diff --git a/notebooks/Block 1/Jupyter Notebook Block 1 - Introduction to Image Classification.ipynb b/notebooks/Block 1/Jupyter Notebook Block 1 - Introduction to Image Classification.ipynb
index a9f11e4d2e3d33234fec6a4c817ee7d7cb94c870..31f544e4be13b4180642fb818503a85ee12ef1d5 100644
--- a/notebooks/Block 1/Jupyter Notebook Block 1 - Introduction to Image Classification.ipynb	
+++ b/notebooks/Block 1/Jupyter Notebook Block 1 - Introduction to Image Classification.ipynb	
@@ -13,7 +13,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 11,
    "metadata": {
     "nbpresent": {
      "id": "409a1ab7-fe1d-4430-b904-7694020a6223"
@@ -22,56 +22,19 @@
    "outputs": [],
    "source": [
     "import numpy as np\n",
-    "from tensorflow.keras.datasets import cifar10\n",
-    "\n",
-    "(X_train, y_train), (X_test, y_test) = cifar10.load_data()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### REMARK:\n",
-    "If you have the data set downloaded on your own drive, you could unpack and inspect using the following cells.\n",
     "\n",
-    "If you are running on Renkulab, you can skip to the next header"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "nbpresent": {
-     "id": "409a1ab7-fe1d-4430-b904-7694020a6223"
-    }
-   },
-   "outputs": [
-    {
-     "ename": "FileNotFoundError",
-     "evalue": "[Errno 2] No such file or directory: './Daten/data_batch_1'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-2-e287de61b2d8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      5\u001b[0m         \u001b[0mdict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'bytes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mdata_batch_1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./Daten/data_batch_1\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      8\u001b[0m \u001b[0mdata_batch_2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./Daten/data_batch_2\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      9\u001b[0m \u001b[0mdata_batch_3\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./Daten/data_batch_3\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m<ipython-input-2-e287de61b2d8>\u001b[0m in \u001b[0;36munpickle\u001b[0;34m(file)\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m     \u001b[0;32mimport\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m     \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfo\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      5\u001b[0m         \u001b[0mdict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'bytes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: './Daten/data_batch_1'"
-     ]
-    }
-   ],
-   "source": [
     "# function to import CIFAR-10 data set\n",
     "def unpickle(file):\n",
     "    import pickle\n",
     "    with open(file, 'rb') as fo:\n",
     "        dict = pickle.load(fo, encoding='bytes')\n",
     "    return dict\n",
-    "data_batch_1 = unpickle(\"./Daten/data_batch_1\")\n",
-    "data_batch_2 = unpickle(\"./Daten/data_batch_2\")\n",
-    "data_batch_3 = unpickle(\"./Daten/data_batch_3\")\n",
-    "data_batch_4 = unpickle(\"./Daten/data_batch_4\")\n",
-    "data_batch_5 = unpickle(\"./Daten/data_batch_5\")\n",
-    "test_batch = unpickle(\"./Daten/test_batch\")"
+    "data_batch_1 = unpickle(\"./data/data_batch_1\")\n",
+    "data_batch_2 = unpickle(\"./data/data_batch_2\")\n",
+    "data_batch_3 = unpickle(\"./data/data_batch_3\")\n",
+    "data_batch_4 = unpickle(\"./data/data_batch_4\")\n",
+    "data_batch_5 = unpickle(\"./data/data_batch_5\")\n",
+    "test_batch = unpickle(\"./data/test_batch\")"
    ]
   },
   {
@@ -87,7 +50,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 66,
+   "execution_count": 2,
    "metadata": {
     "nbpresent": {
      "id": "f77bd9ec-de3b-4c56-b08d-4a65f0780408"
@@ -100,7 +63,7 @@
        "dict"
       ]
      },
-     "execution_count": 66,
+     "execution_count": 2,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -122,7 +85,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 67,
+   "execution_count": 3,
    "metadata": {
     "nbpresent": {
      "id": "c874a7c9-de0c-4ccd-a0f1-8f8a3265a0b6"
@@ -135,7 +98,7 @@
        "dict_keys([b'batch_label', b'labels', b'data', b'filenames'])"
       ]
      },
-     "execution_count": 67,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -157,7 +120,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 68,
+   "execution_count": 4,
    "metadata": {
     "nbpresent": {
      "id": "fe299a35-c930-4078-97b7-c9b67f42ec42"
@@ -170,7 +133,7 @@
        "numpy.ndarray"
       ]
      },
-     "execution_count": 68,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -192,7 +155,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 69,
+   "execution_count": 5,
    "metadata": {
     "nbpresent": {
      "id": "46a97575-36c0-4920-a8dc-762e94239b7e"
@@ -205,7 +168,7 @@
        "list"
       ]
      },
-     "execution_count": 69,
+     "execution_count": 5,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -227,7 +190,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 70,
+   "execution_count": 6,
    "metadata": {
     "nbpresent": {
      "id": "b012720d-81f8-455d-8ce7-bfca64a842c8"
@@ -240,7 +203,7 @@
        "(10000, 3072)"
       ]
      },
-     "execution_count": 70,
+     "execution_count": 6,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -262,7 +225,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 71,
+   "execution_count": 7,
    "metadata": {
     "nbpresent": {
      "id": "49c776cb-c8aa-461b-a0da-4f4d38342e2e"
@@ -275,7 +238,7 @@
        "10000"
       ]
      },
-     "execution_count": 71,
+     "execution_count": 7,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -297,7 +260,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 73,
+   "execution_count": 8,
    "metadata": {
     "nbpresent": {
      "id": "438920f4-774e-4e94-9b7c-30a2106d163c"
@@ -310,7 +273,7 @@
        "[6, 9, 9, 4, 1, 1, 2, 7, 8, 3]"
       ]
      },
-     "execution_count": 73,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -332,7 +295,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 74,
+   "execution_count": 9,
    "metadata": {
     "nbpresent": {
      "id": "7617a699-c3d5-434f-97a5-3443489ac9db"
@@ -345,7 +308,7 @@
        "dtype('uint8')"
       ]
      },
-     "execution_count": 74,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -367,7 +330,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 12,
    "metadata": {
     "nbpresent": {
      "id": "942f351b-b771-4375-8df2-eec28391a576"
@@ -396,25 +359,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 13,
    "metadata": {
     "nbpresent": {
      "id": "9b85b9a0-5f2b-4c68-a74f-82f1ec212215"
     }
    },
-   "outputs": [
-    {
-     "ename": "NameError",
-     "evalue": "name 'data_batch_1' is not defined",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-5-0db84ead4b15>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m y_train=np.concatenate([data_batch_1[b'labels'] , \n\u001b[0m\u001b[1;32m      2\u001b[0m                 \u001b[0mdata_batch_2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mb'labels'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m                 \u001b[0mdata_batch_3\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mb'labels'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m                 \u001b[0mdata_batch_4\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mb'labels'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m                 data_batch_5[b'labels']], \n",
-      "\u001b[0;31mNameError\u001b[0m: name 'data_batch_1' is not defined"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "y_train=np.concatenate([data_batch_1[b'labels'] , \n",
     "                data_batch_2[b'labels'],\n",
@@ -437,7 +388,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 14,
    "metadata": {
     "nbpresent": {
      "id": "5c85918c-f89e-4156-8cdd-ca38d14afbb9"
@@ -445,15 +396,14 @@
    },
    "outputs": [
     {
-     "ename": "NameError",
-     "evalue": "name 'test_batch' is not defined",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-8-95e1076f079d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mX_test\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtest_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mb'data'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mX_test\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mNameError\u001b[0m: name 'test_batch' is not defined"
-     ]
+     "data": {
+      "text/plain": [
+       "(10000, 3072)"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -474,7 +424,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 15,
    "metadata": {
     "nbpresent": {
      "id": "5f913d95-aa49-4727-8c6f-5630cbf59741"
@@ -487,7 +437,7 @@
        "(10000,)"
       ]
      },
-     "execution_count": 20,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -497,13 +447,6 @@
     "y_test.shape"
    ]
   },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Continue from here in Renkulab"
-   ]
-  },
   {
    "cell_type": "markdown",
    "metadata": {
@@ -517,7 +460,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 16,
    "metadata": {
     "nbpresent": {
      "id": "a0eb7a33-19c9-46e4-b471-6f7904389177"
@@ -527,10 +470,10 @@
     {
      "data": {
       "text/plain": [
-       "(50000, 32, 32, 3)"
+       "(50000, 3072)"
       ]
      },
-     "execution_count": 6,
+     "execution_count": 16,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -552,7 +495,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 17,
    "metadata": {
     "nbpresent": {
      "id": "d699e7a7-efc0-421f-bd8d-2d2b34a09516"
@@ -562,10 +505,10 @@
     {
      "data": {
       "text/plain": [
-       "(50000, 1)"
+       "(50000,)"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 17,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -607,7 +550,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 19,
    "metadata": {
     "nbpresent": {
      "id": "d817d603-7d37-4ff2-b3d1-e95875b48f8f"
@@ -632,8 +575,7 @@
     "%matplotlib inline\n",
     "import matplotlib.pyplot as plt\n",
     "\n",
-    "# plt.imshow(X_train[20].reshape((3,32,32)).transpose((1,2,0)).astype('uint8'))\n",
-    "plt.imshow(X_train[20])\n",
+    "plt.imshow(X_train[20].reshape((3,32,32)).transpose((1,2,0)).astype('uint8'))\n",
     "plt.show()"
    ]
   },
@@ -651,7 +593,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 20,
    "metadata": {
     "nbpresent": {
      "id": "ba3743b9-ea50-4201-ad99-5fa47e8b82fb"
@@ -660,7 +602,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAD3CAYAAADMt+U9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxlWXbXB37X3me8831zxIsp58wapSqVqkoDJUpCQhKDmoZuaGPAxrTB0EC33YwesE2bqTFuLBv7g238AQymwbgRH1ADaiGpSlLNlVmVU2RmzBFvfne+90x76D/OfZFRqcr3IrNKFMLxy8+LvPeeaZ199ll77bXX+i3x3vMIj/AIj/AI3xqob7UAj/AIj/AI/1vGIyX8CI/wCI/wLcQjJfwIj/AIj/AtxCMl/AiP8AiP8C3EIyX8CI/wCI/wLcQjJfwIj/AIj/AtxLtWwiLyfSJy95spzK9UiMhNEfmBr/P794rI1W/GuX6lQkT+RxH5099qOR7Et0ImEXlGRJ4XkamI/MF/Qdf8FdWXRORPicjfPGX7SyLyff/iJHpnEBEvIk++0+MeWcK/jPDef8p7/8y3Wo6Hxa+0l/ZXGP4I8M+9923v/V/+VgvzKxHe+/d673/mGznHv4x9/JESXkJEgn+Vr/evEn6Ftt1l4KWvt0FE9L9gWR4av0Lb+l3hW3WvZyrh5cjxx0XkZREZishfE5Hk6+z3x0Tk2nK69bKI/O8e2Pa7ROTTIvL/XJ7jhoj88APbuyLy34vIrojcE5E//U47pohcFJG/LyKHInIsIj8uIk+IyE8vvx+JyP8kIr233NsfFZGvAPNv8CF85K1t9FaXzde7noj86yJyaynjn/wGrv81eKftISJ/A7gE/EMRmYnIH3mX1/12EfnSsh/8HSB5YNuvW07JRyLyCyLygQe2nReR/2Up740Hp+zLaerfE5G/KSIT4Hd9E2X6PSLyhogMROQnROT8A9t+UESuishYRP5rEflZEfm33kWb/DTwq4EfX7bt3xKRvyIi/1hE5sCvFpHnRORnlm3zkoj8hgeOXxWRfygiExH5/PL9+PRDXv7bROQry3v4Oyfv7hn37UXk94vI68DrUuMvicjBUoavisj7lvvGUr/Xt0VkX0T+GxFJH6JN/qjU7/p02cbfv9wUichfX/7+koh8xwPH3LdiH+gTf2e575dE5INnXPOX9PHlvf5uEbkN/LR8HTfrW66rReRPyJu67osicvHrXOt7ROSOPIz7xHt/6h9wE3gRuAisAD8P/Gng+4C7D+z3W4Dz1Ir9/wjMgXPLbb8LqIDfA2jg9wE7gCy3/6/Afws0gQ3gc8C/fZZsD1xbAy8Af2l5jgT4HuBJ4NcAMbAO/BzwX7zl3p5f3lv6sNf7Btroa64HvAeYAb9qKeN/DhjgB96tLN+E9njX1wYi4BbwfwVC4Dcvn/ufBr4dOAA+upTvdy6vFy/7zBeB/3B5jseB68APLc/7p5bn+bHlvg/9rM6Q6ZPAEfChpRz/JfBzy+PWgAnwm4AA+EPL4/6td9k2P3NyLPA/AmPgu5f30wbeAP7EUt5PAlPgmeX+//Pyr7HsM3eATz9kv/wc9Xu5ArwC/N7T7nt5nAf+2fKYFPih5fPpAQI8x5vv9l8CfmK5bxv4h8CfOUOuZ5b3cH75/QrwxPI558CPLPvInwE+8/X65wN94jcvn+u/B9wAwodokx944Loe+OvU70nKW97Zr3PM/x346vIeBPggsPpAuz0J/Nrl/X3nQ/WNh3yQv/eB7z8CXPt6wr7luOeB37j8/LuANx7Y1lgKvAVsAgUPvFjAb6P2nz1sB/84cAgEZ+z3Y8CX33Jv/+a7VTrvtI3eej1qpfM/P/C9CZR840r4G2mPb0QJ/yoeGFyXv/0CtcL7K8B/+pb9rwKfoFbMt9+y7Y8Df235+U/xgJL4Jsr03wN//oHfW9Qv9hXgdwC/+MA2Wb5Y3ywl/Ncf2Pa9wB6gHvjtby/vWy9leuaBbX+ah1fCv/2B738e+G9Ou+/ldw988oHtnwReAz72FhmF2th64i1978YZcj1JPSD/AA8ozeX9/tQD398DZF+vfy73fVBBK2AX+N6HaJO3KuHHH9j+fZyuhK+y1Gtf59x+2W9vAe972L7xsNPvOw98vkU9sn4NROR3AP+35Y1B/WDXHthl7+SD934hIif7rFCPZLvL304a9MFrnoWLwC3vvXmLTJvA/4u6k7eX5x2+5dh3cp3TcGYbfZ39zj/43Xs/F5Hjb4Is30h7fCM4D9zzyx65xK3l/y8Dv1NE/i8PbIuWx1jgvIiMHtimgU898P3dPqfTZDoPfOnkR+/9bNn+2/zSZ+PfOk39BvFL+oH33r1Fxm3qGUvwlv3fSVvsPfB5sbzWKm9/3zffeg3v/U+LyI8D/xVwWUT+PrXlmVAbVF984N0V6mf3tvDevyEif5hakb5XRP4Jte74evImIhK8tS9/HRnd8vm83Xt3Gt6prrl2yvY/TD3AvviwJ3zYhbkHfR6XqC2L+xCRy8BfBf4AtWneo56eC2fjDrUlvOa97y3/Ot779z6kbCfnuCS/1Kf7n1GPTu/33neA3/51ZPpm0cid2kZvc73dB48TkQb1C/KN4t22xzfaFrvAtjzwRlK3xYlM/48HnnHPe9/w3v/t5bYbb9nW9t7/yDdBttNk2qEeHAAQkSZ1+99bHnfhgW3y4PdvAh68nx3goog8+D5eWspxSO2ievDav8QH+Q5x2n1/Pfnw3v9l7/2Hqa3Tp6mn5UdABrz3gefW9d63zhLAe/+3vPffs5TDA3/uXdzHg++Oom6jt3vv7l/6jN/m1APLyXk19UB4gjvUrpO3w28BfkxE/tAZctzHwyrh3y8iF0RkBfiTwN95y/Ym9Y0cAojIvwG872FO7L3fBf4p8BdFpCMiSuoFpE88pGxQ+712gT8rIk2pF8W+m9ramwFjEdmm7ji/XDirjb4e/h7w65ZO/Aj4T/jmRKy82/bYp/bHvlv8IrXC+IMiEorIbwK+c7ntrwK/V0Q+ulzoaYrIj4pIeynvdLlYky4XP94nIh/5BmR5GJn+NvBviMi3iUhMPUh91nt/E/hHwPtF5MeWg9nvp3af/XLgs9RW3x9Zyvh9wK+ndlVZ4O8Df0pEGiLyLLWr5BvBaff9SyAiH1k+t5BaSeWAW1rufxX4SyKysdx3W0R+6LSLSx0z/cnltXNqRe5OO+Zt8GER+U3L5/OHqY25z5xxzFl9/DVq6/tHl/f771P7zU/w3wH/qYg8tezHHxCRBw2nHeD7gT8kIr/vYW7iYV/4v0WtKK9Tm+JfE+juvX8Z+IvUHX4feD/14tTD4ndQT01fpp4e/z3g3MMevOyov57a13QbuEu9OPgfUy8+jKlfqr//DmR6pzi1jb4evPcvUb/cf4taaQ6pZf+G8A20x58B/n2pV+j/vXdx3ZJ6Iet3AYPlNf/+ctsXqBdmf5z6Pt9Y7nci768Dvo16ceWIurN336kM71CmnwL+A+B/oW7/J4Dfutx2RG3V/HngmNoC/AL1i/5NxVLGXw/8MPW9/9fA7/Dev7rc5Q9Qt8Ue8Deolei7luO0+34bdKiV7ZDaTXIM/IXltj9K/Sw/I3Xkyk9RL1qdhhj4s9T3uke9GP/H38Wt/APq5zkE/nXgN3nvqzOOud/HqRf1vgbe+zHw71D3v3vUg86D7+R/Dvy/qd/1CbV/PX3LOW5TK+I/Jg8RTXMSnfD2O4jcpF5Q+KmzTvYIj/CvKpbT3bvAv+a9/+ffYln+HLDlvf+d30o5vpUQkT8FPOm9/+3falm+UTxK1niER3gbiMgPiUhvOW3+E9T+87Omu78ccjy7nPaKiHwn8Lupwzof4V8B/G8mG+YRHuFd4OPUrqITV9mPee+zb4EcbWoXxHlqd99fpJ6KP8K/AjjTHfEIj/AIj/AIv3x45I54hEd4hEf4FuIduSM+/eJdb60FHi4A+N3CA5/44OW3vcTv+eN/3VsniK0oi5wwauGU4JwhXxR0kogrF3q876ktytIwnGSMxwusFQpjsFJw5dImi9mUdrvNaDil1+ty994xR8clq1t95nnO0dGI/+4v/JtvK8fnPv1feGstznsq5yiNp3Qe5x1KBKUitIRoQpQSEEvgCiLJscpRVJrcO4yN8DZENHhnsLZCxBKIQ4tHK8UP/ch/8LZy/OXf+30+jg1xqgjikKgR4b0FiQjTJmY6xmY57dVzqDihsgVVkVMt5kjYJEz7fPXzL2KKiqgX8tJ+zv7EYj0gHu9BBGxp+IVfvPq2cvzQD37IEwrGWvJZzhPbW3QaCXZsqMTjGgF5UTJf5Ij1qCTEB6CVJggDqrIkmxeIc5xf3WDuciopKXNDvjCgFEmckGUL/ulPfv5t5djor/swDOqMJOPwzqOU4J3DYpAAwjBEKUWz0SCOIxppg0ajSTafM5vOKMsSRFBao8IY6xWl9TjnEO8REbz3XLv+6tvK8e/+R7/Dd/odZosxs/k+h/dG3HzjEGyAOI0vAxbzHGtKlBY++B3PUYZTrC4IgwBdQZGXzC0UQU6j1SacJ8i0YHc+4P2/6jvZ2jjH5Cjjx//DH39bOb73Bz7hvXMo0SgV4MUjeATBe4WI4Fz9Xmtdt5u1lqoyTEdjfLag3evQXutjvcc6h3MeUaBFAIXzHmsMn/7pn31bOf7Q33zRL+ZTiqKgKAtMVVGUFaYsqN+j+rzee5y3WOuw1sOyvZH6s/PQThPef3mdsih4dW+O9Q4vgg5C4qTBT/5Hv+Ft5fBvM/13gMejPODBKbkfQHx8eIgrKzbPbSEi9fNnqQe9p7COojS0kgjEY4uK2TRjZaN/pqp8R0r4XxbPxXBS4p1F2YzKOuzM4hUYZ3HGUhlDZ95iMHcMjqYcHk5xVcXaSptWK6GSkLv3xly+1OPihRXmswWTWcE8qyiMY+dwjLUGa04PXUwDwYpgXN0wToPzUC0bylkLolBKoxAUjkAciEHEIQJUgjcKRYAWjTfLlwBHiUcLaHX6c5zvvYFve4JuhCbC6gRflZjcUOkI5QXlBe1bKJtjsyGqmKOzDJ+FzCbH3N65Tr+hiIOAZp4x2ptxnNcdHu8RFFV5RvSPOPKiwlhPHIeEjYiJN/SSmJYXxq4kCBQqFMI4QAcRmSnJipKGgiAMSBuetUaHNEwobIUzmiAQwlDwziPe02j8Ev6orxVDOZQGrQIIPIF6U0lYhLSRcvHSRd73/vfz9DNP0+l2SZIErTTHB3t89fnneeONNxiNRpRlVQ8QFpw3eAHnPaaq6oH1FIzHtwjSFuNJzmg2Y2JyVjfXmOxNGA9GSBlS5iVpK8ZLha2miJpjqjmLvCQ0iiSO0aEibWuyxYyDO3tc6K/S20gJkgzrRly4eHruRjNtgLNopREdALUyU85j6seLR+Ol7icej7Eg4hGl0WG4bB9BXG0UOKlVllL1ZDpoxhT56d3DOod1J0q8/vPeYJ3FOYNbKmLr/XKbry0yJzhxCA68w3swpWErabLVyxlNDIMCJrlDRDD27Og9f6LYT74D4j0WsB60B2W4b20q43HG40qL14IEGrU8XkTIi5LXXrzKU49fodlrcuPaDa6+/Aa/4f/w68+U5R0pYRG+RvBfLpx5hbKgEXrWNzpMc89kbgmSiCzLsIHBesPBYMYXXrpFNpujvCYKQ/x8gcot1nisFbR2tBoRjbTJS1d3GM8yUE1sUWLmI3R1+sMMMWjlwFkMnlAUXoFDlh17+Z9yCELoXW05iK6tTK/BxijTJNBNVOnwtsBph9MW4xzOgj3Da6TjGHSJBAE6iIEQCTRFPmR6NCVQISubawRRk6DRw6EwZU6YJBRZxnCwQ7uXkDYjAlXx3is92t0mX7o+5vZxhrWCIGfmrB0Nx6gwoNlssNJrIaEwm5WoqeFSp48JHPMipywMzZUmRZ7jnSNJA4JAo5QmFM16q09pKwQhn1aY0mPKCusd1ltareapcnhvcbYCb4mCkCBQlGWJDoTNjS0++O3fxtNPP8Njjz1Ou98lyzPG4zFlVVGaijgJuXDxHOsbK+zvHjAeT8E5xBq8yFI5OdwZVkmVW+7e2uHwsOB4PMP5gLaOKOcKKUOUFdIkIk41hII3FYkOwEaQC6oSKquYaUu73WJ+OKHMwK4pkmaKyS1WVST90welZqwRFEoUrV4PYx35fEYgLBWeYJ2lu7KCt5bZdIr3AXihYQWHZePiecp8hnMWEaktVCBppDg8NAJcGZ8qB6JAFKLqP5SACKIVeI13Du8FpTRQzygRv7TchVhrPA4vIFg8lq1z53iyKPjKnRHTqsCJp7Jn532cWLN1f6lNX4/DTxcUwwlxv4s0U1xVYRYZxf4h2d6A2SvXSdZ7nHvuKVSagIAXT6g8N774ZYprt/jQD32Cwb1djl9//Uw54F+G6Ij73BsA7qH8HBdXU5TLWGvWL5eYDG0djVARt1tUzjAcTBmPprTSgEaiyLIRpihJtEcZSJsJ5jhkHDmstRTHezSDgEYjwgiYylHls1PlUM4igFhbWwgiKAXiZDm1WT5k/LLzgkKwPsT7EGyMmAYhbbRP8LYgkgDnLEZVgKqbR85QwkE93XbWYZ1DO4tbVIx3F+wfGiyO49EhQsDWU88SJi3KeYyzBeINMTPWW5q8tOimpptqno3AFRHDcc6wtIgSAn16d5nNctr9DkkS0miGtbXkYTyekAcJcaxYDGYcDmaICJXJQRStqEVVFuCE7fYqeuYoggqn4PhoQL6o0Ahe1ZPoLCtPlcNXyxdYgcGAr5+G1porV7Z55pnHaLRaVA4m0wnD0TGj0YQoTKgKx9F4wfB4QL/b5P0feD+vXb3G3Xs7KBxaKbTSGDzGfD06gzcxHszIq5w898QqxOSeo50DyklFLBonECUBcTsi7gRIQ4gbCfmiohW1WAxzFlVF7sEezyiHhpXVPulqTGOtx2IwJlloqvVTxSDLSwSLIDR7K5RVifNQuApjDMaCKS3dNY03Jdl8hvOKNI758NNPcHNwiI5iyvEAayvAY50HUTTabUxVMd6ZYM9oD+8d3tczQKUEtWxLpyxOHEqp+o1RGqU83qvaYhZPpDwXehGhgso4FJbKKoa+w3o/4+J0gRbHcWapzFn5GvcFuv9RPFhXMb95m7v/7DM0V3uEWysMDo8Z7OxxuLPHbO+IBGHzvU8xPh6y8thF1s5v4MUyPdhjdO068/wqzXaTna+8SP7iw9FHfOuVMFBr3of3dXzwfZfY3d3Flwu2Nzo04pjRZEbSaqJCjXHCbCIElWFNObKiYnK4Q0wJSYotM5rBChvrF7h9/XV29w+ZzS29ZkhbzZFAoas5oV2cKofzAdZ5vDMIBtB4NA6w1D5DJfX0xnmF8R4VaDwhmAauSPGFR2kIA4PXHpcbZuMFza0e3hscFn2GxaUDQZQHHN5aTOXJhjMGY8+YEKsUB2NQ1yYIr5P0WogvqLIFxWyGLh0d54nF04kSWGQoYK0Z0AyEiQ5J05ThaHqqHPWA4YlCoVgsmM8EFaRYgclkwrm1dcJCMR/PGMUKHSniMMCWJc47GkFKXAZMszmLpmVSzJkvMorMECiNFwUIVWVP7yAeZOkAwnnQoLUmTVN6vS7GVIRhQBiFHA/3GQ4OWCxKqnLIIqtQQUhZGXZ393j6qffwsY9v8g/+QR0RprSuB96lRXga8soymZdEYYJ2DgkVQVxhIktRlDgEU4U0wpjeRpOkFZA0WiTdLuW8pFxkiPaEUchkOGS132N1o8VoMaSddFkcDqjGFTY6PclSBxqtFEoJcRJibIEpPHEYECjBGMeiqu9HC4Rao7TCeceRVxxMcy70HKEGhap9r9SKNI5DlDhm3pBnp88cna+tVwAlUrdj7VSt/eyAaH3yI876+35Xaz2R92z3UtJIk4YBRb7gjddfQ5TmfCuh0+jwpdtDsvlDJhMuZ6sI5JMZO1e/yp2ff4HDF14mWRQMTcmdsuB4OubAFZgs56OrW7QnG9y8foNrV19lY7VDFVgmx4eINvh2ymsvv8Lxl15gcf2NhxLjW6uEl2x4nrIeAZcv2Vm4+fp1jg5nnF9tsr4S0kmbtNstts+vkSRw994hqrR0Y+HiSshCNXhN5wz2DjFWMM7SWW/z3d//Hezeucl4NOfLX7zKajviyuOXmWUzdNFmsndwqhyV01SVwViFU7WLoTIO44SlmxgvDoNBEeJNSJkL2aJiMZvSbaVU85zClPhGiNYKJZ5eu4snYTjfAzGk6enTbx3WflOlPIiDymNNSBkGrG3FJKlmNjbcOyyQWwvca3dYaVm6DcjmOaULmRWKrCqYLnI2ugE6jamMJU5C2mHCfFqwKE5Xft3VJkms0dpzsD9EfETaqgcpL0Kz2Wal2Sdw93ClQauIlZUWjV7KKM9Ji5B8PGeUzcksjOczyrz2qzvU0pXp0MHpfSQKo1rxBMF933sURbTbbS5sX+Lc1jbnLl6mqAxVMacqFvjK4K3DlBlKeZzzBEHCfJZx8eJl0jRFa41SqrYeT6bUp+D8xSeZ33gZayushSBK6KxEtFJTP6ayQoUBURhSzBcoF9ANeriFRWULvv2Zx3hlZx9Kh6Wk020ynk3xUYD3irw0dPo9kmbjVDkaaYK1higKSNME70pssUCLIgqD2j/sPbEz5NaTpDE6DLlz75hXrn8eU+U0mpp2GgH1uKa0Rrwh0AofBHR7DeL49OdSOwk83tl6Ic5ZjDVYY/BuudU5PLX/2LvaqHDOonTAUan4rsee4CPPXUbbkmqRY8MQozy7ewNu3j3i488kvLrzEMSA/k2zbzqd8bP/5Kd4/fO/yMufex6dl3y8uc4uhqup4l42IVeG0JbkRc5wd49Gu40djLnxaknw5EVWHr/Ce55+P04pzGjC7PkvUVZnOMmX+BZbwied2OOcBhSiPGe5nVtxye3ju9hwBb2iWcw8o0mBLQdEoebezphub4OL6yG6PCIKA3SgkTDBOM/6+jpPv+d9TBY557e36XdmBMBKt8nKxhrj3LCStvjCT3/qVDlyK1ROsFZwRlECpXd49P3Vc6gVR1kJxUxBpslnhjRtoXEM9u6x0u2Rj0p0pCncgs2tc5hEE5QOxOI5Y3rlARGCQKNthbJCkDTYuKCJmpppXnHhwio37tyk3N2n73PspCDciLFWyA3MFqAlpKgsZjUiikMkrOh2mxwPCkpXcIY3gtW1Nvm0XCp2TyiQ5wWB1NEjVgUEUYNEh2z2V7AaSlcSEZCqkLjS7B8dMbEFOm0SBBHWQJzEGFPhvSPPi9qVcwrCKCSKYuI4rOeZOKIoIggC9vcO2b5wiVazya1XXub4cA9XFhR5xb17ewxnc5I0pdFosLW+SVGU3Lp1C+/9/YgK5+qps9anF3+5c/sO29tbjAeHjI5nzMYGbQVtFJEO0KEgGiKn0YVgC8fxdJdIOc5tttjohwynKbPdI4ypsPMcE3jW19Yopzl2ATO94ImnTvcJX7m0QlWVhIGi2w8pmymrHRCl6pmct8S6zcG9Kfdu7HNuu0V/rcHVNzJGR0ckjYitVcXmeooShQ40gQbvLGEa443Ce43Wp5On2arCmIrKVBhTYm2Fs2bp561ddt45DB5vHQGKTqrZCDzrYcX86Ih7Lzme2Vyl123gnaK4t0PQCAisYbB3g2eeeIz15x6O7K62AR3Hx3vsj4a8/xOf4IPf/wPsvvwK1T/6NGPjGAUB6eoaZjqkGA5RYc7s1j1eHx4RaE3Y6rLqHyMkRYIY5woWZVavfeS/bErY37dg7+PtyCHPNGrrUc8Y4db1A9JGyPkL/TMPfOJSj+tfnRD7ALNIcQtP6hx2mjEpBcktTe3Ih8dkg3uMgxnT8RQloMWx0k7Z7HWYjsYYLSymY7rdBmW1YO9wn0Ji7LxkPj3dHZFZoTLgrcY7ofCWSgtKq3ohi3parGxEPjSQK5pBk9JV5LMFB7t3CZUC8VSVJ4gjymLO8eCIeK0BYvDeYs5wi4hYokiDrahGGcnKKivnOzSLimIxo51o4rDgY880cZMBZuEIgggdhbjSMpkYdg/hQi+h146IohAVaMK0SVYNWeQLCCxBdPrTLBYWEY1zHiTAO4+tSqI4xjpwaBBNURgirxgWC5w4tuiz1ejxxt27zIqcXFWkkmKtQZQwmy2w1taRFaoOszoNWkEUKeKoXpQ7oemtypKbN27y2OOPcbi7z8//zM9RVXOeeuoyYQCT8YS93QOefOZJnnj2SQQhmy24/sor+KXiddbWbialznRHLBY5l5pbjIdHhDogSRuIFfJJRuAFR73aXtmS0AU004BmpGm3IpJAcbR3wEoS8d4ra9itHsOi5HaxYH2lTWjANvocHQ85uHf7VDku9DKMsQgeb3ZItYOmAwd39koWueXJyynDUMiLgns3JhTzGY1Yce78CsViwUbH0gkyRHmU1JEq4KGYI752HZwxMcBZWw8mtsKaiqoqqaoSY6paAXuLc45Qa/rNkHONkHC0S/aVL6ObKeIdN1//Ai80Fb1um9go3J2rVCtNbHuTS60mWId1p8/YXB0cghPPcLTLq69/mUIKZKXFM88+x0ogfPEnfoqFdnQ6a3z4Y+/nxs3XefFnDiDLsZXlyIxoXNmCpERlIxrjKXGgwFUUmcESYOV0Y+EE71AJ1zF84rmvYhBV35E86Ldcdk7/tdrYU68knkBhQAKGxwM+9+lP8Z4PfpDzF1Y4K4vvMz//JQaDMefXNpjkFfsHhxwPxiRRShw00UHI9OAOqhFQFo7heMxsktNtteg3EvLJgP3bbxB1EoyEGK8o5wVaPEEU4YylGB2SBKevspZGqIwgBHXY0v1wLr+cBgt4oRp7sqMFKZYygLJYUFUlSdwgiUOcUrR6LUSHtANNxYx5PsWJwWPx7vSFKB3UU+5ylCEWEIVdjPCLAikrwkARqZJz7RLXblCVYR325hxBLsS5p9sSwiAgjDRRqHC2Io0iIi0EWpBIo9Tp7eENNDpNAg3HR/ukgSZJQqJE00tXaKZtWsmCSAc084ILK018M+HZpE3Del6vCoI0Jok0Cgs4Aq0onQHHUr6QIDi9cweBQskySsL55dTXEYuAgDV1KOOzTz0DUqEDBw342Mc+ys1b94iShMuXH+Pw4ICDnX3m8zn6xA1hLcZalFIEZ1jC89mC2bQgm4OvAsqyQBmIRRMHIZWBsjK4ogRxNDoRzVRRVTlRvE67uUIrTUl7IUmsuTUZkN+5xuWtHhdb64zXDZ998WWy6eBUOQ7vHjCcWfLCUZqKfjukEQpOAmzjHCo07E9GTEaeWVZQZXPK3LP99JOsKsXOrV0Od6YsYo3zFvH+fuSOyDLE7SHiV713OGspy5KqLKiqiqLMMaYC7wm1ZzVwrEWa8xtdnjAHDBfXef7udSa9dRZxTJGNeOXnfwrVavGRj3+C7tPvZTYdc3z3Lv0wpGw0yM9YmJsuSkRgXk75zGf/OVef/xJV0OeLV19kMNhDvXaLvJqTt2JibwnzBY3plKfDmIY4rKloJTFqJaT0Bc3Y0es3iAKFM5owignTJrbVPrNN4B0q4ZNA6gd1q/jlqONPAptPlJDUO9z/W+7GcgQFvISYWcDkxqd4bvsWFza/96Hk+NTnvkpv7RyvDTMe77XxScSN4ymNRBFQEMUR696TNtqsP3EJO1gwLY/odBqkiWWzt04QhFTWsrs7YTEtaDYjzm2tMZsZXn/jOo3RmHPvuXSqHN4HdbiO9xjvAIfyrl600RVIgK0ixocLZFJgdYWPS5QOUC7EWsGUAg4WviCvJqCEqNvAkmFZ1Er4DKpVpTwmKykmJVErJV8sUN7hnSxDv4SyqgiSlCASQlPgCkO5yIjigIsXNOfPByzmIYX1dVyssSTa8PilFaokIMcwnZ1ukRdlQVO1aDYbBEFYx3JL7R8/Lha8t9nkcrTJYxfPEZUznkxWUTpBTS2TYsJGI4QwZXdxSJkbojAl8EKIJ440WivA11EVp6AOoaoVb60kasvVe8/G+gbNZhNrLU899RQHhzvcunWDqio5f+EcH/+uj+FcgChFs9lF6QCtNXEc10kN3iNL/+VZIWpx0mR0lDEblKQKIiwiQR0uB+AhCRLSOKbXdIQ+IwwSVvqbbJ17nBtX93j64x8i7Ue8/PoLvHb3FhI5ZvMFi8BhPWxubOKC090Rs70Jn35jTqVilMDT2xXvvyy4oIPdvAB2QYMx5Y0RWVHUsdjOs3/9Dm5ji+//tT/KnS/8c2ajjDiyxKHga0MaHenaN27quN/TYF1Zx2qbOirD2tr9UOsLONdKsVc/yy9evculToOL5+f0nKGlFLmBp77nk4RdoZ0EtFc3aDRXybIcHUToOCZrtpi+cZXpqAB+9G3lODgaEMYhr915hedf+CLljR3CqCLan7H7c58nOZwhs4JVCUiiBeFXXuXp42MiFTM3OWMXIDplPJuRLXKMeY2bt/ex1tJqtwnRNIsMzli7OME7TNaoA6g9ghdQOJQ4BFAS4FnGeobUq79LpV3rXL+MRpM3Vz91wBde+Ao7n32e7/7EFitrMeDOTArJTElLebLZCJWFtCOF8hV7B3cpXEkaxDQW51BtYbKooMhIihHlMCNZb7NwJcaO2Gqtc1TkjG/v0Li4wfC4Iqo82Y1buECRyxkhNyK45dSsbpc6BM17wApaArKZJZ/mBEWdCRcJWO0RQnrdPvPpmOFwyiSbM5qMCJKIb/vYd0CqqPLxm0Hrp0BZRz7KKEtD4A2mKhAdgvMExuGVoKIQGl20lHhbYiqLswpjPTpyxAnkBlxZh+cZU4f/xTrEOsssy1nkp1sYYRiQzxdoNCrQVLkhz3JUELJbHfH6wWs81dvgfVt9kjxgWDnWonp6X3noNBJuZzOmWQ6lkMZCkoQsZguMNVTOkbaaZyZJuGVWp/cerRVxHBOGIdvbF/joxz5KkiRUVe1j3tvbY3fvkPFoxHB8xEe+s8f5c09w7fp1ZtMFeCFNU6y19cKc1uiqwjlHVZ3eHs899228+IXnKac557Z7bG10mY4Nu/cOaTRTeu0OlRHGwwFaWS5stult9bn45Afody5zof8Ejz/xDDvDPV65tcPRfMbm4xd5486IGzcLuq0ueZYRntEeQdhmUc4IWyG9tQ7t1Yonnk3IfYMvHc6ZTmZs9oQyt6xurJOPhjQlwJQlzjne+773cPNzn2I+yVjdCNnabFCWDp9q1GoTkoBqWmAO5qfKURtw9QxRa4Ux4JwjELiy0mZNWX7ucMrx0R26e8e8fG/O3tzx6tTRufg0xb17TF/Z4Ts++l1s988xn08JGynOWxaLDPZ22HrpS9xJTi9O0223KKucYjQmnkHzqEINb7BKQLy3h5OEubG8XzmSoEC5OZLlZAas0pSVZTC1lEWLnd0Zw8WYweB1lAgf/PZvo9ds1/kB/ux4ZXjHSvjEihWUB+UMSQCbmysEYcx0vGB394jCC0ka0EwjGo2kTnpxdTwuqPtpj/sHI178ylV2rq1y/qn3svFtHbw/O1ytR0CjMISLGeWtig88sU17w3M1NLxwOKUXKBrllEutJ/nIJ7+T3deu87M3bjG8t0snfYJP/MgnKRcH7L72FYoDy+juHS72G3zXJ76bO5//IrcPdumc3+ajV546VY7SO4yzb7aLSD2+iEa8girCzyDVTSyOypVga4t5ZaWDtZbBYMB0OiEzFVmRs9pp0ev1GRX79y2vs0Ylk1fksxIJFCqM8F5wFrzxOLFESYxXIUEYYKuCQCcIJbZ0aK3wPmA+8UxnBQsDGgXiyEpDaZYJJ06R56d3qtV+h9liTlXmiLdoLYRhgLOGqip44earxI8JT/fbLMawsBZnHZWzxFoRiEcwhHFIFNWKUkcBEgXkWYavHIlP7vvb3w6ddot2t0uz1UbEUZYFadLkfe9/P6trfbKipNnqcOfedRZFwWiaMZpl+CDk2rXrrPRWiQIhn8/qBbkoIrCW8CTzcemaOCsu9vnPfJnZ0ZDVVkI7aZLNK6yBjY1NgkAxnc/IsgWBrmh2mqxstIEKygJb5Dz93AeI0h5ufJcoEYpDxc4bA4IoRIL62T79nifoJP1T5Rh11nj86YqkG9PoJaystqmSFRpRi/AIxodTrh3mpBLz7FabnaqkXVlMINwZjnjp1esM8gqpKoJGwEd/IEZpw+uDkCPbwIpARxF1TnfPGO+wtScc50u8K7jSS/mu587RHO7zqZ/8/9EdHfO/Xw0xYZ+yiJhLxHed26ApwtbuTeTKFaaLjN3dPbxf0O6uc3g44OilF3n/ja9CXvHG06fPYHf3dygnA6pXbvDcvEGWx0hgkMiiNhpMF5rKakQZSjfHBo4g8hS+gdMKa0boNOLxp58jL4Xuah/nLePxmBs377DSbvPEIic+Y2Zwgne8MFfrG0ugFN1mgssnaJPTTEMKKalmI8pKmA5KNje7XNl+HKXrUC7rPGGg759ns9Ng69/+jewfj1ChgKr9TGdZOlJZFoNjbD7jxdtzouE+ZEO+7fEnCW2FUgFCzpd/4WdphwPOd1s83gp4YXfOV7/yPGE45zvefxG7f8CNlw7Y359RDHaJ5nc5l4Y0I8vdV17hn/63xzz3/b/6beUobW0R1TOBB7JvvCA+QNmETtyk1S0pJWQ0hel8AUoRhSnzWcZkMmE4GtFZ7XN5c52t7fO1jwxQSi2n82co4cJQlZ4oqlNPTemo8gorQhjHeKeIJMRZT6AjTFFSFhV4gzEK5wVjNfPMcOPYsNKG1ZYis46Fp1aSsaaZnP6SNaMApRqAgkbMfJ6jg4B+I6W/2ufm/oj19Q2ebMAxlsPpguP5DAMkgaYbR5yP24ynAl5jrUUlmiAOCb1FKVDanxlR/n/+g3+IjfV1Wq0G0/ERO/fuEUcNOu0u3ucoKSjyGXdu3uH4eMje7g55niPe88LzL5CEIZcvP8bGRh+UxdqSMsspzYnrDZx1y8Wpt0cxL8BYivmc2TgBLWSL2hL04rDWkMZCsyHoWJGVnjSOUS4kTZpIFDIv54zmxzgsRwcTssUhl65scu5im6QBkLE4g1zzQ4xZ7woHLYtNc2Zlyc4bc5SJGeU98rxkWHl+S1xis0M+5TUqFA5dxuhon7/7t/4moStYi4V8MaCZHjEYwc2bfQa4OlwtYOnHf3tY55Z5afUi55XVFp987hwfuLLF3as57/2293F5bZ/vXEtJmp7PDwoe715mezZheP0Vqu2LXC/HtOYRzlzAFAUvvPYL8NpV3n/7dTbmU/6Rjri3ON0if+X1l2lOp0T3DrA39/DzgqotOA3SSJlWBikqpiGkQYiEUFrL3emMMgwJtGY6H+Hv3kHhsKZg//CQylj6q2soVbuvznLPnOAdW8InVp+1BUVZgim4c/cuOozxHlq9FNERyjtazYjRcIQX6kB70Yi3KPEYYynLiqQVshm3mWU1mYd1niA4XayinBHqFG8KjIcX7h5T+IpWdQcKw/rWKu3NDV777Gf49D8Z8vTl8xxOZ8x0xSif8tUvfhk/POZoljOZCY12gpQTXvziC9xIQo4Lj3cB6nD/VDmqqlgawIo63M6DdSgXoH1M4hqIaAql2BuPmOQZBBB4z3Q8oCwrppMhOlD0+h02tjbpraygwjpeWjmFdvrMVfg6NtkRQL0KrkOywjCbF+jI0F+PkFiYz2dEyuLzDOegKOoU0CAV8tIDESqM2JssKExFGMG4cmS5oxSHPWN65ZZJEoEXYh0wwtNQiourfRIlvHpnn5t3b/DMxXUuPXGBxWu3uXV0xNSUtKOI7ZUV3rt+ntvlbYbjKVVl6PVapI0plYEoCvA4mp3TFzze9+3fjrIF2WxEVS5YX+sTx/WzyPIJxeKYWTXE5AtmoxHtNKYRh5gyIw4aDAcDVlZ6xElMf6XDfDbnOMtRWhOFEUVV+zTPei5FtaDRCOi1Q7J8jiOkLCBJIoIwoLPS5dx6yno3ZqW/Sq+7QafZZXPjIttXniL3li++8PO8fO2rdPurrK4ecX18k2YzYrUfYNyMfGYYjU4fDMpOj7kKKENHVZXMy4r2eE5QtSiSNtNpxnRaoqI5YahY757j9nTAJC8oi4Lp8A4XN3pUNmQ4yrl3x3JnN+LePc/QLMjzikYzODOEEeeoypIyz+kmIR9+fJut9RX+yad+EXFwREq5dZG78x1eeHEP3vMRvu87PkywmPATV79MdLTLyuYq21vbVFXJrddfQ734Jd6ze5PVPOdO3OR6HBJw+ppBt5GSHI2ZHk9weUFhDDrsEIcBWVBS2gWRClCisZY64sKCb6QEYUSkNSafUuaG7YuXsa7COIfWmmarTZTEiCtxZ2S6nuBdEvgIhROGByPGgwMWsznGg7UWaw0KoZFENOKQRhLR7XRxCKPJnP7KKkWRk2UZQRyTtjtEcQPRMTqoc87OQlGWxCjEK7wKOcoqDquKYjqmkbZZHxs2G47i4nvYjWNs2sPEniAM2WROmzkv7A/54it3CFodLl/eZv2xbQZHB/zsV65SSMRKr8t7t08vc+d9VbNJicJLiF4Sj4QSE1ZtKDXT40N2Dw6ZLhboJMK6krKqkNiRZVPQjnPb5+mv9ogbMf31FaZ2hLUlKO4TpJwGaxyiNEo0zgq2MszGc0onNBoR3lV1QoLzgMXmJcZAaWv2rNxZCpOwurrG6rmQm4fH7B4cEVjLqPQMJgWECu1Pl0WWEQjGVGRlgfWQRArjDC/ePWKUZzx/+3Xev9nj6SvPILcPSOIQL5AEAShFJ+jQCRNmes40qygbBUkSMZ0uKMsK7xX99dM5Cg73bjE/3mN4uIMKQ1bXz1GZgn5vFfEt5pMjFrNDoqhgc72LiK2tW18vtnnvyYsFQQSdbpskievIBl8vdIZhSBxF2DM4CiwV3ZUezWZAqKAsPLPplFYrIoo0a6sdLl3aoN9MCaMezc4mzaRNHDZYZAuO8ynPv/w5rt+8zZPPvJenn77MfH5Es6FpJQolQZ0WfUam2uDyOczRMeXokMW0RIUwdkLgQGvFxmqKSoRqMCJd76LCFoPZgFFe4pWwtrbKykqLo6MRZqC4ufM41/cte0cVi6JgOl3Q6SYU+elRPApBlKB1iDIFoV8AXYaHe9jccP2lV9C+ZHT9Ks+bFhfbPV55vc+V81uYZpvzWxe5dPkyc+O498LnWXv5yzy5f5eWKTgKEl5uNHGthDg+vX9UgxF7L7/O61dfJSkqVlf7PPurv5ew08V7y8WyZDGb0YrSmqzIOfCe885RVCXz4Zgv/szP4sWTtFNm4wLBUeQlh4eHxJubNC5u09l4uMLp784SFkF0QKu/RrPTq6dm1FSB3nnwBvEGU+T4qqAoHLfu3mM6z+mtnSdqJIRJFx3VKbWFBWVKojgkCDQndJlvh6OiYphbtEBlCzIC4pVNwiBiNB1ycP0qL75xlTCJCeKEja1L9NYf5/zlD7K52WM8e4nPvvgPuT6ZoPKCkVaUaZubO4fsG48VYTLOCY5Pn9a8yfRUt4lzQqRCpIzIxo7x0SG3r7/GdDEliEPiNMaLx7gKM3bkWUGn16PV75O02iTtBqWfU1QTvM/qmC/OJk0yxsEy3dN5wRUVaaTo9RrE7YQ0TVBJgrVQVQZEU5pZTeRSOfKFodON6fcTdKSwEjPOY2ZZTlVWWOMoC4OrTlc64/EUxJE2UqwWmmnE+a0VwmaD2a4njEMyY7i2d4D57Eu4ec5qr0M3bDApM8aF4+rrN8l9QaQ13kKeL4iiOnY5WxR48WfGgU5Hh+zv32F4tMva6iaCpSgXqOA8SaNHnPRptxzZdI4DVukynxmK3FHmM7yz6CBAxzGtXpco1JhsjlMO5xQYiHSAOWP6HTcDms0QpTSlyen1UpwNWV9LSJOYyf5d7vo5R0mPdtfwvv4G3o7Zv/cGPbPFTGIOB8csipJrt27w1LOP8aHveIpGHKEkYG11hdHkmESfrvz2dnc4OBiSFyVFWaG0RZWGjf4Kvlzw5OV1dm7sU168DN/1ncw+/wombGJ1RK/XYmVtgw995D18/lOfYf/wmDnvYTC7xa2b1+vUYvFks4KyON1Hbo3BlRmxN3zwyU0+8L6n2d5Y58La/4nR3j57Wz38eEzxnqf5+OWnufr5X+T41quc67VJWg3WV9uMRwNuvvgyz9y5yhODXWLvGKiIL7Ta7CQRxE0kOiNa5HjMz73wRb504yW24w6fjGJ8mRE//gziQhoidKramOx2OogSjIZcw2I2J9o9xH3xcxwe7ZF0UoZHR1y5fJFOu8/B/iHT8ZTo49v0th+uOPe7ihNWAuokGiAIUFrw1uHVSehZhBaI05R7t28zHg5pdld46gNXiJP0zUwyfE1R4z3KOcQ7nJMzfSlz5XCi0GFKmGwSJl0IO4z3b5Ed72DMnEBHdOM+oRjO91Ou3niRo1nGk+Y7ubj5JB/6+I9wcfsa+WJBqgMutto8+x0fYjGdMBxnxGHC+97z9KlynMRIgiAuICSuEzMyz2x2zO7xDWgJ7W4fZy1FnqMDhcQhWZ6RtPr0N7eImm102iBqNClsiceicdhl9MVZMN5jnEGFCTiPNRWNdoMwjQkDTZwmSJRSFo75rGQxXeALS1Z6jqeW9bUe6+s9Al1hHcSJptGKySqLcyV4h1aeM5g9WQc0AVYUYbtNUZQEaczefE7pLe1OykbaocpK/tpP/CQfvrjGSrvBpBGzN87YHQy4ORjT2O4QNWLiRkQQUrtMggBNQZRGtBunp3HnizlFlrGYL3A9j7MWa33tW9dhPesKUyQI0YGpF71KQxTHiA5qHg4RlI5pNbtcuHiFN169ynQ2YrHIMWW9DnCWr77daVCVY6JAiHRIv98ijR1PP77Fs888w+c++zxFZZmMcr74hV9kZ2+fJx5boSkjnkxKwt45kram4SJ8Yrg3v8djj53jcOeAu/cOmNkV8tmQrdUrp8px9eXbHB9PiZIQteRqGLmSgT1gLWmjFh5xOdUnPsns/Bajzz5PGAs/8MOf5Ilnn+Irn/8KcRSzsbHGnXsHZNMCMZ4yM0vWF09eOdwZMwOPI3COoMp49Y27TCZznri4wfVrt/HGEpISJhHdjRZJ2mESNjGLnOlkjDjhzq27LA72ePb6qzw1OibSMA5DPtdKuRl6skCYx01seLoStk5IttZpzy8wyUuy2YLbf+MfM37pZbbf9x5EhNlshreOTrtNFEV4pbBKcMawOBwyHw0oPRzfusNwPmF9c4OtjVWSMOS1q68xHg/YWF85VY4TvIuFOY/38oB/GJSotyRrACJ4Qta2tumvbxKnDXQQYpbEJychXXh3P+3W4fFnWMEA5y69j0rHBEmPwsVMpjlV6XGqQ6OzQWnGKCIee/a9xA3YPL/BJPdc33mdV8uScvY+1jcu8+R3PIkqS0xh6DcUl863iZRjPJnjLaytnb7qzHKdXvmAgCauDAhVi/XNJiq5jer3iZImN28ec/3162gHTzx2hdI4Zpmjs7rJ2tY2vbUeYZqgkrBetHAhyug6KUbOigWoCYLCSJOkMdWiXPrVFVESEaUROgjr52FyqnxOUTpM6ZnlglMpq2s9wshivVlyI3viKELpgsLZZbiNIGconSe8QlTIwawgiwMyZ/nKK7fQWMTC+bUu71/p0S4008cusN4K8Qj35iXHCwsC3V4DIk2r26Rwtg63kzqRBOdpp837cbpvh8VkRjabg6lZ7pyzOOupqoqk0ULHCdnYIEFMlIATTZEXlGWG0oYsmzKbzuj2N3BW2H7sMZ764Af43Kc/TWkMSxbH+wuobwfnLHEr4NJWlyiIyfIFOigIowpPycrmGi+/8hrXXxsxGhru7u2RyTGX1gL0veus5guevbhOpHIqLczmQ6YHEd2kyWrcRJmc9W6XfmvtVDkO7s0oCku+sIgCW9UxukUhRFtNRgKbj23QOrdCnMa011cpjOMj3/1hnvngs0yPD3ntlesUpanXbYxnpdOmmzbIixK0Igws5RncIhdWe7Q6judfGXC4yDDZlFQZPvflFymriulsxHTvLt2Nc1xYW8NkA1rZnC8Mjrg1HbE5H/GJowMujI8JxHMUN/lCd5VrAWRByCxsYHVaU8SegqwsOZ5O6WXgo5g3sgmrrXMkmxukF7YBmB8doUURdNoorfGlgcqiE6EbNVjb3GB6NMBOJvS6TQ72dhkPRuggJkoCRldf4+D1G/Bbf+upssC7cEecWKknSljhawtYlmPifb6EWoEkjeb9fd0DClapOtOu9qmeEO19rXJ/O1x55uPcOhhRuICyEqIuNEXQ3S5VtkZeTBDR2HSTXCpu3F2wqBqEjU3mecWd3V1uH45II6GVprRaK6wRMR3BxuoGze0GzuQcnpUk4R1iI7RvIi6l3W7RaTWZlgfYxpS4oVHa0NxICA+aKCPsHB8zODgmDhtcjBVh4KmqBWm79ok747He1VUGsHgxnBWy56wQprVvtSxLvAcdBURJiI5jvA6pyopsPiPPHNYG6CigFSasxRFhWOCWFpL3gkOIowCtA3JTVwmpY59P7x/t7iqStBjv78A050Ia0Y+bVN6gwoBvv/QY3cWcVkPzPU9fRLsKRcB+HtBN25gypJweM8dTVYYo1CgfUJkKFSja7QbiDEd7py+YTodD5pMJZZ4zGg5o9/s0OyuEUUyUpDTbXabTEWo6RjvBG0vNC2YJQ421FWVZURYWY6Dda/Khj36Mu7fu8PorV+tMRu/xZ8xSppMF3VaDmYP1SHNpqwvSZlTk/H9/9vPsHowxpqKkDi1UoWLl/AphCsMsY+elFwkCxWYSsrqxRll5Wu0tts5dJs/nLPJDJoshe/unt0e312Fv7wiswjtPVbqavCeOCZpNhk6zMFA5TzvQtHs9hoMpSiuy+ZyNc+u88dp1KlPhPByMprQbnmaqieMGm+e6RJGc6ZtOQ8+llRav3DIEmeXc6jq9boxmzkoakg9GJMWYddfH3LlKNxuiD3ZZoHiq2+V9BwecK2YoHbAfRXy52+Nmv8uwmJHpEKMj8ArOiN+utEMB53TCig655qaMI2Grt8IkK4mCkN76FmEQvpkVmYANFBIG+KKksbJCQ4Xs7e2xyHOKqmJv/7Cu+tFscjhbIHvHp8pxgndsCZ90u/uxkstc+hO/ZZ2l9CZ5jbVvUv49uN/J5xMSlLcq+NMQ97eIFxZf5BTzQzrtBudWN0hUhLcJpqrqhSqdoJYZ1e2WYRNPZYWi9Bwc3GYw3SdqrhKl5ykvr1NVKaPjGc88+zhbW30OD09PBw28wpWKVqNDp7eGcXOOxtdYuCFW16mRzjtW11Ief2yb/buH7O/sMR5PCWXG3SQGn3HhykUC18KXFmMLqrKkqpZMUw/BsWycR2mFreq42yhUxLGun5bTlHnBYjalKixB2CBpx8TpklxbPDqsB9KytBSlZ1p6TAWuqigKh+XhLPLOyjkG0xGlr4l7VsKAp1ZWaXU69Hotuolmd3TE6vo5hsahKk8vjYnTBkrH7BwPmBcZuWhKN4WgjjlpBopsXqF1ADiS+HRLZzaplbASR1XlDAbHhM0+nZUVstygdEzSaKN0wmI6plzMUDiSqIF1IXmegReUClBaobVw5fJlvv+HfpDRaMzB7l7NWXtGP+32N4i6CQNj8fOM7Us9gjjm9RducvNOznxRkKYBpRZIFVm5oNls0V9rMTo44vbBPRqxYrXfoBHGPLl9AaRL2uwTxQk+cgzLjLh7+kJUojViHf1uC+ssNtCs9Bu0u02wQjkuqHzFZDSm321TWct4Omc6nTI4PMJ6SxBp0IIX4e7OEc893efSlRVEaTY326RNzWJ6eqzcq3d3uHZ8g8WdV0kXOYudFrt3U+T6C1gvNMYjumXJ+ePb5IM9osWCuMjZsI6N4RFdazGhMFQhn0tT7nR7ZGHMojJUOsGruK7ckZ++lmOxrPb7LPbGzCczFpVl6AybywzgqjSYKidjmSW8ZHRzgGQls/kMBM5dvkRrpc+d4QFBI6Lb7wLgrUNnFaV5OErNd6yE1VJpnixKnaSDnijQ+66GB7adKNUHlfOD+7+VjeqshSibj9iM5+weXsMevMFiGNBsfoC1dgPrMiSRmk9WxQiC9oISh1dgg5SjUcat/a8iboj352i0z5EXJffuDem3GzxnOuTDIdPBlLrq+ddHoiImZYnuOvLqiNH0AOcWSGCXqZgeV0E5m9OJFWVDc+RtXRWhqDgeDmgmEd6YmnC+3cRoSxgJYiMCX1NTqrNCXUSw1jEZLbCFodWMwDm8g6oosBhC7SGOaHZb6Eiho5rvwllHUeQsioqyMizyilGpmC8sWZZhqrr6gg49/gwtPMszjgb7jKcjvHeMFgtCjmmFmlYimPmCpmgurm8xPdwnVQGhdgRKah5flVAUjkmZEzUjmp0mgVasd9uMJwccjeb0OgGr7dN9fjt7u0zHI1Z6tV96MplxMUxJGy1KMyfPC7KswHuYzcZU5QwJA3QY46qa68KhmGcLFtmcRp7gXZcnnnyK7/81P8A//2c/xe7OLlqdPhj88G/8YYKWYf/4kFtXr/Klq7t00xjnQlbWYnrKYoyh0dRMhhnDyYwb13bod59kVpYcTkq8cYxninbPEqQz7u69RtJZ5fEnn2GSewobM5qfrnTWViLW+pdpNptkWYZ3lnY7JMsd9wb1exyFAb/w6Re4ffV1jg8GZJNDrn7m59iJI4aDEfs7x8wHc5R3VOMBauLohx4VRugix1vQZwQsG6M5GFn0K9do3r1KhqNwnk5VMgcaWtNpJrAY0TYVKULkIXE1h8gY4YYLudvucbSxRh5GLKwiaK8SN3osrMJ4jdKnD0qL+RwVBOSBMLUVh0XJPVcR7t6juZjSbrXpdDqkaUocn1ATGKQsGbyxy2A2Yn19la2N82xrxerkHNP5iDRJ0UGArwz21TeY3rp3qhwneFfREScMUlrrr1HAWutl0UB3//cHlbRS6v73B895v3joSQG9MyyM7OAq+cHrJGXOh567wng6Zuf6lwm2LtQLMHXAKqLrckKhCgjVskRPFHNw5x6Xzzd48smneeXqbRrhmNXWCouFpxE5Rvsvcvv4LnHv8qlyNGONdCOmiz3svKacFGXwTqGUR4vnjev3+NJn3qBcZJjccDScY5RGI2yurNFKY3b2drh+9xaNTou4EddENXFIHGmcM2eH3BSesZljKkcahzWXRWVxWYm1jqShSdMI11BYkbp+XuWpjGM4nDOd1XGVpamYl45ZIbiiYJ5lmGrJXKHrmd5puHH7GioOeOyxZzBFSVDllMWM4eiIhisZljlr7Q7NICTPS+6OBzy5usVOljPIcqxqoMIUXxT3y9lorVCtFq1exvFoRrPR4IzgCO7uHdJtNVBhQpZVBKkjSZp4rwh0eJ8ovDIVe4fHQEWn3yVNI7wVkiTGeGFeZBwcHZIXGcYY2u02H/rQhyhnC/7BT/zEmZU1DgZv4KYZ4zxj9dJ5Dm/c497tI9zSGo+CoI40Chy9c03yXLOo5hzPjpFUOP/keebjHOU1r9/ZZW98iOiczVbErYM7VD7kcDphMDp9xtZt1KT81jniUBOHATgLiwVPNTzNGJJICNQAObaoYUVbLPF8l6jyRE6z0k4Q5zgYRPQSzVpoUCiKKkOqDOsgOiN5JQ5TuitbHKxsU9x8mfZizLKOJzYISbQmVYKazlkRTaIEjcN44WZhud1oMDm/Tf/SBYyD48WcuTiSpAHGUnlwslwDOQXzyZTSVBwUc2ZmzqDI+dQrX+Xnb79GqBRpktJut1lZWWF1dZX19XVWV1fot1t0V1fIQ6FoxgRJhIii3+vTbMTYqu4PWgImSpM/ZDH7d6SET7hUT3BisZ4oz5OY1gct2ROFfKKIH3RJKKXuuytOlPfDIIxDbh7ss7G5zeb552jnEz5z+59yZ+fzGC9YY5e8QXVtKo1CI2gly7hUxyd+8Nfy+OUnWYxLBoevsDrLiLKqJtbevsylx59G9x4/VY5YG6q4osJgjdT+bVcnWoRArBWDozGvvT5AYdBeURhwqiSJIqbzOVevXydKY9RsTDSICJTCewiCkCjQOGPo9rqnylFWFYusotGMiZoRQTPGqYB8UUdjOK8oigqCEONzTCXkecHReMHO0Yyisnjn64VR0YixROLxopCowpV1jOcZfZvxIqMT93CeenqZxGT5mGlh2M9yhkVGv9ujEofWAXuLkm4/ZH9u2J8XOFG4ZXKKEsGUhtJ7xpMpUapJ0pA0Sc70+Z2/dIUqm2N9HUuudUyj0QIvFCc+c60xxtFodEnThGa3zcrqOaIwJYojJos549mUqixwpqLdatVMX90eTz37DOe/eJ5rb1w7VY6bN19kY7tH4BWFm7P22AV2yDGDGboUhnuWyXRCeyNh8/IKG+urWLvgxs5t4iii0+3R20iYT+fs3ztgMU55/NI288xy6+ANVi9eZm80YDY43ffYzsZIPiHWdcFTZxxaYDMSosQBdbq9B0qvGBeWUe6YZXVFmFanT2s1ojdZcDhcMMkd+xMhUXVERBjU7HTl6WMSg+MDOuI5/77vpRwPMC9/GqoC54WFNbjCE+YZPWsxYchMK6Y6ZLCxSrZ9EbW1yfbKGnujI27v7bCoKiRsYhYlQRigogAVnU0xaooCHWpam32mUtKKPLYsya2lKirmsyP29vYAECWEQUgjTkhaTXrtLliHCxXdXpdWq0kzadBspERhRJzE4D2jokAubZ/eIEu8q+gIY8x9ZXry/weJZk4s2xNL+eS4B4vrARhj7vuQH7Suz1LGH3ryHOeijzDJLVG7g1UGg6Xbb1MZx3g4YH21z9bGWs3Yv6SYtLYuADnPMnQQ4SVBJGAx3uPIjxnlFc1Wh8lqTFMlJM3Tp1dKhGBZN84BbhlSpgUCAmIsyp7MABKcdQShQmtIkxTRirKyiBW08mjnMVVJHcxjcRLXoVJnEPm2WhGjicE4sLYuBeOrapmmrLDGYazFl2AclJUwmuYMJouaxH1Zyl0FGnEVDQ1BqMlzVRM1BSBasNXpls6iqlBZxd7Ra1jrWW1EtEOhDOAoW9BOErQojhZzrLWMC8P14YR5qbmxdw+vIEzr6tL1Qq7HVJ6jwxGIYJxjNBzRPMPC+Oj3fh+/+OlPc+/ggHazSdqzeFF4PNlivpx9gTWwff4CcRQRRhHNOAJV0ek0WNu8yL3dI44O9+p6ZkVO2O6RlxUqjnju/e/j9u3TeXyToMdwL8dYRVYWbD8Wc/HiJWbpkPl+hp8r2sREgWIxdTSbEYEO0ALWCINhRavtaLYaPPbUU4hNQJpMxjnWdQjoEzCimZ7+GifaY6xDWY84j68pXDCVx5iaxKm0jrKsI20ynyKR53BsCKbQnA0JQk1ZGS6spHigKi2il+sEtja8AnV6/7h39x43h4espS1a61ewjRcIJiUKoS0aCVKKKKHo9yi21qHXI906x+Nra6g45mAwYDiZcHBwiCsNaZgiUQOCuCasWi4gn5VEEwfQaiRcvnyJjc0NyjynyHKmi4zxZMpsOq1dcUVJVVVYa5kvFkyyOfuH+7VBomumPaSOkdJBvX5QFw8ICQRaZ4TKneAdKWFr7f3FOHjT/QBf60o4oRI8+f0EJ66HB/c9sYZPzmeMOXOapyfHrCUxs8kRt268wnw2ZjFf0N9cw/gcH2nO99tc2ugvwzTq4A3rDKYyHB4PuHHtKpWB/aM9hvM53uSstRO+66lNnrvUp9HViDs6VQ7nVE2U4+qUZa8EJ35ZlTqoYzKdJ9CACEVlCJRCi15GggiIxrkTv7WisAalIYoj4mYTEU3aOr1iQZpGlNZQFpbprKSoDGEgdbZPZDGmJmm3rnbVlJXHVoZYKyIt4DxhI0JrhS4dzVCxUCHDrMCKoMLaIrBnWDpJ0iCrLKNZBtaQSJPt9W3SUDFbTEhE4Yzj3uExR/MJ48WC4/ltoqSLx6ADi6Gk3UjxShCnmI2nlAG0uh2CKGI+maP06YPSteu3mM4L9vaOWXRKzl14jMoYptMR48mI0XDEdDTBVJYwjAnjBOccg8GQvJhhrGF1M+Xi9jaNWFMWOYv5nHE4Jm4kiBK6vR6N5unP5Tf96O9Ba4t3IdZA0hTSdky1yPEZmFJjnK8rTHhDo50QRIogCMiznOl8SqsdkiYBtnCEuo01YL1FgpCk1eKZC9/GYj45VY7KCqXxBCecLAKV9ZTWo9WStdDVaxiBKDZbAc47lLGIeJSrUMYS4lnrhGgRtGYZ0+9rTqplXz8NHiH3nmt3rxFOD0i9YlNpKufIdEjWXUPWz9N48jL64ioSBuRlwZ171xkMjhkcHTEvCiqJ8EkD0SFK6iQl5euUR+8cnMF7HShFEsVEYUwrqRnyyrKkX1ZkZV3CKJsvyOcZi8WCLMvI84zKlPcpUuuUZocxhtIaTJG96UZdVox+2Mr070gJ19R9/mv8um+6GOop9Fst2fqzvx+y9qbyrXmGTxS5tfY+NeBZlvA//vTrVFVW13BSe9iqpBuusZhEOImIkhYHx8JwfPjmIKEcInW4FRLSsBMWO6+zGjrOP36FS+tdHttYYavXJHYlfjZE69MXPCqjKCrqaa+4JYeEX3JlaJx3WFStwOybJXEevGelgmVb1h06SRoEgRBFCY1Gm0DHxOHpNcSMsaSREAcBpRWKwpFnBo1noepROoxCrAg6DDEoysqRl+Z+8k0gnlR5klSjtbA/M4wWhtIDuo4dPssXWzrYHx5TlSXNKKLR7rJy7jKrUcDO7ddw3kKgEKXZG88ZzmZIENEMhbRpMa7Ce8PGap/RImc2zRmPZvhGSLPrCbUmd565PX3V+Sd/8p9RLDKK+YLRcEYcv0aQxJy7sE0YJRRZwWQ4YJEt0DrEqQBrHYtFhq0c00lF3MgwXmoCVl/339u3bhGlCdZZvvj5zzMej0+V4zf/hn9tqfhO/uoS7nVtyfq3siq4fes2xji8t6Cg1WxTViWTyWSZHl2nxytCkjQhSWOKsqKqKpS6TxL7tvAqINCWIAjuZ3iK1NVfbFVH8SiBQEMd3V/V1cKVECi1NCqktqJ9XVVcqA0brWRp5CxPcgrEQxhE+LRNns846J1Hi+PabMS+rygme5Adc334Go2XGojzGFdSWoOoACSoQ/niGETh0dScfwpHzfPsnTtzMHDWoNAEWmMFxHuCJCaKI1q0amPRmDpTtKwoy5IsX5DnGVmWUS1nmdPpjDzPKcqS3JT3DdSTAqXuIXIe4B27I04Ubv1grDV1GJZ7M/oB6tCoKIrw3lOWBda6Zcl3RRBovIeqckvL2NyvKefcm4r6NHzsiU28qxAlKFkWyFQQakWkIAoUoRaCoK6HpXWADgStl3XYlCbQCpGadDxUQqQLtFcYNE7rulLGGdPv0oD1AaAQqdB62Q5KcKKwy8ojJ/ScYRgSak2oNUEQUFXmfmz0CV9tHKaoQIjCmChMUCpEn+GO8K3HCMOKJI6wbjnNdGCquty7AF6rOhY4CHFe0M7T8NA6cQMBzVQTBTUJ+/A456LN6kU5BaIVJj/dFJ4v6k4qIugwgDhl93iAb0d4rWuSd60JwohFZSlNLV+qY6zKmM8W9HttkiBAnCOfZ9jKEhBhKoM4xRNXLrGz9Ne9HW5cv1W/nl4QMr7wxS/zlVe+SrvXZHv7MmncpMoXVPmCOG2weX6bTqdDlmUMD44YHk+oHKhQcbC/g6sqkqTJweGgjp0tMl575VXOSiG8c/PW13J/vCXM7+S5Hx0N7q+biAjzabaM9/Zkkt9f1HZuQV7kMOL+bDEIg3oN5BTEjQ7OWGRZDURw5E5wpqYVqKkRfF1pJazf38rWBotIzR9uHWhRyxh20EqhVV0h2TiWMdNn8DxLhaUElSNhzjWVcTuBqdRFZb32KG2Q0i6J+5cGVFhn5RJE6CAGHSAENdOeX8awo9BSuwfOsoS7nYTxdI5zikAFy2o/NXGYl5rfAh9TGY+1NQWvsW2sNRRFUXPkGLeMssnIipx5nlEUBWVZkudlHeZ2RjLPCeRhypI8wiM8wiM8wi8PHi6G4hEe4REe4RF+WfBICT/CIzzCI3wL8UgJP8IjPMIjfAvxSAk/wiM8wiN8C/GOoiP+h7/7P/nFYkqR55hl6Ea9wlthrVmGq4GxsqyyYamrq75J0BNKhGiFU0Co0UoRITilcLrmfAiCiP/s3/1jb7vU+mf/qz/nW80hvYYhMYo7e3P6vUt8+9PPUOUZVwcj7u4dYpdxg1VpODg84L3veZZACS6zrG+c5/bBbVa3zvHYxafquNkoxAHHe/tM7r5C4Cf8tt/3Z99Wjp/5R3/Hz4Zjdg/2qKqCtbUunWaLa6/d5MWXX2U2m4N4Lj/+GM+/8irNNATluX17j1jFtDoJRZFz7twWlx87T7fTwltDu9Wk027TajVYX19ntHD88G/83W8rx3/y+y56W2WIWExlMIWjKB3TqWN/36BFiEJBKaiMkCQB3iryytPrCUEoHA0TCqNp9Ftsbp8jabbqZAkLeE+SaI52jvgf/tfPva0cf/Wv/Jf+ypUnefKJZ+qoDq3wmPvPH2A+m1PMF3VfAeqC5ychj28uEo9GY6ytM+teeukrXL70NI1WBy+Gqqr4DT/2g28rx9Mf/oBnGQkQ6ABlXZ1SqhVBFOKdRyoDzuNEiBspvZUVhsMx6xubrJ/bwgs4b5keHzI/PiZwDicOpzxuGTLy7/y+P8Bv/rHf/LZyfO8z5/3MKCpCnA9wri4Lb5YseQ9GTtRJSwoRvcyYFJSyXLq4jkJx4/oezkGgl/G+zhBGMY2kgS8rfuHq1beV4w/8md/qozSCIGY+s+TTkijRRM0AHXka7ZgQw2qrAb4k6TaJ2uvcvTuiLOHylW1ESsbjI5pas9HqEDhLGFdsbq0QSAsXrHBYdvk1F3/V28rxd//Zy97BslI7dRarcD8MzguwLBXmkWVJUKGOwVCId8u0qJMAPxAxKOwybM5hjcEL/Oj3feBt5SiLrxeN8LW7e+wvpedFIW8hUFGuToK5fw4vOGWxy0ipOInODBZ+R0q4KPL7pcJPLnuibOsOZvFeMMv4upOY4vsXCwIUDhToQNVN7D1WlkrZ6zqa8oysAGM9w8EUZ+oYZNeOaPRijqaHRA6mhzsUh8dUVUFlS4q8op8EROWY+bygmXQo5kNCX6GqArsYkXthtrDsHx4g1lOiePGl1/ltp8jx4stXkSU/gnjLTFXs3rnDl7/8Krd3j/AeXJFjS8f5fo/D0QGFsZRZwSyfU1VtkjREYVhpRaSxMM8spsixkWZmc+7s7zPKFT/8G99ejpPKxnUPX4Y6UWfPBUoIA0UUUT8b6+mvrdNZPcd0mhEEGVWe0cwd/c4G/fPbqCik2eqC98zmGWVRMZrOcGdULLDOMZlMsMt+4JzD2IIgCBFR97Mi72dRujrc6aQ31YF8IOKZzcdUVUmzlTLPjonTOoa5rM4ufDqeTBD15vW63S5Ju8HOzg6uMjhrkWUVaSfQ7ffprq1yNBlxMB6xnS9Imil4w+Rgj9Hubl0BGYvBU1YO7xVHx6enCw9yMEpjEbytviZl/8EwzDfj7t8sk54kDXrdFtkiYzKZIuJwSrEQSKjoNTWr7YRW0mAyOz1u2nq9JGV1eCxBFJC2UsKGQODwqkKHoCJQEqPCiKzIsL5CByEHh4c0E89qM2Cl3cVVjmxhmHtHnKslu1rAXM7Iaz/hppZasTqpE5YsdZ5BHZBcD833M6yWknvcknu8zrANxBPrmkrXWHu/74vzS1rWt8cvjQg76XkP7FNrql+imk+GBO4f4UHXPfjkT5ZH+18O7oiTeN+qMtjK3A9OrpWw5SRsXCkhjoP7McVfwx9BTXCD0YgK8MvSIdZ5tPfg3ZJD9+2hqDPSAlVS4BgtxjC4ziSO0GGDZkvz4fc9ixahGQrKzElDS2Fj5lXAnYNDbt3ZI223qcyCvf1rDI/HWFMSBZq40WeRLRiOF6fKMRyO6cbC9vkNmo2EyWTES6++ymw+IYk1eVFhleLOvT22bReUoywKokAg8ojyhKEi1JZGBI00xDnDYjYlUZasMHz6hTd46fouf/KP/4W3b49ljVHnFbK0Kp33VKVHaSGMFGFYJ2iI8rR7K6xefJpoNidfTPDZgtVOQH/rCkHaZDqbkrZ6OFsxni7IS4v1MdUZyi9JYmazGVVZEsc1L+/x8SFJktJu95YloOz9GNcsyygrS9xofo1SEuVZLMYsshnGpYwnRyyyMY1WlzpJ/AyUpn6BlcYLNJpNLl25TFGVHO8f1iW4gvpetNb01lZ5/MknMZXl6muvcbizQ2+lTxhqnDXoQOOsQvAECFVlCHRIkqSnirGwamk11zNCBJRohDph481U/jru1toT60vVabMmx5kCrer4eruM4+21mqw2A7qRRtmKte7pckRRiniDrxyBaKI0WSYLeeIkRIeeViem1eiQzXOsUVS+JIqg3WoznxU4o3CE7B7PsT5A6QSzMDTaLaK0hQsbOE4nmnowbeWEH6T+Uqs7BWgBrU7Uma5T8e+fYJkUhkWLR7zH4DHeL4n2/XKfM+KVH4KjxqGWhSm+9ldZqtrlUIoVh/EW6y2VrShNSaQ0qYRoHcIZbQLvUAmfpBQ7775GscID5D7eo1SdtOJdXV3A2hPaS8FTuyxEhYRhgkPIbUUjTtnorREHAcaeXi3VOUsStkkCaCcR7dQSiqZ0FbnTNIOYKoiRIMFFEd42mLucwmpMlFLoGRJXSJCSlyWhONZ7DeKgi/KenaMJg8EeOjg9CD7QEMeKdqtBr9dlMhmQBo7HN9oscs/OaMpwrvDaYsTRaK9w8fIKq/0eHlgUltFogFkM2N0/oLGY04hTIgVltqAoKiLlMGeU8A50PV0z1t7v5N7V/AhaQRQHRFFAUeaEgSKUDESzceFpisWYO7dvkLZXuPD4ExweHKJUiK0sWmqil+FwzCwricLTLZ0oDJnPS8qqJAg009mY4WhAp92l2eygltNxt8zamk6n5GXFetp4C+mTJctmjEbHxPFm7eKqanJ7EYU94yUSv4zZZ2mtOEcjSVlfW2c+m2PNMjEmjmk0G5w7t0UYaDbPb3Lj5jVGx4fMhsd1KXepZ2biTqwgwVlFqAMifXp7uHpIBFkqEpE6m9K/uRjjncMsM06hnmjLkunOWUscBqz0e3UmqncYW5JGIdPJFGJNv5GSntFPlXNEOqDMLKrSWPGY0hC3QqJ2SqQjfOEpnaURNokbDSoxrHQU4iPswiJEHBxnLPKSIEqJU01Xdyjnilh5mqkjDU5PTgikLmGGqKUSrmc99XOt7ztAo5eWsfWmpqRdPsl615rXt1KCWeofD1ipGVwECM4Ypr9+bsRJwhnLLFLPCXfr/cGSulK8cxbnPMZW+LLEFjnWlpRVhrUVRgeYqEGctomap5figneohE+IdpQIfjndq+GWlvCbN1lPq3ytjE+Uta+7sdIhKytbLIqKLC+4eXeX9z71LN/10e8hTUJefOmLp8pxbm2TMIR0Wf2hRV1iySlBia4zfZTgRTP1vrZfVBO/9OdtbD/GGhZrhdIUjIf32FmMqSqLco7CWOI45blnnjtVjo2NNbqJMB6PGc/G3L53Dx1oNjb6TBcVjWaT63f3MGGDtBmz0u3w4e/6PtYuPcFgPEGCiPXVPof3bvHqCz/P0fAu21sRmYPB0ZBWEvPU5XPkZ5SNEam5g41xy1pqUvNaOEeohShOUIHGuZw0UYibMN67RWf9ceKkyVppabX7eO+YjOc8//zLxJHwHd/+Xp568gkGwxnXbtylLE+XQweKfr9LFMaUpWE4GFAUGQNj6PXW0TpYduAKUMyyKdP5nJX1TZREeCnfVKAalBaCICJJIqIwItQaQZFnZyjhB61qYDKecOP6dQC2t7dJGylJErO5sU6/30dEyMsKpzxhmmCnE2xl8CXLVFxHHGhCXQ9ODiDQSHD666MVBPerzSwzKPH1jAABW6FwNMTWmWyhoqhKrNd4NF5ijIf5bEEU15VoxDrK0lIWFZUIJnZUxelEU81Qo1GUM0O1sOTekrQiwiQmsimSVyyKOV4WrK2GlGSEqWJltY1SCTqPQadM8xmJyvDeEosjcjlBVdH0c3oqR9Tp6fWBWMQvs245SZ0+UcQgaLx32DrvH8ObrgXxtZdYSU0RW8+6/TINXOrzLd1wZ82UfqmlvKRWeOBf8XUhYVF1NRLvHdbk5GVBVdUpyqaqcLZC4VHekIRCkGrCMEFUfEZdngfa5SH3q3fWGheGtRXsPGr5on+Nn++kcZaDzf1GWd641gGd7grHx2OuXrsJccQsKzjaHzA8GnJ7PuTq1aunyrHa66G0oNQyxVDqDPI6a3FZJumEpwKH9wE4qUdR55aWeV1UtChK3ri+y3gyxlpPURQoEdb6XZScwcYUxUSRZzIZ8vrNHXb3h2hr6aWOyhsSHfLk5fMc5xmNJKbT7/H52wPmOyXjeUaSNnn2SeGx7ae53FilGtyk6Yfk9+6QuzFbnRYr3SbT+ekvWaAV1f2U+fpFr6zDW0+QhkSNzv1c+HY7RYnj4PYr6LhN0rvMpceeottpMTjcYW9nj41LF3nvB65wfrVPMSuZjMYoHGF4Rsl7ZUkbCVGUYowhihJSlwJCGERoFZEXOUfDA9rtPoPJIdPFlMfdU4gP8EFBlRcoCUnThNHUUxQZ3te+fa1rayQ6w/VYr++c+PlUXa5eKR5//HH6/T6tVpMoUqysreCdZz6fMRiOKU1FmEREjYQqK4njiAuXLmFMye69O4heulNkyTXQOt0NcOJ2EFtPY52KatY9mxGKpd9N2ex2uLLWINDglLB7PGR/XLA3MFjVREcR83xEVnmCKCJyUFUlrSREe8d8ljE5g9rzuacvEUvKK9k9pkdj0lYLM68YZFMWkxwJPKkWumtd+nEPnQhoh2TUlTimButzmpHm8fPn6HdT5vMxYRjRCEtSPaUV5ih9ttV3P3Fb/AOL9ku6Am8AjfcBShyBrxdD/dLHKrilAq7rAlpqPov7z1xY2s1nOqxOl1EE5QpslWOqmqPDVAZn6qK3NV2CIgk0YZqiQ0UgDjefMNvfgXaf5tpFvJxO+n+Cd+YTVvW0yomvVw+XUwTna8LvesXbL8ve1yOKEg+qZlpyXjErhdHuMdPRgtkkIzNTRqMBLa/4xc/+PJ6Sojy9hHdR5rQajeUUQYEolNSlemo30/JR3/9HcEsXCV5qCjoHSnnm8ym/8IufZTIZo5RGqYB2q0VVVhwenF67qyhyXBTQbDbQUciitLiiohGHWDQHWUG7EbPSSGn2mri1LYruFea5oaIu4317MGOc5bQ6XTobH6BhdgkPDljvN1jrNei2Utb67VPlCAKhqmqF45fLAc7UrFhhFBHEDYpiWM9A1lcJFBg7ITt4mfMXL9Bq91hZbZONdtGB5Ts/8d1ceuwcLeCf/H/+ce2i8I5GerrSOR4cUuSGPJ+T5zlHgwOqakar2cUtaTZnszk379yg15tQ5HN8kUF2wHQxQ+IWcaNFURYMh4dk+ZSqKBhPBkyng5pfQ2nKanSqHAQRSwcsiBDEDZqtJpcvbbN1bouiKGk2Yi6c32R4fEQ+n1AUdZ2w7soa7Xaf2XjKbD5la/s8qysrVGXF4PAI5yN0pNi+/DjrKxuniuGXVq9XHqc8AY6u1lzuBDx9sc+5zQ2SKMBUBYUxRM2UfjvkMau5dmfIazcOKfMGodJUKBalJ1Al7VaLJIZes0EjbnBwcHCqHKsrKf1mk+Fhlzv3JjVHSqnJy4qqLAgiIUgixsWU/VLorLXIfYV1imxhGR5nBFFCnCrS3HC+kfLYlcdJk4iqOKYqFd5XhPr0/gFLW0xqe/PNgjHLaf/Jv85gFwNsNsLYiqIqamWYZxT5AqVDNrYv0+iuY1WMX85+l8PemQu3/v4/J0OCw7kKZ8qldWvwJsebErt0RSglRHFEoALCMEYFUA73KW/tMD88psxzsmzONMvov//D3MtT7u0d8mt+8Nec2SbvSAk7qf/qymfmvuleN66cOFTQSmOduW8NnxBsWK9YlJaqcAxHE669do31rfPk0znWVowmA3SkzmRjWmQZnVarjrJYvmiiBYXCe1czY3lXlzp3DlNZ7HJVVauaxczjsLaWUSuh3Urq1VAJieMA66p6CngKYi00QmikDS5eXGc0z7h57TazQtFIEqxX7BwOeWx7k2BtG7n4NL10k2JYoFNFr60IXe2ndYHiuCgoq4i4scWVWLHajHBVRXlGAcWTOliyNP6cB2NqP32QJOgwxpSWJI7odRpMRgu0Dmi0Ytr9FmEUYoxBRBHGCcZOmQ5jhuMZ167fZJ6XKCU0WqdHRzz//OdZX9vm8qWnGI/HvPrqVxmO9tnavEC7tUGatjg6PuDWvRscDQ5JI4Uq5rDYwcwHdBpPk6TCYHTIwdEO49mAzfUtRDkm0yOGw32UEo4Gp/P4+iDGPcBfrXREGsVc3tpgpd/j2q07hJ0Wq90OUiyYjmMCpem2ukRBSp5VdDprXL/xBofHR2ydP0d/dZPD/THOazbOb/OBj3yMlc7pJc2dcyAaLQFiHFsriu//8DkudBPSuMHB3i7eK6JAMRgdYW2TSCuKvGCrUdF5ssNsaul0uiwIOJgviKMO+cLgxbIoKo6P9jFnEPi0I0crcvTbmiSq6xiKV3jjEPv/Z+/PYi1Ls/w+7PcNezzzufO9MWbkPFRV1tDV1V1dXexujmZTMkWKIClCtAFDNigBlG292IAf9OIXGyaoN8uAAUGWbEukZU7dbJLNHqqruoasyjkzIjLmuPO9Zz5nT9/gh31uVDWbdW6lIYIvuYBAThGRK/aw9vrW+g/1HFbYeiRzvH/K8ckJlXA0ml3wIbPhHB2UuERzakvcbECoX+f5528gbYAzAR5FHF3eCQNL4MPFckvWS8olrsBJgfCOo4f3OL77Iw5PD5lOh7UmtrHgSpIo5LnnXuLGS6/R2LpJ0tvG6vDZDJc/Nm744+GXHbNynrKcc352UI83hV/O8QMIYoJAE2iNVIrSGaKgRaAbOBaUp+8z/MFbVJVg6APOgoh51CO7P+LogwEnR4f/4xfh+sOuaslG4UE6vFhuDJ3AGxBymXBl6+IrAlQcIiwspnNsaTjeP+LOh3cYnI8Jw4jtrXWef/EmKpJY4XF/DJ/3R6Mo8+WSD7TURFKhGwnD2YTzwYBFXsN6Dh/v02i1SBoxHk9RVigh2ehvsNFfIwkjpNKEYcB4MiCIEsAwmc5YFBn9zuoONIo0caTJTUW3mfLK81dZjKdMhgvALuFikpELae+8gmhtMzk65ezpIe3NXSrTJzeCUhjiPEM5ydQL0s4OO2mCLiaMB2eElyBdbFXPCOt5sF/qnILWEh1GIBRlWRGHgiDwVGWBEBVJmtLpbqCCgKoqCeI2xup6oaA0d+/cJSvKetbbbhAGq49XQlTMF2MOj55QliWT6TlZMWU6HzIcH1OUc86Gh5Quw88rlA/pBYZI5Bgp6a+l3Hl6m4ePn1IUU/JiwiIPAcPJ2VOkDJDSM5kdrr4gajkmo0bqSKDXaoNxCOtpN2qXjOFwyGKR0Wm32VyvWN/YBqX5nd//NqWtiFsJua0YTMaoMEAEmjDS3HjlRdZ3t9HRJep23uNwSK/Bepqx4MXrHZ4+OuR4eM5aM6SlBM1Wg1udJsPphLIs2Oql9Jq1sWk5rVjvddBpzNsPLLcPc+bzEi+hUJ4yM1ymwbXXaaKEYK2piFVOZiSVlQhrEFaibN3JFrYi1BHKg8LiK4c1BbYqcGVB7CNcIJnYjCcPHnPjxk4Nw3Q1tMy5SwSnvV32ZbXjiajrbv2fLn54jxCObrNN49oNZNrk7R99j7TRpb+xU8+EpaSKmpxMCzaTIXHShEa/hrHVA8iVaciLmTQeawry+ZjB6RGtRoNOt0PabKHCFKkChFYUeV6rqVUlhBaHZ0bEvtjibvo8C68YznPmRuBkih2UUE651u+tvh7L+NQec6aqZ6n1H8HhRV1snXXgJFpH5FWFF0ulexWQG8gXGUVhefLgIe+9/R5FVpKmbbL5lDRZQ2lH5R3VT0JSfkpkWU4tH+nRC0OnkfLekye89d7btHtdGp0mkzLj97/zHXb2dvn6n/hFNrbXmE5nPH28z8m9j+md9Lixdw2pNOPpjCdHx9y4foNQBpwNzsnKnHbn1ZV5pGlMoxFz8vgpi7xgq9/ilZdu8ru//w7VdEEzlqAUQW8P3btCLgOm0xnn+w9ZTEaEN15nvMiRgacRBURKE+NIgwJaKZWboCRc3V1fmUfd+Zr6nnhfL+gchFqhdYytKkxRkjQClLCURYagIAgVKkgwzhAvccbtpElkHKPDI05O6xFAEgWUZXGpd5dUnulsxMcfv0+aJlhX0m4nzBcDPvr4LZqNNtN8hBWG8fmQSLRpbKeUZcHHt/c5WOTsnx1SGokOBUka4H2BUJ4sm7B/eA8dCJxfjZ5BKzAXowCJDxQLV7GwFWGRodOYMAzI84IkSZDG0Wm3iOOEtN1mPHudH773PmknJdCSw6NDTGHxUtDb2uDKczcJG7Wp42XhvcfJEpM4Hgxm/MPffUA+mxDHMS/ffJnnttocDc8ZzubklWUxz2msR6z3ewRaMo4rysWC9Y2YG9ttPno4IssMBCFeOgId17iuFbHT69RGsGsl7SbkeY4WIdIbpFUEPkDZutOsjEerAI3Cl45sniGtQQnwBWRjSRFUDM/H5NkMga3x/cJSVavvywVuVvifmNoKj/MOKgMIfBAihaMpK9KNHu0rN8nzEh2E7L7wBs3uBl7URrXZZEwzSTk7GZBuJISNGPBLacqfHsp7cBVFPmMxn5AtxgRKUlmHQaHSNiqoTYKFB2cFRWVrPzxh8aLkfGb4nbsDJnKNqKE5mxyQDUe0w4ztXsxLr93g2pUrlz4f8CmLcBTHtNtrHB3uU/mMega5POqjaDZbCBUyzs5BaKSUFKVnnheUi4yjJ084Pzqg1Qh5+eUXOT8d8Pzzz/HCKzeRqtYFdZ5LxxFFXtZHzTynkyneP7nHf/Wb/x8qW/HSyy+TzhdMJ1Pm8wVHh4fs7+8TRAGmrBicD3hw/yGvf/4LfHLwmFt7N3jllTc4Pj9HSEmW11qu4Jc4v58eztUd6HyacTaYECjJreeu8ODJOW/96EPWOxFOh3x89xHH5l/Q2buGQNHv73D29JgPjn8PrTvEcYdhHNJYb9C0M5QdcntuadghO92YrbXOyjwqU5MHhFwujqzAO4+OFSqIKKsK7yxpVONeq8oQ6Hp+fvfOJ1x/8VV0GPPgwQOuXl2n30z4ZH+fIssxpqQsa+htdtlL5hXZYs7B4T2SRoKVhnarx+DxAbPFnCSNieKI0dk5j+8fsNl7hdE84x+8/R1+9N4jbr1ynf56h9k8Q6URUTdChI4kjTClx4oSXwmUXH1fakhuzcZECKwHIwPO5iVxR9HrtOk2m0RKkGcZloLrV2rijEfz5muvcXC4T6g9zaTJg/uPmM8zpJZsbm/TbXdIRIDXl0ChZITwluf60O5pbh9lPD6asJ7U8KzSGJI4pJ3G3Lv/GOMDKieYjDNcabHSk80LYimYzkbs9RJ+9St7/Nbb+xycLBCERKHCR6sdPrQXSKVJk5CNjRbTyYxASrJ5jRuOEHhb4/+zrEJ7hdZgTEW5yFBKkkRRbRpQWqbjCVu31lBa1YahKJzz6MuKHw7rHP4CdeDr+aYtFvjhKaWzhOtXMNJTnjzh6vNXORkXuCxj+OQhbjLl5sufJ1MR2zevMZ6OmFeW00d3uNZooNKd+oNwiSNtlc0ZnR0hlUFFkjSNiJNtklaXMGkigwgn6k5dWo8znvFwQtgIEUqBKCGbs5jPcIuM/OyEdlXyues9Xtjd4MqNXY4nY2az1c48z+7Pz/SzlrHWX8NUkuFoShwrcA7n6/bcKUlmHMV8gUWD9xSlJS8r8ixnMZ4wGZyzudbiF776JjpOcNbRa7eplKuPEE7UW8hL8rDW4KqK1tGEcHeX8/EhjaiB85bjJ4dUpvaF2t3ZppE2OXl6zsn+GVVZUVUW5SNG51O6N/v0+uv89b/+N/nGN/4EWmse3LvPWz96i4dPHlAUqxeEw+EMuYBIB/Q7LVrNDr1un699+TWePj3m8f4xMjSMHn/Ig9sfopKEpLNBlPbx3jGbTfE2pd3t49MOlekjVcYoP8a2GnhRIUUDfcnZoD6dANRssmr59yoIUGGCWYxRStJshVhTk2viRKB8RaoXdBsB+wcHHB4ds7axxWSSI1UCQqKQxKHGmpzJZPVs2lQKpQLSVGDKCTmOvEjQQuApQEJR1uOrrc01jDGcDwxnw4Ir165xZX2HRqpJvGJmKkIb0QxCxmaMXhoJYP8o3fdfFwLxbCkrhMQ4z6IwVF4ynNbz8LV2m2azRRQlJGWJc4YwklgZcnT3IYPBkG63Q7vR4aF4ymS6IIhTNrd30KIeL1xi4IDWIdqXbPYbvHqrS789YDLMWV/rE0SahS0YZTOQIXt7G0xmA1rNJjd3r2Irybt3HxB3Nuj2mmTFGIFgvRfxlVd3+f3FY2wZstFLLnX1NXmJXQqeb2z1mY0l56cVkaqttgIhqWxNeCgqS0iFUzVM0BuD9zXBxAOV88zLCqcUSktMUYub68Bd6go+GXzEPM/wBHR6W4RBE7wmNBlNO8dIx8xkxM0mnX4DzZyq9FTlhLJa4ItzYjfg3tMZ2XxMoiDPxmzGBd2wpLKz2llDrL4ef+fv/l94fPsj/uz/5E/y5V/8Cr21TeK0vfSpq4XiHQ7lPd5ZstkMm+cknR6ICCEyUhb05BAfKt648Sq9xBNHlrsP7nH/6B5vffARw+mc//KXv7n6IeFTFuGHjx7xvT98hyzL2d5ZY63fRjqBXeIey7KisgKHZD6fAQJjDNJ7+t0WbK1zfbdPu9skKw1WWJxfUJVQOknp6jmvVJc8VLZEnA+J9s8JXrjFL/7Cz/PmFz5PaUpMVWKdwduaOiuQ9WwHlpz8AKk1ICjLnKoy7O3u8ebnv0AchhRZzpP9A37nd/45/+g3/+HKPKoKbKxY2+jTrEoshjybsbXR5ue/8ionJ2OG0xwlS0IBLQVrcshWU/H8S8/x0dOI77xzRDYXSFNibEXca5BYSSfQXFlbw9uS88FoZR5C1C4ilaktiEzlURJUECBVQFXmRKEkTiOsrU8cYaSJIs1ON2R89Jg7H95ne2uddrdFPp/SaDTZ3buGq3ImgxN6zRDL6plwM2oQaU+sPfMiJ44TBoMRjSik19YQCHIXE0cK7QPSqEE+ydjZvU6apPRjz+ZaSrC9wePjEXefHlAOAm5cXa95R96jpSO7xN7o4po8u0/Wc+f+o9r3y1sSrfjmV7/EL/78V5cjtookjgjDgI+eHvLtd94hM5brnT54RWEc86JivdOn01sjy3OO8wVFsToP6Q3eW4aZYZ5lvL4b8liUjMqcs0lBvpjRTQOMseSLgiiIaCYx8/kc71uoeIOTQjAYCsqpA7sgcBWpFmx2UiZlg+3tHov5dGUezhqcAOlLNtYSzroLZmNDp9FiUZU1q1VIHArrRH2yEhDKgDAMKEzFPLMoZXEIRBgtrcygwtZzdxmCWD0jr0xOaQs8htl8gA4yrFdcCQU7HUElGzz0Jf1OQuv6LuPHH5HlPdav3EQmKVeu7tDb6BKfZax1GhSTIcV0wFrLsViMmBhNtfSwXBW/+3u/w/0P3ufd99/mP/rb/wl/6a/9DSwBcgluE0s4nMCBs0Te0WmkOByFEIRS008b/OkvvMx4kjMYzPjN77zPd3/wBzx98gm/+qf/FP+rv/2/obrEcPQiPp12RF6QzzMmk4zJImdzsmBno48ONMjgGXKitu1RTMdjzk9PSCJNIwnZu7JLGAvmWcEiz5lNxwQ7O3XrLyVa1GIe+hIg6HAwJtyF06DgfHwIZohQClE7FtZiHlrW/06oZ75ueomMkKr+Y1elx/oQLyoG41PKec7+k30KY7i5t8Mbr6wma6zvXqPbinCmQAKHR8ccjEbIICBp99na3mJy/wlKKna3Orz5ynWub7ToRIqrL+wRppt8/50TisWM0HmclYyEJ2kohsMR17pt8qJiMb+MQVgvJKzzWOsxpUep2svNVBVlNqcZKwKta5dc4QkDQZzESBXy4XvvI61ge/sGpQEvNM7JumNc3yTWgul0tPyw/vTYaAiQEUot6CQt5jLiycGIfj/hynqT3Bv2J2CqnI21NRaznPPjMc2GIG22qWzFbLqg345xhWUxqTjZP+XmZkq7GdVzaVERBJeRV5YvoRT4pcfboih4fHhEK42JhOd8OK4tfJQmjCLCKGKR5Tx9+pSqLLh57Tqb6xscHp/VJBUn6XT6FEXJ/TufQJHxP71k8628IVCKk+GCh08XrN2M2O7F6KLFfO7IF4IHj87Y3mlQlILTU8vj/TGT4oCdrRsk/R3e/u7bBEpxbbPHzSvXWO/HzCen6P3HCONx1qIuOTsak2O8R/qCViKJ04qXX9minEd8cPsh1pcYXzNh8QKzRDlpp4hiifCaxaKG3OhUL9EmSU23Vq4WGxIa/Ooi/HjUxNBASI8owVMS6oDdm7ucqT4L3WCUJZw9XhBOKvLJFhs3X+KLX/864+Epg7NT5jiuvdTgxeee4+577xBHFWtrDQ6MZ78ocO5yvYa/9jf+Ku9/9y2+/Z3v8GT/mNOzMUGYs721QQ27dQgMAsgnY+6+/x47N67TjiIiD4VRHDw55q0ffI/vvPUD7ty5y/H+U5ppQqfb56VXPke3s0mSriavXMSnKsLNJOJXfukb3L7ziHc++oDHD/eZDCfcuHGDIJSUpqI09aC+yDIe3P2E6eic527s0eg1kMpTmXoWGQYh6+tbRHEDX5U153tpWigvcZSsjIGdTWa6QrqKuFLMJhM8jmYjRQUa6UH52nvOUStUOWw9aHf10kZoiUbUlMMy5x//o3/C22+/g/WOK9ub3Hr+hZV5TEuPyDV3Pr7H44NjTs7PEVIglKQoC04m45p66TTp2i6+uYFrdbEBZDZgXDiwMZUrcJTocsxwPiToae6KnPHRPYIgJAxXP9zW1h2wNQ5na/ZcjRMXFPkCW5YkrXpGOi+K2s05lMigweE5vPvhPjdfusXmznMYERHFDc7PBzx9/ITFbIKzFa1WhyRZjRa5uu7wXlCUHqs183mFqRz5YkaiE3CW6XROt9Mg0J6jk3OqzHM0P2Kc5/SbCf1YU9iERydnDOcLBifnZNkG3avbDCaGJPZ0LtFsCIKg5vNf+IXJJVQtCnjh5ZdYazSIm22Ozs5pNxtoKSiqEuMdVzc3MC8+T6vZJEhjJrMpkdKEaAIV8OEHH/Dk7j2ubKzVDr+r8qhH0lgRMJhVHE8lVzdiovmMbipIk5jtjQ6tJAKTM40LMquZmwitQ6r5Odc2I25dv85LV7bpJAlPB2PefTLiwekEjcKuNXFi9Wvs3VLjpcjBVHRaEa+9tIvJJYWb8ODhORGOCkOVlxgCpKuFeXZ2OgTNmA/eP8ZUEi8kWgY04hBvS4RwSFlLEohLxiKFr23ilZRArR3RiBVPygZPJglOhAxOHZOTOd1Q8fJul5dfvka3k4AvKKoSqUMmh0e89/Ftmu0Wrd4VNJZ0MifIoUJcilD7whffZG99nel8Atbym//fv8/O3jV+/S/+e1jnagafV2BLsuk5R0/usbG1gVjvc//ebd7/+DaPPrzNW9/7Du+8+xY3rl8lCDUvvPIaX/rSV/jaL/wScdzA/2w+n59yMSehu7FGMV7QS77AH/zge+SLDGss3jkKUyG1RnjH08ePGA3P6TZidjZ6tBsRUaiRUuCsWVI4oczzJd63Jlwg5aUupUWZMbElLk3Ji5Lvv/UjvvPd7yG05MtfepOvf/0X6XVbBCqoTT6XXfCFqpYQNaPO+6XWhVB88vg+33vr+3XnF0ccnBzzpa/8wso89p+ecWf+hLfffo+j4xM6/Q7NRso8G5PN55yeDMgWC7yHH/7oPd5++32ajZTPf/5Vvvnz63x87wAvo3pZltWkhcXsDDtKeGh7vHfwCUVR0u01+N+uyKNWK3O1/bi9EFFSqKhBZSzCG6JQo3VIUcxRWhEGAa4UnNz/hNOTKX/qL/8ie8+9zmJRsJjNlhjrimw+hirDWsO8WA1B2u5GZAtDpVrMhELMckIVYktPWVhm+Ryb5aRRRJZl6ECxtdvCUHHn4JxpFvFwXvLidcFHD55y7+AYVWZoDXEsiI0mDFkq9P30EIGujY2X/Gcp6+dqPJmwv/+U9s3neHKwz3Q+5tWXXmCt17lQJ6DZaHDz2lWCIACtqCxs7dzn6HTCYDDk7OyEcr4guLKHuuTE1khT5nlOZSG3MU9Hgm6Ss70WIoMKL2pn7sXMIqXl5ktrZDbm0Z1jGrJEKME3v/wijSRkNtznw/eO+PbtMz4+q7U/dnsRM+MYjVePIy5MPJX3aK9QLiJUBWlTcvP6JgeHI65c3aK71uFw/5TFvCIMNXubPd780nUWpuTBgwHjSUWWV0hnWMxH2DID4dBK4L29tPhpVS8kpRBEUUCoJJ1U0w0lnxycsT+OCVSMywxStnjz9ausr7WQEuZZQVYYIhHQTFvMCZCNkMrADEUUpXURduZSnPC9T+7xj/7+f8ejBw/Y2tvh937rN/mzf+Ev1hofy2slABVo0vU2L33+NVSjwT/4zd/kn/6Lf8rLL79Mt9vll//UnySMI54+fMhf+Sv/Ab/wy7/K6194E6nDGvX8M+CV4dNa3pcZf++/+39y/PCQ//Cv/BVe/xt/g3cePGA4HmOqqnYrBXCWtV6HfNpF24JmHJJoQVVmlFWF1jXDRQURUtWHqco6jCt+JsbLl770FUxRkC0y/vFv/gbf+e73iJME5zznZ+d02h1+7Vd+lTROl+MHRSDVUq/1ws35Qvyj5rDvPz1Aq5DrV68RRiGL+RwlV89Ah4MZJycDzs6GGGuWOEjD9atXmE3GnB8fsqgqhBBExAgvOD845TcOf4fDu/s0dB+fNBFZhJsNmZ09ochOMVnISUuyyCWzKRxNBivzqNlofqntvKSAKoWQIUU2RwoI4wghVS1YFGp0GOJtxumTI9pr21y/9TJl6cmzjP2njzk5fkKWTTHO4l2JNQWz6WpVuZODMZPBHKUUuZZUuSGyHlcajs8WjPIFolDEgWaaz5Gyot8WbO/uUinH46cT9k8HVEbw/u0HnEwXbDQDkiBkMpwyHk0Ig5AqW/2R9mrpdv1MuUzgnSMvck5OTri2ucnmep+sLPnozh2eu36VdqsFS9JLmqZopUAKmklSY4TjkPF4jKsM/c11Xn79VRqt1ScDZzxCKpAQt7qcjk85a5Rc39vAioLCBJycz1jrNmklkvVODx+0qCYZeMfca44+fspouuB4NOfJ6ZTjBZRes96KaDRSzkuD06ufU2NLvLWEStKOE0RlyMYFaaLZWuvTbjTo91t845fepCwrsrLWYkm1o7fmOTgeEWhNYXOKskI7R6gFwtc7GKynLCriMCFYsZuTKlwuzqCVhnSbMZiSna7nSy83sB9XlKMz1vWY7XaBNz32D/bBOY6PB0znc5LKkiYRcZJwPhqS5wvyMKTwAVlhWSwldFfFq6+8Svuv/XV+67f+Kdt7e1y/cYtv/sk/hbf1Kdy5ilk248N3f8gf/PY/oyos/+5f+ZssKs/N517kzS/+PJ///Bv0en3+3J/98zy6/4A33vwiSaND5fwzjbWflT396XDC1tFoNXHO8e3f/xa3Pv8Gn3vj8/zGb/0mWmuCQNdSc6HktVde4vlrV3DFAuyCLFugtUArSag0xlpcWaskGWvwUi7Zb/V8eFVsb2zy7e9+m0ePH/POu++xs7PLiy8+z2Q65ejwmIf3H2F/yRI2A4SsoVv1cvjHN6fWP/ZUlaEsCs5OTtlY32Ctt0ZhShrNNkG0miF2++P7vP/ebfJiilD14u/xo6cMdydLNThB2uzQaKRYa5nN6qKGtUxPD3h5N2HoQ87CkEWZUxVThLeUecX9e4/RUhKGEXG4eutcS4yyVHYCPPXcW2iqbEGoJUnawCGxXpCmbaJ0HZI2N76yhztxPHp4h1azy2I+4/TkgNlk+gyJ4JTEVVzKzFoMDaHXKOcJhcJpS7ctwAX4smIyLTgZehIV0JYB601J5Mq6K1aKOAxod7ucjGcMxjOss+ggRgnBYpwxG1cEWhGvetNZjmfcBWTfY7yrZ8PCk+UlDsH21haxltiqwDrHbDHHWwiUopbhdmTznLuffMLT/QO8A+tg9+p1vvjm5/nqV75E0lg988vLEpREeo8tcsrC8PTcsXVmiIKE2XxMu51gyzl71/ZYW1vj/vEEH8d8/OAhh6Oc/bOSSQ4LIzCutqtHCMIgoNvtklcedQlpJEkTsukMZwyB9GhRgQHhoJF42u0IawytVkDSTPAiBC9xxRQhxuAtRVFRlhXOCdIkZXtrDe8Mwjm8s5R5hkkvwW9Tz52lF/iq4MHHn5AtZtz5wOF9SDmq8JUh6SQ4F/HehwvyqmI2nrDIC7IiJ4xCrDEoUSNxEAKlBUaFGBnWiJ5LPkr/w//wD/gT3/h5/tP/7D9DRynNZo8gjHC2YjEb8dv/7Df4jd/8J/zore8jneeNz30Zi+Lr3/gVdre2SJf33VrL9s51dvauU1lP5eoTdo3Bu+RS/ER8Ou0IB81Oj3Fe8tYHH/F7P3qbFz//DvcfPeTFl19iY2cbFUgCKRDOgDVYU+GMwVhDVTmUkJSFxXlHFIRopWoVIuExzuNxS/TCT4/rV67x/kcfMZp8QKfb44UXX6TVbBGGEUpq8qLiydN9RsMRQqh6RlgVS6ePupjkeUFRVuRFznw24+O7d+mubVAai3eCN159nS+89rmVeZydjTgfDHE+RypFXh5hqpLpbIG1tewnQjBdFCjpMNZQVgbvJcezgvH4mFdUxh2rmIoCRL1lFiiyeYbSiiQOl7z4nx7OXRA2lp0wIHSAR2BNUQuMRDHGSjyKqNFERw28jNi9eQXVk3z07js0mx2sKZlNp1RlSZlnJFFIZuqlrDGrxwDZpKLdlATS46qCjUBRBhUORS48ytUC8xroxRFNJVChZJgtkNKzt7PO4ye3OR9NkUoSYug0gvp5EhGhDnAO8uwyRpRALnHTCMlPCnQvipIHDx9xc2eDtatXUEnCYD7l6fmIsqwvZKuR0G6mnA/OeOfDj5lMZngL12/c5Bd+4as8f+Ma62v9umlYEdY7fGnQgaIqCxqNJsNswYcPRnz186+y2Whg7QJZCLSUmNLyySf7vPNgwNEoZzgryYyltAInNUIsdVkEZHnOeDSh11sjvKToaMCWJd4ajJ8jxQxbRui0iWNGHENZlFTZlDhU9f/LS4Qv8D7Du/qdCLQmEpLnrm2wtd6tVd1kUJ80gwpY/XwURY4QAucER8dD7r3/Dh9+9C6np+cID9aXOOMIg4iv/vwv0O5voJKY4fkA72pcdbvTZjFbEAUhzjtK6wgiTaPTJUgaBDogvGRB+M477/Kt3/tt/vxf+HX+zK//O7R7Qf3Bl4Kzo0P+3n/z3/KHf/iHREHAK6+8xmuvfoH13ga99Q2UVBjjljINCuN9bS4hlpg+Lpq9S/CL/8r9+Zmj0e6xtqXQzQ6HZ4/AW95+64egJfP5nDVjyCuHl5bx2SmxDimLDOcrYOn+gFwmLQgDibe2Jmo4hxQS63yt9LIi1te3+frXvoGxng8+/oA0Sbhx/QaT6ZjRZEpelHz00W2CQKOkRmlNVRYYtwSLO0dRlhhjUUoTRTHXbzxHf32Dq1eusbW+ztbGJuu9tZV5eG+XPwxVVS6XjpL51Dxj7Silagahq/VhnXPEaUyQNvn46Ig/ty2wxnImM6ZaAgG4ZdFQkrVeh0vYwrVoUj3KwltfqzypEOuo5RIDjxIS4wNU3CIMNFIqTJFzfvCEqLXD6OwJvsoJtAZbEWiBCyXGCbQKEVISXaKi1uo1CUOD1g7vbY2zNA6va+hPP9Jo6WkEhlRqAqnIXcUkn9UnBFOShI4k1uxudtnopmw2Q6SH82nGZOrQXqLVJaQApWvRPFEv5RwSL0FIj1aaNE1RoaLyjvPxnO+9/x6PzgYUToGxNAPFK7eeJ01CKq/xQrG21uWb3/gFXnnxOeJAEIe1TOXK+yLq/1+j0cQKiw5ChuM5Z7Jisqi4dmWdPBtwcPaYu/ceEcYDzs4WHJ9mHM8FhYuQ5ITKIYTFeY9RCo+kKArOTs4QFtJ09aLSLgpMXlFZg8ERBA5nKrSXOBxhqJlnBpPlGOWRYYQQCu8sVpdYLEGg2NvsozB84fV1Ok2FlgEWifcGzwLvVnfCxtZFWknF+eCM4+EZ82xOVVXkeUFV5bXWsi4wEtJOEy8l165dpcgrCmNq3QkpcM5gKovSniRWhFoQ6AAhNZdZZ/6lv/SX+c3f+Af889/+l7zw+ufY2Nwlm475/rf/gLf+8Ds8fPiEQIRsbezS62zy4guv0O90awcURF1snzVG7tns13u3lAT62QswfFopyzAmalja/S6j8wESS1XM6XZbtJIAqgzpHdP5lE/u3uON115DSRC2LhBCiBqeIgTOQVkZpKw1gd3Fx8N57CXoiDhMePn5l/EIxvMpi8Wch48f4fGEYcTR4RFvv/8+7VabtJGQJClpo0G73abZatFptei02nTaXTqdHu1WmyRKUEqjVS3YfeGJtyqcN/UD6O0zWxrv3VKNTeHxteuIrReXtdynoDIFg8k5zmTEwnItcNyxc05wGC3xFpTQaC1pNZps9y55yZzHurrDcL6WHBVKU2YZ3tYjH6lj5uMZAoMUFu9LTLlgXlhiFbKz1aG3uYc1huHZcV3UK0VmS5yQRHH0U8SwfxylzHC2Fr6WyqOtx6sApTWR1Gw3PdvLkVVgFaURlKIiigWtQCEqwc29PqHK6DT6vPHcDuV4QjadMrOCWVaRCknYWL0QE1LUXmBLUSnBhewpxEnM+sY6SRpjvCOzjtNZzsl0gQGUdcyModts0Gm1GM8zojjll37pF3n95RdopKpm0sWa4JJOWCqF8pLpPKN0FbbIaDW65MWcDz6+Sxw+z60bW4xHE85OT7HDCqVDtrZaPLpzSOmg3enQaXeQOObzGUVlETJAVJY0bdBKU7JL8MpZblmUltJZZKBQgcKYirwoEEFEM20wGI3x3lEWOdJWBEFC5S1oSWkNaVNwZXcdX2Zcv9pGuALhoxoR4RVFURFdInhVlebZ+1FYw/75EeNsjqHCByVCXWB8DR/e+5D980OUUHTbXewS1SSkQAhPEofEcZ17KwlJWk182MBfghQBePGFl3j+1n/CJF/wwsuvEYWK3/gX/5T/63/xdzk8PMZ6zde++Wv8tb/+H7B75Qrrm1uIQP5Yv5ifGDc8eyWWwj9cCGL8LMrGdXyqIjwcDskKQ6edsNZtUpUZW8/tcvXKTr31tBlSeKbzKdlkhikKOq2wbtuX8CnpXd3SS0FRVVggVWH9got6VqvUJWLZSiOkQypJkiYYaxiPxkRRyM3rN7n13PNsbW2ytbXN+lqfXqdLp92h3WyTJgmhjGrh92dLuqXw/LJQGmuXWgyrwztTE0Mwz9wihLiQ01uiMJ4pyblnOsu2MDgLuZZIKegJSVsqAqVxqi7m0gsUktH5gPVktVoXvj6m1sUYlBKAJp9NAI+O26BCZvMBMoiIoggBOK8wBERa8bmXuoxmOXOZ0Opv4a2hKucIWYurN1o9CFbrGi8WGY1mghS1JZDWEqEV3tYduhaCJAlRWuErQTHJiL1kvduFCKpK0hYNNtSEzUbEZgw+SimsIVURaIGuHGr1qXcJSVMglq+E8KA0SIUIQpywFIspGs1kVpDltgbqu1qwvRKew8E50+mMxXTBqy+/wFe//HnazYRA1w4RgdIElzynrqqwUlEYi5Gas1zQ60UEsmL/fEzz9idspSXaCw6PhoRxA1TJC7vrWGsZlXA4mDM4P6sFq5yrxWeEq5luWhFFCidX7y4yJ5iUlqIyxDpChiFSB2RlgRI1I1J4i3GWwhRIX+KkRAQKISOy4pxXX99la61DMQtZ22zVUo7FAi9CrHFkswwF9HZ+eh4X4yznDNZVJI2EqBND6FFG4lytIyEQVD4nrxZIFGqhkEFt2tpvd2kkMe12CykkEkmiFBJBYWoJBalWHx09gpPTc268cIswivkX/+y3eP/tH/LiC8/TavX49X/vr/Jnfv3XafXXln6JHoNDPdMX/8kC65+NH+SFTyDLU9jPGJ+qCGfzgtPjc6JAcuPaNttbGwShZJEtEL4+8koc6/0W1/c2SUNJIEAGGiV4xjBSUtbHBrvcIgFRFNVjCwtCXGLXIiUCwZWdXf7kN7/J/sEB4/GErc1tbt28xcbaOnEUESxnzlpKlNQIoeqOyC9XdBceV0uLFCcuXEAuTEtXd8L1GKCeb7tlkRUCPLWDgJLqma7yss1fdma+FjF3gkpqmlrSTRqomUV5A5jaGYSaubS3s706D/9jcSXv6o289YIyL2qKrfcUixFFWdLurhOGMcgIS0QxPcWvpUQqojj/iNbmF/nGn/qrjEfnvPvW7yDCgGw+Q6mQqFiNjlDNFEJFHEoCWWsRmKwim5cgNEJLirEhjARp0qydNKhp18p7IpXSTWOaWwFNafHFFB3HVE5TLiq0VKAk9hJA/jOZ74v7K8XS+FOhvCCkpusuSsOjw2MmswUCiRYSJz3WOc6HYzKh2Vzb4Oe+9CU6zQZaerSUOGNw9rJPdJ1IUdWgf2k9pXfsn57QaydkLmCYe+4fnJBXISR9wk6X+WzG6fmYdqeDryRn45zFYlrLkiqFW1rvVN5xPBiSFQVCry7CuYNFZZFBhIxifFlQ4dB43NIkNomh8oZGI0F4i9SgQ81sUXJ+csrzz10hlgLZWyNuKEyekc3nSBlRFJ7x+Rh5ySxWabm0QTOEoebatRs0mgnng9OlDKWsGzUBa2t9krRBqAI6nQ5VVSGFoJ02kMv3WUqFdAKtdC1fq4Jlc7X6+bh64xY6SqhKeProgL/7f/679NtNbjx3k//53/pP+fwXv0RpBNZRCxmJn7CjenZv/9X7XxuXfspJBPApi3CgAgIpuba7jbY5YSCZTqe1cYuQ4B3OlnQaMa0Xb9YeTLaqRZclKCVrooV0tQFlEGCdI89zwKODWmjdmtV41IuvZb+zRrfV4dVbr+K9J9AarXQNRVuq3yvk8gb/xBFC/FjOGX9RJ2v1IG8v/PPc5UXYu+UoohaN8eLi14H0rjY0fbajv7C5WWKU8VjvmeB5KdbsJJpYOgrjsQK0rH8fpODlV2+tzsPV2GprfY0GCWr0ialyhCvr0URp8Kja6kjWHbrJZ5higq3m2Cogn+6j0j12NjZoNCIOnm5xPhiDSgkChS5WowGqJMBXFU0BQtYOJtnckeeeKKlns9ZZhPVUriBtBhTOMa0yEq8IS4t3Cichd7UUaD7OIQgoK4MKQ5yG8pIHXUpZn2qWjDkva+H/QEjaUcJ2d4120ubhYML++YDCC4RTaK2xwmOLCmsF3X6Pn/vil7i6s1cbZEpqwRpfyyle1uzYZY+klSbwAqdgbg2zwQThAuKZxT2ZoYIGWak4G1bEUYvhZMThYB8Zt0laLcI4fmaou8gWuCWs0ocxurWGvERoapEtCKKQKI2Xc2FPhUNaQztp02xZ9nZbRGmIDBQmX4C1mCJjeppjZznt2DE+nxIFKcW8pCwLqlKilcBVAuEEcbhaT1jKeo8igDhKWevv0Eha9DobZHlFaWop1ihUbHbbxEsscb/fZTSZUJUlYaCX18IBNTrCLYWaLqyQLntvozjmytVrOOcYj0f8rf/4b/PDH3yPl199lZdeeaNmSArNxZrtJ2/zv/6Wi8t+wsr4dDNhCe00RpoFtqgwpUErT1HUVtbCW7y12KpEK4n3FlstpeqoFfcqatlFZ2swNEJgrWW+sKSNgFp1f/VbZq1dzvkkUiii5ZxR4KldNpYMqX8FFyyW85pnZfHCksl73NJJ2roL9+hanGhV/LGP4U/qoy4p1Bdz5R9bnYNc/rpCOR5nc97cWeNKGLF2NmSyqJbeWx6kIC8Kjo5XOye4muKOtSwXB0GNlDAlyjt0GFIUFUJJojBCUIsuFdkUYwqcLajK2qzQL4uMNQXFYsb52RnoiJ21TWKzWtCo8obSlMxLKPCUBWSVQAUxXkpKYymdwVhL5RxxHCK0JtYJCokpNNZB6SxCQphGCGmJ05BEhug4ojCe0eAS49NA10J8UuCVxIp6wRgpxe5mnytb6zTiiCw/4Xw6pXIeaR3OlUucu6CZtnj5lVe5duMacqlPbKhHGxZRL5D96jeuciCERAKRkkSJZmphllcI43h8MuJ8oem2NYdHZ1gkYRDQbjUovEZaaCchcRhircVYy6LIa0NXAV4FeBlcanyqFLRbKUkjYTSfE6cJ/bRFGkQkrSa9Nc12aWl0GmgpsVmFsBZb5biF5bndK7QTTaFrrz+lQEhTO6SLCLwkjmKiy6CUVY0WEksUUBS2CFREI24yzwyF9VghCLWgnQSkQf33aRix0AG2rJbmBXVf6p3HKoHxtUawdRb/M5gbee8Jgnrvs762zq/82p/ka1/7RXSgCXSM8xdY3z/+O/2sBIxPE5+OrFHMCZQllFBZQW4ssh7lYq2hHsX4WgoyqrsP52qvswuDUKUVprJUvsJR2+/UW0dPWVYEoUZcIhRjnav9/ZbFXS67krrgeryoXTagvuCrVLcuTEhrA0q3LMAW5wz+Mj0375cUaP6V4vvj3C5+/wuTVCFqqyVwCCd572yCis7ot1o4HeNFReAEqPp0Ya3l5PT8sjSeLedqk9MQU1XgDELppXNGLRKeJg2kyrFOYKq8Nt109UzZWffsy+Kcpcxz8mzCohTsXr1Bp9Vdmcd8NMF7SywTTEYti6hrXzTh6qN5YQweTWEqrINGW6Olqs0rrcdJiRMCH0iCNKTRV8SxQkpPVhp8Dq3OJdbqqiYDWRxeSISO0QKiSLCx3afRjPECsqKgtNVSvMZRmBKJIFaK3b0rbGxv46QnM0WNIlAKlpKrTQuXPh6idkbDQ4UhMLZGBjmJlh6pQsalg3mJFRorFKUTnI+mOATVPGM2Xi5al0gP692zg52xlvl0Anb1xzEJE5wrEcbQiBMSJWgGCe2kQZgmqCDCSY2NasU7WRl8OaMSgl5bs9nvIshod1tIGeD8DFtUCCfRiaSoLKbKyEaXQSk9UtQyAs65ZwgWHUTEXoOtxcCUqAkd+kKpzfpafEksnZeXy1Zk7YFXuYDALUeDXL5QV8vr6b0D6RFe0Gx1EIKlIwtLj8J/5X5epp7//2d8qiKslCcQBm8KJDXo2jqHRGCcrQfiSmGcRThTC04LB0uSslIa7SQukNjKLhletp53aU3dx+lLwdZVVbvyyuWFelaE5bLQIZ8VPCllbRfu3PJGXlxI/6xA/uuKsLV2uQn96bG+2ePGc9cB/2wmXMNU3HKubZe/N8tclhq3sobqSS8JAs0DKXmaFYj1DfbW1tDWIGX9IDXSmOdffX319bC1JoexoLXCISkWs/q7oDRCqdrSRoe1tZMIsA6qKsPjKJ1gWmis7oKK8KK+xs4bAiWYjs45OToife7FlXlI4wmjgFCHOAVBFIB3KF1LIJZOEYYxjSRgNJ8wywCR17RtEWCFJg5jjKL+UIkKpetl7WSeMZsbTClQcnURDp3AeAcsdTR8hQwU660uW/0NlIrIjSUvCkJvUFJTLR1dpPC0mk2u37pO0k5rWJhduiEvu87SlHgaqEsWQBdfZg8Y55nnJc7JutCJ2nVFOkmelYAgkBqlBFVVo2lqrXZBZesOUv1ElycAW5UUvnaCXhle0IwisrJExzFSBwRCII3DFxZDhWwmeB3g8QShxqNQQUoscrypOJ1MGE8MQRwTZgvMtMQ4xSx3VJWiLHPKxeoinGeLuiFafkSsq8eKUgikYtl61X9Gv3wfnYPSuGfvZi1TKhFKosTSxMA6MBYj6jnuZd3qj0+lotY0FpKLXqou8D8eIv7rft3/2CH+TVX3z+Kz+Cw+i8/i8rhc9+2z+Cw+i8/is/g3Fp8V4c/is/gsPot/i/FZEf4sPovP4rP4txifFeHP4rP4LD6Lf4vxqdAR/9H/8Z96KWpO/AWqoEYjKBC+5n57CUt0AvAMoXCxAPzxhlHUmODlP4qlBFz9j4b/09/6xk9dRf6l//y/9FEoScNamzYJFWkU0EgCWnHMfHjO//2/+DvcfueH/Nqf/hP8h3/rf0kYx/ilqpspcuZZzsfvfsx3f+db3HztJW699CJp6JjMpzzeP+O733qLTz68ja3yn5rH/+F/97/3xhiKouB8MCAvixpsHtU6C2FQe9tVZUmgA/Iip9VMUaq+HlVVPWMRhmFIEAT1dXMQBIogVCwWE4o85//2X/33PzWP7vbzvtZpXW59L/a7/sfXVlxcY1Hr617oKjyDz6kasy3FErkhHK/c2qWsHPcfH9dsICSH9374U/NY/9IV31rrsNnt8bnXvszetR32bz/mO9/9A9q9DnllOXp6yOJ8QitpMs7G7FzbxVaGh/ceATWxQmlNnKYEYUi+yCitQ0YxGIedZ/iqxI5mPzWPn/vK3/CRuY3yteN3BVRG0FCA8jUzzjpkJOkEAbaqJTIjHTCeL8icwwLSSYwQnM0KHAohHKAoHegwwNkWH330j35qHl//8hd9VVWEYUhmDVZqTo7PsQ5CHSFlydXrfcajBa5KcKYky2eUJmO+mLOzc5UXn78FpsRUBVtr2+xub3F6ckiVZ5TOYbxmcD7gt771rZ+ax//i7/xzHwaaQNXkCi0lStUgTiEgUAItVf24LBmeStb/Xi3toYxz5JXFufq/aVU/Y9bW6ofW1Qij//x/9s2fmsdf/5v/sReqZj0aHPOioN1us7m+wdH+Aefngxp/LSReqBoNoWTNXl3yD5qR4oXrexyeHPH2e+8xy+Y4W+sf43/MeD17fO+n5nH84IkXgwHl6ROmkePJfMYPv/sDdtspwbVt5KJi6707tE5OeftLt/j2O/cYDUckaUKv3wZhaaSSQCqarYi8KLl394iHj05oNFuEkWY0GnDlyh7/j//2n1wKqfhURTgM1TMYh+eCAFFjc6XwCAIQIUL+GN5Vi/bAT1qfXGB6YWl7LVz98z3gHV6sxvnpQBEGNbA9jgLSSJPGAc0kopFEUKUEcVTDelRAHNUi3cY6hBdIobA6pBk1We/2Weu0aMeCRANG0EkkaVw/hCvz0JowrO2HhJRYPFmW0Wg06gdISBppA7fUophOJ8ShIo5r/QYpa/W5oiiQUrJYLHC2lvvEeqST9NvrRJuraaneXAhZ1/ek1uEQCM/y/lxc7yVkSv7YXQTqn+tFTe31yzsVS0sjsHTTiMPQsig8XILffv7lDbb3rnJj5wZpc4vpZMb62hrdZpfTsyGdXo8kSijVgqqsyOYVj+48qokHziOURDiPKStyv1gSFCq8FyihUYEip7w0j1iVpMpQOAdIGgpyaQmVI/aWZqRoKUE/1exuNVnbuUESJ+ggYTbPePrgE86OD8jKnGkFRJKj0tOMIqyBHI9Boy+Bhs0rQVUJnFZUpmI0PqMq6vw73R4CyXw0hgrW+pvk1hLkEbaqmE4fcXRwSiQD4kDSbjZoNFpsbu6ghWI0POVkcIyxBfISMY1uq1lLiEq5LKDyx4VYeBT18+CWBVgrQaDqD7dxrjaQdRYvIAgFoZIgPNbWztlaQYB4Rsr6abF/cl6bBAgwviZDDYcjjg+PcMbWqmiq1omw3i1JGAIhNVIIsnzBo/1jPvnkDmVRYExZv8+1Tl7tVLJ0xVgV0f/rHyBGE8xwn0gXXEtTPj56SvP6dTZPp4inR7Qf7ZO1WnRkxFd//kucnpyzf7jPbDFFAutrm2z0N7hz5y6T6QwhNK12i9k8w7kIrWP2948vyaSOT1WEhRLgPTVL8Mc43DAArQx4gbNQuvqFl/KPdsQXf734oRAsRiOMzRDSUpT5pQpqAIEWBErWZpWhJIk0aRTUP+IAV9ZdpQesF0wmC87PR1RZQaAlzSQhikNu3HiOvf467Y2EOCiRk1PmZUXU8Jz2YobN1ZcnCIKlmH1AEEU1dlEpyrJkPp8T6KhWiJOOVqdHu9vDm4wwUIRhhNa19VJN266LuveeoydP2FxfIwo0oQ4Rl9wm8Yw1sFRq+wk5U0H9936JOa2ZHSypvBfFGIR3S5+wmpJ7fWeNKxsx1lluXVvj3qNz8mI1nPHXegEBFaPjU9766BGRMWx2Nrl/7yHj+Yzz03MWkxnKCUSUggdTWbz0oFWdp3MorXHOURUF1np0nKADhS0NUgKXuHFbGTGxMeHywzMvCyJv2FCWfmiIg6DufL2hso7O7nW2rz9PlLapLHS23+ejb/0WD+7fo5gXbAQxVkogwuiAUnqqpYj+qqg8eKmpLhyMl87OUagxVUVRzAnDulEQApI0JQw1zSjEFzn7B4ccHeyzt7PJWm+PbLFgf/8Jm+t9zs4OMKZiNBkQxatx0+1GjJKiNsAVtaJcqCSBEksqcd3JKg9aS0K9PI8ah7O1KL6lLt4IKJb6DvUJ6sclz61WG2C6WNTPnJYga3y/NYbMORSixrD7WivZK4VFIJ1CyfqElpUFi6rAuZqQFQQhSRTWWi1SPsP320tcjqt+D3frGoNBj+LOe8T7x6QnMwJxwNajA6pFzv4LNznY3WLuC4o8Z2tnl97GBsenTzg5POfOx/vcFU+xFoaTCYvFYolRVgxGE6IwrJ1dfob4dLRlXR9ZlfDPCqkU4pk/nNYSAkUsa0aKtbX+gUdSO0/WXbMQtQ13Nh1xsn+bsprSaEXLC9sgClfbxkShIgoUQSCJwtqRIQ0DklCThhoXRQTL4j8vSr7/zvvc/+QxxSKjkSRoLeh22/SaDa6trXGr3yXxIxajjECUVOTsxILNdLUgycXYoQabKyyes7MzPvzwQ+bzOd3eOlGckqYpO9s7dLttojTEmhLnXM0spGbwGGPqo3NZAgVx5GmmmjwvcHb10y284o+KBC3/gwe3/HfigtC51M2QeKT/ibGFsITCI6m4dWWbv/hrX6Dfgeki4/krW7Rizdt3VtOnr1rYNmM+HJ1x+8GIkoDvTm9zcnIGCIpFhnC1opmsEfl44Qlbac39LwzG1cSFi879widQa0mVlXhXIS85KSFqPeXIF5hiSjmfsxFLwnLOTCmqOKWZRHglyY9P6B0dsH7tJkkUYsZnFNmAzlqX9dk6h3ceURVjtpOESiimUlN5SRwFDGeri3A+n5EkCZLafSIOQkq9FCJCgIpRYYIA5lmJKAy+mvPKq8/xza/8Gb7/7h2ODo/4whuvcu3KHo+f7GNdxnh6ymw2wBhDnpcEwerntN1I6/uvxPJ2e5Sou10pfE1UcH5Z7MBSEyAq67FLMkPNsVh2y6LufmtJ2qX4lfVc1oI6WxFEIVLVhKXKVFTWIoFQB6igZthW1tQdswrQS1PQypYYHGEc4aXAVqCwRIkmDGPCMMS7mq2bZavV/u6/8QJhKJhuafKtBHM0ZPSj9wmikO+enRDtbZLt7jIXJV5JdGXJsxlSx/T72+zuXuXxw0fcu3OfyWROUVbM5rVzSrfXZm2tTbfZJrjEg/AiPqWesMYToMifCeRIAKHwMsArSztVbHUC+t0WZ2cDHj0+Imh2qGQTnML7CiHAeoN3JUEc0+o2CVJJq7tJFHeQl6SllKiPQEou7W4UUaiJQl13OEqhRX3zTgdDHhzsM6ky5tmESlmOHx3Q7XUpZ3PkYs6v/uJr/NIb13DGYAVMFnPOhiNayeqH+4IeqZRCAkWe8fY7b3P79h36/TUarR6JjkibbaTWFJWBJdW0tpNpoXVQawdZWxclW9FtxyhZYKs53jmsu5yZ5Z/JnIpnDe+FrN5PtsY/OZ74yXcmjeC1F/bI8hlXtntc226x3RVUVcqjQcHZjT5PL9Gw+MdDw58XjhdbEr+T8o/eP+WT4xnO1dx+r1X9Z3SeQCmEkgRxSNxqIKSinOV4qWqqsV+y97XCKAgECO9xxl6qLRIFktBJ/CInrOZshaBMztF8yvb6Or1uk2aaUJUOGSW0Wi3CKEDiePr+O/z+t75PbiWJD7BCURQFYeiJZFF3tkGTqXOXumCHgUIKRxQokqhLtligZUgSpaxtblA4x+PHT5diTgsCLJ1EEssKk4/4lW/8PJPpjI1+j42NdSpbUhQF2XxCkkacjSYEQYy1q6tfI6mbBecvdFx8bWwqwCwVBd1yvGCdw3mWam1yWTBrlbslU3jJOq0ZmkLWH3EhPZdM71CiFviyrsIumW7uogtGYISqvSa9o/Ku5s8GCh2G5HmBDgMCkeAElL6irDKmi4wWTQT1KMIZe2nTcnY+Jp+f02hFuKjBvCuY9zvEScSZtGipsE+ecO2FazS6CeUsoyo9lXNk05wwjnjl5RfY3tzk7u0H3L/3gN6VBs1mSpxE6CAiDBPUJQ5BF/HpLO8Z412AjVKkkrWS0/KlttWcp/cf8ujOB+TDY77+S1/FmJx2u8PVa23SbpvxuGBaenIL1jdodFvoUCCrktJVhEmLIGn8cWGcfyVCJZZaqpo40oShJA7qYlzfNM3W9jabm3ukzQ5SarxxlIuSzAc4oxmezSjykkRalJhhi4yilLjS4PIZaw0w6eqOKwgCyrLEWksQaJwpOTk/oxKeztoaz916ic2dPZI0IW1EFHlGPpmggwaSEiWWAkYKynyEqHJ6kSArPLrI8cvHs54jrgrHv07IoBaHu5i316Xr2WJU1NKdF6VYCcNWV5Mm64xnM4ajY1658TxlbvjR3XPKecVWt7syi2/dnfBOkdMLJYPpjKNRDjpFRQ6fVwhXU9e9N+gwIGykpL0WcTtlOhzVuhdIRBijpCSIA4yyYDzCQRRElGqOv0SqEAfVbILM5/Q0SG+ZZhmDoqRdGXrr60xcyIeDGZ/be561G2+wdv1lhHMkvR0GJuGdO/d5sVcf07WgdsMu5riGI200yEtLqVY/H0JqdBBTWU8zTlgsMm7evE4gFO1uh4OTY0y5QAeaxWzGK7d2+PLnXyMUnvPTIdeea7K1uY33jtl0QbvR5r0H7xGGAcZJjHXM5nO0vkQ4x4ulLu7FGLFWIjTO1+p/S8Pb+tRaS0HKpSejAKTz4Gw94lvO743zy91N/QRp5S+l9foqpyzALT+0XAjxCIH1gkVZUhlTL4EldNIGvfU1KiGpfEVY5bXKodYQKLQIQGgKY5hnJa1GEx3EhJdMNJ2yRGFdzHNt0XHAYjAh7TQJG02OHz1CasXNl66jbE48mTF7cEg6mxIHMTPjOMnG7Fy/ypd+7vPcfGEP5QWlqagqR1VYpA6Ik9Wqgxfx6QR8zu7gbEBy4wvooBbkcV4Q6orSTNhsepo3d5ivN2gmCe+/f5svvfk6Wy2LsadE7TZrSArjyapaMcnPAuykwIiEKNAE4eVCGVEQEIeaKAiWKIJ6LBFoVevwCsfzLz7PbDwl7fVopilpz7CTxIBir9MjzyZkZUkjgZduXqXT6DAaPqWjc3prKVcaN7m3ubEyj4tlmrWWXq9TayBUJWEcs7m5RX9jnW5/jbX1Pju7mzx+eJ/96ZxGs0sUSGyZY51DS0WSNjBzQ1lk4KAsDJXLkTrk0nOe+MkiXG+Jny1QvfgJdbefRE8sdeXqHQuZgelwxM21Ha5t7dHtpOTGYXXKlatX0Y0RVqzuyItJThWEnE4qqpEDH0KgCIKofmlNPbvzvhbojtKUojL4oqQoK0IdEAQg4lpgR8aaRCiUFhSLou7IwgB1iVrXfDZGLc7YiBXS1xoESIUioCgqMis4zx1TH6GCFhgHixzjPS+8+UX+ndLy6o01VDniR+98QDZxJHFEaUuckpTe0UgbZJPVt6WqDFk2IkkSkjik3Wry+isvEy5teI6OT7hxZZsrV3cYnB+x3olJ44gr2zsM2z1UFBIkMePxiFanzQ/e+iGT8QStNYssY2NjgyCKmS9WO2s4fO3yoepnw3kHXtYjIfdj1/HljhaWMqvO1b/uvW/9C06f3OHn/9xfI0rbWP/jBbeUtfysEJedT6DVShlOFzyzYPVuaYLgKaof74OkkLSTBpvtJmFUK8/FSYMIQ5gmSCz59IxQWsbTCaNZDkqSNFus99c4ePJkZR6P73xcu7PbAusyhFaMF2PiENr9TdpbPbLJlMl0iCqgNylpFDliPKYbGnov9flgMeDxJ/dIeh1UEFD42j4sbSYknQAVatwlKnsX8amK8Ho/ZTo2BMqThIJEC7rNiN2Ndda6z9FsJGgpmeUFo/GEvWu7zMYDyiLjfHjG3DbQwtJMEuIgwAuJHT7h5NETTLzGehhgyzlhtPolC7QmCkIiFRAKjRIS5x15WbAYD5mOhkgleO7mNfpr62zsbhNg0FIQhXFtqSRqk0BbzbnaWBBlOZ3FKWZyQNLtk2xeIdhePZuWUtJoNJZaxsHyYQZEbUvTarXZ3d1h78ouYViPR8rK4iqHFEsfr+UxqtlsE7SaDE6PmM/GCCxxUM8V9GVOAd7j/R8dLyynEsuC+5Mz42U4j5e2BrE4Dw50ENNsNQkjRbvd5f2HxzSSDjtbmzjt2VysbjEqmxHHAufyWoFueZT1eHyguNC8FmrpqO2gKEviVkoQhYAi1AG6GWFNhVK16l5bhyStlOl0zlle4C5xtBB2QbpU+5O29gGUeFpJijGQ+YA/++t/DlN6Qqdotzs8/ugD7j98SG9zhxff+DzXr1/hwcfv8/HjAVVZkiYRiUwovOTEeDKlaTfbK/OI45iyLAmCgCgM6bUaaCV54eYNJrOcQAVs7G7zhddf4O7tkmI2o8wyBoMBxjqG4yHvfvghX/7SF6ms5eGjh8RhxHg8xjlHd61Ps9WqDUpXRJpELJFm9QfJqx+LuvralsfjMcvfxnuPcEuFQCnJBvvw7ndov/E1eP2LNRbh2f+yFtN2y3HHqmi2G2SmojAWpTVlVTctsHTUWRrbplGM9L4WjY9ypFS0kggZtMGUZLMR1nlkGKDDCKUrIl0rBw7Oz3CXyNv93r/4LXQU4bKcrMxQjYSyMCyMoa9lDRVttBhPDc1rt+DGNttfVTz+5BPOszHbu11eufI5hoMx49GIJ48fI1XC3o3rVGWFEBblAvJLbKcu4lMV4Wu3bnHv/mFtrhdJNtsR17e7dNIIh2UwOGc0mTKYTjg8OuPh/acMzs5YZFtIqTganBDFMd1mkyTSTIZnHHzyEYvxmHNO0e0WO1ubpHJ1WhJZH9Qd+NJQeIsrDaYqmYyGYCpu3LhB8tzz9Ltdmu02WtfzrSDQaB0QBAHokFgU+Mfv8MHv/AZ+cIIpLfHeNkWyy+HJaHUeP1GEBZ4kTUmShGmek6Ypuzu77OzssLW5iZCW3b09xoMZo/NzTs4HdJop/V4HYwqsMSzmUwhigkaHxXSIrByUOVGy2mMuCIPlgrCel19ggms8t8Mtffu8L8AJlFPLl6ZCCWgmmqvrDd548SpX97awNsdbQ6+3QSA0k8mE+aJkOltt5KhkgCvA52Lp9mAhM7hI4anFt0VZIaRDa0WoFYUT2LzEOUsYRoRRRGutCc4QCIgWJX/69c/x2pWr3H38mP/+97/FJ8PZyjzwAqzEGEkkFM4siJQgTiNsBeeDIQjJzet7VA6QkgcP9/kn//xbbG3u8u931+j22zTW90j6mxwc7WNzQ7eVokWIVC2MrZ2jV0Ucx89cIUxVkMY9Auk5OtynqAxZNmRnfYdUSTZbbXIV1OgRIWl1u/zwuz9gMBzxyq3n+fjjjzk6PGJjfZ0oiijLkulkigxCWq3myjyiMKjF1MVyGrx8VvQFZpzaTcR6UesmW0dAXYyVgNd/7uvMfvR9bt79gNHnPkcVxTUueOnD6JxYmhmsLsKOWuWvVhH0CCzeGcIgQAYBSIH0jnhpzxUEIUkcYfKM2WxGK01ptjss5lPCKGY0PqeyhiRNaLfb2MpgipKiWP2c9todtFTMT4dMjk8ZJZpp5XhyrJD3HiJDSSw0cZJQ+O/R6XR545UXWe93qUrLTqONryZEjZhO0MNpyGeGQAVMxkMKbzFCMxyOVuZxEZ9uHGFzHu3fY0MkdNrXqLDcPzwlX+SMphMGgwGnB8ccHx8wnU2ZTuZYUzGfDWg0YuYLS6PRodzYIA4CqEp2rt5k2jgnG42Zj0/IU8X09CnwzZ+ah7eWfF7VX29VOxMjodtp021v0GumbPQ6JGFIEmp0ECJUiFAKpXjmI5c7j7GeMOnT3dkl2NnAipgq7PL4dMGDs9VfstqqxVFV9bIxWmKGtQ7o9/tsbqzTatVbUikUa2trpI0mx0fHjKczZtMpYRSQRJrKWqzQGBGg4iYiz2pfLQFhsHrLurm3ufTHcyRRQBgGBGFAtLR38t5TGUNeZpjSIJ3EViVQ0mporq93+dprV3j11g4CCOMNBuMRVVmikgCnQ0qfcXRytjIPayzOWGxla0shJcEJfLkkkkiF1B6pPUY74k6MNRpXGYSr9XF7zZhra236YcROu8tzzR4//9xzNKViJ5Qcj844/P67q/MQMC4qrBeoRNJptQikpBIeGymSdofHT/fp9tcJ4hi7WLC91uebP/c1VJSQz6aMlSAzUAmY64SxiLHxGmkYoKuAKDeXdjrGGKKlXnYUKLY21vHWkkQh1hW8+MIV8smU06dHdOIWp/uH9Dc3ePX11xkMh7is4KUbzyFKy+nTQ0xRMpvNaDQaGGtweU6qNcEl4xklakiiXuptgyeQAq0u8MF1J+qBytjaHGAJnFFCsLW9QxQlNI73ocrJO80fz5CfFV9/aRGez3PyvEQg8LI2hNVKEAS19ZRbSlJaU6HTlLn1NEzJtd1NTk49ZWXpr68znQyRsWAxGzGfzpCBQkgIpKLVajIcDlfmcXp6wObuFj4SLFyB6DdoKc9kljOZ5JiFpRrNa+1mpeh1unhfcX3vKntbO7TXdjl7OOHo4Jx5tiCIFUkzZTodMxudEogK0jXS/vrKPC7iUxXh+eAxIhtw+4ffY3OtQ7x5jaOTMYf7pzzdf8Lp8Qn5aISrZigJ/U6D07Mzbt+5y/bOFq1ml8Vizna0Dc4TJwmfe+MWW90+f/jWu/zz3/k9Hn78Ic12d2UexhhmwwFNrUjXNphM5qhQs7fTZXd9nY1ui2YaoQJZ+2UhwMvlhriirPJasLwssN4Qqw79N74GPmcwXPDgwQEPjk55+OjpyjwuMNBBEID3GFuihCCNYkBiHERRiJISayy4mtxiraMoS2aTMcYUXN3botlq04kbJEkDm6dESmHLOdKb2oZ+RcRpTFmUhEFdgMMwJI5jAqmQvnYi0TombXWR0qF9QSQs0uYol/PibpMvvLRLGGqG05zzsxGnozGz+Yi01cFrzclwQhStJo0I4TBFAUYgtMa72h3EC4e3Dik0MtR0t3q0t9YQUURQlWTDKXYM+IrrScyvv/B5XtzcZLfTIopShHPMJmPyquTK5jZ726tB8O1Wh0WVMM0KQhGQtELyokBLSXtjg+u3XkDpkIdPnrJ3pWbsmTDi6msvUgk4Lwvc2TlPDw8p0TQ2b1KKmEKCV5ZAahJdP1+rIgkdWlqSOKLXbHPz+i2ODvcpq5z1tQ5JfIPv/+EPmEyn4BPiZsIXf+6LWFcxm425df0q29s3KBYWrSPStEWVV5zOTlhbX6PdbFLZ6lJyUxzU1mKqBgU/m8UG6mIBB5WFytQi52o5YhDLk2NZzZDzEd5aWtmQINlcavBe6HBbnAdrVhfhorQIahy91rI+tQUKZw1KgBa1b5yQEh8EOFU7iuys93nj9ZeY54a00abXbrKYnDI6P6G0lq2dLWxVMhmNaLVaxJfgpucnJ+T9gFlLIG9s0NruEySCxiQj+2SANQVWZSRphK0EKghABxQWVJiigpS8dDw5OOPk7JQwCWgIz+HBCY1uh7VeE5nZS8leF/GpivCDux/g8hnFYIwbHfL0g2MePD1hPJqwmM8JipJAF9glHzIMBUnkqUqLKXO0MgjveXT3A7Jpzhsvv8ZzV3eZTyb0GjG9dhsfRHz+y19dmYcQjvV2g2YQ0Wz2Kap6MTfePyJ/+Jjoc68R37hKHIRI76hMhalKymyBdyVe1LjZUEmywnMymlEscsrFmHt373P7zj0moylPHu+vzOOCjBKGYQ0wF5J2q8loPEOIAOsEeZ6TxAFVkTMZDJmN62slhEQowWQ2Iy83iEztu9fvryFNk1YcMxqc4U1BmqwufpUVhFFKFAb1y6YDjPV4b1BC0Ow0aTSaSK2IRInMTrD5nCyrMEVVG0n6GidalDn3Hh5yd39IYUCGQ7SO2dns0W1f4iEWBshwiVP2P6ZEe3VBma4XPjIO6PS77Gxs8fDsnKfDMcJkvLaxzl9+401e7W6SqgDhLN55Ki+ZVhWFM8yLnMYlx28VNml1thgzxkrHYVZQGcXVnTW2X3yRW6++Rre/wXA4YDyeEiUNwl4PITwKR6qbJEmTXEJydEbDBJCV9TZfabypCJRDRZ2Veaz3UowRZHnGqDL88Ic/5I3XX6YyGX/4h3/AG6++wtXdPabzCbdee429q9/gk3uf8Iff+Q5Xr1zj2pWbCJnww3c/5P2790mDhP5Gh/H4nHaziSsL8mJK1FhddNKodvUWQmKdp6pKvAyopMLb2mzVGsPo4AEmm+GBTq9Lu7dGFCs++uHv8yQIKV98lVu2JJqdU+ZzojjBCV0biCLI5kPgp/shOuGQQS1kL5QkimLyxbyGlGmFpRaNF5GmnQS0O222+hskUcLO1hWazTZVUXB9o8/p+ITz6YCDp09rk1ozxTvL+fkZSbL6OY3PFkwePWXQTNFJh06rxenwKbNxQVl48sphpCRMAwLVJE5aBGGCR2KFWC4m64bKlLXgfpwvKI8O6KxvcT7MEKqk5/8NQNT2zyaMzs7JihYP7n3CIhtxfj7i+OQUHTVJoibaL5guJszmCxaLOTduXOXLX/8Kjx89ZXa+z3Q4AeloJX1O7j3kD/7Jb/Ph3XeYZRmf3HvA9edukZ3cWZmHCyQ4y8nhE8bzktF8ShRAbCuismBjr8fa3hrC1rRo62q2zunhUzbXu3T7fSoP5CXnZxPu332AK2YoJYiTLkGYYN2YoloNDVNKPXPuMMYggyaddhshjlEqwCOWfmACU9Yg/TiOsMY+oyobU3F2dkae52it6ff74AsCKWn2t2glzSV/f0WUBT4MCHREGAYopVBS4SkRwtBsBTTSkGJeIqsJDVeQ2wKrFGGaPrN6CbUgEB5rHAbNjeu7eGcoS4eWhiRevSBM0jaVrjC5wVcGVy197ZoxMgzqayAEW3t7BEKyHTY5qs5oOMfXnn+eb774AlcaKePJkKwK0WWI9TMyB4v5GFfmLLDE3dVFGBkS9rZZ66yjiinHB49oNprcePVNXn7zi3TXN2m1WrS7nXpRZUFIUVtthQFeS6qipNdq02s0OD8eEgUCVEjpDM4JGqFkVq0eRySNLrPpnGw24vUvvcnu9jr3H95GCk9ZLRhNBxyfHRFENbTye9/9Ph7odtd59bU30EGHT+7v8/jwKUEU0u/12d5YZ22tg/OG0/MjiiJjMl8N0xDC12gw78BXUM3RMq3fjSoDKVEYbn/vX/LOt34LLQSdzV12X/sSjVaT+w8+IfrGn+PYZwy+9Q/45HzI/PyYa70eSbvLzkufo71zndODh/DNr/zUPJwtCcKQEEWSNGgkTQZlRavXBQV5aYjilFarya0rVwm9IA5BScdoNGI6m+HyOUJ4TBDz+S//CoF+h8d3PmYynLC7tcXRyRmLbPUCOcgrphODCTROlRweHbKYDchmgrKoSVTWeMbjOe1OQhoEOCmRgQYZUGQGFcTotI1VZzQ7HdqVp6UF/W6HBx/dZjQYMOitHt9dxKcqwqcnEz7+8A4vv/AmvU5KrxMQCPjw49skLcX25h7b65uUxYTzwZD79x/y3PU9/vSv/hK/+zu/y+FRwGZ/nTDSBCphdmB4eOcJi9kUHbZoJBpfTJicru5Aq8IwnY4ZHD/AHh8yX5Q4kxP4ik4UkOcj7t39kOeff4nrzz9Pu9dbMtIUWV7S8LU54GA05eGjI6ZzRzvtEDc0x48e8PDJE2yRYS7hYV4I7mitEUJQOcPm5ibq7n2ccwQ6wDlPVRqqqqLRbLKxsUEcxwxHZwgBeZ5zcHBAmqZkWUaSxMgAtre2ubpznbCxRqux+sveajdrkHpRYq0BJRFaY62jqgz782OUOsMuRtxYU5Cq+ujpQXjB1sYmVoAVkjCMiYIA6Qu0m/Hi9T063T7DRcYnR+PV9yWrWNvdxljP+OkhPlZUeYUtS9JOE9IQTIWdT2l3O4R5wU4Y8uqrr/IrL9xC5gVn0ylCh4jFiLLMKH0ASYvQl7QCSafdYvsSJpLSgm6aYKTk5DijNJ7O+gY3X/0C63s3aDWWcMggQEpFlRVYWy8GRaCYlwWFqUibTda3Nrn/+BhTiZp36CHWAmcN1qz+OJ4PJ+TTOVVZUpUZk+mAR48ecvXqFV548WU67SbGSF548RbnwyE/+MEP+eVf/hOsr23R7W1yfJ6DUrTaDVqNlEhJ4jim2YpZLGbPsL9FvrromHKONQX5bEza6oIvkU7jpcNUU4RUjM+Pee9Hf8jTg8eU8xx15yP+4NvfYlFZensv8IXmFZ68/c85OT9kaCxN5Znft/TSiP3b78LaDuP5HP7Xf/un5hEKRSQ1RkIrSQgDzWa/D94xWUxpJE221nfo9fvsrO9RZgtkIml1mzz3wk2COKGYHlPOTombOwjZ4uCjD7gzHzOdTkgiQVGUjEaXfJSkxEpFf32PjavPUbock+/QCHs8Pjhhboq6XjhHK23Q63dZX1sjkpr9p4/5kQ5YW28SNxKCKKTZ6hIsKhq9HRrtPi7LGT895umDg5V5XMSnKsKL4ZSjwyHXts/IxicIpVFScPPGDU7PZ1TZlGxuEDJEqybTScnDRyecDca8+vrLnI0yTs8WFMOcspgTVX1++Zs/zxf7X+Y3/sn3ufPgjM6wZLBYfbw6+PA2cnKEWpzTaq2x3d2g1djCVhmjwRlnTx9z/OQJ9z66TWejx9d/+Rtcu/ki3W6Pw6MDgmYHGYQcHh5zcHRGs9HGR5ZH+4/59ne+zUcffEA7DZBqNSMqCII/YuBprWXvyh5rvT55ntfLsSh8pjYXBgG9bo+dnR0Gg1OMLVBSUiypllrXyI2syHjy5ABnJI2kxfpab2Ue08oRGFHD2iQ00qgWhylLmmlEs9nAVSVKeDoxTPOMwgsCUR9Dg0AzXuSIOMGJkHazyavPCUIl6LYTtvptkJrF7HRlHuVsTrlY0L+6x/T0pIanGYkzFVWR0ew00c2QViOlFzdo6oA3r1yjl2hsUbF/OqBwgmZi0W7BLJswrSDE0Ig0oYMbvQ6hXd0JC60xUYRAkJc54Fnvr7O+vo5UsiYcIBBLKr3UGhloVBjgFEir6oVat836Zp92O2Y6mJNXnkRLQqmYFo68Wj0Dffz0GIqcW9f22NvZ4ZN7txmejwl1AyVDXn75daJ4DaUT9q60+drXvk6n02V9bR1TOY6PRsynC3Y3NpZedAu8dwRBhPeORtokjFsYO12Zx53v/lOy6YCiyHj5C79IlCT4xGCcw2RTyrJg/+EdjvYfYcqqVnwrK0qbM5hnkKwzGp1y5/gIU+T0Y0FLwKgwtJsxJptwfOecQblaSEjUI2fKLGdQnRLFEZtr6zhradJgZ2+XTrtHq9micobO1iYEmrzwnJ0OaHX7VDlMxo6oyEnSkDiNmM6GzOczjl1Fo9kmTVd/lBZKkeqAV5p9bm7t8dxXPkfc7BCHMYsiIx+POLz7FFFBrxkRJhGVrRgOhzwdnFGcH+DjHdYjCVtrhGmIXl8nsxCGLZJ2m0avTTVfjdK4iE9VhJ1McD7gdJRxd3+MR1Iaw2xecHZ6TFbk7J+1ETZgvphxPjZM3/mEyfi/5i/+u3+a3d2r/PDt32c+LfFestvtsbZ9nd6OJGnexlSS6dQg1eov2e//w7/PZiPk+a0uyklkFBIkgjgNaIVrpHkb5RRCCRbDI84ef8iVvWvMFxVn5yP629egKpmOJgyGAzKXsRgc8873vsOHH76Lcxn9RpPqEtfWIs+J4rgWI9KaUITs7e3xyquvcnZ2xnA4YGNzjaoydLsdvHUMhjPSRkqcxJycDJdmh3VHvLu7y4svvkCeF8wmUwIJJh+zmK+GqEUEOG9IGzF7mx26ax2MFTw9PMLbAmVmdGPFbreBdwXzrKLdaFE5R2ELssIipEZYi5aeOPT0ul129/aI4pjKGMazGdkl0J8gCJHSsrndZXLWJnAVC13WzKtQEUrJ1u4uN69dZ10ktJRGzHOiJOAsr3gyWeBMyS4R/UZIGEc0GiFBu40OQ46GJ7S94rmd3ZV5WB1QiAAtLEpapJJ0ul3a7QatdoMgCOr5d5ZjrcF7T6vVQccRTkKqNaYsiaOAjV6LbivldFqyMAVK1VArFWr0JYvK9bUNBkf7NJOU+ayewW9s7PL48REeRV7A7/7uH9JoJvz7f/kv8NWvbnPv3n0Gwwlf/NJX2d+vOD3YpxUnNOIm40AjlKff77FYzGg2u2SFp3XJTPit3/5/k8/m6CAkH53S2dij0dsE4RmcPOX4+Cm+yNnsNTizBUEa8uTpKbOsBOdokCG8wBlHZEpaxHUhXVQ0Yk23EbNY5FyypyTPc/I8o6oqSlOCtIyG5yihaXTa3Gym7FzbQwdxPbOOEoyBfDxlcPY288WCo8GI83mO9QoZgAoMqpngzx1KhVy5ep0ts/oEO1eQjhcU3/4hZ5+csbV5DX+1gQkXqDQimloWv/cW61agtSHs9zgZHHCQ5ejN55mOR9z76D0W1ZxFUdDe2+P5N79OGcYUHjp7exRKIM5Wnxwv4lMV4bPhBO88w2nGk6MBaulePDw54XD/MemsT6Ndu7M6VxEkNX/+9HTEf/Nf/z0INVlhaHXbCKFptgSVKhmVBVl1wubmOogAFaxOy1YTiqqBCLdIWx2mkynNIKTf2GA6GjObZEgR0mlF7K21aImc2fAcwg7rG1voMObORx9x//ZtjC04Gpzx7t1vc+fOO6AdaNgvx5hLivDBk0fsXbmKiFOUVjSjJuD5wutv8PY7H/LRuz8kDiVr/TVwLeI4ptFq0en18SiMkzgvqR8Zh6JCmIydjQ3U9g7WFEjhmU5XdzrbkUR2W9y4tkMrCTEYvIjodNpkizH4nF4iubWeMp0apgtBaQ1SRlhnOB+XlGWFko7MG0pToCuHsRZbGBa55Xg4YXNne2UeTnja/SZrG03Sr77B7OCI4/0hiY5AQ55lKCcoFwUTYwikRJUVQao5WuQ8GA7JJ6fg1uj3bhI1mqTtNaKkzSIvEQ1D5Wt0wupY0g9sgTYFjSiuxzyipuC6ylDgcVWB8w5rLI2lm6/3oJBoJzFVSStt0O/2YH9IFIBzAiEDohiy4jL1MskiBKE8R0dHDIcDZBCxcWWT9b0tTofneO2ZLhYcng4w1YL9gzPGownXb73Mm194BSUK9p8+xgm4euUqp6fHhDImDposRI4PDTeur2Z2thshjUgxGY8ZHd3GF0fMzwMazQ7ldELsZiSxYO9zewxn6ywWGVtrbX7w7gPmi5znG5b24jFFviCWYF3FoHJkxnI4noOSZNYRX0Inb3baFEVBXpVUzqIUFLbAlBm5d+RWkpmAclEyKxfMqlOK+ZRqcko5OePw4CmD0ZTKC9AQNTs0OxvMp3OazSaNtImWGnHJ18BHcJQXXE9aGGP4x//snzHXmihOEVHCq2mHhnVMFhliOsFWnvnhiExorr7QoDh6wrsP7lK0Y7bR9K71ONo/rGnoQYuTjx/y+Pgpi2z1yeAiPlURls4TSk8o64F5oD22yEgiye72JjoMiZIApTVatdBBSBSGpGGE9pJZmaEjRxhEWAd5Mefju/dJNuDg6IAw0Hil8XL1cSKOIyxw7+k+cwOBjoidpKEjsvEcWxkqDGUEi0wwGFfkT49o9j2bG2s8ufMBP/zW7zI4P2O0mHM83Ofk4BO6aNCC0jpMAWVxCfRHSVQNsiRQUY1KqCr67TavvXyL2Tzj3u0P+LhyfO7zn2dze4u00WBrZ5ubt54nThu0milPHj+kWkxY73WhzDFlQbPfQcp0qZS1WhXqxVt7EIe0W/Ws0zgLKiZK9kiSG/QTiRg8RJUD+p0G13XIg9MpubWEQcj+6ZjbD0L6vS5BIOl02gQSysoyGI05OJvgwgY3dq+vzENFITrSOF+wttmjGgwJopDpaEqchggP4+MBxWhO1eziGg0Go3MW0jJH0NpYI1ucI9KUQgYQtyk9zCfnSAcKw/buBgGrnw8NpFLiFgWyzNna2uDWrVukaYpaUq9LU1EWBWKpvey9pyhyJos5jTQlcjWssddb58ruLu/eeUIQ1HjuRVErzkVy9fPR6zQQ1SavvPoKWVZwNhozmgy59fw1Ql1w7+5baDnFI/jud/4leWm58/FjZrOMa9ev8sVXX+e5azukoSDLc25cu06jEdNutRFAli8IKIkvUft7/rltpPTYapMw1ISBwmMBy0baQIh6SeeMY2O9DcJzZavLwdGQuw+PmGVzxNEDrKkIOxGbV9bYbTZ4+PSMJ0/OmM5zttc6ZPnqRXaaNkmbbaK0ARLSNCLRIcPzIdMsZzye8PTpY2KtybI5Qgk6oUb1Uha6hdZ77O6WaO1QsabT3WAxsTyqZuA7SKEwP4PAkyhrdbRsZ4PF1WvMnaTMS7KqQiwqTNymsd7kXFj0g4g4r69VKB3b621mDzymLCjDFs2tq6h2m4PTM07Pz5C6ZHo+ZDKds7hUeKuOT1WEG0lIoDXCG2ItiENNYSVpmvz/2PuzWMuyPL0P+61hj2c+99wx5siInCuz5qGb3dVzk900SYjdkkUIGgxKBPxgQYafBNuA9WYINvRAC4ItkyIIEjItihSbQ89kk13VXV1TzhkZGfN053vmPa7BD/tEVDXJvLcScKNf4g9E5c2smzfX3Wfvtdf6r+/7fYRJM+EGQdycxgKgkFKglAMnCMOgSStYMd8Lk/PwzkcMxoI6KylrT6TF04CIT76IKMqqJl8uyCpDmnaZzGcczScM+13SOCYIQmpnmdcRd/cy5Pg2F6867HLGN37nN3lw/x5pv8/H771Fns3oak2IwiGopSCvHFSnn37Xdd04eVYoQbvCUcZxzIXz51nmJUVZ8+GHH3JDeWz1IsPRFqGEKxfOIVzN+miDq5cuk83GDNsJgfTUvknaEEKgdYA54xR++/olnPOkoaYVRw01VMUEOiSIJGZ+wMnjBUd5ifA13V6XfkszLjxhGHE0yfno4ZRzOxk7g5BuGuOVonKSe4/3mWSOi9cuEJ9hCgBHvmxeGFVe8eTeIfmixNcOYSVp0kIDVZ6T6YgTb7m5u8u8KFnb2mDU6RBtn2Nj4xzOQ105oiDGKcnhZI/K1sgTRSRPv7mDQFGVBdPDfQIleenFl9jY2KTdaaO8pCwK8mUGzuHqCh0GzT+rKh49fkS71WJ7a4tAaWKteemFS3x06yEf3HsMCJJQYqylOosnbAxhFJItl9x/vMfJdM6Vi+dJlMeWS7qxRtuE/b1DDpc5tdPgDLPJCb/9679JWBa88vKLbI96nIwd/X4bITd4/PgJtSmpa8OymDNbnr7tHfVbIBoJ4tP5yXuPsw1X4ynb36uGkeycY9Bv8er1He48POB4UdLqGV596RznNrtsb/SRSjHotxHOUYzneOMYjU63cTsDeZWjo5AoiUnjRinRbXuCpKaTpHTjiE4a4uOGuqbDEItgohQqbjACMhAErZQkjFlO7jWcaaVRoaYomhbTaZVNF8QXtjj/+a+gWz3MrbtUVY3TjlCnyDSi6l2kkjnu6COME9ShRgQRx+MZVdIhGW1z4h2m0+Xx7bsU7Q4yDPFIaiFxUmPdn4BOOEpiojRlPp9xsH9Ap92mKArKukYFAQ0mtdGmNrpEC15hrQRcw90VssHZWYcSNcvZA6YP99nffUKpW4RJjDwj+s5LkFKBCChtxexwl0dPavq9DjtbW6yP1mknbbI8Y320jpsXWDMjiUJuvXfAO9/7HlcvXyLttJHWIozD1BVCKoIoaWCdvkCdQSSpyoqiyOkJifeNBfSpdtgZ2zAuopjXXr5GmS04eHSXxXRGEMaYYsmo16Zczuj1hnQ3togChakKcE3CADRIynb79IMo4x1aScI4IopWySY0bidXLDg+eMhskaG8REpNJ1BsDjsUezOSTsps6RhnJTfvPSAR6xTFgoUFHa+RFYZ+b41u2qEVn06F6o/61NZQ5gVhFGNLD14SRBFR3ELrAFtkaKkIpMQJsIFiUpcwHjMMAtaHIyQK6zyGAFs6Cme4d3BIJRwza7mwuX3qOJZZTsIUl82ItCJOWgRakUYhdW2ZnByz+/gxW1s7OG8whcW7Gcui4PDwkMdPnpCkCb12B48hbsesj3rUtx9iBKSBQGvJJDv9IZvNppii5uGjh0zGM+KwWcDkyzlxGBKpLt3RNr5qUJ6LqiDQIYvZgo8+vMlWLyUMRNOXr2veeuu7LPOCg/19irLAOUtRVjh1FmUPcDTnDz805ObAuIGpO9fwH57CnqIo4KXr5/juu3exZcHmWpsL1y8glMQ7S1XXpGnEC1d3eHRvl16vxcZG/9QhTBczTiZjhmtDiiJnbOoGPyAVcSuhLgo+eu9D6rokUJKyzBHSo+OQdreHXi2u0iDFW8W9Ow/Ze/CYLMtQQUBdV4392p6+U6qUYm2wyWtf+SrZ7jEf3byFDCO0cAhXowJDMuyxPbrMIB3QVSGcnJDHMS7qs3HxMqaYsvvB+3TDB7QXJa3rbQQCFaeIVpe1OMKdnO7ce1qfahIOgpC10TpZniGEBKmJkhZBDNBoU6EBPVv7lGTb8EubxIfGMf4U9OG8Y5FNmU9OiNoxYdh+NvmcOuhAIfHNUat3ZHVBkRfsFxnHJ8dEYUISJoRhSLfXo9vpEkUJhSs4Pt7n/t4T3vzcmywXC5bzBVVVEkiLDzTCSypjG66pOb2nMxwOkTps5Cx1RaTjVTrAyhoaNK6xfjtBpYr5dMr0aI+03UdJwaCTUlU11uTIIAEhKY3BmBqpFFprrLUodbokq86W1EojPUhnGq5y0Ajx83zO3v4e1I4sM1hXI6KArfU+rVnBbDlHRCE2z5nOZuTlgE5vxORkxpNHj1E64rWXXuLipReQZ+iVX3jtRXTkqWvDo72HWOforA9wKzxhZSq0FIQioJvERJ2UoatpJwktpTC2AmJqY6mMoXIlRTFjuphQloZKOYyDMDj9QEy5mlgZ5s5QVJbZ5JgqW4ApKZcZ9+99zN07d4nSFJ2EzGcz4jhnvsxYljlHh4cM7nW5/sJ1jBEkUUSrFRDHkmUlqa2jFYVNHNYplSYptShpt9tsrg3Z2Fjj/oN79IZD6qqirC1ZPqXd7ZEXJT7PuXzxPN7A7Y8f8sHHt1mUBYPBYPVyFwz6g4bFvVLcKLVi/p5SdtUya1IwJN67RtEjARpQj/eNk7Ou6tVkLUjikK21LoPOBtN5wTlTksQp0KTWhBp2dgZ0WgHDXsra4HTg1cbmiLX1IUmcoFYpLk/L48FWpInExQky0KS0AYFQglanRdJqoZUmDEJUoDm3scVObw0hHX4FJ3KrrLvTqnVpm+HmkPligY1izl29xPE8Y9htsX+wx+6d21z0V/jMz/w0rS98HiykB/fQrSE2d9y6fYv96Zgsn/FovM/FtS10AN56FvMx08qSlRn5cnL6DbKqTzUJl8aSdrrErU7Dz+UpdV8+g3QZ0wBA5Cptg1WSRvOJO6RUpHG8inqpmC4zrI4IdYATwTOX1WkViCasUGuFqUu0t0RKYD2YymDrBcUyQynJyckh0NhoZajxzlDnGf/0N38d5T1F2SD0pFKEUYJTEXWZU5tGY3ta9Qb9xpmGbyKOVvFEKwFU44fHNKzR5ZK6WKJUShpp4jhCSYWNA2rXnOAjPGEcIOtV1Mvqra7OuB5x3LjlhLMrXkGM1gF1teTmxzd5+HCXUSemqD2Vk9w/yDia5Q1sqFyQV44kiQnCiOPZgsJrTqYFB/sHvPzya2yMNkiSGM7otfW3R2xs9TncfcJsP2ewsc61N17jZH+f3Uf3kd6CBZxg2Okw9RVaNXlitZSoSJEZQxhHoASL5ZTx5IS8KlHtkFYroNVKqM7okYdKNZO+F2hbNyuroKG2LRYzHh8ccrws+ejOXbq9LtPZDK30Ck2aMz4+5Ju/t4sWiqtXLhJ1O1zY2WCzH3Pn0TEOyCpHtTwjWaOsUUIShAH9XpvF+Ahva8IgpKpKeoMWi8WSVivi+O4B3nnObe2AEcQqpvQFTsJ0sURKSa/TbnL3jGWZLQmiiDSNqc6I81FKN9Zxb1cSt2ZxUFuH0o2V2blmpxpFCuckxjiUhDAOufbiDgePj1BCEAWaPK9WVnoHMkD227RiRVWcfoD8k1//SZSUTYqGlA1USDc2ZS0EWoJUILVuIp+kQhCsXhh+FVbgViQ4mnBSY6ltjXFmBUoy1GcsntqXXkT1huyNH+NqWBQzXFWzXFa02wG6s465dA1Mgk0DvFxweHiDb/+jm3zw7i18klJ7uHzpMvNlwUkNvvQc7x9xsHfA8XhCXS0J/yRsy3XdeMSFbIDMTSrvqoe7iqsp8ozpfEGwSg8OA00YNqGIDW1MNSkSQqysuzFxO8XVjqp2zUr4jDaA9h7tm1w07SFWCuU9lfHUq360Uh4pmu2XFBLhHb6q8ThSHVJmGb1+hyAOMWUFWmOFpixriqqirGvqM27uMEqJlUYqTRrHSNkkZBhrkavVvrUGbyVORkStNkHcIk6CJg4qCIiUam4uwFiHApYrTa9UAskPkqo/qX73X/w+V7bXCKRlPM9BxFy/fpFBV1Fkc/KipkxDohBM6ckLxXRRI7Sl32nTbbJqUFphvOT+w13G84xzO5ukScw7798g6e2jleLiZ77+ieOIYkVZ5hweHlOakgsXL7O+tU5VLugtWrTiEApLfjAlDCNOjo6weHyRY2uPaG8wW2QkaYJwjqouCDsxQdSiEIb+Wo80SjH+9JVOnmegSuIoIKgNUgjStIXUmqoyjMcLTsYZRf6IXr+LEB7nLV54bFVxsLvHw7v3QGjW1/8So36XrdGArV7MzfePqI1FKEdZnL4ir6ynzjPu3r9PXYwQtkargIMne+RFQSdus5guiYMErSQyDhmfTOi1W/iNkmUdN5bYOCbPMoqiYiYztA6aswtbkbQi6uXp7Yj3P3rEcmVI0UqRJjFa+2fxY8ZYpFwBT31D4lOygf28em2DSEs2tkcM1gYE2jOZWnTQPPJVVTd/fMXJZHnqODq9LkpAqBr8rBDggwarGYqGbeFFc1AqVn0R4VetTbkKE5YS5wXeOrAWs0rqgQYjoLQ6M3B0XmnGd/eRxARaUlkDTuOrgOHWCFMtOchO+P7H7zE+fMLk8DEffvgRH9x4l8nhAVde/SpB1CHtdDga32YynjMtH3L/1g2Er0mikP5aizD5k4g3Ej+A1igP0rsmrUxIrLVkec58NqeqS4oib5KDlWBt2GVrY71B5VmBM1WzbVidTFemmfC8B1Mb7BnSMO8qjPF4Y56NQwuB1ILQix8CTTcZeI0uVDfmEq0QxpBGmk6vS15bkBodaKyXlFVOXVcNpeqM66GCqPnZq3gjbw3OWuqibP47ipWFWBMoQW0UUjUvJIFCSoWUGiEaKJFwTRx7O216r1LK5oCsOv0hy/OCD27eoioypjmMFzXvfPg+f/6nXmK7H3Oy3+LkpOLiRhula6oKnA+ZLHKkrDh3fpuiWrI27NELNdJ64iRka9SnBh4dHKGmGQB/6bSBlDlZ5nGlY+fCJrWruXXjQ6JQEkcR3hj6rZiNrZgoaRG1W0SRJpUK6QxxGFOqppdunCFJQtIkwqTQCxTtJEEJgT+j51dkOdYcs9aJ2e6uc2F9hBae5WzMcjFn//iIR7t7dNN2wzwJG/dYXhVky4z5PKdwgo/u3Obh40e0hQUqLuwMuH5lk5NJQeUs5gyoe1nWJHGEVILb9x4y6PWpjaGqKiTg7GPG4wlVJRiubXJ8MuPJ3j5XL57DOksUxQ1asraUZU0URQghqeuaMIxZFgtqZzH29Jd0EAi0USCb1sTxdM5sXjBbZBSFeaZVr6qKOAkYdFMirVnvx1y+sM5Hdw8Bz4OHT+jGmryWmKyhmkETV+UqD8HpB7daNgss6zyiee9j6rpZZEiFEE0oQ4Nnc6vdpEWusu+a+PAVed41HO7aGLwUPM0uQAjEGS1NVWcIV7NYZARxQhjFpJ01ks6Iiy9d4+HNt4iSDrUt+bV//L/QVhbpNJaQUrc4mCwRtiKLLPPZlGJ5hIhigkjTa8e0wsYAVP2I0+unmoT9KmW1YSaIZzlltbHkRUmRF4BAr4I+vWq26u2kRb/TYbooqGWEdRVKWYSzoCTG+FV6K1jHmb1H5y3CNifbze6/OflVNF8L2cQfhWGIWsWSW+vxoiGqhQEo6bHGEGmNEBonFFlZNc1906wazjj8xlr7LOzTA2VZMplMkFIyGA7QYYhxEgy0212EiBual9ZIGaySCSTWNlsp7z1RFK2YEuaZC++slfDXvvAGj/f2OB5PqY8XlK4gDAWhh0QYhp2Uh5lhvqwZDRKGHc10WSG0R0iHMTmREiRxTBJpyiKnEiFZ6SiUIYhTgjB8lsjxSXX8+IC6MrTSmFdef4njoyWPbj7A1wKtFP04ZhQkbGysUQjouw5xGOCcQROjhWJtMGRt0KcosiaXTzgOszGD3ohIaWpTE531sAvFxqDH5fMbXNnZYHtjSHH8hL35EU8eHTGf5eggwHrPIs/wucB7S20rnIMw6THaigHDxx/fomszeknMVivh5770BkUtmOQ53/1w79RxnJwc02sntOKQ6SIjN55smbGzs0MaJ0zmOQ7NnXuPWBaW+XJBmS3QqgH5u8qCaJjV1oJzZmWvDllmS6ra4o04E6l5YWf4Q2cVDcN/Olswm2fkhVkdKnum8yVaNYsAYwydyGOqijSNkEJQ1zXjzBInGq0aSqAQEmcthXPE0enTSVlUK6YJWOURq0gkKRscrfAOTHN2pFQzS3uaIFKkxNSm4RCLH2TN1M5hjH0mM7TOnsl8OTnaJQxD5KEliUPitA2mJAibex+hieKEQMLxyYRMNakw08kcU8Hh8TG2mqBERVk04QWtWJN22rQiiatKjFvhQH+E+nSTsG96us3XfiVvESvuKPQ6TWPemPpZOoZzlna708T1GMekLMmXGZ3AE2qwRjwLIPS++fqsSafJifjB90WhfjZxWesIw4B41Xfm6c8TYkWQKrBYdDsly/MG6RcGLPKqkYK5GmObn3NWUkBd19R13YQQasF0MibLlgwGAwTNTStUM0lba4kjRRTFzSreeXSkAYG1zc8yxjzjUCilUEo9u0lPq5/9ya9yeDJjMpuT5SV5VrOcHhOFGcaUaCXotVKWWYaSmnbLEUaKgUoIwpg0itFKcTwrCNd6yEDjq4LSgdCCQaeF0lETj3NKPbx9D60kW5d26Hc7JFGbO299yKzIaKUh271tIhljrCXzNRtrI67tnCOrclppSuoF3gg6aZs8WxLFMeN8Qdts0Bt2KU1OVea0zpDKxUnAzuYa50ZrdFopZVny5PEupRA8OZoyaCd0222sbWDmT5nLzdmGpKocqi/wGE4mC96//5hz7S6tJELFzbmBA8IzTCPL5ZIkUAhnmnacc7TSFGsts9kUbyxrwzWOj48bpQiek+mEJA25eP48WqWEYUyr3SIKY8oqo6pKwjBkPJlQlAYZhlRnBH06D5FWTfvBOeJQI3ttRv02VWUoy3Jl0Giv0kyCVRutSUXZGsUoJaiMoyqrJkkm1IS6YpmXyKiJd/dnrFqKokAHTSvOeYGwzeH1Uznm0wRysWqNIRsAlnMWZVVzdiPFKjKx2ac+DdttmN7iWW/71OvhCpyrKLIlZSbwJxqvH9DavcdHN75PXRvGexcJo4DcwP7BIXlRYKuaQEYNi7yukHVJpx2ysZbggxjnJKCb1gkOdeZeuqlPZ1t27hnI/CkvQQhBGCjCMHg2kQRh+GwCESLEGs/S5NS1R1hBEqomGPBpGNoKC/d0YnVntCOEb1bjKI3Eo4RbnRQHBEGKXG3hjTHNCoAm7NCswOFKCYI4YTxZUjkIEtloOpUEJShWJ8hnNacHgwHz+Zy9vd3m4MqbZxK1LMtQcUQgA6rKYKolmbKoIMAYR117Bn1JEIbPTqOl/EH/1z1zcDWHfqfV+voag26PPFtivSWUIcJ7alOzzKacm06wtWBv/5C9/SOMqGh3Y1pCUJWWKveYEFSrTaVSNrda6ONDJnlNrCANFF4p0vR0kFBVVWxdHNEKFcd7+/SHQ2yx4OjgiLyVkEQxpt0ltRkH0zHb2+dYtjOqqiBAsjYYIJ2itBVoQe1rZCDppB2KqqR0JdY7FmdEmns0u7OayfKAKBwjtMJZsMJTWoe1IVIFzYtfCuoVc1mhm/sqcLDaoUxzyPct9/cnSA9BFFJ7T1EVnEzOiPNpt2i1Umxd0W03JgvvPEVZUtYl1jqOx0cs8iVm9xFFWdMbDmh12pRVReHATpdUlSFNE5RUtNttqqpxOJaVadQ89enPS13VsJKVKaVx1lIZS5JEOO8Igkb33O610VJS5DVCSCrTJEoHQQPlD2VzblEWNdqLZkVeVFgPcZSwzLLTx2EtSNm0Cle7V/DP5hJnmzE2AQUerTXG1Bhrn026YRigpXz2bFRVhRNPI778s93jadWKPbWtWeZNYrS14JRiuXQsiz0sjvuPHmArR7lcNMoS9CpXUwI1rbjNoB8wGsVI2WZey6ZFgserRinxIy6EEWetOp/X83pez+t5/cnVGciN5/W8ntfzel5/kvV8En5ez+t5Pa8/xXo+CT+v5/W8ntefYj2fhJ/X83pez+tPsT6VOuL/8Tf/B/9UESERIFfyqdU/E+JpoKN4ppz4Y9rSFa3pmcpP/PFDwWeHhN7zH//qr37i4eL/9s+f9/vjmsNpjTeO7VHI9SsxuiU5XJTMZyWR1hgZsH8ScfdxhW63GW6v0RttMto+x/poi87aNksR8GRccDS3BJ0+tdLcvPM+ezduYT68TXHvm584jv/X/+2/8ko2J+phqFEKvBOkccPy1VqtUJQllalXQJ+QKIoafbFz5EVFVlTkeUZRLDEOpG689Zi6YeAqyb/zv/nffeI4Xr5wzj+9fkpKJKuQzacwIeFoD3t0hgOO9w/QArqDNtmiYHI8ppUEbG0PmM4mHB0uUTJguNYnXUto9bvkecXiZMZyvuA737/zieP4P/5/vuG10o37zDXa6WdjErCcTiiLguPdR9z83jd5/NHbzI73cdYQtft0Rtu0B+vgHJODJ2SzE0yVY+rimWxPao2QmunB7ieO4//0X/9X/qicsrbWphWlXNwcsXt8gpYxwuQEWjOtCmpjWWv1ufvggN/+3jdJw4Qfe/Mz/Mu3v83u7SckLmRa5PhIoQNJHGnq2kJhUGmMW5Q8+N4HnziO/+u//4Lf2dhiWpQsfUJnuMXj/Rl37++RFSWfe/0qP/G1V3jjtZeIpOZw9wn3HuxyNFuQLcac7O+ShAFb5y9T+4AHDz5GiYzPvPg6gYq4eec2uwf7bJ4/z1/7r3/rE8fx1//6X/dCCMqypK4b08fTKle6dWsMOgiYz+dMJhPiOMF7z872NmkrodPt0m618N5TlBWBknz/++8xnS345V/+BVqtlKqq+PrXv/6J4/jqr3zVCwyh0ERKg7fcfjRnkTcJHZ1OTCAlgQIpNSfLGWEkaUcB3kqsMhBA3GoCArwVCEKiKkGJgkI7wmDAo8czvvNrv/OJ4/iFX/pzvtvtcvnKC8RRirAeME3Qq1ZYV/Htb/8BH3z0NtY7BsMt/oO/8ld59aVXuHnjfa69cJ2TkxOW+ZIvfP7LfHjjQ/77//dfp9tt8fM/979iucj4R7/2P3MyPuTOx4/PFEl8Op0wwFOh9NMJd/V18+eU/574wV+fytGeKcCe/piV4JozxB0LoxkXORYIIkurrwiTGB1EdAJBby1kuDXE9/tsLIZcKEa0187RGgxR7SEy7jK2khtZze685DD3TEzFfP+Y3BooHclgC/GZ0/WoUZgShAFSNphOrQVlUf3A266bDDOPxBXN72ycR6/E6EmS0EpbVNZRlQVlWYKUhHEHLTVFvjyTkwD8W3TVvgGarATctbEURUnyVIscaLx3K9NII4ofrnXpDmIW87s4K6irmpMjg7GSui4pqxwVnb5xKooMU5fMx8fYuqLV6dIdrhOFKcJZjvcfc/vDdxjvPmR+8JiqLGgN14nafdYvXmd47jJKBxw9uc/J8X4jT6orrKnBe6yUSKOQ+nR+7vxoRrcbM2h12eyNMA6KuqalFHHY4vjkiMNySa+1Rj8dsr1uuLx9EZ9J3EIxbK3hdyQvbV3mnQ8+YDqdIryjlhY3ztBJiKwNdnG6JGtRlBwvS/LKsr2muX5pyF/8ma9ROpiaJd46lJHMjufMpvs8uP0+9x/u8Wh3ThQIXrh6gTiOuPvgPrNZyeVzA1588TWOJzM+un+XJ/sHnEym5PXpiSdVVT1zdlZVtXLchSwWC+q6JkkSrLUIqZjNZozHY/J8jzzLSOKYtN1iPl9QFSU60CjhuXvrLm9959u0e0PG48kq5fv06aQyNaayiMjjKkdVWaT2eCxBIAlDh609eQGtVoyzjXFLBTRJKF6xWFR46QjTAGElzhcUFCSBIwojrDwhbZ0u2VsbDBiPx5wcH7G+vkko1bPnQUmJlCFb2zucjE/Iipx2q8/e3j4Xds6jtWZ37xEff3yTRbag3+/y9tvfIc8zpPR8dPN96qqmqoozpXJP61NNwj88Nz6bKlcr3h98z79tAn22BP7jP2Q1oz+d1J9FpJ+hz92fSR4eNdbPQVeyf1JTFSWLsiBqh7z82kv0X3wFMdgkcBukts9JLbhXOvaPa46XEybZklm2JDOGGoGXEic93lmEhTJuUYdnmEa0QmtFEDRZclIKjGkAI2VtkIEhimJaQUIQRBhjGl+7aOBHHoFSgkgJtIqJoxiUJAgStFREARShOFME/4NLL559MJ7GsROmMbKSFEUDzU7TlH67xbKYEUctkjgGUTOdztnYHBKGEdZI4iRiUeYcPH5Cq50glEefEbD54ON3yBczpseHCG/ZOn+O9bU+sVZIEdBqpeTzY4537xEFMRdf/wJRq8Nwc4eL114miFNODo+YHjzBe4fH4bxtWCPeIXyj33bm9Jv7w7ffZulyXv/Ka9jtgt2TAz56eJ/tdMCglTJeZCw9PCye8KB9hy+8+SV+5ef/IpHU5HnO5uVL/OHv/wH5Iuf1V9/g4HCf6eKIk6Mj6soTx4qk1yVfng6K2V6LOJgfUVQtAl3B7UcsM/jCl77IMOpz794dHj96hHWCDz68iXTHBFHCuXObLJdzFnlJ3EkJWy0++8ILbPd7fHzzAb/xjW+R1Z7KOoqqIFanv6if7kqdc2RZRpqmaK1xKz2uEJCkCWVRsFgsCaOU/b0D9ncfM9zYpoh3cF7Rakd0NejZXd777nfY3d3jCxcuAZ4sy0iS02O44liRW8eyNOAMUkKcSBZLh4oUDokQjqq2xBiiQGJzSe01vTVH5CAvBUVu0XhiFTTY09zxaJ4z2knoddtE4vTPZdDtU5clR8f7KOVoxQneieZZbbVI0pRXXn6TrY2LHI2PqWxNGEbM53OEgAcP7nHn3k0QkvsP7vJk9yHFCrt55+7HVFXNMlueybB4Wp9uEqZZxcpVphqsptZ/bfH6b6OgWetWHnDx7Oc0/86/OcGcZY+9eX/CtHB465jlnt3dgkjVbFy8yNd/+md56atfZtka8LiQ3D+peTipebJYcpRlLCtPXYHPx7h80fjOQ4UUSQN6ExapI2wgsWcEOeqVJfpp6rK1jVkDqaitR5YGKd0zG3cYRU2LYEXsMh6UA2godI3UW2JtjbM1znukbAhYP0oJIVYdntVLT0navR6mLNnde0JoE/7cL/4ixWLOv/rmv6DbGRAEAVVVsbu7T1FUaBWtosklO2trZPMF7XabhangDE/+7T/6TbxrbOPtbgczjxjvPyAKIlq9ARcunGf5uS+TpF2Wy5z2YES73+fKCy9w8eIljg72sNkJNptQL6bYMkPYldvMy2cOSPzpdLty/zGL+YIb1DxQ7yC8YT7LOZ6UJJFiqQVutEZp4ed/8s/y5itvcnF7nUCtLL2Z4Y1LL1Asp4w2N7m/e8Bv/O7v8t2936V2jjovGGQJw9HpAaxfeOk6e/OS+wcltx4c8GRa8D//i7e48ocfc2HQoRXVLMoZ3337NpFSXLkg2Wp1mReGw5MxvVbI2nDA7vF9bnx8k5sy4fe+cYMP7hxQo4hjTV0Zzq2f7dzrdDrPWjrOOayzKKXRWpAmCbWFw2nN1G/ihWRZ3GaxmHHjoweM5TWsh3QU0woCkrngwe6UVqvNSy+/iNbq2ar6tFJqhbk1gqJo7u+yqhuTEorxScmwHZImCQ5PJ4kQxhPEYGyNRxKFkNuGAFcXJdophiLhyAjKOkDSA3/6DiUINP1+n/2jJxwePMIM+kivqcoEKSAKQ+IwYWO0Ravb5+BwD2cs2WKBFCuwkFTMFzPeeuu7PHz4kLIsGgcxUFWmWUT8iIunTzUJi5Vp2xjD40ePGawNaXc6z1oTPzz5/vDXDUV41W7gE5oN/ofaFGfU8bKgto3bzlSCUIZcePPz/Pm/8r9m+8VXeVBJvnPvmJuHU/bmOdO6saNqA8I4QuOohAKhGy97EqGCLkiFCxxhBdblkJ2+/Rar7YtevZAaGpVGB8FqGhRYY7HeIqQn1JowitFBQBgGCJrodGcMzgmMs43jB49zjW20uVo/4vmp/8EXHmh1Orz2+muMDw84t7PFa599k8+/8Sa/8ev/jDxvkhka63UFSPb3JuAkUkJdFejasrkx4PhojG4lqPB0atji4DEOhYoilHTMk5jJ+IjzF6/RTmL63fMMhmtcvPYqt2/dYjKeMtrYYDgYcbi7yx/9zj/m47e+zXI2ocgWzYrXg1LyR3JSPi232WVRFSwOJlTzguFaGyUl42WJdgHBIMEtlvzZX/hL/Md/+VcbSLv0KC1QDkYtzdprl7DGg1BcuXSeOOlTLBbcv/UOwhhG7YR++/SV3zRzGONR0nBuFPNo/4T5csZv/O4f8MXPXOWnv/oaO4MOuwcTJrMn5E5zMt+lrAUXzw+oipw7t+4wSCVhv0NvcI71rW3+u7/7W9x9NKVa5QCe9bkopSjLArlaDFhjKbKSooLcxOzOYFYHLNVVxEaL1GeMDj9m78HHPLh7g0Up6I/OUVVLZipA1RXDi5/l5WsDzp3fpqxKwiA8E0Gb5yXLvKKsPEXmKAvD5mbMoBM1K+FKYa2l1+9gpUfkhnYq2ei12DuEqZoitaJYGpQK6LRDWjJAHiqmY0vcsZiuwp+xeBJSkCQJnVaLk5MDFsrT7fSxVlBVOYsqwmmJ1AoVCTZ7XXRhaFlwccTW5nmitMXtex9z6+OPOBofU1qHo0JkDVnu6S7jR6lPNwmvAEZ5WfJPfu2fMNpc5y//u7/yx1au//pEXBUVDx88IM8zWq0Ol69eaUhJP/gufni6FogGZ3faOCJDYATSS4Ig5Nrrn+fHf+XfY7r1Et+4veDDx2OO5wW18TilEVohsUgsHoPQIII2Qsfgml6YSzqEcYx0FYgKZxrU42kVBCGRVs9+5yiKV3CjFWlOSuQKVakEz5i1T2HcQnicbWhyXrCiqqmG/+rBi2aVcNa2xguQiFVemscJD14z6vZ47cpFNr70Jp1en6xqJtzBaJOdSy8ivAXVEOeSdpf5omqg8Lp5aS0LR7Y4Jp8tKI+P2L54/vTr0UoJ4i5Rq01vfcT2pWu8/NoX2dzcJg1DpJLEYZduq8Xli+dZzJfYukbh+Na73+PBzQ852nuElJo4bZIKyiLHmQLvG2u3kvLM13TUaxMuFmgkZWGYLWuSdkitJWVl6AchF7au8Bd/7hcJpWE2zcGkxFGDZkUrpG74znVdEwBvXr/Ewc/8Wb4Ze+aLvSZU4AzY/sHJMUprymxOKx2QJJLrlzXjk8fce3zE/smCr3/xJaw1/D//x3vsHgjWegWXdgJ63QTrU+bLJYPRGi9ee4FsntGPIt545SIf3H4HUzlU0KAZT/1cwoiiKBu7tBFkuadQMaXuIo2g9gE2ikkGQ3QU0cp2Sdf6PGz3sRQcP/mYYnHCyFX01y9Rzw4Jhm3avQHT6YRllhOvwlRPq/msJl8aautxFrptTRQrOr0mc3Jjq0VoLV4IllmBK0v6UYuvbbzIAXP+1od/iO4Y0jTEG0eZF3RSzXCYcK23RmYEshBc3t48dRwGAVLTavWYzyZMxjOkVHTaPayrm12sF7SMQYWOsKOITMXs5JByMEDHEf3+Gi9cURwdj3mwtwsBOOsoi5Kqqp8JFX6U+tTtCIAojun3enz4/g2ODo/Z3Nr45F/YGu7cvsuTvT3O7Zzj0tUrwB/vEv/rdVY7YmMUUWRga8G5C1f52k99Hd3r8Qff+x43Zp6x7OC9xoQhkppUlrRETUDFslwgtSaM+2RJRI1ACAVhTBIo4qxkasuGgHQGsKYB3zS+d6mabLkg0A0M3gOyAWorKVF4pGoA1s65FXAE7NPJRUikaJJJpFBoLfArmM9ZL9R/8/+WCCRaBjx88AjwJJ0+cdxG6JCf+rlf5Gs/84vsP3nE9771+3zrG79HURmqsqCXJgzXuqhUQytg78EeOonpxgn6jIi5TrdHq79O2OnQHawzWtuhlXSJtMabAu8VUZKQRjHddkInibj38Q0e3LtNOT1Ei4Ye5p2jKvIVT8BgnW0Y0VoTRiFanX7b3r/5GKU9YTsmiQNs1ewqpPfURQkG3nj9c3Q7XWxdc7R/yL3ZhGtXLtLttDHegVQrPoFAtFKSMODNV17i/t49vntnzKJaoM5oi2gdYJ0gTIb8+rfu8tH9KVs7PY5zz97smN/+/e9STffppJJOp0sniVkbKjodiLsbvHd7yrmtLd780lco8px+2ufx/Xvs7U3wSOLVO2AyP50adpQNqIxgnJdkeUVZGyohCRJBHEVU+YI6H7Oc7JGmbRaTO/SKJa++/CZ39yfs7T9EY1gPPP1UMPMtivmUJ/cVvddfII5j6qpifX10+g1SCUQtMJXFOo9MBKWpMGWEKRTLwhAHAuMyal/SbgGB41sP9kmjgMEg5nCa04odUgvKwrM/r+isOV6+soXUHc4NLjIKT78/ZvMpWimENcRxQlFk7O/vM5vNaSVTtrOKSyPLSHqSOADRUN6qMGBe18g4wjuIgpgXrlzn+Hif3b37mNrihf4hjsXpl+PZffKjfdu/9i8pRZqmFMucmzdusLW9+YlLb2NtEx0vJEkaNeGC1lLXNXEcr/pBZ+kh/nhd6CccippaJHzm829y9eJ5Hk2OOe+XHJmKRRRQo8GXpPWC5OAe/sF98uMJVVWi4hi5c572iy/hzl0hTNfIrUAfP2Bw8gDTGTIOkzNXXHI1arHCenpXI5DPIpqU0shAEqkAKVgR4sRKuqVXv7dE6gaU75GNtEsAsomLUkKeidR8diC3GhVIJJJ2q48TMUujmFWey+fO4YUkbnXRacr5i5e59uJLDNe3+Ma//OcsZ3dw1LjAIGJJaxgijqFYVuyMNpksj08dx/rGZUbnLrG2tc1gbY1ud0gaR9T5ksX4iFa7RRJvriBQnkg4KDMe3r/NrRsfMj3axxY5tjkWb9K6owTrmj57nLSIowjOCHKcHc3o9BNs5Ki9w+kmNDJoR/hAonTAcLgJziO85f0Pb/Dx/Yf0ez36aYtsOuPDj25S1obrL14n0JtIJenGAee2L/DtBxHzbNKM85R690HO44MFewvPH904Ji8NR0WNrRXOKu7uzXnxwow0jfnVv/B5hM3pxAInNL/97Qf8wdtP+KWffJ122iYOArLFjIOjMQ8fH7DWE1w838IWghdevnbqOA6mkqI2TPMSTEGxmGGcJ2j1qJOUcj6mymfYfInodUnMEf1BwOYLLzDayDja6LPIMnQg6SqLSiKs19TzOfPxlFa3RZ7lTCbTU8cx6KT0E7j7eIIUniiRBKFDx9BpJwRzRaAVmVniSotxlk4S0qkVbS9ZbyU4bQkDBcJRZ4LFkSFXns2yw1q6RuQVs9npcPmPP3gLD2gtETicr6iqskmyMY7NzU3kIMWFmjIIqYRiKR258dh5Se0sRZ5z+PgJ2WzMleEaOp9w98khRspn5MYg+BPgCYtVhIaUkn6/R7uVcO/ufb7wpQWtVRilX7UUnlaZN+GF3XYHU1Xcv3OXza3NHyKD/ZszzFl94RYe3+8TjS6wc+kiylte2VrnsxfPk3//Fg+PF5QOWnWBu/k2y4/fRc8nJGFMS0nmhxk8uo3YfUj61Z9i83NbFO2U+eM5YnGCjGKEDMCdftCwWC4w1hKEmigOsS7AWQ9SUlQlxjV84BCLrS1ONvlYURgSRnHTqvAeL5qDOecdxhn8qneuvUAqgT+LKvfD1+7p69c3tK6di1fpjNaoCCic5PjkhPNxB+8EEkVvtMWf/3f+PS5cvMg//p/+LuPxHofTI9KwRRxGhIOA6XLe9OjOOJjbvnSd4fZ5BmsjOt0uadrBlCXH+08oJocw6JGGAhUlFKWhXC6IQ82P/Zmv01/baFCmIsALT3swYm3rHJevXmd8vM9sMmZ2ckw2OaY4I0Zn4zM7KC9I2xHJ9uCZVM/LRgK51t9mbX1EEigoLS9ev8a1V19l6/w2KoqwdsZv/t7v82hvn7/6V36V0WiAdxFKSC6tb3JpsEVdzajE6ZPw3/7tmywKS+EElbFE3lHljhqFRDDoRLx0/QKXdtYIgpibH93CtDpY2ePDm084Opk2ypXZMe004Pt/9E3eeusjPnOh26xi25qyCnnz1ZdOHcfi6CFHszGmrlcvMIWIIqr5ERQhVTZjMd5H+xolZ6wNQnY2NhkNBlzc2GGykfDk6IRFWaNkyWjYY0KOyafce+8G/e1NjPTM5qd/LpELGPbadJIEEQqqcMbu/pzDo5zNTU17bQ1RB+zvTanrGista2Gfn25vYiZjPso1VelZjAsEEImU84Mu64M+VSk4PpqR9yCwp0v21noxdVVTO4PxBi0cUgbM5lPywxN0OiDsbmFp+MRVUVE7i6uq5rzCVJRFTmAMcrkkdRVDGXDfe3JTg/UoIbDyT6An7FYHbB7oDXqYumL38S4fvH+DL3/lCzwVDD+F4I/HE771/bc5PDrBWsekXHI0z7i6XHL1ymXiJHn28354uGdtvyslGKxf5DN/5s8RDgbcGc+53Nlg6ULyGtzhIVEM+sFd5m9/i772fO6rX2Z9tEaW52R5xscf3ebw3kdkrmbR7lFffJE8CJl0NigWc6JFhjsjar4oCnb398jKJWEk6XZ6DHsD2mmLosiZZRlOQJEfkU3mxGELrUKStEUQNikfadombbVwriZOl8TRHGsVXlwgjjYwUmLN6Ss/5z3Ss4qc8jgckQKtIel0CdIOb739NkGccnx0wObmFlG7g7EO5yFMe7zx+S+DKfiDP/hd3rv5PYwzIEvagwhnh3Q6bdpnSJBa/SFOwuHxPlWdkSQR/UGHoO7wZPyIG2/9ER+9o1BhCxG3OX/lCpevvogOU1Q6Iu5tcnJygA5C4rRDFCe88trLeGs5Pjzij/7V7/HBd/6Q4gyUZedCHwloIQhk0wLySmCFxxjL2mDI5qCLcpZaBrxw7QV2Hz/mX/2rb/DClcu8cP0qb77xJsJ8j04cN1jQqoHsDzptLqxf4MnJXfwZaoAnkwK5eqEOOwGvXRxSliUPTkp2Nvr8wud3WO/VFMWE6dgTRgFB3KYd9/mJz7/EKy/lvPHKZbKi5OjokCdP9rl27So/+/WLHBwcMDp3mbz2ZPPTr0exOMJMjwikJK9q4s4Qb0vKVQKMy6bY5QlCWmbHR1xdv0gaS+bZjCM75+TgEbuHUzZG22gl0Fj6vT5PsiX5ZIINQ6JuTOhOn04+c+EyF7dHyChgWi/5nbe+zd7DgraO6GmFbNfEukWeOWbHNbI2fOfwLro9pawdH+UzDrKSPGvOcTqtiotXJGmsKGxFbg12qRDl6ZPwsN9eRTs5jDUrTGbAHz24QVlZdp8cEvcO8VoS0CyC4jSl1x2ye7BHlS8piow0TGnVHns0ZmmXlHisEygvqZ3DutOf26f1KQ/mnoZ2etY3NugPuhjref/9j3jp5Rfp9rvPvteLRiA/XSwo6gKlG7dRXFeYOme5mBCFzZY8SdMmvZlmFXzWKfgMz2w25+WoQxWs8f54wm98/G2sDMhkimgPINtjefdDQlvz5le+xqtvvsk73/0OR4cHfPVrX+PS9Zf47X/yT3jy5DZ73/49hId6/2OWN76PKwukjzD16Td3ECVsbe1QVBlZvmA6nXN8fEAoPdVsQbEsKGxJezOhNA47OSHSLVxVE6eayWSOUoJOv00QV2yfm7M+nFMsoay22Bj9BGnrIu6MfkSv1yNfLBHOY7DoQHBxe5PaFnzw8Ydcf/2zDIZDBJ6vfOmLDTCeZtVtfBMT41XA9uVr/HwvpTtq896t76OUJWlrQpEyOxzjztDFvvmFL1GUBQ/u36IqFoSBp92OqaeabLng1ofvsjgZs75ziWuf+yrtwQgrQxbzJR7BtZdeptP7MjoIMFVFOwnYWOtT1J5Br08xX6ARPLxz89Rx6B9KZKitRVhLIAJCrQiUYr07pNdqkZUFrq6pyynf/IM/5P/7P/19fuwLn+e/+N//5/ziL/wMX3njVdqdNt43EkvrBJGSjIZb6KSN4vTrIZCkGraHLb7+het84dVNltkxj47GDPt9Xrs8opUKdNQhW9RsihZlIdl7uMcL6wk/9xNfoJWE3L1xn7ffeptWLPnFX/5luv11vvONP2TQXyeMYsri5NRx1LN9NhLNonIY4RCupCoqvHVYK/DVHOlKbDWn9p5eJ6GVBhws5/yjf/kWmJJeENHtbdBN+tSEqCTB8IR5VbDdTbl45eKZSemf++x1okADkpFb463oMRdHGpyiK1u0ZcSkMCQmYjDYxNcVAyEJA4FHopYR/VgyjA1CC4JQs1guGU8yWm1NLWpyoanK03vkAosUqyWl84RBiLFNws9wbYO4FaG0I0UQqJCprfDWU+c5SaDYaa1RLBOmZU1dlbiTKbkv8drhrMeuXryckYX4tD7VJHywt4/zjrwoMFVNr9/DlIbpbMr33nmf61cuURuDkhIQTGdzhJUEhGihsVhs7RmfTKmrkie7+0gpGQ5GGGuIooi6qjk+OeY/+Xd/9RPH4Sp4/Ogef+dv/E1sZ52FDimjBJF0EWEH7w3s3cZOj9jZWOf1z36OuJ0yXsw5ns/pjUak3Q5Xrr3A9DvfZnHnXdT6EFFXUDkCD1qCOyNmaZkXxEnMeq8LNBpIIQ15NuXxgxsYO0dPcrL9kmirT1naxv3lalxZY61hMVtSm4zuyLL7OGdyYvCiwucHmPwe69s94vj0Faipa/r9LtkiA+fZbNTpdwAA+zdJREFU2BxhXc3jR/eJN3forK1z6cJ5ynzB4e5j1jc2COMYJTxVWVKvFMrtwYi1tT69YYcgkexm74GAbJlxcnDEpfVzp47DGU8+X1JnOZ21Aa0whapm9/499h8+QFnPeq/LxbUu51oKefKEspxhvaCeN4B9WRd02m3SNGLUbhE5QVE1E0Z/MODS5UuIM9pEURggrKdeha4aU1PaGqEUWse0kg7CGsplgTk55nD3EYujfeIoYrM/YLG3S29nk40rF6iLxrHn6wrrNQoYtQb0W2uUZnHqODbais+/coGf+tKrvHHlKptrKbWd8GjvIfu7R0SEhCIBF3D+/BbzxYJ37n7Ewe5DXrp+mZa2FMslb3//fQ4O9vi5n/tJRlvnKAvD5avXEE6QhBGtrbVTx/GVV1/Cec87H99BOk9RzDFVBShqVyJsRqyalOI0jlkbDtFBSConjGLH3nFO5SxVkRNvnaeWKUIFxGmbju0itWI6nTIanX4w9/DgPloG1LVFBynXL53jwnYPZwxaCMIkpWPg0iiC0rJYZqxVhoGKcWXN53oRh8YRBYrxckwkPdfiNl/duUgcRdxeLrkhBNkZ94fAPTujESulUlVbEB6pYNBLaSeC0XBEGKfIwyOU9fjpmG2lcMdTqtmM3JVE3uC1wsgIX2U4HHaVuH5WMs/T+lST8Le+/e3mV3DNW2QynWFqg1MR3/nuO+zv7iMA6xxuxQ5ASOK4IfhbCQJPWdZMFxllXTc5a+IBOmhyq6xzTe/qlIp8iC4XnNy9R5nsYjsdfKcPSQcfdoilhyf3kHXFzs55njx5yNd+4sf49//D/4i9vX2++NWv8Pf+zt/GC8lguEa1v4e78wFu4wXk8AqYWZO6cMZKWEiB8+CFQgpJqBsrcqc7pNXrkWWPmRzcY7lYQqhQvub46ITaeGZTTztVtDoSLSu0cJw/L3nysKaVFogoYP9ohorHbG+eLv1ppSFhqJEyIQi6YD2PDk+wQlMtM+Yn+zyyc5SzLAdDlBL0dYiKYooqb1yCOKSKqUSbtHeBN17/MovvP+T4cM5iP4Na0On1Th3H/qPHzOcTyixDDPrkWU4Uxly4fI06y9h99JjDg1066T5buy06ZoqRChXGdCpHacEeS47wiCBk2evT6w0JOwPCMGa0PkSLK00W2SlVWoMzjsJUWGORQOA8tTHEIqEVdXFViRM1dnHM/Q/f4eDuQ7paYOYTbr3zXXby66y/8DJeCKwHWxQYEeAdtHRIqpuYptPq5754jp/66hd49epVAq/od/uIoMPe3j5b6+t0eyNu3bpFlmV85Se/TtIasLm1zsXzW0SB5sHjh9y8+5jp4oCdrRY757fwMmAxG5MmIb3hAGcsVX562+yLX/gKH3z4fUJZI2WJtQLlLFIYnM1RLkeqGh0ouu02UqomjcMYXjq3hvIGZwXeFihv0HFMZaHTaiPIGK4NiaLwzB1slVlqaRr1UCiI4pQ0aGPrmizPV5l1goAQ72tsVuK8Z46hG4f8eJpwbMGGAVmnxZUkpuMEZe3YK+bsowj6Hcr89DaAdc0EbKyjthaNBtFk+HlTca40nJ9kvPTmeaQW3Lp7k8PHe4xPJpTWU0+WOC3xbUXa7uA2HUkgsPfu4ISjWYKySg45uz7VJFy5lXVANJZHHYTgPcYL5suM49mCbtokxFbGNvAZqXArE4KzFq9X1lPnqV0zUEkTd+IqS2UdZ7n96kDTHvaYHuUoZ6CuoMgbt5nXeOtx05xQx3QHa9y++SEvXLvAV37i59m+cJHpfMEHb73NYLRFMlhH7h1iDo5xqoswJa6eY4zAmtMn4TiOmrRkmpRYj8P7RucYhF3aQsCoxIr7TMczIg3rQ0GWORYLg3UlobLkWU5lJTuXYkbrAeWipt3eoD+8RKfTx52hHRECJpPxKiRUUJY1UgdUlWU+GSPdeYpshrQVZRqxu/8EG6T0hwOyxRywyFVadRBpAhkwGu2ws3aJ+x9+l3Ju6LZ7LMrTr8ft976L0BLra55IgxHwYvAy3dEWmy8YejducnB8zJPxjPb+Id57emnEsNtDG09ZVgglyG3Nw3uH3J0viZMW5y9f5dwrr7Nz/jKDdgt/Ro98WtUoCZWzeBxaKOKgCX0ddkaMOiN8VSJDj1YStKblYOgE9z/8mOP9J/y487RHG+g4xdRNtlrlSqSKCLUiDVrYM7LdvvbGea6e20RLwXwxYRT0sQiOxjNGaz36WyPS8QFZnZNnS+qqZGN7kzRKef+tt3j35i1ECOc2U1pS4PAoHbK2NsKZAhkIanwTg35Kzcf3Wc72aWmHEaLZJtsagcUKi6st3hva7ZjhYEBR1sRRjHGCfm/AFTSmNrTihER7tKrJvcCnKWWukELQarXOdMzNZxlSNoeUpaiJOwJROxbLjNlsQjJax0dtNtMWF0TF5YFmcXTI9HhBurXJC70B20mXpNdjkc/Z23/CLWfo2JqT2vLYe3RtMWdMa4/2j5v2kq0JAsUoWEdKSRQFLBcz5rfvYJ6ccHNZYqSlvHcfXzSRVG59nTwK2Lh4nqJeokTIoigplxk9FZEJs/IAiH/ND/HJ9akm4bVOa5WA2gTwVd0uk6NDWq2YUIUknRaXLp6nFYWNFMv7xr63+mtd140nzhtS4+iUFc4ZgiDAWgfOMZtXVOb0ns5UFOheRFIHVAuHqi1BaXDUlK4EW+OrBd12hyhNKGpLVUOgA/r9Nt56rFDM8yVhGGGExuUl4eQAb0p8scB6B2eMQ6kVAIen0jNPZQxCa4yz1EYShhcYjuaE0ZK93RwrcpJIoLDky5p8VpAXBgoY70subINMLzLY+Hl0vIkUqpH4nVIH+4cEQUAcJY08RwjaaYck8eSLOcv5lCTuopSgqDJmyzmdfEkwl0yOD5ptehChdHMTx9qhhOT81nUw7xEoR11bHu3tnjqOw7vv0l8bYoSgKBYYr5BoOp0eR8fHlDpB9dd5sveQJ9/+Hhd3Nnn5ylXOOU1dlFhT04pDuu2UtV6P8XjG9PgEISDs9els7NBpDWglpwuWwzBCSRqJn396UCwIvGI97tHWIcVyRuw0URTT7rS52OsxsgH7ywwfKLytyE/2CXsbGCsp8yWVtcjQIkVAN+rSPUOPemlnh0BqxpMTbt29yTKbsL61zWTWtDGuxzFf/LEvMxtPqeZLWlFEa22L6eEE4QUvXb+OkiWimpNNlxxPlzjTaNCDVkpVFEihCVunA41OjvdpJQnnNtYw1rB3sI+iCc2sakGFpKih100pyoLJdE4rSTDWY11jFZc4QuUIhaOTalpeU+g+i/k+RVmxXC6ZzWanjuN4