diff --git a/docs/_images/GlobalSensitivity_y1.png b/docs/_images/GlobalSensitivity_y1.png
index d71cc8e820b0d2b79d160bdb2a22d0ef244fa056..0000d26936bbcf9be69aeb452de01c679db6b40b 100644
Binary files a/docs/_images/GlobalSensitivity_y1.png and b/docs/_images/GlobalSensitivity_y1.png differ
diff --git a/docs/_images/GlobalSensitivity_y2.png b/docs/_images/GlobalSensitivity_y2.png
index 2bcf325332745590ee7daf93008835d4b198f1f9..18d2dba9acc3b9afa87aef52f2dbeb2f85c1e518 100644
Binary files a/docs/_images/GlobalSensitivity_y2.png and b/docs/_images/GlobalSensitivity_y2.png differ
diff --git a/docs/_images/LocalSensitivity_y1.png b/docs/_images/LocalSensitivity_y1.png
index 2903e1c07207a13e6a647a713d88033b705b8bb7..e20e876a007039c183da479e2c3a5afe6b910aed 100644
Binary files a/docs/_images/LocalSensitivity_y1.png and b/docs/_images/LocalSensitivity_y1.png differ
diff --git a/docs/_images/LocalSensitivity_y2.png b/docs/_images/LocalSensitivity_y2.png
index dfc3a7a9d6279d2fb58a30a8282ac557ddc07e0a..136a1209429e360472e7ff3e276a91330eb4a755 100644
Binary files a/docs/_images/LocalSensitivity_y2.png and b/docs/_images/LocalSensitivity_y2.png differ
diff --git a/docs/_images/gettingstarted_3_distribpara.png b/docs/_images/gettingstarted_3_distribpara.png
index 5621f5ed384ac76e7276fde8b89408cbc2dc2245..df9a2fb9e2f09f5e9d5774e8c1fd4e696edb98dc 100644
Binary files a/docs/_images/gettingstarted_3_distribpara.png and b/docs/_images/gettingstarted_3_distribpara.png differ
diff --git a/docs/_images/gettingstarted_4_distribatributes.png b/docs/_images/gettingstarted_4_distribatributes.png
index 5621f5ed384ac76e7276fde8b89408cbc2dc2245..2891fd24a1c039424635d66e24ff90fed30cd71d 100644
Binary files a/docs/_images/gettingstarted_4_distribatributes.png and b/docs/_images/gettingstarted_4_distribatributes.png differ
diff --git a/docs/_images/gettingstarted_5_contours.png b/docs/_images/gettingstarted_5_contours.png
index c45aa8b67f3dd37baaf2b30bc5d985f60e20787b..9818e34153d9588b1ef8390bbd84e52941a84043 100644
Binary files a/docs/_images/gettingstarted_5_contours.png and b/docs/_images/gettingstarted_5_contours.png differ
diff --git a/docs/_images/gettingstarted_5_contours2.png b/docs/_images/gettingstarted_5_contours2.png
index 07e6b336251658be8646c123edd261a726069782..c4b25127819271d922d17cd9edcdf59958699fa0 100644
Binary files a/docs/_images/gettingstarted_5_contours2.png and b/docs/_images/gettingstarted_5_contours2.png differ
diff --git a/docs/_images/gettingstarted_7_45degreeplot.png b/docs/_images/gettingstarted_7_45degreeplot.png
index 8d2c2a9ecfc666401f8e03b094faf07406e0370e..517a5a546e26f002a09ee2cc063c7c6f57b7c9dd 100644
Binary files a/docs/_images/gettingstarted_7_45degreeplot.png and b/docs/_images/gettingstarted_7_45degreeplot.png differ
diff --git a/docs/_images/gettingstarted_7_45degreeplot_x.png b/docs/_images/gettingstarted_7_45degreeplot_x.png
