diff --git a/notebooks/Block_2/Solutions to Exercises - Block 2.ipynb b/notebooks/Block_2/Solutions to Exercises - Block 2.ipynb index ef392cd3e6d8bc01df4e10218135263f45360388..61737e98212d78113c6fe00077a801329586852e 100644 --- a/notebooks/Block_2/Solutions to Exercises - Block 2.ipynb +++ b/notebooks/Block_2/Solutions to Exercises - Block 2.ipynb @@ -317,7 +317,7 @@ { "data": { "text/plain": [ - "[<matplotlib.lines.Line2D at 0x7f6d7b5b6650>]" + "[<matplotlib.lines.Line2D at 0x7fae4761ef10>]" ] }, "execution_count": 8, @@ -326,7 +326,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEGCAYAAACUzrmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo40lEQVR4nO3de5hdV3nf8e9vzpy5j+am0cW6WDJW7JibL6ovkKcNJtiGUOwGQiAXFOKnShunMSVpA02fOkBoIU+CE7fBjRM7EQnhUoIfK9QFFBtyBdsS2MY3ISFbSLIuY2k0kmY097d/7DWjo9GM5kiaM2dmzu/zPOc5e6+99j7vNkKv1tprr6WIwMzM7Gyqyh2AmZnNfU4WZmY2LScLMzOblpOFmZlNy8nCzMymVV3uAEph8eLFsWbNmnKHYWY2r2zbtu2ViOic7NiCTBZr1qxh69at5Q7DzGxekbR7qmPuhjIzs2k5WZiZ2bScLMzMbFpOFmZmNi0nCzMzm1ZJk4Wk/yjpWUnPSPqcpDpJayU9JmmnpC9Iqkl1a9P+znR8TcF1PpzKt0u6uZQxm5nZmUqWLCStAH4NWB8RrwFywHuATwJ3R8SlQDdwezrldqA7ld+d6iHpinTeq4FbgE9LypUqbjMzO1Opu6GqgXpJ1UADsB+4EfhSOr4JuC1t35r2ScffLEmp/PMRMRARLwI7gWtLEezLR0/yqa9v58VXektxeTOzeatkySIi9gG/B/yQLEn0ANuAoxExnKrtBVak7RXAnnTucKrfUVg+yTnjJG2UtFXS1q6urvOK+UjvIPc8upMdB4+f1/lmZgtVKbuh2shaBWuBi4BGsm6kkoiI+yJifUSs7+yc9G31abXU5wHoOTk0k6GZmc17peyG+gngxYjoiogh4MvAG4HW1C0FsBLYl7b3AasA0vEW4HBh+STnzKhFdVmyONY/PE1NM7PKUspk8UPgekkN6dnDm4HngG8A70p1NgAPpe3NaZ90/NHI1nzdDLwnjZZaC6wDHi9FwM111UhuWZiZTVSyiQQj4jFJXwK+AwwD3wXuA/4v8HlJv5PK7k+n3A/8haSdwBGyEVBExLOSvkiWaIaBOyJipBQxV1WJptpqjjlZmJmdpqSzzkbEXcBdE4p3MclopojoB356iut8HPj4jAc4iZb6vJOFmdkEfoN7gkV1eY71O1mYmRVyspigpT7vZxZmZhM4WUywqL6aYyc9GsrMrJCTxQRuWZiZncnJYgI/szAzO5OTxQQt9Xn6BkcYGhktdyhmZnOGk8UEi9KUHx4+a2Z2ipPFBJ4fyszsTE4WEyyqz95T9PxQZmanOFlM4JaFmdmZnCwmGJ951snCzGyck8UEblmYmZ3JyWKC8dFQftfCzGyck8UEdfkcNdVVblmYmRVwspjEorq854cyMyvgZDGJlnovgGRmVqhkyULSZZKeLPgck/QBSe2Stkjakb7bUn1JukfSTklPS7q64FobUv0dkjZM/aszY1G954cyMytUsmQREdsj4sqIuBK4BugDHgQ+BDwSEeuAR9I+wFvJ1tdeB2wE7gWQ1E622t51ZCvs3TWWYErFM8+amZ1utrqh3gz8ICJ2A7cCm1L5JuC2tH0r8JnIfBtolbQcuBnYEhFHIqIb2ALcUspgs2cWThZmZmNmK1m8B/hc2l4aEfvT9gFgadpeAewpOGdvKpuq/DSSNkraKmlrV1fXBQXrloWZ2elKniwk1QDvAP7PxGMREUDMxO9ExH0RsT4i1nd2dl7QtRbVV3Osf5gsPDMzm42WxVuB70TEwbR/MHUvkb4PpfJ9wKqC81amsqnKS6alPs/IaNA7OFLKnzEzmzdmI1m8l1NdUACbgbERTRuAhwrK35dGRV0P9KTuqq8BN0lqSw+2b0plJeP5oczMTlddyotLagTeAvxyQfEngC9Kuh3YDbw7lT8MvA3YSTZy6v0AEXFE0seAJ1K9j0bEkVLGXTg/1EWt9aX8KTOzeaGkySIieoGOCWWHyUZHTawbwB1TXOcB4IFSxDgZr5ZnZnY6v8E9Cc88a2Z2OieLSYw/s/BqeWZmgJPFpNyyMDM7nZPFJJrqskc5ThZmZhkni0nkqkRznWeeNTMb42QxBc8PZWZ2ipPFFFo8TbmZ2Tgniym01Oc52udkYWYGThZTamvMc9TdUGZmgJPFlFrqazjaN1juMMzM5gQniym0NWTdUJ6m3MzMyWJKrQ15hkeDEwN+i9vMzMliCq0NNQB+yG1mhpPFlNqcLMzMxjlZTKG1IZsfqtsPuc3MnCym0paShYfPmpmVOFlIapX0JUkvSHpe0g2S2iVtkbQjfbelupJ0j6Sdkp6WdHXBdTak+jskbZj6F2dOS/1YN5RbFmZmpW5Z/CHw1Yi4HHg98DzwIeCRiFgHPJL2Ad4KrEufjcC9AJLagbuA64BrgbvGEkwpjXdD9bplYWZWsmQhqQX4l8D9ABExGBFHgVuBTanaJuC2tH0r8JnIfBtolbQcuBnYEhFHIqIb2ALcUqq4x+RzVTTXVnP0pFsWZmalbFmsBbqAP5P0XUl/KqkRWBoR+1OdA8DStL0C2FNw/t5UNlX5aSRtlLRV0taurq4ZuYGWBs8PZWYGpU0W1cDVwL0RcRXQy6kuJwAiez16Rl6Rjoj7ImJ9RKzv7OyciUvS1uApP8zMoLTJYi+wNyIeS/tfIkseB1P3Eun7UDq+D1hVcP7KVDZVecm1NuTpdsvCzKx0ySIiDgB7JF2Wit4MPAdsBsZGNG0AHkrbm4H3pVFR1wM9qbvqa8BNktrSg+2bUlnJtbplYWYGZF1FpfQfgM9KqgF2Ae8nS1BflHQ7sBt4d6r7MPA2YCfQl+oSEUckfQx4ItX7aEQcKXHcQJpM0O9ZmJmVNllExJPA+kkOvXmSugHcMcV1HgAemNHgitBan6fn5BAjo0GuSrP982Zmc4bf4D6L1oYaIuC4l1c1swrnZHEWp+aHcrIws8rmZHEWYzPPejJBM6t0ThZnMday6HHLwswqnJPFWbS6ZWFmBjhZnNX4NOVuWZhZhZs2WaSX5H5e0n9L+6slXVv60MqvuS6P5GnKzcyKaVl8GrgBeG/aPw78UckimkNyVaKlPs8RJwszq3DFvJR3XURcLem7ABHRnd7IrgjtjTVe08LMKl4xLYshSTnS7LCSOoHRkkY1h3Q01nC4d6DcYZiZlVUxyeIe4EFgiaSPA/8I/PeSRjWHtDfWcKTX3VBmVtmm7YaKiM9K2kY2n5OA2yLi+ZJHNke0N9aybXd3ucMwMyurKZNFWvt6zCHgc4XHZmvm13Jrb8zWtBgdDao8maCZVaiztSy2kT2nELAa6E7brcAPyZZNXfDaG2sZGQ16Tg7R1lgxz/XNzE4z5TOLiFgbEZcAfwv864hYHBEdwNuBr89WgOXWkRLEYT+3MLMKVswD7usj4uGxnYj4f8Abirm4pJckfU/Sk5K2prJ2SVsk7Ujfbalcku6RtFPS05KuLrjOhlR/h6QNU/1eKbQ3esoPM7NiksXLkv6rpDXp81vAy+fwG2+KiCsjYmwRpA8Bj0TEOuCRtA/wVmBd+mwE7oXxZyd3AdcB1wJ3jSWY2TCWLA6fcLIws8pVTLJ4L9BJNnz2QWAJp97mPh+3ApvS9ibgtoLyz0Tm20CrpOXAzcCWiDgSEd3AFuCWC/j9c9LRlCULD581s0pWzNDZI8Cd53n9AL4uKYA/joj7gKURsT8dPwAsTdsrgD0F5+5NZVOVz4qxlsURv5hnZhVs2mQh6Rukt7cLRcSNRVz/xyJin6QlwBZJL0y4RqREcsEkbSTrvmL16tUzcUkAaqtzNNVW+wG3mVW0YuaG+o2C7TrgncBwMRePiH3p+5CkB8meORyUtDwi9qdupkOp+j5gVcHpK1PZPuDHJ5R/c5Lfug+4D2D9+vUzkoDGtDXm3Q1lZhVt2mcWEbGt4PNPEfFBTv/Le1KSGiU1j20DNwHPAJuBsRFNG4CH0vZm4H1pVNT1QE/qrvoacJOktvRg+6ZUNmvaG2udLMysohXTDVX4JncVcA3QUsS1lwIPShr7nb+KiK9KegL4oqTbgd3Au1P9h4G3ATuBPuD9kD0zkfQx4IlU76Oz/fZ4R2MNB3r6Z/MnzczmlGK6oQrf5B4GXgRun+6kiNgFvH6S8sNk80xNLA/gjimu9QDwQBGxlkR7Yw3P7z9Wrp83Myu7YpLFj0bEaf+sllRbonjmpGya8kEigtRSMjOrKMW8Z/HPk5R9a6YDmcvaG2sYHB6ld3Ck3KGYmZXF2WadXUb2PkO9pKvIuqEAFgENsxDbnDH+rsWJQZpqi2mMmZktLGf7m+9m4BfJhqp+qqD8OPBfShjTnDM+5UfvAKs7KipPmpkBZ0kWEbEJ2CTpnRHx17MY05xz6i1uD581s8p0tm6on4+IvwTWSPrgxOMR8alJTluQOhqz5/l+i9vMKtXZuqEa03fTbAQyly1uzloWr5zw/FBmVpnO1g31x+n7I7MXztzUUFNNU201XcedLMysMhXzBncn8G+BNYX1I+KXShfW3LO4qcbJwswqVjHjQB8C/oFsedWKfdGgs7nW3VBmVrGKSRYNEfGbJY9kjutsrmX7gePlDsPMrCyKeYP7K5LeVvJI5rjOplp3Q5lZxSomWdxJljBOSjom6bikiptVr7O5lmP9w/QPVWxPnJlVsGKWVW2ejUDmus7m7F2LV04MsLLNb3GbWWUpZjTU1ZMU9wC7I6KoFfMWgrFk0XXcycLMKk8xD7g/DVwNfC/tv5ZsxbsWSf8+Ir5equDmks6mOgA/tzCzilTMM4uXgasi4pqIuAa4EtgFvAX43elOlpST9F1JX0n7ayU9JmmnpC9IqknltWl/Zzq+puAaH07l2yXdfO63eeHGWxYePmtmFaiYZPEjEfHs2E5EPAdcnlbCK8adwPMF+58E7o6IS4FuTq26dzvQncrvTvWQdAXwHuDVwC3ApyXlivztGdPRlKb8OO75ocys8hSTLJ6VdK+kf5U+nwaeS6vlDZ3tREkrgZ8E/jTtC7gR+FKqsgm4LW3fmvZJx9+c6t8KfD4iBiLiRbI1uq8t9gZnSj5XRVtDnq4TXovbzCpPMcniF8n+gv5A+uxKZUPAm6Y59w+A/wyMpv0O4GjBg/G9ZAsskb73AKTjPan+ePkk54yTtFHSVklbu7q6iritc9fZ7HctzKwyFTN09iTw++kz0YmpzpP0duBQRGyT9OPnG2CxIuI+4D6A9evXRyl+w8nCzCpVMUNn1wH/A7gCqBsrj4hLpjn1jcA70tvfdWTLsf4h0CqpOrUeVgL7Uv19wCpgr6RqoAU4XFA+pvCcWdXZVMu2H3aX46fNzMqqmG6oPwPuBYbJup0+A/zldCdFxIcjYmVErCF7QP1oRPwc8A3gXanaBrKJCgE2p33S8UcjIlL5e9JoqbXAOuDxIuKecWMtiywsM7PKUUyyqI+IRwBFxO6I+G2yh9bn6zeBD0raSfZM4v5Ufj/Qkco/CHwIII3E+iLwHPBV4I6IKMucG53NtfQPjXJioGLeRTQzA4p7KW9AUhWwQ9KvknUBndPqeRHxTeCbaXsXk4xmioh+4KenOP/jwMfP5TdLofAt7ua6fJmjMTObPcVOJNgA/BpwDfALnOouqihjb3Ef8kNuM6swxYyGeiJtngDeX9pw5rZlLVmyOHjM71qYWWWZMllI2ny2EyPiHTMfztw2liz29zhZmFllOVvL4gayl+E+BzwGaFYimsOaaqtprqvmgJOFmVWYsyWLZWSTBb4X+Fng/wKfK5wnqhItb6ljf8/JcodhZjarpnzAHREjEfHViNgAXE825cc304ioirV0UZ1bFmZWcc76gDtNFviTZK2LNcA9wIOlD2vuWt5Sx/YDx8sdhpnZrDrbA+7PAK8BHgY+EhHPzFpUc9iylnq6TgwwNDJKPlfMyGMzs/nvbH/b/TzZ1Bp3Av8s6Vj6HJd0bHbCm3uWt9QR4RXzzKyyTNmyiAj/s3kShcNnL2qtL3M0ZmazwwnhHC1PycIPuc2skjhZnKPli7LWhIfPmlklcbI4R4vqq6nLV7llYWYVZdpkIakxzTqLpB+R9A5JFTvlqiSWt9RzwPNDmVkFKaZl8fdAnaQVwNfJZp3981IGNdct84t5ZlZhikkWiog+4KeAT0fETwOvLm1Yc1s25YeThZlVjqKShaQbgJ8jmx8KIFfESXWSHpf0lKRnJX0kla+V9JiknZK+IKkmldem/Z3p+JqCa304lW+XdPM53+UMW9ZSx8Fj/YyOenlVM6sMxSSLDwAfBh6MiGclXUK2jvZ0BoAbI+L1wJXALZKuBz4J3B0RlwLdwO2p/u1Adyq/O9VD0hVka3i/GrgF+LSkaZNVKS1vrWd4NOg64RfzzKwyTJssIuLvIuIdEfHJ9KD7lYj4tSLOi4g4kXbz6RPAjcCXUvkm4La0fWvaJx1/sySl8s9HxEBEvEg2oeEZy7LOplVt2fDZPUf6yhmGmdmsKWY01F9JWiSpEXgGeE7Sfyrm4pJykp4EDgFbgB8ARyNiOFXZC6xI2yvI1s8gHe8BOgrLJzmn8Lc2StoqaWtXV1cx4Z23Ve0NAPzQycLMKkQx3VBXRMQxshbA/wPWko2Imlaa5vxKYCVZa+Dy8wuzqN+6LyLWR8T6zs7OUv0MACtax1oWfjHPzCpDMckin96ruA3YHBFDZN1JRYuIo2TPOW4AWiWNzUm1EtiXtvcBqwDS8RbgcGH5JOeURV0+x9JFtezpdsvCzCpDMcnij4GXgEbg7yVdDEw766ykTkmtabuebNW958mSxrtStQ3AQ2l7c9onHX80IiKVvyeNllpLNhPu40XEXVKr2hr8zMLMKsZZFz8CiIh7yBY9GrNb0puKuPZyYFMauVQFfDEiviLpOeDzkn4H+C5wf6p/P/AXknYCR8hGQJFGYH0ReA4YBu6IiJHibq90VrU38PiLR8odhpnZrJg2WUhqAe4C/mUq+jvgo2QPoKcUEU8DV01SvotJRjNFRD/w01Nc6+PAx6eLdTatam/goSf3eREkM6sIxfwt9wBwHHh3+hwD/qyUQc0Hq9rqGQ14+agfcpvZwjdtywJ4VUS8s2D/I2k4bEUbGz6758hJLu5oLHM0ZmalVUzL4qSkHxvbkfRGoOL/Oe13LcyskhTTsvh3wGfSswvIpujYcJb6FWHZojryOXn4rJlVhGJGQz0FvF7SorR/TNIHgKdLHNuclqsSF7XWe/ismVWEoofxRMSx9CY3wAdLFM+8sqqtgT3dFd8jZ2YV4HzHfGpGo5inVnc08MPDveUOw8ys5M43WXghB+CSxY109w3R3TtY7lDMzEpqymcWko4zeVIQUF+yiOaRSzqzIbO7XjnBNY3tZY7GzKx0pkwWEdE8m4HMR5csbgLgB129XHOxk4WZLVyep+ICrGyrJ58Tu7r83MLMFjYniwtQnavi4o5GdnWdmL6ymdk85mRxgS5Z3MiuV9yyMLOFzcniAl3S2cTuw70Mj4yWOxQzs5JxsrhAr+psZGgk2O03uc1sAXOyuECXL1sEwPcPHC9zJGZmpVOyZCFplaRvSHpO0rOS7kzl7ZK2SNqRvttSuSTdI2mnpKclXV1wrQ2p/g5Jc2oSw3VLm5DgBScLM1vAStmyGAZ+PSKuAK4H7pB0BfAh4JGIWAc8kvYB3kq2vvY6YCNwL2TJhWylvuvIVti7ayzBzAV1+RxrOhrZ7mRhZgtYyZJFROyPiO+k7ePA88AK4FZgU6q2Cbgtbd8KfCYy3wZaJS0Hbga2RMSRiOgGtgC3lCru83HZ0ma2H3SyMLOFa1aeWUhaQ7Ye92PA0ojYnw4dAJam7RXAnoLT9qayqcon/sZGSVslbe3q6prZG5jGZcuaeelwLycHR2b1d83MZkvJk4WkJuCvgQ8UTHEOQEQEMzQpYUTcFxHrI2J9Z2fnTFyyaJcvayYCdhxy68LMFqaSJgtJebJE8dmI+HIqPpi6l0jfh1L5PmBVwekrU9lU5XPGjy7PRkQ99/KxaWqamc1PpRwNJeB+4PmI+FTBoc2cWpZ1A/BQQfn70qio64Ge1F31NeAmSW3pwfZNqWzOuLijgUV11Ty1t6fcoZiZlUQxa3CfrzcCvwB8T9KTqey/AJ8AvijpdmA38O507GHgbcBOoA94P0BEHJH0MeCJVO+jEXGkhHGfM0m8bmUr39t3tNyhmJmVRMmSRUT8I1OvqPfmSeoHcMcU13oAeGDmopt5r13Zwp/8/S76h0aoy+fKHY6Z2YzyG9wz5PUrWxgeDb+cZ2YLkpPFDHntylYAnt57tKxxmJmVgpPFDLmopY7O5lq27e4udyhmZjPOyWKGSOLate08/uIRsscvZmYLh5PFDLpubTv7e/rZ232y3KGYmc0oJ4sZdN3aDgC+vetwmSMxM5tZThYzaN2SJlob8jz24px6DcTM7II5Wcygqipx/doO/mnnK35uYWYLipPFDHvT5Z3s7+n3+xZmtqA