OiPQAUJpRCQZjdbZ3LiMs56P3/8+i1ZIGKVsa80bQiOPTlgmiof7R7S31lHnL2FExHcfPOJ4fkjgSy4OBwRFye3KMQ811XyJdqfr+2/eedgAArxlba1PGKeYsqLXaZFnBWJzQNXtsQgcKojov/4KLemxywXtCxf5zd/458hiwXw+Y2+RU9UV/XaPz7/xeTJf45/6C/4kdMJlWVMbRxhqvvj5N7l08ZfZXFsj0BqHY31zi9FoRBQG+NriRPMAuBUZrbHnOmprMM5RVTWVMXjnePDoEd/8xjd56533mhvttHFg8FLS7qQsFjlFZfGyBlmBKBB1jrQFSnboDwdcvHKNV155gzROsK4g2tjkz/6Fv8i9O7c43NtvHHq2gjLDSImM+4g4QtRnqBKceGam8M7haJw2wnqU1Ki0A34Nbcbk5V3CqMZ5MKbE2Ioqt5S5xThDGEpMkZNl6wy3f4Yg2cE6j7XmTBqTlA1EyHuoa4NzYOoZcRKDh6P9fdqtgCgSTGZT2us7CCFYTE6YjY+wQhJELZLE4YucUFra2hDSJpIpStRoJTDm9B6XK5ZkJ83JtZEL9iYZJw8eYOqS2WTK8cEhy+WcbLFgOT7iZHxCkRse7Z+wf3hIGCjObW1wcWsT55uDXWMMTmqmWc2DJweE0Yy9R/dPHUdfSLAgiZACSmdw3hM5wTDooExFvjih61tU3qKkZBmF3CwPaA9bfPX1V9geDaCcUSxCah9iiublVluHkQm9pMXoDLXI9GRBsXzM5s4I6zNm0wPm8yOUhrXhkHKRUS5qlrM5OtAsiorl7mPSpMsXf+zHCaKYw4d3+OD977A3z7n7re/z+md/nMuXzlMsF1B7AgRRevpjLGXAuZ0Rg8EGy0XGbD7G+QK/kkWWtUHpps14eHxIt9NjfdijqkuyImPvcL85wNJQZicMNy+yNjyHKTLqcsne8ojZapF1Wp3khnYoWV9LWdva4md/4qcZrp1jd/eAdsM6JTo64nA64SQOyJZz5lmOiUOkcPzed7/PwmmKsqCXSF7fHrKpAm4Fhseuxqi4OY86oxVr7SolXmo8mvFkycnRPnVliIIEEbWwnR7xYIj1Cp+Gza5hPufoyQE1njsffkS316X2hjhNef2rX2FrextnHdZ5qrKiNqdfj6f1qSbh2lk6vS4aT5UtyJczHhdj3n37bazz/PhP/jQvXL3GYNDHVwZHk0ispVxtdxuATWNuaCYMaxvpz7mNEV/74hf4W3/v7/Fbv/k7Z4yj6d9UeYG3EiEDKq1BgfAlvi4Qq5X466+9zs/83E/zwqWL5EXDUzV1yVe+/CXWhj1++9d/q0lJdRbna5LBiGCwCa0OVXX6StjSRNdLD3iDWAGKhFq53ERjTQ6CLXAjysV9bAm1cxS2pjCesjI4HFioqpDW4Mu0O1cRQqK8o6gc+gx0oxCKKErJ84LaOJTUTW++qiizJQ/v1rRbCb1Bm9LDjm8gQif7jzl88ggbxAxG54gTwDdtpLKsqfOKVpQwUwuchVifnrY8X2YslnljLXYC7/eJ2wlhoBkoyXCYkLU1y27COAmZnhyT5Rn7Rwc83NttQELHR9zf3aUsCo4Ojxj2e2QOPt4bU37rj5BKkc3G/J//i7/2ieNQpcFZi1YBiVCEVlAITzuKGXb6YA02z5nVGabIEM4x2tki7vdY73cY9nuMRmu4UDOpaqq6RuCIA40SjeIiDVvI4PRePSqgv75Ge9AmSUPyYklVV3R6HcIk5Mbb71JVOa9//k3CKMI5R76YU5UzLHBufYOPTo4bTbVs8/679/j1f/Zb/Kf/2X+ERmNcja1qSmdJTxnGcG2dwXCN2bxgvrhDHAVUdbPDUo6VTAvmi0b3Pl/MmM5n5EXGwdExwntaaUpZFmRljhICbEU2PwZryRcLIsUzu/4n1UQOiXXNpUvn2bn8MtNFxsn4I/KqwAUKIwPGec7BdMqdDw+JigpXO4TWdETEJjWvXdhgLRS45ZK6NCxEyN15zdh5zm1uUpc1J5PTV+QgEEIi8LjaYkSzOHII2t0eeEWdVRyOHyCDlHmsMMslk7sPWErF5voGDxcZKu0yOdij5TRSaZRugEhVVaO0/hEoOE19qknYlgXHyyXntrcZHx9xcrzL5HCPZVEyGG3x1jvv89HHt+n1e3RbbWpjSJKEKIlpJQndbpcoCinynL29Xe7de0C2nJPEEfN5zi//8i/x5mde5/bHd08dR7Eo0F5jC4EmoDFUrSDypoayADRZ3rivDg8O+P4ffZPPf/6LvP7aG/ydv/u3+eDGR7z08itUZbni/1qEMfhlhsseIKzH5afrDY0zeG8bNgSNvRYHQRJjrMH5ikCHQEq3+yU2z20y3nvM4mCPZeYpTUnlHFIEhMmQ4fpn6HZfwRgLvsa4ZjvoOINhoUOs8RR5hQesB+Ed0jmwhnyR42rJYlaydBahmu387uMHHO4+glaf3to5pJS0eyntSHP4cEa+nDFa6/Dw0SMms5wwPL0NUNfmGWjHuyayPDQKrwS1aEAySRqgpUIZSz9JSFopUgdseyiqijgKCXRAQYnSGusFk8mEoj5kWZZ4KTD16S/HvKyaNpgQhE1fomHXxhG9pINyNQ6LFJ6yykEp+oGmEzUHq03DzWJdSF2YRhUQRgRpipISU1sipUjS9qnj+Ik/93OAxLmCjc0dbr33AZs72wy2NohaberDA6I0piwLHty/z/bOOR7e/hhX11z9zBe49fG7fHz3Q65ceYH1aJOD3d/l43c+4taHtzm/vs6Th08IhGTjDLtwGCic80yn+0zG+w3IR0qcdWRF8QwchfUkcYKMU8aFYTaecTydsTkYsDnoIDAU2YS9h+8z2rlOVZYsZofUeYGII6ozdPWZSDm2S/YrS3HrLia/xTJbUhcV82nG/OiExJSYec7FVsJWkpCkmlY7orM5oO0sLoqYLMdMlwv28pyJ0IzjNlu9NueHAwyK7c31U8chxA+8DHVZ4ozFGU8rabG5scXoymXCRGOOx2gRUxpLKTL2qoKjZXMONVlkLOtD8tqgA8v+wT69fo8wjBqjibVnAo2e1qeahJX0SOnxrmZtbYesLHFWEMynSFszPXrCTEoO9wOSpIXQmihKSdMW53Y2GK01q+J3332Xuw8f8fDxIcvjRwRKsrZxjn/5jW9w5fJlfukXvn7qOGTlwFiomlVtVYAolwgRIJ1vpGZOkGc57733HnEa8bu/8WvUZU2sU/6Xf/D3aXX7jEbrnJwc471tMBFZgSlqagzC15gzTp2NaZgGVjZKkLIsUDJAGIexHrc6gRZInG/R6l4iz0OGbkS9v4dkTL48oNftc+7Ca6xtvoolwJb5CmTUANnPQuJFUUSeZwgB3q201tbhaNCWCkkr7RB3U2bHx6StLnVd8/D+A7LplEhElHn+rHevw4D5csnk5IROJwUaKLwKTteB9vv9Z7hELRtNbhTFjdLEeaxrcKYqFmAd3lna7RZhHNNqtSkrgxQepQTtdpvhYIBzjdSnkyS08BhrKM8wa5yYGqQksRW1N8goJFOOOG4zbHdIlMVFmlB70k4fUTWHKW4FPHdOY6oK40PA402B0xKtFEpYQumJlCRQp0/CG+d3KIsK7wyXr73Mg3t7ZMuSa70Ow81tspMTinyJd461tQ3KynJyMqWjYPLgNvfHR2Rlw/89f/4cr16/zHKx4IPvvUV59UV03KLVSlksSrqnjCNbzMiLkunkmKyYU9aGvDIs8yV5WTbpJ0qSJCkXr77ExrlLeDxhp0syWEN7x7xYsjbosNnrk6YRvTaUgWJXC7RwtKMQl56+M0ijBIfBqZAP3/qY7N4um3HAVpzyQhKTpC3aSZ9ys2bUajFSIRpPpmAuHXuLJTMZ8PDRYyZFSSEE61s7fO4LX6T2krDT5fzODo9PTrfXP93hhlKQhiG9TpeL2+fo9wb0eyOKZcGDh/ssi5rposYIiykydmfHGC9ozTVlXeGUYm0wYH2jOdjL83zld2gWhOaMturT+lST8PqgTzafk80n7O8HHJ1MEUrS67SZjU/Y3dulXAmlu/0uQgVIGdDpr1GUOb00RSjFbLZgfLDH3p0btDotLrz8OZAht+/cYe/xA4aDAX/hz/7yJ44jUiF4iZeAqJDWQF0g0Hgvm5gl1bjH3vrut/nFX/rzvPzqmxydTLh15w5row1ef/0NppMpJwf7KCVAeoQ1KOcR0q8g76dfD2cb+ZOIAuIoJk3SRupiDYHUoJpebZqkTMYO4WB75yrRpZBryyVlnVFkGSpQOBniVcgyzwllg7o0xuLP6MMCWFtibdmAhMRT2p3AORBC4l3dPEQvvEBXaqI44vDwkFs37mPncy6/0mF+dMRyMMQoA9KTdLqciAhPwfnzO0ymN8Ge/lJqKFpNq0kLRaCfwouaa+lrg19BcYIwRuBRKkTKgFYaEAaW2tR4b9FJQBgnVJXBev+MX12V5Zmc5zAJGBwVXDup2MwseSdiLgWbawnDNCaRhixX4A26PSC1ljgKkc5S5hnOWRAC6xxKNwevbtXzD5VEG08oFKk8rQkA3nrmJ2Pwjq3zF2ivbXFw72MWB08gyyhOjjk+OiI7mXL99Tc4ODigKB2dNGI+nfHo8S7bm+fJ5wWHt29zYb3HxiuvsHv4kHfee583v/A1ZBBTnJHwoeMetfMYr1cTcE2W5WT5EvBEUUArCekNR1y89jJra6NnBMCqKlkuFiwPH7K1scG1F18nkI4yWzCeHtLptqlMjcLTWjtdrxwEAjc3mAdP8PM55xD8zGiDUaLpxQlKSkpr2RUB1ln2yjmHpmC3NFRxwrKuiETAUV5SopFxi5dff51r168yKSzzRcbbb73N7771Lv/Jr/7lTxyHMYZWknJufcSVixfZ2tgklAHjwwl3b9zicDZhXi5YZCVlAV5LalMgbE2vN2jYI5vr9Dsd+r0eg7UR/X5/lVQjsSsxQhyf0a56+vn8SN+1qsP9A6RuqL83790Fa3FCcTCe4D1oGbFz4RymKrh79zbWOsIwYlRVRLHiN3efsPvkMbdv3SSQjp3tc/S2rvNPf+9tglBzbbvN9jDm6OR0B1CUhIQ6ZbkoqF0jtfGrQzKz0rc1WAbBndsf8fFHL/LFr/wZBms9zm1t85fkr1Asl3zz936PqlgSRIIaEApwBvDPerunVagkSiic9UymcwIZ0O21wTRtCh3opjdgLd12Sl0/VY04oijAug5hEJBXJc4LojBcebibXrOSkkBJqur0Bn9NhY41URRRZFWDvPCNzdx7j3dwMllwPW6zthEQJSm3b3zE+OSEcjxGxhpCTdxpsZ1coCpDWu0WHsVimfH6Zz7DdLrkwf0Hp38uWq30lg7ralxtqIxE64i6ttRVjamfXl8Fwjen0XnREMesaw4WvQHhEUJiatCBpjKGuqooy4rF8vRJ54Wx48fen3NpaggRWF3ATotKxoTeIrxFqQhPjIwTpPO0Ol0UDh0tqPMZSIGtG6WLFAKcQThLEESouiYQgjQ4fSU8OxmzmM0JtEJHmvlywZO9Mb1AcnHHshjPsaUnHSS8+93v8ujxLp3+ALm9zndv3GJpFa1Mkp3s044mtFs9IgGbm5s82Bs3h4Uu5Xgx4eop4zg83KWygoOjQ2bLnOl0zDJbopQnDjSB1kgkeMVymTEcOKTWFEXBYrFguVxSq5Qjk/DC9st00pjZ3YfcmZ1QzyZEOmD/ZEEv7px6PTyQObh5dMRiOePu+ISirhh1YgKlMd5SeYMLBC5QZMZgpAKlaacpqrdJMLqAm+VkWYlTCd++/Yh//K0P2B/PmWcFeTaFM9QzL12+wvm1dUadDrGQZPce8/HBCQeLJRkWG6jmYN7UTYvSOUKtidOETrtDu9slSmN63S7ttEWn26PT6hKHMc64FVunf2aP/Gl9Op2wKXHGEwchSRyjtaYua9ZHI6TUOFuzvbnG+fM7XL18nvffv8F7793g/r2H/ME3/gBnHNvnNuj3e407zsL04C67N75PGCX03WUidmh1+6eOI4zAmiVhLOiphDxTlJXD0xwA+lXGW4DAWMfv/8HvYFXF5z73JrZasMzH/LNf/6c8OnpI0A9ACry1CNusVkUzB6DPuoZ1hV3hCg8Pj8E4gvAiUkj8SgkShEEj3RHNpOpWPdOnB5S1MTQqdUVd1s+SR5rMr2ZVLs/QG0atCB1odnZ2eHj3EdmkwNnmZhAICBLW1ndotfus99r0Ol3yxRQpDFJ59vceUYmaZbnEU3P1+nXSdoe6thweHjNcG/IzP/NzPHr45NRxaOEJw7AJg6wa2pRUEueeguMdQjQONotAKo21jX+/6Z26Z6Q5IRqtZVWVhLZpaZRlk99n7ekr4fTjY0woqXsRxbJExAJGmlAH1FWJVBasQcTtFTypUetIrVBBgK8U+EbXjvIkcYyQkkCrxuacLxAOAnlG1t20YaaESYv5omTr3DbKCuYHR/zOt26i44DD8ZLPdbeJgoC1zU0uXrpEuzdgpxQEScx7b99i2G/R3xhyMM1QZslnP/cZcm4iKDmZ7tPbOH3FdefBLcbTBSfjY8qqwpgKpQRJEhOGQaOBri3WwnQyodPusLa2hvee+WzGyckJaStlYWoeLBaUssO33v+If/nW+2x0YvKDuyys5mp8+sGts5JF7ZFFSSEFR9LxeHZImockoSZWkrbWhIFiY3uT11//LHuHJzyZ1USXXyTrXsB3A9rlgnq6ZJLXHC+WfOfddzDOkiYxYadDPPhktC7AtfVzuKxkf7JPlmfNsxanbF25RNRrE7WaeLHFYkFV1ozHU4qiaGSgcUyapo20sd1Z/X3rmczWAwoaAcCfRDvi6vk1dKBI4giEpDKG471dEjWj1W7egrYes/t4iUJhTd3gK31JVTRi8HarzfmddS5c2uD46Ih33v6QduRIEhj1JWt9R6BPpzEFOLRq3tYuUIRBTOUa1cQzR5/z6KYvQWFqvvfuN7hz7x0CpSmXOeOTE5KuRsUSlMCUFlcZhAPpaFaw8gx6mXAUVUUQRIzWhkjAWoOXCnzzQTg81tpGs6rAe9v0ilUDcHcr2LtbxRvVxsKK0WGNXW2NT38bRElMlmUUZbFy0zS2SRVIvBd0+j2uXLmCKUuUT1hMjsnnY9qdmFQ7alNSZRMe3bmBFI5IB6jLVwnDmMlkxocf3GBjYwd5xu2SFzlSScIwJJIRyjrCKAIkYRCgPEieyu4cDihqQ23USlrXMAKcl6s4I9dch5VMr64rpJCNweK0z8UaqiDGEaC05Vg5DsoOL6iAtjOYOseamlAKcA7voapKhNPgmpeecRbrGwNOEEYoJamrkmI5p8xLhIwIxOlQd1OVqLDFdF7wjT/4DqO1Hm9+7nWme/sM5hkL68gfnvD9B8eMUsnGoAHiKwybXc2Vl67z0osvsHZui+6gy3Q6J4ljNjbWGe5sUS5zRCAb5u0ptXewz9HxcXNw1jDriVbpLtZaqtqgdYhQGodnmS3pdJvnudPtkqRp83JVmv1HY3Zdxbvvv8v9W+8z6bRx+YT+aJONtTNWwr5G6xBTebQUDNsBISGp0nSkJgmaFlaJYLO/zvWtS8xbL7BbDKl6CZeDGffu3kXOczrDAeO9YwbDlI3tIZUTJGkLmfax6vSX497+IZHUrO2c49L2FjIO8Uo2UK0Vq9o5S57nFEVFp9OjXB3gS7m6v1eTcBRFBEG4+v2a1Atjmvv1aeLOWfWpJuFOS6O0BAweCJVje2eI0holV3By5cFXGOMp8oKN9TVe/NprWOMQQvOH377B0fGYzY0Oa4MOP/kTX+TwYE5Zwqsv7RCGGs5wzG0kA4KwkZgsi4KJL7C1xUsIgxClQ7xvbMUWj7QeY/LmMKIy+NoShaAigYs8XgucbOJMvHUrjKVAn34OhZcCW3uEMQRBE/Tp7MqFJZoPxRnbAJ5XSErnmpWedRYnPEpLjPAIt8qXc7YZgxA4b1e5dacPZDZZYuqaR/d3m4w3LQmEptVKUUqTpCH7T+7ByS4P7noGvYRIe7785c8SS4WzFdZbbt6+zYOPboDXKB2zWCypyooHD8bcvfMIdcbNvSxrDDlBbVBC472grqsmdVqoVQaXRMkAJRugvfEVyIAkURjTsB6cpzmQc67RnHuwxjSn2abC2NPVEedKwVx4lh5MDR96zzSO6FtLL88IqJ/l/GkR4JRARxFVlWPynFg1bs4miFUhlcJbSzY+pF7OcAQQQnDGdjMIIn73G9/nrffu8uGHt/jVX/l5fvLHv8gjCZfWuvQ3t6jQnEwW1MuKajnFlTOOHt/ncO+Ydu+I4faQzVGPTn+NzfWNhvIhIOh30KEiCEJcfvoDM51NsbbkqTMyDDRR1GBXy8oghCIIE3SUUBtDtlwymUyoqmbnMRwOmxw6Yzg5uMutJ1OOZlOSVkqWTWjFEa+//gpXLpzOFkllQdAJOVkKhDG0tKYrFYlSREI15hEBRbKODtaxN+8yab/EcbJBMZ1AteDk8SPCasbECXyUECQt1jbPszSiAT95hTljp2Q7HeJuj3A0QnX7qDhASkjCiFA37RmlNHbFrZZSUlWNIcVa2wCwlEKpYNVyECsqm29Wv/96+PEZ9akm4Wc5UqIhRHkNSjdb3gYs3vzyQkhkCG+8cQXvLGkcIZXCecuPffVlLJba1rhSkMYJ58+vP0unqJ1DnOEQ+zOf/3GsKzk8eMz+0T6mrKiKAi0k7VASxiHGWYxUVK7G1RatPJEWyCigLh1UHhVJar1iWkQSIz2u9ljhG1u1PF0atsiaNzueZ71XqSTW2j/WD1JSYut6ZezwqwBPuVrlOYy3CNdYUmEFf7e2oZtZg1On31T1ol5t7T1CQpLGrI3WmtWLa3KdJ0cPIAqoTcbJrqffG9LrdFjbWCPwDik9ts452R+z//Axi1cX5FmBlJqiKMmzukkgOaWqymFsichrtGomXlM34aeNdtivIpgaJrUOgman4FftGOup6+aaP03eVlo3YPvVqkKWAnOGCP6znZRbVvPIVxzUJUcOgihmWVeURYkMQEdRI0SzDh2nBGkL5yy1m5MEzbVEBKsdTEhdLqkWM+p8gVMRxnra8elBn3/r7/1z/sUfvsetB4d0kqbHusxy2qNt8uUEO884d+UiO1vD5nnyjrIu2X1yld/9p9/kd77xAW++scOla1eftdm8tUitQUqCMMLWluCMnUFV5UjZJLsEShFHAVIKiqJR7uhA0+r1iVutJkXCe8qyZLls4OitVgvnHEVRMh5PiCtDvy3pXd4iVltcOH+BSxcukC1Ph6l3ZGMjP3QeW5YESKxQFF5SK4WXGoKY89df4+1jxw2xwVSHJLMPCZePOF7s4X1GZiErPe2WxiDxKsB7iUPgvDszBKE9WMNIydFixni5WJ29KKIwJAiboNEojlFKE4YBYaifGVHCMGwSmZOUOE5IkqRx3RpLVVUNwEwpvPfk2elnF0/rU03Cu49+v+kxeolUTSCklxLnxAre0UzQEnCi+UJKwYRGqdBERjSTgi0am282kVghQLjmRvMGcYbM+eKla1TlgkG3S6uVMpxNOTw6YZkvEZHGaU/poFnLSJQOEdITSEh0SNVWVEWFQ+KNR1uIw4BSQCU8ygmsdLgzIu+FaCZci8P6xhzgVuoKnq76gqBJC26kCo27bkXeN8ZibY3HooQCY6itQ0nV8DQECK04I8AB6TXKKwQCJQWtdotur0scRcxmM6psjpQWZyWdTkQahQg8e7u7BDgubG4QBJLRsM/25gbTOiBKYh5OZxR5RV01h4xRdHrvsTYO7UWTqovF+BprampjGyWEbAI77cocEEURWjaZfMKGzTbONH01swpKVKrp5Ta0K0UURc9WKJ9UGzpkPCn5blTxrqjYjtroKGiy45RqYqeiBOdp2hJKIaQmCFPCOEMI0/SptUI/zZETEGiNl5LCOgyG5Iyt0n/7P/5zpHBsrHf5cz/7JT73uZc4PNyjrgWjQY9imWOKEpVG4B1SS8Io4uLVy/zKf7DDwe4haWJp9XuNuamqmU6n9AZ9lFRky4z5eMyw1+PUhoRopJRCPjVUNNhGIWWjf45TWv01gigGPOvr67TbbXq9Hs45wjAkDEOCIOD4+IiXr1zgx7/0eQQOrRoN8pPdJ2RnHJiioqbVJkOsjKjw1EkLISWlE1ipaSUdXn/pHN/7h7/Jwb2P6PX6JKImSkPqQIHqUOcVyjqE91SVpWryYLEIDAJ7xla6LhpGiXIaHYZEKiDUIaCahYaQlGWF9yWLxYo7bGqsdSiliOM5URQTRRHtdps0bf8g6Hi1AlZKPVP0nFXiR00EfV7P63k9r+f1///6EbPUn9fzel7P63n9SdTzSfh5Pa/n9bz+FOv5JPy8ntfzel5/ivV8En5ez+t5Pa8/xXo+CT+v5/W8ntefYn0qidp/+w9+x1trSbSmG2u2+m201MxKy8lszjIvKY3Fi0bylUSaUEqUkEgpMcZQ1zVlbSlr2yReOIe1doWT9DQeM/i//Ke/+olq57/3N/4Pfj6fo2TjNMPJZ7rTssiZzydMp3MWy4w07bIsLXuHx2RlSZS2iBNNEms2Nzfp9XrEUYwzAu80s/GM2XSGNyVFvuS/+e9/7RPH8R/+l//Me29I4pA41sRxY7kMVEQUBjhbUhULVLWkzp4wPXnMfOEobY+gt42NR2S200TWdASdWKIIKeuasrRUxlHWlnme8w/+7z/7ieMYDDZ8ni3ZPn+JzmCN/ScPWU6n4CFpp6gwJo4SlFJ0ux2EkGRZhlSaJI3ptjsUZUWcxAgawMlsNmXvySNS5dhaH9IejJBRyq//03/0ieP4z//LX/FSeLBDhJVY46lLhTWNDbioGu1xHPdodTrUxRxnc0pTgJJIHdLqbFEsa7LFBC8MaRqtjBueyWSMDiJ0mPD3/+7f+MRx/MRP/oyXspHKgaCqHIeHR/T7HXr9FKUaNoiUEikbTSe+sUk3+m2Jc43J5ml575v4KgfGCE6OpxzsH3HvwY1PHMdv/Q9/0/fW12kNR4g4oaJJLK+Lkkd7h5zMMnaPp8yKimVZk1U1ZVbjlwWbqeLadoujJ7c4OtgnCkPSzpBobYcnS8nDJRyJFjMRUqC59d/9Z584jn/1D/+hr6xltlzgtWCwPqLd6VCWJWmakkYJeV7ggItXr9BqtzG1IcsyPNBK05UZSTaGJOdw1q1kpyvZ2yo4M01anziOH/trf91LBMJLBPKHPAc0/yNEYyPHPzM7NNIvmrAEWJlV/IotIpA/9BmtRoQQgt/+b/7qJ47DP/tg/epPc5/41d//QCL7Awmic+7Z/GVt42pVWjdmHinxQFUbqtpgjcd5gXFwYat3pmvjU03CjcbTUgNF7RpLpxaoyhJoSRg0ji+DQ2tBqNWzX8M519iJ/dPrLUBKbMMzBylpvLtPL+Un1zKrGu7EfI4xFXVdobSklbawtWM+zfFWooKY0nmKGjq9HfpBStLq0+72SNIWrTSlrmsKYynqKdms4mhvydH+Lr7OOYPciNYhdZ2Q5YqilsQVdDsBVqkG/lJNCO0D+uI+08ljHt66TY3g8ssvsrZTcf/wAB28jAu3EdLjRIVXNWXlmFWWPBfktWBWne5Uk0Ks9JqNzVfpxtHT8CMUWinkStD/lMngXGMGMZWgLDV5llPmTXqEc44sy7C1oRaKztoGr77xWYbrp3vy270C5wyLsWE5swSqQ5WHOBuilMR7QxRrlBJUVdUYMqQAX9JuxzgcUQAyjcmWEAYBWmmyYkFdVUjv0AL0GdHqUgqEaIwrSjWa2CKrWKiaKPLEMUgt0DpEa4W1DS5USNU88FKgCPCu0XM/Nd5YU2OFQ0nJ+nofd0akeRgppLdIb/B1SbZYgMmQJiMuZ/R9Rdyx6LWYygXU1iOMQhQ1Ll+QT59QHD5CTCdIpcmO9pg9vIsNuozSDXrbL/CorjnIT9fnlscHeC0JvaUqDLPdJePHDvCY2iJMcw+pOIJ6SrvboSoK5rM5dW1ptVLiJCaKI8IwIMsy8iznKe9Da40Qgrwu+epP/NInjiPQesXxlU0u48ofIMTqeRcSvzIEyf8fe38WY9uZ5Xdiv2/Y45kizok57sB7ycsxSWayKjVUaSqV1CpJ5e6GIUuGZD8YtgTYBtww2i9+9AT5zYZhG+hXvxg2ZEjqttSaWlJVV5WyKgcmmZx5yTvHHHHmPX6DH74Tl5kyGJEEJOiFiyQIXkbEXXefvdde31r/QUpWvJ7gVXmJ/b20k1/hcsOvh+8PglU8x+p+Xfw8m81fuv5Yz6wIcq69TvoL1PhLDLBcYdWfa2av8P6XmifWepwLZsXWwS8hgAh8wyIclKRMYDk5jTENTkKqYZBrIuWJtaC1kMUxsZJYYzE2vEWeJ375ByNcYL9S+7r8Y1/DTeDhoyM63S5CRBhnKStDXVe0RuCtYLkwoBIqF1MUMJsbtrb32dy5QZJ3kTLDGjgf19R10F7oDHsMUoU1HY6On2JdRd65Wqrw6bmmblIcGpShkzg2Kkm34xnoOf78fWTzMfGapzw9IBOa7b1bDEa7zCZLjp7OEIMXUV2JEWCkQDtDnsTkcYo1gmXrOCmvZogppYjjODB2mva5pq+zDueDO6t3QYu3KAq0UrR1sLfBW5wJ0oahiIcb1JgWZxp8lBJnHdY3R2xeI5ZtXYF1QYx+Pm/IkwQl0tXNajC2CZRlrTDWEUeaSAWTyP4woqxFYO41jjRJiWKBdQ12JTgjhUcKyNKrPxelWD00oDQoHZ7m+bSmrs+JIk+exfTXuvT7HaJIIZQPRKSV2rcSQQze2RW7UYJeUc+997hIMVy7WkVtshgjYoWYK5rGMZ8vsb6k243I80CTjkWLJuihCOlx1nJ2esrxs2eBehD6Eqxrkd7i6orKzEhGnlvdO2x3+rz/9PjKPDbXgu9Z6y1N26CVCqxDYSjmgo/ev89sumC4u8l6Cv3bG5RHj7FFibeexZlkITxI8NLTtA1mZeR7Sdd13tF6D1cU4TiKgx4IEolYOc+E/haCWoET4XpLIZArWdTwz6ozJrB1L/3bBCp0xvivyvE1RTjQ58PPdh7mi4KnTw548OQZZd3w6r277O9u0evlz1/4l0U4FGL5CwVYCEKNs0HmPJgxBPmZXya+URF+74c/wHmHloo00Rx0Y/IoQicJ1nta67Be4n1EHEUM1wb0B2uACG2886tjy0rrFo8Olx7PV1bR1zHmfvjjj7hx4wZpEiQSBZLj4ynOjYNSmfEQddCdDda3bhIjOF8oLh6d07pTlvMly/kcay1bm5u88vrLZLJPrzfAj6A36KG84c7tG1fmYZXHKov1CqkTKmF5OmnpzgwF9+lN3qW6+JRnSwtyya2X9umsW9794Q9599NzOlvf5Xu3e2RrOUo7tJIoGboS58Fph5DQ2qu9zBACISXWmNBhrnib3vvwEmwNxrggCGQtUaRp6hqpBHVl8StLI2O/Om557/CmQRKvxOLNVx3L18R8ZnHe0VQS22paATKCJNLcuLXP0cnTYAclFM570jSj20noD9aQUYlcOoqlwXvFYDBASI+1NXkcUxZL6qoE79Hy6usRx3L1HPoVI88iBMEt1yuaxlNWDRfjBd1eztbWiMEgI0kU6pIJikN6gRHBgUIAUaxXAkwOZxV5frVgTU3LdD6lXFZIK1BeYgGTRESRJtEWTR2KYlvR1gVnBwd8/tF9bOvorvdZNo64P2Rrvcvs/JRmWZAoRURDVp7x0os36HWuPhm01YTWhWO88y21M6su1DI+LpjNp0wmc8aTKU0xI/uN7yO1oVyePC9tznmsBeND8XTCgGq5VCv4ZdTt4kiHNwo/r63wVe4ej5cENpsQqNXX/TwTTcDzX/fhm/ACnLwcJlx+1deHMxYhJcY5Hjw95JPPHzIdTzl48pBlVXMxmbKztcHe3jbrgx6dLCNNYrI0jBm9cCh43lQa62mtxzi/qmaXo5FrRHBW8Y2K8O/+k3/I5RlBYomFAxnhlX7+gAoRPN+0ivnOG9/ht37rr6KT8NAY73EudGXOB183iUcJj10dCySC61h8Z9OCyhyiVBRohh6OT07I0gStBJ28w2jrBZLhLfLNDaYn55RVS7vyCyvqirouaJqKTpOCcFSlJZdBYvKF2y9xa6fDvTsvXJnH7qaibSVVA60haGI4hWsV1s4Z9h13d15iba1La2ccnx7w5Uc/RDcJ+104OXmP08836e2+TbR2k5YM6yICtdthXIOz4M3V4wiEwroW39bYtsJ6gfUCB7RNg1vpMMRxRJastAPyiE6ekyThxsrSLLgvzKYUy4LpbMqsDIpiUoqgi3GNdoSzgjhOUXmOGygilaO8ppf3GQ02sY3BuprJZAbeM5tZHClRZ4tIOTpdDW5JnkUIoZnNJkQ6ReiSRGlcaynKBsfVAj6XnZNSCgjz26qqgSDMEkUaqQRlWTK+mFEVDYNBh42NdTY210Kng6UqDWcnE87OLohjxe7uFuvrPZTyeM1KgPrro6kk2nuEMORRHEZGtcUtW2wCeZrjTczk7ITx+TknZyecHB2zLEuyLDgfd/OMPEtoTYNKEtaTnCTr4lSEbJak9YQ3BldLSF5Mp7TO4XBY3+J9EJxCCIxXCKXJOh3qquHZ42P+8Pd+wqvfvUuNpq6XeKewPmxrGgMtFYvljOXSIWUQQnI22EVdFVGkEATN6UsdlUsTgBBh1hvuOfW8WxWXXTGXHfFX36MJO6hGKDwyaJNcE0IKzsczPrn/gE+++JLz8YzZ+IInX35GYz0HJ2fsbG9x63ifPE0ZrfdRKozRbt2+yc72JlkUB8kCu7L08sH4FwRaCrQIte6XiW82jqiX4D0OgQFa14bOV2rC2Myv/hZIoTk6PMBZQxrHwTkXgW2/mvlKEYbhq/n8V/3vdddRSurVLMu5Bq00nV4PIXxQUoo6tEkPmXSYtC3Ltqa1La1pyfKcJI6Yupa2rXHWhHF0W1Msp0TCs793i1fu7rOxdrVASz/OaJUkloLWChojaZBElAzilhe213lpu8fezR6tmbOc3+bm0wVn53N+9tljbroBF+cfcf/hA9bu/QZ65y1aoZF4pG5W7s0J0TXi8lLplWeYwTbNc+fncIQOzidpljBaX2Ot3wXvybOc9bU1sjSlrsqgFCYUTbNNU9ccHB7y4IFDx/HqYVBYc/Vd1c07SA0ySehlGYqUTA6QPsNag5KKprbEkcZ6z2zR0FrBfOlJTEIaS+pK4GmxtuLs7ALnLLZekkSSOMnQUUbWufq21VrhvaQsaubzgvOzKd671c7CIK0j0jG9bifczx4W84aiOGYymbO1vY51jqPjMYtFGWysCkNZPmNjNGBvf4ss0wh19fXIe0NmFxfEytBEhlgJTG3QTY02McYbxudnvP+jH1GXFY11lGVBJ0uJYslofcD+3g4X58ccHpzRNAaBJku7zKdTrJKUswn9azquk8kJXoowXvErc10UzinqRU5ZlWgt6A76lFXN0cUc9fCYtbWMycQzGxdYKUi7XWSsEXFESU3tC4QzeCdo2oZgdXPF5xLJ54X0soheFlUAsWo+wvhHhlnl6v/qVYOGEDjB8wKd+hYrCEcuJNJ91Q9/XRR1zQ/efZ9Pv3hE2VRMpzMeffEpz774jKy3ztmsYFGUbIxGKCGZzRaoSHMxnvDwySHbWxu88uItdra3UUojpEXYlvHkhMY0DHprdJL82t3F8+vyS33VKu689laYiSGYTSecHT7Gm3B0De7GQYdTCIHDM5tOmE3GbG/vULURjW9QVmAvZ+xSIJwILsVe4GzYsF6btNLY58fqCmJPp9MLLqdRRrq+j8+6VK6lrWoi5UnSGBdrkiQmjRNiDJga4R1VsaAWBY2UpLJF5BKtErS++tg7LmJUlGGkp3YWESk6aYRYniNmx+wMO6AVx2czRpsxIrLMZzWLaYUwLTdvDHFPTlmcP+bs/oLcTrj18p8lzga0eKqmoak1pb26CKtLWxW7muW2llhL+msjtjZGbAyHdDo5WRzTyRMirRmNNlgbrq9cQSYUZYWQKqAmVs4Ad+/cYVlVKCGJtGY6vtrxRIuculwQxy1pFjGfnKEjTSQjHj74gtl8jl6J1JjWPFfdwwmsFZRFy3JRsyxmNG1NWZYYY5hPz4i0pNftMVhfJ46u/lySJKGqDCcn50wnS5o6PNhRHJZ0AfngEJ6VVKagrFqa2nJ2OmE+D2pgddPQ63epqxa8ItKSk+MzpJTcvLWNjq75XPKU+UmNXdZoIcjTmERoRF2xOF3y8MF9To+PsVUVVLqkJE0StFZkWcL6+lqwx+r22bsRsVyWVHXNbDlnXhREawNYCUFdFdvb3VUnDMYFHXBjGqToMT2fknUNW7tDKtslqyOiRBJlPRal52IM4/MqeKeNLUZAZz0j7fbpdi0og3WKGHftIjuJ1EpISDwvu8hVUfas1BNXVlZSgFCrBk2gfagTiMu5b/i+yBkSEU5pTqhQhK/BIyzKmqenp5zNZ8GpZTGnbksmswvmZcvazk2KsmQyuSBWgG1QkaZtaj778nN+9l7Lj3/c5fXXX+X1119nb2ebRTHmvZ/9tzw7fsxofYtXXvwO9154/epEVvGNivBv/PZfD1JtEp5+8Sm/80/+IcvlnKDLJHCruS4+zOCW8xlHB8945ZVXydKYsm0xMsw7L0cO3vvnUpiXc7zrwjpHsAEzwRmgaVCqwVlJlHZQyZDaeCJdkSlBv99BS81yWdA0Ja0PnmLbmxvMJ+c8+vI+Rblkc9hnkEW4XgfbWuLoarHswicIo/BS4bRE0JLEnrRtGHQdVVlSziN63RilGibjJct5xXy2YDQaMFsuKSrDWjfDlIccvPcPWNOC177/n7CUfZKmpY0j6ubqTieOYowK87ZIa9IkYTDoc/vmPv1uh0Qp4kjT73bZ292i3+sRxTEyiiirBh1FlHW9Uo4KC4c4jhn0g3tsWRTUZfUcYfF1sZwKqtqTZjVtbSmWLZ2+53x8xuf3HxAnASoniwonBF4kAQ43n6O0QjiDqSrKsqBpQy7FcknTGJyTLI9Pybt9ouTqeyRNUtqmxLQO5yRRFBPHgijR4A3CC9IkCqe2lftHHINSKU1jcTYUiURLenmEa2sEisGgyxTDdLqkP12yPrx6MffBJx9h6ppBpwMSLOFlfXF6ypMHDzk7PFzZx4f7OE5iut0Og36P4fqAJIpo6pqiakmyLnHe5dmzZ9SuJe91GY6GK6Wua2b1RYkTHifColZISZwGPe6t/RS5nxBlMZN5zJ3tewzXu4yPJ5yeTcm6a9Re09YL5rMFRW2pjSFfel64mZKkBuuDJKXzVxuwZrFcqajJFSxNBAMCAdJ57LLAe0uUpkFJUAbJzue9srgcT/ivZsQ+p4Ml8oJG/iK87etiUbXMq5JWeHwksWJ1mnSeulxSLibEONq2pC7OcEJhZYIQmrapwq7Fe/7wRz/io88+4fVXX0GIhp998GNOLh4hZMzh4TPSqMv21tXLbPiGRbjfX6O1LUpKtvdukHd7LBczIOjfXi6U/GqL3VQlJ8dHtE1NHCekcUxjW8zlHGUFAfpqBrxCAl7TDRfLJVIGUeosz+j2upRFS6S79LojcDH1coluDd1BTpYMsHhK11DMxkwmM5z1pLGmmE+xbUneiZlOjtA2x5VLjG1J0muOvUoglAKp8ZejFd2iVcV6P8LYkvFFQVnUFIWhri2LZcXm9jZbL2zxz/7wY8ZVy63NHeRixqw+5sGn/4qtu9/DD+/ikow4VsTX2KSkaQIuZ2O0z97eLlmSsLuzyVq/x3I+wzuHloKN4Ro39naJtKKqK7zwoRNEknY6zKYzFosFg8GAOIpZTGeMJxMeHxzw7o9/wu7+7pV5+KaLtGBKQ7FwOBPRpoLTkzPKKnSXwmuk8rS+RWrQSYPQYOsWYQ22KSnLJdXqhVDVwX+vbiyLxRIdZygGV+ahxOVJVoITRLGik3eQEmxb4mwbFoQy2F95PGkagZCh4HuB1sGxxQOj0RpKJ5RViZAK62B8Ea7TVfGHv/8H3Nq/wc233qSbJmgpOTk742cffUwxHpMKGXCuQpClCd1uh16vSyfPkN5TFnOaxlB5iYgFpmmYLBYIKRiN1hlujFBS0jZXz8jnTYFOJCoSSCWQqOD6YgtEssK4IoiSAa+++Rq2OufZg88xtqZpS5blnOVyTrmsaFtPsVwwUS151mNjR9FYS+tMEOi/ItJYYI1F6zBuCAs3H1AvFloV8KqRitCRwq2kcH9+BiyECLZfq//2XpF6j/YglUD45x/+18b5ZM6Tp08QSUrTlpRVBQ6yPOHFvZtInVLOC0Q5wcfnVKQU7hZad9je2yeLNJ1eTtuWnI/H/NGPfoxWlrJsqUrPdH7IfLZgf/8Ov/q9X7kyF/imlveC0Ot6Qb+/wWB9i/PjZwhv8C7Y9XgMYrVca9uas/MT6qaklyZkUcSi/AqqxqoLfh5SgL8ETX99dDs9nAcpdXBdsI4k7fLC7VfIO1v4eA2ZWGK5wC3GHJ6e09/cI4tj8jihSTPqusVbEyBPSUwSKZJII2XoYIPO79XFL8ksWjrSRKCVxytBLCBuLHna485rtzj4179PU7Z851f/JOenY54dT0nXcxaNYzEvSXPJ9p0NoiNNfjZh5krG02PS7h1aH6F0eFldFR5B3unw6muv8erL99gaDYm0YD4NM+6yLFBa4XDMljMG3S5uNaMNoPMoaA9PZ1RVhVaKXr9HLNVKoF7wox/9kMHna1fmoWUflWi8KIl0RI3g5GhGUdSAZzqfkSSePO9SNjVIi4oyZNSExaJtKBdzyqqmbQ3eeZqmpWkb6rpGKclgfYC+2scxaPNePsAi2CPNZjO01hhjiLSkrEqyLEPr4KDgrFu1W57WtCAFeZQwGPTwbYW3NTrPw4y4sczmS8qiujKNjU6fyDjqyRyikrapeP/TT3n87ClrcULW64MxCBls2OsmIreGpq7QClzdEqUZvWzA6fkFZVmQd7pEsWJtNKTb7YLUzOdX24GlvYi0EyN1QMDUZUPdtrQmaFd7IIv7VDPDD3/vB0ixYDofo1VKnkIqDYVxmNYxnUwpyindfsK0UGRGUzRFGDFe04GmETTeEWuPjsTzua4SYdzgjKYuCvq5pG5rrIpQqxFGIERc4rbDSCN81p7UgyVonD/nXlwRi/mSydkFOo45PTnh9PAMUc9JMs2br76Ekgnn8xkq+YLGHFPX36OwNTrReAQurhn0BFq1dJOI0doNjCk5ODGMhilR3OPw5At+8JN/xf/ob/ztq5PhGxZhITReKoSzJGmHre0bPPzsZ3hf443DeoeTHn1pZSM8ZxdnLIuC9eEGifJkscKYS0sQSWPdcyKHwxOcNq9xkqgNToDDImTEYLjN7Zd+hW5/G+EUXkEUGbpZhuz1iNYtrdPgFaNRnyytmc2mlMUFqZZ4WyFtTJp3MdaSdjJmtWO8tOxckcegL8BaYlWTJgqlPV0pSJqErU6fwaDLW2+9wXIx5bMHX7K+scn+vX00irJ1DLo9sjymKips05BLh4pq6vFDhrfexGcdHIrmmgmNtRavRGAs5RlOwCf37/PowQPSNKXbzUnTmNZZirri3t27pEnObF6wqFo2d27inKEuCzY3h7SNQckI3e1SNQ3DtSEPHj3h4NnVRp+1WeKwpGlEJCOePT5hObMo7WlMy7KqaZykbFcWPZGlLCYkSYpUkuViHswVm4amaXEW6rqmMYaiKrhxY5fhxlq4R64IpSCKNJGWK+KGeI5TVyrA15xzlGW5Eom3K4ywXx15HcY0QLC78U7Q63WY14Ht5b2nKhum09mVebx17yblbMny7JjztuHRs2f85KOP6HZ7CKWo2oZ0NUYSUmGFpPGStjHUoiXLUtY3dijLsHy2JljrpEmHNOlQlDVSe3R8zVtJO5rW4BtP0zRUdUNrLEpGNDYsJqNWMD+f8OnDz0kSTZLHeGuZjC+YTqbUraBsoClrtNJESpNHEd1U0cl6OK9o2/rKNPIkQM/iSIRuWIBEonCYYkkxOWJ8cczB8WMG6yNGt+6SxREeT9sEfLvSCiEFSslV0Rek1mG9QGoBPrD5rorFfMHF8Xlg2QLvfOctbu+uUy4OsGXNtJlxIRacj6e81L+HNENMWRPFKd5DXdYs5ksEDU8fnzDausXdO3fIO31m8wWt2yCNNU8eP7r6c7n8eH6pr1pFIFiskA1Ssr23T299i7KYUrZF2Oo/B2ADQjCZjDk4PGRn9yY6Uqx1EvJE4aylbg1FbXHe07YtZdOG+dA1b9TpbIEXChkl7O3f5sVXfpWot0PjJGmsUJgAq5KSVsTM6ynzxQIpIrxXLKYL6sWC6HL+jyCOovCmn85YWxN89OnnLIuS197+1a/Nw+sOCEXjwBtPHGkKDIP+iCQ+5PjpY6r5nGI5Z/febV549R4Hjx4yfnZA6hL6nZwvvhxj64ZOEtFLI/q9LsvqgtZMkWzQukv09NeHsRbhBCfHJ/z03Z/w5OCAp0+fslwuSNOM9bV1RutDtJJEUlDXjr3tLaazJd3+kL2dPQ4Pn6KVYDga0TSG0+NJcLPQijhNSJOEur76uKniAldHaNllPptwdnqKJKNZliyrMjicOEdTLcIe3ERoqQKaAfncUqepTfCbM4FcEtY1ls3NEWuDPnV9HXlFEMeaKNbhPgignfDQ6SgcZ/1X19SagDU3LtBOkzQhTlL6gz7bO3ukkQDrefbR5xjjVu4ogvqaMUA3j8hEh6qoqYXnfDZhvpiTZ4Gp6ePg9N2UDXGaonRMUbc0pmV3sM7oxg3myyWnR0fheanr5/T88cUUXRmEjlZQvK+PtnToyAaH5SQlT7u0xmFaT1lWeBkIEm3TMJ1MiGNFVChiHTMfL2iKFlSEQhArDTL4KCaJwjuJcZ7WGhpzdRHOtEM6S6I1UcRqLyegbakuHnH+6FMePHlKd3MDs7wgjiTx5ibz2ZSjg8coJXHOEyVd4nj1+dy6RaItzniUkmhXs5iMr8zj7OSYUW8Ydim2Zn0woNPJaArNjCUn0ZLTdsGWu4F2N2lpME2JdB306vTYNpIo0mR5cCVfljWR0sQShC8Z9oc8Pfjiyjwu45vRlgEIW0qHY+/WbX7zL/3HPH78JT/6N7+HbypCh7tiXnlYLhY8fvSY1159mzTVZJEki2ME0BhHUjYgAo11uvRUjaU11xQd4xGRZtDfZPfGPbzqMC8rIi1RziGaGqmhrh2TxYTZosaYkI8xjuV0Tq5UoGriSZIU5zyLxZTpdEocRTx+/JjFbHplHpYUoTVhJWdpjKQQMEq6CJlQzeYI17BczMnzlPl8zGhzjWpyyvhiTqeTUS5PSLKMWnk6ayPivMf5fEJTlSTrGin0tZb3sZIgFR9/8jEffVDTGktrzPOObT5d8vTJEVoI+t2cLM5oypK6rnkhSamWUxbTMUpBVSyYTGYslxWNsZR12Nw7v/KCuyqPOAmvC1lRVQVRFNE2Da2pyPIuw7UBaoWamRctjXEIIVFakuU5WmvqumE+WwKCpgk/J89zsixlZ2ODJNLE18wjtApzW7Ga00slETZ0TXGs8a4FL0nSjCSOcc7R1i1iZVcUWF2e733vu/ylv/QX+Kf/7L+mrlq+89Z3+Tc/+DHj8Rwh3MrS6+tjVtTsrG8i5BxbVawN10mSoMEQRRHGGBrniZQizzKGwyFFVdGszCKLsuLg2SER4QWSZVmwVjeWyWRK6jxJ3iHLrkaLlPOGKBbEcSD5OifxLsy/y6rGYKgjHcgO3lEWNdYqROxRxERCYpzFW4NYjRLTWJOkmqYx1I2jsS1eXT2+yykRpiSJHFo6EIE5F+kan8EkEwx6GWv9Dlo6Dj57l5MHEWenZzz48ksW8wVN2yJUhFSal195hf/Of+9vsDkaUJVjYnpoHMX06Mo8Pv34Q7p5zrJY0LQNR8eHFAtNU044nZ9zUF0gIomKW8bmHJSirltMPSfJUrROUCpBKkenoyhry+nFGcNeH2MLinpCU3s6navx25fxzXDCwCWz0wNZp8/te28Q510+/vBnzE6XCMdza2gpgzvus2dPWS4KlMrIEo1YCfpEkUAQ7OldlKC1YLqsWcyv7jC89AxHI27feREZxUznU6zUxBpaWyGaFhVpatdStBXGCpra0jQ1ZVWiXPC5Ws5L6nLG9tYGlTPM53POz88ByPMEKdeuzCOOPELY53RGJ4LFvNOa6cUS8+yAza0RWip++oc/5o1feYu7L91h3Fsj6Q2Z1iX80RPmixInUnq9IYvJDFc4IjxZEuO9+ArK9TUxHZ8ho4TFbBao5StRGiEk1juksMRxxO7WFq+/9jIv3b2Dt4ajoyOapmI+H7NcThHCMz4/ZXwxozbQOM9kNuPg+IhFUVw7m86zDZbunMbM0JEkTROiyDLc7OJlxMawx7ATM72IeXY45+lRwXy+oDE1a84TrdAoRbFcbcBb0tzTyWO6ec7O1gaxlkhxNUpDCQne0TY2NARagArczI31LkrD4fE53odTRhyFkxkrM822tXhRsbG1we7eHo+fHrK7vcPf+Z/8j2kd/NN/8Tt4Z4muwWQtGouMM5blOafjMUUR5tDdbpc4jlhMpzQIbu7uMhwOyfI8IH5XRXptbQ0tJfPzC9TK8bcoitBFW0txbhjpiOFweGUeUkmWVU3VgDcu6EUgyfOctU6HWrRYZ8i7KWmWkcY5g0HK+LggjhNcAyjorSnGZxXCxWSdlNI0LOc1dWMRWqCvQa34coarCpywKN+gfQNNSRIJnpw+xbQL1gc5hwdPuXN7G5oJve6QjZf2OXr8iIVpsXWJ9QsQ0IlfZj3yqHpGx5zB9AKR9EmuIfO8/96P2Nq4jcWR5TmL2ZREZ+BhcT6jGk9p25bPxIRIx3S7fYbrQ3ZvbJKmEU19CSgQQRrAtNRlRZ0knNQzzi8W6Dohvm5MtIpvNo7Af4XvI7zJkJq8P6S/vsHk7HDFWBE/t710nJycMJstSDOFEI5IR0RSoqUki3ToKIILIcaBqa6hmmjD937lLf7yX/1rnJxNeP+jz+j0Rrx0+yb1bMz55IIV8I3JZMrRyZjJckE9X2DagiiOKJdLZpML5tMLYgky1uEo3DSBWZZl3Lp568o0klQ+F8SRIkDNvY9ZtJ7qZEJnXmBNTaRz5vMF25t71LWltp6bd+/itSft/JDx+IIk3kB0Ja1vEDpGJxKdabwFfw0ddHx+gorzFbMtYLYvIX/eQ5LGvP3dN3jn7TfZ39ulbRoePX7GxXzBi90u1lq6vR5NLRmkOXub+3z85SNOD494/OQpT54+pbVt2MxeEUpJoqiLtAqb1Kyva8DhpaF10O0qNkcR3aRDEndZFGccTy44uzijLCs2NzcDXVq0SOVYH+W88MI+50cFSZSuaKMSf41wjpKKtgk4YxB4G16SaQw3bozI0oTz8zFNU2OUxFqB1hEOSNKU4WiD115/lT/967/G7s4O/8O/9bdYX19jd2+bQb9DrKA76HFjb/vKPB48OaafrXH/0WPuf3GfwjakWR6o9c5jWsNg0Gc0GpEkAQpY1RU6ioiiGNO29Lo9FhdjqqpiMpkwm83o9XrEUcR4WbKYz5lf03FNLyZM65rWuJUuSdAV8cKRZR2McNRtSbfXY22ti5A168MezUzTCoFtF+RdSbQlcL7EL2OiGJZVjYoUtTF4C+6a5/bTz75gUSzodda5ud5lw17gluewNuTwk59RGcsrb32fN998m53dLlXryPIuCMnB0SnjPxxjShO0ZTwIrVhenND6Cr14hGhq4u17+Oial7T2pFlCkmZ0Oj0SLdnZ7lIvp8R37vLC7g2KssLhGY8nZFmOsS1lUaJ1hLFQVh7ZBhNQ5zy+NTRtxVG15PCiZGQ8jb16cXsZ36gIB0Uo/5yzHa6EJel0+O6v/TlevPcyj+9/wuP7H6GlDOIxCCaTc06nx6xv9KA2eC8RSiK9QMcJrfWUdUvjQuGM4muO36kk76XcefEFdPyU//ff+3+iVM6Ntd9iMb1AaM93336bN1/7DsvpgkePDjk+OePJ0y/54IP3+Pz+J+AMWgo6ec5sNiPrdmlbw50XXmBne5u93T1eeeXlK/NI0yiA2J+HABEhmg6qMyJp1jDVOcV0wd2X7zKfndNP1xntDkm7XYabCfs3dyiKKfWyZMwYmQp63S5ZL0UlAm8EwlwDlRMEJphcDdrCPnmVm2A43OKlF1+j2x3y5PERX3zxBZ89eITznu+89Q4XswVffHGfcj7lOy+9xKuvvMbhuOCf/uvf4WI8DmgBIa9bOiOUQ2pHmnXp5Wtsb0TM5qdM5wsGWU4312gtSXNF3wi2N3tMFnOckNRmymSiWBvl9Lc2EdowHPS4ub9BXZzT72xg2payqFH66kx0pLHGYKwFL3FGIJRlY7TGrZtb4Bxvvf4Sn3/xmIvJHB0leGdRWpNnCYPBgDzP6Pe7dDoZ3337TZ4+fco//sf/iAdffsadG5sMhz0G3avdp3/28Wdsrg1pjGNZVqT9HB1FK2v0AiFgc3ML7z3z5ZKk16WuG2bzOUVd07QN1hgW40nohNuWogjfF7ctnW6fXr+PvWYsEjlNL4spjcPYmnlTIaWgbTylcyyXDU3TsLXWp9dPqNoKGWnSPKdtWrwQKJUEdEo/obKONHXkqaasK0wd9hL+as9nPn42R0hJ31mSZsz29JCkOOfMPUYeHzJbVjyuFK+/8BLHB9B5+VVIgwbDxvqAuizxK900heP+/YdETpGKmuL8Mb08obs5YWk9/7P/7OvzcA4iHVEsFpyenBAp8JuhibHG8OTxE6bTBf3hgE63Q56nfPnlA3784x+i4xipItIkIk01a4MhL957le6gw7JagjHELiFWKXl+88rrcRnfsBNmdTReaXt6HzCoWnP3pZeJX3qRbifn6ZOHQRvCO3CWZbHg+OQZL794D2M8UlpkG5abTkZMFwXzZRkYPSvIzpVJJyk/+tF7GPv/oNvpsZyXFMsL/sF/9fdJkojt/U02Ntd4+63XuPf6HW7d3aNYFJSL7/FP/uuMzz56l8a2bOzt08lzLi7GVHXLoL/GaH3IWq/L/tYWmb5asyFVelXofg46o0ClG9T5bZ59+WP2pGdzf4OymnL/g5/yxvfeZl41HD59j8HaHbJBQu0JNt1tQxxp0iRHCUkiAz7UXX1vo6THrOa1l+ph4QUZuvRFUfKzDz/m448/5fzsjIuLM8q2RSnF7/zeHxBHms8/+xzpHY8ePeNs2fDw6QHHp2cBg+pXMivy6g8m62p07hC+InZDpO8Qpy1bW7ukeQ/pS2wzxvolWU/Q6QkSDbu3tnC64eH9KcMkZffeCLRFOYnxJVESsbE1pKjmPHr4iN29vavvD6WI4hitNM61KAVZphn0U85Ojrm5t80f+/7rbO2s8wc/+BnnF0WYyW4MiaKEZ8+e0Zqa6WSCbRt6nZxIKx49fsyNvW307gZ1tcTaqxeEp+cXPHn8FJqKWEkGnQwQTJdTvLVsrA/Z3N1mPp3inGeQ5awLyXQ+o21qlos5xWKJbVqiKKJpWnrdLt0sZlksoddBxRpxjbV63onD0shYqtoFdS/hUVLiXdA/EFJQlQV1I9GxonUVlW2QsQZtaU2NciqI68Q2UMddgcTSySKKymD91TPh0kZgPfWioZqUnD46o54eU1IyrQsWrePZxZd89sUz+rsDeofnZJ1ALf/yi4csliXt89w1jU95VkoyHxHLXeYNtMc1dX31gjDWOWVVc3h0QKQVG8N1rAkEjKOzE3760UdMpwtu3djjlVdewhjF3u5OUNTTEWVV8/DBF9R1wfr6iO2dfXSmcbKlbxVN6/DCItS/p5mw9wFe9Au9iFvJUArJzt4tXn7ze4GGCRTTC46ePuTg6eOgouYFwjqklWAs1hjmiyXFauMdxhhXdzq7mwOshY8/+Bn9wYjdrR2cdyuB5YA7PDp4xsOHD5jPZ5imoZgvmY7HPHn8MBRLC1kWNqynZ6dkac7GaMRw0Of2jX22Njbw13UYKhzB5UrRSRL4+V5K9M4+i9NdpCl48bU7jNa7nB0dMjs4ZFbC3BrSfIDWDdPZjCQaYpwjtg1SFcRak0SB1XSdtGcsobFBFP9ScMoT1KUQgulsxocffYiUYRlpjAm60K3lvfffDzKXxqCUYvn5Fzw+u6BuarxQCBWBtSup0Ws0LIRjMRvT1C2ZFCQKvGzYHG2RZX2aBkpbYEWM8zUOw2CUs7GdkHRzjg6mzOdLXkpvoBOPqS3SR2SZoNeLGV8ckmztI64ZR2gdxIn63Yymauh1Eu68uM/+/oiNQYfNzXXiVHPvpRtk3R7/7e/9jChK+at/9S9jjOEn7/6Uv/gXf4O7d27zwYfvgxe89vrrjLa2+d1/+c/59P13yWJ1LS62Kks+//xzhllCoiXrvYBKGJ+cheulFa1zdNfXaZuWqmlRWpNlKXVdUSwWCCHp9XrUdcBK37l1g1t7mzx+/JDH56cIrdnavvqllHU00jmEMEihsE5SNTVCCjwOFSmUF6jEYpBIActyideS7iCiqROKZUsedWhFRetr4kQhIkuWa6ROaEx6LVkDPHVdY8qGKZ5xbxvZXycWFfPxBU3VoCLJrJMjRx1sbaipUUoxKUpcFOGcQAmPkxGiMyLZukNXQtc01ArqSJNcS+PexTlBp9snS1eL2TYoCJ6enZKmGWnSYT6fs1gsyTsdXnn5ZV68exdjPE+ePOXk6BAIHIWyLIhnmmohMKbl5NkpUZyyv//voRMO0hhhIH35PAZ1e7gUW+6vb/BnfvOvPHcmOHj4Ob9zdszxs6csi4Is62I9tM5jG0NVNTTGBhUi656L+lwV33/rHo+fFnz6+TEbwxHv/Mr3VwVIMJtNaU1NWzW8+6MfI4SgLArOz854+vgJTx89xjuPVpp+v0++UhLbHA0ZrvXY2hzxysv32NzYRF/TYWRR0BYVUq4WYeCVwwmBXtsiefnXePTumOUPP+Ev/Kk32N4bMb5YsKa73Lxxk7g34ObuOsIWzCqBcUMyoxiMYjqdjCRT4Oy1CzEtBdo6rGlCoX3+TxDJ9kDTWoRwz+F/1oN3LiyupERFEUoGnd+z8wusc0gVBzZga7DOPt8IfF1UC8XJsyqck7otRi5JMkvbBjq3kDFOJhhiqrKktZZOL2VtmKJTw8bmgKODBcJErA/71NrjbcRaf04WS8bVEi0s3lynouZZG3T4zmt3OT0+I4sjhusdbu9ssr7eC0Q6J4kk3NzbYGO4xv0Hz/j9P/gBv/mbf47/1X/+n3Hv3h3qpuLdn/6U+/e/4NeO/hSLZc0/+2f/ivVuxM5GF3XNfdo2LRfn5+hBj5s3thkO10mzDs46Hj96HBxlvCdJ04AyqBsgvBA7nRxjGqIoEEyatqXT77G5s0231+HFO3fQyTGzZc35NXjUumppcczLJVXdgtA0xlC3AYVhbYxtDE16QZzuoSJPHAvSrIfWlsVcspg7ZGuxdY3zBgjPkFBQNwVFadHx1SelKIqCCLyXtN7jlcLJBOcifNeBXGKFA53TthHWlbTeoKSj8qCyDs5LpNRoqRFKEilBFEegA9ImilOuOcCG1YZ09PKMTidjNr1gOp1iTEldGTZGQ6RUPHww4+JiTBRFfLHS2q6qmsdPniGlotPpYkzL0dEBk8nFyhggiF2laUqSXHOEXcU3xAmHQUQYB/+cBcmlqKeQKK3p6PS5kM/mVkG33+Pi/JSzs3P2b/SDbKWxgKO1bqXDGaxNrL0e+vPHvvMmneSYjz98yPnJM3z7HW7cvMHGxgbz2YzJbMpPf/ouF2eh4yjKkvF4zOnhMVVRcLmxurQlGa6vM1wb0Ovk3NzfY3tzhNb62qLjfIDsSM8KcL96KIXC0yMZ/iq9W3D40d/n4cGU79wb4DAkuWI03MAh2eql3Nkb8OCkYbEc08qMvs6JsgwdeYT3XNP4oXB0Yo2VmmUdoGk6UMZW1NDQ3UilQuFdLUKFkgip0CrMj7VWKKXROnR5l5910zRUVYVprz5+z8cGTVBm63Y62NYDLYvFAnyCw7IoDZOFZX5RIlRG2gGhAkb45s2bTC8eI23Ker6L6HZZFo5kd8FaVzM9y6kWJctroINKeRIluXVri+FazuR8TF0uVmp0QUZVoBA+dO+dTsJ0NuOn7/2UJNH8yT/xfcbjMZ1uF2sFP/g3f8T9+18wHo9JIsWdm2+SJDGmuVorwXr3XPR7bbDG9vY23V6fTt7l4OCIaiXcE8cx1lmqsg5wOjxKy5V8oqRqGzr9Hv1+H+dD/r1eh7defRmE5t2fvndlHkcnFxBpjPA4qfBCopIc31aYytIaj1IavCVOYrKOIc0F3mQU5RyVSFQcFlpSO4SyzBZTEg/Gt8yXJU0D/d7VULnlssCYdiU4BUJ6IgFypb7mRThRR86jnKL1Glt7vG+pnUanXQQCJxJAgZB432CwSGGwXuOMDSfuK2LQ6zJfLpksJ9T1jFhrnj15ysX4lLOzC/I8I8vSMCO2lk8//YyiXLK1tUVV1hweHtPpdVcNXMx8viCKIvr9Pp1OlyzvkCTJc0eW6+IbjiMuLUXE6kbmqz2Q91/9hw/C3VEcsba+wfraiIvTQw6Oj9jau403fiW9GCi5AoF3dqVZe72e8Cs3XkWKEb+/+VOeHT/l7//9/w/D4ZCtrS1u3ryJUoqPPvgwAP2dCyD8pqWtWxKtiVeCNWUZ7EyUUghvGQ3XuHP7JmkcYd11/TjU5UUYG2iN8B5nPM4HCxSlFMZrNm9/l+r8Ef/yB/+QZ488iYxY31pQOc/F8QnjpyfsDrs8OxszLpYsTcWgVRwdjlHzIHgiDfDrL35tHokS9PIMI2PKeh46zzRFKgVCfSV0KCRSKyQr4STxFXVURxFZlpLE6Yre22LahrqqaKqSqiyu1SiIIk+/m60IImtondKYCUrkSCGZzmaMF0ueHVygLOSdHjKWFMsJaZpxY/8mxUyz3t2kn23iRY+mrkl6KZEoSaIc4RX+Gi2NSEmUCpKWnWydjfU+aZrS63WwLnRxaiUMI7EM17vEccAoK6n47LPPeO/9d/nbf/vvsLG+Saw0b9x7EakdWRbTyzPqYnHt/aFW2N6d7W12dnfo9/tsbe8wWt9kb+8jDp49pSzL57Y5eZ4TRZq6qTEmSK/u7e3R6YX8y6rC1CVZJ0fTBuJF3uG7b1+t1iUiaGiwQNW2OCFQIkJIhdKSxlRIpVCRxFrLctkyWxjKpaSqp2iVIBLBrJ2juzHCt4wXF2x2esHVQgHS4d3Vn0tVlzgbZB+FhJJQcCNrqBtDay3KO4SomAuBIzAEHR4vYlSUIjw4GYOIsEjKpsZ7SexsIPUoRXvN/THodJDC8+DLz/jwww9I44S7d+5yfnbG+fkZy2VCnuXUTcNsFvRUdKQBwfpog9HGFp1uZ7XAzYmTYGKhtV4JKl1aiP17EHX34he7Yb8yjJNKrPy4LM4ZnAtGis6CihL6w22MeY+jw6eYt78f9AiEDsdWL1BCorFY/PNj9FXRS9d48WbGb//F3+Cf/84f8OzogscPLrh//1O8lyipvprzWIsjOCNkSYpKM5CS1liOjo5ZX19nY7jOzb0dvvfWm4yGw5/rf69RY3r0AyKV0iY5Wic0q6NamibP3QaUlHQ2NnnvvZg//NG7vHH3Be69lPDw2ROyWNHrbfCn/8JvMOVDTi8+5Pz8jBuLM8TsCFdXGCdxLcDXF+E0iehkMUurwta7NdR1TZZHX51WlF6NV0RYmBLwo1qF4ptmQbmqrmvmiwXzxRxTLnG2DW4bxl77kHX7XaQOL+rWenQs6fY2cdYTq4TZXDI+ndEUhn4/JU4VrW1xBawNNri5uUPUxisdCY8xS3y9pGkKqrrBGsXa9jpJfg1ZQyQrs4AgxBOlKTrSeO8Co1OusMQ2KItJYdBKkPT7fPd7b/P+++/z+NFDGlNx9+5tXrixT6xa9m9uBecSa0mSiFhfjRPO0ozNzS16vX540QsRMM6+ZW93h/HFOUmS0O12OTs9ZzyZMFwROtq2JtIR+zduoOOY1lqybod6McfhaY3FUWCExYirPxeZJkQ4TFvhWk9dt5TFHKUTpFTEUYSQBo9kUjyjKhrKqqJcSjwR2zu3iDJJZaYo1ad2U7SXlCbojCSRRnpPUVydR9NUWLv6Gr/SfxASa1pM22KMDVVAtBgv8EoQ+eBS0XiBW2nFiJUZqzWGetkgUhW8Lb3DSXOtEGNRLGjqijRJUFKwWCw4OjrCmJY0DddECBVegHnOvZdfZjDo0+31yNIcHcXh9ChXn6cIo0i5OnVe1kZn/z10wv6S/7mi2a8WlZeV+bkwj/MO58E2wU9qsD5CKsnJs4cUyzlRlCC8J46C88El2cHasDC6Lopyhgb+3K+8jWprfucPf8zJeEFhoKgMpmlBxKSdiNoEDzXvLUqEpVndtDhjqcuK9RfW+e6bb/Kr37nH1tZmmJE5filjkgd/9F/iAZ0kpHlGnEqgQQhWc9Bk5TLdsD7SzC52UOtbbNy5xfzwISpKGO7tsnPrRW4/POeH731Ib5Dim4fY+e+jjMZjV+OIX//aPOIkIYo02gcAjxCOtqkRUpJmXYajTXr98HAbE+aQWmviOCGKg/niYj5lcnbKdDalKivqpsKbBu9M0Hj2XylXfV0slkX4+c6xWJ7R7zesra0xGY+JZHBfFtaTxSlKxTjrqMua3c0tbu3dJo0S8kwxnixYzKcBK1uPaeuCtnE43wb92mvEw4NEJXgXmgPnAiHIr7Rrg/HAilAkJMO1Pvt7GxRFw0/f/TFHB4fs7G3x4YcfYWvPK6++RJa2aOmRkcbrQMi5TqPAe8u8mGPFiLyTEWvJfHoGFm7ubTGfjTk8OiDNU7r9fuh0bcve/s3AEswzdnZ3mS8X+LIi1hqZpjgBy7qlWdRoXVzb+S3KlqpxTGYVzgpMC3ULMrZI5cmyll4m8WmENXOqApaNpRZLoINMR0g/R1EghCbreXprHbIMimWFsJpIaNKvN1oGoCwXQafDiyBVKYIoj7QtTVtjXftcEFcLhfeK1ho80DpwK3NQv4LHWusoFwW20XgMzks86tqTdNm0NI1hc2OLP/2n/ixt02CNBRGW+1EUESfJ6vkIA2ZnDTpSRFG8ktmUXPpkXtoYXeLyvQ/Gn8/Hk9fENy7Czoc55eUpJBTfr+Qnnec5li/M3CS9tQ3itMvF+SmTyZjhaJvGBM1htSrA4QhsrxWohiDaLUXQNfhTf/z7jEYjPrn/kKcnY07OxkEEpjUgIywC6zx1VVPVFdiGXhrz0o073L1zl7feeovXXn2ZjUEOQmLcz3X518ThowdYb3FY4jSmP+iiVHjo67pme3uHThbTzQUvvnKL1+/cZjhcx5gZlVXIFk7O5sj4hIiaVJS8sL9BNTvms3d/lzSXK03TGvi7X5uHiDs4oUGuFm/OgBRYE6xsNkYj7r38Ovv7+5RlyWQyoahqqrJkNptyMT5jfHbCYnK+UpALhTTgMsLsPE5i8vxqg83T0wvwnmSlM7GYL5lN55yfnaOFZ2dnl+2dEVVtsB6KsqCTDRisbbFY1pycXVDXFfVqBu2cxQtDkkKWxXgqjFkQRVdDf6Qi0KFXY6HLzuarU9bKpFGEJmFna8Rv/PrbHB6d8PDBQyIEvTzlH/6Df8jkbMI7b73O/u4I/EoBEI8RrHDwV4Wjbiu6az0GwwFxpEmUQMWSOB7S7b/DBx9/xrIs6fYHDDeGyJUiXr/fD02OCELv3gSMfqQ0Ds/FrGC6mOOCsPaVWcwWFU2rWC4DVTlOJFGaYXwNOhCVytYwLyu8UyvNYLDC4ZzFIGjrEh0ZnG1BQetr2pmjLhs0jkgJyms6YW8bhHMoFHJFQHKsipYL/odeOLBtOLsKHRb+3mNbs+KHiefCPdZa2qrBtQYn7OqDv/4kHUUxWmu6vd5zS6ZLw9FLiYB/21zCmHY1tlsxfoV4/kJwLvwZLmV5Q+24vmm5jG8s4BP+fSmyE3QkrPO/AOdaSbvjCUW5tz7izuvfxdQ1jQWLwFmDwBPr8HZTSqG0vnaoDpBEQXVLRxHbccJ6r893X3+Ds+mCp88OOT075ej0jGeHx1xM51SNoVExdGN6vR6vvHiXd978Di+88ALD0SiIt3uH8Su7dBf+FL9IxPj/j8m8JElinJPUVcPk/PT5w183NScHFbdu7vDrv/YmH/7sI46Pzhj0R5yfT8BWrK11UXJCt3tBWbRYE7G/u8vPPn/Mj/4oYBi9aymvEawxcRcnJCYSqKzG1avxgWioypKjw2dIoZhOznHWsSyWzGcz5vMZ8/mUolhSFUtMUz8/zQgRXJyTNKHT6ZB3OqTJ1WOATt6jLMsAI1IR4CmKmjhO6WYxW5ubDNb6eKG4GBfcv3+fJElYLiuOjidYU5LmEW1jOTs7J881nV4a7hEka7IDtLTmaov3oJQmVt3Kz2nXrsJ7no8HnHOksWRve8BoLWVrPWc2XbJ/e5PaeuzNXXa2NhDOY40LpIRf0MD++pDwfNarlCJLUxId7vVcR2zu5mT9NRxhCdcUFbPZjLqu8XHM5uYmSZqiYo1Wmmq+xCuYL2bMliWzRUHTtM/HS18XRWWoGoPxgRS1LCxoh04kHZXR1ppyYbAmeDYaA3lHUTeaxRKePfucqjxFR4amqrBiQqdviIQnSzQyERg89TUnA1cWOO+es1lDIZGh4JkGbw1eWIyzSGdh1fmCQFqHtzYA8XUcnJ+xGFuD16EZlB4v7HVTROI4Ws1r/XNBsvD7fJW/ANRq3CCkINKXXe/qa8VKY0QENE6QhRa/9L3x8/GNirC1Fu9s8C9bFWKFDF7JqzdZkKRUXF4J4T1J1uGdP/lnwUGa96jqGulX8osm8OSjy+WWux4dEYpjWOx5B4lOiHVKqhOGnRz78h0a55gvK8azBbP5gvmywHvPcDjkxTt32N3cDLx452iaBuPDC8N6ESilxiKvOU5kWbrKxdC2QSYwLFkyIh3Rti1Pnj7j//X3Hgbadtzl0eMFcZwTJ4pJtUDKgihaIoQiWushsi4vvPInScdgncTTUl0DyTIqC7MoregNJcZaFovZyjl5wcGTx5weHRPFUfDEArwz1HVJs/LZ8ysmpFu9xSMds7G1Rb8/IIri1cTp6pfS7s4eZVWtugS5GsUYsiwhjSRpFhEnChXFGCfYv7GNMZb5bMliUZOkEqkUSaJomxaHJcs0pmlw1q8srcD5q8H4l0tHt4IVSSfx8hcfjksX38tCHeuMWKaorZhhv6U36CJjCU4Gz74VquSbPmRJHF5iaZrSrjScu/0exgFScuPWDbq9NbwX2Lrh8eMnjMdjiqpifTQizTKsd/Q6PS6sZzafczGesFguQ2E1Dimvnk3XbcuytbRWkOUJWSJYmAVORMHyvSwDicNE4APRpSxrFssSawTT2WOcK8jTBGNaEBaPY72fkiU5iIpZYfDq6nJiqgIhBWblqy6EwAsRUDrehpPXapeCCKewMK5UCCzet4DDW7GitwMqeu6+gQschutGmpef4c9TEkIBDT9XXv688EQgkCixMrz1l67O4a9Qr74SMb68p/yqlv0yIb5p1f42vo1v49v4Nv7dxS+3vvs2vo1v49v4Nv69xLdF+Nv4Nr6Nb+M/YHxbhL+Nb+Pb+Db+A8a3Rfjb+Da+jW/jP2B8I3TEb/213/ZxNsS3LcVyzmCtw7CTMquCGEySKsxiyrSo2dnqc+fGBsuiZtFqtIJuLFkb9Nlcz1nLEqrW8mjiGJfBr6suC2xTgIf/4v/0f/1aoMmf/82/6LXWSKFQQrM+WOft776FUpK6KRHSoHUQ6tYqQmuFUMFDrJN3SZKcNM4Yju7yBz/8KU8fP0YqAVKhpAYhqcqStfV1/o//2//51+bxv/u7f9MbU+OxREoipAbhcbR88uEZg0HOG6/c5F/8848QEn77t94m1jGRT3Ao1noj8rxD21Y4W+NsSxSFj6RuLWv9PvXsDO88v/k3//dfm8f/+v/wv/FRLInTmCRO0Col0oEhp1TQhvh52JYSEulBIZiNJ7z37rs8evKY1958lV99+00QCqE7HB+d8o//0f+Xl+7e4bV7L2FMw//0f/G//No8/rt//W/4v/Sf/DZ37t7l4NETnjx8xMuvvIJOYnqDPgdPH/PBu+8xOT/nxVde5ubNG8wvxtz//HPOzs+Zz+f0ej3e+ePfp9vv89M/+iGz6QXr2xu89OYbWCegtXz2/gf83/4v//evz+M/+u974RRpf0B3Peed777EX/7NP42OImazAmE8VVUABq8VJ3XF0+kx7z/4mLPFGOc1eIKmg7XIyCK8Y3oxZjhYYzIraK0njmP+3t/9L742jzha995L8AHN44UF5RDCEkWS3b0dhoMcfPMczeG9D9od+OcmpFEUPUd8tG1gMF76ykkZ9D5+93f/6Gvz+Dt/83/gT6uW/miI8yvMrxA4aVgUc5qiYmN9DeEqvG+JYkXRVty4cYu3Xn6bi6JGOM9Gp0PeiRHSk+Q5UZqgEAgZIdoAU/2Nv/Kffm0e/+d/9GPv8c8JM6xQEpcIhQAa+zkEC0Ec7Od/oP8FVcFfBBVcYgwE8J//9jtfm0fR+ED2lV+B0jyB9yAuWcDyUhI28CBOjo+RQrC9tUn4LH/xd/9FgINb/Zok1dd4k/FNccLRJrEyJMLiG8Fs1lBVPvDHjcX7lCzrkKsURExdCdbyDhtaYIA0SsnyLscz+Pykoht7mtYznzsElrU0wiYDiuZqiMmlc24cB6eFOAvF73xyznI5QwVtDyIdk6ZZEEnvZEipEUohVSjKVnoab5jVS1pASEWWdUjjlGVb047Pr8yjmpUBuuUVRgqkC5C5KI0ZdfokMqJdOJJIk8cJxaRl0i7J45yN0QZSxCid45ymXDQUxYI0DYwfHWXESuEijZJXqzFpGQTylfNEBMeSaMVI0lKiRfj/zjkkwXZKAjjH+OKCH//wRyzLJX/iT7xDojWLeUVpDd4J7t19mc3RGloq/HWkgNmM8XjMcDrFOctsNsG5lrb1VNWSsiypq4qqqjg4OKDX6VAvFhjvMN4xn88RAsbjMY0xlGXJcrlkXW6yvb1N3VjmF+Pr3J5QOmJzbYO3fuUdXv7OS7x8Z5fMW4QVdDpb1JMlDZrBWhcRSW5HmjdffI17t17ik6dfIqViNBqRr0TNZ7MJZ5NzPvrsU6zweNnQthW2ucY5QazErYQLNF0RaPpRFLG1tcZwvRNYeCJmNpsRRRFpmlLXNUKE+1xrHUw42/YXYHWXCn/WeqrqmjxMy8XRIaaak+vgAjPa2sLqnFjGlLrFOQ1GgIjBa0zt+OCDBxwfN3SGmxjrsKakk0rK2ZROp8vmYJ1IakSe0JYNSZzzG3/l69PQtIgVS46VNoSHr8xYXVDz+Ory+efqjOJ5Kf7KbPjfRnZdyuCKa26Q2q5gjC781Oe3tfeIQDPDS7DiK6jjwcERSZoy2tyAlWDZJW4YH+BqATN3+da4FNW5Pr4ZThhFZTVpDN2koV7USCfQkaCREu8AFZPEhnnpeHjWEqkG5xqsVwzWIu5uLmjqhtPzlnNvSLUBp2lVgtExOwONFlfjHi+B995brG8wvma2vGCxnJHnGXVd8/jxU6qyQghJp9Phxs19Rhsj4jRHCA0qwnjBom6ZNQ2RlsRaIJVHRYKsE9NJr9bEm1WTQHGMNKlWtNYRRSlCKTY2U6SHRTmmN1TkWlOWM6w3KOFJ8xcxFh48fIppW7wzLMuCKLJ459nbjjHWMm9akmvcdL11TC4mSBw7O7tE/RgpfWADtY7WtVRlwcnJMZ1Ol0hHJHHMZDzm93/3d/n8k0955bWXGQ0GSOuYXUyYLh1S5yhi8iS/7FmujX6/z3A4pJrPAYfSAhUr8k5GmibknQ62NcRxTD/vMK9boiwlyhKiOCJJAq72hdu3efbgIbPpmKoqcc7T7XZpliWDQf/KHBrjePnll/lzf+bX2dnfZHZ2yCefforWKVHUQyHxzrBoarxtEc7T297gte0XubN/lzjVJEkSAPnO46xlVhTc2LrNH77/E07GE5qVGtiVn4u/JAKwKsRB3W5zY53RsI+WNnTaOqLT6TzHr6ZpirXtc7zrJeb0Kwag/Lnf43os6vnFKZP5hFs3N3h9b8STx0+oJ8cMt7bp92OaPKKsHWWT05gaaz1ZnBOpBCEjrPHUTYOQirqCtpBUOC6WE5yxCCVYjGeI6GpGpW8rlNYrLgEgg3KfWFVCgVxdg8vvEKsXvwiN3qU42Iq27C/75p+ruUJ4/u0O+d+Oxq4IO3KlPbT6/cPvq8Jp1gXMvBAe7zyt8WgvMD68SFdI5+d5Bk9EnntCrpj+XGM2AnxjZw2B8w4ZRXS6McvWEmV9skSjqoIajbcpWRyhZUvVGrxriURLUyw4aRpMEZHGGlMbShtRRzG3NlO212IuCsfZsmWvc30RbpqG07MTEI5FOWdtfcDu/i5JkvDFF18ELoyQ1E1N3TYkeYaTEuMFye0uiYywPiIfbHDjBUOuWsrlgtYYTL0g1o44uvoGT9Jo1dkI0jjGNJZOHhPriCTX4B1V1bA+7BELQRJpHJYkXWNre4eLkyknR8dkWY6UGu9iGlPiXMm0Pqc+X3I4PiHVKb951fXwMBtPOHn2lGI848VXXifbGCGs5+L8hKOjA87OTvn0k0/RqzFFfzBgcjHm0w8/oqkbtkYjenmG9B6Mxxvo9weM9QV12eLyGHFNB2ptEA6y1lDVFctiztnZKVs7O0hBkAd1DucdURTT73bpJSndnQ0Ojg5Yy7o0dc1wuB40LaRAqUDbFQiKoiBJEgaDtSvz6A7WeOON1xkOBswvxjz87D73P/ucxikar4m0wrmWXj9D4+kgWZtusdXcZmN/j8FaN6jgGYNxlljHdNc7JG+9g2laDs4PmZYzmupqKctL+ipcdlue0WiD0XCAMRVZlrK9vcV0MqeuK6y1GGNWYP9AGqjrGq3183v+csT0813ydbrXF9MJ1bJmdzRiazTiyZNDHj85YDZb0O/nRFqTRjl5HNHb6JNlCU1Z4dFUMqKRGqsM670Oqm0RWUza76LQzJZLFtMFJBHmGtupJImQQuJcGEFY77GmeV4Aw4kvnFIvNWisX/3MlYb583vQr0YX/qsBhvcrxtU10XpwTqCDPgFOCBAOiUficdYEwpEMM4tA6KpJ0iR46YkVYccH7p9zjrZpqOsyKOHF8erFKVmJO1wZ30zK0tZYrZlXgkx2yFOBjQReOIRvgRTbtihm5NpzXLWIJCGKJUkaYa1n2UZUIkMmmrtrir2B57wURFnC2xueJ6cVi+Ya+qNzFEVBUZR0Bx3Whxssy4qnz55xcPCU8/MJWdphsajY2B6QpSm1cTTAtCg5uxjT640QOmF79xbrA8lHP/0RT54cIAhyflJCnF3dCXfXYjKVEQlFImPQQaUr0xmJVDjnSdKMbCWco5TEC0GSjlBSEcWS7c11qtawWCxp6oo4k0EaT9fU5RLTLCnaq4+bAujlOY8XS95/912OT8d87513SNOUn777Lp9/9ilVWXJ6ekpVVSit6Ha7wbOtLOmkGRujEWmkEc6jPERC08m6aBkR6xhvHddNt5wxzCcTojhia2+bOEuQOiJNuwy6Qw45QmpJkiWMhmskacKyrhCmYX+0weL4jOVyyebGiJ29bTZ3dzi7OEFrxd7WJtPFkrPTc7y6ep+8sbHF5uYmxWLO0eETjg4OuZjNeHI+42K2oBsrmrokz2OyNGJjrc/ackyFQ+uIrJOSdXOEF9jG0khLnCSsZznvvPYGP3v8MU/HR7T11VoJEDozIUErwaDfYWurTxJLqgoGvXX2dvY5OvwJTdOQJIHBOZlMGA7XyPOc4+Nj5vM5aZquRnBBw8N7z2KxIIoS4viaE9tyjmkszWLGk8czxsuC2itOZktkohkogamXiNaxc3uHQb9PWZRY6ylbg8ESKYGq5ywXU5TWRLUj6Q3QcYapKxwdvL7ac68sm9DJK0WkFRpHnqahIFtH05qgoOeC5kysI4z1oaFaFbzL7jf0xf5ST2x1rX9OVOyKMDbofggkyocu20uHco62mHB+/IRERyRJRJZ2aZ3j7PgRwmxhlrcoccSxWo38FFVR8ZN3f8J7773LX/iPfpOXXnoZ58RqMvzvuAjf2o6ZVhJkhgFqn9E0ljQp2VpPOJsVlC6jkTmR9gzykspHLEWPbi9llAg8hn5iwS4xRjHsbfDSnqaoGnoaunFFY67WKDDGUFUVURQxWh+RxCnz2RzvOjS1ZT4rsEZRVgatUtK0y3RRU1tPqjTH5xfo5ICX1jZ46XaPn74/4cuHj6lLS5LE1FWwVBHR1SLVMpbIMM3HYIK0oQOvwLggn4kGqQV5nJOnCV5A3XiOj46Zz6ZYWzIZH5NEghdvb4AQpEmPrbWEtjVs5+tU1dW0Ze+hszZA5ylHDx/y6ZePuH//Pnt7exwcHHB0eIQxQfPA2rBwMq2lKqsgvnQpRNIYhIpwGOblnO5ygjMVUsTP7aOuvB5CUCwXVHVFkiXESVji1HXJYjFDK7FyIhE8O3jGqN9H2Us1M8FyMiONIwa9DnVZsLO7zfnFdhD1qSoUgt2dHY6fHV6Zx9baCC1ijs8uePDoCY8PD3l6dMhnjx5St5ZOlmNWynqJ1ty7+wKV1bjokI29W+xUFp+FY7bwgsWiIfOKJNNsrA14cf82P/nsfWqu1rCQMrRuSRLR7Wbs767hXUnbNKRxymJa8LP3PwC+0h0wxjAYDNjc3HyuNZxlGVEUsVgs6HQ6NE2Dc4487zzvnq8K410Y29UFbRRRtg02UnjfMi0LelkaXhJr6wwG/dUoRlIVBX0cyhtoGy7mE2azCXm3S54qmLfUVYN3inS9B9e8DMK9BaZ1NHWLcJZSVKRpShRFdLIMY4OLS13X4fSEfj5+sdYS5LJ+7mfy1UzXXdp7XZkFgd5sLEaEmbMUHtvUlNWUs2efU87P6KcdaiWZGkfjBNOTI06eHPLgky8pXcUbr79OFud0Oz0mszmfffoJi6oi7Q8pWoE1Aicko+ty4RurqEmoZqjYkqsGV5cYMpYmgkagpCMWlkWbMC48adxj2NMMUkEUeXZ6loPzCc4kfPeFdep2yocPnrK30eGdOwN2N7fI8oh3Pz+5Mg+lVLD9TmK6nS44FxT1jWM43OLZ0xOKZUWSdhhfzJnPCpxQpJMMLTVRlPLo4Ij9/ZtsDvskOuF777yNbRo8FiUUWkXPzTO/LqyzFL5GrnRiNQqPZ+lqUpUgEaQiocFgLdR1i1KSPN4CpxmPT1nMl4zWU1556QaDtQFyNdjXSiHwrLc1zTXGhQ5PnGeMtjexH31CVVZ8/vnnnJ2dIaWkaVrqul0V+IQoTkgihbdBc7msaj77/HPu3NjijVdfWXUegrIow59NfqUFcfX94Wnblm63S6eTB5eBNCPPEzwGrVUYSXhPFEWsj0bUkymDrMv5+Rnbow1efetN9jZ38NJTF4b33v0xVVVyfHzEaHObJE1I06s7rkE+oKoavnx6wOePnnB2PmY8L3DGEmnN4dkFVVWTdzpIV5GnZ7QuwqiU2bLCO7HS0BBoFbrT2bymJ0AnETd39tnd3qYaXz2OEFwu4YYMBh2kbFA6COQ4HzRLWtuiE0GSJESrcU0orp62tURRTJ5nWOuI4za8cDudMKaIFN5DHF99PXZv7uGfnpDFirpp8JHj1/7Ur+K95eOffMz5eIruZ+zuvoxSirIoMNbSthXCtCgpcMKudJ6D/KjoG2xtWZ5PqFSXOE/orV1dhGUcr47wHkmMcEG/oXGOqqyQtSKOgzh6t6OCcpm1eBuW8F54auNWowhWXhKXnfGlsslqPntVGAvG4oSjlg6N5+jpYy6OH2DKEwZ5hBIRpm4Yn59QNI48johVxGI+Z7CeUU+OmTeG8yihqEo2OoLt4Q10vaS8cFjjw/x4dOvqXPiGRbhqW0oDSeSJkoShgO5gHacyjs6XTI1CKUEiK+IoIk5i9gaSXlwzqVqETBh2JMeTkoYNXr11k2X1hGllOVwo6Eo66yN+9ZXrhHMy9vf3w3yw3+XFl17k8eMnPHz8kDt371K/co+zswu8FzRNTVU5kjSlXhSMLURJzsZWDk7Q7/R47c4rDHp9lssxUkESKZIovJ2vvHgywjqD90FkJFIxrQ8+YbUN3av1ntYZEh0jvCD2Cb0sppOtI6MOXhTs3NgkylMa70ijKFgahekUOk6R1wij4D060ty4cZPhcMj52RhrLdPplDzPV93BSlPXKaqyIIsHKBWQGMZaTk6O+eTTTxkORkjZpZMkZHGfjaFEK4t3zS8lM3qpAtbJuyRxH2slVd0yGm1Qd2viOCbLMra2t7l19wUmR8ccfPYlx0dHfPLpp9y8fZtICHScMD455fz0jLQbTgVJktLtdFkfrl+ZQ39tyPl0yv3HT3h6dE6WpNx96XVaC59/8SXzog6nAlOwu73FxuYWVVXz9Nkhj58+49W7LxF3E3AeYwTeRxTLCvD01ztsrG0xyNeQ51f3XFoqNoZ91vopUewQQiOFxjQlVbMkS3PiNALhkUhsa8l0imsdZdmSJDlFUeJXimNxnOGdWIlLCaqqojGQ96++Hi++fpeqLBlujiiaitf3N3jze/ewMoyGnrz3Kd00RUeC2fkZ89kCGQV/Q1OWuE5GImTQDFYanMM2Fi8ks8WCJtPkkaA3uMbczbvLyhkK5+XLXYcxmPOCsrFo41DSkCdRKKgerClRAiIpkCvVtGDV5TFcijbxS3XCrm6D6qPwOGFYtjW/929+j2ePPuPu/jr37uzTywVFseTZwUNmRcPG3j266z3OJ2NOjxZUizknkzFpf0CapfTTBGkq7n/wLnmeIaTEInntlX/HRfjOVswzVzJtag5nEa/dvcff+mv/KWmS8vTohPsPn/D06VOW44dcjMfhQ45zeplmVjYsSs0L2yM6eUlRFZwtFDdGHbalxLmG+19+iTcliTD86pWZhA3y1tYWWknqqsY7x3KxII41f/xP/Apta5kvlpRFFfRwo5hed4COU+K8w9b2Djdu7rG+scloY4utixEPnz7h5PSQxbKgpOE6TWbng/oYUpHpnFymGJNgpaU0Fa0zOAHoAHWJhQ64R69QUULaGVH7grktqcY1eRwzyLrBQNFd6jb7a8cAEG68wWDAaDjkE/c5AK0JG/ZIa1pR47zDNDU4S9MEeydjDEIIjHUcHp/y+MlTdrfvIH1KpDTTsiT1Hu8MQl1zQUQoDPP5jDjOcFbz9NEZbQ0bw23Wh0PWh+sYa+h1Oow2NzBtQ9HUWOcom5L79z/n1VdexCvBwbOn2LbFuxicY31tQNbp0ut0r0yjm6WcrOy0ytqSd7ocn445PD5nOl8iVYSUirY1FEWJjlOEhmfHpzx88oyLyZzeWg/fWpaVoyyhKh11s0RHMYN4wG5/i8/E1UVnY7PP3v4mnhrnW6wNI5tOtwur00CwM2rwJriw5EmGcZbZckkcabRSOGupqgopIqSWK9SEw7QtSidBY/eK6G908cpj0w7JWo+bt4cIHXY5d167TWxbxPkS21RU4yWnB8e0AvrdHF9XKG/xSYYVEh3rYEFmLEUbLJOiWGDakrq6+nNRPrxs4CtMr3wush/g1KudHd566qolWnkgarWyVBOCeIUSeb7I9MG41rmV4/iVWUDbNBjbEkdBKtaYmsl8zMlkjHEtQqfkWZ9lWfHoyVOMl6xt32YyP+OHP/kx+8MtNne2eXpa4SYOIQVxIskiTT9Lkd4ilUTGMb/5W3/1mmy+YREubUKWdUGUXCyWHJyc8q9+7w/57ne+w727d3jnrbeCPc7sgocPv+BHP/uI44ef8NrrW6x1DF8elxxMHcNORiwqZrMzyrLmrPCMNobsj9YQrWZ6jZFj29Y0dUWxXKJ12GJKJbixf4NIJ2Rpxq2bI6yzTKdzpNQoHRPHGXGSkuU5WdahbQ1n4xmdPGdnY4OdzQ0ePN3kvQ8+5OT4EG+uHgMYZ4lUjBISJyxOWnSiscIiAG1jOnpEN+mHjbc0YTQhFG3rmBcFTpfUjSeSKcYYpsUSpQO+VzmBs5bkmo48hCBJE7a2toK3nAmygFprhoNBcCj2GmssTdswn8/DLHF1rqvqhvF0zsnJMbtb+7RNQ7GQTMeH6I01okhTFFcfv6WW1Isl8+kFm9ub9HsDjp6cMx87Pv3sKbfvjEiyhKJc4p0h0Yq8kweZSdOSpBHzYsbjLx+weXOP7qBLFsXEQrNcLGhtS08rBoPelXlsr3X5+MsHNNUCHWtaa7j/5RecjS+wzgasuAgv0flixsn5Bfv7N/HigsPjU07PJ2xvbuAlzEtLVSrqOnikxTqh18+41d9hGF1ddG7cGBIlYK2krqEsa/q9hCQONutSSqyxAYMtIc8ytkYbCCF5+PQpvX4XKeH07BjhLdaGuXGed2iamjiJ0FFEUy6vvjO05PHBKf/Vf/N7bN/e4M/v/xqpW5kqKOhvDDg8OmXD5sRaU1QVk7LEeZDWQNxQNuHEhJekQmG9oGoNTki8aTFVjbzGzkd7j5JhTGNXRhBaBp9J6yxeBUiY8AIpdICGWQPOoqUkTtJg0mBaGluvHC48wgWSRRDV9VxHBG7MkqJcoKTHNDWT6YyL0wPaZsGiTXhwcMzOIGY+OSKJu+SRRnpBXZeY2qAQSO3RnS5ORWhhEZFCdnPiwYB2UeCA3mhwZR7Pr8sv9VWrOFxqykIifE6sW85PHvOP/+kx//xf/Wu2hj1+5c3X+WO/+l1uv/AS3/ve9/ngwy/42ceH/JW/9B9zdyej99G7fPz4iMMLRzdxvHFrxPe/d5PJcsbDh4c8evCE0qzml1fE+ek5nTwnTSPatqasAvnh5o194iTGmoayWKKj4BwskERKEUWaLI3Jkog0CSw+5w3TxZzpbE6nk3Lz9k3iLONf/LN/wtHR4yvzsIB04Yi1MEsKU5JHKdYpMrVFnm7i25TltAVvwAvivIsa5BRVA8KgI0tpK2zVhjylJosSWgzGNVgHSmr+5BV5XIpMK6XY29+n3+txWp09n+FKAXmSsDEacnEx5uQsOGggJFJJsjQDJGVds1jOWSzO+PTzh5jW0bYNs9k26+tDDo6PrrweWkW4FiZnF3DPIrXhwaMv6A+3UPGALz57QrFYcHE2Zntjk6Io8DiiJCLRmlF/HVsZTp4co5KcxWTJRn+DuJeHJda7P6Pb7bKYTOHXfuNr8+hGAmkLlG/CcVdBUS9ZljOcM2AsxgeMbWugrGpUFKxsJrM5h0cn3Nnfx0uYLGqaJgbnKZYNZ0zJhWa3M2IjuboIoxqc1yitoIbk55ANl0s4vCeNYnQacfeFW6wPBhRlwWTW5a23v4OUgs8/i/jiwQOsT9BRRJ7nWGuIYw0yQNeuisV5wXxccHpyn6fnR9y8s8OvbX0PJYJTTn804KGyXEwnSOOZm4qLqqCeKmI8VaSwxjMrl+RSstdbw2GoW0dRNkxnJbnzrN26+rnVrGwo8EjvEVIhffCmVDi8twG14AOMTQtFnqVIW/H5px+wc/MOSd4L5I7Vac45h9cxArlyOvFftdlfE8dPPmFZzPE4vIPFvERUBTu9jKKcEMeeJ/c/pCoviFQXJ2IWZR3ssZAsqyUbaohTLhA6Vq18i0RGGY6KTp6ysbF59f3x/Lp8k3BBud41NVr3WO+lON/SEHF8PuZf/sEP+OCDH3B3d5tJabj/+Ig//Wf+JHdeeYOtnR3+3Iu/whsnBxw//ZJHjz/jx48e897jC+7e3GJ3a8Sgqzm/mHA8vjoNgceamnL1ULVNgXc1a2sjlFqnLqBQijRLwYLSgiQOpIo40uRZSn/QJcu7OATT+ZJp1XI2nZNPZuzvbvPyvZc5e3b/yjykFcQyIdMpxrc46bBOkolNMj/CVQJjKtrWgnNIBdWypWkcxnmUFESqixI2dAJYrHM0raWbpEinaWxL6a/ewlu/2igbyWhnmzt37nBxFth+ZVFwZiz9LGFnvYdoG87HU5pLGFAcs76+RhxpJB7hDAdPH/Hl/U9wbUAQnB0/o9tf5+T84so87r5wD6zn6RdPuXP7NkkEUDOZTdh54UWUWmM5P2Vn8wbSwqPPP2NRLWmaFq1jdkY74AVV2fLxR59S1TW9Th+ZJBTTJQ+mXwAOra4+cE5mF1TGYazDK0PSyYjyAV6m4Eq8t3grEF6iowQpUmKpSaSkqEpOz445P7tAqojjixm1i0jThLapqcdL+qlmc33Idnd4ZR5NUwXIYtal0+ngXED2XJIwwpgsIc8y3nj9NRQOJRxZrFnvd7FNzenFGQLD7Zv7HJ7MEUozmUyIIkWSJFT1EiGuntUfPDhA4FBKMBz0uDg+phjPGaz18DiSLOXeG6+y+Owxjx8/4dn5mGlZc7GoSJQiWiwpqgonPevdHOsdO2JI3Tomi4IHp+esOcfN8uqT43w5R0qBVhpPGIGZNpzGpJYIHfYgkdbEUqEEpFqxNewxeRbh6jmFNXR7PZQEi6GpK6SDOM1WgvDXkzVMNUXThoWzjFiaFo3CNUu6wqDbkvHpnPW1lLptab3CzwqMdyyKklg47sh9pLBfLe+9fz4eqeuaNI4oyquf28v4RkW4n1gUCV45lIBf+/6f5bWX7/LRZ5/yk/c/pKgblm3J09NTlBLkkeZf/PP/hvsff8hf/2u/zb1X36DXH/Kdd/4sb77zZzg6/IIP/ui/5ODJ5zx5KBA6ozCCyezq40SWebSyKGnJ0hhnLaatmEzOsNYyXB8hEM/dhZfzmiRO6a5ndDr5ih2nsW3LbFkwnReUjcNYKIuWugGddsiumT3GShFJiVKepnUoqemoLWTZp3YN+MC0mS2WdPKMWCfBFdZajAVrNE3tyXvBmRgcrXUUNsyTMxUhn6Mhvz7K5RLvHLLTpZNm3Lv7Eh+9/7PVrNFS0ZJGknI5o9/NiKKEqm5XtlKSXp6vgOgNkVLYqiJylqIJEDajG4rlgvKaY+/maAfpwPuG9/7NT5BacntvC+lbup0Ot27eYH1tneLsCb684MkHn1D6GusVMklRQuFNS9GWmEiTZFFAWUoBLvgRVlWDFlePZ+Z1SWkltXHkqWawNmJr9zbLomF2cYQxdYAmec1wfZeN0S7dLCeLIxZFcASezGZonXF6csLSSrrdLkkErq04jSR3X9jm9Re/c2Uenby/wpxL2tausOL6+SiibVuUF4i0g20DMmcw7CGFZDabUy1n9PKU0do+Z+MZ59MaISOquvg5gkZY4V4Vk/GCrJOS4NlY73Nrf4/z03N6vT5Ihbeetc0R/uCUbpYjo4RmVqJcy+bOJrWpSRLN9u4WL710h/PDA+YXC1wDlXfILOHo+JSLs9mVeXgZRnitMwihgjeb8CuGmoM2uCbbpsVIx+b6GsNuwmYn4uZmn0qmPDmbUdcFSZqitcLZlrpdUpYVWq+co6/ZoSzmFXVdMJuOydMu7390n/NFRVvO0bZkmZSkccS8mtHLenjd0toFa9tbpHkHpEHhiFdU5URJvHQIUzE+fsZyMifWEu9+GYDaNyzCmQr20v3hgNhbtje73Lx5g9dee5E//r3vcHB8yhcPHnF4+IQvPvmUTz+4z+F4zvj0GZmecfeVl4niPoO1HW7dvsNiMWVelMSRpHGWujHMCsv8GlzsC7c3OTubE8cxaRoH4LdSGGt4+OALzk/PuX37DsYa0jSjNY7m6JCyKrh790WkFDx7ekBVGYqqwXqwzjOdVywqi1eSm7e2GWztX5mH9ZZa1NSuxjhPx2Qk0RqT+WwFBhfMFiXnkxkboyFra2EJ0dQNOk5pKsPRwRSd1uze6pDkKgiJCElhqiA4pFKUv7rze/T5F8SXNjpJSrFcrpAdq+/TmihPWRoTrlWkkE1DrDWdPMN7S11Xq4VdS5RoBqnE2ZjSeKQOfnHJNTjQk+NjIqWR3qAldLo5WZIxnpzx4NMPSN56h62tPWppmT8rmE8ugIqk00UPetRFRTUbQyIhCrCterkMixkB3hgiKVDX0Nob56gaQ1219HphHDVYG/HCS5Lz0wGLoqApaob9DW7fuMHe/i6DQYder8fh+RgnZXDp9g2z2YRJaSiWc9Z6HYQ1zIFmNOSVO1cX4UhneN8gpcL75vkI4pK1GGx8wtz//Oyc3Z0RcaSpyor93W0EjvOLc5I4DWQJqVgUxYo91wass7NcgxzEoxmur6EjQZom7OzsoDRUVYVOgpmmcI7SGIQSvPbmK2SPD1jMF/z6n/8TZOsp3iu6eZ80S1nub3P47odMzubk6132ttf54v6jML+9ItJOtpoWrFiEz5d0wYgXHwS5BDW9bk6/E5BEYHnp3otUraY0zziZLphPF0SRpqxKHIrZbInSMVGSkHWvxvefX1ygpaRcNhwePOTo+JSFqUikZDTcCsSmizlZpEhkS0SEEYb/H3t/FmNblub3Yb+11p73meLEHHcecs7KrOrqqq6uruqJ3RzahEWJIgHJFAUCtAHD8rtgGDAM6MGAIUCAH2QYNiAYNEhTpCyKEqcmm91dzeqaK+fMm3eeYjzz2fPeay0/7BORWc3OiEpCBF/yy4eIvBl5Y5291/72t77vPyzmC/q9gNiz+FIRKGiadv6DApoakPiOIl3MmY/ON6Q9jc8HUasyoqjDl64OWMyn/PPf/e/4znf/iDde/zLr/T6vvfISv/jml/i//dd/i9/7/Q8IA+jGAa+8/hLR+g7LvMEujzkZHfHo2R1my5KySNC6RqhWWGYQSTY65+NzAwdOTk6YzIrWgNLTCGFpasv7H35EU7WJ48rlS61qmOthsUxGI5IkZbi+SRDGJEnOeLJASIfGaJ4fnmCQ9AYDXn71NldfePP8C2Illalb9psM8Js+trR4nsN8kbCYz8mLGqEcoJ1+13WDteC4PmWtOZkumc/HNKxz6Va/xdAqhSNblbjK1FQXgPGfPHiE53l4nofruJRFhe8HBEHrSFtZ3bovS0VdVniei8oyXEeyvbGBrkuM1gghSfMK0w3ZXOvjdWCR162wjB/Qjc/f3Gk6a1W+qhJpYdjr4/s+tTa8970DFuN9bt9+kb7vYKUiHvQJRYjje4zmOfuHx8jGoBRk8ww2Bhye7OP7Af3BAFcI6qYGcf62TYqSLC+pygaroSo1ftRjp7NG2BmS5SVZknL7+g02Bn2GkaLTceh0OivPtYJFmtIJLVWVM59NqMsIT6zjWCgllEnO5t6Vc9chVgpqeV4hpINywKxU0Zqmoa4qrFJs37hGHDiUeUqaeVRlSV0UbKwPcWSbINf6fYIg4WQyQ6q2taociZLuha6+QkleuH2FLF/gBT5SSba3N0EJkNBojXQc3E5E1VRsX9qkN+xw8OARgQ+DzT7CCBzhIKWgN+yTbw9ZTpesbwwY3rzE5u6Q3ctb5y/EWrDOCsGgcTA01qLLmscf3aUqNUG3Q9z36QQblMuEh8fH4AmCKMQuKx5+/ISDpMHBsLE5ZJlnNOUSJTyCXkxe1eTz89sijx4/4PLOZaqqoWwabr9wi+OTQ7LZEb0oIvI8HKHwAVfWKGHQ1uCguXFlHd+xBI5ivesiRYXEohVURUkcd+hsdlsn6MX57bvT+HyVsK/YHUS8eWsPxA6DXsyjgznf+/4f8tZP7vA7f/432Vi/wv/nb/09tjZCjK3Z3d3g1779Dda3L3Hw/IDRyRGbay6DbsTIT3k6siRpRlXWSFFzuefiq/Mb/J3YZ3Ojy3i6ZDw64MruFYyxVFVCVZUsFzkPH95nY7iGozz8yMH3PdzARwjF4eGIKMrY2NomLw3P9o9I0yWe57O+tcPaxja2EZTp+TfTsR5lU2CEwNUdhHGpbYmxgkWSMUsSAi9kMBgSBD5lWeJ5Dq7bsoBczyevNdMkY3/f4dK1Ho5QaGPwlIunHHJdUDUXvJTCkCgM20TsevR7rbZAmqbM53NsbQg9n7oxOEh2tzYoihzXUeimpq4KtrZ3yIqKZamxXsxwJyRuNJuNJY4CIt+7sNJZLuerqqbANDV1ma60EARSOsznY+bjI775zW8R99cJVZdOtCIq7J/w6Okh5erIHrgeptFUeUmW5e1n7HbReY1zwfR7mZeUdWuCaY3FdVziToBwQ4wM6PQtwmi2t7eIfYeuD4HPGTV4nhVMkwTfccDWNPWMeTUjdA2xH9EYQVUX2OL8+1LmOUVVkVclQRThOHJlLNrqDTRac3lvh9u3rpAv5yuolsMyWZDPJ1y9dJnLe5dJkoTDo0OyrCJJCvqDLsoRq4Fsa+x6Xjie5fU3XuDo6BlJUlMVBaZph1haa7S2KCmJux38TgQeXN3eZTNyEUpgjUBiaXSFqap2CBZ6FFWB3+2ytbHOzqUN/OB8AR9jNI5ozWZ1o2mqmqTImY4mCG2Yjk4YCE0Y9fng3Xd47cZ1nj54xEmW0BsOWe6PmeYC299GWchPloxmJ6hiwpW9KyhHESnFIj2/LTIez9C1bBFCRrPtd7l18zY/+cEBH318H6XaE2J/LcJ1DctsgRv79IJ+i1Kpc0ST8NK1a2jpgobxbE6ymHFpZ4jruQipVoSfi+NzMuYaGl2iRc2l9XWUtWxu7bF1XPHOW3f5u3/vH9FowdqmR7Fc8vKtS/zl/+Av8pt/9ndYG26TZzl3Pv4YV2mqNOHh0/vk9SM8J6IuC06Sltk2iM9nAPV6Ma+9eo3JdMrh/piD54orVy9hrcF3XVTfoSxTyjxl0BvguYogCHGkS1HVZyyxuqrZu3yVsL/ZVhO6ZL5Y8vTJIx4++BBHZPAXv33eFQEtqEtLWUuiWHJ4dEIUd6mrqqUwC0G322Gt3yVNEwKvrYqNrlkfDtne3GC5nJOnBtK2mg19haPa6jwz5YU9rm6/h+t5uI6D67Rv8b29PQ4PD2nqip4M6Xe7LGZzPN/j8t4eQghm8xnJYobnKIxuMBYqK0m0g25KlGnohD69wEXSgD2/TbRcLs+O2UVZUDctwcF1XRzVQFrw4N5H7Oxe4vbNW3h+SNjr0uv2MDLgS0nO+3ceohzJYG1I3eTcunKNoq4oTbM61l/sRJCW7YtQypb5GEUxlQmpcXHchtB18RzoxiG9KCBSGk/VrVCQlMyTlNliQcdzaOWdW12PPHMInHUqK6lM3mKuzwltauqmwPc9lBKURU7g+yv6eFsRD4frCKno9fokSYqULgYHLxoQ97d48OA+dz6+y2g84/loQZZlbG9v0uhq9VL3LnQXFo6hv9UhHFxmcjJH24qsSMAxIC1KeRijcF2feH0TFcZ4cYRaW2NmNHXVUtsb2zpOIyxur0tn0CEpDWlSM+j2kO5FpKJWhKlYLtFVwXQ6Y5kloA3r3R43r11ini1498c/xJQZL+3tsbGxxfhpxWSUUZaCWVqS5of04xhyaJBsDDYQopVuFcIw6J0/y9ndvUJRahpS0izl0cMnaFMxnswo0gQlJe4iQTc9Qh+WWU1cOgx6Mb4HniPQTUG5PMF1fZAeodIIX6DzMbp0QbpoczG5CT5nEu76kuejBX/vX77DlfWIbtTh5qvf4us31/neD99lb+8yX/+lb/Cv/vCfs96BKzt9Oh3LP/0f/wGvfulLBL0d9i5fZtDvt1PwOufO/TvkVc2l9Zhh18NxJYjzH/YoClAKXDnAxfDs+RGPHqcoN6LX7RFHMds7Q6oqwfNg0A/p9Xt0e0PSrGD/4BitNXme09/w2N7b4odvvc3s4AGizlnmBdPpETevnH8zkyIDJVDCbasAqVYiIpp+L6ZpKnrdXqvapRuCMCLLlq14eV8RBB7Xr9xkucgosjkHz3Mir2Rnu8/mZkxaF4Ss4fnna2lI5QISbVtNYxR4vo/vOThCY2rNdDqnrEt8z6XXifnSCzd58vghaZZSaMvB8YjGKja3IxrloR0fqwsSaykL3SInLtLxXal7tSy8ls0UhmHbDrKt7nRWVdx/9Ii1wQDT7zBLS05GHxFIzWa/w8bGBkmWYJqGQCqcKMatHAJhybKUxjRUF1TkWVXQWNueNtwWIuYLn6rQK5KEQ+AIQs8l9B2k0Rhd4ylF6Llk6YIkmTNXFqoS6gJd51RFSun5pJkhq5bkFwgr+YGHF3iUdUvWULLFbadpetYbXiQJQjkoFEK0rL3RdEkUxvzRD9/m2bNnZFnOeJIymkxZGw5omoaqrs50tS9idnbWuoigabUv/CHWWBK9xJVq1V9XGAt1Y0grjS89GuFgcFYtCL+9t1WFFCCUwLgOaxvrLI4SRtMZ0VYPXZx/XyoDH997wOLgANcaam1JqxxHwuOPPiYKPfIyJU8TosDj3p27ZGnF4XSOcH18GWKzhKZIqPIYHIlRglp3mFcN0WCI5zt4F6jKra/vUBtY39rGNhVGSx49vsd4dIjygpVwvuHR0YLQVRjpktuCrTRnIH2kKykby2K+wPc8HL/H9RdeZv/pQ5LlhG7cRamA6ezk3HWcxudKwl976Tr3DqYczhbc3W8I/ZqjxR/S7/bYGATs7Q7Y2e7z5lfepJw/ZW0QocuEmDmPP/hDni0MjQ1ZW99m0I2oJx/R1AuS3HI4M9zaWePS0Kcpl+euw/e9lWC5wlXguPDk6YiT0Yyd3Ztsbg5pmoTp5Ih8d4uTo4o8TyjKnDDssLnRAxykCkiWcyb7x3x05yP08oh8esRovGQ47LHe3Tt3HZEbt5qoIsCjZWHt7u0yny8wjSYKQgTw7Okz4k7M5s4WizRDeQ5xt4PW4IYRVy5fYnYiqcsaogjjSDKtKRqJQLX9/nNCm08om0a2eqdCCvr9DrbqMZvMOZnNqE1NlWVc39ni+s4mweVt0qrm7vNjnj49wg1C1rGUTQ3SQ9iWokrTDk+kPb8G9X2PqqooyhJjwVEeQdA9O357gU93sM6g2wOtyfOS7toGWTVhf3SEthbr+NR6SToeE3qK0JEozyEKQ3JtyZuCZX0+9KexFU1T4ToW15VIpQj9gGW+oNH1qifv4joKicVxJSbXKAmdIKCocuq6oMwUpsigrDBlQZWnZFKBzlgst8ibC4SVkBRlTtNU+L6L43srRIo60wg+ORmR5xWV0SAcjk8m3Hv0nG9/+9fp9/t8eOcR4/GCrKjodLr4foBSChcHvXoZlRdoi0Shj7DQ1ALP9870Fhrb6hk31iCkS1ZnJE3OmoJClzR1QRh3kQq0aTC2RiqFFRLhKAyWNE/xjCFQqhUsOieWJSSF5sMP7yKLgt7akPWddaTQbKz1qMqC6cERRZIy1Q3TgxF1rbFC4Xk+QkNTJRTZhGnTIH0fr9tlpB3izR12btxCeUFb5Z8Ti8WCIO7jugGO56GUQ382QAgXY0qskfiuR17VLYoDgywKKmNorMQXLhZN2RiMrRBNRl7kSOUi8MjzEmvbRP7zxOdKwq4XEfs5Ha/EdRWbgzU8NyBvSq5cXacuR/yz3/3/MV/k9OOAKHQYBA43r29RFwVKZTw4OOHtd56AkLx6OSZ0wRGa0SwjKQtqPeT1K+czolyn1SV1HInrtiIpSjg09QnWGMLAw/P75KnX0hLLlHRhKMocpTyEkGijSJaa+bJk/+SYuw8fkyVjhK7ZGG5z69oukX9+0tFG4wuPyOniCR9WknuO69JoTVGWNAayvEQ6irIokEIwXyRslhXdzrDdYGqDrSEoVROEHlbCNFkwGi/p9iL8CwRajDZYeeo2YFrInjC4XkAQdfCzkm5Uoo2iKUqSxRS21tgYrjEQksN5ugK/15RlSVVVrXAPnE2ztTFofQH+0jQYDNo0q+N2sBI+Fxjb0OsP2drYZmMwpCktSTHHdVxuXbvFQdhhnI6ZLwpm04QqmxOHip7noAT4UU1jBUo4KO/8yk+bEmNLPL+VUHWkQq90Ye3qheU47YDIGI2V9qyC78QRTVkihcHYppWhlOBYja0z6lIwymr2j4ZsXj3/YU+yCl03hEFLu26lzFs1O8/z2r59lnN4NIaqAATT2ZI0K0BKsrwgL0uibpf1rU2KMmsdY1wXx5VnuNQ/6TDxJ2MQ97GVS5Y1GNtKmWpjMaJGegLP9fBdQ6UrvDDAUdDoCid2CCOXJFu29mB1hWwEOK1WdllrpFT4jkJY03KOz4knR3NwOwgZMTo6wBrJcH2AFQ3CGlwkorIUkxYKmScVUlpcYVu95SLHNCnClEjp4PYHrA1inu/vE/b6LZTRDZidjM5dh+/7KKmwth24aVPhOC6u51PkKRiLIxXCVuimBgFNrSnrCksM7SiuVR8U7f5+eO8eujEs5gnLJKNaycT+PPG5knCSFxyPxxzNUob9mPVe1B4xZw2N1vQCgalL5s2cg9GcrCjZWvN54VKPK8MYz5F0AhcjZ9w/mLOsFZd3d5gUJxSzkqyseOfRCUVV8hfOWYdSciVmrZDCIqViZ8chLyXTRYO1rcPFtFyS5QU9V2ApQAuMqbAG5knB93/4Hk+eHFM1BicI2NpcY2NtQCcK6XUV2p5fgpZ1g5ICQUCaFAgp6HYiQt8j7sRkec5yOUdIl8XKusdVkqIsmK/3iWMPXy0QQYrxodaGosqoNTx4tE+WZwi5jrgArwwrNSlr0JrWfUC2zKEGRdk0+K6i3+nTCX3i0Mf1PYIwpDStGNPa+pCytmdsLmstzerZNtaitUVf8GI3xrQDp6ZBrHy6kiT5pE+cJRR5SlXlmCDE6IZkPqesFGEYUpoOYlFgpU/RQDmbk7stuN8rKzw/bAewy/Np7drUq0pY4rktq8zSuh0EgY8fBCgpqeoahcBUFWYlRh8EPoFp2y+NqQl9hyiKqOq8Hap6bXKYTCfMl+ef2MqyFXmSwgEarDE0thVt/+Q6OewfHvPi9au89ZO3ePTsCOkFmKZi98oe3/rWN1BKsUwSfvrWW0gpqOoKrauz5HuRqHtWwTsfPCKvKmq9EipfCd4oVxJFPruDNQbKJ/QFkRMjHU1Ng/IiyDJqKwicCIRG2/YFH3bX2NY+vV6vHbaZ8zfIJC1p8pog6rM22AALTx8/xegM2VSgwVSWjteSqCo0db2gKhJEtoQqhdWrzEpLITLGaoQtUnwBT54+I31ySLaYnbuOKIooa7siOVuapqbSDQZLYw2mPUy28PRVu8falnaudasmpzAIo6gN1KbG0nBwPOXOvYdkRdlqYfwcAvPwOZPwzb0us6nLIoMsLSjrktAzGJ0zXxZY49HxFWtdj2qWMJ4dM5o7PD2Z8uatHV673GNnCC81XY6mSx4djdlZu8Qb1zd4/8mEg0lOURnevX8+ZU7KdlAlhALM2RFva3ONrBhTVhXzgyXz6Zwwiom6IboocJRpOelWIjBcubJHGPXwwxg/8CnSjCxZoF1LWaXU+vyKSxhJlVmejA7xHJ/t7Q2KPGcxn1M3DZ7rsFjUrSKVNUhpCUNFv9dFiZTJ5B6NbmiMQduGxtaUleHBvX2SZcblS8OWG+9c3OA3xlDX9hMfMtNW8ZURzNIMVVesD4Z0en2UkmjpU1rFk8ND7j85YJFWhGGA57VHZm1bvzwQbUfCXGyl007a20pPSIG1zcroQJKkS3RdUWYpRZ6yu1MQBT6e7yOasnVAyWuU8vCjPk1TUSxKagzKD9FKYZQkCFz6vfNPSlqD74cEnt9OqbXBKoujFK4KkSuXCmqNbSy2TqFYohtD4Af0Vbs/8jLD82KcqIvIM/BccB2c0MePQvILBnPj8Zzd7fX2BVbVGNmi63zfX+nltgiZZZJSFBVBGNPvDfCiiMeP71JVCVIKXMclXS5QSrTJTtefsk5qWz3nxbP9Q6yskJ6PdEJ00yCBwFUo6eLZEM9GlFmLrT7cHyFdQdE0iPWAorHM0iW9OMQPWnXEq1dvcHPrNvNFyjQfo5sS9wLA8ug4xUEQX7lNZ+sKlnbfg8bWNbqx6Fpj6wYEDHyFLhNMkaLLFtudLlJMVYOQaOmQOhK75jCLruDVHUwQIC7QFrHWUjetMrGxDcZaGmNa9JSUCKUom7rF7CtFEPhICXWtV9e7xmrL8fN9FllFb/sKu3tXSfIJo+kSg0QgLhRWOo3PKereRzVXGa4NeHi05HiWcmu3z7DbUBmojcA6HlsbPkY4jBdLslwzTwu++8FjRvMNvnxjk2Ev4NpOn/efjHj/8YhXrq5z+9IGxo45HKU0F9AwW02E1g1VyYB6xT7qdHykqBiNjukNtxkMN3n0eJ+y0mxtbxJFPlI6K/qopdfdQBuPk8kRz59N0KVm0O/iqZCqNNT6/MvjK5+mANdxWBv08FyHsmpIspLxaIKj2iN9rxMwGHYZrkVEfmuPktcl6XKJBrSVaNOqRj19OuaD9+/x+ss36AQdEA1Zc/4AyFiLPaXCComUYmXBAmWjyWpDtchQ4ghtBX4UkuZPqauSB0+ecrgs0MJBm4y1um6F3k37/+uVA7Ax5sJK57S6a0kJGqUUu5d2ydIUv5QMejFg2d9/wsnkhBdvvcja2hDXlWAVZe0RBJJGuggFrs0Iwrbpr6tW1N1zHeIL8MpR0CP2PUxdI4R7dmwXqk1oFsjyjNpWVNJQZXN8W+CqFTPO1JRlRl0VeJ7CKJ/SOtS1QbuaRoAbBCQX2BsluWGa5Ay6AXVt8FZayrimJV+4Po22SAkf3v0YRznEvRAhBYvlnMl0RF1VuK5Hf7BG3GlF3BEGaTyEaNC6OfNc/Ky4eXUPP3ZpUBweTXB9l0vbG2xtdFr3ZytxGsn95wc4Hqx5ParGsv98xOJgSVo1zIoCz5G4nmJnc4NXbr1Jki954Utv8Pb7P+HweB/PP5/M4wgPIaB2HYQXtUYC1q4sr1r2WftZLK4rCAMPF93SgxtNU0myRY4pK4QEIdo80EgJnkOiPXQJmAvIPFXVSgmc9rqNbeFtUUTVH7QQvhWdWkmJlApjGoqiXGllGsqqYjJeUFiHQdBHOz2KGuqqRioHjUDZi9UP4XMm4Q8+foQ1kpeu7BF6Mz5+esyzE9gYxFzZjLDSR2JwZUEncBh0Qo5nGYs0Iy01Hz0ZscwqNnoBSVbRjQLiOGKea4pSI4UkcFs+93mhpFpVfC3+23VchJB0u3Dl6hZ37h5ycvicyWTGwcER9+8/YX19ncFwDT+IsFaQpRVpmpPmCYaSThAx6A/pdSMcJYmjHr3+xrnrMBiEVkRhSBj6GGMp8hIhFa7vEAaK9WGXTsen0/WxVFRNRakNwo1BhZR5RlHUzGYV45OUZ8+OcF2XjfV1lHLJmxLy8x8yrfXKYUBgReufJQSUZcVkMqPIK6rGsD+eM89Lgk6ErjR5npEVJcbx8AMH3w/w/fDUmbKtVEyz6gnrFS///HV80p+0OI6k24lJl3P6vQ7DtX6rSZxmzJczjg6fsb2xTtzr0u8M6PWHHI+mNIs5jogpp4I8LTBuQ9OUSBFilglJcn4v1o9C8kKA8CiwOKeiMVK12rVSUDcVWTHH2Jx0Mmaz36cTuBRNgTYVyzSlqgu0AMfzSIyhyEvcMmfQ6VIKj+fTC9T+NEyznKgX4ng+ZV7he61Or7AGSWs2Wdetd5yR4PpqxYgTlHVDVTe4QUheFisUTPui1Sv5OynVhRC17WEfL3Qp6orBzR22hgM2eh3AkNcVrgqwpeGwc8yV69t4QUiWV1y5tE2TNKSjGZ7rEYcBWlf04h7ZMuPgZMxga4sfvvMhz09GeH7A/+acdVhOXadpWXqCVtpVytXxfcXnsGa15xoQBiUtRgmMIxFRiA38Tzkag2fbdrSVq+n0BRjG0fEhjh8hHYdG19R1TZUXuNIhDmMUklJUrCaSrcB+01CUraa2lYKiajhclMzzJcf1Twicj1nMp0jR2jcFQUwnPr8iP43PlYQ9LAUCz2m4tO5RZB739scUVcHVvV3WB3HbsK8sSkDkC3qRy2gRcTTNKGrNLK1YpGU79cTSjyNu73bYPzphPDVIWhD3eeE67s8kBCFEO+lWcOnSJmEQ8fz5GEyBYJ08a5hPJ0ymI1rRM4lSK0xu5BF3+nTjLnEnotMJ6MQRURzS652vgqSQmJWrhrWQFxnLdIHrWq7fGBKFCkdZoKVGZ1VBVZVYqehGA0wNRVZwclKwTDRl5WCtYLjWo9fvgtVYLQkusFk6tUOX8tTOXqF1zXQ6ZTGb09QN2lg0lnKZQpr/jNKU0C3NeGNjk15/gDFtBWyMxqwqhdOe83nRNM2Z1U4YRXQ63dY3z1H0uh0cx2E+n6OEZHdznabOuXP3PaaLOcqJcdyI0WzGweFzAg90leJJCNe6aE+Sm4aA1nHhvHg+PiApFZHfRyApvQWR9KgNYFTbD24KlvmcrJozGx0hlIuWDtP5lLLOSJIlRVFwMpsyXBtQWc04T7GNxuv0Oc5KTo6fnrsOYw1GC6qyoiozhLaEgbNCMxhk4CCle9ZOO+2dW2vPDD3jOD6DoNmVZq5dwe+UVa0IzgWMSt8NCH2Xft8nCANCNyT2QoqiIPQclHKpqbl0dY8wipBK0nUcNtcH5POKxkJnPabfi/CVw+7mNof7j9nc3KUscpZJTl5BUZ+PFmmaarVP1dmAtN2GFiHkmZecpZ0taA3WEbQjzXZGoZXErGjrYuU6x+rlb03rsHFRL/bgYJ+t3UsovWIu1jW6bhC01HBnlV+EFJh69boTijQt2d8fs9GPGc/mLIqGrDEU0zGuXVLXNY02dOKAa9evt33vnyM+VxK+sreF8kPi2KFuLNIY0rzi0cmCp8LBdxSh7yDwycsaz3HYGfbohO20fZzUWGHJ8wJrDVWjOZ7MuLkTM+y59GaKNHWoLkjCUiqM1WDNWTK2FgQOgSPZ2QpZXxtw++YVxuM5o5MJiyQnLcvWr22lnhX4PlEcEkUhURQTRq0tu++HdOI+nn++tbqHT+kKlJAI2dDtOcRxjFA1yJqqLtrek6kJgz4VmkWeo/CQzYIsLcnShroAKRSbm2tI2TDoGjzPwVifS71tBp3zccKnIjFtCCwtcWI2m535kZ2JAK12/mnv+DQBRFFEr9c9w/qeugO30eq8XlRxVVV1thbHcQiCgMViQS+OWR8OaZq2GhVCEAYBTa2xDcymY7QZkVcVSV6SZwmVsiuatKCuSsI4RJc148XiQjTA/cOnFNohcpf4yqVTLelWFciQKNbUpSVJ5yyTGYt8wiSbIac+jdJMkynzxbj1tStLmrpmmS2ppGWSLZGOw8FixrR+yCI7v03UNDVaS+ra4FjReuw5Do4rqOv2WnmOj9b6DGZ2+tmU+sRhudPp4jgudfMn0BArX7qL2hE7l9ZRymBsjUC1jhRYHN/Hd9QqsRs2ttZxHQfHbV8MGIvvNHyp66O8FuES+gFWllilWVvrc3R4RL/TYZblbAwuHiCDOXv/f9revhVkXzkqC4OUIKRA29MBpmiHilqgdOuqIeTKlfkUGWTsmePGeVGVZctcXA1IT19s7SUVnxQ0ViEUNFWFNYKsqLnz8RP244A0Tyhrg1US0xhqU5/dm6qqKIriwn16Gp8rCT96eoR2FFevXcYPfKLhkNtXGyosz06mfGxqrmwNcRxJUTWMZymDbsig12GtU7BIl7h+hCtjxtUcbTSz5ZKjac7V7U32Nj2KckwUXrz4tnN0OixaHc1E63668mfF6/pEwRrDvs8iyZinOXleYYzA83zCMML322GUt2JLSdm6vEZhjOedf5xQUhH5Po4E328Qoqa0JUmeoW2FsRKEoqoTtOtitIdoYjCSGhDaIS9SHMdDeQ43rl9jd3udPH2ORSJk0L6ZL2BJNE1zhj21BoxuK1LP89qHe7Wx7J+SfB3Hwfd9OnHn7O+QUrZtA3FaDbcP6UUV12k7wq7cDbTWKKnwfH/lXZbjed6ZU4jvem1V1JRYNIIaKUriSNJUFXWZUyEwRU7PDCjygtHxMd4FHnPTckleWSbllEC5+LOAzmKG8iKGw22oGpLRAXkxYZKckGQJtW4woqYs5jw/2aepayyWwPNZ5CmN0SRZghuH7I9HCNUyDc+/Hg1l2Sbh9eEAUxafXB8Bs+mUbh+0AblyijiFrjVNu0/Lldpd02iqslwhVT556VprURe4T/f7Qds7tiGe8lhmCbNkShTGOCJaefa1mGptNFWV4yoXpVrhGt+XBK6LFR51o8nKjJdefoEwiLh7b0I/driy2eHqpZ1z16HUaeVraFsp4uxztHtMns0fEK2qYKsi2MIVHKlaTLNZtTW0WZGA5Ar90ur6XlQJK+WwXC7PUCJmNTMwRv9rLTUBq5NT+9Kstaao6hVlXGB1O9gznypyqrrm+OiICzhFZyF+3mz9RXwRX8QX8UX8zx8X0fC/iC/ii/givoh/i/FFEv4ivogv4ov4dxhfJOEv4ov4Ir6If4fxRRL+Ir6IL+KL+HcYnwsd8aN7H1mswRMCq1qrHmFFO/EUZ2Y6CMQK3WSBVn+0RUbZn5nqtrBThxYC1UJiTAvp5ssvvPyZuJvXv3bJSmlb9wg/YG3YwQsd3CAgrzR6JVo9nSyYTOYUmUVJy9ZmgCsly3lGvBaxXFaUuSVdJri+YrDWIYpDiiJDN5ayMHzw9uFnruM//9/+76w1La0XQFhwhEDIVmnKINC29RDQtiVAOI6D63p4Xozr93C8GOV2QQU01qXWksooGhwaArT0QDr8V//5rc9cx9/9u/+tVco5s81RSqFWqlanOhtCSKRokZXtvWiJHWf3YjWVbvGZ+oz9dso2a/GUFf/xf/wffeY6/v7/8/9iO7GgaSzZsqYymrc//JjReMyP37tLWQuM0aRZwvpwQKcTM1xbAyFQymUwGKKUIknTlT5CC90KAo/+Cr+8vb3NcH3I//H/8H/+zHX8l//Ff2EvX7tGr9/H833ufPA+L7/+GptbO/QGA1zXbUWflCLPMu7ducPbP/4RaZpimoZbL73MV7/xDeazGQ/v3eW7f/AHvPjSS9x66SX29/cZH5/QHwyw1vK//s/+s89cx7//V/5Da4zBWN06CRv9M/ZGpyiRT6NWgJ/5/tPxaUH4T/8swP/3b/3dz1zH/+O/+vs2cHWrZS0VQb9Hf2cDrxMi3JYRpqRErcSajG2fQoFGqBaxoGtNnlcUeY2uoS4N2SxjNp6zWKTMx0smB/v83//O/+kz15HOFnY+Hbc632t9GmMxtHDGlujboid005xByHRdU5/CLFfX6dN7FfQn10IDSEaTMb/wq9/6zHX8MDf2yUlNmklWIq0rrZNPfsYCwliMbaiVQ2AbfFvhmhTZpNRul1w7PPjB7/H0+/+QjnQZzUsOJsdcfvUbfPvf/+uE29f5ay9c4ErL50zC0hqEaRNLAfhSEtgW99dKKJ4iS+2Z5Ur7AT/BMp6iMay1Z5jVTzynWqfUi4wtHcfS7Tsop8Z3g5aC6LgsixyLg6sinMCjM+gg3CFZblgmJUljMdWMui7wKw8Hh2WeU9diRZv0ODmaoXVNf9DH88/HxVpnt4XIWdOqbQnR+sGJldzf6h+sQtDy9JX0cBwfx48QXtxKNyofjUNtWriMMbrFPYsSF5AXQNT+ZAJ2nNa5o03En7g5CCGQfLInzq72p+5Bex+ggTPImlItltS5AJIFAqU8tK5RjmIQ+uztrFOUNa7fPvDCGnzfY7i+hqMcXD9ckREkjuPieS0MCiFpmpZC7Tge29u7NI3GcX24gA5alSXKUUjVukm/+MqrrWrYCkcKbUI7Pjpi//lzFtMJ88mUw4MDdvb2mIzHPHrwgMnxCffvfEQnjnn25Cm3XnqJ/8X/8t/jj37/93n/7bcvuBacvcysbROxMZ9gqE+TyafxqWf35U/5s0//+5/8elFUtUY5gk4c4XQC4rU+bi9CeU7r3+c4Ld3d2haap0HSuqE0dY3juiivpXz7nqbMG0pZIxqLQuErn2pZ4zsXOGuUOQeP7jM6PuCVV19FeQFGuhjHRYlVcXb6s6vro5sGXTcrFt3q+mAxuoWmtl6Oq+tjWthoegGjMskailpjpTp9Qtvn41Q28JQEIi0WhW8K1hbvEI5/jCr2SUf7ONuvIW7+JV78xp9BFCNm99/nSv8Gy2zB87e/xzvr63zlL/5V4HzYHnzOJKyspkxLnj16Ru1Irl6/jNeJAIs62xB2JdqyervT0hJPP9zPgKJpP3hbSbYpAWsuZGb1egGe76INJJmDcLt43oDecJtO3EdJB+V4WCupSkNZNaRpiS5zkuljxscfMBnPaLKGLNdoFI7rkaU1dQVl2eD7FVF8ARc+3KWVJtRIaXHOqgkwFnT7cXAESMfFcUMcFaJUhOOGSOVjpcIICbZlBgkqpDWo9lWMcpqffUX/KfGZz+KKl1/VNa7j4nzK+eC8F90ZSvLTL0x+hmT3p4YSPlIqPF8grEuv5/HCzSuAYrFMCIOITtxByFYJr9GaIGz1EBZpTqkVvh/gej5VXXFyMqLb7RFFIbs7uwRBRJoVnyKm/OnRAuXF6uXkUtc1s+mUzc2tlrosFXVdsf/0Ke++9VM63S5rmxtYoNvtoaTkzvvvE8cx127f4vnTp5R5ge8HRHHM2vo6dVVTXCBVeFqxWduSZT79YjyN02T86ev86f92+tVZ6U58VoI+L6RyCeIQpxvj90PCQYcwClGqTTZStgQJtAVhEMLiSIFpGj587z2uXL3KIl1w9fp1IuW3mg0WhLa4QmLLklCBf4G4/PRon3R0wPL4GQ+oGWzuEq1t4QdRK8q1oiyfbugWv6sR5pMi7rRAOf2KtSs97bYCdF2X/AJNj4NMUUiFkgq5wrSfalac/R7b/plnLVH+FPvB3yd99PtcvtzHTBZo5pj1V7B7V9h6/etUeYrNBDdeeIkndz7mo+/+C8JuH974Ty+8P58vCaNp8jnL/ccsFwnl9ITbX3mdbrfX2m6Ls1TbPshnFZzglF7xJzfPJw2I9t/gnKSyijjyabSP1TFWdNFqDTfaRXtbjJeGvMjb42wjWh0FLAoPV4Z4XQ+Z5uTpXbReYI1GeS7WCvK8XjG9OjiOj77A282NttoqGN16JgoDtn1rCwvCGOQKWC6VRDkOyvVxnBihQqx0YUV5hpaqLk8R7Ss6tBACc8EF+TQB49MPrsUyn804OT7mypVr9Pq9T450p1f8Mx78T3//yd99fvJzVISjQMgGaxpc32XL7ZCtxXTffIntzSFhGKEch0ZrkiRtq0VrGC8yRsuGwjo4QUyW5cznS9YHA/prA6RyGA7XCcLiwgTkqFa1zlGtn19dt27cQgiUo0iTJW/96Ee8//bb/Pf/4B/w+quvMOi1JquduINyHPIshwg2NreYjMbYxtIbDDDW0Ov3eeMXv3omqv5ZYa1eJeB2H522hjhLKuJUpuMT8tFpbSZYEQAE/cjnyt4O49mcyTxpadv24vtxGkEQEfV6hN2QsBcQRyGOIxHylGHW+swJaxGylRzwpMPR0Qk//dFPqMuaSTLh+s0bOKoVwLKNxRQNWliUqIhDQdw5P51MDvfR2YKOsuSzEcYKvKiHqzwQ7ac9ZWUKWn2PptY4qm2XnJ0eTltm+pOXV7uP7YrYcv59aZA40qCsXgnytB56QtiV92lbgZuyJlA13fIuUT8h/trrXHv1RZapIC0dvvdshNef0un2uHzrVdLJmCSdcunGTR589D7v/It/BP/7/5mTsLANriy5vBVyXCcU0zEf/PGP+Oo3v4HXic+YUj9LeT3dXv/6g3NaJXzyB/ZP+7F/LayxZGlNmpWUjaRyDBvRJkk6YT6eU9cVvh+itcQYgZItW6fb7RLGfbav/QILV3B0/30QrRGlEJK6qmia1pLHGsgucCxw412wGrESZIESYbI2CWORllV7wWCtptEaS75y4bUYN0JKF6TTtiyswOKuFKJWCdW2baDPG23vUHPvzkecHJ+wtbkNvd7qMv9sy+fTFdafZNX9aUn5s0K6HVQY4vkSNzL4TsPs6DHL6QKBIPB94ijE932qsqHOc4xoufmxKGhkzdyEaCHo9vpsrG8iMSulsPZF1u3E+P75jLmyLCmyDKXkWd81iFstC13X/OG/+Ofc+/AjfvLDH3J0fMhrL77I8cEBcadDnudc7l+nE8W4XusUkucFdVniuh5VVZNlKVJAdQGN21qNkOZsPtJWxhohVEsaw7bSiaeSh6vtb2Urlyhka+LajySBXbLe9emurTEeH5Auc6wR2M/87Z+EH3fwuyFexyfuhHhue/xstMFKEI2hKgoq21BWGmUhEoL3f/IT7r33EbPRmNe+/iZ+GLTsPkfiupLKFW3S9gRR3yfOz78v2XxGqNpTsbGGZw8e4ER9di6FyJUiWtsWNAgkGIEw7alNW92emvVKMtUYjLYrThvtCRqDqVqxnfPCOatzLEiwQuBQI8uEZj7n+Mkj5uMTyizh61/a5Oa1Ob3dL4O0GCURpuDp3ad88INHrI881tYCytkCR/nkyzmRJ+kMeozG45/j7nzeJIzhw/d/wp2f/JDQi1kfXKJbWh6+9R43vvwlwihaVcGfUInbXXWaiPlEx8CevvXszxzP2l7x+esIgw6T6ZzJdEkYr6GrFNHMcTBQTAkd6IYueVpS1A1CORgEXhizfWmHw6MDhpduMTs6oMpzpDUEvk+2Em1uKbqa8gLPLOt3ENa0Jpm6QRqFwraJWbR0R4C6qamqHF238oi1yHD9HFf2USJEqgAlPKxQ7aWSbYV0ehl+nnrn9OfbF3tbDTx5/IBHjx5hG6jq6hNqJ6eU7zMS/6rCaJNzmiw5PtxHKgclHcK407aULnjiy6qgv/ECw60ddJlz8ugdRkcnKClaqxcrqGpNGPlIpYjiLlWZUhQpVCVmOQU6NFphHR9hDUVd4gUenTimE4d4bkQQnt97/M2/8BdIlsuV8lUrsN3pdfGDgMcPH/DTH/yAKI4Yj0b88te+Dtj2+qQpnueyXCzafrgUpOOU+w/us7u9gxf4ZGnKk/sPeO+dt8nSlP/or392pWNp+9CfFnGXSoES6NW9UFbiCa9NwCsFMNexbPTWWO9GaF3iOpbpYsnO1Zu88vprfPSxw927T5jPa6z504d4n46w3yXoeTiRAodWR1c3aCEp85qHH9zhg5++RSM1aW7oOT4im/P04SPm+yOUhZvXb2GFwohWAlI5As9VNK5ExQFu3RCm5z8v9z/6EK9KKdOEqtE8nS3Rbkh/sEYQxljROn7opgENWInkdN8ZjGmo6nafmtUQX9MqsSkEVhik5ULJVVe1J452eA4+NV424vj9H7J88pjJ0RGOq5BNhZ0cYjYdppmgMxgSuzGPP3zAH/xP3+XgxLAYT3FffRWhFMvCUKaH6MyhLItWovXniM/XjlABnd4mSQPT7JgkW3K1v4lySh5/EHLt5S8RdhQIjWtMK6tI+4azZvXOEu2Dbmzb+GaFrjiVt7PGXviwT6cJVakBg/R9hAgoyhJRu5RZRtCPELYG0WDRKOFgLRRFRSfycG0FokO8+yqbu9fJRo/xVIkQNVVT43oerVHq+QMgK33AIBBtb8lKkC7COshVErbWUmPQtuXkmzrHUy6OlND4KEehhNNWR0JiRXssEitZvtU484I7Yz+R/2sMyWLM4bMnTCdjTNWQZhlZmn4iVPLpIZDRYKExFms0i9mcD9/5Kc+fPsZYgx8E3HrxFTZ29la9/c+OLD3C994kiEKOJvu889Yfk46fM1zfXombNDieQ1GVVHXdJiIEdVlQZAkODU6TcHSYkJQaP+7QWAsmwnccAs/D9RRBcH7v8aXXXmvlCVdWTXVV4SiH5XLBj//4jymyHD8I2Lt0ict7l/j4o4+IOzHD9XW8IMD1PBazKZ7vsbY2xHM9rly7SlNVjJYLjg6PqMqSLE0vuC+fHrJJzMr2yQqLEW0xIoRD7DvopkEpSacbsbO9xkYnIp9M6PQjSgRe1GVzuMbH7/yI/cNn1KXGGsFFexSgtxYRRy5SGay2lE3D7GTC/pNn3HnvAz786TskkykOkmtXb2N9n+ODh62zizYU8yWjZwfY115DKoEWFqkEXuhSVy5u7eA4Cv8C26n5YsHs+SPsyubLj7pMnj3mbd2wtbfH2vomrh9hHBdjBNa0qB4hBVJbhNUtouK0JWHbck+tRvqtxMTFZwNXsVJma3u+3nLE7O5PmN3/gGw8wTHQXdtguH6VwZZLp6/Il3MWJzPe+fgjfvKDO1y68ia+e4fS7OOUV+hvXid0G8y1G0ynM9aGm61xwM8Rn8/yXiiu3XyBr33jWzx+fJcnD+6hmgaLR9cGPJaCS6+/iBe67YUxdgWDMmfVlln1utq+adsQ+2Sj/nzrmC9z5onADde5duNVjBNwNF6ijUS6EX5vHTcOiX3N2mZMGPdohEQLSaEVYXeNLMvYuv46232PD76XMj68g0Dj+x7GWJpaX+hYYJoStEaaGmk1ErNyo203j6H1obMYhDVnKBElWliQMAphFe1MoR002FUrR9qVceLPcVFaEfWGpqoZnxxzfLBP6LlsDtdZzpYsFzOy5YKmaafzpz17YwxlUTAdj5hPRpR5xnw24/hgH9O0wiRFknL/zh2yPGPvyrVz1zHY3sYJAgQKXdXsP3tOOn2OlJZeZ40im+OGDuCQZm1yNE1FkmVUTUNVF4ReRCQbiqZA1dCLOwTKkiymLDshV65dQ6jz78spRC8Mw7Pro7VmdHLMs2dPERKm4wmdbuesB6kch8HaGpPxGGMNo6NjJpMJt198kf5an9l0wls/+TFlnnN08JybL9zGuUDE/NP3xnHUWZ9eWovC4joOWxtDvnT7JovZjLqqKMsckhmjxQm6Kmgan1L4zJcp+/c+RgG1khSVg8FDXoyAIuw4+L4CLOOjCQ/vP+CtH/6Y/QePyGdzyixHGPB766xv7iLLrN12xuIGPovJlO//wXe4+cJtLt2+0RYXrkFqieMrVK5wXQ/HPf96rG1sUi0maMdFlyXCaEJdsTx4QjY54iCM6a9vEm/tEXUHCOWAdJBWoUxrkGCtOZNX1ca0cDrZFnJKShzpXqhe5qoWfSGNRizGzO6/Rz06xmjIdSscNIx8ZBjTW7vB/pO3KEcP+fDtd/j43oJf+LN/le31IT/9J2/TNSW6mGD1TQIvYmvnMt3eENNUFxYtp/G5kjBAGHW4ev0FirLm2f4J+7MZiBFXHYWRKYlTcvOV1xFugLAWbIPk033f9vuzo7a1py2zsz/9eXqPThThd3Zw/HXqxuD6injzCptXFVuX9s6mv92oTxB1MarF7SppEeZFdN32aMvFMX7/A4pnjwicVmpRN3qlHnZ+z0/nx+1nhDNbFIFH2+LTWNsgTIOyBk8qpBdilYejPFw3wlVq1c6osDSnx4G2F2sVArlSazp/UyXLBY8ePqBIc+bTCd1OB6ffZzyZYIymG8dkizmL+YxOt4duKrQ2JIs5Tx/d5+DpE9L5lKapaF+KnyisCSRllvLs0SOUOn+7RHGfpirJkglSSfxOn+P9ezx5/Jit9YRGpxhKXLdLktZYa9qerXCxQpKkGaFRONYidYnOSwaxh1cvefDBu+TJHM/R7dT5nDj1XPsE+tgOPIUQ9LpdsuWS6fQEgWWxmDNbzFkmCckyYbi+TqfXJU9SkmXCk/v3WdvcIJWSZ48f8/DuPd5/510ePXzEb/3OeU6In7SG2t6PWPWVFAZBJKAjQZQLnj34gPXhJfauXuLexx8wGy1Xcpea/cMjNBLfden4Pq4XMisbtJagBHDxvMANLdiaJ/cf8K/+5b/iwcf3mJ6MoKqpi5xGN2xubfPyV77K2t4l5oePMU7rVhGEEU1d8vTeQ77zz3+P3xn+ZeL1PlaB9CRu4OIFHk2gcd3zZyhOEGGkxOv0cPsuy/mUZDYhikPQDUJKRs+ecnhwwNrWFkGnR6e/RhDFCNfDSNWqyK16vu1X25ptipWhgTUXFk9KaFRTkJ8cUOzf5+jeB5iywfVihuuK0BcM+gHDYY9uuMkf/JN3mN79A8qkYPvy19i88QqPPvpj8uUMT9RUiwOarQV+2KPjhawN+oxPTlp/w58jPl8lbC2o1iZlc/c6b/yix+/97j/hIF/iTSt2VUHleNxt4PXXvoKjBFi9yq2fSPid4fpokRTitAMh2qPyRW+yMOxjgg2kN2QyK7DKYe/GK6zvvYob+ATxShfYc3BVsOqxGpRo+9qOFNjTpv7GBsPQ53ue5p0f/XOaOkcphTbi7GZ/Vrhm2b5ThMSiaGx7MLLNBFHNcGxB6Eu0WKOSDo7nYYVEyaB1fabBNNWqD9w+tI4QKKFajWLTHsWEPX8dy8WCD955F98NKLKM0fEJi2Frh5NnOVo3TEYnPH/8AOk4LGczrNEsZ1PGR4fkaYo2zQquJEEqrFXYukRKFysVOjc8e/jg3HUcHe1zePQUhKDIMqyA2kiapGS5eMbjgwO2t9bp9jYw2jIYrGGdgKox1FZxPC9oJjWLQjNdLtnZGjAbHbaSi1GPZHrMj757yJUbN+HP/KXPXMenCUFnX41h/9kzsqIgyzJcpcjShEcPHzJNUjpRRJ5lYC1NXTE+HlFXJccH++xcvsyVG9cRCJbzOZvbm2xub/PqG2+cez1Ywb9a1JXh6t6Qq5cvMZ7O6AUe+3fvkk4mZAiSheT2K69y43bDwdOnTKcn7O+3D7LvOzgIpOMxLzWLQtMor/XPW/2e86JpSu5++DE/+s53uf/+xySzBWhDVWTUuqE3XOeFV1/j+tXrHB8e8fjufZLpFBF4RN0QpdfIFks+ePs93vilr/Hi+mtIQYsbD3xcv0KK4sKZuhsE3Lh1m+PjEaWGaLiBT0U6n5ElOVpbjJD4rmT2eEHQH2CzDRbSobu5hQhChHBWUzXJdDJB1zWbO9sYJVHWouTF7Znl4SPkYs7+B2/TJDPqsmIxT9hcD9nc3MIPJJaaXn+AFpDkLlUd4LqG4eYWR08eMX14D6MlRklsOsI1c/xwE91IHOmg3GDln3dxfO4krA3sH41xHIdf/rXfIMtLvvNHv4tKCnwl6OLSNIY7Gl557WUcF7Dyk20iBOpU39aYlpViTMvbMLQb64IkXFeGWTIDWYB10E5AgovXv8b2oEfHl7iqtfyRwhL4LmEAkSNwBAgkVd1Q1oaT2ZLAc3np1Td4eO8t0skTXNelMYK6On8d0mQ0taGuGrQ2SKEw1Qib/ZStULO3tc3aep+yNjwdCeYmRnhrOMpDCYuxNUbXYGuUsjhK4CoHKQToU984C+L8m9nt9ul2OtSVJo5DdFVim5pkvqBasd2m0ylIwejkmGy5xPdcrDHUVUVVV2AtrqtaoewVBKjd7C1xQjku6YUecwUYjeMoQl+xd/kKJwfPefb4CWmaM1nMiR8dEwQBW/0ut27eoMJlPFuQZzkPn89JS0NRNURxQIMizXJ8P2JnawM/8Jkvpjx/fP/cdfxJ4oOQkg/feYc/+Gf/jJODA6ajUYu9dV063R6vvfEmSMGPv/vHGKOp65o8z6jKEm1aP7F//I//MS+/9DKB53G0v8/m9vaFLsfGNqsZCLiu4sZuh1evhKTbLg+f7uP60NTeysHF460fv8Ov/to3uLyzy/e+/x0cNWoJPsoBx2FRaRa1g3FiUB5GWH4efMT7P32X7/+L73D0+BlllmBNTVHkWNPQ39ji9pd+gb3rt8kWYx6/82OOnz9CSs3eWo/aFMyzhK3NXYSU5GmCwOIrB2UFWkmEktR1RVmc3yNvjCXyA164dZ3HR8dMT0ZI5bK1e43Z4QHT/QNE6HL1yh5FWaOThOfjKYvlkss3bhKtD/GjGK/TRbgBRZqQLpesb26BMdTSoqR7oZ7w5MOf0HEUISWV6yGFIKhzwljQ6ILpwZLBWg9BRbaccjxa4tHDExXZ5CnLvCAbHVFrBUhoSrLpE8LBLcIoIEtHaJ2jzb+FdoSxYIXkS1/+yur4bfnt3/ptPGX46Q+/S+b4vHl7lyyxLCaH/PgHR+xc3uXS5dsotbJu0Sub6bqmrmqsaSiLguUyYbZMWd/eYW9v79x11HmBLxVh0OApQ1rVTJ99wF0jqSaXqSLDzat7ZA0sa4drt27iIhgfH1CXJVHc5aN791nf3GNrfZ0vf+lVPu4L3v7R7/Ng9qxNTrVFN+e/26fHz8jLlLpusauBKwlEws5ah6s7PeIgpKw1QmTEvkeyKEE0KKdAKYO0GitqhG1QwuCI1ZhlhS9tTxGmxR+fE1Ecs7Wzw9NHT+j1ugy7G5RFwfFkTq0NUrSDDd1oPCDTK/qpbo9utW7ddy0W1egW22JbyxkhNNCiLbwLoHK+5yKth7Ct0SiORxAPeHryYWsNLrqMRhl1M2W3lxN315ilOc+PxtSN4cnhjKyROFKy57nMlwmiaYh66zSArxS9wZDyAueV0zgjQqwqpE6ny+PsAckyodPt4roe3W6Xo/19rty4Rn8woK5qNrY2ybOMh/fuE3U6bO/sIITgyuXLfPWXv8F7b73F04eP+a//r/8lX//7f+8zf3/dFCvEioMjXebjMR/OD1GOz/7xiKLS5HlJXp/wi1/9OrqqefboCUW55OmTp/hBgDKtFVdlJVmjaUTrNiJMgxQGR8kL5wZvf/d7PHn4mDLNUbSONq4f0e10uP3Km1y//SpVtuDxxx9wfPgMa1sUh+8opDR4nocWlk4UkCXLlijhtoNkZXVbOChJc0H7LohDqvEcUWXc2lrng9mUD+/fZ60/4PrmBpvDIc+eP+LjDz8gyQr2dq+ysb3D9pUrbA76nMynPLjzPsPLV3D76zhaE3pQlClYifA8pFXU9fn7Y82UhE5ApXOaxZRBPybqWjwzpUprYqHouTHHzx8yOpnzbP+E0Bj2IkGx/zGaZ+jGUjSKZdG2YfzJY3Z3R2Dn5OPHhN4QFW6du47T+HyVMBYrBEKtmHC2tXX+lW98C11bppNnhOsdOoFgcTjl8OQYbI6vQubzJbPFnLLOWS4XLOcJeZowm08wVtHp9rl87Sbbe5cvBANIq/GVZa3r40uLl5Vk4xnLpx+QqIw337jBV1+6zLPDMQ+ennD88COSbMHBwzsM+32WacEyzwmV4OnshNHDj1Cegx928Fwfo2usNhf2pp8/fZtGpwghiKIeThATDGL6g2t0Bx476x75MuH46BidzgmNh7BTXDtEEWKEQCiNsA2CpiW8rDDFLVbSoByBe9E5T0CwsifqxBFKSupGEzuSuTY0FjILfceh04lJkxll1VA3TTucqxuEtfiei/IcQs9rh3JV03L5dYOt6wttY7BQlCWcOkXUBaYqqRqLDCJ+69u/xHKR8ej5PgMfkIpZWrKsGjw/ZHNnh+dHE+qqZjRbELiC3bUuvV6f9eEGta7R1uBdMPD4kz1BrTUvvfoKV65f4/v/6o946wc/4KMPPmC5mBPEHV546SUa3bC1s81yvsBxPTrdLr7v0+v1GI9G3H7xRV790pf4lV//db71G7/ByfGIBx9/fO46pGgHSUqCMIJGu4zTHF3khGEH2TX0O0MePHnGx/fe4/L2HkcHNZ1uiJSqtZyXLlI5eHFAVdQYDUoYfM9hczhgb3eLfv/8Hvmzu/fQumJtc506Kxlu7BAEPr3ukKvXXsLD5e6HH/H88cc4gUI2AeiGLMsQgcPGxgY1At93mR0dUUxnBFtbGNm2foIopLcxJF2cjwZ49vw5/UCR5QWe9PjSSy9QFnMePN0nrwt2+gMiv4vnuXSjgthVmLLg+XjM4cE+iyLDkaC7XRwhKdOUeb5EC0HcG+A0IY0sLmTMmUpz/9kDTvYfs5iPmc/nJMmSuqwRCDY21njl1Zc5mSb0u33yuqCRHsYf4DX7yLpGa59S++SVQOQ5w8GSx+/9D6AEnu9D5zqRH5+7jtP4fJWwaK2pBeAKwfHzIx4/e8j1W9e5dP0aJydPuPvoGeu9Lo+PP6SqazreFarFCe/84Ae89d47RF0fIcCUmit7u1zZ7rJ35VVeef2rdNeGZ75P50WRJRhXkSxcUlbCHkWOMHOaIuf5rOIPf3qXyXRGXWvWtgK63TUGL7+KqXL6vQbHdTHCMs9yjrLWcTXNoalddFGv/KUuaIskT1qKpxuidAs4b7TPZNYQORXkS6YH+xweHZOWSypjcMM+QbRN2NlBBV0c119VSwaJoTklTti2RSNXA7pz74u1SNFqA6xvbFBXJTbJGIQdStFQr/y4fM+hLFtGWWYqaq2xxlJrjSsEvu8RhT5xHJOmKY7bQv+apkE3hsKc/5D5no+SrSBTniacPHuELVOEsIRhwK1rl1lfXyctKor5mPd/8kPmy4Ivf+Xr3Lp9A9sYfvCjn1I3lixL8aiJowjHcXEdr+0xlxnNz+kbcwrJOxUCKquSbr/H1775TeazOY8fPGQ+GaOvXEZKye7eHv1en16/T11VXL99i+29PdY3Ntm7dJnBcIMsL8Bauv0ev/DLv3Tu73cQaKuRtqKuBclSMAwD+sMug80BKlIslhnLbMYLt64RBV3ufngHgWW5TKkNGFfT8WJ8VyLTCg8H35F0fEHPrVHlmNCevz/qNGGtt8b6xiZROKDT6bYaFm5IGHdIpyfMDh/j2ZrO+jrj8az1TatrDA2NVGzt7tIPA5bP9nn003d589vfwoYx1gOweJ2I7vrauetYpimLWU7oKWq7YE/GvHbpErGWvPN0n3fHIy4PN3jp8i79pmE2nvLs6WPysuLKlcu8/NILuFZgBKTJkmoyYT46olhWbGztEG1soKIuZXP+gPDDuw9QyqLxeHI84/0776OkiyMDsiRlaz5nsLXD+GBE78WA7d0trly/RUePyB5PQSeUJkS5PpGUNHnDcpYSbyU4Xp+8dEiLEwr7byEJt7ECmSuXO++/x8f336XIxrz143c43H/CyVHM7vYaSMvJ8Zj95/ts71jqZsnGWkwoQ/auXmFvb5vhsIvwXOLeFbq9PgixYnNdsGhfEXW6bAw3kStVKaUl0utRZRl37j1hmjZ0e13iTo+6aTUZBkFIEAU4rstsNkULB9+X1NZBSkHkeyglKW2DNmqFw/zs6IYWz+0g3Q7S91CeAuVjsUxnY0w+YzE9ZracUemaJE2Rck4Yjun1j4m7m8hoiBf2wfGwbdZdoUpaERWsPaNnfuYdsa3btKMEvufjui5xt2C5WOJHHr5wMFaTpRk0FX7gQ1rQNBqtDVobwtAnCALiOF6hIgS1rjHW4gchRV5Q1xfRdIEV1TqZT1lORggl6HRCNoZrdOIY3/PwHJdlnZKVDV4Q85U33+TqlT3SZM76oIsfxiySBJqGD97+CY+f73P9xRfpdDogLUV5vsHmaXxal0FrTbpMyLOCMAzpDfpIJVnOF3zvD7/DjRde4Pqtm8Rxh6os6fcHbG5tI6Rke2+XokjZubwLQJUXNLo9JfDCeStoWwmOo4h9j6ooaTyJ40X4yrDVC9jtdNjpvUgQ9skzy3I+53g0xkpB2OtghaFqSkyqMXWFF4Q4wlJlKc9mJzyqc/ww5K/+zXOWoRuoSsplys72dYKo03opBiFlXbL/7D7l8oTd7XWezsYs84JYOqsTXsThJCWdzdhw1qEqefzTd9na3uXyL7yJFqIdUAmBH53vCm6MpSpq8ixj4SXURcq2Urx4/QZRf43vvvcuHz97yny5ZG99yO7mBhu7O0zHY9JkyfOnT5mOpmRlRdFURNJhPJthnk/IdkYMr17F394ha85/XsaH+7zy6g3iQPHoqEe8tkmTW4q09eFTVmCbhjAIuHRpj1svv4gXhoisw/7ofYpsiR8GNEZSZK2Deu0JlOMTDq7gR7fwKk1zwfNyGp97MNdSkwXaWqyuGIQOsl6Szk4YjU7IiwWL+Zgb164Qh2t897s/ob/eZTQ64Rfe+Arf+MXfIOh2CD1LMjsmE+CFEUau0Ks/By52bdhjONjmhRsvEvkuVd3wwI9ARdQiJFMBcdwhDGOEFWTLJQUlg+11NJZkMufo5JiHTw5ICo0b9HClpcpnKNUgnAbT1CtpvM+OwfZrON4aqAgrHVzPI456ODRMpk/xHUPaVKxttBX+fL4gzzOEEOTZFGlzTDHDWbuE19uiliHitBVhW90ehUBdgAVtmpoqX6KExfddXEfhutsEgU+WVyzzijotsEriKOh0OiyWGUmWt/fxU1NlIQR1WVLXFVleYVeYZuWoC1ErjuOhrMVgaKqKstJcffk17h5MuXX9Cr3eAOE4SKNRjk+DwAt9hK1ZzsdYIen3OmDBH/YJfZ/5dMz4wzsI5RL4MUIoguDn7wnLFWFGKYXruuzs7JJnGZevXuPxw4ccHx6Q5wXaaObzBXEnxjQa6So2t3c4OHjOd3//99m7epXh5gZStBjkPM1aNMU58Svf/Bq9Xp9OGOJgWE4nTEfHfPDh+2yvh3Tcy3hY0iTj6eN98sRS1jXLQhPFPrvb2xRFulKwc5CywnUM0lhsY2i0pGwU5fL8h33gWGSTMhvtMxhu4IYhWltiYZhPjznYv4cKoDYQbWzw23/517j3o59y8vQJXeng2gpZLWgqh04QEIqaJz/+HttXd1FbuzSVxFEO6iJggrE4VqHrmqLMeDydsehE7EjLiy/cIA4C/ul3v8vjwxMOT8Zc3V2wM1zD0S2G/vDwkLzQ5HXDbDFDWcgNeKEkLzMkmrqq0BecDBxToYzECzx2r97E8TaplzNODp4yOdpHVCUONddu38CLIpRSiLogmZ1wOE4Zxlu4RmCW89WMy9DUguNRxd6aixd2aZqC6ezwgguyWs/P9VOfitM+aZ7lCAGB74FuWF9bY5EWHE+OsU2Fa55Q1yGjSc7ToxlxHFJmDnXUZ7C3jZkcspjMsYM+0vOwqsX4YT6FYfuMcFULeK+LHCtaxbHQD6i0papSjKw5etZCs4w1PH/8gNHhUxwF0jRI2uGTdHy2967R6edkdQH5hG5oUEpSVQJdnL+Q1978s8yLVve3xaqlKHIcakK9RtDp0K0My+kxg0EMCLa2tvBcl9H0hPHkmFAm1HnKprTE65cpVnRMRzn4rouvXFzvAtWwLCWZTYnCCGMNruMShz18R3F0MsZVQNhD2ZKmanBchee2lXNZr3DbUmC0PmOY1VWNkq3Lb900uJ6HewEjSkp1pkGsjaG3vsX25dvE3XfodFrJyqLWGNtQao0RCtcxLJMZWpdo09qLB76PVJK5lPSGXV7/hZeYpEfM8iOkUDjyfFLAp3WrgTPMc2s372HMEsd1WVtbQ0jFYDhEN5rFdEoUhXT7PZRyCcKQq9dvMB1NePMXfxEh2oTuOA5RJ77Q5fh3fv2XCMMeAsliPuf73z/mgzt32T+ektYVs2WCqC0nk4TNzW36gx6FEZRWESmH4XCNw8OMKI55/fXXmU6nNE1DOs8p05JUQG3NhS/HS4MYJQUPFw3HB08Zbm5RZEuahWQyOqFezljv9TBeyF/5G3+NL33lTbbX1/mHf+dvc3h0jCsl24OYvZ01Nna2KbKU588ecuftt3n11zdXLQIHq89vIwohqI1GmwajNXlWkqUFYdBhNEu5efUqfzn0+L3v/Zg7z55x59kh7957img0ncBjfa1/JoLlexFZnuJHPv1+j2VR8Xj/hN3uBso/f59eeekWRLt0Oh2+vBkzW3uXevkj6pse6bRPvijY60u2dmOaKqWqFP1ujBPGXH3tlxk9votNHuM1JZX10EoxXpbMC4OIjljztuhv3sRz/y20I0R7OqZuar7/3e/ywz/+PoM1j/HSY7xIWd/eZbi7TTY9wTEFz48PSCqf3atXWd/YoMg07739LrdVw6ZjqA00lUa6Hlp8lszPvx7r/S7TyZzvPf4eLg211vjddbZ3LzEZn7CsajQC3WiEFESiYD12cF2X0HPwpKHBkpc1o2f3eHa/IQzhy69s8ue+/S2sqClqS52d31v6c3/uqzx/PufZ02MW8wRjSpo6xTYVfreP9QWy4+AVKa5j0FVKWubUjgvasrVzGVsbpJHkyyndTpdO1MOLe/iuDwiaWl84dU4Wc6psSa/TwQCVsVRpiistGz2fPNMI4bBclKuTjEFJgaskfOq4XlRlK8u5sgLHWqRoq0gBF0pqlmWFbpqWlovAjyKUctnc3KYqc7IsRWtDXhWkeYaxgjgMCIMI33Na/X/fw1jDbDEjbwrGyRGlzdpZAa2yXKB6567j9MT2aRH0Vh0vIFsmaGNwXYdOp4M1Bs91SZdLPM/l4OkziqrixRdf4uDZMza2Nnn19de4cfMmQRDS1PWZqLrjnf8y+MF3/4iqNK2xQNXw7nsfcng8AsdjWSxI13p4js8scbFeA4HhxVde5uYLFknNoNchCm+yTFOOj09QStKNO1zdvUbkxyR5Qq1r/OB84ZyOLwgdl5lWHKZLkukxs8PHNNqgDQTW4AqH137tV3jta78AjuSVX/oqyzLhwXsfUcwWOKIiCiN6awOej4756Nkh8v4DXvxahnQCTKOp8/Mrcq01jWkomwprDI7nYmtNVtSkxjItcnb39vid34zZ+vBDHjzd53A0ZbJcMsozlloT+z7CrDSuHZe0yJktUpTyWJcBw7JGXkDlfvnFdb7zRw+YpAWiKtgNPuLrr0OZ+oytoIkEVj9hcVARDG4QrV/GCXsoKTCFy/Y1h+lHj3GbmqSCrHYpbIhfaZbjESp6ggq2MPLfSk+4FeJxlOKNL73OGy+/ivAMH370Plduwa0XXsD3BD/6oz9k/PgDaiPIns8xoqG2Jct5ytojjyMX/BcuoeIY4YdIx+FU16ul7Z6fir/6xhv83u/f4cmzJ+xs9Nne3kX4MbVuODx4wmw+YWd3m8j36XV7dMMhd9MxR4dHdC7v8lu//m3CTsz+4TH/4//0T0mnY5o0YrP3Zb711V9HOVDVpu2lnRPV6C4dremYY8p6iuc6iEDT1DXKcfA8j0EUMRIN08kBqc5RooWfxVFEWRTUtUYqxdFkn2U5p99fpz/YJHUDGuOA9HCD8wVrZuOTljotwA9ChJLoqsD3FY20+K6DEJJ0VclZ0w7yxIphZFdi3rVsZfzMShZQOQpFK+6NVFTN+S+DWq+kAbEI6eC4kroq6Hc6LBdzZrMlYKl0Q5LmaNOwu32ZjY0tdFNSlgXGNlRlTlLOWVQLlnqJMQ2eG6NUiGkgy8/fH+pT52IhxJk4fRiG9NcG1FXJctGnqiqqsmR0csJgMOD46AhrwA8D9p8/Q7kOVVVw4/YtOt3uSvxcoLW+EDkD8N6dx7iux2wyZzpLWCY1ghB0K63pOTEWQ201o/mMzqDD6OQYqys6ccRi6RDFHXrdPov5AmMtyaKkE6wx2B7Q7UZIJc/o2Z95PaTFNhWxG+A7Bl1XOMIymk7wHEnHk6xt7/K13/hVXN/FWEuw1uObf/63+eVf/VUmzw9574+/w8liSvZ0n6eHU5aNZDxdIEyDEIamrMiX5xctcqUWV1c1xmqUEBhtORyPcQOPKL6CLGv63S7f/tpXuX1ph3v3H3D/+T5H0yWVVSAUpanaPatrBJKkKBms9ekPh1R5hr0AwujXd/n+H3yXTDiIesnglZSDp13u3Zd4es6wX+NH8P79Cd6w5hu/dZXJfMlsPqcbddjYWCPdf4/p+GOqSpBlhsIIGiGZzTIa5zmTuseVl7524R6BfxPGHO3GHqyvIa3ESMPXv/mrYFpuuuPAK6++wbvZnK0rL/DSlyXv3vmQg+dP2PBjTHdAdXzMyIfB9jqDYR8pdCsEb8VpFj43Xrz5JX73d9+lKnO+8c0/z+/8ub/As+Mx//3/8A+ZTo4ZdEL+2n/4l7hy9QrdTkxT1fw3/83/myePHrC9/jJ//rd/g143Yv/ohPfffYfJZIRDRT/2KPMcXVdYREs+OCc++sl3yApNXmqssmAU0gqUVLj4uGhMbenEA4yV1NZluZyQ1TWFFYjGIy8zGlNQVAVJXZOVDYfHI7r9DYZbezi+wujz1zGfnOBaS5nnVGUFUiC1PoPZ+StpTuW2QkZtldjq1p4dZFeVL4CSp4LoDggXIdtBXaPPh/7kVYJuNBJJVlb0uh2SdI50FOP5nD/+6VtIKYniPnWRkJUNRWMZTROwmul8jFQWoTSZzqlMhcTDdfsoAnQuKbKGn4eI9DNOIStRdCEEcadDWeQMkrVWWtQYXN9DOU5rc+V59Nf69IcDirxANw2D4ZDhxnpLolk5lZwKtJ8XDx/vEwQ+ZVmRZSVFXbdtMNFe+zRNMVajdYPn+VR1TV62YkuWMRsbOaHngjUrJTZLWdZUpaEqa+bzKWmW4Hou3/gLf+0z1+GEMTrJ8BwXz6nJy4rB9lVGi4ymmBFs9nj1V36Jzct7CCTSGhoEKoiQQchuv8/aziZHj5/w0x/8kOOTBCFbdIAXuVRYmrpBXICrT9OUsipXw3eJFZLatOL4Tw4P6fb7dK9dI80LpBRcvbTLThxya3ODe08PeX48Y1JWFK6iEZYst5RFhbGCsNvFDTyyZIl0zj+hzEaPaHTGsgCZzamXgoOnNX6wjciWYBVJYnjvwxTZPeDqC/tURcHe3iWiXoek0BzqbU7yE2zQITUpRV2hlSIpJcVoyejoIxbN+cXT2f35uX5qFZ/e2Fa0akoAQric9sK1sVy6cZvB2nrr5uB5vPT6G/ydv/13SJOUg3JGOS4RLgSdkE3PxaFBG9NywKXiIhZQ6G/w4q1bKCnZWFvn6OCIIktxbM3GWo9rly7hKYemKFk0bbN+Z2ebN7/0GjeuX2c0mmKqlG7o89u/9Zv4UYe1OOSN118F6Z39dumcf/yWpqLbiYl7LpWpKesC07Q9V4mmaUqSNEEay0avw6B/k8eHIQ+ePKLTDdjcWqcnFI4QJMmMuimRUjBbzElGJyjPZdgfUF9wvMqXc3xHkCQJ4uiQuBMxjD2kUsRxB20lZVHiu/4ZZAs4S8SO6+D7/qrHKfGDgCiMkFJQG9FaA1mwF7QjJtMjqqoicEMWSUJRl8zzlCdH+xzNZpxMn5LVFetr26xHIcu05K0PPuLBswMkgqJO8H2HuOvR7Qf0OjEUmkp7YBSmboWgBBfp+J5S5H9WC1kphed5xJ0uXuCTJgnh6eBlxeJsyorFbM7RwTGOkkghSdMM13F/pqq+qA8LcDyenqnWGWPQTatz4Kz0dIUUNGXTDhCVIkkSHNfBqlaEJslKyqI806CwCCSKx8/2efjgMVm2RLmKMDy/HbF+9UWO7n6A54aI1HB0dMT21htsb+8yfZ4z3L7E7S+/iXLdVmtLtC8KI2xrtuEJvM0NrvYHZA28f+8xKi955c03kL6PzjRNoREXoImqqkI3+mz4blf6wVI5GCvIygbhxwx2riFtSX74GLRhu9NBbG3iG3CnC+Z1RYXGFT5LrTF4+L6LxVBmBa53AbnJq7i8VrNWS2IVszVo8GyKVce43RrHtRyNK5LcxTYzfvKdf8mVrRC7eMba1a/w0cMxP/jxHQJt2FvbxLowHU0JPB9hJKqGg+mIRfnehXsE/o0gaqchfubrmeo9gOPRHW61mhACbr34Kn/9b/xN/rv/9u9xMj3ElBm10BSe4NH+c9K8pqhq8kbT6fX51V/9VXjls3/z5vY2/+l/8p8ArXKS1gaD5Re+8mWMtbhK4blu66YgW1e1L73+JgJavywBrjAgJH/lL93g3/uL/wEYgyM0UIE2NNpiL4BHrPUjVNChbCBNajpR3CqoNQZqTVkX1MkMqVysH9Dp9rm6u03dLPGjgG7QIZQ+jpUMujE4muUyYThcB2kQukJUc5oLKgxdFijfx5iaMluyublBHHlINAjVeoZJuTK49Kjr9jgnRQttCwO/1SiQmtCXdGKPKPRASrKypigrqqbGMedXwsska18is0MOT44pG0NhSqzU4Gi6kcsg9PC8GmkU1tScLCbsz4/xRHuKcFyXIIqIRzH9sGY47LetKt2Kuzuqpq7PP/Yac1o5mn/NCklKiXQc5tMZz548xfU8xKrFEHc7ZHnGw2fPeHp0zObaAOm63HzpJbI0pTdYW0ly2jPUxXnRWDDaIFVrWikcWqHyVRJyWk5/6x6xqtSbukJi8X0PYWsMDsYIMGYl4dhQpBl5kiEFdLox8gJVuZ0XX+Pk4DGRivHmFfnkhMPnj3GlwHViLl99ieH2NtbKNj9KgTi1GTuV9pMKfMHNL7/G/2rYxVVw6fotEB51npJOM5bz5bnr6HW7lK5DVZVnmuJYqMqC5XzBhx98yGQ845e//Wu8+ZU3GG5tsq/e4/jRQzKVoHyPwFeUVrR7RXoo6yCKAt9zUI6LDCTuBZVw1Ez481/rIpQPVHgkqFqR2gphfSpjacYS5ZYIWVDMcjKhSGdzgo1XePutn0A2RSnB4wd3sU3DMHY4GCUsFnZFmIrIF+dfj9P43En4E8dT+MQ1g7Ov1oIRTstrX21SoxSXb9zir/+Nv8l/+7f/Xxw8uEcpBcWh4uhoRNTpc/3WbV68ep3rN2/SHwwuWESF70ocsVJHcRVCSaQTtWpZdkVvEGKl2G9XGNZVNW8B64AFF4tSYITECgdjFEa2nPyLSCP/6I9/Sqc/ZGN9E+oKKSAMY5Ry0GVFkiRoLZHSY5TmrAUBwnFwpE8nWqfWbmuppCRlmSKo6AQdHAXdrkdT58xOJnjy/Ie9Zdz5OEJjqxwrBFa6rZaFtSvpP73qU7eea6dutq4jVtrGGS8OLZsdjRUF1gga3fZ5a6NpbEPhnP9SklKhdUWW5VRVTdnUdAcBYSBJ5imOsUR9Fz82kFn2n5eEgWJzLWLY7WNrFyECJrOU8WiJjjV7e5uUhWWxTFpRlY6Loy6wr2mas+r2T6uIHeUwOjpGV1Xr8lFVdLodoihix9+j0pa6KJFS0e12qauKD95/n6//8jfPKuGL9gZAEAUkSYawElcohBLUtmkZkSiWi+VKSQ7C0F2ZgPpUZdG2f+oGGkMUd/HcgKqqmUzGLJMUqw2O51M2oLPz21X++gDZianTishTeMLwdP8xQRjQjSK2bl5D+F4roGU+pWT4M9uureijKOKll1+hdUR0qGpDlZbYpsLa88k8eZ6eKZ/pptVFUY6DbEBiSJIZSTIjDD3KMiXu9tm+/hIvvPg6x48fY95/l+z4ELOYU5ZtG8IpNE2aEPX6dPtrBK7L0fHJues4OvIpsgJTpegqZzLPUSIi3BxQN5aiqBlPDJ7QKMdiKofZrCY1KeHxhDJP6Koa33GZpiWxAz23YuJKShHixOsIo1kk8wv3CPwb4oRP9c/aOE3E9qwS1rRY4tPMZ1fapN3BgKs3bmONZTgckmYZe5ev8Zt/5re5cv0mRsiV48D56xiNHuEKhSNkm1yUwvE8tDVIxwEjV9RZget6Z1rGAtFWJUIihIsSqnUytgaNxQiFteIT0egLIDfvPRpRmSnK3W+xpdYQBj55WeA6DkIbYkdxqReyMQxJxk8wCmptOHqaUVQC6Thcv3GZPE2okgl1Y+gGDnudXdIqAb0guoCW2rrV2DMltjxNmeuaKHARQFM31FVNOzD7pEKUUuG7LkpKmqwkBEIpWp1WQNlWeFHaBgeNvOBk4Ps+edHQ6XZwvYCyrhiu9yizDGEc6iZZJeocaw39YZ/1eJP1zQGh55PMKyaTgjqvWiF+qairhjIrcJQm7vgMel2UMzh3HafohU+rqX3aL891HaK4fVlKKUnTlDiOWczm9Idr3L55g5OjY8Iw5Oq1ayznc+5++BGvvPo6a+vDTxUi52/UXr9LlpWr/CVbkcB2hQjRavBaa3BdQV3XLYSrFsRRSBAEJEmyQgyJlVnpjCxtTUwNgrLSGFNyAYIRGa/RuXyNx+9/iHQsvdBjUqbkhSEIQmTkt7KYq0f79Nn9RAq0tf8Sq+q1Hd8osIIqq2iyAk9ZHHX+/iiS5ZkDdUt2aV2TqyKH1aCuaRo+ePstHty9h7aC6y+8wNe++Q22NjfZfeMNrnvfoCxrpJC4votG8+TJU5bLBbpumI6OKfPz3Zab/jcZjT7m/v33UEYyGmnSZAFhjRNGTGZzstwSuA6x53I8L5l6imU+Z/6jHyGtbR2slUeWpFjfwXcl2paEnZCwE1OXObI8Hyp3Gp+Ptryigbb7+dN33gKf4BVXA/LVTROr79sH4Jd/5df4+i9/i8APmE0nFFlKf32Lxn6iOnxREp6c3EfJttKRgCMVfhCQFhlCOmAlUqiVUebp2m17nHUchJRIHBzlIqTAWo1Fg3AwuFjRis6bpgH+7Geu46/8zm8yni548vwEIzyshcXJEb4ybK6FDCOXnme5tN6lFyjqOqNRBq/XozGSdF7SG/bp9wyJVNCNyZIlTuAitEaoiJ1LW3jB+ZAsR8kWWywVQgp0WbIoMhJpCfwAiaBp6lUPuG3fIASe57YPAwJtNNqI1sTr1P1arKRGhUFYjbhAu9b3Paoqxw9dwk6Ebiye2xp6eTqlq1o2n8UDX/Hi1iWaRrBc5Bwez+hEEZ5qMZnzJCPLC46PJ/TCgE5H4gcGbQuEOH9zn6IXTuFpf7Il4TgOL7z8ErtXrrD/+DFNVTGbzajKkvliQbfXbQV+fI+TwyOeP33aMu6ShPWNjZX7ycUD5CAIVlodWUsdB7RY2cmf9aEl2liKZQZYlBRY84mhwGnboxW5Stu+cvs3rE45BnEBXlnLHpde/UUKA4d377FexohEsyjrts0B2FpT2pIgCH6mCj7zGpTtEy9Ofe2kwlSGOq/ReY0yDb53/jXJsoyiLNoWzcqwQGtNU5WtOSvQNIaiKpjPlzSN5ejgkA/fe4/eYI2qqdna2WN7e4cXXniByOmQpAm60syOxhwfH7BcTAjC86FhItphofd559GSxSKhLCou7V1ha3MTLwx5Oq44Wc7od1pzysOjCVa5OK7iYP4xftDBFw1x01AhMEZicgcbuFy9fYPLl6/y/Nlzgv75z+1pfO4k3EabpD6JTydh0Sp/cepetKpsLQhribtr6PZdy/alDgKDBmprVzJtF29wXU1pZJsSfMdBSY+qzphOT4jimE68tjqKG4SQra+X1iA00tE0TU1RlLiui7Gn/qI1Qiq0cWmsxtp6JSX52RFIy83NHtcGAWle0Y9DmjSiqXMwOcNQsNkLyLRDWVuCIGKSzZlkU0pr2oFXbpjMjwmlRzfsI20MQY9UdDlOEppa048W567D8Rwcz8VzXRAGUacoR2Lqhvr/397Z9LZRhAH4mZn9cvxR24ntQIG2qOWCqFRA5QDqoUJcOcKv6rXixA/igDijFNqqaZM2TuKsvR8zO8Nh1lFLUVwOVS7z3CxfbO3uO7PvvO/74EdsVlVJHLWKb2dJlCDuJnSU5XRVU9Maz9u5y862xmhnfXOLs6gNQbgoVlRVQVEXWOkPkWQhME2NxRFnEdYasqRHtjVgcVzy9Mk++WLJaDgkHaVUtSWLJSvpVe1F1TAcKKLYnQ+dN2xOR6wV8et79g1ztBR8cv0GP/78E788eAB4AadtGlZ5Tr/fZ7w9pjcYcHT4khfP95m/fPmG4n5dcXERg8EV+r0he3t/sWxVSEK2KTLnfGOM1kSRfytZ697zPKcoiraSpEtdNyzzopUNKD9hVAgEm4dMASzPHFF3yq07d9kZjjl7/Izx/BV7e4/ZnkwYDAZUq5KmTTGmaYqSktgpEGurs0Xi/FAiwDQWU2pMqXFaY22N2uBUq4yjccobM9rac6UcSdrFAVrXKJmgOg5R1ojKX5OzRc5iscQ6weHBIX9mCX/8/hsISVlqmrLGakPcSehsxfQGF785iiimf2VMQ8LJsqHWhrs3r/H1V1+AUBwtCv7en1OYgmWlUb0x4+0Js+mEF4eHjCe77E53ufHpDbb6WyRZB0VE1u1w9drHzKZTTufHG4Wja/5nEAYQiLdMD23aoU1NeGGkP/107dfWOe8LOx/c7h96uz49fq3zR26YB2qsRhL5VALQOIXRhsXiBOsq31Pg/Km+lIo0SXz3HA6MwDUW15jWUdUQRX4GqakahFJtUH493/3f6NUZRbWiKXOkWeF0n0F3QJFKsv6A6bBP1lhe7R+x1R3QGMvq5JhKKnTSQYsYpTKiVFGJiG5/mybWzPOS1dkxy+UZusg5Pbg4wX+eHLIWJStcNQcTeWuJztFOYBuLEQ60pqs0CJ8LtlmKkFAthPd3tTMRbNM6vJxtD4Wafy28b7M4WeJH5cft1Y9I4w6dOGIYK/Iy59nzF5TCUeZHPH38jKYxDIdDOllGFPsyx143wdiIRVH5XaJu6JASxylpkmA35ITBW67X3W3rYLzeEQsEcZJw7/59jg4O+PXhQ6SUDMddqqryO8s23ZBlWbsrTlvvH96XKDYLNmezCThJWZbsPXqE0cYPI1K+WWe9QBhjvYJeSJI0QeDfUASS1bKgqg1NA671NcL6ufGfNokt89OCqNR0ez3GH37GaOc6s9URtXHcun2HyQcfgVJEQrUKLEOkBMo5nPW15FKK9v/7XbquHHVeolclxhRoNPWG++Pe/R+Yn5ycXxvwFToOcT4D2OGwskEYEI3AorGiQaAQNmrtyK5diNpUk3P+HEhJ0kQxne1e+DsGs6tcFx0+//I5/adP6PW2uPvtd4y3R6SdHt+nE27e/oYoS9jducLOdMZoNGU0HIKUJJ2MTtYjy7LWaed39SpuyzqdZTSZUm2wta8R71JqEwgEAoH3w7uNfg8EAoHAeyEE4UAgELhEQhAOBAKBSyQE4UAgELhEQhAOBAKBSyQE4UAgELhE/gHN9ccDnuCHJwAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAD3CAYAAADMt+U9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZTlyXXfB34i4re/PffMylq6qnpf0QABcAchaqU4omiTki1RuzySZVkaH1myZM0MZcljS7aksUdjy8fjkUaUJdGHosakJJISCAIgAYLYGo3uRnfXXpVZuefb32+PiPnj9zIrq9H9sgoAjaFc33Ne1cv3227EL+LGjRv3fkNYa3mER3iER3iEbw3kt1qAR3iER3iE/z3jkRJ+hEd4hEf4FuKREn6ER3iER/gW4pESfoRHeIRH+BbikRJ+hEd4hEf4FuKREn6ER3iER/gW4utWwkKIjwghNr+ZwvxGhRDilhDi+9/l9+8WQrz9zbjXb1QIIf6+EOKvfavlOIlvhUxCiCeFEF8WQoyEEP/h/0bP/A3VloQQPy6E+Iczjr8hhPjI/3YSPRyEEFYIcflhr3tkCf86wlr7y9baJ7/VcjwofqN12t9g+PPAL1lrG9ba//ZbLcxvRFhrn7XWfuIbucf/P7bxR0p4CiGE82/y8/5Nwm/QujsPvPFuB4QQ6n9jWR4Yv0Hr+uvCt6qspyrh6cjxF4UQXxVC9IQQf08IEbzLef+JEOL6dLr1VSHE7z5x7A8JIX5FCPFfT+9xUwjx208cbwkh/ichxLYQ4q4Q4q89bMMUQpwVQvy0EGJfCHEohPg7QohLQoiPT/8+EEL8z0KI9jvK9heEEF8BJt/gS/i2d9bRO1027/Y8IcSPCSFuT2X8T7+B59+Hh60PIcRPAOeAnxVCjIUQf/7rfO77hBBfmraDnwSCE8d+53RK3hdCfEYI8cKJY2tCiH86lffmySn7dJr6U0KIfyiEGAJ/6Jso0x8XQlwTQnSFED8jhFg7cey3CCHeFkIMhBD/nRDik0KIP/Z11MnHge8D/s60bv+REOK/F0L8SyHEBPg+IcTTQohPTOvmDSHE/+HE9fNCiJ8VQgyFEJ+f9o9fecDHvySE+Mq0DD951HdPKbcVQvwpIcRV4Kqo8LeFEHtTGV4TQjw3PdcXVb++I4TYFUL8XSFE+AB18hdE1ddH0zr+TdNDnhDiH0x/f0MI8YET1xxbsSfaxE9Oz/2SEOLFU575NW18WtY/KoS4A3xcvIub9R3PVUKIvyTu6bovCiHOvsuzvksIsSEexH1irZ35AW4BrwNngTng08BfAz4CbJ4470eANSrF/nuACbA6PfaHgAL444AC/iSwBYjp8X8G/A9ADVgCPgf8H0+T7cSzFfAq8Len9wiA7wIuA78Z8IFF4FPA//0dZfvytGzhgz7vG6ij+54HPAOMge+Zyvi3gBL4/q9Xlm9CfXzdzwY84DbwfwJc4N+evve/BrwP2AM+NJXvD06f50/bzBeB/8v0HheBG8Bvnd73x6f3+aHpuQ/8rk6R6aPAAfDyVI7/B/Cp6XULwBD4YcAB/sz0uj/2ddbNJ46uBf4+MAC+c1qeBnAN+EtTeT8KjIAnp+f/k+knmraZDeBXHrBdfo6qX84BbwJ/Yla5p9dZ4F9PrwmB3zp9P21AAE9zr2//beBnpuc2gJ8F/otT5HpyWoa16d8XgEvT95wCv2PaRv4L4LPv1j5PtIl/e/pe/xxwE3AfoE6+/8RzLfAPqPpJyDv67Ltc8x8Dr03LIIAXgfkT9XYZ+G3T8n3wgdrGA77IP3Hi798BXH83Yd9x3ZeB3zX9/oeAayeORVOBV4BlIONExwL+HSr/2YM28G8H9gHnlPN+CHjlHWX7I1+v0nnYOnrn86iUzj858XcNyPnGlfA3Uh/fiBL+Hk4MrtPfPkOl8P574K++4/y3ge+lUsx33nHsLwJ/b/r9xzmhJL6JMv1PwN848XudqmNfAP4A8Ksnjolpx/pmKeF/cOLYdwM7gDzx2z+elltNZXryxLG/xoMr4d9/4u+/AfzdWeWe/m2Bj544/lHgCvDhd8goqIytS+9oezdPkesy1YD8/ZxQmtPyfuzE388Aybu1z+m5JxW0BLaB736AOnmnEr544vhHmK2E32aq197l3nbabm8Dzz1o23jQ6ffGie+3qUbW+yCE+APAfzQtGFQvduHEKTtHX6y1sRDi6Jw5qpFse/rbUYWefOZpOAvcttaW75BpGfhvqBp5Y3rf3juufZjnzMKpdfQu562d/NtaOxFCHH4TZPlG6uMbwRpw105b5BS3p/+fB/6gEOJPnzjmTa/RwJoQon/imAJ++cTfX+97miXTGvClox+tteNp/Z/ha9+Nfec09RvE17QDa615h4xnqGYszjvOf5i62DnxPZ4+a573Lvetdz7DWvtxIcTfAf6fwHkhxE9TWZ4BlUH1xRN9V1C9u/eEtfaaEOLPUinSZ4UQv0ClO95N3kAI4byzLb+LjGb6ft6r383Cw+qa6zOO/1mqAfb1B73hgy7MnfR5nKOyLI4hhDgP/I/Af0BlmreppueC07FBZQkvWGvb00/TWvvsA8p2dI9z4mt9uv83qtHpeWttE/j97yLTN4tGbmYdvcfztk9eJ4SIqDrIN4qvtz6+0brYBs6IEz2Sqi6OZPrPT7zjtrU2stb+4+mxm+841rDW/o5vgmyzZNqiGhwAEELUqOr/7vS69RPHxMm/vwk4WZ4t4KwQ4mR/PDeVY5/KRXXy2V/jg3xIzCr3u8mHtfa/tda+n8o6fYJqWn4AJMCzJ95by1pbP00Aa+0/stZ+11QOC/z1r6McJ/uOpKqj9+p3x48+5bcJ1cBydF9FNRAeYYPKdfJe+BHgh4QQf+YUOY7xoEr4Twkh1oUQc8B/CvzkO47XqAqyDyCE+MPAcw9yY2vtNvCvgL8phGgKIaSoFpC+9wFlg8rvtQ38l0KImqgWxb6TytobAwMhxBmqhvPrhdPq6N3wU8DvnDrxPeA/45sTsfL11sculT/268WvUimM/1AI4Qohfhj44PTY/wj8CSHEh6YLPTUhxA8IIRpTeUfTxZpwuvjxnBDi274BWR5Epn8M/GEhxEtCCJ9qkPo1a+0t4F8Azwshfmg6mP0pKvfZrwd+jcrq+/NTGT8C/CCVq0oDPw38uBAiEkI8ReUq+UYwq9xfAyHEt03fm0ulpFLATC33/xH420KIpem5Z4QQv3XWw0UVM/3R6bNTKkVuZl3zHni/EOKHp+/nz1IZc5895ZrT2vgVKuv7B6bl/ctUfvMj/L+AvyqEeHzajl8QQpw0nLaA3wT8GSHEn3yQQjxoh/9HVIryBpUpfl+gu7X2q8DfpGrwu8DzVItTD4o/QDU1/SrV9PingNUHvXjaUH+Qytd0B9ikWhz8K1SLDwOqTvXTDyHTw2JmHb0brLVvUHXuf0SlNHtUsn9D+Abq478A/rKoVuj/3Nfx3JxqIesPAd3pM396euwLVAuzf4eqnNem5x3J+zuBl6gWVw6oGnvrYWV4SJk+BvyfgX9KVf+XgN87PXZAZdX8DeCQygL8AlVH/6ZiKuMPAr+dquz/HfAHrLVvTU/5D6jqYgf4CSol+nXLMavc74EmlbLtUblJDoH/anrsL1C9y8+KKnLlY1SLVrPgA/8lVVl3qBbj/+LXUZT/lep99oAfA37YWluccs1xG6da1LsP1toB8O9Ttb+7VIPOyT75t4D/haqvD6n86+E77nGHShH/J+IBommOohPe+wQhblEtKHzstJs9wiP8m4rpdHcT+H3W2l/6Fsvy14EVa+0f/FbK8a2EEOLHgcvW2t//rZblG8WjZI1HeIT3gBDitwoh2tNp81+i8p+fNt399ZDjqem0VwghPgj8Uaqwzkf4NwD/u8mGeYRH+Drw7VSuoiNX2Q9Za5NvgRwNKhfEGpW7729STcUf4d8AnOqOeIRHeIRHeIRfPzxyRzzCIzzCI3wL8VDuiP/8J37x2GwWQqKUREp5HGR3FIhprcUYy1H4nRACOz0uhQAhuJdgIrBYjDGI6S/WGP7S7//oe8YY/8K/+LRtzIV85epX+NwXP40rmjx+6Tnm5hYZj7u88sqvEAYBreYCSVFgrCbNJziu4Py5Czz22FNcuvgY62ur6FKz0KjjOg6F1mijmaQJZVGy0G7jKOc95fhr/9e/bO8PP4XTZhZHWTIGMO8Ssnjf9aKqM2Esf+U//+vvKcd/81/9f+z+9ga2iCmTMTVHEjqWN7/8WbLRAUpIMllj7vEPEqw/z7WNu+y/9XleWlniuRdf4Mxj5wmEg7UWIauH5nmOLjXWWoqiQGtNlhf8kR//0+8px/mLT1pX+Xieh3QUzVaLeqNOo10nbES4ysEIcJWDRJDnOXmWY4zG812EAtdY5qylrSRt3yXWhs1xwn5WIIVLf1K9m5/75z/1nnL89P/8/7Z+GJKXIwozRKAZDzWrZ57BCTscDoZ85fW3+Mc/8ZOszs0xGfSYpBOG8RCJ4E/9iT/C7/7B38RXX/s1Os06YbvBv/jXP8nu/g715hIazVe/uonRkk987CvvKcdn3/456/st5pvzeLjExvILX/rXBDWXlx57ljoh2kq6kwEq8FBWECoPV0nieB8pXUyZ0G7Nc3X7GnEyIhlmfPvjL9BqrdAb3MEYw36/z4ff/yPvKcff/3N/0nqxQdQFG4ddxqlh7TueRvmW+U4L4S4wt3iJ3v4WG7c2CMOQeq0kTxIcL+SgN0Ah8WoBqJLRYJ8XP/DbaUTzfPXVT6HzHaRr8UKf3/d7/7P3lOPP//h/bbU1GGMxpiRPY8KgDlIiLFgs2lqMtYgTuoMjzXDizsKKY71irEFMDwoBSij+5l/98+8px8/8y5+zo/GY0XCI5/nkecFgMGBpaYFJPKEzv0jkSs4/donuKGZ+fo4zK4u0Qo+40PzTn/3n7G5vcPvGLbIs49y5c1y7dq2Sx1qEELSaTb7jw9/Dj/27P3pqrsRDKeEjBVE9zGAMYG1V8uPaqb5LKaaHxNHFWFtVsjhxHkzT98w9lXSaIvOjiDiO6XfHlDlMsgNefePzLC+eodPuIKyH0Yr+YEBYj5DCkvT7uJ7ksLfP2vpFMlNyY2ebyAvo1OugDWmWUeqS3BhG6Rg5gaXmwnvK8V5yvtvvJ1Ibq4aDPT37wFbVa83sMx0hMdYyiCccHOzgYGm6kmGmUXhgDKLMGGxepbawynwzYOAqjDE4ysECruOgjQEBUkpKUSIcgdYa13VRUt7/nt8FS4urnF1cwQ89+vmYsB4RhCFIgcFSGI3G4khFaQxZqZFSEsmSmtWsCI8nA8uihJpStFwH60g2aw5fHCa8MczxgoCg7s6Uo+45aJMR+grX+ii/xoXL5yl0yMZWD+GEdOaWqUUtxqOYwPcZTLosLbbpRAGtULG7cZM716/Sa0Scf+oJWu0We90DgjBiOBkR1dsU5ez6aNeXCYMmWo8ZlUNu7x+ys3mXy+fPUnMCXOsQShAiYG8ywg8C+nlC6LqUZcZSew5pfMoiQQkobUmzWUcXCUU8xNGGXFtc92v4tO5DzeZMehOyPKAfawILojehq3J8balHiry8DuOECIXNckblmNKUBMJSpinKCTBFxmTcZTIZEfe3KcZ7FPmEIgOTlZSnNOjDQR9tDKUxoDW+1GSFptQWKSUGi5kq6aO+IqU4Vm4n+9WRUaekqtrlVHlLIXDUbO6vT/7KLzMYDDg8PKQoMqSQxEmM43lk2nL53HnWmxG7165QYFldWUWfX2d1ucNIO3z2s7/G3t4uO5t32LhzB8dxSJIEY6pQZ+U6tBfnGeeGH/t3f3R2pfANLMwdV4yoxqB3WoRHOFY800o8aRWfvObofg8CL6rhIVmcW6bZWOKg2CdNU9IspT8YoJwQz/VI0hFbd29R6hRHOSgZUeoSq0p6kyF5ARdW17BAqTV5WYKwpHlOXE4Y7O/PVMLvTL65J/69Mk9Ld18ZxfQUe99o/+71VtkAs+ul3+8ziids7m1zd2sDRylUmcNkQoDBt5ZQapzhHoM7b6HmzxMEPsZY0jQlS1OM8qq2zP3vSik1tZAljjNb+a09dp7ziyu4jiVKhqRao43Blx5SKkprUEqgsfhCshB6LLmwpjzmbcmCtSy5AoHBlinKKExquOgGWFewpyy546Lc2c327p0bdBY7BI0AhCBqzJEUisFwTGFgrtUhjEY0G036u1tYR+H7Hi88/zyPnVvnzStX2dnZZHG+gfRrpLlGKId6o8Xefo/SaIrSIpQ/U4752jqCjMPJDkYp0mSMN8k4b2pM7uxjl+bR0lDzA/b7twjrEa5U9A4PWaj5RG4d32SMRxNWwgY1x6EsHKyUDOIxajpIx+nstcJtmdLLxkhToITFadTQowy3NASZwFNDrJtSDGM8wAt8xiSY0GJcgbQaYcCxAlsUuFJQpgOsUGAERluKMiUIvJlydAcDsAZtKsGXOjWKUtMfDEFWM2Qh7le6Qohqtj011Mz0N6jaqZISJRTWGrQ1IERlMMyAFYCUxFnCZDxEOQpdluh0QhAEtAOHjmuwe1eQZcrh3psM3/Z5vdFBN9eI4zE3rl/HFFWodhzH9/Vhay04itb83Ew5jvBQSrhyHFgqV7Kopq5ApVYE8muUhTgutBDVF8F0qiE4nnJA9Q5MpZk4LUPVcx2iqMELzz1Le26OT//qFxgNRzTrS7SaTZrhPIfdXYTK0KUh8CLOnbvE/PISSTlhZ3ebzFjOr1+iFdUQprL+XMdhf7/Pxv42u5NtCpPywUuzkrbMcRnhfrmtPanM1Infj6xh+zW/vRssp6cS3d3fZXdnm63Nu4wnY6TrY8ucbJwiTYknJAuuZgWHvLdHXATooiAXijhJSJIUHdSQjjruBI7jHHcCIQRlWZ4qSasVEeuUugMN3yVLqvcqhTwuo+e6SOBsmfOhZsiZwCXME2RpCRB4gYfOckog8D2MH1IISZTk1KWHJyRpNjsef3GhjXVgEsc05xaIaouk2qUkJ6rVSJMMJRXtTovuzgZxnFEWmrevXuf23W027tymXvO5fOkC73//S9SXLBaHtTMXmMTb9Ltdtrd38YLZ2bl3e7exZUqajllZOcv5pVWal54likteee2z1M8scOnCeZoLK7hhRDfp03bqzLfmiVyJwaWwKY6CloioOyF5FJIUI5KyIAKG/UNK8W60Cveg5+fws4hkf4/xKCWxFl3mrHYWGR0OODCSYWnY2dtBeZIobEPoU1/1cCOFNYC0KCsInBqmzJmM+vhuEyUErhJIqfDd2RZoHE+Aad8A7h4WlVsqyyvDbNrW5DuU6LFSNu9w4GmDFNWzhahaZ6VrZs9QvCDADAb0BwOsNSzNzbG0uITnKpbm5nju8cfpOJb+3l2KPMdxXPYPD9jf7lITLULPw3cFw0l2bP1WLliD4zgIISiSlFpwKqMn8JBKWIpKCQthQZ6srKlHxmqUAIvEIo4tK0SlqMXxETj28Uy9GXb6e/WE2Z09zxLQmuWVJVAOd+4cwKqgtBpHOZhC0plbZjVc4/pNMGVMWGuyuHSGrEzY63VxRJOV9hLtMMRzVTU0ZIJf+dUvc3tng/qyi3HSB66b+6ZK1p7weUOV3flulv4DuCQeAL1kQmY1ynGohTWUH3LYPaSb5ZW1gEFazaJncXWJzQrSOEVFNZSjAIs2BmEkwqncDlJKtNYopY4/+hS3yHzoEnou867DqCwYl4Y4q/zshbC40gEETjxmKR+y1JinSR3HGoQj8YVAuC7KVmsO0omwQY3hYJ+dXp+9vmDoSNI8nymHH0omRYlwajQ667heizwvSJIYR1mMNlw4f5bf/2M/wpWvPMNnP/1p3rryJne39rHKVgaDE3LpmRdpzK1y2B2TJIYbN69z2C3ww4hOq01Ua8yUYzDZw+iStDCcySHYHRCMM/yowXJYY+fmJt1RztvDz3O3bmg+dZaVtQ7NRoSUHsMioUwG1BwHRxgUDkFQZzRIUa7h9vVrlOmI5vrs5FI3atBaajJMhoySlO5kiFO4DF2XqNFmpA3bSco4KqnVA4ZIvMAlMIYsTrDWodS6cj8ahyhokCUpRa7I04Ii15TG4M02hNG6WmOoXJOCogQw1d/m3qxQTNeN7jNv3umO0BpRlijpgKMQUoKq9NE7lfg7YbEMRkNGozGrq2t84AMf5vLlS1htMEZQ+iFdU1DO+6ysrhFFEbWDAw6/9CWc+hy1aI92zWfQNffN9MuyrFjRrIOJM3rbu7MrZIqHU8KysniFEAgJQkwVp9AINPGojzCGqLlApXlPTKmnSkm8o3Kr0+zUrXNvMW8WjIVRf4RF8InPfp6i0Dz//EtoCzXfo9/r4nsOc3Mtzp9dpN/bJE5Ttm5fZ5QUpAYunBUszoXU6y6FMBRakeMwv3KGN+/sIfsl3eQbITSzJ8p37+9jv/fxrOKdeBDOo/tx7WCb0gOzsoBrLEWSkQwHOFGTAEnLdZlzSwwpym8QLcxTDA8xQYAU4DkuWikc30MqBwlI6SCyFCUkrutitKbUswfHw2HM2YZBaA8hLEt1l5tZTIEl8DyMNsRJgrt3SFCziNLgKkHUaqOTCa7rI6MmpRgg9ISi0WIyHrAziLk1SRgXkklxuttqGPcJW4ssrD2O8BaYxJrRZIjnKFwl8IKIyxfPUnvuAu975hkuP3aRf/iP/gmvffUVpJ2wML/Ah7/jg7z4zNMM+gNKLSkKhzix7Gz3KU1Jp+kRebO7z/rqBcaDfbrFhMPxAf5Bl/2NbRrLhgtLi3SaTWRp2e5u8MonvsSl4Yc49+Eau70JrdWzlDqh5tYopETYFCk0X7r9Nguteeasoj1Xp11bZDOebSzoyQidu4zygn4cs9U9xOs0WZhvUiYTmq6HrSn28cjLEkuGNA7WuJRWARKJQpeWNC7xQ5c812g9AeNgjKLMPcaD2crPGHO/MrX3LMgj5XzaukN1nUWUOcJorAOYynwTRh+7NGYhzzIGgx71ZpOzFy7RmluiP0oZDIYUGuLSMh6PaNcCcrfG3t41wjDE6yyhVRWQ4DuKwA+J4wxjoCwzBBYlBEoIxsMhd27dOL0sfJ0+YSkESlQK005XMgUaaTVxPCKot5DKxVJFPIgTvlJrv3aB5+Sq4mkVCOAHLmfPXKS0hma7xZ1bt9nevkGrOc9CfR5qGmsmyCzm+Ut1Vpc/SGklcWbJSg8hI+r1gLlITf1qAmEM0lqaocPooMfO7T6rl2ZTFzyYD/uEZS8qN859bhl7ctipHD4P1BBPYKhzUiuRjmLeDVmdX2VlcY12UKflBgQWdD4iPtzDa6xgV8/RTiek2YTJeMRkNCK3AhlLGmGNWhihLKRZji3L4ylWXs6e9nbjHKVL3EDhegHGdxFTq8cUhkmRUcYx9cGQcH6ZhbMXaCwsIOIxjixRsoFtLYDr4IYtemnCzW6Xa8OckfLBBddKvHB2s62154haSyBDtrcP+NIrX2I07vLRj3w3gR8QuD6Bp+j2+7z26ld45Utf5tz6OcpiTLNR8uILLxBGdYZ724RhjVFasLiwiu+1iSdf5fU3vkqzFjIazPbFKsclLzNu373BpNbmucU2T6nn+fwrr7BnLWvnLuC3OjRWz7N0/S7cGpF0DshqDmWhEI0G1B0yCopiAmaMJ6HuRxRFzthoalhqfjRTDpIYJeqkKHwb8nhjDZ0M0FlGKVwgo6kEBodunNFsSpy8wOlqPBkxpkQ4JWQGU2iU72JMQVKkuKKOROEoySmu+mNL+KTf1xhz/IF7fUpKeb9Snn631iKMqT7VqjXW6ONoCTjdHVEWCUJaVtfXWV0/T9hoU5Ql0vNRWuNKTVivsbC6ihc12O1epV4ruHzhAtIx7GxeJYxazM8rXDdkMBjQ7x/ieYqlxSWSNKPb6xLWfh3cEUeVZK3hiPlUTH0OAoWrfMp8QJyMqdWbHDkhjpTNUYXao0rlngIS039OWo3vhb2DbaycYKUkqkXMd5pk430aS/MstgPchUV8N8NXJShLUUyQqkHN96j5KYE7ACAf+YhgFdfrIJAIxxCYA97/1AJanWd+7ZTG/QAQgLzP6pWVP/yEb/henAgn/noISIsymhDJtz/9ApcWz3Dn2k10Vk3Be7mm1phnobVEEMyx77r4vkc+PGDQ6zIeTwg6cyR5hkRwbu0M8+0ONs+r1WbHwXXdUwcH1/folynRKOV95+YoXJ8bvQFJVlDYEkNJMB7TDjyajQ5hrQFuhA0VKvCxrXlEbR7VPUQf7pOMRlwfJNwZjtnPDbmqEfgunpxtkbvNM3jRGnv7Az7xSx/j1u07fP9Hv5960KDIS0qTUmrNl19/i1/99Od45Vd/jQsXVvnBH/wtGHK2t7b41C//Kx6/dJkg8PB9hzgfY5SL5zr4QZ1rN7q0W+2Zcti8IDYlxmgircE19MaDymWnc2wSM8xLQk/xbS+/yPb2NuXBGCf2eOPO57GLLc5fvkSRTzgYHfDEhXN0ojrDfpfDYZ80HRFIQa0+a/EYAqfB7v4YaRzm/QYdRzB2BVbbqj4d0HmKSibMoaiZjCQeYpWDkTlh4KBEghSattVEBNiaixUlRZmT5AaLxvFmW8LaGOxU2Z5UwnDPShZYHGlxhIMGtLHHoZy2NAhbIo2pTBgpqvvZEimrcNkHMeJu3ryCNgVLS8t05uYQUlbPR2CQ04VoByEkpdbEcTINFdU0ogZhNMfKmUt0OinxZEK31+X111MslguPPc7W9haHvT6OO3vh9ggP544w1cgjkBh1L/63UioCoVykEqSTIfUoQgoXYUU1Wh15GoQ5dgcrpfA8jyj0kNYynsTEWcZsewtuXnmdN15PaM03WOwscunF89QjSbu9QKPdRiiX/uFttra32TkY0uvHNOtL9HuHDA6v8R0farK2GiKEQxEsYuhw2NfMLT3GuTMLzHcC/No8flh7mOq5D0eNwQimL9YgjEboYjrgKKy412i+kcxFR0GR5zRCn8fX1jHjnFtvvIVCMCkylKNIJgGZ77HQtjjNGvlkSDEZcZinRI0WIgjoj0bkaVb5ZI2lVavdF/stTvG1+Z6HVZadwwmjScoTjy3zmc0trKnKH1rDouNyptWk2VlEOD4yjLCdeUyeYsdjiuEdKDNwLGF7DtfdIskydlPL0vpZutmYojhl4bY2T3eQcOPWHeYX53jyqSc53O/x5S+/yoVz5xFAUeR87GMfpxzlCEdwZ+sWSxtNdna3uHrlbWyR0x+2WPLmOTwcctjvcuaxi9TqLmHk0+uO6PaGM+U4HBxiSmg3OighIJT0xl3Ori5BkZIN+wy0YIIirNd44vJFbFaiU026M+T69Vt84bNfYPXMHJeef4aa22QwGlAIKMuCeljH83zKUs+UoxZ0uDYY0Yk6NERGOIlZnDvP1qQHWuP4DtKVzHUaxGmG1BNCCgLHRxUFOtUoFI7S+MrS9pawpYcsHRJr2S0KEmMxzmw5jNb3XA/cb/VaW4WngWHeldQCmGjFpDAkeVn5jMsSaYoqHE05aOuCsQhx/6B8miK+u3WH+aUztJrtytVmDFprtDbkhSZOc9K8ZDwaIXTOcNDFU3Ps7+5y5a23cf0Gpe2RJEPiOMVzfaT0EI6iM7fA7t4eZVmFfz4IHk4JWwPTafR0PJuasAYrJEoJlCtIkwmONYSBR16UWFNNFVzHQTmyWthDIAW4UjNXl0SeS98z7PZLBunshZfB66/izjWpNwx+FtO9m7OPJQoiJnaBcV5na3OLjdtvsrm5idHwm7/3N7PQrPPGlZt82QtYWryEpGBS9Hn1tSH/6pdu8pt/y0d45qmn2d++Sl6UeEGbpY88PEnT8eBE5Yop04xyPMbLS/R4zKDXxV1Zpn12/T2M/moGwYmZ2CxEUpFmOZqE8aCH73hk6RjSgpwqESLRE4TjUgdGsaC3v01Hl0jPwXMVxpSUZYFSlQ84TVOWOp3jcJ+jcLVZKIsCR0kyBHcOeyx0OkzinFK6iCJlwRecaS/wxOoKa0vLSDfESEWRpfS37mKTCaN4iAwjPL9Ow3dp+B7Xej2GYYtL7SbDw4TTlktL49Lt79NotXjmhcf5Zz/1z/j4v/4kFy9c4N/+t36YD7z8MpPxhKWFBUb0CGoek2REScHKmXnmF17GVYJa6NM7PECTkeuYLB9TlgWO1CjnaMH1vZFj8JVPo9bhYLBN24Y8/cKzxFt9KFO66TbbNzeRC6tsb9xlIaoz325RZhm+kcyrJhtX34S0pJAhOrE8f+Es9XbAwEKxt8/B3gGds7MpoHd7E/a39gkih7kohGaDxrPPEt29jh4fEjkuTq2GUB6D0YhkMkSbEmEKXOniKwfP9cjzjMPRGLdhqVlJQ0iULhlbQ6oFWTw7auVI2Z3MN4D73RRSOfi+JKAgqgeYcUFWCowusLpAW40V07mlNVhjv8aqPk0Jx3HKvK3yGAaDIcqpFHE8ickKDUgwhjxNORj3yeIYMdchjif80sc+zke+77cwGE4Yj8ZorZFCcOmJp1COIohCFpcXKPRF/FNC9o7wkO4IXSlQYZGIe5UgLQqnylbBsLQwzxOXL+D7PmWhEVIiqFbchbRoXXJ42GVza5v+eEgzirj82DmeePwCa2nG5199a6YUoS3I8xG//OlrHA76FFnBExfqnF9f59Zhi4UzzzMaK27dOmR3Y4d23WO4e5sPPvUD6Kc+yFdvfIb+YUq7ZekPMn72n7/CJz9ziLQuNaekSLbJ8wmVwfXgSthiqjWCIyeEgcODQ+Juj6bj0AojcilAGBqdFn4QkCYJUsjj1Us5jd85uXwpTnHPkOW0GzUeWz3LXn+fUTImMZPKFxj4lKUlMw5CeJQolIR6FFIrC3zPxRQFk9GIer2O67jU6nVc1yWKIgRQliUCTg2CNxaMBOE6bI+GvLm1g7GVEq/7irUo4Kn18zzRbqLTMYXvku1n5AhGpaVXSsba5e2rW1w6c5YPdhS7wxG3+hktHxKd4wcB8XgwU46vvPpVGo050izl537u5/jc579EWRr6vR7Xrl3li5//HAWSheU16pFHECqi9iLrF87y7FOPEccj9na2mIwGvPb6beJ4xMraKuvryzRGBTdv3qVRD+kPxjPlUCiSYsx4MiSJx6Shh99ZZ2ejTyOss3zxItF2l83tLc5dOAd5ie95JJMRgeex5EVcXjzDnd09vnL14/yMjvk9v/UH+CP/3h+gLO9CEKKtoT/szpRjszdh4/CALHFJvWWeefIyZmGOIBsg9Zgg8NBCok2KsYbCKKx0kcogXR9XufiBR1YWHPRT9sYbdNqHtBst6lFEzQoy5eH4s5NGyrK8T1EeKd6jtSWsxXV9ltfOMdy4io5H+ChajmKUanIMRkxXUwzHi01HCvgovO00Jby4cJYza+c4e/YcvcGY4XBAEIQUecqoN0B5Pl5QY6HTot1YZXV5mXanPV3Q62PylPPnz5AstRBC0O/3WFxYJAhdyjKm3nI4f2Gtitx4ADycEha6Gv2tRFiBKavwI6UE2BKd5+RxTLNW53BvC9DkRYnRAq0teZ6RpjFpmpDnGUlREBc53QNNv3uX/bvXeOLyEyw0Z/tiX7l9jS/f7GFdH6EEy03D+ZUldvZ36fcN9eYWvcMeRu/jNxOcms/m/gZf3fwCC+eXWZfnSJMJph5y42aPa3dGeGGN63e22N2+QS0oKYrs62TWqHwt1lj2Dw452NlhqdkkbERE820WiibLrQaZFzJOc4SQVcLLO8zdk+3oNEfFYdylJgKiWkAvTdjo72MCBzlROGGAVR55anD9GmFrjtCTrLZGpLubWBfanTnceovW3CL98Rgch+b8HMLzMGWJdJypZT67Qoo8Q0gXz/OZTBK6WY4XBggFK57DQr3BYrtDp1Xn4699nsUkZykKQLkkYYOvbvfZ2dvnM6+/zvdKj6fqq2yMJ1XInC4ZT/oYIfFPiYXqdQ+Y78zx2lfe4ud//ufIU83i/DJPPHmZp596ip/+p/8Lg9EYF0s8HmCKhKS0aC3Y2t3l7JlVrCnRRcHcwgIXOxe48Nh5huMYawrazTr1Zshl75Q1A1tSTvrsXb9CEMI4cOi5XazIKcqC5fVzPHb5IqMvv8H5+UXQFqkEul6jRGBcH61T4iQmt/DK9Sv8xM/8HMHKHI9fWufC6gLjQUluZrsBDvtdok4NWQthaYG8FnJ74w6bV69xsS6YpBlCCooyYTzOyQsxNQIUk6yssvWQjIucXBgGoyGuIzCFJo1TBkKx/sKTrJ6ZvTOXOWGtwr1wtCoySmOsJc9zytKi3IDJuM/66gpGW/Zdy2Y/pjSiigfmvg02HyrZa33tIs8++yLf/uEPkxZV7qrjOGRJTDwYUiJQjsvCwhyB77N19y5RPWIwHgOG8bDLE888zThPq/VCVxFGIa4L12/eQuuERr3G3u7swfEID6WEo8BFKok1BiEshSgZDkZ0FuYJHZ+ycPBlhywdce2tXfI8QTkeUlbhSXlRkBcpSTzB6JIii/EcTbMWUaSaN7evcuf6FZbPPDFTDtmoM053aHoBdV/z3KWQhTnL1kGXuquRScr6vOSJtQXqtSUW51do1X2i2ogoSnn6/AKWPkk84tqNfSaJQ71RJ07HjEYH1KIm2oLQD7lINg0UN7bKYru7dZeFVpuVhTlCJXGzHFkURFGI53gUSIw0aKpBXSKqbJ53juSnNK7HPvAcblFQOBKrXGwQ0FpYokwPCGt1tHAw+YROq02r3SZJEpp+jUI4FBpanTmWVs5Sq7dQfpe4yAmiGsrzKMuisjCoMpNmQZsSR4VErYihLgl9H6UNNQln/IBGVMevNaA1z0TU+dKbN3lysc13P/cUr2xt879++tP0Dg85nAw5u7/P4aV1amFAzff50PPPM7/U4fXbm7ROic9NRj1uXn2DMo1ZbM/jB01WV8/w9FNPcmZ9nbm5Dntbm9y58jqtRoQnLF7YJE9he6dLGudMRkN6hwecWX+MzlyINoaDwwOWF87zkY+cY2n1IovLs3c7unblq6y1a5yZmyeq+yhXkWFZOLNEMRrg1ALOPXaO/e27lGWC5/gIKfB8l/lgjt1ej7lmnTPz85RGEFqfUQk/9bM/x7/3+38P51aXMUqx1O7MlCP0S3RdsTDfJAhcsjhmf3uX7mDIvIyIsHTaNZK8WjwzVlIUFkdL0lxjTIkYpyTZCOkozq50aEUhRhv6k4SdsmDOGZD4sxeizNTtcM+Nc29JWogqdbnUJVu7+zx59hzjt7p4wuJGPo16RGoFdw5HJ6ImpkljJ8Jb9TQFehZW19aZby/iKEXoB8c5Db7v02x1MFKCFVhbkpYaayVZmjLqdSmLjMPuAfOLc7SxpFmGUpBNJihhOb/+GJ7vUuQpO5sHM+U4wkMpYVNmlJkmSWLKMkMXKd39XcrBNpcWlvEin3MXVxknMVeu3mDSi7F+ibZDyrJgNBoziWMmoyGjfhdbFrRbbcZhSKlLoKA2GrO5vQd/+Pe9dyWuNFhbDKnXJGeXA86fiSjKkovrbVw3oNGQNFsRjaZPFHmEQQNHSbTN0PoQYwS6LEjGMbs7Y4RwqDVqmGTMeBRjl1qgXBz3wUJMjiCo/ExZlnPr9h36vR7z9TpFklBXitBRVVah7+F6Lp4xJNZWirdSwdPv77zvbCw/fpliMGbYixn2Duj2DjjbXuOpM4+TZRk3Nu6yeH6RF154oWpMoxGO5+MGIWk6Js5zNAItJJ2FBWplie8FGG046Rg5LbWk1mxgDRUhjyfxXAenTDjjObQ8nzBqIWt1ro5TbL1D0evT15p6q0Hvxgb9ssSfn+fs0iKJVXRzy5Nn1rhrQn77938Uz5Xc2O8zzGbv7NOsKcJAsb68RG/tLHd3uty4fpPv/PC3cenSY/zO3/kDND1Bb3sTScFCq4kN5vFUje/96PfRPdwnmYyYLA/RZUpvdBcoOX/uApfOP8vC/Fkyo4hPkaNWr9FqzXN+9TGcwCWxGscEzPl1ku4+1kKzEbG6OkdzaY4s1SRxiu976KIknsT4rstCq0Wc5YTCcng44kBarr51ne948RnaS+vkp6RUPv3EOm+9eQukwHMd4smYubkOrVaDjiwpe9s06nWs43LQ2ySOU+K0rN68tRRFibYlvg+tuk+n7uErSWwMg0lMEkjchjw1c89ajdblVIcehZMdfa8sWa0124eHnFldojm3RH8w4dzZNlJJQqlphC6ltiRZUS3yI6ZkYTBd+ce+Wyc6gbm5Dnmes7V5l6DRxA/8KT+Kg0UwiUc41uB7gmSSURYFeV4QTybU6zX29/fYunsXPc17KIucIksZDIccdrvEk5j9w31u3Z61KfM9PJQSzuMBYCmyjMkkxuocR0ju3rzGYplz8ZknWWiGtFp1dvd2eeO1rzCORyivyq/e2dlByYBWo4HOE1wlCQIHbQrKMkdJQyPyac3NDrlJTchTL75EJyhpuH2MKRiNcjzfQakChMIYB2scdFmSZUNyqQGNNRmYasRPkpJeP8X3a0wmE5Q2lKVPGC4QSRchH8yxfjLCQQrJzs4+N25t4AhLmecoIfECH6mAUmOlQrgOUhdQ2uNGeLQW97B5dJ/4lV8lG8TYSYnJMmSR8vSTHc49c5ZsnJAXhvnVMzSbTW73elVAu+MSNJqMi5T+eMIyAlGU5KWlFkUo6SIlOI6DKUqE/Np00ndCSkWlhS0mzRnJmKbjser5FCUk1mGrP+azb7/Njd0tyqLAFprDwx4LrQ7nH7tEpxmxFNY5OOjRSzRPL6+wngtKR3F2eZnI99gbzvYJ1z0LtuCVV7/KW2/eYpLlPPXM03z4Q99Goxbx0ovPkPe3+dTP71KUFisVxsJknLC2fI7nnn0RrQusBV1mvPnmF9jcuMX8/CL1Wos819VgeYobIGrUMNJhZ6+HFRJZr9OqNzGeR31+Hr3fJxv1WZxr0V6cYzTKEQiyLCMbx+RaE0YRnXYL7QieuXierV/9PKpZZzAc4ChB6Cgm5WwtLKSk3myR5BbjOPR6XS5deoyFpUUmhwfk+YAkz0mynDjXjJOccVJNtaVy8MOI1bOrnDt3htHhDnYyprQSlKEQAlUXqKBAy8lMOcy0vqruYk+4I6qPnkZPaKO5tb3N5dUl9m9d5fbNm6AUSpecaTXoZ4Y0H1SEUxzdSx7f97QF06IoePPNN/mFX/gFhHI4c+YMly5dZmtnB+m6WJPRCRwunF3Bq8+h8ZFKUQsjQi9g6+5dbly/Tq3ZwPM8Dg8PuXXlKrt379Lv9ymKkjhPTvPeHeOhlPDZeZ9OuwNCcu3mbQa9LuuPXWByfhGZlBzEMb2bN6m5Erccc2G1TpJ67B8OAMVKaw5hPZ58/Am2N28z1464/MQ6SZqwt7tH4LmcWe0gZvPEcPE7fhSnETF++zOMtz9DbiRuaXHcslocMiXV3pFT35YtMKaYKghTpSdawzjJGY4KsqygsFBzXLLCBxuRjHNK/eBpy1AlsUyShBs3bpLnOc1OkzzPGE9iIinQjqDIc1wE0s+JbVnFCU9jo48Stx/GvwVgx5qWaOEGFsMEkKTDMWmaMddp8775BbxagzsbG8RxjOM4oBTC87GOQ4FglCTEZbWoFoU1sBJHSvzIIUtShLE4zmx3hDpaULSatCg4HPT50Oo6oeuwPS5Qecnt27fYGB2QOoJb126RLS2y1+8jjMR3XZ5fXWU+DLkhAddhZWmeVj/l9bevMO/72LLAnJI0IkxOrzfm7uZdiqKk3oj4oR/6Ac6urzHo7bKzc4u7t2/Q3e+CF6CshzFj0smI7sGIztwCwlEI6SC9Os88+50Y3eSNN95gbi4nqrsoJXnrrev8zt/2g+8pRzedcGPjOsXeiA88/0Hm2kuUSjKID+h4EUaCpiRo1vECh8hK4klCmpcIxyPXJXE2YbE5z6jIWF9bJQp8JsM+ypUUBoqyZBKPZtbH+z74EZ59EXA9rDVcfetNXN/DcTzCVhsxmePuxi1s2ODxD38vrvIxWFzHJWo2mFtZZWltjahW59abr/OrP/PPsHmMkAIhFK16SF04hOZ0dXKSmOoIWutjf/GRQbO7f8Bcq0VzYZnB1i2ieo3xeEIUCep+nb7nMp6kiIonoQoSmNIFCDG772itWV9f5/z58/S7PcqyZNzvcefGDXqjIVk6IKLk8MlLPP+h76KzfIHF+QXi8RDf8xh0exV7muexcecOG5sbTPoDhNYoWVG4Npst9CmD9BEeSgmnO2+zt+9QWoNJE9ou6NGYUCmsNGSjHnpkyTU4FFxaDklzSV1OKDt12u11sqxgri15bG4J1xVEfoJ2DPN+E8dKfBVjRDxTjsb5SwyNptAewlikzrFGgFX3iHMMFIXGVdVEH2GqEdJUK6sGS5oUjOOSPC+ot9p4ImM4GdAbHFCrLyDFbHdENfk50bCkYHd3l/2DfZqNJmWp2dzaZnzYZ7/TZL5Tx/F9amGAtAXllHrPWlEx3XxNosr9oTzvhWW3SdbL0aOEfNzDU5o8TLi9eYf6U09TqzU5HPS5e/cuRVHgBwEagXQ8lB/iRzUybfE9QRQEFW+DkHi+j+sIlJCYUhP4s0dHxwqELvClxuYFO8MR7ccuMEgSuonlYHuTcZ5Qa0d4acncs0+RliW5hZoDSM3BqMfBqMswL2iJJqrRIsaydfMWT3TmKDGIUxw040yy3x+hjabdrpEL2NjaYjAccvvGdSaDLa5febPK7nRcHGGpRyGT8Yhf/cyvMr/YoaREOAFBEIEVrF24yO27G9zevIqUKYeHPRbn12fKsXnQBVMQBIpGq0Ej8CmxHO6P8D1FTYa01i+QTiYUZYbnOASBxzBJmSQJWEs9quE4DoPhkDtbm0SNgIO9XX7llz/Ls089x3d/8EX6B7P7y4svfxdYMSXI0rzvfe+r4v1LyMqMT/+LAddeeY1nPvwC3/Hbfxe1WhMpq0Uv5SiQCl0aSm1Ye/xZHnt5izc/83HmGiHtjmXtwlNcWn+WwWh2mn+pNdYYlFJIISoO4Wnmmz3xMcZQFAV3trb5wLNPkk2GbG/eoZiGUEZBQDPymSQpRpv7DJYq4mK2JWyMIU1