index 4c1ea449766bfcabb97832075ed63e3fae7a7789..1fa29617841f6b326953268d37c1d1fc5ae26f87 100644
Binary files a/docs/_images/gettingstarted_7_45degreeplot_x.png and b/docs/_images/gettingstarted_7_45degreeplot_x.png differ
diff --git a/docs/_images/gettingstarted_8_evaly1.png b/docs/_images/gettingstarted_8_evaly1.png
index e11578397b2a389b8b62391dd786b825367083b7..2a0c0eddca7018669ca91cb295b726f317c67671 100644
Binary files a/docs/_images/gettingstarted_8_evaly1.png and b/docs/_images/gettingstarted_8_evaly1.png differ
diff --git a/docs/_images/gettingstarted_8_evaly2.png b/docs/_images/gettingstarted_8_evaly2.png
index c2c3b6c68a70db9ced3eda6cb4ec1ded2ce576b5..722699dbe4287af79cd25d56dd0c139858346169 100644
Binary files a/docs/_images/gettingstarted_8_evaly2.png and b/docs/_images/gettingstarted_8_evaly2.png differ
diff --git a/docs/_images/gettingstarted_9_evalgeny1.png b/docs/_images/gettingstarted_9_evalgeny1.png
index 5d33f0010a00b65fd83f2d26e83a3cd0f5da8b88..13b743de1dbe1854eae01506c7dde6e51939fcea 100644
Binary files a/docs/_images/gettingstarted_9_evalgeny1.png and b/docs/_images/gettingstarted_9_evalgeny1.png differ
diff --git a/docs/_images/gettingstarted_9_evalgeny2.png b/docs/_images/gettingstarted_9_evalgeny2.png
index 995d7071e2e07ee5db63381edb1887c746107117..f5544379e32030b9c74f749a2ddea64933f71fe9 100644
Binary files a/docs/_images/gettingstarted_9_evalgeny2.png and b/docs/_images/gettingstarted_9_evalgeny2.png differ
diff --git a/docs/_images/model_plot_genscatter.jpg b/docs/_images/model_plot_genscatter.jpg
index 4687a189c20241d3ce6a9dde302ea01137860187..61277058603cd06ddca052d1afb940ff37e4ecb8 100644
Binary files a/docs/_images/model_plot_genscatter.jpg and b/docs/_images/model_plot_genscatter.jpg differ
diff --git a/docs/_images/plotter_1_matrix.png b/docs/_images/plotter_1_matrix.png
index 18628039b3a850ec2e5d513bb4b1aa550bd34dda..2789d58f5d28068c0facf92dec06413c1aa84d89 100644
Binary files a/docs/_images/plotter_1_matrix.png and b/docs/_images/plotter_1_matrix.png differ
diff --git a/docs/_images/plotter_2_corrmatrix.png b/docs/_images/plotter_2_corrmatrix.png
index 47a83283f38cc6b1134298662e33cf6a1974e1ef..09f4d9eceb467ffb8fd758dc2a57f6cae628010d 100644
Binary files a/docs/_images/plotter_2_corrmatrix.png and b/docs/_images/plotter_2_corrmatrix.png differ
diff --git a/docs/_images/plotter_3_obsvspred.png b/docs/_images/plotter_3_obsvspred.png
index e1b94d3086fd325ebc301f7114f2b82645303777..4e4dfff17f894c1a160dad98d1b21e10e8604729 100644
Binary files a/docs/_images/plotter_3_obsvspred.png and b/docs/_images/plotter_3_obsvspred.png differ
diff --git a/docs/userguide/model.rst b/docs/userguide/model.rst
index 1fbf1b11250bfa686713e276ed433a5aa0fcc6ff..ec7ae5fe2a79746065f62e67d17dbe4301157a88 100644
--- a/docs/userguide/model.rst
+++ b/docs/userguide/model.rst
@@ -283,22 +283,34 @@ Once defined a request, we just need to call the generator as follows:
 
