Pin numpy to <2 for windows
On windows we get the following error
>>> import aixd.data
A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.1 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.
Traceback (most recent call last): File "<stdin>", line 1, in <module>
File "C:\Users\aapolina\CODE\aixd\src\aixd\data\__init__.py", line 132, in <module>
from .data_blocks import (
File "C:\Users\aapolina\CODE\aixd\src\aixd\data\data_blocks.py", line 10, in <module>
import aixd.data.utils_data as ud
File "C:\Users\aapolina\CODE\aixd\src\aixd\data\utils_data.py", line 12, in <module>
import torch
File "C:\Users\aapolina\Anaconda3\envs\aixd-dev\lib\site-packages\torch\__init__.py", line 2120, in <module>
from torch._higher_order_ops import cond
File "C:\Users\aapolina\Anaconda3\envs\aixd-dev\lib\site-packages\torch\_higher_order_ops\__init__.py", line 1, in <module>
from .cond import cond
File "C:\Users\aapolina\Anaconda3\envs\aixd-dev\lib\site-packages\torch\_higher_order_ops\cond.py", line 5, in <module>
import torch._subclasses.functional_tensor
File "C:\Users\aapolina\Anaconda3\envs\aixd-dev\lib\site-packages\torch\_subclasses\functional_tensor.py", line 42, in <module>
class FunctionalTensor(torch.Tensor):
File "C:\Users\aapolina\Anaconda3\envs\aixd-dev\lib\site-packages\torch\_subclasses\functional_tensor.py", line 258, in FunctionalTensor
cpu = _conversion_method_template(device=torch.device("cpu"))
C:\Users\aapolina\Anaconda3\envs\aixd-dev\lib\site-packages\torch\_subclasses\functional_tensor.py:258: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\utils\tensor_numpy.cpp:84.)
cpu = _conversion_method_template(device=torch.device("cpu"))