diff --git a/notebooks/process/CompileGeoData.ipynb b/notebooks/process/CompileGeoData.ipynb index 3dda43ed347452924e5303026ac08b110f098aa1..1159904841af4fe128899ba5907e71c319cd34eb 100644 --- a/notebooks/process/CompileGeoData.ipynb +++ b/notebooks/process/CompileGeoData.ipynb @@ -26,7 +26,7 @@ "outputs": [], "source": [ "ts_folder = \"../../data/covid-19_jhu-csse/\"\n", - "worldmap_path = \"../../data/worldmap/country_centroids.csv\"\n", + "worldmap_path = \"../../data/atlas/worldmap/country_centroids.csv\"\n", "out_folder = None\n", "PAPERMILL_OUTPUT_PATH = None" ] @@ -80,10 +80,19 @@ "outputs": [], "source": [ "country_centroids_df = pd.read_csv(worldmap_path)\n", - "country_centroids_df = country_centroids_df[['name', 'name_long', 'region_un', 'subregion', 'region_wb', 'pop_est', 'gdp_md_est', 'income_grp', 'Longitude', 'Latitude']]\n", + "country_centroids_df = country_centroids_df[['name', 'name_long', 'sov_a3', 'region_un', 'subregion', 'region_wb', 'pop_est', 'gdp_md_est', 'income_grp', 'Longitude', 'Latitude']]\n", "country_centroids_df['name_jhu'] = country_centroids_df['name_long'] " ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "country_centroids_df.head()" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/notebooks/process/ToRates.ipynb b/notebooks/process/ToRates.ipynb index 9aa7f046fe4b8acf11cd2229297397af98c71853..5db50b0b975700aeb1bca81f2be02c12c5d99bfd 100644 --- a/notebooks/process/ToRates.ipynb +++ b/notebooks/process/ToRates.ipynb @@ -28,7 +28,7 @@ "outputs": [], "source": [ "ts_folder = \"../../data/covid-19_jhu-csse/\"\n", - "wb_path = \"../../data/worldbank/SP.POP.TOTL.zip\"\n", + "wb_path = \"../../data/atlas/worldbank/SP.POP.TOTL.zip\"\n", "geodata_path = \"../../data/geodata/geo_data.csv\"\n", "out_folder = None\n", "PAPERMILL_OUTPUT_PATH = None" @@ -167,6 +167,16 @@ "].iloc[:,-2:]" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "country_centroids_df = pd.read_csv(worldmap_path)\n", + "country_centroids_df = country_centroids_df[['name', 'name_long', 'sov_a3', 'region_un', 'subregion', 'region_wb', 'pop_est', 'gdp_md_est', 'income_grp', 'Longitude', 'Latitude']]" + ] + }, { "cell_type": "markdown", "metadata": {},