 The method prompts a message with an overview of the results, in terms of the errors incurred for the number of samples requested, for a 10% of the best samples, and for the best sample.
 
-    # Error during generation
+.. code-block:: python
 
-    * Errors when requesting: sun_occlusion = [20.0, 30.0], surface_platf_1 = [35], surface_platf_3 = [50]
-    - Mean for 10 samples: 0.0, 0.66272086, 0.9577557
-    - Mean for 1.0 sample(s): 0.0, 0.4821968, 0.39183807
+    Generator: Accuracy
+    -------------------
+    Requested attributes:               |                       y1 |                       y2 |
+    Requested values:                   |                        5 |                      140 |
+    Best generated sample:              |        4.999994964440804 |       137.59591324644316 |
+    Mean error of generated samples:    |                    ----- |                    ----- |
+       .. of all returned 1000 samples: |  +/- 0.08159927114184601 |    +/- 2.152879584234029 |
+            .. of the best 100 samples: | +/- 0.007120085617553693 |   +/- 2.3875806416660854 |
 
-    Best sample: 24.619483947753906, 34.51780319213867, 50.39183807373047
 
 Besides, variable ``df_out`` combines the generated designs :math:`x` with the requested values :math:`y`.  If there is a direct mapping between ``InputML`` and ``DesignParameters``, this can be fed to the CAD or FEM software for further evaluation.
 
-Furthermore, ``all_results`` is a dictionary containing all the results derived from the internal operations of the ``Generator``. Per se it is not useful to the user, but it can be harnessed by other methods. In particular, the plotter contains a method that allows to more visually represent the generated samples. For example, we can provide the output of 3 different requests as follows:
+Furthermore, ``all_results`` is a dictionary containing all the results derived from the internal operations of the ``Generator``. 
+Per se it is not useful to the user, but it can be harnessed by other methods. 
+In particular, the plotter contains a method that allows us to more visually represent the generated samples. 
+For example, we can provide results from multiple requests ("experiments"), 
+as shown here in an example taken from the use case `Semiramis`:
+
 
 .. code-block:: python
 
+    request1 = {"rain_total": 50, "surface_total": [210,230]}
+    request2 = {"rain_total": 60, "surface_total": 250}
+    ...
     plotter = Plotter(dataset, model=cae, datamodule=datamodule, output='show')
-    plotter.generation_scatter([dict_results1, dict_results2, dict_results3], n_samples = 2)
+    plotter.generation_scatter([dict_results1, dict_results2], n_samples = 10)
 
 Leading to the following plot:
 
@@ -308,13 +320,6 @@ Leading to the following plot:
    :align: center
    :width: 800
 
-This plot results from the use case `Semiramis`, and the attributes requested are the sun oclussion, and the surfaces for platform 1 and 3. However, the request are different in each case:
-
-.. code-block:: python
-
-    request1 = {"sun_occlusion": 27}
-    request2 = {"sun_occlusion": [20,23], "surface_platf_3": [40, 50]}
-    request3 = {"sun_occlusion": 25, "surface_platf_1": [30, 38]}
 
 We can observe then in the plot how each sample is just plotted in some particular contour plots and histogram, those that correspond to the attributes requested. This graph provides a visual representation of the performance of the generated geometries, and may allow understanding more in detail the behavior for more challenging requests, e.g. closer to the edges of the attributes’ distribution, where the model has observed less data during training.
 
diff --git a/docs/userguide/plotter.rst b/docs/userguide/plotter.rst
index 570d4ae84b81d5056eb975b3985932121eedd4ed..08e97a8b75c185fdc9f93a5af1d0fa9f2e4f1ac5 100644
--- a/docs/userguide/plotter.rst
+++ b/docs/userguide/plotter.rst
@@ -30,17 +30,6 @@ Most of the following plotting methods ask the user to specify the name of the d
 Some methods allow also to limit the plot to selected data objects within that block(s) by providing their names to the ``attributes`` argument.
 