4WcywN122BIBHXzg0TU0zs/nDyWKGLVlUx2tWLOKb250szGzhcLIogRsvX8q23d0cOt5f7lDMzGaEk0UJvOP1yxkN+Jun9k9f2cxsHnCyKIFLlzTzmhWLeOjJObVGk5nZeXOyKJHbrlzB03t7+P5Bj4oys/mvlCvlPSDpkKRnCsraJW2RtCN9t6VySbpH0k5JT0u6uuCcDan+DkkbJvutuejfXLWCmuoq/uyfXip3KGZmF6yULYs/B26ZUPYh4JGIWAc8kvYB3gqsS5+NwL2QJRfgLuA64FrgrrEEM9d1NNXyzqtX8OXv7OVI72C5wzEzuyAlSxYR8ffAxHkvbgU2pe1NwG0F5Z+JzLeBVknLgZuBLRFxJCK6gS2cmYDmrF9641oGhkf5k3/YVe5QzMwuyGw/s1gaEWNDhA4AS9P2CmBPQb29qWyq8nlh3dJmfuqqFdz/jy+yt7uv3OGYmZ23sj3gTmtuz9gESpI2StoqaWtXV9dMXfaC/cbNl1El+O3Nz3m+KDObt2Y7WRxM3Uuk77HXnPcBqwrqrUxlU5WfISLui4j1EbG+s7NzxgM/Xxe11vMbN13G3z5/kL/89u5yh2Nmdl5mO1lsBsZGNG0AHioof18aFXU90JO6q74G3CSpLT3YvimVzSu/9Ma1vOmyTj7yN8+x5bmD5Q7HzOyclXLo7OeAbwGXSdor6XbgE8BbJO0AfiLtAzwM7AJ2An8C/ApARBwBPgY8kT4fTWXzSlWVuOe9V/HqFS38yme38RffesldUmY2r2gh/qW1fv362Lp1a7nDOEPPySE+8Pnv8o3tXVy3tp1fvfFS3vCqxeSqVO7QzMyQtC0i1k96zMlido2OBn/1+A+5e8v3Odw7yLJFdbzx0sVctbqVSxY3srqjgeUt9U4gZjbrnCzmoP6hEf72+YP8zVMvs/Wlbg4XvLhXk6tiRVs9q9obWN1ez6q2Bla3N7CqvYFXdTZRX5MrY+RmtlCdLVlUz3YwlqnL53j76y7i7a+7iIjg5Z5+dr/Sy+4jfew+3Mee7j72HOnj6b1HOdo3NH6eBGs6GvmRpU1ctmwRly1t5rJlzazpaKA656m+zKw0nCzmAEmsaK1nRWs9b5jk+LH+IfakJPL9g8fZfuA42w8eZ8tzBxlNDcOaXBWvWtLEuiVNXFrwWdPRSE21k4iZXRh3Q81j/UMj7Dx0gu0HjvP9g8d54cBxdh46wb6jJ8fr5KrExe0NvColj0sWN7JmcSMXdzTQ2VSL5GcjZpZxN9QCVZfP8ZoVLbxmRctp5X2Dw+zq6mXnoROnPl0n+MYLhxgePfWPg4aaHKvbG1jTkSWPizsaWdPR4IfsZnYGJ4sFqKGmetIkMjQyyt7uk+w+3Mvuw328dLiXHx7uY8eh4zz6wiEGR0bH69bkqljVXs/FHY3jD9dXtdWzsq2Ble31LKrLz/ZtmVkZOVlUkHyuirWLG1m7uPGMYyOjwYFj/WckkpcO9/HYrsP0Do6cVn9RXXWWOFICWdVeX7BfT7OTidmC4mRhQPZsY/wh+6tOPxYRHO0bYm/3SfZ097G3u4+93SfZ232Slw738g87XuHk0OnJpKU+z8q27HrLW+pYPvbdkn0vXVTnB+9m84iThU1LEm2NNbQ11vDalS1nHI8IjvQOjieQvd19Kamc5MVXevnWDw5zfGD4jPMWN9WmBFJ3WkJZtqiOi1rrWbKoltpqv1NiNhc4WdgFk0RHUy0dTbW8flXrpHWO9w9x8Fg/Lx/t50BPPy/3nORATz/7e/p56XAv39p1mOP9ZyaU1oY8S5prWdJcR2dzLUuaa+lMn/GyRbU011Z7ZJdZCTlZ2KxorsvTXJfn0iXNU9Y5MTDMgZ6T7O/pZ//RLJF0nejn0LEBuk4M8OKLvXQdHzjtQfyYunzVqQTSlCWQzqZa2ptq6Gisob2xlvbGbLulPk+VR3qZnRMnC5szmmqruXRJ81kTSkRw7OQwh47303V8gEPHB07fPjbAzq4T/PMPXuHYJC0VyJ7PtDXkaW+sSQmk9tR2U81p5W0NeRbV56nLuzvMKpuThc0rkmhpyNPSkGfd0qmTCsDA8AjdvUMc7h3gSO8gR3oHOXwiffcOciSVP3/gGEd6B0+bVmWiunwVLfV5Wutrst+vz9Nan77TfktDzRllzXV5v69iC4KThS1YtdU5lrXkWNZSV1T94ZFRuvuGUjIZGE8gPSezz9G+wfSdTb/yTNqeOBKskARNNdU011XTVFdNU201zXV5muqqWZT2m2rz48ebC443p/2mumrq8zk/k7GycrIwS6pzVeMPz+HsrZZCA8Mj9Jwc4lhKHj2F3yeHON4/xIn+YY73D3NiYJijfYPs6e7L9vuHz5psxuSqRGNNjoaaahpqczSMbdfkaKyppr4mR2NNjvqa6vSdo7G2+rR6E7fr8tnHLR8rxrxJFpJuAf4QyAF/GhGfmOYUs1lRW51jSXOOJc3FtWAmGh4Z5cRAlkzGEsrx/qEJZVnC6RscoW9ohL6BbPvwiUH2DPZl5YMj9A0OMzRybvO95XOitjpHXb5q/Lsun6O2umo8odTlq6irzlE7XudUvbrqKmrzp87P56qoqa4inxM149vZd02u6vTj1VXkq6o84GAemBfJQlIO+CPgLcBe4AlJmyPiufJGZnbhqnNVtDbU0NpQMyPXGxoZHU8cfYMj9A0UbA+O0Ds4zMnBEfqHRugfGqV/+NT2wPAIA0Oj2f5wVnasfyirN1ZnaISB4dFJR6Wdr+oqTZJUTi/L57LyXJXI50SuSlRXVVE9vi2qc1XZd0F5vkrk0n511Zl1s+tVTVpeXSWq0naVoEpj2+lTBTlldaqktH2qnpQdz7anug7zootxXiQL4FpgZ0TsApD0eeBWwMnCbIJ8roqW+uyBfCmNjAYDKaFkiWSEwZFRhoaDwZFRBodHGRrJPoMpuWRlMUlZYb2Y8ty+wWFGRoPh0WB4JBgeHWVkNBgaiVPlo6OMjJzaPteWVjmMJZCqlExOS0AFCaZKWQKa6lvAjZcv4bd+8ooZj3G+JIsVwJ6C/b3AdYUVJG0ENgKsXr169iIzq1C5KqVnIOWOZHqjo8FQSiwTE81wSiwjKbFkyedU3dHRYDRgJMa2szqjQcH2WHlWNtU5kcqy7az+SIxtT3LN0ciuEdk9RDoepO8483tZS31J/hvOl2QxrYi4D7gPsvUsyhyOmc0hVVWitsrvylyI+TKT2z5gVcH+ylRmZmazYL4kiyeAdZLWSqoB3gNsLnNMZmYVY150Q0XEsKRfBb5GNnT2gYh4tsxhmZlVjHmRLAAi4mHg4XLHYWZWieZLN5SZmZWRk4WZmU3LycLMzKblZGFmZtNSxMJ7f01SF7D7Ai6xGHhlhsKZL3zPlcH3XBnO954vjojOyQ4syGRxoSRtjYj15Y5jNvmeK4PvuTKU4p7dDWVmZtNysjAzs2k5WUzuvnIHUAa+58rge64MM37PfmZhZmbTcsvCzMym5WRhZmbTcrIoIOkWSdsl7ZT0oXLHM1MkPSDpkKRnCsraJW2RtCN9t6VySbon/Td4WtLV5Yv8/ElaJekbkp6T9KykO1P5gr1vSXWSHpf0VLrnj6TytZIeS/f2hTTNP5Jq0/7OdHxNWW/gAkjKSfqupK+k/QV9z5JekvQ9SU9K2prKSvpn28kikZQD/gh4K3AF8F5JM7+QbXn8OXDLhLIPAY9ExDrgkbQP2f2vS5+NwL2zFONMGwZ+PSKuAK4H7kj/ey7k+x4AboyI1wNXArdIuh74JHB3RFwKdAO3p/q3A92p/O5Ub766E3i+YL8S7vlNEXFlwfsUpf2zHWn910r/ADcAXyvY/zDw4XLHNYP3twZ4pmB/O7A8bS8HtqftPwbeO1m9+fwBHgLeUin3DTQA3yFbq/4VoDqVj/85J1sf5oa0XZ3qqdyxn8e9rkx/Od4IfAVQBdzzS8DiCWUl/bPtlsUpK4A9Bft7U9lCtTQi9qftA8DStL3g/jukroargMdY4PedumOeBA4BW4AfAEcjYjhVKbyv8XtOx3uAjlkNeGb8AfCfgdG038HCv+cAvi5pm6SNqaykf7bnzeJHVjoREZIW5BhqSU3AXwMfiIhjksaPLcT7jogR4EpJrcCDwOXljai0JL0dOBQR2yT9eJnDmU0/FhH7JC0Btkh6ofBgKf5su2Vxyj5gVcH+ylS2UB2UtBwgfR9K5Qvmv4OkPFmi+GxEfDkVL/j7BoiIo8A3yLpgWiWN/cOw8L7G7zkdbwEOz26kF+yNwDskvQR8nqwr6g9Z2PdMROxL34fI/lFwLSX+s+1kccoTwLo0iqIGeA+wucwxldJmYEPa3kDWpz9W/r40guJ6oKegaTtvKGtC3A88HxGfKji0YO9bUmdqUSCpnuwZzfNkSeNdqdrEex77b/Eu4NFIndrzRUR8OCJWRsQasv/PPhoRP8cCvmdJjZKax7aBm4BnKPWf7XI/qJlLH+BtwPfJ+nl/q9zxzOB9fQ7YDwyR9VfeTtZP+wiwA/hboD3VFdmosB8A3wPWlzv+87znHyPr130aeDJ93raQ7xt4HfDddM/PAP8tlV8CPA7sBP4PUJvK69L+znT8knLfwwXe/48DX1no95zu7an0eXbs76pS/9n2dB9mZjYtd0OZmdm0nCzMzGxaThZmZjYtJwszM5uWk4WZmU3LycIWPEkjaXbOsc+MzSgsaY0KZvM9S73fltSX3rgdKzsxmzGYXQhP92GV4GREXFnuIMgmrft14DfLHUghSdVxah4ls0m5ZWEVK60J8LtpXYDHJV2aytdIejTN/f+IpNWpfKmkB5WtF/GUpDekS+Uk/YmyNSS+nt6enswDwM9Iap8Qx2ktA0m/Iem30/Y3Jd0taauk5yX9C0lfTmsW/E7BZaolfTbV+ZKkhnT+NZL+Lk0497WC6SC+KekPlK2FcOeF/9e0hc7JwipB/YRuqJ8pONYTEa8F/hfZ7KUA/xPYFBGvAz4L3JPK7wH+LrL1Iq4me3sWsnUC/igiXg0cBd45RRwnyBLGuf7lPBjZmgX/m2wKhzuA1wC/KGlsxtTLgE9HxI8Cx4BfSXNj/U/gXRFxTfrtjxdctyYi1kfE759jPFaB3A1lleBs3VCfK/i+O23fAPxU2v4L4HfT9o3A+2B8dtceZauRvRgRT6Y628jWDpnKPcCTkn7vHOIfm6Pse8Czkeb1kbSLbIK4o8CeiPinVO8vgV8DvkqWVLak2XZzZNO+jPnCOcRgFc7JwipdTLF9LgYKtkeAqbqhiIijkv6KrHUwZpjTW/l1U1x/dMJvjXLq/8MTYw+yOYGejYgbpgind6o4zSZyN5RVup8p+P5W2v5nshlMAX4O+Ie0/Qjw72F8kaGW8/zNTwG/zKm/6A8CSyR1SKoF3n4e11wtaSwp/Czwj2QronWOlUvKS3r1ecZsFc7JwirBxGcWnyg41ibpabLnCP8xlf0H4P2p/Bc49YzhTuBNkr5H1t10Xmu0R8QrZGsQ1Kb9IeCjZLOgbgFemPrsKW0nW2f8eaANuDciBsmm4f6kpKfIZt59w9SXMJuaZ521ipUWzFmf/vI2s7Nwy8LMzKblloWZmU3LLQszM5uWk4WZmU3LycLMzKblZGFmZtNysjAzs2n9fz5CmLokrreMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEGCAYAAACUzrmNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkFklEQVR4nO3de3Rc5Xnv8e+jGc3ofrNk2dgyNmCTACk3c03OSUICoWkaaJo0pGlDe1iH05aekDY9bejpapq06Uq6GkjpCWlpQ0suDUnTsMKiacHlkhsJYGJzsY2xbAO+S7as+33mOX/sd6Sx0GVsNJqR5vdZa9bs/e49o2c7in6879773ebuiIiIzKas0AWIiEjxU1iIiMicFBYiIjInhYWIiMxJYSEiInOKF7qAfGhubva1a9cWugwRkUXlmWeeOeruLdNtW5JhsXbtWjZv3lzoMkREFhUze2WmbRqGEhGROSksRERkTgoLERGZk8JCRETmpLAQEZE5KSxERGROCgsREZmTwiLLwe4hbn94J3uPDhS6FBGRoqKwyHKsf5Q7H22nvaO/0KWIiBQVhUWW6mQMgIGR8QJXIiJSXBQWWWqS0ewn/QoLEZETKCyyVIewGBxVWIiIZFNYZKksj4ah+kdSBa5ERKS45D0szCxmZlvM7MGwvs7MnjSzdjP7ppklQnsyrLeH7WuzvuO20L7TzN6Vr1rLyozqREznLEREpliInsWtwI6s9c8Bd7j7WcBx4KbQfhNwPLTfEfbDzM4BbgDOBa4F7jKzWL6KrU7GFRYiIlPkNSzMbDXwC8A/hnUDrgK+HXa5F7g+LF8X1gnb3xH2vw64z91H3H0v0A5cmq+aa5JxBkY1DCUiki3fPYsvAH8IpMP6MqDb3TP/6b4fWBWWVwH7AML2nrD/RPs0n5lgZjeb2WYz29zZ2XnKBVclNQwlIjJV3sLCzN4DdLj7M/n6Gdnc/W533+juG1tapn0qYE6qE3FdOisiMkU+H6v6ZuC9ZvZuoAKoA/4GaDCzeOg9rAYOhP0PAG3AfjOLA/XAsaz2jOzPzLuaZJwjfcP5+noRkUUpbz0Ld7/N3Ve7+1qiE9SPuvuHgceA94fdbgS+G5YfCOuE7Y+6u4f2G8LVUuuA9cBT+ao7OsGtcxYiItny2bOYyR8B95nZXwBbgC+H9i8DXzWzdqCLKGBw921m9i1gOzAO3OLueftrXp2MaRhKRGSKBQkLd38ceDws72Gaq5ncfRj4wAyf/wzwmfxVOKk6oUtnRUSm0h3cU1Qn4wyOpkinvdCliIgUDYXFFJmZZwfHdN5CRCRDYTFFZjJBDUWJiExSWEyhacpFRF5LYTFFdSJMU67LZ0VEJigspqhKZqYpV89CRCRDYTFFjc5ZiIi8hsJiiokT3HpanojIBIXFFJM9C52zEBHJUFhMUZWIzlloGEpEZJLCYorM1VA6wS0iMklhMUVZmVGl53CLiJxAYTGNaj1aVUTkBAqLaVSrZyEicgKFxTSiByApLEREMhQW04iGoRQWIiIZCotpRMNQOmchIpKhsJiGhqFERE6ksJhGTTKu+yxERLIoLKaRebSqiIhEFBbTqE7EGBgdx13P4RYRAYXFtKqTcdxR70JEJFBYTEPP4RYROZHCYhp6DreIyIkUFtOorYjCom9YYSEiAgqLadVWlAMKCxGRDIXFNCZ7FmMFrkREpDgoLKahYSgRkRMpLKZRm4yGoXrVsxARARQW06qp0NVQIiLZFBbTiJUZ1YmYhqFERAKFxQxqK8p1gltEJFBYzKC2Iq6ehYhIoLCYQY3CQkRkgsJiBhqGEhGZpLCYQW1FnD5dDSUiAigsZlSnYSgRkQkKixloGEpEZJLCYgY1yTjDY2nGUulClyIiUnB5CwszqzCzp8zsWTPbZmafCu3rzOxJM2s3s2+aWSK0J8N6e9i+Nuu7bgvtO83sXfmqOZvmhxIRmZTPnsUIcJW7nw9cAFxrZpcDnwPucPezgOPATWH/m4Djof2OsB9mdg5wA3AucC1wl5nF8lg3kD1NuYaiRETyFhYe6Q+r5eHlwFXAt0P7vcD1Yfm6sE7Y/g4zs9B+n7uPuPteoB24NF91Z6hnISIyKa/nLMwsZmZbgQ5gE7Ab6Hb3zF/g/cCqsLwK2AcQtvcAy7Lbp/lM9s+62cw2m9nmzs7O1117bVJhISKSkdewcPeUu18ArCbqDbwhjz/rbnff6O4bW1paXvf3aRhKRGTSglwN5e7dwGPAFUCDmcXDptXAgbB8AGgDCNvrgWPZ7dN8Jm80DCUiMimfV0O1mFlDWK4ErgZ2EIXG+8NuNwLfDcsPhHXC9kfd3UP7DeFqqXXAeuCpfNWdoUeriohMis+9yylbCdwbrlwqA77l7g+a2XbgPjP7C2AL8OWw/5eBr5pZO9BFdAUU7r7NzL4FbAfGgVvcPZXHuoHJByCpZyEiksewcPfngAunad/DNFczufsw8IEZvuszwGfmu8bZJOMxEvEyPS1PRIQchqEs8mtm9qdhfY2Z5f3S1WJQVxGnVz0LEZGczlncRXRi+kNhvQ/4Yt4qKiKaH0pEJJLLMNRl7n6RmW0BcPfjmSk6ljo9LU9EJJJLz2IsnKR2iK5yAkpidr0oLNSzEBHJJSzuBO4HlpvZZ4AfAX+Z16qKRE1SPQsREchhGMrdv25mzwDvAAy43t135L2yIlBbUa6roUREmCUszKwpa7UD+Eb2NnfvymdhxaC2Ik7vkIahRERm61k8Q3SewoA1RNOJG9AAvAqsy3dxhVZfWc7AaIrxVJp4TM+JEpHSNeNfQHdf5+5nAP8F/KK7N7v7MuA9wMMLVWAh1VdGkwnqXgsRKXW5/Ofy5e7+vcyKu/8HcGX+SioembDo0VCUiJS4XO6zOGhmfwJ8Lax/GDiYv5KKRyYsugdHgerCFiMiUkC59Cw+BLQQXT57P7Ccybu5l7SGKvUsREQgt0tnu4BbF6CWoqNhKBGRyJxhYWaPEe7ezubuV+WloiJSlznBrbAQkRKXyzmLP8hargB+mei5EkueehYiIpFchqGemdL0YzPL+5PqikEyHqOyPEb3oMJCREpbLsNQ2XdylwEXEz0fuyTUV5arZyEiJS+XYajsO7nHgb3ATfksqpgoLEREcguLN4ZHnk4ws2Se6ik6CgsRkdzus3himrafzHchxapOYSEiMuussyuAVUClmV1INAwFUAdULUBtRaGhqpxtBxUWIlLaZhuGehfwG8Bq4Pas9j7gj/NYU1HRMJSIyCxh4e73Avea2S+7+78tYE1Fpb6ynMHRFGOpNOWaplxEStRsw1C/5u5fA9aa2e9P3e7ut0/zsSUn+8a85pqSOa8vInKC2YahMtOs1ixEIcUqM5lg96DCQkRK12zDUH8f3