Tms0mFy5dIAwD8jzn2ReeIykKyjLBTiYErqKxegblRzhKMR6MGPT6HOzt88uf+MSUdbEK3SyKgkathuu6tDptls+cqYydB8BDKeHJ4XWkVIzjMeM4ZmlxAVWLcF0HR1KF1yEo8xIpq8X0KIT5x1roUlOaAoHAcSZYX1MUOeQJCmh6Lo4UGJNO/cMz5Bj3KaTE6oKylOQWlAOmFGgjKh6I3OLlJYWq4v6UFMed11gBWpCmBUmuqTUalEVJaXIcb4kgmmO/r/j//suP8UO/98++pxxWVMkYdpoRWJSatMyJogBriypczXMYmZSkm7IXD1haXmat08HV99jVjl0QJ/TwSbfWaUZxKUpwNbW5EOlG6HxEN+3zpTe/jOMKLpy9yNvXbrF/cEi7M4fWBiUkTlgnHo0xRlGPaiwsLuG6Dr7jEgURXuAjMDhWITxOt4QFOI6k5QXkfsR+us+NXp/Q9RiXmoPeIX7k0c4LXn7qCS6unePnP/0r5J5P4HmUJufm9jZSSKTj4a853D7sc+fwAM+NyMsqvVWq2fO87/n+H+QTH/84X371dcajQwoV8uobb/C749/BXKuJjXcJfYfllWVwQ7RQCGPY293hlS+/yuNPXiJqRijlIp2AxbVlCmN56rmnyIpt7m5u4HmKldXZbrO1sFMx+rHPXjJkf+Ma0hqEzojQKOnhthp47XmS7jZmMsaWBXE6YTgasLKwSOAqBv0+1hiafsBv+Y7v5Gd/6eM4RiGBWhixPjebMlEXukqEOOZsqDI4pXKRwmJUwDg3GKHwwpBCl9iycg2IXOC4DtZoJALfc3j5I9+DY1I2vvIKjchFmJB2+wVWzs4epKs4YFVxBB+LUiVpnFTA1lRhsL3+gIPhiPVLTzLs97HjPmEUMhl1UdKl3axx2Bu9S3zw7EG6inmXFGVBr9+lP5SApdfrMZrEjOIJoeuxtrJC3JsQRHDnyhU++Yu/yNbduxXDoLFEYUQURSil2NnZxosCwjDk4hOP89zzL+HIB1vYfyglHIZUiX3CwXd8GqFD4AkcaTFlgS7MdIeMairj+wGOo8jznKQocbF4nos/XUUtiuL4RQDHzF0mna2E/9U/+Lv4nUXYv0NNJEibEgWCx865hMKw33cxUrDYjLmwpvD9inRDHRNEG6y29IcF40mKVROwEt8TxInLZz5/h89/+Qp7B7OneXlZ3BdoPhgM2D84wPMcWq1WxT4mJb7j4E1J04XjEycFKjOEYYTjqHvxklKCrMLbqsyiI4fKbC3ctSN83yJxKNKSfn9AmSaQZly58iayhMO9fUrAcT185dKqNwh8l3pYJ/R9VhaWWZyfBwFKSjzPq7iEjUG5zjTqY/b0qixzMgE6K4jCkPML86SFxXFdtvv70IgQwjIp4fz5i6R5yrgsGBiBr3zmoxqeIxnGKZ5wWGw2OdCGbpxwZrFDJiWjJKY4hUXNDSJeeOkF+r0dvvLql+jGhrm5Np6juLV1lztX30Ii6CwscNAfUxhDNonpHvTQMuTmzduENY/JeILjhZwdXebxJy5idIA2OUHoEPgt8mL2whwepLqkdCRZEjM43GWuXafpeRRmTILDdv+AC089hVvzGfb6xPGI0XiEH/o0axHSWmKVsbqyysrCMlE94itX3mTp8YvMdeocDg7Ik95MMbTOp/3yHv0s9t6OFLmVZMIlLyxWlyjlYriXnFNd5yCorEjPD3nuu76PJEm59cZXONi8w907d3jm5ZdnyiGFOF4zOJqxlqYaIAwn2j0WTLW7y82Nu3TabZ546WXefvWLHO7vo9E023O02nWkcDjs9Sh1xTWMtae6IyaTEc1mHaUkjWYdx3XI0owiLwh9v7JuhWJv/7AKOJCSf/ULv8Anf/EX0Wk1kwzrNRqNBo7rUORVFmzgB9QajXu75pyyhnKEh1LCtVpIURSEUQMhmkDlf1GuqviA8xzP8+6bPjuOWy3YUHHSHpnovl9tg1MUBWVZorWmLEvKsiQ/pZN1r34GLarV+7mmCzYn9CzrK3M4UnJ3V5PJecbjW8w3JGXp4nkOSopq+o/FWEl/ZJnEBV6YszC/gtY5r7x2k7zQuEHEyy9/cKYcu7u73Lx5E6019Xod3/dptVq0Wq0q0UFUCtR3FI1GHUc56KmVb2xJkg4qZjohp9mEDlZXVIvW2GkMtoNzCnl42A5Jd7tk/QnZQZ+8NyZcWGa5vUA+yTnY3afdahG0O0jl0q61WF9fI/BczEUN2hAGPkHgHwe7Hy0WCiFBVp3GnEJlGfku3XiCUYpW4PPdz76IkYq3dvfQjqDuSgLHoRVF1FyPL16/TpzlbPUHtGoNWkGEFgUFgqwowfG4ur3J3Z09Qhmwv9jn+o3bjAazB8etrWuEnuKFFx/n4sUldvs5H/y27yX0XQ4PDuge9qi1OhwMUvqTFOVIcp0zGqe0Vxxu3ryFlFXaahjWmSQThoe7nD27yMLcMmUxpnswIB5tz5Rj48Y1ap5PM6zT0YIziys4jqAsoBY1KAZjrnz1Kv58i7OdBsKB4WhAd9BF+SHz7TbxeEKz2WCSFWxs3kU7hmiuRSYEr1+5yv6kx/pKe6YcUNEsSilxlVvRkuqpdUw1M8yNT24UQqrK0jvia7B2ahyZaShDFWoW1JtceP4lrrz5FvEoZtDrYYrTM+bk1Oo1049mSsZu71nFx1JbOOx2uXlng2cvX+SpF17mjS99jpqruHj2HHGa02wuc8t12NjeOW6fp62nXL1yhTzPcB2X5ZVl2u02tVqNLEnRRUE98Ol05njzq2/R3d6m2WyytblJmRcV/YCsBqcjXVXqEqMNvufRqFft5bB7SC36dSDwybKYotQI4WOtoSwrvtmyyPEc7zjE5EihKqWOWeePmJLG4zHGGHy/6vBHSviIqeuIUHwWnnv2RfLJmCSbIESKENAIFUI7mNLQCMY03A3OLluUqtytYLFGUBqDsZo4s+zsxSRpgR9Ve+LV620ODmJ8P+T8uUtcuDg7Xnl3d5erV65UDExS4gfBsQXp+z5KKRYXOpw7uwTCwQqFxVAWJVLBZFKlPXqej+e6uI5DGk/wXB8hKsVXIiFoz5Sj4Qfkeclw7xA/tZxrrvAdL3yQ9z//Itt3NsHCCx/4AGG7Q384JlAe7VYDJSUSQUVWeJSLYY87hJ7u+wf3Uk5nIS8KjNGUwnCr12W92cHi0isS6vUQnRVkhQUvoLvf5fbmNnlesD0ZczEI2R+NKXTGxs4ea615TFbyr3/pl7h16xZrYYvJaMxg75C8mC3H/tZXcT0XKaDW9HhyYZWXnnuSg7s7JHHC9m6PzGgOhhmTAjwhSTJNUGsSBjUO9g/QOgZtiAcjimTI5HCXfHSeRrtBFC5j2xGL86fw+BqX0I1oKIegiFkIari1DpkMKYqSJO+zubPH5AuvEL7wDLbMiPOYw/4BL730bbi+g80U5xfO8uqbb7I/HFI4lv5wSOD5iMxCUgKnZarp42wye+SKkBJ7nEIsKLDERUFRGlz3RCKEqJIslKOqPCTlorAVYU/Yojsu6PX6DMeTavF7Buw08uHIojbWoKfq/qRP+L42ledsbG4T+QHPPfMEl59+kZtvvEr/sEuz2cSpuTz3zFMkaczuQQ9jT+cT3t7aRknF4uICjlIM+wOazSa7u7uMRyN83+e5519gMh7zyhe+wLnz5xFCUItqjEcjyrIkjmOS6Y4mR2WJk5hFxyEMI7Iswz3FbXaEh1LCvW4PKRV5miEEFEXFECWFwnMq5XNkBR8RHCuljjvwkZI9+u1ICadpShRFuK6LlPJUjoJnX/x+bJ6wt7fJxp23SeIu/SLmSjGk3nBo1kPmgiF1N6TUkjQ3iEJjNRSlIUlLXnu7y6d+9S5JWuBOJoRBzvz8Mp4fsLq6ytmz52mckhQgjEVP60Abg04S0jQ9Ztg3xhDHQ1aWI7CKJNYYUw1ISgs8R2GVpFYLq9+kxfMESmmw1SpunGTYU8JFio0BwQgeW3+K5y8+yWOr5zmzskan1aYRtTFlwfzcPKpWI6o1UCiUqHy40yz0imxfVNaJPeZ9nRJuTzuGOY3HdxKT6ZIgigjrdWpRyEg7KCnJygLjOOC5SD8ktoKdfp/BeIw1hqTQ3N3c4vad24wnMU991/eyvbPDtdu3yPMcPwopjMYPA1bPLs+UI1AjPLeOUD711hznzz7Btbde4+aVW1y9dp2l1XXWL12ml5T84sc+RZIaCuvihyHaWAb9IZPJITXfxxOCfLhHOZngCRfEWR678AK+Z5mMZqctn33ickXv2u9xKxuzP0x4bNnB+IaDbhcPg418bm3v8/O9z3BmocONgz1EEHB2bZ3N25ssLC7jCpfReERZZEyTtnj/iy+xtjTPxcfWcZqziaaCKJgmckqMthXZFhZUNTPszLdZO7eCtUf+9ooHRpupwSAs0qnS0oU8Ci1TeH6IE9UoewPGoxHmlHhlbae0BxaMOFK+99KOsSfYBe00XV9APB5x+84mjXqdC6tnMHnO1s2rTCYxlxfWWF5ZJX3uWfRrb7B/2L8vK+/dMBmNuHH1Gof7B0RhiOu5NBoNfM/D832KvODunQ32dnbo9wfkaUazXqder5PEMWVZVi4xpyIgC4KAeqNGo9mk3mwwv7hAGNVwT1lDOcJDKeFWvQWiypjTWqM8h6IocJ1qinPESHSSVs5xHMqyJJsGtjuOg+M4x1ZVOQ03OmlpnTaSvfXWdeq1GtY28WsX2DssuH1ri1InKBeUkoSe5Mxqi04zwPdVxTRWGtJMM5rkXLvdY3MnQwjFeDzkwvkIozXz84ucPXuJWr2Ne4pFPj83T1SrMY4nOK6Lcpxq+57pQFKWJY5SSAuh6+Mqy3iUIHSVaRPVQtR0+ldO97fzfR+tNY7roIwiyYpT3TPf/+SHWfpAi3OLKyy151FSUZQlyveYW11FWYPjuUilcD0PqSur15FV5IOcNn5tiorp6qj+lcWUJVqbaVrp7PYhPBffOriOQ00JXDSTQjNKEvYOu9SaDaJGxML8PKMkZn9nh62dbcos40OPP4NnBN1ej7n2PJcvPM61/bsIv0ZN+qydWSMrSvyoQavRmilHf9Sj5Xi06os89cTL3Ly6wS/8y39FFNS4+PhTXH78Irc377C3v0m9qSjKhH53gBAeu3rAZDTAlBlnV1eRnsMw7pFkGXMLC3jqAksLS0SewxdvfX6mHKP+IY0wJM0s3czglDnp5k0uXrxMUk64s39I6Tm4ymM/zjnc63Pr4ICXz10mdHw8pSjTlJ3uDv14yHwrYqvb5fLjl7lw/ixGx8Q6w8tPWQASlUGAACuryKE8L9FGoI2mtIqV1XOY0lBqibaC8shoUtVGmtqCNhprS5SUuK5HrRFy/tJlsiSvsmBPjaqsZlcnmdSA41myYEoHMdXOR2doNP1+nxu3b1ELA1YvPU5neYnIU7zv/R9kMMkpdEmeZ3z5jbfo92e7q9I4QbslcTyhLEqSJMF1HKIoIqrV8DwP3/c5ODgkTTM2b99hYWHh2DiRUiIdh1qzQbvTptls0mjUabYa1JoN/DDEd7xfHyUchiHG2GPXAVSLa0pViuRI8cA91q08z6dTbq/KSpluHHmkpIuiPL7+CKf5dMbDLlt3bzEejRmOhvT6hySpxVgfisq8GyI5HEyQYsTR3njaKAoN2lrK0k4d+YYsT7mzcYPVlXO88MKLtFvzeK439WW/N47KqI6UmxT3WfOVxWBxhMRRkiLLEKaKVXaUwmiDkup4tdZREl3muNOBytgqNrc4JRj/u174EJHr4AmBI6qUS+X5VUPxa0RBgBf44DhVOqY+aumCIw8EGDAKofUxZYaaupeKvCDNUk6LelSeX93HVuF6vXjCRn9IUpbkeUkDQRan1MOIN996k607G5RliR/4IOHxSxe5vrPF+59/gZVza7y+c4fF1TOYLEMph83tbdqdDpF7CnfEOMWrGXR3wid/6dfYvLVBMol56smnuHjpAq+99io371wjqCu+7f2PEY8Trl25w8HBgEk6pNmAZn2Bi+fX6cx16I+7KASBD+2mSzzp4tgGzzx5Snr9JAXrElifTGvCRp2hLijrkpquc2Vjg8SUpElCOsl58QMfQDR9FuaW0I4lCFyGoz77vX2ielgt/u5s8r7v+jAmn+B4FSFWFMx2RwwHcaXoMGRFQTzOieMUx1HEkxFvvPY22ThBaM2nP/0F6s0m1W5BahrNUK3pjMdjSl0ShtHUcpTMLZ6j1dlnNJqQpafs8HGCyvJrNgCednlz4vtJFEXB/v4Bt+ubNJtNllbO8NTlSzz5+GX2D7qUpqQsc8ZxwlffvjZTDkdW/CNGa3RRkkwmDMuSoijIsowkruqrLKudn/N6nTAIsdYeK+hGu0Vrfo5Wq0UtqhHVQoIoqHancRSOcnB+PdwRZVlWCzVwrEyPIh0qf9NRnN49v+6RovJ9/3jzyKPrAaKI46n7vZcze2S/eu2rjIZjkjSufLxIrFRHc5hqd1hAm6lPlYp5CSursDFRPVOJat80MR0Q1tfPsDC/UFmhzukVaITBYioFKgXihPI9ZnOazgwqH2uJUkzjHb1j5qiK5tPFUQJpqkFMCVE1FschO8US9pRTuURktfgsrKxY7bTBtQLHcVGOd7xbsnWAKXl1NXWrIkaEkQhpqpscdQ4E0gXK4p6F/B7wraWkyuvvDkfEhwNSzyWexAhjiScTgjBgoTPHpz77GcJmg0YU0Wo3qbfqRLUay9dvsLK0xJ27t+l2D2m3Wigp2NrfZZIlRJ6LFrOHg5WldYyBq1feZn93xGKnydPPnuXW7dfY2btKvVbn4sVlpFsR/nfmAt738uMUORgDaZrRarWZm59nf38PN2hS80NWFpfZ3b7Frc1rzHXmicKQ516asXhrJHGuyQqLg+BsZxFVc9ka7TPa75GU1Szn7PICFy9cwqvVWF+bZ9I9ZKxjonrIza27aGFYWVnh7sE+L333d3Lh8XXywZCw1mCUjLi+dwVmriFXu1w7wiXLCjxP0W4t4nuK2zf7JKM+eQGjXo/W9hbLKHRekKQpeV4gplE+RVmSZQVaV+42xxXUnT5RM6c110Y4szMZT/bx+ziFbeUiAYueZo0K+7VaIE0ytnf2WJxfwJGSWxt3WV5aolYLWF9bwVjDKI4ZjmbzPDuuV20+Kyy+V1EIHFFSMm3zuqx0SBU2q0niGNf3WFpZptNuU2tWVm8YRcf3cLxqcf2eEv51sIQrB3+1Smrs0bYkVZ6X4ziUuiRNU1zHJZiOzlVueHV9lmXHyunI9aCUqkiBjhb1jEafQlJ9sL9HWeops7EEoXCEwIgqPO54d2NhUaLa7bca0Z1jBexIByVd3CCg1Wlzdv08Z9bWcV2FUhYlq5jXWTC2Cqc5KuNRHrxS6ricxlrSPEMbg+M6lLrA9RySNMV1PYTnVbtXKIWwBiUEaZrihCFKSkLfY5KesuqsSwQGravtxIWR4IHrOFX0xTSy4chHX6V4VtbNUYidtdW7PLndjNUlR9stSalOjVeWaKwFV0hK5XDr4ICy1IzjBMcKlNY8c+kiWZZhteb82VVc1yVUDoXWTDKNV6tx0Ouyv7dD5Hoo36XUJcPJGKk1tRMbOr4XPCcELBcvrLO2ZHBUtaXN/EIT13Fpt1tM4jF7+9uMJ31qjTrN5gKNRothd8Rw0KUsU/xQADkHO5tcOTjk0sWL4ApyXTLot3DdgB+YIYfwakx0huv7Fc1BCZF02O4OmWQFudHUa3WW55fwPQ+BrdpBs8N+POaNz3wJr1lnbmmZt65dY/HCGtHKIuPxgKbnMhwMmZQZ2Nmdvd1uH7v7gtAHC57nIozmzOoK3/t938kbr73FzSzhA+97lseffJwiK4jjmDRNsVAtdErFZJzQHwyZTBIOe3uEbpd6KHj62Us0WrP77bsp4Gqgv0fAcxQnP3Ud3wetNYPBkDubmwShj7aGuZtNnrx8mVoUsra8TGE0o+FsJWyFAukgpUJaU1HJAuPxGCVOGidTprcMkiRmcXmR+cVFGo06nu8TBCG+PzVu5HTbNymrGYTztdu4vRceSgkPxhOMlbieRHmKsigZ9Uc0axHtdoM0TcnzHCkkeZ5P/cOCLE8pipKT+eJViqIkDEO0qUZXrQvKsqA8Zfot7dSSlnI6oa5GtSPFIo6eM2VHUlKhHAfHdXB9n1pUo1Zr0Ki3aXc6tDsdwrBWMeELg+OIKqpCnp46fHJfPCHksT/83l5aEme6gwhUMwbXVWhTKcaTu8sezQJc1z2OodZGn+ojn4wmKKERusSREuUEuNPnGV1lHxVUDUs5CtdxpwOGvNf43yVriekgmxc5ZVmcyNV/dyR5SWkMwvNQQURiLL7ns9RqoYSkMSW5/tQXfw2lBAvNOqW0DMcpX377baQQPLa0QMdXbPdyjJLH0TYCS6AkAQ7FKTyt2xs7SKfa207i4wiXPMsJg4A0NxxkA1qdFouLZwmjJlK5hLUFlAzpHuwiTcCgF+M4XepRxNJch3YjoLQx8ShGWw3KcP785ZlyGOEgRInrSOJM0xuNGcZdPOnRzxNsqVlZWqbe7NAdj2nPd4iiiLm5Op/+9KcYCYiU4PXbN9nc22X5mQsV2VEyYjga0RvEBPUGzdZsH/nJhe6jOFxrLUoqOvMLPPeSR1GmLK4uc+7cGQJX4js+rWYNKcV0UR0Qla84S+fxvIA0GdI9mMNSsHrmMUx5CovaO3zB06lzFY1jpluAiSp9/15eyf1Zo1mesb27S7PVQErBjdsbtFotmrU6YeBzYf0M8Wg2h0Wr1cKbMgROTEkYVq4ephl879zvruLWDllaXmZhaREpJY7j4Hne8f9WgOdXLkwhJUiJPWVj3COIb2RbnUd4hEd4hEf4xvB10ZY/wiM8wiM8wjcHj5TwIzzCIzzCtxCPlPAjPMIjPMK3EI+U8CM8wiM8wrcQDxUd8UN/6+9ZTzqErkfoeRUZiKPwlIsj70UG3I+Kv7cwhlQXFNpSGEtuSoopAUaaZ8RlTpwXJFlOUua8/V/+R+8Z37G6tmqLPLu3ceD0/+XlVd7/oQ8RBtHxCjDWorWptnTPUlqu4elnXmBra4cvvvIKb92dMBnsMxkdcG51ju/7wJPEqSHLM4qy4J9/6tX3lOMP/dj3WNf1CaUFM0DXE8K5JmtnLrK2cAkZZKTsUcQZkWpiUsX+1gDPWWauHeCVMY6uUUwpGrOsKlOSF6Q6pZ/0GcQJEPK3/vZPvaccn/uJH7EaRWFgEhvGqaGk2iNPGYmRFi0sRliEEggUhXDQTsDK+nnCwGN3a5N4PMBz5ZRIwk5ZrSx6GmdtjOaP//v/8D3l+Lt/7y9aXzq4UuF5Ada6uDIgcut4KkBJgaVET4maikKTFiV5WZIkKUZr6o16FUhvLUmcVIk90ygJQRUaWRYlf+xP/4X3lONP/7c/ZiUl9aCG7zRQwkdKD6d0aIuQ9blVVtbO02h38MIaBkleakptGMVDNrY2uHr9Ctu7m2iTY22JVJZaLcRVDq7jMz+3TOA3+GO/54+9pxx/+M/8iK01XJSUJHGVIOH5BmEUB7sJ41FGve7S7tTQRpAmOUmSsbLaxHFdbt84YDJJqTccvMAhqDtYq/ECQS0K8GoeeWzJeoa//z/8r+8px5dfvWrj0Yh/8hP/gOtvv8b3fuTb+eRXbnLnrdv86A//ML/79/0oF84sMB4f8kf/9H/M5sYWC2sXWb34MnUKXv/ln+Xs6iJhu83OOKYe1Ki1Q1ZX51E0uH5tiw9/4Em6h7f58R//K+8px0988gvWWlvpiiln9TshqHYCeS/cl5I8pZI9xpQUyFrL7/vul99TDmOMfc/U5nskc2iqSCz0NJVf2IpkS0x/fwA4jnNqnNpDKWHXcfGkg+e4eMqdJhgoPMfFUfI4ROs+EnJbbXwpjAElkaWpvutp1oSpUhk9oDRQakt5SsSGtSVe6OA4EXNza7iuw6i7iylzPvXxXySOJ8c0fUe3chxJGNZ5/zOXabTvMklyDNOXNg1l81yHpcV5rmwcYrw6Ju/PlOOxSxfp9ntgc2we4ZUBTWeJVrRKGHWwagw2RioDOqddX8RfaaDLkLlOg5a/gqu9StFN43XLsmSSFcR5TGPUwO/22bw7myzbWlXxKJeGNCvpjzO8Wmu6nX2ONSUWMCiskQjHJ8kNjvSRMqI/HLG92yVPxix0WgQ1FykFZkrKd9SwTyOXd4yDLgye6yCkS5YoVOBWcb2ixEpJpstpuJumMNPvWYG0mqLI6B9mCCGn4T/udENYTRRF07CikkkxO3mlSId4kY8uSoQ1JMWAuhexUl+lo1qUozF7GzfJ4hF+cx7rBFgUEolrPS4sr7MQNbjWqHPzznXSLCbwXUxeEudjapHCxcUTs0Oy9vaGnPEbLC3PYY2gu59QZIYodEkTw3hQkiX5dKNKEEIhHUuRG/Z3x2RJRuQrAr+iBNCpoj3vImWBoxR5YimyAsc7JRRq0CWSDmGzjWoscjDQ5BOf0n+GT2+FzF0f0lych1IgpcBvNFl47kOYzNCY7PC973uJ/VjzpbfewKmFvPxdz7B8foF0NCEbanyTEHcPaASzd59WygGqLcAk022NThwX03+qhLAqeQPu/0+pd+w6I47CRKvjckoBOwtHsfzvCct0n5sqjNZoS5qmCHfKhyzEcYLXg0UCz8ZDKWFHKlylcOX0M003dpXCERVZ80klXIW9VkoYIbAYrJQVD4GwWFH97UqFloZCKlwlKfVsL0mtVccLwQ/n+OAHvofllSV23vg83b1tbuzssaOLivV+ugmgnQZku17AIKly5l0vqLLBjvemqlJtraMIggDPj+ins3PQLy2tUQPyImM0UugMRvsQzyl6ZkJYlzhBHZ0N0HlKWiSUeUBuxux3MxI3oBHV8IMI4VZp3zbPUUjatRChHCYjw6i3OVOOXENaGLLSkOSaje1D2ks11tYXEWXCuN+jNIKg1qQwFik9gkZIu7OClHX6g322d3qMBl2SuODM+gL1ejhN0NAIW+3PdxpCp0aeJ1VWVl2gc0mmC0RekDsWJ/AYpSlFURwTtpRZTp5lKFlxkjiOixIOrqo4mFUQoJyKD6RWq4hqmo3Znd3Nqp2f2/MdzrXWURJUVuLEBePRBmme4UURWufUrcR6daxQSKOxRbWBrc5SlsM69XOXmMQjpKzia1NjMMLBVz46m817HQSC0TAjnuwRjxOyicX3PbrjmCwtUUJCUVJmJXFuUVLTbvs4OURK0lnu4E4JdDzpkqXQSCzzCy0Ocs24LHBPz13h7V/7NV764AeZW5zn8NeG/Mt//rOMywWK+Y9yJVvlE1/eZF3FPHduie/7ju/nX3zsE9Dt0t24SWh32e91uRsL+v0R82UHZzxhOVhHNNpc7V3jztXXiLt3ePHlF2fKoYSYGjxHCrhSntKeUMAcKeGjDQ6mRD/T4+/Mo5McxRpXClFMSQpOw5FRcRS7LGWVXFHt8jElq7KQWE1SFmS62hi01z+kGUV0WnOcWz+L77r35Qp8PXg4S/iE8nVF9d2R9/6/R9wDR5Vlp5awNdU+UlbZqVVmp+TqDqXUKFHiCIkSEnVKgeajGlEgEF5Af38HpSeEnqTZbFAbjWm1GiRpitaGsiIko+ZJFpp18Dys62EyTT5NwxZCsrqywsWLjxOPS0yaTDMBZ7/MEMlSEDHWliSDIgcrXQ7ujrg9usvS2jzrF1o4RGATirSaDWRmQGY8JuOEw/EhyyvnkFIRJ0mVMpkaJIJJnDEaZ+TJ7M6eF5DmhrwwaKuIU0tNRGg3QniKIi4JoxZBNEfd80mLGKV8zqw/zvzcIlmRk+VfwXHrZLnl8KBHEHi4jlexXomjWcXs+pClRGkHV/mEbojrOuRZSplnmMIQRgH1ICKXeUV5WZQUOkZicKTC93zCoIbnBtVegVoT+D7G5sTjEZ1mA9fzaNRm87Q2RATCpSMC7OEQIQxSK4a9EUWekBUx44EgzVJWvBBRB42DMiVm3GV8uE2ZJrhuROCHONJjf2+LJJ6wsLKM32kxLnKMPMUi72tiCpzAoSw0ptB4jktZCuqNgLGJMYXEk5ZW3cUPfSLPw9cOa4tuRYWY5biewA8UaVqAhqAMMaMx3e4Ix1X4YnY3fuXTn2Wp3SKZJnm4vqBR08S1giUngc1b/OLVqyz97h/k0tlzXDq7gkg2+cr1N5HnV8mkpdFSKK9FzfHobe9ysNXCRnWuXnuLshhy6/Y+bjib00MKiZimBQskUhxtPXZ0hrkvyexoOwPxDrfDSYVnphl3R3jYtIevbdMCIywTY7m2t8eV/S16kwENDW9/5VVef/1VnKLg3PJZft/v+Xd4/uln7qNj+HqU8UMpYU8qPFV9HFfiOhJvSjzjqEoBq6lSm5YHawXaVFu526PpLRUrk5FgpEApgdLVxpKOlKhTMsQ6vkfTNahGnShw2dl4m3rkgV/HcT1CPyBwFKU2DOIMKRWuMgSuIksz+r0BZ+brKB0DPq7n8sQTj/Hyh76Tctild9gn9BTjU7ZLdaOApqmhhKAoLcPc0pxf58rVW/QP9hn3ErCGs+dCrC5wlI+KfMZZgRUOGkmRpBRJShTVKCYJ2hgmSYGUksk4oTeccAqNL3mhKQpDqasR3fcDbt/aJLOaWt3hzOp5Llx8kqyAOE5pOpZet482ljCKePrpl/iVX/ksG7eu4S13mMQ5o1FCu+OdGIbEqQ08nWTorKhcRUAQOYy1ISs0aZKSjGPSvMBi8TwfWxT4rkPUaiAQeK5HmuVgDZ7jooXFUZLxOEVJSa97OOV9rs+UQ5eC5XoLNUq5c+NtjCloNhew2gWricdDkvGYViFZWEtx/Yp21Zqc3u4Ot669iRSKdnuBeq1BmSXsbW6zffcOWzdvcfmlFwlXVsnE7HTyMPSoRT7Kq7bTSvoJySRBOi6uL2lGgoVak8W6hysdCF38wIMJeAqazTqjyZi0LBDaJWr4iEwTJyW+DKhpj8EgYVDOJs4ZHQ7Zv32HZ5+6SP33/iij4R6LaytMxDmcYUK+vUN3+yp7b36GdO4CxiRMihHDuEtWzvPSBz/KmYsXQcHkoE+2v09vkvLqF1/lra+8SqfhETXqXL11Z6Yckoo688hynO6INtUNJ8+rYOF4J5ATzonpsanS+5ojp5lO07PE9LwjX9CJu2a65HPXr/DP33qNN7t3icdDnnYa7F65xt7gkMHWNndubJCMY37oB36QD3/4w9TrNY426H1YRfxwlrCSeLJSuMoVuI7AVQJHgVLgCoErREWmMxWoIlmeLvIIiREGxxoKaZDSIhVIA9IBqSvCDEfNLkTiNFCexHFbrC0tsrH1Nt1RnzAqiOpNsrxkrt2gNxySll2KMifONJPc0Jxvs7N3SP9wizjXIKq0xN29fT71iU+wMtfAFiWzGVorzHXmkHNtMh3TyTMGfc3uzoBmJLCdBlb67GwOaPhtQi/AqUORHZDFB9TrS0TNeRrtVVSaYZOUuhexPL/CQW9EPz5EScHq8jw2n93JslJTlBVXsRSwOtdg8ysbbJYl5y6fp7OwSqPVJjIGpaAR1UnHMWnaYzSuodwOzz//fl778peRGC5dPEt/kOKFAZ5fTdOsmW5IOgO9UUwoFcPBEJ1lLK+v4QhJbzwhy1KEkKRFQYEhCkLKLEe4ilBKXMdFCklZ5GAtjlspsSyLmUwmzM3NobUmTVOkms2v7LsRoXEZ3t3n7tUNcC3pkkaogF5/wuHuASLPeTJawRU+zaCOAeL+mPFwxNbukF5S0Ax6nFuZox6EFIUmSw1xcoi6cpXLYYhszB4Mck+zttZAGslkmDAuS3RR4paamhKsrdc4225DKii9gNryIqPhmLIc0qo5SJXTbAcMt2O63ZhnnrlIZ1ETFzlLpU/HV7x9Z4tRPnuU9uZXuHHzJoFNWF4+R1jOsVib4/ada9Qdn5FJiITm8x/7edylx5gMC7YmE84sd/CVpR512NnsU2vVOHf2cUaNNt3uFq7yOXfhcZYW5xASXn/rzZlyqKnCnK4GVUbakTI98osDStwj8TpS0Pcr1vsdDu/0ET+wo3bq46hm5hXviTCC3X6P21t3eGbB52pvQL+7R4FhtNNHl2CR5Cbnc5/7Apu37nLt2g1+1+/6QZaWFlHqiJflwfFQSliJyoeqpECJex/n2C1R+Xft0fRIiCmhjMEKUe0jZS1GGVyrMVZSlubYlyzllADjFAtU1Zr00xGN0iBkwFznHL4vuXrtGvPzc1jHo9FZoZ9mCC9AAPVak8e/4zexsn6W22+/zvbGLQapRRtLlmSMXUNelgx6+5xp14l879Qtq6W2aCVIdE4pC4oyxxQpC/M1omabwkSMR10OD1LWlmuMhyNSvUdajDg//xih28LXAWmZMEnGhFEbX/kstSRKa1qLHfR6jP7QbG6ArCgotaWyNSzNRkS7GTIqChbmV5jrLOF7UcVHYSRZkhEGPmka8/O/8C/Y76b8jt/223j/B76NV7/0Rfr9hHrd49bNLc6dX6sUMafnwadphlCKQMHewZDCGlZWV6nVahRFtR+f4yiyoiROY0xWoguYpAlLrQ511ycfx8hmHSEEpS4ZT0YIqciKit/W9QI4pZG3VEi822fz2m3ubNyl3o4osGQart85pMwVT16+xPJjTxK05hgnGXmpwTi0F9Y4eyFncOU623vbKDOhU2+hcw04GF3Q3d1j784Gl98/e/ur8Tile3BIYD3iUYwoM+q+QytQLDRCOrUa7eV1FlorHB4cMo5TyiRFCUsUOriOwFjJhTPLWKFYXKnTagj8mkt3J6e31+P86gLjdHY73Qh8rt58i2dCl0MrqHsh+bXr9Hf3eGvQpXu4je3vMt68y9mzBcvnHmd3WJJkCf1Jn09/9pc46A5BuTz5+NO4UiBEwSTNiFod2survPrlL3Ht+vWZckj5HrOpozWZExbk0dcjX7B4xwXi3ldAneoqezdUbG32mOrWWkGuDXdHfbJA0HZdOsawP0xwnAxVWpSp9J0SEsd12Nre5qd/+p+xs7PLj/zID/Pkk0/gOPKYa+NBxoOHUsJHPl8pZMWRe/SZuhFcoXCEA0pV1SQEWpjKTNeghURPz68W4yzWFsfTDiHl8WcWrHSQwmGuHiK1od1a4Obtq+hck4wT8jRlNB6RZzlxPCEIQ556/4d45sPfycaVrzIajbFS4tSaOEh04REGHr7vIa2mNEfRAKdQN3o+qSmQOBidMhr3yPOMvCxQwSKt1hzjyYDhOGF1qUHNC4mHkI81MnGpuQFSOBgnIOuNqAWQZgnWapp+RCAy3Pkh8xfmZ8qR6wJjp6u1BpCaRivAZIpOZ4FGs8PdzV1++Vd+mbIouHThLIuL8xhreP3115F+iB8onnziCb70uS+wcecui4tttM5wnYAzZxfubRA5A/WwhrQlQVAxw40nE7a2tqo9zcoSLRXNTgtZupR5QV4YwkYNXZYk4wm93jZJllF2u9QbDaIoIs8LtIXhOEEpRS2qcVowQDkcsH3tDne3dkkNRAbiyQThBiwuzNGeO8MHv/27uHD5cW5ubvKFV18jzzRn19Z4+vIFnnrmGaJmk83bEb7NCByPAk1Ub1IWLsqD0XDMeDCbKKauBbqbUdoC8pzIdfB9n/lOjbMLC4iyrLadzyaM9/cw1tIIFEb71GodpARHWZY8iRcGFI7ECQLSJCPONCoMaQYhWT47eubLt27j9wYs7U/YvHuXyFd82/nH+dDLL/Czn/k4d4ZdWkGTjfgm3sE+rWaLsCxB52zvbhJ4e0gUh4dD5uoBnvIQtuTO7g7NuQ65ydje38Wesr1RZe3a+8nFpt6ESmeJryEeE/C1dGrcs6Q5Wog7Dgb42i2S3gvHvG3CUiAYpikbe/t84e03ud7bJrI5entEo58jGxnSgtSVEi6KnCItcYXDOE745Cc/yWg05Ed+9N/i/S+/H9dzj0JeTpXjoZRwpSAra9UR8jhSwpmSiR9FSTCljKxIw49iTC1aiKlLQqKlwpGWvb093CjACX2k0McW8Sy0Ah/juvhSce3qLcZxih9GrKyukCQJUegzmQxxlMP68hLt1TNcfvp50smE3iTGXVzGdRzKwy7GaFzfn/qvzZSYvVpkPM0Jao1BCQeMxJRwcLDH/tYQIRXL60sEQYjyfIy2eH7EfFMRCUveXKGhmgRWYa2g3lkkCpsMx9XU2wsiMrOPUzuksxqSFLOdI4U1WO752EDj+RaRa3zfI00SPvnJX+Jjv/iLeK5HLfwoZ8+dwfMinnjiMs35ZdI0Ji8SanWfRj2oqA6Fy9bdXWp1h8787Kk3QM0PcF2J40AQBjiy4jnu9/tsb+/gKYdarUYY+AjH43A0QRQlyWjE1u4BSluk42KMh+9rCsdgDAjlIKZrCUaIU/eY2zy4xZ292/THCWHUIGi26XTaLK2u02h3qDXnaS8uMRwOuH3rBpu3bpJnBbLMWOrUWVld5Ny5NeaaHungAGUMugSv0SJLE7zQw2nUKJ3Zcpyb71BohTKWTMRMigzHUUR+RJEV+MJQJjEHkxFL55ao15sYodjf3cc6Icr3CCKXOBsxjHMcx6ffH9Lr9lGOYm6hxWAwZGV59iD92EKLG1s3uXHrDqbm8PiL00Fmb4taI2Rufo7Ar+O0O6R5ypyn+Y4LF3hSOuwOBzjCIrRme+uAy2sLjPoDknjMd7//eYJmi2arzlOPrWP1KbtPTxfexEnNOo1qOApKO2k7imN+3/eAPf6nclu8gypzJqqACkprMJS8eXuTX/ziF3h7c4uN/X2SPKHtWMJ4wtOdVVY682xvHTLJUqSpYoWKoqjYGxHkwOe+8EXGSYzjerz4wgsox+FBHBMP5444toSnOzJog5IVqbhSFUevK6cO4in0NCzFqIrw27HVzhZWCCZJwt2NDS4+9UTFwTlVwKdRN66vzlGUBmk1mcmxAuYWFgjrdQpbLfoJpbBCVIkDUQ3j+2xce4Ptq29QOh5FkiJ0gRIuoEnilFQIaoGLbATHL2oWkv8fe/8VY2uW5Xdiv20+f3z46+/Nm64qy5vuruouFrune0iBI3IEcIYiBEESBhgIfNMD9UBAHAh8GQgC9CRAgARqZAAJQ0gcR86wm80i21V32fT+2oi4YY8/n91GD9+5kdXUVEQmQYIvuRKBjMx7I2LHOd9ee+21/ma5wukArASnqCpLUZR44cnzBXGxwiMIky5J3KGXKLZ7PbwTSBmgtaBpPE3lCEVAL8lY1RWZiAh6Cdk1hdeKB28suH3zl6/D+rbn7uVz/zBAGIIwRmvJYjlmMMx4+eW7SKlx1nF2ekYYKe7du8/ezReQOJIk4MatLQa9HmmaoJXmwYOPOT09o9uLW7PHSyIOI6IkQKoW+aK8oGkcnU6H/qDPycEz3nvnXe68eI9u1mF8csb84znGWja3ttjc3kKHESpo0Q+tu4HFa0Wg9MVt6SrX5zw1DO7vogcFqeqSxF2S4QbpcIeo20PFKYvZlPPJjPPjIwIJMpAIU3N+ekwSSbq9jDDQmCBAekvcSbmzc43KOgpTk7uKw+nB5Q+IjGhKQ1lZvGkQwiGspZ4VlElJMsxwoaAX9Rls7SG1xjSmhc/5VoJUNYqiEphGMBp1KMo5eenp97tUZcVq5VgtL6/Iv/+1l5g8/YB3Dx9wbWMbXzjeefSIze0ev/Pbv8PvCPAy5P8ZKD74/X9MFjruX98gvH6PdHOXhx9+yM9/9GfcuHeP7/zqNzncf8gP//Rf8I2X7/Ct734fFQi8t/gr2nfwL4/NnveI11UsraTl80TtXYvjFxcw0n+pM+zXiZfnveOWXPTpIBLtXjFFQe0qHj1+zEdvvMvB8RSrYnYHW9zZG7B8+oAvXL/DSy/d5+hsgdk/QPqCooGkn1LMcxrb+oUJb3jjzbf4+//Z/53/4K//db71rW8QfArH5c82mBOWQLaJLQs1w27W2oNUJVGSrR0iNK2pRvviNM7hpcVIkKi2pyIsXlgOnz7C5iu6YUhtHQoQ3iGvwKTeurGDMbaFvAA2iFGdIb3hBjrpoOOEMMqYzeYUiznetAOdmfWQz1lMpq2tfN2gVUgSJwy6g9b/qimx1tA01dUnqgdvPNILlNfsbN/A1THLYoZxFYvFmLKs6fUHVGWDHgZre6ioFT8PBNZbZuOCUGqEksynU4qPDhjdv0H26qvERtJdXg5Rw7U6ys87Z0I4tArROuLjD98hO8zY3RrR+bVfYWO4hbeSd958i48/+oDvff8v8sUv7bA638cXOWVpKUJD1oXtvRFCeT744EPmi5pu9woI0lrYul2ExDuPsQ5jLVvb2wRC8sbPf850cs7W9g4ffvABcRCye/0Gt+69gI5b5wetQryHKs9btqMHWxukbB1btLr8sfVpQhiEXOuGBLnElA1lWTGdzVgWVav/2ljOJxPm0wmhFOgkRnjLfHLOqfZURQfXVDhTEochYRiQbgxJVEDSQGoM9enlz+nR0ZxFUeJpuLnZ4/7uLU6PT+ilATdujrCNRaoOWiWMxxOW+Yrt7SGDjZT+5hbdfh9nLPlyiTX2wqH8vXf2efjgY1bLJd5fnfi+880v8+Of/BnvP/yQx/sF8x8sGG4N+Fu/9R/zta98i9C1DjH/bHePH9UOQsn1zT7djS2CbAOxseSxV3SUpB96Fi6nZ+Y8+PlP+fVf/4skSYSwDZgr2ojOg7cXBItPruoCbw22ylFJhhC6xZBbi7GmNVpAtc/Uc/3rtQeS9wIv/MWoTopPM73gogViq5qqzBmEKX/9L/17/P6fvs7hrGCjkzGQhjDt0IkTkjBk2E0ZdBIWS0dZV0SetadkawFlraWpGn76k58yn83p9bp882uXY6fhs5I1hCcQAtMYDpY5R5M5szxnPBkz6vYZdXvc2N1lo98nisK2MW092gq09SjvAIsVhrxccH58wKiX4a3B2PUJiLtwXP1lkSbtJlVKo8KUo9IRCNjuJiyXc0w+JRttUxdLhlkCQiJlH7Xco5je5P7t25yfnfHmO+9R03Brb5tbe0OquqIoVsQYKlNfiYLXUdS+Jg1AwvbNF5BbL3Dw5GOK6YzZ8T5SxczOZuSZRgUp1lgaA0o6qjxnmZdMZzmxiPHSYyaG0x/8hNV0zuYX/wr+0TNW/9/fhb/+P/ul67jAKHoHKBCOpvFMx3OWqzdI44g7915i+/otgkAz3NxGi4AnD5+wu3WNrdGQ8cM3OD96xnJRU9VLsm7MIp/THw1xhJyezsmyy6+9CIeQrQu3lBKhNcoGBKKFHe7s7nB9Z4vTo2MO85zG1Egl6G5sIMMUaxqEg8o1bX20tsjSUuKaBlMbsI60d7mnmjUB3XTEZtpHqoaFm5AXOXU+x1Qlk6LEOU8QRty8toNHEoQRgVIIAavVkrJYEkeaThyiwpB0MGjXqSPwEcZIbHP54XgynVLbhiSCXneTJFCkoUaLhmK+wgH9pI/1cD4+pWkatPbs7u3S6ffIBj1WswWT8YTx+IzBsEvTGIbbKWESc3psKVdz4vhy5l6/1yPWCtUY4izi+9/7Fr/5m7/Br37zq2jnUL5FpczGcxoZEfdH9LsJPp9Qlw0v3brBzr//P+TJg/c42/+IoXLc6qWc5zOq+TlpdwtpG6S5/PXw69bk83nRc3CZXzNnZVPgk6S9OXtHvTqlLFakw13QMSA/MUC4SLXPWxb+oioW/mpJHE/r9LN/csbJ+IwHj/axImBZrxgME/YGMaGdU9Q5dbnkcP8pgSjZ3Yg4n0WMc0NlIDCaII6RSmCMBVqwwdMnTzl8egD/upOwkAqlFSeHR/yLP/hDzpYzKtXCyrpxTJakXNvd49a1W9y8doNhr0c/6xAHAYESuHrFZHzK0ekRD58+5NGHH3DjzkskcYRpmrX7xqeI7i46DDBCsawtTz54He0MZ8/2aZoKgeSFOy8w2NihbmrCqFXA7/czhv0OSmp2NkdkccCi9CShJtQSrSPCQIHzGNNAU1y6jMY5Iu0QriEKuqg4pvY158uC06fPGPYGyLrkwUfvUc13SAPHxnBEpD1pYJFNQ1XWIMB4z+zwmM5UYz4+xwQaO24ozgvSty+H/sRJ65UnBQRIhG7dOfJ8iahrBp0IJRswS6rc4vpdXnzlFl/4+D4H+x9x+3ADRI0Xhu3tAU8PnvHee1PK8gYwpiwq8CXeDy9dh1KfaIesVquLQe7zCm6+XNDt9aGxrPKczVGfXr9Lp5NgnUV4WkdoqTHWrQ1TA5yDWLZuLVLKKy3NZ+cr9m5eJw0zopFChxFMxzgviaMIqTTOQRiGqLXvntYBSrWg+zgOCQNNHCmiJKQ32ma4fROddBFStSxMGna3ty9dh8GitaCfxQyHAxoClrWlZx229sSdiDCQjCcTiqbg7t07LYrE+PXw7YSmqFBaE8cp+0+PWa6WZFFIYXOyOIAmJtSX31CUaP0hjXFkaYdvfuHLfP8b3yYJQ/ANQkacTyc8evgYaxTnJwuevP8W1XLBcOsmcfhNbLmkPN3ndDbhlRs32Ug71E7SzM/QOwOcv1puIFUWgbvACiMEUkmU83gpsbKPEwJ8hfOWcvIus8O3SF/+y0TDm+Dtmi4Mco1nc1IghUeJT/rBnwYpbIXn44MD/st/+gPOZ2NmeU0UxIzrOdfvbGGChncfvMf9wYDFfEy+mBFHgrtbO5ysztg/P0RISW0aqCvSNAYcxjRopWnqmtVqeeU64LOiI9ZUw14Wc3u7S5EfMZ+cY8OEYtZeHx48+Yg7t17gG+arpDrg2vYeaZrx+MFHPHrwMY+fPmS6WhB3u8yXS6IoQEpo6pKirD8FORaOS4+QITKIIRJcf+2bBK5kfHRAURfYouCDhx/y9d6QZW4gLxEqYFYr5OA6VmmCQY/X7r5E7A2Jr/F1xXK1IF+tKKuaoqgpqssHDd4bnLM01jCzBjvsUJ4csDo7ZTFbMupv8/TxPvuHE6aTc56dHPDay/f50iu38akg9g6sJYwz6oXh5PV3Kfcr1PmM3kfgPjgg2R7R6MsrnTRNcL7l5CdBhA4l42VAWRyjIwvec/ZsH+qC3Rs3qYsJb7/5gMcP38EZQyAWRIFEhwHbOxvMF0sefPwA7zRKSoxtkNJTFJcfSs576rpuWwZrFlEURcRx3EITAeOhrhsm4zPiTszW7WvEWqAleN+2MKRufQfLssR7T15UOOtxroWpLZeXP9yLYsn+0QHBpmKzu0k2GiHjhLzI2zlBELbX3cZimnp9SHgkNUII0iSh0+kQdTpE/T7d/gZxpwMqWA+ZDdaaK2cXygtCrVpUTG6ZTM84Huf0e5qBBhWETBcrxtMJ2ze2LnwWUZJlvkIFAVEc0JMdFrMVP/v5h2Sh4sU7u0hToiVk3YQ0vBw3bZqKuqpxCCoj+OjxMavcEwVqjekHY2qcqTHW895Hj7lmxwS+wRYN2WCH/SeHvP/Rh8yqilGcUjeOeVWyLGrKytJ4gWsuT36DUCC9WletrZU9rp0rWddgVQtflQLyVclbP3uT08c/pfK3+PZ3rqOVxqv25qdlSwoTCJT0CGHXVTBXMm4RUDYN++fHjH2J6QY0gSVxjsRULMf7+KWiyZds37nHwfsPEU5w7YXr9Da6RB/Ki3YJeIxtMEZdPPOt0bEiyy6n1z+Pz5SEn4Orh5ubfP+3f4s7j1/g/Q8/ZG93l/F4zLOTYx4/O6CoZuwffIwoG54d7pP0h/zh7/8ez/YfIcOA3uYWuzvX0MmCsil5+PAjSg+ECTK8POEAvPfBuzQ6IYlj4jghzrpkSczw3mvc6aYEApoyR3f7bG/HFF5SesFw7wbB7ZeZFSWVsYyLGkzDUBu6WU1/q+GaKzDlijzPWazyS9eRJBG9VFNGET995xCv+hRGYqzi9q17nByfMhufEQhLXVkOn1UMOinXtjoMk43WAtw6oixl+viQ5VsPSA6X9JxFnC05/0f/hGhvi9Xp2aXrmM9WOO8JdIANDEEEZWlYLgu6KsLWHhVIZG0x8zkHi3c5PDgkkTXDzT7nh08QOqJ0CsKEmzevs//kiHfefsjO9ga9QXLhq3VZxHF8gfXsdrsXOiJ+zcdfFRWrsgYh6KQJm5sDslASSY/0HuOgMaalsyqF8xatA7Ispa4aiqKgLEuqKw7HKA15crxPU1nMDcHOYJdk0EemCXVdY+sG4RyB0iitSJKEQLWUWqUVcRwRpBnxYIOg18fHCVYKpHDgPjGCtFdQGbUX7A6H3L2xQ6/X5fz8CbmxTBvLtlQs8pzK1ezd3uH6jVvkqxXeOoTWxGlGlnYoyyXjyZTX3/yQ9x6d8OW7e1gDnU6Hellh6oosvXxgWhV56/mIYFHV/NFPfsJf/cu/xTC+jpMNGMEgDbh35xqvv/EWh5Mpj6KKsrHIhWQs3+L87Iw/+vgplZDUPiBwJYelo64rqsWMaq2Md1lspPGFOTB45qsVVVWx8gJmp3QEBKNdkuGQVApeePnbDEe3ubb3AhtpghRr/zYBSrRDfCEkCI8T9qISvrIQ9lAWBc1iyc0oJoozDucT3n/zDXZ2NlicFxw+OyONAspFyfH5hE6ctKJDXuCtJxABQmlqKjytD+MnOGePlIL0Uwzl4LMmYedbHCqSIBly716HQHR4+f4dPnjvLfrdDpPzM5anp7x/PiHVIUGcUgGzfI6KI1QSs6xK3nzrDZQIWC4LXtvYZnNjg8pB0RiuuG0yOTvFJF2WeUigFFE0ppd1mI7PCeKErN9jNNok1CmboxEbaQv9McYQL3PcbEZmHWHZ0DiPko6z/cc8WK0Y9LpsS02/E1yutASsVguSIKGoaj5+ekBtE/ImYyk22IglsTrh3o0hg25KmmYIqdgeDRD1iqZIEFKighCJJH82JjmdkzY1ofIYWzP5wx/iCVgVl1d+SqU409A04EyJbGpms5qyKglrxWpZMcx62MpRLVZM8zmpsHQ3BuDg+GTMohY0KqY7HLK1s8X29h4PH5wwHs8R0jIcDLl3996l6wjDkCD486+bMRZrDavlnEePnjA+OWE3Sxj0uvQ6KabKKZZz0nSAUCFCSqwzeFyLN5aKqjSEYXhBd42iyw/qOEkoo4bHR0+oakv4So9RfxOdaGQU45oGTIPwvhWgCtsNpYOoXbsOEGmGjzOcjvAqwIlW6wDRIj+glTe8/H2R3Lp9nbu3t+h2M5yoGVc5B6dThBX005BuLyEMIpbLRbtxs5Qw1Oh1++XoyREPPnjA2x89Yd5onp4vuXdX0s9STiZLrGkwzeX43GoxBWfxQiGUp9+FZn7A9MkUoRRWtDIE13f6eG1ZScGZCPhwXrCq5xTpI4ZpzIPScO3Obd48OiWzJUIHHLz3M5aHH1BUOdYZvvXX/sYvXUdj63Yg7tpEKW1rgjqdr4jHE/ZPHmNHO7z2re8Q6oCvfe1brQO5lAjh8cKCNXi5VlTzGvecELEe2Fn36VqarrGszia4sxm1cmjfcHp4zHw+ozaQLyr6/YzSCIzXlLXl/HzCqmpYTCuKeUGoYpIgQgQK59pb8XPBsE6WkKb/Jiph58E5sB5pPIHQJDIkEJrFquDHP3kda+Cv/fZf4ezklDRL2dza5Mn+U+xLL7EoKsbjMV4K4m7GxtYug40bxN0ORVND3VyI+1wW29pwNDulkCFNnGJcRoUnMoautTRlwfTkhEAHpP0Bw9Em25ubjEYb9LopOgqZ5xXoHNs0VMaie0OslzwrLYeLhtvMGAWXVzqBVhw/O2RWWErrebJ/RLjzDa594Xtc9wfcGmqGqePGZkYniYmTLloG7RR+OacxFhUoimWOOZ3RbRwIQ00AjYKyZuEdh5ffNhmvPKEKiaOAMIIo9Ax6E8KgYrl0VKMBz07G1IMus9UKLVr1rXlRkzeCs3nD6XRO2utTOEtR1xwc7eNETWM0pvYIF3J6Or10HYvlAiEEcRyjdEAQJu0U24E3lnq1pM5XLLDc2B5gq5zzWY2dllyPegy39kijEI/FOEdjHc2akq2VJkmSlvhxRQW6PM9RrkWtJHGHMO7gVUgcRa1caF2CqcA7lNIEYdj2jaXGewkywIkY5xTCgvQSLVvZVqc8NLYln1yR/K7v7bCztU23OyQOBTd2hjx83OXdDyfEumKYKmy5osoXZFlCUzd4ZanOK1bTBdPZktPjY/Jlzt4wo1i1+sPDa9vE3pPG5yRpRJx1L13H/ts/RtRLkJJBJ+Hbr9wmP37Iw6cFVnpqa1FKY6bHbMUhnW7G5vYGL37tVZo0ZTNNKFcF6XsPUVqxfW2bk48ec3PUZTU9o1ieU9nyArHwy+Lx8RnOtvtbuobq/JSwl7G3s43p3uXPnj1g8fgh2Y07hGGClhArhRWC2raKZ5H06EjT+FZiUvvW4dutnc0FrUzmi5esw+NZVgWLYkHd1FAZSmqW3rDUkv6oTyepWeQlP3rjLZp5jrCGo/NTEIqD/WPKWQ6xRwYOjUZp2fIMWq1IsiShP+hd+no8j8+UhJ13WO/afztHoENeuH+fKNZ881u/wmhnlyiO+coXX+NP//hP2N7Z4dqN65yfTOlvbfPya19lla+oncF4T+M9ee1YlsXFxNTz36ds9OcjCwRds8TWYOuSVbEi6o8wiaGsKsIgIg4jQlmTlyXzyZjj/SdkvT6D0YjNzR163T69bIOiMhyfT1iGCVnH4Q8eMX38DvVGity8nCQRC8/K1Kwqh8lucz4TmI8mxJsDZD/n5mZKJ1F0YkUoPKFvCBCoUDPz4IUmN4bZ+ZhqebaW8VTUSAqjqT1MFEw6l5+oH733AEXb49M6II4iisriTUBRe84ns7XGheN8PCELJdI3LEvDtPTsn0yQYUDc67EqCqazObPZlDgOcN7inAVhOTo6vHQd8+WcMGw3sfWesm4IpMCahizUvHT7Bu/mC07OxyjhkLagrBucDKl9K5Y+GAyIo4DSQVHX+LWleLiusOM4xpjL1cssS5I0Y2Nwl6988dts9Hdb/KlsWwlSSIRqlQyUUuhAo4MAqQOk1ODX2ifOE2hNGAQXsDjnPAiJ1iHWXo7PTZKY/f2nZJFkKQSHT88IVIhzFikVO7tbZLFkNpnx7GiBx7cYfClZXzlbvYy6JAsFX7m7xYsv3WTQTZidTwmCtkIX8vIb2+nhE4StEcKjhUc2JeOTZ8gqR2dJe8twjq1uxq+89gJxGNDrhrx4Z49KKTSaKop58cYuT8+mJNc2cNITZxnD0QZoyKsc6y+/GTw8nVA3nkVV0k1Dvn33FgJDv5txPHY8ma5YGsHbp3O0XKFptWfwilBprg0yKiry84LTaY6LEpIoonEWLwVaCkKtaYzl1y9ZR2MsH+0/YrKYtm06qxG+Yvfl23RuDJg9OuTkbEK1aNifzUm1pq4qJpMJ3kIaJgyzLmVdUdsC00j6gwFJFq91wS0vvfQiw+Hlg+zn8ZmSsKGdgBrvaJxFe4dW7WQ+y3p8/UtfR2uFEhrnBYvFCtB89eu/gkEiRUgUgrAG19RYU2GNuejlOOdaBfsrrnnWNigMqXdMxwuOzsZ0dq+RjLaIewNs2sVYg5IKpQO0sSSmQXiHtjXT02OStMfW3g36m7vsDbqMP3qT5vgZqycfkp/sI0YvE4SXT51XkwnOWpwXVHoLmfboG8/qZErUL9ntxZR1hbMKoQIC3Q666sbh0TROkFcFxpVEmxHjjqQzEQhnKYVnGSnKzQ7RnWuXrqMbZAhnYD0Bny1zirJGiwAlDAeHxzRVhVaSqmwQaCItqYzn+GxCWVXsjEaEYch8tWQ5X6G1QmcRVVkTxZI0U3R7l/e4iuWCeDgiDgOE1DgU0nkEEY1tuHNjj+OjZ3zw6IDTWUE3VmBKkiTGiUN0EPHCC/fZ2d4iUK17RGU9Xom2CnUOa82VKlVxJwaruXX3JbZ2bhKJGEFrHmCNxXqBkGs0SRi1z2ygUYEmCEIEAda1Q0WtP7mGtP1tgbMC0AT68tfDFAXjfMHq5gbeSOarhslkTJgEJImktobtjQ0+2p/x8cMjht2YzUG3RQthieMWiqeVRiYapUOCtMPh/rO2nx0kJHHA5ublKI3uoEu310FLQRqFbA76dHsxwoSoMCKKE4SH7U3LV1+5S75ckASCKMkIwgDlFElg+eIL9zibvs3m1ia9byVMT8fkdUMWJWuc7KXLYFo27C9rfno0J+slFKPrdIWEvGQ1mXBUOubnM47/6J8z3LpOKhRF45De0Yti3vU102XJycE+nUjx7/zWX2DQj3Fe4td6l9a6NVTskvfFWZyELI7xpUVFitg7/tpXfov711P+0dN/wA/GBWaZMxYNppvh6wbfWKwQ6Cjk+saI2WyGUoqk0xYdi8WcsiwZDAZ8+9vfZmN0BaRzHZ8pCVvvsTiMdyjvaLxFOdmKfZoWB+yMwAWG1177SlvROtjY3KSynrJpLgDY9qJ/sk7Avh102IvG/S+PMAoYDQfkRYm3DU0iWZ48pTg7IupvkG7uEPeHRGmHKMkgijg9POL47BnbW5v0777K0ek5jw72uXHzNrtScPbzP+Hg6QOqskIKx9npMfeuSH5NY6gagzMS5aCXbZKIAH88ZyNLGWYhY1dj64qs30UqhfWSRVFgvKA2hny5IgoC1N4Ic3uT09ljQi8okwB/a5vkC3exm1cI+OQVoVYkUUwvi4iTgMYYbAQfHZyzLA0n52O8t6RxhNI9hNIsSkNeW6I4odfrtgL8zqEDzXA4YjZbgQAdKLq9Di+/9Mql69jd2kAHwRpjmzCfrShXC/ZGQzAlWRwy6PcxXjArDXljyYQB2RDXNflyRrGcUWQJUdYhSyKUsRjXXjWtbfusdX35YO78vFzTRWOEioiCFC1bHGctKmrbUlWdb0WPlAraXnbQTriN8ei1YUFrStAmcCkl3oKzLbJCXlGBpjJgWRsWeclsWjDNc/LKIpRka6OPkJ7JZEG/N+CVFyCVhiTNQChKa0k7HQSCpmkwtqY/6jOdrVjMZ2xtjqhqGIwGDIdbl64jiDWbm+3h2IlDOlFIEGpUrFAqRsmgVf+SK1bLHO88Kk6orUfULVnG1RXDXoftjU26nS6Da5s8ELCqa2TVvmZ1efkNJcZg5mOK42c004AfzM4J8zkdJQmKKZ3ZGclqwXL/hM16hs5LRNH2vEXcOqXgI3abkntfeIlrox5ppNesOkFjLEa6KwXA5nXB4/0n5PmKyDmCICRVCRGOs2czjg4XVKslcRxRlw3X+hsMspRxseSjp0+YzCcM+11u3LhGJ+tw4/Yt3n7vXfJ8xWDQp9frEkXRlVDK5/Gv1I6w64fSWosREmHbqaF2DidbXrVeYxets1hnsM63n1uDdQ3GNlhnLnzinFvb6Kw/vyyiMCIOQ7IsZWM44Ma1XWbzGccnp5ye7XN6ckC8sU26sUvUHQCCk7d+yis3drj9ygucnByQd0eYoqZ86yckgxRvSsq6ptPtoqk4Pj7kh3/W8L/8W798HWVRYfAI74mFJ4u6FGVIN07pRgFaQKQVy6KlNlohWFWG3FiiLGNZzWiMIYojyl7C6Btf4HBZcTJb0Lt3i41XX6QZdZhccf2e5wVxoLFOU5maulLoQNHvZXRmBUXtsE3FZLbAOU/a6SKEZ1HUGC/pxHFbBectGiQIApraUOQrnIOqrMhXFcfH40vXkcQh3nvK1RJTlhTLFdJa8vkE5Ryb21uMhgPCMIJVay9FpGFNWRfeki9mLOKQIAqRRuGtJQgiwiheJwrJYja/dB1BBNUcimWNawxhqgl1SC3qC4KFClr0hRMeJ0GsJQitbZ9rqVt5Q+MtOIFaFweusdiqpChyrlD2pJQeKxXT84LxdMXJeMGibEALNrY3uL7ZZTkr6WaKThbRjzzOOFaVpVyVYBxZLyUvIBQR/e4Gi/kTtNZEUUrWiXAixFxBTiiqAusNYaDoxBHCGKyTIFtMfFPX6FCD0vQ2tzgfj6mFxLqWnOVc28cNQ8UXX32VTDX4uuDmrRskScZ8fI5v6iuLp2E34uu3tnipr4iEJJIKSUokHdgB+XILgUJ6TydOwdUo71sqpreoIMELg1QQDHdQYUBjbUvbkIIGT4NFXiGFK5Vkrz9gdB1WZzPSJGWjo7F1zUcHZzw8zhGh5Fu/8g3effMdMh2xu7FJM7Z0OxnLvCBJYq7fvI53nvH0HKUkd+/eXru/CA4ODlitViTJv2basqHVAr5ImtbhhMNhsQgqAcZJMG4tqNE+uMZ7GucwztDgqJ2n9o7GtW0N420rpOHbKttc0VtqBaHX4tBKEIURnU7KaGPEtdmMk5NTnh0fcX58SDjYpGkMdnrOzV/7Ft1On/PJPovpCtXtYWZn6K1XuHbjHuPJnDAA7S3Sx8wnlyedoqgRaUAaaWIBjZHkusdGt0sYHGNMO2iMOz2OxnNUEGJEQBDHiCDAYlFKYhGIMCTc2+Lub3+XwkMeKFyStr3y1eWVn5OKvK4pTYXwEiUgyUK6G5sMuzXLpaHwgqZpIWLzVclKwiKv0FrTSWPKfEVVFhRFSaBjmsYQhBrvPI1xPH5yxOnZmP/pf/TL17Ex7LNa5TSynVingSbrpizOzxl1OgRakSQpw25GWeR00ogo0ChBS6KgHZo1TY0U0O1kRN7jtUYIicfT1BVpcjk6QpuYxsJ0ckJdzxBiAx22prTOO4ytsda1Ti7rarZNIPZCszgMQ3Qct8pZtGJNeLBNQ12WVFWrt3xZjLIupa5YTWZEQjHMEgpboZOUMAkJgpSj8xMe7E/oZxFffekavY7GyIZV7rFNg7Ml4InC1jygk2RMajg+mRFlKYPtAb2twaXryMKESKxQ3pFojXQGRYAzDUXZ4KxHKY0Tihdf/RLio4+RzZyyqBGhxCPbKrOx3Lxxm3o+oZ4XIAVJ1mUxnVGb/ErNho/OC8Ah4h5aCDIdEAQaoyWB9xy7cyaNIYwyQCIVREFLUw8DQapbkS8vJaZx1GcrmqZeD/MFxrv2hm0d/6NL1pE62NUZbjPixCs2hiO2r29TFSVN/j7eeaJOwmsvvsCzxwecTM5xvsYo2N7aQpydU9uGvCwoigIhJJubGwwGAzqdLkEQsbOzQxBcMVFfx2erhK3DYLHCtkpoCKwQa+hOe1oqJRFrLxLn/Lpqbvswxrn2cw92LbTTVsrr6vp5hX1FEm5vkfJiiCFEi2ENgpA0idkYDrm+N+f09IxnR+ecz+atYLgxHD07wFQrHv3sDfTmDq9cu8H77z9Ga8Xk9IjZ9IROlrK1vcFoNLh0HWEYUhiLcTVYQ+EdhY4RcYzQktoLnAwROsQ0BaeTJVmvT6CCdmgVhQxGI2bzJYmO2nfjWkwiQ5azOTXgG4e9AgQfRBGeAOdaB2ODwFnwqznC1mhP634caKRoWOWrlpSQJnQ7HZJQUdYlzjakSYxUMVVVEwSKuq7wQlBWltVycuk6JmenrcgTYGpDvVhgl4LlYsFGf0BTregGgt3+BmVu6W+kYGuSIKCXxYRKooRCyQilQuq6oXYGaVpXFikFWHeluPz5wxnOWxaDY6pygYwUSa/b4pq0xnhDuawRtG0HWCtieU/TNC2m1jk6xqzddh3etrKEzliaplkD8i/fPmEYogIIrCWJEnYI4FlNZR0iLynk4sLgFS8Yj8eYRCOTPjKJMKJCxAGmyKlmc6o6p9PpsJv0OD4+Jc9XGNNQFpeL/i9nDfPpElNXNI1lkVdEsSQIFLZx1JXBegiyHmGccePWHYrzQ8rVHEGriLiYzXEqJpCSHElRWVZVgdQxQiqM9fgr4GGNCNtbrml1YhCCAEdtIBIgdYwWDq8iBAIvFJWFynkqA7lsaB1eDA4Jsr0JeO/w2LZtAnh1eU9YofjgnQ/48Y/+jBdfvM/p8Sn/9T/6RyzrimfPjjg/O6aTxIyf7qOUo/SGWV1jcMggYDTaQErNfLEkyzpsb22xt7fH9RvX2dvbY2Njg+FwdOGJeFV8tp6wa/13jTA0Uq7tSlrnBYdH4rGoXzD6bFWQzDoJN9ZiHJ9U0r/w8Xwg97wtcVk417JqhNTrnyUQci0urzWBbsVrorhDmvUZzmYs5kvm8xkvvfJF3nj9Z5w/fUw0nTKXYKKUx48/Zj47Iwg0Dk9RVMxnl+NzZSAIXcB0scDaVr8kjDxpGFN5waxoUGFLu3VS06wl8Grb0NQ1Umm8cOhQI2mvh3lTU5YV1rU9+MZY5BUnqrWWMNJtG6GxCKHwvmG1KjCmxouaxsBwNGDUjZDOtkNCrZFS0RhBuSyo6oasG5PnK8qyoKoqhIA40owGKXF4+UN1enREv99vWxJ5QTFfsVwsKMuS69euY5qKLBBcGw2ZzBdkaUw3HbA9GiKdoVzNkYHCeINxNa5uWwVKQlNX7fsu5ZW9WGU8YChXBU0NUgcI1VJkAxsgtVrbGbUtIv8L7bXnz1fTGExjsFUNWiO1Bu9bcSfTAFdLJgZhyyLrxB16vQHOSOLjU+IAvKkZTyftDa5r8HVFPm8IiEjiLt0sRQYh3U7KoLfRulfXNc574qBDUdQ83d8nn87pXgFR+/DZOU/HM5bWcDCe8eBkyflqRRZLhIHZbInQms0dRW+5JAgDTsuSyXhCFBctwaWpSXswX044eLZPvTjHO0/V1ESBpjbNlQNTgUCpAIRArSnHtRStRKnzWBW1nobrv8PaVaNNrg6Ja59tWuErXGvg2+aZ59Ls4K44pKMk4Ve/9z0+fvCAN996i25/yPlsxoMnjzk9PSEvSzTw8PFDyrpokTRBQC9L6XS7dDodRqMROzs7bG5usrW1xY0bN9je3iZNU7R+Lqj16eIzVsLtZNlIh3S2pTG7VrBdodZ6tr8oTecvPOYa7zDeYm2bNP78h7kYynl/NTqipXf6tQ1K2zIStAwa6zxVXVNUBiEDeoMBUZLS7xVMJ+f88I//gKdPnoAzmMWED999g0C3p32v0yHWiiSJ6XWzK0kBXlqUT9Bhgsw9sZsREpL5BUWeE0jbDuOMo6hr4jRFaUlR5oAgXCdopKSxDukVprIU68rkuTJacAWLcJUvsD4AGbXVRRBgrERYRRhFCL1iuVgiFgH9ToyWklY2xVHXlmfnJdPplCQNUWVFHIdE0YhHj54ghabKc6qVo59cvtlns9kFVdkYg1CSyXzOYj5nVRVEgSYv5qSpoJcKOlnAzvYmG8MhOMvpiSPtZujYk5cTlA3wwKSsMLYdhCVJ3FogXRI7dzepbUPUC7ByfUX1BolGaoHSrci8q3PQCovCIdcSiuukvH4mnXPI51Kha+1Z1HOyxuUVl61KojCgqhsmswVB1sNIwaifYBpL7SxehGRJihEV+Jow6JAkCTrqkCTgaAiiGK0CtJAs5gumiwlFUeKsbZ2Kr4AlvPvkkKPJHIRnsVzw8f4xW4OQjW5IN05aoSQpOTo5QgQhN27caLU8tGrRPc6t+68VR4ePmM3GuLqgE0cs5lOWtDmzrK8SdRd/zlq5Fe5pq1cLeClRwrXcYzzCtzN/KdoELgG8W2ulP9cjbkXZBe5Cm/gqHTUpJbfv3eU3/93f4f/2n/1f+fDRQwYbG0il8LTyDFbA4XSCihP2rm2wtbXN9u4O29vb7O7ucvv2bfb29kjTtL3xKHVBJvK/oHP8afzmPltP2FqUB/NcVxjRvl5CYIVH4ZFrJylotQS8b22NGufWyAiPNa5ll6x7xu3H80rYXwnGt9YjFFjr2l7huiLxrq1oGtNW08Y48Jok0YRhRJrGFHlBt5Nw797ti00mEOgwouMUw7oikQFb124QpJf3/LySLYW02yFbNXRW+0imaH8CSUE4TDFCYJ1DKEUvy5BaMp/P6HS6axGT9s9MY1B4PILGGBAKb1s77qugckq3eq7WttVIVTvyvELJALTCeUFtBKdnc2zZkMUBgW4fmlVecjwpcdZwI9mim3VIOzF5WVHXphXbjkM6UUJwReVXFgVJkqyF2xOscWzXNWkno6grzqc5Z6fH6Djk+s1NdBQSaEEUhyRpio5jOv0MRENVldRFRVM35FWNVAFpmuKcoy4v75F3djWg6fVSwkzivUUKUFIQaIVWCmMsxWJBEmkIUmQQI6VY38ws1jrKqiJJMoJ1VWatpbE1xjXt7eaKJLxsDBu9PpFUNN4xXU7pdxMSGTCfVCRZyKosKfKCODJkaUQoBa7K0WFAJ+ywyAuW+RgpJLby2LpGoFHScePWDa7dvk0YXr6N797cRQeKrBNxd+86L964xqgf0UsDQhmgtKa2BmMNcRJgyym9NCSLRkgp18NKA3hWeYnqJwhipBB0sxSHaPHey8tp/p8Uhy1jrp0ZCYRoyRYX8Ytmmf7517W5pC1L/DrveDx2Xf+2nWH4l5w7fknoIODr3/ommzvbPHj0iMePn3Lz1i3G4/O1Nomn083Y2t7mxt4Nrl+/zo0bN9nc2qTb7baEpHUr61/V4PNiLZ/lLxtrUICyBqNa9SIhPMJ6lFd41WL62iEKa3pna3lv/ScoCXOBkjAtzta6Cwyote3/u3QdxrQiIK79OVJJjLMtlxxBlkakLqQsG2aLFWVlW+86GSKFQaqALOuSra3TnW05eqtzy2ERE4uQo7fGXKLpD8CiqPBOEUchmgJZC7zPyd0RtQ8wMgDZ/m4tKyvENA3eC2azOQJI0nTtPt3evRyirfqUpDYW72gxUZfE3t4OzjdrbyuBcwKtI5raMVvleDRBkDGd5RzMZ4BDqla4pTGGygi0dCyWOdd2N+j2UpCCOE6oSoeWIbFOGPUud9coypLBuq/qfZu0Nne26G8MKZsGKz2q00MpTS+OcM4ThRpP626S6RDfNmHxCKQXRCrARQq9PojyPKcsL++B7l7PCMOAbmeTOAqR3qN86/6CaJ1gjGk4PzslS2PSviLWESAvhOTrqqbIc7I0Q2t94c77vEo2jeMTX+D//uhmA+azvMX9ekusJKP+gOPzMQSKRCt8lSN9Q1M3NIHAVg1OzOl3EqgrzKpAKYkONV4aoiggCWO6/YxOf0CnGxFHlx/Sr9zc5uZWH6slu4MRvSRGSoOSAilDgjCiNhXWKkLlEb6ioUEKR10VrZ5GFNI0FhUFaBcglcYYQ6MsXmhKa9FXrOO59rF4/o9vvQt/seUgLrSCn388jzWZ6/kN8bnIu1iX0p80I66UPXgOiY2ShBdefJF79+9TV4ayzCmrkrIsMcaglCKKoraoSBK01hd6KGIN57wqrpobAIh/FYO8z+Pz+Dw+j8/jX09crX78eXwen8fn8Xn8G4vPk/Dn8Xl8Hp/Hv8X4PAl/Hp/H5/F5/FuMz5Pw5/F5fB6fx7/F+EzoiL/7d/+e92tvp+f+Ye2ksP1zKZ/DSlrUxIXS/b9C/J2/83d+KTRhZb3XQCA/CyT68vDek+cr9vefcPj0Az54/U+YL2f87f/k//RLf8RXf2fTW2fa399r/Jo2KWSr6tTksBlvstHL8Nbx/e/+Rb746msYU7FaLUnCTaSI+NGPfoCpV5Srgr1rWwRZwKxYYIUDZ1Aq5T/5u3//l67De++tc3gHHgPCo3yAlR7pWwym5BPMouATIg2I9TS6xQ7/ItRn/VVrUk77tUr9cmL+/+KvvebzylLUjiCKGI16SLNis6PZGWb005BQOKSt8I1tdam9Jw08nciQhgVx4ojTqBV4p3X41s5gnKeqPYWRzBrPb/ztN3/pOr5z90VvBXgJKIUTEicDUCHIACE0EoXD4IUlDBRaakzdXMAWw0ATSknd1JjGtEahVXXhmae1xlnDzz96+5eu4+/87f+5d77BSwcqRMlwrWG9xDUtql6pACEESraojTiILzCnLaJHoi6Yoe33FYI/t7eEEPzH/6v/wy9dx5NJ6S8IVGsWK4AULcy0RRn4Vons+fNx8dWtK8pkfMof/+j3+NnrPySKO631UhDyra/9Bb702tdAaH7+xh/yN377f/BL1/Hdv/W/9lLKNUy4rf+U0ogWLnwhL9pSbVxLvmrVerGULTRWCMKqIiqWRLJAUqEROBGy8gFedcjjmH/yn/5vfuk6HjzM/e//d/+Qf/IP/yu2r1/jL//OqwyiBR8+dhydNxRVyXhyxv0XX+Lf/w/+Bp1uF7+2FnXeQwPeelarGb/33/5/+ME//V1OTycoJUmSkLppLtT3/svf/d0rU9RnSsKdTrpONK0koFvD0fBgnV/TSVu8nBKfbPrLEvEvYus+bcIOcGs895ovjedTgQN/SXhaWFVVlSgtUGFGd+MWNphd+nVZJ2G5WmKaak0wcRfrcM6AdKzyGS/fu8nJ0TPyYooXJTIQ4D11PsHXjq0sRncD4p1dPALjLTLKWNUFhcmvFGiB9lCsnaFwFZGQaKFBGsRa/NoaRxIGeNGyFytnsMKAb9BW4mWI8b71+zMF3huUinGNoBOlaHU5/Aigtp5+L2G4ljdNIw0qXTPWuiidoEQD3tPYnGJRY4qahXAsYoi7EBiJrGosJd56UinZ6Sr0Whiq8o7SXqGyF4Y4AU7Sep+pGGQrFAQKJ1qiTZrEbA4HbIxGmMawWq44OTmhLMtWilMHLawxcvggxozPELhPDrMrnrk24aiWBLB2h7DGg1OtXxqSQIcI2R5y0oOQ4pN9AxcOwp8kXADx5372VetQPHc4hsrUHB/uUyxmdNIUHcZkvQFxp9NqJq+///Pk+/zzbtZjc2MX62A8OaDbS4j0NeIwRgvFeHbGweGHl66j1T32a/dzeSH44y8gZ8/LAE+gBF5InFc4IXBekBlH3+YwfgiHDxlEjjiBMJA0hEyaEL31Kgficnw/GMbjCau85uGHH/P2XsL3fm2XKIZeYtGu5qiuGE+mWGMQQq45Dw5nLaZqiWreeUKVokjwbgzKURQVjbE4V3NJvfLn4rM5a9BWu1Iq1Fog+7lIzyeA6RYfbNynMNyDP3eaf1qw8x/9+Efc2N1lZ2uTLE55norb5+fTJ+PnP9uahvPjJ8wXUxrrUTqCIKGunl369UJptA5aEZHn1YUUCKHAO7QSLOcVzoUEQcxHH3/Ajeu7XLt+F41mNpng1+IpeV4wqQpQorWB76aM0hHHpqb5FPW+c47Zasqjycd0dcx2f4smqEhFl6OTBfliyRfu3wMJi7JgVkyZNecgDbudHYpasqoLmqbifHzEajnGV5LFuOBXv/Zd7t996UpjyzsjSa+nyDoZMgixHgSt5X2qIVElMSWDnqUI4FnVMCtrRKgJO5qoqwhTQLZiT9YbrJc0QqNxaOlJNYgraKlKKqQSNN6u6awBAoXwoJUgTkL6gy4729t0u12qouJkOqOqqgtsqBeyTQLCI4REao9UCom4qEKvKhrU2idPSYnSbQKqnUKoGK30Gs8dIKRvLXycXztMtzeQVqjq/7+Y+Sx7BS64aReMsp/96M94+ObPGPQyisbS377Gl7/5LV548WXSNLtIiJ/8CIFSrVM13jKbnRFFG3R2+vS6PQQwnZ5xPj65ch1+bUPUst7WJAf+/EEiPGjjqYWj1A2Sip717OZTtpePcJPHzPMJw7BP5DXCQ+Nqzg/H6GBA1Nu5dB1VXbJaLSmagigO0GGCoODajsY3NYlUnHZjitWK2WRO1h1gHXga9p884OjwhCSMmM1OWa4W9IcjZvmYqizJ87pl/fp1UfYp4jMl4aa2iIts59eXVUEYaKIkJIlbQ8imaSiLnLo2a1Zcu5jn/37+4l/oRqzZJmJ97bpqs/+9v/e/5fbNG3zjG1/hN777Pe7eukuWtLoGn7UedtYyn5yy/+g9Vqs5Mu7hVEoYJy0f+pI4Oj5DKk+gJc91Df1zOqvwCCVw0nBwuM9o0OUnP32bKOjwO789op4ukQ7QijJfUa5WnE6W7J+dkYUBe6MRL7/yMv1syLy+3OX4eRhveHr2lOPHhwxHm+zcHXKnd5fXP3hAuVqxd2sTYwx1XeOFpTAFJ/Mxy7ni5GTO06On7B884dn+Y6anR1TznFSlbPd2uXf7/pXvy1/91iZhpPBS42WAUNBUJbaqkK4gkJ4khF4npCgjuhnUpkOaxsSxxgiLswXGNEgEsQqIA41UsCzaNkcr1nJ58rPWtKRs7xAiANdebZNAsTHsszkc0OmkWKGYno8ZT6asVjlpmrK1tdUaVvr2qjyfz8iLAleVCPxFCw4hrmR2Cp637VqRKykEKI1DI7XEGo+UCikdWkmEFCip11d1v6ZR0wparYuadut5vPikKr7K2VLhELTEpqoqePzwIx588D4CR+M809Uf8/rPf8Zf+it/lW//ynfp9Xs8V+VqL5xt4tRSkkQhOChWDc6J9mZsGhbz8ZVyA8/917QWf+4Ak1JeVMAX/+0cwjm6tmbEio1ywp55wovXHKOvfYU6uU5/8zaNEzgc89mY1T/6b1iVBeoKz/aHD97h7OQQHTq+/1t/kb/423+JevWAs/3fpZsYlFHcHljGRcWqmFFVBdY6xucn/OD3/jGPHz1BCclicU5dOVbLkrppnUXaHOcv2lqfJj5TEvZC4mg1f4UQiPUDGcUxSZJyNj5nUSwZ9Ibsbu0g8SyXS4qioGmai4T7i0n3F6l/7Rt1tYvt+2+8zpMP3+edd37OD//0j/jKV77Od7/zXV65/yq9rHsh6vEvVwufUCGfV+ye2fSYw0dvMj4/52xywmAnQmiJ94YgHVy6jqaokQEoFSKlWBsYrnusawnEMIJAeu7duccH733IyeEzxk8OSaygGyWkgxHdMGY5P0XqM1a2QjmH8pajJ08RmSbsXO1AjYAkS9ja2uPd1z/m4/23+UryElHT4fX33qXX6XJwfsaP/uSH2LLm9t07zHzJj956i5MnP2Q+zZnPJ8znY1azCVQ5tqi4vrlDXZpP1Sq6dWODQDStmptrWBUVy6ZGeoHQCh2F6DhCRgGZrEniCKVaicqyqKicJQjaXq4xijRN6Q26gCC1UBnPKi9YXkGPNcbivcDg2haENwRKkEpJJixBvqSYz6mVYlrX5FVzoWUthSBLU3rdDFOVrCanuGJBna8Q3oGXF/1xe8UmE6o9NKRqGXeC1l7Ir6/jQlkCKVDrFoQXav0hENIhJMhU4YSlmK7oiLhtLKztfLxcywZcEdbkSNHKgU5ODzg+eMz5eMz5eMxoOCJKYj548+cspjOsMfzqr/4qvf4QofS6SgXpHUmUcGP3DvlihdSSTpIRhRopPFW+ZP/hFe0Inu9J0aogKrE+aCQC1/5OPHezruh7w01q9syEkTjg1i3H7S98kf4L3yPd/iKNS6mNpNvvs5qfMz2d8/5HTzm/In/8ix/8Q05O9vnaN77Od3/jN+gNhnx4EvLD1wuUP+HleynXd2N684Y3f/wD9g+fUVU1h08e8PpPf8L56RQvQOoGW3tWiwodesIoREi3PsBVK5vwKeIzJeH9j99o9VfXR7TSmjCKSKKE47feJvv4ETvO81R5fjQYsv2VL/PKF79Ir9/HO8dqtaKq6rYRv07I8Enf6zln/CqXY2cstrEsJjPef/st3nv/Xf7wj3+Xr3zpG3z3177Ht77ybXrdXss1/4X+XZuYP/k+xtScHz/l0aN3OTlecHo+49nE0BldIxQOZy5/wrMwIrclzrVWOQBaK6SSlHUFQqADy3R6TiQVv/nNX+He1h7hqqQqC+7evcO7b/yY/saISDk2Rn36OzcIdIDC05iSaX5E3lyulQBtFWF8TSdMEUYw2z/np8uf82f2DR4+PmF7e4+jBw95+2dv0o0z4sHrmCTh8Nkp0+kMU3qkdUhbEjUWYyymajB1g2k+XRJ+cvCMsmoorScIJGkQsKpTzpawMKBDTRYIEm2oK0vVWHTgySKN9wnLsiHrDnAioLGKTIRshgmJDqibhmVeMl0uKauUb16yDuta7Q2pAmQQYStLZC3Xk4TMNTDPicKAJM3QdY4pV5RIFtWC1TIglCHLcYStK+RqQVLXLKoar9qLvXMevOcKF532WXMWUGuxK9duHdXuHbxH4ggJ8B6c9HhRITUkvZTeRg+RSPYPDzktzhDZiEwmPG9VtBKYV2sWnL33B6hQ4WXMx29/yNnxAeezCfN8gdKS28NbpOkmk+MDfu8//3/jz4756ne+TdLtUteGxjiEhm4AX3rxBWLRvr7XdrYpV6fUiaKXCmIuv7FpobAXNr5tAvbCYoRqCycEzlpCV7FVT9i151xXK3ZSyd61Xa6/8gp7r/0FZs0G/+Af/nM+eP994ijhP/yb/2Pu37/HnZe+wONJjuPyouXhwzda0S214Cc/+31euPsqzx4/5dnRGdP5jAdPz/jCCz1evjlCl/s8eW/G8bhkNhsznU7JVyUITxSDMW49U3J4aoxzeGvBC5z9dM7PnykJjy4qsvYq1pgS1Vh48IAvPjtmNOiireW1xlLOcz78J/+Un/3zf0G+ucWNr3yZF15+mc6oQ22b1q3WOpwzmLrVaG2rovb7XxpConyr5GatQ0vBdDzmT374xzx4+JC33nydr3/1m7x47yU2RlvtvN+1Fup48Gs5zeX0GecHP+fg8BnPxiXTSY09W2A+ekBZO0J1efJrlF8rL3mkUFjv11gCEL41KVRK0+QOP614deca5XzKyjTcvnWTd999h+n4mEFsWeQlvjuk291GhjEGCOMep/vP8J/ivbTecz4ds5jP8M4yOTnj6LBmWdaYSjB+esLkcJ9ABqggIhltkm7uMR/nuLJoNQu8Z9SJMV4yW1Z0kwTlHeJTipO8cRTgXEJRC6IsZGNrBzm8idsZkgQRQdD20I3wOOMJaI1J0RqtIzajDkHaQ0VJ23+VEiQUgLENwrYav/oKGx0h2mFPmmZEaQd3fs5OJ+H2Rg9lPLOmJtKOQeSRPiJQkpXQVEripSbwGttYyiqnlyaoNEVpzXG+bKfj3l8oFVwVFwJTzwfVHrSUF9KlQhqEb/UzhLRI7Ui6EZ3NmN52l1m9xGpL3A1xEczyJRkhsUzWzYKrB9qv/7N/QOd+Sm0lP//xCWfHB3QHli9+7QamDImI2BoN2eykrBYzfvazP2FaPEUIwfS87XMqreh0NVHmiHue4WaPWD+gWD3iXPVJ4pxf++btS9fhvbvY2cpYvHFY5REaDAJlazYp2RNL9sQJQXPC3uaA67fvcO1rv8XOra/w8MEhf///8r/jB7/33zGezPFS89prr/KFV1+is7dHnvZZlpcXcXle08kkJ+ePeHz4gIePP0S5iNliQlEuma3gbDLlgwcFv/bVkq+8KHi9WnB0OKWpWk1jayx1Cc4bjLFY4SiNwVv/XATu30w74ua1HeRz7WCpCIIA7zzTswkyUAjn0FVN7h1fjFK+lqZMheDNVcmf/bN/zo9/9BOu37kFow18miLDtW6oViRxQhynmE9xemgpiQLVqi95i/AgXDu5nE3G/PgnP+Tpk0d89Svf4Ne/8xdIOxuUVY1WktliQb1aYqqa5ewR5/sPmMxzKhdTNCWmmlGXBcvSotXl0nwlDVjXDinX4iKNsUjbDh68g37U49WX7jPSmtXZEcaWbG9uM13MODg94c6Na6AC0jTEqQA7P8IGMf3NPfqjLc7OOkyXl+saQ7sRwzBi0B9w7+5t3vn5W5gCklAxnkxoViXldE4wHCHDdjLflBalFHVVkAaKUCu8qxB4Yh0RSkWk1MX1+6pIvv4f4YxHGUOUxuhun6S7RRBna/sg1mgafzFcs86BkOggQukQ6zx5XeKaGqUlkhDjBc62kB+nPFVw+fuilMIiWqNMbxllARv9BFxDUdXMygJpJWEWo8OQYZDQS1JW3mOR2FXDMp/S1bCVpWAcOt6EEziZz7HS0Qq2Xp785Pp6fVG10iZiKUQLO1MSL2tUJAm0giAkSkOCJGbvxk0awNU5o+EISk/VNJwtThiJDnvD5BcUxi6Pk5OH8NUbNN5Tp3M2r2te/tp1Xv7SLuN9y/ihpqNSEg1JmrDMC/7oD35CVTUMepv0sozGNEzPPIONlGtxhgoX6GSJdzCdPEZ4x8bm5TOD5wN8fwGJ8zgBkStJTMNI1lxnymZxyEa3Idvd4/YXvsOtL36LpUv5h//5P+aP/5v/AvLH/M1fvcbp6jp/+vEZYRSyWix4cnDO2RKaK2yWOkEX3zTYqiGfNTxZHaBUiPWG7kAznxqscTw9rth6VLAzOKFZLVktC6qqxntBEGiqugTfys464dZuP3ItEuc/9YDqMyXhs8mUQGmkUqgwIHbgrUO8cBu5MaRermC8oHM6ppIh79UVbtjHxzGvagWNQT59RrVYMAk02Z3bFI1nY7RJ2OkyKwo8LcToslDrLSABYS061u3J05ToNOHOzTu89qVvcvf+FylFysnxjMODA86e7bOYnFKsVnR6fdJUUMx7GJmSdWLyVc3Z8pTKFDSmpLriuqm0ak/3dXtFrAcnUup24xrJizdv8tr1a4h8hQrainK6XNIdbXL//svQGIzWBEmIFJJ8OcMsVzRCoXsdeknKdHF1EgYIgpBMdrh16zrdTofzs3nrZmINQrYVnDWWAEFT5CDm9PsdmrmEpkIQIER7wGbdAcvZGCfshXbrVbl49PJ32sPQGaJo3e9du0YI0Q6ePA6cR3qHrQu8aUCHra2VszhrqeoSZwqCpoU1Neg1yoG213tFH6BtmUmqukJ4z41RDy0cta0hCpg1Bi00UZaxWq5weCKlyIuC1TJnejqFsmSQBRSuwjYGqWI2s4x5sWLl24Pjqj0m1sM4rVSru/3cLNTR6hJLg4oUnZ0OcZrhkIRxjJSaMMwIpCSyK8rpkv2P98l9Q2MLhp12CO0v9HOveC58AEtQoeTunT4bnZC960M6aEQaE24l2Kp9vYypmU6W7D87QmrN3u5NbtzawzpDUzes8oIH782YTy2v3o7QtUXUDdJ6rpIvs9bCGhPsVNsaDOuSvinYtDlRNaXfMWwmDS986Stcf+17jG5+g+Pzkv/iP/9/8f6P/4SbQ8Hdl15ikDhukKI2bnB9b5uf/+TH/OnP3me8chh5+Q32lXtfpa5LmmpJhwIrHKu8QiSKwUZAJATeRoQqIZCddihcxjRViTF2PZzVbQEI9GJFFoUgDGUtmeYOgcW7T8eF+0xJOF+s0IEiCEPCRY4VEtHPqKyh7HUwW5sE1yvq41OWoxHT+YLOzjaltWRBSs9C/d4HXE9jdNQhGFzj7Q/eZ7d0vF7MmaoA7wVxkl66jvbK324c4xzCt6iN0WiL7/+Ff5df/c6/w2jzOsYKPvz4KW++8w5nBx/hyjEKR22haCr2+vdQGyOcO+bs6BmzEqyMqJsFZV1h7OWPeKD0JxWRbzHCYRTjGotqJK/dvM9Xb7xE5Ay1FhgnKRuP8IauDsh0yvjomHw1Y7FcYIoSR8DG5iZpNEfVBZ04+VQbrd3wCqUUjakJw4hO2uPo9AQrPE55ZBS000LnELakqI6JuwFBHKGLNjkLqRFar21iBI0z2DV5w18Bx47SLmEQtAMsPFL4dRW9hjUqifAO6wy+ylmulgRBQDoagmrRKAqBdQN8nVOvpjSmoTfaBhm0bhfWYurLb0st7laS5zlJGJKEMWUxIwwDgiRjJSTSOlbGtoiBIsdISWMMy+kUk+co6xCuNZJsqpowCEhVSKI1K1u3B5O/Ch3RvmYSiZZi3cqAsqxRQYOTK/r9TbLRNlGSogONFu2NMi8XlLZiNjnhwYcf8ejJU7LNIYM0Zpj21olcrhFKV0QSYgXoULGxGxHHreazVm1VXpYV83HF2fmM2axgPJkwn8+J0w7zxZLDZ8c8nwCenJwzmS0YPrRsFiO2NwNkqCBp20qXhXO2HToKCcYSC8Ge8EQn+3RVSW/U5ebdO9y4NmLj3rcRnRdYVALrCr773e/w/V//Gr0UXNm2ziaLJcUHDzh8/D4/fPNDHi0EMyIaf/lNaXf7Ft4a6nyC8J6mqVkuc8p6EytygrRBiphO0sXhmU3P2e6F3L95nbJ0FMXyFw4Uz90bMS+9sMVPXn+MUp7xqkEIRye6Cq/cxmdKwtubfXQQ4suazXc+IHt8yOH3v0l6a4fVfIWQ4JXH93ukN3bJzxPGUUYUhpw8O0Z2h9w/OmB3PEX2dnny4UOOypxBv0chUjbvvMKyAHVFs82JllQghENHCUn3JoFSDPt3cX7IT372ESp+xrCbks/npDT004yFaXDNCkFFvpwzn5yj0j6z2ZTZeE5pLOVKYV2MFyVVc/lmj1VI42rwpq2IddtvpTG8dvdlfvMr30aVhrpeIqgp8hqV9BgNhwx0QD9N0Nd2WdY5w8GQfL7EKej1eqRZhgo1spFrz5LLQ3pBIiKMLVnVS5zyDDa2OVksiKOQcpVj1RlxqAlES7iplguWp5L+5h518wxfLXAuQOgI6x2rfEkS6bWrxNXPR5pFhEGAki10Eb+GG/m2H9gKq4P1ISYQ+KlsrZmUJkhjnFftlNwbyrqhyacY6+gGN9BRglv32urq8p4wz7G8zqN1gEOyqg1mVdIUUKsQLR2TxZLdbgfTWCbTCUGvh3CWNI6gtggZ0OlnNFFJ4GOKuibUEulb53AtL09/F1N/71tLpTUpyClPlAm0lHTTgFF/QGkavLG4UGBVw3wx5fHjB5zsHzLOc8LNmEA4rmebJCpuGWZi/TpfEf3hBlnQQziwtUXJmLgJELVjdb7kow+POT1dUZbtjGWxnFM3NYFzzKZT5pNz6qYGKZlMl6zKmrNEcP+bA7pf7OOVa+GYVzwkRjpwksh5ughe6qb0VznvHx3ypd/8Hn/lP/yfkHQz9j98i//9f/p/5OGzCZvbfb73zXu8ducWJY6ZCkj7O6iky6rWPHh6yo8+eMoiSDhrBEWL+7x0HUoK5osFi/mEXndIGHfoqoAuA8oypynHTKcLTG1ZFQXNasUrLwi+9qU75Ktt3vpwipMCax0IgxI1s8WCRQ2hdGgBu6NNXti9c+V7w5Wr/Zeiqmockuj0HPXsmJHQhG8/4PG1XbwHJSByCtnrcvTgCKzhplvRGS958NG7FPM53hs+kJA1OdKVZEojXMNuN2DRrAj1kKK+og/gLNaq1ra7hmJWs3Keyck7vPWjt0hVTDC8Trq1RxpLUm0IaLGfgfJ4KbAKDj56SGU9npDeYIcwnzNIBF989WvEkeDg6PzSZQRBgGlqPC2+OQgl2JIXb7zIt1/8FpHUNOQIUaKUZzAckcR9podjsoGnwFN7EFKjY03kRYu3TmKch8pairrCfooRkBKSRES4IKY76jC6sYmvuuS6bQ/Mjsfk58c0pkTHiqiTURVLpvtPSLINisaghMP4huU0xzU1prH0O330mlp7VUgpQfg1WkTQNJambgiCYO3d19JmnfOslgUfvfsupw/e5tatm9z/0tcY7t3G2obF6T4nD9/l5PgIF/V5obtFOthESE2ggys95ryXmMbgnCcMQqargoyQTMWMjSNOE6SpaJqSTjwkpsv5PKcqTDtgdQ2BUuAFTWXW7iaerNfFdwR6NuF4usDFl0/hhWhfE+sczdrKq2oaOv2E0SggDmPCICCLQ0ZJn7puODw75uDsGXVdcHR0RG4NlXfE1rOjI0ZhH2c9Xn2C9LlqMFedVvS2A1QEykKERjTtjaSpGp4dn7J/OMFbua7UV2v2pMQ2hjKfscqX1NYzW9ate7pVnE9rHBE68HhhEFfcDJxriIRmOw255isG8w+ojx4w7MBoZ4/lKufdn/wRzeG7bHLCmwcfMz9SXA8nyLPHiCBlkht81GVqJMvCkjsJ3S6nyyXnRYlMe0h1uReid4J53vDo4JwkqegkMbPZnM2trRZymwyISk8ch6ggRAhFmU+p/Bkvv3CXqij5+PBgfQP27B8MmZzdI9AfI8U592/c49e/+V3i9HIThOfx2TzmnMNbQ1A1hBtDGq0Zjqc83T8k3NlC6wA5meCmNduHJ3ScZUdKCtPw9TghjwJm3rUYO6GweYmslpTNkm2/wwqBLZbUy8Wl6xC0VxshFDGe1eQMH4YEStOznk6dI3wNoiTvdFp3aF+jpCcMFBKLFIqqqqmaiqoyPK1apkuv32XnN77JSy/c4t70ctpyURQ475FCEgYheMsw2SbxAx59+BSxkRLJAmsLwniA0h1Oz6b0OykiUDw5OWG2LJAyoDcckHYyrPcsVhX9fh8nJOPZ7Aro+SchVUsKyAYZL335BZ58eM6Xtl6iqQt+9odjdjc2mZ2dtb3hukLikc4xOztGpxFOB2gVEocNy/GU7iilOxwRxfGnYmlZ2/bIvFs7JLiWsNJ+SJR8XqEaAh3Q6fZZhIrJk9f5YPw2m5vXWRY5dV0QhBHdbIge7pCkWdsPdhZjBfYK/GUUxCjZguVtY1hUOTe3NtnqdZmfHOHKCuktndGQWAqmqxV1aah9SRDGVKuKYD1gqcqKQDk2t/oMhhtsYwgP9ymLmvKKwwDWBxOe2jQ4a4mThFCFCOtZFRW1kZweHZEXJUfHR4xnMyprSXsZOojwVUNUKxLfZ9jZoTIeqTwKg/LgxNW3pLJYUlU5cTdDyRAlFMI7tJPEWUhjKqbTGcLJ1jbe1oRBiPAWJXx7s/GWpq4pygLjQYUhprEEaLJQInV0pfcf1pMElvvbXdLTCWb2Eds7ipd2vk65mvMP/h//Z4LinNeupbz00h42G3AyrTFhwoHJWK0s89LTiBKjY8Iow2jFwekph+dH6N6Q0GZX0oWFgL3tIYPOazSNRvucQaeDEQFFvqQxjto6lIO000N4RWVW+GVOfzDjyy/dZlmsiVV6QC+6Qbf3AktzDirn+vV7jK5dI73Ck/F5fDayhq2RVtBVsBUIIjxR0uXOkwmzsEd/Pkc9fkZcWyhmkMacRCF14Al8SLeGgbWEZUFiCo5E22r6sMi5s8xJdgVVU9AfXF5hZN2M6zsDhsM+86XEV5qqKsFBJQVoRyAFsp4hFjkoQeMcgmpdrTpC2eooeGOwjQFvUCpAa03TNERJyAaXn2QtHrC9ipnGstHdZDu7xf7Hz7ixMcB2BE7WWO8YVwVGarKsQy1qnp5NWc5blEagNZWzpHWD1gLlDP3BgKJpWJU5xl4NdRFCIBWU1QpjDS++cI9RZxsZKM4mZzz56EPUfIlsalaLJVVTgHPEUUieT8g6G0RxhyhM6PYD4jQhFp6k06XT7X06mqxoraaeY76lFrDWGcF73HOBFu/Rcczdr3yLvbt3KY7epTx4ndX4MbNa0t+9z9b9rxIOryOijCDLqGu7ZiH5K5Pwl7/0ZcBT1w1Hx4e4yhJr6MaSm6MO3Sqlm6XsDRKqxZLVYokUkiAIGGxsYIoKKoNWGikt3hvCMKTTSYil4KbbxcuYqrncBZv1vMB7SWtEC1oqbG0oc09elSxWZzx6esJ0Pmc8nVCUFWGUMNgYgoLECnouRocxTrSWVwqJF+1rKpy+ElcfBFBVOcprpAyw3vLcm9i4VrQoiQK899Sr1kDUioaqzDG2Ig1DbBCyzCuMMRh8WzWbGkxNKJIWGcDl65BANw4JhccKQbBxDZNK6s4W4+mc89mcMMz40bmisYY8HiI2Qk6t42Au8SrDRwFOtG2rvG44Pzvi4dETjGvopQnSGIIrZE480KzmRELS7Q+olkuyJMXrDk2/Q9M4orCdTw37GzgaqGvioGZjNCCKLYNBl5P5hEBLgniGsY/QombUHTAINfnZM1T66QbqnykJ9/oDUi1JHj+jtIIn1hIVNVu1Ye/NmpWU2GpOLSwyaNBS0c9zelVN3BiWteGkadpeWBjyVt3wbhBQdbvEaYee8AgMKrh8WX/t3/stdrY3qBvHP/+jt5FVhRYCJyVWRzRSg9Io4QicASXxjW2vlWkKylMXLeunqg1VVVMYS7+fknWHqChpk+tVcGWe0zkVWdBhK91D14ov3LvNnd0BGSXetIIfjx8fcLKwfPHVV8hCx2pZgBNoHWKEJc/nGOW4/8JdOoFGR5pFlbcb5lMI+LRJ0pPXS6qy4fpwl907eyzdEpUKvvSdr/Ok0yd52mfy9Bkfv/0BWZLSCAEZXH/5Gr3OiKOnzzCixEUNWiXM8wJj3adKwgJQa0t6Zy2maS4wxmr94YVnbSVNlKSE0Q0CU8LkgCI/ARsQDndJd+4SdHcAgTNt0ggC1eJu7eWDl7u3b+PXXne2qViMG4R0NPWS3UGHnSAjjiICKmYLT7P2GIzCiG6nwzxNqG3RYpUFYNeKZkoShJrNQZ847uO4YoDsucDxSNEK+Pi6oV6LT5WloMwtMihRXtDvdAmCkOVyyenTA7z13N67AY3DuhWN8Misi5Atu8x6j/wUE/gwipHGow1rtujaI81YsI40DvjSK7eom4YnH+yTxQGiG9GgWK4WxFIj17+71AqMwRtPuSoo8xzTD3DWUTSXe/8p0Xofns9WDNI+MumQI5gtLU5GdK/do3KK+TrJugaoPa6qaEyF9e1swpiaulxRLCYcne6zauak3S7eW5z3ba/2knDOs1rleNfQ0xnGSIwpiToJCg/Sk0aKvHR0Oj0cjno1IErm7Nz/KvHhWxRNRRJFaK0QSU4STHHOcPdaD6UbNrZH3H35K1e+N/AZk3BRetyjR5y8+5ilaUiCCFeW/EqssUHNIuuwSjps6oi4qMmlwJ6cclI5cgRdBz0Z0Q00/xSL+eY3eeXlF4jjFCtKqqZE6u7aRPGXx9e/+lW0lhRlybD3gNVyRZxpirwE3xCoFK083jY4A9ZJyrwmDBLiaITxDfPJhLJoqGtDUVWsmpK6cSSdbc7PpyyWG1dudilECyfSAbf2brEZbdIj49rGAFnPaIqcMs8ZT5bUVYPWau3WqwiSDnVdczKZ4KRj+9qQ3c0Bga8pKgOdlEm+xDrbQt4+RVhvMLahG2aM4g3qPKcUAh0HdK5tMJSQ3t5h8OEGdVViFiXPJud8/Td+hS99/xsEKuPtn79FqEBYeOuP32A1tSyXedvnlVeQNtQaE1uXNPmMqpjR1BVKh0RJRph0UGHSJqRAtYmyrqhNgWlWRIEmVRFJr08QZ0i5FspREr0+ZOzamfuy0GspyEBpRsMNVrMxxgsqawlxaCzUBSoWdIZ9otxAsyJOYtIsRSrdtjKMQQcCqTVBENDUFWmkSAONqexale2S50O27DohIQgEodY0RU3TgLOaOBoQ6Ij5/JRE6taws4FVtUR7RVMV1HkFzqOFpKlqfLCi16mxNsEaiRbuyp5wknSRSCIZIX1AqAK8q6ldQ6pCNgYZu1tbnJ3Nibszvvble8Rf2GJ/NueNnz3ldH9GrxfT3+wwLkrqeWvYW1Q1ebFiWUDlGlZXMDvTOCI3hrn3fPnlV4lEyHKxYrmasihrLA22rsnLmlVhKPOKqi4xvgHV4nCVhyrPOR8fcT4+Ibc5YS8mCIN28Ctki7644n2RUqxp5w1C1lTVCoqQpq7xzrOYTVgUsLlRIlUAckAWnRMmCVpHaNMwynoYVxHaGWVdcDidsL054Nb1Ibu3bnLrtRcvXcfz+IxSlhHHh8fkSvArcZdCOlzcYZZ1+LkXHOU1RSIJAkHuLYGKqIZ95qsFBs/fKBV/0ymeuZo6iPiV27fh/kt8fHrEYrxomSc2uLIC9bTDrMFoxAsv3uN8WjHa3ODs+JyDp4etxqjSaOFRst2QdWPoD2KkDonDHk3zmGVR4GhlHOM4xYiYZ2dTfv8P3kBJePWF7UvXEQYRSkuUF/SiLtoJdjaHBNJTOzBoChHiB33S2JIS0u11mc9XvP3Bhzw9OGA4THntC/dRUjF5dkqtIdvaxdqa8XK8VmO6Opx3LMwKpz1xI5jlY87mE8bllIUoqe0MI2e8dPsO2y+9SqYcf/Bf/T5JmvDyl16h9HMOjh8z9ye8cO0m2/EmJx88YFHOqcrV2t798qQzOzsnL48on/6UxcH7uHKJ8La1k4+6kGygsk1k0qUoK1bLJbPxGWZ6QGLO6CWKiV2htsfEOyu0U3jnqZsGb9ohkvVrjQ62fuk6AtU+1kIJhoMRq809XDODAIRoWyIqEMgoQOuQqNchM4obN25y7eZ1zp4dszwbt+JTSCLdYoitq6nqHBmEuFqSppdv9l/U2ra2wQpHECqcczRNayEPkkDGNNbgPYQi48ZmB3xDsZrjrF0r7bUCTWHUVrKmdCjA66vdhbNBF5kGJNEQLUJCGWCaHE1DrAzdrIMKNXlZsT3KuLaTEuwFRNe7FOU2+dyQDWLCTPH48BxjLYiQIMqIorgdljqJuYJnlcUhp5Mp/dGQNEkJhcDUmqpKCCTUtsE0lmW+YrVq8M5jMFjaWYNtaqbnU44P9lmWp4hQEnQygriDCiKU0C1o74o5thCKOM6oawfe4bxCqaSVaw0VKEFmHYVZEkYxYRhhqj5h0OP02dt0hzf44v1dPjhoOD55hsoNQlQMY8NyEbAqBhydnMLbb/BrO79x+WL4jEm4NgXD3/gmd/pb7bR7vuTk44c8Gs8IVMALaYRMM0wY0Bn0CeMAnCVIOnRHI/zRMe/91/8tGyZiO005/8f/mI0f/ZzqK68wcw5jGpomX2+yy8PaFtj/0v0bJFFIp9vj9GzGP10uODue4oSl8Y5Aa5z3LWNdWMqqRKuE2khEkJImGVolICNEFKADjXGa8XiOu7Nx6Ro84I1ia7jFjc3rZD4mixSuKbAq4FluyJ3FGpgtcwLd8PRnP+Hg2TGrPG91A1TG9OyMej7l+tYW0fYuQX/I+WJCWeXgJV5cBclqGTpSCrTWLLWhNHPef/aAWbWgsxGTxA2dxFKuzpG9DEJFEGYM9gaEvYR3n7yDNXYtnuU5W5yhIslw2CUKrx5AAbjT93CnP0Mdvc2mqFFpqxTmqfBmSTU+JD8wLMuaxTInz0ucNWjlqQPF0mZYKaiKgtl0gipqwLdQwefSkUJhrtD0UOtKSApBr9vl5u07nB88oKIk6Y/I0pTKNMhA0qxKoqzDvY1dXvnSK4RRxMbWgOU0Q9qGuspxRnJyNiZJY+I8Iut0iKIMrS9/XZ6TdzzQNA5nGyLZUrc9BmMdxjiieIRyDosjTQPqsmQ+PcEjMI1BK9WSmBJJnIRURYiyIV61t4Kr1O2iGwOE1pClNB6KpiT3OZWrOTYrTOyow5I6aOi+NkTeC/FpTSeE7Z2QOFE4FI1tGaHgkBLyhcWuYjoMaHyFvaJtNp0uyIuCpunirEMEat3iCUisbxNwXVI7S2lLcA5va5ypWS0mnJ+dM5mMcdYQpi2sUacZQRSvq1XVDp2vOJWaYg4CNrd3EEFGXaVIYbCulUPIywInLaVbcTLdb/Hu0jMYjNDNKT95dwlyRYgjoCEMA3Yyz51bHWaVpiyWfPT227z/xuv82m/+a07C1WoFSjLLA059SFM2nGnYvr5NnCZE3T5hlpJmHTq9Pk1TMT87wSvFcjZjePCERniW3YyXwpSflyX2cB/u7qL6gxZDmCRXrsNYg8Mha0+vk/DCvVscHI7ZPzjBNI5ABShEq3gl1VpVy7FYzEk7mwTNDBl26HWi9hqjAiwKpRU6UGxupOxt97BXHO0hCVvRBq+MbrLhEpRsyRuLxvLmR4945+OPWVY5WdRBOMl0NsN6T14UDLsxG50A5RsW8xnp1iYu0DRBhHeG2XzWbjA0XnyKathDJEOkCHjWnFJXFYUtMMpwPN6nk3iSRHA6OUZNNIs8p7aGra2EbDumU454+uFTfF2jdMDDp49olGdra0hwBRTrecjlIW55iLBnxJkgDCLOxhVlCQhNEER0Yk0SakKpwUFjBGEU4Rwcny6pwpSeSAnSLkqHgMdrj23MWuo0QF4xmNPPVfQQREGAHvSolgPOnz3GoEh6fSIEjWlY5A2bmxvs3bvP5u4WeZ6TZTH9YYcQR10mLBY51iu6/R16vT5JkrQ3reByML507fjrQmTHa4yVCGGRyhMqBaIlDzlCapMjjKWpHVZoRBARilaUPcw0yaiLq0N880nCaTHYl18d9/0RgQgJ6gnWGaq6aOUBhGBmZoSZoreRstsM2Lk/oHOnj1Rtb3U4qMl6ipOTAlVojPEkScDmqMv4dMX5M8drL2xjWNC4y/fLMm9vnnXTVvc6lBjXJr3ZbMnZZMLpfMKyLnGuoSpyltMJs/NTVosp1lkIFEEaEsQhUZohoxilQ6Rq3VhQrZb0ZXF29oDTxQoOPLWFsihoqpLGekzTUNcVRVVT1g3vffgmgdTcuXuXsgj56r0phx/VlMsp10cxu90YZzNS5YjkikGcs3m7S3/7S23L6lPEZ6uEmwYqw2K6wMuIMMwY9ga4UOPCiMJZitmc/aNjZovWDsabivEqp57P+e3VnF0dUfqaJ/OcfzEbc213g9u9FO0s1juscVdKIRvTIKykyEtOxjkfPDjl8ccHnJ9OaEqD8kF70RMKoVpwPcJhPeT5kgRH2ukjtW4tXnRrIaO0Zmsz5RuvXefm9nB9Bf/lsZvscqu7x1DEuKbAhJJl7vjpW+/z5rvvEUUaLUNmiyVhqIk7ijhJCGYKLQxKC4JQIqTHeI8LQnJnMfPZ+sq37ol+KqmYdtMUdcPR/IyyWtBNI0KVcb6atgpmURdbFUwXC85OzlChpbcVYNyC3c1tgiZifH7E06MDZKT5wte/RKeOUXH4qXjw1eoEWy4xecFkVWMaRdO0CllatwdUFDqUMCSBJ9ItmyyJI4ra8+x8SpNabhMSJClC6nazKodWwYUeh7+CEaWkvCAOSAFS6/8fe/8Vo2ma5Xdiv8e89vNf+Eif5bNMV1dPd49pckgOqdESOxTNgoIWC4mitBC0WC2wFwIkQBfCSitBELQQiIEuFlroYrVaI2mlIblDcoacHtdu2lRXdflKnxnefP61j9HF+0VUD8mKqAJEzE2eQhYyIyMjnnjNec5zzt8wGAw53HnMeLZgbVPQ7XcpioIsz2n3emxsrBGEAd5GrK+tkWhFGgSURcV4PCONWwyHm2jdjN6FEFx2