD/djk03IT7iRoyC+Q+UZE1ograQkM9gksLsTI/Bp+kX8J/TzhkVcb+ddw+/Cr5BCZkhWFPUSruVVQK//fqa2FBK29Y0ModFrRyhwWt3OnNBW1HKShrRFyqgtCnm5YdUrHuWw0u7WxallcqfrwiQ2Rvwgvap1paWlBV/Qgl5QYYm0yih9NlohcJRlxY0PaOFLbapMv/jIJv96pYur7j3xa7r1Wxba8Kv9Pm3zTH6BQUlLV93q5uEsb0zfRUQZtc9RA+xRmYnh2B36ecwd/E7bcqZP9rwkG8n3oei/Lu4VRJHrINtcL/ffp6WNDKGxa0cocFrdxhQSt3+mpB21mS0hXcvGe+9YHosYgOkb0JL2j/9NkcPHj0WPQw0NLSgh3eZ/DuyLl4Z8RsuHsvHbY/AAAgAElEQVR4o1HRAADFpZWYMH8j/jBsJkY5rUC8Ltvy50QvEoy4sKB1rGQVKrgTp+JcyHebdC1YYbuIne2mYdUWDXt8VZwK1nDzrgpdtgJ9Vdf+Pha0csceBW1xdQNCy0uwoSABn2dcxS8Sj1qVsX8Vtxf/J+kYxmSEYlthMsLLy1HiAP8esoUFrbxhQSt3WNDKHRa0ckfWgpb5LkT2Jrygnb3EEwFBN0QPA4GXIjBm+mo8qqlDfYOC8fM24IB/MABg/LwNOHI6BCZTMyLv6zBg1HzLVb6iFwlGXFjQ9nz0lY1IylRx4475Xq+7fFSs3NTxze9dV2jYuFPFwWMqLlxTERWvIKvoxYs1FrRy52UUtJlVtTimz8H8nDv4Y2oQ/nO8t1UZ+5/ivfF2ahDmZt+Gnz4baVU1wo+dYUErc1jQyh0WtHKHBa3cYUHLENmb8IJ2yQZvvDtyLoaMW4QprlsxY/H2NukpSWm5yMgpsnzsfewi3D28Uf2wFq8PmY4m03e3XfhiykpEJ2QA4Am6zGFBa7/klZhvZH8xTMXhkwq27FHhtlrDVOf2S9hpLkYsXa9h+34N/oEKQiIUxKUpKKyw3xhZ0Mqd7hS0EeUV2F6kw9jM63glOQDfa+fq2J8l+eGz9KtYVxCPq2V6FFc3CD9WxjosaOUNC1q5w4JW7rCglTssaBkiexNe0G7acxzf7j9lMyKUlhswymkFQsJjEK/LxmcTl7V5fMFqL5wKDjd/rQMsFIyYsKB9sbTepCvwknln0LXbNMxzt3017NzFGtZu1eB12Lyx1637KlJzFZQYen78LGjlTmcFbZ7hMQJLCuCeH40P04Lx9wk+VmXsD+P349WU05iadQvexelIqnwg/LiYroUFrbxhQSt3WNDKHRa0cocFLUNkb0IKWncPb6iaEYD5ClpH8udpq9FvwASs9zyK5uYWRMWmYMz01W2+ZtkmH/idDgEADMoIxqeZl/GXnFBMyQ2Hc/4drCiKwWZ9ErzKUuFXnoWzlQW4ZtAj6kEFkmseIK/2MWrqjUwvj9bUjEa1Sfg4HD2Gh0ak5RgRHmXEyXMadh00YvkGI6a7tl/CTplvhNsqDVv3aDh6WsO1W0YkpRlRZhB/LK3TZGpGvdKE2nqjkNTUG/G4oYkRlOYWoF757uPUmkfwLc/E9LwI9E891e69Y/8x8RCGZV3C2uI4XKvWCz8GpvsBIHwMIiP1+tPI+Zc59Yp5/Rc9DpnzqE4Tdu5VrzShydQs7O+35zkl03ka1SZoTc3Cx8GIC5G9CSlo3/hkOk6cD0NSWi5eHTwFSWm5NiNC9cNauK7Zi/WeR5GQko3hE5a2edxl1R6cuXgLANp9Ef48+fsEX/w82Q//oTuON9ICMTD9PIZnXcbYnFBMywvHgoI7WKWPxdaSJOwrT4V/RRbOGwpw44Ee9x5VILX2AQrrHqOu0cj0cIxNzVA0k/BxOEpKK5uQmNqEkHAj/E5p2LJbw8KVtq+GnbHQiJWbjPDyNSLwUhNu3zciu8CIR4/FH0tX0mRqQaPahMeNRiGpbRDz9zLm3K0rx6aSBIzIuox/SjzU7vr+q5QTmJIXjgPlaUioMQgfM/Py0tIC1DnAOESltkHc2ic6dU/mX/Q4GDGpV5rQ3NwifBwyR+T5T6PahCZT35t/0efUvSWKZoKxqVn4OBhxIbI3IQWtz/HLeH3IdPQbMKHT9JSIe0nIKyqzfHw/IR1Dv16MhzWP8dpHU9GoaJbHhoxbhISUbADASX0evIvTsb1Ih3UF8XDPj8bsnEhMzLqJ0Zkh+CT9Et5LO4fXUs7gleQA/CzJr923ur6s/F2CD36W5IdXkgPwWsoZvJd2Dp+kX8LozBBMzLqJ2TmRcM+PxrqCeGwv0sG7OB0BJbm4UFaIsPJS3KusRErVI+FvH+gNkfEWB89u0rXbV8XKzRpmLbJdxM5bomHdtxr2+ak4e0VFRLSKtDwxtyV4meEtDuSJruohfIszMSs7Am/oAttde38S740BaefgmncPJ/V5yDI8Fj5uxn7hLQ7kDW9xIHd4iwO5w1scyB3e4oAhsjeh96A1mZrx+4+noslkspme8u3+U5jiuhV19Y0wGpuwcushuKzaAwCY7LIZ+/wuwGRqxsXrdzF4jCtMpmYAL3aCXmioR2rlI9yvrEJYeSmCSwtxXJ+Lg0UZ2PGk8F2SF405ObcxKesmvsy8hk/SL2FA2jn8PuUMfpl8HD9/Uvj+MH7/Sy97fxi/Hz9N8MHPk/zwy+Tj+H3KGQxIO4eh6Zfx58xrmJR1E3NybmNJXjTW58fDszAFB4sycFyfi+DSQtwsK0N0RRVSKx/1yY1u+nJBm1eiIDpJwaUwFYdOKtjqpcJtjWpzk66pzka4rVGx1cv89ZfCVEQnKcgvebFd7h05LGj7ZvTVDbhRXopNBYn4IiME/zPJv9318d91AfhzVii2FCbhZlkZShxg7EzPhQWtvGFBK3dY0ModFrRyhwUtQ2RvwjcJa2hURQ8BgHkcyzb54N2Rc/H2p7Mw3e1blFc9AACUlBswft4GvDVsJkZPXYXUzALLnxO9SLROdwvf99opfH9gx8L3fyQdxf9rp/CdnBVuVfj6FFsXvmlVNQ5R+Pb2grbE0IjUPAUR0SoCL6vY92STrvlLbF8NO3OhhhWbNOzyMV9Be+OOiqRMFfpK8cfT02FB2zeSWVWLgJJcuORE4d3Uc/gv8d5Wa9eP4w7grZSzmJ0TiSP6LKRWPup0kzCmb4cFrbxhQSt3WNDKHRa0cocFLUNkb8ILWlt06XkIvhYlehidEr1I2DPPFr4XyqwLX/d8xyl8X9cFWhW+c7OtC98T+ryXUvj2loK2sKIRcWkKQiIU+Acq2LFfw9L1GqYvaL+EdZpnhMsyDR47VHj7qwi6quJ2rIrMApZRrcOCtnfmdkU5PAtT8FXmDfwy+Ti+387a8q+JfhiRfhVrC+JwpawYRYZ6q+dhQSt3WNDKGxa0cocFrdxhQSt3WNAyRPbmsAXtes+j6D/ISfQwOiV6kehNKaiusyp8A0qsC9/ZOZFWhe9rPVD4/k2cdeH7fup5q8J36ZPC17siHUfLs3BCn4eLpUXCr/DNKlIQFa/gwjUVB4+p2LhThWsHm3RNdTHCfa2KbXtV+J1WcOWmihidgoIy8d8rvSEsaB0/+dV1CCrNx9K8aAxOC8Z/S/C1+rn/Qfx+9NedglNWOPYXpyGhsrpLz82CVu6woJU3LGjlDgtaucOCVu6woGWI7E14Qbtt3ylk5elFD6PbRC8SMqegug4pVdaFr3dxulXhO7GdwveV5AC7F77/LcHXqvAd1k7h61GQ0OYK34ulRQgvL0NMhaFN4Vtc1YjkLBU3olScumDepGvVZg2z3GwXsbPdNKzaomGPr4pTwRrColToshXoq8TPYW8OC1rHS2yFAfuK0+CUFY7+ulPt/lz/Q4IvPkq7iGV5MQgqLUB+dV23/i4WtHKHBa28YUErd1jQyh0WtHKHBS1DZG/CC9pJzpvw64ETMXLSMhw6cQWVhkeih/RcRC8SzMvL08L3XmWlVeG7vZ3Cd1zudQzPvNym8P2ZHQvfv47Zjx9HHcJPwo/ip9dP4J+unMXPgi/g385ewSsnb+DV07fw/rk7GHU1BtMjE7EiPgV7crKsCt90B7mHb28PC1qxKTLU40pZMdYWxGF4+hX8S+IRq5+Z78ftxS+Tj+OrzBvwLEzBnYqKl/b3s6CVOyxo5Q0LWrnDglbusKCVOyxoGSJ7E17QAsDDmscIvBSB6W7b8LvBUzDZZTOCrkSivkERPbROiV4kGHHp7B60nRW+a/PjMT8tGuNibmNIZDjeunEN/xFyGb+4ch7/dDUQP71+HP8lwg8/ivLF92Psd4XvLxKP4j+ST7S5wndMRqjVFb47C1PgW5yJkyx8UVrNgrank1r5CIeLszArJxJvpZzFj+MOWH1P/yTeG++lncOCnCgc1+cis6rWbuNhQSt3WNDKGxa0cocFrdxhQSt3WNAyRPbmEAVta7V1DTh2NhRvDp2BVwdPwdKNB5FbUCJ6WDaJXiQYcenqJmFFFY2IT1NwLULBsSANOw5oWOahYUYHm3TNXaxhzVYNXodVnLmk4tZ9FQm59dBVmgvfG124wnd0ZgiGPHNLh58l+eHv7HxLh6eF7xvtFL7zsm9jWV6MVeF76ZnCV98LCl8WtPZLSXUjbpaVYUthEr7MvIb/lXSs3e+5f0vyx+jMEGwqSMSN8tIe/b5hQSt3WNDKGxa0cocFrdxhQSt3WNAyRPbmMAVto6Lh4vW7mLF4O/p/OBmjp67CsbOh2LznOF4fMh0Xr98VPcR2iV4kGHF5tqDNKlJwN0HBhVAVPgHfbdI1ZX77JeyU+UYsXKlh0y4VvsdVXLyu4l6iglx9z5Q+ra/wvVFeivOl1oXv4rz7VoXvu6ntFL5x+1564fujuAPtFr6fpl+xKnw3tFv4ltu18GVB+/KSZXiME/o8uObdw4C0c/hJwsF2vx/eTAnErOwIHCrORGrlI6FjZkErd1jQyhsWtHKHBa3cYUErd1jQMkT2JrygvROTgsUeB/D6kGl47/N52LL3BHLy214xG3k/GQNGzRc0wo6JXiSYno2+qhG6LAVhUSqCr5mw/4h5A67ZHWzSNWOBEcs9NHge0BBwTkNopIKEdAXFleKP52Umv93CN8eq8J3VTuH7asrpHil8/yHBF79I9LcqfP/STuG7qzDVqvCNbVX4sqDtfqIqKrCrMBXfZIXhP5JP4PvtzNc/Jx7Bp+lXsKYgDpdLi1FkqBc+7tZhQSt3WNDKGxa0cocFrdxhQSt3WNAyRPYmvKD93eApcFnlhYh7STCZmtv9GmOTCWNmrOnhkXWN6EWCsU/yShXEJCu4HKbiyGkFW/eqcF+rYqqz7dsSzFuiYd23Gvb5qTh7RUVEtIq0PAUlBvHH0xuTX10HXdVDq8L3QDuF74SssB4vfH8cfwD/kGgufPu1U/g6dbHwzeglt3Tobgqq63CutADL8mLwcfpF/GPCIat/yx/E7UN/3SlMzgrH3qI0xFQYhI+7s7CglTssaOUNC1q5w4JW7rCglTssaBkiexNe0NbWNYgewgsRvUgw3U+JoRFpeQoios2F6n4/Feu2q5i/1PbVsFOdjXBbrWHLHhXHzxoRGmFEdJKC/BIWNY6ejgrfbwutC98vMqwL339N7JkrfPsln8CbKdaF7/ycO1aF76kSxyp8EyqrcaA4HVOzbuHVlNPt3u/4pwk+GJQWjCV50Thbmo88w2Ph3x/PGxa0cocFrbxhQSt3WNDKHRa0cocFLUNkb8IL2s8nL7eZ4eOXiB5ep0QvEkznKa5sREK6gmuRCgKCzLcaWO6hYYar7athZy7UsGKThl0+Kk6c13DjjoqkTBX6Vrcl6OomYUzfTI1mRNbDGtyreLHC978mHLTPFb7tFL4DUy90qfC9XFqMW10ofIurG3C1TI91BfH4LP0qfpbkZzWO78XtxSvJARiXeR3bi3SILK8QPncvIyxo5Q4LWnnDglbusKCVOyxo5Q4LWobI3oQXtMfOXn8modjidQIfj12EY2dDRQ+vU6IXCea7ZBcriHpmk66FK2xv0uU0zwjnZRo8dqjw9lcRdFXF7VgVGQVdK11Y0Mqdl30P2jzDYyRXPcTdikqElpfgXGkBjulzsL84DdsKk7GmIA5uefcxKzsC47PCMCojBB+nX8SfUoPwO91p/N/kY/iXxCPtbrD1cq/wNW/a9mrKafwo7oDV1/1tvDf+lBoE55w7CCjJRWZVrfC5skdY0ModFrTyhgWt3GFBK3dY0ModFrQMkb0JL2htKSk3YMbi7aKH0SnRi4Rs0Vc1Qpet4OZdFaeCNXj5qli9RcOcxR3clsDFCPe1KrbtVXHklIIrN1XE6BQUlL3YWFjQyh1H3ySspwrfXyQexciMq/AoSEBImV74cfdUWNDKHRa08oYFrdxhQSt3WNDKHRa0DJG9OWxBCwBDxrmJHkKnRC8SfTX5ZQpidOYy9cgpBduebtLlYvtq2FluGlZt1rDH11zehkWp0GUp0FfZZ4wsaOWOoxe0LzvtFb66qofCxyUqLGjlDgtaecOCVu6woJU7LGjlDgtahsjehBe0RSUVVsnO18M/MBSDxriKHl6nRC8SvT3peQoiY1ScvariwFEV6zvZpMtpnhGuKzRs9FRx8JiK89dURMUryCrq+aKEBa3cka2gZdqGBa3cYUErb1jQyh0WtHKHBa3cYUHLENmb8IK234AJ7eaPI+bgemSc6OF1SvQi0RvydJOu0EgFAec07PRWsXxDx5t0TXMxYsk6Ddv3a/A/o+DqLQVxqQoKy8Ufz9OwoJU7LGjlDgtaucOCVt6woJU7LGjlDgtaucOCliGyN+EFreFBjVVq6xpED6vLRC8SjpSnm3QFh6rwOa5i0y4Vris73qRr7mINa7Zq8Dqs4vRFFbfuq0jNVVBiEH88nYUFrdxhQSt3WNDKHRa08oYFrdxhQSt3WNDKHRa0DJG9CS9oW2tubkFsUiZu3U1CXX3v+AEQvUiITFaR0qVNupzmGbFwhYZNu8zFbXCoiqgEBbn63l1usKCVOyxo5Q4LWrnDglbesKCVOyxo5Q4LWrnDgpYhsjdhBW19g4K12/0wYf5G+AeGwthkwjdzPSy3OBg42hm5haWihtdlohcJkckvbWxTws5YYMRyDw2eBzQEBGkIjVSQkK6guFL8WO0RFrRyhwWt3GFBK3dY0MobFrRyhwWt3GFBK3dY0DJE9iasoF259RAGjnbGhl3H8MlXbliywRvT3bahprYeNbX1mL3EE3OX7xQ1vC4TvUiIzrmrKiKiVaTmyVdUsKCVOyxo5Q4LWrnDglbesKCVOyxo5Q4LWrnDgpYhsjdhBe17n89D5H0dACC/qAz9BkxAQkq25XFdRj7eGTFb1PC6TPQiwYgLC1q5w4JW7rCglTssaOUNC1q5w4JW7rCglTssaBkiexNW0P564ESUlBssH7/20VToy6osH5dXPUC/ARMEjOz5iF4kGHFhQSt3WNDKHRa0cocFrbxhQSt3WNDKHRa0cocFLUNkb8IK2n4DJqC86oHl4zeHzmhT2LKgZRw9LGjlDgtaucOCVu6woJU3LGjlDgtaucOCVu6woGWI7E1oQRtxLwkpmflIyczH60Om4WZUguXjiHtJLGgZhw4LWrnDglbusKCVOyxo5Q0LWrnDglbusKCVOyxoGSJ7E1rQdiWOTvQiwYgLC1q5w4JW7rCglTssaOUNC1q5w4JW7rCglTssaBkiexNW0Boe1HQpjk70IsGICwtaucOCVu6woJU7LGjlDQtaucOCVu6woJU7LGgZInsTVtD2FaIXCUZcWNDKHRa0cocFrdxhQStvWNDKHRa0cocFrdxhQcsQ2RsL2hckepFgxIUFrdxhQSt3WNDKHRa08oYFrdxhQSt3WNDKHRa0DJG9saB9QaIXCUZcWNDKHRa0cocFrdxhQStvWNDKHRa0cocFrdxhQcsQ2RsL2hckepFgxIUFrdxhQSt3WNDKHRa08oYFrdxhQSt3WNDKHRa0DJG9saB9QaIXCUZcWNDKHRa0cocFrdxhQStvWNDKHRa0cocFrdxhQcsQ2RsL2hckepFgxIUFrdxhQSt3WNDKHRa08oYFrdxhQSt3WNDKHRa0DJG9saB9QaIXCUZcWNDKHRa0cocFrdxhQStvWNDKHRa0cocFrdxhQcsQ2RsL2hckepFgxIUFrdxhQSt3WNDKHRa08oYFrdxhQSt3WNDKHRa0DJG9saAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC9pneB05j/e/mI+3h8+C2/r9aGhUAQDFpZWYMH8j/jBsJkY5rUC8LtvyZyLv6zBi4lK8/eksTF24FYYHNZbHDgZcwodfuuDdkXOxZrsfmkymHj8m6pq6+kYsWrsPbw+fhQGj5sP72EXLY92Z/46ejxxPR/P1oj/jE+ZvxILVXj1yHNQ9uYWl+HqOB974ZDo+/cYdt+4mWR7rzvwbjU1YtskHb3wyHQNHO+Ni6N0ePybquu7Mv6oZsdjjAP702RwMHuOKUxduWv5MRk4Rxs1ah4/HLsIopxWIik3p8WOirgu7k4Bh37jjzaEzMH7eBhQUl1se62iNT88uxMdjF2HdjqNtnq+jNYMcT3fn/+L1u3h9yDSEhMd0+fnI8diar47WeMD2/D8VnZCBfgMmIK+ozO7HQN1n67V/R/PfZDJh676T6DdgAh7WPG7zfPcT0jH068V4fcg0THf7FrV1DT16PPR8utP92Jr/lpYW7PA+gyHjFmHIuEVYtskHjYrW48dEvRsL2lZCwmPwyVduqDQ8QkOjiskLNsPryHkAwPh5G3DkdAhMpmZE3tdhwKj5MDaZ8LiuAe+MmI3E1Bw0mUzwPBgI55W7AZj/Yx4ybhEMD2rQ0Khg8oLNCAi6IfIQqQPrdhyFy6o9UFQNpeUGvPf5PMQmZQLo3vx39HzkeGzN14v+jAddicSgMa4saB3c8AlLceR0CFpaWnA7WofXh0xDo6J1e/53+Z7FvOW70KhoyMwtxuipq6BqRpGHSB3ozvzvORQE55W7oagaSsoNGDBqPrLy9ObnG78EV29GAwBSMvPx1rCZlpN+cizlVQ/w5tAZiNdlo7m5BZ4HAzHReSOAjn/GE1KyMcppBdzW729T0Hb0PUOOp7vzf/jUVcxZ6okx01e3Keg6ej5yPB3NV0drvK35f0rTjBjltALvjpzLgtaBdfTav6P5n7PUE3sOBeHXAye2KehqHtfj3ZFzEZ2QAVUzwmOnP06eDxNybNS57nQ/gO35DwmPxuipq9CoaDCZmjFn2U7s87sg5Nio92JB24ouIx/xuizLx0dOh8Bt3X5UP6zF60Omt/mt+RdTViI6IQMh4dGYunCr5fOP6xrQf5ATNM2Itdv92lyFdzMqAePnbeiZg6HnFnY7HvqyKsvHs5d44szFW92ef1vPR47J1ny9yM/4o5o6DP16MU6cD2NB68CaTCacunDTcuIFAG98Mh1FJRXdnv8Pv3ThVVO9RHfnf/j4JUhKy7U8tnnPcew5FISWlhb86v2JeFRTZ3ns7eGz+CLdQZVXPUBIeLTl4/TsQrz/xXwA6PBnvKikAg2NCvb5XWhT0Hb0PUOOp7vzn5FThJaWFkx22WxV0Np6PnI8Hc2XrTUesD3/T+05FITdvkEYPmEp134HZuu1P9D5/AOwKuiCrkRi4dq9PTF0egm60/0Atuff68h5rPf87nzg2NnrfP1Hz40FbQemu32Lk+fDEK/LxmcTl7V5bMFqL5wKDsf+o8Hw2Onf5rF3R85FQXE5Ji/YjNCIWMvn84rK8N7n83pk7PRi6uob8d7n85BbUNLt+bf1fOT4Ws/Xi/yML914EGcvRyAkPIb/QfciuvQ8DBztjCaTqVvzX1vXgN8NngL/wFAMGeeGkZOWIexOQk8fBnVTV+f/tx9MRk1tveXzJ8+HWV6YTXLeZLnSLiYxA4PHuPIWR72Ez/HLlvW6K+dxzxa0XT0vIMf0vPNvq6Br7/nI8bWer47W+Kfam/+C4nKMmLgUqmZkQdvLPH3tD3Rt/p8t6DbsOoa12/0wecFmDBrjCncPb9TVN/bM4OmFdaX7ae3Z+Y9NysSn37jjYc1jqJoR0922IfBSRE8MnfoQFrQ2eB0+h0nOm9BkMiEqNgVjpq9u8/iyTT7wOx2CHd5nsG3fqTaPDR7jarn/XOT9ZMvnyyqq8ebQGT0yfuo+RdUw3W0bdvmeBYBuz7+t5yPH9ux8dfdnPCYxA1/P8UBLSwsL2l5EX1aFIePccDtaB6B7819SbsCvB07EAf9gtLS0IDE1B298Mh2Vhkc9eiz0/Lo6/7qMfPQbMAGK+t29xc6H3MGcpZ4AgJz8ErwzYjb+MGwmfjd4Cgv6XuJ2tA6Dx7iivOoBAHTpPO7ZgrYr5wXkmLoz/x0VtM8+Hzm21vNlbDJ1uMY/1d78T3LehLuxqQDAgrYXaf3av6vz/2xBt2SDN4aMW4SyygdQNSPmr9ht9Qs7ckxd7X5ae3b+AWDNdj/0/3Ayfv/xVEyYvxFGY5Pdx059CwvaZ7S0tMBjpz+mLtxqualzQko2hk9Y2ubrXFbtwZmLt3DAP9hqc4g/jpiDopIKOLluafOfdm5BCd/m5OBq6xrw9Zz12OkTaPlcd+ff1vOR42pvvrrzM240NmHkpGWWK6ZZ0PYOmbnF+HjsItyM+q5M68781zyuR78BE/C41cYQk5w34dqtWJDjet75/+0Hk9ucmB8/dwNu6/ZD1Yz46C8LcSfGvDFYQXE53vt8HopLK3vmQKhbLl6/i6FfL7b8/w2gS+dxzxa0nZ0XkGPq7vzbKmjbez5yXO3Nl601vrVn5//c1dttvoYFreNr77U/0LX5f7ag89h5DBt3B1g+jkvOwoiJbV9DkmN53u6ntWfn/+T5MExduBUNjSpMpmZ47DyGlVsP2f8gqE9hQfuMzXuOw2WVV5t70T2seYzXPpraZtEeMm4RElKyERoRi2/melg+X1H1EK99NBVNJhM8dvpjt2+Q5bGLoXfh5LqlZw6EnpuqGfHV7PXwDwxt8/nuzr+t5yPHZGu+uvMzrsvIxxufTMe7I+fi3ZFz8daTq+h4D2rHVVxaiY/HLmqzSyvQvfkHgLeGzURJucHy2CTnTQi7HW/no6Du6s78fzZxGe4npFseW7HFFwf8g5GRU4QBo9qWOFNctyL4WpR9D4K6Lex2PD6buAyGBzVtPt+V87hnC9qOvmfIMb3I/LdX0Np6PnJMtubL1hrf2rPzP2fZTrwzYrbl/O83H0zCOyNmIzwq0b4HQd3W3mt/oGvz/2xB53c6BEs2eFs+jkvOwiinFXYaOb0Mz9v9tJM/Ri0AAAmiSURBVPbs/M9Z6onTF8MtHyem5uDjsYvsN3jqk1jQthKTmIFRTivavRR9sstm7PO7AJOpGRev38XgMa4wmZpR36DgnRGzcS8+DU0mE9Zs94O7h3lhjtdl4cMvXVBe9QCP6xrw5bRVCLoS2dOHRV3kdfgc1m73a/ex7sx/R89HjsfWfL2Mn3FeQev4Jszf2GajkKe6O/8eO/2xfLMvmkwm6DLy8dawmah+WNujx0Rd15353+d3AdPdtkFRNcstDQr1Faita8DrQ6ZDl5EPAKiqfoQ/jpiD9OzCHj0m6pqax/UYONq5zS9UnurKGv9sQdvR9ww5nhed/2cLuo6ejxxPR/Nla41vrbN7EPMKWsfW0Wv/rsz/swWd4UEN3h4+C5m5xTA2meCyygtb9p6w+3FQ93Sn+2nt2fnf4X0Gc5fvtPxC1vNgoNVtMYg6w4K2FXcPb/x64ET0H+RkyRdTVgIASsoNGD9vA94aNhOjp65CamaB5c9FxaZg+PglePvTWZjpvr3Nzs2HTlzBwNHOeO/zedi05ziam1t6+rCoiz780gW//WBym/l/+jaV7sx/R89Hjqej+XrRn3EWtI5NX1aFfgMmtJn7/oOccD0yDkD35r9R0eCyag/eHDoDn3zl1uZt8+RYujv/mmaEu4c3/jhiDj76y0KcD7ljec6bUQkYOWkZhoxbhKFfL7ZsOkKOJ+hKZLvz/3Sebf2Mb9wdgP6DnPCbDyZZzh2f7t7c0ZpBjqW78//FlJXoP8gJv3p/ouXcISQ8utPnI8fS0Xx1tMbbmv9nsaB1bB299rc1/49q6ixf2/p75+kV2LfuJuHDL13wxxFzsHDtXtQ3KMKOjzrWne6no/mvb1Cw2OMAPh67CB+PXYTpbttQVsl7kNPzYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBWNASERERERERERERCcKCloiIiIiIiIiIiEgQFrREREREREREREREgrCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC1oiIiIiIiIiIiIiQVjQEhEREREREREREQnCgpaIiIioDystN8DdwxvvfzEfv/lgEv4wbCZcVnmhpNwgemhERERERAQWtERERER9lsnUjCHj3DBv+S5k5elRU1uPjJwiTFu0DZ985QaTqVn0EImIiIiIpMeCloiIiKiPKik3oN+ACcgtKGnz+eqHtTgVHI6GRgWGBzXoN2ACikoqLI8fO3sdn09eDgAIu5OAj8cuwsGAS3h18BQcP3cDvxs8BQ2NquXr6xsU9B/khNvROgDA0TPXMPTrxXh18BR8+o07omJTAADb9p3CuFnr2owlNikT/Qc5obauwS7/BkREREREjo4FLREREVEfpWlGvP3pLCzf7GuzAO2soI28r8ObQ2dg1dbDKK96gAZFwx+GzcS1W7GWr7984z7+OGIOmkwmXL5xH3/6bA7SsgpgMjXjZlQC+g9yQlFJJXILS9FvwAQUl1Za/uyGXccwb/kuO/0LEBERERE5Pha0RERERH1YvC4Ln37jjv4fTsbXczyww/sMktJyLY93paDtN2ACyqseWB5ftskHbuv3Wz52WbUHa7b7AQAmOW+C58HANmOYtmgb9hwKAgD8edpqeB05b3nsg9EuuB4Z9xKPmIiIiIiod2FBS0RERCSBzNxi+AeGYs5ST/Qf5IQ5y3bCZGruUkHb/8PJbZ4r8r4Ofxg2E00mE1TNiNeHTENcchYA4MM/L0C/AROs4u7hDQA4fu4GPvnKDQCgS8/DH4bNhNHY1BP/BEREREREDokFLREREZFkcgtK8OuBE3EjMt5GQRvapqD9/cdT2/z5JpMJbw+fhXtxaQi7k4CBo53R0tICABj2jTv8A0Nt/t01j+vRf5ATUjLzsW3fKazedvjlHyARERERUS/CgpaIiIioj4q4l4T1nketPt/S0oK3P52FoCuRqK1rQL8BE5Cdr7c8vsXrRIcFLQAs3+yLDbuOYckGb2zxOmH5/Ez37Vi+2bfN15ZVVKO5ucXysfPK3dh+4DQGjXFFvC7rhY+TiIiIiKg3Y0FLRERE1Edl5+vx6uApWL3tMNKyClBV/QgZOUVYvtkXrw+ZZrmv7DsjZuPY2esAzGXqx2MXdVrQ3olJwdCvF+NPn81BSma+5fMR95Lw6uApiLyfjCaTCXHJWXhr2EzEJGZYviY8KhFvDp2BQWNcLVfeEhERERHJigUtERERUR+mS8/D7CWeeHfkXPzmg0l4e/gszFqyA+nZhZavCQmPwaAxrhj69WLMdN8O/8BQDB+/BIDtgrbJZMI7I2ZjyLhFVo/5B4biwz8vwO8GT8Gwb9xxPuSO1Z/902dzsNMn0OrPEhERERHJhgUtEREREfWoB48e47WPpkJfViV6KEREREREwrGgJSIiIqIe0dzcgkc1dZiz1BOL1u4TPRwiIiIiIofAgpaIiIiIekTk/WT89oPJmO72LWpq60UPh4iIiIjIIbCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBGFBS0RERERERERERCQIC1oiIiIiIiIiIiIiQVjQEhEREREREREREQnCgpaIiIiIiIiIiIhIEBa0RERERERERERERIKwoCUiIiIiIiIiIiIShAUtERERERERERERkSAsaImIiIiIiIiIiIgEYUFLREREREREREREJAgLWiIiIiIiIiIiIiJBWNASERERERERERERCcKCloiIiIiIiIiIiEgQFrREREREREREREREgrCgJSIiIiIiIiIiIhKEBS0RERERERERERGRICxoiYiIiIiIiIiIiARhQUtEREREREREREQkCAtaIiIiIiIiIiIiIkFY0BIREREREREREREJwoKWiIiIiIiIiIiISBAWtERERERERERERESCsKAlIiIiIiIiIiIiEoQFLREREREREREREZEgLGiJiIiIiIiIiIiIBPn/Se/Bhi1/cO0AAAAASUVORK5CYII=", "text/html": [ - "<div> <div id=\"b2b7b256-1e3e-49d2-898b-00d1bedffb27\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"b2b7b256-1e3e-49d2-898b-00d1bedffb27\")) { Plotly.newPlot( \"b2b7b256-1e3e-49d2-898b-00d1bedffb27\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2017\", \"2011\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [31.6, 44.5, 36.7, 24.568958874930733], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2010\", \"2003\"], \"xaxis\": \"x\", \"y\": [42.9, 54.31378272084832], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [51.6, 47.1, 26.1, 29.96041216455179], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2012\", \"2000\"], \"xaxis\": \"x\", \"y\": [71.7, null], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2015\", \"2010\", \"2004\", \"2000\"], \"xaxis\": \"x\", \"y\": [87.5, 90.2, 83.9, 51.530925434032866], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2012\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [42.2, 55.2, 36.7, 42.124637918736795], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2013\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [84.9, 72.3, 50.163912506462616], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2014\", \"2010\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [92.1, 89.9, 79.8, 63.285159555798266], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [80.3, 79.5, 75.1, 48.869560685912965], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2013\", \"2007\", \"2001\"], \"xaxis\": \"x\", \"y\": [80.4, 83.5, 72.5, 69.66320342189823], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_only_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"945d067c-4f3e-455a-a308-592e963b04fe\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"945d067c-4f3e-455a-a308-592e963b04fe\")) { Plotly.newPlot( \"945d067c-4f3e-455a-a308-592e963b04fe\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [31.6, 44.5, 36.7, 24.568958874930733], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [42.9, 54.31378272084832], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [51.6, 47.1, 26.1, 29.96041216455179], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.7, null], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [87.5, 90.2, 83.9, 51.530925434032866], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [42.2, 55.2, 36.7, 42.124637918736795], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [84.9, 72.3, 50.163912506462616], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2005, 2000], \"xaxis\": \"x\", \"y\": [92.1, 89.9, 79.8, 63.285159555798266], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [80.3, 79.5, 75.1, 48.869560685912965], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_only_stigma=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [80.4, 83.5, 72.5, 69.66320342189823], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_only_stigma\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('b2b7b256-1e3e-49d2-898b-00d1bedffb27');\n", + "var gd = document.getElementById('945d067c-4f3e-455a-a308-592e963b04fe');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", @@ -19534,7 +17628,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 373, "metadata": {}, "outputs": [ { @@ -19557,17 +17651,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2017", - "2011", - "2006", - "2001" + 2017, + 2011, + 2006, + 2001 ], "xaxis": "x", "y": [ 31.6, 44.5, 36.7, - 51.82172348464304 + 37.48430691317277 ], "yaxis": "y" }, @@ -19584,13 +17678,13 @@ "showlegend": true, "type": "scatter", "x": [ - "2010", - "2003" + 2010, + 2003 ], "xaxis": "x", "y": [ 42.9, - 51.63371792253483 + 33.0573496204897 ], "yaxis": "y" }, @@ -19607,17 +17701,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2005", - "2000" + 2016, + 2011, + 2005, + 2000 ], "xaxis": "x", "y": [ 51.6, 47.1, 26.1, - 60.19781177976836 + 36.68947049362754 ], "yaxis": "y" }, @@ -19634,13 +17728,13 @@ "showlegend": true, "type": "scatter", "x": [ - "2012", - "2000" + 2012, + 2000 ], "xaxis": "x", "y": [ 71.7, - 67.84332662203975 + 70.11745134661585 ], "yaxis": "y" }, @@ -19657,17 +17751,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2015", - "2010", - "2004", - "2000" + 2015, + 2010, + 2004, + 2000 ], "xaxis": "x", "y": [ 87.5, 90.2, 83.9, - 73.33305914138057 + 74.39653963482156 ], "yaxis": "y" }, @@ -19684,17 +17778,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2012", - "2006", - "2001" + 2018, + 2012, + 2006, + 2001 ], "xaxis": "x", "y": [ 42.2, 55.2, 36.7, - 49.39458717769393 + 34.6942917927119 ], "yaxis": "y" }, @@ -19711,15 +17805,15 @@ "showlegend": true, "type": "scatter", "x": [ - "2013", - "2006", - "2000" + 2013, + 2006, + 2000 ], "xaxis": "x", "y": [ 84.9, 72.3, - 71.95633862825368 + 72.62799679664002 ], "yaxis": "y" }, @@ -19736,17 +17830,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2014", - "2010", - "2005", - "2000" + 2014, + 2010, + 2005, + 2000 ], "xaxis": "x", "y": [ 92.1, 89.9, 79.8, - 70.69977791304689 + 62.90019751881499 ], "yaxis": "y" }, @@ -19763,17 +17857,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2016", - "2011", - "2006", - "2000" + 2016, + 2011, + 2006, + 2000 ], "xaxis": "x", "y": [ 80.3, 79.5, 75.1, - 70.08302756883629 + 71.88353100909976 ], "yaxis": "y" }, @@ -19790,17 +17884,17 @@ "showlegend": true, "type": "scatter", "x": [ - "2018", - "2013", - "2007", - "2001" + 2018, + 2013, + 2007, + 2001 ], "xaxis": "x", "y": [ 80.4, 83.5, 72.5, - 78.09666495277045 + 79.65145595888701 ], "yaxis": "y" } @@ -20359,6 +18453,7 @@ "arrowhead": 0, "arrowwidth": 1 }, + "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, @@ -20655,11 +18750,11 @@ } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAHCCAYAAABoh8BRAAAgAElEQVR4nOzd93tU94H3/fvv2d1nfe9mN7m3ZJOsnY1jb5JN1okT94AxxsYFY2NjsE1vxhSDMWBMrwJEEaqo9957rzPnzDmj0Yw06tL7+UFCBgcjgtAc8Pm8ruvzg5AsRiNyYt4++s7/QUREREREREREREQi4v84/QBERERERERERERE3EJBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBVkRERERERERERCRCFGRFREREREREREREIkRBdo567EHNhfP4B5mc1PffrQsPjxPoH3H8cWiRnxkYYmx80vHHoTmz4dEJ7OCw449Di/zs4DDDoxOOPw7NmY2NT2IGhhx/HFrkF+gfITw87vjj0JzZ5CR4HoDHoTkzkfmmIDtHTl8kNGemIOvuKci6dwqy7p6CrHunIOvuKci6dwqy7p6CrLsnMt8UZOfI6YuE5swUZN09BVn3TkHW3VOQde8UZN09BVn3TkHW3VOQdfdE5puC7Bw5fZHQnJmCrLunIOveKci6ewqy7p2CrLunIOveKci6ewqy7p7IfFOQnSOnLxKaM1OQdfcUZN07BVl3T0HWvVOQdfcUZN07BVl3T0HW3ROZbwqyc+T0RUJzZgqy7p6CrHunIOvuKci6dwqy7p6CrHunIOvuKci6eyLzTUF2jpy+SGjOTEHW3VOQde8UZN09BVn3TkHW3VOQde8UZN09BVl3T2S+KcjOkdMXCc2ZKci6ewqy7p2CrLunIOveKci6ewqy7p2CrLunIOvuRcrk5CRHzsXzxHPv88ijC/jp/77Fxt0nCQ8Oz8vv19FtUFLZMC+fW/46CrJz5PRFQnNmCrLunoKse6cg6+4pyLp3CrLunoKse6cg6+4pyLp7kfLpl2d57Onl5BRVMRAeoqm1m0XvfsqCd7bOy+93NCqBgydj5uVzy19HQXaOnL5IaM5MQdbdU5B17xRk3T0FWfdOQdbdU5B17xRk3T0FWXcvEnr7Qjzy6AIqa1tu+fXw4BBnL6cwOjZOX3CAZZ98wePPrOC/n/+AL49dmfm4Rx5biOXv+4u365o6+O2C1ew8eJ6Fy7fxxHPvk1VQSV5JDf/y36/x4/95gx0HoqhtbOd3Cz9ixYb9LHhnK08t+oSEtMKZz5eaU8rvFn40/0+ESynIzpHTFwnNmSnIunsKsu6dgqy7pyDr3inIunsKsu6dgqy7pyDr7kVCSnYpj/7hnTt+zJrtR1i99WsmJycJ9Yd5/Jn3yMyvBL47yDa2dvG3P32JnKIqABLSCvnTknUArN95fOYO2cbWLn7wi0XEJucDcORcPG+s3j3z+VZtOaS7aeeRguwcOX2R0JyZgqy7pyDr3inIunsKsu6dgqy7pyDr3inIunsKsu5eJFxJzObpV9fe8WN+9tTb1DS0zby98+B5tuw9Ddw5yP7wiVdnfr2uqYNHf78M+Msg+w8/f5mJiUkATCvAP/z8ZUL9YSYmJvm3Xy+ls8e8L1+r/CUF2Tly+iKhOTMFWXdPQda9U5B19xRk3TsFWXdPQda9U5B19xRk3b1IKCit4ye/e+uOH/PIYwvxGPbM20fOxrNi/f6Z931XkP3p/37zeW9++9tB9tu//4tvbSY6LpOi8nr+8MqauX2BckcKsnPk9EVCc2YKsu6egqx7pyDr7inIuncKsu6egqx7pyDr7inIunuREOwP80+PLyavpOaWXx8eGWXN9iOEB4d59PfLqG1sn3nfzoPn2Tp9h+w//tciTCsw88/8zU9e/KuD7M0fBxAVk8biFdvZuPsER87G3/8vWmYoyM6R0xcJzZkpyLp7CrLunYKsu6cg694pyLp7CrLfn3XZfXTYftptg1a7m2a7nUa7iQarnjqrihqrlGqriEorl3Irg+reNEJD+t67dQqy7l6kfHnsCv/x2zdJyyljIDxEW6eXxSu289ZHe4CpgPrxp4cB6AsO8POnl88E3F/86T0KSusAiEnK5W9/+tKsQXbznlN8tv/cX/z6DX2hAf7p8cX8x2/fvOXOXLn/FGTnyOmLhObMFGTdPQVZ905B1t1TkHXvFGTdPQXZ+Vu3v58uO0CHbdFme2ixOmm2Wmm0G6i3a6izKqi2Sqiy8qmwsinzpVNqJVPsi6PQvEqeGU2eeY5s8xSZxjEyjK9JM/aTYu4l2dhFkvEpCcZm4r3riTPW3NN6BwOOP0+aM1OQdfciZXJykqNRCfzy2RU88ugCHv39MnYePM/o6BgwdRftu+v28cRz7/Pfz39wy12r15LzeOK593l5+ad8deoa//HbN/HZgTsG2ZyiKv7p8cW8s+aL2wZZgNdW7uSZ19bP81cuCrJz5PRFQnNmCrLunoKse6cg6+4pyLp3CrLuntuCbKcdpMO2abMNWuxumu02Gu0m6q066qxKaqxSqqxCKn05lFsZlFopFPniKTSvkW9eIs88T45xhizzOJnmYdLNg6QaX5BsfM514zMSjS3EezfecyCdy+K9G0g0tnDd+IxkYzepxhekmQfIML8myzhOtnmaXDOKfPMShWYM5f5EQsMDjn9PNGemIOvuudma7Uc4fSnZ6YfxvacgO0dOXyQ0Z6Yg6+4pyLp3CrLunoKse6cg6+45HWS7/SE67QAdto82u4cWu5Nmq4VG68ZdpOXUzNxFmkW5L50SM4kiM5ZC31XyzYvkmufIMU+RZRwlwzhEurGfFHMP141dJBqfkmBsIs6497tI733rSTA2kWh8ynVjFynmHtKN/aQbX5NlHCXHPEWeeY588yKFvqsUmbGUmEmU+9KpsLKosvKpsUqos8qpt2totBtotlposTtpsz102D467QDd/tA9Pfc6Q9bdU5B199yqua2bR3+/jFB/2OmH8r2nIDtHTl8kNGemIOvuKci6dwqy7p6CrHunIOvufTvIdtvhm+4i9d7TXaS5ZtQDehfpWhKMjSR6t3Ld2EGKsZtUYx/pxldkmofJMk+QY5whzzxPgXmZQvMaxWYCZVYq5VYGlVYu1VYRNVYpdVYVDVY9jXYTzXY7rXY37bZBh+2ny+6jxw47/r2dbQqy7p6CrLvnRjsPnuc/n1pGWk6Z0w/FFRRk58jpi4TmzBRk3T0FWfdOQdbdU5B17xRkH/xN3UXaS7ttTt9F2kGT1UKD1UC9VU2tVU61VUyVlTd9F2kaJWYiRWYsBb4r5JsXyDXPkW2eJMucuos0zfiSVGMPqdYukoxtJBqbiDPWOfBj9utJMDaTZGwn2dhFirmXNGM/GcbXZBrHyDZPkWueI8+MptC8SrEvjlIrmTJfOhVWNlVWAdVWCXVWxU13kbbSYt24i9Siyw7Q7e93/Pv4oE1B1t1TkHX3ROabguy0yclJ9nwdzc+eepv/9+QSdhyImnlfZ4/Ji29t5v89uYTfLfyIksrGmfc5fZHQnJmCrLunIOveKci6ewqy7p2C7L1sgE6775u7SK0umuw2Gu1G6q1aaq3K6R+zL6Bi5i7S5Om7SGNm7iLNNk+TZRwnwzxMmnlg+i7S3SQZ26fvIt3g0F2km0iauYv0c9KMfWQYX5FpHiHbPEGOeZY834Xpu0hjKTYTKbNSqbAyZ+4irbXKZu4ibbKap+8i7aHdNunw++mygw/A99HdU5B19xRk3T2R+aYgOy02OZ9fv/Qh/kAIy9/Hfz//AfGpBQC88OYmjkYlMD4+QWZ+JT/53VuMjo0DCnJunYKsu6cg694pyLp7CrLu3fclyHbZwZm7SFvt7um7SJtpsOqn7iK1y6i2iqi08qiwMimzUim+cRepeYU83wVyzbNkmyfJNI+QYXxFmvElKcbnXDd2kGRsI8HYSLwjd5FuuOku0t2kGnunX6zpMFnGsZterCmaAjOGopm7SDOo8H1zF2mtVUG9XUuj3UiT3Uqr1UX/aC/dAZsuu49uW3eRumkKsu6egqy7JzLfFGSnrdpyiMNn4mbePn0pmbc+2oPdG+SfHl/M2Pj4zPv+9+WPKSitAxTk3DoFWXdPQda9U5B19xRk3TGj24OvrQm7sRx/dQ6B8iTCJVcYL71AsPASfcXXCJQn0VuZhr86B7uuCKuxHF9LLb62ZoyuDoweL17DP+vv1W3302X30WFbtNkeWq0umuxWGu0G6u1aaq0KqmfuIs2mzHfjLtI4CswY8szo6R+zP02WcYwM4+vpu0j3kmzsIsnYToKx2ZG7SOONdSQYG0kytpFs7py+i/RLMoxD03eRniTXPEu+eYEC88r0izUlUuZLm76LNI9qq5hau4x6q5oGq4Emq5kWu2P6LFKTTrs3IneROv2iXppzU5B19xRk3T2R+aYgO+3bQTbmei6/XbCakspGfvPSqls+9p01X3DuahoARu+Q5sKZgSEmJ/X9d+sGR8YJhkcdfxxa5GcHhxkfn3T8cWjObGRsgt7+Eccfh3MbfgAew93N9PVidXfhb6+nt7GEvposQmUJ9BdeYCD7GIOp+xhO2MbItTWMRb/LxNklTB5/EY498xebOPks/Rf/jB3zMmb8K3gSF9OV/Codaa/RmvE6TdlLach9k9r8t6guXEZFyTuUli2nqOo9CmpXkFv/PllNH5LeuprU9o+43vkJiZ5PHPgx+1vvIk0xdpNm7iXdPECm7zDZ5jFyzNPk+c5T6IumyBdDiRVPuZ1MhZVBlZ1DjV1ArV1Kg7+SJn8tLf4mWnvbaPd30+k36Oq16ekNOv79v98bH5/EDj48f/6/dws493sHw6MMjow7/xxojmxyEswH4HFozkxkvinITruWnMevXliJ3RukLzjAn9/ewhPPvU9OURVPL15zy8eu2nKIY1EJAIxPTGounb7/7t3kJEw4+PsPj044/hy4eZP6375r5/T/9p2eI9eewRATAQ8TvkYmuiuYaM5msjaBybKLTBQcZTLzCyavb2Uy9mMmLy2Hs4tvG1Vn2/DZF+i9upDu5FdpKniX8qrV5DWvIaVr/iNpYvfHJHd+RFrbKjKaV5LdsJK82hUUVL9HceW7lJUvp7JkGdWFb1OX9yaNOW/QnLWUtozX6UxdQnfyq3gTX8EX9wp2zMsEriwgFLOEcMwbDF5bxkjsCsaurWIybi2TiZuYTNnOZPrnTGTvZyLvMBNFJ5kojWKy8gqTNfFM1qcw0ZzFRFsBE11lTHhqmDAbmfC3MxHwMN5vMz4YYnxkyPE/k5GarvvObnh03LHfe2Ji6trv9HOgOTP9fc/dE5lvCrLTJiYm2X3oAr/403s8/epavjh6mT8uWUdpVSO/evHDWz522Sd7OR+TDuhH1t06HVng7unIAvdORxa4ezqy4N7m8fXj9RiY7S1YTZX4a/MIlCcTLLpCKOcUA+kHGUzaxXDsBkYuf8hY1FtMnH75nsLqjU2e/DPj515nNHoFw9fWMpi4HStnDx1lB6iv/Yqy5gPkdewlrWcH8d71s0bTZHMnuf4jZBnHbzqL9BKFZgxFvnhKrRTKrQwqfDlUWYXUWCXUWpXUW3U0Wg00mw20eerp7K6lp6MGb1slVlMldn0x/ppceqvSCVQk01cSR7DwEqH8KELZJ+nPOMJA2n7CyZ8zmLiDofgtDF9by8jV1YxGv8/YhWWMn3udidOLmDz5Zzj27Jyet3t6rk+8yMTplxk/9xpj599mNPo9Rq6sYjhmLUNxmxhM3E44eTcDqV/Sn/E1oezjhPLO3f74h/pbj38wbzr+weMLOfZnWEcWuHc6ssDd05EF7p7IfFOQ/Q6HTsey5rOj9PaF+Mf/WsTg0MjM+x5/5j1KqxoBBTm3TkHW3VOQde8UZN09twdZjxnA6OrG19aA3VBGb3U2fWWJBAuiCWUfZyD1SwYTtzN8bS2j0SsYP/f6dCS899g3cWohY1FvMXp5JcOxGxhM2sVA+kFCOacIFl0hUJ6MvzYPq6mCns5aWj0V1PqKKLNSyTcvkmEe5rrxGXHG2jsG1wRjE2nGl+QYZyj2xVFl5dFg1dFme+m2ww/Vi3p5rCBer43R48Xs6sDX1oTVXIPdWI5dX4S/OofeyjQCZUn0FV+bCsB55whlH6c//WsGUr8kfH03g4nbGYrbxHDMWkaurGL04nuMnX+b8XOvMXH65e884mFed/xZJk/+mYnTrzAetZSxC8sYvfQ+I1c+YvjaOobitzCYuINwyh4G0g7Qn3GEUPZJQvnnCRZdpq8kjkBFMr1VGfhr87DrS7CaKvG11mO2t2J0deH1mHjMXnqsgZnnVEHWvVOQdfcUZN09NxsbH+dvfvIijzy2kP/785f50ZNLWPTup3R0G3P6vD/4xSK8Pv99epQPPwXZaSlZJbzy3nYGwkN09pg8+vtllNc0A7Bg2Va+PHaF8fEJYq7n8vOnlzM+PgEoyLl1CrLunoKse6cg6+59P4JsGK/Xngp1LbXYdUX0VqbTVxJLKD+K/owjhFP2MhS/lZGrHzN2cTnjZ15l8sTzc4hozzFxZjFjF5YxcnU1Q3GbCSd/PnW3ZN45+oqvTd0hWVeI1VyD2dmO12PRY4Vveezd9gBttod6q5ZKK5ciM5Zs8zSpxj4SjU2z3OW6luvGDjLMr8kzoynzpVFjldJkt9Jp9876vD1MQTbSf548vj68Hgujuwezow1fWyNWczV2Qxn+ugJ6q7IIVKTSV5pAsPgqoYKLhHJO0591lIH0rwinfMHg9V0MJWybukv66ieMXl459Wcv6k3Gz7zKxKkFc/szeK93/x5/nslTC+DcEsbPv8nYxeWMXlrJyNVPGI7dwFDCNgaTdhFO3stA+lf0Zx0llHOaUP4FgsVX6StNIFCRSm91Jv66AuyGMqymanxtDZgdbRjdPXg9Fh4zQI8ddvD7qH3XFGTdPQVZd8/NbgTZG/F0cGiETz49wivvbZ/T57V7g0zoOIgZCrLTRsfG+WDjQX74xKv8x2/f5OzllJn3dXstXnhzEz96cglPLfqE6vq2mfc5fZHQnJmCrLunIOveKci6ew9UkLX68XpMzI42rKYq/LX5BCpSp4JXzmkGMg5NRa7YjYxcWcXY+beZOLNoTj/SPnniRcbPvcboxfcYjlnDYOKnhFP2TUWo/Av0lcbTW52JXV+Cr7Ueo6sLjzF77Lx5XXYfTXYbtVYZ5b408s1oMs3DJJs77+Iu142kGl+QbZ6iyIyl0sql3q6lze6hxx6Y0/OtIPuAzArjMXvxekyMri7M9lZ8rfVYzZXY9SX4a/PorcogUJ5MX2kcwaLLhPLPTx3/kHmEgbQDhFP23HT8wzpGrnzE6KXp4x+i3mDi9CtTd3Yfd+D4h+PTxz+cXTJ1Z/jFG8c/rGEoduPU8Q/XdzOQuo+B9EPfHP9QEE1fSQyBsqnjH3qrs/HXFWI3lmM11+Bra8LsbMfo9uD12nisoPPfy4dkCrLunoKsu+dm3w6yANmFVfzy2RUzb6fllPGbl1bxX398lwXLtuIPhABY+uEuvjh6mddW7uSpRZ+wdNXumRsab9whW9fUwW8XrGbnwfMsXL6NJ557n6yCysh+kQ8ABdk5cvoioTkzBVl3T0HWvVOQdffmI8h6fH0Y3T342pqwG6eOAQiUJxEsvEwo+wQDafsZTNzB8LV1jF56n/GoN+Z8DMDkqQWMR73B6KUPGI5dz2DiDgbSDhDKPkmw8BKB8qSp8zwby/G1NWF0e+5bwOm2w7TZXhqseqqsfIp88eQYZ0gzviTB2DzrWa7Xjc9IN74mz3eBUiuFaquEJquFDts/r997BVl3zuPrx2v4Gevvxe7pxGxvwddSi9VYjl1XNHX+b2UagfIbxz9c/ub4h4yvGUjdTzj5puMfrk0f/xB94/iH15k4s4jJEy9G/viHY88yeeIlJk4vYvzc61PHP0SvYOTqaoavrWUobjODiZ8RTv6cgbT99GccJpR9glB+1NT5vyWxBMqv01uVjr8mF7u+GKupAl9LHWZ7C0ZXJ16PMfUfZax+x7+X9zoFWXdPQdbdi6ShYXhn9WjEt2rD6G0fz7eDbHhwiBXr97Nt3xkADF8v//Lfr1Hf3AnAkbPxLF21G4C3PtrDS29vZmx8nMnJSX790odkF1YB3wTZxtYu/vanL5FTNPXrCWmF/GnJunl9jh9ECrJz5PRFQnNmCrLunoKse6cg6+7dKch6jF6Mrk58rXXY9SX0VmXQVxpHqOAC/ZlHCad8MfUj2TFrGI1+l/GzS+Z2BufxZ5k4s4ix828zcmUVQ3Gbpu6cSz9EKPcMweIYAhWp+OsKsJqqMTva8HrMW87FnK912kGa7XbqrHLKfBkUmJfJMo+SbOwizlh3x+Aa791IirmHbPMkheY1Kqxs6q1qWu1uum3noo6CrLsXqTNkPb7p83+7ezA72785/7ehDH9d4dR/sKlIo68sgWBxDKGCaEK5Z6aOf8g4RDhl303HP2xkOGYNI5c/ZDT6Xcai3mL87BImTi1k8vgLkQ/Ax5+bOv/3zGLGo95g7OI7jF76gJErHzMcu56h+K0MJu0knLKXgfSD9GceJZRzilDBBYJFV+grjSdQnjJ1/ENtPnZDKVZTFb7W6eMfurrxen1Txz9Y9+/4BwVZd09B1t2LpMFBWPjmaMS39P07B9l//uVifvjEq/zdz17iyec/oK3TC8C5q2ksXL5t5uPDg0P8/X8uYHRsnLc+2sOxqISZ9y1dtZvouEzg1iD7wydenfmYuqYOHv39svl4ah9oCrJz5PRFQnNmCrLunoKse6cg+z2fFcbr9U0dA9Bcjb+ucCp+lMQQyjvHeO5RhlM/ZyhuEyNXVjN2YRkTp1+B48/N4UeUX2D87BJGLy5n5OrHDMVvJZyyl/7MI4Tyz9NXEkdvVTp2fTG+ljqMrg68hh+nz5tst00a7QaqrAKKzQRyzXOkmQdI9G6d9S7XJONTMoyvyDWjKLWSqbaKabSb6LAt5/8MfMcUZN297+WLellhPGYAr9eH0dU9df5vawNWUxV2Qyn+2nx6qzMJlKfQVxpPsOgKoYILhHJO0Z95lIG0g4RT9jKYtJOh+K0Mx65n5MrHjF76gLGL70wd/3Bm8fTxD/d+jZzLtXXi1MJvjn+IfpeRyx8yHLOG4diNDCZ+yuD1XYRT9jGQcWjq6JXcM4QKogkWx9BXlkCgIo2BhlyG20qnzv+95fiHnqnjH3w6/uH7PAVZdy/S+oKRXzB0+8fy7Ttkx8bHycyv4N9/sxSfHeDQ6Vh+8ItFPPqHd2b2oyeX4LMDvPXRHs7HpM98rpvfvjnI/vR/35r5mG+/7RYKsnPk9EVCc2YKsu6egqx7pyD7cMzjC2H0ePG1NWM1luOvySVQkTx1nmT2SQbSDjKYtJPh2PWMXlrJeNSbTJxaMLe//J/8M+NRSxmNfp/ha2sZTPyMgdT9hLKPT53vWJZIb3U2dkMZvrZGjO6e6Rfycf75ut267CAtdie1ViUVViYFvitkGcdIMXYT710/y12u60kxPifLOE6heZUKK5M6q5JWq4tuf8jxr+1epiDr7n0vg2ykZ/XjMXrxegyMrhvHP9RhNVVg1xdPH/+QTqD8On0lsQQLLxHKjyKUfYL+jMMMpO0nnPw5g4mfMRS3eer4h6urGY1eMXX+77nXmTi9iMkTLzGXs7Lv+f8DTrzIxJnp4x/Ov81o9PT5v9fWMhS3aer83+TdDKTun3pBwxvn/xZepq/4GoHyqfN//TW52HVFWI3l+Fpqp49/6MDo8eI1/Hh8D+c19GGdgqy752a3O0MW4LcLVpOUUcTVxByWfrjrtv+sguzdU5CdI6cvEpozU5B19xRk3TsF2cjOY/ZidHXha23AbiiltzqTvtIEQgUXp35EN3Ufg4nbGY5Zy2j0e4yfe336L+P3+pfqZ5k4/TJjUW9N3UkVu5HB67sYSP+KUM5pxqtj6a9OxV+bh9VUidnegtdjPLTnI3bYPhrtRqqtIkrMJHLNKNLNgyQZ22a/y9W7lXTzIHnmOYrNRKqsQhrtBtpt0/Gvaz6mIOvuKcg+fPNYN45/8Nx6/EPjN8c/9Fam0VeWSF9JDGwh8yoAACAASURBVMGC6JnzfwfSDzGQuo/w9d2MXv+M8cTNU8c/XFnF6MX3vjn+4fTLczt65p6Pf3h26viH068wHrV06vzfS+8zcuUjhq+tYyh+C4OJOwin7GEg7cDUT1xknySUf55g0WX6SuMIlCfTW5WBvzYPu74Eq7kSX2s9ZnsrRlcXXo+Jx+y9r8c/PIxTkHX33Ox2QbaovJ4f/GIR7V0Glr+Pf//N0pkjDCrrWtmw6zigIPvXUJCdI6cvEpozU5B19xRk3TsF2XuYFcbrsTA726f+MlxfNPWX4OJrhPKj6M84TDj5c4bitzBy5SPGLr4z9WOux5+fw4+qPs/EmcWMXVjGyJWPGIrfQjj586kXpcmPoq/4Gr2Vadj1RVjNNZid7Xg91qx/8ZyPF/Waz3X7Q7RYXdRZVVRYWRSYMWSZJ0g19hDv3TBLdF1HsrGbLOMoBeYVyq0M6qwKWuwOumz3/Yiugqy7pyDr3t3dGbLTxz94rKnzfzta8bU1YDVVT53/e+P4h4pU+koTCBZfJZR/gVDO6an/uJj+FeHkvQwm3Tj/dwMjVz9m9NJKxi4un/opjjOLmTy1YE7/33gvG7uwzPHvgZNTkHX33OxGkH3ksYU88thC/uHnL/OrF1aSkFY48zHpueX85qVVPP7Mezy16BNKKhsABdm/hoLsHDl9kdCcmYKsu6cg6965PcgaPV7M9haspsqpYwDKk6fOFcw5zUD6QQaTdjEcu4HRyysZi3qLiVML5/wjoOPnXmP04nsMx6xlKGEb4ZQvps76y79AX2k8vdWZ2A2l+FrrMbq6pl7Re56+/gcxyHbYNk1WMzVWMaVWMnnmeTKMQyQZ22e9yzXR2EK6sZ9c8yxFvniqrHwarAbabAOnz6h90KYg6+4pyLp3D+qLen338Q8lU8c/VN2f4x9GL610/Gt1cgqy7p7IfFOQnSOnLxKaM1OQdfcUZN2770OQ9ZgBjO4efG2N2A1l9FZn01eWOPXjmtnHGUj9ksHEzxi+tpbR6PcZj1o69aIscwirE6cWMB71JqOXVjIcu57BpJ0MpB0klH2SYOElAuXX8dfkTp2Z19aM0eN9IM/JcyLIdtv9tNrd1Ns1VPhyKDRjyTZPkmrsJcHYeOezXI11XDd2kWkeId+8RJkvnVq7jGa7jU67z/Hn82Gagqy7pyDr3j2oQVaLzBRk3T2R+aYgO0dOXyQ0Z6Yg6+4pyLp3D06QDeP12phdHfha6rDri+mtSqevJI5Q/nn6M48QTtnLUPxWRq5+PPUjj2eXMHn8hTmdWTdxetH0MQCrGYrbRDh5N/3pXxPKO0dfSQyBijT8dQVYTdWYHa14vT56rIEH4Pm6P5uvINvh99NstVBjlVBmpZJvXiTDPMx14zPijLV3jK4JxibSjH3kGGco9sVRaeXRYNXRZnvotr8/z73TU5B19xRk3TsFWXdPQdbdE5lvCrJz5PRFQnNmCrLunoKse3ffg6w1gNdjYna0YTVV4a/NJ1CRSrA4hlDuGQbSDxG+vpuhuE2MXFnF2Pm3mTizCI7f+ytITx5/kfGzSxi9uJyRq59MHQOQvJf+zKOECi7QVxpHb1UGdn0JvtY6jK5OvIbf8ef+Qdi9Btlue4A220O9VUullUuRGUu2eZpUYx+JxqZZjhZYy3VjBxnm1+SbFymzUqmxSmm2Wum05+94Bu3WKci6ewqy7p2CrLunIOvuicw3R4Lsv/zqtbveg87pi4TmzBRk3T0FWffuu4KsxwpidHvwtTVhN5bjr84hUJ5EsPAyoewTDKTtZzBxB8Ox6xm99AHjUW8weWrB3M5XPflnxqPeYPTS+wxfW8dg4g4GUvcTyj4+dQxAWRK91dnYjWX42powunvw+PRj6nPZnYJsl91Hk91GrVVGuS+NfDOaTPMwyebOu7rLNdX4ghzzFEVmLJW+HOrtGtrsHnp0l+sDMQVZd09B1r1TkHX3FGTdPZH55kiQTc4sues96Jy+SGjOTEHW3VOQ/f7OY/RidHXia63Hri+htzqTvtJ4QvkX6M86ymDqPiZStjMcs4bR6HcZP/cakydenENYfZaJ0y8zdv5tRq6sYih2I4PXdzGQcYhQzmmCxVcIlKfgr83Haq7EbG/F6zHpsfodf67ctm47TN+wn9ZAA1VWPkW+eHKMM6QZX5JgbJ71BbSSjO1kGIfI812g1Eqh2iqhyWqmw7Yd/9q02acg6+4pyLp3CrLunoKsuycy33RkwRw5fZHQnJmCrLunIPuAzwrj9VhTxwA0V+OvKyRQkUZf8TVCeefoz/iacPLnDMVtZuTqasYuLGPi9Ctw/Ll7v1v1xPNMnFnM2MV3GLnyMUPxWwin7KE/4wih/Cj6SmLprUzHrivCaq7B7GzH67XRK9k/WOuy+2i226mzyim3MigwL5NlHiXZ2E2cse7OL6Dl3UCKuYds8wSFZgwVVjb1VjUtdjfdfgX0h30Ksu6egqx7pyDr7inIunsi801HFsyR0xcJzZkpyLp7CrKRmccXwujxYra3YDVV4K/JJVCRTLDoMqHskwykHWQwaRfDsRsYvbySsai3mDi1cO7HAJx7ndHoFQzHrGUwcTsDqfvozzpGqCCaUEUiE60F2A1l+NoaMLq68ZgBx58r7e7Xbps02g1UWQUUmwnkmudIMw+Q6N06612u183tZPi+IteMosRMotoqotFuosO2HP+6tPmdgqy7pyDr3inIunsKsu6eyHzTkQVz5PRFQnNmCrLunoLsXzeP2YvR1YWvrQG7oYzeqiz6yhIIFUTTn3WMgdR9DCZuZzhmLaPR7zF+7nUmT/55TmF14tRCxqLeYvTySoZjNzCYtIuBtIOEsk8SLLpMoCIZf00uVlMFZnsLRo8Xjy8069dy31/US7vv67KDtNid1FqVVFiZFPiukGUcI8XYTbx3/Sx3ua4nxdhNlnGcQt9VKqxM6qxKWqxOuv2he35RL+3hn4Ksu6cg694pyLp7CrLunsh8e6CPLFjywQ6nH8KsnL5IaM5MQdbdc2eQDeP12pid7VjNNdj1RfRWptFXEksoP4r+jCOEU/YwFL+FkSsfM3bxHSbOLGbyxPP3HlaPP8fE6VcYu7CMkaurGYrbTDj5c/ozviaUd46+4msEKtLw1xViNVdjdrTh9Vj0WPN3DICC7IOxDttHo91ItVVEiZlErhlFunmQJGPb7Ge5ereSZh4g1zxHsZlIlVVIo91Au23O+vsqyLp3CrLunoKse6cg6+4pyLp7IvPN8SA7PDLK12dieWfNFyz9cNfMnl68hn/99etOP7xZOX2R0JyZgqy791AHWasfr8fEbG/Faq7EX5tPoDyFYPEVQjmnGUj/isHruxiK3cjIlVWMnX+bidMvw7Fn7/0YgOMvMn52CaPR7zIcs4ahhG2EU76gP+soofwL9JXG01udiV1fgq+1HqOrE4/R6/xzdZspyEZm3f4QLXY3dVYVFVYWhWYMWeYJUo09xHs3zBJd15Fs7CbLOEqBeZlyK4M6q4IWu4Muu29Oj0tB1r1TkHX3vu9B1tsZwFfZhT+zjmBMEf3H0xjcHcPIujNMLDtIb3qN44/RqSnIunsKsu6em42Nj/M3P3mRRx5byP/9+cv86MklLHr3Uzq6jb/6cy39cBdXE3P+4tdffX/HbX/9Xtx4vH/3s5du2a9e/PC+fP754niQXbXlEI8/s4INu47zj/+1iM17TvHHJev43cKPqGvqcPrhzcrpi4TmzBRk3b0HIch6zABGdw++tkbsxjJ6q7MJlCURLLxEKPs4A6n7GUz8jOFraxmNfp/xqKVzPgZg8tQCxqPeYPTSBwxfW8dg4g4G0vYTyj5BsPAygfIk/NU52I3l+NqaMLo9eKyg49+v+zkF2fu3DtumyWqmxiqh1EomzzxPhnGIJGP7rHe5JhibSTf2k2OepcgXT5WVT4NVT5vtZT5fKE1B1r1TkHX3Huoga4Uxmi2sklYCyVWELuQx8FUSQ59GM7b6OJNLv4RXPr/jgpcKnP86HJqCrLunIOvuudmNwOn1+QEYHBrhk0+P8Mp72//qz/VdQTbYH2Z4ZHTOjxX+8vE+LBwPsv/669fxmFNP2o//542ZX997OJpDp2Odelh3zemLhObMFGTdvfsZZL2GH6OrA19LHXZ9Mb1V6fSVxBEquEB/5lHCyXsZStjGyNVPGL24nPGzS5g8/sIcjgF4lokzixg7/zYjV1YxFLeJ8PXdDKQfIpRzmmDxVQIVqfhr87GaqqaPATDpsQYcf94fhCnI3v267X5a7W7q7RoqfDkUmrFkmydJNfaSYGycJbquJdnYSaZ5mHzzEuW+dGqtMprttjnf5TqXKci6dwqy7t6DHGQ9Rj9mrQd/XiN98aWETmUQ3hfLyMYoxlcchlf3zBpcJ1/fx9iqYwx9epGBrxIJXcwjkFyFVdyK0eyjxzd//6HrQZ+CrLunIOvuudntAmd2YRW/fHYFAOU1zTzx3Psz77v57ddX7mLXVxf42VNvk1NUdUuQzcyv5Bd/eg+7N3jLHbI/fOJVzlxO4dX3d/Dk8x9w4MTVmc99Piadx59ZwWNPL+eFNzfN9MPZHu/Nyqqb+N3Cj/jFn97jVy+sJL+0FoDR0TFWbNjPf/3xXR57ejnvrfuSoeERABLSCvjVix/y5PMf8MKbm2jp8Nzz8/ldHA+yP/jFIkZHxwD4t18vZWx8HICB8BA/e+ptJx/aXXH6IqE5MwVZd+8vgqw1gNfrw+xoxWqqxl9XQKAilWBxDKHcMwykHyJ8fTdDcZsYubKasQvLmDi9CI7P4RiAE88zfuZVxi4uZ+TqxwzFbyWcspf+zCOE8s/TVxJHb1U6dl0RvpZazK4OvF6b+bx70A1TkL11HX4/zVYLNVYJZVYq+eZFMszDXDc+I85Ye8fommhsIs3YR7Z5miIzlkorj3qrjjbbQ7f9YP4HAAVZ905B1t1zMsh6O3rxVXTSm15D8HIB/UdSGNp1hdE1p5h4+8CssZVXPmdi2UFG1p5mcPdV+o+lEowpwp9Zh6+yC29HwPHn90Gegqy7pyDr7kXUYJi+V34T8QXf+tNtH863A2d4cIgV6/ezbd8Z4M5B9q2P9vDc0g0MDk2FzRtBtrXDw6N/eIem1m7g1iML/uVXr/H51xcBsHuDPPLoAsKDw/gDIR55bCHdXguA1Vu/Zs32I7M+3m/7zUuriEnKBeBqYs7MY01IK2Th8m1MTk4yMTHJti/OUFLZiMew+edfLqat0wvAqehknn517d18J/8qjgfZPy5Zx44DUYyMjPLHJeu4FJ8FQHNbNz984lWHH93snL5IaM5MQdZ987U1EqhII5R9gvGkLYxf+YDxqDeYPLVgbscAnPwz4+deZzT6PYZj1jKYuJ2B1H2Eso8TKoimryyB3qos7IYyfG0NGF1deMwH83xVN8xtQbbbHqDN9lBv1VJp5VJkxpJtnibV2EeisWnWu1yvGzvIMA+Tb16kzEqlxiqh2Wqh0344/wwryLp3CrLu3rwFWXMAo8nELmwlkFRB6HwO4QMJDG+7wNjKY0wu+WL2u1uX7GXs/SMMbz5PeH8coTNZBBLKsfObMeu9eIx+x5+/h3kKsu6egqy7F0mT4X4Cv/+3iK/vxV/c9vHcCJz//MvF/PCJV/m7n73Ek89/MBMoZwuyB0/GzLxv6Ye7OBWdzK9e/JCcoqqZX/92kL35yNIfPbmELo8PYOaOVYCY67ksXL7tOx/vv/16KT/+nzdmtmLDfmDqTtiJiUkATCvA3//nAgBKKhv46f++RXpu+S3HJ1y4lsFrK3fOvD08Msrf/vQl+gfu758Lx4NsWXUT//HbN+ntC5GSVcL/959/5sf/8wZ//58L2LDruNMPb1ZOXyQ0Z6Yg+/2d2dWBvzaPUP55BpN2Mhr93l2F1YlTCxmLeovRyysZjt3AYNJOBtIOEso5RbDoMoGKZPw1uVhNFZjtLRg9Xse/Vu0e/nx8D4Nsl91Hk91GrVVGuS+dfDOaTPMwycbOWe9yTTA2kmrsJcc8RaEZS4Uvh3q7hla7m54H9C7XuUxB1r1TkHX37jXIejxBfDU9+LPr6btWQv+JNAb3XGNkw1nG3z0Ei+/i7tY3v2T0oxMMfXaJgcPXCUbn05tWjVXajtFq02PN79dueluwekrxeaoxvU0YRiden4nHcsedtQqy7p6CrLsXaZO9VuQXuP0dpd++43RsfJzM/Ar+/TdL8dmBWYNsVEzazPuWfriLHz25hB8+8erM3bHwl0H25hcMu/H25OQk+45d5g+vrOHpxWt4/JkVLFi29Tsfb21jO5a/b2bB/jAwdSfsc0s38PTiNTy16BP+7mcvzfyzCWkFvPDmJv75l4tZteUQ4cFhDp6MYdWWQ7f8Hv/0+Cv39KJmd+J4kAVmSjVAU2s30XGZFJTW3fIxDS1dkX5Yd8Xpi4TmzBRkH/55PRZ2QynB4quEU/YxcnU1kyde/M7gOh71BkPxWwhln2SkMZP+zrrp81Utx78WLXJ7GINstx2mzfbSYNVTZeVT5IsnxzxLmvElCcbmWV9AK8nYToZxiDzzPKVWCjVWCU1WMx227fjXFukpyLp3CrLu3m2DrDWI0WpjlbbTm1ZNMDqfgcPXGfrsEqMfnWDizdlfLIvFnzO+/BAjG84yuOca/SfS6LtWgj+7Hl9NDx7P/L4wpsfqw+dtwN+VT1/rFUKNhwjXbGW4cgXjJS8xWfS7WTdR/CfGS15krOwVRsrfYLjiXYaqVjFYvZZwzRYG6nbSX7+PUOMhQs2nCLacp6/1KoH2RHo70/B35WF3l2D1TAdfs+OBCr4Ksu6egqy752bfdQTAbxesJimjiMq6Vh5/ZsXMr2cXVt0SZM/HpM+8b+mHu9h7OJrzMek8teiTmWNK7ybIJqYX8ZuXVhGaDquXE7LvGGRvd2SB3RvkH37+Ms3tPQB4DPuWIHtDoK+fBcu28vWZWKLjMnl95a6Z9924Q3YgPDTLM/fXeSCC7N14UI8vcPoioTkzBdmHZx5fH1ZzDYHyJPozDjMcu56JM4u/+07X04sYvraWgfRD9JUlYDVV4zFv/UvB/XxRL+3h2oMaZLvsPprtduqscsqtDArMy2SZR0k2dhNnrLtjcI33biDV2EOWeYJCM4YKK4s6q4oWu5tuv37U9eYpyLp3CrLum8fox2zwYuc3M5FZw8C5bML74xjeEsXY+0eYXLL3Lo4T+IKxlccY3naB8IEEQudzCCRVYBe2YjYa9Jjz+5MEXp+Jz1NNb0c6wdYLhOr3M1izgZGK5YyXPHtXwdXpTRT/cSb4jpYvvU3w3TETfINNJ6aD75Wbgm/uTPD1eW4Ovnd3dI6CrLunIOvuudntAmdReT0/+MUi2rsMvD4/P/jFIsKDwwCs2X7kjkH2Rnhd9O6nfHHkEnB3Qfbkxess+WAHAMH+MAuXb7vtWa53CrKNrV38669fZ2RklImJSXYciOJvfvIiQ8MjnLiQxN7D0UxOTjI5OcmHm7/i8Jk4vD4/P3pyycxjOhaVwHNLN977E/odFGTnyOmLhObMFGQfwFkDmO0t9FZlEMo5zVDCNsai3rrDi2K9xMjlDwkn7yVYdAW7vuSujxFQkHXvnAyy7bZJo91AlVVAsZlArnmONPMAid6td3GX6zbSja/INaMoMZOotopotBvpsH2OP6cP0xRk3TsF2e/fvJ0BfJVd+DPrCMYU0X8slcHdMYysPc3EsoN392JZbx9gdM0phnZdof9ICsHLBfSm12CVd+DtmP+zsg2zG6unnN6OZELN5+iv38tg9RpGy19novhPs8fOoj8yWv4aQ9Uf01/3OaGWMwTar2P1lGEYXXfxGMJ4rF68PgPDaMfnacTqqcLuLsHflUNvRyqB9gT6Wq8QbDlPsOk4ocav6K//goG6zwjXbGGweg1DlR8yUrGc0fLXGStbxHjJC0wU/TFCwfdPdwy+ww27GGnZf493+OqFVB/2Kci6e252I3A+8thCHnlsIf/w85f51QsrSUgrnPmYzXtO8ZuXVrF4xWccORfPL5+dumP2TkHWY/r511+/Tk1D210FWX8gxNOvruWJ595nwTtbKatu4sf/88bMi4t9+/F+14t6fbDxII/+4R2eXryG3KJqnn19A79/5RP8gRCvvr+D/3xqGY89vZxln+wlPDh1F+z1zGJ+89Kqmd+7s8e8D8/srRRk58jpi4TmzBRknZ3R1Y2/rpBgQTTh5N2MRr/P5PEXbh9fjz/L2IVlDCbuIJQfhb86B7Oznbn8S7KCrHs3n0G22x+ixe6k1qqkwsqkwHeFLOMYKcZu4r3rZ7nLdT0pxm6yjGMU+K5QYWVSa1XSYnXS7Q85/rx9X6Yg694pyD5ks8IYzT6sklYCyVWELuYx8FUSQ59eZGz1cSZf3zd7cH11D+MrDjOyMYqJQwkMnMmkL74Uf14jZq1n/l8sy+rHNNqxu0sItCcSaj7FQN1OhqpWMVr2KhPFf5g1No6XPMtI+VsMVq+nv+FLgi0X6O1Mw+qpxusznP8+zbqbgq/Zgc/TdFPwzZ0Ovok3Bd8TNwXfHd8E36obwXcpY2WvTAXf4kgF39vd4fvhbe7w/eoe7vBV8J3vKci6eyLzTUF2jpy+SGjOTEE2MvMafqzGcvpKYhlIO8DI1Y+ZOLXwu895Pfc6Q3Gb6M86RqAiFV9rAx7f/Y9RCrLu3VyDbIfto9FupNoqosRMIteMIt34iiRj26x3uSZ6t5JmHiDXPEexmUCVVUCj3UC7bTr+vLhlCrLunYLsgzWP0Y9Z68Gf10hfXCmhUxmEv4hlZGMU4yu+hsV7Zj9OYOmXjK0+ztCn0Qx8lUToQh6B5CqsklaMZh891jex615f1OuOX4MdxPQ2T53f2naNYNMRwrWfMlz5AWOlC5ks+t+7CK4vMlzxLuGaLYQaDtHXdhl/ZzY+bwNen9/x79ODvxvB17wp+FZ/E3w70wh3X2e0J/am4HuI/vp9NwXftQxVfchwxbs3Bd8XIxx8X5gOvq8zUrF8OviuuSn4fnH74NuRelPwrZoKvkY7Xp+h4Ds9BVl3T2S+KcjOkdMXCc2ZKcje5+fTCuJrrSdQnkJ/1lGGYjcyfu61O5zz+jIjVz9hIP0gfSVxWE0VeIz5/9HAG1OQde9mC7JTd7l2U2dVUWFlUWjGkGWeINXYQ7x3wyzRdR3Jxm6yzKMUmJcptzKos8ppttvpsvsc/9o1BVk3T0E2svN29GKVd9CbXkPwcgH9R1IY2nWF0U9OMfH2gbs7TmDZQUbWnWFwdwz9x9MIxhThz6zDV9mFt/Ove8GoewmyXp+Fz1OHvzOLYNslQg1fEa7dPH1+64t3EdueYqzsZYYrP2Cg9lOCjUfoa7uG3V2A6W3BY8/vC35pU5vbGbJhPFZgJvia3puDbx69nWnTd/heJdhynlDzqZuC786bgu8qhiveZaT8jZuC7+xHUtyX4Ft0I/gu+ib4Vt4cfD+bCr4Nhwg2HZ8OvpcJtCdMB9+cm4Jv40MXfBVk3T2R+aYgO0dOXyQ0Z6Yge68LY3a00VudTSjvHIOJnzF2YRkcf/b257wef5HRS+8TTv6cYOEl/HWFGN09jn8dCrLunRkYIjzaT5PVTI1VQqmVTJ55ngzjEEnG9lnvck0wNpNmfEmOcYYiXzxVVj4NVj1ttpfuh+AvJm6fgqx7pyB7H2cOYDYa2IWtBJIqCEXlED6QwPDWC4ytPMbkki/u4sWy9jL2wVGGt0QR3h9P6EwWgcRy7PxmzAbvfT9O4HZB1jC9WD2V9HakEmw5T3/DPgar1zFS/iYTxc/cxZ2Nf2C0bAlDVasZqNtFqPkUgfZE7O4SDLODHnt+X/BLu7s96C/qNRN8jU5MbxM+z83BN/2m4HthOvh+TX/DjeC79ZvgW+lk8H3+puD7zlTwrfqEcO3m6eC7dyb4hlqibhN8i7F6KvF5GjGNdrw+730Lvgqy7p7IfFOQnSOnLxKaM1OQnX1Gjxe7vphg0WXCyXsZvbySyRMvfcddr88ydv5tBhM/JZRzmt7qTMz21lt+XPBBmoLs93vddj+tdjf1dg0VvhwKzViyzZOkGntJMDbOEl3XkmzuJNM8TL4ZTbkvjVqrjCa7TXe5fg+mIOveKcje/bzdQXw1Pfiz6+m7Vkz/iTQG91xjZMNZxpcfgsV3cXfrm18y+tEJhnZcZuDwdYKXCuhNq8Yqbcdotemx5vvrGMAwOrG7Swm0X2ei5zzh+t0MVX/EaNlrTBQ9fRfB9RlGyt9gsHrt1B2ELVH0dqRgdVdgmD08DHcHag9+kJ3veay+m4Jv83TwLb0p+CbR13aXwbfiDcZKF08H32fu6liOuQffp6eD78szwXe4cuVtgu9XBBuPTQXftssE2uPp7UiFQCH+G8HX2/Ct4Kv/aPJ9n8h8e2iC7I//5w2nH8JtOX2R0JyZguxNz4UZwGqqoq8sgYH0QwzHrGXi9KLvPuf1zKsMx66nP/MIgfLr+Fpq8fgerh+7U5B9+Ndp99JstVBjlVBmpZJvXiTDPMx14zPijLV3jK5J5mZSjX1km6cpMmOptHKpt2ppsz1061/Ov9dTkHXvFGSnZw1itNpYpe30plUTjM5n4OvrDH12idGPTjDx5pezHyew+HPG3z3EyPqzDO65RuhkOn3XSvDnNOCr6cHjmf9/J/BYIUxvC3ZXIX3tcQQbjzFQ9xlDlR8yVvYKk0VPzRp6xkueZ6RiGeGaTYQaDhJsjaa3MxOfpxav6XP+e6Xdl7k9yM73PFYfXtN3U/Ct+Sb4dvxl8A02fk1/w5dTwbd2G4PV66aD73s3Bd+XIhh8/3BT8H2NkYplDFeuZKjqE8I1m/4y+Dafuyn4puDvzMbuKrop+LZhmAq+D8pE5ptjQXZsfPyu9qBz+iKhOTM3BlmPrx9fWxO9lWmEsk8wFL+F8ag3vjO8Tp78MyNXVzOQaVlgEwAAIABJREFUup++khjshjK8Xtvxr+N+TEH2wV+3PUCb7aHeqqPSyqXIjCXbPE2qsY9EY9Osd7leNz4jw/iafPMiZVYq1VYJzVYLPYHeOb2ol/ZwT0HWvXNLkPUY/Zj1Xv5/9t78vak7zducP2F+nr9grnp7uqbfrq7umnd60rV10lWV7uqq7EuRnSUrSQgkhABhSVgSwm7MYmzAgI3BbF7wvu+WLcuW9022dDbtu47OuecHKQYSiJVgW4DOc133dUWRZH+lc3SMbz/fz6O0juIu68F3tp5gVgmRLwpR1+agrzwwf5zAqoOon5wksvMCgewyfIVNuG+YUdrHEUZEZsXFlwx22Y3kGMJpa8Izfhnf8DGC/TuImNegdr2ckmhRu18hYv6I4MBO4lO5+Kau4rS1INlHsMvGjodMwRCyDzZ25VbhO4Zk70ee7cZpa00K3wo8E1eTwjf/FuH7DcGBnWhD224TvjHTiqTwfXZphW/3rcJ33S3Cd3dS+GbPCV/vxKV5hK8du+TEEL7zY5RRi11pE7I/e2RZStzvle6LhEF6eNiFrGCbxjnQgq/tAqGKb4hd/BA978W75Ly+SKxoDaGKb/C1XsA50Ipgm077a1hMDCF7f2BTPIwoEwzIJnqkWlrFi9SLJ6gU9szb5VombKNaOECjeJp28Rq9UhODSj/jyiwzyt2zB+cb6mXwcGMI2czlYRGyjik3ktmGs96K92oH/txqQnuvEN2cj7Y6O7VhWe8dIbbpDKFvLuPPqcJ7uR1XbT9S7zSOqaUZsOmQRCR7P66pWrzjF/ANZhHq30q05z3iXS+kIDqeQO1eTrhvPQHr13hH8nBPlqLYOhCFceyy77bv91OGehk8HBhCNrOZL0PWrnhwSDKCYEsK34FbhG/dTeE7fovwHcyaE74hy5ak8P2IaM87xEwrULteTgrf+Tv171n4dj5FvOuFhPA13SJ8LZ/dInz3f0/4eiZLcE1V3hS+M71J4Tv+UAlfo4xa7EqbkH38bx/zL39cyXuf7ae0uo2xKfsdWarSdZ092YU89twaHntuDeu/PEYoHAVgelZk2btf8C9/XMlfXt1Al3l47nnpvkgYpIeHRcg6HArKkAlP11UC1YeJXv4U/fTLd48bKHiHcOmX+BpP4zLXIk2MMCsv7OCMBwFDyC4NM0qQCcXBkDxIn9xKh1RKk3iOGuEwZcIX8w7QuiHspk44RotYSLdcSb/cyYg8ypTy0zu1DSGb2RhCNnN5IISsFEQYlZA7x3FX9uEraiFwtJzwriLU9bnobx6aX7iu2E/8oxNEthcQPHQd35k6PKXdKC0jiFYHdnEpfuYHEcQZ5NkeXFNV+EbP4x88QKhvI7GeN9E6n0mhq+wZYj1vEu7bmJAJY+dwT1Yiz5oQBBs/VhQYQjZzMYRsZpPuoV52xXtH4avMtN0ifK8lhO/YWbzDJ5LCd+8twvfTOwjf55ZY+L76PeEb6t9GYGDXLcL3ZEL4jl+8Rfg23CJ8B5PCdxbHEglfo4xa7Eprhqx1ZIqdh87y6yfe488vryfnXCmS4k7LWspq2nji9Y2EwlHicY231u/lcO5lAP72znZOFpQRj2vUt5p55C/vElMTcQrp/iFhkB4eNCFrl7xIYwO4eyrw1+UQub6F+NkVdxWvWv7rRK5txl97HI+pDHnEgl10p/113C8YQnbhsCkeRpVJrHIPPXIdbWIxDeJJKoW9lAif/6BwLXVspUrYR4N4ijbxKr1yA1a5jzHZxozTtyjrNYRsZmMI2czlfhCydocPccCOs2UYT0k3vjO1BA9eJ7rtPPGPjsPy/fPHCbx1mNineYR3XSRw7Aa+Cy24qvqQuyYQRuWlGaYp+xGFSZSZLtyTZXhHThGw7iHct56YaQVa55Pz/pIf73qeaM+7hPq34h/Mwjt2Add0LfKsBYckLPiaDSGbuRhCNrNJt5BdbG4K35mk8LUiz5oSwne6/hbhWzQnfH1zwncXof6ttwjfdxPCt3sphe+TxLuevyl8e95LCt8NN4Wvdd9N4Tt2LiF8J64nIx0aUGztyLM9dxS+Rhm12HVfDPXSNJ3W7gE27DzOrx5fxWsf7OLqjea5DtWlqIMni9n6Td7c7dNFFby/6SCKy8svHlt+W57tX1/7jLZuK/DgCDmDBf7hdb8KWTmIODmOy1KPrymfUPku1ML3IPf5O8cNnHqJaPEnBKsO4u24jDLYhcO+8L/IPGwYQvbHMamIDCtD9MltdIplNIvnqRGPUO7YkUKX605qxWyaxfN0iTewyB0MK8NMKekZmGII2czGELKZy1IIWcekE7lnCldtP97iNvw5VYT3FBPbeAbt3ayU4gTi7x8l+vlZQvuu4s+rwXO1A2fDIFKfDYdtaXJP7YoX0TGK09aa2Ko7fILgwC4i5rWo3a+mlLsY71pGpPdDgv1f4hs+ime8GOd0I5JjKDnsZmmPvyFkMxdDyC4MdimEXQxhd4RxOMI4ZhMIM2EEWxhhOoE4FUacDCNORBDHI0jjEaSxCNJoBHk4yVAEeTCCYo2gDERR+hM4LVGcfVGc5iiu3iSmBO6uWILOGJ6OGJ72GJ62GJ7WGN7WGN6WGN7mGN4mFV+Diq9RxVevwvTDLWQX/bjLvjsLX9u3wrfyduE7koNvMAv/rcLXsuEW4bsStftl4l3PL4nwzeRS43F+9sgy/u7XL32PdlPChV0sqZ97/K8eX8XUjPC9r9M3OM6jz675yeu41+ff73VfCNlbKxqNcbGknt88sZpfPPbGkn3fjp5B/vTiOlweH5FojOUf7ebCtTq6zMP810vrb3vs+5sOcv5KDXAfCjmDpfnhch8IWWFmFqe1HW/7JYKV+4hdXIue97c7d73mvYBa9D6h8q/xtRbgtDQhTk8yqyxBJ8xDiCFkb2fG6WNMnmZANtMr19MuXaFByKVK2EupY8s80nULlcI+GoRc2qTL9Mh1DMhmxpRpbMriT9r+sRhCNrMxhGzmcs9CVgwgDgso7WO4b/TiK2gimFVGZMcF1I9Poq88OH9368oDqOtOEvmykGBWKb5zDbhv9KC0jSIOCdiXYFjWrBLCIclIdivO6Xq84xeTA7O2EzF/SLzrxZR+yVW7XyNi/pjAwC68w7l4Jq4l8lsdY2k/1nfCELIPIHJSAn4rAoWkCLTfIgNtSabuIALHEvimYoRntdtF4OAtItByBxHYk8QUxd0duykDO5IyMCkCPd8VgY1JGlR8dTF8tTF8NQn8VTH8lSr+CpXAjSTlKoEylWBpkhKV4HWV0LU4oasJwpfjhIvjhC/FCV+ME7kYJ1IUJ3IhTqRQI1qQ5LxG7JxG7KxGLD+BelpDPaWh5unEc5Oc1Inn6GgndLTjSY7p6Ed19GzQs0A/Ahx+SGg0hOz9zmJ1+Gqdz9yjYXqw61sh65Ccd7xf13X+9c9vz92+m5BV43FcHt89reNenn+/130jZMORKNcrW1mx9mt+8dgbrN54gJom05KuYfPXufz8t6/wj4++zrJ3vyAWU2nq6OPp5Ztue9z6L4+RW1AGgBrXDDIUXV+i4x8OEHdY0aw30JqOo5dsgvzX7ho3oBe+hV7xJVr7GbSReuLyBGosmvb362FC03Ximp627x+JxYlr+pLijylIkXGmg90M+qoxuS/QpByjUto1b5drhbiDRjmbbncBVl8l08FupMgEftW95K9jIdAh7WswSNOx1xO7etK9jnQRiWlpX0O60JLH/66PCUTQpiW0nnH06l60wgb0IyXo2wtgzfGUult5Nwt9cz76/itoZ2rQy7rQ2ofRxuzEXX7i8SV6vREXmn8QTWlEt18iPnEEbWgLWt+76F3PzS9cO59CM69Cs35GfPwA+kwBmlyD5u1DCwvEtaX/GXav/KTrfjRJOElQJx7Qift14j6duFdH8+hobh3NpaM5dTQliZRE0NEcOppdR5vV0WZ0NBto06BNgTYJ2gRo46CNJhlOMgiaFfQB0PtBt4DeB7oZ9F7Qe0A3gd4NemeSdtDadbRWHa1FR2vW0Zp0tEYdrUFHq9fR6nS0Wh2tRker1tErdfQKHf2Gjl6uo5fp6KU6eomOfl1Hv6ajX9XRr+jol3X0YtAvgV4E+gXQC0EvAP086OdAP5skH/QzwGnQ8xKQC5wETgDHgWPAUSCb9Is7g/nJTh6vY8njdyJ5PE8mj/Ep0E8nOZM8B87q6Od09PM6eoGOXqijX9DRi3T0Szp6cfK8upI8z67paNd1tBIdrVRHK9PRynW0GzpahY5WqaNVJc5drSZ5Ltclz+2G5LnelDz3W3SYNn7fz2QyueYTsm+t38vPHlnG48s+wS46+dXjqzhzsZLH//Yx//rntzly6gpwe4erxxtg9caDPPbcR/zpxXVzEaEA//PfXyf79FVe/3AXf355Pacu3Pje82Wnh9c/3MWjz67hd09/MPeYB7nSKmQ1Taelq59PvjjKP/3Hcp5d+TnnL1fj9QeXfC3niqt4/cNdBEMR4nGNbXtP89muE3T3DfP4sk9ue+zqjQcovFoLgOAKG2QgojuMri/s8RcVP86JYbx91QQa84iUbid+/s0fyHl9jejVjQTrsvGZSnGNmhElV9rfm0wgFInjDUTTuIYQgju8YDg8fiZcNoad/ViUZrrkUlqkc9SJ2VQIu+cVrqXC51SJ39AgnqRdKqZXqWPQ1cuEa4pZt3dB15puFG+EuKanfR0G6SGqarj90bSvI12Irkja15AWXGG8My7UYTueWgv+4laCJyqIfH0J9bNT6G+nECewfB/xD48T23qO8MHrBPLr8JV2424ZRrHaESX/Er2eILJsw2U34Z2uIDB+luDgPiKWz1B7VqF1PpXCwKznUDvfIdr9OeHuLMKmIoI9dQR6+vH1SHhNUbzdMbxdMbxdKr5OFV+Hiq9dxdem4m9T8beq+FtU/E0qgUaVQIOKv17FX6cSqFUJ1KgEqlUCVSrBKpVgpUqwQiV4QyVUrhIqixMqjRMqiRO+Hid8LU74aoLIlTiRy3EixXEilzSiF5MUaUQvaMQKNGLfdgOe01DPaqj5GuoZDfW0Tvy0TvyUTvzbrsCTOpwELefWbkAS3YAPUyfgQ4x+JHm8joJ2LHkcT+hoOYnjG89NHu9TOuopHfW0njgf8jXi53S083rifDmfOH+iF5LnU1Hi3IpcSp5vlxOEryTPx2uJ8zNUkqQsTqg8cR4HK5JUJs7zQHXyvK9R8dcmPwsNKoGmxOfE35z8zLQmPke+9iQdKt5ONfF5607g6UliTuC2JOmP4R6I4rJGcQ0mGYriHI7iHE0yHsU5FkWZiKJMRlCmIsjTSWwR5JkI8mwEyR5BciQRI4hiGFFOkO5/py8kug7ifbAOg/SwlOXTYvwfvSeXnP/Tkn/H9cwnZF0eHz//3atzt3/1+Cq27MlD03TGp+z8/LevEApHbxOqm3bn8OmO4+i6js8f5LHn1lDfagbgl39Ywe7D5wFwun384rHlCJLrtudv23uKDTuPAzA9K/Lz372KKKdnBtVCVdqE7K7D5/i3v77LY8+tYd/xoju2Ny9lvfXJNxRcrZm7bbKM8Oiza3B5fPzPf3/9tjzbx55bQ3ffMGBEFmQq9xZZEEScnsRpacLXWkCo/GvUovch7y45r3nLiF1aS7ByH972Szit7Qgzs2l/DzKZBy2yYEpRGJXHGVBM9Mh1tItXaBRPUy0cpEz4Yl7hmshy3T2X5dopltEntzAkW5lQ7Gl/fUuJEVmQ2RiRBQ8ndsGPOOhAaRnBXdaD72w9wcMlRL4oJP5RDvrKA/PHCaw6iPrJSSK7ighkl+MrbMZdYUbpGEMYFZmVliYiyC77EB1juCba8Q6X4u/LI9TzFdHOj4l3vI7enkLmXsvf0Gs/QL+xA/3aCbh4Fc61Qu44HPWnXa49SNwUgfptIjD+HRGo5n0rAjViZ5LkJ7aPR88ltpNHCzQihRqRC1piy/nFxBb08KXklvTLcUJXklyNE7qW3MJektjOHihLbnG/oRKoSGx991eq+Kti+Kpvbo331cbw1d/cOu9tUhNb6lsSWZue1uSW+/bE9nt3Z5Ku2Fxe57fb9p3m5FZ+y82cT2UgimJNbP2Xh27mgkqjScYTkQHiRCQRITAVnssXFWxhhJmbkQMORxi7I5yIJJAW5zNlZMhmNg/7UC+DH2YpyxOP8r91Hlpy/nfTsTuu51sh+/PfvXob38rROwnZ/qGJudv//MeV2OzSbUL110+8d9tj9mQX8uWBhBD+5R9WYB2Zmrvvhbe2UVbTdtvz43GNWEyde8xjz3005+Ue1EqbkP3ZI8v4X//5Fk+9sYm/vLqB/37l0zuyVLUnu5C3P93Lt8O7vjl6gbc++QaAV1bv4HDuZeJxjasVzfz+6Q+IJ1vY032RMEgPqQpZh11AGezC23GZYNVBosWfoJ966S5dr8+jFr5HqHw3vqZ8XJZ6xKmJpZl4bPCjuL+EbJBJRWBYGaZf7sQkV9MqXqRBOEmVsI9Sx9YUhOsWKoW91IsnaBWL6JYr6ZPbGZKHmFDszChLk0v4IGAI2czGELIPJo4pN5LZhrPeivdKO/7cakJ7rxDbnI+2OjulOAFt9RG0LfmE9l7Bf7Ia75V2XHUDSL3TOKYWdsiUYzYhoaTRCIo1irM3irszIcP8DQGCtaNEqluJVV0nVp1DvGYnWsMa9OaXUxtU0vQqes069PKv0K/kQVEZ5HfByWk4Er0pE7MhnpOQhNGCJRCBdT9BBHbdQQT23kUEWn9ABI79sAiMe3VkR2RJRaDB/YEhZDMbQ8hmNktd9lhwyRHUO7/On9Ihe2uT5be3bxWqP//dq9gFZe4xOedK+WhLFpAQsjMOee6+FWu/5vyVmtuebx2ZYuW6r3ni9Y08vWIz//D71+gyD/3Ed/v+qLQJ2euVrSmxVBUIhlm77QiPPruGR59dw/KPdmMXEyffjEPmb+9s55//uJInXt+IZXBi7nnpvkgYpIfvClm76EYeseAxleOvPU7k2ma0/NfvGjcQP7eSyPUt+OtzcPdWIo0NYJfuvwFGBndmKYXsjOJnXJlhULbSJ7fSKZbTLBZQKxynQviaUuHzeYVrmbCNKvEADWIebeJlTFIt/XI3I/IoU4qc9vfzQcIQspmNIWTvQ6QgwoiE3DmOu7IPX1ELgaPlRHYWoa7PRX/z0PzCdcV+4mtPENleSPDQdXz59XhKTSgtI4hWB3bRn9JQL7uUlKmTYeThxNAfV09SprYkZKO/MiEpQ1cTYjN6XkM9pRE/oSe2vx/zQt4InGuGS5fRrx1Dr/gCvW41essL88vW9ifRG1ag1WxAq9iLWpZPvLSSaGkP4dJZAuWRhARtUPG0JWSmsy+KMpiQksJ0YuhR2o/rfYYx1CtzMYRsZmMI2cwmk2sxhOxvn1zNwPDk3GP2ZBey45YO2b7B8bn7nln5OWU17bc9/z9f+oSLJfVzj/n90x8YQjbTK90XCYMlRvYjTYzi7qtF7zpPuPRL4gXv3H3A1umXiV75lEB1Fp7OayhDJhwOJf2vw+CeWEgha1PcjClTWGUzvVIjHeJ1moSz1IhHuCHsTDFOYCc1QhZNwlk6xOv0yo1YZTOjyiTTijvt79fDhCFkMxtDyC49docPccCOs3kYT0k3vjO1hA5eI7rtPPE1x2H5/vnjBN46RGxDHuHdFwkcr8BX1Iqrqg+5awJhTGZWDmIXQwi2MOJ4ontS6U/IVE9HYgJ6sEElXqcTLFEJX05MKI+d1VDzEtvQU8sS1eGYAqesUFAPxUXoJVnolZ+jN7yN3vbM/Pmt7c8Qb3+LWPsmwp0HCPWcx9dfjXvIjDwxi92R/mP2MGII2czFELKZjSFkM5tMrvmErM8f5O9+/RLBUARITchu2ZPHZ7tOAIkBX79/+gNauvqBhJDdtvc0AFMzIv/w+9eQnZ7bnv+rx1fNNUdeq2zhn/5j+VwG7YNa962Q9fqDdz3491Ol+yJhsHgINhvOgVZ8rRcIVXxDrGgNet6Ldxavp14kVrSGUMU3+Fov4BxoRbDZ0v4aDBaHHyNkpxSZEXmMfrkbk1RHm3SZBvEU1cIByoXtKQjXzVQIX1MnHKNZLEjmt7YyKA8wrswyo/jT/n5kEoaQzWwMIbvwOCadyKYpXLX9eIvb8OdUEd5TTOyz02jvpjgsa00use2XieyvJXSyi2DhCIFrdvwVbvw1YXw1MQI3VILXVcLFcSKFiXzOeF4i15MsFigvNI522k68yEz8eiWxynxidftQmzYQb12O3vHkvMI13vU80Z53CfVvxT+YhXfsAq6pWiS7BYckpv14ZSqGkM1cDCGb2RhCNrPJ5PpWyP7dr1/6HkdOXQHg1Q928s9/XElv/2hKQtbrD/Lh54f4wwtr+dOL68g5Vzr3+F/+YQXH8q/z3698ym+eWM2Zi5UAtz0//1Ilv37iPf7y6gZyzpWyJ7uQ//e/3mL2lqiDB63uWyG7aXcOP3tkWbqXMW+l+yKRThySE3nWgiiM45CEtK/nJ78Oh4IyZMLTeY1AdRbRK5+in3757nEDBe8QLt2B3nUel7kWaWKUWdmQYpnEt0J2RgkyoTgYVoawyB10y1W0ikXUizlUCnspdWyZV7iWOrZSJeylQTxJq3gRk1xNv9zJsDLMpCIwoxgZwvcThpDNbAwh+yMRA4jDAkr7GO4bvfgKmghmlRHZUYj68Un0lYdgVTa8fRLePQvvF8Gaq7D2BnxSCxua0Td3o+0cJL5vmvhhifhRL/HjYbRjKnq2vnDDl27NSz2vEbmYyEQNliZiBkKNcdTeCL7OcfymDgLmawTMJwiZdxLpXYfanVp+a7xrGRHzRwT7v8Q3dAzPRDFOWwuSYwi7vLBZtAYLhyFkMxdDyGY2hpDNbIxauvrlH1Y8EA2ZC133rZC12SV6+kfTvYx5K90XiXSi2Nq/v5Wu8xnU7peJ9bxJxPwRIcsmggM78Q8ewDt8At9YAZ6Jq7imqnDaWpFnzYiOUQTRjl32LOp67ZIXacyKu7cSf30OketbiJ9beVfxquW/QeTaZvy1x/GYypFHLNjFxPbvVId6GTzYzDj9jCkzDCr9mOUWOqRSWsTzNMrHqBS/okTYnEJ+6xdUCwdpFE/TLl6hR65jQDExKo8zpRjxFQ8ahpDNbAwhewtyCHHUi7NDwFsxSaBoiHCOhdjBXuK7u9G3dcLmbthqge3DsGMKdjtgjwv2BuBAbOFk6tHExPrYmYRMDV9MDJcKlCUHRzWqeFqTeanmxGAnaTSCOJUY0DQrJ16TQ5KR7Fac0/V4xy/iG8om2L+daO/7aF0vpiBcn0A1vU7E/DEB6268wyfxTFxHsbUhOsawy770HzeDn4QhZDMXQ8hmNoaQzWyMWroyhKxRP6nSfZFIJ/JsN9He1cRMK4in9ItKasS7/kbMtJJo7weELRsIDnxBwLoX39AxfKP5eCaKcU9W4JxuRJ7tRnIMIQjT2CVnYm1yEHFqApelHl9TPqHy3aiF70Hu83fPeS3+hGDVQbydl1EGu3DYf7jj1xCyDwfTiotRZZIBuZdeuYF28RqNYj41wmHKHTtSzG/dRa2YTbN4jk6pBLPUxKBsYUyexqYYg9oeNgwhm9k8LELWLoYQZsKIE4kp80p/YjK9O5mX6quN4a9QCV0OEzkXIJbrJ340gJYVRD8UgYPxhZGpWaAd04nnJmVqoUa4OE7wukrghoqvJilT22K4uhPDp+TBCNJ4cviU48cJMkGcRZ4145qqwjdWgH/wICHLZqI9b6N1PpfSv1FippWELRsIWL/BN3oG92Q5ykw3gjiV9uNqsHgYQjZzMYRsZmMI2czGqKUrQ8imoS6XN97WBdvcYeHPL6/nt0+9z5cH8onHtTSuLrVK90XifsMuuxDEGST7CPJsD05bM66pKjzjV/CNncM3fBz/4H6C/TsIWz4jYl5DrGcV8a6X0Dqeuneh2/4X9Na/oDf9Fb3+r+i1T6BXPYF+40n0sqeIV75CrO5Dwm078JtzcY9VItkHEIRJHJLMbIrbww0h+2AwqUgMKyNY5C56pBraxGIahFyqxP2UpZTf+jkVwjfUicdpEQvpEm/QJ7cxGxjF4ROYVQJpf40GS4shZDOb+0HI2oUwgi2MNJYYPuW0RHGZonjaY3ibEhIzUKEmhk8Vx4lc0BLDp3ITw6cWKi+VQxrsD6Pv96EdcBPPcqIedxI97SJU5MFfFsDbFMPTEcNliuLsjyIPRRDHIwi2MHZhod+bAII4hTLThXvyBr7RfALWvYQtG4iZVqX0bwyt81mivW8TsmzGP3gI71ghrqnqhMR1ikRiWtrPQYP0YAjZzMUQspmNIWQzG6OMWuxKm5A9W1zFP/z+NaoauwHw+AL88g8rWLvtCKcu3OBf//w22aevpmt5KVe6LxIPHwEckgPRMYY8a0axteGaqsYzdomg5TChzs1Em99DrX8FrfYp9Lon0Bv+it78F/S2henQ1TqfRTW9RrT3bSLmdYQsnxMY2IV/6BDe4ZN4xy7gmbgOriYUW3siR9cxlszRNQTdUjGjBJhQ7AzJg/TJ7XSJN2iRLlAnHqdC+IYS4fMU4gS2US3sp0HIpU0spkeqwSJ3MayMMKlId/3eP2aol8HDhSFkM5t7FbIORxhhKilTByM4+6K4u2N42hKdoN8OnwpdUwlfihMt0Iid0YjnJodPLdAWfw7FYV8Q9rhhtwA7puGLEdjaD5tNsLEVPm1A31hH/MsGovtaCJ3oxH/RjKdqGNlkwzG9tHmndtmH6BhDsbXhmbiOd/gkAetuIuaPUU2vo3c8kdIOnGjv+wT7t+MbysY7fhHndD2S3Zr8o+zdv7/ijRhCNoMxhGzmYgjZzMYQspmNUUYtdqVNyD7+t4+5XN44d/v85Wr+9OI6dF0HoKymjcf/9nG6lpdypfsi8bBhl/xIE0O4e6vxNeYRLtlO/PybP5Dz+hrAZb6IAAAgAElEQVTRKxsJ1Gbj6S5BHulBsE8jChNI9gGUmU5cU3W4J8vwjhfhHcnDN5hFwPo1of6thPs+IdrzLqrpDeJdz6N3/PXehW7HM6hdN3N0w30bb8nRPY5v9DyeiSu4pipx2lqQZ3sQHSMI4ix22Z32Y3C/MOP0MSZPMyhbMEtNdEolNIvnqRWzuSHsTilOoNyxgxrhMI1iPu3iNXrleqxyL6PKBNPKT5cJhpDNXAwhm6HIIRz2MFGnhmcyhmKN4jRHcXfF8LTG8DUkskoDZSqhq3HCFxMyVT2jET+po2ez8MOnclXUvDCxXD+xEwqxLBvq3iG0HSb4rBHWVcCaa/D+RXjvLLydC6uOwvL98MY+9JUHiH+UQ2R7IcHDJfjy6/GUmVBaRhCtDuzi0g6rtMsuJMcQzulGPOPF+IaPEuz/koj5Q+JdL6Xw8/evqN2vEjGvJTiwC+/wCTwTV3HaWhAdI9iVe8upN4RsZmMI2czFELKZjSFkMxujjFrsSpuQ/fvfvILs9MzdXvP5YXYfPj93e9Yh8/PfvZqOpf2oSvdF4sEliDg9ibO/GV9rAaHyr1GL3oe8F+6c85q3jNiltQQr9+FtL8ZpbUeYmV2UtdklJ4IwjeQYQpnpxjndiHuyAs9EMb7RfHxDxwgM7kUb2Um471OivR8QM60k3vU3tM4nF6BD98nbc3T7Pr0lR/fo93J0lZmbObqOb3N0HwCmFCcjyjgDcg89ch1t4lUaxdNUC4coE75IQbhupkL4ijrhKC3ieTqkUsxyC4NKP2PKDDPOxRueYgjZzMUQsg8edimEYzaMOBm+mZfaE8XdGcPbEsNXr+KvVAmWJmRqpChO9LyGekojfkJHP8KCydTb8lILNMKX4oSuxQmUq/iqE2LX0xbD3RHG2+DCV2HDXzxA4FQr4YPlRLedJ77m+JxU/SH0tw8T25BH+KtLBI5X4CtqxVXVh9w9gTAuzw2yWiockog8a8E1XYt37AL+wSxC/VuJ9ryb/IPo/D8bY6YVhPvWE7DuwTtyCvdkGcpMJ6Iwway8uALZELKZjSFkMxdDyGY2hpDNbIwyarErbUL2Hx99HUlxz93+zROr5+ILAKZnRX7x2BvpWNqPqnRfJB4EHHYRZbALb+dlglUHiV5ej3765bt0vT6PWvgeofLd+JrP4rLUI05NMCunlu26VPxQhqxddiOIs4iOEeSZXpy2FlxTlXgmruAbPY93+Dj+wQMEB3YS6ttIxPwRsZ43UbtfRut4ZgFiF/5KvOt5VNMbRHveJdz3CaH+rQSsX+EbzMI7kod3vAj3ZCmuqTqUmU4k+wCiMIFDlFiY2IUgk4rAsDJMv9yFSa6mVbxEg3CSKmEfpY6t8wrXUscWKoW91Is5tIpFdMtVWOQOhuUhJhQHMynm/S4GhpDNXAwhu7TYhRCCLYw4nshL/VamejpieJvVueFTwRKV8OU4kQvxRF5qXiIvdcFkahaJr3cK1LM6kW+HT5XcHD7lbVLxtCfzUi2JvFRpLDF8yv6d4VPChBPZNIWrth9vcRuBE5WE9xQT++w02rtZ88pW3thH/IOjRLecI7TvKv5TNXiuduJsHESyzOCw3Vs36I8niCDMIM+acE9W4hs7h39wP+G+jcR63kzpZ5vW+QyxnjcJ9W3EP3gA3+h5XFNVyLM9CMIMqWa8LxaGkM1sDCGbuRhCNrMxhGxmY5RRi11pE7J/eXUDJVWtALR1W/m/f/8agWB47v7SaiOy4EHDLrqRRy14TOX4644TubYZLf+Nu8YNxM+tJHJ9K/76HNy9lUhjVuzSgzGVfnGHegVwSAKiMI48a0GxteOarsEzWYJ37ALe4ZP4hw4TsO4mZPmciHkd0Z53UE2voXU+u0A5us+hdr9KtOfbHN3NBAd2JYacDOfgHTuPMnGe2ckCJmxnsdryMM0eo9l+iCphN6Up5LeWC9upFg7QIJ6iTbqMSaqjX+5mRB5jSvnhLL90YwjZzMUQsqnjcIQRpsNI498ZPvWdvNTg9eTwqUKNWL5GPC+Zl7pAw6f0LNBO6Kh5OrGzGpGiOKErcYKlKv6KhNT1NieHT/VEUSxR5OEI4kQEYSaMXbz5mlLJkLWLAcRhAaVtDPeNXnwFTQSzyojsKERddxJ95cH5u1tXHkT9+CSRHYUEs8rwFTThvtGL0j6GOCxgF5c4r1z2IwoTKLYO3JOleEfyCFi/Jty3HrV7eUq7Q+JdzxPteY9Q/9bEHwfHL+CaqkWyW3BIYtrP1/kwhGxmYwjZzMUQspmNIWQzG6OMWuxKm5AtuFrDP/3HclZvPMCv/rSKLw/kz93X2TvEb59czeHcy+laXsqV7otEWpADSBOjuPpq8TWeJly6A7Xg3buKV/3MK0SvfEqgOgtP5zWUYRMOh5L+13EPLK6QvVeCOCQZQZhEsltRZrpwTtfjnizHO34R3+gZfEPZBKx7CPVvI9y3nmjvatTu5cS7XkhpMMq8v3h3/JVI11METC/g7X0NT99buPrX4Rrchmt4P96x03jGr+CaqsJpa0ae7UGyjyCIM9jlpR0U81MwhGzmkhFCNpmXKkyHkUYjKNbI7XmpjSr+6hiBcpXQtWRe6vmkTD2pox9duOFTc3mppzWi5zUiF2+RqZUqvnoVb2sMd1dSpg5EkUYiiJNhHLNh7NLCvjeRmIZT8CFZZnA2DuK52on/VA2hfVeJbjlH/IOjKXW3au9mEfvsNOE9xQROVOItbsNV249smsIxufTRM3bZg+gYwWlrwTNxBe/wcYIDO4mYP0LtfiW1637XS0TMawj278A3fAzP+GWctiYkx9BDkY9uCNnMxhCymYshZDMbQ8hmNkYZtdiVNiELcLGkno+3Z3PibAmxmDr3/9d/eYy1244QU+NpXF1qle6LxGIj2Gw4B1rxtRURrNhL7OIa9FMv3lm8nnqRWNEaQhXf4GsrwjnQimCzpf01LAb3t5CdnylFZkQeo1/uxiTV0SZdpkE8RbVwgHJhOzccn1E9u54G2zpaptfQOfk+vePv0j/6NsMjqxgbXI5tYCWiZRWuvpX4e5YTNr2K2vXCguTo6h1PEO96kZhpBdHe1YT71hPs307AugffUDa+0TN4Jy7hnizHOd2AMtOF5BhEEKdwSAqLvbXVELKZy30vZOWbeanSSARlIIqrNyFTva3JvNQqNTF86kqcSFKmqqc14jkLPHzqqE78ZDIv9bxG+GIyL7UsMQDL16jiScpUpzmKYo0gjUYQpxIydakzTr99/4QxGbl7AldVH76iVgLHKwh/dYnYhjx4+/D8wnX5fuJrjhPddp7QwWv4ztTiKenG2TyMOGDH7li8fOu74ZBkJLsV53R94g9zQ9kE+7cT7V1NvOvFlK7Jqul1wuZPCFi/wjuci2eyBMXWjugYwy4v/Wtaagwhm9kYQjZzMYRsZmMI2cwm00vXdXLOlfLHF9fx89++wv/6z7d4+9O9TEw75n2udWSKR59dswSrfLArrUL2bhWPa+leQsqV7ovEQuFwKCjDJjyd1wjUZBG9vAH9zCt3jxsoeIdw6Q58jadxmWuRJkYXfaDG/cT9LGRnlCATioNhZQiL3EG3XEWrWES9mEOlsJdSx5YU8lu3USXso0E4Sat4CZNcTb/cxbAyzKQiMp/wtMseBNGB6BhDnjXjtLXimqrGM3EN31gB3uET+AcPEhzYRciyiYh5LbGet1C7X0HrXIgc3b8kc3RfT+Tomm/m6PoHs/AO5+Idu5DM0a1FsXUg2S2Iwnhy6+wPbwc2hGzmsphC1i6GEGbCiBORm8OneqO4OxJb6ufyUkuTMrUoTuychnpKRzuhoy/QFn+yvjN86tu81Os381J9jYnhU67uGM6+KPJgBGk8kZfqcNy/0sIu+hGtDpSWETxlJnz59QQPlxDZXkj8oxz0lQfmjxN48xDq+lwiO4sIHC3HV9SCu7IPuXMcYURiVlrqrNMggmhHnjXjmqrGN1aAf/AgIctmoj1vo3U+N39MTcdTxEyrCFs24LfuxTd2FvdkBcpMN4IwzcJkiz/YGEI2szGEbOZiCNnMxhCymU2m15cH8nn02TU0d1gIBMMIkouvss7z//33O/gDP/z+GEI2tUq7kLUMTrAnu5APNh/ioy1ZHM69zKRNSPeyUq50XyR+LHbZizRuxd1Tib/+JJHrW4mfW3lX8arlv0Hk2mb8tcfxmMqRRy3YxQd/6+E9v49pFLIzTj9jygyDSj9muYUOqZQW8Tx1wlEqhK8oETankN/6JTXCIZrEM7SJV+mR6xiQexhRxplSln677PcJ4JBERGEcyW5BsXXgmqpNZBeOXcA7nIt/MIuA9StC/VsJmz8h2vMuqun1lKZ1p5aj+wxq9yvEet4iYl5LyLIpmaN7kOhELuGpQjwT13BNVeO0tSLPmhEdYwiiA7u81AN1DJaKuwlZuxBGsIWRxr6Tl9qeGPbkq4kR+Hb41C15qWpuYvjUguWlHkkMn5rLS72gEb78neFTzepcXqqzPzF8ShyPINjC2IX0v8f3gmPahdQ7jatuAO+VdvwnqwntvUJscz7ae9mpxQmszia2OZ/Q3iv4c6vxXmnHWW9FMtuIuoLzZsguPAEEcQplpgv35A18o2cIWL8h3PcpMdNKtI6nUriePUu0921Cls34hw7hHSvENVWNPGtGEB1pP24PAoaQzWwMIZu5GEI2szGEbGaTyaW4vPz9b17BOjL1vfumZ8W5/zZZRvjLqxt49Nk1PP63j2ntHgASQvax59aw40A+v3liNY89t2buPo83wOqNB3nsuY/404vrbosq/eUfVnC2uIoVa7/mjy+u48ipK4v8StNbaRWyX2Wd52ePLOO/XlrP+5sO8t5n+/nd0x/wd79+iezTV9O5tJQr3ReJuyIHEafGcfU14Gs+S6h8N+qF1ZD7/J3jBk6/TPTyeoJVB/F2XkYZ7MJhF9L/Ou5TFlPITisuRpVJBuReeuUG2sVrNIr51AiHKXfsmFe2lgibuSHsplbMplk8T4dUglluZlC2MC7bmHE+/FtLEzm6CoI4heQYTOboNiRydCcu3ZKj+w3B/u1zObox04rk9t17z9HVOp8i3rWMmGkVkd4PCVs2EOz/Er91H77ho/jGzuIZv4x7sgKnrQl51oRkH0YQbA9Eju7Dwh27Untu2eLfkNheHyhL5KVGiuPol1iUvFQOJ4dPndKJnbtl+FRJcvhUXaJT1t0Rw9WbyEu92/CphxIpiDAqonSO4a4w47vQTCC7nMjOItT1uehvHkphWNYB4h/lEPmikGBWCb6z9bjLelBaRhAHHdiFH97pkcpQrx99Dso+RMcYiq0Nz8R1vMM5BAZ2ETGvQzW9ltL1KN71N6K97xPs345v6CjeiUs4pxuQ7FYc0v09JPFBwRCymY0hZDMXQ8hmNoaQzWyWstQwXH0/tuSUrY/dcT0tnf38x/Mfzbvu/3ppPVdvNANwpbyJP7ywFkgI2f/rNy9zsaQegEulDTz2XOLrbdqdw6c7jqPrOj5/kMeeW0N9qxmAXz2+in3Hi4CEFP75b18hGIrc25t7H1fahOyNug5+/ttXqGky3fb/NU3nbHEV/+PfXqKivjNNq0u90n2RmFVCCDN2lMEOvO2XCFbtJ3ZpHfqpZXfues17AbXofULlX+NrLcBpaUKcnmSxMzcfNu5FyE4qEsPKCBa5ix6phjaxmAYhjypxP2XC9hSE6xYqhW+oF0/QKl6gW66kT25nSB5kQrEzY2wtXZhjLLsQxBkk+wjybA9OWwuuqSo841eI2QoJjeXgH9xPsH8HYctnRMxriPWsIt71Ukoda6nm6Krdy++eozt+MZmjW5/I0bVbEYTJpIB5uD/TcyL1u1mpnbcMnqq6ZfDUpTjRAo3YGY143sJ2pc4Nnzr5neFTV2/JS21IDp/qjOFMytS5vFR7mvJS7zPsDh9Svx1n0xCe6134ztQSOniN6NbzxNcch+X75xeubx8mtuEU4a8uEThegfdiK67qPuTuSYRx+Z7f558iZO2yC8kxhHO6Ec94Mb7howT7vyTS+yHxrmUpXAv+itr9KhHzWoIDu/CO5OCZuIbT1oroGMWueNN+7DIBQ8hmNoaQzVwMIZvZGEI2s1nKioWg8NXYklP81p2F7NUbzbzw1ta52/5AiH/989tzFFytSaw7pqJpOgCi7Obvf/MKkBCy//jo63P3xWIqP3tkGS6Pj18/8R79QxNzX3tPdiFfHsgHEkL21q7cf/7jSmx2acHe5/ut0iZkX1m9gx3JN/1O9eWB/NtOgPu1lvKCYBdcyKNmPN2lBGqPErm6CS3/tbvnvJ5/k3DJdnyNebh7q5EmhrBLmdAduQTH4i5CdkYJMKHYGZIH6ZPb6RJv0CJdoE48ToXwDSXC5/MK1zJhO1XifhqEPNrEYnqkWvrlLkbkUaYUKe2v3SDVDNkADunbHN0+FFvbXI6ud6wQ73AO/sFDyRzdzUTM64j2vI3a/VpKmY+pdek+i2p6jWjPO0TMHxOyfE7Auhv/0OG5HF3PZAmu6VoUWzvybOo5uj+V73WkDvxwR2r4UnJ7/xmNeK6OdmxhO1I5fIct/sW3b/H/Ni/V3R3D0x8jPqMjjSbzUu3GL+ipIkw4kU2TuGr78V5qI3CikvDXxcQ+O432blYKw7L2Ef/gGNEt5wjtv4b/VA2ea504GweRLDM4ZhZfTN5JyDokAXnWgmu6Fu/YBfyDWYQsW4j2vJtShIrW+SQx0wrCfesTf3AZPYN7shxlpgtRmMyofPb7GUPIZjaGkM1cDCGb2RhCNrNZ6gp7lp6I985raeu28vunP5i7res6stOD7PSwbls2uQVlAJTVtPPCW1t5evkmnnh9I3/365eAhJD97ZOrb/ua//jo60zaBH7+u1exC8rc/885V8pHW7KAhJCdmrkZYfrd2w9bpU3I/ssfV9LZO3TX+60jU/zPf399CVf002oxPvh2yY80MYy7twZfYx7hki+IF7z1AzmvrxG5uolAbTae7hLkETN2wdjyvBjMOH2MydMMyRamQh10SCU0i+epFbO5IexOobt1EzccO6gVsmgU82kXr9MrNzAgmxlVJplWjOP2ILA0Q70COEQJUZhEsg+gzHTimqrDPVmGd7wI70gevsEsAtavEzm6fZ8Q7XkP1fRGUgL99d6FbsczqN0vE+t5k0jvR4R7NxIy7yTYe5CgKYdQdwGhzuuE2moINbcTqrMQqpwkXCoRLg4SLVzEjtQjye39cyI1fjMrteLOg6eUwcjNrtTZn9aVuphDvR5k7GIAcUhAaRvDfaMHX0ETwaxSIjsKUdedRF95MIU4gYOoH58ksuMCwSNl+AqacN/oRWkfQxwWmBXT0f0fQBBsyLMm3JOVxGcKCQ0fIGz5jFjPKrSO+YcQap3PEOt5k1DfRvyDB/CNnsc1VYk824MgzvCwd7M/LBhCNrMxhGzmYgjZzMYQsplNJpfXH+Sf/mM5JsvI9+7buCuH3IIyFJeXf/j9a4xOzgJgF5TbhOwvHluOrt/eIevxBvjtk6sZGJ6c+3p7sgvnmjUNIbtE9bNHljHrkO96v0Ny8rNHli3dgn5i3duHPIhom8LZ34yvtZDQjT2oRR9A3gt3znnNW0bs0jqClfvwthejDHYgzMym/UL1MDGlOBlRxhmQe+iR62gTr9IonqZaOESZ8EVK+a0VwlfUCcdoFs/TKZbRJ7cwqAwwrsww4zQ6nR4GlkbI3jt2yYlon0aeGsY9YsI70ITfXEXQdIVwxznCbceJtu4n1vIlavNG4s0forWsRGtdht7+5L136bY/id78EnrDKvTaNehVm9Bu7EIrP0C8LAetvAC1/Bqximoila2Ea8wE60cJNDnwtnlwL6BIXSgyVcg6bB4kywzOhkE8Vzvx51UT2neV6JazxD84mtqwrHeziG08Q/iby/hzqvAWt+Gq7UfumcIxmZ5hgnbZhyiMo9g6EkMDR/IIWL8m3PcJqumNFPNbXyDa8x6h/q34BrPwjl/ANVWHZO9Pdpun//gZ3DuGkM1sDCGbuRhCNrMxhGxmk+l1/Ox1fv3Ee9S3mgmGIrg9fk4XVfDLP6ygsb2P4XEb/89/vkk0GkPTdL4+UsDPHllGOBLFOjLF//i3lyiraQfgcnkjjy/7BIAte/L4bNcJIDHg6/dPf0BLVz9gCNklq589sgyH5Lzr/Q+bkHXYZZShbrydVwhWHSJ6eT366Zfv0vX6PGrhe4TKd+NrPovLUo84NcGsbHTR3BtBJhWRYWWYfrkLk1xNq3iJBuEkVcI+Sh3b5hWupY6tVAr7qBdz6PVcoVuuwiJ3MqwMMaEIzBidThnBUghZuxjCMXt7RqqzN7G1fy4jtfo7GamFWmLYVO4CdaQeicBxJ5ycRj89iF7YhXa5nnhJKfEbF4hVnyRWf4hY0y5iLZtQ29YSb3+LeMfLaO3zdw6mkp0Z73oe1fQG0Z73CPetJ9S/lYD1a3yDR/COnMI7XoR7sgzXdD3KTCeSfQBxEXN0H0ohK4cQxmTkrglcVX34iloJHK8gvPsisQ156G/NPyyL5fuJf3Sc6LYCggev4ztTh6ekG2fLMOKAHbsjPXE5dtmDZB/BaWvBM3EF7/BxggM7iZg/Qu1+OaXzUO16mYh5DcH+HcQmTxKYuoLT1oxkH8Yuu9N//AyWBEPIZjaGkM1cDCGb2RhCNrMxCs4WV/H4sk/4+e9e5VePr+Kt9XsxW8fn7l+3LZvfPvU+Ty/fRHOHheff3MqTb2zEbB3nv15az86DZ/nDC2v5wwtr6TIPA4nu2w8/P8QfXljLn15cR8650rmvZwjZJaqfPbKMV1bvYMXar+/IK6t3PJBC1i55kEf7cZtu4K87QeTa52hnl9895/XcSiLXt+KvP4m7txJpzIpdNgZ0/BRmFD/jygyDspU+uZVOsZxmsYBa4TgVwteUppTf+gXVwkEaxVO0S1fokesYkE2MymNMKcrN43wPQ70MHnx+SMj+OJGqLo5ITXVr/x0yUr/XkXpPA6cCOCQBURhHnrWg2NpxTdfimSzBO3YB7/BJ/EOHCVh3E7J8nszRfQfV9Bpa57MLlKP7HGr3a0R73yZiXkfIspnAwC78Q4fwDufgHSvEM3Ed13QNiq0NebYP0TGGQ3JwpxzdB1HI2kU/otWB0jKCp9SEL7+e4KHrRLYXEl97AlakMCzrzUOon+YR3lVE4OgNfEUtuCv7kDvHEUYlZqX0/DHKIUpI9gFc0/V4xy/iG8om2L+daO9q4l0vpnCOPIFqeoOw+RMC1q/wDufimSxBsXUgCuPY5dtF8k8Z6mXwcGAI2czGELKZiyFkMxtDyGY2Rhm12JU2Ibtpd05K3O/lstTjazxNuGwn8YJ37ipe9dMvE738GYHqw3i6rqIMm3A4lLRfZB4kbIqHMWUKq9xHr9RIh3idJuEsNeIRbgg7U8pvLRd2USMeoUk8R4d4nV6pCavcx5gyje1HTKo2hOzDx48RqWqZTuyK9j2Rqh/hIRGp9wtBHJKMIEwi2a0oM104p+txT5Yn5NvoGXxD2QSsewj1byPct55o72rU7uVJGTf/dvP5c3SfRu16mVjPKiLmNUQsm4iP7sY/uB/f8HF8o+fxTFzBNVWF09aCPNuDZB9BEGewy0uTCe2YciH1TuOqG8B7pR3/yWpCe68Q23QG7b3s1OIEVmcT3ZxPaO9V/LnVeK924Ky3IpltOKbS1QUaRBBnkWd6cU1V4RsrwD94kJBlM9Get1Mafqd1PE3MtIqwZQN+6158Y2dxT1Ygz3YjCNP82OF1hpDNXAwhm9kYQjZzMYRsZmMI2czGKKMWu9ImZB+auoN8jV1cS6jiG3ytF3Ba2xBs02m/mDwITCkyI/IY/XI3JqmONukyDeIpqoWDlAnbUxCun1Mp7KFOPEGLWEiXWE6f3MaQbGVCmWUhp8YbQvb+4Ud3pBZ/vyN1cUWqNr9ItT5sIvX+wS67EAQbkn0YedaE09aEe7ICz/hlfGNn8Q0fxW/dS7D/S8KWDUR6PyRmWkW8axla51ML0KX7BPGuF4mZVhDtfZ9w36cE+7cTsH6Db+govtF8vBOXcE/ewDndiDLTheQYRBCmcUhOZqUAwqiI0jGGu8KMr7CZQHY5kV1FqOtz0d+cP05AX3kAdW0OkS8LCGaV4DvbgLusB6V1FHHQgV1IV7Z1AEGYRJnpwj1Zjm/0DAHrN4T7PiVmWpnS+691Pke05x1Cls8TXc9jhbimqpFnzcku54VdsyFkMxdDyGY2hpDNXAwhm9kYQjazMcqoxS5DyN5jBSsP4Gs8jctcizQxlPaLxv3KjBJkQnEwrAxhkTvolqtoFYuoF3OoFPZS6tiSQpzANqqEfdQLubSKlzBJNVjkLoaVESaVpR2cYgjZBXgPpR8vUiOLKVKzUhep0QGNwKBqiNQMwC57EEQHomMMedaMe7YNTW7EM3EN31gB3pEc/IMHCQ7sImTZRMS8lljPW6jdr6B1LkCObvtf0JueQq9+Dr3sRfQrL6NfeB39zEr0nLfRj7yHnrWO+NGtxHL3Ei7IIXCtGE9dPc7ufoRxKW3npV3xIjrGUGba8ExcwzucQ2BgFxHzOlTTa+gdf01hYNYyor0fEBz4At/QUbwTl3BONyDZrTikpd9lYgjZzMUQspmNIWQzF0PIZjaGkM1sjDJqsSttQvbbYN/5uN8r3ReJ+4UZp58xZYZBpR+z3EKnWEazeJ464RgVwleUCJtTiBP4khrhMI3iGdrFa/z/7N13dFVnmqD77um+090zq2funZleM9VdHap7uqeHchXlKldwVblwgALjjLGxMTaYnDFgMphgcsbkIKKIAhEEKIAQSQKhnHMOJ0pIOkEnSc/9Yx8dkBEgbKQt8b3vWs8qI8HRpyNpQ/3O3t9Os1wnx5JKgbWEshp97sD9sFQG2TYhNb01pDboDalnOvaM1M64qUj1Rd8AACAASURBVJfUNXuiPWQtTowlZmpSsqi/dg37hTM0ntiP5+AmfHuW0bxztgaq+ybRfGScBq3nPtfgNeZjDWLvPI19dD/GmzwCT+pEXOmzcGYuxpG9BlvuVuoLWvbRPU9t2RWslfFYqtIxGYowmgxUW+se+vkZzFbMhlxqym9SV3KGhrw9OLJW4kr7El/S0Has7X28ySNxpc/Gkb2G+oJ91JWcp6biNiZDIdVPsI1MZyUgq24CsmonIKtuArJqJyCrdjIyHT26gezeoxfbVVcfvQ8SnVW5tZZCaynZljTSLDe4YzrPTdMRYozbiTSsasd2AouJMq7lqnE3cabjJJjDSbfEkWvNoshSQWWNPnfg/q51R5BtN6RGdSKkBnUupD6tBGTV7X6QrTbZMeUZscYXcjcqlYZjN3DsCMe1MgTv7P00j9vaju0EtuKdcwDX6pM4dkbQEBLL3ag0rHeKMRaYqDLZtX10TWX+fXSTH7qPriNreWAfXU/K2Hbe1Kp9+ZKG4kkZjyvtS9ypk9u1f2tzwgA8KWNpzJiPPWcDDYWHuVsagbUyCZOxRPev5XdJQFbdBGTVTkBW3QRk1U5AVu1kZDp6uvSWBVUGi95LeOzofZB4WpVazRRYCsmyJJFqvkq86Qw3jAeJNm1u1/6t4YavuWzcxHXTXm6bTpFsuUymJYE8Sx4l1moqn+L+rV2hzgTZ7wOp3s6E1Av3Qep1N/VxLu4mNFKb4sSa7sCSbcecb8NU3IChvA5DRR2G8rsYyu5iKK/FUOavtAZjSQ3GEivGYivGYgvGIgvGQgvGQjPGAjPGQhPGAhOmfKNWnhFTngFTrgFTjr/sakzZ1ZizqjFnVmHOqsKcWamVUYE53V9aOea0ciypZVhSyrCklGJJbqkES1IJlqRiLInFWBOLsCYU4coox5ZSgjW+CGt8IdbbhVhvFQSquZVPTVw+NbF5WjdztW7kUnM9h5rrOdRey9a6mnWvmEytKxnURmvdvezvUjp3o9K5G5XmL5W7kancjUilLiKFuvAU6sKTqbuYTN2FJK3zSdSdT6QuLJG6sATqwxKoP3dH6+wd6s/Ea532F3qbhlP+Tt6i4dQtGk7G0RASR0NILA0n/B27oWz2Ezdp3nCapqntvFnWlB24Fx+hccMZbPuiqT8TT+3VLCypZRhKO+fMf20f3Ur/Prqp1FTEcbf0sn8f3WM05O/BlvONfx/dr3Cl39tH99Fn3n6EJ3UCzoyF2HK30FB4nNqyaCxVqRiNlbofpzsiAVl1E5BVOwFZdROQVTsBWbWTkeno6XIg63Z7uBh9mxHTV9Oj11C9l/PYsd4p7vIoc/dCIsZL1ym7FkH+rdNkJB0mIXMPN/O/IbpsNeHVSx6/f2vV11wtWsut7C0kJwWRfeswxVdOUXXhPNbQyzQcuU7D4Wv+rmoFX8V2KEbr4BVsB2OwHbiCbb+/fdHY9kVj33vZ3yXsQf72RGHfHYV9dyT2XZHYd0Xg2BmBY0cEjh3h/i7i2H4Rx7YLWlsv4Nx6HueWCzg3n9f6JkxrUxjOTee0Np6lceNZGjecoXH9GRrXndZaG0rjmlAa15zCtfoUrjWncK0+iWvVSVyrQnCtDMG18gSuFSG4l4fAmlO4l53Avew47qXHcX99DPfSY9r/fn0U99cn8HwdindpGN5l4fiWX8a34hq+FbE0rbxD06oUfKszaVqbS9O6Ypo3VNC80Ujzphqav2mALS7Y1vTUIJWtPtjshE31NK83w9oqmleV0Lwij+alGTQvSYKFt2DBNZgVBTPCYNopmHIUJh2A8bthzOZ2IZQkqZJvZhCu5SdwbL1Aw+Gr1F1MxnqrAFN2tY43y3r63b+Prrk6E4O5c/ft7ioJyKqbgKzaCciqm4Cs2gnIqp2MTEdPlwHZ3MJylm0K5sU3x/PL18ewcM0+0rOL9F7W46cLgEDThG+wzd+Aee06yvasITdkJSmXlhOXsJTo/CVcNDxuO4FFXC5aQmzi1yRfXk7OqZWU7l2Daf06Gr7agGfKJt0/x05t7FYNHycdgC+OwrRQmHkeZkfB3KuwIA4WJsLX6bAsF1YWw5pKWGeGjXUaej5tSP3GqT32OrP2sVYUwbIcWJIGCxO0Nc272uUgtXncVprHb6V5wjatidtpnriN5knbaZrsb8oOrS92+ttF01Qt37Td+Kbvxjd9D74v9+D7MgjfjCB8M4PwzdyLb9ZefDP34Z21D+/s/Vpz9uOdcwDv3P145x3Qmn8Qz/yDeBYcxLPgkNZXwVoLD+NZ5G/xEdyLj+BectSP6vch+9LjGr4vO4FvVQjelSG4VviRfmWIhvarTmqI70f9xjWnNORfG3oP/tf7XwjYcIbGjWdxbjx778WCTWH3XkRoeVFhi/ZCg2PrhXsvPmy/qL0gEXhxQnvBwr4rQnsBY3ek9oLGnqh7L3LsvRR48aPlxZDAiyMH/C+YHLwSeBGlIfjqvRdXWl5sOXKdhqPX750x2nLGbEisdhbtyTj/WbW3Amfa1ofevncGbssZuWfv3DtTNyyBurAE7Sze84naWb0tZ/heTNZeYApPoS4ihbsR/hegolLve1EqXXuhyv+iVcuLWLVXMrQXtu5/scv/AljLC2I1N3LvvVDW8sJZXD41t/JbvbhmvV2ovegWX8TdxCJ8eVUYC826/yNR6vwEZNVNQPbZrMLgpLyykbLyRkqLGykuaKQot5GCrEby0xvJT2kkN6mRu1UCsqomIKt2ArJqJyPT0aMryNrsTo6fvcKHoxfx3CvDGPXlGn766nAKS6v0XNYTjWt5x6NM/a4zmI6coOxsMHmXgki9uZ345I1cy11NVPnSx+/falhEdPEKbmatJzFpKxk391B4+TAV509iDjlP/cHoZwJl6qIyqIvMoT48j4aLhdjCirGfK8NxthJnaDWNJ000HrfgOlaD+0gdnkMNeA448O5txLfHQ/MuH+xofoqX9jfTtNuHb68X70E3nsMuXMecNIY4cJ624Qirxx5Rj+1SHQ1X7lJ/vYa7cVZq7liwJpuxpJkwZfsvw88zaJfl+y/RNxaY/Jftm7XL+Av9l/UXW7TL/EusGEtqMJTW3NsKoLzWvz3AXW27gIo6DJX1VFfWU11VT3W1P0OD1jN0dt/TTvaQVbcnuqmX9MwlIKtuArJtV2n+FmqW+FEzr5HCbBcFGY3kpWqomXOnkaxbLrJiXWRcc5Ee00jqZRcpkS5SLrpIOuci8YyLO6fcxJ9wc/tII3HBjcQeaORGkIvru11c2+7i6lYXMd+4id7g4vJaF1GrXEStcBH5tZvwxW4uLnBzfq6b87NdnPvSzdlpbs5McRM6yc2pcR5OjvYQMtJDyIj2F7fdJyCraAKyaicgq3YyMh09uoHs7GW7+PkfR/He8PnsOxaOpaYOgF/0HUVZpVGvZT3xfP8fdAelVhP51nyyLEmkWK5w23SaG8b9RBu/IdywrB37ty4l2riJG6b93DaFkmK5QpYlkXxrPqVWI1VWh+4Hs0fVao/UQhfWnG/tkXpD25fUHuXFcaGL7JEa64VMuJvkoSb9WzebqtLvZlNS5yQgq24CsmonIKtuHQ2yLahZWvboMzVz7rgeQM20SxpqJl94EDVvtaDmfteDqLmpNWpGLn8QNcNmtY2aT4KZXbmToz2EjnNzepKb01PcnJ3u5twMN+fnuLgwz83Fr7TnI/2UV0BW0QRk1U5AVu1UHq/PR49eQ5mzfNcD71u4Zh89eg3F6/M98jEmzt3IucjY772WsbPWP5XH6YqjG8j26DWUaYu2kl9c0ertzxrIVlptFFsrybXkkGG5TaIpkjjTCa4Zg7hs2kC4sR37txpXcMW4jZumYO6YzpFquUa2NYVCSzFlVqtuB6jvDKlHOwlSQ9qA1Jte6uI93xtSO/OmXlLXS0BW3QRk1U5AtutWaWr/5ectqJl504+aVx6PmvGHXSQd8WqouUtDzZhHoeaiR6DmRD9qjtYfJL93I/2oOV5DzTNf+FFz5j3UDPejZsRSN1ErXFxa7SJ6nYvoDS5iNru4us3FtR0ubuxxcXOvi9gDGiLfPubmToibhFA3iWddJIW5SAl3kRrpIu1yI+kxLjKuazidfdtFbkIjecmN5KU1UpCpnaFbnNdISaF25m5ZeSPlVY1Ump78+0v2kFU3AVm1E5BVO5XH6/Px8z+Ooveg6TS63IG3e7w++g2eQc/eIzoNZOttDlxuz/d+nK44uoFsQmouM5fu4Pk+IwNnyZqtd3UD2Xkr99Cz94h7vTact4fNBaC8ysTQKSv4zRvjGDBiAUnp+YE/V2Gto8haRo4lgzTzTRJMF4g1HiXGtJMo4+rHbydgXESUcQ1XTbuIMx0j0XyRdHMsuZZMiizlVFjrn/qBpctB6s7vAqnuVpBabe7cg7OArNoJyKqbgKzaPesgez9qtutMzbg2UDNCQ81EP2omnLyHmrGHtDM1b+55OGpeWqmhZsSSR6DmZD9qjn2GUHPM41Ezog3UvLKx/aiZ1AZqZrSgZpyGmjltoWa+HzVLvx9qducEZNVNQFbtBGTVTuXx+nz07D2CaYu2En4lPvD2a7dSmbZoa6szZEPCrtJv8Ex6D5rOZ5OXU22qAVqDbEpmAQNGLKDvxzN467M53E7OBuCVgV8E/O9i9G1++upwnI0aAO87Fs6yTYfkDNmOnHqbg+BTl3hv+Hyee2UYPXoN5eiZaNw6C/jG3SfZuv8MAJ9NXs7+ExH4fE1cv51OrwFT8Hi1b77Hg+sSLhk3cs0UxC3zSZJMUWRY4smz5FJiraLKam/3ASEAqWXfAVIP6gSpN7oWpD6tBGTVTkBW3QRk1a49ICuoqU8nRz2Imue+bI2aFxfeh5or/ai5/uGoGXfQj5rH3SSFesi+6AugZnILakZrqJl540HUzG9BzRw/ahbdh5rVTuVQszsnIKtuArJqJyCrdp06HiecGN/5nZ7e5nK8Ph/PvTKM6BtJTJizMfD2mUt3EHUtIQCyNXcb6Nl7BJUGCwDzVwWxaO0+oDXIvjNsHmFRcQCci4yl/5BZAMxatpOzkTcBWLL+AB+NW0J8co725+dtIvpGkoBsZ016TjEL1+zjhX5jePHN8SzbFKzLOsqrTLz+yUwaXW6stfW80G9Mq9Ox3x/5VeCbJMq4hivGzdwwHiDedIZUcwyZliTyrQWUWrW7cD8SUuMFUrtjArJqJyCrbgKynVQLalY8iJqFftTMa0HN+PtQ86ofNaMegZqHNdS8ue9B1LzSgppr/Ki5rDVqRsz3cH62Bn1npvpRc8Kzh5qnJrRGzbA2UDNy2SNQc6cfNfdpqHnrsIaa2pmaLpLOukg+70fNqMejZmEbqFnegprGzvmelJt6qZ2ArLoJyKqdgKzadep4HHBgcOd3ZGSby2kBWY/Hy0vvTqKu3k6jy83L70/B5fa0OkP2/i0Nwi7FMWL6aqA1yHo8XpqamgEwWe7y01eHAxB68TqL1x8ANGcLCbvKjoPnAPjDe5NpsDkEZDt7HE4Xpy5c4+NxS3T5+HNX7Ob42SsAJKXn886wea3eP23RVo6fiwF47M2mnhaittQU1Iz3QDOeI21A6hX/pf2374PUbDfmAhemUoHUp5mArNoJyKpbtwLZb6FmSVE7UPOGhpppbaBmwmk/ah73o+bBNlBzi4aal9c/iJoXW52p+Wyj5qmxj0DN+X7UXKKh5qVWqOkmZrOLay2oGfRw1Ew8p6FmSsR9qHn1W6iZ+CBqFhW0Rs2KTkTN7pyArNoJyKqbgKzaCciqXaeP827n11jX5lJaQBZgweogjp+9QkRMPHNX7AYIgGxzczPbDpzhw9GLGDRmEf0Gz2T41FVAa5CNiLnDkIlLGTRmEQNHLQw8dqXBwoARC6hrsPPRuCWUV5kYM3MtRWXVDBqzCJCbeik1BnMNrwz8IrBpcGxCRuAboWXmrdzDgRMR2i/ae1ZqEDQdaqbpWDO+0Ga8Yc14I5rwXGnCfaMJT3wT7pQmXJlNuPKbaCz24az04TT5cNz1Yrd7sTdKXanmZnRfg6RPXl8TLo9Pt49v6wLPgSrZ7F4a6rzU1XqpNXupNfpoMDVjLvNhLPFSXeClKtdLRaaX8jQvpUleShK8FN32URDrJf+al7wrXnIue8mK8JJxwUv6WS9poV6SQzwkHvWQEOwh/oCH23s9xO32ELvDw42tHq5tcnN1vYeYNR6iV3q4tMxD5BIPEV95CJ/n4cIcN+dnuDk3zc2ZyR5OT/AQOk67wY7eKPm9UXO09rmETvBwZrKHc1O1z/XCbDfh87TnIHKJ9pxEr9Seo5h12nN2Y4v2HMbt9nArSHtuE4K15zo5xENaqPY1yLigfU1yLmlfo7xrXgpita9dSYL2tSxL1b62VTna1/puRRPWiiYslT6sBh+1Zi91Ndr3SINN/+/XDv95cOq/Br1qdPvwNTXrvg5Jn5qamnG69F+Hqun57x6Xx4fX16T7cyDpk/z/PbVTee4H2dvJ2QyfuoopCzZz804GcA9kI68m8M6weTTYHACcibj5AMhaa+t5vs9ICkurAKg2WgOPDdD34xmcv3yLlVuOAPDGp7M5ERbDhl0hgICsLnMuMpb5q4I6/ePuPXoxcMo0QHJGPm8Nndvq90xduIWQsKsANN5pojGpCWe6D0euD3uRD1uZlwaDl3qrl/p6D3V26Vmr3qGBvd7rkPTJ7W3G6fLp9vHv2vR/Dp6k2joPtbUerGYPZoMXU6UXQ7mX6hIvVQUeKnI9lGV5KE33UJzspSjBS2G8l/w4L7k3POTEeMiO9pAV6SHjope0MC+pZ7yknPKSeNxNwmE38Yfc3NrvJm6Ph9idHm5s93B9s4erG91cWevmymo3l1d4iFrqIXKxh/CvPFyc5+HCLDdhM9ycnaqhZugED6eeIdQ8NU6D2jOTPZydpn2uF2a7uThPew4iF2vPyeUV2nMUs87N1Y1urm/RnsPYnRpq3tqvPccJh90kHneTckr7GqSFecm46CUzSvsa5cZ4yL3hIT9O+xoWJXgpSfFSmu6hLFv7WlcVeqgu0b4HTJVezAYvVov2PXK3i/+d6fVpIKf3OnT7We5mx56nmb3Ri9fXrPs6JH1qaoYGp7o/+3qn5797nC4fbq/87KsaQH0XWIek39df1bkfZJuamuk3eAb9Bs/E52sC7oFs8KlLjJu9HtDuDzVi+moGjV0M3APZ/OIKfvv2BNxuD01NzazfeYIevYYGtjqYt3IPg8YuJvJqgvbn5m3io3FLuJWYBQjI6jLBp6IY9eWaTv+4n05axrVbqYFf19Y18PM/jgrc6Q2g3+AZJGfkA3LJuqrJlgVqp8eWBZVGJxXVTsrLtUuNS4oaKSrQLkEuzNQuSc5LbiQnsZHs29+6/Dy6kdSWy8/P+y8/D3VxJ8TNbf/l53H+y89vBGmXSl/bpu0HeWWjm+j12iXV2uXn2qXWFxe6uTBfuwQ7bKb/8vMvtEu0T/kvPz85Sn+U/N6N1i4/D/Vffn52qpvzMz2EzdIuvb8wX7sUX7v8XHuOLq9xcXm9dul+zBbtuby+697l57H+y8/jWy4/P+2//PyC9jVKi9K2DLj/8vOceP/l5ynaVgOFWdrWA60uP6/QLj+vkhsFdVjtuamX9GwmWxaonWxZoG6yZYHayZYFaqfy3A+yAKu2HOHrDQcDv77/pl6Dxi6m/5BZDJ+2ipTMAl56dxKrtx1ttWXB7GW7eO3DaQwas4i4hEw+mbCUD0YvBOBs5E169BqK2XoXgKCjF+jZe0TgqnUBWYXmhX5jAneIa5nhU1ex/cBZfL4mwi7F0WfQ9MArA3ofJCR9EpDtnlUanZR/CzWL89tAzYRvoWbMPdRMDneRc8lH+gXPw1Fzj4aaVwOo6QqgZlQLai72o+a8h6PmyTHPHmqemaztG3ruS3cANS8uaAdqbtdQ8+aeB1Ez4WT7UTM36UHULG5BzTI/ahqcD0XNbrWHrPTUE5BVNwFZtROQVTcBWbUTkFU7GZmOni4Bsk1NzVhq6qg0WB6oM8fuaKRHr6EBiW+ZSoOFzyYv59dvjGPgqIVk5pYE3qf3QULSJ5VBttKkoWZZG6hZ0B7UjNRQMylMu9P2/agZF+xHzb1+1NzxcNSMWPogap77FmqGjlcLNcPbQM3oDX7U3NoGah7yo+YJDTUTzzyImuktqHnz8ahZWtw+1OzOCciqnYCsugnIqp2ArLoJyKqdgKzaych09OgOsuFX4nnxrfH06DW0zbr66H2QkPTp+4JspclJeVXjPdQs9KNmtoaaeW2gZsZ1P2pe1lAzpRVqapc+3z6moWbsgUeg5jo/aq64h5rhX7VGzbPTH0TNkJFdACWfFmpO1FDz7LQW1HQ9iJrL/ai5VkPNmPtQM36fh9v73MTu96PmkUeg5iU/al67DzXvaKiZ70fNgrZQs1JDzcpnEDW7cwKyaicgq24CsmonIKtuArJqJyCrdjIyHT26g+xL705i4+6TlJQbMJhrHqirj94HCZXTGzWvb/Cqi5rj/Kg55eGoGfm1hppRq9pGzZY9Nb+NmndOaaiZ1IKakW2g5q3Ho2ZZecehph57yEpdIwFZtROQVTcBWbUTkFU3AVm1E5BVOxmZjh7dQfZnfUbicLr0XsZ3Hr0PEt+3VqhZ4kfNvAdRM7cFNWM11ExvAzUTnwA1ozc8eKZmeHtQc/SzgZotdz8PnfQI1Fz8cNS82oKau++hZlxwO1AzRkPNrNgW1GwMoGZBhh818/yoWdKxqNmdE5BVNwFZtROQVTcBWbUTkFU3AVm1E5BVOxmZjh7dQXbKgs3cvJOh9zK+81RZ/TcKqmqkrExDrOKCB1EzN8mPmrcej5p3Tt2Hmoc01LzxKNRc1Ro1L96PmjM01Dw9xY+a454R1Bz5cNQ8P/tB1Ixa8S3U/KYN1DzQSFxwI7fbQM2Uixpqpl7WUDPzugtDenMr1MxL1VCzMNv1cNQ06/8Xi/T9E5BVNwFZtROQVTcBWbUTkFU3AVm1E5BVOxmZjh5dQHbv0YuBth84S+9B01m0bj9BRy+0et/eoxf1WN4Tje4w+RRQM3Scm9BJGtqenebm3Iz7UPMrDTUjlmqoeakt1NzhR829ftQ81AZqhmmomXofaracqZn9bdTMbAM1/XtqVhq7BmqqfFMvSUBW5QRk1U5AVt0EZNVOQFbdBGTVTkBW7WRkOnp0AdlBYxe3u64+96Pm6TZQ88K8dqDmNg01b+x5EDXvhPhR82xbqOlqhZq5CQ+iZnEXRs3unICs2gnIqpuArNoJyKqbgKzaCciqm4Cs2gnIqp2MTEeP7lsWFJZWtfl2l9tDYlpeJ6/myUfvg4SkTwKyaicgq24CsmonIKtuArJqJyCrbgKyaicgq3YyMh09uoPsL/qOavPttXUN/PyPbb+vK43eBwlJnwRk1U5AVt0EZNVOQFbdBGTVTkBW3QRk1U5AVu1kZDp6dAPZ4+diGDhqIT9+eRgDRy18oJffn0Lfj2fotbx2j94HCUmfBGTVTkBW3QRk1U5AVt0EZNVOQFbdBGTVTkBW7VQer89Hj15DmbN81wPvW7hmHz16DcXr8z3yMSbO3ci5yFhAOxHTYK7pkLV259ENZJ2NbmITMuj52nAOnIh4oOPnYqg2df0vmN4HCUmfBGTVTkBW3QRk1U5AVt0EZNVOQFbdBGTVTkBW7VQer8/Hz/84it6DptPocgfe7vH66Dd4Bj17j3gikLXW1tPU1Nyha+6Oo/uWBXEJmXov4XuN3gcJSZ8EZNVOQFbdBGTVTkBW3QRk1U5AVt0EZNVOQFbtVB6vz0fP3iOYtmgr4VfiA2+/diuVaYu2tjpDNiTsKv0Gz6T3oOl8Nnl54MRKOUP28aMLyAafuoTRXBv470fV1Ufvg4SkTwKyaicgq24CsmonIKtuArJqJyCrbgKyaicgq3adObYm+FmOvdN7Kd/R5nq8Ph/PvTKM6BtJTJizMfD2mUt3EHUtIQCyNXcb6Nl7BJUGCwDzVwWxaO0+QEC2PaMLyL43fD4ZucWB/35UXX30PkhI+iQgq3YCsuomIKt2ArLqJiCrdgKy6iYgq3YCsmrXmVPfBD/IsHV6/yfL1uZ6WkDW4/Hy0ruTqKu30+hy8/L7U3C5Pa3OkL1/S4OwS3GMmL4aEJBtz+i+ZcGtpCzcbo/ey/jOo/dBQtInAVm1E5BVNwFZtROQVTcBWbUTkFU3AVm1E5BVu84eo7e50zN7297XtQVkARasDuL42StExMQzd8VugADINjc3s+3AGT4cvYhBYxbRb/BMhk9dBQjItmd0B9kX3xzP831GMmL6anYfPk9mbkm32uxX74OEpE8CsmonIKtuArJqJyCrbgKyaicgq24CsmonIKt2Ks/9IHs7OZvhU1cxZcFmbt7JAO6BbOTVBN4ZNo8Gm7b1wZmImwKyTzC6g2xzczP5xRUcPRPNl0u28crAL3jxzfFMWbCZo2ei9V7eY0fvg4SkTwKyaicgq24CsmonIKtuArJqJyCrbgKyaicgq3Yqz/0g29TUTL/BM+g3eCY+XxNwD2SDT11i3Oz1ANTbHIyYvppBYxcDArLtGd1B9tvjcDYSEnaVNz+dTY9eQ/VezmNH74OEpE8CsmonIKtuArJqJyCrbgKyaicgq24CsmonIKt2Ks/9IAuwassRvt5wMPDr+2/qNWjsYvoPmcXwaatIySzgpXcnsXrbUQHZdozuIGutrSfqWgIrNh/mg9ELefHN8YyYvpote0MDp0N35dH7ICHpk4Cs2gnIqpuArNoJyKqbgKzaCciqm4Cs2gnIqp2MTEeP7iDbo9dQ3vx0NvuOhZNbWN6t9o8FATlVE5BVOwFZdROQVTsBWXUTkFU7AVl1E5BVOwFZtZOR6ejRHWR3Hz7PmJlrefGt8Qwau5jVW48SfSOJu3U2vZfWrtH7ICHpk4Cs2gnIqpuArNoJyKqbOI1sBAAAIABJREFUgKzaCciqm4Cs2gnIqp2MTEeP7iDbMj5fExm5xew7Hs74ORt48a3xvPXZHL2X9djR+yAh6ZOArNoJyKqbgKzaCciqm4Cs2gnIqpuArNoJyKqdjExHT5cBWYfTxe3kbLYfOMvoGWv53dsTefPT2Xov67Gj90FC0icBWbUTkFU3AVm1E5BVNwFZtROQVTcBWbUTkFU7GZmOHt1BdtmmYD4YvZCfvPo5fQZNZ/6qIMIuxWGpqdN7ae0avQ8Skj4JyKqdgKy6CciqnYCsugnIqp2ArLoJyKqdgKzaych09OgOsjOX7uDUhWtUGSx6L+U7jd4HCUmfBGTVTkBW3QRk1U5AVt0EZNVOQFbdBGTVTkBW7WRkOnp0B9nuPnofJCR9EpBVOwFZdROQVTsBWXUTkFU7AVl1E5BVOwFZtZOR6ejpsiD7TdAp+n48Q+9lPHb0PkhI+iQgq3YCsuomIKt2ArLqJiCrdgKy6iYgq3YCsmonI9PR02VB9kZ8OruCw/RexmNH74OEpE8CsmonIKtuArJqJyCrbgKyaicgq24CsmonIKt2MjIdPbqD7O/fmUjN3Qa9l/GdR++DhKRPArJqJyCrbgKyaicgq24CsmonIKtuArJqJyCrdiqP1+ejR6+hLNsU3Ortl68nMXHuxqf2cX7RdxQGcw05BWUPvUJ+7Kz1nIuMfWofsyuN7iA7Yc5GDode1nsZ33n0PkhI+iQgq3YCsuomIKt2ArLqJiCrdgKy6iYgq3YCsmqn8nh9Pp7vM5I/vDeZwpLKwNufNshaa+tpamp+JMjW2xy43J6n9jG70ugOsnOW7+KldyfRb/AMRk5fw9hZ61vV1Ufvg4SkTwKyaicgq24CsmonIKtuArJqJyCrbgKyaicgq3Yqj9fn42d9RnL87BVGTl8TePv9IGupqWPUl2vo+/EMeg+azqGTUYHf96v+YzkYEsnoGWvpPWg6UdcSWLA6iCETlzJk4jIcThfQ+gzZfoNnsGrLEV4dOJV+g2dwOzkbaH2GbEpmAQNGLKDvxzN467M5gd/TXUd3kF255Qjrdhx/aF199D5ISPokIKt2ArLqJiCrdgKy6iYgq3YCsuomIKt2ArJq16nT6IYZQZ3fV4faXI7X5+Mnr35OU1Mz7w2fT/TNZKA1yC7bdIgFq4MAKK8y0bP3CEyWuwC8+NZ4dh8+D8CJsBh+1mckZZVGAD7/YiUXo28DrUH2J69+TujF6wCcDr9Bv8EzgdYg+86weYRFxQFwLjKW/kNmPd2vQyeP7iDb3Ufvg4SkTwKyaicgq24CsmonIKtuArJqJyCrbgKyaicgq3adOk43jP6m85uyo83leH0+nntlGADxyTn0GzwDj8fbCmR9viY8Hm/gz/QbPJPkjHxAA9n84goAbiVm8eanswO/b8HqIPafiABag+wv+o6iqakZAI/HS49eQ6mta2gFsh6PN/B7TJa7/PTV4U/tS6DHdAmQLas0sWVvKLOX7QKgqamZOyk5Oq+qfaP3QULSJwFZtROQVTcBWbUTkFU3AVm1E5BVNwFZtROQVbtOnzp751fvaHMp94MswOT537D78PlWIJtTUMa42esZOGohg8Yu5vk+I0lKzwM0kK00WAANdAeOWhh4rEVr97H36EWgNci+9sHUVmv4Rd9RlFYYW4FsRMwdhkxcyqAxixg4amGrNXbH0R1kYxMy6Nl7BKO+XEOPXkMBqDJY+FX/sZyNvNmpa7mdnE3/IbN4od9oxsxcR71N++YsrzIxdMoKfvPGOAaMWEBSen7gz+h9kJD0SUBW7QRk1U1AVu0EZNVNQFbtBGTVTUBW7QRk1U7l+TbIVlSb+d3bEzl+LiYAsm8PmxvYYgCgz6Dp3wtkX+g3hubm1mfI1tXbAyBrra3n+T4jKSytAqDaaBWQ/b7z5qezuRKr7UfRArKgfdHeHja309ZR12DnpXcnEZ+cg8vtYdmmQxw7Ew3AZ5OXs/9EBD5fE9dvp9NrwBQ8Xh8gIKdqArJqJyCrbgKyaicgq24CsmonIKtuArJqJyCrdirPt0EWYMOuEPp+PCMAsi++NZ7M3BIAzl++xS9fH8P12+mB9z0pyP745WFExNwB4GzkTd4aqnlgC8jmF1fw27cn4HZ7aGpqZv3OE/ToNZRGl7vDnoeOHt1B9md9RuLzNQGtQdbj9fF8n5Gdto7Qi9f5csm2B95ura3nhX5j8Pp8gbe9P/Ir4pO1LRX0PkhI+iQgq3YCsuomIKt2ArLqJiCrdgKy6iYgq3YCsmqn8rQFsg5nI70GTAmA7JHTl3ll4BcMGLGAfcfC2bArhN+/M5Eqg+WJQTY9p5h3hs1j9daj9B8yi/5DZgWuTL9/y4LZy3bx2ofTGDRmEXEJmXwyYSkfjL732N1tdAfZfoNnkFNQBrQG2SuxyfQeNL3T1rH8m2CWrD/A8Gmr6D1oOrOX7cJmd5KUns87w+a1+r3TFm3l+LkYAA5U5JNrrtf9YCF1bgKyaicgq24CsmonIKtuArJqJyCrbgKyaicgq3YyMh09uoPsibAYXnp3Epv2nKRHr6EcDIlk3so9/KzPSA6HXu60dcxZvot+g2dQbarB5fYwZcFmlm06RGxCBoPGLGr1e+et3MMB/13h/iRxG/8paRdjCq+ScbeWmga3pEC1Nu20eL3XIemTy9OEvdGr+zqkzq/O7qGpSX72Vc3ja6bB6dF9HVLn1+D04PE1674OSZ+amqDOLj/7ulWv38e2N3pxeZr0fw4kXQKo7QLrkPT7+svIdOToDrKg7Tfx+Rcree3Dabzx6WzGzV7P9dtpnbqGZZuCWbH5cODXiWl5vD1sLskZ+YG9K1pm6sIthIRdBaBP7jn+JHFboI8LLnG7zkSj2yc94zU3o/saJH3yNTXj8Tbp9vHtjV7dnwNVc3l8NDU3674OSZ+amppxe/T72dc7lY89bk8TTU3ys69qTc3NuDz6r0PV9Dz2eLxN+ORnX9nk/++pnYxMR0+XANmuMAdORDBn+a7ArxPT8hgwYgG1dQ38/I+jcDbee4Wk3+AZJGdo+1lUWZ3EGAwMzI3gz5N2BGD2xcxQDlTkU9kFTrWXnn6yZYHayZYF6iZbFqidbFmgbrJlgdrJlgXqJlsWqJ1sWaB2MjIdPbqDrMvtYcveUAaMWMDv35nIH96bzAejF7Lz0Dk83s57VcJSU8eLb40nt7Acj9fH1IVbWb3tKADDp65i+4Gz+HxNhF2Ko8+g6YEbkd3/A5tqqmF8wXX+S/LuAMz+a1owa0vTKLXYdT+gSE8vAVm1E5BVNwFZtROQVTcBWbUTkFU3AVm1E5BVOxmZjh7dQXb64m28PWwuu4LDOBNxk9CL19kcFMprH0xl1rKdnbqWq3GpvPbBVH739kS+XLINu6MRgEqDhc8mL+fXb4xj4KiFZOaWBP5MWz+4+ZZ6Fpck8sPUAwGY/R/Je5lRdItsc53uBxbp+ycgq3YCsuomIKt2ArLqJiCrdgKy6iYgq3YCsmonI9PRozvI/uaNcTicjQ+8vazSxM/6jNRhRU82j/oBLrc62F6eRc/04wGY/aukXQzNi+aW0aT7AUb67gnIqp2ArLoJyKqdgKy6CciqnYCsugnIqp2ArNrJyHT06A6y375hVss4nI289sHUTl7Nk097f5hPVRXTO+scf+qH2f+QuI1+2ec5W12q+4FGevIEZNVOQFbdBGTVTkBW3QRk1U5AVt0EZNVOQFbtZGQ6enQH2eBTUazbcZy7dbbA24zmWhasDuJ0+A0dV9a+edIf6lijkcG5l/iLxJ2Bs2Z/nhHC7rIcKqwO3Q86UvsSkFU7AVl1E5BVOwFZdROQVTsBWXUTkFU7AVm1k5Hp6NEdZHsPms5PXx1Oj15D+eXrY3i+z0h69BrKz/qM5LdvT+DFt8YH6orzXX+4M013+aLgJv8tOSgAs/+YeohlJckUWRp0P/hIj05AVu0EZNVNQFbtBGTVTUBW7QRk1U1AVu0EZNVORqajR3eQjYi5w+XrSe2qK873/SEvsjSwoiSFH6UGB2D2/03ew+T8G6Sba3U/CEltJyCrdgKy6iYgq3YCsuomIKt2ArLqJiCrdgKyaqfyeH0+evQaSs/eIwL9/p2JzFu5p817QHXkTJy7kXORsZ36MTtrdAfZlvF4vFRUm/VexhPP0/phr7Q6CSrP5ZfpJwMw+x8Td/BRThTXDUbdD0ZS6wRk1U5AVt0EZNVOQFbdBGTVTkBW3QRk1U5AVu1UnhaQNZhrAm+z1NQxYvpqVm872qlrEZDtwHE2upm7Yndg2wKAmrsNDPtiBZaaOn0X147piB/8i9UV9M++wH/ww+yfJm7j1ayznKgs1v2gJGkJyKqdgKy6CciqnYCsugnIqp2ArLoJyKqdgKzaqTxtgSxASNhVhk9dRUjYVWZ+vSPw9jc+nc2GXSEANDU185s3xnG3zkZKZgEDRiyg78czeOuzOdxOzgYgp6CM94bPZ8OuEEZMX03/IbO4EZ8OQKXBwkfjlvDHj75k6sItjJ6xNgCyD3u87jq6g+y8lXsYPWMtqVmFAZB1OF3MWraT6Yu36bu4dkxHHgDijWY+z7vCXyXtCpw1+1zaMbaUZVFmset+gFI5AVm1E5BVNwFZtROQVTcBWbUTkFU3AVm1E5BVu84cb7ObaPO6Tu+aZUvb62kDZE2Wu3w6aRmbg0IprzLxx4++BLQTKj8at4ShU1YAGrYOGLEAgHeGzSMsKg6Ac5Gx9B8yC4D84gp+/PIwYhMyAG0r04/HLQFg6sKtrN1+HIDcwnJ69h4RANmHPV53Hd1B9lf9x1Jb1wAQAFmAepuD378zUadVtX8640CQba5jVtFt/iZ5bwBm/zblAF8V3yHfUq/7gUrFBGTVTkBW3QRk1U5AVt0EZNVOQFbdBGTVTkBW7TpzvM0uLhoXdXpRppVtr8cPsr98fQy/6j+WF/qN5ud/HMW6HcfxeLwAvPbBVKy19URdS2DTnpO8+/k8PF4fh0Mvs3qrtq2Bx+OlqakZ0ED3p68OBzSQ/VX/sYGPl1NQxmsfTAXgpXcnkZ1fGnjfR+OWBED2YY/XXUd3kH3xzfG43B6gNcjW3G3gF31H6bSq9k9nHhBKLXbWlabzb2mHAzD710m7GJt/jWSTVfcDlkoJyKqdgKy6CciqnYCsugnIqp2ArLoJyKqdgKzadfa4mmydnrvJ3uZavn2GrKWmjl+/MY6isurA75mzfBfRN5JY/k0w12+nMWvZTtKzi5i2aCvXb6cB2pmvQyYuZdCYRQwctZDnXhkGaCD78vtTAo91/69/+upwKg2WwPvGzFwXANmHPV53Hd1BduLcjSz/JphGlzsAstVGK+PnbGDsrPX6Lq4do9fB4VBFPr/LDA3A7J8nbue9nHCiDVW6H7hUSEBW7QRk1U1AVu0EZNVNQFbtBGTVTUBW7QRk1U7laWvLgm+CTrUyutPhN1i34zgfjF5Ivc3BsTPR7D8RQZ9B03E4G7HW1vN8n5EUllYBmvO1B2R//85EcgrKAu8bOGoh5yJjH/l43XV0B9lqUw1vfjo7cFOvX78xjh69hjJo7GKq7lPxrjp6HySiDVW8lxPOnyduD+Ds7zJDCa4o0H1tz3ICsmonIKtuArJqJyCrbgKyaicgq24CsmonIKt2Kk9bIGuzO/nt2xOIS8gENBAdOGphYL/YnIIyPhq3hCETlwIasv727Qm43R6amppZv/MEPXoNpdHlfiTITpy7MbCHbFpWIT1fG865yNhHPl53Hd1BFsDnayIxLY/Qi9e5GH2bzNwSvZfU7tH7INFSssnKmPxr/PV9NwD7t7TDrC9Lp1RuAPbUE5BVOwFZdROQVTsBWXUTkFU7AVl1E5BVOwFZtVN52gJZgAMnInj383mBfVz7fjyDhWv2AdDU1MwL/cawOSg08PtnL9vFax9OY9CYRcQlZPLJhKV8MHrhI0G2pNzAwFEL6TVgClMWbGby/G84HX7jkY/XXafLgGx8cg6hF68H3mazd48fAL0PEt8u11zPguIEfpCyPwCzf5O8l9nF8eSa5QZgTysBWbUTkFU3AVm1E5BVNwFZtROQVTcBWbUTkFU7GZmOHt1BtqLaTN+PZ/CLvqMCe8hWGiz8+o1xpGcX6bu4dozeB4mHVWaxs6Uskx+nHQ3A7H9K2sXneVeIN5p1X193T0BW7QRk1U1AVu0EZNVNQFbtBGTVTUBW7QRk1U5GpqNHd5AdOmUFm/acxOdrCoAsQPCpKD6bvFy/hbVz9D5ItKfjlUW8nHkmALN/lridN7IvcLG6Qve1ddcEZNVOQFbdBGTVTkBW3QRk1SzP0sipKidbzB52VTo5b3CQbtZ/XVLnJSCrdgKyaicj09GjO8g+32ckLrcHoBXIerw+fvn6GJ1W1f7R+yDxJF03GBmUE8X/k7QjgLO/TD9JUHkulV1gfd0pAVm1E5BVNwFZtROQVTcB2We/QouTsGoHq8ocfFZg54VsGz/IaLt/yWzg5RwbnxbYmV9sZ2eFk4sGJ5kW/T8P6ekmIKt2ArJqJyPT0aM7yPYaMAVLTR3QGmRb7qDW1Ufvg8R3KdVUw8SCG/zX5D0BmP1RajArSlIosjTovr7ukICs2gnIqpuArNoJyKqbgOyzV3i1k7XlDoYX2ngx5+H4+lqujXeLnLyRb6d3ro1/y2x46O/9QYaN/53ZwKs5NoYW2FlQYmd3hZOIaidZgrXdMgFZtROQVTsZmY4e3UF25ZYjfDppGbcSs+jRayg5BWWcjbxJ349nsGT9Ab2X99jR+yDxfSq0NPB1SRL/kHIwALP/LTmIqQWxZJru6r6+rpyArNoJyKqbgKzaCciqm4Bs963M6uSy0cnmcgdjC+30yrHxwzYg9YcZNl7JsTG+0M7WCgdXjE7K/Y/x7T1k8yyNRBqc7Klw8lWJnc8LbLyaa+NfH4O1/5bZwGu5Nj4vsLGw1MGeCidRBu3x9H6epLYTkFU7AVm1k5Hp6NEdZBtdbhau2cfP+oykR6+h9Og1lBf6jWHt9uOBrQy68uh9kHgaVVgd7CzP5vmMEwGY/YvEnQzOvUSs0aj7+rpiArJqJyCrbgKyaicgq24Cst2jCquT60Yn2yucTCqy81qujX9oA0b/LsPG73JsjCq0sbHcQZTBSekjzmB9kpt6ZVm0M2J3VziZX2xnaIGdV3O0M2cfhbX/ntVAn1wbwwttLCp1EFTp4JLBSb5gra4JyKqdgKzaych09OgOss3NzQB4PF4qDZbA9gUADmejXstq9+h9kHjana4qoW92GP/BD7N/mriNPlnnOFVVrPvaulICsmonIKtuArJqJyCrbgKyXa9Kq5NYo3aW6rQiO/1ybfzoIdj562ztrNS15Q7OGxwUPeHHehKQfVSZFm2v2Z0VTuYW2/m0wM7LOdqetI/C2v+baaNvro0RhTaWlDnYV+ngstFJgWyD0OEJyKqdgKzaych09OgOslMXbmnzTNik9Dz6DJquw4qebPQ+SHRUt4wmPs2L5i8TdwbOmu2Zfpzt5VmUWx26r0/vBGTVTkBW3QRk1U5AVt0EZPXvjtnJgUoHs4ptvJn38DNOf55tY0i+neVlDs5UP50zTJ8WyD6qdLOT8wYH2yuczCmxMyRf217hnzMfDrU/yLDRI9NGv1ztbN+lZQ4OVGrbLTwpOkttJyCrdgKyaicj09GjO8gOn7aKTyYs5W6dDdDOlF234zg9XxvOxt0ndV7d40fvg0RHl2m6y/SiW/z35KAAzP4w9QCLSxLJt9Trvj69EpBVOwFZdROQVTsBWXUTkO3cUsxODlc6mFtsZ0Cedjl/Wxj50ywbH+XbWVLm4GS1kxxzx6BpZ4Dso0ozOzlf7WBrhYPZJXYGF9h5KefhZwS39OMsG/1z7YwptLGs1MGhSgcxgrVPlICs2gnIqp2MTEeP7iDr9flYvP4Ar38ykyuxybz7+Tz6D5lFenaR3ktr1+h9kOisSqw2Vpem8i+pwQGY/S/Juxmff41UU43u6+vsBGTVTkBW3QRk1U5AVt0EZDuuLLOTkConi0odfJhv47msh1+2PyDPxvxiO0ernGSYO2+NeoPso0oxOzlX7WRrhXb28McFdn6XY+OfHoO1P8my0T/PzthCO8tLHQRXOrhmdFLcBT6nrpSArNoJyKqdylNb10CPXkMf2EY09OJ1hk9d1SlrmDh3I+ciYzvlY+k1uoNsywSfiuK5V4Yxcd4mGl1uvZfT7tH7INHZVVqd7CvP49cZpwIw++dJOxiYG0GMwaD7+jorAVm1E5BVNwFZtROQVTcB2adTnqWR0Cony0odDC6w83x221j4r5kNvJ1nY3aJnUOVDhJN+q67K4Psw6q0OkkyOTlb7WRLuYMZxdrZxL/NsfGPj8HanlnathDjCu2sKHMSXOnghvHRNz57VhOQVTsBWbVTeQRkO2d0AdngU5fabMKcjbz45ngOhkQG3tbVR++DhJ5FVlfyVvZF/ixxewBn/5B1miMVhbqvraMTkFU7AVl1E5BVOwFZdROQffKKrNpl9qvLHAwrsPPLh+DrP2dql9VPL7YTVOngls742lbdEWQfVQvWnq528k25g+nFdj7Mt/Fijo2/f8yetc9n23grz8b4IjuryhwcqXJw8xnGWgFZtROQVTuVpz0gW2WwMHj81/T9eAZzlu9i6sIthF68DkBKZgEDRiyg78czeOuzOdxOzgYgp6CM94bPZ8OuEEZMX03/IbO4EZ8OQKXBwkfjlvDHj75k6sItjJ6xNgCyD3u87j66gOx7w+e3u64+eh8kukLxRjMj8mL4z0m7AjD772lH2FiaQZnFrvv6OiIBWbUTkFU3AVm1E5BVNwHZR1didRJR7WR9mYMRhTZ+m2Pjb9vAvH/MsNEn18aUIjs7K5zcMDqp6ALrf1zPGsg+qgqrkwSzk1NVTjaWO5hWZOeDfBu/yW7gh4+A2r/1Y+07eTYmFtlZU+bgWJWTWKOTsm6MtQKyaicgq3adOh7ggA4dbXs57QHZKQs2s3b7cQBuxKfTs/eIAKC+M2weYVFxAJyLjKX/kFkA5BdX8OOXhxGbkAFARMwdPh63BICpC7cGHi+3sLxdj9fdp8tsWdBdR++DRFcq11zP3KJ4/mfKvgDM/s+UfcwrukOu+dm6AZiArNoJyKqbgKzaCciqm4DsvcqsTi4btcvgxxba6ZVjaxPqfphh45UcG+ML7WypcHDF6KS8C6z/u6QSyD6qCquTOyYnJ/34PrXIzvv5Nn6V3fb3QEt/l2HjF1k23su3MbnIztpyB8ernMSZtO8nvT+vRyUgq3YCsmrXqeMGtutQUNvLaQ/I/v6dieQUlAXe986weQFA9Xi8NDU1A2Cy3OWnrw4HNJD9Vf+xgT+TU1DGax9MBeCldyeRnV8aeN9H45Y89vG6+3QJkI1PzmHF5sNMXbiV6Yu3sXrbUZIz8vVeVrtG74NEV6zMYmdjaQb/nnYkALP/OWkXI/JiSDRZdF/f00hAVu0EZNVNQFbtBGTVTVWQrbA6uW50sr3CyaQiO6/l2viHh4Db73JsjCq0sbHcQZTh2bqEXUD28ZVbndw2aTdoW1fu4IsiO+/l2XihHVj7QraN9/K0M6fXlTsIqdIeqysAvoCs2gnIql2nj0OHHvJp1tXb6dFrKA02R6u3nwiLYeT0NQD89NXhGMw1gffdv8VARMwdhkxcyqAxixg4aiHPvTIM0ED25fenBP7M/b/+6avDqTRYAu8bM3PdYx+vu4/uILsrOIzn+4xk1JdrmLdyD7OX7eLTScv4yaufs+94uN7Le+zofZDQu4yCR//j9HBlIS9lng7A7J8lbuft7HAiqyt1X/v3SUBW7QRk1U1AVu0EZNVNBZCttGpnLO6pcDKtyM7ruXZ+9BBE+3W2jc8LbKwtd3De4KCoC6y/IxOQ/X6VWbXvrRNVTtaWO5hcZOe9fO2s2b97BNb+MEM7+3ZAno0viuysL3Nwslo7S7ezsFZAVu0EZNVO5fH5mvhZn5Fk5ZW0evuyTcHMW7kHgBffGk9BcWXgfe8Nn8+5yFistfU832ckhaVVAFQbre0C2W+fcTtw1MLHPl53H91B9sW3xgee2Pvn+u10fvPGOB1W9GSj90FCz+KSGxkx2cPEWW6WbXCx73gjUTdcZBY9+A/Wy4YqBuREBGD2TxK38euMUxyoyNf98/guCcg6MYWdxXwmBNPlKIzxdzBk5VFdZtZ9XZ2RgKy6CciqnYCsuj2LIJtgdnKg0sGsYhtv5tn435kNbaLYz7NtDMm3s7zMwZlqJ/kW9WBSQLbjKrNo+8weq3KypszBxCI77+Rp33dt7UN8P9b+OtvGwHwb04rsbCx3cKrKyR3z092XWEBWvTJNd7llNBFZXUmxq0FAVuFUn2Wbgvl00jIqqs243R4uXU/kl6+PITO3BIAxM9eyZW8oAHEJmfysz0jORcaSX1zBb9+egNvtoampmfU7T9Cj11AaXe5HguzEuRsDe8imZRXS87Xhj3287j66g+zrn8xs8+1ut4dfC8h26aJuuBg33cOIyQ82fqab5Rs1pL188x7SJpusjMu/xl8n7w7A7L+kBrO6NJUSq033z6m9Ccg6qZn4EXc/+N0D1X70B2pGvEXNlCFY50/AsnIe5q1rMB/ajfn0CUyXojDE38GQlU91mUn3z+O7JCCrbgKyaicgq27dHWRTzE4OVzqYV2xnQJ6Nf89qG19/kmXjo3w7S/xnImabBSGrrAKyelVqcXLT6ORIlYNVZQ7GF9l5O0+7edjDoPYHGTb+PtPGizk2Psy3Mb3YzjflDkKrnCSatDPBn2QNArLdq1xzPXeMFqINVZyuKuFgRT5byjJZXpLMnKJ4xhdcZ0juZd7JDueVzLO8kH6Sf0s7zP9K2d/qBtUtzaiIE5BVONXH5fawbsdxXhn4Bb/oO4pBYxZxIz498P784gre/Xwer38yk0Uk7pLEAAAgAElEQVTr9jNu9vrAjbdmL9vFax9OY9CYRcQlZPLJhKV8MHrhI0G2pNzAwFEL6TVgClMWbGby/G84HX7jkY/X3Ud3kJ2/KoircakPvP3YmWhWbD6sw4qebPQ+SOhdpcVJen4j4VcbCTri4ut1bsZ/6W4TaSfOcrNio4v9xxsJu2ljbnYyf5d6IPAX3n9PDmJ60S0yzHd1/7wel4CsE3PwHizrFmNZPBXrjOHUjn2f2iG920Tax1Uz4k2sUz7BOn88lpVzsWxZjfngbkyhxzFFRWK8dRtDRi7VpQbdP+8qq4CsygnIqp2ArLp1J5DNNjcSUuVkcamDD/NtPJfVNlr930ztUvD5xXaOVjnJMOu/9q6agGzXq9Ti5IbRSXClgxVlTsYX2nkzz0bPh3y/t/QPGTZ+m6O98DCj2Mbmcu3M76SHYK2AbOeVb6knyWQlxmDgbHUpwRUFbCvLYlVJCvOK7jCx4AZD86J5Lyec17LO8euMU/x72hH+LvUAf90Gpn7X/jp5N3+XeoB/TzvCemOqgKzCyTx+Wm60BfDZ5OVt2p7Mw0d3kJ359Q569h7B28PmMmHORsbMXEu/wTP45etjmLJgc6u64uh9kOiKVVqcpOc1En7VxZ4jLpasdTPuYUg7x8VHR7L5p9jjgb8E/zJxJ5/mRXPL2HXPnhSQfcRzY6zHkF+KITkN4/XrmC6EYT5+CNOeb7Bs+Brr119inTWSmnEDqf30OwDuoD9QO/yN1oC7VQNcc+iJbwGukSqL46l/jgKy6iYgq3YCsurWVUE2z9LI6Wony0odDC6wP/TMwX/NbODtPBuziu0cqnSQaNJ/7d0pAdnuVbHVyTWjdlb48jIHYwvt9M+z85PHYO0/+W9O93GBnZnFNrZUOIi0uChyeJ/4zFrVKrHaSDXXcsNo4GJ1OccqithVns3a0jQWFicwtSCW4XkxfJAbSb/s87yYGcpzacf4h5RD/H/Je/jzxO1PBVP/c9IufpCyn39LO8wL6Sd5JfMs7+aE82leNOMLrjOnKJ4VJSlsKcviYEU+p6tKuFJdTYLRQq65/oHPS/aQVTuZR8+qLUeYsWQ7zc3NlFYY+VX/sZitd/VeVrca3UH26w0HWf5NcLvqyLl+O50fvzyMnr1HBAo+dQmA8ioTQ6es4DdvjGPAiAUkpecH/pzeB4nuUqXFSVqei/AYF3sO+5H2W9sd9F9ezt+fCeNPErS/UP80YRu/vXOew/mluq//2wnIPsXn0tiAobAcQ2oGxus3MF08j/lEMOY9mzG3AO7MUdSM/5Caz/p8B8B9idrP+2OdPBjrvPFYVszFsmUV5gM7MZ06hulSBMZbtzBk5Ghn4Jrtj12zgKy6CciqnYCsunUFkC2yOjlvcLC6zMGwAju/fAi+/nOmjf65dqYX2wmqdHBL8PV7JyD77FRkdXLV6ORQpYNlpQ7GFGo/Lz9+DNb+KMPG77M1rJ1VbGdrhYPz1Q7SnoEzyyusjsC+qRHVFYRUFhNUnsvG0gyWlCTyZdEtRudf46OcKPpnX+ClzNP0TD/Oj1KD+R/Je/mPiTueCqb+ZeJO/iZ5L/+SGszzGSfolXWaN7Mv8nHuJcbmX2Nm0W2+LkliU2kG+8rzOFVVTJShklsmE9nmug5BcwFZtZN59Fhq6hg+dRWvDPyCfoNncDbypt5L6najO8h2lblw+TZffNX2WbifTV7O/hMR+HxNXL+dTq8BU/B4fYCA3Pep0uIkNdfFxSsudge7WLJGQ9qB8y38n6PR/Fn8vb/c/1fUCT45ksuBk06iY13klOj7j2IBWR0z2ToWcD/8PbWf96dm8sdY547Dsnw2ls0rMe/bjunkUUyR4dhTEqjLzaO6pLpdgCs9OwnIqp2ArLp1NsiWWJ1EVDtZX+ZgZKF2iXVbNzj6xwwbvXNtTCmys7NCu4T7ad7QSNISkFWjIquTK0btZndLyxyMKrTRP9/Gc9n2x2LtH3JsfJJvZ06Jne0V2osn6Z2AtZVWJznmOuKNZi4bqgitKmZ/RR6byzJZVpLMrKLbjMu/xie5l3k7O5yXM8/w84wQ/jUtmP+Zso+/ekqX+v950g7+e3IQ/5R6iJ+mH+d3maG8nn2eQTlRjMy7yrSCWBaXJLK+LJ095TkcrywivLqCWKORdHMt5danf0Xb00hAVu1kZDp6dAfZpqZmjp+LYfD4r3n5/Sm8+NZ4Bo1dzPFzMZ26juNnrzB/VdADb7fW1vNCvzF4fb7A294f+RXxyTmAgNzT7n6kXX+sjj+cjOMvY4Pu7ekTc5AXt6UydJqTyXPcrPzGxaGQRq7EucjtRKQVkO1GmWwYCiswpGZivHETY/h5zCHBmIO2YN60DOvSGVhnjaZmwiBqh/b9boA7rB81kz7COmcsluWzMH+zAvO+bX7AvYgxNg5jWjbVxVVUmbvPzeukBxOQVTsBWXXrSJAtszq5bHSypdzBuEI7vXK0O8i3dVf5V3JsjC+0s6XCwRWjk/Iu8NyokICsurXsIVto0X5O91U6WOJ/oaRvrrYX86Ow9l8yG3g5x8anBXbmFtvZUeHkgsER2LM531JPoslCjKE6sG/q1rJMVt63b+pn9+2b+quMk/yftCP8bYq2b+qfPgVM/bPE7fzX5D38fepBfpx2lN9khPLHrDDez4lgeF4MUwpusqA4gTWlqewsz+ZIRSHnq8q4ZjCSaqqhyNKg+9epoxKQVTsZmY4e3UF26/4zvPTuJDbsCuFMxE3ORNxk/c4T/O7tiYEtAzpjdh8+zwejF/LOsHn84b3JzFu5B7ujkaT0fN4ZNq/V7522aGsAjKtrnFIHV2RpYG5mCn9751DgHw5/ERdEz32xDJ5V32rbgylz3aza7OJwqJuY2y7yyxs7ZE2GWv9f0F3g+ZGechYbxuKK/5+98w6L6zzz9pe2m90ku9lvk806TuJ40z7Hsb2xEztx7FiW7bjFRY5t2XKTZHWrN9R7r5ashnrvQg0JddQQEh1mGGYGZpjeQeXMOXMGge7vjwNYsigCAQeY81zXfV0W4Jl3ZuCc897nfX8Pvlw9/pQUAkcPEdi1hcDapQQXzSA0PY4rY/tQOuA9Srs2QuC+8xdKu75ISf/OlIzqTWh6HMFFMwisXao8z9FD+FNS8OXq8VmdeILC7WMMtYL3KUYJVApZtcehoQ5yWQUlV2XVx6EW7hg+9pRUCtm7fRxXicRZv0S8U2KAJczzRqXJ0Fclzr06gacKBHoWCXzuFDnmU8St2u9DrHK9/AaBy81zTalxB6j4u18lZGv6njV0jZxACce8fpY63IwodvNBoZuOBR4eyfdzn+5ynbL2R3kl/CDXxvdzdHw3+wL/kn2Ub2Xt5uuZa+5Ypn4tYxnfy1zJj7OVJlR/1O3mufwDdCpI4mPTSfoXnmWsNY3ZtmyWOfRsdpo54LGR7POQGQhiDl1T//Ntxdy4Ad5WMA4NddBKq+Yu1YXsC52HUVBov+3rOqOVVz8a1WLjOHYmnYUrd3H5ikDJ5Wt0Hzqb6Ys2kZKuo3PvSbf87NhZq9mw8wgAN25otBQVN2DPZQtPFiRUX4R8K2MFf00+wdAVodsyaasYOq6MRSuucyCpglz9Da5ea5rxaJ9/7FJVN27AjfJyKkpLKLdZuK7LoCzlBHLSbqTtqwjHz0WYOwZhQj+uDu7ClW4vc/ndpxoscK90fYmrA9/j2rg+CLNHISyfhbQ1HvnQDqLnjnI9N43r1kIqQkFuXC9X/f1p16D97ccyoPwOqD0OtYher1B9DKrRiL/9ihtQKN9gz5XrjHfLvGGR+J9aVtP9xRSmrz3CylAZqeFyxIpW8Jo1qon1v321KWuGY8/1Gzfwl0mYI1dIDwc4ec3FnssW1oYKWOjPZZInnUH283QrPsVbRUk8a9zPY4Zd/FK3mR/mrOWfMu8sN/Vrmav5VtZOvp2dxHdzUvh+Ti7/mVvMj/JCdcran+ou86DBz19Nbt62OhjicrIo4CLxipdsMUSxfI3S6zIVreDzac9o13yxjVZaNXepLmT/8FKv6jzWm6vsejl/eKm3CiNSKj3HyEtdRpKlM/PaJ2Nu+d6QiUvYdfA0oG1ZV4vDHicvGxL5+k0XPB30+4jXW0g8KbNyk8zEOVF6D61Z0g4eG2XOEpkte6OcrlxJ25Dnr7pjqvb7oKEOd9XUKxDGU+zBl1eA70Iq/qNJ+HdvI7BuOcEvZhGcMYrQmL6UDHyf0m6vNErglnz8AiX93iU0siehqcMJLJyqZOzu3Iz/cCK+s+fw5ujwFjlw+7UIhYagRRbENlpkQexyJ5EF6QElezLOKvCaSeCX+ms1ipZHDUrW5Ay7yD6PhDmobYVv7WiRBa0LV0jCELjCRX+AY14Xe9xW1jlMLLbpmVqcyUjLRfqYz/C+8Th/Nxzmmfy9/F63k1/kbOaHWWv5dkZ8k+Sm/lPGCn6QtZb7czbzSN4Ontbv5RXDId4rOEZP02mGW1KZUpzBQnseaxxGdrmsHPE4ueDzowtcRhcQOeqVWO2UGF8cpmthmI5GgV/Vcuyo4tf6azxnFOhWKDDRJrLaJXHcK2HSjiVNzo0bWmRBLKOVVs1dqgvZd3tNYs+hM7d9fefBZN7uObHFxlFU7MIfvFz97wvpel77ZAylV67x6N96IkWi1d97qcsIsnRmILaF3AmvxEP5Am+aBYZalG6jR1p4YpHq89PVdOqWQPoHc7fxhV2PPRjGGZDIMkQ4eFImfpPMxNm1S9ohY6PMXSqztVLSFtYhaTUhG9vclZBtKIEwHpsXr64AX2oq/uNH8O/ZTmBDPMElswnOHENobD9CA7soArfz080qcD2+9psTdidoQja20YRs7PJVIZsTkNjiEhlrDdPJVHuO5EP5Au+Zw0yxi+z2SBgCmjBpi2hCtmkxBq6S7gtyyuNhr7uYjU4zS+z5zCzOZrTlEv0Kz/KR6SRvFiTxrH4/f8jbza9zt3BP9nq+01RNqDKW8/2s1fwsexO/y93On/UJvGg4yDvGo3Q3JTO48DwTrGl84dKxJWBmm9PCIbeDcz4vOYFSrKHmvaGdH5RI8kisdEqMtYb5uDBMx4Lab/RU8f/yr/GCUaB7kcBkm8hal8hxr3bjp7FoQja20Uqr5i7VheylrAIeef5TOnUfx4gpyxk+ZRlvdB3LI891Jzklu8XGMW/5DnqPnIcoRRDCEj2Hz2X+ih0AdB8ym+Ub9lNeXsHB4xd4ofMwyssrgNgWcvFOsdaLgf81CHQyCQyvDK8/7lU6lzbXWAyBK4y0XOSHWWurL7TuyV7PeGs6xsDVW362WtKekInfKDNhdpReQ2qRtOOizF0ms3VflDOXZIqcysWMJmRjmxYVsg0lKOKx+fDqjPhSL+I/dpRAwk4CG1cRXDqH4KwxhMb1IzToA0q7v8rlzn9teAbuR89T0vdtQnE9CE0dTnDhVPyrFxPYsQn/oYP4zp7Fm5WL12zD47uq/nvShGhCNrbRhGxsYghE2OeLMNcr865Z4Hf5NV/7PKAXeMskMM4aZqv7y6Y9Gm0fTch+SVHwGln+EKe9Xg667WxxFbHckc8cWw7jrOkMNJ+jq+kUbxUc4YX8Azyh28MDudv4Sc4G/i1r1S272xrL1zKW8b2sVdybo+SmPqHbw/OVuamfmE4ywHyOsZY0Zhdns8yezxZXIQfcNpK9XjL9IQob0ISqKkNW7ff9ZnQBpTHYCqfEGGuYjwrDdCgQao1EufkY9aJRoEeRwBS7yDqXyAmfRFFQ/dfUWtGEbGyjlVbNXaoLWQBfoJRVWxKZOHcdo2esZPmG/dhdvhYdgyjJxE2P58+v9eOvnQYyce666lWxLm+QjwfO4IlX+/J2z4nojcXV/5/aBwk1cYQkUnwSm1wiE20iH5rDPFlLZ+Cbt+m9bRaIs4ZZ5VS6lVqbcEy2YJh5tlx+lbu5+qLtu5kr6WU+Q4Y/WOv/5wxIZOZHOHBcZsUGmQmzovQaXEsm7fgo85fJJB6tuEXSasQOrVrINpSgiMfux5tvxnspDf/xYwT27iSwaRWBpXMJzhpLaNxnlAz6kJJPX6P0vUYI3A+fp6TP24RGfEpo8lCCC6bgX7WIwPYN+BP34z97Bm9WDh6zDY/vivrvSR1oQja20YRs+8cUjLDXIzHDJtKlMMzvDTVfz/xKf43XTcr1zCaXSIZf/bFrNB/tRcg6QiK5gVLO+3wc9jjY7rSwyl7AfFseE63pDClM4VNTMu8aj/KSIZEn9Xt4KG879+Vs4j+yVvPNjOVNsjr1XzNX8qPsdfw6dwuP6XbRQb+PNwxJfGg8QT/zGUZZLzGjOIsldj0bnGYS3MWc9LpJ8wUxBq7iasH3rDUK2brIC0gkekWWOUVGF4f5wBzmrwUC99cxP7tHJ/BgvsDLxjA9iwSm2UU2uERO+Zp3QU1bQBOysU0sV0Ghnd892/UWfvvMJwwYt6jJHv/F90fU+L0+cQs4cDSlSZ6ntVerELJtudQ+SLRG7EGJcz6J9S6RcdYw7xeG+ZPhGvfWcgHwY53AHwzKlr4x1jCrXRLJPoniuxzHRqeZP+u/bAD2zYzlvFmQxEmv+47+f0dAIiM/wsHjMss3yIyvQ9IOGx9l3nKZ7fuinE3TJG17p10J2UbgsQfw5pvwXUrDd+I4gX27CGxeTWDZPIJzxhGaMICSwR9R0uP1xgncD56jtM8/CI3oTnDyEIILJhFY+TmBbRvwH9yP//RpvJk5eEzFeLwtK3A1IRvbaEK2fWEJKeJijl2ka2GYx2uRr/frBF41hRnjjLDGJZKqydeYozUIWWdIRO+/TKrPz1GPi92uYtY4jHxu0zG1OJMRllR6mc/wvvEYrxoO8bR+L4/k7eB/KnNT/ynjzppQ1cc/Z8Tzw6y1/E9lbupf8/fyquEQ7xuP0dt8hhGWVKYWZ/K5Tcdah5HdrmKOelyk+vzkB67gDImqf54Noa0J2brICUgc9IgsdYrEVc7RnjLUL2t/ly/wijFM7yKB6TaRTS6R0zEiazUhG9to9WVduRbmuXeGcDHL0CSPV5eQvSqIyNGyJnme1l6qC1mz1Un/sYt45cM4nnt36G209lL7INGWsAUlTvsk1rhExljDvGcO80eDImRrOvnfqxN4wiDwfmGYcdYw61wiZ32K8G3I8x71uHizIOmWu/pP6vewyWlu8GtwBCQy9BEOHJPZsK2c8TOj9Kwl7mDYBGUlbZWktbo0SdteiHUh21CaXeB26Uhp706EhncjOGkwwfmTCMQvVARu4j58p5PxZWThMVnwuEvu6rVoQja20YRs26U4JHHUK7HALtKjSODJgpqvP+7TCTxvFBhkCRPvVG4wO0N31tRLo/1yt0LWFVJyU9N8QU543SS4i9ngNLPErmd6cRajrJfoZz7DB8YTvG5IooN+H4/pdvGr3M38KHsd/9qEuan/kbWa+3I28VDedp7U7+ElQyLvGo/yqSmZIYUpTLKmM9+Wxyp7AdudFg57nJz3+cgNlOJoYzK1KWhPQrau388sv8QBj8QSp8hIqzL/erJAOSbWJWsfyhd4xRSmT5HSqHCLS+RME++AVBNNyMY2Wn1ZQyYuYe7y7dX/ztYX8tan43nx/RG89vHoalFbUGinU/dxzF2+nY8HzuC1j0eTmpnPwHGLebPbWKZ9vrH6517qMoLZS7bS8e0hvNRlRPVj3LxCtrbnaS+lupB97ZMxdB86mx0HkjlwNOU2WnupfZBoDxSHJE76lA6jcdYw75gFHqsln+0enRKJ8GSBwIfmMBNtIhvdIud9SoRCXc+T4Q/S03Sa7950Ufur3M3Ms+ViC4YbNOabM2Sdfol0XYT9x2SWrZfrlbQLlsvs2B/lXLomadsqmpBtXjzOIF6DGV9aOr6TJwjs30Ng81oCy+YTnDNeEbhDPqak5+uUvtehEQL3WUp6d6JkWFeCEwcRnDeRwIqFBLesw38gAV/yKXzpmXiNFjyuWwWuJmRjG03Itg3sIeW6YolDpG9RmGdqiVP6iU6gQ4FAv6IwS5wiJ+u4ltCEbGxzuSxKTqiEZK+X/R4bm52FLLPnM7s4m7GWNPoXnuMT00k6FSTxXP4BHtft5v/lbuXenA18L3MlX2sCmfr1jGX8W9YqfpKzgQdyt/GEbg8v5B/grYIjdDOdYqD5HOOs6cyx5bDCkc8WVxEH3XZOe71k+0soakBuqsZNn30MCNm6cIUkMv0S+zwSXzhEhlvDdDYrc7Gf1SNrH8kX+LtJOcbOsktsdomc8ymLdNR+XXeKJmRjmxatCokbOZ+2PLoB9Q4t4fBZOnUfR1nZ9eqvvdF1LAePXQDgwNEUXvkwDlAWXD7YoStZOjMAI6Ys57VPxhCNliFHy/jDS70IllyhoNDOQx27kXD4LAB7k87xUpeRwK1CtrbnaS+lupB9uGN3rlwLqz2MRpfaB4n2jCWkNAOLd0qMsCqNMmrLcrtHJ/BTvcBTBoFPCpVuxltcIhf8ysqWmx/XGLjKOGs6/529vvoi94dZaxlpuYghcGfbn+tr6uWokrRHZZaukxk3I0rPWuIOhk+IsmBFlB0HFElrcWuStrWjCdnWhccZwltQhC8tE9+pk/gPJBDYspbAigUE544nNGEgJUM/oaTXm5S+/2zDBe77z1LS603lMSYOQlg0icCKBQS2rFUE7qmT+NIy8RYU4XGGVH8/NJoPTci2PpwhibM+iRVOiYGWMM8Za5YE9+oE/lIg0LNIYKFD5Ji3YVJAE7JtF2tIIMdfwlmvj0NuB9ucFuIdBubZcplgTWNw4Xm6m5J523iEFw0H+bM+gQdzt/Gz7I18P2s132ii3NTvZK7knuz1/Dp3C3/I282z+v28WZDER6aT9Cs8yxjLJWYWZ7PEns9Gp5l9bhunPB7SK3NT1X4fY5VYF7J14QpJZPglEtwSixwiQy1h3jUL/LlAmZfVJWt/bxB43STQzxJmtl1ka+UCm9YmazUhG9u0aJWL3Eh/q+XJ+rDOYTncfp56oz9Fxa5bvl5Wdp2KihsA+IOXebhjd0ARsn9+rV/1zy1avZvJCzZU//ulLiMwmG0UFNp57MWe1Y9RVnad3z7zCaVXrt0iZGt7nvZSqgvZt3tOxGL3qD2MRpfaB4lYpDCobDtc5lRO/J3MAg/XsaL2Pp3AMwUC3QoFptmUE36aX2kAttim57e526ovlv8lcyVdTadI9fnrHEN9QrYmHH6JtLwI+6ok7fTaJe2IiVEWroiy82CU8xkyVo8maVsTmpBt23hcJXiNFnzpmfiST+E/kEBwyzplley8iQQnDqJkWFdKeneitEsjBO57HSjp+TolQz4mNGEAwTnjCSybr6zy3b8H38kT+NLS8RrMeJy1NxvUaH1oQlZdXCGJC36J1S6JoZYwLxvDtWYfPmFQzvtz7SKJXvGusw41IasOzpCILnCZCz4/SR4nO11W1jiMLLTnMbk4g2GWVHqaTvNewTFeNiTylD6BR/J2cH/OZv4zaw3fymya3NR/yYznv7LW8ouczfxet5Nn8vfyd8Nh3jcep4/5DCMtF5lanMlim551DhN73FaOeV1c9AcwBK60aBMqjaZFE7KNwxmSSAtI7HZLLKyUtW+blWNzXQ2gf1zZBPoNk0B/S5i5dpHtbqWRdENj65oCTcjGNi1eZaUtz/XLtQ6nvLyC9/tOYfOeY7d970hyGh/2n0bn3pN4u+dEfvdsV0ARsjdHjy5Zm8Ccpduq//3Kh3HojFYKCu08986QWx7zsRd7YnP6bhGytT1PeylVhKzOaK3m8MmLfDxwBodPXiSvwHrL93RGqxrDa1CpfZDQ+BJTMMJhr5J9NNgS5nWT0jG0thP+/TqBjgUCnxYJ9Cry8kf9eb6RubF6W9jLhkQOe5w1PldjhGxNVEnavUdklq6VGVuXpJ0UZWF8lJ0HZVIyZIo96r/nsYomZGMLj7sEj8mCLyOL4NnTRE4dIrBtA4H4hQTnTyI4aTCh4d0o7d2J0i4dGyFw/0pJj9cpGfxRpcAdR2DZPCVnd98ufCeO47uUhjffhMceUP39iGU0IduypAckNrpF4qwCr5kEfqm/VuP5/FGDwAdmJb9wn0fCHGz6m5iakG04rpCEIXCFi/4Ax71uEtxW1jlMLLbpmWbNJM5ykT7mM3QxHuc1w2Geyd/L73U7+WXuZv4rex3fzohvEpn6rcwV/GfWGn6es4mH83bwF30CLxsS6VxwjB6m0wwtTGFycQYL7HmsdhSw02UlyeMkxecjrzI3tTU09dJQB03INj2OkMQlv8Ruj5LrPdgS5i2TwB/rkbX36pRYu05mgYGWMPMcIjvdyo06ezONVROysU2s19J1e+k5fC43bty45euh0qv8/oUeFNncAHh8oUYJ2T+81Lv6satWyF65Gq4WsnU9T3spVYTsb5/55I5p7aX2QUKjfozBCIlekcUOkYGWMK+awjxQxzaae3VX+M/cYv49J5vvZJ/hId1p5hXf2gCsqYRsTTj8Emm5EfYmySxdIzNmWu2SduSkKItWyuxKlEnJjGiStoXQhGzscicZsh7vFTymYryZOfhPn8Z/cL8icFd+TnDBJIKThxAa0Z3SPv+g9IPnNIHbhtCEbPORE5DY6hYZaw3TySTUep5+KF+gs1lgil1kt0fCEGgZSRbrQva4181Gp5kl9nxmFGcx2nKJfoVn+dB4gjcMSTyr388Tuj38OncL/529nu80UROq/3NTbupvc7fxJ11CjbmpcytzU3e4LBx02znj9TVpbqomZGMXTci2LPaQxEW/xC63xHyHyKBKWftYviJk6+ox8geDQCeTwGBLmPkOkV1u5bHq6zNSF5qQjW1iuXLyi/hrp4EEQrevoDVbnTz5+mdEo2VUVNxgQfxOfvvMJ0TkaIOE7IMdunIkOQ2A/UfP89onY4AvM2Trep72UqoIWbky0PdOaO2l9kFCo/EYAhEOeJRtNJ9ZwrxiDPOb/KwzLFEAACAASURBVJpX39yjE7gnr5RHDQF6FgnMc4icEcrJDbTMWB1+iUu5ERKSZJbUJ2kny3y+UmZ3osyFrAjFXvXf6/aGJmRjl+Zo6uXxXcFjtuHNysF/9gz+xP0Etm/Av2oRwQVTCE0eSmjEp5T0eZvSD59vnMD99DVKBn1IaNxnBGeNJbB0LoFNqwjs3Yn/+DG8l9Lw5pvx2P24g7HXRftO0YRs02AIRNjllphsE+lsFvhdLbtZHtAr+fHjrGG2ukV0LXTOrYlYErLWkMAul5URllQ66Pfd0gy1oXz3ptzUJ3R76Jhfe27qpq/kpppaURMqTcjGLpqQbT3YQ8pq2B1uiXkOkQGWMG9WNoP+cT2y9nGDwD/MAkMsYRZU3tBLq6HXyFfRhGxsE8s1ZuYqfvvMJ/zu2a638PgrfQAYNX0lz707lM69J3EhXc8Hn03jnV4T71jI5hVYeaPrWOYs3cYrH8bxyodxZOYpjcBujiyo7XnaS6meIQtgLHJU/7fLG2TdjiROns9ScUR3XmofJDSanryAxF6Pcle2V9E1fm/wc09eSa0n+V/rr/GyMcxnlSf4/R6pRSaNdp/EpZwICYdlvlgjM3pqlB6Dbhe0PQaVETdZZtEqmd2HZC5kR7Bpkvau0IRs7NIcQraheHxX8ZpteLNy8Z09i//QQQI7NuFfvZjgwqmEpg4nFNeDkr5vU/pRwwXu5c5/pbT7q4QGfUBoXD+Cs8YQXDqHwMZVBBJ24j92FF/qRbw6Ix6bL6YEriZkG44pGGGvR2KGTaRLYbjW5py/0l/jdZNAnDXMRrdIhl/9sd9MexayeYFSVjsK6GU+wyN5O2oUq/+ZtaY6N7VLZW5qnOUi06xf5qYmuK0c97qrc1PVfl1NiSZkYxdNyLYN7EElZ3abW2KOXVls80ZlQ+j6ZO2fDNd4xyww1BLmc4fIHrcSmeMMaUI21tFKq+Yu1YXsxl1HeeLVvpSXV3D5isBfXu9Pp+7jeOqN/qzakqj28OottQ8SGi2DMyQyx27iAV0y38k+zb/nZPHD3GJ+ortc6wn+Ab3Aq6YwAy1hFjlEEj0iBc28tdLuk7iYHWFPkiJpR02rXdKOmiKzeLXMnsMyqZqkbRCakI1dWoOQbSge3zW8RQ68OTp8Z8/hP5xIYOdmAqu/IFAlcEf2pKTfu5R8/EIjBO7TlHZ7hdDALoTG9iM4cwzBJbMJbIjHv2c7/uNH8KWm4tUV4LF5cQfCqr8njUUTsnVjCUkkekXm2kW6FoZ5vBb5er9O4BVjmKGWMGtcIqmtTL7WRHsSssleL3NtObxjPMp9OZtuk69fy1jGr3O38IHxBItsOi7U0+g0FtCEbOyiCdm2jy0occ4nscUlMtsu0s8S5jWTwP/Wco6q4qd6gafNIu+aBYZZwyx2iOz1SGT6Ja1RX4yglVbNXaoL2ec7D0NvLAZg3fYk3u45kRs3blBodfG394arO7g7KLUPEhotT4K7mL/lH+RrlROXb2Zu4Al9Cn0tfnoWCXQ0CrV2fb5HpzQae70y32iJQ+SQV8TUDA1IqrD5JFJzIuw5rAjYUXWspB01NfqlpM2JYPOp/363RjQhG7u0RSHbYPxC8wrcd5+itNsrlAx8n9CYvgRnjCL4xSwC65bj370N/9EkfBdS8eUV4Cn2tCqBqwnZL7EFJY56ldifHkUCTxbUvArpPp3A80alAUu8U5kU17dFtDXSVoVscUhgr7uYsZY0ns8/wPezVt8mYP85I54ndHv4rPAsG51mjIGrqo+7taEJ2dhFE7Ltm+KQxFmfxGaXyEy7RN8ipd/Iw3U0hq46tz1ZIPCeOcwIq8ASh9JUUpO17QuttGruUl3IPvL8p9Wd1T4dNoc12w4BUFFxg0ee/1TNod1RqX2Q0FAHT4mEOXKFD4wn+OebugA/nLeDpXY99pBIWkBiu1vZptm9SKBDgcDP6zixP1zZNXSoJcxSp8gRj0RhsHnGb/NKpGbfJGmnyLVL2mlRvlgjk3BY5mJ2BLsmaTUhG8PEhJBtKH4Bb5ETb44e37nz+JISCezaTGDNEgKLphOaNoJQXC9KPutM6ScvNk7gdn2JkgHvERrdh+CMOAKLZxJYt6xS4B7Gl3IBX64Bj9WNOyA022uNVSFrD0mc9EkscYj0LQrToaDmTtg/0Snnun5FYZY4RU76mq/zdUvTVoRsfuAK6xwm+prP8Ie83Xwrc0WN8QMvGg4y3prOAbcNe7D13PRorWhCNnbRhGzsYg1J5EsVbHaJzLCJ9CkK87IxXGvueRU/1wn8pUDg/cIwcVaBJU6RAx6JbBVz0DUah1ZaNXepLmSf7zwMg9mG2xvkkee6U+zwAmCxe+jwj0Eqj67+UvsgoaEOnhIlU8gdktD7LzO0MIX/m7WmerJzb84GJlrTMQdvXWXiDCndPre4RKbZRboVCjxdIPCzOk7qvzcoTU1GWAVWOCWOe5VtoU39mmxeiQvZEXYfUvJm65K0o6dWStokmUs5sSdpNSEbu2hCtgkICHgtTry5enznU/AfOURg1xYCa5YSWDSD4PQ4Skb1pqR/Z0q7NkLgvvMXSru+SEn/zpSM6k1wehyBRTOUx9+1Bf+RQ/jOp+DN1eO1OBskcGNByDpDyirWFU6JgZYwzxlrPkfdW7k6qGeRwEKHyDGvsmpW7fE3F61VyJ73+Vhgz+N94zF+mbu5xvzXX+Rs5r2CY8y35XHO51V9zG0RTcjGLpqQjW1qy5C1hCSSfRIb3SLTbCK9ipQongfrkbX365S5X5fCMHFWZRFOokdssUbRGg1DK62au1QXspt2H+OR5z/lf1/oQdz0eAAuXxF49aNRzFu+Q+XR1V9qHyQ01OFmIVtFcUhgdnE2/5Pz5YToe1mr6Gs+Q5Y/VOfjOUJKEP1ml8hkm8jHhWGerGUFUhWP5Qu8Y1YaoKxyKquXipv4dRZ7JVKyIuxOlPl8pUzc5Jolbc/BZYyZFmXJGpm9STKXciM42kAmYGPRhGzsoglZFQgIeKxufLkGfCkX8B89jH/3NgLrlhFYPJPgjDhCo/tQMuA9Sru+xOV3n2q4wP3kRUo+60worhehaSMILJqurPDdtRlfUiK+c+fx5uiR/X5Cpe2niZkrpHSsXu2SGGpRVv7UFrnzhEGgW6HAXLtIoldslhuDrZnWIGTtwTAH3XYmWNN4yZDID7LW3iZfv5W5gsd0u+hjPsNah5H8dtZcSy00IRu7aEI2tmlMUy9LSJmXrXeJTLWL9CwSeMko8Ft9/bL2mQKBD8xhRheHWe5UctnzNFmrGlpp1dylupAFKLS6yNKZKS+vAKDsejnb952s/ndrLrUPEhrqUJOQrcIVkljrMPK4bnf1BOmbmSt4q+AIJ73uBj2PPaSsVNrgEplQHOYDc5g/1yFqf6wT+KNByTMaY1WapZz2Ne2qpWKPxIWsCLsSZRatlBk5Wb5N0N4saZeukdl7RCatHUlaTcjGLpqQbQMEwniKPfjyCvBdSMV/NKlS4C4n+MUsgjNGERrTl5KB71Pa7ZVGCdySj1+gpN+7hEb2JDR1OIGFU5WM3Z2b8R9OxHf2HN4cHd4iB25/80UoNJT0gLKaJ86qNDT5pf5ajeeSRw3KhHCGTcnEMzdjznlbQQ0hawxcZZPTzADzOZ7Q7eHbN0UkVfH9rNU8n3+AMZZLJLiLKQ61nt+39oQmZGMXTcjGNo0RsnVRGJQ44ZVY6xKZYhf5tEjgbyalGXRdsvYX+mt0KBD4qFCZ48U7JQ57JXSarG1WtNKquatVCNm2XGofJDTUoS4hezOHPU7+bjjMNzKWV0+entbvZYur8K6e3x6UOONTTuZjrWHer+xmfW8tJ/F7dQJ/Mlzj/cIw46xh1rtEzvmUx2mK96PYI5GSGWHnQZnP46OMnBStVdKOnR5l6TqZfUdl0vLapqTVhGzsognZdkggjMfmxasrwJeaiv/4Efx7thPYEE9wyWyCM8cQGtuP0MAuXO7+Kpc7P92sAtfju9YkrysnILHVrZwjOtUx2XsoX6CzWWCKXWS3R8IQ0KRTTbSEkE31+/nCrudD4wl+k7u1unnozdyXs4m3jUeYY8sh2evVmse0EJqQjV00IRvbNLWQrQtTMMJxr8Qal8ikyh4kzxsFfpNf883TKn6pv0bHAoFPKud5q5wSSR6J/HYcI9RSaKVVc1erFbIHjqYwbvYatYdRb6l9kNBQhzsVslVc8gXobkrmXzNXVk+qfpO7lYX2vCZtplEckjjlk1jtlBhdHKazWYk2qKnzdVUDlicLBD40h5lkE9nkEknxKREKdzsWqydCSobMzoNRFsZHGVGHpB1XKWn3H5VJ17V+SasJ2dhFE7KxjVxWQehKBI/Nh1dnxJd6Ef+xowQSdhLYuIrg0jkEZ40hNK4foUEfUNr9VS53/mvDIxQ+ep6Svm8TiutBaOpwggun4l+9mMCOTfgPHcR39izerFy8Zhse31UMgQi7PRKTbSKdzYpkremY/4BeoJNJYJw1zFa3qK2saQBNLWQdIZEkj5MpxRn83XCYH2Wvu02+fjNjOY/k7aCn6TSr7AXkBkpVfx9iFU3Ixi6akI1tWlLI1oUpGOGYV5njTSgO061QoKNR4Ne17HSp4lf6a3Q0KpFD44vDrHZKHPVqN1/vFK20au5qtUJ2855j9Bw+V+1h1FtqHyQ01KGhQrYKY+Aqoy2X+K+bJl7/lb2O0ZZLGANXm3ycVVhCyvaYlU6JOKvA22alWVhtJ++f6gWeMgh0LQwz1S6y2SWS6leavdzNOKyeCOfSZXYciLJgRZThE2qWtJ8OLGP8zC8lbVpe67po0IRs7KIJ2dimUU29giIeux9vvhnvpTT8x48R2LuTwKZVBJbOJThrLKFxn1Ey6ENKPn2N0vfqFriuD1/gcFx/5i5cxMc7DvPouaKaJ2HZId5ItTD6vJ4tF/PIys7HY7bh8WmZoo3hboWsOXiVrc4ihhSm8JQ+4ZYbtDfnznfQ72Ok5SK7XFYswaZZLX23GIsjpOVFyDK0rnNxS6IJ2dhFE7KxTWsRsnWRH5A44pFY5ZQYZw3zSWGYjsbaY4mq+E3+NZ6vlLUTbSKrXUrzaJMWU1SNVlo1d7VaIdtWSu2DhIY6NFbIVmEPhllgz+M3uVurJ2L/mrmS7qZkLvkCLfY6ioISx7wSy50Swyu3tT5SR3fQ+yrD5rsXCUy3iWxzS6T5pbvaMmlxV0ra/VEWLJcZVo+kXbZeZv8xdSWtJmRjF03IxjaNErKNoErgFqdlkHTmIguS0+l+RscTaU7u0d0+wbo/M8jfE1MZuWoDm6aMI7vPu3WvwP3gOUr7/IPQiO4EJw8huGASgZWfE9i2Af/B/fhPn8abmYPHVIzHqwlcd6jhQjbLH2KZPZ9uplM8mLvtluiiKn6Ss4FOBUnMLM7mhNeNM9SyDeOKnBFyDBHOpskknpTZui9K/EaZuUtlJsyOMmhMzefjwWOjTF0gs3SdcoP1RIpMliGC3af+59RcaEI2dtGEbGzTFoRsXeiDStZsvFNijDXMx4Vhni1QMmnrkrUP6AVeMCpzvsk2kbUukRPe2MuU10qr5i5NyN5lqX2Q0FCHuxWyN7PFVchT+oTqCdo3Mpbzd8NhDnucqr0+czBCkkdiqVNkqCXMm2aB39Uhau/XKdtmehQJzLRL7HRLZNxF7IDVpUwQt++LMn+ZzPDxtUvaCbOiLF8vc+CYEnfQEu+PJmRjF03IxjbNKWRtQWUb4UKHSI8iJU6mpriZ+3RKptxAi9LU45xPwmUP4M034buUhu/EcQL7dhHYvJrAsnkE54wjNGEAJYM/oqTH6/WuwK1R4HbpSGnvToSGdyM4aTDB+ZMIxC9UBG7iPnynk/FlZOExWfC4S1T/nJqDuoSsMyRy3OtmRnEWbxYkcW/Ohtvk6zcylvO73O10NyWz3JFPlj/UrOPVF0W4kB3h6BmlCeearTIL46NMmafsTuk9tOZz6t0yaEyUqfOjLF2r3GitkrW2Ni5rNSEbu2hCNrZp60K2LvICEolekeWVsvZDc5hnCgT+p54GYw/oBV6snPdNtYusd4mc8CkLfdR+TU2NVlo1d6kuZM9ezOXNbmN57MWe/O7ZrrfR2kvtg4SGOjSlkK3ipNfNWwVH+GbmiuoJ3OO63ax1GFtN0w5TMEKiV+QLh8hgi9Kl+7d1nLR/oVe2wvQuEphT2TAmq5Gi9k4lba/BiqRdsUHm4AmZzPwIzibOSdSEbOyiCdnYpqmErD0kcdInscQp0rcoTIcCJdO7ppzvDgUCfYvCLHGKnPQp/+/dPr/HGcRrMONLS8d38gSB/XsIbF5LYNl8gnPGKwJ3yMeU9Hyd0vc6NELgPktJ706UDOtKcOIggvMmElixkOCWdfgPJOBLPoUvPROv0YLH1TYE7s1C1hK8xi6XlRGWVDro9/G9GuIHvpO5kqf1exlamMJ2pwVz8O5jiVxBCZMtQrouwqkLSnPMjbsiLF0jM3ORzOipUfrH1X4D86v0Gx4lbrLM9IUyi1fLrNsRYU+SzIlzMpdyIhgsERxfOX86A4rsPX1JJiFJZtVmmVmLZUZOitJzcN3PN3isIoSXrquUtefajqzVhGzsognZ2KY9C9m6yA1IJHpEljlFRhWH6VIY5ukCZRFOXbL2wXyBl41hehUJTLOJbHCJnPIp8Xlqv6bGoJVWzV2qC9nn3h1K/KYDpGbmk5lnuo3WXmofJDTUoTmEbBVZ/hB9zGdumeD9T85mZhVnUxwSVH/tNVEQiHDQI/K5Q2SAJcwrpnCtHb2ruoG+aFQkwzyHSIJbuUvb0Octcn4paefVEXfQa0gZE2YrWzEPnlQmgHcjaTUhG7toQja2aYyQdYaUVawrnBIDLWGeNyqrXL96XPxxZZPFnkUCCx0iR73Kqlm1X7M7JOFxhvAWFOFLy8R36iT+AwkEtqwlsGIBwbnjCU0YSMnQTyjp9Sal7z/bcIH7/rOU9HqTkqGfEJowkODc8QRWLCCwZa0icE+dxJeWibegCI+zeVeW1kRuoJR1biMDis/xSN4OvllD/MB/Z6/nNcNhphZncsTjxNHA+AGrK0J2gXJOO3RSOa/Fb5KZu0xmwqwoQ8bWLzyrm2UOKWPY+CiT5ig3MFdtVqIFkpJlzmfI5Jki2LxN/z65goqsPfNVWTtZpueQ+lfWTpn35cra461M1mpCNnbRhGxsE6tCti5yAhIHPSJLnSJxVoH3C8P8pUDg5/XI2t9VytreldF3m1wip1u5rNVKq+Yu1YXsax+PVnsId1VqHyQ01KE5hWwV5uBVJlrT+XH2l1sf/2/WGoYWpqD3X1b9PbgT8gIS+zwS8x0i/SxhXjaG6+wG+pv8a7xiDPOZJcwCu8gBj5J91JDnLHIqk8Ft+6LMWyYzrJaVtL2HljFxtjLhTWygpNWEbOyiCdnYpj4h6wpJpPolVrskhlrCvGIM17qa5HGD0khjrl0k0Su26glJQ/G4SvAaLfjSM/Eln8J/IIHglnXKKtl5EwlOHETJsK6U9O5EaZdGCNz3OlDS83VKhnxMaMIAgnPGE1g2X1nlu38PvpMn8KWl4zWY8TiDDRq7KySR7PUwx5bD28Yj/Cx7023y9esZy3ggdxsfm06yxK6vM/vd4VckZWp2hKNnI+w+JLN2W4RFK2WmzIsyYlKUPsPuPBJg4Kgo46ZHmbVYZtl6mc0JUQ4elzl9UdkRYna0Tml4s6zdmySzeovM7C9k4hooa7fvi3LsnPJaW1LWakI2dtGEbGyjCdk7xxVSdkLu90gscYiMsAq8Zw7zZEHNN6Jv5uF8gVdMYfoUhZlhF9niEjnrkyhW+TVppVVzl+pCduys1WTmmdUeRqNL7QOfhjq0hJCtwhESWWLP56G87dWTwX/OiOcD4wlSfD7V34vGkBOQ2OOWmOcQ6VMU5m+mujuBPqAXeNUUZqAlzCKHIi+MDQiVL3Iq2yu37osyd5nM0Lok7ZwoKzcpK5SyDRFcNQhhTcjGLpqQjW2+KmQz/BIb3SJxViXCpbbj2KMGgQ/MYWbYRPZ5Yq8pRn143CV4TBZ8GVn4TifjT9xHYNsGAvELCc6fRHDSYELDu1HauxOlXTo2qcB1HdjN/jMHGZt+gOezd/LvmatvE7D/krmSv+QnEGdPZYurEGPg6m3xAfur4gPWKvEBY6Y1LD6gb2V8wLQFSnzA2u1KfMDxyviA/BriA9oLrqCE3qKsDt57RJG1cxoia+dGWbrmS1mbkd/0K4A1IRu7aEI2ttGEbNPgCklk+iX2eiQWO0SGWcN0Ngv8uUDgZ/XI2kfyBf5uEuhXFGaWXWKLS+Scr2V2EWmlVXOX6kK2oNDOE6/25a1Px9Nj2Fx6Dr+V1l5qH9w01KElhezN7HJZ6Zi/n69VThK/lrGMv+UfJMFtVf09aQoy/RK7PRKz7SK9igSeM9YdLP9gvsDrJoHBFiVf8bBXybm9k+cqdCgrdbbujTJvqcyQcTVPnPsMLWPSTZI2xxAhHNGEbKyiCdnYRReQOHi5jIl2kU4modZYlofyBTqbla7Euz0ShoAmcZoaj/fKrQL34F4CW9fjX7XoVoHb563bBK71445sGdOZ/ssG8Mf9k/mnS1/cJmB/eGY+f98+gclLR7Jv6kjyRownPW4e6z4vZsLsKEPGNSA+YHAZQ8dHmThHidZZuUnZkn/4lMy5dJlck0xxM8QHtBduk7VbFVk7aopMr3o+g4GjFVm7pErWno00WtZqQjZ20YRsbKMJ2ebHGZJIr1yss8ihNJR+xyzwJ8M1flrHPPDHOoHfG5S54GeWMHPsIlvdIud9EvYmkrVaadXcpbqQfe3j0XQdPJP5K3awZG3CbbT2UvsApqEOagnZKs56fbxXcIx/yviyAdgjeTtY4cjH2cDcurZAekBih1tihl3k0yKBjvWEyj+cL9DJLDDMGmaZU8liLLyDE3OhI8LpizJb9kaZu1RmyNiaJW3f4WVMnRdl1WaZw6dkcoxyjStpNdofmpCNDQyBCLs9EpNtIp3NimStbfV+J5PAOGuYrW4RXTtdwdiWOefzssCSxXs5B/hF+rrb5OvX0pfxi+Of886GycybPoDUXp1qXWk7pXfOLeeCAXFRxlbGByxdJ7Npd4QDx2SSU5VVmiZ7zbssNJoGV1Aiv0iRtfuOVsraJXcuaydXytptVbJWH6lVjmtCNnbRhGxsowlZdXGGJNL8ErvdEgsdIkMsYf5hVmKfamqGerOsfdQg8KZZYIAlzFy7yHa3REoDZa1WWjV3qS5kX+g8jBs3bqg9jEaX2gcpDXVQW8hWkRcoZaD5HN/P+nKL5U9zNjKlOIOi4DXVx9ecuEISl/wSW90i02wi3QoFnqkno+j3BoG3TAIjrQLxTonj3vqD5M1VkjYhypwlMoNrk7TDypg8V5O07R1NyLY/zMEI+zwSM2wiH5jDPGqovRnhW0UiY20iG90iGX71x66h4ApKmOwRLupFllxy0O1cBo+dSeS7F9fcJmC/cTGeHx3ew8Prz/O3ORY+HCHUeDyfNs5B/JQ89sw8y8nZ+8mcu4m0syVczI6QXxTBqX3+rZoqWXsuXZG1axogaweNjjJ5TpQv1ihRR0fPRrDYKnBqq91jEk3IxjaakG29OELKXHB3Zb+SwZYwnUwCf6hH1t6rE3gsX5kTDrQoDaZ3upUeAPavPIdWWjV3qS5kewybS6j0qtrDaHSpfSDSUIfWImSrsASvMc2ayX05XzYf+besVXxWeJYcf4nq42tpUnwSm10iU+wiH1d2/qwrm+hRg8A7ZoHRxWFWOSVO1NMoxBcq50JGGZsTosz5QmbQmNol7ZR5UVZvkUlKVramapK2baMJ2baNJSSR6BWZYxfpWhjmj7XI1/t1Sifg4dYwq50SFyrlW31NvTSa4TNzR8gxKtv7D59Stp6v3CQzb5nMqPkCby4p4n/Xp/DfhxL4xsX42wTst1PWct/eRB5fmcnrM5wMmhhh4uya4wNyjDJWT83SLXRVRi6rUP390Lh7XEGJfIsia/dXytq5SytlbT2ZtQNHfUXWnlFyhIs96r8ujeZBE7KxjSZk2y4X/MoOy3kOkQGWMG+aFRFb15zwnptk7VBLWG3VpFUMlOpCdtWWRF7+YCRzlm1j/c4jbPgKrb3UPtBoqENrE7JVOEMiq+wFPKrbVT0Z/VbmCt4xHiXZ61V9fGpzziexwSUysXIl3J/rEbV/NCjdQcdYw6x2SSRXitqamnqZ7BFOpSpbVmfXJWmHK92iV2+VSTodIc+kbWltS2hCtm1xxCOxwC7So0jgyTr+3p8zKlnUK5wSZ+u4IaMJ2abD6VdWMKbmRDh2TmbPYZl12yN8vlJm6gKZkZOi9B126/Hz3TElPPO5gd9sPcV/HN/K/0lfdpuA/cG5zfzp2HF6Hslj2Um/Eh+gv/v4AE3IxgZflbVrt0WYu1Rm3PTrdyRrJ1XJ2r1fytraJL9G20ATsrGNJmTbJyk+iW1uibl2kf6WMG+YlJ2UX70+1Eqr5i7Vhew/ekygc5/JtdLaS+2DiYY6tFYhezP7PTZeMiTy9Zsmqs/k72Wb06L62FobyT6JtS6R8cVh3i8M80Qtq+aqeNIo8KFF+fl1LrFWgWMsVrpvb9oVYdZimYGja5a0/YZHmTo/ypqtMkfORMgza5K2taIJ2dbLCZ/EEodyYd2xDvn6TIFAf0uYJQ6R4w1s7qMJ2fqpig/I0EdITpXZf0y5UbV0ncysxTJjpkUZEFfzsfBmug+O8sYUD39Zlc1vDh7mexduz3/9VsYKHsneRW/TGdY4jOj9l5vtdWlCNra5Xn4DX2kEQ5WsPabI2nlLZUZNjdJ7aN2/zwPiFFm7eLUia4+ciZCWp8natoAmZGMbTcjGHud8EtvdEosdotqqSasYKNWFbFsvtQ8YGurQFoRsFak+Px+bTvLtjC+3cj6Qu43FNj32YFj15MopIAAAIABJREFU8bVWbEFF1K52SYyxhnnPrGxv/nEtkucnOmUF3keFYSbZRDa5RFJ8Sr7RzY9bUBzhZIrMxkpJO6g2STsiytQFyoTv6JkIOrM2aWsNaEJWfZwh5WI53ikx0BLmeWPN2dE/rvyb7FEksNChNPez3eWNjlgXslbPrfEBO/ZXxgcsl5k4O8rQ8VF61pPPWUXPwWUMGRdV4gOWySzeKjD6iJX3U1J4NH0v/5Kx8jYB++9Zq3ku/wCjLZdIcBdTHBJa7LVrQja2qa+plysoYbBEOJ8hc6BS1s5dJjNq2p3J2omVsnbL3ihJpxVZa3Fr5/3WgCZkYxtNyMY2WmnV3NUqhKzF7mHhyl2MnLqCQeO/YP6KHRRaXWoP645K7YOEhjq0JSFbhSFwhRGWVH6QtbZ6cvvf2esZa0nDGLiq+vjaCtaQxKVr19ngk4mzhnmnnjyin+kEni4Q6FoYZqpdZLNL5KJfkUpVj1lgjXAiRWbjzggzF8kMHFWLpB0ZZVqVpD0bQVeoTdZaGk3Itjypfok1LpGhljCvGMPcX8vf2uMGgW6FAnPtIolesd6GfY2hvQrZqviAi9m3xgcsWlUZHzBZvi0+oD7BNGZalJmLZJauU3YJ7D8mc+qm+IA0b5Cldj1dTaf4be62W3ZzVPGz7E38o+AIc2w5JHs9uFR8jzQhG9vUJ2TrwhVUzvMplbJ23XZF1o6+w5W1E2dXytoETdaqgSZkYxtNyMY2WmnV3KW6kD1+NoMHO3SlS7+pjJ21mrGzVvNe3yk83LE7l7IK1B5evaX2QUJDHdqikK3CFgwz15bDL3M3V096v5u5kh6m02T4g6qPry1QU4asJSRx3CuxwikxwqqEwdeURVTFz3UCHQoEuhcJTLeJbHdLpAWkauFgsEQ4cV5mQ6WkrW2L72cjo0xfKLN2e4RjZyPoi7RJWnOiCdnmJcMvsdEtEmcN87pJ4Ff6azX+/fzeIPCBOcwMm8g+j4Q52DK/921NyFbHB+Qr8QEHvhIfMHb6ncUHVNFnWBkjJykRK5+vVG4O7Tksc+yskgWrt0Rw+m8fhzMkcszrYnpxFm8Ykvhx9obb5Os3M5bzSN4OephOs9JhIDdQqvr7dzOakI1t7kbI1oUrqOycScmQOXhckbXzKmVtn3pkbf9KWbtoVZWslZUYBJd2HdCUaEI2ttGEbGyjlVbNXaoL2de7juFI8qXbvn7w2AU6956kwohgydoEnn5zQPW/HW4/nwyayZ9e7ctbn44nM89c/T21DxIa6tCWhWwVrpDEBqeZP+kSqifE38hYzhuGJI56XKqPrzVTk5CtjcKg0lhoqVNZ4dfJLPBwHStq79cJdDQq26xn2SV2uSUyKwVHfqWkXb8jwszPa5e0/eMUSbtuh7LaTW/RJmdNhSZkmw5dQGKrW2ScNcxbJoEH9DX/TTyUL9DZLDDZJrLbI2EIqPf73JqEbLFXItdUS3zAnMbFB0yojA9YuUlm+74oh04qj59jlBu0Is8SvMZOl5XhllSeyd/LdzNvjx/4XuZKOuj3McKSyi6XFUvwmurvaV1oQja2aS4hWx8FxRFSMiMcPK7ceJ23TMlhvhNZO6FS1m5OiJKULJOWq8naxqAJ2dhGE7KxjVZaNXepLmQfe7En18vLb/t62fVy/vBS7xYfT7HDyysfxt0iZD8eOIP1O49QXl7B2Yt5PPPWIMquK2NW+yChoQ7tQcjezFGPizcMSXwjY3n1ZPlPugQ2OM2qbhFtrTREyNaGKRjhkFdkiUNksEVZDfhgHaL2F/prPG8U6F2kbMne7ZbIDijbjE+ck1m/M8KMz2X61yFpZ3yu/NzxczL52kraRqEJ2cZhCETY7ZGYYhfpbFYka02/5w/oBTqZBMZaw2x1i+QE1B/7zbSEkHUElJsvl3KUv9U9hxURs2iVzLSq+IDhd76q9Zb4gLWV8QFHlfiAdJ0SH3C3TQRzA6XEOwx8akrmkbwdfPOmc0kV9+ZsoFNBEjOKszjudeMMiap/ng1BE7KxjVpCti6MlbL2QJWsXV4pa+uJF+kfF2XCLGWV+6bdEZKSZS7lRihytq7X11rQhGxsownZ2EYrrZq7VBeyr3wYR25+0W1fz8kv4qUuI1t8PF0Hz+TwyYvVQjZUepU/vNT7Fmn8jx4TquMU1D5IaKhDexOyVWT4g/QwneY7N61m+mXuZubacrBpDcCqaQohWxvGYIREj8gih8hAS5hXTeFaVw7eo1O2dL9oFOhXFGa+Q2SvR+JskSJy1u24Q0m7Q5G6+dpK2nrRhGz9mIMR9nkkZthFPjCHebSW6I5f6q/xmkkgzhpmo1skvZXJ15q4WyFrdkTIzI9w+qKyPXlzQpRl65X4gHHTo7XmR9cWHzCiMj5gUWV8wO5DlfEB2Up8gKOG+IC7xRWSOOXxMLs4m38UHOFn2Rtvk6/fyFjO73K30810imX2fLL8IdU/u7tFE7KxTWsUsnVhLI5wIUuRtet23Lms/WykImsXVcraw6cUWVvoaDuvvanRhGxsownZ2EYrrZq7VBeyWxJO8KdX+zJj8WZ2Hkxmx4Fkpi/axOOv9GHl5oMtOpa9SeeImx5P6ZVr1UI2M8/MG13H3vJzQyctZceBZKD9CTmNO6O9CtkqjIGrjLWk8d/Z66sn2D/IWssISyqGwBXVx6c2zSlka0MflDjgkVhgF/mssrnRb/Jrzte8Ryfwm/xrvGwM098SZqFDZItZIuF8lLXbI0xfKPPZyJrFz4A4ZSXdhp1KPIJBk7S3oAnZW7GEJBK9InPtIt0KBZ6oRb7erxN42RhmqCXMapfSqKstrr6vTcjavBJ5JqXDelKyzI4DUVZtlpm/TGbSnCjDxkfpOaQB8QFjle3Gc78SH3A2TYkPaMltx8UhgQS3ldGWS3TM38+/Z62+TcB+J3MlT+kTGFqYwjanBXOw/TWK1IRsbNPWhGxdmGyKrD14QpG18ytjEOpr3PfZyCjjq2TtrkpZm9P+Za0mZGMbTcjGNlpp1dylupAFOJKcRq8R83j5g5E89+5Qug+Zzf6j51t0DJevCLz8wUhCpVdvEbIp6brbsmzHzlrNhp1HAIiWlWvEKDdutP/PPxwtY63fwEP67dUT73/JjKdXcTLG8GXVx6cW5RU3uF5eQbRMHaRoOdHrFUSvV+CKlHPq6nWWB6IMcUR4tSjMr+uIPvitIUwni0icM8JiW5S1WWWsO3CdOV+U0T+u5knYwNFlzF9Wxu4D10nLqcAfqqh+/lij7HqF8rffCsbS0ghlFVwSylkVjNLfLvGMKcy9NTWs0wu8VBhmpDPCllAZOrGcSCsYf2OQohX4ghWYiiq4lFXB8TMV7Nx3nfgNyt/MmKllfDbizkTrpwPLGDCqjAkzlb+n1Zuvs/vgdU6eLScjt4LC4gqCJRXIZeq+Zm9EZFeJhcH28zxu2M0/Za64TcDek7OetwuPsMCbS+o1P9L1clXH3BJcL6+g4sYN1cehoQ43bkBZKxhHcxMsqSDfVMHplHJ27r/OklVlTJxVRr/h9cUglDF5ThnL1yrHtXMXyzEWVlB6pWnGJcnlql1zXS+voLzihmrP33yofz3dFoiF+Z5G7WilVXOX6kJ2857jSJGo2sNgzMxV7Dp4GuAWIZulM/PaJ2Nu+dkhE5dU/2zgiqwRgwSvyty4EVuf/y6PlQ6GfdUT8q9nLOPlgkMk+hyqj62liUTLuSaWEbgSUY3gFblO9KUy+30R5jsj9LWGecEk8Is6og8eyhd40xymf4HI2PQIkw/KTPoiymcja5O0UeZ8EWXLHpkzF6MUOaP1jqk9UCpEKa+4ofo4mhvfFZmzQZnlbokBVpFnjQI/reH35qc6gWeNAv2tIsvdEmeDMt5WMP47we6JkmeUOZ8e5fDJKNv3lRG/McrcJVHGz4gyaEwD4gOGljFycpRp86N8sSrK+h0ye5PKOHk+SkZeFHNxFG+J+q+5JlIDfj535PG+6Ti/yN18m3z9esYyHsjbxieFp1juyicrFFJ9zGpwJVxG2fX2/7evUTPlFTcoFWLjPFcbVleU9LwoSclRNu2S+TxeZvyMKH3rkbWfjShTYhBWKdcMR09HydRFsbnv/P0MXJZVu966JpYRiZares3XPKh/Pd0WuHED5XdQIybRSqvmLtWF7JOvf0axw6v2MPjza/14+s0BPP3mAJ56oz8PdujK028OwOb08ujfet4ijV/qMoIsnRlov1vWNeqmvUcW1EWy18vbxiN886ZVU4/qdrHKXtDmmrQ0FjUiC5qKTL/ELrfETLtEjyKBjkZlO3ltovaRfIHX9GE+SQ/z2RGR/mtkeo2uWVQNHB1l1mJlK+OpCzLG4va3jbE9RhY4QxLnfBLxTolBljDPGwXuq+F34cc6gScLBHoUCSx0iBz1StjushlUc1AVH5DylfiABcsr4wMmNCI+YJYSH7Bh+3V2HSyrjg/ILmhbXcttwTD7PTbGWdN50XCQ/5u15jYB++2MeP6kS2Cg+RybnYUYA+0vfqAxaJEFsU17iixoDkz2CBeyIySeVHLpF6yIMm56tN4GhP1GRBk/M8rC+Cgbd0Y4dFImNSeCuRXFIGiRBbGNFlkQ22ilVXOX6kI24fBZeg6fy8FjF8jWF6IzWm9Bjbp5hSxA9yGzWb5hP+XlFRw8foEXOg+jvLwCiE0hpxHbQraKHH8J/QrP8m9Zq6on8j/L3sQ0ayZFwWuqj685actCtiZcIYm0gMR2t8R0m0j3IoEOBQI/r0PUPqwT+FuWwDunwnywXabLTJmuQ2+fbA0aE2X2F0pzkFOpMiZ765lkNYb2IGRT/RJrXCJDK7OIaxPyjxsEuhaGmWsXSfSKWFQetyMgYbBEuJSrNKFLOKzkHy5eLTN9ocyoKTL96pn8f7Wp3eipSmby0jUyG/9/e/cdHtV9oHv8OvFms9l4N3t3c/cmm5vd7CbZDXGM7bjETmxsAzYG90Zc6cZgTDHFmG5jmsEYTBe9947pTRTT1HvvXaJK04TQe/8YaZAQKkjMnJF+38/zvM8TEIgzGs2R9c3ozEaHtu1z6vB3Tp2LdCg+zaGsG4JzU1/Uy9eLKbik5ZkJ+jDxmB6K3KS/DVpQI8D+NGSJno3ZpbEp5/RtdobSeQHHm44ga/YIso1ffLr7hQZ3HXJfn376fJdGTWxArB1SEWvnV4m1oQ6f/3cEQdbsEWTNHuBtlgfZVm261Dkr3Bhks3IL9V7/iXq4Ux+91musouJSPW+z+iTBrBlB9vqSCq/os9Qg/SJsuecb/J+ELNJHCccVUXDB8uPzxlpakK1tmUV2nc63a3WWTePTbeqaWKLHYov1yzpC7R/CivXEyRJ13GHXc3Mdeu0zl7oOqhlpv5zl1OotLh055fSrZ8LUt+YWZIPy7VqZZdMnKSV6Ib5Yv4m6+QvB3RdTrLcTSjQxzaatOXbFF/r2PknMdCgkxqGjp53accD9uTFvmVNTZjk1aqJLAz51qeeAhl8+YOhYlz6f5tKMBS4tWevQpl1O7TvmfgZXVJJDGfmNO05/D7Lf5eVrZlqk3oo7oN+Gr9YdN8TXO4Lm6jfhq/Rm3AHNSIvUybw8y4+5uYwga/YIst5ZZaz9tiLWfl0Ra+v7P9f6DnH/uenzXVq+wR17vRVrCbJmjyBr9gBvszzIFpfY5XSV1jp/Z/VJglkzgmzNZRTZNC8jWq0j1nu++f9B0Hz9NXa/juW2rG/6TQmytd/Xdp3Ms2tVlk3j0mx6N7FEj8YW6xd1hNq7g4r16CGbHl9t17MznXpjnEvdBl7/5mrgSJe+nO3U6q0uHT3tv5HWn4NsZIFda7PtGpVSolfii/W7Wq4ZfHd0sTonFOuzNJs25dgVU+C9j3Vanl0RCRWXDzha/fIBn1VcPuD9gQ0LrT0HuD9Pxkx2adocpxasdGrtNle1ywcke/nyAf4UZDOKbNqdk6FxKefUMeZb/TRkSY1nv/4gaL4ejNikvonHtCwzXjEFlyw/7uY6gqzZI8j6fvHpDp0Kc8faFRWxdvSk+mNtnyHuyyVMn+/SsvXuWPtdE2ItQdbsEWTNHuBtlgTZtq8PUonNIUl6+q9DrDiE28bqkwSzZgTZurc5O0Xto3d4np11R9BcPRm1XRuyUiw/ttsx04NsbUsvcl+LdHmWTaNTS/RWYokeqSPU/jyiWL87XaL7d9r02HK7On7tVOex10PtoJEuTZ3j1JqKSJvoB5HWX4JsTIFDm3Ls+jzdpr8mlOgP0Tf/GP8uqlgvxxdrZEqJ1mTbFFZwe/79zAK7YlMqLh9wwn35gGUbbrh8wNBGXD5gRsXlAza4Lx9w6GTtlw+wYlYG2fjCK1qdlagBiSf0aNRm/V1wQI0A+79DFuvp6J0amXxW23PSlMblB27bCLJmjyDrX0vIuCHWLqiItfV83fHE2nnua93urIy1abXftwRZs0eQNXuAt1kSZB9/ub+GjZ+vgFU71bptdwWs2lnr/J3VJwlmzQiyDdvJvDy9FXeg2nUL7w5fp9npUc36OoUE2VtbeqFdgXl2LcmyaURKid5MLNFDMe4XibpZRPy38GL95liJ7t9mU5ulDnX62qnOo13qPrBUg0a5X1xpzTaXAs84lZTp22+QrQiyCYUObcuxa2K6TW8nlOj+mJt/3H4ddUXPxxfrk5QSrci26Vwj42tihvvyAYFnKi4fsNV9+YAvKy4f0P8WLh/Q+4bLByxe43RfPiCw6ZcPsGK+DLJn8wo1Oz1aXeIP6Xfha/W9G+Lr/wqaq1+FrVLn2P2alhauwBb2kwj+NoKs2SPINp8lZDh0uuIyCCs2Vom1w+qJtYNLNXKCS1/Ndf8fjDsPOnUyxKGMnFKCrMEjyJo9wNssCbKngqPVZ/h0vdPvC/3+ia56+8Mvap2/s/okwawZQfbWFpV/UYMST1Z7Re+fhy7XmJSzzfIVvAmyt2epRXYdzrNrUaZdw1NL9EZCsf5YyzM9fxZZrH8LK9ZvA0v0x602PbHUoU5fOfXX0aX6eIxL0+a6f3zd25HW20E2uciuXbk2TcuwqVtisR6uJb7+KrJYz8aV6OPkEi3Ksuu7fPeLs9X1vtPy7IpMcOhksEN7jjq0YadLi1Y7NX2+S5996dKQ0bd++YDRlZcPWOH++O+quHxAWIz3Lx9gxbwVZDOLbNqXk6UvUoL1Qswe/Sx0WY34emfwfN0fuVG9EwK1OCNOUfkXLf94mDSCrNkjyLaMJWa6Y+3uw+5YO2OB++tYvbF2SKlGfOGOtUvXu2PtdyF1P7OWtYwRZM0e4G2WX0P2nX4TrD6EJrH6JMGsGUG2cUsuvKJJqaH6VdgqT2S4KzhAvRMCFZJfZPnxNXQEWS9/nhTZdTDXroBMu4alFOvVBPeLTtUaakOL9d+HS/THLTY9sdih56e51HuKS1PnObVum0vHzt6+SHs7g2xaoV37c+2akWFTr6Ri/Tm2WP92k9v3y8hitY0rVv/kEs3PdF8WIrPK+8kssCs21aGzlZcP2OP+UcxZi52aOKPi8gH1fLN54+UDhn/hvnzA7IrLB2zd6758wNkI/7l8gBW7XUE2qfCK1mcla3DyKT0evVU/vsnlB/4xZJGeit6uT5PPaEt2ilKLii2//SaPIGv2CLItf4kZDp0Jc8falRsdmhng1OjJLvUbVs8LSQ52x9pp89yxdscBd6yNS+XzpSWMIGv2AG+zPMg2d1afJJg1I8g2bVlFdi3OiNODEZuuP/sraJ5ejt2jQ7nZlh9ffSPIWrOkioA5L9OuwRUvXNW6rmfUhrhD7QObbHpykVNvznVq7OLrkTalEc/gbGyQzShyPxt4dqZNfZNK9GQt19b9RWSxnogtVp+kEs3OsGl3ukPnYh06esapnQfd19Odt9ypL2c7NXqSSwNG3NrlA4aMcV8+4OuKywdsrLh8wMmQ5nf5ACvW2CAbln9e8zOi1T3+iO6JWK/vB82rEWB/GbpCr8bu1ZTUUB3Oyan3Gc/MtyPImj2CrLm7WOxSwYUynQmviLWb3LF2zGSXPqzn/+ysGmuXrHPH2pPBDsUSa5vNCLJmD/A2vw2y3yzerGfeHGr1YdTL6pMEs2YE2du33TmZ6hTzbbXrI/45aotWZSZafmy1jSDrX0sodGhPjl1zMm0alFyiF+KK1aqWSPuzyGL9IqRYvztYogc32dVppUMfrXMo4FuXjp+rP9I2JMhmFrmfxbog064BySVqF1esf7/Zi5pFFuvBiGK9eq5EHwXaNXabU9MWuPTZVJcGj3Hp/UENv3zAgBHua+RNnePU/OXua+zuPORU4BmnQmMcPr/WbktdQ4JsVpFdh3KzNTk1VK/E7tX/C1tR8/IDQfPUOmK9esQfUUBGjMILLlh+21jdI8iaPYKsuavvRb2SMt0vcLnniDvWzqiItf0+qSfWflyqT8e7L7m0dJ1DOw84dTLIqdhUc38KxR9HkDV7gLdZHmQvF9tu+vvHz0Twol7Mb0eQvf07k1egbvGH9aMqP7r72/DV+iotwu9eKZwg2zwWX+jQrlybZmXYNCC5RE9Hlug3YbWH2v8XVKxWB0r02Dab3t7h0PgDTu0Mcio5+/o34TcLsqfy7VqcZdPglBI9G1eiX9Xy/v/nTLEe3WPT00sdenmSU10H1x9bPxzm0vDxLk2c4dSsxU4t3+DQ1j1OHay4fEBcqkOZjXzxLnbru1mQTSkq1ubsFA1POaMno7brH0IW1giwdwUHqE30Vg1NPqUNWSlKLrxi+W1htzaCrNkjyJq7+oJsXUvKdF9OaM8Rp1Ztcblj7ZSGx9qpFbF2x/6KWJtCrPX1CLJmD/A2y4Ns63Y91H/UNzpwLEilpVetPpxbZvVJglkzgqz3FldwWcNTzuinIUs8MeOnIUv0SfJpxRRcsvz4sosIss19MQUO7cyx6asMm7pHluixoBL9KrTuUHvP4RI9s9+mfsccmhlxVd1O2/TYmRL9ey2B9z9PFevene5r2r44xaUuQ2p+wzVktEufT3Vp+nz3i2tt2OnSnqPuywdEJvCNvz/OWXpN8RcuaXFGnN5PCNR9kRt0Z/D8GgH256HL9VLsHk1IDdGB3GxlFtksP3bWtBFkzR5B1tw1JcjWtZSs68+srYy1YxsQa98fVKrh4136crY71m7f79SJIKdikvn89MYIsmYP8DbLg2xQeLwmfrNKT702SI8811fjpi1VcES8ysvLrT60BrH6JMGsGUHW+0srLNFXaRH6bfhqT+T4UXCAusUf1pm8AkuPjSDbMhdRYNf2HLtGR9n1xhmbHjpVrF+G1B5qPS+6dbZE93xboseXOfTCVJd6j3VpzGSXvpzl1Lzl7uu+7jzovnxASIxDiRl809ScFpibp2lp4Xojbp9+HbG6Rnz9XtBc/T58rbrGH9bc9Ohm9QKFrOEjyJo9gqy581aQrWtVY+3qylj75S3E2lkVsXafO9ZGE2sbPYKs2QO8zfIgW6m8vFwRMcmaNm+92ncerHadB2vmok3KzCmw+tDqZPVJglkzgqxvtyozUX+O2lItgHSM+Va7czItOR6CrFkLLbArINKu/icd6nTUpkePlujVvTYN3+PQkgNOHTzh1Nlwh2JT+IanuS+tsETbstM0Mvmsno7eqX8KWVQjwP4oOEB/jtqiQYkntSYzSQmFly0/bub9EWTNHkHW3FkRZOtacnZFrD3qjrUzFzYs1vboX6rhnzs1ZZZTS9Y6tG2fU8fPORWdxOd1XSPImj3A2/wmyFaKjEvR9AUb9FDHD/SXF/vp/qd7adj4+bp0pcTqQ7spq08SzJoRZK3ZodxsvRy7R3dWeYXyByM2aXFGnE9fkZwga+4a8qJerPkspuCSlmXGq2/iMT0YsUk/CKp5+YF/DV2q52J26/PUIJ26nK/8y3zzauIIsmaPIGvu/C3I1rXkbIfORji056hDq7e69M0id6z9qCHPrP3cqalznFq8xqntlbE2mWvWEmTNHuBtfhFkM7LzNWfZNj379jC1btdDA8fM0pGToSoru6bzF6+o34gZ+uCT6VYf5k1ZfZJg1owga+1C8ovUOyFQd1V5AbD/CFupSamhPnmxHIKsuSPINu+dzMvTjLRIvRl3QL8JX6U7boivdwTN1X+Hr9G78Yc0Kz1Kp/Lzq/39m72oFzNjBFmzR5A1d80pyNa1lByHzkU6tDfQoTUVsXZcQ2LtQHes/XK2O9ZWfWatCbGWIGv2AG+zPMi+2edztWrTRW+8P05rth686TNhL14qVuu23S04uvpZfZJg1owg6x+LK7is0Snn9PPQ5Z6g8k8hizQw8YQiCi547d8lyJo7gmzzWXphib7NztDYlHN6NmZXtRcKrNwPgxboT5Fb9FHCca3MTFBcQd2XHyDImjuCrNkjyJq7lhJk61plrN1XEWtnLXbH2v7DGxhrZzm1aI1TW/c6deysU1Et6Jm1BFmzB3ib5UH2q/nrlZSWXeefuXatXMdOR/joiG6N1ScJZs0Isv619MISzU6P0t3h6zyh5W+DFuituAM6mZd32/89gqy5I8j67+IKLmtVZqL6JxzXI1Fb9MOgBTUC7L+ELFGHmF0am3JOu7LTlV5Yckv/BkHW3BFkzR5B1tyZEGTrWmqO/Xqs3eaOtZ81MNZ+8llFrF3dfGMtQdbsAd5meZA9eCy41u09csbqw6uX1ScJZs0Isv679VnJejJqu+dHke8Imqt20Tu0OTvltv0bBFlzR5D1n53JK9Ds9Ci9F39I/xO+Rt+7yeUHfh2+Sm/GHdDX6RE6cRv+zxmCrLkjyJo9gqy5Mz3I1jVPrD1WPdYO+LTuWNtrkDvWTqmMtXsqYq0fXgaBIGv2AG+zPMg+8nzf6nuur1q16aL72vdUp3eHW3149bL6JMGsGUHW/3csN0+dY/frb4Kvv0hP64j1mpserYwiW5PeN0HW3BFkrVlGkU17czI1PjVYz8fs1v8NXVbj2a+bagBsAAAgAElEQVQ/CJqvByM2qW9CoJZlxiu64NJtPw6CrLkjyJo9gqy5I8g2bqm5dgVFuWPt2spYO7VhsXZYRaxduModawPPWBdrCbJmD/A2y4PszZTYHPo6YKM27Qq0+lDqZfVJglkzgmzzWUTBBX2UcFz/GLLIE25+EbZcn6UGKaGw7utF1jaCrLkjyPpmSYVXtC4zWR8nntRjUVv191VewK/q9aLbR+/QyOSz2padptSiYq8fF0HW3BFkzR5B1twRZG//KmPt/opYO7si1vavL9YOLNWwcS5N/sYda7fscepoRazNLPDOsRJkzR7gbX4ZZCu90mO01YdQL6tPEsyaEWSb35IKr2h8arB+GbrSE3TuClmovgmBCskvuqX3RZA1dwRZ7yws/7zmZUSre/wR/SFinb4fNK9GgP2PsJV6I26fpqWFKzD39l8buiEjyJo7gqzZI8iaO4Ksb5eWa1dQtDvWrquItZ83JtbudsfayMSmxVqCrNkDvM1vg2yJzaHHX+5v9WHUy+qTBLNmBNnmu8wimwIyYnRf5AZP6LkzeL5ejd2rI7m5DXofBFlzR5Bt+rKK7DqUm61JqaF6OXaPfhG2vEZ8vTN4vu6L3KD3EwK1OCNOEQUXLD/u7CKCrMkjyJo9gqy5I8j6zzyx9rhT67a5NGexU59Pc2nAiPpj7dCKWBuw0h1rAxsYawmyZg/wNsuD7LDx82tswOhZavv6IPUbMcPqw6uX1ScJZs0Isi1jW7NT1SFmV7UXA3o8eqtWZyXV+fcIsuaOIHvrSykq1qasVH2SfFpPRG3TXSELawTYfwhZqCejtmt4yhltzk5Rig8uP9CYEWTNHUHW7BFkzR1BtnksLc+u4GiHDlTG2iW3FmsnzXTH2s17nDp62qnIBIcyCgiypg/wNsuD7LhpS2ts4jertGbrQdnsTqsPr15WnySYNSPItqydysvXu/GH9MOgBZ5A9D/hazQjLVLphSU1/jxB1twRZOtfRMEFLcqIVa/4o7o3YoPurPLCepX7ZegKvRK7V5NTQ3U4J0dZfnDcDRlB1twRZM0eQdbcEWSb/9Ly7AqJccfa9dtvLdZ++nmpJlfG2t3uWBtREWutvl3M+wO8zfIg29xZfZJg1owg2zIXlX9RQ5JP6Z9DFnvC0b+GLtWI5DOKK7j+AmAEWXNHkK25o7m5mpoWptfj9uk/wlbWvPxA0DzdE7FePeKPaEFGjMLyz1t+zI0dQdbcEWTNHkHW3BFkW/YqY+3Byli71B1rB46sP9YOGVPlmbXE2hY5wNssD7LXrpV7/nduwXnNWbZNX85dq4iYZAuPquGsPkkwa0aQbdlLLSrWl2lh+q+wVZ6o9PfBAeoRf0Rn8goIsgbP9CCbWlSsrdmpGpl8Vu2jd+gnIYtqBNgfBweoTfRWDUk+pfVZyUoqvGL5cd+uEWTNHUHW7BFkzR1B1tyl5dmVkVXujrU73LF2/Ff1x9qeAypi7YwbYm08sba5DfA2y4JsUlq2nn/vU939ZFd9NGqm8gou6PGX++ulbiP1YteRuuep7go8FWbV4TWY1ScJZs0IsmYsq8iuZZnxejhysyc2fT9onl5J2KvAwhzLj4/5fqYF2eiCS1qaEa++CYF6IGKTfhBU8/IDPw9drhdj9mhCaoj252Yps8hm+XF7awRZc0eQNXsEWXNHkDV7tV1DNr3ymbUnqsfaQQ2ItYPHuDRxhlMLVjq16VunjpxyKjzeqcx8628vqz7A2ywLsr2HfaWuAyfp4LFgDRg9S2+8P05fzl3refuMhZv0Vt/xVh1eg1l9kmDWjCBr3vblZOn5mN36ftA8T4h6OHKzlmbEN5vrX7Kmr6UH2RN5efo6PUJvxu3Xr8NX1Yiv3wuaq1bha9U1/rDmpEfpbF6h5cfsyxFkzR1B1uwRZM0dQdbsNeZFvdLz7Aq9MdZOdzYo1g4ZXRFrV7hj7WFiraUDvM2yIPvIc30VHp0kSbp4qVit2nRRbGK65+1JqVl6oENvqw6vwaw+STBrRpA1d0H5heqbGqi/Dw7wRKr/ClulL9PClOqnrwzPbt9aUpBNLyzRrux0jUk5qw4xu/QvIUtqBNgfBQfoz1FbNDDxhNZkJim+BV1+oDEjyJo7gqzZI8iaO4Ks2WtMkK1rGfnVY+3cZRWxdtQtxtpd7lgbFkes9eYAb7MsyLZq00U5+ec9v36gQ29l5RZ6fp1bcF6t2nSx4MhujdUnCWbNCLJmz+YsU/rlYo1IPqN/DV3qiVf/HLJYg5NPKSr/ouXHyLyz5hxk4woua2Vmgj5KOK4/RW7RD4MW1Aiw/yd0qTrFfKvPU4O0OydTGS348gONGUHW3BFkzR5B1twRZM3e7Q6ydS0j366wGIcOnnRqw06X5i1z6ovpTn08uuGXQZi/vCLWfkesvR0DvM3SIJtbcD3IPtTxA4IsazYjyJq9qi/qlV5Yohlpkfqf8DWeqPXDoAV6J+6gTublWX6s7PauOQXZ0/kFmpUepXfjD+m/w9fojhvi6x1Bc/Xb8NV6J+6gvkmL0qn8fMuP2d9HkDV3BFmzR5A1dwRZs+fLIFvXMvLtCo2tjLVOzVvm1ISv3bG254B6Yu1olyZ87dS85U5t3OXUoZPuWJtBrK13gLdZGmRnLtqkJWt3a8na3bq3fU99HbDR8+uZizYRZJnfjiBr9qoG2apbnZWkx6O3Vgtez8Ts1NbsVMuPmd2e+WuQzSiyaU9OpsanBuu5mN3Vnrld9f8oeDhys/olHtfKzATFFVy2/Lib2wiy5o4ga/YIsuaOIGv2/CXI1rXKWHuoMtYud8fawbcYazfsdMfa0FgHsbZigLdZFmQ7vvNJg+bvrD5JMGtGkDV7tQXZyh3JzdWrsXt1Z/D1V6S/N2KDFmTEtOhXoDdh/hJkEwova21msgYlntRforZUu6Zx5f4lZIk6xOzSmJSz2pmdrvTCEsuPu7mPIGvuCLJmjyBr7giyZq85BNn6Fhrr0OFT7mvWVn1mbV2XQejRv1SDRrkUeMbs/+YBvM2yINtSWH2SYNaMIGv26guylQvJL1LfhEDdFbLQE8l+GbpC41ODlWT4iyM111kVZEPyizQ3PVrd4g/r7vB1+n7QvBoB9tfhq/Rm3H5NT4/QCS6X4ZURZM0dQdbsEWTNHUHW7LWEIFvbMvLtCotzX2924y739WcnfO3U4DHXn1l7Isjs8x7gbQTZJrL6JMGsGUHW7DU0yFYuofCyxqWc0y/Clnvi2T+GLFK/xOMKyz9v+e1hDZ8vgmxmkU0Hc7M1MTVEL8fu0b9V+byp3A+C5uuBiE3qmxCopRnxii64ZPnHxoQRZM0dQdbsEWTNHUHW7LXkIFvfwuKcSs21/jisHOBtBNkK5eXl+jpgox576SM9+sKHGj4hQHaHS5KUkZ2vLgMm6U+d+uiVHqMVHJHg+XtWnySYNSPImr1bDbKVyyiyaW56tO6JWO8Ja38TPF9vxO3Tkdxcy28Xq3/eCLLJhVe0MStFw5JP64mobbrrJpcf+EnIIrWP3qGRyWe1NTtVqUXFln8sTBxB1twRZM0eQdbcEWTNnslBlhFk4X0E2QqbdgWqc+9xunipWCU2h97rP1ELVu6QJL3Xf6KWbdirsrJrOnY6Qm1eGaDSq2WSCHKmjiBr9hobZKtuU1aq2kbv0B1VotsTUdu0LjPZ8tvHat/tCLLhBRe0MD1WPeOPqnXEet15k8sP/EfYSr0et0/T0sJ1lFjvNyPImjuCrNkjyJo7gqzZI8iaPcDbCLIVwqKTFJuY7vl1wKqdGj4hQEUXLuuBDr11tazM87ZXe47RmZBYSQQ5U0eQNXu3I8hW7mRent6MO6AfBF1/AbBW4Ws1Kz2KF2HywzUmyB7JzdWXaWF6LW6v/j1sZY34emfwfN0bsUHvJwRqUUasIgouWH472c1HkDV3BFmzR5A1dwRZs0eQNXuAtxFkbyI7t1Cv9BitvUfOKjgiQS92HVnt7R+Pm6P1O464/6wfnCiY70eQNXu3M8hWLqLgggYkntA/hSzyhLqfhS7TqJRziiu4bPltZu7VF2RTi4q1NTtVI5LPqF30Dv2kyv1ZuX8IWagno7brk+TT2pydohQuP9BsRpA1dwRZs0eQNXcEWbNHkDV7gLcRZG/wxvvj1KpNF30xY4WuXSvXyXOR6tx7XLU/M3LyIi3fsFeSdMV+lRm4YvtV7n+DV1pWLoerzCvvO7/EoenZ4frPiOvPpPxx8EJ9mHJMcVcu6Yr9qi7brP8YmLoSx1VdK7/+2E8vKdHa/CQNSDmhh6I36QfB82sE2F+Gr9AbCfs0IztCpy7m67If3A7WuJVdK5fd6Z3HfnPYZVup5cdg1ezOMpVdK7f8OJg1u1YulTisPw5TZ+W5x+EqU2kZj31TJ0nFfnAczLr7H/AmguxNFF24rMGfzdUXM1YoJDJBz3cZUe3tg8bO1sadRyVJV2ylzMTZS1Vezv1v6kqvXnMHWS/+G5dtpVqdl6iHozdf/9H2oHl6LWGvjl/Is/xjYOrCLhdpcWGs3k08qN+Er64RX78fNE+to9brg+SjWp4Xp8TLly0/Znb7drWsXDbnVcuPw6pdtpl7223Oq7paVm75cTBrdu1auTvI+sGxmLjLFv7bDleZSq9es/xjwKwZ3++ZPcDbCLIVAk+FKTk9x/Pr0yEx6vjOJ7pw6Yruf7qX7A6X520d3hqqkMgESfzIuqnjkgVmzxuXLKhru3My9WzMLn2vSvh7JGqLVmQmWP6xaMlLLyzRzux0jU45pw4xu/TPIYtrBNgfBwfo8eitGpx8SuuzkpVUeMXy42beG5csMHdcssDscckCc8clC8welywwe4C3EWQrfDV/vXoOnqriErtKS69qzNQlGjR2tiSp+6Apmrd8u8rKrmnnge/UvvNglZVdk0SQM3UEWbPn6yBbuVN5+eoaf1h/FxzgCYK/CV+laWnhSuMFwJq8uILLWpGZoH6Jx/Vw5Gb9bdCCGgH2Z6HL9HrSPn2REqx9OVnKLLJZftzMdyPImjuCrNkjyJo7gqzZI8iaPcDbCLIVbHanRk5epMde+kiPPNdXvYd9pdyC85KkrNxCvdd/oh7u1Eev9RqrqLhUz9+z+iTBrBlB1uxZFWQrF1NwScOST+unIUs8ofCnIUs0LPm0YgouWf7xaS47lZ+vb9Ki9E7cQf02fLXuuCG+fi9orlqFr1WX+EOanR6ts3mF9b6oF2vZI8iaO4Ks2SPImjuCrNkjyJo9wNsIsk1k9UmCWTOCrNmzOshWLq2wRNPSwvWb8FWeiPh3wQHqEn9Ip/LyLT8+f1pGkU27czL1eWqQOsV8q/8TurTGs1//LjhAj0Zt1sDEE1qdlaT4m1x+gCBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2/CXIVt2KzAQ9GrW52rM7n43Zpe05aZYfmxWLL7yiNZlJGph4Qn+O2qIfVbnMQ9VnFXeK+VafpQZpd06GMhpw+QGCrNkjyJo7gqzZI8iaO4Ks2SPImj3A2wiyTWT1SYJZM4Ks2fPHIFu5fTlZeil2j+4MmucJj3+M3KhFGbHK8oPj89ZC8os0Jz1KXeMP6/fha6u9ANr/CpqrO4Lm6rfhq/V23EF9kxbV6GcQE2TNHkHW3BFkzR5B1twRZM0eQdbsAd5GkG0iq08SzJoRZM2ePwfZygXlF+r9hED9uMozQ/89bKUmpIYo+SY/it+clllk04HcbE1IDdFLsXv089DlNZ79+rdBC/Rw5Gb1SzyuFZkJiiu4fFv+bYKs2SPImjuCrNkjyJo7gqzZI8iaPcDbCLJNZPVJglkzgqzZaw5BtnJxBZc1KuWcfha6zBMrfxKySAMSTyii4ILlx9eQJRde0YasFA1NPqU20Vt1100uP/DPIYvVIWaXRqec087sdKUXlnjlWAiyZo8ga+4IsmaPIGvuCLJmjyBr9gBvI8g2kdUnCWbNCLJmrzkF2cqlF5ZoVnqUWoWv9UTMHwTN15tx+3UsN8/y46u68IILCsiIUY/4I2odsb7a5Rcq919hq/TX2P2anh6h43m5Pjs2gqzZI8iaO4Ks2SPImjuCrNkjyJo9wNsIsk1k9UmCWTOCrNlrjkG26tZlJuuJqG3Vrq/6VPR2bcxK8fmxZBXZdSQ3R1NSQ/Vq7F79MnRljfj6N8Hz9cfIjeqTEKglGXGKLrhk2ceOIGv2CLLmjiBr9giy5o4ga/YIsmYP8DaCbBNZfZJg1owga/aae5Ct3JHcXL0Rt09/EzzfEz//ELFOs9OjlVFk88q/mVpUrC3Zqfo0+YzaRu/QP4YsqhFgfxKySO2id2hE8hltzU5ValGx5R+ryhFkzR5B1twRZM0eQdbcEWTNHkHW7AHeRpBtIqtPEsyaEWTNXksJspULyz+vDxOPVYuj/xa2XGNTzimhsGkvhhWVf1GLM+L0QUKg7o/cWC3+Vn2xsdfi9mpqWpiO5Pru8gONGUHW7BFkzR1B1uwRZM0dQdbsEWTNHuBtBNkmsvokwawZQdbstbQgW7mkwisanxqsX4au8MTSu0IW6oOEQIXkFzXofRzLzdNXaRHqHLtf/xm2qkZ8vTN4vu6N2KBe8Ue1MD222bywWOUIsmaPIGvuCLJmjyBr7giyZo8ga/YAbyPINpHVJwlmzQiyZq+lBtnKZRbZND8jWvdGbKgWUl+J3atDudmeP5dWWKId2WkalXJOz8Ts1P8OWVwjwN4VslBPRG3TsOTT2pSVqhQ/uvxAY0aQNXsEWXNHkDV7BFlzR5A1ewRZswd4G0G2iaw+STBrRpA1ey09yFbdluwUPRuzq1pkfTBikx6O3FwjvlZe6uDl2D2akBqiA1XibUsZQdbsEWTNHUHW7BFkzR1B1uwRZM0e4G0E2Say+iTBrBlB1uyZFGQrdyIvT+/EHawRYP8QsU7d449oQUaMwvLPW36c3h5B1uwRZM0dQdbsEWTNHUHW7BFkzR7gbQTZJrL6JMGsGUHW7JkYZCsXUXBB41ODtS4zWUmFVyw/Hl+PIGv2CLLmjiBr9giy5o4ga/YIsmYP8DaCbBNZfZJg1owga/ZMDrKmjyBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2gmwTWX2SYNaMIGv2CLLmjiBr9giy5o4ga/YIsuaOIGv2CLJmD/A2giwAAAAAAAAA+AhBFgAAAAAAAAB8hCALAAAAAAAAAD5CkAUAAAAAAAAAHyHI3mDOsm164tUBeuT5vhr2xXzZ7E5JUkZ2vroMmKQ/deqjV3qMVnBEgufvHDsdoRe6jtAjz/VVryFTVXj+kudtC1fvUtvXB+mxlz7SZ9OX62pZmc9vExrm0IkQdXp3uB7q+IHe6z9RqRm5nrfVdj86XaX6ZMIC/eXFfmrfebDWbz/coPcH/1JcYtfQz+fpkef7qs0rAxSwaqfnbY197FfqMmCSPh43xye3A43TmMd+XZ8XOXlF6jJgkv74TC+91G2kYhPTfX6b0DB1PfYb87X90uUSDRwzS8+8OVQd3/lES9ft8fltQsPV9tiv62u7JO088J0e6PC+9h45W+33G/I1Af4hKS1b7/SboAef7a3n3h2uo9+Fed5W1/14/uIV9RoyVc93GdHg9wf/U9v3e3U99q+WlWnqvHVq1aaLLly6ctP3O3vJFj320kc+uQ1onMY+9mMS0vTMm0M1/usV1d5faelVjZy8SA8+21tPvjZQO/d/57PbglvXmNZT22O/vLxcXwdsVIe3hqrDW0M1cvIi2R0un98mNG8E2Sr2HjmrZ98epvzCi7LZner+8RTNWbZNkvRe/4latmGvysqu6djpCLV5ZYBKr5bpSrFNj77woUKjEnW1rEwzFm7SwDGzJElnQmLV4a2hKjx/STa7Q90/nqLVWw5aeRNRi9yC83qo4wcKjkjQtWvlmrFwk7oOnCSp7vtx9pItGjhmlhxOl7JyC9XmlQGKT86s8/3B/4z/eoUGjZ0th9Ol7NxCPf5yf50Li5PUuMd+pS27j6ld58EEWT/W2Md+bZ8XkvROvwlasna3Sq+WacvuY/p0YoBltw91q+2x39iv7Z9PX67Ppi+X5I6zbd/4WMER8ZbdPtSursd+bV/bJWnp+j3qN2KGOvceVy3INuRrAvzH811GaNmGvSovL9fxMxF6oMP7sjtcdd6PJTaHnn/vU02bt75GkK3t/cH/1PX9Xl2P/X4jZmj2ki26+8muNw2yqRm56vjOJwRZP9eYx35IZIJe6TFaw76YXyPIfrN4s/qP+kZ2h0txSRl6rddYOV2lVtw01KMxrUeq/bG/98gZvdZrrOwOl8rKrqnfyJmat3y7JbcNzRdBtoqI2JRq3zgt27BXw8bPV9GFy3qgQ+9qz259tecYnQmJ1d4jZ9RryFTP718ptql1ux5yuUr1+fTl1Z5tc/hkiN7rP9E3Nwa3JLfgvPYeOeP5dUxCmp54dYAk1Xk/Pv/epwqLTvK8bcrsNZq9ZEud7w/+59DxYGXmFHh+/eGnM7Rx59FGP/Yl6eKlYnV85xOt3XaIIOvHGvPYr+vzIjOnQE++NlDXrpX77kag0Wp77Df2a3vXgZO07+g5z9sGjJ6lddsO+eCW4FbV9div7Wu7JMUmpqu8vFzdB02pFmTr+5oA/3G1rEzrtx/2fLMtSQ8+21vpWXl13o82u0PpWXkKjoivFmTren/wP7V9vyfV/9iXVGuQ7TpwknYfOk2Q9WONfeynZ+XJZndo3vLtNYJs29cH8VOQzURjWo9U+2N/zrJt+mLG9c+HVZsP8D0fbhlBtg69h32lddsOKTgiQS92HVntbR+Pm6P1O45o/oodmjBzZbW3PfbSR0rNyFX3j6dof+D1b8yS03P0+Mv9fXLsaJpFa771nFDruh/veaq7Ll0u8bxt3bZDGvL53DrfH/xbcYldj7/cX0mpWY1+7EvSiEkLtfnbQO09cpb7vhlpyGO/rs+Lg8eC1XXgJI3+crHavvGxug2crOT0HJ/eBjRO1cd+Y7+2z12+TUM+n6vSq2XKL7yo9p0HKykt26e3A41T9bHfkK/tNwbZ+r4mwH9FxCTrydcG6mpZWYPuxxuDbF3vD/6v8vs9qWGP/ZsF2a17juuTCQt04dIVgmwzcquP/RuD7OVim+5t31MrN+1Xh7eG6aVuI3XoRIjPjh9N05DWU9WNj/1zYXF67t3hunDpipyuUvUeNk2bdgX64tDRghBkazFn6VZ1GzhZV8vKdPJcpDr3Hlft7SMnL9LyDXv1dcBGTZu3vtrb2ncerNjEdL3Vd7yOnQ73/H5OXpEe6viBT44fjXf8TITadx6s3ILzklTr/Vh6tUyt2nSRw3n9R9K27T2hfiNm1Pn+4L8cTpd6D5umbxZvlqRGP/bPhsbqnX4TVF5eTpBtRhr62K/r82LL7mO6r31PnQqOVnl5uZau31PjP/Lgf2587Df2a7vd4dJrvcbqwWd76+4nu+rrgI2+uxFotKqP/YZ+bb8xyNb1OQP/lZlToA5vDdPxMxGSGnY/1hVkb3x/8G9Vv99r6GP/xihz8VKxnn17mIouXCbINiONeezfGGSzcgt195NdtWDlDpWXlys0KlEPPttb+YUXfXMj0GgNbT1V3ez/jPls+nK1bttdf3yml7oMmKTS0qteP3a0LATZG5SXl2vCzJXqNWSq59pPIZEJNf7Da9DY2dq486gWrNxR40cX/vxCP6Vn5anH4C+r/cd6UmoWP7bu53Ye+E4d3/mk2o+Z1XU/3vNU92on5jVbD3p+7Km29wf/dLnYpnf6faGZizZ5fq8xj/2k1Cy91G2kklKzJIkg20zcymO/rs+LA8eC9EqP0Z7fLyu7ptZtu+vipWLv3wg0ys0e+4392v7xuDmatXiLrl0r15Vim97qO147D/ACH/7sZo/9+r62SzWDbF2fM/BPcUkZeubNoTp88voz2hpyP9YWZG/2/uCfbvb9ntSwx/6NUWbEpIXauPOoJBFkm4nGPvZvDLKXrpSoVZsuulJs8/xet4GTq126CP7lVltPVTc+9tdtO6ReQ6bKZneqrOyaJsxcpTFTl3j/RqBFIcjeYMrsNRo0dk61a8tcuHRF9z/dq9oX7A5vDVVIZIL2B57Tux9N8Px+XsEF3f90L10tK9OEmSs1a/EWz9t27v9OPQZ/6Zsbglt26HiwXuw6ssarItd1P77YdaROh8R43jb6y8VasHJHne8P/sfpKtXbH36hlZv2V/v9xjz2K//f8cde+kiPvfSRHu7UR/e278n1o/3YrT726/q8iE1MV9s3Pvb8flnZNd3zVPdq/7EO/1HbY7+xX9sf6viB0jKvf/MWsP5UpbgAAAmjSURBVGqnRk1Z7OVbgcaq7bFf19f2SjcG2bo+Z+B/MrLz9cybQ6u9krbUsPvxZkG2tvcH/3Sz7/ekhj32b4wyjzzf1/PffH95sZ9+/0RXPfbSR9UufQD/0ZTH/s2uIftwpz7Kyi30/LrbwMk6dDzYS0ePprrV1lPVjY/9fiNmaMPOI55fh0Yl6pk3h3rv4NEiEWSrOBsaq1d6jL7pU827D5qiecu3q6zsmnYe+E7tOw9WWdk1ldgcevSFD3UqOFpXy8r02fTlGj7B/YrawRHxavv6IOUWnNeVYptef3+stuw+5uubhQa4dKVET742sNoX1Ep13Y/zlm9X72HT5HC6lJiSpUdf+FBpmXl1vj/4nzlLt+rzildGv1FjHvtV8QxZ/9bYx35tnxeS9FK3kdqy+5jKy8u1YuM+vf7+WF/eJNyC2h77jf3a/lbf8Vq6fo8kyeUqVbeBk2v8yBv8Q12P/dq+tld1Y5Bt6NcE+IcuAyZVe1G3Sg25H28WZGt7f/A/dX2/15DHfm0v6iXxDNnmoCmP/ZsF2QkzV2rUlMW6WlamiNgUPdypj4ouXPbqbUDjNKb1VHXjY//rgI36aNRMT7SfsXBTjUucAPUhyFYxfEKA7n6yq1q36+HZqz3HSHJfI+a9/hP1cKc+eq3XWEXFpXr+3slzkXr+vU/1yHN91Wf49Go/mrpk7W49+dpAPf5yf02evYZX3vZTW3YfU6s2Xard963b9fDcl7Xdjy5XqYZPCNCfX+inp/86RNv2nmjQ+4N/afv6IN3zVPdq99WkWaslNf6xX4kg698a+9iv6/MiPStfr/Yco4c79dHbH36hFF7Uy2/V9dhvzNf25PQcdR04Sc+8OVTPvDlUn01fzvXE/FRdj/3avrZL7ldebt2uh37/RFfP507lN/cN+ZoA62XmFNz0vj9wLEhS7ffjgWNB7j/btrvn77/UbWS97w/+pa7v92p77F+8VOz5s1Xv6xufXU+Q9W+NfexPmrVardv10B+e6ub53PlihjvM2h0uDRo7Ww91/EDPvj2MS5b4sca0nroe+yU2hz6ZsMDz33y9h01TTj6vGYNbQ5AFAAAAAAAAAB8hyAIAAAAAAACAjxBkAQAAAAAAAMBHCLIAAAAAAAAA4CMEWQAAAAAAAADwEYIsAAAAAAAAAPgIQRYAAAAAAAAAfIQgCwAAAAAAAAA+QpAFAAAAAAAAAB8hyAIAAAAAAACAjxBkAQAAAAAAAMBHCLIAAAAAAAAA4CMEWQAAAAAAAADwEYIsAAAAAAAAAPgIQRYAAAAAAAAAfIQgCwAAAAAAAAA+QpAFAAAAAAAAAB8hyAIAAAAAAACAjxBkAQAAAAAAAMBHCLIAAAAtUHZuoYZPCNATrw7QH57qpj916qNBY+coK7fQ6kMDAAAAjEaQBQAAaGHKyq6pw1vD1H/UN4pPztSlyyWKTUzX+0On6dm3h6ms7JrVhwgAAAAYiyALAADQwmTlFqpVmy5KSs2q9vtFFy5r/Y4jstkdKjx/Sa3adFF6Vp7n7as2H9DL3UdJkg6dCNEzbw7VwtW7dF/7nlqz9aDubd9TNrvT8+dLbA61btdDx89ESJJWbNynju98ovva99Rz7w7XyXORkqRp89brrb7jqx3LubA4tW7XQ5eLbV75GAAAAAD+iiALAADQwrhcpXrkub4aNWVxrcGzviB77HSEHur4gcZOXarcgvOyOVz6U6c+2nf0nOfPf3vwtP78Qj9dLSvTtwdP6y8v9lN0fKrKyq7p8MkQtW7XQ+lZ+UpKy1arNl2UkZ3v+bsTv1ml/qO+8dJHAAAAAPBfBFkAAIAWKDgiXs+9O1yt23bXO/0m6OuAjQqLTvK8vSFBtlWbLsotOO95+8jJizTsi/meXw8aO1ufTV8uSeo2cLJmLNxU7RjeHzpNs5dskSS98f44zVm2zfO2p14bpAPHgm7jLQYAAACaB4IsAABACxaXlKGVm/ar34gZat2uh/qNnKmysmsNCrKt23av9r6OnY7Qnzr10dWyMjldpXqgw/sKCo+XJLV942O1atOlxoZPCJAkrdl6UM++PUySFBGTrD916qPS0qu++BAAAAAAfoUgCwAAYIik1Czd/WRXHTwWXEuQ3V8tyP7xmV7V/v7VsjI98nxfnQqK1qETIXrytYEqLy+XJHV6d7hWbtpf67996UqJWrfroci4FE2bt17jpi29/TcQAAAAaAYIsgAAAC1M4KkwfTFjRY3fLy8v1yPP9dWW3cd0udimVm26KCEl0/P2L+esrTPIStKoKYs18ZtV+nRigL6cs9bz+32GT9eoKYur/dmcvCJdu1bu+fXAMbM0fcEGtes8WMER8U2+nQAAAEBzRJAFAABoYRJSMnVf+54aN22pouNTVVB0UbGJ6Ro1ZbEe6PC+57qwj77woVZtPiDJHU+feXNovUH2xNlIdXznE/3lxX6KjEvx/H7gqTDd176njp0O19WyMgWFx+vhTn10NjTW82eOnAzVQx0/ULvOgz3PrAUAAABMQ5AFAABogSJikvXhpzP02Esf6Q9PddMjz/dV30+/VkxCmufP7D1yVu06D1bHdz5Rn+HTtXLTfj3/3qeSag+yV8vK9OgLH6rDW0NrvG3lpv1q+8bHurd9T3V6d7i27T1R4+/+5cV+mrloU42/CwAAAJiCIAsAAACfOH/xiu5/upcycwqsPhQAAADAMgRZAAAAeNW1a+W6eKlY/UbM0NDP51l9OAAAAIClCLIAAADwqmOnw3XPU93Ve9hXunS5xOrDAQAAACxFkAUAAAAAAAAAHyHIAgAAAAAAAICPEGQBAAAAAAAAwEcIsgAAAAAAAADgIwRZAAAAAAAAAPARgiwAAAAAAAAA+AhBFgAAAAAAAAB8hCALAAAAAAAAAD5CkAUAAAAAAAAAHyHIAgAAAAAAAICPEGQBAAAAAAAAwEcIsgAAAAAAAADgIwRZAAAAAAAAAPARgiwAAAAAAAAA+AhBFgAAAAAAAAB8hCALAAAAAAAAAD5CkAUAAAAAAAAAHyHIAgAAAAAAAICPEGQBAAAAAAAAwEcIsgAAAAAAAADgIwRZAAAAAAAAAPARgiwAAAAAAAAA+AhBFgAAAAAAAAB8hCALAAAAAAAAAD5CkAUAAAAAAAAAHyHIAgAAAAAAAICPEGQBAAAAAAAAwEcIsgAAAAAAAADgIwRZAAAAAAAAAPARgiwAAAAAAAAA+AhBFgAAAAAAAAB8hCALAAAAAAAAAD5CkAUAAAAAAAAAHyHIAgAAAAAAAICPEGQBAAAAAAAAwEf+P3b3LdHQdby9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAHCCAYAAAByuyDfAAAgAElEQVR4nOzd91uUd74//s/fs+d8P/ns2T27p25L9iSbnGw22Wx61NhNjMZeE3s3sRtjFyuoiCK99zq0AQaGDsPM3aYXpj+/P8yIgkZQhBu8n4/rel5XEMSbwdwxT9/36/V/QERERERERERERESq+D9qXwARERERERERERGRVrGgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgJSIiIiIiIiIiIlIJC1oiIiIiIiIiIiIilbCgnaBBxcdoNF5/GHZ3QPXrYNSJPxiB4vSrfh2MOgmFoxDtQ6pfB6NOolHAPA2ug5n6mK2x77/a18GoE9E+hFA4qvp1MOpEcfrhD0ZUvw5GndjdAXj9YdWvg1EvRJONBe0EqX2TYNQLC1pthwWttsOCVtthQavdsKDVdljQajssaLUdFrQM0WRjQTtBat8kGPXCglbbYUGr7bCg1XZY0Go3LGi1HRa02g4LWm2HBS1DNNlY0E6Q2jcJRr2woNV2WNBqOyxotR0WtNoNC1pthwWttsOCVtthQcsQTTYWtBOk9k2CUS8saLUdFrTaDgtabYcFrXbDglbbYUGr7bCg1XZY0DJEk40F7QSpfZNg1AsLWm2HBa22w4JW22FBq92woNV2WNBqOyxotR0WtAzRZGNBO0Fq3yQY9cKCVtthQavtsKDVdljQajcsaLUdFrTaDgtabYcFLUM02VjQTpDaNwlGvbCg1XZY0Go7LGi1HRa02g0LWm2HBa22w4JW22FBy0yVaDSKC4kZePOzdXjl1bn4w9+XY9eRK/D6/JPy64XCYaRml0/K56Znw4J2gtS+STDqhQWttsOCVtthQavtsKDVbljQajssaLUdFrTaDgtaZqoc+PEGXvtwFcpq9PB4h9DRbcKC1Qcwd+W+Sfn1Wo29WLD6wKR8bno2LGgnSO2bBKNeWNBqOyxotR0WtNoOC1rthgWttsOCVtthQavtsKBlpoLN4cIrr85FU2vXiB/3+oZwIyUPwVAYkUgUh8/cwpufrcNbn6/H2p2n4PbEru+V1+ZBtjqGf96Dtw0dfXh37mYcOn0T81btx5ufrUNJVRM83iH86f0V+PUbCzF3xT60Gnvx3rxvsXbnKcxduQ/vL9iCzILq4c+XX1aH9+Z9OyWvhRaxoJ0gtW8SjHphQavtsKDVdljQajssaLUbFrTaDgtabYcFrbbDgpaZCnmldXj1g5VP/Zi03Er87YtN8PqGEI1GsWLLCXx/KhHAzxe0xu4B/NMf5qCsRg8AyCyoxsdLtg//84MTtMbuAfzq9QVIy60EAFxIzMDXm48Mf75Ne8/i9JXUF/cF0wgsaCdI7ZsEo15Y0Go7LGi1HRa02g4LWu2GBa22w4JW22FBq+2woGWmwt2sUny4eNtTP2btzlO4kJgx/HZZjX74VOvTCtrfvLl4+McNHX149R8rADxe0P7yz/MRiUQBAKJsxy//PB8utxeRSBT/+del6B8UX8wXS49hQTtBat8kGPXCglbbYUGr7bCg1XZY0Go3LGi1HRa02g4LWm2HBS0zFarqDPj9e8uf+jELVh9ASmbp8NvNbT34w99jP+dpBe2DjwEw4u3RBe3oX3/28j1ITi9GTUMbPli4dWJfID0VC9oJUvsmwagXFrTaDgtabYcFrbbDgla7YUGr7bCg1XZY0Go7LGiZqeB0e/HrNxahQtcy4sf9gSC2HrwAr8+P9btO42JS5vD7Sqv1+Pv87wAA//I/CyDK9uGf84vfz37mgvbRjwOApNQCLFp7ELuOXMaFGxmgycOCdoLUvkkw6oUFrbbDglbbYUGr7bCg1W5Y0Go7LGhfrgwoTvRZrehVBHQrg+hUetEhd6JdboNB1qNVrkezXIMmuRyNcjH01gK4Ak7Vr5tRJyxomany46W7+N27y1BQVg+Pdwg9/RYsWnsQy789BiBWqL4371t4fX6EwxEs23wUR8/dBgC8/vEaVNUZAACp2eX4pz/MGbOgzSvR4aMl2xGNRp9Y0DpcHvz6jUX43bvLYBaUqXgJNIsF7QSpfZNg1AsLWm2HBa22w4JW22FBq92woNV2WNBObkxWNwYUO/oUGT2KGV1yPzrlbhiVdrQpLTDIjWiWddDLlWiUS1EvFaJOzkWtlI5q8R4qxGSUi4koFa+iWLiEIuEcCsSfkCceR65wGNnCQWQKe5Bh2YF0YetzRfT1q/46MeqEBS0zVaLRKC4mZeIvn67FK6/Oxav/WIFDp28iGAwNv//4+WS89fl6vPnZOmzedw5enx8AcD+3Am9+tg7zVx3Amav38bt3l0FS7E8taGWrA6/+YwV+9+6yJxa0APDlhkP45MsdU/DVaxsL2glS+ybBqBcWtNoOC1pthwWttsOCVrthQavtaLGg7Vcc6FMU9CgWdMkD6FB6YFSMaJNb0So3oUXWQS9Xo1EqQ4NchDo5DzVSBqrFVFSKd1AuJqFMuI4SIQFF4jkUiqeRL5xArnAEOcL3yBL2IsOy67kL04kkw7ITWcJeZAsHkSscQb5wHAXiTygSz6NEuIRS8RrKxSRUismoElNRr2TAGbCp/j1h1AkLWkbLth68gGt3ctW+jJceC9oJUvsmwagXFrTaDgtabYcFrbbDgla7YUGr7UyHgnZAcaJfsaFXEdGtmNCl9MUfy29Hm9yMVqUezXIt9HIFGuVi1EsF0IlZqBHTUCXeRaV4K37K9AqKxQsoEs6iQPgR+cIx5IqHkC3sR5awG+nCdhVK0x3IFHYjWziAHOEw8sRjKBROoVA4hxLhIsrEqygXE1Ep3ka1dA81Yhp0YjYapEI0yiXQy5VokXUwyA1oU1pglNvRKXehS+lHjzKIXkVCv2KHyep6rteeM2i1HRa0jFZ19pjw6j9WwOX2qn0pLz0WtBOk9k2CUS8saLUdFrTaDgtabYcFrXbDglbbeVJB+/TH8lsfeSy/asRj+TWPPZZ/bcRj+fnC6Mfyd6pQmG6LFaaWfcgRfkCecBQFwkkUCmdQLF5AqXgZZeINVEi3UCWmoFpMQ62YiXo5H41yMZrkcjTLNWiV62GQ9WiX22BUOtCp9KJbGUSvIqBPsWJAcWJQ8ar+/R0rLGi1HRa0jBYdOn0Tf3p/BQrK6tW+FE1gQTtBat8kGPXCglbbYUGr7bCg1XZY0Go3LGinf0yKF/2KM/5YvoAuxYROpQdGpQPtsgEGuQktch30cjWa5PLhx/JrxUxUi/dRKd5BhXgz9li+eBnF4vn4Y/knkSccRZ70A7Is+5Ap7EK6sG0aPJZ/Iv5Y/jmUCAmPPJZ/B9ViKmqkDNTJuWiQi9AolUEvV6FZ1qFVbkKb3AqjYkSH0o0ueQA9igV9iowBxYFBxaP693K6hQWttsOCliGabCxo46LRKI6dS8Yf3/8G//bWEvzwU9Lw+/oHRcxevgf/9tYSvDfvW+iajMPvU/smwagXFrTaDgtabYcFrbbDgla7YUH7fHn0sfweZXCMx/JLRj6WL418LL9EvDjysXxhejyWnzXqsfwi4ewYj+UXPPJYfi1aH3ksv0PuQpfS98hj+bbnfiyfeXFhQavtsKBliCYbC9q4tNxK/HXORljtLshWB/738/XIyK8CAMxathsXkzIRDkdQXNmE37+3HMFQGAD/gK7lsKDVdljQajssaLUdFrTazctS0JqUkY/ld8sDIx7Lb330sXxp5GP5VWLqiMfySx57LP/INH4s//zDx/LFm489lt8gFw0/lt8i1z32WH6/3QRP0B5/LN+BmfBYPvPiwoJW22FByxBNNha0cZv2nsX56+nDb1+7k4vl3x6DYnPi128sQigcHn7f3+d/h6o6A4CZ/wd05vnDglbbYUGr7bCg1XZY0GojFrMAsbcLckcTrK2VsDfkwVl7F2i4DVdVMhy6VDjqs2BvLICtuRRWQzUUYz3kzhZIPR0Q+3shmAZhsSgwS86n/lqjH8vvfuyxfP1TH8uvElOe8lj+EeQI0/Wx/PMoES498lh+MqoeeSy/XipCo1T6yGP5jWhTHj6W3z3qsXyT4p7U3xPTYUkYo15Y0Go7LGgZosnGgjZudEGbmlOOd+duhq7JiHfmbBrxsSu3nkDivQIAgGAbYjQaXyAMpzeo+nUw6iQQisDmDqh+HYw6CYejUJx+1a+DUSfRKCBOg+tQLzPn974oOyAPDkLpNcLWUQ9HSymcDdlwVyfDU3oFvoIfMZR1EIH72xG6sw7hpKWIXvkCuPTJE+O9OQfW1PmQ0hfCkrUQptzF6Mv/Ej1FX6GzZCnay5bBULEMzdXfoEm3AvUNq1DbtBpVzWtQ0boWpcaNKOrahILeb5Hb/x2yBreocMI0lixhD7KF/cgVDyFPOIYC4UcUiWdRIl5EmXQFFVIiqqTbqJbuolZKQ52UjQalAHqlBM1KJVqttWizNsCotKDD2o4uaxd6rP3osw1iwCZh0GaH2eZS/ffAi4zi9CMcjqp+HZqOXb1f2+YOIBCKqP8aMKrE6Q3CFwirfh2MeiGabCxo4+7nVuDtWRug2JxwOD344pu9ePOzdSir0ePDRVtHfOymvWdxKSkTABCORBmNJhoFItPgOhhtfv/9wYjqr4GWE+X9X9PR+n//Vbn/DLkRcVgQkToQGWxCpKsM0dYsRBuSEalKQLTkJKK5+xFN24poymogccnPlqxPS+ja53CkzIU5axG6yleiqXEjKo1bUNA/+YVppmkLcvq/RX7PJhR2bURJxwaUt61DVeta1OhXo65hNRp1K6Gv+QatlcvRVr4MHaVL0V28FH35X2IgdzHMWYsgZiyEcn8+bPfmwZm6CO7Ur+BLXQ7//dUI3t+IaNp3iGbuiL1eBYcRLT6BSPkZRKouIaK7gWhDMqL6+4gashE1FiLSXY5IXy0ig3pEBAMichcitgFEnCLCXjvCfq/qvyenMrz/qxt/MKzarx2JxP78p/ZrwPD7z6gTosnGgjYuEoniyNlbeP3jNfhw8TacuJiCj5ZsR53eiLdnbxzxsSu2HMfN1EIAHHGg5XDEgbbDEQfaDkccaDsccfCckd3xsQHdkDtHjg1wlV2Dp+gsfDmHMZS2C4G7mxC6+Q0i1+YDlz59rrIVlz5B9PJshG8sQTB5NfypWzGUuR9KyVEM6E6ho/U0Gjt/QmXvCRSZDiPLsmvMEjVbOIgK6zkUC5dQKl5FhZiICjEZ1eI91Erp8cfyC9Eol0IvV6JZ1sEgN8aWPynt6BTb0W1pQ5/JAFN/Myy9esgdeijtdbC2VsLWXAx7Yz4cdRmx16XyFlxl1+AuuQhP4Wl4c4/Dl30YQ5n74U/bicC97xC8swGh26sQTlqG8PXFiF6di2jC58/9mj33a53wOaJX5yJyfRHCSV8jdHslgnc2IHDvO/jTdmAoYx982YfgzT0OT+FpuIsvwlV2Fa7KW3DW3oWjLgP2hjzYmothba2E0l4HuUMPqbsdYl8PhAETLBYJZtGOQVmd2a8ccaDtcMSBtsMRBwzRZGNB+zPOXkvD1u8vwuZw4V/+ZwF8Q4Hh973xyRrU6Y0AWNBqOSxotR0WtNoOC1ptR+sFrVm0QxgwQepph9JeD1tzKRz1WXBWJcNVmgBP/o/wZX0P//1tCCaPPTZgPIlcnYtw0jIE76yHP20HfFk/wFPwE1ylV+CsvgN7QzaszWVQjA2w9LaiZ1APg1yLeqkQleIdFIsXkCscRoawfYxZqbuQJx5DqXgZ1eJ9NMqlaJOb0aWYYLK6Z9aSMNkDs2iDxSxCGBiA2NsNqbsNcmcTlDYdrK0VsOmLYG/IhaMuHc6aFLgqb8JVegXu4gvwFJyGN+8YfFk/YChjL/xpOxC4+x2Cd9YhdGsFwklfI3J9Uex7m/D8Jfrzl++fI3J1HsI3liCUtBzB26sQTNkAf+pW+NN2YShzP3w5h+HNOwFP0Vm4Sy7CVXYNrqrbcNbeg6M+E/bGfNj0JbAaqqC010PubIbUY4wVwqZBWMwyzNLDZWAsaLUdFrTaDgtaRstC4TB+8fvZeOW1efh/f56P3761BAtWH0CfSZjQ5/3V6wtgkawv6CpnPha0cXklOixccxAe7xD6B0W8+o8VaGjpBADMXbEPP166i3A4gtSccvz5w1UIhyMAZsgf0JlJCQtabYcFrbbDglbbeTkKWi8sFgVify/kzhYobTWwNRXCoUuDqzIJ7qIL8OYdw1DGXgTufRc7oXl9MaKXJ3AyM+EzRK4tROjWCgTubsZQ+m54c4/AXXgOropEOHSpsDcWwGqogtzRDLGvGxaLhEHZM+LaTYoXPYoF7XIb9HIlaqQMlIk3UCicQpawdxynYA+gSDiLCvEm6uRcNMu1MCod6FPkMV+3GVXQTnHMkhtmwQaLWYAw0AextwtSlwFyRyOUtlpYW8phayqEvSEHDl0anNV34KpMgqv0MtxF5+EpOAVv7lH4sr7HUPoe+O9vQ+DeZgST18YK4cSvELm2IF72q1AIJ8xG5Np8RG9+hdDNbxC8vQaBu5tiJ7PTd8OXdRDenCPw5J+Ep/AsXKUJcFUkwvnIQjlb09MWypnHtVCOUS8saLUdFrSMlj0oaB+Uqb6hALYcuICFaw5O6PMqNiciHB8xjAVtXDAUxvpdp/GbNxfjd+8uw42UvOH3mSwyZi3bjd++tQTvL9iC5rae4fepfZNg1AsLWm2HBa22w4JW25lOBa1ZejA2oAtyRxOsrRWwN+Q+HBtQeAa+nMPwp+1CIGUjQknLX8zYgMQvEby9ZnhsgDfvROyEYuUtOOoyYGsuhtKmg9RtgDDQD7Nge6avq19xolPphUFuQL1UhCoxBSXiReQKR5A+5inYncgXjqFEvIwqMRWNcgkMsh5d8gBMVtfEXm8WtNMmZtkJi0WBMGiBONAHqacj9pcNxgYobTWwNpfB1lQAe302HLX3Y4VwRSJcpQlwF56DJ/9HeHOPwJd1EEPpu+FP3YbA3U0IJq9B6OY3CCd+GStkL8+e8jI49u/ZHESuL0A48SuEbq1AMHktAnc3w39/W7wQ/h7e3KPw5J+Cu+hcrBCuTIKzOgWO2vuwN2TD1lQAa0s5FEMNZGMDpK5WSD2dEAb6IAxaYBGsMEsT+3dCS2FBq+2woGW0bHRBCwCl1Xr85dO1w28XlNXjnTmb8D8frcbcFftgtbsAAJeSMrFxzxms3XEKs5btxvsLtmDQIgN4eILW0NGHd+duxqHTNzFv1X68+dk6lFQ1Te0XOQ2woJ0gtW8SjHphQavtsKDVdljQajuTUdCaRdvIsQH6EjjqM+EaMTbgYHxswFqEE796gWMDNsTGBmQfGjU2IAfWlvJYsdPTAcFkhll+Uaf7vOhVBLTL7dDLVagVM1EuJqJA/Glcp2CzhAMoFM6gXEyCTsxGs1wDo2JEnyJN6veeBa12Y5YckEUFYVfs5HmsEG6G0l4Pq6EatuZS2BsL4KjPhLM2Nfbvbvn12PzgorPw5p2EL+cwfFkH4E/bBX/qVgRSNiKYvBqhpOUI31iCyNV5iCbMmvpCOOFTRK98gci1hQgnLY0VwnfWIXD3W/jvb8dQxl74sn6AN+8YPAU/wV10Aa7SK7FCuCYFDl067I25sOkLY4Vwmw5yRxOkbgPE3i4IA/2wmMXYX9SMOhE/k8KCVtthQctMtbVbgli5eerzJKMLWq9vCGt3nML+k9cBAIJkw7//75do6+wHAFy4kYGlm44AAK7czsF//PUryFYHAGDHoQQcOn0TwMOC1tg9gH/6wxyU1egBAJkF1fh4yfbJe3GnKRa0E6T2TYJRLyxotR0WtNoOC1pt52cLWtkLi1keNTagAI7a+/GxAecfjg24+x1Ct1fGZni+qLEB9zZjKH0PvLlHYyfqRowNqIbc2Qyxryc+NmDylywNKA50KX0wyI1okItQJd5FifDgFOyOMU/B5glHUSImoFq8h0a5GAa5CV1y/4RPwU4kLGi1nambQeuFWbTDYpEgDJgg9nVD6mmH3NH8UiyUQ8JnT1got/7xhXJ5oxbKVd2Cs+YJC+XadKMWyg3ECuEXvFCOBa22w4KWmWrzlgVVyZM8KGj/9S+L8Js3F+Of/zgHb32+Hj39FgBA4r0CzFu1f/jjvb4h/N8/zUUwFMaV2zlYuvHw8PsSbmZh/a7TAEYWtL95c/Hwxxg6+vDqP1ZMxss6rbGgnSC1bxKMemFBq+2woNV2WNC+3DFL7thj071dkDsaH44NqLkLV9lVRCvOw5d9OFZ6vLCxAXNGjA3wZR2AN+/kz4wNaIMwMPDMYwMmI72KCKPSDr1cPeIUbLZl3zhmwe5HoXga5WIidGIW9HI1jIoRvZN8CnZCvzdY0Go6L+2SME0slJv72EK5wL0tjy+UKzzz+EK5uthCOZehDMG+uthCuY4nLJQT7XiwUI55+cKClplqDqc6eZLRJ2hD4TCKKxvxX+8shaTYcfZaGn71+gK8+sHK4fz2rSWQFDuu3M7B2h2nhj/Xo28/WtD+4e/Lhz9m9NtawYJ2gtS+STDqhQWttsOCVtthQTszEhsbMACpux1Kex1szcXDYwPcJZfgyT8ZGxuQug3B5DUvaGzAvFgBMGJswOnY2ICalFFjAzohDFqm9QzIAcWJLqUfrQ9OwUp3USJcQq5wdBynYHcgTziCEuESqqS7aJSL0So3oUvpx4AyMxchsaDVdl7agnaKM3kL5dZNq4VyDwvhRxbKpe16bKGcu+TSYwvl7I1cKDfdwoKW0bInzaAFgHfnbkZ2UQ3uZZWNOCX7KBa048eCdoLUvkkw6oUFrbbDglbbYUE7hRk1NsBqqH44NqAiMTY2IPdofGzAtwjdWhE7qTWBx3ajCZ8jcn3Rz44NgCEL9qZRYwPM8pSMDZiMPHoKVidmoUJMRKF4GtnC/rFPwVr2oUD8CeViImqHT8G2o1cRVf+6JiMsaLUdFrQzMy9qoVwg+yAi2Xun90K5m98gmLxm1EK5g/DmHhm5UK4i8fGFcs1ljy2UE7lQbjgsaBkte1JBW9PQhl+9vgC9AwJkqwP/9c7S4ZEHTYZu7DycAIAF7bNgQTtBat8kGPXCglbbYUGr7bCgffaYJdfIsQEt5bA35sYelS29Ak/B6eGxAcGUDbGxAVfnTfh/WsOJXyGYvAb+1G0jxwZU3YajLjM2NqC97pnGBkzGkrDJjMnqQpfcD4PchEa5GNXSPZQICcgTjiLD8vRTsOnCDuQKR1AsXEKVeBcNchEMciO6lL4Zewp2Qr+PWdBqOixotZ3xzqA1Sw5YzDIE0+AzLpS79NhCuaFptlBO6mpT/fugVljQMlr2oKB95bV5eOW1efjln+fj7VkbkFlQPfwxheUNeGfOJrzxyRq8v2ALdE3tAFjQPgsWtBOk9k2CUS8saLUdFrTajpYLWrPwYGxA28OxAXWZcFXdhrvkYux/LLMOjBwbcHnOhP6HcHhsQMoG+NN2wpd9eOTYgMbc2NiAjsbYxvBJHhswHQvaPkWCUTGiWa6BTsxGuZg07lOwWSNOwWZCL1fBKLejVxHAeYqjfv+zoNV0WNBqO9NzSdizLJTLfMJCuTPPtFBO7OueBl+zOmFByxBNNha0E6T2TYJRLyxotR0WtNrOjC9oH4wN6OuB3NkMq6E6dppneGzAudjYgPQ9CNzbPDw2AAmfvZixAXe/xVDG3vjYgPNwVSTCUXs/9oiloRpyZwvE/t5pOzZAjYLWZHWhWx6AQdajUS5BtXgPJeKDU7A7xyhhtyNXOIIS8SKqxJT4KdgGdCq96NfgKdiJhAWttsOCVtuZngUtM1VhQcsQTTYWtBOk9k2CUS8saLUdFrTaznQpaM2yE8KgBVJPJ2RjQ2xsQENObH7e8NiAQ/Cn7UDwzgaEk5ZNfGzAlS9GjQ04CE/+ydiSk6rkUWMD2mNjA8SxxwbMpExWQdunyDAqHSNOwRYJZ5AtHBj7FKywF4XCKZSLN1AjZUAvV6JdbkMPT8G+0LCg1XZY0Go7LGi1HRa0DNFkY0E7QWrfJBj1woJW29gAIlYAACAASURBVGFBq+286II2NjagPzY2oE0XHxuQAVflrVFjA7YieHsNwolfTngZSeTa/MfHBhSehqvsKpw1d6d8bMBMyvMWtLFZsI+egk1FqXgZ+cKxMU/BZgjbkSscRrF4AZXiHdRLhWhV6uOnYB2qvyZaCQtabYcFrbbDglbbYUHLEE02VQraf3/7y3FnulP7JsGoFxa02g4LWm3niQWt7IHFIkHs64bc8cjYAF1qbGxA4Tl4c4+MHBtwbeGLGRtweyUCd78bOTagMmlGjQ2YSXlaQfvgFGyLXIs6ORcV4k0UCWeRLRwc8xRsprAHBcKPKBOuo0ZKf+QUrAUmnoKdFmFBq+2woNV2WNBqOyxoGaLJpkpBm1usG3emO7VvEox6YUGr7bCgfXljlp0QTGZIPR1QjA2wNpeNGhvwEyIFhxFI2/nI2IC5L2hswFr47z9hbEB9Jmz6Eijt9S/t2ICZEpPVDXdIRrvcjEa5FNXifZSKV5AnHkeGZdcYJew25AqHUCyeR6V4Bw1SIVrlenQoPRjgKdgZERa02g4LWm2HBa22w4KWIZpsHHEwQWrfJBj1woJW22FBO/3zcGyAITY2QF8ER136I2MDTsQ2FqduRTB59QsYG/Dp8NiAQMpG+NN2wZczamxAQy6srRWQO5oeGRvgVv21YkamT1HQIXeiRdahTs5DhXTrGU7B7h4+BVsrpaNJrkCbbECPYoZJ8aj+tTETCwtabYcFrbbDglbbYUHLEE02jjiYILVvEox6YUGr7bCgnaLIHljM4iNjA6pgb8yHszYVrvLrj4wN2I3A3QdjAxYACZ8+/2nWy08YG5B3DO6iC8NjAyKdZbAbax6ODbAoHBswg2JS3OhWBtGmtKBRKhs+BZsvHEemMPYp2AL5MIrF86gQk1EvFaBFrkOH0o1+haeaX/awoNV2WNBqOyxotR0WtAzRZOOIgwlS+ybBqBcWtNoOC9pni1lyQDANjhobkA1ndQpcpZfhKTgFX9YP8KftQPDOeoSTvkZ0UsYG/AhXaQKco8cG9LRDGDDBLNrH9fW86CVhzItPn2JFh9yF5vgp2ErxFoqEc8gRvke6sO2pJWyWsBv5wkmUitdQI6ahSS5Hm9yKHmUQJsXz3EvCmJkfFrTaDgtabYcFrbbDgpYhmmzTesTBkvU/qH0JY1L7JsGoFxa02o5WC1qLYIUw0AepywClrfbh2ICqW3AXX4Q39/jIsQE3liCaMHviYwNufjNqbMAZuMquwVl7F/aGvBFjAyxmYdLHBrCgnQ7xoFsxoU1pQZNUhhoxDWXiVeQLJ5Ap7B7zFGyO8AOKxHOoFG+jXs5Hi6xDp9w1rlOwLGi1Gxa02g4LWm2HBa22w4KWIZpsqhe0/kAQ566nYeXWE1i68fBwPly0Ff/x16/UvrwxqX2TYNQLC1ptZ0YXtMNjA3ogd+hhba0cMTbAU3gW3pwHYwM2IXTzmxcyNiB8fTFCt1chcO8JYwN0abA1FUJpGzU2YJpurmdBOzXps1rRKXehRdahXs5HpXgbReJ55Ag/jHkKNlPYhXzhBErFq7FTsFIZ2pTYKdjBCc6CZUGr3bCg1Xa0UNBa+myQG/pgK2yBM6UK7gt58B2+i+DWq4h88xPkul7Vr1GtsKDVdljQMloWCofxi9/PxiuvzcP/+/N8/PatJViw+gD6TMIzf65LSZnYvO/cYz9+/nr6E3/8eTy43n/+45wReXv2xhfy+SeL6gXtpr1n8cYna7HzcAL+5X8WYM+xq/hoyXa8N+9bGDr61L68Mal9k2DUCwtabWc6FLRm0f7I2IB62JpLYa/PhrP6zsixAfe3I3hnXWxswJUvJj42IGkpgsnr4mMDvh81NiALtubS5xobMJPCgvZFxYMeZRBtSiua5HLUiGkoFa8hXzg5rlmwOcL3KBLOoVK8hXo5H82yDh1yF/oU66ReNwta7YYFrbYz4wta0QPRKECp7oI9uxGupDJ4f8qEf98thDZcQnTJCWDh0afGlt+s/tehUljQajssaBkte1B4WiQrAMA3FMCWAxewcM3BZ/5cP1fQ+oYCcHtezOs8+npnCtUL2v/461cwi7EX7b//9vXwjx8/n4yz19LUuqxxU/smwagXFrTazosraL2wWBSII8YGFMKhS4er8ibcxRfgzYuNDQjc24Lg7VXxsQGzXszYgLubMPSzYwMqIXc2QezthsUsYFCe3LEBMyksaMeffsWGTrkbLXId6qUCVIjJKBLPPcMp2OMoFa+gWkxDo1SGNqUF3cogTIp6vx9Z0Go3LGi1nele0FoGHJCaTbCWtsGRWgv35QL4jqYisOMGwqvOjFm+YuFRRJb9iOC3lzH0/R14zuXAmVwJW74ecl0vhG4Zg7L6X6daYUGr7bCgZbTsSYVnabUef/l0LQCgoaUTb362bvh9j759MSkTm/aexXvzvsXx88kjClqLZMWr/1iB2sb2ESdof/PmYlxPycPidT/grc/X46fL94Y/983UQrzxyVq89uEqzFq2e7hPHOt6H1Xf3IH35n2L1z9eg7dnbUBlXSsAIBgMYe3OU/ifj1bjtQ9XYc32HzHkDwAAMguq8PbsjXjr8/WYtWw3uvrMz/16/hzVC9pfvb4AwWAIAPCff12KUDgMAPB4h/DH979R89LGRe2bBKNeWNBqO48VtLI7NjagtxtyZ9MjYwPuwVV2DZ6is/DlHMZQ2q6HYwOuT3BsQMKsUWMD9sGbdxzu4lFjAww1kLpaIQ70TeuxATMpLGgfxqR40KOY0SYbRpyCLRBOjmMW7FZkCwdRKJxDhXQLdXIeWmQdOuRO9CmK6l/bz4UFrXbDglbbUbWglb0QOmXIuh7Y8vRw3a6E52w2hg4mI7g5AdGlJ8cuYBcdRXj1WQR23IDv2H24rhTCcV8Ha1k7pJZBmM1O1V/j6RwWtNoOC1pmqjmXvAfHwnemPE8yuvD0+oawdscp7D95HcDTC9ort3PwX+8sRZ9JBPDwBO2QP4D3F2zBvawyACNHHPz721/i6LnbAADF5sQrr86F1+eH1e7CK6/Ng8kiAwA27zuHrQcvjHm9o70zZxNSs8sBAPeyyoavNbOgGvNW7Uc0GkUkEsX+E9ehazLCLCj4178sQk+/BQBwNTkXHy7eNp5v4zNRvaD9aMl2/PBTEgKBID5ash13MkoAAJ09JvzmzcUqX93Y1L5JMOqFBa22IpjMUNrr4NClwV10DpGsPQjdWYdw0tIXMzYg8SsEk9fGxwYcjI8NuBwfG5AJm77kpR8bMJOitYK2X7GjQ4mdgm2QClApJqNYPI9c8dCYp2AzLLuQJz44BXsfjVIp2uRmdCsmVU/BTiQsaLUbFrTazmQWtGbBDbHVDGuFEY6MOriuFsF7Mg3+3UkIrz0PLD42ZgEb/eokQpsuwX/gNjyns+C6WQ57ThOUmi4IHSIGJf4F7UTCglbbYUHLTDX7P/5TlTzJg8LzX/+yCL95czH++Y9z8Nbn64cLy7EK2vmrDgy/70FBu2rbSRw/nzz846ML2kdHnv72rSUYMEsAMHyiFQBSc8oxb9X+n73e//zrUvz3374eztqdpwDETspGIlEAgCjb8X//NBcAoGtqxx/+vhyF5Q3wB4LDn+/W/SJ8ueHQ8Nv+QBD/9Ic5L2wkwwOqF7T1zR343bvLYHO4kFeiw//3py/w33/7Gv/3T3Ox83CC2pc3JrVvEox6YUH7ckbs7YK1uQyuylvw5h5F4O6mcReww2MDUjbC/7NjAyriYwO6YmMDpsHXzDx7XraC9sEp2HbZAL1cgRopHWXCdRQIPyJT2DOuU7BFwllUiDdRJ+eiRa6FUelAnyKr/rVNRljQajcsaLWdiRS0ll4r5PqRy7eGDt9FcEts+da4xg+sOI3gtmvwHbkH98V8OO9Vw1bUCqmxH5Z+2+R//ZYOyIN1kMwtEC2dEIR+WEQJZtmh+vdmKsKCVtthQctMtahdQdQmT3meZPSJ1FA4jOLKRvzXO0shKfYxC9o1238cft+lpEz89q0l+OWf5+PW/aLhHx9d0D66gOzB29FoFCcvpeCDhVvx4aKteOOTtZi7Yt/PXm+rsRey1TEcp9sLIHZS9rOlO/Hhoq14f8EW/PMf5wz/3MyCKsxathv/+pdF2LT3LLw+P05fScWmvWdH/Bq/fmPhcy1JexrVC1oAw801AHR0m5CcXoyqOsOIj2nvGpjqyxoXtW8SjHphQTtzY7EokDv0sDfkwFWagKGMfQjdWjHmKddAykZ4c4/CVXkLoe5qOHoNEPt742MD1P+6mKnLTCxoBxQHOpUetCr1aJAKUSneQbF4ATnCYWQI28c4BbsT+cIxlIqXUS2molEugUHWo0sxwWR1qf61TXVY0Go3LGi1nZ8raM0Plm9VPbJ861Qm/PtuIrTh4riWb0WXHEdo3QX49ybBeyodruvFsGc2QKnogNhmgVmY3CcOLJIMyWyAtb8Yzu5kuNpPw9uyG/6m1QjrPke05r0xE6n9BGHdbITqFiHQ8DX8TasxpN8EX/M2eFv2wWM4BHf7SbiM5+DqvApn1y04uu/B3psFW38hrAMVUEx1kAebIVo6YgWwJMIsT4+nhljQajssaBkt+7mRAe/O3Yzsoho0Gbrxxidrh3+8tFo/oqBdu+PU8PsuJWXii2/2oq2zH//516UYjI8rGE9Bm1VYg3fmbIIrXrSmZJY+taB90ogDxebEL/88H529gwAAs6CMKGgfsDvcmLtiH85dT0NyejG+2nB4+H0PTtB6vENjvHLPZloUtOMxXccdqH2TYNQLC9rpHi+EgX5YDdVw1t6Fp+AU/KlbEbm+6KlFbDhpKfxpO+EuPAeHLh1Kez2EQctjn//FLQljZmKmY0FrUrzoUSxol9uglytRI2WgTLzxDKdgD6BIOINyMQk6MRvNcs1LfQp2ImFBq92woNVmLAMOSPoBOMraEcltgDshP7586zrCK59x+dYPKfCcz4HzThVsBc3x5VvKpC/fEsRByINNsPXlwdWVBHfbCfiatyHQ8DUitZ+Mq4BVO5Haj2IFcP1CBBuWwt/4aAG8Fx7DD3C3nYTLeAbOjstwdt2Eo/turADuy4d1oByKSQd5UA/J3AFB6IVFEmCWx3f6mAWttsOCltGyJxWeNQ1t+NXrC9A7IMAiWfGr1xfA6/MDALYevPDUgvZBEXv6Siq++GYvotHouAraK7dzsGT9DwAAp9uLeav2P3EW7NMKWmP3AP7jr18hEAgiEonih5+S8Ivfz8aQP4DLt7Jx/HwyotEootEoNu45g/PX02GRrPjtW0uGr+lSUiY+W7prQq/pk7CgnSC1bxKMemFBOz1ilhyQetph0xfCVZEIX/ZhBJPXIXp59lOWa81GMHkNfFk/wFV2DbamAkjdbc8015UFrbajVkHbrzjQqfSiVW5AvVQ0fAo2d5ynYPOEoygRE1At3hs+BdstD2jyFOxEwoJWu2FB+xJG9kLolCDrumHP1cN1qwKeM9kYOvBg+daP41i+dQzh1ecQ2JkI3/E0uK4WwpEWX77VPAizZfLvsYLQC8Wkg703C67Oq/AYDmNIvxnB+iXjLD8/RqDha/iat8HddhLOrpuw9eVDHmyCIJrHcQ0emGUbLJIFotALyWyEPNgExVQL60AZbH35sPdmwtGdAldXEpwdCXC1n4W77Tg8hu/hbd0DX/NWDDVtRKBxJYINXyFUvwBh3SxEaj6awgJ41nABHGhchSH9Rviat8LbshdDbYcQ6j4VL4ATHimAM+MFcNkjBbAxXgBb4gUw5//O9LCgZbTsQeH5ymvz8Mpr8/DLP8/H27M2ILOgevhj9hy7infmbMKitd/jQmIG/vJp7ETt0wracDiCDxZuxZXb2eMqaK12Fz5cvA1vfrYOc1fuQ31zB/77b18PLysbfb0/tyRs/a7TePWDlfhw0VaU1zTj06924h8Lt8Bqd2Hxuh/wp/dX4LUPV2HFluPw+mKnZHOKa/HOnE3Dv3b/oPgCXtmRWNBOkNo3CUa9sKCd2ljMAhRjPRx1GXAXncdQ2i6Ek74eYybsQgTubYEn/0c4a1JgNVRBGOjDoDzxPySzoNV2Jq+g9aJHEdAutw+fgi0Xb6BAOIUsYe84TsHuR6F4etQpWCP6FEn11+xlCgta7YYF7cyL2eKKLd8qN8KRHl++dSINgV1JCK89Bywa//KtwIFkRC7lwnWrHPZcPZTaLggd0qQv3zIrToiWTlgHKuHouQ9nxwV4Ww/A37Qeobr5iNb8fczyMaybhUDjSnhbdsPVfhrO7mRY+4shmQ2wSDPhSQlvvAAWIIh9kMwdkAf1UEw6WAfKYesvgL03C47uu3B23YSz4zJcxjNwt52Ex/ADvC174WvehiH9RvgbVyPYsBSh+oUI62YjUjtFBXDNhwjrPkeofgGCDV8h0LgS/qYN8Om3wNu6Bx7D93C3HYer/QycxktwdSXB0ZMCe28GbH15sPaXQjHVQh5sgmRphyj0QBAfFMCeafA9ernDgpYhmmwsaCdI7ZsEo15Y0E5CZDfEvh5YW8rhqkqGN+84Anc3I3J13s8XsQmfInTzGwxl7IW75CLsDdmQO5smfS4sC1ptZyIFbb/iRKfSC4PcgAa5CFViCkrEi8gVjiB9zFOwO2KnYIUEVEv30CgXo1VuQpfcz1OwUxgWtNoNC9rpF6Fn5PItz/lcDB1KQfC7K4gsPzXu5VuBbdfgO5IK96V8OFNrYC02QGoagKXv4dM1E1kS9rT83PzXQONKhHWzxlH+/R2huvnwN62Ht/UAnB0X4Oi5D+tAJURLJ8yKU/Xv00yIWbbDIokQhH6Ilg5I5uZ4AVwBW38h3KZshCzpcHbdgqvzKlzGc3C3n4THcAjeln3xAngT/E2rEWj8GqG6RfEC+JNxlegTL4A/iBXAdfMRbPgSgcYV8Detx5B+C7wtu+ExHIS77VisoDdegqszEc6eO3D0psPWlxsrgAdqIJsaIVnaIArdEEQzLJIVLIBZ0DIsaGnysaCdILVvEox6YUH7/DELNsidLbA35MFVehm+rAMI3VqBaMLn41vSVXULtuZSiL1dMEuTuzTj58KCVtt5ekHrRa8iwCi3Qy9XoVbMRLmYiALxJ2RZ9o37FGyFmIhaMQt6uRpGpR29iqj6183EwoJWu2FBO8Wvt+iB2C5AqeqEPbsBrhsl8J7KgH/vTYTWP8PyrfUX4d97E95TGXDdKIE9qwFKZSfE9mdbvvV8Ba03Nv/V1Pjc818jNR8gWL8EQ/rN8BgOw9V5FfbeLCgmHQShFyzPpiYTnUFrlh2wiFK8AO6CZG6BYqqDdaAStr5C2Htz4OhJjRfA1+A0noO77RQ8hsPwtu6Hr3lHvABei0DDMgTrFyOk+wKR2o8RrXl/CkZAfICw7lOE6uYhWP8lAg3fxArg5m/ha9kFb+sBuA1H4wXwBbi6bsDZnQxHT1r8BHAxlIFqyIMNkMyGeAFsgkVSYJan/18ys6BliCYbC9oJUvsmwagXFrRjxQthYACKoQbO2lR4Ck7Df38bwjeWPH1JV+JX8KftgKfwLBy6NCjtdRBM45l9NrVhQavt+EMB9Nr6YZAb46dg76JYuIRc4SjShR1jlLA7kCscRbFwCVXSXTTIRWiVG9Gl9GGAp5xmRFjQajcsaF9sLP12SE0DsBYb4EytgTuhAL4jqQhsf4blW8tPIfjdlfjyrdyHy7fqeyH0vNjlW08uaD1PmP96CEP6TQjWL0ak9oNxFF8fI9D4tPmvnF86HTLdl4SZFScskgxBMMUL4FbIg/VQTFWw9RfHC+D7cHbfhqvrOpwdF+BqOwWP4Qi8rQfga9mJoeZv4wXwcgTrlyBU9wXCuk+npACO1rwfL4C/QLB+CQINy+FvWhsvgHfGC+AjcLWdil1713U4u2/D0XMf9t4c2PqLoZiqIA/WxwpgSxcEwQSLJL+QU+QsaBmiycaCdoLUvkkw6oUFbSxm2Qmpxwibvii2pCvnMIJ31iF6ec5TlnTNQjB59aglXYZnWtKldljQvvzpVUQYlXbo5WrUilmoiJ+CzR7HKdgsyz4UiD+hXExErZgJvVwFo8xTsC9LWNBqNyxonyGSF0KHBLk2vnzr9oPlW7cR2pyA6Fcnx7d8a+05BHYlwnfi/sPlW+VGSC3mKVm+ZVYcw/NfXX1pCPdffo75r7MRaFwFb+ue2HzRnjuw9pfMoPmvzKAy/QvayY5ZdsEiKRDEBwWwAfJgA5SBalj7i2HvzYWjJy02pqPrRuwUbdtPcBuOxgvgXfECeB0CDd8gWP8lQnXzENZ9ikjtP6akAI7UfoyQ7gsE6xcj0LAsVgDrN8HXvAPe1v3wGA7D3XYKTuO52Cnm7ltw9KTC3psDr7kYfrkW8mAdJHNLvADuh0WUYFYcqn9/mMkP0WSbMQXtf//ta7Uv4YnUvkkw6kVrBa3FLEI2NsBRnwl38QUMpe9GOGkZcOnTpyzpWoDAve/gyT8JZ/UdWFsrIfb3vpAlXWqHBe3Mz4DiRJfSj1a5CY1yMaqkuygRLiFPOIIMy9NPwWYI25EnHkGJcBFVYgoa5CIYhk/B8g/pL3tY0Go3LGgfeS0sLkgt8eVbaTq4rhbCd+I+ArsSEV4zzuVbS39EaHMChg7chudMNly3K2DP1UOu7YbQOfnLtwaVFzT/tT42/9XTegBOY2z+q2Kqgmjp4vzXlyhaL2gnPx5YJCsEcRCi0A3J0gbZ1AhloAbW/hLY+nLh6E2Hs+dObH6u8SJc7afhbjsGj+EgvC27MdT8HfxN6xFoXIFgw5cI1c1HWPcZIjVjn2SfeP6OSO0nCOvmIFS3CIHGr+FvWh0vgLfD27IPHsMhuNtPwmU8B1fnVTi7bsHRcw/23izY+gthHaiAYtJBMjdDtHTECmBJhFmeOYdYXuYQTTbVCtpQODyuTHdq3yQY9fJSFrSyJ7akq7UCzuo78OadQODut4hcmz/+JV312ZA7mmAxv9wnQljQzoz0KhKMihF6uRo6MQvlYiIKxdPIFvaPfQpW2IsC4RTKxRvDp2Db5Xb0KAJC4chzLwljZn5Y0Go3miloZR+EHgVyfS9sBc1w3okv3/rh2ZZvhVeeQWD7dfiOpsKdUADHg+Vb+gFY+qeicHix81+9bUcQMSVy/qtGw4J2pscDs2SFIFogCj2QLO2QB5viBXApbH15sPdmwNGTEi+AL8HVfgbutuPwGL5HwLAHIcM2+Js2xAvgrxCqn4+w7nNEaj6cggI4Ng4lrJuNUP1CBBuWwt/4oADeBm/LXngMP8DddhIu41k4Oy7D2XUTju678QK4ANaBcigmHeRBPSRzBwSxDxZJgFm2gaNUxg7RZFOtoP3F72ePK9Od2jcJRr3M5IJ2eElXYz5cpVfgyzqI0O1ViF5++pKuYMoGeHOPwFV5EzZ9CaSeTpil6T/UfzLCgnZ6xGR1oUvuhyF+CrZavIcSIQF5wlFkWHaOUcJuR65wGCVi7BRsvVSEVrkBnUov+sc48fT0JWHMyx4WtNrNy1LQmgU3xHYLlMpO2LMa4Lr+YPlWUnz51vFxLN86EVu+tS++fCupDPbsBihVnRDbBZjFKSguZTfESZ//+vDXe74lYczLEha02s7YM2i9MMs2WCQLBKEXktkYK4BNOlgHymDry4e9NxOO7hQ4u27C2ZEAl/EM3G0n4DF8D2/LXviat2KoaSMCjaviBfBChHWzEKn5aGoK4JqPENbNQqh+AYINXyHQuApDTRvha94Kb+seeAzfw912Aq72s7Hr70qCozsF9t5M2PryYR0og2KqhTzYBMlshCj0wiJZ4gXwzP/LLKLJplpB+/asDfi3t5bgm++OISO/Cl195idmqkSjURw6fRNvfLIGb3yyBpv2noVvKAAA6B8UMXv5HvzbW0vw3rxvoWsyDv88tW8SjHqZCQWtYBqE0qaDo/Y+PIVnnm1JV9FZOGrvQ2nTQTANqv61TLewoJ269MVPwTbLNdCJ2SgXk1AonEGWcGDMU7CZwh4UCqdQJt5AjZQBvVyJdrkNPYoFpgmcFGBBq+2woNVuZkpBa+kbtXzrUn5s+da2a4isOD3+5VtbrmLoUArcF/LgTKmCrbAFcn0fhB7r1LzeigOipQPWgYrYdnvj+fj813UI1c3DVM9/ZUGr7bCg1XbUXxL2oAAWIYh9kMwdkAeb4wVwBWz9BbD3ZsHRfS9eAF+Gy3gW7raT8BgOxQvgbRjSb4K/cTUCDV/HC+DZiNR+PEUF8IcI6z5HqH5+vABeAX/TBgzpt8DbsjteAB+P3auNl+DqTISjJwX23gzY+vJg7S+FMlATK4At7RCFHgiiGWbJiqkogIkmm6ozaA0dfdh/8jr++P43+NsXm3DhRgYkxa7KtWQWVOH9BVvgGwogHI5g6aYj+PHSXQDArGW7cTEpE+FwBMWVTfj9e8sRDMXGL6j9HwpGvUyXgja2pKsDtuZiuCqT4M05guCdDYhe+eLpS7pur4Iv6yBcpVdgb8yH1GWAWbSp/vXMlLCgfXGJnYIdgEHWo1EuQZWYihLx8rhOwWYI25EjHEaxeAGV4h3US4VoVerRqfRM6ixYFrTaDgta7WZaFLTx5VtKbVds+datcnjOZMG//zZCmy6Nb/nW4mMIrz2PwK4keE+kwXW1CI70OlgrjBBbp2b51qDytPmvKxDWfT6O/+F/f0rnv7Kg1XZY0Go76he0kx+z7IgVwEI/REsnJPOjBXAh7L3ZcPTcg7PrFlydV+EynoO7/cd4AbwPvubtsQK4aQ0CjV8jVLcIYd2c+DiZsf9CbeIjID5AWPcZQnXzEaz/Ml4Ar8dQ83exArj1ANxtx+BqPx2bYdyZCGd3Mhy96fECuCReADdAsrRBFLohiIOwxAtgosk2LZaERSJRVNa14tv95/Dvb3+J+asOIDW7fPgE61Q4cTEFOw8nDL995XYOVm49AcXmxK/fuLaE5wAAIABJREFUWDRiHu7f53+HqjoDABa0Ws5UF7QWiwS5oxGO+iy4iy9iKH0PQknLgYSnLOm6vgCBu9/Bm3cSzuqUl2pJl9phQfts6VNkGJUONMu1qJNzUS4moUg4g+xxnoItEH5EmXAdNVI69HIF2mUDehTzhE7BTiQsaLUdFrTazVQUtGaLC1LzIKxl7Q+Xbx1PQ2BnIsKrx7t86ySCmxMwdCAZnrPZcN2qgC1PD1nXDaFTnqI/B7yo+a9fYqj5W3gMR+DqvAZ7b3Zs/qvYh6l+ZJYFrbbDgvbFxSz6YBZ8sFiGYDHHMzgEwTQEYWAIQt8QhP4hiL3xdPshdcXT6YfU4Yds9ENuj0Vp80NpDcTSHIC1JQCrPgBrUwDWxgBsDfHUB2CvC8Kui6c2CEdNEI6qeCqDcFYG4SwPwlkWgqs0npIQhsrC8Llf7oJ20r/vigMWUYIgDEC0dEEyt0AerIN1oBK2viLYe3NiT0t034Kr8xqcxvNwt52Cx3AY3tb98DXvwJB+M/xNaxFoWIZg/WKEdF/E/3vy/qQXwFoWCofxi9/Pxj//cc5jqa6PdWPJ6cXDH//vb3+JPpPw2OfRt3Xj9Y/XPPd1TPTnT3fToqB9VCAQRHJ6Mf70/gr8+o2FU/br1jS04X8/Xw+bwwV/IIhFaw/i1v0i6JqMeGfOphEfu3LrCSTeKwDAglbLmZSCVvZC7O+FtbUSzuo78OSfRODud4hcX/CUsQSfIpS0HEPpe+AuvghHfRbkjkZYLJLqr9HLHBa0I2OyutGlmNAmN6NRLkG1mIpS8TLyxGPIsOwao4TdhlzxEIrF86gUk9EgFaBFrkOH0oN+ZXpurWVBq+2woNVuJlzQyj4I3QrkukeXb+U8XL617MfxLd9adQaBHQ+Wb+XDkVoLa0kbpGYTLAOT9/TA6IhCT3z+a+Yj8183I1i/eJynncY//3U6hAXtDI3sg1mKR/TBLAw9XgwOPKEY7PGPKAYdvUEEzdEpLwZdxSG4CoNwFcTizg/CnReCOycWT3Y8mSF4M0LwpseTFoLvfhi+1DB892IZuhvGUEoYQ8lh+JPD8N+O52YEgaQIAonx3Ijg/2fvPd+jONC83fN3nC/nu989O+fdMPvOea893pnZWc961ruzHo8n2YNzxja2yWDAgA0mY3IQSASBEEJIKGehnHPOobuqc+6q6qq6z4cqBYKNwEgt6Hqu677GohFT6q4u47uf+v2UVA3lsoZySSN2SSN2USN2QSeWrKOm6KjnTZJ0tLMmZ3T00zr6KdBPGnACOP50EHFbgnY5Y3P5sDuc8wRwD87pFlxT9fME8C1DAA+nzhPAhwwB3L1jngD+xBDALYYA1pr++GOV0xM9M4LW7nDf93Fd1/nn366c/fr7BG1MVfH4Aj/qOH7M9y/3WTaCNirJ5BTX8d7a/fzDr99h1ZYjlFW3LukxbNufzE9++QZ//9zbrPjkGxQlRnVjJ394d+sdv2/jrjMkp+UDEFM1iwRF03VUTX+075fCqI5htMHbaM1X0coOoGeuhgt//X4Re+l19KwNaBVH0Nquo43UorrHiSlS3J+LRET/Ma//Y0BSVFRNX3IkVUKUhhkMVtLmzaDGlUSJY+8Dt2ALxW+odJ6gyXOFnkAhY+FGRGmIoOKKy8/xY9Eh7sdgET9I8NdfUrS4H8Oyff3lGJrNg9Y1jl7ZjZZZi55UgL43HX3DeVhA+RYfHEXflIy+LwPtXBF6Vj16VQ9a7ySa4EVdquu/KqGFx9G8zehiPupECtrQPrSe9ehtby3sdtXW19C6VqMN7kYdT0IXbqF5GtDCI6hKMO6v5aPwSNd/WUeVdNSojhrRUcM6akhHDeqoAR3Vr6P5dDSvjubR0dw6mktHc+poDh1N1NEEHc2uo9l0tGkdbQq0SdAmQBsHbQy0UdCGQRsCbRC0AdD6QesDrRf0HtC7Qe8CvRP0DtDbQW8DvRX0ZtCbQG8EvQG0Bh2tTker1dFqdLRqHa1KR7uto1XqaBU6WrmOVqajlejoxTp6kY5eqKMX6Oj5Onqejp6ro+fo6Ld09GwdPUtHv6mjZ4J+A/TroKeDfg30NNCvgn4F9FSTy6BfAi6CnmJAMnAeSALOAmeA08Ap4i7xLBbAKfP1OmO+fknAOeM11ZPN1/mCyUXj9ddTQb+io1/V0dN09Gs6erqOfl1Hz9DRb+jomea5lWWea7d0tBwdLU9Hy9fRCnS0Qh2tSEcrNs5brURHKzXP43LzvK40z/Mq89yv1dHqdTQpfn/3t4g/iTwPErQfbTzEM8+u4IUVG7CJbn72wgdcyijmhb+u559/u5KTF7KAOzdgNU3n4Ol0nn9lLb95dR1rdpwgGDKyfv/u397m1MVs3v5iD799fSMX0gvv+/1f7U/m3/74Bb/8/SrWf32K+Xe+P4kTV0GraTq1zd1s+OY0//jv7/Kn97/i6s1S/MHwkh/LlcwS3v5iD+GIhKpq7Dx0kS/3JNHSOcALKzbc8XtXbTnCtexyAARPNKGJdm0h3LeP0MApgiNXCIzl4JuswDPdgksYwuES4n6Mi0VEUvGH5B/8PU6bDc9AM4GWHMIVZ5BzdqBe/fABJV0fIN/aTrj8NIGWHDwDzThttrj/vBZ3IikanoAUx2OIIHiji864d5puVwMNjkzKxCM/KGGLhP1UOpKod2TQ5iql193CiGeEKa9nSY51KVE1HZdfivtxWMQHXQdxGRxHvBA9iXvuO6e86GMOfLd7CWQ3EkouJXooC+Wry2ifLbB869OTKNsuIR26STi5hGBWA77KHtydEzgml+566XA5cAs9+CYrCY5lEBw8Q7RnJ3LHFwvMf30RtfEtlOb1SC37iLSkEGnLJdTWTLB9FH+bgr9Vwd+i4G9W8DfHCDTGCDTECNTHCNaZ1MYI1sQIVscIVcUI3Y4RrIwRqogRKo8RKjUIl8QIF8cIF8UIF8YIF8SI5KsGeSqRXJVojkr0lko020C6aXJDRcrQkK+bpGvI1zSUNA3lqskVjViqRuyyRuySTuyCjnpRNzYFk3XU8zraOR3Og2ZuDOpndPTTzG4Lxl16WTwQ/aT5ep0G7Yy59ZlkoJ43X+sUHfWCQeyibmyPXtZQU3W0NB3linnOpJnnUrp5XmVoSDc0pMy5cy+aZZ6Pt4zzM5JrkqcSKTDO43CRSXGMUIl5zpcZBMtjBCuM90WoynifBKvN902t8V4KNJg0xvA3xYz3W4vx/vO1KvjaFHztCr4OBV+ngrfLpEfB0yvj6ZPx9JsMyLgHZdxDMu5hA9eIjGtUxjUm4ZqQcE5IOCclnFMSzmkJh03CYTcRJERRQnREEZ3RuP99/XHiD8lEJDXux2ERP5Z6/q+OFP7P9vNLzv3mQYLW4wvwk399c/brn73wAdsPpKBpOiPjNn7yyzeIROU7BGtOcR2/fX0j4UgUXddZteUo+05cBeCnz7/H3uPGP7u9Af7h1+8iODx3fH9hRSMvrNiALCtIssILKzaQU1z32J7/eEzcBO2e41f4l999wq//vJrDZ6/fd/15KeejDQdJyy6b/bq1a5Dn/rQajy/A3/3b23fk4f76z6tp6RwAEjviwC7aFpzXoja/gtL6AVLHGiJd2wn1HiAwcAb/8DW8Y3m4J6pwTrch2ofNRt3ln5E6E3FgcwQQx4bxdFURqE8nXHwIJfMBJV0XXiV2V0mXc6gbm2CVdD0pPI0RB5MuP/3OflodZdwWL5AvfHNfEVsiHqFOvEGHo5o+Zw+jrum4H/tSY0UcJDZWxMFTiiOMMCTiahzGW9RB4FoNoVMFSHsesnxrbRLS12mEj5nlW3ktuGoHjfItIbhEP08YQZzCNd6Gb7CEUHca4bajSC3biDWuRGtcQGN3/cvotz9EL9mKnnsUMtPgWhlc7IIkEU5ocZdtTxL6KYNZKWiKQfXcPDGYrBNLMeRw7OLc7eVKqoF81bwNPU1DuqYhpWvG7ekZxi3r0Rvm7es3593Wfkslcsu85T3PIJQfI1Qwd2t8sChGsDhGsEQhUDp3K32gQjFurzdvt/dXx4xb8GuN2/F9debt+Q3G7freprlb+D2txm39nnYDd4d563+XjKvbpFfG1Svh7DMjAwYMHENmrMCIETEgjkpG5IAZPyBMRI04gikjnsA+bUQW2OxRI8LAsTjvKyuDNrFJhJIwix9mqef/aDoWF+43M4L2J//65h3MyNL7Cdru/tHZr//pN+8zaXPcIVjX7DjBuat5s7+nurGTF9/cDBiCtndwfPaxVz7aSX5Z/T0ZtJKszP7zl3uSZjd1n9SJm6B95tkV/O///IiX39nKi29u5r/f2HRflmoOnLrGyk2HZleiD55O56MNBwF4Y9VujiffRFU1sotq+NUfPkc1V9zjfZGINzanB0EYwzndhXuyFu9YEf6R6/gHzhHsPUy4+2ukjvUobR+iNq94iPDul1CbV6C0fUS0YwPh7q8J9n2Hf+Ac/pHreMeKcE/W4pzuQhDGsDkXX2za7S6cQx142woJ3j6PWvQtWvqnP1zSdfkt5JubCZccxd9wA3dPLeL4KNPOpS21sHj8PA2CdtRlo9vZTL3jJmXCMXKFbfct6KoUkmlxFtPv7GXiMTdiP6lYgjaxsQTtk4nN5sfRbZZv3WomcLGcyHe3kLdfMcu3Hrz9qq88DlsvEt2bQehsEYHrdWb51ijC8OMt37LbowjjURwjhsByd8p4WgwhFqiSCFVMES1rQy4pJlZ6hVjpYdSKzWg176M3vPzgv2vV/gW98lP0op3oOafgxg24UgUX+uGM9w65qJ01cieVyzNiUL1TDGYazORcRrINMRjOmZeHeZcYnMnPDJaYYvBuKXj7/mJwVgrWm1KwcV6uZ4spBs3cT/fdYrDLzArtlXH13SkGHYPzxODwfcTgeBSXTUL163NS0GaKQcEQg/E+xy0WF0vQJjaWoLVY6rErYWxx4H7zKBu085cwZ76eL1jf/mIPmflVs7+nq2+Uf/ndJ4AhaKfsztnH3lu7n6tZZXd8vy8QYuOuM7z09hb+8N42/vm3KzmefPMRn+3lMXETtDnFdQtiqSYUjrJ250me+9NqnvvTat5dsxebaJx8U3Ynf/34a/7pN+/z0ttb6Oobnf2+eF8knjzC2EUHon0Y53Qb7onbeMfyCAxdJdB/hlDvfiJd25A6VqO0vreght+5oomXibW8gdz2CdHOjYS7dxuFE4Mp+EYz8YwX45pswGHrRRAmsd1PNDnDiJPjuHvr8TdmEio9jpy1Be3yOwso6fqaYOU5fK35OAfasNvEZfB8WywWT5qgnXIHGHAN0Ooop1q8RKHw7X23Y0uF76gTr9PprGfYNRX3416uWII2sbEE7TLEGUEYcRrlW6Wd+DPqjPKtfTdQNl9YWPnWu4dRPz+DvP0Kke9uEbxQhu9WE+6qufKtBZWEOSPYpw2p5xiScPVKuDtkvM2GXAxUGUIyVGAU+EQzVOSrxqaket4o2OGkDOcn4HIzXM9Hz7qAnr8fvWw9evVb6A0LyH+teQ29fA1a8beo+edQ82+h5NYh5Q8TKfARLDbKh/y1xuajp83YanQOGFJSmLKk491YJWGJjSVoExtL0Fok8iyGoF238xTnzW4ngKqGTn731peAIWg7+0ZmH/vj+1+RX9Zwx/fvOJjCxl1nZpcsN+46YwnaRJ94XyQSAmcQQbThsPfjmmrGM16KbySLwNAlgn0nCPfsIdq1GbntU2Itb6E1/mHhUrfx96gNf0GtfRW18i9oxS+j5/8ecl6G7Jch8w+Q/ke4+kf0K6+h3FhLpOgggbo05KEaAlPD2JzWRmEistwF7ZhLMLZjxWzKhBPkCl/dI2MLhK+pFM/RLBbS5+pm0rV0zd9POpagTWwsQbv02MQgYq8dV+0gvvxWAqmVhI/nIn1zDXXNOfQFlG/pHxwltj4Z6dt0wifzCVyrxlvYjqthBHFAYFoMYXOYcnUsinNAwtVtbGJ6m4ztzWBlDL0KwnkxIlnGBql8VSN2QUNNMprLF3TL++kApAzDlTrIyEa/lYReuBu9/HP0mr8++O8wDS+hNryN0rABqWk/4ZYUQh15+PoacI8MI0wHmXbG/3V72rAEbWJjCdrExhK0Fok8DxK0gWCYv/n5a4QjErAwQZtf1sCLb26e7YH6eNNhDp+9DhiCduehiwCMT4n8z1+9hdPtu+P7P9n8HeeuGBEJQ6NT/PLlz2YzbJ/UWbaC1h8Mf++Lv5wm3hcJi/tjRC9M4B6rI9CdTqTpMHL1JpTy91FLXkEveQm9/CX0279Dr30RvWFhQtfY1P0zSut7qF2rkXu+ItS7j0D/aQJDV/GN5uCZqMQ53YJoH8LuEJl2WXEGTyPLSdBOuYMMOodoc1ZQJV6mUNh7/+xY4RC1jnQ6nbUMuyZ4ErKelyuWoE1sLEH7+LGPe3C0T+Cp6MGf1UDwfCmRQ1koWy+hfbrA8q3Pkohtv4F0qJRIUjPhtH5CWVMECz0EyiMEyhRChcbt9tGbKlK6ipKqEUsxC58eV8nTCR0txYl2rQc1uwK1MB2l/Bix6q9Q61aiNTw4/1Vr/ANK6wdEuzYT7D1EYDgV71gRrqkWBGEC6+8W8cEStImNJWgTG0vQWiTyzAjav/n5a/cwk/v65uff8k+/eZ/27qEFCVpd1zmSlMFvXl3H86+sZdPus7OC96fPv8eZyzn89xub+MVLq7iUUQxwx/e3dA7w3J9W85+vbWDDN6cprGjkH379LsWVzUv51DzWWbaCduveczzz7Ip4H8YDJ94XCYsINkdwrqSrLp1w8WHkmxvRL73x/SVdKa8Su/4ZkYI9BKou4G0rxjXUhGOq14xeqMI7lod/+BqBgdOEeg8Q6foKqWMNSuv7qM1/WbDQNUrSXjVL0tYS6d5BqPcQ/oGz+IfT8Y4V4J6sxjndgSiMYHe44v6cWjyYeAracZeDHlcrDWIO5eIpcoXt98mO/ZpKMYkmMZ8+ZxcTLquA7nFiCdrExhK0D4kYQhgUcTWM4C3sIHCtmtCpfKRv04ltOI/+4VF4/yR8dB4+uQyfpcPqbFhXABvLYXMN+rYmtN29qAfHUY+JqKd8qGciaGdi6KceX1mVfgK0JKOkSUk1CpgiWSrhPCMvNVChQJtKoHGSYGsLofZCQh0XCbcfRGrfRKz1PbSm3y/ow1657WMiXV8R7D+Gf/ganvFSnNMdCKI9/q+ZxX2xBG1iYwnaxMYStBbWLN389Pn3noiFzcc9y1bQTtoctHUPxfswHjjxvkgkEna7C+dgF972YgJVKUTzdhNLXwUpr/xwSVfWJsLFR/DXZ+DurkEcH3ksJV1hScHvdeCwDRjRCxPl+EazCAxdJjAbvfAlcvsqYq1voTX+8SGk7kuoza8ht60k2rmBcM83BPuO4B84j38kwyxJq8Nh60IQx5ekJM3iTpZO0IYYcg7T7rxNjXiFImH/fbdji4WD1IhpdDhrGHKNMWVtxy4qlqBNbCxBOw9nBHE4gLtRwF80Rii9n+i5TpQjbah7W9B3NsO2FtjeBV8PwO4x2GOH/W44HIQjyuOTq6dAPacTu2i03UsZhlwN5RtFVIHbMfx1ZsN8u1EW5Rg08lbt09HZSACb04fDNoh7shbfaBb+gbOEe75F6lhDrOUN9MYH57+qzSuQ2r8g3L2LQP8ZfKOZuCeqcNj7rA9in2AsQZvYWII2sbEErYU1SzeWoLXmkSbeF4mnjzDC5ATu3gb8TTcJlZ1Ayt6KlvruD5Z0qWkfGyVdFefwteTjWoKSrrCk4g3KD/U9NqcXQZjAYevBNVWPd6wY/0gG/oFkgn1HCHfvItq5AbltJWrza+iNLz1Enu7LxFreNEvSNhHu+dbYyhm8gG8kE894Ca7JRrMkbQqbM7AMXu8nl8UStOMuF73OdhrFHCqEM+TZd9wjY/PsOykXztLoyKPX2WFtx8YBS9AmNk+LoLWJEYSpKOKo0WLv6pLxtMt4GxX8NQqBcoVgUYzIzSjSlRBKchD1dAjtRBj9mATH1McmV7UzOmqyjnJJQ07TiN5QidxSCRXECJQqBG7H8NUbctXdKePqk3AMSwgTUey2h3sv2kUHDlsPnolK/CMZBPpOEuneidy+CrX51QV9iBprfRupYz2h3r34B87jG83BNVmPaB+2/v36FGMJ2sTGErSJjSVoLaxZurEEbRzmZkHVHVuyNY1d/Pb1jfzy5c/YdeQyqqrF8egWNvG+SDyp2Bw+HCP9eDrKCdSkEik8gJKxBv3Ciu+PJbgwr6Sr9iqezgocowPYHPEp6XoUQfso2B0uRGEE51S7Gb2Qb0YvnDWjF7ab0QsfoDa/8lDRC1rTn4i1voPc/hnRzi2EevYQ6DtJYDgV32g2nolyXFPNOGwD5i2XVubdDI9D0E65wgy5Rml3VFMrXqVYOHD/7VjxADXiVdodVQy6Rq3t2GWAJWgTm+UgaO32KMJEFMewhLNfwt0l42mV8dUr+Ktjc3mrOTGimSrSNQ3lsoaabOStcoLHI1ePafBdFP1wAO2oF/WEm9hZN/IFD9HrPoJ5IfxVMr4GBU+rjLtLxtlvytXJKDbhcb+PwgjiFM7pNjzjxQSGrhLsO0KkaytK20doTT8u/1UUJ9B1S9AkKpagTWwsQZvYWILWwhprFnviJmhTM0v4n796i5KqFgB8gRA/ff491u48yYX0Qv75tys5dTE7Xoe34In3RWK5Y7cJuAZa8bXkEaw4i5SzEzVt5Q9sw/4ZNfU9pOxthMpO4m/KwtXXiDA5yXIrNFoqQfvwhLA77Dhsg0b0wng5vtFbBIZTCfSdJNSzh2jnFuT2z4i1voPW9DDRCy+iNv8FpfU9pI7VRLq2EerdT6D/jFGSNpaLe6IS53Qron0Yu+hYdq/b4+JRBO2Ey0Ovs5NGRx4Vwlny7Dvvsx27gwrhNI1iDr3OdsZd1q2wyxFL0CY2P0rQOiPYp6OI41EcQxKuXgl3h4y3WcFXpxCoihEsVQgVxIjcUolmqMhXTbl6Xkc/rT+2rVWOxuBwGA54YK8Auyfgm0HY0W3EEmypg0230bdUoO66jXy4lkhSE8GMDnwlAzhbJ7FPLPEGvzOIKIzimmoyPrAcvECo9wDRzo0oC8x/VZv/gtz2CZGu7QT7j+MfTsczUYZzuhO744fzX21u4/WP9zloER8sQZvYWII2sbEErYU11iz2xE3QvvDX9dwsqJr9+urNUv7j1XXoug5Aflk9L/x1fbwOb8ET74vEssAZRBwfxd1dQ6A+g3DJEeSbm9AuvfnDJV3pq4jmf0ugKgVvWzHOoS7sgjv+P88CWb6C9uGxufwIwiQOWy+uyQY848X4R2+Y0QtHzeiFjcjtK4k1v76g/wCe43eozX9FafsQqWMdke6dBHsP4R9ImleSVmOWpI1idzwZ58CDBW2YYdc4Hc4aasVrFAuH7rsdWyTso1q8QruzkiHnMNaW8pOBJWgTE5vDkKu6FyMSoEfG0ybjbVLw1yoEKmMEi2OE82JEslQkU67GLmio53T0Uzy+vNXTOuo5nVhKDCUlinI+gHLWSez4BLGD/Wi7WmHTbVhfCGtuwecZ8EkqrEyGD07DO9/BO4fR3z9CbO05pG+uET6RSyC1Em9+G67aQcReOzYxuLTP8QPzXxfyQeJrSB1m/uvAaXwjM/mv/T/63zGWoE1sLEGb2FiCNrGxBK2FNdYs9sRN0P7tL97A6fbNfr36q+PsPX519utpu5Of/Oub8Ti0h5p4XySWErvgxjnUhbfNLOnK/5ZY+ir0lFe/v6Tr0pvINzcRLjlCYLaka5Rp59L+B99i8DQJ2kc6HxxuRGEU53QH7slqvGMF+IfT8Q+cJdR7iEj3DqSOtWb0wkIy/eZHL/yeWPPryO0riXZuJNy9yyxJSzZL0opxTdXjsHUjCBNxKUm7W9BOuLz0ubppEguoFJPIF+7djs0VtlMunqJBvEWPs5VxlyPur6PFo2EJ2icPmxBBmIwijpiRAN2GXPU1Kvhr5kUC5MaI3lSR0lWUVI1YihEJoJ/k8cjVE2beaoqOcllDuqYRzVQJ58QIFRrHEagy8lZ9dRF8lS78BeMEb3QTTqkleqQAefsV1M/PwLuH4Z0fRvv4OMrmC0T3ZxJKKsKfUYenrAtnyxjCiGu2GGupsDtEHLZuPOMV+EeuP3H5r5agTWwsQZvYWII2sbEErYU11iz2xE3Q/v1zb+NweWe//sVLq2bjDgAmpkX+4dfvxOPQHmrifZF4/IQRJidx9Tbib8omVHYSKXsbaup7PxxLkLaSaM5OghVJ+FrycA20YrcJy+DnWTwSXdA+PCHsDhHRPohrqgXPeIUZvXCFQP8pQr17iXRuQW7/3Ixe+PPDSd3GPxBreQu57VOiXZvNkrTjBIYu4Ru5iWe81ChJs/chiD++JM0dFen11FMnplMiHL7vdmyhsJcq8TJtzgoGXINMuZ/8DyYsDCxBu7TYbVGEcTNvtU/C3SnjbVHw1Rsyc0auRm7FiN5Qka9pKJfMvNUzjy8SQD+Bkd96CZRUDem6SiRLJZwXI1gUI1BulGv5GhU8bTKubiNvVRwx81bFeT+XM4ww7MTZPIqnpJPA9TpCZ4uI7s1A2ZyC/tGxB8pX3j2M+sVZ5B1XiRzJIXCxHF9OM+7qfhxd09jsS11WFUYQZvJfS+byXzu3oLR9+KPzXwVhgnjfZWAJ2sTGErSJjSVoExtL0FpYY81iT9wE7Ytvbia3pA6A+pZe/p9fvUUoHJ19PK/UijhYTGwOP47RATydFQRqrxIpOohyYy36hdd+oKRrBUrGGiKFB8ySrnIco/3YHL64/zzxwBK0i4/NGUAQpszohUY84yX4RjLxD6YQ7DtGuHu3Eb3Q9gmxltfRml5+yE3dP5slaZ8T6dxCqHcvgf5TZknaLTzjRkma3dbDkNhAq7OI28J58oWv7yNkv6JMOEG9mE23s5mdhbUfAAAgAElEQVRR19P9AUWiYwnaBTKTtzpm5q32yLjbzUiAOoXA7RjBEoVQfoxI9rxIgEtm3urjjAQ4Beo5ndhFDfmqhpRhyNVQfoxgSYxAZQx/nYK3WcHTLuPqkXEMSohjUezTUWyOuZ9rIRm0NiGI2GPDVTuIL6+FwKUKwsdykL5OQ12bBO9990ABq394jNjGZKRvrxM6VUAgvQZvUQeupmGEIZFpx9JmfNucgfvkv+4n2rmRWMu7i57/uhywBG1iYwnaxMYStImNJWgtrLFmsSdugjYtu4x//Pd3WbXlCD/7jw/YdeTy7GNN7f388verOJ58M16Ht+CJ90XiQdhtIq6BNnwt+QQrzhHN/Ro17WNI/sv3xxKkvouUvZVQ2Qn8TTdx9zYgTE7wtJY9PSqWoF2e2BxuRGEM53Qn7snaedELSQR7DxHp3onUsQ6lbSZ64XcPJXXlpt8TbP0T3va/4u78EGfvRtwDB/GPXME7lod7ogrndJtRkuZwYr1vnk4SQdDaxAjCVBRxVDLyVrtlPO0y3kZjSzRQrhAsMiIBIlkq0nUV5YpG7IKOlvQYIwGOm5EAyTrKJQ05TSN6QyVySyVUECNQaohenylX3Z0yrj4Jx7CEMBHFbos+9tv4dR2EMTfOtnE85d34M+sJnishevAmytZLaJ+efPD26zuH0VadQt52mcihLILJpfizGnBX9uLomMQ+7l3613yR81/jEUfz2J8jS9AmNJagTWwsQZvYWILWwhprFnviJmgBMnIrWf/1KZJSc1GU2Oyvb9x1hrU7T6LE1Dge3cIm3heJaVeEaWfIKOnqqcVfn0G4+Ahy1ia0y299fyxByit3lnS1F+Mc7MJutxrjF4olaJ8OJl0ehsRmemzpdEzsp3VsLZ1DH9M/8CHDve8w2f0GYucK/G2vEW35K2rTHx5K6OqNL6E2rzBL0tYT7v6aYO9h/IPn8I+k4x0rxD1Zi3O6E1EYw/aElKQlOstd0NrsUYQJMxKgX8LdJeNplfE1KPir5+Wt5sSIZqpI1zSUy2YkwFkdTvB4tlZPGpEAsWTdiARIN/NWc2OEiozj8FfH8DUoeFpl3F1GJIBj2IwEsMfnObaJIcQBAVfDMN7CdgJp1YRP5CPtTie2/jx8cPTB26/vHyG27jzSrjTCJ/IIpN7GW9CGq24Isd+OTVj6yJPHk//6DtGODYR69+EfSMY3lotrsmFJ8l+XA5agTWwsQZvYWII2sbEErUWij67rnLuSx29eXcdPfvkG//s/P2LlpkOMTtgf+L29g+M896fVS3CUT/bEVdB+36iqFu9DWPAs5QXBJnhwDnXjbS8lUHWRSMFeYtc/R7/wQyVdbyDf3Ei45DsC9ddxd1Ujjo1gc1hZmD8WS9A+mYy6pulyNlEvZlIqHCVX2HZPXEGBfTe3xQu0OsoYcPYz6fLf8WfYnAHkiAOfs9+MXijFN3KTwNAlgv3HCPd8S7Rzkxm98CZa48NGL/yeWMvryG0fzytJO2qUpI3ewDNegmuyHoetxyxJW/pNu0Rn0QStGQkgTJiRAL0S7g4Zb7OCr87IWw2WKoQKYkRuqUQzVOQ0U66e19FPP8a81ZOgJenELujIV8y81WxDrgaLYgQqFPy1Ct6meXmrAxLiqIQwdVfe6jLDPunD0TWF+3YfvuwmgimlRA5nI29PRf389MK2Xz85gfLlRbN8qxj/jfq58q3RpS/fenD+6x8Xlv/a9gHRri8J9h6ezX91Ti+P/NflgCVoExtL0CY2lqBNbCxBa5Hos+vIZZ7702pqGrsIhaMIDg/7Tlzl//vvjwmGfvj5sQTtwibugrarb5QDp67x+bZjrNl+guPJNxmbFOJ9WAuexXjjC5NTuPqa8DVnEyo/hXRrG+qV9x9Y0iXl7CRYcRZfSy6u/laE6eWf5fYkYwna5c+UO8CAq582RxlV4kUK7bvvkx27jVLhKHXiDbqcjYy6phf0Z0uKhssvLfhYbE4PgjCGc7rLjF4owj+Sjn/wHMHew4S7v0bqWI/S9iFq818fOnpBa/wjsda3kNtXmSVpewj2nTBL0rKMkrSpJhz2fgRxmmmn9SHNj+F+gtbmmJe3OmjkrXrazLzVWoVAZYxgcYxwnhkJMJO3elFDPfeY81ZP66jndWIzkQAZhlw18lbvigTokHH1yjiGJMTxxYkEWFKcYYQhJ87mEaN8K72W0JlConsyUDYttHzrO9TVZ5F3XiVy9BaBS/PKt7pt6FLsgRm0jxsj/3UE12Qj3rE8/IMpPy7/te+Emf9ajnO6C7vDys1e0OtgCdqExhK0iY0laBMbS9BaJPK4PH7+9hdv0Ds4fs9jE9Pi7D+3dg3y4pubee5Pq3nhr+upa+kBDEH76z+vZveRy/zipVX8+s+rZx/TNJ2Dp9N5/pW1/ObVdazZcWJW+P70+fdIzSzhvbX7+c2r6zh5IWsJftr4TVwF7b4TV3nm2RX812sb+WzrUT798jv+9Q+f8zc/f41TF7PjeWgLnkd9c9ucfhyjg3i6KgnUpZklXevQL77+gJKu1UQK9hOovoynowzHSB820dqeiweWoF1+jLrsdDmbaXBkUSYcJ0/46h4hmy98w20hmRZnCf3OPiZdj1Zy97CC9uEJYxcdiPZhnNNtuCcq8Y3lEhi6SqD/DKHe/US6tiF1fIHS+h5a058fMnrhRbSmPxFreRep/QsiXVsJ9e4j0H+awNBVfKM5eCYqcU63INqHsDtEnuTtOZsjgt0WRZiMIo5HcYyYuaq9Em4zW9XTouBrNDZV/dVGaVSgQrkvWplO7IpGbCYS4DGJ1e/PW40RKjQiAQK3Y/jqFbwtRt6q8+681WXwfC/qa2kPIPbYcNcO4MudK9+Sd6ahrnmI8q1NKUT3XCd0uoDA9Vq8xZ04m0YQBh0PLN9aSEnYQ/9cTh8O2wDuyRp8I1kE7sh/fd3Kf10mWII2sbEEbWJjCdrExhK0Fks9OWsUsj9beu43tU3d/Ptf1jzwmP/rtY1kF9YAkFVQzfOvrAUMQft//+J1MnIrAbiRd5tf/9n483KK6/jt6xsJR6Lous6qLUfZd+IqAD974QMOn70OGJL4J798g3BE+nFP7DKeuAnawopGfvLLNyirbr3j1zVNJzWzhP/xL69RVNkUp6Nb+DzoTWy3O3AOtuNrLSBYeZ5o7jfE0j5ZWElX6Qn8jTMlXeNYZUPLC0vQxpcpd5AB1yCtjgqqxEsUCHvusx27lRLxO2rFDDqd9Yy4ph7b///iC9pHwBlEEG047P24pprM6IUsI3qh74QRvdC1GbntU2Itb6E1Pmye7ouoza+itH6A1LGWSPcOQr0HCQycxT98De9YvlGSNtWOKIw8sCTNbo8aJVTjZlbqgISrzyijcrcbmaneu4VpmVFMFco38lMj2SrRGypSurGNqlwySqrU84Y4fZxbqQuSq2d1Yikzeasq0Ztm3mphjEC5gr9mLm/V1WPkrYojZt6q8PTL1YUgjLpxtt5VvnUgE2XLJbRPTiy8fOurVCKHsgmmlOHPbpwr35r48R9qPoqgvTf/9QSR7h3IbZ+iNr9i5b8+IViCNrGxBG1iYwnaxMYStBZLPdfeVOLC/Sa7sIZXPtox+3UwFOGff7tylrTsMgAUJYam6QCITi9/+4s3AEPQ/v1zb88+pigxnnl2BR5fgDU7TnDuat7sn13d2MmLb24GDEE7f2v3n37zPpM2x+N7kpfZxE3QvrFqN7uPXP7ex3cduXzHCbBcZ9oVYdoZRpwYw91Th78hk3DJMeSbX6Klvv3gkq683QRvJ+NtK8I52GmVdD1BWIJ2aRlziXQ7W2gQb1EmniT3vtuxX3NbPE+zWEifq4eJR9yOXQjLUtA+AjanB0Ecx2HrwjNaj3+wiGDfDUKd5wm3HyHa8jVy0wZijStRG1egN7z0cFK34SX02tfQbn+MVrYJrXA3eu5x9KyLkJEFaeVwuRlSBiFJgFORRZOn+mkdLcnYTo1d0lBSjQ1VKUMlmqkSuTUnU4MlhlANVMXw1yr4Gow4AE+bjLtTRp0Az7CMOBbFPh3F5oj/a/kkYBNDiP0CrvphvIVtZvlWHtLua8TWnUd/fyHlW0fN8q1rRvnWldt4C9tw1Q8h9gvYxMXf9L5X0D6O/Nc/WvmvTwCWoE1sLEGb2FiCNrGxBK3FUk/UFx/uN/UtvfzqD5/Pfq3rOk63D6fbx7qdp0hOywcgv6yBVz7awR/e3cpLb2/hb37+GmAI2l/+ftUdf+bfP/c2Y5MCb3+xh8z8qtlf7+ob5V9+9wlgCNrxqbkI1Lu/ftomboL2f/3mfZra+7/38d7Bcf7u395ewiN6tFGuf/6D2bD6xdeRMzcQLj5MoC4dT1cV4thw3C8uFj8eS9AuHlOuIIPOIdqdlVQLqRQKe++/HSscpk5Mp9NZx7BzYkmPcdEFrTOCTYjOFkaJIxKOIQlnv7lh2mFumDYr+OoV/DWGTAyUKQSLY4QKYoRzzQ3TTBXpurlhmmpmniYbslI/BZzgIUSnDqeDcG4aLvRCagOkF0NmBnr2efS879CLdqKXrUOveh+9biGbgXdL3ZfR6t5ErfmUWPVmlKpvkatOEK2+iFSbTaS+jFBjM4HmAXytNjydodltVMeQWVI1YYpTMbIoeaqLVhL2hGOf8OLonMRd2Ysvu5FgSplRvvVVKupnD1m+dcAs38qsx1PejbN1HGHUHZef6+78V20q9dHzX7t3WPmvTzCWoE1sLEGb2FiCNrGxBK1FIo8/GOYf//1dWrsG73lsy55zJKfl4/L4+Z+/eouhsWkAbILrDkH7D79+F12/c4PW5w+xbucpzpuCF6CqoZPfvfUlYAnaJZtnnl3BtN35vY/bHW6eeXbF0h3QI85MZqx69UOknO0Ey8/ia84xSrqmbHG/iFgsHpagfXyMu5z0ONtoFHMoF06TZ99+3+3YSjGJJrGAPmcXE64lzl52RrAJRgmUMB5Fdmr4xhRDmPYYW5UzhVC+erMUar4wLTTLoeYL07R5wjTFFKan9YcUpo+JE/M2TFN0YhfnbZheNzdMs1XCeeaGabGZhzqzYVqv4G2a2zC9U5iGcYwKOMcHcY834xkvwzeaRWDoMoG+E4R79hjRC+2riLW+hdb44G3De/N0/0is9W2zJO1Lwj17CPSdIDB0Gd9oFp6JMlxTzWZJmv1Hl6QlpKB1hBGGHDibRvAWdxK4XkvotFG+FduUgv7R8YWVb605i7wzjfDRHAKXKvDltuCuGUDssWGzx+c2/ceR/xprfh2pYzXh7t0EBs7gG7mJe7Layn99yrAEbWJjCdrExhK0iY0laC0Sfc6m5vDzlz6lsq6DcETC6wty8XoRP33+PaoaOhkYmeT//c8PkWUFTdPZfzKNZ55dQVSS6R0c53/8y2vklzUAcLOgihdWbACMrdsX39xMOCKhqhofbzo8mztrCdolmmeeXYHd4f7ex58UQSuODVslXQmKJWgfjSlXiEHXCO3O29SIVykS9t93O7ZYOESteI0OZw3DrvtkMM8XphNRxNF5G6bzhWmzcXv6HcK0xBSmuTEit0xhmjFPmF6at2F6Wkc/SXyFafI8YXr1LmGaa2zL3iFMa0xhOu+WfFf3PGE6IiGMmxumQnRRNkx/LDanF0GYwGHrxjVVj3esGP9IBv6BZIJ9Rwj3fEO0cwNy20rU5tfQGx8yesHcaFRa30PqWE2kaxuh3v0E+s8YJWljubgnKnFOtyLah+8pSXsaBa3NHsDRbcNdM1O+VU74aA7yzquoa87Cuwso3/roOMqmFKJ7MgidKSSQbpZvNY8gDDmYdsYnS93If+3CM16OfyT90fNfO438V23yMr6xPFyTjYjCiJX/mkBYgjaxsQRtYmMJ2sTGErQW1kBqZgkvrNjAT/71TX72wgd8tPEQHb0js4+v23mKX778GX94dys1jV385cMd/P6dLXT0jvBfr23k26OpPP/KWp5/ZS3NHQOAEZdwJCmD37y6judfWcum3Wdni8AsQbtE88yzK3hj1W7eW7v/vryxavcTIWjjfZGwiB+WoL0XmxjBbjOF6ZhR/CT0+xnvHmGwvYmelhI6Gm7SWZdNT3U+/RUlDJZWMFJUy3R+D868Sfy3fERuyoYwvaahXDGKn9RkHTVJRzsTR2F6yiiBUpN19EsQS9XvFKZZ9xGmt+cJ0yajHMrdYQrTPgnHoClMZ27Jt1t5po+K3eFEFEZwTrXjnqjCO5aPf/gagYEzhHoPEOnajtSxBqX1A9Tmvzx89ELj74yStLYP0Ho2EO3ZQaj3EP6Bs/iH0/GOFeCerMY53WGWpC2jTHHnTPnWmFG+daOeUFIx0f2ZKF9eXHD5lvr5aeTtqUQOZxNMKcWX3Yj7dh+Ozknsk4uX+fzDhBCESZzTrXjHigkMXyHY9x3RRcx/fZSSMIunA0vQJjaWoE1sLEGb2FiC1sIaaxZ74iZot+49tyCW+8T7ImERP54EQWsTzQ3TyTlhOrth2jVvw7RRwV9nbpiWKwRLFEJF5i35t4wmeilDRbqmIV/RUC5rxJJ11HOmMI3HLfnH5wnT8zqxCzrK5Xm35N+4S5gWzRemMXx1dwnTrnuFqTAVxf49wvRpKQlLbELYHXYctkFcU814JsrxjWYTGE4l0HeSUM8eop1bzOiFtxck+u63eak2v4bctpJo5wbCPd8Q7DuCf+A8/pEMvGNFuCfrcNi6EMTxR74V3iYEEfvtuOqH8Ba0Ebhy2yjf2vWQ5VvrzyPtvkb4RD6BtGq8he246ocRB5amfOu+P9td+a/+wRRCvfuIdm4g1vrOgranH3f+qyVoExdL0CY2lqBNbCxBm9hYgtbCGmsWe+ImaJ+WifdFwiJ+PIqgnd0wnRGmIxLOAQlX7zxh2nKXMK1QCJYqcxmmt2JEslSiM8L0qilMU+YJ03hsmB4H9ZSCciZC9Jyf0AU3/ssC3itTeK/Z8GWI+LN8hHIlQvnzhGllDH/1XcK03dgwdZnC1DEsIY7/sDBdaixBm5jYXH4EYRI1OIzXVo9nvAT/6A0zeuEo4e5dRDs3IrevJNb8+oLKo+7d5nyZWMubyG2fEO3cRLjnW0Jd3xFsOUW4JolIUTKR9BSkM+dRvk1C+3xh26/apydRtlwievAmwXMlc+VbbePYx+JTvjXtMuIsFjf/9fHHEFmCNnGxBG1iYwnaxMYStImNJWgtrLFmsccStD9y4n2RsPhx2BzzhOn4fGEq4e6W8bTLeExh6qtT8FfHCFTGCJQqKBUaUpFKOGeeME03heklU5ie19HOxk+Y6ifv2jC9ZGaYpmtEM8wN05zYnDAtvUuYNip4WhQ87TLubonpPpGh/k7aBwupHk6mdHQfRZO7ybftmM2OLRL2UyNeod15myHnCHffGvy0YAnaxOZhMmjtDrcRvTDdgXuyGu9YAf7hdAIDZwn1HiTStQO59QtiDe+g1T9K9MKL6DUvoZf/BbX4LWJFK5FL1hOt3EWk/iSBjjQ8o6VGSZptELvDzlK+Lx93/qt/IBlvnPNfLUGbuFiCNrGxBG1iYwnaxMYStBbWWLPYEzdBOxMM/CCW+7gaRnA1DuNqGsbZNIKzeQRn8yjOllGcLWMGrWM4W8dxto3jaJ8w6Jg06JzE0TVl0D2No2saR7cNscek127QZ0fstyP2C4gDBsKgiDAkIgw6EIYcCENOhGEnwogTYcSFMOpCGHVjH3NjH/cYTHiwj3uxT3ixT/oMpvzYpvzYpv3YbCb2gIHw45rOHxabI4LdbmxKiuPmLfkDEq4+CVe3sVnpaTHE4R3CtEwhWGSIxnBOjEi2cYu7lK7OCdML84TpKeInTM+YwjRlnjC9dq8wDRXGCJYqBCqUWWHqa1TwtpjFT10yrl7j+XGMSIhjhmi22x7Phumky0efq5tmsZBK8RwFwtf3FHnl2bdTLp6iQcyhx9XKuMsR939xLhWWoE1sHkbQ2uwBHF3TuGoH8eU0E7hYTuRIDvLONNQvzt677fruIfhkL6z9Br7cDl9vhsMb0VI2otzYgFK4FqXiM2K1HxFrfBOt8VGiF2ZK0t5H6lhDpOsrQr0HCAycJjCchncsD/fEbZzTbUZJmujgnqI+V4THl//6IdHOLQT7viMwfAXvWDHO6VYEYZLl+CGPJWgTF0vQJjaWoE1sLEGb2FiC1sIaaxZ74iZok1JzF8SynwXcVvpE895ReP8EfHAGPkqGjy/Cp1fgs3T4PBPW3IJ1+bC+GDaUw+Yq+LIOtjTCtlbY3on+dR/6riH03WPoe6ZgnwAHXHDQC4eCcCQKR2NwTF96aXpUhSMy+pEI+pEg+nde9MMutEMi2iEb2sFJtANjqAeGUfcPoO7rRd3fhbqvA/1AG9r+ZmJ7G4jtq0HZextlXznKvlLkvUXI+wqQ9+Yi7c0muucm0b0ZRPfdMNifaXAgk+jBm0QO3iRyKMskm8hhk+9uGRzJIXL0FuGjOYSPmRzPJXwil/CJPJN8wifzCZ3KJ3SqgNDpAkKnCwmdKSR0tsggqYhQUjGhpGKC50oMzpcSPF+KeP0WQyWpNDcfp2zo23tkbK6wleKxr6lvP0Zv9SWm83LwpVUQSKs2uFZN4FoNgfQaAtdrCaTXErheR+B6Hf6MOvw36g0yTW424M8yyW7El92IL7sJ360mfLea8eWY5Lbgy2vBl9eKL78Vb34b3oI2vIVteAvbTTrwFnXgLe7EW9yJp8SktBNPWZdBefccFT14KnpwV/Ya3O7DXWVS3W9QM4C7dgBX7eAcdUO46odw1Q+jdE/ibxm1PqBJUOYLWmHEhbNlDE9Zl1m+VUR03w2UzRfQPj6+8PKtHVeIHM4mcLHcKN+q7n+o8i1BmMRh68U12TgXvTCYct/ohUfa0m18cbYkTepYY+a/LkwEP8781+WAJWgTF0vQJjaWoE1sLEGb2FiC1sIaaxZ7lnXEwbTdGe9DeOBIX19D3pmGvPMq8o6ryNuvIO+4Yvzv9lTkr1KRt11G2XYZZeslgy2XUL68aLD5gkkKyqYUYptSiG1MNthwntj6ZGLrzxNbN0My6rqLqBtS0TZeQ9t0HW3TTbRNt9C+zEPbUoS2pRR9awX6tir0r+rQtzei72hB39mB/k03+q5+9N1D6HvG0PdOwT477HfCAS8cDsJ3ETiqxE+YfifB4RAc9MF+N+wTYc807B6Db4ZhZz/s6Iav2mFrM3xZD5trYFMlrC+FdYWwJhdWZ8FnGbAqDT65DB+nwEdJ8P4peO8YvLsMBHiciK08jPPb/Qym7qbh9k4KR7fdux07vZXq5h303PgG2+G9RNccjPtxWzx56O8fRf/gKPqHxww+Oo7+0TH0lcfRPjb55ITBpydNTqGtMlA/O436+WnUz8+gfnEG9YuzqKvPoq45i7omCXVtEuqac8TWnpu7Tq43r50bzs9dTzcZ11hlc8rcdXfmOrzl0tz1edtl5G2XjWv39tQ7r+k7rhrX+p1p6LvTUdedW/DzYJRvpd9ZvtUwgjgQP0FpRC+M3hO94B88R6j3EJHuHUgd61BaP0BtfvUHBOxrSB1rCHfvwj+QZOa/1i5a/utywBK0iYslaBMbS9AmNpagTWwsQWthjTWLPctO0MqyQm5JHW9+/i3PPLsi3ofzwJl2RbAJUezTUYSJKOKIhGNIwtlv3pLfIeNplfE2K/jqFfw1ZvFTmUKw2GiXD+eat+RnqkjXzVvyUzViFzXU5Pjeks9x85b8JB01WSd2yTg2+ZqGlKESvakSuaUSzjVvyS9RCJQrBG7H8FfL+GolvA1RvM0RPK1h3O1hXJ0hXN0hnH0BHAMBxCEfwojP3O4zGXMjjLqNLcARl7EVOOw0tgSHHObWoIgwKM5uFIr9grFl2Gef2zw0NxEd3TZzO3F6bmOxc3Juk9HcbHS2jRvbjq1jcxuQLaPGVmTzCM6mEVxNw7gah5E6Jwi2juKqHza2KuuG7ti2dNcOGFuYMxuZMxuat/tmNzdnNjnv2O6c2fgsndsEndkM9RZ1GNuis5uj5jZpfhu+/FZjyzSvxdg6ndlAvdWMvbiCwbpMmjuSKB/ZR679XiFbNPENdd3H6am7wlRRHr4bM1uwtcZW7LUaY0t2ZmP2ym0CqbcJpFYSuFxJ4FKFSbnBxXKCF8oMUkoJppQRTC6d3did2eCd2egNJRXNbfqeKTS2f08XGNvAp4zt4PCJ/Hkbw7nGFvHMRvFRY8s4ciRnbvN4ZhP5UPbchvLBm0QP3jS2l2c2mWc2m/dmEN2TQXTPdaRvryPtuY70bTrS7nSk3deQdl1D2pWG9M01tG/TUb5JW9oPaNaeQ11zzpSSSYakXH3WkJZfnDEk5uenUT87PSs4tU9PzYnPGRFqilF9pSlLPzo+J1A/OIr+/tG4i90nCe3Tk8hfpS678q3FwO4QEO2Ds9EH8T6eeGEJ2sTFErSJjSVoExtL0CY2lqC1sMaaxZ5lI2j7hibYeegiP/uPD/jHf3+XLXvO0dEzHO/DevDEIcNUP62jJemoKTqxi6YwTTOFaaZKJFslnDcjTA0ZHKiK4a81JLG32cww7ZRx9cg4+w2pLI5KCBOGbLYJEaad8b8ILmfCkoo3KMf9OO5m0uWn39lPq7OU22IKBcKue7djha8oE47T4Miiy9nMqMse9+N+0rAyaH8YmxCci0qYiU6YNuIU7FP+uYiFCa8Zu/BkfUCj9k7i7rfF/Xm2iA+WoE1cLEG7vJm0R5i0RZiYjjIxFWV8wmBsLMrYaJTR4SijQ1FGBqMMD0YZ7o8y3BdlqEdisDvKYFeUwc4oAx1R+tuj9LdG6W+J0tccpbcpykCTRNhnCdpExRK0iY0laC2ssWaxJ66CNhiKcPVmKS+/s5W/+flrvP3FHv72F28wNDYdz8N6qLlDmCbfJUyv30eYFs8TpjWmMG2aJ0y77xKm4zPCNGoJ02XGchG0oy4b3c4m6kmgTH4AACAASURBVMWblAnHyBXu3Y4ttO+mSrxAm6OMAVc/U+6lbz1/2rAEbWLzMCVhFk8flqB9ephyRJgWI0yJhtybsEWYmIoyMWmKvfF75V7IASMDhtwb6pUY6pEYMuXeQEeUgfYo/W2G3OtrNuVeY5Tehig9dRI9tRLdNQZdVRJdtyU6KyQ6yyU6yiQ6SqO0l0RpK5ZoK5RoK5BozZdoyZNoyZFouSXRnC3RlCXRdFOiKVOiMUOi4bpMwzWD+jSZuqsytZej1F6KUnMhSvWFKNXJUarPS1Sdk7idJHH7rMTtMxKVpyQqTkpUHJeoOCZRfkyi7KhE2XcSZYdkSg/KlByQKN4vUbJPonivRNG3EoW7JYp2SRR+I1HwtUT+DpmC7TL5X8nkbZPJ3SqT96VM7maZnE0ytzaYrJfIXiuRtUYm6wuDm5/LZK6SyfxUJvMTmRsrZTJWymR8KJPxgcz19xXS31VIf0fh2jsK195SuPbm0jPRZAm6RMUStImNJWgtrLFmsSdugnbdzlP83b+9zX+/sYlzV/Jwun0A/P1zbzM+JcTrsB564n2RsIgf8RC0U+4AA64B2hzlVIkXKRTuV+a1jVLhKPViJl3OJkZd03F/rp5GLEGb2FiCNrG5W9DeI/bG7xV7I4MmA+bG3g+JvZa7xZ5Eb71ET51E94zcqzbFXqUh9jrLJDrKorSXGmKvfUbsFRhirzXXkHszYq95RuzdMMReY/qdYq9uRuxdNMReTYoh92bEXtUZU+ydNsXeCUPu3SH2DsuUHjLEXskBiZL9c2KvaEbs7TLEXsFOmfwdc2Ivb6tM7haZ3C8NsZez8U6xl71GJmv1nNi7+Zkh9m6YYu/GSpmMj2Suf2iIvevvmWIvDkLPYulIf8d4ra+/r5DxgXEOzJwPmZ8Y58jNz4xzJusL4xzKXiOTvVbi1nqJWxuMcy1nkyGVc7cY52LeNuPcLNgpI/Zbgi5RsQRtYmMJWotEnpiq8syzK1j/9al7Htuy5xzPPLuCmKr+4J+RnJbPpt1nf/SxJKXmPpY/ZzlO3ATtM8+u4LOtRxkYmbzj1y1Ba/GksBSCdtQl0O1spkHMolw4Qa7w1T1CtkDYxW0hhRZnCf3OPiZdC2t8t/hxWII2sflRgtZpbO1NCQZ3yL2JeXJvNMrYyJzcGx6MMtI/J/cGu6MMdc3Jvf72KAN33Y7bZ8q9e8RelSn25m3ttZdGaS+O0l5kbO21mlt7rXlzYq85a25rr/GGRGOGPLu1V58mU39Vpu6KsbVXc9GUe/PEXtXMxt5ZQ+xVnrpT7JUflSg7Ysi90kMypQel2a294r0SxXvmtvYKZ7b2dkqzYi9/29zWXu7M1t48sXdrnUT2WvnOrb3PjK29G5/IZH48t7V3/UOZjPdlQ+y9q3DtHYX0t5W4be1ZLBJvma/tO8brfP09U+x9aJwH88Ve5irjfMlZoxjnzxqZ7LXyrNibkXu5m82t0flib7shoAt2Gudt0S5z+/Rb49wu2Wdupx6QKD0oU3ZINiT3EeO9UXHM3G49Ybxvbp+Zey9VnZOoPi8Z27EpxrZs7aUotZej1F0x3pszm7UN12UaMww533TTlPXZxlZuS47xfm/NN+R+W6FEe5FEe0mUjtIoHWXmhwEVxocDXVXG9aS7xtgK7qmTjA8TGuc+YOhvMT50GGg3rlODXVGGuo1IgaFeieE+40OLmQ8wRofNa9+YcR0cHzc+9JiYijJhM66XU2LE2Hp2LP2138qgTWwsQZvYWILW4v9n783Dor7TfO1zZvo658w7b7+znJl5p7tnuk/P9GR6TDp7Z+tOjFETojHGRENrNBjcl2jUuKItGvctcd9jNC5xjSvigoi7IPterAUFVUUVCtQCVBXc54/CikRUTIQv+H0+13VfV6iCXz1UwRO86/k9P53j9fl4+vUhdAmeQHVNbeB2j9dHUL+JPNFlUKsJWnd1LQ7nw/l6KBO0cUlZTJqzjqe6Dg5M0ZbZbygTtGELNvFEl0Hf0TmUtwdOA6CoxErI2Pm80H0E7w6aQXyKIfB1qpuEoI4HLWhN5Q4M9hySbDFcsO7kpGVxk9OxUdZVXLEeINUWS75MxypDlaC939NxG03tyem4D+x03KOTPO3mdFyh5cTeviHfyb39wz1+oTvqu6m9g2MaxG/D1N5NKXx4YoPYm9J4ai9iRoNYntkg9hrk3q1i7+QC/8/wqUV+YX16iX8y1S/2/GI7ekWtX+ytbpB7t4i9cxu/k3sXvmyQezfFXoNUv7yjQeztvkXu7a8l7kAtcd82yL3DfmEff6Sx2Es84e8Byadq/ML/TDUp0dUBsZd6zt9Dboq99FvEXlZcwxsLDWLPkNjwxsNNsZdW7X9jIqNB7GU3vHFxU+zlfyf3jEb/Gx5FpmqKSqr9Yq/hTRGT1f2D10bJDlq9EUGrNyJo9UYEraBzvD4fT3QZxPjw1Rw/czVwe8zlJMaHr240Qbv3yFmC+k2iS/AEPhwzj1JrOdBY0Cam5fDuoBm80XciPT6cypWEDAA69f4k4AMjoq7w+GuhuKv9QnjLN8eZu/xrmaBtyVQ6XGzff4peodN5rNNAOnQMYdfBKGprPUrr+mLjPlZ/dRCAD8fM46s9kfh8dZy7kkLHd8fi8fp/+FQ3CUEdP1bQGu1lZNgSibUe5ax1AxGWz24TspGWeZy3fEWC7TRZtgyKfsx0rM3/j9KbE3steRGNzNjqh/503DMLPZyc2wqn44rYezi5ZWqvJU/H9Yu9Wk7M+25q79StU3sNYi8wtbeiYWrve2IvZv13U3sXNjX8TjWIvUvbGn7nGqb2ruys5sotYi9uX+Opvfhbp/aONfyu3zK1l3yyxt8TohrE3vem9gJi71KD2Lta4+85cbdM7CU2TO2l+HvVrVN7eVn+nnZzaq8gt/HU3s1+WFTcIPZumdq7KfZkB62+iKDVGxG0eiOCVm9E0Aqtnn1jYM/I1qeJeH0+Hus0kKjz8Yya+kXg9klz1nEyJi4gaMtvVPFEl0GYzDYApi/cTPiSLUBjQdtzYBhHTl4C4PCJi3TrPxmAyXPXc+jEBQBmL9vKn0bM5mpCJgCjw5YTdT5eBG1rJSUzn5mLt/Bs0DBefGskc5dvV1JHUYmVNz+YRHVNLfbrlTwbNKzRuPZ7g/8c+CFR3SRaBTkdt8nTcS9t8HJhbW3zTsdd7ObkpgJOHL5AxOVviMhdevt0rDmcYxkrOXbmAMd2xHJsialB7snpuELTYq+5p+MGpvbkdNwHdjpulbWeovyaNn86rtAyiKDVFxG0eiOCVm9E0OqNCFqh1bO1nxqayE1B6/F4efmdj6modFJdU8ur742lptbTaIL21hUIR05dYtCERf5v5xZB6/F4qaurB8Bqu8Hjr4UCcCDiHLOWbQX83m3vkbOs23YYgFd6jaHK4RJB29pxuWvYfyyGviNmK3n8afM3svvQGQDiUwz0HBjW6P7x4avZfTgagCu3iL1L3xN7t07sNbln75aJvZtiL+pWsXfLxJ5/z15t4z17t0zsNbln75aJvYDY++R7Ym/098SeXEDjgbBvTAXfLkvj4N7jHLm6iWPFc24TsseM8zh84SsO7jzFgUVZ7Btd1Xr1ydTej57aK0mrIzehtsWn9lT/ISI0jVwkTG9E0OqLCFq9EUGrNyJo9UYErdDqcd9QQxO5KWgBZizazO5DZ4iMvsq0+RsBAoK2vr6eNVsP8v7QcIKHhRPUbxKh4xYCjQVtZHQs/UfPIXhYOL2HzAwc22S28e6gGVRUOfnTiNkUlVgZNmkJecZSgoeFA3KRMK1iLiunU+9PqGlYsXAxLjXwg3AzYQs2sXVPJIByEdhqDG6QesM8HBjhYf9IDwdGefh2tIeDH3s4OMbDoU88HB5Xy5EJtRz51C/0jk6u5diUWo5NrSUirJbjYR4iZ3iI/LOHE+EeTs7ycHK2h5OfeTg118Pp+R6iFniIWujhzGIP0Us8nF3iIXqph7Of1xKzvJZzK2o5t7KW86s9XFjj4eJaDxfXe7i0wcOlTR4ub/JwebOHK1s8XP3KQ+xWD7Ffe4jb7uHaTg/Xdnm49o2H+D0eEvZ6SNznIemAl+RvvaQc8pJ62EvKES+px7ykRXhJP+4l/YSXjJNeMk97yYryk3feR+45L9nnPKTGFXMt7TLnc/dyyvRFE7tjwzllWs7F/P0k5cRiyCihOM2DKd1LSaaXkiwvJQYvpTlezLlezHleLPlerAU+yow+yop82Ew+bCU+7KU+7GYf5VYv18u83LB7uVHupeKGl8obXqoqvFRWeqlyeHE4vTjdXpzVwoPGV1dPda1P2eM72sBzoDN1dfW4a9TXIaihvh7lNajEofn/V3R//XXGXePv/6rr0BmVf/9U1/rwyeuvLTUeH15fnfI6BHXonFsF7ZWEDELHLWTsjJVciE0FvhO0J87G0XNgGFUOFwAHIy/cJmjt1yt5qutgcgtLACi12APHBnij70SOnr7MglU7Aeg+YAp7jkTz+Ya9gAhaJTl84qKSJ/3LXRGBkWqAhFQDPUKmNfqccTNXsffIWf/9+7wk7veSeMBL0kEvSYe9JB/2knzES8pRL6kRXtKOe0mL9JB20kP6aQ8ZUR4yznjIPOMh66yH7BgPWec9ZF/wYLjkJeeyl5wrXnKvesmL9ZIX5yUv3kt+gpeCJC+FyR4KUzwYUz0Y0z0UpXsoyvRQnOXBZPBQkuOhJNdDaZ6X0gIv5kIv5iIvliIvVpOXshIvZaVeysxebFYP9jIPdruH8nIP1697uHHDQ4VTuBN2ZyUFlemkV57iku1LjlvmNrE7di4XbFtILj9JQWUGdmel8rqFB4vX5/8DXdXj33Cofw50pq4eqtzqXn9BLQCVbaAOVVzXuP9Uuvyvv+o6BDVUub3U1cvrrxKVf/84q714ffXKnwNBDe4aH7Veef11RufcKmjr6uoJ6jeRoH6T8PnqgO8E7fb9pxgxZRngv97UoAmLCB4+C/hO0Bryi3np7VHU1nqoq6tn2fo9dOgYEliNELZgE8HDZ3HibBzg3z37pxGzuXwtHRBBqyTb959kyKeLW/1xB3w8l5jLSYGPr1dU8fTrQwJXjgMI6jeRhFQDIKe4Pfy4yLMbSbFd4pJ1D6cty5uejrV8wSXrblLKLpJrL8Rkd7WB2oWWpMZTh72yRnkdghpkxYHeyIoDfZEVB3ojKw70RlYc6I2sOBB0zq2CFmDhqp189vm2wMe3XiQsePgsuvWfTOj4hSSm5fDyOx+zaM2uRisOpszdQOf3xxM8LJxLcWl8MGoOfYbOBODQiQt06BhCmd2/bmHzrmM80WVQ4Cx3EbQa5dmgYYErzt1M6LiFrN16CJ+vjiOnLtE1eELgnQLVTUJ4sBTZb5BlS+OaNZJz1i+JtMy7TcYeN88hxrKJ1BsnyKtIw2gvV1630PqIoNUbEbR6I4JWX0TQ6o0IWr0RQas3ImgFiaSl0yYEbV1dPbbyCkxm2220Zpyuajp0DAmY+ZsxmW18OGYez3cfQe8hM0nLKgjcp7pJCD+OPFsRqbYrXLHuI+qO07HLuGTdTbLtPDn2fEx2JyV2N64aHzcctcq/B0ENImj1RgSt3oig1RcRtHojglZvRNDqjQhaQSJp6SgXtMfPXOXFHiPp0DGkSdp6VDcJofkU2SvIsmcQbz3JeetXd5iO/Yyzlo3EWY+RYUvCaLfd8XgiaPVGBK3eiKDVGxG0+iKCVm9E0OqNCFq9EUErSCQtHeWC9uV3PuaLjfsoKDJjLiu/jbYe1U1CuDP5dhOptqtcth4gyrryDtOxS7lo2UWy7Rw5tlxMdkezjy+CVm9E0OqNCFq9EUGrLyJo9UYErd6IoNUbEbSCRNLSUS5on+w6GJe7RnUZPziqm4Tgp9heQbYtiwRbFOctW4m0zG9CyH5GtHU9sdajpNsSKLRbf9RjiqDVGxG0eiOCVm9E0OqLCFq9EUGrNyJo9UYErSCRtHSUC9qxM1ZyITZVdRk/OKqbhK4U2EtIs8Vx1XqQM5bVRFhm3SZkT1gWc8G6kyRbDAZ7Dqby5k/HNgcRtHojglZvRNDqjQhafRFBqzciaPVGBK3eiKAVJJKWjhJB++WuiABrtx6iS/AEwpd+xeZdxxrd9+WuCBXl3VdUNwkdMJVXYbBlk1gWzQXr15wwL7x9d6xlNtGWtcRaD5Nmi6fAbm7xukTQ6o0IWr0RQas3Imj1RQSt3oig1RsRtHojglaQSFo6SgRt8PBZzaatR3WTeBgpsJtJt8VztewQ0Za1HLfMvk3InrQs4oJ1O0llZzHYszGVV7V6nSJo9UYErd6IoNUbEbT6IoJWb0TQ6o0IWr0RQStIJC0d5SsOcgtLmry9ptbDteTsVq7m/qO6SbR3TOUODHYDiWUxXLTu4KRlURO7Y2dxxrKGq9aDpNuuUWAvVV53iV0Ere6IoNUbEbR6I4JWX0TQ6o0IWr0RQas3ImgFiaSlo1zQPvPGkCZvv15RxdOvN31fW4rqJtHeKLRbSLclEGs9QrRlHRFNTMeesCzgvHUbibYzZNuyKbZXKq+7KUTQ6o0IWr0RQas3Imj1RQSt3oig1RsRtHojglaQSFo6ygTt7sPR9B4yk0dfHUjvITNv49X3xvJG34mqymt2VDeJtozJ7iDHlkuSLYaLll2ctCy5w3TsKq5YvyXVFku+3aS87uYiglZvRNDqjQhavRFBqy8iaPVGBK3eiKDVGxG0gs7x+nx06BjC1Hkbbrtv5uItdOgYgtfnu+sxtu6JZPrCzYB/UNNcVt4itbbnKBO07upaLsal8kTnULbuibyN3YejKbW2/RdMdZNoSxjtNjJsScRaj3HWuoHj5s9uE7KRlvmcs2wlwXaaLFsmRW10OrY5iKDVGxG0eiOCVm9E0OqLCFq9EUGrNyJo9UYEraBzvD4fT78+hC7BE6iuqQ3c7vH6COo3kSe6DLovQWu/XkldXX2L1tweo3zFwaW4NNUl/KiobhKqMNmd5NrySbad55L1G05ZljUxHRvOGctKrlj3k2q7Sp6tWHndDxIRtHojglZvRNDqjQhafRFBqzciaPVGBK3eiKAVdI7X5+OJLoMYH76a42euBm6PuZzE+PDVjSZo9x45S1C/SXQJnsCHY+YFBi9lgvbeUSJot+8/haXseuC/70Zbj+om0VoY7eVk2JK5VhZBjGUTx81zmtgdO49z1i3EW0+SZU+n2F6hvO6WRASt3oig1RsRtHojglZfRNDqjQhavRFBqzciaIXWzrNZTp7MbH2aitfn47FOA4k6H8+oqV8Ebp80Zx0nY+ICgrb8RhVPdBmEyWwDYPrCzYQv2QKIoG1OlAjaXqHTSc3KD/z33WjrUd0kWgKT3UWuvYDksotcsu7mlOWLJqdjT1tWcLlsH6m2y+TZiyixu5TX3pqIoNUbEbR6I4JWb0TQ6osIWr0RQas3Imj1RgSt0Nr5WapDCU3lpqD1eLy8/M7HVFQ6qa6p5dX3xlJT62k0QXvrCoQjpy4xaMIiQARtc6J8xcHl+HRqaz2qy/jBUd0kHgRF9utk2lKJKztOjPVLIi1zm9gdO48Y62auWSPJsqVRZL+uvG7ViKDVGxG0eiOCVm9E0OqLCFq9EUGrNyJo9UYErdDasXrrsSigqdwUtAAzFm1m96EzREZfZdr8jQABQVtfX8+arQd5f2g4wcPCCeo3idBxCwERtM2JckH74lsjearrYAZNWMTGHUdJyypoV8uCVTeJ+8dFnt1Iiu0yl617OW1Zfofp2C+4ZN1Diu0SufZCTJpNxzYHEbR6I4JWb0TQ6o0IWn0RQas3Imj1RgSt3oigFXTOrYL2SkIGoeMWMnbGSi7EpgLfCdoTZ+PoOTCMKocLgIORF0TQ3keUC9r6+noM+cXsOhjFp7PX0Kn3J7z41kjGzljJroNRqsu7Z1Q3iXtRbK8gy55OvPUE56xbmpyOPW6ey1nLZuLKIsi0pWC0lyuvuz0gglZvRNDqjQhavRFBqy8iaPVGBK3eiKDVGxG0gs65VdDW1dUT1G8iQf0m4fPVAd8J2u37TzFiyjIAKh0uBk1YRPDwWYAI2uZEuaD9flzuavYeOctbA6bQoWOI6nLuGdVN4vvk2YpJtV3hinU/UZYVTU/HWj/nknU3ybYL5NgLMNmdyutuj4ig1RsRtHojglZvRNDqiwhavRFBqzciaPVGBK2gc24VtAALV+3ks8+3BT6+9SJhwcNn0a3/ZELHLyQxLYeX3/mYRWt2iaBtRpQLWvv1Sk7GxDF/5Q76DJ3Ji2+NZNCERaz68kBgXLotR2WDKLJXkGXLJMF2mvOWr4i0zG9iOnYOMZaNxFmPkWlLwmi3K29sDwsiaPVGBK3eiKDVGxG0+iKCVm9E0OqNCFq9EUErSCQtHeWCtkPHEN4aMIUt3xwnK7eoXe2fhdb9Az3fXkKqLZYr1m+Jsq4iwjLrNiF7yrKUi9ZvSLadI8eWR4lMx7YYImj1RgSt3oig1RsRtPoiglZvRNDqjQhavRFBK0gkLR3lgnbjjqMMm7SEF3uMJHj4LBat3kXU+XhuVDhUl9astNQvf7G9gmxbFom2M5y3buOEZUET6wo+46x1A7HWo2TYEjHay5Q3LZ0QQas3Imj1RgSt3oig1RcRtHojglZvRNDqjQhaQSJp6SgXtDfj89WRmpXPlt3HGTn1c17sMZIeH05VXdY986B+2QvspaTZrnHVepAzljVNTseetCzmgnUnSbYYDPYcTOUO5U1KZ0TQ6o0IWr0RQas3Imj1RQSt3oig1RsRtHojglaQSFo6bUbQutw1XEnIYO3WQwyduIQ/vD2atwZMUV3WPfNDfrFN5VUY7NkklUVzwbqdk+aFTUzHzuasZR1XrUdIt8VTYLcob0hCY0TQ6o0IWr0RQas3Imj1RQSt3oig1RsRtHojglaQSFo6ygXt3OXb6TN0Jr977SO6Bk9g+sLNHDl1CVt5herSmpXm/CIX2M2k2eKJtR4m2rKW45bZTUzHLuKCdTuJZWcx2A2YyquUNyDh7oig1RsRtHojglZvRNDqiwhavRFBqzciaPVGBK0gkbR0lAvaSXPWsf9YDCVmm+pSflC+/0trKndgsOeQZIvhgnUnJy2Lm5iOnUW0ZQ1XrYcapmNLlTcb4f4RQas3Imj1RgSt3oig1RcRtHojglZvRNDqjQhaQSJp6SgXtO09hXYr6bYEYq1Hibaub0LGhnPCvJDz1q9JtJ3BYMum2F6pvLkIPx4RtHojglZvRNDqjQhafRFBqzciaPVGBK3eiKAVJJKWTpsVtCs27+eNvhNVl3HPNDUde8aymivWb0mzxVFgL1HeSISWQQSt3oig1RsRtHojglZfRNDqjQhavRFBqzciaAWJpKXTZgXt+aspbNh+RHUZ90yUdRXnLVtJsEWRbcukSKZjtUEErd6IoNUbEbR6I4JWX0TQ6o0IWr0RQas3ImgFiaSlo1zQ/rHnaMpvVKku4wdHdZMQ1CGCVm9E0OqNCFq9EUGrLyJo9UYErd6IoNUbEbSCzvH6fHToGMLc5dsb3X76XDyjp33xwB7nmTeGYC4rJzPHeMcz6r/cFcH0hZsf2GO2pSgXtKOmfsGOA6dVl/GDo7pJCOoQQas3Imj1RgSt3oig1RcRtHojglZvRNDqjQhaQed4fT6e6jqYV3qNIbfAFLj9QQta+/VK6urq7ypo3dW1OJwP5+uhXNBOnbeBl9/5mKB+Exk8YTHDJy9rRFuP6iYhqEMErd6IoNUbEbR6I4JWX0TQ6o0IWr0RQas3ImgFneP1+Xiy62B2HzrD4AmLA7ffKmjr6uqZvWwrr//pUzr3GcfUeRvw+nwAPNdtONv2nmDoxCV0CZ7AyZg4ZizaTP/Rc+g/ei4udw3QeII2qN9EFq7ayWu9xxHUbyJXEjKAxhO0iWk5vDtoBm/0nUiPD6cGPqe9RrmgXbBqJ0vX7b4jbT2qm4SgDhG0eiOCVm9E0OqNCFp9EUGrNyJo9UYErd6IoBVaPVO2wMTNrU8T8fp8/O61j6irq6dX6HSiLiQAjQXtyZg4eoRMo7bWQ02thx4h0zh2+goAL/YYycYdRwHYcySaJ7sOxmiyAPDRJwuIiPJ/3q2C9nevfcSBiHMAfHv8PEH9JgGNBW3PgWEcOXkJgMMnLtKt/+QH/Sq0apQL2vYe1U1CUIcIWr0RQas3Imj1RgStvoig1RsRtHojglZvRNAKrZ6hK9TQRLw+H491GgjA1YRMgvpNxOPx3rbioKbWE/jvPy/+kvVfHwb8gtaQXwzA5WvpvDVgSuDzZizazFd7IoHGgvaZN4ZQV1cPgMfjpUPHEK5XVDUStB6PN/A5VtsNHn8t9IE89arSJgSt0WRl1ZcHmDJ3A+AfjY5NzFRcVfOiukkI6hBBqzciaPVGBK3eiKDVFxG0eiOCVm9E0OqNCFqh1VPhggpn69NEbhW0AGOmr2DjjqONBG1FlZOwBZvoPWQmwcNn8fI7H7N26yHAL2hNZhvgF7y9h8wMHCt8yRa+3BUBNBa0nfuMa1TDM28MobDY0kjQRkbH0n/0HIKHhdN7yMxGNbbHKBe0F+NSeaLLIIZ8upgOHUMAKDHbeK7bcA6duNCqtVxJyKBb/8k8GzSUYZOWUulwAVBUYiVk7Hxe6D6CdwfNID7FEPga1U1CUIcIWr0RQas3Imj1RgStvoig1RsRtHojglZvRNAKOuf7gra4tIw/vD2a3YejA4J2zhfbCFuwKbB3NmzBph8laJ8NGkZ9feMJ2opKZ0DQ2q9X8lTXweQWlgBQarGLoP2xeWvAFM5c9O+vuClowf+ivT1wWqvVUVHl5OV3PuZqQiY1tR7mLv+abw5GAfDhmHl8tScSn6+Oc1dS6PjuWDxe/w+d6iYhqEMErd6IoNUbEbR6I4JWX0TQ6o0IWr0RQas3ImgFnfN9QQvw+Ya9vNF3mTBi2AAAIABJREFUYkDQjp2xki3fHAcgt8BE5/fHB64r9UME7aOvDiQyOhaAQycu0CPE7wdvClpDfjEvvT2K2loPdXX1LFu/hw4dQ6iuqW25J6KFo1zQPtl1MD5fHdBY0Hq8Pp7qOrjV6jgQcY5PZ6+57Xb79UqeDRoWeBcA4L3Bf+Zqgn8Fg+omIahDBK3eiKDVGxG0eiOCVl9E0OqNCFq9EUGrNyJoBZ3TlKB1uavp+O7YgKBNSDXwRt+JvD1wGtPmb+RkTBzPBg3j9Ln4+xa0KZn59BwYxqLVu+jWfzLd+k8OnMl+64qDKXM30Pn98QQPC+dSXBofjJpDn6HfHbu9RbmgDeo3kcwcI9BY0J65mECX4AmtVse8FduZvWwroeMX0iV4AlPmbsDhdBOfYqDnwLBGnzs+fDW7D0cD8ge6zoig1RsRtHojglZvRNDqiwhavRFBqzciaPVGBK0gkbR0lAvaPUeiefmdj1m+aR8dOoawbe8JwhZs4smug9lx4HSr1TF13gaC+k2k1FpOTa2HsTNWMnf511yMSyV4WHijzw1bsImtDVeZK6+qFTSlxlOHs9qrvA5BDR5fPVVuj/I6BDXU1UGFU15/XQG43gbqEFqf645a+ftPYyqcHurq5PVXSqW6x65ye/D46tU/B4ISnNVeajx1yusQ1CGRtHSUC1qAo6cv89EnC+j8/ni6D5jCiCnLOHcluVVrmLt8O/NX7gh8fC05m7cHTiMh1RDYdXEz42auYu+RswBU1/oETfHV1ePx1imvQ1BDXV09tR51r7+z2qv8OdCZuvp6ajzq6xDUUF+v9///de8/ur/+OlPj8fd/1XXojMr+U+upo65OXn9d8Xjr8MnrrzUSSUunTQjatpCteyKZOm9D4ONrydm8O2gG1yuqePr1Ibirv3vHJKjfRBJS/fsvVI/ZC+qQFQd6IysO9EZWHOiNrDjQF1lxoDey4kBvZMWB3siKA0EiaekoF7Q1tR5WfXmAdwfN4I89R/NKrzH0GTqT9V8fxuNtvXcpbOUVvNhjJFm5RXi8PsbNXM2iNbsACB23kLVbD+Hz1XHk1CW6Bk8IXNhMdZMQ1CGCVm9E0OqNCFq9EUGrLyJo9UYErd6IoNUbEbSCRNLSUS5oJ8xaw9sDp7Fh+xEORl7gQMQ5Vm4+QOc+45g8d32r1nL2UhKd+4zjD2+P5tPZa3C6qgEwmW18OGYez3cfQe8hM0nLKgh8jeomIahDBK3eiKDVGxG0eiOCVl9E0OqNCFq9EUGrNyJoBYmkpaNc0L7QfQQud/VttxtNVp7sOlhBRfcX1U1CUIcIWr0RQas3Imj1RgStvoig1RsRtHojglZvRNAKEklLR7mg/f4FuG7G5a6mc59xrVzN/Ud1kxDUIYJWb0TQ6o0IWr0RQasvImj1RgSt3oig1RsRtIJE0tJRLmi37z/J0nW7uVHhCNxmKbvOjEWb+fb4eYWVNS+qm4SgDhG0eiOCVm9E0OqNCFp9EUGrNyJo9UYErd6IoBUkkpaOckHbJXgCj78WSoeOIfz+zWE81XUwHTqG8GTXwbz09ihe7DEyQFuM6iYhqEMErd6IoNUbEbR6I4JWX0TQ6o0IWr0RQas3ImgFiaSlo1zQRkbHcvpcfLNoi1HdJAR1iKDVGxG0eiOCVm9E0OqLCFq9EUGrNyJo9UYEraBzvD4fHTqG8ESXQQH+2HM0YQs2NXlNqZbM1j2RTF+4uVUfs7WiXNDejMfjpbi0THUZ9x3VTUJQhwhavRFBqzciaPVGBK2+iKDVGxG0eiOCVm9E0Ao656agNZeVB26zlVcwaMIiFq3Z1aq1iKBtwbira5k2f2NgzQFA+Y0qBn4yH1t5hdrimhHVTUJQhwhavRFBqzciaPVGBK2+iKDVGxG0eiOCVm9E0Ao6pylBC7D3yFlCxy3EaLLQqfcngdvDl37FB6PmBD4eMWUZJ2PiSEzL4d1BM3ij70R6fDiVKwkZAGTmGOkVOp3PN+xl0IRFdOs/mfNXUwCoqfXw6ew1dO4zjg9GzWHu8q8DgvZOx2uvUS5owxZsYujEJSSl5wYErctdw+S565kwa43a4poR1U1CUIcIWr0RQas3Imj1RgStvoig1RsRtHojglZvRNAKrZ0zZZ8TVba01WkqTQlaq+0GAz6ey8rNBwB4rfc4Sq3++98fGk6foTOprfVQX1/PS2+PoqLSSc+BYRw5eQmAwycu0q3/ZAAM+cU8+upALsalAv5VqH1HzAZg18EoPhg1B4/XR6XDRfcBUwKC9k7Ha69RLmif6zac6xVVAAFBC1DpcPHHnqMVVdX8qG4SgjpE0OqNCFq9EUGrNyJo9UUErd6IoNUbEbR6I4JWaO1EWMKV0FRuCtrfvzmM57oN59mgoTz9+hCWrtuNx+MFYMrcDRw/c5UbFQ76j57LjEWbiU8xkJNvoveQmYB/tWldXT3gF7yPvxYK+AXtc92GBx4vM8dI5z7jABgfvpqv9kQG7lu2fk9A0N7peO01ygXti2+NpKbWAzQWtOU3qnjmjSGKqmp+VDcJQR0iaPVGBK3eiKDVGxG0+iKCVm9E0OqNCFq9EUErtHZq6hxKaCrfn6C1lVfwfPcR5BlLA59zIOIc81fu4PS5eJas3c3+YzFs2nmMbw5GsWTtbsA/Gdt/9ByCh4XTe8hMHus0EPAL2lffGxs41q0fD5qwiAMR5wL3bd51LCBo73S89hrlgnb0tC+Yt2I71TW1AUFbarEzcurnDJ+8TG1xzYjqJiGoQwSt3oig1RsRtHojglZfRNDqjQhavRFBqzciaAWd09SKgxWb9zdydiVmG8HDZ7Fw1U6iLiSQZyxl1NQvmPTZOi7EpmK/XslTXQeTW1gC+L1fcwTtuJmr2bb3ROC+Rat3MX3h5rser71GuaAttZbz1oApgYuEPd99BB06hhA8fBYlZpvq8u4Z1U1CUIcIWr0RQas3Imj1RgStvoig1RsRtHojglZvRNAKOqcpQetwunnp7VFciksL3Nat/2TeHTSD6xVV1NfX033AFLoPmIK7uhZDfjEvvT2K2loPdXX1LFu/hw4dQ6iuqb2roN26JzKwg7b8RhVB/SYyfeHmux6vvUa5oAXw+eq4lpzNgYhzRERdIS2rQHVJzY7qJiGoQwSt3oig1RsRtHojglZfRNDqjQhavRFBqzciaAWd05SgBb88feejsMAe2LAFmxpdqGvYpKV8OGZe4OMpczfQ+f3xBA8L51JcGh+MmkOfoTPvKmhd7hrGTF/BK73GEDwsnKXrdjNt/sa7Hq+9ps0I2qsJmY32Sjic7eMXQHWTENQhglZvRNDqjQhavRFBqy8iaPVGBK3eiKDVGxG0gkTS0lEuaItLy3ij70SeeWNIYAetyWzj+e4jSMnIU1tcM6K6SQjqEEGrNyJo9UYErd6IoNUXEbR6I4JWb0TQ6o0IWkEiaekoF7QhY+ezfNM+fL66gKAF2L7/ZKNR6LYa1U1CUIcIWr0RQas3Imj1RgStvoig1ZerVjfbSt2sKKtlW4mLMxY3eW2gLqH1EEGrNyJoBYmkpaNc0D7VdTA1tR6ARoLW4/Xx+zeHKaqq+VHdJAR1iKDVGxG0eiOCVm9E0OqLCFo9iLe62W5yMS3fyTsGB4+kVfGzVEeTPJbuoFuWk2G5DuYWuthW4iJa5O1DiQhavRFBK0gkLR3lgrbju2OxlVcAjQXtzSuytfWobhKCOkTQ6o0IWr0RQas3Imj1RQTtw0eazc3uEjczCpy8Z3DQIa1pEfuf6VV0y3byTp6bbtlOXsps+vO+L2/fzHIyPNfJnEIXO0wuzlrc5LeB71u4f0TQ6o0IWkEiaekoF7QLVu1kwMdzuXwtnQ4dQ8jMMXLoxAXe6DuR2cu2qi7vnlHdJAR1iKDVGxG0eiOCVm9E0OqLCNr2TWZZNftK3XxmdNE3x8kT6U2L1UfSqnjH4GBqgZPtJhfxVv/Xf38Hrcnun7Y9WOpmZZGLT/OdBBscvJTp4Jf3kLePpzvonu1kRK6TeUa/vD1ncVPQBp4noWlE0OqNCFpBImnpKBe01TW1zFy8hSe7DqZDxxA6dAzh2aBhLFm7O7D6oC1HdZMQ1CGCVm9E0OqNCFq9EUGrLyJo2w8GWzUHS93MM7rob3DydEbTovTf06ronu1kYr6DLSYXV613Pub9XCTMZHdzzerm21I3K4pcTGiQty82Q94+ke7grWwHI3OdzDf61y2cF3mrHBG0eiOCVpBIWjrKBW19fT0AHo8Xk9kWWHcA4HJXqyqr2VHdJAR1iKDVGxG0eiOCVm9E0OqLCNq2SZ7dzVGzi8VGFx/lOHjuDjL216kOgrIcjMtzsqnYzUWLX6Q293HuR9DeDZPdTVyZmwMlbpYXuRif5+T9Bnn7r3dYsXCTJzMc9GiQtwuMbnY0yNtCm/rX4WFHBK3eiKAVJJKWjnJBO27mqiYnZeNTsukaPEFBRfcX1U1CUIcIWr0RQas3Imj1RgStvoigVU+B3U1kqZtlRheDc/3rBH7ehMj8ZaqDzlkOPs5zsrbYTYzFTfGPfOwHJWjvRrHdL2/3l7j5okHe9jE4eCGj6q7y9uepDp7KcPB2toOReU4WGl3sLBF5+yARQas3ImgFiaSlo1zQho5fyAej5nCjwgH4J2mXrtvNE51D+WLjPsXV3Tuqm4SgDhG0eiOCVm9E0OqNCFp9EUHbuhhtbk6b/ftdh+c6eSXTwb80ISf/JdXBq5kORuQ6WVXk4rTFjbEF6mkNQXs3iu1uYsvc7Ctx83mDvO1tcPB8RtPPy/flbc9sB6PynCwyuthV4uaCxf8cq36d2wsiaPVGBK0gkbR0lAtar8/HrGVbefODSZy5mMA7H4XRrf9kUjLyVJfWrKhuEoI6RNDqjQhavRFBqzciaPVFBG3LUWR3c9biZk2xi1F5Tl7Lavp0/1+kOvhDpoMhuQ4+L3Jxwtx6E6KqBe29nr9Yq5t9DdPF4/KcvGfwr3u4l7x9ukHejs5zstjo4psS//oHkbeNEUGrNyJoBZ1zvaKKDh1DbltDeiDiHKHjFrZKDVv3RDJ94eZWeSxVUS5ob2b7/pM81mkgo8OWU11Tq7qcZkd1kxDUIYJWb0TQ6o0IWr0RQasvImgfDCa7f3pzY7GbT/KcvJ7t4P/cQSC+kFHFRzkOlhS5OGp2kaew7rYsaO9Gkd3N1Vvk7Sd5Tt7NdvD7ZsjbZ9IdvGPwr4pYUqS3vBVBqzciaAWdI4K2daJE0G7ff6pJRk39ghffGsm2vScCt7X1qG4SgjpE0OqNCFq9EUGrNyJo9UUE7Q/jitXNZpOLCflO3sxy8m932KX6TLqDATlO5hvdHCp1Y7C1rT7bXgXt3ShqeH32lrhZWuSXt72aIW9/0fB69TI4GNMgb3eXuLlkbZn1Em0BEbR6I4JW0DnNEbQ1tR4mfbaOLsETCBk7n5WbDzB13gYAEtNyeHfQDN7oO5EeH07lSkIGAJk5RnqFTufzDXsZNGER3fpP5vzVlMDxPp29hs59xvHBqDnMXf51QNDe6XjtPUoEba/Q6c2mrUd1kxDUIYJWb0TQ6o0IWr0RQasvImjvzTWrm20lLibnO3k728F/pFU1KfiezHDQN8fJHKOLfSVuMsvafk99GAXt3TDa3Vy2utnTIG/HNkzePpvhF7T3krfvZjsY2yBv95T4j9We5a0IWr0RQSu0er4GtiqgiTRH0G7ff4oPRs3B6/NhLiunU+9PAkK158Awjpy8BMDhExfp1n8yAIb8Yh59dSAX41IBiIyOpe+I2QDsOhjFB6Pm4PH6qHS46D5gyj2P197TZlYctNeobhKCOkTQ6o0IWr0RQas3Imj1RQRtY5LK3OwwuQjL909d/tcdJmMfTXfQx+BgZqF/yjKtnZ4er5ugvRtGu39adk+JmyVFLsbkOell8IvZu8nbf0n1C95e2Q4+yXOytMjF3hL/FG9bl7ciaPVGBK3Q6lmriCbSHEE7buZqtu09Ebjv1olXj8dLXV09AFbbDR5/LRTwC9rnug0PfE1mjpHOfcYBMD58NV/tiQzct2z9nnser72nTQjaqwmZzF+5g3EzVzNh1hoWrdlFQqpBdVnNiuomIahDBK3eiKDVGxG0eiOCVl90FrTpZX4ZF17o4n2Dg8fSmxZwv02v4t1sB9PynWw3uUiwqq/9QSGCtnkYbf49tbsb5O3H9yFvf5/hn7y9KW/3lfr35xa1ge9LBK3eiKAVWj0uRTSRikonHTqGUOVo/Al7jkQzeMJiAAZNWMThExcD923ccTQgVCOjY+k/eg7Bw8LpPWQmj3UaCPgF7avvjQ18za0fD5qwiAMR5wL3bd517J7Ha+9RLmg3bD/CU10HM+TTxYQt2MSUuRsY8PFcfvfaR2zZfVx1efeM6iYhqEMErd6IoNUbEbR6I4JWX3QRtNm2avaXuJlT6KJvjpOnMpoWar9Jq6JHtoPJ+Q62mlzElqmvvSURQfvjuSlvvylxs9joYnSek3cMDp7O8F+U7G7y9rkMB+8Z/PJ2mbH15a0IWr0RQSvoHJ+vjie7DiY9u6DR7XOXbydswSYAxs5YyY4DpwP3zVuxnekLN2O/XslTXQeTW1gCQKnF3ixB+/2J3EWrd93zeO09ygXtiz1GBp7YW3PuSgovdB+hoKL7i+omIahDBK3eiKDVGxG0eiOCVl8eRkGbY3NzuNTNAqObD3OcPHsHGfvrVAfdspyMz3OyyeQ/vd3UBupvTUTQtiw35e2uEjeLGuRtz2wHTzVD3j6f4aC3wcG4PCefF/n3Gsda3RQ/wPpE0OpHjq2KBKuds2Yzp2wmEbSao3vmLt/OgI/nUlxaRm2th1PnrvH7N4eRllUAwKadx/jokwXU1dVjKbtO5/fHM33hZgz5xbz09ihqaz3U1dWzbP0eOnQMobqm9q6CduueyMAO2vIbVQT1m3jP47X3KBe0b34wqcnba2s9PC+CVmjDiKDVGxG0eiOCVm9E0OpLexe0eXY3x8wulhS5CM118GJm08LrV6kOumb5L/C0vtjNecuDFV3tFRG06ii0ublgcbOzxMVCo4tRef6L0DVH3r6QUUVvg4PxeU6+KHKxv8RNbNn9/0yLoG1fFNldJJdd54LFQkRpEd8U57HRmMnSwhTC8+MYl3ORQdnRvJ91gqCMo/wh7QC/S/mGXyV9zd8nbOYn8ev4b9fWNCLf6VD+fQnq0D01tR6WrttNp96f8MwbQwgeFs75qymB+x1ON8MmLaVL8ASGTlzCsvV7mLHIv5JgytwNdH5/PMHDwrkUl8YHo+bQZ+jMuwpal7uGMdNX8EqvMQQPC2fput1Mm7/xrsdr71EuaKcv3MzZS0m33f7NwSjmr9yhoKL7i+omIahDBK3eiKDVGxG0eiOCVl/ak6AttLk5aXbzRZGLobkO/pjR9P7Pf01z8Fqmg5F5TlYXuzhjaRv7PtsiImjbJoU2/5sIO0wuFhjdjMxz0iPbwZN3mAa/9Wf/xUz/BezG5zlZ3iBv4+4gb0XQti4pZde5aLFwvLSYfaYCNhdlscyYwqyCa0zIu8yQ7LP8KfMkb2Yc5Y9pB3giZTe/TtrO/07YfJtY/TH8Q8KX/DppO0+l7iHXWan8eRHUIbl3bl64C2DVlwdYtGaXwmraX5QL2kmfreOJLoN4e+A0Rk39gmGTlhDUbyK/f3MYY2esbERbjOomIahDBK3eiKDVGxG0eiOCVl/aqqA12t1EWdysKnYxMtfJq5n+ycHvC6lfpDp4OdPBsFwHy4tcnDL75Zbq+tsLImjbHzfl7fab8jbXyVvZDp64w0Xuvi9v3zc4mJDvZEWRiyPWavLcPu1We9wvJrubjLIKrljLOGUuYX9JPluKsllRmMac/Hgm5V1huCGGflmn6JERwatpB3kqdQ+/Sd7OPyVu4a/iNzwQsfqT+HX8fcJmfpX0NY+n7OYPaQcIyjjK+1knGJx9lvE5FwnPj2NpYQobjZnsNuURUVrMBYuF5LLrFNldjb4v2UErSO6eqAsJBPWbhLu6Fpe7mnc+CuNkTJzqstpVlAvazz7fxrwV25tFS+bclRQefXUgT3QZFGD7/lMAFJVYCRk7nxe6j+DdQTOITzEEvk51kxDUIYJWb0TQ6o0IWr0RQasvbUHQFtvdnLO4WVfsZkyek85ZDn7ZhGD6eapfMIXmOlha5CLC7Ca/DTyH7RkRtA8XBXb/79IOk4v5Rjcjcp10z3beU97+suF3K9jg4NMGefttqZv4h2Qvc1ZZJbEWG1HmEr4tKWBbsYFVxjTmFSQwNe8qI3POMSA7ip4Zx+mUdohnU/bxSPIOfpb4FX/9gOTqX15by98mbOKXidt4NHkXL6Qe4PX0I/TOiiQ0O5qxOReYkR/HksJk1hdlsLM4l6MlRmLMFpKs5eTZqh748yKCVpDcPT5fHeFLttCp9yd0fn88C1btpL6+/t5fKAlEuaBtKzl2+gqf/LnpKd0Px8zjqz2R+Hx1nLuSQsd3x+Lx+gARtDojglZvRNDqjQhavRFBqy+tLWhNdv9FkzYVuxmf5yQoy3+xrqak0e8zHITkOFlodHGk1EWuTMY+cETQ6kO+3U1Mw+TtPKOL4blO3jI4eTLDeVd5+6tUBy9lOviTwcnEfAcri1wcbEV5a7BVEm+1E202c6i0kO3FOawxprOwIJGwvFhG55wnJDuKXpnH6ZJ+mOdT9/Pb5J38ImkrP03YyF88ALn6F9fW8NOEjfwiaSu/Td7J86n76ZJ+mF6ZxwnJjuJjw3nC8mJZWJDIGmM624tzOFxSSLTZTLzVjsHWNtcIiKAVJJKWjnJBW1dXz+7D0fQb+RmvvjeWF3uMJHj4LHYfjm7VOnYfOsP0hZtvu91+vZJng4bh9fkCt703+M9cTcgERNDqjAhavRFBqzciaPVGBK2+tLSgjbW6+crkYmK+g+7ZTn6TVtWkBHoqw0G/HCdzC10cKHGTbZN+1BqIoNWbmzto8+xuzt6Ut4V+eftmlpPf3WPy9qa87ZvjZFK+g1VFLg6VuklokLd5tioSreXEmC0cLTGysziX9UUZLC5MYkZ+HGNzLhCaHU3vrEheTz/CC6kHeDR5F79M3MbfJGziL6+tfSDTq38dv4GfJX7FI8k7eDZlH53SDtEz4zgDsqMYmXOOqXlXmVeQwCpjOtuKDXxbUkCUuYRYi42ssrYpVx8EImgFiaSlo1zQrv7qIC+/8zGfb9jLwcgLHIy8wLL1e/jD26MDKwZaIxt3HKXP0Jn0HBjGK73GELZgE05XNfEpBnoODGv0uePDVwcEcmm5W9CUm4JWdR2CGmo8dZRX1qirwa7+OdAZr6+eshvVyusQ1FBfD+Y2UIcqSjTuP+brDYL+ARwroczNjhIX0wqcvGNw8J/pTcvY36X7T6WeXehib4mbTJv0HlWUNQha1XVojcL+U94gaJu6r7jcRYrtOmesVtabSplWYGJAjomuWSU8lW7l16nX7ypv/znlBv+QXMzfJafz08Qr/FXSKf5HwgH+In7rfcnVv4rfwD8lbuE3yf6LWr2afpAemRF8kH2K4YYYJuddYW5BPCuMaXxVnM3+0nxOm0u4ai0j01ZBierXtw1zU9CqrkNQh0TS0lEuaLsGTyAzx3jb7alZ+XQfMKXV6jgZE8fnG/Zyo8JB+Y0qQscvZO7yr7kYl0rwsPBGnxu2YBNb90QCUF8v6MrNqK5DUPf61yt8/T3eOuXPgc6ofv2FNvD6t4E6VFGref/5Ia9/maeek1U+Flpq6Vfg5rE7nCb9aIaTvvluFphriazyUuapV/79Crcgf/sppyX+/vHV11PmqSanupJrzjLOVJn49kY+W+yZfGFNZlZpHOOKLhJaeIb3ciPpnHWY32fs5ZHUHfz/SVv4n/HrmidQ4zfwk4Rv+F+Jx/jrpHP8TVIi/zs5j39KKburvP1FaiW/TbfxYnYpPXOLGFlcxEJLMftulHLNWUZOdSVlnmp89dIvWhL5t58gkbR0lAvaZ4OGBva53hqP18ezQcMUVORPXFIWQf0mkZBqoEfItEb3jZu5ir1HzgKy4kBnZMWB3siKA72RFQd6U18vKw50pbT83isOMsqq2VfqZrbRxZ8MTh6/w2nPj6RV0TPbwZQCJ1+bXMRb1X9/wt2RFQdtD5PdTUZZBVesZZwyl7C/JJ8tRdmsKExjTn48k/OuMNwQQ7+sU/TIiODVtIM8nbqX3yRv558St/BXD+iiVj+JX8ffJ2zmV0lf87uUb3gpbT9BGUd5P+sEg7KjGZdzkZn5cSwtTGGjMZNvivOIKC3ivMVMctl1DHYXZyxutppczDG6GJrr4M0sJ4/eY23Cr1MdvNywNmFyvpPVxS6OlrpIKlP/2jxsyIoDQSJp6SgXtO8PDWf/sZjbbt9zJJreQ2a2Wh25BSasthuBjy/FpdEjZBrXK6p4+vUhuKtrA/cF9ZtIQqoBEEGrMyJo9UYErd6IoNUbEbT68n1Bm22r5ttSN/MKXXxgcPJ0RtMS5d/TquiW7eTTfCdfmlxcFRnbLhFB++DJKqsk1mIjylzCtyUFbCs2sMqYzryCBKbmXWVkzjkGZEfRM+M4ndIO8WzKPh5J3sHPEr/irx+QXP3La2v5m4RN/GvSNh5N3sULqQd4Pf0I72VG8lH2GcbmXGBGfhyfFyezw2ZghymXoyVGYswWEq3l5NqqWvQ5yrW5ibL491N/ZnQxJNdBUJaDDmn3lrevZPr3VU8pcLKmQd4mi7z9QYigFSSSlo5yQXs1IZMnugyiV+h0Js5ey6ez19BzYBhPdA4l+mJiq9WxZO1uhk1agstdjcPpZsini1m6bjcAoeMWsnbrIXy+Oo6cukTX4An4fHWACFqdEUGrNyJo9UYErd6IoNWTXJubo2YX62weBuY4ee4OMvbXqQ7eyHLwSZ6TjcVuLlpa5+rtQssjgrYxBlsl8VY70WYzh0oL2V6cwxqaGvCwAAAgAElEQVRjOgsLEgnLi2V0znlCsqPolXmcLumHeT51P79N3skvkrby04SN/MUDkKv//doafhq/gV8kbeW3yTt5LnUfndMP0yvzOCHZUYzOOU9YXiwLChJZY0xne3EOh0oLiTaXcs1qw2Br/kWtbl4kTPXzfis5NjenLW62mFzMNroYnOvvP//VTHn7gcHJ1AIna4v9/S1F5O0dEUErSCQtHeWCFsBSdp2NO44yc/EWps7bwNqthzCaLK1ag8tdw+S563mxx0he6TWGmYu3BKZmTWYbH46Zx/PdR9B7yEzSsgoCX6e6SQjqEEGrNyJo9UYErd6IoH34ybe7OV7qZmmRi0G5/iuv/7wJyfHLVAevZTkYneefTouxuClqA/ULLcPDJGjzbFUkWsuJMVs4WmJkZ3Eu64syWFyYxIz8OMbmXCA0O5reWZG8nn6EF1IP8GjyLn6ZuI2/TdjEX15b+0CmV/86fgP/nPgVjyTv4JnUvXRKO0TPjOP0zzrNSEMMU/OuMq8ggVXGNLYWGzhQUkCUuYRYi42ssspWffOjLQrau5Fjc3Pa7ObLBnk7KNfB69n3lrf/luagY6aD/gYn0/JF3t5EBK2gczJzjDzWaWAjOnQM4ePpyx/Y8d/oO7HJ+77cFcH0hZsfyOO09bQJQdueo7pJCOoQQas3Imj1RgSt3oigfbgotLk5ZXazosjF8Fwnr2Q6+JcmpMW/pPqlxfjiGlYWuThtcWO0qa9faD3aiqAtsrtILrvOBYuFiNJivinOY6Mxk6WFKYTnxzE+5yKDsqN5P+sEQRlH+UPaAR5P2c2vkr7m7xM285PmXtTqHvyva+v5x4Qv+U3ydp5K3UPH9G95KyOCvlmnGG6IYVLeFT4riGd5YSpbirLZX5LPSbOJy1Yr6WUV7W6yvL0J2rthsFVzyuxms8nFrEIXobkOujZj8vbf06p4NdPBgBy/vF1X7OaY2UWqBvJWBK0g+S4VVU469xnHlYSMB3K8uwlad3UtDqcez79yQWvIL2Z02HK69Z9M5/fH30Zbj+omIahDBK3eiKDVGxG0eiOCtv1SZHcTbXGzutjFqDwnr2U5+NcmhMTPU/1Ts4NzHSwzujhhdlNgb95FwoSHlwchaIvtLtKsN7hksRJZWsxeUz6bi7L4ojCV2QXX+DTvMkMNMfTNOkm3jGO8nPYtT6Ts5t+StvOPCV/yP649GLn6P66t4x8SvuTXSdt5ImU3f0w7QLeMY/wp8yRDss8yIe8yswqu8bkxhc1FWewx5XO8tJhLFiupZTcotruUvx6tzcMkaO9GdoO83WRyE94gb7tkOfhtetVd5e1v0qrolOngwxwnYflO1he7iTC7SXtI3sgSQStIvsu4matYvPabwMeJaTm8O2gGb/SdSI8PpwbEbWaOkV6h01m89hs+HDOPHh9O5XJ8OmOmr+Cdj8KY88W2wOcF9ZvIwlU7ea33OIL6TQwc49YJ2js9zsMS5YK2R8g0QscvZPfhaA6fuHgbbT2qm4SgDhG0eiOCVm9E0OqNCNr2gcnu5rzFzYZiN5/kOXk928H/uYNYeD7DwUc5DhYbXRw1u8i7wzFF0OqN5UY1ZbXVXLGWccpcwv6SfLYUZbOiMI05+fFMzrvCcEMM/bJO0SMjglfTDvJ06l5+k7ydf0rcwl89oIta/eTaWv4uYRO/TPya36V8w0tp+wnKOEqfrBOEZkczLuciM/PjWFKYzIaiDHYV5xFRWsR5i5mksuvk2x3Kn8v2iC6C9m5k26o52SBvZxa6+CjHL2//sxny9rVMByEN8nZDsX+NTHuStyJohdZOffIw6pMGtTr3yoGIc/QKnY7H4w3c1nNgGEdOXgLg8ImLdOs/GfAPZD766kASUg0ATJy9lh4h06it9VBT6+HZoKHYyivIzDHyu9c+4kDEOQC+PX6eoH6TgMaC9k6P87BEuaB9/LVQKqqcqsv4wVHdJAR1iKDVGxG0eiOCVm9E0LZNLlv9p+tOyHfSLcvJv93hVN1n0v27FecZXRwq9Z/q29zHEEHbvskqqyTWYiPKXMK3JQVsKzawypjOvIIEpuZdZWTOOQZkR/FO5nE6pR3i2ZR9PJK8g58lfsX/+4Dk6l9cW8PfJGziX5O20SF5F8+n7qdr+mHey4zko+wzjDGcZ3p+HIsKk1hXlM4OUy5HSoycNZtJtJaTa6tS/jzqigjau5NRVs0Js5tNxW7+XODkoxwHnbMcPJLWDHmb5WBgjpPp+f6LK0aWuklvY/JWBK3Q2qmPe1cJd0tRiZU/9hxNboGp0e0ej5e6unoArLYbPP5aKOAXtC/2GBn4vOWb9jFr2dbAx0H9JpJhKCQzx8gzbwwJHMPj8dKhYwjXK6oaCdo7Pc7DEuWCtveQmeQZS1WX8YOjukkI6hBBqzciaPVGBK3eiKBVT1yZm20lLibnO+mR7f8HflP/8H8i3UHfHCefGV3sK3GTWfbjfm9F0KrDYKsk3mon2mzmcEkh24tzWGNMZ2FBImF5sXxsOE9IdhS9Mo/TJf0wz6fu57+Sd/GLpK38NGEjf/EA5Op/v7aG/y9hIz9P3Mp/Ju/kudR9dE4/TK/M43yYHcWonHOE5cWyoCCR1cY0vi42cLCkkGhzKdesNrJFrrZrRND+cNLL3AF5O6PAycAc/4qZ/7iHvP2PW+TtjAInm4r9x0lXsPNWBK3Q6vHcAM/11ucO8fnq6DtiNtv3n7ztvsjoWPqPnkPwsHB6D5nJY50GAn5Be+vq0lVfHmDR6l2Bj7v1n0xqVj6ZOUY69xnX6JjPvDGEwmJLI0F7p8d5WKJE0KZm5QeIiLrCh2PmERF1hZTM/Eb3pWblqyjvvqK6SQjqEEGrNyJo9UYErd6IoG1dEsvc7DC5CMt38u5drkD+aLqD3gYHfy5wsrukZU6dFUH7w8izVZFkLSfGbOFoiZGdxbmsL8pgSWEyM/LjGJtzgdDsaHpnRfJ6+hFeSD3Ao8m7+GXiNv42YRN/eW3tA5le/X/iN/DPiV/xSPIOnkndy6tpB3k74zj9s04z0hDDlPyrzC1IYKUxja3FBg6UFHDaXMJVSxmZZRVY2shFwgQ1iKBtGdJt/onZjcVupud/J2/v9MbbTR5Jq6Jzln89zZ9vkbcZP/KNuDshglbQPau3fMuQTxdTX1/f6Hb79Uqe6jqY3MISAEot9h8kaJ8NGhY49s0J2opKZ0DQ3u1xHpYoEbQdOoY0m7Ye1U1CUIcIWr0RQas3Imj1RgRty5Fe5mZPiX+3YR+DX7o29Q/z36ZX0cvgYFq+k+0mFwnW1qlPd0GbXlbBXlM+Gxrk6sz8OMblXCQ0O5o+WScIyjjKH9IO8LuUb/hl4tf8XcKmByJW/9u1NfzPa+v5x4Qv+beGi1q9kv4t3TOO0TfrJEMNMXyad5nPCuL5ojCVzUVZ7DMVEFlazGWLlTTrjQfy/T+Ii4QJ7RcRtK1Pms2/q3ZDsZuwfCchOU5ey7y3vP3P9O/k7cxCF5tMbk6a/Tt0f2gtImgFnZOUnssrvcZQZr9x232G/GJeensUtbUe6urqWbZ+Dx06hlBdU3tfgvbRVwcSGR0LwKETF+gRMg34bgft3R7nYYkSQVvTsBC4ObT1qG4SgjpE0OqNCFq9EUGrNyJoHwzZtmr2l7iZY3TRN8fJkxl33k/4VraDSfkOtppcxCo4tfUmugnaaLOZJYXJBGee5D+St/8owfr3CZv5VdLXPJ6ymz+kHSAo4yjvZ51gcPZZxudcJDw/jqWFKWw0ZrLXlE9EaTEXLBaSy64rfx5uIoJWb0TQti3SbG4izG7WF7uZlu/kwxwnnZohb3+bXkWXLAehuQ7CG+TtqWbIWxG0gs6ZNn8jHTqG8FingY14rttwAKbM3UDn98cTPCycS3FpfDBqDn2Gzmy2oE3JzKfnwDAWrd5Ft/6T6dZ/MvEp/guL3bri4E6P87BE+Q5agKzcosB/m8w2tuw+TtSFBIUVNT+qm4SgDhG0eiOCVm9E0OqNCNr7J8fm5nCpm/lGNwNynDxzh8nYX6c6eDPLyfg8J5tMbi5Z3ZjaQP03edgF7aHSQsLyYumafpi/ucP069Ope3k9/Qi9syIJzY5mXM5FZuTHsaQwmfVFGewx5XO0xEiM2UKStZy8h2jvqghavRFB235ILXNzzOxiXYO8HZDj5NVMB/9+D3n7X2kOujbI21mFLjabXJwy+y8mKYJWkEhaOsoF7ba9J3i++wh8vjpuVDj4w9uj6RU6nT/2HM3GHUdVl3fPqG4SgjpE0OqNCFq9EUGrNyJo706e3c1Rs4slRS4+ynHwQkbT/yD+VaqDLlkOxuQ5WV/s5rzFTXEbqP9uPEyCNqOsgq+KsxmZ83/ZO+/wqM47399Ncrfv3r1ld+9NTzbJJnZip20cx73GJS44NtUYTO9N9N57ByEQCFEFEkIUAQIhqhBFqGtUZqSRpncJw8ycIgOf+8eRHWyEhDDiSJz3+zyf5zHF6J2id8756Pf+fmf5XWkqf523/jYZ+y8Fm3i57CCTrZdIc9dSGwrrvm49EYLW2AhB+3BQEtA+o+Ia5e2HlgjPVYT54R36m3/GI2Vh3qiK0Lc6zGx7lM2uKFle7QeQej8mwYNBRKSto7ugfblLDKbKWgASd2fwfv8Z3Lx5k6oaF692Havv4u4iem8SAv0QgtbYCEFrbISgNTZC0P4FW1AbyrLCEaV/dZinKsJ8q4kb22+XhnmhIsyQ6gixzignfRKOdrD+1tKRBe05n48V9hK6VR7nx8U7+KsmqmO/X7SdDyqPscRWxCmvV/c1tzeEoDU2QtA+/NwqbyfVRuhhifBshXa6o6XK2z9WhunXKG8TXVGyfELePmyIiLR1dBe0j7/c9/NJbX1jFpOw6zAAN27c5PGX++q5tLuK3puEQD+EoDU2QtAaGyFojY1RBa09JJHlk1jriDK4Wjsu+u0mblS/VRrm6fIwA6rDrHJox0NtD8lNakcRtPZghHS3nek1ubxWfoj/U7D5Nhn7jfz1/Ko0hQGWM2xyVFDSjnq9tleEoDU2QtAaG8snKqevNLDOGWVibYTuVXcnbx8xhXmtMkz/6jBz7FG2uKKc8ElUPySfi0ZCRKSto7ugfblLDOUWG25vkMdf6kOtwwuA1e7h+T+P1Hl1LUfvTUKgH0LQGhshaI2NELTGxgiC1hmSOOOTiHNKDLdGeKkyzHebuPH8ZmmYJyu0fn3LHFGOeLUWB3qvv61or4K2MnCVbU4Lw6qyeaJ0L3+Tt+E2Ifs/CjbxYtkBJlkvkeauMXy7gntBCFpjIwStsWmuB21RQCLdEyXWGWVCTYRuVRGeuQt5+2iZ1ne9f3WYufYoW13aCZOH+XO0IyMi0tbRXdBuT83k8Zf78stX+jFh3gYArnwS5s2eE1kal6zz6lqO3puEQD+EoDU2QtAaGyFojc3DJmhdIYkcn8Qmp8Roa4TXKu98U/nb8jAfVUVYZI+S7oka7vhmexG0531+VtlK6V55nJ8U72yyXcF3C7fzfuVRFtuKOOX1tKthax0VIWiNjRC0xuZeh4QVfkHehulWFeHp8jDfvwt5+0ZlhAHVYebaomxzC3mrNyIibR3dBS1AVY2LglIL16/fAKDh0+vs3n/i81+35+i9SQj0QwhaYyMErbERgtbYdHRBe8kvkeiKMq4mzJvmyB2nWv+qXLuRnGeLkuaWMAfFe14PQWsPRjjsdjCj5jKvlx/iX+/QruCXJSn0N59mo72CYtGuoE0QgtbYCEFrbO5V0N4JV0iiwC9x0COx1hllfKO8faqiZXn788bK24HVYebZomx3RTkl5G2bIyLS1mkXgrYjR+9NQqAfQtAaGyFojY0QtMamIwnafL/EDleUSbUR3rWE+ckdZOzPy8J0toSZZYuyxy1RFtB/7e2RByFoKwNX2e60MNySze9L0/jbJtoV/HPBRl4wHWCC9SKprlpqRLuCB4IQtMZGCFpjc78FbXO4Qtrn9wGP1vd9XKO8/UNFmO+1IG9/0ShvB1VHmN8ob08LeXtfEBFp67RbQXvwWA5TFyXovYwWo/cmIdAPIWiNjRC0xkYIWmPTXgVtaUBil1tiWm2EP1u0qdJ3mjbdyRxmak2EJHeUIiFj75q2ELQXfH5W20x8WJnFfxYn3aFdwTbeqzjKwtpCTnpEuwK9EILW2AhBa2wepKBtjs/k7X6PxBpHlLE1Ebpa7k7ePlYW5g1zo7y1R9nhinLGJ1HTDp7fjoCISFun3QraHXsz6T92id7LaDF6bxIC/RCC1tgIQWtshKA1Nu1B0JYHZFI9ErPtUbpYtIqZpm7Gfmy6xtvmMBNrI2x3Rcnz6//8dWS+qqB1hKIc8TiYVZvHm+WH+bfCxNvbFeTF8XhJMn3Np4h3lLebdgVWt0xRpcKlIhmzzZj7nxC0xkYIWmPTXgRtc3wmb/d5JFY3ytsuFm2YZ1ODPr8sb980RxhcHWGBXWKnK8pZn0RtO3hc7QURkbZOuxW0HSV6bxIC/RCC1tgIQWtshKA1Ng9a0JqDMvs8EvNtUbpXRfhVedM3Vz80accax9ZE2OyKclHI2PtOawVtZeAqO11VjKw6xx9Me/m7/PjbhOw/FWzkedN+xlsvssdVgzV47YE/LpNV5kKRTOZZmdTDCpt3yayMV5i7XGH8TJVBMQ30HfFFBo5pYOp8laVxConJMgePK5wvkKmsfXj3RiFojY0QtMamIwja5nCFJPL8EmluiVWOKDE1ETo3ytvv3OHEzWc8XhbmT+YwQxrl7Q5XlGwDylsRkbaOELRfMXpvEgL9EILW2AhBa2yEoDU2bSloq4MShzxRFtuj9KqK8F93kLHfLw3zqjnMKGuEjU6Jcz5JHHt/ALQkaC/6A6y1m/jIfIKfFe/ia020K/hO0TY6VWSwoLaQLK8bZyjaZus122Qul8qcuqBw4JjCtj0ysZsVFqxSmDxXZdgE9Tbxej8YMLqBKfNUlq5TSNwtczBTISdfpqKmY++bQtAaGyFojU1HF7TN4QxJXA5I7G2Ut2OsET6whPl9+bUW5e0vy8O8ZQ4zxBphYWPlbbZPwhbU/3Hdb0RE2jq6C9qzF4t59+Mp/OaP/fn5C71vo71H701CoB9C0BobIWiNjRC0xuZ+CdqakESGR2KZI0qfaq2K5ZtN3Px8xxTmxcowQ60R1jm1YR+OdvA8GJFbBa0jFCXD42RObT5vlR/h35toV/D1vDgeK0mmj/kU6x1lFPnr7ss6alwyhRUyZ3MVDp9Q2L1fJX67wpJ1CtMXqYyeqtJ/1N3J1P6jGhg9VWXGIk2oxm/X/r3DJxSyLysUVSrUuG7f72pcMrnFMhmnFXamqazaqDBjUcvSd9CYBibNUVmyTqvUPZipcC5PoaJGxtXOb+iFoDU2QtAam4dZ0DaHMySRG5BIdUusbJS37zfK2283I26/WRrmV+Vh3m6Ut4vsUZLcUc51YHkrItLW0V3QvtR5DBu2H+RCfhn5JebbaO/Re5MQ6IcQtMZGCFpjIwStsbkXQWsLShz3apUpA6vDPFMR5ltN3NB8uzTMsxVhBlVHWOOIkuWVsHfQG5mHDXPwGrtc1Uxz5fKUKY2/b6pdQX48z5XtY6z1AskuK9WtbFfg8EuYqmXOF8ocOyuTekiTmKviFWYvVRk3U2XQmLuvZB0+QWXyXJWFqxViExW2p8ocyFQ4eUEhzyRjtreNFLW6ZXJLZDJOy+zcp7J6k8KMxSrDW5C3A8c0MHGOytJY7XEfOKZJ4jJr+5C3QtAaGyFojY1RBW1zOEMSuX6JVI/ECkeU0VZtSOkT5eG7krfvmLUfPi+2R9nl1k4DtedrHhGRto7ugvatjybpvYSvFL03CYF+CEFrbISgNTZC0BqblgStIyRxyicR64wyxBrhxTv0d/tmaZg/VITpWx1muT3KUY/x+rm1Z3J9QWLtJnqZT/DIHdoVfKtoK+9WZDCvtoDjzbQrcAW1dgO5JTInchT2H1PYliITm6CwYKXCpDmtazcweKzK+Flaj9hVG7U2AnuPKGRmK1wslCmrlnG20x7ENR6t7cKxMzJJ+1TWJCjMWqwyYmLzj3/AqAYmzlZYvFZhU5L2HJ7NVTA9QHkrBK2xEYLW2AhB2zocIYlLjfJ2uT3KKGuE98xhfncX8vbX5WHetYQZZo2wxB5lt1sipx3IWxGRto7ugnbKwk3kl1j0XsY9R++NT6AfQtAaGyFojY0QtMbmVkHrDElk+yQ2OCVGWiO8Uhnme3e46fhdeZjeVdrNxiFvFGs7eCyCz17HKMc8LubU5vN2eQb/r3BLk+0Kfl68m6G2s8Q5yijwh3CHJKqdMoXlMmcuKRw6oZC0X2XDNoUlsQrTFqqMmqLSb+RdthsY3UDMNJUZi1WWNbYbSD6ocuSkVklabFao9er/fLUVtV6JPJNWPbxrv8raBIVZS1RGTGpe3vYf3cCEWQqL1yhs2qmwL6NR3lbfX3krBK2xEYLW2AhBe/9whCQuNsrbZY6/yNv/ugt5+5syTd4Ot0ZY6niw8lZEpK2ju6CtqLLzxJuDea/vNPrFLKH/2C/S3qP35ibQDyFojY0QtMZGCFpj4gpJnPdL7P3kU2KsEd6ojPCDO9xE/Lo8TA9LhPn2KPs9EpageL+0JyzBq+xyWhlTlcMzpn38QxPtCv4hP54nC/YyMOcYqw6c4GjcUU7N282uVWZmL1EZO11lYCvaDYycpDJ1nsqiNQrrtijsSFNJP65w+qJCfpmMxSHeI81h80rklclkZms9cmMTtLYPIye3LG/Hz1JYuFph4w6FtAyF05cUSqtknIHWrUEIWmMjBK2xEYL2wWAPSVzwS+xxa/J2pDVCJ3OY37Ygb7/VKG87WcKMaJS3yW7tus1+n9YmItLW0V3QvvXRJHqPWsCy9cms3Zx2G+09em9gAv0QgtbYCEFrbISgNQa5AYmtrigTarQJxT8yXWvypuCxsjBdLRHm2KOkeiQqAuK90d4o8IdYZy/jY/NJfl60i69fjrtNyP77mbW8mryEKcsmkT7yY7ydX+TKB0/dxpY+SV8QgEPGqUycrTBvhcLqTQqJyTJpRxSyshUuFcuUW2UcrRSBgtZh80nkl8kcz1ZIPqASu1mTt6OmtCBvRzUwbqbWozd+u8LeDIUzlxRKLU2/ZkLQGhshaI2NELT685m8TXFLLG2Ut++ZNTHbVF//L8vb98xhRlojLHNESXFr/1Zr5K2ISFtHd0H7SpcYbt68qfcy7jl6b1IC/RCC1tgIQWtshKB9+CjwS+xwRZlco13s/7SsaRn7iClM91qJ6bURdrslTO14mIXR8FbZqT1fTPmB0+xJSmFS0kZe27+a/3tm9W0y9muX1/KLw3PpFz+KTdO7U9r31SZlbLDzCzh6dMLSty9lw8dROmU+JXsvk5OnUGKRsfn0f9yC5rH5JArKZbLOae0iYhMV5ixTGX038naGyoJVjfL2iEJ2rorbe1MId4MiBK2xEYK2fWMPadWyyY3ydoQ1QidLy/L226VadW4nc5hRjfJ2j1trwfBleSsi0tbRXdD2i1lCqP6q3su45+i9EQn0QwhaYyMErbERgrZjYwpK7HZLzLBFed8S5tGypi/af2K6xjvmMJNrIuxwRclvHLrU0pAwwX0iGMVj8+ItKcN9+hzWlHTM67ZRNncF5eNmUDlkONbePbB+9Cf2j/0zk1YO4oU9U/nHnFW3tys4v4rnUqcxftVgUsd3pvyjTlR+1JvigaPJHz2bvBmx5K9IonjrMcqPXKQ234LHGbxtTZ467fXX/bkR3BccfonCRnmbkq6ybos2eG3MtOblbb+RDcRMV5m/UmHDdoXUwwqnLmg9gtvrcDbBV0cIWmMjBG3HJscnscstscQeZZg1wjvmML8qv7O4/YzP5O0Ya0Rv9SRigOguaDfuPMTrPcazeN0utqQcZeuXaO/Re6MR6IcQtMZGCFpjIwRtx6EiIJPqkZhrj9KtKsJjd5Cx/2G6xhvmCBNqwiS6olxqRrIIQfvV8DiDeMss+C5cwJuRgX1bEtbla6maPpuq0aOp7d8L94dvU/fBs01WtZp7v0TitG4M3DCCXx6ay9dzY28Tsv96Zg0v7lvL6G0JJCbu4+Lu8xRnVWI2+XD6o/e+diFoDYPDL1FYIZOVo5CSrhC3VWH+SpVxMxqaHfrWb2QDY6dp8nb9VoXUQwonzysUVSo4hLzt0AhBa2yEoH14OeeTSHJHWWyPMtQa4e07yFsRkbaO7oL2z/2m02XQrDvS3qP3ZiLQDyFojY0QtMZGCNr2iSUos98jscAu0a0qwq/vUBnx/dIwf6wME1MTYZNTIruVx9SFoL0dj/cTvJVWfLmX8R/PxL93N674OGwL52GfOA7HkD54enUi1Pn5JqXrnXB1eY0DI/oxcfE0Xklayr+fXnt7u4K8dfykYBc9K06w1l7GJV+g7R6nELSG5rMetA6/RFGlJl5TD2kidv5KhZjpaovyNmaayrwVmvBNSVfIylEorJCFvO0ACEFrbISgNSbZPu3U1WpHVG/1JGKA6C5oO3r03jAE+iEErbERgtbYCEGrP9aQxCFvlKWOKB9XhXniDjL2u6VhXqrUJvqud0qc9Uk4v+LXNoyg9YfxWGz48grwnTxBYH8qgW0b8a1ciHvGBFyjBuDt+z7Bbi+1Srr6Or9Eddf3Keg+kDM9J5LZbxGHR24ifcpe9i7NYmHyGXqfPMnvcvfzj/kbbxOyf58fz1OmNEZVnWOnqxpz8NoDe06EoDU2dzMkzOmXKDYrnLygtT7YsP3u5G3fEQ2MmaYyd7nCui1ay4WscwqF5ULetheEoDU2QtAKRETaOu1C0FrtHlbE72H8nPWMnLaGZeuTqapx6b2su4rem4RAP4SgNTZC0BobIWgfLLUhiWNeiRWOKP2qw/yhIsw37zDo4fmKMEOqI6x1Rjnha9103rulQwvaQARvjRssMZ0AACAASURBVAtvUSn+s2fwpx8guDORwLplBBZOxTdhKL5B3Qh++MdWSdfgB89T06UTxd37cq7nOI70WkDagPWkjEoheVoWKUvzSd1cw8FD1ziRo5BbImO2yRT564l3lNPXfIrHS5L5Rl7cbUL23wsT+VP5EWbX5nHE48QRuvcWBV8VIWiNzd0I2uZwBCRKzDKnL2pDx+K3KyxYpTB2ukr/Uc3L29FTVOYs04acJR9UycpWKCgXg+oeJELQGhshaAUiIm0d3QXt8bN5PPp8b7oPmcOUhZuYsnATXQfP5rEX+3CpoELv5bUYvTcJgX4IQWtshKA1NkLQth32oESWT2KtI8qg6gjPVWji9csy9lulYZ6qCDOgOsxKR5RMr4Qt+GDW2B4FrcfmxVdSge9cDv4jhwjs3kogfiXBpdMJThtOYEQPgr3eoL7z03ctXes+eAZ7l7co6/4RFz4cReZHs0n9eC07+u9iy+gMNk+/xJblVezYGiT1kMKxszLnC2VM1U1X/LlCEic9HhbWFvJexVG+W7ityXYFPy1Ooqf5BGvsJi76265dwT09z0LQGpqvKmibwxGQKLU0ytuMv8jbcTNblrejpqjMXqoSu1kh+YDK8WyF/DIhb+83QtAaGyFoBSIibR3dBe3bvSdz9NSl234/PfM8XQbO1GFFsHZzGs+8O/zzXzvcfnqNXMDv3xzMe32nkV9i+fzP9N4kBPohBK2xEYLW2AhBe39whCTO+CTWObWJui9Wai0JmmpV8Pvya/SpDrPUEeWwN4pVx3U/KEHrcYbwllvwXryEPzMDf2oSgYS1BFfMIThrNHUxvQn1e4f6Lk0P02qK+vefwtXlDcq79eBSj+Gc6DmDfb1Wsr3PduIGHGbt6POsnlnB2lV+4rfJ7N6vcviEwtlcrU9mjevu3/c1oTCprlomWC/ygukA/1xwe7uCv8uP50lTGiMs2ex0VVEZuKr7+7LZ10QIWkPTloK2OZwBidIqmdOXFNKOKGzcobBwtcL4u5C3IyerzF6iEpugsHu/SuZZmbwyGZtX/+ezoyEErbERglYgItLW0V3Q/uaP/fn0+vXbfr/h0+v89rWBD3w9tQ4vb3w44QuC9qMR89mScpTr129w9mIJz703koZPtTXrvUkI9EMIWmMjBK2xEYK29bhCEjk+iY1OiVHWCH+sDPODO8jY35SF+agqwkK7xEGPRNUDqoy9W76KoPX4ruIxW/Hl5uHLOk4gLYVAYhyBVfMJzR1HaHw/6ge9R333F1rVYsDT+RUsXbuQ32Mwp3pOIb3XEpL6JLKh336WDjzLglElLJjhZuHKKLGJCtv3yBw4pvXJvFwqY7bLuL7i81wSqGejvYL+5tP8siSFb+Svv03I/mvBZt4oP8ys2jyOeBzYgxHdX89WvX5C0BoavQRtc7iCEqZqmTOXFPZlaPJ20RqFCbMU+o9uQd5OUpm1RGVNgsKu/SrHzspcLpWp9ej/uNojQtAaGyFoBSIibR3dBe0bH06guKz6tt8vKqvmte7jH/h6eo9awJETFz8XtKH6q/z2tYFfkMh/7jf98/YLem8SAv0QgtbYCEFrbISgbZlLfonNrihjayK8YY7wH6ZrTcrYX5aH6VYVYa4tyl63hDnY/p/X2wRtIIy32oG3oAjf6VP4D6YR2JFAcO1iggsmE5o0iLqhXajv+XKrpKv/gxep7vo+hd37c7bnBA73WsTuPpvY1C+V5QNOMXtQEZNHOpg0I8Kc5Qor4xUSd8vsPaKQma1woUjGZJVxtsGAIVdI4pTXw2JbEe9XHuV7Rdtvk7F/lbeO/yxO4sPKLFbbTFzw+XV/7b4qQtAam/YoaJvDFZQwWWXO5irsO6qwKUlh8RqFibMVBrRQeTtiosrMxZq8TdqncvSMJm9rPO1/j24rhKA1NkLQCkRE2jq6C9qdaVn8/s3BzF+9g5T0UyQfPMW8Vdv53RuDiN+R/kDXsi8jmwnzNlD/ybXPBW1+iYV3ek/5wt8bMzOW5IOnAHGBbmSEoDU2QtAaGyFov0ieX2K7K8rE2gjvmMP85A4y9tGyMJ0tYWbaoqS4JcoC+q/9jgQieGrceItN+M5m4z90gEDSFgLrlxNeOZPQ1CGERnSnvvdrrRum1fk5arq8S3H3PuR8OJajH81jT+84NvdNYVX/LOYOymfC0FqGjfyEMdNUZixWWRqn9aNMPqBy5KRC9mWFokrlgYqS2lCYNHcNk6yXeKnsIP+jYNNtQvZv8zbw+9I0hluy2e60tPt2BfeCELTGpqMJ2uZwBSXKqmWyLyscOKaQkKSwJLZR3rZQeTt8grY3rd6ksDNNJeO0TG6JjNX9cH8uCkFrbISgFYiItHV0F7QAR0/lMmDcUl7vMZ6XOo+hz+hFHDh27oGu4conYV7vMZ5Q/dUvCNqcy6W39cKdsnATW1OOAqA2XBcYlOs3bvLp9Ru6r0OgDzdu3KTh0xuoDfogqddRP70h0ImbN9FefwPika9z6JMG5nsUutZEeaQ80qSMfaQ8QpeaKPM8CulXGrAr7eM9q1y5gmKrRi66jHTmGNEDuwhvXcu1VbO5OmcUV2M+4kq/P3GlFcO06j94GkeXNynr9hEXPhzJ8Z6zSOu9mq19kojtn8GCQZeYMsTC8GGhxp6QDcxc2MDyuAYSdn5K2uHrnMy+TkHJDartNwjV30Bp0Pd5cssRUuqsjLKf43flqfz3JtoV/FtRIu9ajrDYU8i5q16iDZ/q/vo+CADd1yDQh4ZPtf1f73W0NUrDDXzBG5SU3+BE9nV2pX3K6g0NTJ3fwKCYFuTtxAZmL21g/RZtb8u+dB2z9Qb1V+/P2iTlum7XXg2f3uDGjZu6ff22Q//r6o7Ap9dvcP3GTd3XIdAPEZG2ju6Cdsfe40iyqvcymLxgI3vSTwN8QdAWlFp4q9fkL/zd0TPWfv53A58oAoMiq9e5Fm3QfR0CfVA/vcEnEZXAJ7JuBD9RBDpx/cZN6sOq7utoa6rqVfb5ZOY6JLpVRXisrOmesT8xhXnXEmGyLUqSV6a47sGuM+SvJ2SxEsrLo+7Ecer27aYucR11q+ZSP2cs9eM+pn7Au1zp9lzr+rp2fZ3K7j243GMoJz6azv7eK9jRZxtx/dNZPPA8UwdXMGqon37DFfqOaGDI2AYmzlZZsFJlbYLKtj0KB46pnDrfQIFJxWJX8dXr/7o2RU7QxwpHCV3Nmfyg+M7tCnpasljrNHE5GNR9zXoQuqpw8ya6r0OgD/Vhles3buq+Dj0JXFGodqhcKlQ5nKWyNUVheZzC5LkNDBrTvLwdNl5l5iKVNRtVkvYqZJ5RKTCp2D13/3kauKLodt31SURF/fSGrtd+bYP+19UdgWvRBmT1uu7rEOiHiEhbR3dB+4e3h1Lr8Oq9DJ58awjPvDucZ94dztPvDOPR53vzzLvDsTm9/PrV/l+QyK91H0dBqQUQR9yMjGhxYGxEiwNj8zC2ODAHZdLcEvNsUbpXRfhVedMy9oemMK9XRoipiZDginKhDfqbukMSHt81POYafJfz8Z3IIrAvhcC2eAJrFhCcN57QhH7UDXqf+u4vtq6va5dXqPmwM0UfDeRMz0kc6rWEpD6bie+3j2UDzjBzcCljh7roP0L+XCoMGNVAzHSVWYtVlscpJKVeJ+WgSsYphZw8hRJzx5qIXhsKs89dyxRrLi+XHeRfmmhX8Dd5G3iidC9Dq86y7SFtV3BP70vR4sDQPEwtDtqKylqZnHyZg8cVEpNllsYpTJ6rtlh5O2S8yrQFKis3qGzbI3P4hMLFQhmLo/181ooWB8ZGtDgQiIi0dXQXtGlHztJ/7BLSM89TaKqitLLmC+iRWytoAfqMXkTc1gNcv36D9OPneaVLDNeva0fc9N4kBPohBK2xEYLW2HR0QVsdlEj3RFlkj9KrKsJv7yBjv18a5lVzmFHWCPFOiWyfNhzqnr92IIy32om3sAT/mTP40/cR2LGZwLqlBBdOJjR5MHXDulD/0aut6+va9QWcPd+jvHc/Ln48noxeC0n+eAMJfVNZMeAkcwYXMm6onYHDI18QAv1GNjBiksrU+SqL1yjEbVHYuU/l4HGFM5cUCsplqpy3v863DQlr55j8V9jsqGSQ5Qy/Kd3TZLuC/1OwmdfKDzG9Jpd0tx17MKL7utsjQtAaGyFovxpmm0xOgUx6lsKWFJnlcQpT5qkMbknejtPk7Yr1KltTNHl7oVDGbH+wn8NC0BobIWgFIiJtHd0F7SPP9WoWPfJlQevyBvloxHyeeHMw7/efgamy9vM/03uTEOiHELTGRghaY9ORBG1NSOKIV2KZI0qf6jBPVoT5ZhMy9jumMC9WhhlqjRDrjHLKJ+G4m68RjOKxefGWlOHLPof/cDqBXVsJrF9BcPE0QtOGERrZnfrer7dKutZ3fhZPz7ex9ulFYf/RnOk/m/19Y0nsu5s1/TOZPyiXSUOsDB1ef8dqrImzFeavVFiToMmAtAyFrHMKucUyFTUyznscUtbeBe1Zr4+ltmK6VGTyw6IdTbYr+HHxDrpVHmeFvYRzPp/ua+4oCEFrbISgbTvMNpnzhTKHTihsSZZZvl774dmQsWqz8nbwWJWp81SWr1fZkiyTfkLhfKGM2Xb/P6OFoDU2QtAKRETaOroL2nBEQlEb7kh7j96bhEA/hKA1NkLQGpv2KmhtQYnjXolVjigDq8M8XR7mW03I2G+Xhnm2Isyg6girHVGOe7X/99Z/y+MM4i2z4LtwAf+xDAJ7dhLYtIbgslkEZ46ibkwv6vq9zZUuz969eO38NP6eb2Dv/yHlg0dwaegMMoeuJnnwdmL7H2HhwItMGWJhxNAA/UY0fVM+YHRju4ElWjXVpp0KKekKGadlzhfIlFpkbL62fZ7bk6C1BSPsd9uYYs3l1bJ0/ldBwm1C9q/z1vO70lSGVJ1li9NMeeAT3dfdURGC1tgIQasPZrvMhSKtcnZbisyK9VpF7ZBxLcjbmAamzFNZtk5rt5CepXC+QKay9t4+v4WgNTZC0ApERNo6ugjalz4YTSQqA/Bq17F6LOG+Re9NQqAfQtAaGyFojU17ELSOkMRJn0SsM8qQ6ggvVGji9csy9pulYf5QEaZvdZjltdc4VuHEfjkf//FM/Ht3E0hcR2DVPEJzxhIa14f6gZ2o7/p8q6pdQx/+EXf/bliHDaV41FTOjV7OodFb2DoinWWDzzFtcDmjh/k+H6bVFP1GNjBysnbTvSRWYf1WhaT9KuknFE5fUigsl6luot2AHugpaMsCn5DoMDPEcob/Kknlr/Nub1fwvwsS+GN5OlNrLnPAY8Mm2hXcN4SgNTZC0LY/LA6Zi4UyR04qbNsjs3KDyrSFKkPGNy9vB8U0MHmuytJ1Cpt3y6QfV8jJl6molXEFm/5aQtAaGyFoBSIibR1dBO2znUYwfs564nek8/hLfYjfkX5H2nv03iQE+iEErbERgtbYPGhB6wxp/V83OCVGWCO8XBnme03I2P9XGuaJfB8fnzGxbP9Rjm6IxTllOHWD36e+x0utkq513V/C3/99HCMGYB47gYIJCzk1cRNpE/ayMeYk84cXEzPURf/hcrM3wX1HNDBsgsrEuSoLViqsTVDYmiKz76hCVo5CbolWzXSv7Qb04EEK2myfl+X2ErpVZvKj4tvbFfy3vHX8R9EOulZkstxeQrbPq/vz8zAjBK2xEYK2Y1HlkLlUpMnb7akyq+IVpi9UGTaheXk7cEwDk+aoLFmnsHmXzMFMhXN5CtUOFVkVgtaoCEErEBFp6+giaC/klzF44nI+HDaXR5/vTY+hc+9Ie4/em4RAP4SgNTZC0BqbthS0rpDEeW+UzVUBYopdvFHg5QfFnzQpY39zzspHyUdYsmIVRyYMw/lh88O16rs+T6h/J7yj+mCbOI7yafO5NCOOzJnJJE/PInZSATPG2Bj0pWFad6xAGtPAuBkqs5dqk7cTkhRSDykcO6MNgjFVyzj8+r9e95u2ErT2YISDbhvTai7zWvkh/vcd2hX8tiSVIZYzJDrMlIl2BQ8UIWiNjRC0Dw/VTpncYpmM0wo70lRWbVSYvuju5O3EOdpJj827ZA4cU8i+rFBmvXPlreDhQAhagYhIW0f3HrQfDpun9xK+UvTeJAT6IQStsRGC1tjcq6D12Lz4SirwncvBf+QQgd1bKdyWwI4dSUxKPczbx/L4UZ6/SRn7eE4tPfZksmDNWtInjaT2o8ahW12eoa7vW4RG9cQzeRQ1s2ZROn8NFxcmcXRhBjvmX2TlrComTQrRf1TL0rXviAb6j2pg9BSV6Qu1CqIN2xV27Vc5fELhbK5CYYWM1dU+2g3owf0StOWBT9jqtDC06ixPlO7lb/I23CZk/2fBJl4tS2eKNZf9bhu1obDuj9/ICEFrbISgNQZWt0xuiUzGaZmd+1RWb1KYsVhl+MTm5e2AUQ1MnK2weK3CpiSF/ce0z0yTkLcPBULQCkRE2jq6C9qOHr03Cb3ZkaaStE9l136V5AMqyQdV9hxS2HtEYW+Gwr4M7eLkYKZCepbCoRMKR04qZJxSOHpGJvOszPFsbar2iRyFUxcUzlzSyL6sHSc6XyBzoVDrL5VbrF0w5ZlkCsplCstliioVis0KpRatWqusWpvOXVkrY7bLVDm1voU1Lpkaj4zNe38euxC0xkYIWmNzq6D1OEN4yy14L17Cn5mBPzWJQMJagivmEJw1mrqY3tT1f4f6rs9S0fdd9kwbx4y4jfx5/2l+mutuUsY+esFJ54NnmLltF6lx6yhdspCqJSsoWbmVc6sOcXj1ObYuq2DJwgDjZygMHHN34vWzdgOT5mjtBmITFLbvkdl/TNuDc0vaZvL1w8a9Ctocn4+VtlK6Vx7nx8U7+Ksm2hX8sGgHXSoyWWor5ozXp/tjFXwRIWiNjRC0xiZ0VeGT8I3P5W3SrfK2hcrbviMaGD9LYeFqhYQkhbQMrb+6qVp85nYUhKAViIi0ddqtoF2dsJc/dhun9zJajN6bhJ5UOaW7FgLtnX4jG+g/WpsOPiimgcFjteECwyZoF1wjJqmMnKwyeqpKzHSNCbM1Js5WmDRHZfJclanztQE30xepzFysTRmfvVRlznKFeSsUFqxUWLBKYdEa7afrS9YpLFunsHy9djx4ZbzC6k1aj8bYzQrrtmiDcjZsV4jfrrBxh3ZRl7hbJjFZZmuKzLY9cocV5Q6/hNMvdciqAiFoH248vqt4zFZ8uXn4so4TSEshkBhHYNV8QnPHcXXSAOoHvUd99xfu2E7A2vsN9k0Zw5y1cXRJy+LRi44mZexPCkK8cc7G4GNVzEqtZkWCh4Urokya0/JRyy8PPBk/U2XOMm0v2bxLJvWwQuZZ7XvXZH042w3owd0IWnswwiG3nRmN7Qr+tWDzbTL2v+ev5zelexhkOUOCoxKT/4ruj03QPELQGhshaI1NS0PCaj0Sl0tljp2VSdqvsiZBYdYSlZGTmv8s7z/qL/J2446/yNvSqo7Vn/1hRwhagYhIW0d3QXs1HG3y97MvlYghYe0cm1di2x6ZLcmaLNy8SyYhSbuwiN+uScW4rZpkjN2ssCZBk48r4xVWblBZvl5laZwmKRev1aTlglUK81dqMnPOcoXZSzXJOWOxJj2nLdAk6OS52sCZibMVxs9SGDezUZxO0yTqyMmaVB0+QRMcQ8arDB6rMihGk7B6C2FBywwcowmnIWNVhjbK8hETtdd11BSVMdO013zsdJVxM1UmzFKYOEerDJwyT3uvTFuoMqNRls9eoomrucu199iCldqF8OI1CktiFZY2yvIV61VWxSus2qi9Z9cmKMQmKsQ1yvL4Rlm+Y8+nbE3WZPmWFE2Wb0+V2dkoy3c3yvKUdJXURlmedkST5QeOKaQf12T54c9k+Wmtb2fmWZmsRll+8rzC6YuaKD+bq8nynDyFnEZZfqlIk+WXS2XyyjRZXtQoy0vMMqVVjbLcqslys+12WV7rkbD59N9PHgiBMN5qB96CInynT+E/mEZgRwLBtYsJLphMaNIg6oZ2ob7ny60aplXf/UVqRvbi4KqlzN9zkO6ninn8Dm0KvlsU5lenIzyXEuX1VQpdp97d98PoqdoeuGSd9v7bfUu7gaJKhRoDtxvQg6YEbWXgKtudFoZVZfNE6V7+tol2Bf9SsImXyw4y2XqJfe5a0a6gAyIErbERgtbYtCRom8PmlcgzafJ2936VtY3ydkQL8rbvCK3X+4JV2j3W3iPatWGJRXzuP2iEoBWIiLR1dBe0j7/clxFTV3P8bB4NDZ/qvZxWJ8vrxhy8pvtmIbg/2HzaT7+tbk1gVTk1oWW2yVTUaqLLVK2JL5vzBuaaBorKNTGWV6aJstxiTZxdKNSG5OTkaWLtbK4m2k5f1MRb1jmFrGytuu3YGW1IwZGTmrBLz9IE3oFjmtBLO6JdkKUeUkhJ18Tf7v2aCNyZprI9VROEW1JkEndrsnzTzr/IxPVbNcEYm6gJxzUJmoBcFa8JyWXrNEG5JFYTlgtXawJz/kqFucsV5izTBOfMxZrwnLZQE6BT5mlCdOIcTZCOn6kJ05jpmkAdNaVRlk/UBOvQ8SpDxqoMjmlo1ZFsgX7cVVV5oywfN1Nl/CyFibMVJs69vap8RhNV5fObqCpfGnd7VfmaW6rK426pKt+0XWLnZi9715dxZHU2JxYf4PycLeRPXYFp3HSqhw3F0a8HgR6vtUq61nV9Dt/H7+Ia9jG28WOpnjWXyqXrMK3fTfGO45w4WU7MWS+vn7/Kz/JvF7H/rzTMtwrDPHI8ypO7ory2RqHzzNtvwoZP0J6nBau078/tqTIHMrV94nKptv/ovS8KbufmTTjn837eruA/i5Nuk7H/LW8d/1G0g/crj7LEVsQpr0f3dQu+OkLQGhshaI3NVxG0zWHzaZW3mdnaD2BjE7QilZGTW5a3MdO1lkUbtmv3Cacvaifa9H6uHkaEoBWIiLR1dBe0ecVm5q/ewYvvj+bJPw1h5tJE8kvM3Lx5U++l3VX+Lj/+8yEevyndQ6eKDMZU5bDaZiLdbackUK/7RiJoG0QP2rbD7pOo9UrUeLRBRFUOGYtDE+WVtTLlVu24tqlapsQiU2zWhhYVlMvkfybKS2QuFctcKJI5XyiTk6/J8rO52rGx0xcVTl5QyMrRZHlmtsKxs1pPsc9F+QmFg8cVDmQq7DuqHTnbe0Qh9bDC4ePX2Xu4QRPl+1V27tNE+bYUrap882ei/Naq8m2aXIxN1Hp/3lpVvmKDyvI4TU4ujdVk5cLVd6gqX9xYVd4oyqfOa6KqfIbK2GmNVeWNonzkrVXl4xqrytuBKO8V00DP8So9JjXQbUoDXaer9JxRz4BZNobPLmX8rPNMmnOCGfMOMGd+MvMXbWXx4niWLl3D8uUrWLRqDXPWxjF1fQITNm5j9OYkhm5LZUDSfnrtPkL31Eze33eKt9PP8WpGHs9mlvG7k9X86oydR3K8/PhiiB9cruc7BVebFK13y09PRPj9riivxsp0n6fJ6rnLtR+GJCbL7D2ivc8uFmotQPT+PhO0jsNuBzNqLvNG+WH+tej2dgX/LW8dvy7dw4DGdgXi8//hRAhaYyMErbFpK0HbHDafVnl7PFsh+aBK7GatcGLUlJbl7dhpKvNXatefKenatW9RpZC394oQtAIRkbaO7oL2s9y8eZOScitL45J5pUsML3eJYdWmVJyegN5LazaPFO9qcuryrfxDfjyPlyTzVvkRhlVls8xWQpq7lgJ/SPdNRnDvCEFrbDpiD9rqoERFQKYkIJHnlzjvlzjjk8jyShzxShz0SKR6JHa6omxxRdnklFhti7KsNsqCaomZ1VGmVEUZa44ywhxhcEWEvuURPiqP0K0swp/LIrxlivBaaYRXTBGeLQ3zZGmY/yqN8HhJmEeLr/GfxVf5YfEnX0mEPii+WxTmhwVhfpQX5ie5YR65FOHn5yM8fi7Mb89GefV4lAFHJJYe1arfz+VpNz6192kQoUA/KgNX2emqZrglmydNaU1+tv9TfjwvlR1kYs0l9rprdF+z4MEgBK2xEYLW2OghaJvD7pMoKJc5kaOQfEAlNlH7Yf7ou5C3MY3yNm6rdjrv1AWt2EHvx9SeEYJWICLS1mk3gvazlFbWsHxDCr97YxBPvzOMX7/an/Fz1vPJtYjeS2syn32zFvrrSHPXstxewnBLNm+XZ/BYSTL/VLCxWXn79/nx/Kx4F6+VH2Kw5QyLbUWkuGrI9QVxtYNNSHBnhKA1Ns0J2tqQhDkoYwpKFAYkcv0S53wSJ30Sx7wShzxR0twSyW6JHa4oCa4o650Sax1RljmiLLRLzLFHmVoTYUJNhDHWCMOsEQZWh/m4KsyHlghdLGHeM4d50xzhVXOYFyvCPFUR5nflYX5VHubRsjA/MV3jB6VhvtUOZOed+E7RFX6QH+SnuW5+cd7Ob7KrePJUOc+eMPHSyRJeP1nCO6dKef+0iW7nKul1oYq+l2sZXORmZFmQMdXXmFgbYXpthLm2KIvtUZbbo6x1Rol3SiS6ouxwRUlxS+zzSBzyRjnulTjtk8jxSeQGJIoCEmUBiaqghO0uB9Z9ev0m/iviRuZh4YLfzxq7iZ7mE/y0OImvNfF5/b2i7bxfeZTFtiJKpTrd1yzQByFojY0QtMamvQna5nD4JYrKZbJytOrZuC3aaayYaSr9Rt5Z3PYbqcnbeSs+k7faabPCCjFoVAhagYhIW6ddCFqH20/slv283mM8j7/cl1HT13Aqp5Dr129Qd+UawyavZNCE5Xovs8nczTdyaeAK6W47a+wmYqwXeK/iKL8u3cP/KkhoVt7+dd56flS8g5fLDtLPfJp5tQXsdFVz3ufHHozovkEZHSFo9cce0qpCywMyxQGJy4G/VIUe90oc9kbZ75HY4/5LVehGp0SsM8oKR5Ql9ijzbFFm2KJMqo0QUxNhpDXC4OoIPb7UHwAAIABJREFUfavDfFQVoVtVhD9bwrxtDvN6ZYQXK8M8UxHmaXOU35SH+UVZmJ+WXeOHpjDfMekvPO/EN0vDfL80zI9N13jEFOaX5WH+qzzMHyrCvFAR5pXKMG+YI3SyhOlsvsaHZXV8XOxlYF4tw89XEHOygElHspmedpT5Saks3ZTI6lWr2LBwHgnzZrN99lRSpk9g35QxHJ4wnMyxgzg9qh85I3qRN6QbxQM+oGxQZ6pH96Z26nDcCyYRWDWfQGIcgbQUfFnH8eXm4TFb8fg+0f291RJC0HZcHKEoRzxOZtfm8afyI/x7YeJtn7/fyF/PL0tS6G8+zUZ7xW3tCpoaEiYwBkLQGhshaI1NRxK0zeHwSxRVKpzIUdhzSJtVMW+FQsz05uVt3xHa0NK5y7WZAMkHVbLOKRSWy9gNMHBWCFqBiEhbR3dB223wbB55rhedB8wkaV9Wk5WyVz4J8/hLfXRYXcv5qt/k5uA1jnqcrHeUMbHmEl0qMnmidC//1sQN4xduHvPi+F7Rdp437ae3+SSzavPY6rRw2uvFJuTtA8FogtYa0qpCSwMS+X6Ji36JbJ/ECZ/EUY9EuidKqltil1tiuyvKJpdEnFNitSPKUkeU+fYos+1RptREGF8TZpQ1whBrhAGNVaHdqyJ8YAnzrkUTha9Uhnm+QhOIvy3XhOIjpjA/Ml3je43CUW/peceqUFOY/zBd42emMI+VhflNWZgnK8I8WxHmpcowb1RGeMcc5s+WMN2qIvSqitCvOsyQak0Qj62JMLkmwkxblPk2TSSvdESJdWptB7a6oux0RUn1SBzwaO0JsryamD7v19oXlAS0dgbVQU1ku4NRPDYv3pIyfNnn8B9OJ7BrK4H1KwgunkZo2jBCI7tT3/v1Vg3TutLlWer6vU3dmF4EZ44iuGwWgU1rCOzZif9YBr4LF/CWWfA4g7q/h+8nQtB2HMzBa+x0VTOq6hxPmdL4+8be8bfyzwUbecF0gAnWi+x111ATCjf7bwpBa1yEoDU2QtAam4dF0DaHs1HenrygzVzYsE2bhTC2hcrbviMaGD1FZc4yrdVC8kGVrGyFgnIZ20Mib4WgFYiItHV0F7TL1idTbXM3+3du3LjJ2YslD2hFrUtbbgDW4DVOeN0kOCqZWnOZHpVZPGVK49tFW5s8fvkZX8tbx7eKtvKUKY0elVlMrbnMJkcFWV431uA13Te2h4W2ErS2oIQlKFMW1I5e5wa0o9infBKZXu2I9j6PREpjVehml3aUe61TO9q9yB5lrj3KtNoIE2u14/HDrREGVUfoUx2mZ1WErpYIncxh/mQO88fKMC9Whnm6PMwTtxyP/88y7Xj8t9uB8LwT3y4N84NS7Sj/o2Xa2p8o1x7LixXaY/uTOUwnc5iulggfWrTnYFC19pyMsWotBKbVRpjb+Nwtt0dZ64iywSmxuVGEprgl0tzac5/p1V6LssinFNUpFAYkyhpfs7s9Hn8/8TiDeMss+C5cwH8sg8CenQQ2rSG4bBbBmaOoG9OLun5vc6XLs3cvXTs/Tf3HbxAa2YPQ9OEEl04nEL+SwO6t+I8cwncuB19JBR6bF3cwqvv3oh4IQdt+ueQLsNZeRi/zCX5WvKvJz8vvFm7jzxVHWVRbyEmPp9UthYSgNS5C0BobIWiNjREEbXM4/RIlZplTF7ShufHbFRasVBg7XaX/qObl7cjJKrOXakPOdu9XOZ6tkF/WseStELQCEZG2ju6CNuts/h05euqS3strMXptDrZghDNeH1udFmbV5tHbfJLnTfv5ftF2vpEX12z17b8VJvJE6V66VGQywXqROEcZGR4nZoPJW0dIqwq9dWjSBb/E2VuGJh1oHJqU5I6ytXFoUqwzyipHlFi/yhKXxExblMk1WtXjKGuEIdVaNWSvxuPx71vCvGPWqiZfqtSqKJ+s0KoqHysL87PGasvvtgPh2RzfK9WqVx8xhXm8TKtq/UOFVuX6SqV2/P9dS5gPLFo17MdVYfpXhxli1Z6X8TVhptREmGXTqmmXOqKsdkSJc0psckpsc0fZ5ZZIdWvVuBkeiSyfVqV70a9V7ZYEJCqDMtZ28P5pyyFhHu8neCut+HIv4z+eiX/vbgKJ6wismkdozlhC4/pQP7AT9V2fb1W1a32vP1I3vCuhKUMILppKYN0ygjsT8acfwH/2DN6iUrw1LtwBUYXfEkLQtg8coShHPU7m1ObzVvkR/m/hliZPnDxekkw/82niHeUUf6ldwb0gBK1xEYLW2AhBa2yMLmibwxGQKLHInL54i7xdpTBuxl3K2yUqsQmavM08K5NXJre7oatC0ApERNo6ugvaJ98a8kX+NIRHnuvFr17px5s9J+q9vBaj9ybRFI5QlPM+Pztd1cyvLaC/+TSvlB3kx8U7+Ou89c3K2/9VkMCvS/fQqSKDMVU5rLGbSHfbKQ1c+Uprqgn9ZWhSgV/iUuPx+FuHJu11S+z+0tCkNU0OTQoz2hph6C1Dk3pYInS2hOlk+cvQpBcaj8f/1y1VoT82XeP77fx4/LdLw/zQpPU1/cUtx+OfqdAqXV+vjPD2LcfjP6rS+qUObjweH1MTYVJthBk2rb/qErvWbzXWqfVf3dJYFbrHLbHfo/VpPd54PD7Hp/VxLQ5ofV2rgxJ2HapCOwKtFrT+MB6LDV9eAb6TJwjsTyWwbSPBNQsJzp9AaMIA6ga/T32Pl1onXXu8RN3g9wlNGEBw/gSCaxYS2LaRwP5UfCdP4MsrwGOx4fY3f2Rb0DqEoNUHS/Aqu5xWRlfl8LQpjX9ool3BPxVs5HnTfsZbL7LHVdMmJ0eEoDUuQtAaGyFojY0QtPeGMyBRWiVz5pJCWqO8XbhaYfzMu5C3k1RmLVFZk6CQtF/l2FmZy6UytZ4H/ziEoBWIiLR1dBe0TSUSlVkRv4fUQ2f0XkqL0XuTaC2ukESuL8geVw1LbEUMsZzh9fJD/Kx4V5N9+b580/uLkt28VX6E4ZZsFtjL+ENFPc9UXL3j8Xi9ZWdL3PXQJIsmgT+uCjOgOsxQa4SJTokp9ijTayPMtkdZYJdY5oiy5rOqUJfWi3W3W2KvW5PQRz1az9Zsnyap8/0SpQFNXte0g/eH4O5RGm4QuiLhrXHhLSrFf/YM/vQDBHcmapWpi6YSmjKEuuFdqe/1x9ZJ167PUz+wE6FxfQjNGUtg1TwCievw792N/3gmvtzLeCuteLztf5jWw4oQtA+Gy74gsXYTvc0nebR4F19v4oTId4q20akigwW1hWR53a1uV3AvCEFrXISgNTZC0BobIWjvP86AhKm6Ud5mKGzcobBojcL4WQr9Rzcvb0dMVJm5uFHe7lM5ekaTtzWetrk+E4JWICLS1mmXgvazvNd3mt5LaDF6bxL3myJ/HfvctaywlzDCks3b5Rk8VpLMPxdsvO2m+K/yNt61CP1u4/H4nzUej/+sKvS5ijAvN1aFvmMO835jVWjvqoh2PL5aOx4/ribM5M+Ox9u04/GrHFHW3TI0KcmtDU066JG04/FerV3BhVuOx1cE7t/xeKMNCTMSHpsXX0kFvnM5+I8cIrB7K4H4lQSXTic0fTihkT240udNrnR+uhXDtJ6hru9b1I3uSXDGSILLZ+LftJpAyg78Rw/jO38Br8mMxx7Q/fELWkYI2vuPMxQl0+tibk0+75Rn8M3CrU22K3isJJk+5lNscJRT5K/TZa1C0BoXIWiNjRC0xkYI2geLK6jJ27O5CvuOKmzaqbB4jcLE2QoDWqi8HT5BZcZildWbFHamqWSclsktkalx3fu1mxC0AhGRtk67FbSRqMyznUbovYwWo/cm8SAx+a9wyG1nrd1EjPUCf644yi9MWfyfov18o2AX38jfydfzt/O1/C18LT+Bv8rXpO5f563nR8U7eLnsIP3Mp5lXW8BOVxU5Ph/2YMftdSkEbcfC4wzhLbfgvXgJf2YG/tQkAglrCa6YQ3DWaOpielPX/x3qu7ZimNYHT1Hf+3VCI7sTmjaM4OJpBNavILBrK/7D6fiyz+EtKTP0MK2HFSFovzrVwWvsdlqJsV7g2bJ9/GNT7Qry43mubB/jrBdIcdVQ3U56pQtBa1yEoDU2QtAaGyFo2w+uoERZtUz2ZYX9xxQSkhQWr22Uty1U3g6boDJ9kcrKeIUdaSoZpxRyi2Wqnc1f1wlBKxARaevoLmjHz1l/GyOnreGlD0YzbPJKvZfXYvTeJNoLluBVjnqcrHeUMcl6ia4VmTxRupd/L0zkr5ppm/CNvDi+V7Sd50376W0+ycyay2xxmjnt9WJr5/JWCFr98fiu4jFb8eXm4cs6TiAthUBiHIFV8wnNHUdofD/qB71HffcXWidde75M3dAuhCYNIrhgMsG1iwnsSMB/MA3f6VN4C4pQ/D5CV4R0NSpC0LaeAn+IOEcZfcyn+EXJ7ibbFXyraCudKjKYX1vAca8bZ6h9fo8JQWtchKA1NkLQGhshaDsGrqBEmVWTtwcyFTbvklkaqzBxrsrAMc3L26HjVaYvVFkVr7B9j8yRkwqXimSqnLIQtAK91ZOIAaK7oJ25NPE25q/eQdK+LKKSovfyWozem0RHwBq8xgmvmwRHJdNqLvNhZRZPm9L4dtFWvtaMvP1a4836U6Y0ulceZ4o1l02OCrK87jYZ+tJahKBtIwJhvNUOvAVF+E6fwn8wjcCOBIJrFxNcMJnQpEHUDe1Cfc+XWyddu79I3aD3CU3oR3DeeAJrFhDYFk9gXwq+E1n4LufjMdfg8V29q3W2ekiY4KFCCNrmcYaiHPe6mV9bQKeKDL5ddHu7gq/nxfGLkt30MZ8izlFGgT+k+7rvFiFojYsQtMZGCFpjIwRtx8cVlKiokTmXp3AwUyFxt8ySdQqT5qgMalHeNjBzUQMrNqhs2yNz+ITChSIZi0NcDxoFEZG2ju6CtqNH702io2MPRjjr9bHNaWF2bR4fm0/yvGk/PyjawTfy1zc7tOzfChP5XWkqnSuPMcF6kThHGRkeJ5WBuxNsXxUhaFtBIIKnxo232ITvbDb+QwcIJG0hsH45wcVTCU0dQmhEd+p7v9Y66drtOeoGvEto7MeEZscQWDGHQEIs/tRd+DOP4b2Ui7eiCo/7/osfIWiNjRC0X8QavEaKq4Zx1gs8b9rPPzXRruAf8+N5tmwfMdYL7HZa2027gntBCFrjIgStsRGC1tgIQfvwU1Erk5Mvk35cYfNumaVxCpPnqgyKaV7eDhmrMm2Byor1KltTGuVtoYzZLq4VHyZERNo6ugvaGzdufv7f3kAdsVv2s3jdLkrKrTqu6u6j9ybxMOMIRbng85PkrGZ+bQH9zad5tSydnxTv5G/yNjQrb/9nwSZ+VZpCp4oMxlTlsMZu4qDbRkmg/r6tTwhaCY/dj7e0Al/OefwZhwgkb28cpjWD0PQR1I3qSX1rh2l1fpr6Pm9SN6onoekjCC6dQSB+JYHk7fgzDuHLOY+3tAKP3a/rYxeC1tgYXdAW+evY4Cinr/kUj5Uk840m2hV8s3Ar75RnMLcmn0yvq922K7gXhKA1LkLQGhshaI2NELTGxuFpoKTiOulZCltSZJatU5gyT2VwC/J28FiVqfNUlscpbEmWST+hkFMgY7YZ9zqyoyIi0tbRTdBW29y89dEkfv5Cb4ZPXYUvUM+znUbw7sdTeKf3FB57sQ9nLhTptby7jt6bhFFxhSQu+4LscdWwxFbEkKqzvFF+mEeKd/EPTVRufXnozC9KdvNW+RGGW7JZZishzV3T6uO1Rhe03tz8Vg7Teo3QiO6Epg4huHgqgfXLCSRtwX/oAL6z2XiLTXhq3LgD7bv38GcIQWtsjCRoXSGJE143C2sL6VSRwXeKtjXZruDR4l30Np9knb2My76g7utuS4SgNS5C0BobIWiNjRC0xqa5HrRmm8z5Qk2+bkmWWb5ek7KDx6rNy9uYBqbMU1m2TiExWSY9S+F8gUxlrTGuMTsaIiJtHd0E7cDxy+g9agFZZ/MZOW0NnQfMZPG6XZ//+cqNqXQfMkev5d119N4kBE1T5K9jn7uWlbZSRlad453yDB4vSeafCzY2K2//Lj+enxYn8Vr5IQZZzrCotpDk/9/enUdXXR94Hz+d1mlnpj3TPjOdmc45j88z05n6DK3Ftm5olSqgyCauFIoE2SIQdlkEFZRFEFRQ1rBDAIEQNtnFyKYJZL3ZE7IvNxuQkD25yef5A7klIbmEG25+l3zfr3M+5zS5cLk3P/IzeTf8bk6qQvMLb/rpL9MDbV5Smi4P7q5LY15V8QxfFS2YoaIVH6owYJ0K9+9RfvBXsodHyZ6codzCMssf750egdbsdeRAm1p0VYE56ZqWGnLtcgXNnDf/Idxff4wN0uSUc9qRnarkova5tIy3jEBr7gi0Zo9Aa/YItGbP3RcJS8qs0reR1y57sHlXlT5Zfe1yCGNuEW/fmFKrmfNqtGTltcstHDxRrXNh1UpIr1JOkfUfDxMHeJplgbZLnzGKjrsoSbpSUqZOXX2UkJLpvP1ieo4e7Olr1cNrNatPEuz2F1dYokO5WVqeGac3U7/VSwlH9YeY3frniA0u4+094av1X9EB6hZ3QMOTgvVxbrQCC1J1Lj9fmUV3x099sjs3Aq3Z60iBNrrwstZmJmhE0tfq3MLlCn4RuUn94o9obnq4juZlK6sDXa7AnRFozR2B1uwRaM0egdbsuRtoXS05q0oh38XbLburtHTNd/F2mut46zu5VjPm1Wjxympt2FGlA8erdTasWvGpxFtPDvA0ywJtp64+yiu45Hz7wZ6+yrEXOd+2F15Sp64+Fjyy22P1SYLd2SUXlepYXo7WZMXrrdRQ/TnhuB6NCdK/RW7S91zE2x+ErdK9kVvVNW6vfJJOak7aBW3KTtLXdrsyiLcdcgRas3e3Btqc4koF2/O0KD1SLyUc1b2RW286n/1N2Ep1it4hn6STWp4Zp9D8Qssft7eNQGvuCLRmj0Br9gi0Zs8TgdbVUrKrFBpVpcNfVWvr7iot86/WuwtrNPYW8XbUpFrNmFujxSuuxdv9x6p15kK14oi3bR7gaZYGWnvhXwPtw73eINAyr15acZm+ysvT+qxEvZN2QSPSgtU1fp/+d9QW/Y2LePu9714s57HYPRqUeEKzUs9rXVaCTthz7+pXMTd9BFqzd7cE2rTiMu3JTdOMtFA9Hbe/2cu8/H24vx6PDdLElLPalnNRSZyXbjkCrbkj0Jo9Aq3ZI9CavfYOtK52MbtKodFVOhJcrYCgGi31r9a7i2rkN/0W8XZirWa8X60Pl1dr3fZq7T1ardPnqxVLvG3VAE+zNNAuWxeoDTsOa8OOw3qgxwh94r/b+faydYEEWubVu/EatJlF5Tptz9fW7GTNTQ/XsKRgPRW7X/8RFaAfhK92eemEn0ds0MMxgXo18Zimp4ZoZWacDudlK7HQrGs63m0j0Jo9bw20tsLLWpeVoFHJp/S7mF3Nnn/+NXKj+sQf1vvpYTrC5QrcGoHW3BFozR6B1uwRaM2eNwVaV0vLqdJ5W5WOfF2lbUE1+nRdtWYvqtG4W8TbkZNqNf29ai36rFrrtlVr75FqnQqtVuxF4u31AZ5mWaDtNXh6q+btrD5JMOvW2hcJyyqu0LcFBdqRnaoP0iM1KvmUnok7qF9Fb9MPw9a4jLc/i1in38Xs0gsJRzQp5Zw+zYjVgdwM2QovW/78TR+B1ux5S6ANttu1OCNKryQe0/+Nav5yBf8veruGJJ3U8sxYhRRwuYI7MQKtuSPQmj0Crdkj0Jq9uyXQulpaXpXOR1+Lt9v3fhdvP7x1vB0+vlZT59QoId36r32tHOBplgXajsLqkwSzbq0NtK6WU1ypsIIiBeaka0lGtMaknFav+EP6dfQO/UO4v8t4+5Nwf91v+1x94g/LL+WMPsqwKSg3TREFxZZ/bEwYgdbsWRFo04vLFJSbrpmpoeoed0A/jVh303nh78L99VjsHk1IOattOSn8JL6HRqA1dwRas0egNXsEWrPXEQKtq6XnVepCTJWOnarS9n01+mx9td77sEYT3vprvM3Mt/5xWjnA0wi0bWT1SYJZtzsRaG+1qMLL2peboaUZMZqYclb9E46os22n/rGZMNM00twXvV0947/QG8mntCg9UjtzUhWaX6hs/jnzHRmB1uy1R6CNLbii9VmJeiP5lH4fs1v3NHO5gn+J3Kje8Yf0XnqYDudlcbmCdhqB1twRaM0egdbsEWjNXkcPtK6Wbq9UWJzZPz2bW0yghecRaL/T0NCgT/x364n+4/RYv7GaMd9flVU1kqSs3AL5TPhAj/YerReHv6NwW7Lz91l9kmDWrT0CravFFZboUG6WVmTGamrqt3o58agetAXqnyM2uIy394Sv1i+jAtQt7oCGJwVrXlq4tuWk6Gx+vjKLyi3/uN4tI9CaPU8E2lP2fC3JiNaricf0H1EBzb7g4H3R2zU48Ut9mhGrb/MLLP84mDoCrbkj0Jo9Aq3ZI9CaPZMDLbs2wNMItN8J/OKUBvjO0ZWSMpVXVGnI+AVas/WAJGnI+AXatOuoHI56nQ6xqeuLE1Rb55DEF+gmz+pA62opRVd13J4j/6x4zUwN1cDE43o0Jkj/FrlJ33MRb78ftkr3Rm5V17i98kk6qTlpF7QxK0nBdrsyiLeNRqA1e20NtOnFZdqXm6FZqefVI+6AftbMT8X/KGyNHo0J0rjkMwrI5nIF3jQCrbkj0Jo9Aq3ZI9CaPQItAzyNQPudqLiLSkjJdL7tH3BQM+b7q/hyqR7s6as6h8N520sj3lVoRIIkvkA3ed4caF0trbhMwfY8bchK1Ltp5/Va0kk9GbdX90Zu0ffDVrUYb78XtlL/HrlZj8Xu0cDEE5qVel5rMxN0wp6ri0VXLX9e7T0Crdm73UAbV1iijVlJGp18Sg/aAvW3YTdfruDnERv0XPwXmpN2QYdys/iJdi8egdbcEWjNHoHW7BFozR6BlgGeRqBtRq69SC8Of0dHg88r3Jas54fOanT75DkrtPNA8LVf6wUnCmbN7tZA62qZReU6k2/X1uxkzU0P17CkYD0dt1//GRWgHzRz/cumcekhW6BeSTymaakhWpkZp8N52R32p/4ItGbvVoH2TL5dH2XY9OeE4/plC5cr+FX0Nv0l8Usty4jRN1yu4K4agdbcEWjNHoHW7BFozR6BlgGeRqBt4tVRc9Spq4/mLd2i+voGnbsQowG+cxr9mlkL12nzrqOSpKuVdczQ1ToaVFXjsPxxtNdKKmsVU3pZ+4sytDTXpnHpZ9Q76Qv9j227/i58jct4+7OI9fpD7G69knxM0zNC5G9P0JeXcpRadtXy5+XuHPUNqqy27viXVlj/MTB59Q1SedW1/11cUaMTl3I0NydcvZO+0D9F3nwd6B+Fr9Hj8UGanP6NdhemKqe8wvLnwNyfJJV5weOwaqUVtZY/BqtW9t3xt/pxMGtWXnXt/G/14zB5Vp5/KqsdctQ3WP4xYNasqsahWgfH3+QBnkagbUbx5VJNeW+l5i3dooiYZPX1mdno9kmzl2v3wa8lSVcrapmhq62rvxZoveCxWL3Silolll7R4eJMLc+N0aT0s3o+6bDuj/lcPw5f6zLe/iR8rX4bs1P9k45ocvo5rciN1eHiTCWWllz7ItxLV+doUEV1nXUf80rr/mzTl1VWpv1X0jUp45y6xO3RD5v56fKfR25Q36RDmp8drpPFObpUXm3542Z3bg0NZv/3v7TC4PNPJcff5JVX1am+vsHyx2HyrPzasKK6TnUOjr+pq6pxqLau3vLHwawb4GkE2u+c+jZKqZl5zrdDIuLVa/B0XS65qt8/M1KVVTXO23oOmqqImGRJ/BM3k9cRL3HgqUUXXtb+vAwty4jRxJSz6p9wRA/YdumnzbwwUtMXSbovert6xn+hN5JPaWF6pD7PTlVIQaGyiyssfU5c4sCcnc3P1yeZNg1MPKH/jg646YX2vhe2Uv8dHaCBiSf0SaZN5/LzLX/MzLPjEgfmjkscmD0ucWD2uMSB2eMSBwzwNALtdz5avVMjpixWWXmlamvr9O7iDZo0e7kkadikRVq1eb8cjnodPPGNegyYIoejXhJfoJs8Au2dWWJhqQ7nZWlFZqympn6rVxKP6SFboH4ecfM/E79x94Sv1i+jAtQt7oCGJQVrbnq4ArJTdDY/v11eXIlA2zGXWVSug7mZejftvHrGf6F/bubv4Q/D1ujxhCD5XTyjzdnJii8ssfxxs/YdgdbcEWjNHoHW7BFozR6BlgGeRqD9TkVltWYtXKcn+o9Tlz5j5DvtI9kLL0mScuxFGjJ+gR7pPVovj5yt2MR05++z+iTBrBuB1vNLKbqq4/Yc+WfFa1bqeQ1MPKEusUH6ReSmm36K8cZ9P2yV7o3cqifj9mpI0knNTrugjVlJCrbblV5cdkceG4G2YyyxsFRbspPll3JGj8Ts0Q/Dbr6e8j9FrNez8Qf1TtoFHcjNUEZR+S1fJIx17BFozR2B1uwRaM0egdbsEWgZ4GkE2jay+iTBrBuB1tqlF5cp2J6njVlJmp12QUOSTurJuL26N3KLvh+2qsV4+72wlfpF5CZ1iQ3SwMQTmpV6XmszE3TCnquLRVdb/ecTaO/OfZNfoGUZMRqUeEK/it7WbOj/r+gADUw8ro8zbTqTb2/2fgi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0LaR1ScJZt0ItN67zKJync3PV0B2iuamh2tYUrCejtuvX0YF6J5mXtCp0Ys7RWzQQ7ZAvZJ4TNNSQ7QyM06H87KUWFja6M8g0Hr/MovKdSg3S7PTLui5+C+avWzG34at1kO2QI1JPqWNWUmKa+XlCgi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0LaR1ScJZt0ItHfnsosrFFJQqM+zU7UwPVK+yafUM/4L3Re9XT9q5p+337ifRqzTA7Z25pxSAAAaCklEQVRdeiHhiGZmhWpFTqz252UouvCy5c+LXbtcQUB2isYln9GjMUHNHs//FbFez8Qd1KzU89r33eUK3PmzCLRmj0Br7gi0Zo9Aa/YItGaPQMsATyPQtpHVJwlm3Qi0HW85xZUKLyjWntw0LcmIll/KGfWJP6zfRH+uH4f7u4y3Pw7312+iP1ef+MMam3JaSzKitSc3TeEFxcrxgufWEfdtQYE+zYjV4MQvdV/09mYvV/CfUQEakHBcSzKiddqef8f+bAKt2SPQmjsCrdkj0Jo9Aq3ZI9AywNMItG1k9UmCWTcCrXmLLrysA7kZ+jQjVjOzQvVS0lE9YNuln0ascxlvfxS2RvdFb9ez8Qflm3xKC9Mj9Xl2qkIKCpVdXGH587obllVcocN5WXovPUy94w/pXyI33vRxvid8tf4Qs1ujk09pQ1aiYguueOzxEGjNHoHW3BFozR6B1uwRaM0egZYBnkagbSOrTxLMuhFozV7Ta9AmFpbqcF62VmbGaVpqiF5JPKaHbIHNXve0aVT8z6gAPR23X8OSgjU3PVwB2Sk6k29Xppv//L4jLLGwVNtyUjQh5awei92jv2vmJ5h/FrFOPeIOaFbqee3NTVd6cVm7PT4Crdkj0Jo7Aq3ZI9CaPQKt2SPQMsDTCLRtZPVJglk3Aq3Zu50XCbtYdFUn7Llam5mgWannNTDxhB6L3aN/j9zc7D/Lv77vh63SvZFb9GTcXg1JOqnZaRe0IStRwfa8do2R7bGQgkItz4zVkKST+p/oHfqbZj4e/xEVoFcTj2lJRrS+ttstfbwEWrNHoDV3BFqzR6A1ewRas0egZYCnEWjbyOqTBLNuBFqzdzuB1tUyisoVbLdrY1aS5qRdkE/SSXWN26t7I7fq+2GrWoy33wtbqV9EblKX2CANTDyhmamh8s+K13F7jlKKrlr+8XG1rOIKHcnL1tz0cPWNP6x/beFyBb+P2S3f5FNa7+HLFbgzAq3ZI9CaOwKt2SPQmj0Crdkj0DLA0wi0bWT1SYJZNwKt2btTgdbVMovKdTY/X9tyUjQvLVzDk4LVLe6AfhkVoHvCV7u8dMLPIzboIVugXk48qqmp32pFZqwO52UpsbC03T9WSUVXtT37oialnNPjsUH6+2YuV/CPEevULe6A3koNVVA7X67AnRFozR6B1twRaM0egdbsEWjNHoGWAZ5GoG0jq08SzLoRaM1eewRaV8surlBofqF25qRqUXqk3kg+pZ7xX+i+6O3NXq/1xv00Yp0623aqf8IRTUw5q2UZMdqfl6Howst35LGdzy/SisxY+SSdVKcWLlfwf6K26uXEo1qcEaVgu105XnBMb2cEWrNHoDV3BFqzR6A1ewRas0egZYCnEWjbyOqTBLNuBFqzZ3WgvdUiCooVlJumjzJs8ks5o77xh3W/7XP95Bbx9sfh/vp19A71jj+ksSmntSQjWnty0xRWUNRsRM0urtCxvBzNSwtXv/gj+kXkppvu8wfhq/WAbZdGJZ/SuqwE2e5QCLZyBFqzR6A1dwRas0egNXsEWrNHoGWApxFo28jqkwSzbgRas+ftgdbVogsv60BuhpZlxGhyyjm9kHBED9h26acR61zG2x+GrdGvorepe9wBDUsK1h9buFzBTyLW6qnY/ZqWGqI9uWlK8/LLFbgzAq3ZI9CaOwKt2SPQmj0Crdkj0DLA0wi0bWT1SYJZNwKt2bubA62rJRaW6lBullZmxmlaaoheSTymh2MC9fOIDS2G23sjt6h/whEtSI/Ql/Zcy59De4xAa/YItOaOQGv2CLRmj0Br9gi0DPA0Am0bWX2SYNaNQGv2OmqgdbXUoqs6lpejtZkJejvtgtZlJdyx69bebSPQmj0Crbkj0Jo9Aq3ZI9CaPQItAzyNQNtGVp8kmHUj0Jo9EwMt++sItGaPQGvuCLRmj0Br9gi0Zo9AywBPI9C2kdUnCWbdCLRmj0Br9gi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0LaR1ScJZt0ItGaPQGv2CLRmj0Br7gi0Zo9Aa/YItGaPQMsATyPQtpHVJwlm3Qi0Zo9Aa/YItGaPQGvuCLRmj0Br9gi0Zo9AywBPI9C2kdUnCWbdCLRmj0Br9gi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0LaR1ScJZt0ItGaPQGv2CLRmj0Br7gi0Zo9Aa/YItGaPQMsATyPQtpHVJwlm3Qi0Zo9Aa/YItGaPQGvuCLRmj0Br9gi0Zo9AywBPI9C2kdUnCWbdCLRmj0Br9gi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0LaR1ScJZt0ItGaPQGv2CLRmj0Br7gi0Zo9Aa/YItGaPQMsATyPQtpHVJwlm3Qi0Zo9Aa/YItGaPQGvuCLRmj0Br9gi0Zo9AywBPI9C2kdUnCWbdCLRmj0Br9gi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0LaR1ScJZt0ItGaPQGv2CLRmj0Br7gi0Zo9Aa/YItGaPQMsATyPQtpHVJwlm3Qi0Zo9Aa/YItGaPQGvuCLRmj0Br9gi0Zo9AywBPI9C2kdUnCWbdCLRmj0Br9gi0Zo9Aa+4ItGaPQGv2CLRmj0DLAE8j0AIAAAAAAACARQi0AAAAAAAAAGARAi0AAAAAAAAAWIRACwAAAAAAAAAWIdA2sWLTPv3ppQnq0neMps1brYrKaklSVm6BfCZ8oEd7j9aLw99RuC3Z+XtOh9jUb+hMdekzRiPfXKyiSyXO29Zu+0LdXpmkJ/qP03sfb1adw9HuzwmtU1Zeqanvr1KXvmPU9cUJ8g846LzNnePv6v7gfVwdr7Z+jvtM+ECT56xol+cB91zMyNVgv/l66Dlf9Xlthr7+Jsp5mzvHv7a2TrMWrtNDz/nqqZcn6uDxb9r9OaH13Dn+1TW1mj5/jf74vJ96DJiinfu/cv6ehJRMDRozV88OnKoXh7+jcxdi2v05ofVOno1Q79dm6OFeb2jI+AVKz7I7b3N1jo9PztCzA6dq7idbGt2fq3MGvI+7x//giW/0YM9ROhp8vtX3B+/T0vFydY6XWj7+14VGJKhTVx+lZuZ5/DnAfS197+/q+Nc5HFq86nN16uqjyyVXG91fSES8eg2ergd7jpLvtI9UWlbRrs8Ht8ed9tPS8W9oaNAn/rvVc9BU9Rw0VbMWrlNlVU27Pyfc3Qi0NzgafF7P/WWaCoquqKKyWsMmL9KKTfskSUPGL9CmXUflcNTrdIhNXV+coNo6h66WVeixfmMVGZuiOodDS9cGauK7n0m69h/mnoOmquhSiSoqqzRs8iJtC/rSyqcIF+Z+skWTZi9XVXWNcu1FevKF8boQlSjJvePv6v7gfVo6Xm39HA86fFrdB0wh0Hq5vj4ztWnXUTU0NOhMqE0P9hylyqoat4//p+v3aPzbn6qyqkaJF7P08sjZqq6ptfIpwgV3jv/yDUGa+O5nqqquUY69SF1fnKCk1Oxr9zfkLR35KlSSFJOYpkd6j3Z+0Q/vYi+8pId7vaFwW7Lq6xu0dG2ghk78QJLrz/GImGS9OPwdTZu3ulGgdfV3Bt7H3eO/cecR+c1cqgG+cxoFOlf3B+/j6ni5Ose3dPyvq6mp1YvD39ET/ccRaL2Yq+/9XR1/v5lLtXxDkH7z1NBGga7karme6D9OoREJqq6p1fxlW/X5vpOWPDfcmjvtR2r5+B8NDtXLI2ersqpGDke9/GYt06rN+y15brh7EWhvYEtIU7gtyfn2pl1HNW3uahVfLtWDPX0b/b/mL414V6ERCToaHKqRby52vv9qWYU6dx+umppavf/x5kY/hffVuQgNGb+gfZ4MbtvJM+HKzit0vj32raXaffBrt49/S/cH79TS8WrL5/iVkjL1GjxdO/adJNB6sTqHQzv3f+X8wkuSHnrOV5k5+W4f/26vTOKnpu4S7h7/vkPeUlTcRedti5Zv1/INQWpoaNCv/zRUV0rKnLd16TuGb9K9lL3wko4Ghzrfjk/O0J9emiBJLj/HM3PyVVFZpVWb9zcKtK7+zsD7uHv8E1Iy1dDQoGGTFt0UaFu6P3gfV8erpXO81PLxv275hiB9tj5IfX1mcu73Yi197y/d+vhLuinQBR0+rTffX9keDx13gDvtR2r5+K/YtE/zlv7164GAPSf4/g+3jUDrgu+0j/T5vpMKtyXr+aGzGt02ec4K7TwQrNVbDmj+sq2Nbnui/zilZ9k1bPIiHT91wfn+1Mw8PfnC+HZ57GibsvJKPfnCeF1Mz3H7+Ld0f/B+Nx6vtnyOz/xgrfYcOqWjwef5D/RdxBafqqdenqg6h8Ot419aVqEHeozQ1sDj6jlomvq/Pksnz0a099OAm1p7/H/79DCVlJY73//5vpPOb8xen7jQ+ZN25yMT1GPAFC5xdJdYt/2Q83zdmq/jmgba1n5dAO90u8e/pUDX3P3B+914vFyd469r7vinZ9nVb+hMVdfUEmjvMte/95dad/ybBroFnwbo/Y83a9jkReo+YIpmzPdXWXll+zx4tFlr2s+Nmh7/C1GJ6vPaDF0uuarqmlr5TluiwC9OtcdDRwdCoG3Bio179frEhapzOHTuQowG+M5pdPusheu0eddRfeK/W0tW7Wx0W48BU5zXnzsdEu18f15+sR7u9Ua7PH64r6q6Rr7TlujT9Xskye3j39L9wbs1PV7ufo6fj0zQYL/5amhoINDeRbLzCtVz0DSdCbVJcu/459iL9JunhmrN1gNqaGhQZGyKHnrOVwVFV9r1ueD2tfb42xLS1Kmrj6qq/3ptsX1Hz8pv5lJJUkpajh7rN1aP9h6tB3qMINDfJc6E2tRjwBTZCy9JUqu+jmsaaFvzdQG8kzvH31WgbXp/8G43Hq/aOofLc/x1zR3/1ycu1DcXYiWJQHsXufF7/9Ye/6aB7q0F/uo5aKryCi6puqZWE9757Kb/ww7eqbXt50ZNj78kvffxZnXuNkx/eHakfCZ8oNraOo8/dnQsBNomGhoaNH/ZVo18c7Hzos4RMcnq6zOz0a+bNHu5dh/8Wmu2HrjpxSEe7+enzJx8DZ/yYaP/aF9Mz+GfOXm50rIKDfabp2XrAp3vc/f4t3R/8F7NHS93Psdra+vU//VZzp+YJtDeHRIvZunZgVP11bm/xjR3jn/J1XJ16uqjqze8MMTrExfq2NcXBO91u8f/t08Pa/SF+fa9X2ra3NWqrqnVM39+U2fPX3thsPQsu558Ybyycgva54nALQdPfKNeg6c7//stqVVfxzUNtLf6ugDeyd3j31Kgbe7+4L2aO14tneNv1PT47z1yptGvIdB6v+a+95dad/ybBrr5ywL0wWfbnG+HRSep39DG30PCu9xu+7lR0+P/+b6TGvnmYlVUVsvhqNf8ZQF6d/EGzz8JdCgE2iYWLd+uSbNXNLoW3eWSq/r9MyMbnbR7DpqqiJhkHT91Qa+Nm+98f37hZf3+mZGqczg0f9lWfbY+yHnbwePfaPiUD9vnieC2VdfU6i9j52lr4PFG73f3+Ld0f/BOLR0vdz7HbQlpeug5Xz3Rf5ye6D9Oj3z3U3Rcg9p7ZeUW6NmBUxu9Sqvk3vGXpEd6j1aOvch52+sTF+rkmXAPPwu4y53j//zQWQqJiHfe9s6H67Vm6wElpGSq64uNI86IKYt14Ng5zz4JuO3kmXA9P3SWii6VNHp/a76OaxpoXf2dgXdqy/FvLtC2dH/wTi0dr5bO8Tdqevz9Zi3TY/3GOr/+u//p1/VYv7EKPhfp2ScBtzX3vb/UuuPfNNBt3nVUby3wd74dFp2kF4e/46FHjjvhdtvPjZoef7+ZS7XrYLDz7cjYFD07cKrnHjw6JALtDc5HJujF4e80+6PowyYt0qrN++Vw1OvgiW/UY8AUORz1Kq+o0mP9xurb8DjVORx67+PNmjH/2ok53Jakbq9Mkr3wkq6WVeiVUbMVdPh0ez8ttNKKjXv1/sebm73NnePv6v7gfVo6Xnfic5yfoPV+PhM+aPRCIde5e/znL9uqtxetV53DIVtCmh7pPVrFl0vb9Tmh9dw5/qs275fvtCWqqq5xXtIgIztfpWUVerCnr2wJaZKkwuIreryfn+KTM9r1OaF1Sq6W66mXJzb6P1Sua805vmmgdfV3Bt6nrce/aaBzdX/wPq6OV0vn+Bvd6hrE/AStd3P1vX9rjn/TQFd0qURd+o5R4sUs1dY5NGn2Cn24cofHnwfc4077uVHT4/+J/26Ne3uZ8/+QXbo28KbLYgC3QqC9wYz5/vrNU0PVuftw514a8a4kKcdepCHjF+iR3qP18sjZik1Md/6+cxdi1HfIW+rSZ4xGz/i40Ss3b9hxWE+9PFFPvjBeC5dvV319Q3s/LbRSt1cm6bdPD2t0/K//MxV3jr+r+4P3cXW82vo5TqD1btl5herU1afRse/cfbhOnA6T5N7xr6yq0aTZy/Vwrzf03F+mNfpn8/Au7h7/mppazZjvr8f7+emZP7+pfUfPOu/zq3MR6v/6LPUcNFW9Bk93vugIvE/Q4dPNHv/rx7mlz/EPPtumzt2H6/6nX3d+7Xj91ZtdnTPgXdw9/i+NeFeduw/Xr/801Pm1w9Hg0FveH7yLq+Pl6hzf0vFvikDr3Vx979/S8b9SUub8tTf+3bn+E9hffxOlbq9M0uP9/PTm+ytVXlFl2fODa+60H1fHv7yiStPnr9GzA6fq2YFT5TttifIKuAY5bg+BFgAAAAAAAAAsQqAFAAAAAAAAAIsQaAEAAAAAAADAIgRaAAAAAAAAALAIgRYAAAAAAAAALEKgBQAAAAAAAACLEGgBAAAAAAAAwCIEWgAAAAAAAACwCIEWAAAAAAAAACxCoAUAAAAAAAAAixBoAQAAAAAAAMAiBFoAAAAAAAAAsAiBFgAAAAAAAAAsQqAFAAAAAAAAAIsQaAEAAAAAAADAIgRaAAAAAAAAALAIgRYAAAAAAAAALEKgBQAAAAAAAACLEGgBAAAAAAAAwCIEWgAAgA4s116kGfP99aeXJuj+p1/Xo71Ha9LsFcqxF1n90AAAAACIQAsAANBhORz16jlomsa//amSUrNVUlquhJRMjZq6RM/9ZZocjnqrHyIAAABgPAItAABAB5VjL1Knrj66mJ7T6P3Fl0u180CwKiqrVHSpRJ26+igzJ995e8CeE3ph2NuSpJNnI/TswKlau+0L/a7HCG3f+6Ue6DFCFZXVzl9fXlGlzt2H60yoTZK0Zfcx9Ro8Xb/rMUJ9XpuhcxdiJElLVu3UoDFzGz2WC1GJ6tx9uErLKjzyMQAAAAC8HYEWAACgg6qpqVWXPmP09qL1LQbQWwXa0yE2PdzrDc1evFH2wkuqqKrRo71H69jXF5y//tCXIXq8n5/qHA4d+jJEf3zeT3FJ6XI46vXVuQh17j5cmTkFupiRq05dfZSVW+D8vQs+DdD4tz/10EcAAAAA8H4EWgAAgA4s3JakPq/NUOduwzTYb74+8d+tqLiLzttbE2g7dfWRvfCS8/ZZC9dp2rzVzrcnzV6u9z7eLEl6feJCLV0b2OgxjJq6RMs3BEmSXh01Rys27XPe9vTLk3TidNgdfMYAAADA3YVACwAAYIDEi1naGnhcfjOXqnP34fKbtUwOR32rAm3nbsMa3dfpEJse7T1adQ6Hqmtq9WDPUQqLTpIkdXt1sjp19blpM+b7S5K27/1Sz/1lmiTJFp+qR3uPVm1tXXt8CAAAAACvRKAFAAAwzMX0HP3mqaH68nR4C4H2eKNA+4dnRzb6/XUOh7r0HaNvw+J08myEnnp5ohoaGiRJvV+boa2Bx1v8s0uulqtz9+GKSUzTklU7NWfJxjv/BAEAAIC7CIEWAACggzr1bZTmLd1y0/sbGhrUpc8YBR0+rdKyCnXq6qPktGzn7R+u2OEy0ErS24vWa8GnAXprgb8+XLHD+f7RMz7W24vWN/q1efnFqq9vcL498d3P9PGaXeo+YIrCbUltfp4AAADA3YxACwAA0EElp2Xrdz1GaM6SjYpLSldh8RUlpGTq7UXr9WDPUc7ryj7Wb6wC9pyQdC2mPjtw6i0D7dnzMeo1eLr++LyfYhLTnO8/9W2UftdjhE6HRKvO4VBYdJIe6T1a5yMTnL8m+FykHu71hroPmOL8yVsAAADAVARaAACADswWn6qxby3VE/3H6f6nX1eXvmM05q1PFJ+c4fw1R4PPq/uAKeo1eLpGz/hYWwOPq++QtyS1HGjrHA491m+seg6aetNtWwOPq9urk/VAjxHq/doM7Tt69qbf+8fn/bRsXeBNvxcAAAAwDYEWAAAA7erSlav6/TMjlZ1XaPVDAQAAACxHoAUAAEC7qK9v0JWSMvnNXKqp76+y+uEAAAAAXoFACwAAgHZxOiRav316mHynfaSS0nKrHw4AAADgFQi0AAAAAAAAAGARAi0AAAAAAAAAWIRACwAAAAAAAAAWIdACAAAAAAAAgEUItAAAAAAAAABgEQItAAAAAAAAAFiEQAsAAAAAAAAAFiHQAgAAAAAAAIBFCLQAAAAAAAAAYBECLQAAAAAAAABYhEALAAAAAAAAABYh0AIAAAAAAACARQi0AAAAAAAAAGARAi0AAAAAAAAAWIRACwAAAAAAAAAWIdACAAAAAAAAgEUItAAAAAAAAABgEQItAAAAAAAAAFiEQAsAAAAAAAAAFiHQAgAAAAAAAIBFCLQAAAAAAAAAYBECLQAAAAAAAABYhEALAAAAAAAAABYh0AIAAAAAAACARQi0AAAAAAAAAGARAi0AAAAAAAAAWIRACwAAAAAAAAAWIdACAAAAAAAAgEUItAAAAAAAAABgEQItAAAAAAAAAFiEQAsAAAAAAAAAFiHQAgAAAAAAAIBFCLQAAAAAAAAAYBECLQAAAAAAAABYhEALAAAAAAAAABb5/xkGuQTVueQ3AAAAAElFTkSuQmCC", "text/html": [ - "<div> <div id=\"8c3bcdc8-af56-4d65-a59c-fcf72b205e69\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"8c3bcdc8-af56-4d65-a59c-fcf72b205e69\")) { Plotly.newPlot( \"8c3bcdc8-af56-4d65-a59c-fcf72b205e69\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2017\", \"2011\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [31.6, 44.5, 36.7, 51.82172348464304], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2010\", \"2003\"], \"xaxis\": \"x\", \"y\": [42.9, 51.63371792253483], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [51.6, 47.1, 26.1, 60.19781177976836], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2012\", \"2000\"], \"xaxis\": \"x\", \"y\": [71.7, 67.84332662203975], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2015\", \"2010\", \"2004\", \"2000\"], \"xaxis\": \"x\", \"y\": [87.5, 90.2, 83.9, 73.33305914138057], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2012\", \"2006\", \"2001\"], \"xaxis\": \"x\", \"y\": [42.2, 55.2, 36.7, 49.39458717769393], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2013\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [84.9, 72.3, 71.95633862825368], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2014\", \"2010\", \"2005\", \"2000\"], \"xaxis\": \"x\", \"y\": [92.1, 89.9, 79.8, 70.69977791304689], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2016\", \"2011\", \"2006\", \"2000\"], \"xaxis\": \"x\", \"y\": [80.3, 79.5, 75.1, 70.08302756883629], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [\"2018\", \"2013\", \"2007\", \"2001\"], \"xaxis\": \"x\", \"y\": [80.4, 83.5, 72.5, 78.09666495277045], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all\"}}}, {\"responsive\": true} ).then(function(){\n", + "<div> <div id=\"613069b4-2e81-4782-ba13-a11f3b83ab24\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"613069b4-2e81-4782-ba13-a11f3b83ab24\")) { Plotly.newPlot( \"613069b4-2e81-4782-ba13-a11f3b83ab24\", [{\"hovertemplate\": \"Country=Benin<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Benin\", \"line\": {\"color\": \"#636efa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Benin\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2017, 2011, 2006, 2001], \"xaxis\": \"x\", \"y\": [31.6, 44.5, 36.7, 37.48430691317277], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Burkina Faso<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Burkina Faso\", \"line\": {\"color\": \"#EF553B\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Burkina Faso\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2010, 2003], \"xaxis\": \"x\", \"y\": [42.9, 33.0573496204897], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Ethiopia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Ethiopia\", \"line\": {\"color\": \"#00cc96\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Ethiopia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2005, 2000], \"xaxis\": \"x\", \"y\": [51.6, 47.1, 26.1, 36.68947049362754], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Gabon<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Gabon\", \"line\": {\"color\": \"#ab63fa\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Gabon\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2012, 2000], \"xaxis\": \"x\", \"y\": [71.7, 70.11745134661585], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Malawi<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Malawi\", \"line\": {\"color\": \"#FFA15A\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Malawi\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2015, 2010, 2004, 2000], \"xaxis\": \"x\", \"y\": [87.5, 90.2, 83.9, 74.39653963482156], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Mali<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Mali\", \"line\": {\"color\": \"#19d3f3\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Mali\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2012, 2006, 2001], \"xaxis\": \"x\", \"y\": [42.2, 55.2, 36.7, 34.6942917927119], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Namibia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Namibia\", \"line\": {\"color\": \"#FF6692\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Namibia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2013, 2006, 2000], \"xaxis\": \"x\", \"y\": [84.9, 72.3, 72.62799679664002], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Rwanda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Rwanda\", \"line\": {\"color\": \"#B6E880\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Rwanda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2014, 2010, 2005, 2000], \"xaxis\": \"x\", \"y\": [92.1, 89.9, 79.8, 62.90019751881499], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Uganda<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Uganda\", \"line\": {\"color\": \"#FF97FF\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Uganda\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2016, 2011, 2006, 2000], \"xaxis\": \"x\", \"y\": [80.3, 79.5, 75.1, 71.88353100909976], \"yaxis\": \"y\"}, {\"hovertemplate\": \"Country=Zambia<br>Survey=%{x}<br>Buy.from.shopkeeper.with.AIDS.M_all=%{y}<extra></extra>\", \"legendgroup\": \"Zambia\", \"line\": {\"color\": \"#FECB52\", \"dash\": \"solid\"}, \"mode\": \"lines\", \"name\": \"Zambia\", \"orientation\": \"v\", \"showlegend\": true, \"type\": \"scatter\", \"x\": [2018, 2013, 2007, 2001], \"xaxis\": \"x\", \"y\": [80.4, 83.5, 72.5, 79.65145595888701], \"yaxis\": \"y\"}], {\"legend\": {\"title\": {\"text\": \"Country\"}, \"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Survey\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"Buy.from.shopkeeper.with.AIDS.M_all\"}}}, {\"responsive\": true} ).then(function(){\n", " \n", - "var gd = document.getElementById('8c3bcdc8-af56-4d65-a59c-fcf72b205e69');\n", + "var gd = document.getElementById('613069b4-2e81-4782-ba13-a11f3b83ab24');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", -- GitLab