j+1cOUUn4aqBAA9Q6MFrkREpHByuYO7BfifwNrs/d39f+SvrOLRGHoWXQM6yS0ipSuXm/K+C/yQ6PGqqfyWU3waQ8/i+IB6FiJSunIJiyp3/6O8V1KkmqpDWAwqLESkdOVyLeiDZvbuvFdSpKoSMRKxMroUFiJSwnIJi1uJAmPIzHrNrM/MevNdWLEwMxqryzUMJSIlLZfnWdQuRCHFrLEqwXE900JESlguV0NdNE1zD/CKu5fEE/OaqhPqWYhIScvlBPddwEXA82H9TcALQL2Z/ba7P5yv4opFY1WCHYdLZuRNROQ1cjlncRC40N0vdveLgQuAPcDVwF/lsbaioXMWIlLqcgmLDe6+LbPi7tuBN7j7nvyVVVyaqhL0DI2RSnuhSxERKYhchqG2mdmXgPvC+geB7eFpeSVx1rehKkHaoXdojMZw34WISCnJpWfxG0A78LHw2hPaxoC356es4pK5MU/3WohIqZozLNx9yN0/7+6/FF5/7e6D7p529/6ZPmdmbWb2mJltN7NtZnZraG8ys01mtiu8N4Z2M7M7zazdzJ7LvgrLzG4M++8ysxvn48BPRqY3ofMWIlKq5gwLM1tvZt8Of/T3ZF45fPc48HF3Pwe4HLjFzM4BPgE84u7rgUfCOsDPA+vD62bgS+HnNwGfBC4DLgU+mQmYhdKUmR9K91qISInKZRjqn4j+cI8TDTt9BfjaXB9y90Pu/rOw3AfsIHqm93XAvWG3e4Hrw/J1wFc88lOgwcxWEj3edZO7d7n7cWATcG1uhzc/GiZmnh1ZyB8rIlI0cgmLSnd/BDB3f8Xd/wz4hZP5IWa2FrgQeBJodfdDYdNhoDUsrwL2ZX1sf2ibqX3qz7jZzDab2ebOzs6TKW9OmYceHe3XMJSIlKZcwmLEzMqAXWb2u2b2S5zE0/PMrAb4N+Bj7n7CnW3u7sC8XI/q7ne7+0Z339jS0jIfXzmhMhGjJhnnaL96FiJSmnKdSLAK+ChwMfDrQE4nmc2snCgovu7u3wnNR8LwEuG9I7QfANqyPr46tM3UvqCaaxLqWYhIycrlaqin3b3f3fe7+2+6+/vCOYVZmZkBXwZ2uPvtWZseYDJsbiR6uFKm/SPhqqjLgZ4wXPUQcI2ZNYYT29eEtgXVXJPkaJ96FiJSmma8Kc/MHpjtg+7+3jm++81EvZDnzWxraPtj4LPAt8zsJuAV4FfCtu8B7ya6p2MQ+M3wc7rM7M+Bp8N+n3b3rjl+9rxrrkmyu3PGK4VFRJa02e7gvoLoxPI3iE5M28l8sbv/aJbPvGOa/R24ZYbvuge452R+/nxrrk3w073qWYhIaZotLFYQTRb4IeBXgX8HvpE9T1Qpaa5J0j04xlgqTXksl1M9IiJLx4x/9dw95e7/6e43Et1U1w48bma/u2DVFZHM5bPHdJJbRErQrBMJhskCf4God7EWuBO4P/9lFZ/Jey1GWFFfUeBqREQW1mwnuL8CnEd04vlT7v7CglVVhFpqoyk/OnWvhYiUoNl6Fr8GDBDdZ/HR6EpYIDpp7e5el+faikpLTdSb0OWzIlKKZgwLd9dZ3CzNoWehG/NEpBQpEHJUlYhTlYhpyg8RKUkKi5PQUpukQ8NQIlKCFBYnYUVdBUd6hgtdhojIgsvl4UfVYdZZzGyDmb03TBBYclbUV3Cod6jQZYiILLhcehY/ACrMbBXwMNF8T/+cz6KK1Yr6Co70jBDNTCIiUjpyCQtz90HgfcBd7v4B4Nz8llWcVtRVMJpK06VncYtIickpLMzsCuDDRPNDAcTyV1LxWhnu3D6k8xYiUmJyCYuPAbcB97v7NjM7A3gsr1UVqRX1lQAcVliISImZdW4oAHf/PvB9gHCi+6i7fzTfhRWjFXVRz+Jwr8JCREpLLldD/YuZ1ZlZNfACsN3M/k/+Sys+LbVJYmWmnoWIlJxchqHOcfde4HrgP4B1RFdElZxYmdFSk1TPQkRKTi5hUR7uq7geeMDdx4CSvXZ0RX2FehYiUnJyCYu/B14GqoEfmNnpQG8+iypmK+srONijG/NEpLTMGRbufqe7r3L3d3vkFeDtC1BbUWprqmL/8SHS6ZLtXIlICcrlBHe9md1uZpvD6/NEvYyS1NZUxeh4WhMKikhJyWUY6h6gD/iV8OoF/imfRRWzNU1VALzaNVjgSkREFk4uYXGmu3/S3feE16eAM/JdWLFSWIhIKcolLIbM7C2ZFTN7M1CyZ3hPa6jADPYpLESkhMx5BzfwW8BXzKw+rB8HbsxfScUtGY+xsq5CYSEiJSWX6T6eBc43s7qw3mtmHwOey3NtRautqUrDUCJSUnJ+Up6794Y7uQF+P0/1LAprFBYiUmJO9bGqNq9VLDJrmqro6BthaDRV6FJERBbEqYZFSd+RdubyGgB2d/YXuBIRkYUx4zkLM+tj+lAwoDJvFS0CG1qjsHjpSB/nraqfY28RkcVvxrBw99qFLGQxOX1ZNeUx46Uj6lmISGk41WGoklYeK2NdczW7jvQVuhQRkQWhsDhF61tr2dWhnoWIlAaFxSnasLyWfccHdUWUiJQEhcUp2tBagzvs6tBQlIgsfQqLU3TOaXUAPH+gp8CViIjkn8LiFK1pqmJZdYItr3YXuhQRkbxTWJwiM+PCNQ1sefV4oUsREck7hcXrcOGaRnZ3DtAzOFboUkRE8ipvYWFm95hZh5m9kNXWZGabzGxXeG8M7WZmd5pZu5k9Z2YXZX3mxrD/LjMrqqnRL2xrAGDLPvUuRGRpy2fP4p+Ba6e0fQJ4xN3XA4+EdYCfB9aH183AlyAKF+CTwGXApcAnMwFTDH6urYFYmfH0y12FLkVEJK/yFhbu/gNg6l/R64B7w/K9wPVZ7V/xyE+BBjNbCbwL2OTuXe5+HNjEawOoYGqScS4+vZFHdnQUuhQRkbxa6HMWre5+KCwfBlrD8ipgX9Z++0PbTO2vYWY3m9lmM9vc2dk5v1XP4p1vXM6Lh/vYf1zPtxCRpatgJ7jd3ZnHqc7d/W533+juG1taWubra+f0jjdGeffoi+pdiMjStdBhcSQMLxHeM39hDwBtWfutDm0ztReNM1tqWNdczb8/d2junUVEFqmFDosHgMwVTTcC381q/0i4KupyoCcMVz0EXGNmjeHE9jWhrah88JI2ntzbxY5DvXPvLCKyCOXz0tlvAD8Bzjaz/WZ2E/BZ4Goz2wW8M6wDfA/YA7QD/wD8DoC7dwF/DjwdXp8ObUXlhkvaqCyP8U8/3lvoUkRE8mLGhx+9Xu7+oRk2vWOafR24ZYbvuQe4Zx5Lm3cNVQnef/Fq7nv6VW7+72dyVnjsqojIUqE7uOfJre9cT1Uizu99cyt9w7qjW0SWFoXFPGmuSfL5D5zP9kO9fODvfsKz+7oLXZKIyLyxaARoadm4caNv3ry5ID/7h7s6ueXrP6N3eJxVDZWctbyGFXUVtNYlWV5XwerGSi5d10RVIm8jgCIip8TMnnH3jdNt01+sefbf1rfw409cxf1bDvDU3i5eOTbIjkO9HO0fIR1yOREr4y3rm/n1y0/nrRtaKCuzwhYtIjIH9SwWyHgqzbGBUXYd6efxnR088OxBOvpGOGt5DR+/egPXnrcCM4WGiBTObD0LhUWBjI6n+Y8XDnHnI7vY3TnAm1bV8/FrNvDWDS0KDREpCIVFEUulnfu3HOAL//US+48PcfHpjfz+1Ru48sxlCg0RWVAKi0VgdDzNtzbv44uPtXOoZ5hL1zbxW287g7duWE5M5zREZAEoLBaR4bEU33x6H3c93s6R3hHamir58GWn876LVrG8tqLQ5YnIEqawWITGUmke2naYr/7kFZ7c20WZwWXrlvGL55/GteetoKk6UegSRWSJUVgscu0dfTyw9SAPPneIPUcHiJUZl61r4ppzWrnm3BWc1lBZ6BJFZAlQWCwR7s62g7187/lDPLz9CO0d/QC8aVX9RHBsaK3RiXEROSUKiyVqd2c/m7Yf4aFth9nyajcApy+r4ppzWnnXuSu4cE2jTo6LSM4UFiWgo3eYTTuO8PC2Izyx+yhjKae5JsE739jKNee2cuWZzVSUxwpdpogUMYVFiekbHuPxnZ08tO0wj+/spH9knOpEjLedvZxrzm3lbWcvp76yvNBlikiRUViUsJHxFD/ZfYyHtx9h0/YjdPaNEC8zLl3XxFs3tPDWs1s4u7VW5zlERGEhkXTa2bq/m4e2Heb7Ozt58XAfAK11ySg4NiznLWc1U1+lXodIKVJYyLQO9wzzg5c6+f5LnfxwVye9w+OUGVy4pjGERwvnrarXSXKREqGwkDmNp9I8u7+bx3dG4fHc/h4A6ivLufyMJq48s5k3n7WMM1t0aa7IUqWwkJN2tH+EH+06yhO7j/Lj9mMc6B4CoKU2yZVnLuPNZzZzxZnLaGuqKnClIjJfFBbyur16bJAndh/lid3HeGL3MY72jwDQ1lTJlWc0c8m6Ji5Z28iapir1PEQWKYWFzCt3Z1dHP0+0R+Hx0z3H6B0eB2B5bZJL1kbBsXFtE29cWadzHiKLhMJC8iqdjsLj6Ze7ePrlLja/fHxi2KomGeei0xu55PQoPM5vq9fzx0WKlMJCFtyB7iE2Z4XHziN9uEOszNjQWssFbQ1c0FbPBW2NnLW8Rr0PkSKgsJCC6xkc45lXu9j6ajdb9nXz7L7uiaGr6kSMN62u5/y2Bi5sa+CCtkZW1OvZHSILbbaw0HiALIj6qnKuekMrV72hFYiGrl4+NsDWfd1sDeFxz4/2MpaK/uNleW2Sc0+r49zT6ife25oqdfJcpEAUFlIQZWXGGS01nNFSw/suWg1ETwncfqiXra9288KBHrYd7OUHu46SSkcBUlcR55wpAXJmSzXxWFkhD0WkJCgspGhUlMe4aE0jF61pnGgbHkvx4uE+th2MwmPbwV6+9tNXGBlPA5CMl3HW8hrObq1lw4raiffT6ivUCxGZRwoLKWoV5bFwMrxhom08lWbP0QG2Hexh+8Fedh7p54ndx/jOlgMT+9Qm46xvreHsFbVsaI1CZH1rLc01CYWIyCnQCW5ZMnoGx3ipo4+dh/t46Uj0vvNIH92DYxP71FXEw/BXNWc0V08sr11Wred9SMnTCW4pCfVV5eGGwKaJNnens3+Elw7389KRPvYc7WdP5wBPtB/jOz+b7ImYwaqGStY1V3NmVoCsaaritIZKEnGdF5HSprCQJc3MWF5bwfLaCt6yvvmEbQMj4+w9OsCeowPs6YxCZO/RAf518z4GRlMT+5UZrKyvZE1TFW1Nmfcq1oRXU7WGtmTpU1hIyapOxjlvVT3nrao/od3d6egb4eWjA7zaNci+40Ps6xrk1a5BHtvZSWffyAn7VyVirGmqYnVjFac1VLCyvnLifWV9BSvqKyjXFVuyyCksRKYwM1rrKmitq+CyM5a9ZvvQaIr9x6PwyLz2dQ2y//ggT+2dnCdr8vui+0amhshpDZWsqK+gpSZJS21S50ykqCksRE5SZSLG+nB11XT6R8Y51D3EwZ7hE94P9Qzz4uE+Hnuxk6Gx1Gs+V19ZTkttkuW1yYn35bUVU9oqqKuMa9hLFpzCQmSe1STjs4aJu9MzNMbB7mGO9A7T0TdMZ98IHX0jdPSO0Nk/ws9ePU5H78jE/STZEvEymqoSNFUnWFaToDGzXJ2gccp7U3WChqqE5t6S101hIbLAzIyGquiP+Dmn1c24n7vTNzJOR+/IRKBkXscGRjk+MMqxgVFeOTbI8YFR+kbGp/0eM2ioLKexOkFDZTl1leXUT3nVVUxpryqnriJOTVK9GIkoLESKlJlFf8Qryjlrec2c+4+Mp+geHONY/yjHB6Mg6eofoWtwjK6BEY4PjNEzFG3f0zlA7/AYvUNjpGe51SpWZtRVxKmvLKcmhEdNMk51eNVOuxyjtiIsJ+ITyzrJv7gtmrAws2uBvwFiwD+6+2cLXJJIUUnGY7TWxWity33G3nTa6R8dp2cwCpJMgPSEV+/Q+MRy/8g4/SPjHOweZmB0nP7haH26obLpJGJlVCZiVJbHXvNeEZarwntFedRelYhRkdm3PEZlooyK8hjJeIxkvCy8YiTCcuZd84XNv0URFmYWA74IXA3sB542swfcfXthKxNZ3MrKJnsvbaf4HWOpNAMhSAZGUvSPjNE/korahjPt4/SPjjM8mmJoLMXQWJqh0RRDY+MMjo5zbGCU4bEUg6PjDI2mGB5LM5rKLYSmPS4jBMfUIJlcT2a1J2JRwJTHjHhZGfGYUR4rI15mUXvmPWbEy4zyeBnlYb/s7fGYTbRP/a5YmREzI1ZmlGUtZ9rLyjhhPVZmRTUEuCjCArgUaHf3PQBmdh9wHaCwECmw8ljZxDmY+TSeSjM8nmZwdJzh0XQImShQRsfTjIynT3gfHU+d2JZKMzKWCu9pRsJ7pr1/ZJxj/dH66Hia8VSasbQznkoznnLG0tH7+GzjdHlmRgiSKKQyy7Eyo8xCW1kImrDtqrOX8yfvOWfea1ksYbEK2Je1vh+4LHsHM7sZuBlgzZo1C1eZiORFPFZGTayMmmRh/0y5O2MpZzydjt5TacbTzlgqEyaZ9qyAyQqezGdTaZ94pd1JpSHlTiqVJuXRkGDKfZr9Qnsqep/cL/rM+JT9VjZU5uXfYbGExZzc/W7gbogmEixwOSKyRJgZibiRoLTPgyyWoz8AJwyprg5tIiKyABZLWDwNrDezdWaWAG4AHihwTSIiJWNRDEO5+7iZ/S7wENGls/e4+7YClyUiUjIWRVgAuPv3gO8Vug4RkVK0WIahRESkgBQWIiIyJ4WFiIjMSWEhIiJzMveld/+amXUCr7yOr2gGjs5TOYuFjrk06JhLw6ke8+nu3jLdhiUZFq+XmW12942FrmMh6ZhLg465NOTjmDUMJSIic1JYiIjInBQW07u70AUUgI65NOiYS8O8H7POWYiIyJzUsxARkTkpLEREZE4Kiyxmdq2Z7TSzdjP7RKHrmS9mdo+ZdZjZC1ltTWa2ycx2hffG0G5mdmf4N3jOzC4qXOWnzszazOwxM9tuZtvM7NbQvmSP28wqzOwpM3s2HPOnQvs6M3syHNs3wzT/mFkyrLeH7WsLegCvg5nFzGyLmT0Y1pf0MZvZy2b2vJltNbPNoS2vv9sKi8DMYsAXgZ8HzgE+ZGbz/yDbwvhn4NopbZ8AHnH39cAjYR2i418fXjcDX1qgGufbOPBxdz8HuBy4JfzvuZSPewS4yt3PBy4ArjWzy4HPAXe4+1nAceCmsP9NwPHQfkfYb7G6FdiRtV4Kx/x2d78g636K/P5uu7te0Un+K4CHstZvA24rdF3zeHxrgRey1ncCK8PySmBnWP574EPT7beYX8B3gatL5biBKuBnRM+qPwrEQ/vE7znR82GuCMvxsJ8VuvZTONbV4Y/jVcCDgJXAMb8MNE9py+vvtnoWk1YB+7LW94e2parV3Q+F5cNAa1hecv8OYajhQuBJlvhxh+GYrUAHsAnYDXS7+3jYJfu4Jo45bO8Bli1owfPjC8AfAumwvoylf8wOPGxmz5jZzaEtr7/bi+bhR5I/7u5mtiSvoTazGuDfgI+5e6+ZTWxbisft7ingAjNrAO4H3lDYivLLzN4DdLj7M2b2tgKXs5De4u4HzGw5sMnMXszemI/fbfUsJh0A2rLWV4e2peqIma0ECO8doX3J/DuYWTlRUHzd3b8Tmpf8cQO4ezfwGNEQTIOZZf7DMPu4Jo45bK8Hji1spa/bm4H3mtnLwH1EQ1F/w9I+Ztz9QHjvIPqPgkvJ8++2wmLS08D6cBVFArgBeKDANeXTA8CNYflGojH9TPtHwhUUlwM9WV3bRcOiLsSXgR3ufnvWpiV73GbWEnoUmFkl0TmaHUSh8f6w29RjzvxbvB941MOg9mLh7re5+2p3X0v0/9lH3f3DLOFjNrNqM6vNLAPXAC+Q79/tQp+oKaYX8G7gJaJx3v9b6Hrm8bi+ARwCxojGK28iGqd9BNgF/BfQFPY1oqvCdgPPAxsLXf8pHvNbiMZ1nwO2hte7l/JxAz8HbAnH/ALwp6H9DOApoB34VyAZ2ivCenvYfkahj+F1Hv/bgAeX+jGHY3s2vLZl/lbl+3db032IiMicNAwlIiJzUliIiMicFBYiIjInhYWIiMxJYSEiInNSWMiSZ2apMDtn5jVvMwqb2VrLms13lv3+zMwGwx23mbb+haxB5PXQdB9SCobc/YJCF0E0ad3HgT8qdCHZzCzuk/MoiUxLPQspWeGZAH8VngvwlJmdFdrXmtmjYe7/R8xsTWhvNbP7LXpexLNmdmX4qpiZ/YNFz5B4ONw9PZ17gA+aWdOUOk7oGZjZH5jZn4Xlx83sDjPbbGY7zOwSM/tOeGbBX2R9TdzMvh72+baZVYXPX2xm3w8Tzj2UNR3E42b2BYuehXDr6//XlKVOYSGloHLKMNQHs7b1uPubgP9HNHspwN8C97r7zwFfB+4M7XcC3/foeREXEd09C9FzAr7o7ucC3cAvz1BHP1FgnOwf51GPnlnwd0RTONwCnAf8hpllZkw9G7jL3d8I9AK/E+bG+lvg/e5+cfjZn8n63oS7b3T3z59kPVKCNAwlpWC2YahvZL3fEZavAN4Xlr8K/FVYvgr4CEzM7tpj0dPI9rr71rDPM0TPDpnJncBWM/vrk6g/M0fZ88A2D/P6mNkeogniuoF97v7jsN/XgI8C/0kUKpvCbLsxomlfMr55EjVIiVNYSKnzGZZPxkjWcgqYaRgKd+82s38h6h1kjHNiL79ihu9PT/lZaSb/Pzy1dieaE2ibu18xQzkDM9UpMpWGoaTUfTDr/Sdh+QmiGUwBPgz8MCw/Avw2TDxkqP4Uf+btwP9i8g/9EWC5mS0zsyTwnlP4zjVmlgmFXwV+RPREtJZMu5mVm9m5p1izlDiFhZSCqecsPpu1rdHMniM6j/B7oe1/A78Z2n+dyXMMtwJvN7PniYabTukZ7e5+lOgZBMmwPgZ8mmgW1E3AizN/ekY7iZ4zvgNoBL7k7qNE03B/zsyeJZp598qZv0JkZpp1VkpWeGDOxvDHW0RmoZ6FiIjMST0LERGZk3oWIiIyJ4WFiIjMSWEhIiJzUliIiMicFBYiIjKn/w/f6m5WtKluawAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -371,7 +371,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[211.27751]]\n" + "[[211.31052]]\n" ] } ], @@ -424,7 +424,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "These are the layer variables: [array([[1.8288891]], dtype=float32), array([28.388597], dtype=float32)]\n" + "These are the layer variables: [array([[1.8242567]], dtype=float32), array([28.88485], dtype=float32)]\n" ] } ], @@ -468,17 +468,17 @@ "Finished training the model\n", "[[211.74745]]\n", "Model predicts that 100 degrees Celsius is: [[211.74745]] degrees Fahrenheit\n", - "These are the l0 variables: [array([[ 0.85532796, -0.12807783, -0.39683163, -0.24233988]],\n", - " dtype=float32), array([ 3.0566595, 2.533055 , -3.0615253, 2.7450564], dtype=float32)]\n", - "These are the l1 variables: [array([[-0.42321247, 1.0127366 , 0.54204386, -1.0158232 ],\n", - " [ 0.05112636, 0.6585605 , 0.4343624 , -0.05569302],\n", - " [ 0.17409138, -0.56599826, -0.13789305, -0.02274832],\n", - " [-0.15293898, 1.0811394 , 0.8640427 , -0.8141512 ]],\n", - " dtype=float32), array([-2.6983292, 3.1496687, 3.1004574, -2.8369133], dtype=float32)]\n", - "These are the l2 variables: [array([[-0.6664304],\n", - " [ 1.0862367],\n", - " [ 0.5182525],\n", - " [-0.9018049]], dtype=float32), array([3.1196442], dtype=float32)]\n" + "These are the l0 variables: [array([[ 0.2827084 , 0.02016015, -0.657932 , 0.7313295 ]],\n", + " dtype=float32), array([-3.0189989, 1.935863 , -3.7436323, 3.5259597], dtype=float32)]\n", + "These are the l1 variables: [array([[-0.57352215, -0.0890469 , -0.8387967 , 0.20074648],\n", + " [-0.12136912, 0.09309384, 0.607734 , 0.2662143 ],\n", + " [-0.5187128 , -0.46180978, -0.85050374, -0.01211296],\n", + " [ 0.34861323, 0.69532645, 0.25092658, -1.0978427 ]],\n", + " dtype=float32), array([ 2.5189095, 2.9826567, 3.5887501, -2.3001587], dtype=float32)]\n", + "These are the l2 variables: [array([[ 0.54666907],\n", + " [ 0.62892 ],\n", + " [ 1.5317764 ],\n", + " [-0.37113148]], dtype=float32), array([3.5186548], dtype=float32)]\n" ] } ], @@ -708,7 +708,7 @@ { "data": { "text/plain": [ - "<tensorflow.python.keras.callbacks.History at 0x7f6d7a234790>" + "<tensorflow.python.keras.callbacks.History at 0x7fae47330350>" ] }, "execution_count": 16, @@ -734,7 +734,7 @@ { "data": { "text/plain": [ - "[<matplotlib.lines.Line2D at 0x7f6d7a041110>]" + "[<matplotlib.lines.Line2D at 0x7fae4709a890>]" ] }, "execution_count": 17, @@ -743,7 +743,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWxUlEQVR4nO3df5Bd5X3f8ffXq7uwu8FgQLWDJAJxsVzGdo2zgbhkEmo7QSIeoJO0QcGd/CDWH4ZOU2doofFglyQTEidtPBNiRyYOiXEg4KFU4ypD2oCnLQHKEmxkIErED4OEDTIY4tjC+sG3f9x7t5fV7r137z17z7NX79fMzu75cc/56tHuZ599nnPPicxEkjS+Xld3AZKklWXQS9KYM+glacwZ9JI05gx6SRpzBr0kjbmeQR8Rn4mI5yPiK0tsvzQiHo6InRHxVxHxT6svU5I0qH569DcCm7psfxL40cx8O/CrwLYK6pIkVWRNrx0y839FxGldtv9Vx+J9wPoK6pIkVaRn0C/TZcCfL7UxIrYCWwFmZmZ+4K1vfWvFp5ek8fbggw9+IzPXLuc1lQV9RPxzmkH/w0vtk5nbaA3tzM7O5tzcXFWnl6SjQkR8dbmvqSToI+IdwA3A5sx8oYpjSpKqMfTllRFxKnA78K8z82+HL0mSVKWePfqIuBk4Dzg5IvYAHwUaAJn5KeAa4CTg9yMC4FBmzq5UwZKk5ennqpstPbb/IvCLlVUkSaqU74yVpDFn0EvSmDPoJWnMGfSSNOYMekkacwa9JI05g16SxpxBL0ljzqCXpDFn0EvSmDPoJWnMGfSSNOYMekkacwa9JI05g16SxpxBL0ljzqCXpDFn0EvSmDPoJWnMGfSSNOYMekkacwa9JI05g16SxpxBL0ljzqCXpDG3ptcOEfEZ4P3A85n5tkW2B/AJ4ALgO8DPZeZfV12oqnPHQ3v5+J27ePal/ZxywhRXnr+Ri89aV+t566pp0HpXo4/csZOb73+Gw5lMRLDlnA382sVvr7ussWvnEvUMeuBG4PeAP1li+2bgjNbHOcAnW59VoDse2svVt+9k/8HDAOx9aT9X374TYEV/uLqdF6ilpm7qaqeV8pE7dnLTfU/PLx/OnF+uM+zHrZ1LFZnZe6eI04AvLNGj/wPgi5l5c2t5F3BeZn6t2zFn10/m3OVvGqhoDe5b3z3IYv/lEXDcMY1azgvUUlM3fbVTAO/9KPzgZSOtbRBvvnoHhxf5B01E8PhvXFBDRU3nXncXe1/af8T6dSdMcc9V76mhovJFxIOZObuc1/TTo+9lHfBMx/Ke1rojgj4itgJbAc5c93p4589UcHotx233PLnktl845/RaztvNStbUTV/t9KXPwZ65VRH0i4V8t/Wj8uwiId9tvQZTRdD3LTO3AdsAZmdnk83XjfL0Av7wy0v3oH5h88r1oLqdF6ilpm76aqfH74KD3x5xZYOZiFiyR1+nU06YWrSdT2l9X6gaVVx1sxfY0LG8vrVOBbry/I1MNSZes26qMcGV52+s7bx11dRNXzVNTsPB1dHz3HLOhmWtH5US/+/HURU9+u3AFRFxC81J2Jd7jc+rPu0JrlFf5dDPeUu68qKvdmpMw4Hv1FTh8rQnXEu76qau78ejTc/J2Ii4GTgPOBl4Dvgo0ADIzE+1Lq/8PWATzcsrfz4z53qdeHZ2Nufmeu4mleumn4TvvAhb7667Eh1FVmQyNjO39NiewOXLOak0FhrTcHBP3VVIPfnOWGlQjWk4uDqGbnR0M+ilQa2iyVgd3Qx6aVCraDJWRzeDXhpUe+im5jcdSb0Y9NKgGlNAwqFX6q5E6sqglwY1OdP87Di9CmfQS4NqtN6mf2B13AZBRy+DXhpUY7r52R69CmfQS4OaD3p79CqbQS8NatIevVYHg14aVLtH77X0KpxBLw2qPRnrbRBUOINeGtT8GL1Br7IZ9NKgDHqtEga9NCgnY7VKGPTSoJyM1Sph0EuDmmjA6xoO3ah4Br00DB8+olXAoJeGMWnQq3wGvTSMxpRj9CqeQS8NozHjVTcqnkEvDaMx5U3NVDyDXhpGY8oevYpn0EvDmJxxjF7F6yvoI2JTROyKiN0RcdUi20+NiLsj4qGIeDgiLqi+VKlAjSmvulHxegZ9REwA1wObgTOBLRFx5oLdPgLcmplnAZcAv191oVKRvI5eq0A/Pfqzgd2Z+URmHgBuAS5asE8Cr299fTzwbHUlSgUz6LUK9BP064BnOpb3tNZ1+hjwgYjYA+wA/s1iB4qIrRExFxFz+/btG6BcqTCT007GqnhVTcZuAW7MzPXABcBnI+KIY2fmtsyczczZtWvXVnRqqUaNaTh8AA4fqrsSaUn9BP1eYEPH8vrWuk6XAbcCZOa9wLHAyVUUKBXNe9JrFegn6B8AzoiI0yNikuZk6/YF+zwNvBcgIv4JzaB3bEbjz8cJahXoGfSZeQi4ArgTeIzm1TWPRMS1EXFha7dfBj4YEV8GbgZ+LjNzpYqWijE50/xs0Ktga/rZKTN30Jxk7Vx3TcfXjwLnVluatAq0e/S+aUoF852x0jAa7R69V96oXAa9NIz5MXpvbKZyGfTSMOaD3h69ymXQS8NoT8YesEevchn00jDs0WsVMOilYTgZq1XAoJeG4WSsVgGDXhqGQzdaBQx6aRgRzfvdOBmrghn00rAa3qpYZTPopWH58BEVzqCXhjVp0KtsBr00rMaUNzVT0Qx6aViNGcfoVTSDXhpWY8rr6FU0g14aVmPKHr2KZtBLw5qccYxeRTPopWE1przqRkUz6KVh+YYpFc6gl4bVfsNUZt2VSIsy6KVhTU4DCYdeqbsSaVEGvTSsxnTzsxOyKpRBLw2rHfROyKpQBr00rPl70hv0KpNBLw2r/YBwg16F6ivoI2JTROyKiN0RcdUS+/yriHg0Ih6JiD+ttkypYO0evWP0KtSaXjtExARwPfBjwB7ggYjYnpmPduxzBnA1cG5mfjMi/tFKFSwVxweEq3D99OjPBnZn5hOZeQC4BbhowT4fBK7PzG8CZObz1ZYpFcwHhKtw/QT9OuCZjuU9rXWd3gK8JSLuiYj7ImLTYgeKiK0RMRcRc/v27RusYqk0PiBchatqMnYNcAZwHrAF+HREnLBwp8zclpmzmTm7du3aik4t1aw9GesDwlWofoJ+L7ChY3l9a12nPcD2zDyYmU8Cf0sz+KXxZ49ehesn6B8AzoiI0yNiErgE2L5gnzto9uaJiJNpDuU8UV2ZUsHm3zBl0KtMPYM+Mw8BVwB3Ao8Bt2bmIxFxbURc2NrtTuCFiHgUuBu4MjNfWKmipaJMNOB1DSdjVayel1cCZOYOYMeCddd0fJ3Ah1sf0tFn0lsVq1y+M1aqQmPayVgVy6CXquDDR1Qwg16qQvvhI1KBDHqpCpMGvcpl0EtVaEx5UzMVy6CXquAYvQpm0EtVaEx7Hb2KZdBLVWhM2aNXsQx6qQqTM07GqlgGvVQFJ2NVMINeqkJjBl49CIcP1l2JdASDXqrC/K2K7dWrPAa9VIVJb1Wschn0UhXa96T3xmYqkEEvVcGHj6hgBr1Uhfmgd4xe5THopSpMGvQql0EvVaF91Y3X0qtABr1UBYduVDCDXqqCQa+CGfRSFbzqRgUz6KUqOBmrghn0UhXWHAuEk7EqkkEvVSHCB4SrWH0FfURsiohdEbE7Iq7qst9PRkRGxGx1JUqrRGPKoFeRegZ9REwA1wObgTOBLRFx5iL7HQf8W+D+qouUVoVJnxurMvXToz8b2J2ZT2TmAeAW4KJF9vtV4DeBVyqsT1o9GtPe1ExF6ifo1wHPdCzvaa2bFxHvAjZk5n/vdqCI2BoRcxExt2/fvmUXKxWtYY9eZRp6MjYiXgf8Z+CXe+2bmdsyczYzZ9euXTvsqaWyOBmrQvUT9HuBDR3L61vr2o4D3gZ8MSKeAn4I2O6ErI46kwa9ytRP0D8AnBERp0fEJHAJsL29MTNfzsyTM/O0zDwNuA+4MDPnVqRiqVQ+IFyF6hn0mXkIuAK4E3gMuDUzH4mIayPiwpUuUFo1HKNXodb0s1Nm7gB2LFh3zRL7njd8WdIq1JiGg151o/L4zlipKo0pe/QqkkEvVWVypjkZm1l3JdJrGPRSVdpPmbJXr8IY9FJVGjPNzwa9CmPQS1WZ79E7IauyGPRSVSZ9ypTKZNBLVWk/TtAbm6kwBr1UFZ8bq0IZ9FJVGj43VmUy6KWqzE/GGvQqi0EvVaU9GeuNzVQYg16qikM3KpRBL1XFyVgVyqCXqmKPXoUy6KWqTKyBiUmDXsUx6KUq+ZQpFcigl6rUmLFHr+IY9FKVGlMGvYpj0EtVmvS5sSqPQS9VqTHtTc1UHINeqlLDHr3KY9BLVWpMO0av4hj0UpWcjFWBDHqpSpPTXkev4vQV9BGxKSJ2RcTuiLhqke0fjohHI+LhiPjLiPi+6kuVVgHH6FWgnkEfERPA9cBm4ExgS0ScuWC3h4DZzHwH8Hngt6ouVFoVHKNXgfrp0Z8N7M7MJzLzAHALcFHnDpl5d2a2v7vvA9ZXW6a0SjSm4dWDcPhg3ZVI8/oJ+nXAMx3Le1rrlnIZ8OfDFCWtWpPewVLlWVPlwSLiA8As8KNLbN8KbAU49dRTqzy1VIb24wQPfAeOPb7eWqSWfnr0e4ENHcvrW+teIyLeB/wKcGFmfnexA2XmtsyczczZtWvXDlKvVLbGTPOzPXoVpJ+gfwA4IyJOj4hJ4BJge+cOEXEW8Ac0Q/756suUVgkfEK4C9Qz6zDwEXAHcCTwG3JqZj0TEtRFxYWu3jwPfA9wWEV+KiO1LHE4ab5M+TlDl6WuMPjN3ADsWrLum4+v3VVyXtDq1Hyfojc1UEN8ZK1XJB4SrQAa9VCUfEK4CGfRSlZyMVYEMeqlKk63LK72xmQpi0EtVskevAhn0UpXWHAuEk7EqikEvVSnCO1iqOAa9VLVJg15lMeilqjWmnIxVUQx6qWqNGXv0KopBL1XNB4SrMAa9VLXJGa+6UVEMeqlqjSlvaqaiGPRS1RrT9uhVFINeqprX0aswBr1UNSdjVRiDXqra5LTX0asoBr1UtcY0HNoPr75adyUSYNBL1Ws/fOTQK/XWIbUY9FLVfMqUCmPQS1WbNOhVFoNeqlr74SNOyKoQBr1UtUbrcYL26FUIg16qmo8TVGEMeqlq7QeEexsEFWJNPztFxCbgE8AEcENmXrdg+zHAnwA/ALwA/HRmPlVtqdIqMT9Gv/SNze54aC8fv3MXz760n1NOmOLK8zdy8VnrALj00/dyz+Mvzu977ptP5HMffHdfr+227SN37OTm+5/hcCYTEWw5ZwO/dvHb+/ondTtuP9sHPfZK1bxS9ZaqZ9BHxARwPfBjwB7ggYjYnpmPdux2GfDNzPzHEXEJ8JvAT69EwVLx5oduFu/R3/HQXq6+fSf7Dx4GYO9L+7n69p0A3Db39GtCHuCex1/k0k/fy+c++O6urwWW3Db31Re56b6n5/c7nDm/3Cs4u53z4rPW9dw+6LFXqmZYup2GqbfksI/M7L5DxLuBj2Xm+a3lqwEy8zc69rmztc+9EbEG+DqwNrscfHZ2Nufm5ir4J0iF+dZz8DtvgTe9A97wfUds/uKuffNB0WmqMbHo+rbNb3tT19cCS2575eCrJEf+OAbBpre9ses/p9s5z9u4tuf2QY+9UjXD0u00TL29XluVuORzD2bm7HJe08/QzTrgmY7lPcA5S+2TmYci4mXgJOAbrykwYiuwFeDUU09dTp3S6jF9Epzx4/DyHnjh8SM2v+nQtyAWed0hFl/f9sK3u7+WJV7f87j/0GVjj3pf+Pue2wc+9krVzBLHHrbeHq+tU19j9FXJzG3ANmj26Ed5bmlkJtbApbctufmy6+5i70tHDuusO2Fq0fVtT33oJ7q+Flhy29dffoXDi/yBPRHB4x+6YMlz9qr3ng+9p+f2QY+9UjXD0u00TL29XluZy7v9BlxcP1fd7AU2dCyvb61bdJ/W0M3xNCdlJS1w5fkb54cQ2qYaE1x5/kbOffOJi76mvb7ba7tt23LOBhaz1Pp+6+1n+6DHXqmaV6rekvXTo38AOCMiTqcZ6JcAP7Ngn+3AzwL3Aj8F3NVtfF46mrUn7Ra7cuPis9Z1veqm22vbljouMNAVLL3O2U9Ng7bFStW8EvWWrOdkLEBEXAD8Ls3LKz+Tmb8eEdcCc5m5PSKOBT4LnAW8CFySmU90O6aTsZK0fBGxIpOxZOYOYMeCddd0fP0K8C+Xc2JJ0mj4zlhJGnMGvSSNOYNeksacQS9JY86gl6QxZ9BL0pgz6CVpzBn0kjTmDHpJGnMGvSSNOYNeksZcXzc1W5ETR3wL2FXLyZd2MgsellKIEuuypv5YU/9KrKvEmjZm5nHLecFIHzyywK7l3oFtpUXEXGk1QZl1WVN/rKl/JdZVak3LfY1DN5I05gx6SRpzdQb9thrPvZQSa4Iy67Km/lhT/0