YBPQ2Et5lo4ZGuklnkZqU0pJGIZUhW0QMBKckwidkLQFnjbaOlAl8UDj0VAFKNFoFJ9JyV42NE1anjgEKQ15mSFMQVXWTCcVB4dTQlKyRU1dmcbJog6RzqO8YXtthTsvVyzmexSVINIB3X7MV964zf7ehMO9HFcnrAw6uEsYptZ7DJCVDRVctxN0oEFJpsWC4/mYrCop5wtGpwdMJscsZlOMrRqqcKTQYUCQxgRJiooiZBChdIRQEVKGCKXgEhLNO5+8x+7RdOmAYZduXoI0aaGkIsvn1L4R80/DGKUD8nnGg+mUnlhwbdjjadEhGx2zsRpgSpgyoB04NnoLosAw6A/wl6i5ncWXSsJbm9cIJBjvsU4iCFkUFWVlqCrH7sEBu/v77B8dM87mpElMK2lhrcOaiv8ir/huPScSEnV7m+HN1+iv9BhnC6a5AakIg/BSPeH9ozlHpwsOTxYcHE45OZ1RZSWCkDCMGkEfJDoI0FoSQEMJDRtNWxGEBEKitAQa6UkvoNMJ+frrV3nhxgrONkfIi+JkMefBJz/mpVubrG/2OM1GLCzc3dvFhBWhglhG+CpkcjojjCWbq31ubgwo8xycZdBtE0aKzWs32Lx+iz/+/vfY3BySJmrJhhJ8ET9W72GW58yrkmI252S6x/rWLXrtPrPiGB2GHB/PeLo/omcHkEucl3TaPVLZZn1rndDuo0LLZHFEEiQY72kNVuiuDhsd20te9tJXOCHJrWA+sYzHJUpqhv2YfhSisPja4TFY6/Fe4Rw469HKszpoMXUCign1bB90iHeS2im8c5i6UdvLswXw4ueuQ8izQd5SIMhbBt0+r955g/lswnSW0+n3SVtteqZBRixmC4Ky0by4cfUq6tp1vLEcH53S7VVEQYKUEd7LczMCe0nlJ86V0zyIM4QEjeXUUlNDKoXSAoRDBSFlqTFKIaRGSk/kBL41xssanUWIM086pZaJnUvvSztOiIMQ4Q0Nf1kStALKeUU+Lyil4/7jA46PF5wsSj66d0I7Cbmy1WdrY8C15zbY2a34+KMDhLcMh22ee36FLMs4PjnheHRM2uoj5cVJxy0FrvK8oihKijwgzwsm8xnjxZxplnF6fMzBw0fMZ8eIwEMgIJT4IEQFAUEYESUxMgqRQdBoNatg+UsjpDr3yvu82D2ekCY9Ah0ynozI85xOErO9cQVrPQfHhjLLkFKRRC200pycjIjjmCf7hl//C4phv8XTj0/Jsoq1jmHnqCRKYp4bak7Hd2lPNuitXr1wHWfxpZLww70pVWWYLTKmszllVSOkZDydMp3OsM7S63S4efMaV7a3aKVtOrGklTjqqqLKHePKUtWWXhQvLXly0ljTSQN02BzvLkvCf/CjR8znFc44TO3wThNEGuUFqgEEIYQkDINmUir98viokEEjkShko37WCMt4tNaksSQJmq/hnMFeho5oOVy75pODJ+yVexSuxgcS367o9GK00WTjOTKQoDQHh3PWVjxbqy1uXL9KNZ8xm02wgSAddnn+1df42SefUNQZrbSzFHv5zLXjohBCoMNGCzeSjn4Q8cLaVcqqZNDpkpmCKG3TbXn0KKCuJFkp+ON/+hOuvfxVnr++wcnBPlobglDgbM3x+IRYdBCB+kKVcDh7hPcZhQRrYZZZFvkcdJtet9kQsQbraxpJXsMsqxjngsrBk6MZnbUOrjgg3/+ARo5KQLSGTHqEYUIYRejw4sf2zP1CaU0kwDuDwJNubLO6uk5VF4zGWSO8XYOxlscPHuPwxHHM6soKOoxYlAYVJiQyASR4eW7I6ZxD2S/2+gh5prjWDOLOTFWdFwi33DSUQyrQVp+rcUkpELrARwZKCGR6/vXkmRfdF7gvtfHEUqCISIUkjKpG0KkVstuektsaQY0Tjkd7I54cTlBK0r1/xPqwQzdtkZuaylYNRG81ZX09Zn29zc7TEfsHO3R7FdUlbSJrAQO5auREgzLncDxmb/+Qx58+ZGf3KYfHO1hTEMUhUkvQEhlqRBQRRmHDvtQBSgYopfBagQxBJ4ggwXvdbDQXRL89YGP9CtZatJAc2mNWhysEIqB0JXEUM1sWSXme4UJNGAcYl7F/ajk6PkQLzdYVzYMHBVkrpp1oQgm63+Hp7oLT9/8Zb746BP72pffnSyXhuw+fNnCbMKDTTekj0Vpy+9o6gdakSUIUhgglsaZxB4oDS5VDZkK8ELRjiYgbyxQtYD1OlnY0DSPPeUd4iRDIdF7iTSOcLKUiihQSiVwmYaREKYUWzeBEqqba1QqEapS5hFyOTKQjbYesDltsrbbZPZjQbYUkUXApF36SnxIMBOU8Z1xYpFbYSiBwDfU1SggHUMxqXG4Roefh7h6dQZeX7lxhWn5CTs39xwcsrOTFF9/kr//Gv8H3vv+H2HoCuC9UgTbRaDWMxnsYM+PO1Vtca6+wP9un39Iw9RyPZ3RdyKcf3SWrJ1x74SrvfOfH/PS7P0SkNSfjJ0zHe9Te02uvUfuKYl5SLIpLJ84As71PqZDMipLcOsJUoGJN0gqovWdW5ChpkAoWlaM2Na24QZFQC65sr7J5Y4VUjahPKgLh0XiCaA+Z9xBhio9a2EoAb37uOs7dWmh0nZVohIkcHhXEpEHSGLECOnDowLFYjJnPp8zEFIWk2+9T1w7rJQ6Bsx6EwdUVLPUg7CWGowDnprdy6Wzsmv6wRC371rJhpgVNco1D1dhjIUA5THsKZUEiBqAV0i5dab5gFQwgjCBNeoQywuoa63KEANNVvPbVa1jgja/Ck90pb7+/z9FxRm0sVbVoNisExaSiKCuiMGB9Y4XN9VWy25bZpFhiwh11fbGouxQgvaeqDUVRYSLN4/sPefedd3n86BGLbIYIHWGrMUdVQYgKG4EpGYfoQDd2UUIilUQoCTJEBCkiiPCi0a8QlxRx/V4HYyvm8zlRENBttUijqNGBcZZWq8s0m2JrS2VynFSYOkCjUNJz/y70hjWRBhVq9k4scT/EVBX/+J+N+OCR5c51SNOab116d75kEn75uRuNEpVWaNWYfQpALymptW0cGZxtrCmdhYWVeC/QUiGk/znREYnzFoTECw3+rDI9I0F8fgi3VOeXS6twJMIvK+Clfqtc2oWDQCrdCP4olrYxDZJAKEG7F7O60ubqepcXb6wynWcgGu3W+hLJROEdDotMGk8s35z0mpdTCEpbILVAdRyJdMhAEXjNaDLmZLyg3x0QuoLJdMb+zhN+/KPv8tf+xr/FX/m13+DHP/p9Tk4f44XD+y+GTqhNjTOe1e4WnXSF0juElgSFZC0d8PDhCW9/53vsf7rD2o0+28+vc/+9Fvc+fZe1r8TMF8e04hhNm0GySZwWmJkjn+fnOrAXCcZYXzfO0N4Sxoa0BXHQItQhde2xOILIM8tqdo8qpDV0k4Ao1IRpyFoak0ZzVF1ST9VSAtOiVA5ohIpxKsHUAH/rc9dx5lkmRDMYc158pvWKwAuBXLpHN1BfT6sFSkdL+y3dQKSWz5MUAqHOeA7+fBB2SevxXMhdSola7vle+KVPXvP3jeeaR0XLNoVrkAfeKWw6pfZjQt9D+Q6g4Ey8SvrzDfoyEZ+2bpEGLTyerJxifNGcFmLorbXANEPEKAjIihpvPaNRgTVQW099BpNbmvuejnKe7Izp91K2N3sEukUQxiyqixlipiyoixqP4HDvgOnjgp9+/0+4+/gRtSjRLYWKAlQg0TomCCJUFKKjAKH1UpO6qf6FBicUyIQgaOGExlmPEF9gGOYdWZZT5AUrvSFFXVLXhv5gQLvTY7KYsH/y9Py0IbwgQXJlPeHFmwl2LnjnvT2EclwbaqqqxszmjOqQg6lklpUYEfBw//KlwJdMwkoKsJba1hTuM+bNmZnhmX5qoJoKrqzdua21lI2Yt3O28ZdacvMbDL4/8zZsBK8vaYE2CJQzbzq5pEx6hHCN065ojo1n62PpgCFkU50rJdAqoNMP6A0SOknA5koPKSVpGFBVFcXSEPOiSKMW1lXkVYFbPqBuKeiOb9oDcRJjqhL8AiUVbuExpuDg6IBXvvE1ShT5ombv6QPuP/yU9997m+dfeI2vvPlNHj7q8OjRfWx9ecXlvSMvLIssxrpVHu/XnI6OCWLPvIiRRjEaCR7ujEFrbrz2Mu31Ia2Nq6jE0G636XYCUmJC1+eDnz4hm1QIo5G/JM7v10Xve2U8HkccWKK2IA4U+AhnwcliuQEqglBzbVMQBwHBchhlhKR2Jdlk0nxOEGCFpRIlUhq0BElAbRRFdckmvRRObxTclq7gojnCnz8T/1xEcYcwbp3LdTbPWPMDS3GmELa8DkI17h2XnJTEUuh/+V2XQt+fWRP55ddsBm0WnEUJg/QhLipYiBMoQwL6CCKkcHjZJGHkWWPj8pNSXRkW+ZTCZJQ2WxJPHK4WaN8c70MhCX3IN15OuDZcYe9wwpOdCY+ejDDL4arQEovk4DTjOz+8z1t3rrEyWKEqPWVdYS8xvKvLAlNbrHP8+O2fUh8fsrP7FKccQStCxQoVSFSgCXXazHe0aqT3GqdUGm68aDQzZIwOU8TSmLC5HY7Ljm1lWRMlPdIwZtAfMs5mzLIZWxtXeO21V/jpez9FogkjwbDbYnO9z0pHc2VN0R+u8sGnOY/HOyANC6NoB5q2M7QSyys32/jdlPE0J7tU7a+JL5WEk1DjncP6ZjLrXNNLPZs9SNn8pjIK5x3W2WVluky6y2m/dY2At/dnx7OmMggDjQo01SXQMLsEr5/JJTqxZEl534iSszQZEst+nJKN7KVodlItJWEo6XVjIq3YXOnSbcWURUlV1eR5SVWZS4kSxjjq2mKdRGuFrW0Do1lqptra4bQniTpY01ifWyKqWc309Ijd+/fxkymD9ipXWmOmoxHvvPsDqqJgMFzl9dd/kX5/m5/+7Adf4O4IcAqqFt44irogn9ckicK7LsIFvHznF9i68hzOlqxsdNFhRPq3tqnIubW1SqwsodXUM8lTvcCJMRtXNllfW70UiwpgnSUMmuvuKkFeKmTYXP8gjBFKUtUeYxYMQkekFZaAUkbgFcY0vWLlHZiSypcYX+G8JgqDxhJ+iR+98EosE7D4uYR37pIM/POIgp//vLOQ0p/PJgRnQ7bmVPeZiezFL3sYhjjX6NWefz/xWd16nqSlxPuy0ahojmsUQWO6OgxeQhE3p0NhEMIjzu9Fg/rhEoZYVeZkGoq66XMqE+KFIlEBoQxg+f702ylbqyHXVqdMr035ZHUfbyyHhzWubNA6KNBBwKKA0aSmG8U8erjDYMNQX2IHhndIGvmAvfEpLGbINCJMgBBUoFBBgA4CAh0ipcLLpr3Y7DhieSMUXkYo3UYEMV42Ti3Cy+adveSEUhtLNwq5ffU6aavDxw8/ZZ5NmS7mnJweoUzBm8/fREhLmHic9IyKnPxJQLQ/Yud4ig4axNCsEIxnDq0crdjz1kbKi7dTRicL1lZWL17IMr5UEhZCIJTC2+Zg6vjMskRw5nhg8UtWkpQSax3CO6TQLOkNRIHmDMZ+hue0xlKUFVVZNhTCC6Jpd7gmuatmd1aimYhLWFbSDuFVA1MTTdJWEpSSIATWGmaTBWs3Vllf6WJqQ1lUWNdM7uvaXOrgUJkSsDhfU9dnx0Oa5I/HeUeWLTCuRgTNALCVxCzKkul0wmQ+5tXXXyMNEk6rmuL0KQ8e3Wc6zQiCiKzO+OVf+VWGmxcz986IDCvdHl8JQrxXDdXTWZSQy567Rl9reom1qxsEifKIW69jUBjlCTAI65E+4JXbb1FWJUkccnVte+mA6y4UizHWI4WjqEpqKxDSkyiIVIwpJWVu8a5CSYPTktJZ8tqT1Z7aNtbleklRVhhM7cnLACcCigKsrYhURXAJiNFYi6bpDZ8l2DOb+rP387yo/+eS8dnPeT4POEvcfFb5/suS9r8szpzDm087wwp/Vg2ff3ld46TF2wbG5oKMSXFKiyEp6XKxjXOzkG75tdRyc2iKmAtDeBCejbVNhBXUlWFeLhrtWdXMT5RQKKmwVYX0jk4a8/z1DSLd4cNPT3ny6JDZKCeKFf1BZ8n8kywKz+HxiPm8Q9T9IunEI5THRwoTgEoiXMDS/HSZhHXQnGJEo70BHoni3KlZaKRuIXXciBBZu2TKNe+cuKRgsA5aaYdbt57j+PSIuiowxrB7sEdVF9y+OuD61gpZMaL0lspCErTQNiISnhdvbnHtSh8hIMsKJvMpzmvm84rRxLE6tFxZX2FtuPEFrgeIL+Ki+yyexbN4Fs/iX018MROkZ/EsnsWzeBb/SuJZEn4Wz+JZPIs/w3iWhJ/Fs3gWz+LPMJ4l4WfxLJ7Fs/gzjC+Fjvjed+75d975hLo2DSjan8G4BEo1+F6lBUo1fmcI0XDt7WfYXuEb0kYYNVhLnD+fMnvvKYpG3P3f/ff+zc8Fmvzs3bf9H/3eP+Ev/qW/xOaV6wQ6JJuOePzwIS+88iZRu9tMjOtGszZpdTHUjMdH/P7v/SMefPo+N69dRcsWrVYbpeDqtSvs7T7G1wsO93fwImTrxh3+23/j73z+Or77j30cd6lN4yLRShOEAGtzgiDBe0UYRERx2kz/vaW2hqIqUQg6aYcgkBhbUtU1cRSitW68upxDS89iMkZpydbrv/K56/jf/r3/i293B8QalHBIGRJ1B6BDiiwjm06YjSecHh3STlPqqmRnd4/pZMpikTEej7B1xXC4wvrmFr1BDy0cgZKNQIpUSBWgo5T/4H/5P/vcdfzSr3zV91stekqQWEuaJgxv3mTruVdY2dgkVoBp7HRKYzk4OWU6npKfnFLsPSWrSvJAUaYhs2pBXVfgxdJZWOKdoK5qpqcTfvqD9z53Hb/92/+Zp8oRUtNbu0qZz3n43h/jZzvIeoZW0Ol20Z0+FQpTWrKFIWj3EVGf/+Q/+S94eO8RgWheD6l8Yw/PGeqFJf4Y3n1y/Lnr+A//N7/hDx4c8EtfuY0MNT/94AFoSNttLJY4CEkSi7SOjWGPew+OODw9pdVVaNGi3U0ZHRd88rMnBIEm6Hi++a0XeOHaJr/3j37G4eiEzvUOq89v8r/6d373c9fxXeP9v0wIX3j+FFrEn2uVnAlH/dyXPHtHl1Ry78W5ihuIJXTP8Wu9z5cw++Djube2MWD9efhnI2i0FKdffm2xhJM2CIkG1uqXP8MZMuUMu9QgWs4ABg0e/Ftf2/rcdfynHzvvz/Exn/0cgsYf0S3NaO3y2UMsWZOwdPxufu+9bz7eCOV99mv5XzXb53/9a1cupTR+OQGf7R4nxz2KogbhsNacQ7mMMdR1ifCNo4HWcumKq5cXViKEQonGl0uqBtPbCFzXGGNwziEkhMHF3l1bm9u8/NKLVOWCjz78CYvpmO31NaQ0fPLpuwzXrjIcrhCGISKIqa1ltlgwn5WsrV2j1xnS6bQQrtHfdb7RCBA6JJCGmzduonTMNLsYKielx7sSJRRONI9xEIR47xponmgo3s41WhTG1sxmUz65/5QnOwdIqXnu1lXuPH+NKFTYumpedikw1mMqRyBjkuiS2yQUeVYQphq8QQaKuiyQ1lKXBQf7B9z/4D1kXbC6ts7u3gGPHj0C5wijCMqSNIw4PTjg5PCItfVVOmmEwBOlbfr9IXGrhb1ENmzlxnV6KwMGgYbRCD+dU5+OMcljymxEWRUIaxrdaONIgxRfQ2Escw+LIKAKFSKK6Pfa1GVFNptTlSVSKHSkEUoQtS4WivEyWG6EEaPTI0b7jzjduU9YHBHFgnAwRAUxYdglwDAd73L4YB/VXkV1V4mDxs7INbzPxqZo+XI1MKmGkXcZsChVMalWeDMj7rRYGfY52ptwsHeKVY7hjQ5iuEJsJNYHRFFCoALqTJCXOa52zBYFW1d7eOOoheF4d4bMM7bXFdevbDKrFe99+yn8O5+/jlD5f5FIcU4i+Szcz/3J//PEHP+nySnen33s/K8vF1P3FrxFNFJ4fJY2bcM/MGYJKZXLlCfOSS7Cu/PE7Zf8AIlcJm6/ZNEuKd3u4rzX8MaWeG8cSjpsk1URErxseAZKNBuCcYLaeyrXJH53DrBtngS3/NhyX1qKM3mizucbD/x8fKkkDBUv37mGUpr5LKM2HmMstakp8oLTkxNms0lDvvB+Kdfnl7vakk4MOCfwDqRusMRneE7vPcJ46vpifG4YaNppzPHhHjt7T/jpT77DG3deY/vqbT59vM/Vmy+ytX0LEUQUZSMKXRUVdWnp9LaIWhUnJ0e0WympjlCBpJYhSX8Vbeb4bMH09PhSGx1jDFATBo2YiLUWrZf89qXL7nw2Yz4vSLsxk9mcf/pHP+IP/uQ9Dk9HOGe4urnOf/9v/Qbf+todTF3gckcchoRhgDUGZxXVZe4aMmAynhKJNkp6qiqDssLjGI+nvPf2T9i9+xHPba0xE57dJ48IpWBlMKTX69HutCmrBY8fPSYrCuajY8wsQCuB0FPmkzGtXo8wudhKPEpigihEdVroToJdLJjP5uyf7mGyE1b6A9JuhyJbMJ0ccDrdwyRdfLdP3L3GfHbMYjbGLDLaok0QKOJOgAp189LgEcLgL3lqu2vXcO051jmOD55QoShFiiChlbSJ0xWk9/h8ikpS2t014g5MyoC+bHPnlVfYeXLMImvIB96DW4rm+5+T4rlMW+S7f/gzrqQxe3qEWJlD3GNlo0cUTBhNFtx/f5fhvOT6zVUmXlNJME5wuDsnThTdTkiahKhWY8kkiZmcGKSXrK6EDDdaPL+yQuUu9roLcM17COAd3oLwTQFy9rOBb/z/YMkwZKlj/acT889XzmcXwoul3OolSVjikLjzzz8/AS+vqqkrgiBs2LfwpzD3DR56+U2XCdw3jnDNvTn/Og3r9qJQonHUaEigDbkrDCAQklgJtISWgnBZhRfWM6tgXMHcgPE0kqpy+Ww4cKJJxvgziVOB/YLd3i+VhP+r//L/w6//+l/m5q0tHj58yMcfP8HU9dLRQSHlsi2hmt83O82SScdnjKWmQnawPFCcsZmamxJeejPLYt7Yq3tJGrcQ1lNmFViNs4KT0zG7R+9wvCiorAFbop1ACc1Lr7zEyckxn969y/rqOt1OmzgJSeKIbifE5YaodpgiJ9KXaEeoaCk52FRGxjlqa0niFCkVVbVgOj1iNJlCsMG9B0/4R3/4Q3ZOJljv6ASe05N9fvjBR6xe2SINAgZRiZaCpNUmimNymVEX2cXrMIbT/X1cFtNup2ghqMqcyWjEbJ4zPdhF2ZqqKLh9q8vJaYoXis2VARpFXWZYU3LryhZKagprqYqCqiipnCGfHTNfjOj2LnYasVVNPp1jy4IoDYgiTaB7rMYtrra6dNM2TmqEiOgPDSQV9NZR61sUgYLHd6msJ5tlFNOKSjQVEE7gncRYS1UWFJOLhWKiuI0PIqajY0xlkarN3n5OmuUssojMWdbSgq4uiIIuqt2mvx0w3a8J0xVef33IO29/wsNHTxCo5VF5WT0tazTrGwLERfHOu3uY9SGPHo4oY8vq1oCN1T5FdkR/o0N3tcd8NufReyOidszhfk4+hVBpXr4zJG1pnjxeNMlLG/Yfz9jds9x8ucfW9VWuX79JdzDkrW9eXHGFsDQIkgjrePCz95idHLF+6zbJcJVut9uw9vDnPYqzjeYzWov/U5Xxn07Cl76ywDKZ+s8aH/6c+u2R+IadvEyoZwn37PMagkvzXdwy4QuayvTsNghxRqq7eDWBcnhJo4bnJZGCtvbE0tMLJLHyaNEIvjsHiWyuYao9s1qQG9AIpGjaGAsjMB5q5yncZy2rL6DvBHzpnvCPuLr1IsPBBm+++QbDlQGPHu5wsD+irh1BIBq/KSlQSiKlRtBoozZ22KLZPpZqD86fJTmBcxZr7NKa5OId5Aff/y7TyZTVfp+AkOvbz9Fur3F4OiNI+wTtAUqFaHeMxCBFQL3I6cQpnU6L+wePSfod2oMem1sbTS9bKqazOeOpYxi3SbubiGzvwnU43/yMSZKgtCYrSypT09JLXVOraK/0CdspYZBSG89kkZGVJd55ihIqJIWzPDk8piMdvhsSBxrrPMYahJC4SzQsqvmYTmBZ6yZMpmNOJ2OqbMH0+BRj4Gqvi+imDAYtEuW4vtZrxE9czWJ6SlZktPsDtra3GfSH6EAinCObz3n45AlZkWPxeHfxOlRliBNoBSERISGauBWzsrENQvLevUc83dmnnWhuX1njxs1b6PaASoRklaHX2+SVIMGZkqIomc9yZrOM2SKnsJYaRyEkhovpsa6cI4TAWct4NqOqaspsTljWHJxmfHQ04uVrm7y0XRLWM4QwKD/Hm5KdRxV5Pme+yPFOLKu2puQR/rPj5xlL8aKQFo5nNS6QJCIiO1nwyXHO8cmMa1ccm1fatDsxpycCWYcMuwHxqmZ1W1PXlpOTkn4/ZDap0LoRh+r1K9786jYvvPQck8zSX1VoObtwHRGNfrEHQi+YvPNDfu/v/5e02gO6GzfZ/vo3+Pqv/WUGgwHQJD2x/M1571YuTwD+5/qyLN2zl8XVZe0Z8fNd5z/F+j7r/VqE0iyb7+drab5fI0Fwthc0lmV2WVl/tmGc6XRcFKuJROA54+1aGvH9NJCEqknwhWuYdZUVWAuRtMTS0RESF3i09AS6+V6Hs2Zjrl2TkAPhkd6TOcEXSbFfzt6ozvmD3/09zMjyjT//Jjeee46bt28zHk3Z3zvh6PiYqpzjXI1EEigFTmKMafQ3lMYtdzQpwDl17l7h7PIG+5+78p8TP/3Z+6ytbzO6+5Cjncd8+uAeSespnZV1XvnGN/FJB2Mlxgucd+hAYpVifX0TJRTGCeI0BWWJkub4kUYJZW1RcpPjsqStLD3VuXAdURwTBiFCauJY45cqcFprkiRFRwqvA1AzYh2xtblBt91i/2RMEIW8decF/tIvvsFX7zxHEgZIZ5eFh1oeyyRhFFLIi5/ufHaCrKaIKqacnnL4+CH5ZERVlui4TTRcI40iBp02rVCz1m3R7vZJ05SyyNh98pSsqNleG7C5dZVACcoyZxRq8JbJbNrIBlxiG7PYeUI/uMLa1ibtTh8lNXEU0ekM8HnjYnFytIfptimubOFlQGRLouKUdjbBuwodCIJWhFztUHnJ3HhGpWfhVHM/bc2jp08vXEc2OSFKWqRxxNrmJo8e3qPTFgxbIbO8wARdfJCiWi28KqlLi808YZ1x/8En/OidTynyJvn6nztle+vO5Qu+iNvJSqdLoAVWe9AO0W7h64peP0HpkLyEVkfRGaasbMZcubnJ6CDnvfc+ZjxWvP58i3Y75HQENrO02hFOLfCiz71Pp5ycjLh2ZR1rL94cfVYQJRFCOBY79wh3P+bVHoyPH3Hy8B7vv/Nj7n/6Cb/0536VN954g3a3AwgcntqYpXSm/uw6eL8sk84GVMuPf4Fr0uTrpYDRz3WF8WBNjdP6MxPrpT7HP59g/dk/8R4n6uVH1fk/uUzdbiUAvMMKiIQkEI0cmMSTW4/14KxgYQSTStDSjp60FIUhr1wjnbvMnFlpKDKPlI09WuwbiV4POPvF1A+/VBK+/eIbHN875ON33qEVeWazl9m6uUZn0Kc9GHCtuEK2GDEdnzAbzSjzkqpsTBqtE1gr8KIxJvRLVbUm8bomMctlP+qSHminN2B3d4/T/T3KYkFv+zqr69t0h2uIuMckNxSV52RaIqQhSQMcAUZqJvMcZyAJEsIwpjI1ToASNVIH1FmFCmPidsqjvYtf9m67T6vdxtMIFEXOMJ0ekWfzRkRIw6DXI5QObwVKOtJIE2tJv9fi7/7t/xa/9ivfRApNkWVL81JHu502KmKmpK4LPBeLy48npyz2nzA5OSBttVnvpaiWYrpYsD+ecTo6oE7aXF/bJJABVTVhPpkRK0U7ChFlRkcIzHzEyZ6nqC0HpyfMFxlxGKJEMywdzy6WKiSbUWcLsmxBsEyCWscIoYmTFrdvXCd0JYtswcnhPqIuGLYiWqJCV/NGtDuKGx0DHHVdYrOMRCWEcQcfJljnmE7bFy4jDkOs84RJStruMp1WHI4cpcnY6Kc8f6NN74qk2+nS7g4QYUKhxhzNPqSVCpIAFguPUA5xVhB4zitgIT/TkLgo+v2Y2lSEscKFUIUeKQKSWqJDQaurSLoRfl6RqITH7x/z5PGYxUyy1u/QW41BeIa9kOvXhqQdqMuS1SsbFLnjxvUe1XSXpx/vXLiOj7//E772rW/gbc7phz+ia06IAkWUBnStZe9ojx/8v/9z7n7vj/ir/9q/zld/+VfYuHmLtNtDiaZ9aI1ncnTI8dNH5Is5abvLYH2DeHWdIEn4rFt+cZzJi55P9YRHOtEIeTmQziPdsvKlEef6LB98NkqUAhyOssgIg6hpcfqf0wm5IGYWatfoPOd4QiCUvmnj2cZgIDMwN45IQiIaoa5FWeK8oKo1VeFQ0iJsxsQmWBTSahxN5WwRmEu1Tpv4Ukn4+RdfoBX0sNNjpiePuP92yeL0GoOrQ1avrNLuxfS662xvDikWJePTKScnY05OphR5hXeukZlUjXtp43DR6LqeTV+N8Zd6u9ncUC8KwrRDvLZBd/MqmxvbOCcYz0umdUFWOYyMkdIxLx1KCQ4nc4btbiNbqALwCYuFAlszNguUDLHTnM0rV3nthdt8Ul28jlarhdQKrRXOGuoipzYLXF1QFQvCMCQMFHl2xCwL+IMfvM1oPCWOQso848HdTzh56TnSpN20NKRmNDqlWEwpnGGRZ9Smwl6yKU2mUxQQhxFpFLC5eY1hp8WjR49otSeMZjllYTAGPnn4lKPJiEE74dHjhxR5RlTnPH9tGzM/ZffogN3Rgv3JDB2EPH/7FiIQ9Pt9Do5PL1xHpz3g5tUXeP7FrzFc2yAOQqIwJJSKOs8pJlOUCinzY+bTCdrXRHSQAVDMSWSLJAgJVYOk0QG00xYibBH2N5GdFcraMFlcvCklw1WMbSyITo+OeHD3KR8+znhus0s3CiFt0Rlco/AtlGjTiiU2nGOlZG0l4dpml9PZCC8aEagmmt5o0wv1X0jK0hiLbsfkVKAl9cmcQRTT32yTtkOccDgPEksUBhzlcxbzjF4v4s7LHWTk2HtwwisvX+P6i0OO5ofEnYDN9ZjSSNJWn4O7P2Hvk4uTcNuMCEzNzqMHHN59h+l8SpmuM+heYfHRh/SZ0AlBnDzhh3//P+eTH/0Rr3/jW/zCt/48g/U+pYW9e/d59/d/n8fvvUuRzUnaba4+/zzbb/4CL/3Kr9Jf37hUveyzBHkGfvNYaxDO451bKqGppsp2HuctXjY9Xuf9EjnxWevDWcNiOiXoD1FLpVUpLmtGQLDsJSs8YQOAwTnBwnkyB9YLStcYrGoBpRfYuqQ8vouI2ojhdWxVUE5PqMd3+ehY49IVesM14la7OR0HKZfsBefxpZLwf+c3vsV8UeEXBamm0fQMYpCSQAoUEi0l0/GERw+fkme+wQcLwerGkK2tdcIgWHptieWw40zmskFMeMelSfgXbr7IbnvIJ5MxHx6f0J8VtIaeuijJq5ppXlA6ibEGrRW1sUhRMxU54+MZ0zqnFaYEvqDXbYG3FPOS0+MTstkxHRFgNrfpJYML1zGbTfHOEgYK5w3zfIYxBi09dZVhyxAZKB7fu89//Ucf8f23PyQr6qZfaWoePNxhejpC92vqbEQQtTk9OmBv50HT0lEha5tXWVm7WI3JOE+admm1ekxnI7T0S1eClNWBxCPYy8f87OOfMcsWzPOcotdhNpuxf3DIrfUhz2uJlmI5OTYkUcCg3+P69SvUtsZmGSuD3oXrUGHCoL/G5toGw5UNtJAESoJz5M4RRTFSa5Ru5BNV0LgG18JhUbjKY6Ql8gbpGtlIhKbV6hK1e8ikjQocUXiJy7GIUT5jsr/LyZNHdOKQpNUlXtuibIe8v1NzVJ+yuhaTFgvswSnZfE6SxggT8cLzWzw9zjgZNb1n8XP//zLRXklJt3o8uLtLMS/BWYIViZ9ljBcZYSDotAOSRKADy/MvDImjiM3tNi/f6fPH/2yH+5/M+Po3Y+azCQenJ9x59U1Qip2HH9HrrvPJw13G1cXSr2axIFtkeBzB2jb9jRf4hdd+kVhU/Nb/9TfJxycMWwkHo5Lj0QllnvPj/UOe/Ph7DDdXsMKg5iOyp3uYvSOUF4iFpnBj7h4/REnHL/5rfxMRX+yU/pn8pyfLZvzsZ++yu7sHAlppiyRucWX7Gqurq8RRjPMO7wzGVNS1odfrn8uIWmuZTSaNTOd8StxPAXHZrBSA1NWEzuOdxDqPdx6nG63oVHgMjYa0Fc3AzXhw+ZTT3YdYD2vA3oOn3P3kU04PPuWTp6fkLmLjxgtsbF/jhWtrbNz5KjLpf6Hn5Esl4XbaJYkdcmVJxFjK6ymhkChMUeKtI1ssODk+5uh4xu6TfYos58q1qwSBJI4UnU4P7xpd4Hans6yALdY4TG0aEXSGn7uO93/39zi0lt3BCruFQxnPLC+hqJrqxDa4Q5zDuwaMHyiJN4r3P/qQR6eHhELSlgFrqz2cMUxOp2SLnJVhhx/+5Ed877t/yPj4hD/3l3/pc9dhbEGgQ6x1GGeaxCJjdBITSYMvSu49PeQ/++0f8kdvf4RU+tyq3DnPJCtoDwak3TbzxYQkiti8do20E1FkMxyKldUrdHoX65I66xiubhMoTe0m7J3OECplrTNgOj5GSMHW9ipKhhR5yWQ0wZUlJR7jLKPKkcuQ8fEJx6djwrjNsJvSbUWYfIFSmtPJmPH8EueEqqZYZCwmY0KtCVSAkg0px1Q5SE+v18VUGUWRoXVA7TyuqKnyiq6OiXWI0xqhNFVtqEqDdpJABGgVECpPnFwMySqznNrkHO7uUZUZsODF2xsMV9dwpmY+H7G6IQlimJcLRqdjNIbYW7QWbG33uL7dZ3J6glm2ys5T8ZfIxYuywk5mJIGmFYlGS9kGVKUi9I7Bdot2L8T7kKTTR8mS515q0e+EPL43I9Ge9e02KlJ4K5jtC+brU1a2B6Sh4uDxfT75cBfLxb3Hdz+4y0+eZqxu9llt3+TqlW0+evIEV+XQHrC+tY0rSmpZ0EE1zufzY3bfP+DwQ1hfjbl1pY8Uc47qjApNN1GsphpCw5MP3iXeukXQ6fHnXnvt8gvj4ZNPPuYf/MN/wGQyRQSSurYIEdLr9Lhx7Rp3Xn2VjY11VvodlART15yRKpr2RINTKfIF8+mMYX8DwbIcvvSE4snLivksQwYxUmh0AK3QE2lFAyOQ1FJhPWhqMpNzvCi4v7fHnajN97/3Pp8+uE+VnZKbmvliRFZKDnZGzD8peTk/4vqrvwLcuvRyfKkk/Ft//581xwcpqCtHfTwmLjJGdc4iliQhKFESxZrR6ZSPP77HYjInUIoH91c4OHqMViEb61sEQQTLvqmxFrzEGkdRlOT5gjtv/o8/dx0//N53iG89R9ldhaBFnHSxxiNcY6/knUVLhcQjvEULT+AFZVlzPJ4yX+SsDjr0OgErw4TZPOPwOGdhcuwcTiYnaFcR6Ysf7uOTXZK0jReNiWUSRTir8SqhpuLjRw/4f/x/f4cfvf9gCTD3lHlBbSw+gJ3jY/ZPjpHCEqcx6WANgSQOJdOxoqxtQ/CYjGmtfL6mcK/bZf/wgNVWzO2b1zgZj4miEOEdtbEIIRkOByRJC1MYBmmLfHRKL3QEcsgoM3zw4CnWGsqqZmMtRAWa2XRKURQY68mLDKEvcdPFN+wiZzGmBGewQqGUxDmDwBEEEqkExjQkn7qWGO+oraCwjsAYFJK8mFNbGreLIMHpkNpzPhC6KCptIUxYff5FOhvXWdna5aN3v4sq7qJw3NjqM+x4imxBZSVx2iUUBeRzoiglUDWba10+CiaYqj7vYX4G0f9i5ISD3VPMfUNrLWF9q4N2TW+9LiqsUkTtmOdeWOPu/SnvvPuUVsfz/HMrPH58wtHehP5A88prfTr9gDIPEGVEPZ9ycnqPJI1x7pDhsM1xdjFaZLgd8ju//8dYZ/jzX7vDlbZn98N3ef/eY271YnyScrC/SyJrBmGEFTAuK7yDFMFAQ09JClMhvKIsPXXs6LUSwk6HT+/d48D9NoXUlyThs16woygLsqKgKGukU8yrHGcyxpMJuwd7vP/px/R7PV5+/hYvvfAc25ubOGcaHzk81jfvhnONyL119XJMuDxZXxC2mlBMT9h7+ClrmzdROoEw4Gc/exdTNwSNdn+FpNNFSQilZD7Z5aMP3mHiA4oiZzxbkFfN9w+jGF16lPI4HXD3YJ/d//r/zhsPP+Hvfus/uPgh4Usm4b3Dw3O3AW8E4ye7HN/7iOPZKQtl6bZDrFvQaiW0Wh0ODg7xDpSQZKZgsLHCymCF8eSENGnjPVSmQqoAKRRFUZHnOVV98bT34+MDNjY3GD99jOtvoJ2kynMi6dGBJFURpTUIraiqmlBaxGJOJ13nzTsvkNuStWGXyDtm8wX3jnY4nmQ4ByKvaIVNZd9tXTwA2t3fo9PpMugPacV9Qt3G0lAZ33v/E37nD37Ix/d3qWqLMw7va+raLEkgkqPRgsloxEa/RVl4snxCokLy0wMmo2MK5ynrQ6TQbN7+fIv3waDHST5DkGPzCdViwqxY0F1f4fbztxE64uTkCCkkOgnQMqDIctrS8PKwx+PDOQfjKWVZEoSa8XSBddButajzktl8jpCQpuGF10NoRRiHRHFIFAWN+erSfqrCY0zFYjFnMZ9RZAu8s5R5gBLNtUk6bbzW1N6zKCu8l4StABk2aAK5RO/7S16yej5HBylh1EWrFdZVl7sf/ACR5XRaKbGyuGKGUhGBSvFeNtVOZUh1j1AvaHVSiD2u8kh+jqkFP9eXvAS1khkCDd2VlCCOiAkYrsSMJ1Om44KjgxnHBwu8kdiyZPV6H6zn+GRB2ImwiaSzssF8ohmfTLjz6g3WNiVJ2uZ4r+DD947pDNtsXrl4c7x+ZYV//S9/jensiH7qmGYHlPmYx/cfsfridZAR2kv6gWJjJWVReeZl3ZwCgNpZCuNp9zrYE8t4MadlJE5bJmXO6XjGYD5thu0XPR84JI3VVKfTRUUhzpVIrxooq7Bo1WzK4+mU6XzK8ek+D58+4tUXX+bVV19luLaGDhqHn8liRFYWpN0+o8WESEcEQUSgLn5Of+e3/mMmp8eMRqe0u+t4kdLtDRifPGZ8MiNQTatVBy1wBbeee4mNK1c4Pjpm9epzrA9XeOvNF4lTyXwy4nRRMl0YXFUhvMOIkMOdPX40+0fA/5+TsBcSLyqsMSA08WafxUnA8XROO0wZDoYYk5BlU0hhe2MIQtPuDgi0JhCeQAmKbEGxyJZ6BBGBUFR1hWsKqcYa/YJ4OD6mOj5ABAlh2uFo7zFFK2HY75FEGiUFyjWW56Y24B2zp/eYT/a5/tzzHEwX7D26y8HRjJ39YyaTGVErJQlCpK0pFzlFlXFl7fNbIgC/8JW3MFVFqDRRFFNVJVEQsHOwwzvvfczVazc4HC3Y+9FPl/9CnNtBmSUts64MQZCiA00+2aWuDZOTE6wzKKnpRjFVWVy4jo21AZv9NuV0zGw2ZXR6SqkVK52EF7au0uquM5v8ACE8SZRQVxUyDLGqRRhHbGx2sDLg4dMdqqxES9k46BrTVBnGEsfxpS7YSkmUkmihUMtHq+n3g5KSMAiJo4gw0CxwmKqgyhc4V6O1IAgbQ8cgiDDWIFVTkUvduKPgXTODvyT5FbM5zs7wIkSGPaaLjLJ2pKqFVI19fV1XSFujVQ3eYCtDqFLCWCKFIwzjpnePX2Lbfw4NcUafvaQSni9qrl3rkuiIYgGbawGtvsTokJ4kaQAA+05JREFUlOnMkY8Njz4Z0RpIXnm5RZS2ODrOUEFKVWWstHvcefVVPv3wId5brt4cUmQjWu017o8f8OjenN7YsL118fsSBgYpF5yeHnK4B7NFwXe+/1N2no7QomItVbRQpO2Y7qBNeTIhkAYlLa04QCnBw91DgnaLeavDYlJQGkddGx7Nxjw5nbP30aeYC1xXlhfuHHDWihNCrRp5g4YkvPwcuWRxCJyDRV7z8Oku4/Gcp3v7vPzKi2xtbdFut7A4Wr0uKorYPzpga2WNaCkbcFH84LtvU5UVVeWQ4pROr9+QMmKLqQVBoJoNJTOMj/a5fv02QZCwurLGN16/w7X1FdZ6XbbW2zx4csjD4wqr7zM72kOUJ8SyRsYhkb64V38WXyoJP7z/KatrfXQQ4pfWVtefe4H+YA2sZNjvo4RhNjpAS8udOy/w1W98neHGJoEOqMoSW8Pe/iEP7j3i6OSU0uaE1nHmGisEl/qZ1YGmvzokGHaplGf/cJeTJGZSZgy7XdIgPH9BjDEo54iDmPff+4j5Rw85LHLmVUVRQ1VUDAdd1gc9FuMRRZFRZQvy+ZRB5+Le42orpY5CrLXUpqKuK4rC897H93jr69/kjdff4M03PyGIQr7/w7cpTA1Co7TCuJK1XouN4YBYK/J8zvH+E0IpcCIApYmCkE6YIMKLtTS6nTbaC4owYjrPyIuatBPzaGcPF7/PxtYMU+a0O22SMCTotalW+mSmABT9bki/08JYw+OdXeZZhhBNBZTECYEOqY2jqi9GJXjZOBn7cz8wcBJA4LVGxwlpp0+nN6cqC7JsTl5kOFujtWYymeOQRHHKfJHT7g6I0hYCga1rvDBY55Z93s+P0WiGqXKEiEl6GhUoks6AcmKglrS0xlUOZT2haly3nQtJenEzZ65rBLrp3Tcz9/Ov3disyfPp/oXXA4lEI71muJpy4+UWWT4hjSXxSJFoSTmzFIucjX7CR/dOUCGkqaDbi3nh1m1m8zkffrzLxprGuhqlArRuc3xywuZ6QLstyecX35cyy+h3A55/fo1ABvR7Lf6SeZPyd3/Mr/6Ft9hc7fH2f/NthJmwqCtOSsPcCNqBJuq0mBSeg1wStdqYtTaxULjZmLKsOBiVjLMC3BEiuXgwB5yzaMNA0Ukj5rGkrhxaKkBha9f4Qnq5pDYLrBNMs5z7j5+Q5XPW19dZXV0hTgJW1jeIAk2WZVStHBe3UOLizaAqPBAjqBt7PiHQypFEmsI3LttKOGpb4p1tZhBCkbZSBoMOi3zBZDJnbW0FK0Jqd4R1V7lnToi1QuYeHYcE4RejzH2pJNxvw9pKl9oqJvMC4yxSh3T7mxSZpRYRUns2tjtEgcOQMpvWXLkSs7a1QRg1zrvXbz3Piy+9zt7+PkenR+zs7HB6enruyWUu0WxoDYb8xV/7C+jOkCcncw6mc5LEo3XjcZdXFltkTKdTZtMZ66srbG7dQs08Dx8+5WBag/S0pee569tc3Vpj9/EDJocHuLKkKnP63e55xfN5UWcLDA7jHcYDSrLI5kTtLl99801WVlZYWRmyujLkv/qtf8Cf/PSnnB6fYo2lH3f42p3n6CUBVTZCUrG1sY53nklRMcszvKmIJESXSEcEQYT0njCOGE8nTOYL6rym3YkxD+/x8ME9hu0IKa5i6pp+K6SdhpSzHO8MGkU/Dbh5ZZ3xbM7paIz1BWkq8MKiTI0QBnPJAAgA2ZjAyjNTPxpGlZKCtNNjzTtwhqpYkJcZckl3d8ahZISpBCenxzgk3eE23d46UgU42xg4eteo9124hLBNNl2gNQTG4pRE6BB0TOk9VWaJYkEvamGlxtU1KoqRAegYIMSaho7vxRn69U9Dn77I6xUniqyoyeuSGytdXJ0hhKbbD3j+9YTsNOPqRoeDxwvyvE3UslTFiEAoXnrpJt12l+/+yducjudsrG7x8MEBt29tc3po2H1wQholJC1BXl78Gv/9330H7xfEkWalN+TqlTXySiJ1yne+8y5RHLA4XnBlNaDVCnl63/FoZhj2O4xJIFaUScRCxUTdFh25wmgx5XR8iqhDcmtQKAa9i7VFzq+d92gp6MQhh9LgVUMhNnUDS9NeotTZiafBEDdecobFYsHh4SGj0SlRKOns7TFY3aAVx0wmY5IoJehcfD06Ucr2tat0OzG1MaA1WlmSSCyhs4psUTOfF6wOemxub5MXFWVZE+iAKIzodgXOC1rSoN7/Nla12B0/5tXnv0XPCI4qQ5hejOI5iy+VhP/Ov/W3UWHC8bjiBz9+n539p1hTUdU1i6JgMqlotVq4QRefpGAVu/snnO4fMBz0uXLrFmGnzd2793nw8DEgSdKIqirPZSxray/FxabdLlc2N5jOS77y3C1Wt9b45Ie/hStOeTrrkgfbdFodBII4iul0OlQIopUBweERfZ+QBvDSlSHtSDVwpr2HTA6P0EozHA7Z3lyjlVx8EWtbU9Y1ItCEUYytHDoI+eY3v0m7025+ntqwujLgv/c3f4Ovf/0Nnjx+yP7uDoO0wxsvXidMFDrQBEFAlLSYz+bIunGifrq/x563rLa7bF6wjiRtI6xhMZ+yu3+EUCFBnNJqd4kCRZFnONVm53TCdLLD1994EY9oaOVaoVSI8DVpFLGxsY5XIdPplEVpsaImCAXGWhaXQKGUlARaoXWACkIQDR3debs0z7QYaxhPRuzu7pB2e1y//RICz4fvvc0inzDPZ4ymC2TQYtsJkrRpmQipGvlCJwnUxSeD2gV0V29ivcEpTT4vmI7mrLQDoiBkMc/wlaEuC4qiQGDQ0rKockJXEespKigZ9CJGi6Y33dCW/WeMrZ9Xs/mcaLdbrG93uXVnncobHjyY8upb2wz769z75An5rCbrV9x4eci8mHH1Wg8RDNi60mfYG/DTdz/k4GhMO5W025oiLyhKz+T0LtefSwhEQlYVzPenF67jex/uszh9ws3tTfq9kknheOeDT8kqwcPjMa1OREclzIXluVTQ3dwkaNcclgW5TBkO29RljUITu5oglDxBsltK2kmKFAW1ramqi+nTfkn1ds6ilWLYbbHfjqjKGm8cVkkUGoVbSuWesd8akR0hFM43JrzWGqjBlobTozG9Tpt8OKDf7tG5ZJYTaU2iJBuDHpW3HJ7MqGpFVXiSdFnNi5Q4TWl31nh4/wn7h8d8+tF9ttffY7gypN3r0F9ZbTYIpZkf7VDkBVVeUk5OaQWaG9evXvyALONLJeGVjS2mh0ec7u2STafUWcnp6Slr60NaaUxVVRhbMy9GVG5Ov9Nj79gwG40o8wnqj7+NsfDwyWOOTk64dv0ag8GA4+MTbt5+vql4zsDCF8Te06f8n/+P/yfWVzfYvnaLra0e8exd1rqCnaOEq3du01tf5+muobe1TlUWTE8PMLNdXr3SQrgAZQqkmzPZHXP9xjX6rYijqmDtylXWN9Zpt1KG3e6F6xjlGcYaXOFRWQYyJGh1aff6WGOZzhZUtWWxmFPmBTc3tlhLE05WVlDesrmxQWUk+JqQiMp7nEhJ0gipUxbzOU+e3mM0nvC1C9YRBCGVrZktCuZ5STdN0aFGCIEWkkF/QH91Cxm1mVY7/PTjhwxbCUHcoixLokA2UD7g9u3bvPhal929fWazGUVRLvuzmviS46YSILyjzGbMl/RUqRpFOQn42tAA9B2VaVAa3cEKOEcQRQTLzSxsdYmSDsNhfyl3WiOc4Vyp65JK2DlPFAWYosJ6jwoSOp0+rnxCEklq6ZkvMkYH+3jhqKsCIT3K1rQDcGlBHEfcuroBMmKcO7KswNe2eTS9+xc0cf9lMZnOuXGrQxLUWOe5eWPAwZMpD+8VdLoRK5tdoiSmv5FSHGYIUTMc9JAu5uGnB5yMj2m1QkIXQS3YvrJKuxXz4U8/5fGjXQIk65sD1rcvnl3UxuC8QIea2uTUVUmkBC705PmC08m42WAmmqtr19jZ3eH9vQyhNF99fY1u3GLhClrtlNWVhHxxSrrS4o/u7vHKVsQwlqw9t0539RKJUesbYoa1xKHmzVdf5tZzV/nk7j32pxmVjHFFjc1zjLXNNTamORmrxolZyYZdIZxoCB7CYuqKcVUiTEV1+4Wl6O/nR7efcHC4x2Q2IqsqJuMF08mC09MT+ivD5jQ6miCkIAhjrLVY78kXc/6b0QitFdduXuUb3/pVAqHJrryKKT8inUwxZUVuK4Io5NHOwYXrOIsvlYT/5O33uLq+zsMnu+zuPMWYmiovqPOaqBuRphJHgPdnbYEJWTZhNspYzKbYuqKqKhCKteEGi2mOrS1pu01tavRSX/gyCcntlVUCL3FFycMPP+D9t6dsb2iG/YTjyZxSfwBVxi++9hp37tzhyePH3P9YcLvfZjw55NGjjzkc73F6UpDnhpdeukMctdjY2GJjY5O03aYVJ/Sii5POeFYgZNMf1MqCqghCy2KxQAjNfJ6xyCvmsxHTySGL2ZTZ4SFKCF57/VXW1jdwplr2pjTWC6I4JRLQbgviOGIwHFAWFw/mjDMUVU1VGxCK8WSK6rQwVcVcK65sbRBrSSsN2Zee03HOYlHR6ToC5Whpx8raOrQ6rG9fJ4pirl/fJlssKMsKYx06iEhbF2tpeGcRzoCpkLZqQLWu0WBwjYgpQRASpy1a7R7dbp84SanKkjBukbYS2u0OHkUYJaStBO8M1jT6zM43swNjLoZkKSnJZhPqck7cHaB0myBp4QqP1lBUJftHJ4SjGXHcyBBKHSFsxcqVIUI6JjOPsZob169xLUh58Ogpp6fTZmi0fEYve04ra6lKy/HOjG6vy8J5VjYCijpC2Ii0FzFoNS2+QGniuEMnTXn68BGn4xMGw5R2q8Mnb++QH2V0W9eh3SFeiZh9WCFNwPqViMHw4uc0X1icqUhaEIeClX4LeWuT09GI2bjNpw8PaHUSdLfNo6ln/cYar7RrjkYLTscHDFYtW5t90rgmiQz9NES5Db6zc0ghLVubLbavt5HxxZujcCCMBWNoxRFfuXObfjfgg40e3/9kh5ER1Is5VVagowSEanJMXZ+fRqRr2lLOGKRvoKiVqXDOEUQxcav9p3SR/2Xx57/1deaLjKquuf94j7JyTGcZ+Tynv6qoTcXe7gFBHJH2BrTiiHavSxCFnI4nPHfjCoHS/Ozd91nZvE6lAsK4y9X1W7hqQdmK8XWAqi6eXZzFl0rCP373Qx72DzEiZDgccHy4R6Q1s/GUsihpDxKiuJl4nkklOSlJOu0GdiZBCY8zFltWxHHC2uomla3IsjlhHKKWx86L4ta162itsdaSFyWh7PLk+JT37u8wm9Z0Hh5z4/Yt3n37R7z66musrqzw8nPPo4Tnj//4gLufPODp7g7jaUna6vDg6RNKY1nb2qLd6dCLUobtXoNfviA2Nm80x6ZlL9th2B2fsj+ak8ZdisoyHs84ONzh4OARx7t7hM7w1lffpNNrU5ka4T2mMnhvCEPR4B6FII5jkrjF1e3b1PXFSacoKurK4lEgJYdHR1zb3CDQitl4xHQ6R+3ukXbmVMVi6V5iSAJ46bkrrAz7yLjF1nCTMGlRzKcokTBoxdSmBqFAKDrdixlzHkFtLFVZUgXhUklPNm/fEtVgjQUv0EFE3EpRYYArS6yTFLkhjqDb66BUiBSqcTnwdums0PSXjbn4vtR1RTafkc1OWNWatNMmSdvs79QM+pBbeHI4RhjDzWurdFcGHJ8u2N9/ShoJlMt5+4MdTqeO9Y0ha5sdkjTFj+YNpkVKUBJ5yQCok8QIJ1iMajqJI3cBRRbxzV/c5mhvwYP7I0InkCag10r56OOHxElCEBi8CGh3ttje3OS9bz/FmBm1h92DR+gOrG71mB8W5PmC8GJEJ1KUvPDiCq+81MNUBXE85eb1kNVBwtrqddK2YzoreOut29TjEc/fWOWKUBycZuztTdjfP0JYw/XtHrUXVK4mciUv3+gSJglCSmbZCFdfQpJwDu8aFw3nHRKDqiq6vuJmv0++d4q1fonCkggdEAQBQezBq6XUhF26rFgarwOPn2mccXS6fYIwulTnufaaJGnRasFmVpEtDI8f7lDWJZF2jE5n1NbiqwoxnxEHAi0dBo83NVevX0HFHe7du0/pJenqJq1Wi+P9p9TFhCQSrGxL+ukX65F/ORW10vB0d484jBmsrBDHCQf7e0xHE7LZHO9rou0VpPIEaGrnsXh0KOgOB5wcHVCbmnaSUtFMSL/2la9Q1pa7D++yKGc4qQj0xTg/pRSVNWRlwTTPWGQl88WMxaKgLBy5PWGWLZjOpnz7299ma3OTN197Hbzlww8+ZO9gn/kio7Q1hbG89+EHXNneptPrEemIQdSirUKO7MW6tWGUkGUjinyBQBBGku//6Efc3TnirdffotcdcHR4yIMH9znYf4pynq+/9Tq3X34ZryRFXRHqAOdVAwmzlqquqeuayWSClJI4jkkvafBLqYmjhCRpkbbaVLVhOp8ThQF5WfHg8RMOj5t7lra6DAd9pos5/VbIRr+DjGKCXp/eYICxjgJHrBXOOwIVEEYxxjm0vLjys85QVTnzxQwvPGEYEkfJUrQFzuSvgjCi1eo0/d4ooSotaatLXRZY6wmCmLI0FEWN8wIhA6Sk0RsEpLz42KsUSC3xKgQRUhcznjx4wvHuhG4nZTqvOBllzMZj8qJmZVpzeDJjNDrhymoHbQtORgUVEYcnU0bznLyslvCqpsCQyuP0xfcl9ApfeTZv96mrihefX+W5F9a5dmWVXjcjzyvq+ZxsNGFeFzhnmI8MQVqxsbXJS6/c4cmne+STkrAn8Urz3I3nafd65Dt/ws/ufcQ4zDDiYgcY5TNuX91me60FJqYsS5RwtFshOoQ3Xt/mhz9+wKePDnjj6jpKCqqqIIotV7Y79LOU45M5P3z3lJWVDu1OhM5qdBRRKQMmQOSNEuJFkZUFzjT0belLlC+psJwc7qNkH+EMZVFRWo+VDuFMg17wDdRRSrUkxDUDu0ArBKDiBGkcQRxTGoMrLi5a9sc1Ynlqq50ijjQeR2/QJ19kLGbzhrZsDUU2Z7+Yc3R4gDMOrSV1WTA6HfPg7l129/ZIe0Pq2jKbjVlZjVgdaHorNUF8MWrlLL5UEg6kxDhHWeZMvaTXGXLjZpvT1hGT0yNefeV5XnrjeT55eJfDvWNMXZ5xZPBCEbc6LLIFMgiIpaLMF/zsvZ/w1Te/wa/84p/j4eOHPHz8EHOJs4aMAkxhKLyhMM1wzDiBFwFCN1CqYpzjvaeua+7eu8fTJ4/QUi4nsB4pQ9IoIkljBv0Bw+GQJI7pEtKJEowx+EukG8MooixVc8NcTVGU3L+/wz/89o85OJ5x6+oVFuMJWIMwDpVGrG1tkbZSgjDAOyiLAlc3coHS2nOXEWPM+fqr+uKKy5gKvEOHmv5gCEJycjrim1/7GkeHBzx9+oR5UZB0uiQpjbWThNJIPn64z0tfuUNnuIoOIoR26CjEVqCcR2mBXK6pMhc/VMbUlHlGXZWYOkZIjVIWrYNzfLSzljCKSNOUJG4TBglhYOh2u0wnHmM9WVE2FlpqwWg8RYdhg9FdirNU1cUvWWUcKoxJe5LpPOPTj37I2z/5MbGbMRxITo4r5vM5xnn29k85OB1hUXhn8NZyY2uVRztjjnNLaSCvLM41JgJSNYjWRCb0BhdrehyNZlSi4vrNLlE74vDklPU1yXvvjNm6ts5zz3XBaKqixuQGCocQjus3r7J9vQ++Ynx0RD6f4VTMIh+RyGuwqEBadEvhVMB4evF9aSee4TAhrytCFSCCgJPZjKo0ODw6dLz86lW++4efUs9rbr3QJZcG4w3OgJABg9UWu3s57326Q6vTZSASer0QFGSnOStRDycvLsmf7O8ibE0ah2DmzN2Emc355OCYucqZFIasrnDON1WzaKRhlVIIdEPqUmq5mTuK0gMO4xoM97ws2Ts6JriE2dkIMUm8CJBRm9XthL/6G9tNH9rUlEXOfDpnMp2S5zl5njNbLFjMM+qyJMuaNupiOufo4BDv7mGsRUjJyW7EgzBo3hut+Hv/u0uWwpdMwnleYE0zICnKirIu6XV6bF65wosv3OalW5v0BwlXtn+Zu492+OCjjxmPxnjn0QrSVoui6DQvtfRoF7N7eMDhP/vHvPLS69x55Su0W30+uffRheuQSUSkBG3ZiABJBFpBoDVVWWGdpTL10n7osyG2854gUoRhTKvVot1p0x/0WVtdpd1uEzhBV4QY75jVBdUllV++OKSuFtQmJ4oDcqPYP51R1w4qx2x8zOZaj1tbGxiveOfjB/zD3/0Op6Mpr754kzCICXUIzmFMSV5a0iQhDJrqUWlBGAqK4mLNhqoqwVpCrVlf36Dd7XF4csIndz+l0+3hlEZp0CpgPB7RaqWUecnuaMabX3mDVm+1GX7UFUopkqRFvlS28svrhpAEwcUnlJdfvMPKcJ0kbqFUiEdQ1jWlMcilc4qpK2azOVlZMplMMVYwn005HTXQPS9E8/AXFZV1hElyjh4JghCtA/Li4hNKnmc458gWGU8fP+LJk/tEsUZVnrLIqMsK8AgNOIFzbilO7snzEiksW5sdZrszFtVZe6yBSTkvCHTEZv8617ZvXrgOpxzHo5Lvfu8pv/BLV2ivRkyLU/Y+rMkWIzq9gOEgoTOIaPc7VHlNmGo6vaanvf/whB/83nt0N2K8gPGDE/bD9yDq0u8H3HzjKsZ61vpXLlzHretXiVSH737/Pp12m+FKC4SlrivKssQ6g1QBV2+sMzqZM5iH6DRAyrCR7fQCh2VltUcQJcxmOcY79kYjWp0EJTx5nRPqi4uWk8mYWEsGgw6tJKGYeuZzRefqi/jKsNlyrNYO4SxeKGrXJNkwiJbIiCZ5SimXQj4sfSlFY5OmI+Z5QaAvwXQunTqac1WjA6y1JnANq6/d7jBcWePMudN715hOWENd1RTFgsODY976+lcoywYdVlUVVW0ojaW2Z2ahl6xjGV8qCVdVhbO2AVNrS1aOKKsZ/c6AW7e/wo0Xn6ecjyiLOS/f2qbfbfPeB5+ws3NAWVY4U1KZCu8Vw/6AqI6b/rAp+fiT9zncP+CV117nG1/7hQvX4ZREhQGpFARKEYcBeR6xyDLKssAYS1mbZU93eamlRElBFIXLAVCLVtKmlbaIpUJVllSFBM4zNzml9ITyEu2I4z2895RlCSJhPFuw0gn5a3/pLd5843UOT44bV+NZRrfdYthNWCwm/O4f/BE/+un7DIYdblzZ4BuvvU6SJFTVAucbI0znBHVRMpuXlGXB8xesI+2tUhUFynk2rlxjbXOT+9MRH967h1QBURDw4o1rmKpisDpk2OtwMhqzeuUKz796BxW1qMqaqlo0LZAoIkk75EWOXQqnCC3Q0cXH79u3rpMkCSiPsQWi0SFs+uXe4ayjyHMmszFlVVHXBVUlKcsZzhrCUNNqRcRpSn84JAhjdKBRsnFlscadD+ouitHhDrPZnMPDQ4qiIAwlUSQJdUAcakw1RyiBDjTaBwgcTjq8lRyeznnU1sRpSqtlyY1pXCmW6l2BlLywscHXnruF1hcPKn/917/Gh+/vMFsseLo7ZmtjlWwsqUrBztOCF5MO9byLjyxJy5GVhidPTtl/fIIvHVYJZEdRBooiL+kfVYy7J7Svaq7euMrGlRjhakbZ5MJ1zGYVf/ydj/npRzsEYcDqWsLGZsz2dg8tNdYJsJ7NzRS50kMH5ry/28ACawyN9ONqJ2CtG+KNYlZKAh3QGyYUzFGXkKwcYLxjURYEUYTRCcGgw+2N6xhTY0q7hKsarBcUVY1UkjRJ8U5QVnVjvKAasX1rHfNFo8OtwxCUxrnPNIc/L85ESZcAnibRuuU26/yZvMUyls7SKKSShHFAlKT0+mvNM72EXlprMMY0olO1oa7MpSfHs/hSSVjKhkrYGHaK5aIto8kJ77z/DmU954Xb1+mmLUyVs9Zv89Ybr9OKOnz06afcf/CUnacP2d7eZntrE9lKMGWFqQNsbChszqNHH9HtXKzEpKRsPLGWO2IiPUkak7YSFtmCLMsJlhoNjYapJAg0WmtarZQ4jomjsPHCCySirEkrQasd45TE+mZn7YQXT53nsxn4pjc8zwpGo1Pu3NhC6gTvPLWV3N8dU1nDzc0e26tdVgcJMvTM8ikPPz7kweM9nrt6hde2XqJ2KVpJlGpwsWWRMc9mzQN2QQRJCxk2rJ6VsMXzL7/C0cEuxazx4tNxiNSCMApoJRF4SxQobrxwg7XtVYQCVS9bIA1lER1ptG/0bo1tKtkovjgJmyqnxDYW4IhzE1fnzuzMPbaqG0SIbzbfqhRYUxMFjbylc255WHR4U1Hl/ud0IwDhKcuLTwb7ezscHuxTVgVhHIMXKCqGLY1erkUq3VjZ0zwfSIl3kkXl2BnVxKmmXGpbO9dAohANZUNHLbaff4n4EqnTv/433+Ctr66zKHJkKGnHnsMnJxw8yahKxQMM3p/iUNy40ebg8YIf//CA0aRg0O3QX4mJUsu1rRbtVszN6wld6fjhtz8hWn1EK0lpdxSye4kTzfsPKPKsMQMqCibTjP39ZhB67WqPRlBX4GqD1IKyqJfVf8NaO/N7U7pxoa5rg7OeVhRhnacwjdh5eYn+tvOerDTsHh2zf9IoMEqpiLQmChRxGOG9xIuQhuKvEFJg/TKxStW4biwHb0IpwiikqmqCIEAFAYIzl/fPD798BgTinFl75uvcqMV7hDyT2v1MsOn8lztTcwOWmVDrEKU0USTO8dCXuZOfxZdKwmcvk7V2aXp4xqH3HBwecjI64WcfvsfGap8rm6tI7xgdz5hnhvXVAdliG1tWPH/zRW5ev4WUkr2dJ8xmM7wShFFCGCfcf/Dg4kUvk6+TkiAMCMLmoodxRBiHtNptjHFkWYYxhiBoepJKqSYBxzFpEqNV03Pq1oqBiJBaM9eNqaQtKyJ9MW05iWOEU7R7A4w3TOYLhNaczmaMDkfMiwqjFHlRcDSegzeYqkYqxdqww+lhTiFrsnxOoCGJu0gpsMubr1QD05KX0WOrOUpohI6J05TnXnqF2XTCB+/+jHIxxzrL3uERyZWIMIwxSwZSp5s0guoyQEmNjmPwjT4x3iF0gI4lCk9tKvJLNCwCFTTC3DSDFAF402iNGGOXFUjDnsN7ssWCuqpw1hHF8Xnbw1mLl3XDEV7qvQp1ZqjabPwXxd7+Ls4aglAtVfRCknZALAryPKeoDEpptHJI37xwUkm8lwilGM9L6mlBWRmcbUw+ldSgNKrVYeXOGwzf+iZJcjEpYNBL0S9ucrA3o7vSoSjH7D4ekXZjlPYcjRWFc8ynNffv7vOVtzb4+reu8sPvPGG42kOHku/94cecvNDnL/y5G7z8ao/9p8eUUnH/0xNCe0Cr2yW5BKI2z3IQEu+bdo+zmvnUcu/uEVGo6LcCQgS2NgSJJNIBxtkl41Fg6hpjLUXVWNVb61FSI6TEmBohmpNKkV/cJnK2xtQ1zoIUnmApxONEQ9RwNAXAmbO2p3Fez8uiqZRre/4mNK2hpVu7VixdIVBKcElBzpln1bmSxfnrdWYseiY8L84NiM9srs6StrXLetq7zxJzY72yfI7hi2pQf6kkXBRFU0XIZkDR0IzNue5DVTY89dPjQx4/ecR6twu1RIcdtra3ubp5hV/+hW813mxhiMfRilPu37/PyckJde2oakeSXpz8YFmNS4kQeolLhiAISJKkaUeUNXEcU9f1+eahtT5PxgCxCuimKb1KEBkYmZIZYAREKqAXXFz5tdtdktaQKNToQLN/PGZ3sqDIC07HC6Z5wXgyYTFbYBaa8aFFOEiSBO2glyiiVFEUGdPxiCCYNTbkNN5eVVlQVzXgWbny+aeD09EI4SxR3CLqrNIbrPL6N36ZzuoV3v/JD5kf75FXjt2jE5K0Tbud0h4O6fb6GOMQ3qPUUjhJCKq6JI4iWNKxPQJrKorFxbjHRVk2rLkwQMuli4JvmHnGGA6PTzk9HSG8o9VKkFphrCXPSo5ORiAk7U6LdR0QxTFSLVlypm6m4CpsbKMuKTCUgihqQPY4R10sEOREgzbjWYlTiiiiScKopie6tKKRS80LUzcJGGgMJqVCRAlf/aVf4df/+t9gsLJOWVw8iHq685SPPx4hZcKLScKTu8fEcZvBwOBdztGoIKs1m9tdpqcZ+4eWrc2YN762xcraKl4YfvLjAJUmXLnZ4uB0xIPdGiM8nU5AIiNEEDKbXS4U0/T3P/NrC4OAtZU+3aRDrD2R0mhdkaZpk1TKEuOaJFcUNbXz1NailCbQAdZZbG2oKoO1jc+bvcReWHpLqCVRoEmjiE6724htBc01t9ZS1waBxzqLqSpqa6mtpaoqvPMo3ZysjLUNHV5pwrDxY+TnKteLwlm79MkT53A24R3urEVx9jH4F6rhs78+kzV15/KczWe4JZHH+Z/L7ZeE+CKLfhbP4lk8i2fxryYuK9yfxbN4Fs/iWfwrjGdJ+Fk8i2fxLP4M41kSfhbP4lk8iz/DeJaEn8WzeBbP4s8wniXhZ/EsnsWz+DOMLwVR+1/8e/97L4Ro8MyA8426PEJihGRRw8w4SuOIZUA3bPB+uW8gMm0pCJfKR8Y2lFwUGCsbbVYhWfqN8Jv/0b/7uSA7Y62va9uAspc47jPfgwaj6s8Rev5MhBuP9BbqEiS4JeaUpaUSrgbOdGI9Wqe8/c77/MIvfP1z1/E/+jt/1cfthDJ3jI8mOOfQurElalTQYpIkJI4joijCC0dVVdR1TRRHrK1sk/RCjsY7PP70kFYYcOer69x65TajQ8W3f/c7nJyckkQt/uP/2//zc9fxP/i7f9fHaQutAvTSt6vT7RMEGhVEJO0eYaCxpmJrdcALr77BzqNPqcsSpyK88ix1UhosqXPg3BLUbsHVOFth6op/87/7b3/uOv7KV3/Za6XwxmCdpTQlG70hpbFkZUVRZERBQO0spa0RQtCK2qx1eyRhwGx8xMIYwiTBOo8SElNVCA/dNAVnyQWM51O+/d5PP3cd/9Fv/j3f+MGd0Z6WhIxlOBymqllMJ5wenWAsKNVoW3xmqCyWnnZnLNfm33u/BHr55hN/8zf/3ueu4//1b/9tr4UiVAotFGIJdxJKNhBLIdAIsA5vLFI0+FIrHEg4nWVMF4Zhv0e/0yVQEolFCYPQUALOCawI+dX/w29+7jr+J//+/9CvbV7nm994k3/yj/4xi/GEv/hXfpVkbcCTR7scPjjkN/7av8HG9jbCw+j0hH/yO7/N3XsfUxYVVZ5TLuYU+QJTV+AstTHESUK7nTDsD6irgoePHvNHf/ze567j+l/49z34RmN6SRsWKsIJixAVyjfXQ7jPyElCeJwEJzVeaLQTSDwOQ20MAnUOm23IWc17ffd3/sPPXcf3P535uDgmmB8gqhlVkeOqAlvlFNkCCwRhoz9hrWWRN9DLXitGKM3RaEIUKnqdNovFgtPTU8rSEOgAHWikEJTFglba5q/+T//nl4KFv1QSDrWjrC1CgPdqqSkl8CiUt7QRBNojlMdiGp+o5llmYQQZkqB24GqmWcarmwlXVzvcOzbMc09LWSz+UqxfVpVMxgukCJBaoQKIAkUgQWJBNAlVLBO69+Btha8yfDnFW9MAwz2w3FR8XeB8I5doncO2t8Be4t1VVnQGLQSKKA6pK7NUDouIorCh3CqJYOkwISxeOnQoUVHI4dEpclpg1JxOmrLWWSWRq+QTy8cfvI2rCtppmyS+WBKvqg2yMqgkaLQeAOs8sdZopRrQuWwot6cHhxyu7FPbRn7TuibJedGAzRs+vmkIEUvNXL/8s7tExFwHmiSIcbomz7MlhjNglmVUdUUUBwRC4KwCWxEpRUuD8jUYi/SONFB02i2yrKR2rmHqaUmMx0pJvjQNvSj+9PNz9vtGTrMRlTc8efCA3Uf3wFiCOGWwtkEUp+fPizGG+Wy2ZFm2PjP5PAPh+/M/fG5Ix1KG0zfsvKXIfiDEkswiCYRCafBYhHR46XFKMRpPePDwCY/GE4bDVVbXNwhUwEocc2OtRag8tReNxOcl74uzjtHxMWEsufH8dd75zg/4k9/7I66/fofCGk6O9/mn/+S36a+tIrVmcnrCyek+cQS2rKhdBZxRcy1SOKSSGGNZZCVxagh1SBhdjO8XQiwFqpZkJKEJhAPp0Kox/A2lQEmHUmdECUftLZWtsN4gjMJah8UtN8PmWXDOfeZNeQnqtlsfI7J97PQpwtdoAmpqsmzO6ekJWoesra1R1TXOOsSSZOVjgRAOZ0omeU5dLiirijDSOG9QypOmEaCWKnWXe+7Bl3Vb9hVJ1DgGTxc1VQ1aKqxwTCpDKw65PoixxjEvLUXtMFbQldCKJJlxjPKSRZFR1IbaBmyttUl6mnc/PSLLDbW1l6OcnQNvUFoRBIIg8ITSoDBgFrhihHd1k4RF47TgqhJlS6TJkcYgLecCG8LTiIZY2yCxrcMRNAn9gqgL39jIRwYdS3AhoVaEkSYMNUEgG79LB7VxyHaCkgJbzHHWYWyFMBU6lrTXWmysrjJcXeOj99/nxpUNbC2ZnBrCS0gjiDOXAYGUqmGWCRqqrzgjIUhsbTh8ukvpPTpuoZTCe0sQCKTwJEGCitSfTsLe4a3BLy2KLrkxaK1wwlPbGmPr5uf1hiQMaCUBWZ7jjEE7Qy9MWIk0tS2RKkLFEa0wYHvYYxYsmOQlRnpSDcNAcVQZnIW2uvixdd6dg+mBRvtimS/zvOTpo8c8fnCX4/09OklEp1tTt1sEUUyZV8ymE8qy8ShMkpT0xq2GMnue/D/7uheFrQ1aLpMOHtvIEKMD1ZiF+sZnOAoidNRUwF4I5nnF8fEC5UJ06clmOfeK3Ua7NoxYWXmVRCm0U1hRU12iryzwFLM5jz65z4OPH/H8K3doJxFv//BtknaKlIq9g8eUPiNOYubTKWEgiNNO4yJils7bCGxlkRFIrakrR5ZPiFspMk3o9i7Wm26IUhLrHEIolIdWbHnluU0G7ZRWFNFKYlQAOmhOL3VlqKoSi2Q0nTOblJRG8PRozvG0wPvmWTh7Ns8owxfel8O72GqOrXN8XRAGIXVZojX0ex3KsibPFo3kp5KUeYG1Fb4dcXoywhpPoBVZviDPczqdDlGkG9GofIGg0d+2l0idnl+XL/RZZyEFnSRgVFiOFjmJ0ggJT8YFj8YZw1bIa7dfYLMXUDvPZFYxnlVMFzVHs4rxLGN/UVFaR6A1p1nFw/0Jz11b4cXNgKd7BSc5TKqLL2IaRIhORRAKFDXC1whb4Ms5vpghs9m5eLT3Huk9moYJj3cNFdZYWDJn/FKtwJpGFMRYR1AWl24GznqscbSHMWXhKK0jCtWyDdAIBkkcVlni9edpbb2Aj2OK+Qnu8CFV9pAoFlgagZyV7SHvvf8u+aLkxo0e29c6CFdQFxffJinV0lzz7FfDYDxLzt43lUvlasbHRxyOT5hXljhto6RA47l1fZvWlSvNNbMG78y5e4R3dlkJX/yyh0rR7XZZLOYN1X/pMYf3RFojrUPikQq0kwhnUaKhwlZVjvbQ0TGxEOgowJmawkErUlTec5ItsDIkFZdUfjiE/8wPWbCUIvaeyeiUB/c+pd/rINnk5PAQO89pdQvijuXx4wdMT4+4tr1Jr9XoKDtnmnbNZ/IV57Tai8K65hiopER537R4BCBt4+zefAhH3Xjy6ZTRdM6nn9zl6e4OoBmqBFs75tYwtp7pbI41EIiIStCI3Vyi4yukJIw1+SKjnGYc1zV+fYX5aMbhzjHtXpvhypBiOqdazOm029SmwDqDpUIIRxRoVvptbBCAyzFakyuFVZJUR2AtUXixZoNbPotCaZQMibzlrVeucmVFcbj7hOlpzdgajA5xQBAGCNe0wzrDPm6RoY3hpZde4603X+b3v/s+jw4XWCTS1M27/QVMIXw+QQJBnOKFQ+NYmJqqqinLguPTJtFKoeh2O1RlRRToRv+5NgRhiHOOKIzAS+rakVdzhJQcH0+YTXKkbnH7lYvt0c7iSyXhK/2AIIo4yTMCJaltxd6i4t5xTuU883zOb/3gU37ppQ1eurXJjettbpia6aLi7//JU+6Pi0b8XEFfWa53AuaTCb+7d0JbCwJjaAuPDi5elhKWhBzKBbYucFWOKxZQ5Wjr0FbirGvoic4iPCAklReNgLoUVE6wFAijSc8hpnYYZ7CmpluBuESAw3tYzCta/Yh2N0FWFVo0FVNz3BRYBK3Nq8SbdxhVMQsr6LRv0OpssxAdvHkHYQzPvfwiDx49ZGf3kLXBGkJI+isxi7ljtHfJTVz22KSQy0TR9OKtc41jsHd4u3SrLebkxrIoKg52d3AeBp02t7ZWcNIuq566+dmdwfmG8++dOaeHf14Ya5jMpti6JpABSiqKuiKRku31dWxVkJ8UOOvoRRHDVkAUSbSQzOYZeVWh4rBRwtIB3tUESlDUhoPZgvEiY3N1E3UJS/dMevL8z/8/9v7r17Isz+/EPstse/z1N2xGpK+synJZpqubXSSbZHPUbHKAGWFACBphJGAe5CD9D9KDIOlFECAMMCPMgyAMBA2h6eZAoOlmG7Ytb9Jnho+4/vhtl9PDPpFZnOm6t1MAwZf8PWQmMiMi191nnd/+ma+BjXZCwDvD1njAaDRiNV8yWy7ZVwKznLJ0LeX8nOAsrihBCHb29zbaz79QBYvng4grxn0qQoiNNgUC4Xw3cqCreKUAJSQBgw+SxmgefPyQZ/ceIGUn56iROOsxMma2LNkeZYzzHgoNqqP5LxaX08lDCKDEpvMyPH33MT/7kx9iXMALwfJiwfxoRq+fMxz12d2bMBr2SDKN6vcwMoI2EMtAdbFArgNZGvOogaVNkFKhlGDSv3xs5pxDSjZSlI7JIGN58oyf/vGPqIsCvEdpzfjGy8goRWqJBpyrqR+fMT05xa4vePtnP+Zrb/0KX3n9LqfrByyqQKwVSmis58qOTUcxwkNTLGnrNcV6xUePT4iTDC06I9Fer0cSJ5TFmvGwRwiOylTkwx7rsubZyYytyR6CiNWqYFkGqqairjVlkeKRnH3/ff7x5TekO89f49d8Es/mBY9nC0oT0DJQG8e8sN3r3AV6kUS0hh9/cMT3Pjzj114/4Isv7DDMYv7GG/vMy4ZyXfLCOKaxnneOSs5Ly7oNDFPYz2BnEDPOLr/ctrygOv0ITIFz3YzPuxbhFcFpZBBY2z3MECCKNC5AYwXOK5yENiiCVzgnCF6Akzi3YY8LjTAJgSs8s5AU65qT44bd/S3yfowpQ6fOJjq79GRwgIlf5tlxgZdL5m2Dagw3Bgn7410yfZ0kGWDRnFxc0BtOcM5jGokNnuGOpl5dUZKLbjZonduI43iUNXif4J1D6hbbahbzKY2rSZIEIWOstRhjSWJBa1tccHjn8M4SfNuJtdhOyjB4c+XlDtZTVdUno5HgA1Vds5NrhspxoQTGtPSU4vYoZ9zvdJPXVUumFHEaUTpLGiJWs3OqqiTSGa1zDLVke2tE0u8hr5hNdxWn+DcS5fPKNVICGTz3P/iIo5MTQvAoLKvZCcX8lGujMUuTMi8KJsMe26MeIdK07hd2dpu/iCsqLqUUSgaU7l7IIkg8gcZYIh9IRNJpdThH21ZMT44onh0xlBqHwASDwWNVzNFiydmy5Euv3CVKEoqm4bwoODm7YLq83FkjeEdtW9arNWdHJ8Re0K5qWgJJGpNGOcEETNlQIVmGgChKev2cLI3JrMTWBcVqxfxizo6CvSiiaFqqKEb3E4KTtO7ySvj5PFhK1XWIvuHp0THOedIspbUeExToATofM183KBERnKeyNf3xhCDuMz99xB/9/j/n9a//Ctf2r7N+uEQQb3R/zZWVcFWWG2SBZblc0DQN/cEAqSIiERjkabfgjjVKZyyrJTJSaN1jvap4enRB1aYsm5qmNrStZbFqaFoLQdO2Gh8c08XjS8/xPD5TEv7996bUtnNaSLSinwqGqcIHEN4zyTt/p2XjaV3N0cmMXMP+/oSbe0N+5eVdfv7gnEEmMEXLRWNZtgGC4mzdMC8s09rjuVyta1nWnJ+ukM5ibYS10UZIQ+KcRkQaawN1LVBa4UpoPbigsL4z8tPao1SEaQN4iLtyeTP3C/ScJHD5pRISgvMokeKDQ8YxogrojXaxUAqbjTk3Ocu2Yl1MWcxPaY7OCXtDvvrdr7JYSwqxTe379A9ewy6miGpG8J6qCMgU8vHlFu+dL113ryRsqlfXKVZ5B1JTCc/F+Sl4j8ATRRItBXGeMhz0iHt9nHcUqxnT8zn9XkSeatqNvXhXW1+e/CKtCUIQBDgCxrRINFYrtDfc3hqTm23mtQUZKEyDDt3Lz4ZAL4lRvSGellmxxBGIncM5T65jemmCTBJsfXnS+WRkyy+m4K5zibTGVCXPjo6YrwpG/YQ00rTWEkeauy/sUjaB9x4v0L0cnac04VNlLvF8cfzXWMxFUYQMFgG4EBABnO2EcIx0BK3wxvL04WNca7CLNVHriKWitJ7GO1oFNTEXxRLjPDcOD6jalqOnRzy5WLBYF1RXzITxjrY1KCGRBBarBUqBch5j6u7CKE2aDIgDNIs1s/WSldZoL0mlo6+7Jd1iWeIVbKUaX1bkPUneTzk5XxPs5clPa93dx83LvG1b8jglH20jhUUaS9Na7ry0z2T/Fr//Jz/FOkcgwsmEV168QZgqTp/eQ2jLbDZDuhwZwDk6x2ghPl2i/pJ49933uLZ/SBx58ixnMBxxe+eQ6fkUWxVIupFJkve59+gJj58VyCjH+oK68UznltasqZoZ1niUjCjqNSE4tE66wiZJaK/WVeqey1/vl3WxNAlSQR5FjBKJtyWL1mNdYJAqKmMoW8e4H/PCJKcXaY7PV5ytWna3htzYHaBjxXy6YlEZWuMIQm/eYIIqKJ6tAs5efvplLTheRwiX0DadKLVQ6pPNdTDdXFeQkKiUommprccR4bymagwJEcIq6sYiAwwSiVadm0XwloZuwXRZdNWe22jNClQiiRLxicKbjhLmMuWkbWnqgtnJM8pHH3I9VPyd3/qHXLu+zYPvrbu3/PY1/CBDqgFyZru5Y6tYNQ1JfpVItfj08gmFEIEQ3AbC4zcSghIlFSrSlHWFUBFpmhAlcWcgHCTFuuDRw6d874fvsz3J+eobN1mVLV4mDPr9DkJ1SVjviGXUwRaBSMI4VozSGOlbgvPEaU7kKxpbo7QE71Ci03CujWenN2JerGiMwQVoRbl5nhpvDbkX1Ffcbh/CBlb26XMLoVO4QmmEVLTWoLRimEZcv7bTVT4Crt+8xenxCa/cyWlRNE4SRPjkzwrhk10nVy0NkiTBmQ6v0t2VrmNxLiCEx4aWcrZkfj4jlA2RbdFKI4jwIdBYyayFR9M1RenY3hqTRxH3nzzm8aNnzArbLb+vOEfd1IwnO0ynM5q6QhrHK4Mxgyjlw2LB1LZIAsJYRFhTG0MrA0kcgfNYGZCJII47ych5ZZmXlmlZUgVPVBTURYG6wgvRuW7PEClJJAVSera2dwlMGAwSquUFD++9T1tfUFcTfPBYAUiJ9wLr68402AuyaIhOt2jKGi1SnPQQQOuoU8+7JD786AMG/T43ru3hjWe9WnGxvEec5lhjWJdrVNynXUpO5hFH04imrakaS2M68EBTVx1yAkWa5YQgkVIQxxHO2a4LumqhvonPlITz3pBEwSSy7PcED84FlTFYHzClhSBII4VHMuinoDOKpmY5X/Dx0Zx+FlEHjTGW5brFItBCYDYzvA569FzJ/pdHZRWzNkV6jfMgpENIqOqC6fkUU67Ae/r9Prt7u5gQWK0rgkzo9bcQOmLtwVkwRiACGDyRFt3ySAjGJhCryyvhTs4TmqrF1BqnDUnSR9jOgkVoTWMtZTmjOntMfe997lTP+MbrL3Fje8wPfvQDlsZ188DCgkpAjOglW1hviERKvShJtq96pX7aekshug28BK1AK01RLClWku2dLSLZcHpywWI6J00yjKkJPt340q15+8MTqsby9GjGaNhjsa4J8YjeINpgqX95eAAJWmqsU+RxxCBSBCGpfaBZzRkMtljVht4GReJaw8W6wnjBzvY+xgeOT09w3iGEYJD3upEKncB8CM+hZpc+js0v6UY0diO52DYNVVFgQif8fX13gPCODx6e8s0vvcjBdp/3P3jAsjB881e/zY/e+ZjpdMVoPN5o1nYR/nv/8FeHjiJwFiUcUmqK1lFuKt1lVdBUc/z5FNYVke/kMmvnsNZzUdectY7TVnJaGWKluD4a8eTRU8r1kuW6pHYC4yBccU8/evCI4aykXVU0s4JrKuHVyQ4TGRFvjfizZw/xjSNyDokB56kbh7eeSIKRnjIILFEnek6gag21cUzbCrcsIFIMd7Yu/1iEQmsFQuKCI05issGAwgZcBNOLM1bTc0IryOIhqRpgWjrvSAIiKFScIdIek71b9If7sF4hiwYvFMZ5cNHVn4sUnJ0+w9sKJQPn52dIHbG/v8dqXVBZhWkEH95/zLL0rIvu+2c91NZuoHYaJQPO+U6OUyUbfeOEQEtAIcRfL71+piSsNpb1231NEySVyEA5Br0h0eCQen1GU08pWsG5yZmoGGeXrFuLc4LjteHpbAbBkcWKyWCM94raNFSt3OgT+ysRasYG1iYggkeFllQ7GrPmL7//5zz8+BFtsWK9WpImMTdv3SJJY2aLJcPxHl/88lvsXL/FRdVifbtpnyWF8QjriCJFHCtqL7lCoB+tNCY4TOsQKLyoUSlQdg4EwllUOcM+fULx0U/JguPwpS9xsvdV/os/XzBwSw6v9bloFK1v0JFHCzC6h09qIqkQIcI0V+BRQ/f7ZLCoIEiUItKaWEukCNz/6ANOT2d8+1tfZ2tnl1h1NvOmrdBxytZogtQJzkBA8rU37xJrQRRFpElCVbdU84fU9eVjIvG85xedyLUU3XzcOt/NeoGmWjDMUuqqoakbqrIBKTnc3WZ/e5v3H32EFpZIKZwQ5GlKWZYY40h1RCBQNpcbfa7mS5xxWGdx1m5m2aFz63WeujEEBIPRgFGWsFqXGBGR7Nzkb77xNdKsx8miQgjZibk/J/Q8jw1RI1zR9johkUp3g7IkZbaeczZfkRrBg2ePybxhr7UklcGqGJ9ojLesW8tRaTh3nvPa4YLi+taQgYZnz85orKV1FhMCfjNKuCx2RmPKxjDq9RDXFPV0yZNQs8QwA3q7I4qjGYrQjS5MS2E9xkOiBF4LbABrapaNJZOKs7KhcIIWweGtaxBLXnvt5UvPESc5ITicdehIEadgY83e9VvMn77H/OycOEpIBgOEgEkeoXB4BSqFsliwKgvy0R6D4ZD9rQFSBdbzNVWUUbZhY4Bw+edy9+Yho/GA9brohOpFQrNesEw1+XiX05OWs2nBovSgJSqJAIU3Bh2673ZtC+q6AgJIiVDdMj5ogZcClMSHv9484rORNYLjIIcvHg4gSlgEzcUiQuuEdHhAfu1N2tlDvFlxUg1oq4dcH0GmPFMX05Lj/RwZAtJ6ctkQ4iFeCpyQtK1DyE4Q+bIIzlE2FUoKBlEgUYJ3fvYuP/n+T4iiPsZJ5rUlCZr68QnDfsJqteRkVhDiHl+MUwbb27jG0XqHFDEWTdt2s0njLGXrSOPLH4+ONAFHCFAXhvF+hrEVkR4jlSbJYgbrkvqdP2OiYfzFb3P86jfolYazhSHLJrTNnDOzpnUtyntiqdjZHSKyCGXPEV7QFldAf5zFC0HwLd4Fmrb74qdZN1pZzuccPX1KsX6Fna1rjLdjtIxYLhaMtrZI+yNWyzm7h7f52pdfJ1crpFR4axnkEcZYTJtjrnA5DqGbr3cW9x4fAio4kALTBNJMMZ2dE2Vj9nb3KeYX9PopMu4s7Z8dPUBj2OnlVI2ntA7pPXkaUYaumlRKcW1wuZtusVxvBPwVaS9Hq08xvsW6QOmILMupG8+t67vcuDvi44dP+Pn9P+N/9b/8X9Cb5Hz4w39JXVZI1dlBiV/8eocNquaKBVBR16RCgNLU1vHo7JyToyPy1uPbhlGUkAmw0lMFME1F0TScVYETIyhCjHGGXj+lP8gp25KmlR3RBk+QXcd1lZ3PjcmQlQm89e2vsC5q/vB3/oD3nx6TCY/dHzE83MGtCspVjUgkVgYqAsZ4jJNUtkN0OEmHLGosF63B4fBx0r3w04RYX3FPrela9qDYSRNeenHA3Fuc+QhWD+jpIY0EFTv6WcV3v3WdcTJGWEWUaf7gT/+ED2Yt23t3mZ6fMcw+ZnJ4iDoYcdYoyqbrYsUVagwvvXCbNIsgaOaLFSpS6Fhxuqq4+YWvce1LfZ48nfMv/uUf4/AdvDAokBLjHUpHqEhDK9FKEaUJxphPnKG7l3YgcLno//P4TEn4N760w+u3xwxTRTrosXPT8oP3z3h8XrKe3SNqlyTbLxNnA8LsCWXpee/sIcJAPBgxEIaVhEGiGWURUbCcFUvWrccHiRBR94Poyz3VnPVEzrA9jNgbxJhqzez4MVvjPl6kFJUnzTKyNMM4w8W8RCvBan7Bg0ePkFHKl958ncFgyGpVUTct7cY5AO+w3rLfdtaGl8Vg2GO91rStoSotW+SoOKACqCgh7x8yP3/G6/vbXH/5JXqvfIFdeYZfPOT+4DbCrmldCdGQykvapsG3joW1fHV3l22vsK0Hc/mbXUdd/x2cxwmLc45IS+JIYU23uOulivGox2KxoK0M29t7DEa7CBlYrlcEUZLo21zb2+Xi2QzjGnzo2i1nLd5auMI54Tk9WG+siCIhyeLO8aAKHk+Hj41cSVxLZJQhI0nVlizLBhsC21kPs2GYjQGtO8PVudOQ9ojjnFRcfrnH4xFKyV/ImM8dEvwn1FatO1+5xgZGccLW9j5Kr/j4/n3CRzVNWxNFMc4Log3JINDR7z0dpfuqlq1qapzSeCd5enbCR48fY4uCfpQximJ6QpPmCUshqZpAa1qWxjF3ilnbPbMokuR5hA+OxnTVqQOe78AS+DdGJX9lSBjlCiEccdLRak1ribKMZDCiP+xT9hIW0yWNCXgtsR6ca6mMAOlJezGHd64zHPZ49OETTp8coQmEILEmkGxGYZdFuV52FbBWxIOUrdEuafM9XrnzPqs04p/dE9QhZzkt6d/SbOeKO5MUVRpUlvJkf48HzyxojXNnfPTOT7jlCq5fv03sc46nRzgvuu7gkhDeUq5qlIrJY02cxXgd048n3Hj1TQaTLVTvHuqP/wJv2i7h+g0AQXW7Ih3HZCFsjD43lkbObZh7XafUtpd3js/jMyXhL724w61bu2SDPkJGZL0lt/ZHPDyv+aMfP+X84oIdOeDWLkxjzeP1Gzg1Qro5urdD9eyHbOeC7TxiYQKNEeSiZWEsXuUkcTdUF9HllY4zhoE03NmOGSSOJYa33rzLm198iaKyTKcLptMZ3nnmizknZ8dMxgNWa0GSBgaZoh9JbhxuY/YlF9OS6bKgKB1lazCmxQeHuGIRdXh7QlM7bBtI0pRvfOc1npx8wNnjipg+T59NCW7FV76ww6AfeGVc0z++z9IccTdumIqan4SMcukpXMB5RdTLqWXGh6eOgKdpLdZennR+9Td+k7ZZkUYRQmpMa7FNRZpoiqJAiMBk3Ge8vc/ZyTOePb6HqQuk6OA6QkhGW2OaYkGaj9jeOUSEgBd00LfW0DQNZX05HlUJRdiw5ZSUDJKYOM1ojKMXdRiFQZyitGLaAuRYU6OcZbsXoZKcLITO3r2sWZUVImiIuqXrqipQHmJxBUNMbSbkn3h9sZmVQJbF7O+MWc/PEFJBFJMPRmzvHrBaFRyfHGPaBoVAy0CWJUSx7jzooFuuuW4JetXgrGob1rbhYl3w0YPHnJ5N2U4iUtWZ0wbpaaOIeeGZ147gFKVLKK3DOxDCkw1ikkR2kMuQ4mTABY/vGnW0D8TR5UWL1JphPydWmqIqaYJnEQLeQ1RV5HLC9uEuzfkCVRuKIEnzDKUkKlb0hhlbu1uMd0YkkcIax+npOaG11LWhLGvSftIhHy6J7mMMZLngxosT+tmYF7YSvv2VBR8mCX84TCiXQ57cO0Y3lt/6u7/K1u4Ev1h0z1pLQrB4y4aRWRG8ZbQ9Yqt3wI/fe0Zl6k+sqn5ZLIoVAdsRRuIcUzoaYcgODljXhtQ5jDWd/6HpRgpB0Gl+bNioQkl0HGGt7ZAvUmCN/QUrJMFfN71+piTsqorzo2Nuj1+jbi3nZ3NQimvjlL/55jXePpUko13acsHK5rjeDnE8RtEQ6RixnmGampP1itY5BlmGlqpjowjd/ZAh4K+wNPemJglzhqol1RlNFJj04O4LN9BCsVw3PHnyjMFoiDWGs+kZXZ8cEdIdhls3GA1H9GKDTnrs9rZZlT2WRcnJxYyT0zUJBhku327ef/iYNNXcOLzGrVu32NoZUuuMptUcv9dwevyY3/juq6RnH7J88Dar4oi6WhLjGZoFcW/MByGmXNe0KiXJhwwmY4KNeTgrGGRgncc0ly/Ebt25S1NfkCQpWbZFFCXdyEcKHj+8R5b+C+JU0lp4+uyMuqy4OHmGUpJe3mNre8h4a4htSwbX7/DqW18jTWI8AWM7lIV3juYKo8/OJ8zjgu80RULABtttwwk0phvdrFqPCYYk69pBZxZ8ZbjfGU3GuvO1s50ppFK6s1uPYmzRsm4WxOLy+/Hc87D7Zz4ReAoEIjQ7uxOaYpf5siMIrNcFFxcLrHWMR0OSOCYSlp2be3ihMUJ3zDYfusS9gTIGdXkSbq1nXbZ89OgpR2dT2rrpkjqCSEhq2zKfF5wuS6zLaRvPsg3U1qMDRIng5o09zHqFaQNWRKADzhmC7HRbkiRhZ3f38uchZUflFh2hpiVQSIlKY0Za0pqWwbCHjDWytQwnOddevUuaJB1hItJIveksJAy2+iR5SmMqXHDUdTcGM1egVqQQREry2s0b/IPvvMnP3/mQD59ZXn3pJv1+xptfn7BYZLSVJY4Duzd30LsjSuGZXcx4cH7K9naHRHi89Lz0hZf49377t2lExNnU0e/3KdvFpWeATnumbtbEUUrqOjExmY1Zz9b4p0f0Bz2CsQjv0VJifcCGbr+hdcfIa43b6B2A0hJnXLc8ZEODdI7+X8MrEz5jEl7MVwyinNMHj0HFxFHCx8drdCgIgxu4nZe5v4TVg39Nef4DQrpNP45ZG0+0s83enddpDu6wfvYB8+N3aUyLjTK86NqppqlR6nJMLEC1mlJc3GNxHFMP9jhfebRvEOsTkkgxALbTioPJiCQZ8PL1FE9A6h6tnlDYDNe0rJ4+oqotTuTdosN7EuPZSQwZNTJc/hBjO6A4L3n77GN+/s5HZH/pGBwEInuHs6c1ezsJWT9nUA1J1RHKLMEuqA0sVhFb+YA8ahBhSa0nqBCxOFuSJWMKFVE6jbbhSvxlsVrhnaCta9bLY5SSxHFKFEUsl0vyRJMpxXo55ezkGQmW8Thnb2ebXi+nPxwS6CoVkFROkMU5aZyQK9Fhjq29svJrnUUHj6Rbohvb4iuL1hHeg3SOVVtT+g1DkYxlsQDR8urLd9kajfjxz97l9HRK1bYQBOu6pmoEIsnIVEB6Q3oFXrljtYlPi+Dn/y50WGetFTs7E2QIVIsZy0ghdEJ/OGZvfxdv1kz6GdcODjg5v+B8XlA3Bhc6kSO5cfu+khRgBI9Pp5ycL1jXDYNEE2twkcRKhahqnK0QztNYQ4VgZR2tDQThGaYxh8MJT4qGNrR45QhCUrYNkZb0+xnjrS0m29uXnkOKjTGuFuA9Wnau4zrT7G6P8Y1j1VSELGUxW9EHZCzxGkRw3QugcZ8oDBprkFpRty0O8YnQTXWF8amVkklP892vv8yvvvE6r9++hrO/zvZkhZSeL31xBykSbOtwwTIY9XEhkEYx2ajPf/o/u4ltuirzX/3rCa984WVe/uLX+fGP3+PkJ+9g1g0qaIS+fCa8Khuqcs3OOEbJQG0Ds/OKfixomwYZIEk0OoHgBKHxG2xzAN8pDorgNySxDvccgkOIDnIlnME1lsX500vP8Tw+UxJ+OLU8WU7ZerLgYJSzd+cGr714wHkBP1re5KLwlKcPKI5+gilm3NwtuNkf8N5JxbP3PiTv9Rls3aS/tU3c+zbL83sUy3NcABkCIXTKXlfN2hbnJ1SLU4rlkD/94QP+4if3+NaXXoRiSOybzpo8jjk/ajr9BqWIohirevz0/nuIZJu3vvQFgiiZnh9T2pinR08pqgqd5OT9IUvt2RpdbmneSzN6SY+mrVlVBbPjGRezlkg+4cXb2xzu7LB14zqhXuKUIs8F+XibunbMH52yqit6vR5f9Ev+6N0f8LiEaP+Aye4d0p0hKkhkUHh3+UIMsXGd9h7vO5JGsVpRlQX3P3gX39bITHP8+AGr5RwfRywXKwb9jOGoj7MWISU7W2O2tycsFgXlekWW94iizoIeIdFX4B6tNXgh0aJDEyxNQxwkWeRoXSDdsNWEC5wXC4plQ1XNiaXk6emMr75yCxle46cfPECnCf1Bj/GgDwKePHrE40dPCBry9PLPpQPth19ANDzX0vBIodBJJy06GqSkkUK4FhHFxJFEesOwl3Kwt9NVOUqTZx2Ezzi3mS3TJfQrkvDp2RlHR0eU6zVpEpEmiroxtDHoAMqDaR1SSJxpKW3AhE0rKwU6jmitQacJrmmxwdI23Zw+UgLbNGgpifQV2iLikyIWvCVS0MtS8liSRpLzs3OEjFCxpvSCZlEjHz5DaJA+gBfdOmAjGam0RGqFcQEbPKZucdZRlpdb3gfg5uE23/72a4x3xkx2xp90KoGuaxEI6rrCGEO/133248GQjp+6UbgLgZdePqAKgscXa5SUHO4P2Z7krI+XiCvSWhLHRGpE0xi2thMG20PWTyqkgl4vI8sS4lgjRPdzd/n3ufBtF9Zv2LchEKTG+HaDkrKUdUskoSwufx7P4zMl4T+8V7Iupnz3lW1ee/kW+aDXtayFJiwf86KqyK8XnLGDq3NeORywNcq5fl3xez86IhGG2enHrGygn+REZoVoVwin8KETn2nb9hd+1L862nrNsyfP8LbgL378lKNZxV/88H18dZt+7AnBIJXYtA9RJyupY+4fL/mdP/wpMhlhfvvv8MphQruaMluDb9dEOLBw9PgM5yy377506TkGg5yiqFFCkpAQ6QN05nHJmluv7vHSS4ecLe7x9P6H3O1pokzR2IZVVSIxzBvL8uyMrwPbW55/djLnOIppsiGLesq8VzNG0JgrxjPWdVKZ3gEdbMlYx8nREY8f3if4FmcD6+KEcrWEvMf2uIeW4EyLQRKlKU1dEUcgQsT84gllcdY9w7hHFKUo1QA3f+k5GmNItUboiCDYLOgiZKTJYojwxE6iEDyoC46LGZ5AP055+8EJ33htzmsv3+TuizfJBgOSPCXuVs5cPL3B9//8e3zw6Jiivvx5qCjaqJf9wj0Sv8B2i2OaxZxqtSJJUpxpCFKi/ABTzSlrw6lZAYJa9LBE6ChBaT61SOdKcASNqbBNRS+OyLIMgcOgWBtP1axJXcAIhZXgVaCuWoyTuI00KloxW60ojaGhk5H1dMiTumrJdI8s0Z0I0iURa4kxhrZpcdYjZPfdCE50imlaI+OIJJYE3Umf7u1sE6UK70I3ajAOt5n16yhGEHH08BxrLGXd0Hp7JYQx0XDz+jZBBJ5dnBHpCKkUWnUvbakUUgrKqsQYA7HepN5u6RdCJ5hlvcc0LeezJecXJd45XvnCbc6WFQ+P5xhz+Wy6n/XY3btJHGddnog1b+68QO/gDpPDQ4RUeC8QqE0m6sg2z/XCQwhIofHCkyQJUZQRvEcJiVISHUVEUjIeX96hPI/PlIRL4yibwPHaI9IeSse41nGj37L/kkcqjZJDuPMK1hiyPEFGmvGq5eh4jmscu4OY957M0OUZGsdEB6QDqyOElCyEx18BMVESTs/nLKoWQ483vvJF7r3zU3768RkHWz0kFUJ0M1HBc3y55P1HZzROMUpz/vwv/pz6pV1m0zknS4uXnqKsQEiUjrl++8Ur6Y+vv/Eqp8cX3Pv4Ia1tCB7iRDI6iCjCKR8+OefRuyvUqkc/SpDLJa5e4Tbayk4K5ssF0XzFl28cMH5zwr94fMpHDytOvODdJPDF25MrpQqVlpiq/kTtzFnDarHkvXff5eL0lGEcsNaCM3hnqNuWOInJs5RYgnc1TSNYLGaspqf0d26Dr2nrBXGyhdIZ3psOUXBJrOsSmWQkUYSQghTJJI1QImC9IwgY9vq02pFHmkkSY0NAa8nZfMrDoynXbhzQy3tEIiCdZbFasV6tsW3L9vaEO87ywaOzS8/RlVQbg4DnczvxXFSpG0lIramril4eE6cJpkN6Uy2XlO0au4QkTfCDm4gkRYtP1bnE88XPFUl4e3uC9AKcwDmHCZ62sR280llCnCF1hDENzhts4TGhm3/HaUpQsGor1k3LrFhjkbTGIZ1lK0nI4wSFR1+xQJYi0DYtbdMwm61Zr2qE6AGKQS9nNB50iz5vOX0yRQnF9YMD8n7SPS3nOzlJa7DOY31XsapI4xtL2xictZj68spv1Iv58ht3iVPJ+XwGG6anFpBnCXmWIaRkuVx8ynAMAms91nbIA2MNIsB8NuPRsxPO1oFHj89J+4r+KCfPE4r68nt688YNojQmy0dIIVis5/R6OXESs15VCCJA0O8PKAuD1ilSdvrJ1hqklKRxgmnNBpIGQoH2Ae9aMt3ptwwH/xZmwuNEMb9oObmY82xRkE+GGNvJ/HkfOnV54Ym0JMoy+pMxUZJQro+5Pk6IgmBRFlycVJS2o28mSURsHak09NIIScS8vvxSZcOcdLRDAPqDmDTJKY3gg6czqhARSQvBYp0jjjsoXNtaHp8v6Y0OeenlO5w/+pA/+9m9jggQNGvjmM8XbI1H3L37AuOdg80S5pfH/fsf8+rrrzPcHvPjH/6Es6NjqkKSWcvZ+hnN4wi5vI52OedoXLOi5zvIVklEUzqOz9YUZ0skgt2DLb4yqpl9dEST7VFaz2KpuKLb5NrNF5hdnLKcz7AbWMxyds7Jk/uU6zX5dp+mMSgRGOQJIopZrgqqqmHU79HLU8oW2rphcXHK1uHd7vOsC3qDW8RJRtbrIf3lixfrGi7WFqUEmVYEHSB0C9hufkhHjlEdESZRdDO2EKjqhovpnGJdEYJENC35oM+6qHjy6CFN0wnQuCCJrngZgCIE0U2OQzfDRajN2KZTL0uzHlJK8jxh++Yd5iuDjmJcW+Jbj04EcdLDJDkyyeh65v+OGsUVSXh3b5u9yTahDTRNy9lqzfHZjLIs0SHgBHjvqJyhkQGVpUjcJskHjPX4pqG1FqklItAx24QgTWJ6aUqsNVpd/jy6ZbehriuePT3hYrqk11P0ewMO9iYMBjlNK7DecO1gj+VihQZGeQ/waClA9vDGULWWdW2oiqqbuwvJ6mJJcTGjF40uPcewl/DGq7fZ2R7T1PYTAwVNYNTvEccxAjBFhbWWrd4QCxyfXXBxMcP5bhm2v7vL7vYObes4nZ3ws598RDqM+cpbXyJOFKvyCohaANMYXKjoD8fE2QQhNFmaURixEa5yZElKsWqoiwrvPU3T0LQNOIdrqg5SGjqZhbpZY9oK15pOJlcEqn8bEDV8i3GWp7Oa//oP3mVr9JjguvHBqmy5ttXnb33xGoN+iiawXq0Yxym7h/u8Zh3LZ4+JpGN3lHE8s1g0iQYyybrpcJDSWcb6CiGQSCOTFNO0tE3Bh+/+nKdPHqGlpG5qWtNQ1TVN07K7s8W4lyKAVavJDTROMK0DZ6cLhBSsVnMWi5Jhr8/Ld2+AS2haT7iiIv/g/Q9YrJd85a2v8I1f+xIPPhzz8QcPqOsGNy+xq5zdpId2EU4q2vg6Zn3C6aOPUUFxe/clqvljTFOjp4HcWrwJ3EgCkxd32b91wPTojKK6XLBG6xytEiZbe9T1mtV0SrFaMUigWhnKxpArTz+LGQ97DMYjlsuS2WLFeDIm1A7joVxPibIe27NzjPVESR+pM4SIaNsWGS6fTW+nPWZN17KG0MkS9vKceIN4sK1FWIuznVpd7cH6gJabWbZrqesaFzq5wXVRdVVSr89qfYrQEa0zzKsrmHtCEjaC/kJIhJB4JCF0Mz4BqDhmMBqgpWRn75Bsq+P8F/NjoKTfV8STPWQywqORmz8vbHYXIYQOK3xJjIc9tNQ442haz9xbyjNDqyS29Nhqhg2WxnmUSlBZihYOUzXYVhHRYZl3xlvcGPYwzuGqFh0CozRhb3uL0XhEuMJpRCgPwlGuljx5dERdNqSJwdoaITsp1KiXEEc9zvtTLs6mtFVFHkedPrUMgINIE2hZV4ayqEE60lSzms84feyIwuUojbJt+dO//D7r9QsMR9ukSUqWZSitWJcNsTHEkabfH3XvO6k3uyLY2d8limPmszlJnOGFY70u+flPf8rx0yfoaUzWS0liQaQvRxMVRcWgl+KCpQie3es3qWqLjCSR74g0F6fHPPzwXe5/9IDZ2TlJnOCFoqoKgqmxdY0TARdct6QLgSiOiaSgXC/wzmKvoPk/j8+UhJ9M111VoSIeHBd8+HjFulx1wuBRzHLV8M07I/qZxjbQSoHpt2SDIbdff5nzXJAeHfN6EBwsR1S1p6wLytbx0VnDRWlw1pCpKyQTpcIHsdlWe5pyycHOiEhrhNI0bUaka3zmCQ7mszXWOYrGUtaB94Lg2fEjTGtI05R12dAWFelojKkqlqZhvSqutPMJVvDkwTOeHt/j5t1D/vbf+i2+8tbX+dHb/4qzqmTtQWeaQTKil2bkWY9yusfyyYxqfow8PSe0cB4CdeXoWUNbFeTpgP1RxMs3tnhntWSxnF56Dlc1xKZr36Q1LOpTitkpbd0gg2cxmxGNcpKtIc3FkvNHZ2RJzOl0RW8wRXhPEJIk6yGEpK4ayrWlP5pQVzVCalIpSPPL9WIHWYoDXHD0k4TaGoyHWdngfMAFgWkcQnYJrXJdNSQ2tjaJCqzXa0JRkuc9gvfUTUlZVlgP/d6As/Up6yu28MF1dPSOubepiJEbkaPu10gRyPp9nKlxbU3deparJe16xZYW9Cbb+HyMJOpsuj790wlsBMqvEJpK427m6VS34NudjLn35DHH6yVN0TmMuAA2SJAGtO0YX8KivEH6BGE8trVEUjLs5WQjTaoU/SwmjjRKdIp5l4UMhmpZURVP8HXNzjgn60nyXoz1giBUN/0MAefBOjqNB2/xQWBxnZb0ZiuZ6oiqbHn15RfQgAiWa1sZZn35S3p+PuU/+7/8Z+wPNTv72+zt7/Pi3RcZbW1TVjVRLOkNcnb3b1AUFdaYrktarzvbMyWp1g1bkzHD4ZD/x//z/82Pf/IepfGgIpqm5PDmC3izvPQcg/GEWHii0ZD+tUOqZUkwgvVizu/+zn9LWTZ4G/CmRkvPZDJk7+A6Is463Ymn9/nwnZ/jJdSmwtYlAUmW9xnu7pLnB9y4dZNXXnnl0nM8j8+GE3aCNOmjdYSUAuuWaC2JdYRWEbV1rGvLoVR4IHhJXbZEmSXNU7au30KnPZw6YjBfM5uXCDVGKM14u+D9Jxecz1Z4e3ml8/ziZL0+STZke3urszAKnSKX3mzDBXQYV9NS1TVV09JYjw2e3o2dzppIKxAHOO9J44hBrhFAlmo+BTn91VEXHUTHFoH79Sl/GH6fr3z9S3zzrS/wvZ9PKWZzVKwZb01IdIa1glIMGdx4g35/zAezFU0yor+9Tawj1tMZrZmRp4EoVmjpcLbBuMuTTnv+GLeaU1YVzjYMox5feukF3GrOOx/fwxiLM7ZTuxuOeHb+rFsweMv5ySkv3LzGYLxFNpywtbOLjiOePHnMaDXi1Td26A2G2HpGsZ5deo7rmaSvEx6sag7HY+qy5Wy5ItEalCSKYoKHNIrI45gQoPWhM28UkjRNqJuaxbIgSgtCCDRtRVmW9JIEPDw5nqKvGBOZpt0oym3cK36hen2ul5zGGhHnuKKmriocGqViVDzE+wVxPmGN7mx91PO7EDYogw1D8QrNBolH+IAIjkhKrm+N+e5bX+P76Tt8dP8h80WJ8Z2JpfOCpq0IKhAphdaCWHX016ZpcK0hGw4YJRl5EpFohW0bgvGoq3YoDs6eXIAUbPVTxuMh+9d3yPKMNAJTFngiSg8nZxdI1eGg66rqSCohfOKs4l3Aly3lcsWdF26jfU2iAlmkaKrLK7+DRDEraqrpjJNn97mIFB/9UYRPB9i0j0gz0uFmpLGhALfFGu0spqwxTUPcH/L6l77Id77zbc7PTqlbg0dBEKyWS8zD+59AXn9Z5P0ewnU/C21NdX5KnAx4Mp3ysx/9lKYxvPTSq3zpy2/y0suvInVMOhgjoxytJR+//VNOTo6IkoiyXHF+/AwRPLFSlFXD4c0X+PZ3f5Pf+Dt/99JzPI/PJuCjFVIopFIYU2PaulMLExEIQdO2rIsCbzvID6KTd7PGMDutKJYVVdmwXlvmS4tXCb0sItKa21rRjzUPTnLOzk8vPYfzAY9AxykITbJpE7333cPwjiSONsP0T216nLU41zHB0BulM9GxcetA57cmAt5a0l525WKurGuC0EAEcc7J0xl/2f4Zd9/YIs4VcSKJEkmc9nAtXEzPOTq9QEcpe+M9HiwMO6+8SJ5H4Byr5IhzW9I6hzUO6zxKye6yXBKrsxOwLa5cYU1JNJ6wf+cVfm0yZri/x4cf3ccVc9Is4frNA8q6ZrVqmAxydiZ9xpMx2wc3Ge8ckA53SPIeN2/fxlRL9vf2yAZJd9Hk5cysiRaUlaGnugTSH46Q9aKzWJIRrTckQqMiwY3dMY9mS2pbYX3ACYGWitliwelsgdYlWkmsNyxXa5okoXGe89mc/fHlELXwC7gnT4AgEOgOtqYUSkUEKYmzHuNRRJz1qU3MKMvx/RwzrRBRQqwSGu83Cqndtvw5LEJLzVVD4Wq97DSFlUSKCK0CW1nMV19/mcGgx8/fv8/5bIlDolDIGCrf0niH8Y5200moWHYIHKlJtAJnsc6AN2gkKlyOrZ9drNAqQsaaYZ6yf7DN3t4YREcGsq7FB0GxXhOagpt7E7K4E4MXIqCkJkhJ0ziaxlKUNf1+xnR2gasLDncneAL2igVhFSrynS16DFCiMwzO0oxkOED1Bqj+iPHBIWcnT8mzlF6/z/z0lNNHj4l0Qj/qsfAWGwTHpxcMRlvsHigcisZ08NYs1sRXSWp6RxKnKBFYnR3jTU2IMpy3vPTKy1TLrks5OztjsSxYlxXD8Q7j3QOkgPlixmAyZjgecHEC9bJHnGR8/Vu/wpNnR5RVZxrsrnCieR6fzehTyU/U661tUVqjdYTSuvPRwqKFREhB3s+J04w4TahWNdPTOcWqIEoUTkbUroPaiNqhE8n5oma6Kskjy53dy11Kb79wh2/9yneItCJIjVQaNhbihEBwHX9bqU4a0z/neNtOYFsqiXgOYeo0ZzBBb7SBHd4Zrt26g7iCk182zcYvTCAbwcDvgkl4+PE5C57SekdRLqibluX5mqfHR5S1ZTCJOCkqeluHJKMJ3hl8cETjfbKqYXH8gOl8SdM6lJS49vIPs1hdIJoK7yxIiVzP0f0hw+sv8q3dG7z6lSVHDz+mXT4jixx3bu5z7+ExcaQYDPrE2QAVZQQUUZSxvbPHtRs3qNZLhpMthJJMdu/gwuXXZWYdcRpxK5fkoaUfp6h4gHMOrbqNuvECGQKjGPJIcFF6jGsRIuPkfIoXnmXVEOuaKFK0zlKVNXO7oGgdWgn0lRKjm3OGTmEuyE1yCGIzJxbdHHTQZzBMcTKhrktEK/DWYlrP0cWC3jhDimhjGCuQzyvOzZ9xlYpauVqio4g4iVFxipGeKCgmccxLN66TJDn3Hj3h9HxKYz2t7XRRqrbzQVRaotKIXt4jixNipRGhM6R1waIlxFKhr5gJHx3N6E/6jLZG5L0BvX5OUBqlI4IxgCE4iCPFa6/cJs+SzuCydTTBIjC0rWNdlhR1iw+Snd1t1ss16Iym9p0zzRW0ZZEnJIMbbE3GZHFKmqaMxyPiWGNsS38yZrQ9YTjqU6zXlFWJjDMmezdoqgohFFHT8PRixYPjv2BVW+I0x3hB41pkCFhT079C9kDGCY0JxKqz7nLBEmTAEhhOtvDNBY+fPOHw+g3ivI86O6dZLTgpSgSB1cUpt+7c5uD6IT9cL9FSs3twgzuvfIHWwwfvvcf58WM+/vDnvPWdNy49C3zGJCxFhJKdkLmUmizpICzd9XQI3zIYDdi/e5vecIx33TKmLFY458j7CRbPh0fnPH58hgmepmkRSlMVK5ZFySuHQ144HF96jpdfeZ3bN653/mnIDoP2CxrE/lNB2U8oq8//y6fgTvkLla4ghM55UYQAwROnCT975+1Lz2Gd6/6/3rFctaRZwp0XvkjZKMrVM6yyzO0M7e4zP+uWhSjNYnXBrKjY2rmGbRvwFusFNihkfweXrVg05hNb+tZcPo5o4rxTsGpKfFvh4hHBN8QhpTfYZmvvNi++/EXmpw84e/I+60azLhqGwz466RNUSpIPOkfhKGY0mSClIsl6nUKXgCSbsL4KfK4VWaRJ44RYiI2rhCBKNP24k9i8WBsioVgVNbnsaJ4+eMq65Mf3HtCLE5SURFFEHCc0PnCyWNLUNVtpzPZ4hPWXJz8h1OZubBZpG0EXIbrqzjmHDwJDxqxSJPhu2SslRJpYH1CHCGUCcdwlbonoUAshbDo8zRWy16zKGkSDjiLSzJOlPRwe5wOJllzb3iZVEXuDIdPFgkVZkVQltYroq5RBkpL3MnYnY7aGA2IhELYF79BKoYVACoW9QrBGRjnDrTE6jaiMxVctiXfEsevo2K6THg0iJkqhCSBNQPnue9XdQUvpoA2S4AChusVaFBEJgbP2Stz0F15+HZVExElEEmvyPGc8HlFVNdK2yETRmBazgcE1raW1grWBaeWo2oqAwK2nHZ8gBBSK1lisBy1AqU7z47KItu9g245mrLwhNpYQJWRuTd084P0PP+D8/Iwoifn2d76DePEOP/iLH/CHv/cHjLfG/PpvfJcgu4452E5WwBrL9OKCk2dHNEXBD//0z/jBn/0Z/9H/5D+6/KHwWZMwstPJ1QqluyF9U9dopTB2zainGYz66CgmyXKkkKwWK5IsBuFZTmd8+NEDHnz8jLKomTaBae2IMFzPJVoGirJgPrv8WL//+3/QCf38Ff/tr3z84q/+Bf99jdjnv6RjBj169IhvfvNbv/Qco8GQ1j9n+nmqquTZ6QN6/YiB3mHenFH5kml7grc5UmomexEnZxYh+2gfSFSgsG0HqXIeVML4+iukPUlVNxTlBrh+Sfi4j5U96naFY4l2AZYFQxEhZYyOLHGcsHvjVSZ7t9i59Yz+T77H4uxZJ64Tuhl7lI1J+mOMKTpssIOqqTqXkDhiOLwc93gwGFC0FiUikjQil57gDchAHsfI4NgeanSWc7Az5KKoebAoCQiK1vNkXpAlBp4rl2nFtKo5WVdEQsDY8/KtG9zYu1w8XOl4A0sTmyKBTxS+pOzusNq8XLTqOqY073RipVKdSLeQnybxAF2/JBAd7QwhOmLMZVFGeee+4AWNk3jRYeFR3XQ5SEE2HrITR+hBTl7V9MqSprZEUUKWpPSyhNFwQJon4AzOdbZUQWm8lNQBnL58HJH3ByyWLavjGXGcsLe3hRRp5/ohxEYoH+gMyFFJ544ifEf8sc5hnUMqidIa5y2eDp+ug0A4h3H2yvHdzZs3WK7mVHWB9V2Vr7zFtRUueGbTBePxiNsvvsz07Jy6ajlZTFmsKqomUBu9UbATBGJ8CNjgaG2F9IKgIqI4Rl0xq2+jXYKwhLAxwY08rbPkWc6Na3eZv7TgpdffYHd3l9YFjDH0xlu88NJLjCYT8sk2z44e8+7Pfsp0vkSmOeuy4Ic/+B7nJ6fURUm5Kuj1Ll9kPw9xFfXy8/g8Po/P4/P4txdXod4/j8/j8/g8Po9/i/F5Ev48Po/P4/P4dxifJ+HP4/P4PD6Pf4fxeRL+PD6Pz+Pz+HcYnwkdce94HYztlD1D5Im1IfUxrRcYAonUaCk6s04BVoD1jsZ2dEghFNKGTthKCILoxKu76BaEHkks4eW9/JeuWv93/+n/KLRS8eH5CSqWXNvt8eoLdzh/2GBNArECLVnXFYvlmqbt6M3Oe7yzDJKI/mCAEIK6rmnqjnSitaZpW5qmojWds8P/65//0196jm/8z/+v4cnaEayjHzmETqCfoIUkEpabBwNe3ItRSGrnOa0b3r8okYAKEeOhZlU6rAmMYkUSSQZJivGex9MapTS3tjIWJwt+73//n/zSc/wf/m//edCi21w/l5jRUtG6lrd//hNeeOElXn7lVZKow1M761iVBc45Yh0hRSdt2NF6wwbXq8iynCxNEUKwWCyYr9f8T/+H//4vPcf/9n/zvw5SdFq4LsB0tWD7cMQgj1nPVsQyJYlTJuMJURRT1xXWtBjT4ZurusFaAwisFyip6WUxWZ5Qty3rdYmgg0P9n/6P/+dfeo7//L/6L4LUCTruyCWmbfEhEMUReZwQa411LSY4nHiOfujgWMIJ8jzf3IUK51ukkCilCUJijemUxbxHSsk//s3/4Jee4z/8T14LNYbpWYVvPbKSxDJC9yLkUFC3DafPCvZ2+sS9BIPF0lCuTecW3TjaVlAXnmACqXKkacb5ecWysBjnSbXkxp0J7/3F8S89xz/8298MbVuRpDGDQQ8pA3deuIt3ER/f+5it3THbexNEFJgvppSrlmJVYUzTyaN6hTHgnUBHYkOC8ht5TEvTGEJwpFnKv/zXP/yl5/jJo0UQwXX6xrLjEyC6P6daLTl/dsKHH3/E+fk5VVkSJx1csakbivVz/ZSOB2BNA96xriuccdSmoTYt3juEM/zL/+8v/96+/9iGEELHBhTiE+/A4Dt89nO25XPwi/PuU6QMHcLGGY/b2Bl1d+FTM1lr7Sei/9/+8tYVQMbPmIQ/Pp6zrC0SRRLH9BNBIgKt6+zje0lKpBRS0iVhPLVxVLWn8QHnNz8woQPAh/Df8UjoIEWTJPDy3i+HQy2LCpFmKKFpm5bT0zmxf0rGNmVR4gpPlKcoAYOsxyCPN5YkLXEUkabRBlZnaaxFpynee9Z1TV03VE1DVdVXgs/TvuIbhzmjPEJqhQie2kvW3tHXgn4W8WhhOC1aams76q6XDFK4uxWxrgODVEIuqGrPQarp9xWrVnORWLb7miwBN7rCxdYHvOzkhp5fCuccHo8IktV83tlz+y4pta2hbRqeU2+fa+R2lyhs/ryO8k1doXXUec1dAZVDSuI0QmrdaUXMp2giVFBsD0cE19nCrNZrnLVUVU2WJiilsMZircHaTv3Oue48eRYRQqAsCtZFgdL6ShFzHySxiIhCBAHapu3Ez4WmWhmWVYXWKUKnyFQR0pYgPJHSxJnePFNPpCOC6b5MUmqkivCuu0fdy+LyEHiGgz4YxfnFEpsJZGsYyj6+cmADh3mPyHqqsuFsWYGAVCUI76gWK1zo5DiVBILEW0EcR6SAbDuz0bPjywWeOi3cQFM3xLFme3vC9u4eb7zxNb7x7e+wtTPBmJr79z5iNa1YzRed2JFRLBYl1nRJZjQakWYRbdN02r6uS6BJEhPHcacwdtn1CB0eGSk6G6zGIvCcHD/jR3/5PR5+8BEXsym1M0RJ0hUrQpJEMUp1UpIheNqmwTRVx8YNvpPaNC1eCoIPROoKHLl8Lr4UEKFjEbjgOmjixr4obJ4bQDBuwzfoXhzedWavKpIE75FBIaWGAM65jiQWuFJ75nl8NgGfWc1p0SJFYJCkbGUxsTS40EIwVE0gkgohwYmACYHWgHGKsvWsmgarOoPEEDqSR4fP3UgnC4kMjia//PCnFzNU3iKVwhvBump42k556fYBW7uDTrx6o2GrtUaoDjcavAcpaL3BCYGMIvqjMdZa6qoiCInxdHa2MZ0k3SVRypST9y+625UnRFpwZ3+AE46PFw3OOprgaFGoOLDdjwnKU1bw+DhgtWCxbBimEUYofnJuuWE9/SThxUmEFrBuLL2dy3GxQsgOd7pJwNAlYyEEURR3erzWYqXqgPdt2wllb6rfX5xJPa8Kve8q4kAnN+i8u9JAsWwaiqYiy1Kcs2itKFYl1bRi1Otx4+Z1VlVLXVnapoXgP6kelBRopdFRjJKSOI6wxpDEEUoqJJLxcNi97C49BZ1Yd9Asj1esZwWr5RKkIE5STBWQLiHPQEQRUR4z2k5JRgoRBaQMHfdnI1sZ6XjzMlZ4D0JolPR4aWmay5OO8xJpBUFIojjGGIiUZ7g/oly3XDxekEYZyXZO27RU6wXaR2zvJnhX46WmCgHvBV54nA14PDpWDHJJYx2JUlTV5UJCeuMWnWYJcRxR1zWnZ2f82t4ub919GYHg4vSM8+M50qY0he1MXq3AtBHWOKSEtrUE4Wibmjzvkec9pmGOkorxZIh1l2u+FOs1WRJT1w3n52c8ffyY1WLG2fExjx88oC5KattiFWQqBetRspMTsBuvQxc8LRYrHMF32hw438k0hS7B+ivpwo66LrDWIUIgjmO01ugkRiqxSb5dNew3bipKduLy3ntab4mi7jvn/UZNJKiNk7f45KUn/20k4WUrOG8CWrYgArHwxJEE6dFCIxwY14HavYTWeVrTMcEaIlatoVIBv3nDiCAQQX1a9iPReIZXSFl6pSnKmuF4i5uHB2RphBKyo8TiUFGM967zWCtKymrFYDAgz3MWyyWnswuyLCPLMg4ODvjC619gsVjwwx/+EBNkZ+woNfIKlaxH7z5CpDHZKCWyLdaA8znFxz+gXpSMIsfhIMbcfpPhuNNe7icJR6uGBw9PibI+wzxBKsUoixANaAfOWJY+MEojtIS2vLzqet4eWxs651fRERCEhP6gx+nTZ7RNjZLdRQkhEEUd3ZwQOvpt6JIt8ImNdwCE3VRSziOuEEYRUmOspW4DeMto0CNYy3pVYBuLlRKLQBMRbMuw3yPJUtymBVQ66gT9g6Otq85YE4Fp20990hBE8eXkBFs6jo5OWZzPUHQiTev5mmJe0893yTNNTUWoS1grXNljUGWkY43sCULiIe6qpEjFCG8JG/aYEgIbOuukKLr861NUlqEOCBmxf2OfEALV+ZJ4KNk5HGN9TbGWhDxha5xzMZsTKs1oMET5mLIsiYKgLju7piSL8U6gNOTDiK0owpY1SXrF5yIcSmmcBdOCVorDwxscHF5HRzF1WXF6fEq1Ltkeb3GaDzk6O+/us3nOOHV43yJFQhKnxFHaJWdg0M/Y2enjr0gn/+Kf/TOuXzugWC959OBjZmfntFWJtwZjDNY7Wm9QUQQb/btIRdjgcMF3HbQEjcQJgWkNidakaUptWqytsbaBK5xGimLJYrGgLEt829Lr9RkMhig16qybpNy41GwcP6RAKdFpX8uAiEJXSNKJDBEkzgm86xKyc75zAvlrrtw+UxK2QmKQm5lO5yhKAo6AEt0bv5v9dm8Jt5HGc8ju90qFxW/aX0EnoNeJ6HSPXOCe+1ldEl9561s4qZEo2sZRNxWr1RpCTRZ11QtK0jaGk+mUw2vX8QRqZ4n7OW/cuslsOsVYS9kakn6fL929y8/fe4+BUqS9Plopzi8uLj1HABIdkQUBvmtjTk5XbD15m735w85d9tarjL7wFkYJZvOaj08ctpyx+v6/4At/67c4aQJtVfH10RYHeUxRC8qixSYRVWWZ1parHogUXXsX8NgAG6VIhJAMJ1s8ffiQ85MTbrxwt3v2srPu1koR8Jv2CoL71MpTQOd2vJmV6yhBX2E4OhoPqGrTte8ICBbnHFXVcnI2J18XDEYjRnkPYQ3OpZRlhbGWXp5jrSPJeljjGQw6jYPVaoWznuFwG6U1s/mcxWJx6Tk+eudjkjThxp1Dev1Or/b44VPefvoevWQMwWBtQGmFCJqqbLAnlnBiSAaK/Re2yXcSjG06aroCZCcTEmQgiiTC6ys7A+8hTxMiKdg+mDBfLKiWAaUCUQx3Xr1BsVQsw4qBlmz3R/hIcmO8Q04gqyRCa1pjqaoSFWlqAatQU/uGQZ5gUeRXfNdHkwS9iijWhqr0RFqTxkMUmrpsOD064u2f/ZhitWBrnHPt8IDZbM2iWKMCxJkkSQRRDJGQOC+Yny1pmoY0UyQxtG115Zr/Jz/4cz56J0UET9PW3UzVd9WoDwGUYJRmKBVhXffvleySmqBzq1BKooXaMNlaYgXGBRaLGQFLpj19fZWmx4qmqSiKJfVqjm0HlKs5TbPL9u4ueZahpEBISVEVNFXJaDREaUFRrElzjWtbqqrqdCiahiiKiXX3YorimE9NsK6OzybgIzvjIU3A1Zb5omDv1jY66bj6SopPHfvoBHU6C2iHw4H0yNDpBYQQUED0iVB2QCGRwhNdcblXZU3tPJnKqIqGqmkJdPNIS1fJCSk4nk2xApJBzuuvv06v1+Pe/Qc8fXrMdDbn7OyMNM04Pj0jjmO89+zt7vI3vvMr3Lpxg3/6T//ppecYjlKcWXF6ZNjd3+at17dIl8eczj+gsp4kSjk+PiU7X2F7lsbDSFRcX73PH559DItnvPXmt3l2UTCtBFlfoVOgNvSVJo8UY6EwVwgJRVEEPuDwKKmIom6Oah3oJKc3HHLv/Q/Y3b+GijpqLkDY2KAP1Yq1Tah9pwz2nEXpnMOKTjvAaYe1l2tYKCnQunshpHFKWRQEJFt7e2ztdZrTcRQx6ueYtmY+X7Czv0+vn5MkCdY6oiRHkCNw9Ps9vLc8efKM+WJOfzCkNfbKmfCtOzcYDFJU0in+BQJOWCqzxtg1WvVxbk1VGXrZDpIMGwLWGJqixpWOwW7OYDtH9z0h7r78zlkCFiFBCXUlnXwyHCI0RDhUsPTjhPRgm+FggHICrQMmXrB4OmO4tcc3v/plTp9dcJBv8fJknxd72528JQKhJMEFUIp3Fk/5+fFj6qJhNMow9vL7UVUtzkGaxZRFzWq17L6b3lGuSpwxTLa28L4TSJpsDxkME4pi1dVZUUKWxKzWc+bNtBPtkprBMCfPY0xrOHo6o7rCEac1nUVWohWpVlSmoXYtzgWC0N3C3jviftYVZaGzTgqy2xapDZXdGkfYuB5Lb2iKBQkNk17GKBZdh3NJ2KbGG0uxXvDR+z9nd3uPOO7cX9I0JokUcRyDN9i26hb1bULbViyWMw7TXba2Rtg2o20N3jVEyuNdTbEuSNOEslrT7w+Bq6nLnykJCywRgSQojh4cc/yze3z7u1/jxmuHRFoin/vJAF4IlOg0VQmmaznxxM9XcSKggifGdht77/BCksaaPLn8WE+OzpBxgvYlwgtseH463xkHamiKilVVMtnewoSATjOKpiXvD8nyFWcffsT5fIYQc47OTnGtYTIaEmlJL0+QwRLM5TO/w5v7UK54nJSsm4bf++MPCacf0d5rGQ9iZKIJd17h61sj0l7EvZMVySBlLl5ntP2Ai/d/wp285WvXXuNhWTBrM2oysiRlVbWsy4ZRpHDx5c9DPP+L7563dx7rOuNEpTU3b9/hR3/yxxw9fsQXXr1JrloKOcAFgahXvHCgeX+mqKz/N+bKxpjNAsZ1mrZXJOE86ebY3kuyLGYy7GEa233x0pRenoP3COGJopjHj57irCHpp8QK4rhzQU7ilHVZUNUtzgm2Jjtdu+ocSRzjr5jVT/aGWNvgsN1mO3jiLEZoS1XOEKNt2rbi+PgR21sleW+bJM6RMoKgWc8q1vM1drnF1uGIZCdB5eCjroI2znTz4SuKhTdee5knRw+7qs5ItrIJt16aUBc18/maj959nyaGfKg4XZ3w8vUd7ty+w9nxmqIpONzbwTdFhzBynlVRsq5qEivoa42hZV0W7O0fXnqO5aLGtIbhcMhkq89ivmI2vaBYzplOpxwdHXF2dtZ1R2lOb9DQ6+foSBGCp65bfOiWpUIolNLEiSLvxRjbMp8taI1BXjGekaLrroSzCOdpbaA0lqptu3GP8wgp2c9yvvK1r7GcL3jw4YcoPkXvONspHabCozQoWzEZxuxOdogw1KslKrlc46RYrAhacXF2xOPHD3DWsjXZYcfvcXZ+wpOnj7o7g2N3/4Dj8yl/9ud/xvXr15DSk+cxBzs7REpjrUNKRZrl9PI+k8mEVdUg07QDH/w14rPpCdP5QUUhQpMhtMQ72VUOk07I3UmBQmI31W0QXZsc6BYeInTKRWmkmOQ5iZLUdc10WSHjlDxOyOPL3+yFUUjvOk1SH5BCkaQpCIGKE3rDARePH6MjjfeQpgPq2nFxMYUgSOI+ZW0o2hYvA1pEjJOUtiq49/F7HB09YqufY9rLk86Tj+9THC8IWhElmjSLcNfvIIsXOfzKV0h3b3BUa54VBlU0WALlStCezWnKC/b3x0yPP6C8eEKaTPjGr36LSvd498ziooi2KXn3T/6I0Rtfu/Qcz0VqtJT4EKjbFhsUiZQoYLS1xf71Q+598C7feuMGt0YJHz95xPGyRrcz4t27OD/GB/GJ0M1zgaQAm0UenTnXJTHME2wSEbwlSWKWixVNVRPlPRTdoiKOFM4HlFTs7O5g2hbbNFgTaH2Fkkt6/QGLZUHbtgz6g265KgSpUqgoYr1aX3qO1pZ431WrSoL1Hq00caSZLU7YHu6h4wRnW05OPmJ7u2E43CVSHWLCBkcv0fSJ8dOWyliS7ZQ0i4hloMBiJBtN4Uvux9Fj7n14xOH+NpPbY/rpGLyhaWeouKY/jiimFclAY9eOHTvgoDdktBd1wvMKkl6KkIJFVWNtB7V7MTuk1YLj9QqT1pBcvhAzTdjMUz1CegbDPlma8N7bP+Px48cs1yXWB0Zb2+gkpz8QbE0OOTla4EzBcJDzwp1rrNZLnj29oCgLAoJePyKOI4bDEU3bfCoZ+kui5zu5SULAOYgFpBvB+EhJfHDYWHP99m2+/q1v8sG773F2coIMjjRNqaoK01QIs2YQNWT9mEHeZ5AnRBLaOhCN+t2u45I4PzslzjIePviIdbFgtepjrWO0tcXx2THrdcH56RF/8i//W37rH/77fPvX/w5JEnN8dMTPfv4T/sFv/yavvfwi3kMcx2xvb3XiegJaY/nhTx9ztmhJs5RXbkwuPQt8xiQchW5Q7VFs7YwZf/k6pqk5e3rB9nAPUHipUF5hgsOGgCFgg0cJTRS62fEwT7g2ThknKbJ1zNs1VnhEBLGSxFfMUqyDSHVqVDrqhOZ1pNnZ3eHFl19mZ2+H3/3d3+X+/QfMFyvSbEAv74wdpdRczKaUddUN/F3Xkse6RxZpXn7tLvv7u+R5ir7iw6zPz5Ei4L2mPxpx95Ud1vOC40cp+f5tmmhARo1ZltRRQhsc1brGLRpWq5ajx+dgexzsWr761a/zm9+5xvys4aLyPFg4Ut9SH72H3j249BxigyxAdC2fxKNlB6nxXiJkxJ2XXuFPfu+f88G773LnrS/Qr54wKpdEGk5OH9OGCB/yrk0NATYLPPhFfOTl98MYi9RdpRQQRElGEiTrqiYoTWsckZbd9F/UWOfJ8ow6OKrGsVqtUa4kT1LyvNOUFgKyPO887mSndNZeAUF6/vsiLUniCETMk/n9Dh4VB56dPmB/9yY7ewecTh9RFJ2JZCpSeqM9QhSoihpGGWk6olzUrNY1IUuI0pYwtMg86SB8l8S0mkKsusTuoLIly4sZTb1ma9gpzZmi5PHpjG/eeJHD/pA8jsmzDOktvjEkKt4kUE3TWEQQ1L6Dyc3Xi26pFV2uv52mKUImeCdZzNekacp0dsb5yRPW64Ld/UOSOCOJUnpZn14+5ObthtPTc4Jr2Znk3DrY4vHjkjMZiLUkVoosTkjimFgqatXtgy6LF67tIzcFQ2sMQgqC86xWBRFgrKHOU1rX8qOf/ZTT4xNGO9vc2NtlkGesizXF7Iz50w8ZRBnDXoYUAmtN9z2WEq1TQrj8c3l4/wNeeOElbNOSJxlaKlbzC54++IgQJ6RxyvrihNmzRzy9f4/Fl85p6hU/+v6PabyhrNoOais6l55ISGIp8QFaF3jwtOS9h2ukVvzHv/Xa5Q+FzzyO6KLVhknfs3r/EVW0R2N2KMst4lyD6IDNLnichxA2W2VnSUNg3M/Z3xrQjyHy4PEMejk3ewMuqs691F/xaXYtcwcbCgKiJObNr3yFt956iyjW/OEf/SFlWbC1NcEYy2J+wbOnmjt37iIlzFczqqZACE8vjbm1f8ivfe0bvPLiHW68cJ2tyZhqWRJfsYUXcUSvn1Oua5T2XJwuGCaavVdeQ8mIcRyIk4zpbMX2MEfJFJOAbjX3hgOWRYM/UkTZFoPhLnWhmM0bzj5+SHr9dabTFuc1cnn5IkqKThbxOfKB5+aWPqB1Vwn2J7vsHBzwox//hK8eKPq5ohQjpK04Pp+hRjNcSJBKduOHTRcgNu4kIQRUuDwL13XTuVtHiul8jnGB7cmY0ahP1VgcUBYVMnikkgwGw85VA8GyKHh2fEo/UmTZEpVllGVJW9e0abOZc0usMxTl5bjYSEUoIciSmCRNEHSShekgZ7y/xdMPH+GeWQ5fvsOLd97g6fv3ODt/TK4z0n6OdYHF7BTfNOxMtmlsRb/fx8kIE9Wkt3vkWXLVEh4vJf39iLVbUomavK+oFhvcvJb0shGj3NMsHN969UskcU7hIKDZTTPwBbZtUImmaRrWTd05LntYlQ3LtiRS0DeXJ+Es15SlYbmosM7QNDWPHt0jjWKE0uzu7yNkjIpSRuMJk8kWvV6PKFb87Cc/JNGSNJ+wva9o9RatMZi2ZDJMiaQnT0rS/W3kFc4rr/6Nv9NhzX0gWIMNFrzHVhXu4pjFcsVJveasrpGnJ9x79Ij9/T1e6GVcTI9Zrtfc2NkiMRNEvUIEgfOebtcskDLCOg9XfC7nZw86k9TBmGq95uL4iFgKql6P3o0R42GP+27Fr3z1y1wbb3F+ds5P3v05VV1w86WXcNYgvENKj/UWgiKJNVIZhC9RoUPTtJe/Cz6Jz+a2DEDASoMIFXvBMluf4cfbPH50wd1XriFEg5Ma6wLOBfAS5R2xDExGA7YGPeJIYY3h2dmUx/fu88brd9FphI40dSuwV7jYhtBZriiluHb9Or/+N36dr339a7z99jv87n/133B6egIExuMhf//v/33W6/KTeeOTZ0dMZ+dkaczd6zf45je+xpdf+wLjJONgf49FueIHP/gB13cP2N/fv/wcZU3dlCR5hDQlrqi5mBvufvUt1mXLvHVM+in9awk4SxpJSpEy7e2y99av8OKLr1NMKw6GiuFkl4tFQ1utEbNnzEZ3WU1PyfycF/SDyz8S77ulUdfp4bzEC4VWHQIi0hqU4u7rb/D933/Ax08ecvdwTC/JODtdY52nP64pZcf2sdZuLnfo7L2dQwiJCld4u7Ut1nTi9hv0JEJIBv0+adxSNg2r1RprA+PxGGSCDw7TBp4en7NYV7gkRVws2d+PEUJ15xBio2PriZMMxOUvpTROSGX386c6xlrHeDgkiTIIUbeP6AV2X9int98Hb3h/+lOcExjTYaobU3E8O6FtC/I0IlRrXN5H7efEWYYE8uRyB4dQRIjMMtmJiZOK5axByz7LYoopFFtb29y5kzMYDMjyHqODG3z89gf8/Oc/443b1/nSiy9gRWDlWpbWINm4xYQOsx28pJ/2CPXlL0epIIoUTRNQCHQkmS1miCDY2d0j7efoqPNAjNOY3d1tdrZGXLt2yOGNWyyLiiTL2VExL6kEJQW+XlLOjzl9/BGr+SlRpK7KffS293HW4kNA+M5gwaqAmZ5z9PhjDBnrVuD7W2TDPsOdbbLJhJBmmChm4Rw38hGDwxcpZudUdY0zBVJavDHgLN5YwlVEGmX40U//gmW5ZDweMjnYI7Q1rp3xQi/li7fXvLh1A9fssTMa8+dnjznKlmwfDNmd7OAXH1M/+x4yTtEuoKKM1gpMfUp5ekYmLFEagfjrpdfPnIQFbN40ir0bO5Tv/pzYv4Bre5Trhn7fY4TD+0DwIIOkl6ZsDzLGvYS2WIGLKcqGdz+4x2o+ZW86Zry33zG1EF3yviS892itefPNL/K3//bfZjLZ4r/+J/+EP/hXf4CUgbopuXbtGv/oH/0jfu1Xf61rjzfV8+nZBVIK/vRP/zV/49e+zd/87q/h64rl2YxqteCP/viP+b3f/z3+wd/79zg9vdzlWDQrtl485OWvvNoB3pcF1XRJMS8xTYvMMsq6obKORWOJaeglirbXJx9/lUZCbztitJURJ4p3Tht++P0n7HjLY+uIqHj1y7fBXP48nHddFUzHnuuqYZ4zcZFCoKVg7+CQ7Z1t5uuKshpwZ3/C9a0J8zrF7L5IMTfMZyta0+L8p6MIITqWVnSFeHgIgSRNqaoGKSWRUqzWNYvSYm1L0zScnk0pyoby3Xs0TcvB3i6Dfo/lsiIg6Q16JKnm9OSUOE7RkSZQsVgsieOELLddVrkkpBRESoP3NHW3XJ2Mt3jtpS+yXBZoY7n1yi22b+xRigadxAz6I7TTtKYklhF1XVCpQBoH9ndfYH58QuMaDl/dQfeyjshyhaPFJB+R90dkuSQSEUpnPD494Xg6JQsJxsDWaML+7oQHq6dcl7f48ptfIhZw9OgRTmfs7O/w8YN7SKEY5gOW5RrR1+zd2aUctMQyxZSXnyMEi3Ut4BgMMpJUobQgzfoc3LjOwbVDXFAsliWWQBRreumAKE4IUnMxX1Ebj9AxLgjSJGZ3chtT3OAd7fnR945ZlUt0ehVkr5MO6GjCAeECLlhmHz7g3T9/h1nY5gO/xeHrgjs3UiaTMVEc0SJIxzvErcOnQ/qTA+TkBs62ONcQrCG0La6tqIsVTX15p7RYLglBce1wm6ou+fnbPyKWcG2SE1ExXc7Jru0hdUJsnjL98BSjJDIekqWS2jzh/oNj+r0EawWZjsG2nNqae3PDX87W/NnTC7QeAP/w0rPA/z9JWEgSnyJEhrh9yMHFz/jg/e8zevO7NIUlTyKccATnSaQmyzNGeUamPL5ZI22D1hrbtAx6fV59+UX6uWZR1jQoXJCfkDl+WUgpePHFF/l7f+83Mdbwf/8v/0vefvsdokgTcPzqr36H3/7tf8CdO3cgBKTocMmtc1TrJd9562vcOdzjzq3rZMHTesOol3B6fsbbb/+MtmlYrwuq6go7n2TA9NmCn9l7m+pRsrOTM53OiLUmS2KUTtgdZ/zGjV0ipfmL9x9RXqw4PS/IsphxL8K2HuFBeMW9sM9NYYh9zWJV8fYHD+hnl1c6PnRjnYBASoil6CjLEkTwnR0VmiTNyfOMYn1B48FmY7LBLqLSPFtYrA1I2UHzn482Osqu3LCLLq8wkiTpNEFCwFnDqqyYFR4vNEEEiuWc89MTojjDudA5J1wsu8WQMwwGfW7fusZ4kLJYLAhConREU2+MKMsKAqTZ5e23kBENGxKLdQgpiIYDDgc75KcXeFcyiMekMsKEhuAcvXTAsDdCxhKcYNTLGL24S06fqnIsihU4z464i9+gcZorIGo7e2PaasnivEbHPZpiTeNqhlt9QulpbcO6WiDSlkezitWf/z63D15i63AbFQW8gg9PHvMXjz7kpdE+Iy1ACz4+O+IkzFCZxltD2VyedPpDQZxEiK2M4WiAdTXGGMZbA978ypu88urrzBYFSbZkZ2+PtNfrXtyRwjYV69kpOoqZ9HdI0wwpIcEgtWRra5drN+9ydvEIxOULQuc23VXwuI6WgygKRu9+yFdXFe/7BT9rEmZHS8bfusvOMAep2Z9MkALy3oC98Q6LVUklYmQU4aPepusKyNBBAfMr5AYGwz1Oz0+pq4azsyk/++m7fOn1V7HjbX5n6nl8ukQ9KMiD5na0x5P3Gh7dO4beiu+dnjC4Ce+5ikEvZSJ7jJKMtSn4YLnk5+clR5WlGgh24r+es8ZnS8IbSl4UNEH1mPcKXvvSq5ydfoBfn/P0fiBVN1E9Qa4j0jwnjRMktsP/JhGBQGMNo+GAV17qYV3LYr1iZgJECRDwV4Ctoyim1+uxXq/5b373d/no3j06DAb8w9/+B/zd3/gu4/G4s20JgOhgW6vlnN/5//wT9if7fOebb5EGaOYLbGjwreXi/JSL83PSLMVae+XiJeprmukpxvRI4gxRrRhtqJQ23WV72OcLtw/ZG+a8eWuPF67t8MrBFv/0++/y7GKNb1u2Rj2E6ExIEx0Y9FPO4ltoKcl3rnP+3pD7H3x06Tk689XOYqmj2uoNY6ODCSohibTGtQ2qLbDCYFqDqVacnBzzpBzQZAdo1dn+SKUQG3+75zTM5/+Py+Ls7Jwky9BSEmcxy7njeNEQqYY87SzutY4YDPqkaU7bNgyGQ6SAfpZyeLCNbQqm04Y0zzt7eh/wzhJrjZIZ1Ub057Komi4FKyW6tt0GgvS0vkRNNFkxpK4tr0xuktQr6kFNGBlULMh3BlzM5uSTlGt3b9EuHM3jBYPeED2JSLIU6+0nL6fLQo4i8nxIKGOsCBT1iiSOCUJ1o4zGU8um019pLc/snKfTHzCa5NzdPWBysMP5/XPmTYWKY4K1LKqKn997RNlr6R30EEqj48u/L1/7lR0En35vjDUUZcN48iJvfvWLjMYHZLlld6fqMOTBY52nKgtm0zPms7PO809Bsr2LF4JlYWnaGiFj8v4W/XZB3V7B7Hx+h4LH4whSwnpNeHjM5GLJKJIMM8t2L+fG9j4vvnwNKTu8vHUOGzx1WXN6+j7z+YI8izF1Q5RESC27Lj10C+nLYn/3gCROuXl9go5jBoMt9ncPOTy4zmk6Z+F3MRicCFRVTJwO2M4LhHM8ePgxUT0krrcZj7c4HO5w/mzGuRPMasGsEgz0mDev3+Wbr37z0nM8j89YCXdbcicdRnpKmxLtv8KtWzM+mj7mw3szTCX44tdfYG9rhJSWEGqSLEWqCGMcpm45m14QpT1a5zGmoUXQiojgQXmHiy5/iM4ZPvjgfcpqzdPHRwQbcLblP/4f/2O+++u/Ri9PQQRE6PQiWtPQNhbXOibDMT/+8Y+5trvNnesHyGCoqxWPHj3h/sOn1FVNkvX54KP7n7TkvyzW93+MXTwhl5YogS/e2mXSF5zbhBMpeHF/wv/gG68hCMQbUaM3XrjOxbLkd374AfOmZb6oGExiEDDqx6hIs1wscEVJ6zXDL/4a2QuXb1hDABEk3lkcAe9iokDH7JIKpRVSSaanx6Sh5u7tQ3p5QhwsollhVgU+2ad13UtHiE4pSym1+XtninoFQg3n3UZnwiOcZjzZIh3ss5yfkcaKaJizOx4QpylRHFFVNWmSMRwOuH3zANcWPHpwTpykpElG23ZjDSlgtVwhlabf63WbqUuiqEuiKCJCooJAa40XDiE9Tjuy3T5xE7GqKxbna+bnS3wIZL2Y4fUJdeZoywUiCLJRwuphzfbWHunBgKzXAyUxjbnS0ryVTdf6S0FvkOKrjNEwR0QSGs2zo1NssGgfIYeSQW+IDJqzesn3Hr/Njd2bvHzjRd578AwRBDrt8d7ZOxwtpigfkVxP6OcZbnr5eOb67fQTBqVSFhBMfJ/hYESepwTXdWJpEnfwMWNw1lKUBcvVkqqqaJqug02zjDjuCBrFes16vUYpxfbeAC8vJ0k45zaUeI+jezEiFcULhxSh+v+x92cxtmZZfh/223t/85nPifnGHfPmWFNnVVcPVexusptDk5RACiYgUPCDLUOAAAM2YAsQDMMPfrENCH4UZD0ItkzIkAiQkglZEptNis3qqu7qGjMrx5t553tjPPM537wHP3wnIqslVUSlYUIvuRKRN29E3Js7vmHttdf6D0zHJYOe4bd+9TaDTkjgNcJAnqRxNLeW3MFqsSRfrki8AZPTM/rbQ5JOC7t5X+U1D+r92wdovcWnT9/n2dEjdg/3KZ2ldJJACzrGIYI+VFC/c4pNNRE+K1ujnWLy4JTg+YJFeMJJFDGr1hgPtK1Jl0v8sI++3eZk8RH8lb915Vrg8yZh1/yrUhVIQScPmSW73HrtLu/9V3/Mg/c8fvbOC05Ob/F3/41/hXZPkrRblBay2uIlEfPZkqKumK+WhGHIzVu3OM9qTqblRmTHXZv8hsMBq9WKo5cn7Gzt8+jxQ/7uv/6v81d+73eQG3gUzkDtqPOiAe07D1MZ3rh/n08+eQxSUJuK8clLnjx9zNHJGZkGrEDJiPF8RRRdfey9WT7n0+WY9YPv0dsZ8mz1kslwQHjvG/QDxVs3dglbAb7QJF7jVN3vhvzlb7zOx0djfpoWjCcLelGPCthqC4RyFEGCdY6ytojhDt2bN6+5LY02HUJQGYctDXGg8DeMMYSgqkrOn37Krf0hw60B7SQirWrCMKQd1IyrEmQjjtMM+D67B0I2SVleM5gbDrt0egN83ycvMsplzd5wyE7Xx+oS4TT5ujGFXM7mtJIWo36H0dYI4WrS1RJrLLPZFE+CqQ1RHLNarjg9HyM9j1uHNxDX9ISLusYKGvLFJk/WdTNs1JVB+QpiwbQ6YZaOmUyO8QpH6AKc8ohaMa2gTb2siEcxYT+mXFhiP0T6PngNsuc6xhy2ZpGuCFVIUIQEJqYtQowuOVrOOJsvsbrm5hvbpHWBE/Da/mt07YjleNa0bMqSUa/LrM6YmDWLoGBnp49KIrpRm/5Bh87BdRDGeoPzbiQBpFQoJbCmokxX+HaNNQ4vuEAeNeSIIGiEr7KsSa5SSnq9LlK2KMqCNFuwWs2wtiLuS4L21egIs5GLvKiG10XG80cPoReTv3EXtzTcHe7y1TfvsL+7DcZSlwVaQF1X+L6PwHH/9k0m0ynnZ2ecHL1gma945fXXkEJuuAlX54+6moEwfO97/4wnx0e8/Y1vc1avSMcveLJ6yZOzp2xv38YsNNG7MwY7I1ZmzaRYofaHjJdT9PMCWdQo43BCIpVASoU1jkV9wvKTMS8Pn8L//t+9+hnhcyZhT4B0Fi0kDk1mLWMd0j24zY3Xn7H99IjnZz6rLKAuNe3+iKyqMMYShgHj1Yqj8yNmkzHrxYybh3u0eveYS4eerYldhLOC6zSQfvM3f5Plcskf/dG/oBpabty6xfbuAeNpymDYQzmL0wV6XZBnJQ9fvuSf/tM/4v7hPnf2t/nX//ZfxxrD+x99yGqxYHvnBgUh733v+0StLlGcMH55dLmz/qLY3tpnYX1MNmOZrukeDNm+OeSdP/sOv/1X/gq7WwGYGj8I0bpE4vC9gH434i+9eYc/e/cxpbXM1xXzZcn93Yg2NU4plLV0Io8Sx+L45Mp1SAS1bYSRhFRgJHZDdY1Cn0ApiixH51Nu3O5z+2CLwaBH0m4xn8w4Xh2jdYFUTU+X/85RWzjwhLxWG8C6DavJGrKspMwKdLvLr779NV48fcxsckrtQafXYWdvi/29PdJVhrAlZWFZrVPKjaBKWW40gIFOp0voBzgsSkqy4urk16xdNPolCIx1SOXhexLtQAuHUxatNNu3B3Q6r7Mcz1GhjwwFLddBt3OqWYHf8hnd2yY9WSN6EqEERjcQu0hFV66j3ekSWY+qNJwfT4n8gMki42wypfY1fijB+dhaQ6GQLYGSjq9t38fbAj1LeZaNiW8NefbkIfPllNFhF9mNSNod4lbD5Cvy1ZXrEDSb1iX0c9OX1a6gzFN8l7JeZRiXo5QiafVIWm2KoqE4p2mK53nkec58PsW6RnVwvpyRZetGNdFq9DX4CKMbLRFcQznWRcWP33+XJz9+h8j36W4PGYqU7/3pP+fs/BV63R5xHOMFHlmWslyu+PDD93n46ae8ePGC5WpFbzDkq7/6q03ravP//0wB5X843n/0Q9qdmLArGdQRUq3xgpj3nzxgPDvHpDl1McMVgt72FmnsqLTE5hZXFLz25S9RZBUnjz9BpBVOS0xdU9UOZxTtuMuN3Rtk19CnL+LzJWEayql0PsJacpexLir01g7f+J3fJlSf8oP3INja5Q//6Y/4q+3fIGyHBBLSdMqDTz7l6NkTpPSo6oLx+TllVlJlltAB2lBbCdcwkWazGa+88go/+OEPOZuc0XeG/+j/8ffY3dvjrS+9ydtfeYO9XogoS54fj/kP/uP/Fx998CG//fUvcf9f/aucPjtmtlzjJx1uvvoWz49O+Kff/SEffPwpcdImChYoqdDX9IR/ujDI2YQ4CRnudjDG8N1/9mPiG69j/QicprQFkXH4AoxpepkOxTe+fI/ffe8F//jdjxnPc07OlrS+3OX+VsAHJ3MWkxVBEmIAkV99M51tGIl2Iw/qezRYTNsQJ3xPsSxLiqomihKm5xMSoUmnJ7w8XzPPwMVNz845udH++Cya6thyXRY+ORtjraPT6aCkx/bWkFu3bqDrgjxPEVKxt7dPq5XghxHD4YjZ+AFn52cEQdDA20IfrxHPJfRDsjxnvlwjsMRRSG3dpud75RVp1OEa5RKUVDjr0KaRaFSb04FwFm0tSa9Fq5s0At9SUVuL2dsiXxb4cULQC2j3ukjfb/rjxuKkQF1D0y3dik7YwqsrWnsJWMiqgiho02kF0BdEysMpQz8JSaucB0+fMH22JIkVp4tTMuE4uHuHhco5no3xA0Vr1MaFOWGnhVQlJyfHV67D0oj1W1wjXO8kzir8KCYIFKvVmI8/+gRtS+7du4s1sJqvePb8GeOTE2xVIoRAFyWz6YSqSlmv0gY9JASttkdgKtQ1A3W9ScJCCqxzJHHMV7/+NmenL3j59BFHz85Rzx/wZz/8HqEfEflh01ba4PXzPCcvMqQnaSUtWt0W7U5Cf9DF4RptDdEMo6+KaX3ObG7YvbfL4b09On7C84XGlRWhCon8AFY1Yp6j9zokBz0iE7FerwjGGWk9ZvfGHl/7nV9nfHTK+dma6XjC40cvCf0O0WAbLSDVVw8qL+JzkzWUkEhr8a0msZb9do+w9picr/CjHLv+kB9/BOH2iBuv7vL22/cptOajjx7w4sVTnj95THdrj6o2WBNydlqTlg5f+5SeQQfgrjluPn78+Od0DTRVVXB0dMrDR4/50Y9+xKNf/TJ/5/f/Er0k4Xt/8id89MlDhPIYjyc8efQQ31fsHuyzKOCffOdP+d6f/pDJdArCR1uBEIowbMTGrwrpBKtKUwUx1XGNdHNaWwd4vRELAqZpRrsf4ZSHka5hC2mwwkN6Ef+Lv/UtlqsZ3/34OWvnoY3l1+8E/MP/+ikIn/X5McIPCK+pQLXWGzRD0y6Vnm10cQGJQiqPIlswm654cbamG0u0W1BXBU+O5iy8beJOhHObYZyUDWNu03ttSDcWruHCn55OWC3W7G6PaHda9AcRo0GX8ficxWKOpzyOT0/RZSNDWpcVq03Psa41UejR6Xaoq6ZlkWUZtWnkLD3lkySN9GX7mpdMbVwOLkW5ncNYjQM85SGEw1M+1tU4q0EphFAEvo/CIzMVrW2P3u4QGXhYaWgGFgrj7CUCxF3Tm66zkpPFCn8d0N5N6PcHRFVNtzUiCCNm6xlny1MqVzewvPmS88kar3qKF0DvRoDWHuMPl6gaWt0EKSQ3buxDaDg5WVDOprj8GvQMDiEsKAdO4vBAtPDVkMViSZaOsXLFcjmjrAaEns/TR8d8+MH7TGdjnLOUno/nKxYLgRWaF89PmU0q9vf22TtMaPVL1DVMNWAz3G1Ymc5adnf3uHf/PjpPG8U610gfONMUFYUuMNIRxxGRjAnbMcpv5hxVWVK5Rle8KqrPHDGuuS9hJ8FaTSgDIi8gUQFJscBMFpiFYWuwjSlKFqdziu4As/DAGQIjCbSjI0JeHe3z5df3eIAiYU3bi3nx6QuoC9brGWEe0R51r70e8HkrYSUaLn5dY/KUViehF7d4+fyI87M5o37Mq3c9nh0vOE+7vPOzT7l7a4uqrpmcz/jop++wWMzZPnyd/u4IJeDFat4QC3yJ7xsqJ/GvScK+79Ptdun3emhb89f/6l9lNpvx3e9+j/l8wtHTh9Trb+KimPc/+hhjHb12B6ECOoMthttD/uyd9/njH73Ho+dn5HmNChMCT5JEDRWzEcK+eh0q6eBHXXqHb5IMt6mLHJF06Q6G/Npbe+z3Q1xZUQc11jk8UWMpqJ0hcM2w5n/6r/wFav8HEGXUDl65t8dXv3Kf905TWr0uVe2orqu4qgqjLUYq3IYpJ5QjigJ8T+KcZb2a0215PHhyzOHBLvhtFouM8apAdOrLoclFn1P8XFVTV031ct31qGpNul4TRSFOghcE5Omak6MTZtMZfuBT1yW+12hclGXJ0fEp55Mpga9Iopg4Wjc2VEh8X6F1TZIk4CxZmqGNwfOvxitfrPMCzaHUZ71xjMVp3Qh/iw1hwIDnCRAe2klQCk9AGPpEYQuta0pbUDuHqyqc0deK9wAMRBeblHTaLSpTczZ7QV4b4jChtjPyckaaLVF+iK4tKgAvaIRylrOSeEcRBNFmU6npRB5xp0OqS5ynWZspQlXY4JokbNVmZCCR+EDAoLfP7vAOZ6dnPHvxgHU6RwqfUi84m6S8/9E7PHz0lLqu8QNBnAgSFdCJWoRxTDS2ZOmS8VjR2xri+1GjuXvlOjawR202LEyLLzz2tw857T1jMZ+ilIeVAumpzWkGVBAipMTVNdrUVFWBKQxa13iJR16UeEoDzXMqr5E9CPQezlqU8sAodBCw1R3w1dseH3/4mGqWUxU5y2yNOjmhbatmKL2uwAuIRMD0aMqPlxOyLMfUHr6XcPPWbbQ2ICRVtqbdb1/7jMDnFfCRjdSkaPQsMZ5gXmS8XMwQ/RH+KORwneF//085Gk9oPfN5552fYYTkD//xH/LwvR/Q6nTYvj/l7btfpu8KBtWKdLUgqCs6QqCdB60WfOvOL1zH+XjM/fv3SZKEbtnm5t4u3/71r/Ob3/wKp8cviExFpBTvvfcRj54+xxOWKIrRKH72yVMe/rN/wUePnrLIDUb4qCAkUJLYl0R+M80WGwnHq6K9PaB4AeVqQr8b8Rf/8m/z4emawjhOxzk/e/85u8MEvVuQRAGeqDeiBobA1Egx5O7hFv/zv/ZrfPzoA8KWIW63+Fd/6+u8+K++T6kA5fA7nSvXYYzBaAseDezHCZAKP/AbjG+tkVZz63CbZVrx4eMxq9pDV5ad3RssSzDaXCqOXRhsNTjhz6BpQXD14KXTbuEPevT6A/xA0et1cSZntZjQTXy01uRlSV1JWi1Nq9MmCEOiMGTY7xKGIat1Cgg8TzLqdRrdWQRhEKE8D6kUZXk1RE0Ihd38LEo1VGfnHMrzm5YLjZAUCDwVNFKKFoxtYI5OSpQQG3sai8Bt5EIttTYgmlaVUtcI1kQd/Cjgxv6Ih8+f8fjhMYtFyd7eDv1hyO7BkFVdss41/c42TsdYJSnXNe1WTNKJcZXCQzGZLkhljT8vaY1aRG2PsqxZLVIS/+rN0VmLkG6jndLAdMIgpNXq4MQzgmTJdtfhyQSHZZVN8VsVQQuW44y4G3H/S3uMdkKUL3A2IApvMZtU1HVJGLIhgFxDsroQ9XLNINlai7OCwfaIoNsiPX2O0DQ2YGHQbBqexGIaVwtnKasSbasN3FHhEOR5QSdp7ISssbhrZA/ubn2VjQ0HggaWaYwmeWOXfmeHxWJBkWfwxisYq0mSGA8fT4a0222EkPhhQqsb4CkPZz0cmrff/jrWWOrKsFqnmF9C4wT+f6mEhWsgZH7ECsvj2QTdDpBRlxe5IPJ3ufHaK3jJfbZ2Ev7wX/wT7rxyHz9uYaqKNM2ZpQVGKDqLBV/Ta+bTM2Re4hWOuD/i+ekJ8Jd+4TqePX3KbDolDEJMUfLuD38E9Zp2x6MTOsrxkk+ev+TxJGW2TAnjAM9TPD855+OPP6LAIYMYp3ykFxBLj9hThJ4jUA3O8DoMKEA2mYAU7Lz2JgQJUgX8X//Xf5c/+vFH/PDBM46nC37ny7doqzVV6OHhUB5YVeInLXwvQIiIu7eG3LnxdVz9lMJ53NyN8FTAXBhUR3ENJR9nGzagNGIjjW8Jg2YQ1Sg7lWz1Yj59f8pkWREnHSarkjpPOTufMNo9oH1xBLRuAzEWl151Fx/ymp7f3s4WyvOoqoogSBqhmOmU+XxOr93c//l0Tllr+r0evV6f/mjIYp2SV7oRjve8RghICJzVCBxxFBOGEXVdNzY90dUDMW1MkzAx1Lp5IcXmhQOwotlclJRY5ObnbZA5QjZ2QMYYalOTlil1XV8mME8prJCYX8K6ZrDfZ/HylD/74UMqbem0+yDW1Ebz8rzgZLUkq2ranQFRHOE5n1LnpOOcra0euirRpaAd73Bw2MeWjvF4Qn52yn6yTV0YyqxERVe/xmEksU4jhANXg5Ck+YLlakylp/jRGqkskbeFL2P8sOT1L92hN9jivXc/YWsnYvsgJmxlgEUXNWEc0x+0mU6Xjb2ZuBpJBFBX9UbzZSN5LgTOGWaLObP1gtpZTF1R5xqzNM01VxI/9PF9HykVta2RnkcQRnQ7PXZ2buD7AUI0aorCcekQ84siCETzvUJtfhUI4RO3b3Dj1uEloUSJhuiEtkgUCH+DRNoMwl2jW25qg7W6mcsYi3Oi+bhmQHgRny8Jy+YldzRuGcZYaiERym80BmyM6xzwpd8dcS++wXw15v0PIkTcYufGLX5mNPsHB3z57W/ghz69boRYrggij1YU4YyAdkLcurqML3VNPh4TBgHSGM7PzlhNdnj84TMiBaLWaOdzPJ1Tac0oGbG7tU26WFJoUElCGMYo3yfwA2LlESiJwiAvhSGv38X8qMfw7b+AUAEKj//6D7/PG3e6/Bt/4/f41373VbJ0QbZKSRcl+TpDS9kMnYSmymqqvGQwGDDo94mDDn78BlKvkHKMpzRC1xRGUrx4ceU67AXsR1iUtARK4DlNVeToAqq6QrqCrxz2+f4Hx2zt7mIRlKsJr+1FtHd7nNnPDEK1thtbl43xp2n8vOprwPgNrlggPY80yyiKiqOjY05O53S6A4ywfPTRJzjgzTfeYDabcXY25nyyIAojZvMUnCUKI5JWh9kyQ0pBJGpWq7QRdwL84OokXORrfD9AItAb7POFaL+UP0dIEQ078LPKqdnM3KbqasgqzZ+90FlufMTYqOdd4+2mJEnUZ9QWrIs1MgGNBhWga8Mqz6mQ3NjrYikpVobI6zDaFYy2I6ZnmqTfYn9/iPArXj46Z7TfRvuCIjXUU82tm3ubxHbFOqRrWhI0gjdKGISoMa7eHN8l0jhsXXE6e0Fej9k5HHD79h0W0wo/WqF8g7GNephRBi+WtHo+61yRdBXCbzSsr4qm5bXBCltDWRbM53OePntKqStU1DArA9e4hislkVLh+T7WNp6RKohoJR263QH93pB+f4RSqjkJCtcgaNTVaa02zfBZbtgdFyxRJ5s/3/hfNrrYiJ9zZDbNuvM8x/MVvh80Eg7SIWmqciEctd3YjLl/CZWwvPBbciCcj1QS6SRgaKnG+yqXIQQSJzK8Tsi3f//3acctfvSdPyJuxewc3mD38Aa+Ao8Ws1lKYQ3T8yVeEqF0SbG+ZuBhdOPWW+b0Ox12Dw8ZDrbxrSNUjqIsOJqv+fjpk41Jn48CnDFEYUQQNJVVGIb4nofvGk8oIfzNLuj+nLj5LwqFwdmIUsbIjTj5/+c773Bzf4s3XrlLGLWRSqICDz8tyFY1OIkfekjlKLKUhbXNde17WBUwP8/5/p/8hPPTOYUXopSjN7q6HXGB6RU0VWwU+nhCoMsSpRROW1Rdc2N7wJdfD9FBQGUFt169xdduRDxdmU0V3CQe52xz1HPNUbwxR7HXPi2eHyA9SVamzKcLsv2Uqsipy4zz8zNu7O+xs7PNbJny4uiYdbri/OgYKo0RoI0jjhOclGRFY2nu+17jGVhq4qRFVpSk6dVTZ+v0Rhs5RMmgcXGuLSrciD8pRfPyyaa6Fw2px7kGc62N+bljczODMJvPNb3y5ngvrmlHPD87oVyUhHj0e21US1BpQ6YlZbrCOEdrpMiqCZ4QlFXFcDAgCgagHWlSoJVkla25c3vE8/qIdL1isB2hWl3MLUHSAszVpzZnHUo0RqWeFDgLgdf0u32vDS5isTzj5MVPyZYeo90WI5MgrSOJ26iwRooSXNAMJqVFhZbapQSxxAtASHMtpNNYs2FBWpxrjDtX2YrpfII2GuH7eJ7f0JCVwvO8zX0QWGNQDqIgptsd0OuPSOI2cZggRdNOQIC11/frtRGX7F9BA8GUUiBds/leSK9IPnNeRjicAKEUQRSBAHmR7B0gN3oYFzIJzsE11+MiPlcSDj1FO/QJnURYiUSCax7ktlchVI2LAjQJvjaE0qff3UPapnbevXHA7v4eUeSReI5TU/MDWcN2DxknSGnoCMtu/+qpojHm8kWZzJf8w3/0X/L4rTe5fbCPcBUvT454/8Ejnh6db44GjtlsRlEUJElCECUEYTN8E4AUsnFT3Uy9gUtHiatC9HYQprHKDuIuoDk6X/MP/uF/yf/kX/09bt2+jZBgRYiKBR0VghSEkUIKR5QarFCURcqzJ3N++pP3+M4//x4fn86pdt9G5SuqWhPdOrhyHVI0TiYIUKrZjQUOXVdYLdFGkwRgZEQUVFhlaScdYizWSqwTCLvx85KiEUSXEikFxmiUJxHCv3Ywd0HSWM5XpFmBRTRuGFHMbL6g1+vxxltv8PJkzDormC+WKGB71ENKSVHVBFFIp9NuxICCGCUlSkiiMCJKWmgk+pqHu/E3hMY6W6KUh5Bs1NgU2hrAUmlLFIYEymt6wTRA/wur8g22omn1iMa+CTZJzA9w1yDa89USC5yOx6ga4sjDhYLKgR+BED797RDfOcpUEvp9hJMM4iHpPEOZNdo4gqiLb4d02gkqrKl0TeJJ2nGXbDkjal0jrGQbhlpzX5tX3hgDFuKow2IVEXfa7N/1sEYRBB5IjVKGVtujbhzKEARNgpE1QSDoDyIENUEoYXMFr4qL4e8FYSMrCsbzMVmdNVdS+UjRtHwu2JpaN0k1sAHCCTrtHv3+Fu1Ol3bSpR3HKCEb7RTrcMY0rYOr1rE5OQjRVNrCXvSoP7vrCIH9OdKHcJ8lbt/3YaMQiLtAn9DII1ygZn5uE78uPlcS3upEG8+upr8mNgsWwuEriZQBW8LDOIW0tmG+ScDUvHV7yK3kN7j7+pe5vxU2O3J/H2/QQ/kB+TojNyXSaUxydX/p5ytU7QTH4xnTP/4T2mGEoWZdrNG1w7kG4XB6esZqtSIIAuI4IgjCS/SDaDRRUFJeVr8XF++6vnC+mBEoiZYCvZhC0sLkFd/95EMWx0/5rd/5bUaDEdZYWt2EG7cP2NvdohUFZKuMF4+e8vjRcz599Ih333mfRw8fYpRH/Mo3iYRHZ6tLbRz5Nce8QS9Ba9scqyRIalxtsRuqtMKCLihtSJ5n5CZHho7CzNmOOkhahKoR4G8GDQrf81G+vzmey2ajUldfj/F40ogeOUEYRnz66BmmMlRaUpQlRydjojBESIWkIT34QdOXx1kG/R7IZhPxPI+yqjaUC4cXRhhnKeuaNL+6ElZesMFNN49fEHg4YTFWg6VJqrLpHVd1jVCOwPM3ULaaMPQb+yK36bFvngmrdfMSes110dds0qt5yt17t1itC4p1xXI9R+QOL/DxO4rD3ZvEOwHLck7SauOVQ1yVIrwBw50+KvH59NELgjohm9cURcpssSYexZy8PEKUkjxbc+v+1YxKYwxSNu4kQgqEE9RVTlkucLZmsUzxW4Kg4+PQYDNqOwdzjpNrfK/GUWN1I7sjsSANu3t9wqAmSTycNbjrkt/mOM8G017WFct1o9rnnEOq5rmTUqE2755Ujd6IrwJCP2RruM1wMCIMInyvgZFaNlUoNKeaa5LfRXElNsJenudd5pQLyj5weRq6hL5tvt4Ua/DzLarmGss/lzvENTOUi/hcSXh/q89QNzS9n//7Bc1AY5OSNxeCy/6Z1iXxr7+Nqd9isL3PcDTkwgz0FSTaWKQSDT1Rl4TXTHsvLpoxthnAOIfRjtqU1NSN47BopsoX2gdBEBBFUXND/ebD871mIzH1n9u5Li7sdWSN8OBWoyNsPWpdExRrknbC8/mCP/pvH/LDH7y7aQcYuoMef/vv/C36/Q7Pn73g+OUx773zEbPpDOMcKooIqPBaHVy4zfTJp5yvp42wz+FrV67j1q07VLW+lOt0DpxxaF3hnCXUK8T8nEJuk4k2s2yFq2v6nQGLbE02O6N9uEMeJAjZHAM99ZnmhHBi0++6+vk4Hc8piwrlSaIopChqlBcSt9tESUxWllgqBv0uzkJVBWjjWGUF7W4LFQS0WwmLxYK6Nuzu7eL7DaxtPFtgs5L5bMlydTV5JfSb/q9A4gcBURhQ1gUYDUY34zkLvlKflROblyv2Q3w/pKoMONMUC9imStpUOUI1vX2lrtYTfvxwzPbWDqPRkGN71hhkeoI8LYn8Hru7b+C1JefzHyBcwXT2DFc4yrSi3Q1IsylJx2drt8/x0UvOjmYUJkdTkkQtdFnjCst6dTVjrhF2MhvUiMUaQ1XMeX/yJ2RpRl4v6HgBEgOixlcOS05en4Kv8SMDskJrg7UennJIZYgSSCqHtgV5biiKq9t3F/1g4HKopa39zHjWWrTRKNdIsgohiKKEJOnQihNacYt20iEMY3wvbFoXomldXPRxGzeZ64emTXz2vl9+5ucS70USbX51l6fj5lf75+j9F99/MdC21l6vwrgJ8cuWzF/EF/FFfBFfxP//45ezA/0ivogv4ov4Iv6lxBdJ+Iv4Ir6IL+J/xPgiCX8RX8QX8UX8jxhfJOEv4ov4Ir6I/xHjc6Ej/o1//9SJquTs/X9Ga2uHwze/yYt3/pDdXsCvfOt3WS4nPPrgJzz803/M8eOPyOsSREXgCfIsxfPbxFEHpRy1rtG1oawynNPN5LSuMLbCGM14PP6Fs/h4tO0azF7jHCG8AD9KGG3v8W/+2/8mf/G3vsXre7sMohAHrLOc/+A//vv8P/+zf0hermh9/RUWnzwhf36GdZbB9ojR7pBCa+79+pv87l/7DRafHqOPX/J//N/8X37hOr7xjW+4ZoIbkaYpy+US+Exj4eJr+/v7dDrtS/GRoiiI45iDgwOEEGRZRhiGtJI2k8mMFy9eUhQFeZ7jnKPdbvOd73znF67j//Z/+l85z/OQsiFYlGWJMYYoijZW8e4Sc/nzk+CqapSn4rhBjVx83yX6RGs8T1FrTVFWCOXxb/07/94vXMe//T/7tgtaCZU1pFXZTMttiK8S4iAhjhPiJKabtFjNJuTG8vjomNk6xwiHsxrpYpKkg7Y1VWnI0rIhByjIM4HnF0hR8NPvvfcL1/F/+N/9b522BUr6zOZr8rJmONpGCp/JZMbjJ885PjklXa83JNQGZB8Hkt/8yivc2enxz/7sZ7z/+IjKONAVDsOF/+zFNXQNzOoXruO3f+fvuLquyfOcVpww6PaIoojJZEIYBLSThOl8TpTEbO/uki4L6lrT73coy5TTszNuHh6CsGTZiigKqMqSIisJ/IiirAlinzgM+E/+/n/4C9fx7/0v77kMUPgI67PR89t89YLoQ6M5chGiwc5ekG/d5vfSbYCpwlySGoQELSB2mn/n3//0F67j3/q9t93333/cEHEAnCYOPHwp8JVib3vAwe4W+3s7RHHET975kE8fvcAKibaaQluMa/DrgYRuEhFFPoU1vHV4iwfHpzw4GiMsHKflL1zH//nf/XddZTVBv0/c6mHygmI5b5xXlOTeq6/TH27x6YfvcXb6kjD08DyfKOnR7fV58ekH5EVNZUB6iv7WAGNrzp4+QZuK83SFH8e0Wi3+7//hf3YtTu1zJeEoicBmqHpGy3jsB0tKP+PX39zlte0J/+V3/nN+8k/+gGy+prYaIS2+VHiyATMHXgNFCeIWrTChyEvs4pyyWOL7HkJJVuvrNTg/w9+5S4FqnMUajTONyagDkLKRcxQCTyo82dAzl997n7rIG7KJEMRBhCTAGkuaF/zwk4/pLzTVdHHlOrTWxHFMVTVOwhdkj3KjdxsEAf1+n1/7tV+j1WqxWs3Rpubs/IzJeMJqtSKKQlarFePxmJ2d3caDryypqkakxlrL6hoI0oUXnlKf4RYbSF68gQm6S4jeBeHCmAYiJEWjjlbX9aWnnFIK3/exvo+UDUi9uZ5XkwLKSpP0GsxvuzegrkHXAqxHO2ogRr1+D1cbbJ6A1oS+T7+tEFKxWq8bNhMOX3lEnYTITxqonagIlMf27hat+Op1nJ88I24lOBtQ5DVZkZLECf3+iE474fDGHt12i5cvXzKdTamqGiEcO1u7bG0Nyauc0FP4cqPE4Zr1KT7Dhl4QD66KW7du8eLFC7Is49VXX2Vve4fz83Nmsxl5nhN4/iW2tKprhJTs7++zWE5xgssNuNYlL18+I89T1us1Qiju3rnP62++Se0sz549u/q+CIE/+jW8zi2MsBgkUqgmsW4E1oVzOPFzP8/mFXOb/xSuwcZKW+FZAyLY6HGArwTOTUlf/ODKdRyPp6R5iRQCKR0Y8IRgd9jnlcMdRoMuvu9T5DnvfvAJx6djamcojaG2jZWtUg0VQ9jGxDVQEYt1xtlkzmKdgxEgfznEl5QNdLUqq4a0JRVWOCbTKWVtcc4nTgYMBh067Tbj6RIpQ+KohedKaiTGV5RGszscUk4bwftKCrqDAaOtrV9qHZ8rCb+yJZBtQxZlZC8f8KhKmbz8GT8onvBn/yLnJ9//U1bLHOlHjduvbfysyrIEYwgDH+n5KC9EqYhWK0S4mrN82Xi7Bc1y9DUk9EZ/oUEFekrhZMNAE9ZgdY3RNXVZYeOokVcsNFEY0e90Ua6m1B7a9xoRdCVoJU0l6FU1xcsZR6uU41qTnp5duY6iKCjL8lKsGj7TKLDWEscxW1tb3Lx5k9dee41PP31AGDVf/8EPfsDp6SlVpfGUT24L1uuU+bxxMqiqxs4liqLrmTeXuEaJtRopJWEYIqXYYCmbxHrx0Yjk1BuAufhzppUXYPWLithtErry/GvF9quyxllJFDfYTmugLGrGZ2N6YUiowBcO6Ut0FLOez1EIulEETlKJmqouKFyKrvUFrJeizDE2R9eCTmcHn6u1I06efEyr20d5XYwIqOqc45clptIozyeJA9qtHfr9NsfHRzx+8gRTleyMupvTiib0JaEnAB8C/+Jx22hr6F8qCWdZxnK5oN1u4ylFlmXkeY7v+5fkoCiKKKqS9XpNnjWSp7UuWK7m5EXBYrFAeTCejJlOx2RZzmAw4uz8jL39G3hR84xfeV+8mHD39yn3f4/SSYQ1hKqh6TohqaXAsFGMu8DGOrGRJGhCbFTmFAUtLyWMHX4QEHgeiS9w5Ue8P//kynVMVmuk8lEOfGnodLrsDAfsjHoYZ3jv48esspw0r8iysiEbSYnBNYxNWxGwcSZ3jch8LgWRF7BaZ6zzAmHFte+L2SjpxXFMt9vldLGkKis8FEaJy3ckijvErTZCGKarglJ0KBlSijZKWqSzGCmodN1ID2xMBHyl0FXN5Hx85Tou4nMl4V8/WHP09JQ/mb9kfLYgW02Yn33MJ+9PG1siU214+AUtL6CuN4QBrXHOkOcZQezhO0kYRJiqIF3M0XVFWZVUZd7QQ69hZsVxRK8bU2+U9I31cELie44yT5lNZ7wQjS7x0fmMs/ECqQLu3rnDbJZQVlnj2CsaUXjhgwg8wtIjPV+yPKkxdYErryYF/Hy1egHUvmgDDIdDbt68yRtvvMG9e/d48803uXHjBkWREwQhnXaPn/3sPdJ0zdnZGVlWkKU508mU9XqN5zW3RgjR6OleEZ/pXDSbXhD4f86u3vM8hKDZDIUgjuIGwL+hbV78HHIjhi6lxPc9nIPaViBEQ2xRV1egvhdhbWPvV6YlYRBSZGuW8zG73S691jbYknSVs16WYB2hH6CQ2Bp03rRLkiAiLWp84WFMjalqotgnq0qkqzDXbNI932KKOblJKV2I3+pQVTnPnz2h1erQ7nbodDt0d4eMhl3iOGB8esz2oEPge5TGJ1CSUAmcUI2YpTNYZzfXpqFwX4gD/aJYrVb0en263S5KKVarFUVR4Jz7uTaRIgxCtK6pjabQTUUsPMVoe4vj4xMGwy6tpEVeZDgh2N7dodvtMZlOEEB8jTGubz0Itqnb+5g6Jzt5yPTlJ0R+zO6NVwiGW4hAYQmxIsBZi7cRX7+wCpLOgZX0WzWvbw1oB6apZhuhB9JFn+CadJIXNRJBFAT0ehGddkRRFnz86SOKsqQyjtICKDypNgWCaapwSyOVoCQ4R7vVwsNS5DlaeKxMQVbWaOtd5z2ApxQgiZOYdrvDWKlG16Iy+K2IJI6J45g8K1ksF5ydHSFUwGjnDVZrgx+0kZQbHQ7duJlLBcZuWlsbMdhfkjTyuZLwP/iP/yMW0zEvHz1gVdSksxO0Xl4aASpFo06kLZXRaFtvGEp2ozpVNgnDWKoiZzY+Il1PkRgCT1LXTSUQhldXOnGScPfGiJPpkkVaEijJrRs7RK0e50cnfPjBx4y3d1itM548PeL8bMJyviD0Je04JFDgdzsEoc9iMWM+PaLTDkg6gjjZYpaumS0ke92rGVEX1e9FFXmxgx4cHPC3//bf5hvf+Ab9fp+trS0GgwG9Xu8yOY5GI+7cuctiseD58+f86Ec/4sGDB2itqev6MqmHYXitdKNzrpGPDEOCwL/s6VpnMFag2CTbumS+WCClx2g4JAgDlBcQ+0lTPdhG4lEI2bRYihIv8JBKNn3BayqMJEmal8I5At81amVAJ2kReB6Bp7DONepVziCdwxcSXwo8GYGeMex32d4d8Wj9tKFiA0kYsb3V5VycE8Ue7fhqRuV2HCIiHy0CzteGtS7Y2z3g5GTM+fkZ2lQEgSIMPKQw3Lt7i8O9EW3VcP5REj9oWIO4zeyBjSrWz10Dqa9+24WQvP3228znc0BsTieSVrtFr9OlnbRYZSmj0Ygay+MnL9HGgtHcvH2b2zcO+d4ffYeqquj2uniBh/I9ojihKi1xq0UoYTo+vXIdvnUIMjyZ4epTVo+/w6Pv/QHLtKTVv8eNN77Bva++RXf3EON18PwQ5aCxgzNNV1gpQinpJTBsK3ypsNQ41zALa6uu7QJ4VrE7aAGOqi55cTxHSkEriRFao6QjFI3aW5nneE4gtG2qWwGlbtoSsecRRQG9dkjob5NX8PxsSugaw834GsZtVdfUVvPwk4c8fXIEddVolPiC4WhIGIaYuuKD998lzVbs72+zMxrhu5rZ9JR+UlGFkiDuENVVY+cl7Gc6NEISR9F1UhqfXZdf7tua+NPv/xm6mFNkCyoNKkr4tb/41/jxn32H5fkRpq4Q0kNZQ+WaB1o4DUiMU83ZskrR1rKYGfJ0ifIEngiwVqKUoCjya+mx3+p3uH14k8We5OX7H6OjkK39m8Q7t+gOh+RpyZP5Iz786AFptkaWFlcbqGvaUULY69HrdVitl9RlxrzQrE/P6G3vcaPT5d7+Dke5pjq/WkISPutPO9d4q33pS1/iN37jN/ibf/Nvcnh4+Ofojz8vgNPtdnn99dcBeOutt7h9+zb/zX/z33B+ft74eWlNmqZYay+r4l+4BhphmlaSXH5vWZWXtMkoigiCACEEw+GQ09NTPvjwfQaDIaPRkCAIiaIQT3qsVkvG4zFKKcIopEWLIAyb9s81GrqtJKAAZBTQ6rYJVUhdano9gZAh63VN0mnRGgQoKViscrJCoZyg22pz7+Y+/YMB2mqOo5CqtIwGLZbzJb1OCz8yDLb6tK4Ryx61B/jtGBFF7OxKXpzPSNMZO9tDnuVHTE/OEdpi64qDmzfodxNWU4+nj1+Qr5YMuwngUztFbcAJ02gzA0ZXGF0144hrwEXz+Yznz54xHA7ptNtEQcBiMaOVtDm8cQNfScK5otYV1kGv1aLWNYUumK+mjLIOt28d8vDxI2aLZoD36p1b1FWN6AiM1XhhxGC0fc3zYRglhu2+ZjJ5zHT5gLcPPJSMefejD3n3Dz7m0c8OeOWNNxgevkZ/7x4yHqD8mNAXJKGiyta8PPqQaCfmje2v4ZSPc96mpyw2wkBXX4+DnR4Iwdn5mHVVg5SEXgA0+r7SOGptqXTFqJewtzUkDiOKUjNdrcnynDAICT2FKTK2elu8+spdxvOc/mjAJ0+fsUxTfHn1c9rZ2qaqM+pK4YyHFyr63ZD2dpewkyCKgkff/wk7pmbnzgH7W300MdnTZ7z7zo+Zx4Kdg11avRF6mbGW55yuVmht8JMYqXMiqegO+1eu4yI+VxKuizVFNsPqEleB6vT5yjd+h7OzE3709FM83yGkw/CZTmltNH7cJfBi0vUYaVZ4fkVdVciNBlwjhrLpszlLXlw9nHv99VdRh/d49d59djyPxydjHjw5YysV2BKqOObBpw84OxmjPEErjmknCe1Oi3aS0G/3SaKY1WqOLwVxp4OWjsj30R8+wSYxYtDh+cvllev4eYEf3/e5d+8ef/fv/l2+/e1v0+l0/nsCHn/ORv5SjQkGgwG/+qu/iu/7rNdr/uiP/ojJZHJpN3QtF16IRrxn08+9ECG6SOar1ery83ESg7A8ffaYn733zkbESNDv9TZtCsPBwQGvvfZaYz/jB43VjFDXCrQIJJ1WB+t7hH6AJxq0hsSjLGr8ngdaUJQZZZERBT6esFR5hQ1b7O302b2xw/lsxuHBHkWuQVRkqxmdTsSt3W2ilsJcY3zaHSVEvS5+K6I2jjgOePjsFEvFzb0RTx+9YHJ2hhcoDu/cpqgts8WadLnAk4Yo8ho9EatRKiCIkkYhLs0xpsRuYBLXiXaPRiNm8zlpljEYDBgN+rRbEUkgmJ48wTiotMWPE4QK2NkeURvNfDXm7Pwlpy/BlhYpodVqMxxtMT6fYIzmS1/6MpPJhBfHx5yfnV+5DmsrHj14h1ka0pFLyjon6ba5s9VlFEt+8OEzJstPUCeWMp/y7OknFN4I4cW0fMOorciWL5jOPuTw7S8hv3yACkdIFzZzlY2+jbjGar4oM+bLFdZBGAWXCI31ek1M06OOPJ+D/V1+5av32eoPWM2XjCcTlC/AdcjSjMViha4rXh6fsJjPOV/kxN0udZlysNdn6/bVqoO//7f+NWydIqxPbQyz2YTxeEISh/hFyvT4BXuqRrsSPZ/w8MUT8nCIOjvl/cc/YjpdksQhW70hu6Mdur0+ubUk3QGBnxDZmNlkydHJ1fflIj5XEjZV3lSz1uDJkDCO6Ag43Nnnh0rgrL1MBtY4GofXgO5gj7oskMqnqmqsbaqqIIrwpKAoMrRudGzlxprmqnh56xWevvcJr89WrErHk0xTG1ika+T5KYc3DhkNdxF4tOKAIAhxGoqsYj2bsTgrGlGZliAKWgxGu5R1QZlmZFJSLRdMVhNOTie/1HW5QEWs12uqqkJrTVmWl22BCw3bi1ZEAyf7TKkJmir59u3bvP766/zkJz9hOp1efv0C+vaLQuvGcaIx6tTUtaYqS7TR5HnOdDoly7JmTb7E8xsN6KLIWK/XgOP87IQkSdjb3UVKx8nJEVtbW0RxfNlCuC7pRGGbdntIZR1SGzzf0u22WM7KZghUa6TUSG0xlSbpxEShIl+WGF0w2ukhZUkcKe7fu4ExjuPjlyyXPkFg6SQ+SRKir+mBBv0ucb+HDH2K+YqqSOn5lrxagvPot3wmy5SiKBiPZzgh0WlG368ZDCLCxLG/lXBzkjCtJUG7h7bNM+2cocobx4X6GhU1YwxFUeB5HvPFknS9YneQ0PIUk8kplZMs05LR7h73X38LpyLW6ZrV8oheAFKnVJUhiTz8wKfTaTOenBOGEScnJ5ycnGDqmuXq6uejdoaHjz+ltYjY71pm6Zp0NWF3EPHaa3sMtltYFfLK/VcwVnA8N3x6OiYvazqyZIRj707M7m+8Tbvbxcw+oXIVSo1wwmClh9bVtcXCyTLDWYVUAunYiE05WmHAwajfoHCEQgYhj1+c8rP3P2ExnTeqd56i1+szX6ZM5ikOSMsVgZ/TGe3wxq98nf3FhCjx6O6OrlzHy+NTQl8jgHk6ZjZf46zELOYkz455+eADFsWExKsJtl5hmhuWJiVxa85lxawlSBLJ0qU8OvkE79gxaPcZ1Xu8udfjt779e0Rhi/Ia0f+L+FxJOM/WSGeRUoHn0+p2aSvBrYNbtHt9ssmEwPcQyiOKA2pjGHZHJEmbSTrfqCgBTuF5EZ6nsLpqYFIb6TclBfoakeqt8THvTie89+IZv9ptk1rDy6hDp9tH+Ql57hgOtwmiFnVRUqYaXTqs9YiiAaPeiG43xlAgvBW10VgsJ+cL5tYiEZQquO70fRkXyfX09JQ//uM/RmvNwcEB29vbBEFwOUlfLBY45xgOh7Tb7T/n2FCWJdPplCdPnrBcLn9OMs/99yrq/2409kOaWtdUdUlVlazSNePJhBcvXnBycroZCAZsj4YkSVPxBoFPvEFfSNUMiIQQHB0dbdb5m41WsXVoXTfSpFdEq9UiUB6KxvQTUZPEMaYOiP0AISUSQSuK8eUAKyyddshq4jBVTr/no1WJr2qC2KPdbrG7c5/DO0OUAl2XKKspi6vVqYLWDtJPyPOcspJ4yiMSNYN+m3UBthci0KTrBS+fP6PbatGlJPAcLc8ReIbe4Qjnap5PMualZZZqAiVwqtGZrZ3Gu6byk1JijGlgZRJCz9ELSs6mSxSWstRMzycMhx18KiptSJdnpPNzZuMj8iwjK2oObtylFfcJfe8Svqi1ptttfPkGo6uTjnMCYRbk+TkfnZ6RruaEoeI0TdnfafPWG7dJ+l2C0MOXIXdvRrxxO6UqU0Sd4tmCfq9FmCTkVUlx9gw7S1mWCXG3D0HI6csPyK6BUjoRMtrqILAsF2uiUNHvJRzsjtgd9jkan3J6fMz5UcWydDhrsM4RBSExgq0kYuDvor24KdR0wWg4RKsEL+lwd3+H6fSUxeRqaOk7P/4RW1sXEq8WpSxxp6A1KFCnp6yrCTMkbeVI2gl/+u4HHGVr3kiauVWhQbnmZOl7grq2KCtw65KzWYMOSzpd4msABhfx+ZJwscL3FIFUOGo6gxFTGaE7A4Zb+yzOzkhUgApj9m6/Sn+4w3o9Y3r6HKxBV43jgRUOPwyoTYmtK8IgwAqLqctLXO9Vkbz3DmHtIyuDnM85zyznviHXgjDMsLVgp9fj+WTFYlHQi4Yc7u+zXKdUWpN0h9w42EJ5mrQ+Q/gwX0w5Op1R2praNRYpKrj+8vx3E+WLFy/4T//T/5Rer8dXvvIVbt68iRCC5XLJ0dERnU6HGzduEEUR3W6XIAh48OABjx8/xvM80jTl1q1bRFG0wYSKayXxGslNh3UGa2vyIufJ82c8ff6c+WxOrTXGWpxwGGs2wwPFcDBCjSRFUVy2LpyD9Tql1+uhtaHICvKipNaG6hpUQtIKKPOMwIsAhe+55l5HMX4c4WqDEU0P0ReKdZnR6yQ8rwtK5wj8mqrOURKCwIIoCMOIGzeHGF2zmGhCJRsx7SsiLx3T+Zg0TVG+opd08MsVg16HODMoDJEPx/OC0+OXiF6bVr/Ls5mh9AL+wpfeIhBN79dZixuvSW2FEI52JyLZ6jTSq+7q63HhTSeEwKdG1RlUMJueo6uicZSWlvn4hPfeKfGCgHWaUmYr1uuU9XqBc4bp9JTdvRZsCDRyg+seDod0+71rPdWkcAy6BWt1hg4LtnsdOp0WVtWM0xk72wPCuEMYJrjaoARsdwJ0bKgLi6kE2jpW4xnrogQH0k95dl6TW/BbMbPJJ9RVeuU6olBy7+4+/W6bxTzD9wSjfsytGzsUdYG3VTPcXsJHFf4sohIW60lG3R6dIMALBV99++vcuvsqVb7k+acfcXw+5k9++pDH/+gf8eort9jZ6l5CXX9RDFsB3daUVlASCQijkvZojAssRx+c8Xx5xDiLuXmzg7MGbZboeoktQ3wj2Up6dHod0sUcaRp+QGUVBp/xZMl//v/+z0Fo8CS/85d+sVfmRXy+nnBdIVXU7MZ1RhJ1qfBpDbb4+rf+MlFryK3b97lx6x4HN1+h1e7y7jt/wk/+eEXih/jxiLPxBN8DaTV5kSGlj3ESIX2UrzB1idNX94QnsxWjnUNUN2KWrxmnefMg6hIjHGWxYL2ekecLylpTejFFVVJWmspUTGbnRL7l9dd3cVnCm/tvsVzOOZrMcM6gpUOEPqtrjnnAJdyo1WoxGo340pe+xB/8wR/wk5/8hPHGFfqCJLFcLpnNZiyXS5RSdLtdsizjn//zf86DBw/48pe/zLe+9a3LRJ2mKUopFourd/aqqjeVcEldl7x48ZxPHj+iqCq00Zt+cFO1BWHjGFvXNYPBgFarRVVVVFXF+fk5YRgynU7p9Xqs12uydYaxFmMhv8blWCmD0QVWqsaKoTSURVPhx+0Wg1aLsN2lrEuoNYEXEgUBLT8mS1OKdYpVICUoz1BUGc4W+LTAOrrthG7cJRdXO59OZ8eX1k5lKVjLkO1WmyLLKAvDjd0+7VaBF+TMli8QtiJzHmO5z2ym+P39L9NxJ5wfP+dg1MZZS5aVqKhNt90miUJaSUTSuRq1kiQJb731JlJKnj74KcuTF6xUSVmXtNstsnTd4JF9KLM1Tz59SlHmCC+mqgx+EBCHgrouePbkIYO0QAB5npPnOVmW4YcBfnQ1ikcKS6tVIuOcTtvH8wR+UCKdYaENBZIk2SaOeqyWYxbLMZ4vETJGRAHKrzFlyWQ+QTuHtTXL9IwPHk8gEnRGLYReEFzjtvylL9/mzp1dosDj4GCLIPBpxwGRJ8kXNWEnZGc0YDDsEdhXsJHH0/MTXF4xanUoEMg45Pj8jPX4GGcN3W6PwlTgHD6WQRhxcLB75Tp8k9JPMpLE4IoW0vqgLaaqyOdjskqTSIlyHulqwat3h9xMdqkfHiHHcOvwFl7kYcsSV2tqa1GBo9ZrZlPN5LxgthyTVr+cnvDnSsKdJEL5Aav1mu7wgL1bb9DqDFHC8Fu/+3f4C7/7d+j0ewRRjK0debHm/htfZZS0wBhyv8VsfML58RFPHn6Em71E1iUYjecafGT+S3i7vd/fptPt0x2OwFpGvZxEeIR+QbbImc1mvJul5EWJ1gpdGfI8JfA9Op2IVhww2g7xI4isx9e/8hZ/9uN3GXYGDPsxKvYQUcjoGmjYRRV8wWz6G3/jb/DX//pf5/z8HK31ppps3Bi++c1vorXm+fPnJElClmUcHx+TZRlVVRHHMd/85jfZ3d3lyZMndDodtra2KIqCVqt15TqkbCBltS4Zj8949OgRVVVewsp839uIZDfWMc45ut0u6/VnTsLWWrrdLtZaoihisViQpilhEOIQZHnJar2+ch3rfIWWklboEyqP/HzGJz99j/kiI4gikk6b4e52A7Soa7ZGI6owZJR08WrLs4enbN2+gdfxEUohnYe2BlvkhGFCq9NFWg8ZX309dJlxc3vEaNSlcpbZeIpfK87PV7h2wvadmwzTDF0/4c5ei93btyh1yMvpDETA0hj6nS6jnS2COAZhyOuSpYnwwwjfjwiUurYdsbe3gzGaly9PeHF8QjdOiPtbpOUx2zcOGZ8fUS7X5IsZIgg5PNijLptiQXk+L06OKLISTI0MHcassCZgezhkb3+fp0+fslit2Iqvfk6lA2EFVjeOwA6JMQKUohCKtdFoY8mKlLPJmDydMhgMEFI2pCddkS1XnJ5N6Qw7OGf45NOn/PS9Z7z+9h06ng+2orFh/cXx1pdfYXe0w2wypq41W6Ntqizn7GzOs0lKLRU3Xn8db1tT6y4aRzDxOJ1OKFcl66rAO89YrUt2B236sc/DR88Z9vrs7+0w6sUsllO+8uXXr1zH5OlD/HAfv9cnDof4Fkw7AqdRnuPOdo7nRSRujdMp9+/exu+FPJzNkA8FT568JO5EKBp0RRwFvP76G0wnE/LplNGwi5Mx1ezqk8FFfK4k/NbdmxyPp2gdkbT7xO0Os+kxk9NT3njza0RJiywryfMagWF8+pTVYsr+rXtIEbA2JaOo4P79V7n35V/l0Xt/yvL0Odlyymp+jDMVtZJU17QjBq++QhQk7Nw8pMhK7vRKersHVKJmcj6lPJ/hak1caxA+ndaAUWfAoB/R7bVpJwGh53jx/Dk3b9/g8MYuH37Sp98Z0I4kni+orKHfuvrhvn///iU77a233uL3f//3uX37Nt/85jfpdru0221GoxFZljEcDvnqV79KmjY35rvf/e4lucMYw9e//nX+2l/7axhjePr0KS9fvqQsy0vyxFVhrKaqK1brFadnZxRlhfRUg0DZICd8T6GkYJ2mjIYj4iRBKo/5bIbvB0RxRBJGFEW+6VFXVFWNkoqiqJjO55TXuC0HSQdRG1wAo9EWqtXng5+8T12V+L7j+acvOHr8gMgPUEKxHA24efMWQRQx2tni2fQMOZ1za+sm1mqsFWRZga0KDvZaBFKxzDLMNZXf1vZ2o0MhoB2HtPZ30POcZ+6EdishThLysiAKJLdu7HPnzbfA71LZT4g7XZRyrGvB9q038NcZL88XxGGKdRFIjyj0QVjmi6tRGsvlAmMMvV6HL3/1azx99BHTxZraSX763gfcPtzhzbfeIvZCHj9/TpqtEQ46SUwQBKzaLdzK0R/0qZFM5mOSzj79Xq8xQfUUnVYLc40DTOOL54OJUXJDUXYObQWFhPPlkpdnRwS+x8PHH1PnObqqEcJDYFivF3z00QNOJ2PuvXIb6eDBp8fM1xXaOqpKIyqNdw2OvLu1Q5B0iWqDKzKWWUHkhVgvoJY5g+07OOPz8cfvEe5E1HkFtOkPJEkSM1SSBx8/otKGVeCRRIo3v/Qlvhy16Hb77Gy3+eEP/pTJ+uqTY1xDKO5jxB4mjLHZjNAbETpJP/mE333zTZZ5SvrRc+IgoNu+Q12WrGTC/vCAdycZZV3iK7ASXF7gPX6JDMAPfPwgAKMRv+RQ6XMl4Tu39hgMe6zygrz0WB9/yGr8gKOXx6Tzp8RRAsJHeT7Cs0zOnhP4MXb/HqGfoKszFk9+zODur9OK2+zcvM/dN77G8vyYJx//mPX8nCBfEWZXtwF+8y9+m1arz05/iw8+/Bhzes6N3SE7t24jgwAvzVlOxhwtFqyqurE6qjU2zzg+f0mRrhHWMmp3efX1O6zWGdZYbuzvYkyBEzXWacLoaq+73/u930NKSRzH3Lt3b8OIa2y89/b2+NrXvkZVVfz9v//3uXv3LkmS0Gq1mM1mfPe732U0GvH1r3+d7e1t6rpmb2+Pfn/AarXm008+JdtQXINrelzWGLSumS8WLNcZKA8pmpfNkxsyhCcJowBjLass59bd+9y9c5fJtMGt6qrg+OgFxjigYRRVlaau1yzmC4qyJEqurkDxIgQVtdMY6dBWs7W/S2c4oNMJ+NH3znDrFOVHtNsdEgd7gz65BNlvcaPjE/U7eJ5PXtasVzlZVuB0jbIS5RzWVkzPrn7Jtra2yBczpss1YRXQjhPSqgRP0Ou2CaQkNRaL4M7dV7lx6zVka4gf7fL40af88Pvf55VX7vLaK7eZLc9Y0sEL1ojUkNUrlNP4vuLo/Op1XGC+7969w/ZowMnxC548+pRht0273We2yFDVCW/ev8/hjQMm0wl1VeOcYzweU1clUeCRRCEyjMiMo65LlNdghMESBD7ZNTMDK2xjSipEMxxVAqkaU1MhJWezOdnyQ4ZJzDvvvoM0jul42pxYhGW6GHM6ntLdGlHUmmKWMVsZjOeBtNjaIKz7OVGg/+FYxwLEFAYVvpFIHWKkRKg9sknOIGpTBR6zZUboW4QMabX6dAY1dbnm4adH5NZx4/YO2nWY6BVxVSClplgLOlsB/e0dsmsGyNpIhNd4HSIDtFRI5RPUINICJsf0yxSvKAnSJa3ZhKrSRLM1W1Kxk0S0wo3gmPJYmQpTFBS1JQw8SqOp6xL/Gjz7RXyuJDxez/GlR6/l045gffQu08WKT5+9oBh/iLGCp89PWKUpwpMEYcRwtE2cdPFUTOiBrZa0TyuMDFmna9qdLtQaIULCuA/W4vTVvcf7d+6jZEAYJERhQuB7qKqko2tG/R7xoIfZ3+JgueRsNmO56TfqQKB8gXEVRZqyrjKOz07I/qzk5GxMms6pcThX4ZRAqKt7j6+//jrGGMIw5ODg4BIJcXh4yHQ6RWvNYDDg93//9/mVX/mVS7JGkiT8+q//OkmScOfOHfK8qT6llAR+yI2Dm+DUxul4w9y6Ii4Yc+s0Jc1zEA5PAhucr5KS2hgkEIYNSmG1WmKs5c233iKJEqoix/MU8/kCEHQ6XbIsJ8+alkXcal3L3CuyHN9rcMV5XZOu5iS9Ll3fpxNL2u0WZa0Z9PrEUYs46aDCiHYvQg3adPwRKgzIqwohPIxxGAO6shSrjJ1eHykc9TVTeKUU3a0tdFVRZSmLak1eFmzt79Drt9F1ySJdUUvF7uEtvLDDIqt5+OQxf/Tf/jPyfI0KYrLK8YN3P0Yv59xKYsrpmLS0JO0Oi6zkaHx1sdDpdCiKgjTd0ORlwO7eTU6PnyN9n5s39pBVyaOHjyjLFKsadbN2q0W73WaxXlJkGSsriXv9hjAiPJbLObu7ezhnKar6Wly940KEyYByCF9hnQEESii0sYyXE5Tps0pzTK2ZrVOstChf4kUeu/du0+716HoxLnXklUX5PsJJsBJhJNd0Z4iSGdu9FyhXkWbb6DxkUUhUZ8C9+wNefWXI+PkRRILb9w/55JNP6LfajG7eZXr0gnr9gLi1xd6dV5nMNaZImM7fZ/wcfuvbv41qKUY3h7Ra7SvXceqgqxyhKFEuoLbNQFpbQ1mnpJMXUGcoD5QoWZ4+x+gaPz/llk3oJwlepXEuJK81CxRZVjGrcsJRl2K5oCoycP8SIGqdzh6eBCEFyMbs8Gw6px0HHGwPefL8JWenz1ivM6xQxK2E3a1t9ncGzCdH6FXBfL7k/PwEP4goy4rzDbMuCkKSKCH2LVH36gp0tcjo9SLarQ6+F3D07IjVZMb07Iyt0YjtrS1u3bzJrdGQw0GfUmtqY3BCUTvDyckRH/zsPSbHpzx9+pjyk0/ptAecnZ/jdVo4pynKrKGQXhHD4RCtNb7v0+v18DyPMAz59re/zZMnT/jJT35CGIbcuXOHo6MjfvzjH6O15vbt27z99tucnZ3x05/+9FJXot/vI6QgiprjqNaNytN1VvPGGOoN3dlsSC9edGHLLTZQqQ1eWQp0lXP08jlJGBEHAUWUoOuKdL2+JHb0+33SdE1VlnQ7HaKkhbuOlF9XxFGXIIzRxlDUNYPtEQKByVdIP6TCo7O9Q106JllOd73mxuEWLhAYGq2RWmsQkjCMMdpSZSV1XiE2hpWdYefKZTgcXtyi2xtCVVGkKzrdLlHoYWxNmqeMlwtK3yfoDwhbHc6PHvH9H36f50fH+J5iMZmwWK55fnyGyqZs70asixwtW0zXmrPxjHleXrmO5XJFt9thvU6h02K0tce5sdy68yrPnz1mvV7z9v17bPX7FEXIeDbj6OQYYwz9fp/RcMDO9pAbu4dEnS5/9MOfEHUCnGvEdrI8RWtoXzMzcE4052YM1mrqqrE39VXQkC2wVLbi5PSMnf0bBFGIkAKDQXiCIPGxTmCsayrXMMLJAN8qpPVRNsAXEUpe/ZxaPaNMZ9jKY641lZDkgcDpGdXqjE/fOeH5syXny4zu7AN2tw2Bd84sS/j06Ufc2LE8nS94djJhmYJYalazM+LOIYOBT2sYobqSOLr6ehRJC+v7hCYnqSy1y3E4KqMpbIEMm82udhKZeBhXoHWJNBm7IuSNUZdpvsLIiNJYNBKd1izDiHUU8jQ7R2KbQuiXiM+VhEcHX0LbCiUcCItzmrif0bGAimi1e4RhRFFZ7tx7nS999Zv8hd/6m2xvb/HRu/+E88cfs96qEV5N4IGuNc5ZtDU466iKmroGIa/u+fnSo9Nq00oSWlHE2ckZ587w/Kmi2+kwHI54dvicbreDNYa6qrBCECYtesMhypMIJ8mygjzNWWcFe3uGxWpFOw6RgU9eXY9HDTdIgziOabfbl9jefr9Pu93GGMN3vvMd/t7f+3ukacpqtcJay+7uLtvb2xweHvLqq6+SJAmj0Wjj1Aqep4iiEK0VzolrB5VVXWF/zgW21gZj1YYs4i41LaSUxGGAks00/vGjB6xXS4IgRGtDXdf0er1GbtI6ZtNmYNjr9/F8H31Ni8v3PTxPMlvOCAMflKPV6yCcpfI1qt2inC9JnaWwllRp7u/1CAYx2pSUeQOHc7aRLAs9RTIY0A5DOnFClufkWcP2uiqEF2KVh/ADAk8RxwEogRCa9XLOfL1iWVd4nQ4lgrbvc/TiBdPplLSsSYRHv9Oiso7l+ITdtqKsa0rnSCvH+WpFXhiqa8gag2Gfe3fvbrShS8aTKes0597tW0RxzIvnj3j/wwe8+pf/InEoScuKGzdvspzPWa7WmIXm1Vfu8MqdO5xMZwR+wM72Dp4f8vx5U53dun2P7d29q2+Ma54r4cDTDUXYVyFCeDgcRhhQcD6eMhgM8aTCOIs1lsD3QSjqosRKycqWvDwfUzf7AE4LQhURyevbESu20fkIZEIdRjipuDE8ZcsrWErDsN/h1p0O/Uf7zM5LelJzeHibZ6crdtshaV6SZRP0eMTa+HjLlKg64PW7d7n3ypA1UAsfew2UUhISFQ4ze8E6qLG9TqOIq02jHV0ZdOVYZDVG1mztHFA7n1nl8XIy5/GyxosdgYoIVESkAqIqJ2m3eG5LnK4Qm39+mfhcSVj6PoEMAUdZ5CyXKVr4ZLXg8Ytz0iwljLt0ZUQYRZydH/MHf/hfICXMz56g6pL+aJdYeLRbEVEksM42O7s12LixvK7rawZAYYDv+QR+wO1bt9jZ3uLFi+dkhSHPciaTKU+fPEVtBGOsMY0uqmgwptY5iiLfaABLpOdxeHgIQqI3bC9tzLUqWZ1O51Kl7IIldyGkfnBwwOuvv86TJ084Pj5mtVpdJkNjDL7vc3h4yK/8yq+wtbV1OaRbzJfM5lOsNdS6IstyzDXruNC3BWCjQ6u1JW5FDcli0zJRykMpn163Q+AH6NqQrldkYo3vh2xv79Bud5hOJ0wmE7Qxzc+nFEp5iKsLHZIoRIiKNJsiTEKar1G+ZGswYJgMePVrb5GMBmx3+rx8fsb2wTadvQ6aAikc6/kM5xQ4WKerBiGyf8DKaaJWRFHXmNrgXcNEau2+grU11q8Qsm6OnMJrTgFpybqsyFTEsN3FGY1E0G63aHc6bO/t8vrrb/DmV95GugJf5JhsxdMnJ8xShfMbrQGbr69VyVKe4OnTRwSeT5ZlrNcLluslZ9Nx04q6/zrnTx/x8eMnvHK4yzKv0Vj6wyHt7pAobEGV8v0//S5HkzWLKqCwRxzePGRrtE0Stzi4sUt2TbEgaJ57YT2U9AiDiMgL0aZGC4uT0Gq3OSnOOD6acfOVkLgVY01zcqiLComgKCvwAjLjKIqaOGoU5UTgYSqDu0bBR3XuUmiHlRbfOSI94TCYsM2Y557hzS8dsnvv1/jL6SHvfP9Djj5+h4PtGF1rgr1v8p+88ylpKoj7EHmaO6+2iYoBb39twFtf7vMnH56RFz7eNcmvm3SITc2jTz6h1DPu/sqvUAuFNCBNjTCGs7TgT+YV2y7ibaZE1YLSaF7W8FG+YiiH6OUCW58TScV2kODXOVlLoqKE0IUN1vKXiM+VhNenHxNECUIGICTt0ENt7dDt9mnHjXPEG1WFwyGkoMhysnRFumpogSJsI6KQ08mMyXyN73l4XiMUE4cBYRgQCkFwXWNdN1Wfs46DgwO+/a3f5B/8gyMWyzmBFHi+D8iNyEozCQ48D6UUVd3owRZ5TlbkeEFAt9dHOLDOYYzDuvpSE/iqmEwmf47N1m63uXHjBsPhkF6vx2uvvcaHH37Io0ePLuUPlVIMBgPu37/Pt771Lb72ta8Rx/Elo+7Th58ynU4v+7zW2kupyV94PeqGLWeNxVnXXNMwQCmPujakaUEYNkIpq9UaJRWDQcO06nQ6RFHUDOEqzenpCWna6N4KIeh2OsRRhHVcS9PtBRFHJ6dUeUZa1o2IvgDpLHVec+PGAaP9HWShGR9POdjeQuqa1WwNDjzfp98dcj4+oyxTlHJUVZ84DlFKUpUWZwXr2dU9Yd+LwQbEYYJPjUDiZIhDohKHSlYQaEZbI5LAgi3Y293hzp3bdHsDvvlr3yRpJ5Rpxr3bN5menPPsxZKiWpMkAYJmY/fU1a/PyekxrSimk7TY3dkmbie8/37Ti/eDAIHl1r271MsJWVFS1DXn0zG7/S6d7pDDm7d5/PF7nI3HFMZna2ef3vbO5SlLliXj80kzjL0qpENKgRQ+OK8R3rGSUIXgagwOpTzwPT795Dnbt0e0/C5Iia70psJ15FmG9i3zZQNVFEpgnCOrCoK6xLuG1m5dCUqghERZyfJszL/48YdsiQpf9FDJc1R7m+F2xF/4S18n/bU3KRcz4sEZD18ccevu6+TzkoP7N7n5Spe37pzQdufs3Iio6megPKzwry+een0cFaerGUWx4J4RaKNQlcGUKc7kPElz/vHLFffKHV4LFH6Vkjkw7R7TRYrf3eN0VTErlijp89b2IaNAImXNK6++hegMrm0jXsTnSsJ29RJdhIBPZS2oEOUn7LRb+L6P9LrIIET5PlKpjQSg2MgqWqSASpes5nOMqanrqtE4sBrroHQCLXyCa3CPRVGSZQVRkG5cMyTDbguPuvl7tWaVpaTrjLKs0MagpMTzvUt5ubquqeqKKElQvsf5+JSyKvHqNqimurxOK2E6nRKGIWVZXlbBF1oB/X6f4XDI3bt3+clPfsLR0RFaa4IguERFfOUrXyFJEqy1rNdrnj59yscff8zJycllq+OC2nzlfXEWrQ1VXSGkwFNN6+HiOl38eSkl63VKu9W+bD+kaaOhUFY163XO6ekps9mcIPAZDPq02u2mp1zrRoP4ivCNQNG4mOiqotfvsz3ooQDjHOs8xYUSJWqMrYhCn0AItBCowKfdipAb4fggCAHRDAUDiRCuSaZGoOurN4P17BmmNpgkZtDr4oUhMmiTVZrKBZyvLXnt0e90qPI5mddhezTk17/5q7w8PkUJx8ujZxTZgjrPQcbcfuVVxrnDiIBsnWKNIY6v1nkuypJwYxu1XK1YZ9nl5p6mKbvbW+z0WsyFZpGtyYqikQ/1PLa3d3j46CHj2RStAtZ5TT8MabXbrNI1RhuWqxWrrCCKrmnPCLtpdUlOxwtqrWn5ITf2tglbMZWpWc5SpouS2dLw7vvPSZIpnpQIYXCumTPkWYGUPtPJCicFlTY8fXbModxmFGnUNc9pvpo2bE2psE5xfjbn2XtzdnxJyzd8fFzw+NmU1978gL3Db7Oz/zpbhzGj/RGvLgruv/oqk2dHbN+LuHGvQ8u9YPb4JS+ePGUVSqr6PsbWWHd1JdzpDkj1itRV1BK0k7gS6kxjqxztWZ5WlkL16Qxv0+pFcHpKoQtMZdnCI5zNaGlNLQO08FlrQywkW/0h91/5KtFot5md/RLx+SrhPEMvMyrtKMoCR0U7iYmjmCCSIFo4r4fyE1QQEUQJcbtDFLXxvQArHLEfkiR9wDaUULcRwHMWYw3a2mtfdmssddUosWVZxoMHH+OsJYkiIMBaQxT4dKOALM/J8oKsKKmqYoPLtZf2LWVZgICjo+f0twaAxprGd+w6fC6wEcD5TKYyTVPG4zFxHF9+/uelKC885/r9/uXnqqri5OSEFy9eXEpiXmhK/DIVuTUWJSWBH2xoshtd06ARZ7/QJQ6CgLIoL4dvq9WKPM9Zrlbs7d9ge3eXytScjM+aqlpKDuqqEawWgjC4Gi1SlRVhFBEHzWnG6holIAoCpmlGZTWjXh9V1bhQYqRBKgiUT68/osgrykLjrMT3k4YtOM9AWvyocWhJswKlrk7CQp+hs5yj04JF0mKwe0C8dcgyK3n84jEffPIYESXUJTw/PaZmhQx6ZEVFuloymYxJIp9eJyHpDnDag7BmMJpwNl5QZhnSQnINaWQ4HKJsw6icz+fkZaOnnaYp6TolDgJiz7HKUor1jFWacnCwj1KK87MzHj96zM7+Fsb3GJcT2v0uL45eom1Thc9XS0bDHYbDwZXrwEmMVjw7OePhJ0+QSnEw2oHasbu/RakrVuuUPK0RLuTRp8dY2wiqs0nCTkAgfKQMUGGAL0OyouLRkwm9UcJ2klzbAxU0FPu8zjF1zSwv+eS04tyHTpRx9LMZP/5wxle/9ozbtx9z99Yd3vjakJt3+2ztZLRaGZPdI/q959SmxySVPMlv82I2xUYBhechhLm2DeCHMZPZESQJ0ioq6fCtw+mKrKoZV47HWU1vZ4fB9hDT1oRjRbcTs60CfK2xiyM6ArLYb9xkFhNkHBDf2qI1GJJ0trDX5LGL+FxJ+OXZmKrUIC2Br4gCiVIOPyiI2yGz6ZL1+BRrFE4GeL6i0+4QBi2kCog7XeJ2lyBq4XkRygsbBSsNtXFYoVAqvPSi+0URddqNGlgcUK8WZGWBigI8I7CmscWJ8Qk8QRwF9DodjHNY5zaVsUY7i7HN55Qn8SMP5SmcNUCjBXEdNOyC+WatJQzDS/2F09NTkiRp1PnznOVyedlSuLAsanQaHFprzs7OePnyJev1Gmste3t7fy5JXkvW2PSYh8MBxlnW2Zog8BkNB5sKqFmf53nNxpU2LL39/X2GwyHFw0es1iu6gwFRkjR+b4s1p2dn3L15yLDXJwjCawV8vMgnzeaMlxO24zZKG8bnZ/S6XbSEpNdid2fE+nxCQU3lNHiCOEgYDAakfsHR+hRQBH4Loy0npxNU0KUXxZRlxXy+xKmrZwY2T2n5YJXm9PkTlqs14TTldJ7y4uURk+mMoC14+vCUcr0irRdU1WO0aXQupBcQx13idmvTxvHw8opWp0P58hxnLVEYEwRXo3j6/T6L8QRrLL7n0ep2WK0bd43t7W0WiznL2SnKZuTrGe1um53dXZ49+IiiPOPg8Abbe1vMteFG0KU2mrwq6fZ6jfC/kjx/+ZTx5GpRd2Mkp+czjo5Kbt28S7vdRhqH5/vESUIvHtLp5+SZRnqKrPTw/ICdnW2csOR5ihCOrf6IJG7z6OlLJmdrsnTFsNeh3xsgRXntia2wjSRq6QyrImVBTdkOeLEuCKzH3GqePVtyMl/wlbsz8vtPWb0c8vL2bVp7YETI+XHOq6/2Wawlj08cBQfI4VvUKkYSklif62AJxhpk1KJ3cIvF8oxpPme/nCDtksfzjDPZZUrKK68eErRCTkXF0EkOXrvP3Te+yYff+TMevvtjlJP42tCTjq6D5PAmu19/i7DTxlNN0fnLxOdKwljXKA4lAUEQEEfQ7tdEsaCqJFWpGsNNW6MUSCsoVgWr6gSHwA8jojCk1e4Qhm1UkCCDCD8I0U4ggxgZtrFcXXFtHd4k9CRJp0NRFty9d5vdrTZ5mlKVBbosqeuKBpLTVL5a2wYpYQyVbn5fa73xmWsIF0rIS01Uz1NcJ+Obpinz+ZwwDC/RD91ulzRNiaKIg4NG1/TCWyyOY6SUpGnKbDa7NAVdLBaXPdifd0i+0Jy4blDp+R7GGlpJC98PKIsCYypaSaODa41FqkbbN/Sboabv+xRFwXA4ZHd3l+PTU06PjhFS0ooi1nKJ1YY8L8jyHG0d5TXrKF2JH0m8tcOYgrJqdBycrmiNtvHikFJrnBK89totukkXT8bNLMBXLOuS1XJOmq7xwwhtIWzF+GELB+T5mjxL6beufj7SuSYKHL7zqHPL2fiYcXHKorAYLLrUOJfx4vmYbrvBQzur8fwAX/kEYUxVGvK8xg8jpJKEcUjSitGmwlhDp9W61nZKAGmW0e/1uH3nNs9fPqeqSvb3D9jd2eXo+TO2trY5P3lGqaHdb1Ebiwwjuq2Yrd1dZqs1yfYOIrRgG5KG8hRhGLJarRv7sGteY6csg26HX927x2gwoCgKqqpid3uEkqB1ihSW23f2aXcDrNP0eh3iOKKqSoTcIfJ8kjjBGkErgmetMx67Oa/eu8n2aIRZPcVcI2hUVhqjK4oyY52tcZ5j9/4+2XqN0DXe0JItc9armh898liua76aHTFfH5G8bLHIWizTiJfTfaLBASoKiBKPii7WKLSuG2Paa7wQyzpnmVcsUsOjo1Pe+emf8uDBYw5bIa7TI7rxCvXjf8zB/gGJ6vH4OOVk6kjLCaV+gKgsYvsGpqqpVhle4COQjA7usLV9G6EChATvX8Zgrt0KaCXtDXwFkpbPcNhlMdYYJ2l3HLnnkaZQ1FWjnasas0gpBJgSz1h0adH5nLLSzQBHCfwwQYUtvKhLEF+NA1VBRNSKEYFP0I65+eprVOs55XpFnqVk6xW6LrGmUcKqqpp609Osa02xGULVpsEPW+fwwgC1MSJ1EnwZXOtVdXZ2xsnJCUEQ0Ov1moS3GaTN53NGoxFFUVxWohe283Vdb+Bk5lLv98Le/uJzvu9vvOGu7ysJIfA8dakNEYchzjXKagJx+XfCZ9ZR6/X6UvO4qivSLGcyXzb9yizDSQginyAKQHDp4HxVWOVQwiHrGm0laW5Jlzm7Q4svPUTgM1vMuXd4g4OdG7z/3kNsabGBRSKZjKeUeUlZ5ljpCMKEbqdDkrSoq4rZYkqWpWy1rq5Af/DeI3ZGCcNWm+m64uPHZxQ2QSUd8jpDKUVnA8tbZSlGW8AD5xGokFYYU1Y1TlsCL0R5PrP1DFwjUCR9gYx8wujq6zE5H2OM5eTsnLt3b/Gl117h7PiYPMs5OjomiSLGZ1OMDdjevUcQeWjp0929Sa01Z+scbX28CoqsZL6Ys15N6HfbzbsiVDN7GPSvXIdSlp1+hzyMQGWELYjbPkJp8rxulNlko464tzXA9wW1rSj1umHmWcitBwqk8NnZG5G0IobDmOFggMSQV5rgGpqu8uTm5AlRGDVOJcYQt0KssXR1Q+E3rsYZR5oqPjFQW8WWbCF6MfEwxhsMiDotnAyxOOxm+C6VpDIV5ppBNrbEmYoyXzM+P+Xls2c8/vQp/Tjg1v4NROGxLmqSuEe6qDAm4Dzc4qePH1GcFbSt4quvvoIpK84ePibZHuH1urwzmfP83Y9541cGtNoh6l9GT7jbg15XIFVjYheGAuUM3W7jiKqNJS8rKmMwtkEbIEAKhXaOetN/VdLDk43mgdMleeVIs5zaTJpq65rEI7Rt+OrGoS0EcUJd5IigRFlL5ClMXWGcxlqDqmqCTS+40gavqhEWLM1667pCKAV+gIoTrKDh2F9zPS6GbBeiN0mSUJblZUVsjLl0TY7j+FIs5+LzVVWxWq1YLBZ/rhpu4GSKPM8vjSGvisZoVF4SMxp35QApuewnX5h3RlF8ORiq65rxeMx0NmM+n5NVFw7Mkl6/z87eLv3BgDAMqbVB2KuvSJTErJcrZGUpnGGVlgRhTLs9JPRD0rLc9PJrFqtG+a5Ic4SrWbZTlos1RV7TbnXI64KyqjifzvGk5eZWv9nIhcS7ZpP+8GjNi2lKK5gzHs+ZrwvanRhRpKzWC6IoJA5LCt9vYHhCoZQPTmxcv0OqqkAVijzL8UJzWT0KIYjihChOGAyv1vEty5I4iVmv10xPznjrlXvc3N3jxfkEL0lIWgnz+ZS63lTcRiC8iKqokV5Ef7TFdLqkLCqiMKKuaqSQG11uw97eLuv1AnsNGgArCBEEyqPGobwGqZPm+ebECM4a/DDAOU1tatzmWjsEyvNAWIo6xfNCrC2JPcdOP0ZQorShG4Etrn4+vMBHKIvny01LztBuddHGUDvTKCH+f9s7d99GrisOf/c1Mxw+tbK0klayZMSxmyApFkia/P9NChduAhiOrV1ltVqJpB7kvO4rxaVYUk6xUDNfRRYEDjDDM2fOPef3iyBkJJOSTAwYZopJqSmGBbnRKAGDPBUcHoEPARs9LkRslNgAIe6unkZljhIzBgWUpeP65JDrT9d8/nLDTx8/0P32G1IZrPVcfbqkXswpRyPsdI/j41PmXxb868MHlDb40YRrkbMKMtk1AXXXkYeA+xqi7ghLFzoKrckyhTYWk2lMBt5r2tagdUBJl4zuEHgH1oVN9RxpWocUFqMVPghkVkBn04m3lGgtCC+MQv148obKBqyPZHpEtb9PU9eEpkKajMIYWgkyaByRvBDbCjW6gIgRFTdW721NV9dpo0wlHcXgfXL0fcHb7ebmhrZtt/5t1trtvPCzy8Z6vd5apCulGA6H24O657G057Xlg4OD7RxxVVXEGGk2tue7r0vqhQuRxH6UUhu7+/S9KIpkXx/T+Jr3YatXvFqt2JtN2Zu9wbqwdXc+PDxASUW0jvVqjVAKk+3+k3VNA95TmJx1JxhOBozykiwb0NQNdawpypzff/0VQlpEccFjsgFNU2MyzWQyRBmFW3uE0mhjtifq3357jpe35OPdSbjzhvlTzZ1tGAynzMb7KCFpqyrp+Jrk8NK2HUIoXLAUhd46YWR5jlBJWa7tOjyRqqp5eloTA2RFznA44uj43c44jDE455KbcutoHxu+Oz3nZr7g4WGBbSuEUowGA9quRRnNl9sl5bBEm4zF4oHpdMbT0xNZlnFyckJz2SGlphwUCCGZjcfcL5c74xiPMo6Oh6hS4/BkRgOR1mpCVISQXMd1HhACNkbLgN6YfUa0TNdBinTd0tjaZOO6IpH2gOXNYmccwmik9EgjkT65Jhf5ML1pEVMSFgKjNANlyGVgmAnGRYERaYGkCxYLtN7gMTgh0vlOBBsiNgj8C848RmtilpHt7TMe5Zwfn3F3Pufz3TWXny65urqiqjvWjytuvnzml1/+zXg4YDIZY4zh+x9+4PLyPwih+Ovf/sJgMEqyrEWxmWgq0jTPHyuE/0/tiDtPd+3TTrUJCNlS5AXHR2dY13B3e4tWJXuzY/Ce6XREnhes64bbuznRh/RUJS1OaJ3Ukaxz1E0HUlEOhpgXkt9emTEJAeehC4ZSHeKqdLKebXRSpTHIzBBUagE4Z9FNi6waOufQSuOtJbiAyDeavCIitEaaDAEUs8nOONbr9bYN4ZxDa81kkn4jpdyOrq1WK5xz234vpCmJwSCtJ4/HY8qyTBWntSyXy23yllIynU53xuGs3ST59D3GSIgb42BlttUxArTWGCPIi4KyHPHmjUVrTWZyoo8UgwFGabTW1HXNw+M9IUaMVDTN7p5wt6o3M7lpMuP04ph2XXG3mOO9xUwzJuMRdWMZGk0bI14LzChHmcDB2xlKJEeW+veGvBwhTI73Dud92kiUkruH3bZTtnrAaHh3csrFn39ElBmayNPynp9/+hmjc4wuMLogeKib9BB+7sUrrVBa07Ud1XrNxMywLrCY3wMSrTMG5Yj8BUGjoijSQo8Q7B+85alpkVoxm46ZPyxBQFVXnF9c8PT4mPSuG8fj9R0IgXeWum44OzvDGMPHqyuE0Bulws90XcPp0Qnv37/fGcfJyQXfHIyIIg1dCloEgpgLiJt7A7PZgo2bz5HUztIp0SKRm8o4RIhCbgc4pZCIOGJWfL8zDqlMapvhER6IkTzfGNTFdMNKIRE6oIvAWA8Zq5JSZjTNijYKOmlIW9hpzM1FAcESgZDsjl9s4VXrFuccSoGRObOxZliM+eZwn5PTY+Z/mnN9fcPjfMFiseCxWVN1a+4fliwXDxy9fQcC/nv1kRDgH3//J3t7B5RliVI6aXo0FeYFG65nxEuvuj09PT09X48/KDHR09PT0/M16JNwT09PzyvSJ+Genp6eV6RPwj09PT2vSJ+Ee3p6el6RPgn39PT0vCL/A+SETPiiKwcyAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 432x288 with 70 Axes>"