 
-
-
-.. caution::
-
-    The name of the :ref:`data block <Data Blocks>` must match the blocks used in the :ref:`dataset <dataset>` or the :ref:`DataModule <datamodule>`!
-
-    - Default names of data blocks used in the ``Dataset`` are `'design_parameters`' and `'performance_attributes'`, unless the user named them differently.
-    - Default names of data blocks used in the ``DataModule`` are `'inputML`' and `'outputML`',  unless the user named them differently.
-
-
-
 .. hint::
 
    When instantiating the ``Plotter``, you get a hint on the attributes and blocks that can be submitted as arguments.
@@ -153,10 +142,10 @@ One method to evaluate the trained ML model ist to compare the model predictions
 
 .. code-block:: python
 
-    plotter.attributes_obs_vs_pred(block="inputML", attributes=["x1"], datamodule=datamodule)
+    plotter.attributes_obs_vs_pred(block="inputML", datamodule=datamodule)
 
 
-.. image:: ../_images/plotter_3_obsvspred.png
+.. image:: ../_images/gettingstarted_7_45degreeplot_x.png
    :alt: The image cannot be displayed.
    :align: center
    :width: 600
diff --git a/examples/gridshell_structure/gridshell_structure_example.ipynb b/examples/gridshell_structure/gridshell_structure_example.ipynb
index 1735b45796c997614cfe0b6eb51fe5fea54d7e67..1ca414c0e0e654c346a3c76efc93b179b7a0ed52 100644
--- a/examples/gridshell_structure/gridshell_structure_example.ipynb
+++ b/examples/gridshell_structure/gridshell_structure_example.ipynb
@@ -589,8 +589,7 @@
    "mimetype": "text/x-python",
    "name": "python",
    "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.9.21"
+   "pygments_lexer": "ipython3"
   }
  },
  "nbformat": 4,
diff --git a/examples/semiramis/from_dataset/semiramis_from_dataset.ipynb b/examples/semiramis/from_dataset/semiramis_from_dataset.ipynb
index 4dfca0ebeaadd52d5699e374cb094f853e794eb3..c6d0ef3a8db209d646a41aed60592f3cb57c0706 100644
--- a/examples/semiramis/from_dataset/semiramis_from_dataset.ipynb
+++ b/examples/semiramis/from_dataset/semiramis_from_dataset.ipynb
@@ -425,7 +425,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "n_samples = 10\n",
+    "n_samples = 20\n",
     "\n",
     "request = {\n",
     "    \"rain_total\": 50,\n",
@@ -464,7 +464,22 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "plotter.generation_scatter([detailed_results], n_samples=2)"
+    "\n",
+    "request1 = {\n",
+    "    \"rain_total\": 50,\n",
+    "    \"surface_total\": [210,230],\n",
+    "}\n",
+    "\n",
+    "request2 = {\n",
+    "    \"rain_total\": 60,\n",
+    "    \"surface_total\": 250,\n",
+    "}\n",
+    "\n",
+    "generated_samples1, detailed_results1 = gen.generate(request=request1, n_samples=n_samples, format_out=\"df\")\n",
+    "generated_samples2, detailed_results2 = gen.generate(request=request2, n_samples=n_samples, format_out=\"df\")\n",
+    "\n",
+    "\n",
+    "plotter.generation_scatter([detailed_results1, detailed_results2], n_samples=10,downsamp=1)"
    ]
   }
  ],
@@ -484,7 +499,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.18"
+   "version": "3.10.16"
   }
  },
  "nbformat": 4,
diff --git a/examples/simple_example/simple_analytical_example.ipynb b/examples/simple_example/simple_analytical_example.ipynb
index 83c446170d6745b0f1da2752057aac1695dc5bd1..7e0394a58816ce75b7919f6c52de80c348bd4cb0 100644
--- a/examples/simple_example/simple_analytical_example.ipynb
+++ b/examples/simple_example/simple_analytical_example.ipynb
@@ -951,8 +951,7 @@
    "mimetype": "text/x-python",
    "name": "python",
    "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.9.21"
+   "pygments_lexer": "ipython3"
   }
  },
  "nbformat": 4,