qsayxqqm0yVpI0Gg7dSNKYM+glacyNLOgjYiIiHoqIL7SWT4+I+yNid0T8WURMjqqWHnXdGBFPRsSXWh/vHHE9T0XEzta551rrToyI/xERf9f6/IYCavpYROztaKcLRlzTCRHx+Yj4m4h4LCLeXXc7damrtraKiI0d5/1SRPx9RPxSnW3Vpaa6v6f+XUQ8EhFfiYibI+LYunNqiZqWnVEjG6OPiA8Ds8DrM/P9EXErcHtm3hIRnwK+nJmfHEkx3eu6EfhCZn5+1LW06nkKmM3Mb3Ss+y3gxcy8LiKuAt6Qmf+h5po+BvxDZv72qOpYUNMfA/87M29o/fBNA/+RGtupS12/RI1t1VHbBLAXOAe4nJrbapGafp6a2iki1gH/BzgzM/e38mkHcAE15VSXms5jmRk1kh59RKwHfgK4obUcwHuAdqF/DFw8ilq61VWwi2i2EdTUViWJiOOBHwH+ECAzD2TmS9TcTl3qKsV7gccz86uU8z3VWVPd1gBTEbGG5i/or1F/Ti2s6dlBDjKqoZvfBf498Gpr+STgpcw81FreA6wbUS3d6mr79Yh4OCL+S0QcM+KaEviLiHgwIra21r0xM7/W+vrrwBsLqAngilY7fWbEwySnA/uAP4rmsNsNETFD/e20VF1QX1t1ugS4ufV13W3V1lkT1NROmbkX+G3gaZoB/zLwIDXm1GI1ZeZftDYvK6NWPOgj4v3A85n54Eqfazm61HU18FbgB4ETgVH/OfvDmfkuYDNweUT8SOfGbI61jfqa2MVq+iTwZuCdNL8Jf2eE9awB3gV8MjPPAr4NXNW5Q03ttFRddbYVAK1hpAuB2xZuq6mtFquptnZq/VK5iOYv61OAGWDTqM7fb00R8QEGyKhR9OjPBS5sjfPeQvNPoU8AJ7T+HAFYT3OcbpSOqCsibsrMr2XTd4E/As4eZVGt3+Jk5vPAf22d/7mI+F6A1ufn664pM5/LzMOZ+SrwaUbbTnuAPZl5f2v58zQDttZ2WqqumtuqbTPw15n5XGu57rY6oqaa2+l9wJOZuS8zDwK308yIOnNqsZr+2SAZteJBn5lXZ+b6zDyN5p9pd2XmpcDdwE+1dvtZ4L+tdC191PWBjm/+oDke95VR1RQRMxFxXPtr4Mdb599Os41gxG21VE3tdmr5F4ywnTLz68AzEbGxteq9wKPU2E7d6qqzrTps4bVDJLW2Vctraqq5nZ4Gfigipls/++3vqTpzarGaHhsoozJzZB/8/9ligO8H/i+wm+afbseMspYudd0F7Gw13k3A94ywju8Hvtz6eAT4ldb6k4C/BP4O+J/AiQXU9NlWOz1MMzS+d8T/Z+8E5lrnvwN4Q53t1KOuuttqBngBOL5jXa1ttURNdbfTfwL+pvWz/1ngmLpzaomalp1R3gJBksac74yVpDFn0EvSmDPoJWnMGfSSNOYMekkacwa9JI05g16Sxtz/A4ba74zgiCSpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW1ElEQVR4nO3df5Bd5X3f8fdXq7uwu8aWMYodJBEwVeQQOzXOFuKSiYntFIl4gE7SBsXu5Aex/jC0TZ2hhcaDXZJMiJ2m8UwwjsAO8Y9CsYdSjasM+YE9bTFQlmAjA1EsfhgkjJHBEP8A9OvbP+7d7WXZvXt3dc95zt59v2Y0u+ec557z5WH10bPPc+49kZlIkobXqtIFSJKqZdBL0pAz6CVpyBn0kjTkDHpJGnIGvSQNuQWDPiI+GRFPRcTX5jn+7oi4LyJ2RcSXI+IfD75MSdJS9TOivx7Y3OP4I8DbMvNNwO8A2wdQlyRpQFYv1CAz/1dEnNzj+Je7Nu8E1g+gLknSgCwY9It0EfAX8x2MiG3ANoCJiYmffMMb3jDgy0vScLvnnnu+nZlrF/OagQV9RPws7aD/6fnaZOZ2OlM7k5OTOTU1NajLS9KKEBHfWOxrBhL0EfETwHXAlsx8ehDnlCQNxlHfXhkRJwE3A/8qM//+6EuSJA3SgiP6iLgBOBs4ISL2Ah8EWgCZ+XHgCuA1wMciAuBQZk5WVbAkaXH6uetm6wLHfwP4jYFVJEkaKN8ZK0lDzqCXpCFn0EvSkDPoJWnIGfSSNOQMekkacga9JA05g16ShpxBL0lDzqCXpCFn0EvSkDPoJWnIGfSSNOQMekkacga9JA05g16ShpxBL0lDzqCXpCFn0EvSkDPoJWnIGfSSNOQMekkacga9JA05g16ShpxBL0lDbvVCDSLik8C7gKcy841zHA/go8C5wA+AX83Mvx10oRqcW+7dx0du3c0Tzz7PiWvGuPScTVxw+rqi1y1V01LrXY4+cMsubrjrcQ5nMhLB1jM38LsXvKl0WUPXz020YNAD1wN/AnxqnuNbgI2dP2cC13S+qoFuuXcfl9+8i+cPHgZg37PPc/nNuwAq/cvV67pAkZp6KdVPVfnALbv4zJ2PzWwfzpzZLhn2w9bPTRWZuXCjiJOBL8wzov9T4EuZeUNnezdwdmZ+s9c5J9eP5tTFr1tS0Vq67754kLn+l0fAcce0ilwXKFJTL0fdTyOr4Rc+Aaf+7OCLW4JTL9/J4Tn+g0YieOj3zy1QUdtZV93Gvmeff9n+dWvGuP2ytxeoqPki4p7MnFzMa/oZ0S9kHfB41/bezr6XBX1EbAO2AZy27pXw5l8ewOW1GJ+7/ZF5j/36macUuW4vVdbUy1H105FDcPe18OR9jQn6uUK+1/66PDFHyPfar6UZRND3LTO3A9sBJicnky1X1Xl5AZ/46vwjqF/fUt0Iqtd1gSI19XJU/XTkSDvoD/ygouoWbyRi3hF9SSeuGZuzn0/s/FxoMAZx180+YEPX9vrOPjXQpedsYqw18pJ9Y60RLj1nU7Hrlqqpl6OqadUqWD0GB5sT9FvP3LCo/XVp4v/7YTSIEf0O4JKIuJH2IuxzC83Pq5zpBa6673Lo57pNuvPiqPup1aygn15wbdpdN6V+HleaBRdjI+IG4GzgBOBbwAeBFkBmfrxze+WfAJtp3175a5k5tdCFJycnc2pqwWbS8vRHPw6vfxtc8LHSlWjIVLIYm5lbFziewMWLuag09EbH4cD3S1chAb4zVqpGawwOeueImsGgl6rQmmjUHL1WNoNeqkLDFmO1shn0UhVGx526UWMY9FIVWi7GqjkMeqkKLUf0ag6DXqpCa9w5ejWGQS9VYbQT9IU/NEwCg16qRmsM8ggcerF0JZJBL1WiNdH+6vSNGsCgl6rQ6nzMrkGvBjDopSq0xttfvfNGDWDQS1UY7QS999KrAQx6qQozUzeO6FWeQS9VwcVYNYhBL1XBxVg1iEEvVWF0ekTv1I3KM+ilKkyP6F2MVQMY9FIVvL1SDWLQS1WYCXpH9CrPoJeqsHoUVq12RK9GMOilqrTG4YB33ag8g16qis+NVUMY9FJVfPiIGqKvoI+IzRGxOyL2RMRlcxw/KSK+GBH3RsR9EXHu4EuVlhkfJ6iGWDDoI2IEuBrYApwGbI2I02Y1+wBwU2aeDlwIfGzQhUrLzqgPCFcz9DOiPwPYk5kPZ+YB4Ebg/FltEnhl5/tXAU8MrkRpmWqNOaJXI/QT9OuAx7u293b2dfsQ8J6I2AvsBP71XCeKiG0RMRURU/v3719CudIy0ppwjl6NMKjF2K3A9Zm5HjgX+HREvOzcmbk9Myczc3Lt2rUDurTUUN51o4boJ+j3ARu6ttd39nW7CLgJIDPvAI4FThhEgdKyNepirJqhn6C/G9gYEadExCjtxdYds9o8BrwDICJ+jHbQOzejla3lYqyaYcGgz8xDwCXArcCDtO+uuT8iroyI8zrNfgt4b0R8FbgB+NXMzKqKlpYFb69UQ6zup1Fm7qS9yNq974qu7x8AzhpsadIy1xqHwy/CkcOwaqR0NVrBfGesVJXpB4S7IKvCDHqpKjMPHzHoVZZBL1Wl5YhezWDQS1Ux6NUQBr1UFR8nqIYw6KWquBirhjDopaq4GKuGMOilqrQm2l8d0aswg16qyvSI3qBXYQa9VJXR6RG9i7Eqy6CXqjIzR+8Hm6ksg16qyurpqRtH9CrLoJeqsmpVO+wPOqJXWQa9VCUfPqIGMOilKrXGvY9exRn0UpV8bqwawKCXqtQaN+hVnEEvVcnHCaoBDHqpSqOO6FWeQS9VqTXmYqyKM+ilKrUmHNGrOINeqpJ33agBDHqpSqMTLsaqOINeqlJrrP2hZpmlK9EKZtBLVWqNAwmHXixdiVawvoI+IjZHxO6I2BMRl83T5l9GxAMRcX9E/NfBliktUy2fG6vyVi/UICJGgKuBnwP2AndHxI7MfKCrzUbgcuCszPxORPxQVQVLy8pLHhB+fNFStHL1M6I/A9iTmQ9n5gHgRuD8WW3eC1ydmd8ByMynBlumtExNj+i9l14F9RP064DHu7b3dvZ1+1HgRyPi9oi4MyI2z3WiiNgWEVMRMbV///6lVSwtJz43Vg0wqMXY1cBG4GxgK3BtRKyZ3Sgzt2fmZGZOrl27dkCXlhrMOXo1QD9Bvw/Y0LW9vrOv215gR2YezMxHgL+nHfzSymbQqwH6Cfq7gY0RcUpEjAIXAjtmtbmF9mieiDiB9lTOw4MrU1qmZhZjfdOUylkw6DPzEHAJcCvwIHBTZt4fEVdGxHmdZrcCT0fEA8AXgUsz8+mqipaWDRdj1QAL3l4JkJk7gZ2z9l3R9X0C7+/8kTTNqRs1gO+MlarkXTdqAINeqtLoRPurQa+CDHqpSiMtWLXaOXoVZdBLVWv5UcUqy6CXqtYag4PfL12FVjCDXqpaa8wRvYoy6KWqjU44R6+iDHqpaj43VoUZ9FLVWuNO3agog16qWmvcxVgVZdBLVRt1RK+yDHqpaq0xF2NVlEEvVa014WKsijLopap5140KM+ilqo1OwOEDcPhQ6Uq0Qhn0UtX8qGIVZtBLVWv5OEGVZdBLVZsJeu+lVxkGvVS1makbR/Qqw6CXqjb9lCnvpVchBr1UNRdjVZhBL1XNxVgVZtBLVXMxVoUZ9FLVRh3Rq6y+gj4iNkfE7ojYExGX9Wj3CxGRETE5uBKlZW56RO9irApZMOgjYgS4GtgCnAZsjYjT5mh3HPBvgbsGXaS0rM1M3Rj0KqOfEf0ZwJ7MfDgzDwA3AufP0e53gD8AXhhgfdLyt/rY9leDXoX0E/TrgMe7tvd29s2IiLcAGzLzf/Y6UURsi4ipiJjav3//oouVlqVVqzpPmTLoVcZRL8ZGxCrgj4DfWqhtZm7PzMnMnFy7du3RXlpaPnz4iArqJ+j3ARu6ttd39k07Dngj8KWIeBT4KWCHC7JSl9aEd92omH6C/m5gY0ScEhGjwIXAjumDmflcZp6QmSdn5snAncB5mTlVScXSctQa8z56FbNg0GfmIeAS4FbgQeCmzLw/Iq6MiPOqLlAaCq0xR/QqZnU/jTJzJ7Bz1r4r5ml79tGXJQ2Z0Qnn6FWM74yV6uBzY1WQQS/VoTXu1I2KMeilOrTGXYxVMQa9VIdRR/Qqx6CX6tAadzFWxRj0Uh2mPwIhs3QlWoEMeqkOrTEg4ZCf+af6GfRSHaYfEO48vQow6KU6TD8g/IB33qh+Br1UBx8QroIMeqkOPiBcBRn0Uh2mp24c0asAg16qw8xirPfSq34GvVSHmcVYg171M+ilOrgYq4IMeqkOLsaqIINeqsOoI3qVY9BLdZge0TtHrwIMeqkOIy1Y1fKuGxVh0Et1mf4ES6lmBr1Ul1GDXmUY9FJdWmPO0asIg16qiw8IVyEGvVQXHxCuQvoK+ojYHBG7I2JPRFw2x/H3R8QDEXFfRPxNRPzI4EuVlrnWmCN6FbFg0EfECHA1sAU4DdgaEafNanYvMJmZPwF8HvjwoAuVlr3RCRdjVUQ/I/ozgD2Z+XBmHgBuBM7vbpCZX8zM6Z/gO4H1gy1TGgIuxqqQfoJ+HfB41/bezr75XAT8xdEUJQ0lF2NVyOpBniwi3gNMAm+b5/g2YBvASSedNMhLS83nYqwK6WdEvw/Y0LW9vrPvJSLincBvA+dl5otznSgzt2fmZGZOrl27din1SsvXqCN6ldFP0N8NbIyIUyJiFLgQ2NHdICJOB/6Udsg/NfgypSHQGofDB+DwodKVaIVZMOgz8xBwCXAr8CBwU2beHxFXRsR5nWYfAV4BfC4ivhIRO+Y5nbRyzXwmvQuyqldfc/SZuRPYOWvfFV3fv3PAdUnDZ+YB4T+AY19ZthatKL4zVqqLDwhXIQa9VBcfEK5CDHqpLj4gXIUY9FJdfEC4CjHopbrMLMY6ole9DHqpLi7GqhCDXqqLi7EqxKCX6tKaHtE7daN6GfRSXWbm6F2MVb0MeqkuLsaqEINeqktE+xbLA47oVS+DXqqTDx9RAQa9VKfWuLdXqnYGvVSnUYNe9TPopTr5gHAVYNBLdXKOXgUY9FKdfEC4CjDopTq1xhzRq3YGvVSn0QkXY1U7g16qk4uxKsCgl+rkYqwKMOilOk2/YSqzdCVaQQx6qU6j40DCoRdKV6IVxKCX6jT93Fjn6VUjg16q08wDwg161Wd1P40iYjPwUWAEuC4zr5p1/BjgU8BPAk8Dv5SZjw62VGkIdD6T/q/ve4QPfvnrPPHs85y4ZoxLz9nEBaevA+Dd197B7Q89M/OSs049ns++960z27fcu4+P3Lp7ztf2OvaBW3Zxw12PcziTkQi2nrmB373gTX2V3eu8/Rxf6rmrqrmqeptqwaCPiBHgauDngL3A3RGxIzMf6Gp2EfCdzPxHEXEh8AfAL1VRsLSsdUb01/zV19h38EcA2Pfs81x+8y4APjf12EtCHuD2h57h3dfewWff+1ZuuXcfl9+8i+cPHn7Za4F5j0194xk+c+djM+0OZ85sLxScva55wenrFjy+1HNXVTPM309HU2+Twz5ygdX/iHgr8KHMPKezfTlAZv5+V5tbO23uiIjVwJPA2uxx8snJyZyamhrAf4K0jDz8JfjU+dx55Mf4Tr7iJYfGWiMzATKXLW98HV/avX/ONmOtEYB5j71w8AjJy/86BsHmN762Z8m9rnn2prULHl/quauqGebvp6Opd6HXDkpc+Nl7MnNyMa/pZ+pmHfB41/Ze4Mz52mTmoYh4DngN8O2XFBixDdgGcNJJJy2mTmk4/NCPc8+Rjazhe6yJ77302CEgerz26e/zukPfnbvNoc7X+Y71PO/3ehyk9zWf/ocFjy/53FXVzDznPtp6F3htSX3N0Q9KZm4HtkN7RF/ntaVGeMVa/s34h9n37MvfNLVuzdic+6c9+r6f56Krbpv3tcC8x5587gUOz/EL9kgED73v3J4l97rm7e97+4LHl3ruqmqG+fvpaOpd6LUDc3GvfwHn1s9dN/uADV3b6zv75mzTmbp5Fe1FWUmzXHrOppkphGljrREuPWcTZ516/Jyvmd7f67W9jm09cwNzmW9/v/X2c3yp566q5qrqbbJ+RvR3Axsj4hTagX4h8Muz2uwAfgW4A/hF4LZe8/PSSja9aDfXnRsXnL6u5103vV47bb7zAku6g2Wha/ZT01L7oqqaq6i3yRZcjAWIiHOBP6Z9e+UnM/P3IuJKYCozd0TEscCngdOBZ4ALM/PhXud0MVaSFi8iKlmMJTN3Ajtn7bui6/sXgH+xmAtLkurhO2MlacgZ9JI05Ax6SRpyBr0kDTmDXpKGnEEvSUPOoJekIWfQS9KQM+glacgZ9JI05Ax6SRpyfX2oWSUXjvgusLvIxed3ArMeltIQTazLmvpjTf1rYl1NrGlTZh63mBfU+uCRWXYv9hPYqhYRU02rCZpZlzX1x5r618S6mlrTYl/j1I0kDTmDXpKGXMmg317w2vNpYk3QzLqsqT/W1L8m1jUUNRVbjJUk1cOpG0kacga9JA252oI+IkYi4t6I+EJn+5SIuCsi9kTEf4uI0bpqWaCu6yPikYj4SufPm2uu59GI2NW59lRn3/ER8VcR8fXO11c3oKYPRcS+rn46t+aa1kTE5yPi7yLiwYh4a+l+6lFXsb6KiE1d1/1KRPxDRPxmyb7qUVPpn6l/FxH3R8TXIuKGiDi2dE7NU9OiM6q2OfqIeD8wCbwyM98VETcBN2fmjRHxceCrmXlNLcX0rut64AuZ+fm6a+nU8ygwmZnf7tr3YeCZzLwqIi4DXp2Z/6FwTR8CvpeZf1hXHbNq+nPgf2fmdZ2/fOPAf6RgP/Wo6zcp2FddtY0A+4AzgYsp3Fdz1PRrFOqniFgH/B/gtMx8vpNPO4FzKZRTPWo6m0VmVC0j+ohYD/w8cF1nO4C3A9OF/jlwQR219Kqrwc6n3UdQqK+aJCJeBfwM8AmAzDyQmc9SuJ961NUU7wAeysxv0Jyfqe6aSlsNjEXEatr/QH+T8jk1u6YnlnKSuqZu/hj498CRzvZrgGcz81Bney+wrqZaetU17fci4r6I+C8RcUzNNSXwlxFxT0Rs6+x7bWZ+s/P9k8BrG1ATwCWdfvpkzdMkpwD7gT+L9rTbdRExQfl+mq8uKNdX3S4Ebuh8X7qvpnXXBIX6KTP3AX8IPEY74J8D7qFgTs1VU2b+ZefwojKq8qCPiHcBT2XmPVVfazF61HU58AbgnwDHA3X/OvvTmfkWYAtwcUT8TPfBbM+11X1P7Fw1XQOcCryZ9g/hf66xntXAW4BrMvN04PvAZd0NCvXTfHWV7CsAOtNI5wGfm32sUF/NVVOxfur8o3I+7X+sTwQmgM11Xb/fmiLiPSwho+oY0Z8FnNeZ572R9q9CHwXWdH4dAVhPe56uTi+rKyI+k5nfzLYXgT8DzqizqM6/4mTmU8B/71z/WxHxwwCdr0+Vrikzv5WZhzPzCHAt9fbTXmBvZt7V2f487YAt2k/z1VW4r6ZtAf42M7/V2S7dVy+rqXA/vRN4JDP3Z+ZB4GbaGVEyp+aq6Z8uJaMqD/rMvDwz12fmybR/TbstM98NfBH4xU6zXwH+R9W19FHXe7p++IP2fNzX6qopIiYi4rjp74F/1rn+Dtp9BDX31Xw1TfdTxz+nxn7KzCeBxyNiU2fXO4AHKNhPveoq2VddtvLSKZKifdXxkpoK99NjwE9FxHjn7/70z1TJnJqrpgeXlFGZWdsf/v9qMcDrgf8L7KH9q9sxddbSo67bgF2dzvsM8Ioa63g98NXOn/uB3+7sfw3wN8DXgb8Gjm9ATZ/u9NN9tEPjh2v+f/ZmYKpz/VuAV5fspwXqKt1XE8DTwKu69hXtq3lqKt1P/wn4u87f/U8Dx5TOqXlqWnRG+REIkjTkfGesJA05g16ShpxBL0lDzqCXpCFn0EvSkDPoJWnIGfSSNOT+Hwvx57VZQXaCAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -772,7 +772,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[array([[-0.23214144]], dtype=float32), array([15.041557], dtype=float32)]\n" + "[array([[-0.2321262]], dtype=float32), array([15.041269], dtype=float32)]\n" ] } ], @@ -789,14 +789,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.44163468\n", + "0.4416347\n", "[[0.431 0.23 0.274 0.322 0.375 0.158 0.13 0.23 0.859 0.603 0.23 0.045\n", " 0.375 0.939 0.375 0.086 0.23 0.023 0.069 0.036 0.086 0.069 0.829]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhUUlEQVR4nO3deXxU9b3/8dcnC0lYAwFREpSliKBWkXHF1r0KKlpXUFq3yrUtXWxrf3rrtWpvf11sbW3VtrgrCiJVRMWi1WrrWoOoCBRlUQhUVkHZSfjcP85QImSZhJn5Tk7ez8fjPGbOmTNz3h7JOydnG3N3REQkvvJCBxARkcxS0YuIxJyKXkQk5lT0IiIxp6IXEYk5Fb2ISMw1WvRmdreZLTezd+t5/UIze8fMZprZK2Z2UPpjiohIc6WyRX8vcEoDry8EjnH3A4GfAGPTkEtERNKkoLEZ3P3vZtargddfqTX6GlCRhlwiIpImjRZ9E10GPF3fi2Y2GhgN0K5du8H77bdfmhcvIhJv06dPX+nu3ZrynrQVvZkdR1T0R9c3j7uPJblrJ5FIeGVlZboWLyLSKpjZh019T1qK3sw+D9wJDHX3Ven4TBERSY/dPr3SzPYGHgW+4u7v7X4kERFJp0a36M1sPHAs0NXMqoAfA4UA7v5H4DqgDLjdzACq3T2RqcAiItI0qZx1M7KR178GfC1tiUREJK10ZayISMyp6EVEYk5FLyIScyp6EZGYU9GLiMScil5EJOZU9CIiMaeiFxGJORW9iEjMqehFRGJORS8iEnMqehGRmFPRi4jEnIpeRCTmVPQiIjGnohcRiTkVvYhIzKnoRURiTkUvIhJzKnoRkZhT0YuIxJyKXkQk5lT0IiIxp6IXEYk5Fb2ISMwVNDaDmd0NnAYsd/cD6njdgFuAYcAG4GJ3fzPdQSV9Js9Ywk3T5rJ0zUZ6lJZw1cn9OXNQedDlhsrU3Lwt0bWTZzL+9cXUuJNvxsjDe/K/Zx4YOlbs1nMuarTogXuBW4H763l9KNAvORwO/CH5KDlo8owlXPPoTDZurQFgyZqNXPPoTICM/nA1tFwgSKaGhFpPmXLt5JmMe23Rf8Zr3P8zHrLs47aec5W5e+MzmfUCnqxni/5PwAvuPj45Phc41t3/3dBnJgb08spxN0B+IeQVQl7+juf5BZDfJjlsn5Z8nt8GCopqPRZBnvZApWrIz59nyZqNu0wvLy3h5auPD7JcIEimhoRaT5nS95qp1NTxs55vxvyfDQuQKBK39ZwNZjbd3RNNeU8qW/SNKQcW1xqvSk7bpejNbDQwGmDwXnnwxLfTsHggrwAKiqPiLyiBwuJaj8VQWJIc2kGbtlDYFtq0i6a1aQdtOkBReyjqAG3aQ1HH5HjHaB6z9OTMAUvr+KFqaHrI5WY6U0NCradMqavkG5qeLXFbz7kqHUWfMncfC4wFSBxykHPlU1CzFbbVwLatyefVycetULMlel5T+/lmqN4cjdd+rN4M1ZuiYevGWs83wfoVsGUDbN0AW9ZHj9WbUgudVwglpVDcCYqTjyWlUNIZ2pbtOrTrCm27QkGbTK3G3dKjtKTOLageyS3rUMsNkakhodZTpuSb1btFH1Lc1nOuSkfRLwF61hqvSE5rWF4hdKpIw+KbaVvNjuLfsh42fwKb18GWdbD50+TwCWxaCxvXRI+b1kTDxx/Axo+jgXq2iEq6QIc9oX33zz52LIfSntCpZ/SLIcs/aFed3P8z+0QBSgrzuerk/kGXGyJTQ0Ktp0wZeXjPz+yjrz09pLit51yVjqKfAowxswlEB2HXNrZ/Pifk5Ue7aoo6NP8zttVEZb9h1Y5h/UpYtxzWLYuGTz+CVfOix21bP/v+gpLol9324u/SB8o+B2V9oXPvaNdTmm0/wJXtsxxSWW4unXkRaj1lyvYDrrl21k3c1nOuavRgrJmNB44FugLLgB8DhQDu/sfk6ZW3AqcQnV55ibtXNrbgRCLhlZWNzhYf7rBhNXxSBWsWw9oqWLsY1iyKnq/5MPpF8R8WlX9ZHyjrB90HQvcDYI8Bu/fLSURatIwcjHX3kY287sA3m7LQVskM2pVFw14H1T3PxjWwej6sWpB8nAer5sPbE2DLpzvmK90nKv3uA2HPA6E8AZ20BSQidcvqwVhpREkplA+Ohtrco63/ZbNg2buwbHb0/L2nwbdF83ToARWJ5HAo7HVwdIaRiLR6KvqWwAxK946G/kN3TN+6KSr+qkpYUglVb8CcKcn35Ed/OfQ5BvocCz2PyMg+fxHJfSldMJUJrW4ffbasW7Gj9D94OXq+rTq6sGzvI3YU/14HRwekRaRFac4+ehV93G3+FD58BRa8CAtfjP4CAGjXDfoPgwGnQ+8vRhebiUjOC3VlrOSyog6w78nRANEW/8IXYe5UePdRePO+6Argfl+CAafB506KrgoWkdhQ0bc27bvBgedEQ/XmaEt/zpRk8U+KdvHsNwwGjYI+x2n3jkgMqOhbs4Ii2PdL0bCtBha9BrMnw8xJMOux6Creg0bCwRdEF3GJSIukffSyq+rNMPdpmDEO5j8XncK5z5BoK3//s3T2jkhAOhgr6ffJUnh7fFT6qxdEB3EP+y849DJo2yV0OpFWR0UvmeMeHcR95VaY92x0q+dBo+CIb0CX3qHTibQaOutGMscsOv++z7HRlbmv3gqV98Abd8KA4TDk27te0SsiOUFfzSRN130gnHk7fHcmHPVtmP83uON4mHAhrJgbOp2I7ERFL83XcS846Qb43iw4/lpY+He4/Qh4fAysbfwrCUQkO1T0svuKOsAXr4JvvwWHfx3eeRh+fwg8e13yy1lEJCQVvaRPuzI45f/DmEoYeCa8/Du45SB45ffR10CKSBAqekm/zvvAWX+CK16CisPgmWth7LHRXTZFJOtU9JI5ex4AoybB+Q9G365154kw9SrY9EnoZCKtiopeMm/AafDN1+Gwy+Gfd8Bth8OcJ0OnEmk1VPSSHcUdYdhN8LW/QklnePjC6HTMT5aGTiYSeyp6ya6KBPzXi3Di9TDvr3D7kTDnidCpRGJNRS/Zl18IR18JX38lun3Cw6Pgye/B1o2hk4nEkopewinrC5c+A0eOgcq74I4TYPm/QqcSiR0VvYRV0AZO/ilcOAnWLYtOw5x+b3QTNRFJCxW95IZ+J0W7cvY+HJ74DjxyMWxcEzqVSCykVPRmdoqZzTWzeWZ2dR2v721mfzOzGWb2jpkNS39Uib0O3WHUY9GB2n89CXeeACvnhU4l0uI1WvRmlg/cBgwFBgIjzWzgTrNdC0x090HACOD2dAeVViIvLzpQe9GT0X1y7jweFrwQOpVIi5bKFv1hwDx3X+DuW4AJwBk7zeNAx+TzToBOjpbds8+RcPnz0ffWPnAWvHFX6EQiLVYqRV8OLK41XpWcVtv1wCgzqwKmAt+q64PMbLSZVZpZ5YoVK5oRV1qVzr3g0mnwuRPhqe/B1B9CTXXoVCItTroOxo4E7nX3CmAY8ICZ7fLZ7j7W3RPunujWrVuaFi2xVtwRRo6PTsH855/goXN1kFakiVIp+iVAz1rjFclptV0GTARw91eBYqBrOgKKkJcfnYI5/Pew8B/RzdFWLwydSqTFSKXo3wD6mVlvM2tDdLB1yk7zLAJOADCzAURFr30zkl6HfBW++jhsWAl3nwLL54ROJNIiNFr07l4NjAGmAXOIzq6ZZWY3mtnw5GzfBy43s7eB8cDF7rriRTKg1xC45Ono+T3DYMmbYfOItAAWqo8TiYRXVuqLKKSZVi+E+4fDho/hgoejXwAirYCZTXf3RFPeoytjpWXq0js6I6djDxh3Frz3TOhEIjlLRS8tV8cecMlU6NYfJoyEdx8NnUgkJ6nopWVr1xUuegIqDoU/XwZvPhA6kUjOUdFLy1fcCUY9Cn2OgyljoPKe0IlEcoqKXuKhTdvowqp+J8OTV8LbD4dOJJIzVPQSHwVFcN790PsLMPkKmP146EQiOUFFL/FSWAwjxkf77CddprNxRFDRSxwVtYcLH4HuA6Pvo13wYuhEIkGp6CWeijtFX2LSpQ+MHwmLXg+dSCQYFb3EV7uy6N44HfaEB8+BpTNCJxIJQkUv8dahO1w0BYpLoy8wWfl+6EQiWaeil/jrVAEXPQ6WB+POhnXLQycSySoVvbQOXfrABROjkn/oPNiyPnQikaxR0UvrUTEYzr0H/v02PHKJvpZQWg0VvbQu/YfCsJvg/Wkw9Qegr02QVqAgdACRrDv0a7C2Cl76DZT2hC98P3QikYxS0UvrdPx1Udk/dyN06gmfPy90IpGMUdFL65SXB2fcBp9+BJO/Ae27Q59jQqcSyQjto5fWq6AIzh8HZZ+Dh7+ic+wltlT00rqVlMKFEyG/EMaPgI1rQicSSTsVvUjp3nD+A/DxhzDpUp12KbGjohcB2OcoOPXXMP85ePa60GlE0koHY0W2G3wRLJ8Nr90W3eJ40KjQiUTSQlv0IrV96afQ59jo6wh1a2OJCRW9SG35BXDOPdGN0B6+ENYsDp1IZLelVPRmdoqZzTWzeWZ2dT3znGdms81slpk9lN6YIlnUtguMnADVm2HCSN0ATVq8RovezPKB24ChwEBgpJkN3GmefsA1wBB33x/4bvqjimRRt/5w9l3w0bvRBVW6J460YKls0R8GzHP3Be6+BZgAnLHTPJcDt7n7xwDurht+S8u375fgxOth9mR45feh04g0WypFXw7U3lFZlZxW277Avmb2spm9Zman1PVBZjbazCrNrHLFihXNSyySTUO+AwOGw19/DAv/HjqNSLOk62BsAdAPOBYYCdxhZqU7z+TuY9094e6Jbt26pWnRIhlkBmfeDmX9onvYr60KnUikyVIp+iVAz1rjFclptVUBU9x9q7svBN4jKn6Rlq+oQ3RPnOrNMPGr0aNIC5JK0b8B9DOz3mbWBhgBTNlpnslEW/OYWVeiXTkL0hdTJLBu+8KX/wBLpsPTPwydRqRJGi16d68GxgDTgDnARHefZWY3mtnw5GzTgFVmNhv4G3CVu6/KVGiRIAacDkdfCdPvhTfvD51GJGXmgU4bSyQSXllZGWTZIs22rQbGnQUfvgqX/gXKDwmdSFoZM5vu7ommvEdXxoo0RV4+nH03tN8juof9+pWhE4k0SkUv0lTtyqLbGq9fAX++LNrKF8lhKnqR5ugxCE79FSx4AV74eeg0Ig1S0Ys01yFfhYNHwd9/Ce8/GzqNSL1U9CK7Y9hN0P0AePRyWLModBqROqnoRXZHm7Zw3v3RfnpdTCU5SkUvsrvK+ka3SVg6A/5yTeg0IrtQ0Yukw4DT4ahvQeVd8M7E0GlEPkNFL5IuJ1wPex8FT3wHls8JnUbkP1T0IumSXwDn3gNt2kcXU236JHQiEUBFL5JeHfaMyn71fJjyLX0zleQEFb1IuvU6Gk64Lvpmqtf/GDqNiIpeJCOGfBf6D4NnroVFr4dOI62cil4kE8zgzD9Apwp45GJYp6/OlHBU9CKZUlIaXUy1YZVufiZBqehFMmmvg6Kbny18UTc/k2BU9CKZppufSWAqepFsOPVX0P1A3fxMglDRi2RDYQmcd59ufiZBqOhFsqWsb3QmztIZ8PQPQ6eRVkRFL5JNA06Do6+E6ffCm/eHTiOthIpeJNuO/x/ocyw89QNY8mboNNIKqOhFsi0vH86+G9rvEd38bP3K0Ikk5lT0IiG0K4PzH4D1K2DSpVBTHTqRxFhKRW9mp5jZXDObZ2ZXNzDf2WbmZpZIX0SRmOoxCE67ObqY6vmfhE4jMdZo0ZtZPnAbMBQYCIw0s4F1zNcB+A6gOziJpGrQKBh8Cbz8W5j9eOg0ElOpbNEfBsxz9wXuvgWYAJxRx3w/AX4BbEpjPpH4G/oLKE/A5G/Airmh00gMpVL05cDiWuNVyWn/YWaHAD3d/amGPsjMRptZpZlVrlihu/mJAFBQFN38rLAEJlwIm9aGTiQxs9sHY80sD7gZ+H5j87r7WHdPuHuiW7duu7tokfjoVA7n3gsfL4Q/f013upS0SqXolwA9a41XJKdt1wE4AHjBzD4AjgCm6ICsSBP1OjrajfP+M/DcDaHTSIwUpDDPG0A/M+tNVPAjgAu2v+jua4Gu28fN7AXgB+5emd6oIq3AoV+DZbPh5Vtgj4Fw0IjQiSQGGt2id/dqYAwwDZgDTHT3WWZ2o5kNz3RAkVZn6C+g1xdgyrehSttLsvvMA31LfSKR8MpK/SMWqdP6VXDHcVC9CUa/AB17hE4kOcLMprt7k3aN68pYkVzUrgwueBi2rIcJF8DWjaETSQumohfJVXsMgLPvhKVvweNjINBf39LyqehFcln/oXDC/8C7k+Clm0OnkRYqlbNuRCSko78Hy+fAczdC515wwNmhE0kLo6IXyXVmMPxW+GQpPHYFtN8Teg0JnUpaEO26EWkJCovh/HHRFv2EkbD8X6ETSQuiohdpKdp2gQsnQUExPHgOfPpR6ETSQqjoRVqSzvvABRNhw2p48FzY/GnoRNICqOhFWpoeB8N598GyWfDIxVCzNXQiyXEqepGWqN9JcNpvYN5f4ckrdY69NEhn3Yi0VIMvgrWL4e83QacKOLbeb/mUVk5FL9KSHfej6LTLF34GRR3hyG+ETiQ5SEUv0pKZwem/gy3rYNo10bdUJS4JnUpyjIpepKXLL4Cz7oStm6L99YVt4aDzQ6eSHKKDsSJxUNAm+t7Z3l+AyVfA7MdDJ5IcoqIXiYvCYhgxHioOhUmXwXvPhE4kOUJFLxInRe3hwkeg+/7w8ChY8GLoRJIDVPQicVPcCb7yGJT1hfEj4cNXQyeSwFT0InHUtgt8ZTJ03AvGnQXz/xY6kQSkoheJqw7d4ZKnoUsfeOg8mPNk6EQSiIpeJM7a7wEXPwl7HQQTvwpvPxw6kQSgoheJu5LO0W6cXkPgsdHwzztCJ5IsU9GLtAZF7eGCR6D/MJj6A/iHvn+2NVHRi7QWhcXRRVUHngvP3QDP/lh3vWwlUip6MzvFzOaa2Twz2+UWeWb2PTObbWbvmNlzZrZP+qOKyG7LL4Qvj4XEpfDyb+Hxb0L15tCpJMMaLXozywduA4YCA4GRZjZwp9lmAAl3/zwwCfhluoOKSJrk5cGpN8MxV8NbD8L9Z8D6laFTSQalskV/GDDP3Re4+xZgAnBG7Rnc/W/uviE5+hpQkd6YIpJWZnDcNXDO3bB0BtxxHCybHTqVZEgqRV8OLK41XpWcVp/LgKd3J5SIZMkBZ8MlU6F6C9x1Erw3LXQiyYC0How1s1FAAripntdHm1mlmVWuWLEinYsWkeYqHwyXP5+8sOp8eOVWHaSNmVSKfgnQs9Z4RXLaZ5jZicCPgOHuXufRHXcf6+4Jd09069atOXlFJBM6lcOlf4EBp8MzP4Ip39JB2hhJpejfAPqZWW8zawOMAKbUnsHMBgF/Iir55emPKSIZ16YdnHsffPEqmPEA3HkirJwXOpWkQaNF7+7VwBhgGjAHmOjus8zsRjMbnpztJqA98IiZvWVmU+r5OBHJZXl5cPy10X3t1y6GP30RZjyoXTktnHmg/4GJRMIrKyuDLFtEUrB2CTw6Gj58KbrI6tSbobhj6FStnplNd/dEU96jK2NFpG6dyuGiKXDcj+DdP0db90umh04lzaCiF5H65eXDMT+Ei6dCzVa460vw8i2wrSZ0MmkCFb2ING6fI+GKf0D/ofDsddE59x/NDJ1KUqSiF5HUtO0C5z0AZ98FH38IfzoGnvkf2LKh8fdKUCp6EUmdGRx4Dox5Aw6+AF75Hdx+BMz7a+hk0gAVvYg0XdsucMatcPFTkN8Gxp0Nky6DdbqMJhep6EWk+XodDV9/OboT5pwp8PvB8I9fa3dOjlHRi8juKSiK7oR5xcuwzxB47kb43SCYfi/UVIdOJ6joRSRduu0LF0yAS/4CnfeBJ74T7b+fPUVX1gamoheR9NrnSLh0Gox4CCwPJn4lum/OghdU+IGo6EUk/cxgv1Ph66/A8Fvhk6XRN1mNPQZmToouvpKsUdGLSObkF8AhX4Fvz4DTfwdbN8KfL4v24b96G2z+NHTCVkFFLyKZV1gMgy+Cb7wOIydA6d4w7b/h5v3h2R/D2qrQCWNNd68UkTCqpkcXXM1JHqztexwMGgX9T41+MUidmnP3yoJMhRERaVDFYDjvvuh2Cm89BG89CJMuheLS6LbIg0bBXgdF+/tlt2iLXkRyw7ZtsPBFmDEO5jwBNZuh+wFwwFkwYDh07Rc6YU5ozha9il5Ecs/Gj6N74L/10I574HftH32n7YDTYK+DW+2WvopeROJnbRX866loK//DV8BroFPP6PTNvifAPkdBUfvQKbNGRS8i8bZ+Fbz3NMx5EuY/H+3eySuAikOh9zHQ5xgoT0BBm9BJM0ZFLyKtx9aNsOi1aL/+ghdg6VuAQ2G76OrcisOgIgHlg6GkNGzWNNJZNyLSehSWRKdk9j0uGt+wGj54KSr+D16Cec8ByQ3ZrvtGW/oVCSg/BLoNaFWncKroRSQe2naBgcOjAWDTWljyJiyphKpKeP8ZePuh6DXLg7LPQff9k8MB0WOnnrE8yKuiF5F4Ku702S1+d/j4A/j3W7BsNiybFf0imPXYjvcUtoOyPtClb/SLoCz52KVv9Iukhf4SUNGLSOtgBl16R8P+X94xffOnsHxO9GXnK9+H1fPho3eis3y8Zsd8bTpApwoo7Rk9duoZDaU9ocOe0H7PnN0dpKIXkdatqAP0PCwaaqvZCmsWwap5sGp+9Hzt4uixqhI2rt71s4o7RYXfoTu0Tw7tukLbrtC2LPm8LPrroLg0a38hpFT0ZnYKcAuQD9zp7j/f6fUi4H5gMLAKON/dP0hvVJH4mDxjCTdNm8vSNRvpUVrCVSf358xB5QBceMervDx/R4kM6duFBy8/MqX3NvTatZNnMv71xdS4k2/GyMN78r9nHrjbeVN5vbmfnanMKeXNL0zuuulb5+eu2fQxB3Vcx5hDijhqj62w7iP4dNmOx8WvR9+hW72p7oCWH/1i2D6UlCafl0Jxx+gviKIO0TUCRR12jDdDo6dXmlk+8B5wElAFvAGMdPfZteb5BvB5d7/CzEYAX3b38xv6XJ1eKa3V5BlLuObRmWzcumO3QElhPj8760AeqVz0mZLfbnvZN/ReoN7XKj9czbjXFu3yuaOO2LvR4mxomWcOKm/09eZ+dqYyQ/3raXfy1vled9i6AdavhA2rojODNqyCDcnxTWt3DBvXfHa8emOdGeyGT9J/Hr2ZHQlc7+4nJ8evifL7z2rNMy05z6tmVgB8BHTzBj5cRS+t1ZCfP8+SNbv+EJeXltQ5fbsPfn5qg+8F6n3to7WbqKnjxzHfjPk/G9bsvC9ffXyjrzf3szOVGepfT7uTt7H3NllNNWz5FDavi44jbFkHmz/B+p2UkfPoy4HFtcargMPrm8fdq81sLVAGrKw9k5mNBkYD7L333k3JKRIbS+sp8/qm7+57l67ZSH1bXHUVaVOXman/nkxmbupru/O5zZZfACWdo2E3ZfWLR9x9rLsn3D3RrVu3bC5aJGf0SG5Vpjo91fc29Fp+PQf96pue6jJTeb25n52pzJnKm8tSKfolQM9a4xXJaXXOk9x104nooKyI7OSqk/tTUpj/mWklhflcdXJ/hvTtUud7tk9v6L0NvTby8J7Upb7pqeZN5fXmfnamMmcqby5LZdfNG0A/M+tNVOgjgAt2mmcKcBHwKnAO8HxD++dFWrPtB+3qOuvjzEHlDZ5109B7t6vvc4FmncHS2DJTydTcdZGpzJnIm8tSuqmZmQ0Dfkt0euXd7v5TM7sRqHT3KWZWDDwADAJWAyPcfUFDn6mDsSIiTZexm5q5+1Rg6k7Trqv1fBNwblMWLCIi2ZHVg7EiIpJ9KnoRkZhT0YuIxJyKXkQk5lT0IiIxp6IXEYk5Fb2ISMyp6EVEYk5FLyIScyp6EZGYU9GLiMRcSjc1y8iCzT4F5gZZeP26stOXpeSIXMylTKlRptTlYq5czNTf3Zv05bEp3dQsQ+Y29Q5smWZmlbmWCXIzlzKlRplSl4u5cjVTU9+jXTciIjGnohcRibmQRT824LLrk4uZIDdzKVNqlCl1uZgrFpmCHYwVEZHs0K4bEZGYU9GLiMRc1orezPLNbIaZPZkc721mr5vZPDN72MzaZCtLI7nuNbOFZvZWcjg4y3k+MLOZyWVXJqd1MbNnzez95GPnHMh0vZktqbWehmU5U6mZTTKzf5nZHDM7MvR6aiBXsHVlZv1rLfctM/vEzL4bcl01kCn0v6krzWyWmb1rZuPNrDh0T9WTqckdlbV99Gb2PSABdHT308xsIvCou08wsz8Cb7v7H7ISpuFc9wJPuvukbGdJ5vkASLj7ylrTfgmsdvefm9nVQGd3/3+BM10PrHP3X2Urx06Z7gP+4e53Jn/42gL/TcD11ECu7xJwXdXKlg8sAQ4HvkngdVVHpksItJ7MrBx4CRjo7huT/TQVGEagnmog07E0saOyskVvZhXAqcCdyXEDjge2B70PODMbWRrKlcPOIFpHEGhd5RIz6wR8EbgLwN23uPsaAq+nBnLlihOA+e7+Ibnzb6p2ptAKgBIzKyD6Bf1vwvfUzpmWNudDsrXr5rfAD4FtyfEyYI27VyfHq4DyLGVpKNd2PzWzd8zsN2ZWlOVMDjxjZtPNbHRyWnd3/3fy+UdA9xzIBDAmuZ7uzvJukt7ACuAei3a73Wlm7Qi/nurLBeHWVW0jgPHJ56HX1Xa1M0Gg9eTuS4BfAYuICn4tMJ2APVVXJnd/Jvlykzoq40VvZqcBy919eqaX1RQN5LoG2A84FOgCZPvP2aPd/RBgKPBNM/ti7Rc92teW7XNi68r0B6AvcDDRP8JfZzFPAXAI8Ad3HwSsB66uPUOg9VRfrpDrCoDkbqThwCM7vxZoXdWVKdh6Sv5SOYPol3UPoB1wSraWn2omMxtFMzoqG1v0Q4Dhyf28E4j+FLoFKE3+OQJQQbSfLpt2yWVm49z93x7ZDNwDHJbNUMnf4rj7cuCx5PKXmdleAMnH5aEzufsyd69x923AHWR3PVUBVe7+enJ8ElHBBl1P9eUKvK62Gwq86e7LkuOh19UumQKvpxOBhe6+wt23Ao8SdUTInqor01HN6aiMF727X+PuFe7ei+jPtOfd/ULgb8A5ydkuAh7PdJYUco2q9Y/fiPbHvZutTGbWzsw6bH8OfCm5/ClE6wiyvK7qy7R9PSV9mSyuJ3f/CFhsZv2Tk04AZhNwPTWUK+S6qmUkn91FEnRdJX0mU+D1tAg4wszaJn/2t/+bCtlTdWWa06yOcvesDew4WgzQB/gnMI/oT7eibGZpINfzwMzkyhsHtM9ijj7A28lhFvCj5PQy4DngfeCvQJccyPRAcj29Q1Qae2X5/9nBQGVy+ZOBziHXUyO5Qq+rdsAqoFOtaUHXVT2ZQq+nG4B/JX/2HwCKQvdUPZma3FG6BYKISMzpylgRkZhT0YuIxJyKXkQk5lT0IiIxp6IXEYk5Fb2ISMyp6EVEYu7/AAL5b6ZnaoApAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhJ0lEQVR4nO3deXxU5dn/8c+VhISwSFiiCAQFRBS1gkbUakVFBTe0dWNzoVa6qK1LbbX1qa1tf9r26a/autW9ioJAKVLE0rpWES1BVGSziMqmgCCb7OF6/rgnEjDLJMzMmZx836/Xec2cM2fmXN6Sbyb3uc99zN0REZH4yom6ABERSS8FvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxFytQW9mD5vZCjN7t5rXh5rZO2Y2y8xeM7PDU1+miIjUVzLf6B8FBtTw+gdAX3c/DPglcH8K6hIRkRTJq20Hd/+3me1fw+uvVVp9HeiUgrpERCRFag36OroceLa6F81sBDACoHnz5kcedNBBKT68iEi8zZgx41N3L67Le1IW9GZ2EiHoj69uH3e/n0TXTmlpqZeVlaXq8CIijYKZfVTX96Qk6M3sK8CDwOnuvioVnykiIqmxx8MrzawzMB642N3f2/OSREQklWr9Rm9mo4ATgXZmtgS4BWgC4O73AT8D2gL3mBnAdncvTVfBIiJSN8mMuhlcy+vfAr6VsopERCSldGWsiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMaegFxGJOQW9iEjM5dW2g5k9DJwFrHD3Q6t43YA7gTOAjcBl7v5mqguV1Jkwcym/mzKfZWs20aGokBv69+Dc3h0jPW5UNdW33obo5gmzGPXGYsrdyTVj8NEl/Orcw6IuK3btnI1qDXrgUeAu4LFqXj8d6J5YjgbuTTxKFpowcyk3jZ/Fpm3lACxds4mbxs8CSOsPV03HBSKpqSZRtVO63DxhFiNfX/TFern7F+tRhn3c2jlbmbvXvpPZ/sCkar7R/xl4yd1HJdbnAye6+8c1fWbpwft72chfQG4TyGkCObk7n+fmQW5+4nl+2J5b8Twf8goqPRZAjnqgknXc7S+wdM2mL23vWFTI1BtPjuS4QCQ11SSqdkqXbjdNpryKn/VcM96/7YwIKgri1s6ZYGYz3L20Lu9J5ht9bToCiyutL0ls+1LQm9kIYATAkfvmwN+/n4LDAzl5kNc0BH9eYXhsUhi2VX7Mbw5NmkF+M2jSPDzmN4f8llDQAvJbQEHLsOS3gKZ7hf3NUlNnFlhWxQ9VTdujPG66a6pJVO2ULlWFfE3bMyVu7ZytUhH0SXP3+4H7AUqPONy59hko3wY7ymHHtsTz7YnHbVC+NTwvr/x8C2zfEtYrP27fAts3h2XbpkrPN8PGT2HrRtiWWLZuhO1J/kPKyYOmRdC0FRQmHpsWQWFraNY2LM3bQbM2ifV2YT2vIF3NuEc6FBVW+Q2qQ+KbdVTHjaKmmkTVTumSa1btN/ooxa2ds1Uqgn4pUFJpvVNiW81ymkCrTik4fD3t2JEI/c9h6wbYsj4sWzfAlg2wZV1YNq8Ny6Y1O5+vWQSbPoONq4FqvhEVtoYW7aHlPrs+tuoIrUqgqHP4xZDhH7Qb+vfYpU8UoLBJLjf07xHpcaOoqSZRtVO6DD66ZJc++srboxS3ds5WqQj6icBVZjaacBJ2bW3981khJyd01xS0APap32fsKA+/ADZ+ChtXheXzT2HDCtiwPCzrP4FVU8Pjjm27vj+vMPyyKyoJ4d+mK7TtBm0PgNZdoEnTPf2v/JKKE1yZHuWQzHGzaeRFVO2ULhUnXLNt1E3c2jlb1Xoy1sxGAScC7YDlwC1AEwB3vy8xvPIuYABheOVwdy+r7cClpaVeVlbrbvHhHv4CWLcE1i6BNYthbcWyJPyV8PnKSm+w8EugIvj37gn7HAp7HxzOHYhIo5SWk7HuPriW1x24si4HbZTMoHnbsOx7eNX7bF4LqxfCqvcTywJY/T68MyZ0I1Uo2g/2OSQs7Q+DjqWhS0hEpAoZPRkrtWjaCjr0Dktl7uFb//LZsPxdWDEnPH9vCniib7PlvtCpFDodFYK/Q68wokhEGj0FfUNgFvrxi0qgx4Cd27dtDoG/tAyWlMGS6TD374n35MK+X4EufaFrX+h8bBhiKiKNTlIXTKVDo+ujz5TPP90Z+h9NDY87tocLy0r6QNcTw9Khd7hITUQalPr00Svo427LBlg0DRa+BAtfhuWJaQeatYMep8PBZ4fgz9Jx/yKyq6iujJVsVtACup8aFoANK+GDl2H+szB7Asx8PFwZ3P1UOPgs6H5auDJYRGJDQd/YtCiGw84Py/Yt8MG/Q7/+vGdg9vjQxdNjAPS+GLqdrO4dkRhQ140EO8ph8RvhW/6ssbBpNbTsAIcPgt7Dwnh+EYmc+uglNbZvhfeehZkjYcFz4DvCqJ3ew+DQ8zR6RyRCCnpJvXUfw9uj4K0nwgVczdpBnxFw1LfCxV8iklEKekkfd/jwFXjtLvjvlDBPT++hcMz31K0jkkEadSPpYwZdTgjLirkw7S548zGY/lAYonncD8KVuSKSdXRrJqm7vQ+Gc+6Ga2bB8deG4ZoP9oMnB4VfAiKSVRT0Un8t28Mpt8C1c6Dfz+Cj1+Der8KE74XZOUUkKyjoZc8VtICvXQ8/eCv02c8aC386Eqb8NHFzFhGJkoJeUqdZG+j/a7j6zXBB1rS74c5e8OodYcimiERCQS+pV1QC594D330N9jsWnrsF/nwCLHoj6spEGiUFvaTPPj1hyFMweHS4H+/D/WHSdeEGKyKSMQp6Sb8ep8OVr8Mx34UZj8BdfWDO02FsvoiknYJeMqOgJQy4Db71fJhYbcwlMGqwRueIZICCXjKr4xFwxUtw2q/C+Pt7j4PZf4u6KpFYU9BL5uXmwVevDidr23WHsZfBxO/D1o1RVyYSSwp6iU6bLvDNf8Bx18Cbf4EHTgr3wBWRlFLQS7Rym8Cpv4CL/wabPoMHTobpD+pErUgKKeglO3Q7Gb4zFfY/Hp65Hp4apqtqRVIkqaA3swFmNt/MFpjZjVW83tnMXjSzmWb2jpmdkfpSJfZaFMOQseFE7XtTwrf7le9FXZVIg1dr0JtZLnA3cDrQExhsZj132+1mYIy79wYGAfekulBpJHJywona4ZNh6wZ48BRY8HzUVYk0aMl8o+8DLHD3he6+FRgNnLPbPg7slXjeCliWuhKlUSrpA1e8EKZTeOJ8eOPP6rcXqadkgr4jUPmqliWJbZX9HBhmZkuAycDVVX2QmY0wszIzK1u5cmU9ypVGpagzfHMKHDgAnv0RPHMdlG+LuiqRBidVJ2MHA4+6eyfgDOBxM/vSZ7v7/e5e6u6lxcXFKTq0xFpBC7joiTAEs+xhGPkNnaQVqaNkgn4pUFJpvVNiW2WXA2MA3H0a0BRol4oCRcjJCUMwz70XPpoW7ma16v2oqxJpMJIJ+ulAdzPrYmb5hJOtE3fbZxHQD8DMDiYEvfpmJLV6DYFL/x5mv3x4AHzybtQViTQItQa9u28HrgKmAHMJo2tmm9mtZjYwsdv1wBVm9jYwCrjMXWfOJA32OxaGPws5efDoGbB4etQViWQ9iyqPS0tLvaysLJJjSwx89hE8dg5sWAGDR0HXvlFXJJIRZjbD3Uvr8h5dGSsNU+v9wjw5RZ3hiQtg/rNRVySStRT00nC1bB8urNrnEBg9FN4ZG3VFIllJQS8NW7M2cOlE6HwsjL8iDMEUkV0o6KXhK2gJw8ZB99Ng0rXwnweirkgkqyjoJR6aFMKgJ6DHmTD5hzBzZNQViWQNBb3ER24TuOCRMOXxxKvh3b9GXZFIVlDQS7zkFYQpEzofC+NHwLzJUVckEjkFvcRPfjMY8hTseziMvVTTHEujp6CXeCpoCcP+Cu16hKGXH06NuiKRyCjoJb4KW4d70RaVwJMXwhJdiS2Nk4Je4q1FMVzyNDRvF6Y4XjE36opEMk5BL/G3Vwe4ZCLkNQ3TJaz7OOqKRDJKQS+NQ+v9YMiYcNOSJy+ALeujrkgkYxT00nh06AUXPgbL58CYS3VbQmk0FPTSuHQ/Bc6+A95/HiZdoxuOS6OQF3UBIhl3xCWwZjH8+7fQqjOc+OOoKxJJKwW9NE4n/QTWLoGX/h+06gS9h0ZdkUjaKOilcTKDs++E9cvg798Pc9sf0C/qqkTSQn300njl5cOFj0PxQeHk7Ip5UVckkhYKemncmu4V5sVpUgijBoXhlyIxo6AXadUpzGW/bimMvUzDLiV2FPQiACV9Qp/9By/DlJ9EXY1ISulkrEiFXkNg+WyYdhfs3RNKh0ddkUhK6Bu9SGWn3goHnBJuR/jhq1FXI5ISCnqRynJy4byHoHUXeOpi+OzDqCsS2WNJBb2ZDTCz+Wa2wMxurGafC81sjpnNNrMnU1umSAYVFoWROF4Oo4ZoAjRp8GoNejPLBe4GTgd6AoPNrOdu+3QHbgKOc/dDgGtSX6pIBrXtBhc8Civnwd++Azt2RF2RSL0l842+D7DA3Re6+1ZgNHDObvtcAdzt7p8BuPuK1JYpEoFuJ8Npv4J5k2DqH6KuRqTekgn6jsDiSutLEtsqOxA40MymmtnrZjagqg8ysxFmVmZmZStXrqxfxSKZdMx34dDz4flf6ibj0mCl6mRsHtAdOBEYDDxgZkW77+Tu97t7qbuXFhcXp+jQImlkBgP/GIZb/vVy+OyjqCsSqbNkgn4pUFJpvVNiW2VLgInuvs3dPwDeIwS/SMOX3xwuejz00z81DLZtiroikTpJJuinA93NrIuZ5QODgIm77TOB8G0eM2tH6MpZmLoyRSLWtht843745B2YdJ1uWCINSq1B7+7bgauAKcBcYIy7zzazW81sYGK3KcAqM5sDvAjc4O6r0lW0SCR6DIC+P4a3n4Syh6KuRiRp5hF9MyktLfWysrJIji1Sbzt2wKiL4P0XYfjkMEeOSAaZ2Qx3L63Le3RlrEhd5OSELpxWHWHMJbB+edQVidRKQS9SV4Wt4aKRsGkNjPsmlG+PuiKRGinoReqj/WFw9h3w0avwwi+jrkakRgp6kfo6fBAcORym3gHzJkddjUi1FPQie2LA7bDv4WE+nNUaUSzZSUEvsieaNIULHwtX0I65RBdTSVZS0Ivsqdb7Jy6mmgWTb4i6GpEvUdCLpMKB/eFr18PMx2HmyKirEdmFgl4kVU76KXQ5AZ65Hj5+J+pqRL6goBdJlZxcOO/hMM5+zCVhnL1IFlDQi6RSi+JwZ6q1i+HpKzX5mWQFBb1IqnU+Bk69NdyZ6rU/Rl2NiIJeJC2O+R70PAee+wV8ODXqaqSRU9CLpIMZDLwL2nSBccM1+ZlESkEvki5N9woXU21ep8nPJFIKepF02ucQTX4mkVPQi6SbJj+TiCnoRTJhwO2wby9NfiaRUNCLZIImP5MIKehFMqX1fjsnP3vmel1MJRmjoBfJpAP7Q98fw1tPQNnDUVcjjYSCXiTT+t4I3U+DZ38Mi/8TdTXSCCjoRTItJyd04bTqGPrrN6yIuiKJOQW9SBQKW8NFI8MMl2OHQ/m2qCuSGEsq6M1sgJnNN7MFZnZjDfudZ2ZuZqWpK1EkptofBgP/GC6m+tctUVcjMVZr0JtZLnA3cDrQExhsZj2r2K8l8APgjVQXKRJbX7kQ+nwbXr8bZo2LuhqJqWS+0fcBFrj7QnffCowGzqliv18CvwE2p7A+kfg77VfQ+ViYeDUsnx11NRJDyQR9R2BxpfUliW1fMLMjgBJ3f6amDzKzEWZWZmZlK1eurHOxIrGUlx9uVlLQEp4aBps+i7oiiZk9PhlrZjnA/weur21fd7/f3UvdvbS4uHhPDy0SHy3bw4WPw5rFiZOzmulSUieZoF8KlFRa75TYVqElcCjwkpl9CBwDTNQJWZE66nw0nPUHWPgi/Ot/oq5GYiQviX2mA93NrAsh4AcBQypedPe1QLuKdTN7Cfihu5eltlSRRuCIi2HFHHj9Hti7Z1gX2UO1fqN39+3AVcAUYC4wxt1nm9mtZjYw3QWKNDqn/hK6ngSTroVFr0ddjcSAeUQTK5WWlnpZmb70i1Rp02fw4CmweS1c8SIUldT+HmkUzGyGu9epa1xXxopko8LWMHg0bN8KowbD1s+jrkgaMAW9SLZq1x3OfxhWzA43LNmxI+qKpIFS0Itks+6nhD77uRPh37+NuhppoJIZdSMiUTr2SlgxF166DVrvH+5BK1IHCnqRbGcWxtevXQRPXxkurup6YtRVSQOirhuRhiAvP0xr3O5AeOpizYkjdaKgF2komraCoWMhvwWMPB/WLq39PSIo6EUalladQthvWQ9PXBDG2YvUQkEv0tC0PxQuegw+nR+6cbZvjboiyXIKepGGqNvJMPBP8MHL8PfvQ0RXuEvDoFE3Ig1VryGwdgm8+GvYqwP0+1nUFUmWUtCLNGQn3BDC/pXfhxuXHH9t1BVJFlLQizRkFWPst34Oz/0cmjSDo78ddVWSZRT0Ig1dTi58/T7Ytgme/VEIe81jL5XoZKxIHOQ2gQsegW79wk3GZ42LuiLJIgp6kbjIKwhXz+73VRg/AuZOiroiyRIKepE4yW8GQ56CDr1h3HBY8FzUFUkWUNCLxE1BSxg2Dop7wOih8MG/o65IIqagF4mjwtZw8YQwrfETF8B7/4y6IomQgl4krpq3g8ueCTNejh4M746PuiKJiIJeJM6at4PLJkGno+Cvl8Obj0ddkURAQS8Sd01bwbDx0PUkmHgVTLsn6ookwxT0Io1BfjMYPAoOHghTboKXbtdEaI2Igl6kscgrgPMfgV5Dw/1n/3mzwr6RSCrozWyAmc03swVmdmMVr19nZnPM7B0ze97M9kt9qSKyx3LzYOBd0OfbMO0uGH8FbNscdVWSZrUGvZnlAncDpwM9gcFm1nO33WYCpe7+FWAc8NtUFyoiKZKTA6f/Bk7+H5g1Fh49E9Yvj7oqSaNkvtH3ARa4+0J33wqMBs6pvIO7v+juGxOrrwOdUlumiKSUGZzwQ7jwcVgxBx44GT6ZFXVVkibJBH1HYHGl9SWJbdW5HHh2T4oSkQzpORC++Q/A4aH+mh8nplJ6MtbMhgGlwO+qeX2EmZWZWdnKlStTeWgRqa99D4crXoC9D4KnhsGrf9BJ2phJJuiXAiWV1jsltu3CzE4BfgoMdPctVX2Qu9/v7qXuXlpcXFyfekUkHVq2D1fRHvqNcAOTCd8N89tLLCQT9NOB7mbWxczygUHAxMo7mFlv4M+EkF+R+jJFJO2aFMJ5D8FJP4W3R8ED/WDl/KirkhSoNejdfTtwFTAFmAuMcffZZnarmQ1M7PY7oAUw1szeMrOJ1XyciGQzM+j7Ixg6DjYshz/3hRl/UVdOA2ce0f/A0tJSLysri+TYIpKE9Z+EG5h88DIc8nU4+84wnYJEysxmuHtpXd6jK2NFpGot24epjvvdAnMmwn3Hw+LpUVcl9aCgF5Hq5eTA166Db04J6w/3h1d+D+Xbo61L6kRBLyK1KzkKvv1KGHf//K3w4Mmw7K2oq5IkKehFJDmFRWFStPMfgXUfwwMnwZSfwpYNUVcmtVDQi0jyzMJY+6umwxGXhonR7jkG3psSdWVSAwW9iNRdYRGcfQcM/wfkN4cnL4Qxl4aROpJ1FPQiUn/7HRv67k+6GeY/C38qhZd/q+6cLKOgF5E9k5cPfW+A702Drn3hxV/DH3vDfx6A8m1RVyco6EUkVdp2g0FPwOX/grYHwOQfwt194N3xurI2Ygp6EUmtkj4wfDIMGQN5TWHc8DBCZ8FzCvyIKOhFJPXM4MD+8J1X4dz74PNPYeR54erat0erSyfDFPQikj45udBrMFz9JpxzD+woh799G+48HKb+ETavi7rCRkFBLyLpl5cPvYeGE7ZDx0GbrvCv/4E/HAL/vBnWLIq6wljLi7oAEWlEzKD7qWFZNhNe+xNMuwdeuwu6nAC9L4aDzwpz40vKaJpiEYnWmsXhRiczR8Kaj6CgFRx2HvQeBh2OCL8c5Av1maZYQS8i2WHHDvjo1RD4c56G7Zuh+OAQ+gedDcU9FPoo6EUkLjavDePv33oSlvwnbGvbPXTrHHx2o/6mr6AXkfhZtwzmPQPzJsEHr4CXw14d4aAzoVs/2P84KGgZdZUZo6AXkXjbuDrMlDlvEix4HrZvgpw86HgkdOkLXU+ETkeFUT4xpaAXkcZj2+bQrbPwJVj4Mix7E3wHNGkGnY+BTn1C6Hc8Apq1ibralKlP0Gt4pYg0TE2ahiGZXU6AfsCmNfDR1BD8H74KL/8GSHyRbXtACP1OpaF/f++DG9UQTgW9iMRDYVHotz/ozLC+eV0Yq7+0DJaUhbl23h4VXrMcaNMN9jlk16VV53Cf3JhR0ItIPDXdK0yb3LVvWHcPV+Aumwkr5sDy2fDx2zBnws735BWGWTjbdgu/CNoekFg/AJq1bbAjfRT0ItI4mEHr/cJyyLk7t2/ZACvmwvJ34dP/wur3wy+Bec/Aju0798tvAa06QauS8FhUknheAi3bhyVLu4MU9CLSuBW0gJKjwlJZ+fZwpe7qhbBqQfhrYM0iWLs4nPjduKqKz2oFLfeBFomlZfvwl0DzduGxWVto1i6cHG5alLFuoqSC3swGAHcCucCD7n77bq8XAI8BRwKrgIvc/cPUlioSHxNmLuV3U+azbM0mOhQVckP/HpzbuyMAQx+YxtT3V3+x73Hd2vDEFccm9d6aXrt5wixGvbGYcndyzRh8dAm/OvewPa43mdfr+9npqjmpenPzdnbjdD/1S5/72ebPOHyvz7n6yAK+uve2cL/cDct3Pi6ZDhtWhCGgVbEcaNoqsRSFx8KindvyW4brAwpahMeK9XqodXilmeUC7wGnAkuA6cBgd59TaZ/vAV9x9++Y2SDg6+5+UU2fq+GV0lhNmLmUm8bPYtO28i+2FTbJ5bZvHMbYskW7hHyFirCv6b1Ata+VfbSaka9/eYbIYcd0rjU4azrmub071vp6fT87XTVD9e20J/VW+96tG2Hjp+EvgI2rwrUAnyfWN69NLGvC46Y1O7dV8wvCfrEu9ePozexY4Ofu3j+xfhOAu99WaZ8piX2mmVke8AlQ7DV8uIJeGqvjbn+BpWu+/EPcsaiwyu0VPrz9zBrfC1T72idrN1NexY9jrhnv33ZGveudeuPJtb5e389OV81QfTvtSb21vbfOyrfD1vXhHMLWDbBlPWxZj3U/JS3j6DsCiyutLwGOrm4fd99uZmuBtsCnlXcysxHACIDOnTvXpU6R2FhWTZhXt31P37tszSaq+8ZVVZDW9Zjp+u9JZ811fW1PPrfecvOgsHVY9lBGB4y6+/3uXurupcXFxZk8tEjW6FBU9ciM6rYn+96aXsutZlhgdduTPWYyr9f3s9NVc7rqzWbJBP1SoKTSeqfEtir3SXTdtCKclBWR3dzQvweFTXJ32VbYJJcb+vfguG5VX6pfsb2m99b02uCjS6hKdduTrTeZ1+v72emqOV31ZrNkum6mA93NrAsh0AcBQ3bbZyJwKTANOB94oab+eZHGrOKkXVWjPs7t3bHGUTc1vbdCdZ8L1GsES23HTKam+rZFumpOR73ZLKlJzczsDOAOwvDKh93912Z2K1Dm7hPNrCnwONAbWA0McveFNX2mTsaKiNRd2iY1c/fJwOTdtv2s0vPNwAV1ObCIiGRG/GbvERGRXSjoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyISc0lNapaWA5utB+ZHcvDqtWO3m6VkiWysSzUlRzUlLxvrysaaerh7nW4em9SkZmkyv64zsKWbmZVlW02QnXWppuSopuRlY13ZWlNd36OuGxGRmFPQi4jEXJRBf3+Ex65ONtYE2VmXakqOakpeNtYVi5oiOxkrIiKZoa4bEZGYU9CLiMRcxoLezHLNbKaZTUqsdzGzN8xsgZk9ZWb5maqllroeNbMPzOytxNIrw/V8aGazEscuS2xrY2b/MrP/Jh5bZ0FNPzezpZXa6YwM11RkZuPMbJ6ZzTWzY6NupxrqiqytzKxHpeO+ZWbrzOyaKNuqhpqi/jd1rZnNNrN3zWyUmTWNOqeqqanOGZWxPnozuw4oBfZy97PMbAww3t1Hm9l9wNvufm9Giqm5rkeBSe4+LtO1JOr5ECh1908rbfstsNrdbzezG4HW7v7jiGv6ObDB3f83U3XsVtNfgFfc/cHED18z4CdE2E411HUNEbZVpdpygaXA0cCVRNxWVdQ0nIjaycw6Aq8CPd19UyKfJgNnEFFO1VDTidQxozLyjd7MOgFnAg8m1g04Gago9C/AuZmopaa6stg5hDaCiNoqm5hZK+AE4CEAd9/q7muIuJ1qqCtb9APed/ePyJ5/U5VriloeUGhmeYRf0B8TfU7tXtOy+nxIprpu7gB+BOxIrLcF1rj79sT6EqBjhmqpqa4Kvzazd8zsD2ZWkOGaHPinmc0wsxGJbfu4+8eJ558A+2RBTQBXJdrp4Qx3k3QBVgKPWOh2e9DMmhN9O1VXF0TXVpUNAkYlnkfdVhUq1wQRtZO7LwX+F1hECPi1wAwizKmqanL3fyZerlNGpT3ozewsYIW7z0j3seqihrpuAg4CjgLaAJn+c/Z4dz8COB240sxOqPyih762TI+Jraqme4FuQC/CP8LfZ7CePOAI4F537w18DtxYeYeI2qm6uqJsKwAS3UgDgbG7vxZRW1VVU2TtlPilcg7hl3UHoDkwIFPHT7YmMxtGPTIqE9/ojwMGJvp5RxP+FLoTKEr8OQLQidBPl0lfqsvMRrr7xx5sAR4B+mSyqMRvcdx9BfC3xPGXm9m+AInHFVHX5O7L3b3c3XcAD5DZdloCLHH3NxLr4wgBG2k7VVdXxG1V4XTgTXdfnliPuq2+VFPE7XQK8IG7r3T3bcB4QkZEmVNV1fTV+mRU2oPe3W9y907uvj/hz7QX3H0o8CJwfmK3S4Gn011LEnUNq/SP3wj9ce9mqiYza25mLSueA6cljj+R0EaQ4baqrqaKdkr4OhlsJ3f/BFhsZj0Sm/oBc4iwnWqqK8q2qmQwu3aRRNpWCbvUFHE7LQKOMbNmiZ/9in9TUeZUVTXNrVdGuXvGFnaeLQboCvwHWED4060gk7XUUNcLwKxE440EWmSwjq7A24llNvDTxPa2wPPAf4HngDZZUNPjiXZ6hxAa+2b4/1kvoCxx/AlA6yjbqZa6om6r5sAqoFWlbZG2VTU1Rd1OvwDmJX72HwcKos6pamqqc0ZpCgQRkZjTlbEiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxNz/ASjxfDJlzssDAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -857,25 +857,25 @@ "11493376/11490434 [==============================] - 0s 0us/step\n", "Train on 60000 samples, validate on 10000 samples\n", "Epoch 1/10\n", - "60000/60000 [==============================] - 5s 85us/sample - loss: 325.1449 - accuracy: 0.8413 - val_loss: 226.6903 - val_accuracy: 0.8844\n", + "60000/60000 [==============================] - 5s 84us/sample - loss: 317.1434 - accuracy: 0.8426 - val_loss: 219.5930 - val_accuracy: 0.8947\n", "Epoch 2/10\n", - "60000/60000 [==============================] - 5s 81us/sample - loss: 263.3936 - accuracy: 0.8693 - val_loss: 198.8350 - val_accuracy: 0.8932\n", + "60000/60000 [==============================] - 5s 78us/sample - loss: 258.5542 - accuracy: 0.8699 - val_loss: 276.2754 - val_accuracy: 0.8550\n", "Epoch 3/10\n", - "60000/60000 [==============================] - 5s 82us/sample - loss: 251.9340 - accuracy: 0.8727 - val_loss: 233.2403 - val_accuracy: 0.8758\n", + "60000/60000 [==============================] - 5s 79us/sample - loss: 254.7470 - accuracy: 0.8715 - val_loss: 203.3536 - val_accuracy: 0.9007\n", "Epoch 4/10\n", - "60000/60000 [==============================] - 5s 76us/sample - loss: 247.5036 - accuracy: 0.8753 - val_loss: 243.0418 - val_accuracy: 0.8901\n", + "60000/60000 [==============================] - 5s 77us/sample - loss: 246.3794 - accuracy: 0.8760 - val_loss: 272.3295 - val_accuracy: 0.8756\n", "Epoch 5/10\n", - "60000/60000 [==============================] - 5s 80us/sample - loss: 246.6533 - accuracy: 0.8766 - val_loss: 192.8183 - val_accuracy: 0.9034\n", + "60000/60000 [==============================] - 4s 73us/sample - loss: 239.0781 - accuracy: 0.8777 - val_loss: 289.7340 - val_accuracy: 0.8600\n", "Epoch 6/10\n", - "60000/60000 [==============================] - 5s 82us/sample - loss: 239.3516 - accuracy: 0.8789 - val_loss: 224.0492 - val_accuracy: 0.8966\n", + "60000/60000 [==============================] - 4s 74us/sample - loss: 244.9960 - accuracy: 0.8772 - val_loss: 231.3687 - val_accuracy: 0.8965\n", "Epoch 7/10\n", - "60000/60000 [==============================] - 5s 80us/sample - loss: 242.2074 - accuracy: 0.8787 - val_loss: 221.8749 - val_accuracy: 0.8888\n", + "60000/60000 [==============================] - 4s 74us/sample - loss: 236.5939 - accuracy: 0.8813 - val_loss: 265.6653 - val_accuracy: 0.8741\n", "Epoch 8/10\n", - "60000/60000 [==============================] - 5s 79us/sample - loss: 236.2757 - accuracy: 0.8813 - val_loss: 219.4592 - val_accuracy: 0.8895\n", + "60000/60000 [==============================] - 5s 76us/sample - loss: 233.7447 - accuracy: 0.8824 - val_loss: 270.1200 - val_accuracy: 0.8642\n", "Epoch 9/10\n", - "60000/60000 [==============================] - 5s 81us/sample - loss: 234.2579 - accuracy: 0.8813 - val_loss: 198.6786 - val_accuracy: 0.9073\n", + "60000/60000 [==============================] - 4s 75us/sample - loss: 232.4167 - accuracy: 0.8824 - val_loss: 222.0496 - val_accuracy: 0.8894\n", "Epoch 10/10\n", - "60000/60000 [==============================] - 5s 81us/sample - loss: 232.5012 - accuracy: 0.8836 - val_loss: 267.6900 - val_accuracy: 0.8717\n" + "60000/60000 [==============================] - 4s 75us/sample - loss: 237.1157 - accuracy: 0.8814 - val_loss: 234.7631 - val_accuracy: 0.8911\n" ] } ],