       ]
@@ -685,7 +627,7 @@
     "    for i, idx in enumerate(idxs):\n",
     "        plt_idx = i * num_classes + y + 1\n",
     "        plt.subplot(samples_per_class, num_classes, plt_idx)\n",
-    "        plt.imshow(X_train[idx])\n",
+    "        plt.imshow(X_train[idx].reshape((3,32,32)).transpose((1,2,0)).astype('uint8'))\n",
     "        plt.axis('off')\n",
     "        if i == 0:\n",
     "            plt.title(cls)\n",
@@ -716,7 +658,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 21,
    "metadata": {
     "nbpresent": {
      "id": "26316896-3b01-455b-9a0a-87278f088d83"
@@ -748,7 +690,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 22,
    "metadata": {
     "nbpresent": {
      "id": "497fbf77-9a17-4b35-a0d8-375972850902"
@@ -905,7 +847,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": 23,
    "metadata": {
     "nbpresent": {
      "id": "215be79c-8fe0-4e10-9587-6bea172bb33a"
@@ -929,7 +871,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
+   "execution_count": 24,
    "metadata": {
     "nbpresent": {
      "id": "de24c3a8-0860-446e-b974-3e0c334feced"
@@ -953,7 +895,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
+   "execution_count": 25,
    "metadata": {
     "nbpresent": {
      "id": "d87bb3a8-6338-4957-ac73-4c81b87821eb"
@@ -966,7 +908,7 @@
        "(500, 5000)"
       ]
      },
-     "execution_count": 34,
+     "execution_count": 25,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -989,7 +931,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 35,
+   "execution_count": 26,
    "metadata": {
     "nbpresent": {
      "id": "ae3a05a2-a3e6-4e65-a59f-0204411f57f9"
@@ -1027,27 +969,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 36,
+   "execution_count": 27,
    "metadata": {
     "nbpresent": {
      "id": "219d7522-e633-4136-aa98-9abe80ca7bf3"
     }
    },
-   "outputs": [
-    {
-     "ename": "ValueError",
-     "evalue": "object too deep for desired array",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-36-5f90a790a363>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0my_test_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclassifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict_labels\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdists\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
-      "\u001b[0;32m<ipython-input-31-cd0f16533697>\u001b[0m in \u001b[0;36mpredict_labels\u001b[0;34m(self, dists, k)\u001b[0m\n\u001b[1;32m    128\u001b[0m         \u001b[0;31m# get the k indices with smallest distances\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    129\u001b[0m         \u001b[0mmin_indices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margsort\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdists\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m         \u001b[0mclosest_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbincount\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my_train\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmin_indices\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    131\u001b[0m         \u001b[0;31m# predict the label of the nearest example\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    132\u001b[0m         \u001b[0my_pred\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclosest_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mbincount\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
-      "\u001b[0;31mValueError\u001b[0m: object too deep for desired array"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "y_test_pred = classifier.predict_labels(dists, k=1)"
    ]
@@ -1065,13 +993,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 28,
    "metadata": {
     "nbpresent": {
      "id": "f1ac90b4-5005-4940-9663-0bfd9574dc8c"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Got 137 / 500 correct => accuracy: 0.274000\n"
+     ]
+    }
+   ],
    "source": [
     "num_correct = np.sum(y_test_pred == y_test)\n",
     "accuracy = float(num_correct) / num_test\n",
@@ -1091,7 +1027,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 29,
    "metadata": {
     "nbpresent": {
      "id": "7a4433f3-d7d4-4b7c-bd21-6f6d5272c837"
@@ -1115,13 +1051,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 30,
    "metadata": {
     "nbpresent": {
      "id": "445220c9-4974-41a0-a36c-a309d395490b"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Got 141 / 500 correct => accuracy: 0.282000\n"
+     ]
+    }
+   ],
    "source": [
     "num_correct = np.sum(y_test_pred == y_test)\n",
     "accuracy = float(num_correct) / len(y_test_pred)\n",
@@ -1137,9 +1081,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 31,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAImCAYAAAAsZpKrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABirElEQVR4nO3deXwU9f3H8dcnBwm3gNyHqIjFisiNoggq4oVQq3hW9GfFu96tV1u1YC0qKBZRvACtVqAqp4oHgiDKoSgKgnIoJNzIDQGS7++PncQEkk1YMjuTzfvJYx7szO7O953v7ma/+c53vmPOOURERKR8Swo6gIiIiARPDQIRERFRg0BERETUIBARERHUIBARERHUIBARERHUIBApVWZW0cwmmNkWMxtzCPu5wsymlGa2oJjZqWa2OOgcIhKdaR4CKY/M7HLgTuA3wDZgPjDAOTfjEPf7B+BW4GTn3L5DzRl2ZuaAY5xzPwadRUQOjXoIpNwxszuBp4BHgbpAE+BZoFcp7P4IYEl5aAyUhJmlBJ1BREpGDQIpV8ysOvAIcLNz7i3n3A7n3F7n3ATn3D3eY9LM7Ckzy/SWp8wszbuvq5mtMrO7zGydma02s2u8+x4G/gZcYmbbzexaM3vIzF7LV35TM3O5X5RmdrWZLTOzbWa23MyuyLd9Rr7nnWxmc7xDEXPM7OR8931iZv8ws5nefqaY2eFF/Py5+f+cL39vMzvXzJaY2SYzuz/f4zuY2Swz2+w99t9mVsG7b7r3sK+9n/eSfPv/i5mtAV7J3eY952ivjDbeegMzW29mXQ/ldRWRQ6cGgZQ3JwHpwNtRHvMA0Ak4EWgFdAAezHd/PaA60BC4FhhqZjWcc38n0uvwpnOuinPupWhBzKwyMAQ4xzlXFTiZyKGL/R9XE5jkPbYWMAiYZGa18j3scuAaoA5QAbg7StH1iNRBQyINmBeAK4G2wKnAX83sSO+x2cAdwOFE6u4M4CYA51wX7zGtvJ/3zXz7r0mkt6Rf/oKdc0uBvwCvmVkl4BVgpHPukyh5RSQO1CCQ8qYWsKGYLv0rgEecc+ucc+uBh4E/5Lt/r3f/XufcZGA7cGyMeXKA482sonNutXPuu0Iecx7wg3PuVefcPufcG8D3QM98j3nFObfEObcLGE2kMVOUvUTGS+wF/kvky/5p59w2r/yFRBpCOOfmOec+98pdATwPnFaCn+nvzrksL08BzrkXgB+BL4D6RBpgIhIwNQikvNkIHF7Mse0GwE/51n/ytuXtY78GxU6gysEGcc7tAC4BbgBWm9kkM/tNCfLkZmqYb33NQeTZ6JzL9m7nfmGvzXf/rtznm1lzM5toZmvMbCuRHpBCD0fks945t7uYx7wAHA8845zLKuaxIhIHahBIeTMLyAJ6R3lMJpHu7lxNvG2x2AFUyrdeL/+dzrn3nXPdifyl/D2RL8ri8uRmyogx08EYRiTXMc65asD9gBXznKinLplZFSKDOl8CHvIOiYhIwNQgkHLFObeFyHHzod5gukpmlmpm55jZQO9hbwAPmlltb3De34DXitpnMeYDXcysiTeg8b7cO8ysrpn18sYSZBE59JBTyD4mA83N7HIzSzGzS4DjgIkxZjoYVYGtwHav9+LG/e5fCxx1kPt8GpjrnPsjkbERzx1yShE5ZGoQSLnjnHuSyBwEDwLrgZXALcA73kP6A3OBb4AFwJfetljK+gB409vXPAp+iSd5OTKBTUSOze//hYtzbiNwPnAXkUMefwbOd85tiCXTQbqbyIDFbUR6L97c7/6HgJHeWQh9ituZmfUCzubXn/NOoE3u2RUiEhxNTCQiIiLqIRARERE1CERERMo8M0s2s6/MbKK3fqSZfWFmP5rZm7kTikWjBoGIiEjZdxuwKN/6v4DBzrlmwC9EJlGLSg0CERGRMszMGhGZwOxFb92A04Gx3kNGEv1Ua0ANAhERkbLuKSJnH+WetlwL2JxvArVVFJzIrFChvRLZ9jsvCPXpD4f9e17QEaI6rc5vg44Q1bR1hc3QGx4tazYNOkKxFmxaEXSEqNJSUoOOUKY9fPgpQUeI6u8bDulK4XGxY+eK4ibROmR7Nyzz/buqQu2jr6fgdUGGO+eGA5jZ+cA659y8Q71IWGgbBCIiIgLel//wIu7uDFxgZucSuWhZNSKTfx1mZileL0EjSjCzqQ4ZiIiIxCon2/8lCufcfc65Rs65psClwMfOuSuAqcBF3sP6AuOK+1HUIBAREUk8fwHuNLMfiYwpiHo5dtAhAxERkdi5wi4/Egzn3CfAJ97tZUCHg3m+eghEREREPQQiIiIxywlPD8GhUg+BiIiIqIdAREQkVi5EYwgOlXoIRERERD0EIiIiMdMYAhEREUkk6iEQERGJVQKNIVCDQEREJFbFTC1cluiQgYiIiKiHQEREJGYJdMhAPQQiIiKiHgIREZGY6bRDERERSSTqIRAREYmRpi4OOTvscNJv6k+lP/+bin/+N6mn9gQgqcGRVLztcSre9RQV73iSpCbHBJw0osdZXfnu2+l8v3AGf77n5qDjFNDoqEY8//6wvGX8ore58NrfBR2rgDDXX65Jc8Yyeuoo/vvhCP7z/ktBxzlAmOtw2HMDWbFiLnPmvB90lEKFNV+Px6/jpi+HcvUH/zzgvnbXncPdP79GxRpVAkh2oLDWYXmTkA0CsrPZM+5ldg68hV1P30Nq53Oxuo2p0PNq9rz/BruevJ09771O2vlXB52UpKQkhjw9gPN7XknLVt245JLetGgRjoYKwKplq7i+x41c3+NGbjznZrJ2ZTHjvZlBx8oT9vrLr9/vb+XSM6/mih7XBh2lgLDX4WuvjqV3775BxyhSWPN9N2Y6Y696/IDtVevX5IguLdm6akMAqQoX1joskZwc/5c48b1BYGYVzexYv8vJz237hZyMZZGVrF3krFtFUvVa4ByWXimSK70yOVs3xTNWoTq0b83SpStYvvxn9u7dy+jR47igZ4+gYxWq9SmtyfxpNesy1gUdJU9Zqr+wCnsdzpw5m02btgQdo0hhzbdq9mJ2b95+wPZuf7+S6Y/+F+dcAKkKF9Y6LG98bRCYWU9gPvCet36imY33s8wDMtSoQ1LDo8j+aTFZ77xIhZ7XUOmvL1HhgmvYM2lUPKMUqkHDeqxclZm3vipjNQ0a1AswUdG6XXAaH4+bGnSMAspK/TnnePa/g/nP+y9x4ZUXBB2ngLJSh3Loju7ehm1rfmH9op+DjpI4XI7/S5z43UPwENAB2AzgnJsPHFnUg82sn5nNNbO5L3/z06GXXiGd9KvvJeudFyFrF6mdzyFr3Ivs/Me17HnnRdIuufXQyygnUlJTOPmsk5g+cXrQUcqkay64kcvP+j9uueIuLrnmQtp0ahV0JClnUtIr0OmWC5j55Nigo0hI+d0g2Ouc278fqMh+KufccOdcO+dcu/874YhDKzkpmfSr72Xfl9PIXjALgNR2p5P9TeT2vq9nktyk+aGVUQoyM9bQuFGDvPVGDeuTmbkmwESF69CtPT8s+JFfNmwOOkoBZaX+1q+JHK/9ZcNmPn53Or9tfVzAiX5VVupQDs1hR9SheuPa9H3vUa6bOZiq9Wvyh8n9qVS7etDRyracbP+XOPG7QfCdmV0OJJvZMWb2DPCZz2UCkHbJreSsW8XeaePytrmtm0g++ngAko85gZz1mUU9PW7mzJ1Ps2ZH0rRpY1JTU+nTpxcTJk4JOtYBTu/VLXSHC6Bs1F96pXQqVa6Ud/uk0zqw9PtlAaf6VVmoQzl0Gxav4tk2N/NC5zt4ofMdbFu9iVfPfZCd63XsXiL8nofgVuABIAt4A3gf+IfPZZJ0ZAtS259OduYKKt71FAB7Jr/K7tH/Jq33dZCcDHv3kDVmqN9RipWdnc1ttz/I5Emvk5yUxIiRb7Jw4ZKgYxWQXjGdtl3aMPjep4KOcoCyUH+1Dq/JoFceBSA5JYV335rCZ1O/CDjVr8JehyNGDOHULp2oVasGS36YRf/+gxk1cnTQsfKENd95z9xM45NaULFGFa7/YggzB/2Pb9+cFnSsQoW1DkskgeYhsDCNNM1v+50XhDOY57B/zws6QlSn1flt0BGimrbuu6AjRNWyZtOgIxRrwaYVQUeIKi0lNegIZdrDh58SdISo/r5hRtARirVj5wrzu4ysRVN9/65Ka9HN958DfO4hMLPmwN1A0/xlOedO97NcERGRuEigaxn4fchgDPAc8CIQv5ERIiIiclD8bhDsc84N87kMERGRYCTQGAK/zzKYYGY3mVl9M6uZu/hcpoiIiBwkv3sIcienviffNgcc5XO5IiIi/tMYgpJxzhU5K6GIiEhZ51ziDI/zu4cAMzseOA5Iz93mnAv+IgIiIiKSx+/TDv8OdCXSIJgMnAPMANQgEBGRsk+DCkvsIuAMYI1z7hqgFaCJs0VERELG70MGu5xzOWa2z8yqAeuAxj6XKSIiEh8aVFhic83sMOAFYB6wHZjlc5kiIiJykPw+y+Am7+ZzZvYeUM05942fZYqIiMRNAo0h8KVBYGZtot3nnPvSj3JFREQkNn71EDyZ73b+K0GZt66LG4mISNmXo3kIonLOdQMws4rATcApRBoCnwK6toGIiEjI+D2ocCSwFRjirV9OZA6CPj6XKyIi4j+NISix451zx+Vbn2pmC30uU0RERA6S3w2CL82sk3PucwAz6wjM9blMERGR+NA8BCXWFvjMzH721psAi81sAeCccyf4XL6IiIiUgN8NgrNjfWL3N7eVZo5S16BKzaAjRFUpqULQEcq0mimVg45QrLSU1KAjRFUrvWrQEaLauDvcv2NWJO0NOoKUhMYQlIxz7ic/9y8iIiKlw/fLH4uIiCSsBBpD4PfVDkVERKQMUA+BiIhIrNRDICIiIolEPQQiIiIxck7XMhAREREdMhAREZFEoh4CERGRWAU8MZGZpQPTgTQi3+ljnXN/N7MRwGnAFu+hVzvn5kfblxoEIiIiZVcWcLpzbruZpQIzzOxd7757nHNjS7ojNQhERERiFfAYAuecA7Z7q6ne4mLZl8YQiIiIlGFmlmxm84F1wAfOuS+8uwaY2TdmNtjM0orbjxoEIiIisXI5vi9m1s/M5uZb+hWI4Fy2c+5EoBHQwcyOB+4DfgO0B2oCfynuR9EhAxERkRBzzg0HhpfgcZvNbCpwtnPuCW9zlpm9Atxd3PPVQyAiIhKrnBz/lyjMrLaZHebdrgh0B743s/reNgN6A98W96Ooh0BERKTsqg+MNLNkIn/kj3bOTTSzj82sNmDAfOCG4nakBoGIiEisAp6HwDn3DdC6kO2nH+y+dMhARERE1EMgIiISM13LQERERBJJueghqFKtMvc9cQ9HH3skzjkG3DWQb+ctDDoWAGlpFRgzcQQV0iqQkpLM5PEfMOixZ4OOVUCva3tx1mVn4Rys+H4FT9/9FHuz9gYdK0+Ps7oyaNAjJCcl8fIrbzDw8aFBRyqg0VGN+OuwB/LW6zepx4gnRvHWS28HmOpXw54byDlnn8769Rtp375H0HEOEPbPSBjr74qBN3D86W3YtnErj/aInG3W+txOnHv7RdRt1pAnej3AzwuWBZzyV2GswxJTD0HZcscjt/L51Nlcelpf/tD9j6z44aegI+XJytrDpb2v5ewuF3F2l4s57YzOtG53QtCx8tSsW4ue1/TkjvPu4JbuN5OcnESXnl2CjpUnKSmJIU8P4PyeV9KyVTcuuaQ3LVocE3SsAlYtW8X1PW7k+h43cuM5N5O1K4sZ780MOlae114dS+/efYOOUaSwf0bCWH+fj53G0L7/LLAtc/FKXrjhSZbOXhRQqqKFsQ7LI98aBN5Uiv/xa/8lVblqZU7seAIT3pgMwL69+9i+dUfAqQrauWMXACmpKaSkpBCZmjo8klKSqZBegaTkJNIqprFp7aagI+Xp0L41S5euYPnyn9m7dy+jR4/jgp7h/Quj9SmtyfxpNesy1gUdJc/MmbPZtGlL8Q8MUJg/I2Gsv6WzF7Fzy/YC29YuzWDdstUBJYoujHVYYnGYqTBefGsQOOeygSPMrIJfZZREgyb12LxxMw8O/gsj3x/OfY/fTXrF9CAjHSApKYl3p43hq8XTmPHJ58yftyDoSHk2rd3I28Pf5uXPX2HU3FfZsXUnX336VdCx8jRoWI+VqzLz1ldlrKZBg3oBJoqu2wWn8fG4qUHHKHPC/BkRSRR+HzJYBsw0s7+a2Z25S1EPzj9f89odmUU97KAkJyfTvGVz3ho1nr49+rFr526uuuWyUtl3acnJyeGc0y6m4/Fn0qrN8TRv0SzoSHkqV69Mx+4d+WPna+nb/irSK6XR9Xddg45VJqWkpnDyWScxfeL0oKOUOWH+jEg5F/BMhaXJ7wbBUmCiV07VfEuhnHPDnXPtnHPt6lZuUCoB1q1ez/rV61n4VeS42dRJ02jesnmp7Lu0bd26jVkz5tD1jM5BR8lz4iknsnblWrZu2kr2vmw+e28WLdq2CDpWnsyMNTRu9Ot7pVHD+mRmrgkwUdE6dGvPDwt+5JcNm4OOUmaF8TMikih8PcvAOfewn/sviU3rf2Ft5jqaHN2Yn5eupN0pbVixZEXQsfLUrFWDfXv3sXXrNtLS0zi1ayeGPf1y0LHyrM9Yz2/aHEtaehpZu7No1bkVP37zQ9Cx8syZO59mzY6kadPGZGSsoU+fXvzhqpuDjlWo03t10+GCGIT9MyLlXMAzFZYmXxsE3jzKfwZ+C+QduI9lSsVDMeivQ3jomQdITU0h4+fVDLjzX/EsPqo6dWsz6Nn+JCcnk5RkTHxnCh9NCU+X8pL5S5g5eSZPTX6K7Owcln23lPdefy/oWHmys7O57fYHmTzpdZKTkhgx8k0WLlwSdKwDpFdMp22XNgy+96mgoxxgxIghnNqlE7Vq1WDJD7Po338wo0aODjpWnrB/RsJYf1cP+RPHdDqOKjWq8o9ZzzJ58Bh2bNnOxQ9dQ5Wa1bjh5b+Qsegnhl71aKA5c4WxDssj83O0rplNAd4kctnFG4C+wHrnXLHXZT6pYbfwDCMuRMauDUFHiKpVlSOCjhDVu2vCMzCxMKfV+W3QEYr1+abwNXzyq5Ve5NHBUNi4e1vQEaK6pk7HoCNE9cq6L4KOUKwdO1eY32Xsevsx37+rKv7uXt9/DvB/YqJazrmXzOw259w0YJqZzfG5TBERkfjQIYMSy53ObrWZnQdkAjV9LlNEREQOkt8Ngv5mVh24C3gGqAbc7nOZIiIi8aGpi0vsYiLjFL51znUDugO/87lMEREROUh+9xCc4JzbnLvinNtkZq19LlNERCQ+1ENQ8v2bWY3cFTOrSTm5wqKIiEhZ4veX85PALDMb461fDAzwuUwREZH4CNGFtg6V3zMVjjKzuUDuREQXOucW+lmmiIiIHDzfu++9BoAaASIikng0hkBEREQSiQb4iYiIxEo9BCIiIpJI1EMgIiISqwS6loF6CEREREQ9BCIiIjHTGAIRERFJJOohEBERiVUCzVSoHgIRERFRD4GIiEjMEmgMQWgbBIcnVw46QlRzti8JOkJUX3WuGXSEqJpsSA06QlQtUmoU/6CAfZ1SIegIZVrWvr1BR4jqlXVfBB0hqrDXnxy80DYIREREQk89BCIiIqKJiURERCShqIdAREQkRi5Hpx2KiIhIAlEPgYiISKwSaFCheghEREREPQQiIiIx01kGIiIikkjUQyAiIhIrnWUgIiIiiUQ9BCIiIrHSWQYiIiKSSNRDICIiEiv1EIiIiEgiUQ+BiIhIrJzOMhAREZEEoh4CERGRWGkMgYiIiCQS9RCIiIjESjMVli29ru3F0A+H8u8PhnL3M/eQmpYadKQCepzVle++nc73C2fw53tuDjoOSYfXptqAp6g+dCTVh44gvefvAah42dXUGDGW6k+/SPWnXyS1bceAk0YMe24gK1bMZc6c94OOkueKgTfwz7nDuf/9J/K2tT63Ew9MeYIhy96gScujAkxXUIOG9Xhn4ihmzp7MjC8m0e/Gq4KOVEBaWgXGf/A6700fy4efvc2d994UdKQDhO0zvL8wfkbyC3v9lRcJ3yCoWbcWPa/pyR3n3cEt3W8mOTmJLj27BB0rT1JSEkOeHsD5Pa+kZatuXHJJb1q0OCbQTC47mx0vD2XLzX3ZcveNpJ/3O5IbHwHArnFj2HLbH9ly2x/ZO++LQHPmeu3VsfTu3TfoGAV8PnYaQ/v+s8C2zMUreeGGJ1k6e1FAqQqXvS+bvz3wGJ07nMvZZ/Th2uuuoPmxRwcdK09W1h4u7X0tZ3e5iLO7XMxpZ3SmdbsTgo6VJ4yf4f2F8TOSqyzUX1Qux/8lCjNLN7PZZva1mX1nZg972480sy/M7Ecze9PMKhT3oyR8gwAgKSWZCukVSEpOIq1iGpvWbgo6Up4O7VuzdOkKli//mb179zJ69Dgu6Nkj0Ezul01kL/0hsrJrF9krfyKpVu1AM0Uzc+ZsNm3aEnSMApbOXsTOLdsLbFu7NIN1y1YHlKhoa9eu55uvFwKwffsOlixeSv0GdQNOVdDOHbsASElNISUlBReiU73C+BneXxg/I7nKQv1FleP8X6LLAk53zrUCTgTONrNOwL+Awc65ZsAvwLXF7ciXMQRm9gxQ5E/hnPuTH+UWZtPajbw9/G1e/vwV9uzew1fTv+KrT7+KV/HFatCwHitXZeatr8pYTYf2rQNMVFBSnXokH30M+xYvJKXF8aSf9zvSuvVg34+L2fnSUNyO7cXvRMqMxk0a0vKE45g39+ugoxSQlJTEpKlv0vTIJox66b/Mn7cg6Eh5wv4ZDjvV36FxkdZx7i/iVG9xwOnA5d72kcBDwLBo+/Krh2AuMA9IB9oAP3jLiUCR3RZm1s/M5prZ3J+2/1wqQSpXr0zH7h35Y+dr6dv+KtIrpdH1d11LZd8JL70iVe97hJ0vPIPbtZPd745jc7/L2XLbteT8spFK1+pYXyKpXLkSI159hgfufZTt23YEHaeAnJwczjntYjoefyat2hxP8xbNgo4kAoDLyfF9yf/d6C398mcws2Qzmw+sAz4AlgKbnXP7vIesAhoW97P40iBwzo10zo0ETgC6Oueecc49A5xBpFFQ1POGO+faOefaHVGlSalkOfGUE1m7ci1bN20le182n703ixZtW5TKvktDZsYaGjdqkLfeqGF9MjPXBJjIk5xM1fseIeuTD9kz61MA3OZfIufcOkfW+xNJaf6bgENKaUlJSeGV155h7OgJTJowJeg4Rdq6dRuzZsyh6xmdg46SJ7Sf4TJC9Ve8/N+N3jJ8v/uznXMnAo2ADkBMv5z9HkNQA6iWb72Kty1u1mes5zdtjiUtPQ2AVp1bsfLHlfGMENWcufNp1uxImjZtTGpqKn369GLCxOB/IVf501/IXvkTu8eNzttmNWrm3a5w0qlk/7Q8iGjig6eHPsqSxUsZNvSVoKMcoGatGlSrVhWAtPQ0Tu3aiaVLwvPeC+tnuKwo8/UX/BiCPM65zcBU4CTgMDPLHRbQCMgo7vl+z0PwGPCVmU0FDOhC5DhG3CyZv4SZk2fy1OSnyM7OYdl3S3nv9ffiGSGq7Oxsbrv9QSZPep3kpCRGjHyThQuXBJop5biWpJ3eg33Ll1L96RcB2DnqBdJOO5PkI5uBc+SsW8P2oU8Us6f4GDFiCKd26UStWjVY8sMs+vcfzKiRo4t/oo+uHvInjul0HFVqVOUfs55l8uAx7NiynYsfuoYqNatxw8t/IWPRTwy96tFAcwJ07NSWSy7rzXfffs/UGeMAGPDIID6cMi3gZBF16tZm0LP9SU5OJinJmPjOFD6aMj3oWHnC+BneXxg/I7nKQv2FmZnVBvY65zabWUWgO5EBhVOBi4D/An2BccXuy6/RumaWBHQClgG5J6x/4ZwrUV9Qzybnh2cYcSHeXROegYmFWdsj3MdYm3z0U9ARorqmTjjmWIjmv5vC/R6slJIWdISoMreH52yjwqSlhGu+lP1l7dsbdIRi7duTYX6XsaP/lb5/V1V+8LUifw4zO4HIoMFkIr3+o51zj5jZUUQaAzWBr4ArnXNZ0crxrYfAOZdjZkOdc60pQctEREREDo5z7hvggNMynHPLiIwnKDG/xxB8ZGa/NzPfW2kiIiJxF6IxBIfK7wbB9cAYIMvMtprZNjPb6nOZIiIicpB8HVTonKvq5/5FREQClUCXP/ZrpsLfOOe+N7M2hd3vnPvSj3JFREQkNn71ENwJ9AOepOAUxsavUyqKiIiUbbr8cXTOudxpFc8FJgFbgM3AeG+biIiIhIjfExONBLYCQ7z1y4FRQB+fyxUREfFfMZcnLkv8bhAc75w7Lt/6VDNb6HOZIiIicpD8bhB8aWadnHOfA5hZRyJXQhQRESn7EmgMgV9nGSwgMngwFfjMzH721o8AvvejTBEREYmdXz0E5/u0XxERkdBwmocgOudcuK9cIyIiIgX4PYZAREQkcWkMgYiIiCRSg8DvixuJiIhIGaAeAhERkVgl0MRE6iEQERER9RCIiIjELIHGEIS2QfD1dp25eCimzm0UdISoOtVMCzpCVDvJDjpCsSqlhLsOW1U5IugIUWVu3xR0BJFQCW2DQEREJOxcAvUQaAyBiIiIqIdAREQkZuohEBERkUSiHgIREZFYJdDFjdRDICIiIuohEBERiZnGEIiIiEgiUQ+BiIhIrNRDICIiIolEPQQiIiIxck49BCIiIpJA1EMgIiISK40hEBERkUSiHgIREZFYqYdAREREEol6CERERGLkEqiHQA0CERGRWCVQg0CHDERERCTxewjS0iowZuIIKqRVICUlmcnjP2DQY88GHauAHmd1ZdCgR0hOSuLlV95g4ONDA83TdtB11O/emqwNW/mg270AdHzuVqoeXR+A1OqV2LtlJx92vz/ImAA0OqoRfx32QN56/Sb1GPHEKN566e0AU8E1A2+i1elt2bpxC3/rcScAlatX4YZ/38HhjeqwYdU6ht08iJ1bdwSaE8rGZ6TXtb0467KzcA5WfL+Cp+9+ir1Ze4OOlSdsn+H9DXtuIOecfTrr12+kffseQcc5QNjrL6rEufpx4vcQZGXt4dLe13J2l4s4u8vFnHZGZ1q3OyHoWHmSkpIY8vQAzu95JS1bdeOSS3rTosUxgWb6afSnzLh8YIFtX9zwDB92v58Pu99PxqQ5ZEyeE1C6glYtW8X1PW7k+h43cuM5N5O1K4sZ780MOhYzx05lUN/+Bbade2NvFn22gPu63cqizxZw7k2/CyhdQWH/jNSsW4ue1/TkjvPu4JbuN5OcnESXnl2CjpUnjJ/h/b326lh69+4bdIxClYX6Ky8SvkEAsHPHLgBSUlNISUkJ1VSTHdq3ZunSFSxf/jN79+5l9OhxXNAz2Bb8hs+/Z88v24u8v1HPjqx857M4JiqZ1qe0JvOn1azLWBd0FJbMXsSOLQXrsHX39swc+wkAM8d+Qpvu7QNIVrgwf0YAklKSqZBegaTkJNIqprFp7aagI+UJ42d4fzNnzmbTpi1BxyhUWai/aFyO832JF18bBGbWuSTb/JaUlMS708bw1eJpzPjkc+bPWxDvCEVq0LAeK1dl5q2vylhNgwb1AkwU3eGdfsPuDVvYvnxt0FEO0O2C0/h43NSgYxSpWu3D2LJ+MwBb1m+mWu3DAs2TX5g/I5vWbuTt4W/z8uevMGruq+zYupOvPv0q6Fh5ytpnOGxUf+Hhdw/BMyXc5qucnBzOOe1iOh5/Jq3aHE/zFs3iHSFhNO59EivfnhV0jAOkpKZw8lknMX3i9KCjlFiY/goP82ekcvXKdOzekT92vpa+7a8ivVIaXX/XNehYIhE5zv8lTnxpEJjZSWZ2F1DbzO7MtzwEJEd5Xj8zm2tmc7dnlX6X4Nat25g1Yw5dz4h7J0WRMjPW0LhRg7z1Rg3rk5m5JsBERbPkJBqe255V4z8POsoBOnRrzw8LfuSXDZuDjlKkres3U93rFahe+zC2bQhfF24YPyMnnnIia1euZeumrWTvy+az92bRom2LoGPlKUuf4TBS/YWHXz0EFYAqRM5iqJpv2QpcVNSTnHPDnXPtnHPtqqTVLJUgNWvVoFq1qgCkpadxatdOLF2yvFT2XRrmzJ1Ps2ZH0rRpY1JTU+nTpxcTJk4JOlah6nQ5nm0/ZrJrdXiO3+Y6vVe3UB8uAPjqw7l0vqgrAJ0v6spXH4RjYGbYPyPrM9bzmzbHkpaeBkCrzq1Y+ePKgFP9qix9hsOozNdfThyWOPHltEPn3DRgmpmNcM795EcZJVWnbm0GPduf5ORkkpKMie9M4aMp4elWzs7O5rbbH2TypNdJTkpixMg3WbhwSaCZOjx7M7VPbkFazaqcO+8ZFj4xlhVvTKNxr5NY+U74DhekV0ynbZc2DL73qaCj5Ll+yO0c2+m3VKlRlSdmPc+4wW8yedjb3Dj0Lk7tcwYbM9Yz7OZBQccEwv8ZWTJ/CTMnz+SpyU+RnZ3Dsu+W8t7r7wUdK08YP8P7GzFiCKd26UStWjVY8sMs+vcfzKiRo4OOBZSN+isvzM/jmGZWG/gz8FsgPXe7c+704p7bpGbL8BxgLUTm9vD9lZzff2t1DTpCVMOS1wcdIaojUqoFHaFYH25dHHSEqFpVOSLoCFG9uyY8AxMLk5aSGnSEqLL2hWceiKLs25Nhfpfxy8Vdff+uqjHmE99/DvB/UOF/gO+BI4GHgRVAOPpJRUREJI/fDYJazrmXgL3OuWnOuf8Diu0dEBERKRM0hqDEcvuUVpvZeUAmUDqjBUVERKTU+N0g6G9m1YG7iMw/UA243ecyRURE4iKRLn/s9yGDi4kMXPzWOdcN6A6EYwJ3ERERyeN3g+AE59zm3BXn3Cagtc9lioiIxEfAYwjMrLGZTTWzhWb2nZnd5m1/yMwyzGy+t5xb3I/i9yGDJDOr4Zz7xQtYMw5lioiIlBf7gLucc1+aWVVgnpl94N032Dn3REl35PeX85PALDMb461fDAzwuUwREZG4cHE8C6DQ8p1bDaz2bm8zs0VAw1j25eshA+fcKOBCYK23XOice9XPMkVERBJJ/uv8eEu/Ih7XlMhh+S+8TbeY2Tdm9rKZ1SiuHN+7751zC4GFfpcjIiISd3HoIXDODQeGR3uMmVUB/gfc7pzbambDgH8Azvv/SeD/ou1Dx/NFRERiFPQhAwAzSyXSGPiPc+4tAOfc2nz3vwBMLG4/fp9lICIiIj4xMwNeAhY55wbl214/38N+B3xb3L7UQyAiIhKr4HsIOgN/ABaY2Xxv2/3AZWZ2IpFDBiuA64vbkRoEIiIiZZRzbgZQ2NUQJx/svtQgEBERiVEYxhCUFo0hEBEREfUQiIiIxEo9BCIiIpJQ1EMgIiISI/UQiIiISEIJbQ9BenJa0BGiSktJDTpCVAsrBJ0gummrvws6QlR/q9816AjFyty+KegIUdWqUC3oCGVaw8qHBx0hqmVbVgcdIRxcYWf8lU3qIRAREZHw9hCIiIiEncYQiIiISEJRD4GIiEiMXI7GEIiIiEgCUQ+BiIhIjDSGQERERBKKeghERERi5DQPgYiIiCQS9RCIiIjEKJHGEKhBICIiEiOddigiIiIJRT0EIiIiMXIu6ASlRz0EIiIioh4CERGRWGkMgYiIiCQU9RCIiIjESD0EIiIiklDUQyAiIhIjnWVQBiUlJfHOx//h+f8MDjpKAcOeG8iKFXOZM+f9oKPk6fn4ddw171lumPJY3raud13E9e/9k36TH+WKV++lSp3Dggu4nx5ndeW7b6fz/cIZ/Pmem4OOA6gOS9ukOWMZPXUU//1wBP95/6Wg4xwg7PUH4f0dCGWj/sqDctMg6NvvMpYuWR50jAO89upYevfuG3SMAr4e8yn/6TuwwLbPnp/E82ffx/Bz7+eHj76iy20XBpSuoKSkJIY8PYDze15Jy1bduOSS3rRocUzQsVSHPuj3+1u59MyruaLHtUFHKaCs1F9YfweWlforissx35d4KRcNgrr169C1e2fGvPZO0FEOMHPmbDZt2hJ0jAJ+nv09uzZvL7Btz/ZdebdTK6WFpp+sQ/vWLF26guXLf2bv3r2MHj2OC3r2CDqW6rAcKQv1F+bfgWWh/soL38YQmFkyMMo5d4VfZZTUAwPuYuDDQ6hcpXLQUcq0bvdczAkXnkrWtp2MunRA0HEAaNCwHitXZeatr8pYTYf2rQNMFJ3qMDbOOZ7972Ccc/zv1XG89dr4oCPlKQv1F+bfgWWh/qLR5Y9LwDmXDRxhZhX8KqMkunY/hY3rN/HdN98HGSMhTH18DE+f9CcWvPMZ7fueFXScMkl1GJtrLriRy8/6P2654i4uueZC2nRqFXSkMkO/A6Wk/D5ksAyYaWZ/NbM7c5eiHmxm/cxsrpnN3bJ7fakEaNuxFWec3YWP541n8AsD6HRKex5/9pFS2Xd5teCdmbQ4p33QMQDIzFhD40YN8tYbNaxPZuaaABOVjOrw4KxfswGAXzZs5uN3p/Pb1scFnOhXYa+/sP8ODHv9Fcfl+L/Ei98NgqXARK+cqvmWQjnnhjvn2jnn2lVPr10qAZ7sP5Qurc7j9LYXcMd1D/D5jDncc9PfSmXf5UnNpnXzbh97Vls2LF0dYJpfzZk7n2bNjqRp08akpqbSp08vJkycEnSsQqkOY5NeKZ1KlSvl3T7ptA4s/X5ZwKl+Ffb6C/vvwLDXX3ni6zwEzrmHAcysknNup59llVUjRgzh1C6dqFWrBkt+mEX//oMZNXJ0oJkuHHIzR5zUgko1qnL758/wyeCxHNPtRGodVR+X49iSsYFJ978caMZc2dnZ3Hb7g0ye9DrJSUmMGPkmCxcuCTqW6rAU1Tq8JoNeeRSA5JQU3n1rCp9N/SLgVL8Ke/2FXVmvv5wEGkNgzseRzmZ2EvASUMU518TMWgHXO+duKu65zWu3C8cQ7CJk7NgQdISo/lK7c9ARonpk9SdBR4jqb/W7Bh2hWGGvw5Y1mwYdIaoFm1YEHSGqo6rXDzpCVMu2hKOHK5p9ezJ8/7Ze0uJs37+rmi96Ly6tDr9nKnwK6AGMB3DOfW1mXXwuU0REJC50lsFBcM6t3G9Ttt9lioiIyMHxu4dgpZmdDDgzSwVuAxb5XKaIiEhcJNLVDv1uENwAPA00BDKAKYAmqhYRkYQQkglHS4XfZxlsAAKfqVBERESi83UMgZk1N7OPzOxbb/0EM3vQzzJFRETiRRc3KrkXgPuAvQDOuW+AS30uU0RERA6S32MIKjnnZpsVaOHs87lMERGRuEikiYn87iHYYGZHAw7AzC4Cwj+bhYiISDnjdw/BzcBw4DdmlgEsR4MMRUQkQSTSxES+NAj2u6LhZGAqkd6IHcDvgUF+lCsiIiKxKbZBYJEBAFcARznnHjGzJkA959zsKE/LvaLhsUB7YBxgwB+AaM8TEREpM8rbPATPAjnA6cAjwDbgf0S+6AuV7yqH04E2zrlt3vpDwKRDiywiIiKlrSQNgo7OuTZm9hWAc+4XM6tQwv3XBfbkW9/jbRMRESnzEuksg5I0CPaaWTK/nilQm0iPQUmMAmab2dveem9gxEFmFBEREZ+VpEEwBHgbqGNmA4CLgBLNNuicG2Bm7wKnepuucc59FVNSERGRkClXZxk45/5jZvOAM4gMDOztnCvxFQudc18CX8YeUURERPxW7MRE3lkFO4EJwHhgh7dNRESkXHPO/yUaM2tsZlPNbKGZfWdmt3nba5rZB2b2g/d/jeJ+lpIcMphEZPyAAenAkcBi4LcleK6IiIj4Zx9wl3PuSzOrCswzsw+Aq4GPnHOPmdm9wL3AX6LtqCSHDFrmXzezNsBNsSYXERFJFEGfZeCcW413SQDn3DYzWwQ0BHoBXb2HjQQ+4VAbBIUU/qWZdTzY5x2s3dlZfhdxSLL27Q06QpnWoErNoCNEVSeOlxyNVfvazYOOEFXGrg1BRyjTKienBR1BQsLM+gH98m0a7pwbXsjjmgKtgS+Aul5jAWANJTjlvyQzFeafhjgJaANkFvc8ERGRRBePswy8L/8DGgD5mVkVIpMG3u6c25r/KsPOOWdmxc6pWJKrHVbNt6QRGVPQqwTPExEREZ+ZWSqRxsB/nHNveZvXmll97/76wLri9hO1h8CbkKiqc+7uQ8wrIiKScIIeQ+Bdb+glYJFzLv+FA8cDfYHHvP/HFbevIhsEZpbinNtnZp0PMa+IiIj4ozORCwcuMLP53rb7iTQERpvZtcBPQJ/idhSth2A2kfEC881sPDCGyOWLAcjXLSEiIlIuBX2xQ+fcDCLTAhTmjIPZV0nOMkgHNhK52mHufAQOUINARETKtaAPGZSmaA2COt4ZBt/ya0MgV9CNIhERESlF0RoEyUAVCu+KUINARETKvfJycaPVzrlH4pZEREREAhOtQZA4zR4REREf5AQdoBRFm5jooEYnioiISNlVZA+Bc25TPIOIiIiUNS6BOtNLMnWxiIiIJLiDvtqhiIiIROQk0Dl36iEQERER9RCIiIjEKkdjCERERCSRqIdAREQkRjrLQERERBJKwvcQpKVVYMzEEVRIq0BKSjKTx3/AoMeeDTpWAT3O6sqgQY+QnJTEy6+8wcDHhwaap+fj19H89Nbs2LiV5866F4Cud13Esd3b4nIcOzZuZdxdz7F93eZAc0J4X9+uT1zHEWecyK6NWxl95n0AtLvjQlpc3pVdG7cBMPtfo/l56tdBxsxTpVpl7nviHo4+9kiccwy4ayDfzlsYdCwgvK9xfmH7DO9v0pyx7Ni+k5zsHLKzs7mix7VBRyog7PUXTSLNVJjwDYKsrD1c2vtadu7YRUpKCv97dyRTP5zBV3O/CToaAElJSQx5egBnn3sZq1at5vNZk5kwcQqLFv0QWKavx3zKnJEf0HvQDXnbPnt+Ep88ORaADlf3oMttFzL5gZeDipgnrK/v4jHT+XbEB5z+1PUFtn/z4nt8/fzkgFIV7Y5HbuXzqbN5oN9DpKSmkF4xLehIecL6GucK42e4MP1+fyubN20JOsYBykr9lQfl4pDBzh27AEhJTSElJQXnwnPiaIf2rVm6dAXLl//M3r17GT16HBf07BFopp9nf8+uzdsLbNuzfVfe7dRKaRCiOgzj67v6i8Vk7VeHYVW5amVO7HgCE96INFT27d3H9q07Ak5VUBhf41xh/AyXJWW9/hzm+xIv5aJBkJSUxLvTxvDV4mnM+ORz5s9bEHSkPA0a1mPlqsy89VUZq2nQoF6AiYrW7Z6LuW3WEFr2PplPBo0NOk6eML+++zu+b3cunvIoXZ+4jgrVKwUdB4AGTeqxeeNmHhz8F0a+P5z7Hr+b9IrpQccqIMyvcVn4DDvnePa/g/nP+y9x4ZUXBB2ngLJQf+WFrw0CM1tgZt/st3xqZoPNrJafZeeXk5PDOaddTMfjz6RVm+Np3qJZvIpOKFMfH8PTJ/2JBe98Rvu+ZwUdJ09ZeX2/e/VDXj/lTsb0eICd6zZz8l+vCDoSAMnJyTRv2Zy3Ro2nb49+7Nq5m6tuuSzoWAWUldc4rK654EYuP+v/uOWKu7jkmgtp06lV0JESRk4clnjxu4fgXWAScIW3TADmAmuAEfs/2Mz6mdlcM5u7Pav0r620des2Zs2YQ9czOpf6vmOVmbGGxo0a5K03alifzMw1ASYq3oJ3ZtLinPZBxzhAGF/f/HZt2IrLceAci16fSp0Tjwo6EgDrVq9n/er1LPxqEQBTJ02jecvmAacqXBhf47LwGV6/ZgMAv2zYzMfvTue3rY8LONGvykL9lRd+NwjOdM7d55xb4C0PAKc55/4FNN3/wc654c65ds65dlXSapZKgJq1alCtWlUA0tLTOLVrJ5YuWV4q+y4Nc+bOp1mzI2natDGpqan06dOLCROnBB3rADWb1s27fexZbdmwdHWAaX4V9tc3v0p1Dsu7feTZ7di0eFVwYfLZtP4X1mauo8nRjQFod0obVixZEWyofML+Gof9M5xeKZ1KlSvl3T7ptA4s/X5ZwKl+Ffb6K04i9RD4fZZBspl1cM7NBjCz9kCyd98+n8sGoE7d2gx6tj/JyckkJRkT35nCR1Omx6PoEsnOzua22x9k8qTXSU5KYsTIN1m4cEmgmS4ccjNHnNSCSjWqcvvnz/DJ4LEc0+1Eah1VH5fj2JKxgUn3B3+GAYT39T3j3zfToFML0mtW4crZQ5j75P9ocFILav32CHCObas2MP3ecNQhwKC/DuGhZx4gNTWFjJ9XM+DOfwUdKU9YX+NcYfwM51fr8JoMeuVRAJJTUnj3rSl8NvWLgFP9Kuz1V5xEmpjI/Byt6zUAXgaqAAZsBa4FFgLnOedGF/XcJjVbhmcYcSEyt5f+IY3S9Lf6XYOOENWL28JxylhR7q8c/mOsI3Mygo4QVcauDUFHiCrsn+GWNZsGHSGqBZtWBB2hWPv2ZPj+bT2p7mW+f1edt/aNuLQ6fO0hcM7NAVqaWXVvPf9JsEU2BkRERMqCnMTpIPD9LIPqZjYI+Aj4yMyezG0ciIiISHj4PajwZWAb0MdbtgKv+FymiIhIXORgvi/x4vegwqOdc7/Pt/6wmc33uUwRERE5SH73EOwys1NyV8ysM7AryuNFRETKDBeHJV787iG4ARiVb9zAL0Bfn8sUERGRg+RLg8DM7sy3Ogqo7N3eAZwJhPucMxERkRLQ5Y+LV9X7/1igPTCOyDwEVwKzfSpTREREYuRLg8A59zCAmU0H2jjntnnrDxG5toGIiEiZl2OJMxGB34MK6wJ78q3v8baJiIhIiPg9qHAUMNvM3vbWe1PIVQ5FRETKolDPsX+Q/J66eICZvQuc6m26xjn3lZ9lioiIyMHzu4cA59yXwJd+lyMiIhJviXSWgd9jCERERKQM8L2HQEREJFHpaociIiKSUNRDICIiEqN4Xo3Qb+ohEBEREfUQiIiIxErzEIiIiEhCDSoMbYNg576soCOUaZdX3hB0hKj+tX5b0BGiOjwt/O3+ORuXBB0hqhsanBJ0hKie2z4j6AhRLdmaEXQEKWdC2yAQEREJO01MJCIiIglFPQQiIiIxCv/BxZJTD4GIiIioh0BERCRWiXSWgXoIRERERD0EIiIisdJZBiIiIpJQ1CAQERGJUU4cluKY2ctmts7Mvs237SEzyzCz+d5ybnH7UYNARESkbBsBnF3I9sHOuRO9ZXJxO9EYAhERkRi5EJxl4JybbmZND3U/6iEQEREJMTPrZ2Zz8y39SvjUW8zsG++QQo3iHqwGgYiISIziMYbAOTfcOdcu3zK8BNGGAUcDJwKrgSeLe4IaBCIiIgnGObfWOZftnMsBXgA6FPccjSEQERGJUVjnITCz+s651d7q74Bvoz0e1CAQEREp08zsDaArcLiZrQL+DnQ1sxOJXH9pBXB9cftRg0BERCRGYbjaoXPuskI2v3Sw+9EYAhEREVEPgYiISKx0tcMypEHDerwzcRQzZ09mxheT6HfjVUFHOkCPs7ry3bfT+X7hDP58z81BxyGlXm0avDKQJhOG03j8cKpf2RuAWnf/kSYTX6Tx28OoN+RvJFWtHGxQz7DnBrJixVzmzHk/6Ch52g66jvMXPEv3qY/lbev43K2c+cGjnPnBo5wz+ynO/ODRABMWFLb34BUDb+Cfc4dz//tP5G1rfW4nHpjyBEOWvUGTlkcFmO5AYau//YXxM5Jf2OsvmjBMXVxaEr5BkL0vm7898BidO5zL2Wf04drrrqD5sUcHHStPUlISQ54ewPk9r6Rlq25ccklvWrQ4JtBMbl82GwcO5+ee/Vh16W1Uv7wnqUc3YednX/Jzr36s/N2N7F2RQY3rLg00Z67XXh1L7959g45RwE+jP2XG5QMLbPvihmf4sPv9fNj9fjImzSFj8pyA0hUUxvfg52OnMbTvPwtsy1y8khdueJKlsxcFlKpwYay//YXxM5KrLNRfeZHwDYK1a9fzzdcLAdi+fQdLFi+lfoO6Aaf6VYf2rVm6dAXLl//M3r17GT16HBf07BFopuwNm8ha9CMAbucu9ixbSUqdw9n12ZeQHWmv7v56ESn1Dg8yZp6ZM2ezadOWoGMUsOHz79nzy/Yi72/UsyMr3/ksjomKFsb34NLZi9i5pWD9rV2awbplq4t4RnDCWH/7C+NnJFdZqL9o1ENQRjVu0pCWJxzHvLlfBx0lT4OG9Vi5KjNvfVXGaho0qBdgooJSGtQlrcXR7P7m+wLbq13Ygx2fhuMv3LLm8E6/YfeGLWxfvjboKED434Nhp/o7NKq/8PBtUKGZbePAMzK2AHOBu5xzy/wquzCVK1dixKvP8MC9j7J92454Fl1mWaV06j39Vzb88zncjp1522tcfxkuO5vtEz4OMF3Z1bj3Sax8e1bQMUSkFIThtMPS4mcPwVPAPUBDoBFwN/A68F/g5cKekP8CDrv3lF73VkpKCq+89gxjR09g0oQppbbf0pCZsYbGjRrkrTdqWJ/MzDUBJvKkJFP/qb+yfeLH7PhwZt7mqr27U/m0Dqz9878CDFd2WXISDc9tz6rxnwcdJU9o34NlhOrv0Kj+wsPPBsEFzrnnnXPbnHNbvYsx9HDOvQkUetWl/BdwSK9QvdSCPD30UZYsXsqwoa+U2j5Ly5y582nW7EiaNm1Mamoqffr0YsLE4Bstdf5xJ3uWrWTzyLfytlU6pR01rr2YzJsfwu3OCjBd2VWny/Fs+zGTXas3BR0lT1jfg2WF6u/QlPX6yzH/l3jxcx6CnWbWBxjrrV8E7PZux62XpWOntlxyWW+++/Z7ps4YB8CARwbx4ZRp8YoQVXZ2Nrfd/iCTJ71OclISI0a+ycKFSwLNlN7mt1TrdSZZi5fR+K1nAdj41Cscfv9NWGoqDV+KjP7e/fX3rH94SJBRARgxYgindulErVo1WPLDLPr3H8yokaMDzdTh2ZupfXIL0mpW5dx5z7DwibGseGMajXudxMp3wnW4IIzvwauH/IljOh1HlRpV+cesZ5k8eAw7tmzn4oeuoUrNatzw8l/IWPQTQ68K/tTNMNbf/sL4GclVFuqvvDDn/PluNrOjgKeBk7xNs4A7gAygrXNuRrTnH16teagPzWzeHe5xCN83Oz7oCFG1WrE46AhRjazeOegIxbp04ydBR4jqhganBB0hqucyo/4KClxaSmrQEaLK2rc36AjF2rcnw/e/rx874krfv6vu/em1uPQT+NZD4A0a7FnE3eH+JIqIiJQzvo0hMLNGZva2ma3zlv+ZWSO/yhMREYk3F4clXvwcVPgKMB5o4C0TvG0iIiISMn42CGo7515xzu3zlhFAbR/LExERiascnO9LvPjZINhoZleaWbK3XAls9LE8ERERiZGfDYL/A/oAa4DVRE47vMbH8kREROIqka5l4MtZBmaWDDzqnLvAj/2LiIhI6fKlQeCcyzazI8ysgnNujx9liIiIBC3UE+YcJD9nKlwGzDSz8UDeLD7OuUE+likiIiIxKPUxBGb2qnfzAmCiV0bVfIuIiEhC0BiC6NqaWQPgZ+AZH/YvIiIipcyPBsFzwEfAkcDcfNuNyOGWo3woU0REJO7ieTVCv5V6g8A5NwQYYmbDnHM3lvb+RUREwiKeEwf5zbd5CNQYEBERKTv8PMtAREQkoSVO/4C/MxWKiIhIGaEeAhERkRjF87RAv6mHQERERNRDICIiEiudZSAiIiIJJbQ9BMdUbRh0hKjm7F4SdISoHt0Z7lmia6WHO9/OpPDPNtKgSs2gI0Q1fuvCoCNElZaSGnSEqBpWPjzoCFFl7NgQdIRQSJz+AfUQiIiICCHuIRAREQk7nWUgIiIiCUU9BCIiIjHSWQYiIiKSUNRDICIiEqPE6R9QD4GIiIigHgIREZGY6SwDERERSSjqIRAREYmRS6BRBOohEBEREfUQiIiIxEpjCERERCShqIdAREQkRok0U6EaBCIiIjFKnOaADhmIiIgI6iEQERGJWSIdMlAPgYiIiKiHQEREJFaJdNphuWgQVKlWmfueuIejjz0S5xwD7hrIt/MWBh0rT4+zujJo0CMkJyXx8itvMPDxoYHmuWbgTbQ6vS1bN27hbz3uBKBy9Src8O87OLxRHTasWsewmwexc+uOQHMCpKVVYMzEEVRIq0BKSjKTx3/AoMeeDToWJz95HQ3PPJHdG7Yy4Yz78rb/5pruHHt1d1x2Dqs+ms+XA/4bYMqIsNZhrrDnG/bcQM45+3TWr99I+/Y9go5TpKSkJN768FXWrl7H9VfcEXScAspKHSa6cnHI4I5HbuXzqbO59LS+/KH7H1nxw09BR8qTlJTEkKcHcH7PK2nZqhuXXNKbFi2OCTTTzLFTGdS3f4Ft597Ym0WfLeC+brey6LMFnHvT7wJKV1BW1h4u7X0tZ3e5iLO7XMxpZ3SmdbsTgo7Fj6On89EVjxfYVvfkFjTu0ZYJ3e9n/On3svC5yQGlKyisdZgr7Plee3UsvXv3DTpGsfr2u4ylS5YHHaNQZaUOC+Pi8K84Zvayma0zs2/zbatpZh+Y2Q/e/zWK20/CNwgqV63MiR1PYMIbkV+++/buY3sI/rLN1aF9a5YuXcHy5T+zd+9eRo8exwU9g20hL5m9iB1bthfY1rp7e2aO/QSAmWM/oU339gEkK9zOHbsASElNISUlBeeCH+Sz7ovFZG0uWIfHXnUm3w6dQM6efQDs3rg1iGiFCmMd5hfmfDNnzmbTpi1Bx4iqbv06dO3emTGvvRN0lEKVhToMuRHA2fttuxf4yDl3DPCRtx6V7w0CMzvCzM70blc0s6p+l5lfgyb12LxxMw8O/gsj3x/OfY/fTXrF9HhGiKpBw3qsXJWZt74qYzUNGtQLMFHhqtU+jC3rNwOwZf1mqtU+LNA8+SUlJfHutDF8tXgaMz75nPnzFgQdqVDVjqpHnQ7Hcs6Ehzhr7APUanVU0JHyhL0Ow54v7B4YcBcDHx5CTk54GlKJIicOS3Gcc9OBTftt7gWM9G6PBHoXtx9fGwRmdh0wFnje29QIeCfK4/uZ2Vwzm7t2R2ZRDzsoycnJNG/ZnLdGjadvj37s2rmbq265rFT2XZ6F6S+0nJwczjntYjoefyat2hxP8xbNgo5UKEtOIu2wKrzb8yHm9X+DLs/dEnSkPGGvw7DnC7Ou3U9h4/pNfPfN90FHkRjl/270ln4leFpd59xq7/YaoG5xT/C7h+BmoDOwFcA59wNQp6gHO+eGO+faOefa1a3coFQCrFu9nvWr17Pwq0UATJ00jeYtm5fKvktDZsYaGjf69Wdt1LA+mZlrAkxUuK3rN1Pd6xWoXvswtm0IX/fe1q3bmDVjDl3P6Bx0lELtXP0LP707B4CN85dBjiOtZlw7zIoV9joMe74watuxFWec3YWP541n8AsD6HRKex5/9pGgYyWMeIwhyP/d6C3DDypj5C+4Yv+K87tBkOWc25O7YmYpxHmmx03rf2Ft5jqaHN0YgHantGHFkhXxjBDVnLnzadbsSJo2bUxqaip9+vRiwsQpQcc6wFcfzqXzRV0B6HxRV776YE6wgTw1a9WgWrXIl2paehqndu0U2oFTK9+fS72TjwOg6lH1SKqQQtambQGnCn8dhj1f2D3ZfyhdWp3H6W0v4I7rHuDzGXO456a/BR1L/LfWzOoDeP+vK+4Jfp92OM3M7gcqmll34CZggs9lHmDQX4fw0DMPkJqaQsbPqxlw57/iHaFI2dnZ3Hb7g0ye9DrJSUmMGPkmCxcuCTTT9UNu59hOv6VKjao8Met5xg1+k8nD3ubGoXdxap8z2JixnmE3Dwo0Y646dWsz6Nn+JCcnk5RkTHxnCh9NmR50LE4dejN1T2pBes0q/H7uEL5+4n/8+N9pnPxkP3p+9E9y9mYz8/bni99RHIS1DnOFPd+IEUM4tUsnatWqwZIfZtG//2BGjRwddKwypSzXYYjnIRgP9AUe8/4fV9wTzM9jwWaWBFwLnAUY8D7woitBoSc17Baeg9SFmLM+2C/t4lzV4KSgI0T14dbFQUeIqn/FVkFHKNaDu74OOkKZtnF38L0z0TSsfHjQEaLK2LEh6AjF2rFzhfldRt+mv/f9u2rkiv9F/TnM7A2gK3A4sBb4O5HxeqOBJsBPQB/n3P4DDwvwtYfAOZcDvAC8YGY1gUYlaQyIiIiUBTkh+EpzzhU1Uv6Mg9mP32cZfGJm1bzGwDwiDYPBfpYpIiIiB8/vQYXVnXNbgQuBUc65jhxki0VERCSsXByWePG7QZDijW7sA0z0uSwRERGJkd9nGTxMZCDhDOfcHDM7CvjB5zJFRETiIie+Z9L7yrcGgZklA42dc3lXIXHOLQN+71eZIiIiEhvfDhk457IBzREsIiIJKwxXOywtfh8ymGlm/wbeBPIuMeic+9LnckVERHwX4omJDprfDYITvf/zT5ztgNN9LldEREQOgt8TE3Xzc/8iIiJBSqRBhX5PTFTdzAblu2Tjk2ZW3c8yRURE5OD5PQ/By8A2IvMQ9CFyGeRXfC5TREQkLjSosOSOds7lP83wYTOb73OZIiIicpD87iHYZWan5K6YWWdgl89lioiIxEVOHJZ48buH4EZgZL5xA78QuS6ziIiIhIjfDYJFwEDgaOAwYAvQG/jG53JFRER850Jw+ePS4neDYBywGfgSyPC5LBEREYmR3w2CRs65s30uQ0REJBCah6DkPjOzlj6XISIiIofIlx4CM1tAZIriFOAaM1sGZAEGuPxXQCxK29Q6fkQrNXNYEnSEqEZlzgo6QpnWP/n7oCMUa+e+rKAjRLV5947iHyRF+m7R6KAjRFWxwalBRwgFXcugeOf7tF8RERHxgS8NAufcT37sV0REJEziOZOg3/weQyAiIiJlgN9nGYiIiCQsnWUgIiIiCUU9BCIiIjFKpJkK1UMgIiIi6iEQERGJleYhEBEREZ12KCIiIolFPQQiIiIx0mmHIiIiklDUQyAiIhIjnXYoIiIiCUU9BCIiIjHSGAIRERFJKOohEBERiZHmIRAREZGEoh4CERGRGOXoLAMRERFJJAnZILhi4A38c+5w7n//ibxtrc/txANTnmDIsjdo0vKoANMdqMdZXfnu2+l8v3AGf77n5qDjHED5Dl1SUhLvfPwfnv/P4KCjHKBBw3q8M3EUM2dPZsYXk+h341VBRzpA2F/jsObLzs7moqtv5qZ7/g7Aqsw1XHbd7ZzT5/+466//ZO/evQEnjAhr/ZWEi8MSLwnZIPh87DSG9v1ngW2Zi1fywg1PsnT2ooBSFS4pKYkhTw/g/J5X0rJVNy65pDctWhwTdKw8ylc6+va7jKVLlgcdo1DZ+7L52wOP0bnDuZx9Rh+uve4Kmh97dNCx8oT9NQ5zvtfGjOOopk3y1gcPe5k/XNKbd0e/TLWqVfjfxPcDTBcR5vorbxKyQbB09iJ2btleYNvapRmsW7Y6oERF69C+NUuXrmD58p/Zu3cvo0eP44KePYKOlUf5Dl3d+nXo2r0zY157J+gohVq7dj3ffL0QgO3bd7Bk8VLqN6gbcKpfhf01Dmu+NevWM/2z2fzey+Kc44t5X3NW11MB6HXumXw8fVaQEYHw1l9J5eB8X+LF9waBmVUwsxPMrKWZVfC7vLKmQcN6rFyVmbe+KmM1DRrUCzBRQcp36B4YcBcDHx5CTk74Bx81btKQliccx7y5XwcdJU/YX+Ow5vvX089z503XYhb5Nb95y1aqVqlMSkoyAHVrH8669RuDjAiEt/7KI18bBGZ2HrAUGAL8G/jRzM6J8vh+ZjbXzOZ+t22pn9FE4qJr91PYuH4T333zfdBRilW5ciVGvPoMD9z7KNu37Qg6jhyCT2Z+Qc0ah/Hb36jr3W+J1EPg92mHTwLdnHM/ApjZ0cAk4N3CHuycGw4MB7il6SXh/3OqFGRmrKFxowZ5640a1iczc02AiQpSvkPTtmMrzji7C6ed2Zm09ApUqVKFx599hHtu+lvQ0QpISUnhldeeYezoCUyaMCXoOAWE/TUOY76vvlnIJzM+59NZc8jas5cdO3by2FPPsW37DvbtyyYlJZm16zdQp3atQHNCOOuvvPL7kMG23MaAZxmwzecyy5Q5c+fTrNmRNG3amNTUVPr06cWEieH5hax8h+bJ/kPp0uo8Tm97AXdc9wCfz5gTusYAwNNDH2XJ4qUMG/pK0FEOEPbXOIz57rjxGj565zWm/G8kjz98Lx3atuJfD/2FDm1OYMonnwIwbvKHnH7qSYHmhHDW38Fwzvm+xIvfPQRzzWwyMJrI2RMXA3PM7EIA59xbfhR69ZA/cUyn46hSoyr/mPUskwePYceW7Vz80DVUqVmNG17+CxmLfmLoVY/6UfxByc7O5rbbH2TypNdJTkpixMg3WbhwSdCx8ihf4uvYqS2XXNab7779nqkzxgEw4JFBfDhlWsDJIsL+Goc9X3533Ph/3PP3x3hm+ChaND+aC88/K+hIZar+Ep352fows2h/bjjn3P8VdWfYDxk8lzkj6Ajio6Oq1w86QrE2ZW0NOkJUm3drHMKh2JX5adARoqrY4NSgIxRr354M87uMDg1O8/27anbmNN9/DvC5h8A5d42f+xcREQlSIl3cyJcGgZn92Tk30MyeoZCJlpxzf/KjXBEREYmNXz0EudMBzvVp/yIiIoGL56A/v/nSIHDOTfD+H+nH/kVERKR0+TqGwMyaA3cDTfOX5Zw73c9yRURE4iGeEwcVxcxWEDmlPxvY55xrF8t+/D7tcAzwHPAikaAiIiJS+ro55zYcyg78bhDsc84N87kMERGRQCTSGAJfZio0s5pmVhOYYGY3mVn93G3edhERESkdDphiZvPMrF+sO/Grh2AekYC5kyncQ8HTD4/yqVwREZG4iccYAu9LPv8X/XDv2j+5TnHOZZhZHeADM/veOTf9YMvx6yyDIwHMrA/wnnNuq5n9FWgD/MOPMkVERBJR/gv/FXF/hvf/OjN7G+gAHHSDwO+LGz3oNQZOAU4nMrhQYwpERCQhuDj8i8bMKptZ1dzbwFnAt7H8LH43CHLPLDgPeME5Nwmo4HOZIiIi5UVdYIaZfQ3MBiY5596LZUd+n2WQYWbPA92Bf5lZGv43QkREROIiJ+CzDJxzy4BWpbEvv7+c+wDvAz2cc5uBmkQGGIqIiEiI+H21w53AW/nWVwOr/SxTREQkXhLpaofqvhcRERHfxxCIiIgkrKDHEJQm9RCIiIiIeghERERilUhjCELbIPgpZ0fQEcq09rWbBx0hqm9+WR50hKiOrVgv6AjFendLuMfnNqgS7suW7NyXFXSEqBZ3+FPQEaI6rc5vg44gpSy0DQIREZGw0xgCERERSSjqIRAREYmRxhCIiIiIDhmIiIhIYlEPgYiISIwS6ZCBeghEREREPQQiIiKxci4n6AilRj0EIiIioh4CERGRWOVoDIGIiIgkEvUQiIiIxMhpHgIRERFJJOohEBERiZHGEIiIiEhCUQ+BiIhIjDSGQERERBKKeghERERipKsdioiISEJRD4GIiEiMEulqh+WiQdDr2l6cddlZOAcrvl/B03c/xd6svUHHytPjrK4MGvQIyUlJvPzKGwx8fGjQkQqoUq0y9z1xD0cfeyTOOQbcNZBv5y0MOlaeYc8N5JyzT2f9+o20b98j6DgHCPv7D8L9HkxLq8CYiSOokFaBlJRkJo//gEGPPRt0rDwNGtbj2ecHUrvO4TjnGDXiTYYPGxVoptT6h9PwiTtJOfwwcI5f/vs+G0eMp9o5nalz2+WkNWvM0t/dye4FPwaaE6DRUY3467AH8tbrN6nHiCdG8dZLbweYqnxK+EMGNevWouc1PbnjvDu4pfvNJCcn0aVnl6Bj5UlKSmLI0wM4v+eVtGzVjUsu6U2LFscEHauAOx65lc+nzubS0/ryh+5/ZMUPPwUdqYDXXh1L7959g45RqLC//yD878GsrD1c2vtazu5yEWd3uZjTzuhM63YnBB0rT/a+bP72wGN07nAuZ5/Rh2uvu4Lmxx4daCa3L5s1j77Ejz1uYtnv76bmH84jrVljspb8xM83PsrO2d8Fmi+/VctWcX2PG7m+x43ceM7NZO3KYsZ7M4OOVWLOOd+XeEn4BgFAUkoyFdIrkJScRFrFNDat3RR0pDwd2rdm6dIVLF/+M3v37mX06HFc0DM8f+VWrlqZEzuewIQ3JgOwb+8+tm/dEXCqgmbOnM2mTVuCjlGkML//IPzvQYCdO3YBkJKaQkpKSqhO9Vq7dj3ffB3pMdu+fQdLFi+lfoO6gWbat/4Xdn+3FICcHbvI+nElKfVqkbV0FXuWZwSaLZrWp7Qm86fVrMtYF3SUcsm3BoGZHVnItvZ+lVeUTWs38vbwt3n581cYNfdVdmzdyVeffhXvGEVq0LAeK1dl5q2vylhNgwb1AkxUUIMm9di8cTMPDv4LI98fzn2P3016xfSgY5UZYX//QfjfgxDpxXh32hi+WjyNGZ98zvx5C4KOVKjGTRrS8oTjmDf366Cj5EltWIf03x7FrvmLg45SrG4XnMbH46YGHeOg5OB8X+LFzx6C/5lZw9wVMzsNeDnaE8ysn5nNNbO5P23/uVRCVK5emY7dO/LHztfSt/1VpFdKo+vvupbKvsuD5ORkmrdszlujxtO3Rz927dzNVbdcFnSsMkPvv9KRk5PDOaddTMfjz6RVm+Np3qJZ0JEOULlyJUa8+gwP3Pso27eFoxctqVI6TZ69nzX/eIGc7buCjhNVSmoKJ591EtMnTg86ykHRIYOSuR54x8zqmdm5wBDg3GhPcM4Nd861c861O6JKk1IJceIpJ7J25Vq2btpK9r5sPntvFi3atiiVfZeGzIw1NG7UIG+9UcP6ZGauCTBRQetWr2f96vUs/GoRAFMnTaN5y+YBpyo7wv7+g/C/B/PbunUbs2bMoesZnYOOUkBKSgqvvPYMY0dPYNKEKUHHiUhJpvGz97N5/CdsfX9W0GmK1aFbe35Y8CO/bNgcdJRyy7cGgXNuDvAnYArwEHCmc26lX+UVZX3Gen7T5ljS0tMAaNW5FSt/jHuMIs2ZO59mzY6kadPGpKam0qdPLyZMDMkvFGDT+l9Ym7mOJkc3BqDdKW1YsWRFsKHKkLC//yD878GatWpQrVpVANLS0zi1ayeWLlkecKqCnh76KEsWL2XY0FeCjpKn4WO3kbV0JRtfeifoKCVyeq9uZe5wAUQmJvJ7iZdSP+3QzCZAgYMelYAtwEtmhnPugtIuM5ol85cwc/JMnpr8FNnZOSz7binvvf5ePCNElZ2dzW23P8jkSa+TnJTEiJFvsnDhkqBjFTDor0N46JkHSE1NIePn1Qy4819BRypgxIghnNqlE7Vq1WDJD7Po338wo0aODjoWEP73H4T/PVinbm0GPduf5ORkkpKMie9M4aMp4elW7tipLZdc1pvvvv2eqTPGATDgkUF8OGVaYJkqtTuOGheezu7vl3P0xCEArH1iFFYhlQZ/v57kmtVp+tLf2bVwOT9d/bfAcuZKr5hO2y5tGHzvU0FHKdestI9PeGMFiuScK9GnpGeT88MzjLgQ764J18Cw/bWvHe5u/W9+CddfePs7/fDjg45QrLC/BxtUqRl0hKh27ssKOkJUnxwe7s/wbXv2BB2hWB+tmmJ+l1GjSjPfv6t+2f6j7z8H+NBDkPuF751lsNo5t9tbrwgEey6OiIiIFMrPQYVjgJx869neNhERkYSg0w5LJsU5l9en5N2u4GN5IiIiEiM/GwTrzSxvAKGZ9QI2+FieiIhIXCXSPAR+XtzoBuA/ZvZvwICVwFU+liciIiIx8q1B4JxbCnQysyre+na/yhIREQlCPOcJ8JtvDQIz+9t+6wA45x7xq0wRERGJjZ+HDPJP5p0OnA8s8rE8ERGRuHJxPAvAb34eMngy/7qZPQG871d5IiIiEjs/ewj2VwloFMfyREREfKUxBCVgZgv49ZoGyUBtQOMHREREQsjPHoLz893eB6x1zu3zsTwREZG4iuc8AX7zpUFgZsnA+8653/ixfxERESldvjQInHPZZrbYzJo45372owwREZGg6SyDkqkBfGdms8l3CqJz7oKinyIiIiJB8LNBkDv3QC4D/uVjeSIiInGlMQQl3Ldzblr+DWZW0cfyRERE4ioMDQIzOxt4msgZfS865x6LZT+l3iAwsxuBm4CjzOybfHdVBWaWdnkiIiLllTeIfyjQHVgFzDGz8c65hQe7Lz96CF4H3gX+Cdybb/s259wmH8oTEREJRPD9A3QAfnTOLQMws/8CvYDgGwTOuS3AFuCy0t63iIiIFNAQWJlvfRXQMZYdxXPq4oMy4eeJVpr7M7N+zrnhpbnP0hT2fBD+jMp3aJTv0IU9Y2nm+6g0drKfsNdfYfbtySjV76rCmFk/oF++TcP9qKek0t5hiPUr/iGBCns+CH9G5Ts0ynfowp5R+cog59xw51y7fEv+xkAG0DjfeiNv20ErTw0CERGRRDMHOMbMjjSzCsClwPhYdhTaQwYiIiISnXNun5ndArxP5LTDl51z38Wyr/LUIAj7camw54PwZ1S+Q6N8hy7sGZUvATnnJgOTD3U/FoZJFURERCRYGkMgIiIiidUgMLNPzKxd0DnKIjNrambfFrL9RTM7rgTPv9rM/u1PutiYWVczOznOZT5kZnfHs8xYhDGnmf3JzBaZ2X9CkKXQz0NZYmYrzOzwQrZfYGb3FvacUi7/MDO7qZT21dXMJpbGvqRoCdUgSFRmFthYD+fcHwubAtObLjPsugJxbRCUhiBf74DdBHR3zl2Ru6Es1kXYMzvnxsc61/1BOozIa1pA2OunPCuTDQKv9f69mf3H+4tirJlV2u8xw8xsrpl9Z2YP59u+wsweNrMvzWyBmf3G217ZzF42s9lm9pWZ9fIp+1Vm9o2ZfW1mr5pZTzP7wivzQzOr6z3uIe/+mcCrfmQpRMr+dZq/18XMtpvZk2b2NXCSmV1jZku8S1x3jlPGEtWhmTUFbgDuMLP5Znaqj3ke8OphBnCst+1oM3vPzOaZ2af53me1zex/ZjbHWzp7231/vYvIeaKZfe7V59tmVsPb3t7bNt/MHvf7r2Uzew44CnjXzLbkrwvv8/6xl+cjM2viPedoL/sCM+tvZttLOVaymb3g/Q6ZYmYVo9TXJ2b2lJnNBW4zs4vN7FvvPTrde0yyV5dzvOdfX1pBvd9fk7zyvjWzS7y7bi3kd11eb56ZjTCz5yzyu3KJmZ1fZCEH7zHgaO89NMf7HIwHFtp+PTBmdreZPeTdbuZ9jr/2sh+938/a3vusF9gupcA5V+YWoCmRKaQ7e+svA3cDnwDtvG01vf+Tve0neOsrgFu92zcRuTIUwKPAld7tw4AlQOVSzv1bb7+H52YEavDr4M4/Ak96tx8C5gEVQ1SnDujj3a4P/AzUBioQuXDVv+OQ82Dr8G6f87QFFgCVgGrAj169fQQc4z2mI/Cxd/t14BTvdhNgUTxe7yg5vwFO8x7zCPCUd/tb4CTv9mPAt3F4bVcAh+9fF8AEoK93+/+Ad7zbE4HLvNs3ANtLMUtTYB9worc+GrgySn19Ajyb7/kLgIbe7cO8//sBD3q304C5wJGllPf3wAv51qtT9O+6q3M/q8AI4D0ifxweQ2Ta2/RSrMNvvdtdgR25P2/++7z1u4GHvNtfAL/zbqd779mu3ut9svfeaOL3+7E8LmWyh8Cz0jmXe/XE14BT9ru/j5l9CXxF5Esk/3Hwt7z/5xF5YwKcBdxrZvOJfLjTifzCLk2nA2OccxsAXORiT42A981sAXCPlzXXeOfcrlLOEE1xdZoN/M+73RH4xDm33jm3B3gzThkPtg79dirwtnNup3NuK5EJQdKJ/OIa472fnifSgAI4E/i3t308UM3Mqnj3+fl6F5azMpEvq9zLlI8EupjZYUBV59wsb/vrPmWKJn9dnJQvw6v8+r48CRjj3fYj43Ln3Hzv9jzgaAqpr3yPz/8ZmAmMMLPriPxRApHfMVd5r/0XQC0iX8KlYQHQ3cz+ZWanusg1ZaDw33X7G+2cy3HO/QAsA35TSpn2N9s5tzzaA8ysKpGG1NsAzrndzrmd3t0tiJyW2NM597NPGcu1snwsZ//zJfPWzexIIi3O9s65X8xsBJFf0rmyvP+z+bUODPi9c26xP3GL9AwwyDk33sy6EvnrKNeOOGcpsk49u51z2fEKcxCi1WEQkoDNzrkTi7ivk3Nud/6NZgbxf73DLAx1kZXvdjaRnsNo8jI7524ws47AecA8M2tL5HfMrc6590s7qHNuiZm1Ac4F+ptZ7qUGCvtdd8DTi1kvLflf030UPGSdTvFWe49rDWSWYi7xlOUegiZmdpJ3+3JgRr77qhF5822xyDH5c0qwv/eJHG8zADNrXZphPR8DF5tZLa+MmkS69nLnne7rQ5kHI1qd7u8L4DQzq2VmqcDFvqeLOJg63AZU9TnPdKC3d3y5KtAT2AksN7OLvYxmZq28x08Bbs19spmd6HO+aDl3AL/Yr+Mr/gBMc85tBrZ5X2gQmQo1SJ/ly3AF8Kl3+3MiXeUQn4xbKKS+CnugmR3tnPvCOfc3YD2RuebfB270Pi+YWXMzq1wawcysAbDTOfca8DjQ5iCefrGZJXnH5I8CSuuPomifv7VAHe/3RxpwPoBzbhuwysx6A5hZmv06PmwzkQbWP72Gv5SystwgWAzcbGaLiBxDHpZ7h3PuayKHCr4n0pU4s9A9FPQPIBX4xsy+89ZLlYtMJzkAmGaRgXmDiPw1O8bM5gEbSrvMg1Rkne7PObeaSPZZROp3UTwCHmQdTgB+Zz4OKnTOfUmkq/hr4F0i84pD5IvrWi/jd0SuTw7wJ6CdN6hsIZFj376LkrMv8LiZfQOcSOS4OMC1wAte93ZlIl+GQbkVuMbL+AfgNm/77cCd3vZmxCdjUfW1v8e9gXzfEmnQfA28SOQa9V9625+n9HppWwKzvdfr70D/g3juz8BsIu+LG/bvvYqVc24jMNP7WR/f7769ROpuNvABkd/Vuf4A/Mmr48+Aevmet5ZI42FovgarlJIyOVOhRUaQT3TOHR90FpFEZGZVnHPbvdv3AvWdc7cV87S48v5y3OWcc2Z2KZEBhr6cHZSovMOpE51zY4POIsEry2MIRMQ/55nZfUR+R/xEZGR62LQlMkDTiHQn/1+wcUTKtjLZQyAiIiKlqyyPIRAREZFSogaBiIiIqEEgIiIiahCI+M7Msr1TH781szG233U3DnJfI8zsIu921CtRWoxXe7QirpInIolNDQIR/+1yzp3onSa7h/3mHrAYr/7mirgSZT5dKYNXexSRYKhBIBJfnwLNvL/e81/9rdAr4XmzHP7bzBab2YdAndwdWcErUZ5tkSvDfW2RKwI2Zb+rPVrRV1qsZZGr+X1nZi8SmWJXRMoZzUMgEideT8A5RK4uB5HpZY93zi03s37AFudce28q15lmNoXIvO3HErk4V10iM929vN9+awMvAF28fdV0zm2yyCWFtzvnnvAe9zow2Dk3wyKXEH6fyAVj/g7McM49YmbnEZmlUETKGTUIRPxX0ZtSFiI9BC8R6crPf/W3s4ATcscHELk+wzFErqb3hndRqUwz+7iQ/XcCpufuy7sCZGHOBI6LzOMD/HqlxS7Ahd5zJ5nZL7H9mCJSlqlBIOK/Xftf+dAOvLphoVfCM7NzSzFHtCstikg5pzEEIuFQ1JXwpgOXeGMM6gPdCnnu50AXi1z2O/cKkHDg1eaKutLidCJXt8TMziFyYSsRKWfUIBAJh6KuhPc28IN33ygiV5cswDm3HugHvOVdXfFN7679r/ZY1JUWHybSoPiOyKGDn336GUUkxHQtAxEREVEPgYiIiKhBICIiIqhBICIiIqhBICIiIqhBICIiIqhBICIiIqhBICIiIqhBICIiIsD/A0UlE8L8uYUwAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 648x648 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "# utility function for plotting confusion matrix\n",
     "import matplotlib.pyplot as plt\n",
@@ -1194,13 +1151,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 32,
    "metadata": {
     "nbpresent": {
      "id": "edecc2dc-bbf4-47bb-8902-6910fef3eae0"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Difference was: 0.000000\n",
+      "Good! The distance matrices are the same\n",
+      "Difference was: 0.000000\n",
+      "Good! The distance matrices are the same\n"
+     ]
+    }
+   ],
    "source": [
     "dists_two  = classifier.compute_distances_two_loops(X_test)\n",
     "dists_one  = classifier.compute_distances_one_loop(X_test)\n",
diff --git a/notebooks/Block 2/Supplementary Jupyter Notebook Block 2 - Linear Classifier.ipynb b/notebooks/Block 2/Supplementary Jupyter Notebook Block 2 - Linear Classifier.ipynb
index ac6f382a0ad092ba9841fc7dfc1a50c981147294..b3202b45c58dda5527bcbfcae7ea992b9aa11daa 100644
--- a/notebooks/Block 2/Supplementary Jupyter Notebook Block 2 - Linear Classifier.ipynb	
+++ b/notebooks/Block 2/Supplementary Jupyter Notebook Block 2 - Linear Classifier.ipynb	
@@ -16,19 +16,29 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 29,
    "metadata": {},
    "outputs": [
     {
-     "ename": "FileNotFoundError",
-     "evalue": "[Errno 2] No such file or directory: './Daten/data_batch_1'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-1-41bda40a2c25>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      9\u001b[0m         \u001b[0mdict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'bytes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mdata_batch_1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./Daten/data_batch_1\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     12\u001b[0m \u001b[0mdata_batch_2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./Daten/data_batch_2\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0mdata_batch_3\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./Daten/data_batch_3\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m<ipython-input-1-41bda40a2c25>\u001b[0m in \u001b[0;36munpickle\u001b[0;34m(file)\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0munpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      7\u001b[0m     \u001b[0;32mimport\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m     \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfo\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      9\u001b[0m         \u001b[0mdict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfo\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'bytes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: './Daten/data_batch_1'"
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAD3CAYAAADMt+U9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eZRlyX3fB34i4u5vzZd71tpV1XtjbwAESZDgBu4WRUkjckxLpGRr5JHGWkaj1Z5DjzmWrDEtj4e2PEfW0WKNJMqSRhbFnQAIgARINJYG0HvXXpWV+8u33Xe3WOaP+7I6u9n1sgsAhaFc3zp5svLde9/93bgRv4j4Ld+fcM7xAA/wAA/wAF8fyK+3AA/wAA/wAP9bxgMl/AAP8AAP8HXEAyX8AA/wAA/wdcQDJfwAD/AAD/B1xAMl/AAP8AAP8HXEAyX8AA/wAA/wdcRXrISFEB8SQtz+WgrzexVCiOtCiO98k88/KIR4+WvxXb9XIYT4+0KIn/p6y3EcXw+ZhBCPCiGeFUKMhRD/yb+le/6e6ktCiJ8UQvyjOcefF0J86N+eRPcHIYQTQly63+serIR/F+Gc+6Rz7tGvtxxvFb/XBu3vMfxF4GPOuZZz7r/7egvzexHOuSedc7/+1XzH/z/28QdKeAYhhPfv8v3+XcLv0bY7Bzz/ZgeEEOrfsixvGb9H2/orwtfrWU9UwrOZ468IIV4QQhwKIf6eECJ6k/P+shDiymy79YIQ4vcfO/bjQojfEEL817PvuCaE+N5jxztCiL8rhNgSQmwKIX7qfjumEOKMEOJfCiH2hBAHQoifEUJcFEJ8dPb3vhDi/yOE6L7h2f6SEOJLQPpVvoT3vrGN3miyebP7CSH+AyHEjZmMf+2ruP/rcL/tIYT4n4GzwM8JISZCiL/4Fd73XUKIz8/6wc8C0bFjPzDbkg+EEJ8SQrz92LENIcS/mMl77fiWfbZN/edCiH8khBgBP/41lOk/EkJcFkL0hRD/WgixcezYh4UQLwshhkKI/0EI8XEhxH/4FbTJR4FvA35m1rb/WAjxt4UQvyCESIFvE0I8LoT49VnbPC+E+PeOXb8ohPg5IcRICPHMbHz8xlu8/TuFEF+aPcPPHo3dE57bCSH+lBDiVeBVUeNvCSF2ZzJ8WQjx1OzcUNTj+qYQYkcI8T8KIeK30CZ/SdRjfTxr4++YHQqEEP9w9vnzQoinj11zdxV7rE/87Ozczwsh3nHCPX9HH5896x8XQtwEPirexMz6hvsqIcRfFa/pus8JIc68yb2+WQhxS7wV84lzbu4PcB14DjgD9IDfBH4K+BBw+9h5fwjYoFbsfxhIgfXZsR8HKuA/AhTwHwN3ADE7/v8F/t9AA1gBPgP8H06S7di9FfBF4G/NviMCvhm4BHwXEALLwCeA//YNz/bs7Nnit3q/r6KNXnc/4AlgAnzLTMb/BtDAd36lsnwN2uMrvjcQADeAPwf4wB+cvfefAt4F7ALvn8n3R2f3C2d95nPA/3X2HReAq8B3z773J2ff80Ozc9/yuzpBpm8H9oF3z+T4fwGfmF23BIyAHwY84M/MrvsPv8K2+fWja4G/DwyBb5o9Twu4DPzVmbzfDoyBR2fn/9PZTzLrM7eA33iL/fIz1OOyB7wI/Ml5zz27zgG/OrsmBr579n66gAAe57Wx/beAfz07twX8HPDXT5Dr0dkzbMz+Pg9cnL3nHPi+WR/568BvvVn/PNYn/uDsvf4F4Brgv4U2+c5j93XAP6QeJzFvGLNvcs3/Bfjy7BkE8A5g8Vi7XQK+Z/Z873tLfeMtvsg/eezv7wOuvJmwb7juWeD3zf7/48DlY8eSmcBrwCpQcGxgAT9KbT97qx38A8Ae4J1w3g8BX3jDs/2xr1Tp3G8bvfF+1Ernnx77uwGUfPVK+Ktpj69GCX8LxybX2WefolZ4fxv4L95w/svAt1Ir5ptvOPZXgL83+/9PckxJfA1l+rvA3zz2eZN6YJ8H/gjw6WPHxGxgfa2U8D88duyDwDYgj332T2bPrWYyPXrs2E/x1pXwjx37+28C/+O855797YBvP3b824FXgG94g4yCerF18Q1979oJcl2inpC/k2NKc/a8v3bs7yeA7M365+zc4wpaAlvAB99Cm7xRCV84dvxDzFfCLzPTa2/y3W7Wb28AT73VvvFWt9+3jv3/BvXM+joIIf4I8OdnDwb1i106dsr20X+cc1MhxNE5PeqZbGv22VGDHr/nSTgD3HDO6TfItAr8P6k7eWv2vYdvuPZ+7jMPJ7bRm5y3cfxv51wqhDj4Gsjy1bTHV4MNYNPNeuQMN2a/zwF/VAjxfzp2LJhdY4ANIcTg2DEFfPLY31/pe5on0wbw+aMPnXOTWfuf4ne+G/fGbepXid/RD5xz9g0ynqLesXhvOP9+2mL72P+ns3stcu/nvv7GezjnPiqE+BngvwfOCSH+JfXKM6JeUH3u2NgV1O/unnDOXRZC/FlqRfqkEOKXqXXHm8kbCSG8N/blN5HRzt7PvcbdPNyvrrky5/ifpZ5gn3urX/hWHXPHbR5nqVcWdyGEOAf8HeBPUy/Nu9Tbc8HJuEW9El5yznVnP23n3JNvUbaj7zgrfqdN97+knp3e5pxrAz/2JjJ9rWjk5rbRPe63dfw6IURCPUC+Wnyl7fHVtsUWcEocG5HUbXEk0//92DvuOucS59w/mR279oZjLefc930NZJsn0x3qyQEAIUSDuv03Z9edPnZMHP/7a4Djz3MHOCOEOD4ez87k2KM2UR2/9++wQd4n5j33m8mHc+6/c869h3p1+gj1tnwfyIAnj723jnOueZIAzrl/7Jz75pkcDvivvoLnOD52JHUb3Wvc3b31CZ+l1BPL0fcq6onwCLeoTSf3wh8CfkgI8WdOkOMu3qoS/lNCiNNCiB7w14CffcPxBvWD7AEIIX4CeOqtfLFzbgv4FeCnhRBtIYQUtQPpW9+ibFDbvbaAvyGEaIjaKfZN1Ku9CTAUQpyi7ji/Wzipjd4M/xz4gZkRPwD+b3xtIla+0vbYobbHfqX4NLXC+E+EEL4Q4oeB982O/R3gTwoh3j9z9DSEEN8vhGjN5B3PnDXxzPnxlBDivV+FLG9Fpn8C/IQQ4p1CiJB6kvpt59x14OeBtwkhfmg2mf0pavPZ7wZ+m3rV9xdnMn4I+EFqU5UB/iXwk0KIRAjxGLWp5KvBvOf+HRBCvHf23nxqJZUDdrZy/zvA3xJCrMzOPSWE+O55Nxd1zPS3z+6dUytyO++ae+A9Qogfnr2fP0u9mPutE645qY+/Qr36/v7Z8/6n1HbzI/xPwH8hhHh41o/fLoQ4vnC6A3wH8GeEEP/xW3mItzrg/zG1orxKvRR/XaC7c+4F4KepO/wO8DZq59RbxR+h3pq+QL09/ufA+lu9eNZRf5Da1nQTuE3tHPzPqZ0PQ+pB9S/vQ6b7xdw2ejM4556nHtz/mFppHlLL/lXhq2iPvw78p6L20P+Fr+C+JbUj68eB/uye/3J27LPUjtmfoX7Oy7PzjuT9AeCd1M6VferO3rlfGe5Tpl8D/jPgX1C3/0XgR2bH9qlXNX8TOKBeAX6WeqB/TTGT8QeB76V+9v8B+CPOuZdmp/xp6rbYBv5naiX6Fcsx77nvgTa1sj2kNpMcAP+P2bG/RP0uf0vUkSu/Ru20mocQ+BvUz7pN7Yz/K1/Bo/yv1O/zEPgPgB92zlUnXHO3j1M79V4H59wQ+D9S979N6knn+Jj8b4B/Rj3WR9T29fgN33GTWhH/ZfEWommOohPufYIQ16kdCr920pc9wAP8u4rZdvc28O875z72dZblvwLWnHN/9Ospx9cTQoifBC45537s6y3LV4sHyRoP8AD3gBDiu4UQ3dm2+a9S289P2u7+bsjx2GzbK4QQ7wP+OHVY5wP8O4D/zWTDPMADfAX4ALWp6MhU9kPOuezrIEeL2gSxQW3u+2nqrfgD/DuAE80RD/AAD/AAD/C7hwfmiAd4gAd4gK8j7ssc8ef+8IecUgopJb4S+NKhlEIphRDi7u+jkMzXh2a+HtZanHNYazHGYK29+2O05af+0UfveXEYBs5ay/EQVyHqHwBPKXxPEfoeUkqEAE8IlJRk2tBtNum0myipSKIIIWA0meKURxyHJEkDX0ryquJXPvbJe8rxHT/xfe7977vA+KDi8PYhQknKpEVrdYPTSy1cMSDVOV987hXaqsGZ1XUuPLTBqVNnWVpao8xHXL1yndFozEqvQ7vp02308P2IwPdJwoRuZ4GtOzd57/u/955yXJ8MnaymSKmQSJAK6cDhwAkcdVsjBFIojBNYZ5DUcYUWYLYjEoD0AiyKbDoBHAKB70D6AecWu/eU4+lvetp1FkLaHUWnFxM2fJqtFiudt9MMH5m9C4PU9bua2jE3di9zZ/c6Wmg2Vs9xbvESba+LsOCswGgoygpdaYSzREg8IfkTf+nH7inHiy9ccVXpM+1PuXH5FX7jmY/w6c/+FpOyIGw1ePvb3s4PfPf381SwQiOTmHc/RNUMGOwP+MivfoJrV2/zyIWHCQLB9mif9bMP0WktI5QkDAVdJE7DgYAf+54n7inHn/qJP+qKoqAoirvjAyAMQ6y1aK0xxlCWJVJKlFI45+6e6/s+UtbrpKPf1loQFjBUlaaq6mCAf/i//Ot7yvEnv2/DnVv0WegawiBitdlmb1ow0FO6MkBIn2YjRbmCoQmwDhrKIoxic6dCBR7Ly4rYd3jWElNw6BrsTAwdX2O0TzcKOcgLfvxvXr2nHKNs5MqyRCCQSIQQSKlQUs4ides++JpOOZ7zYbHW4ZzB2LrdjLZUlaOqqtfpEeccFy6cv6cc03TsrLUIIY5lroEQDufq+0DdR51zWGcpsgxjDIfDjBdfucKzX/gt8mKCs9DptFlZXKYoSp568kmeevJtNKIEKSXNXu/EXIn7UsLOGpw8SnWWuFnas7UWKeXd3yd+z+9M93v95yfE5deN9MZnq5W/kvXvsjJo42i3G0SeRyAh9D3aSrHY7TIYjRiWGk9Y4jii1QhQErKqRIiYShfkRTlXjovLa5hhiW8ESSthkE5Yb7d4eGOdXqsJZoHdw12y5TN4IqDXbLDgOToCyDLGh32Esayvnma11yGQJd1OhzCIKHSFwDAZ7LGzfXOuHMXLn2B4cI2ku0IYt/CDBs46rK1wzuJshdYpQnj4fpvC+ozHI7TOwQlwYK2ZdThHb3GVMFrhmc9/nrwyOGcIhOTs+gbnvuf77imHp2J8L2A8HmHQBDog1VM8cYug0yPxm/jSEfohvgzwTIxvJZPxBOc7dvr7hN4C/kJCIj0EIKQDDA6DUBInFeUJJjSXCdCSPK3Y2d3nyrVrDEcjRODjex6NTpeF9Q0oAwpb4ltLLBWpg1AJbJkRx4K4GeJniqrUjPojep0GOp9y+fpN9m5tE505A9/zxD3lsNbiefUQ07pO+PJ9nyAI0FrfHTtKKTzPQwhRK1m4q5CPlLIxpr4Gh1L1+xJCEEXRiWPuW97dwExyJqbAE5adLUej41N4hlt7U7qNEmc9TGVpeFOElAyyEuVJut2E8TSjf+BYb0JpYOwUhR2z3opJXMm4SDFTR9vz58phNFgjZyN3tmpyYM1r77OeqOszpDgKHT6mLKm/w1kQQuJ59m77Hm+veQiCAGMMwBuUsMVagZSv10nSSYzyGI0mfOpTv8Wnfuuz3LpxGSVhaXGR2G9gO4Jm0qSRJHhSIiWE0fz2OML9OeasBVs/oBNghUC+eQ7163A048zD65TxfQn12j2klDTjgMj3SYuSrKxXCVEY0gkFSoIVPpFSdJOEOHIkcQQzxa2UTywdVmuqyrCwuDL3nu99+DzpdEweQi90hF7AyvIyj547SycM8TzJ+bVVosIRJxHKFyzEDeIgITcVB4M+hdG0fUHse/RaLSZ5Sv+wT24rAj9htdXB8+YTyt14+QvocsCyH4D0cEKhtabK+0gJwloqPQVnmJptZLiMM5IiT9FaY42pO6WrVxrOGjxlyCcjpqM7mGxI1Fhmx5q5chhSisoSJTFCSlzlozQIO6IsroAOaLfaNOJTuNLDm62EkriFCAVKeYRRglU+zvPxACs0whkMFgM4ZTB2flx/llZM04I7d3Z49cZ1bm9vUeoKX0l0WdE/POTW5i1E1KEXxCwLQygsC82Qh8+vU6VDlhcTZBKy7FYYjTJ2DvbY9RzCL9l8+WWGdw5IJuO5cnieh3UOP/DRVYUxhigK8X0Paw11T3coTxKGAUIKdKVxrr5WKQ+EQFcVZZnjnMXzY4IwoNIFwjmUACHnD+ObeynaVFQIZLbAqN+lm/m0GxnSH2MYcjgSSA9GlaN0YHSAX2g8P0OKgMLCtWGJNYICH60dyUQTSIUGfHXS0gnStMAYg0CikCBErZClACGRQiClRQmQx3bU4GarYPc6ZVzvfuuV6tHk9VZ0jZTy7jlHE2G9CpYI8ZoSP7pPVZYMRyMuX77Kr/zKr3Lt+h2m/T46z0hXJhSjktvXNukuNFnsdjm1vo51higJ50jxGu5PCTsN1tXbBMdsNfzmpBTHH/T4Q/2Or5w1wvFj4oTXGQYe2swa/uhtUL+4Ruiz3G2zczghLyuUtcS+RyP2yPKcTrtJt9Wm0hUG8JSkdA5jQQpFgONgnLKytMLi0vwM4lYoOLV8Gi9ImAwLOv1DVDMmSSKMtaTpAFflxJ7jTKeBRaN8D2xJVWZEsU8/L7i2v4f0BH7oM8kyhuMhjXYHoXyGkzFR0porxzQdIaRBeRFKBTgEzmlMMUSFLZQXIISkygek/ZsErYygdYYg6KArwySdkE0ntQJ2DmcrjCuIhMNngBNjJAk6G8x/L2EIImRaVBSuIsgNVWqoprc5SAY0khan5FmawTKKJgfpiM3+JqPpIbEMWF1aQAQe+9qwZx2xEATCQGRRoUdgJRiLb+b3j5u3N+nvj7lx5zZ74wMKXdYDXghspZkOBuSjAeHKMr21ZdqdAM+3BC2Pdz71EGc3OhQWBpUgrRRXr77IaP+QMPSQTUkZekRrS9h4/iDzAv+uqSGMA6qyRClAGKzTODRBWA9BqUApgZQzE5qUKE/hXG0u8vAQFnxPEyiD9Dy0lijnOImBNfQV0lMI08KKc3ihT+BF+M4Rqpy82EfLA5QtKApD21e0Q4tVCmNKfN8SOIExAVYIhAEjBZ4HptaiOOlQYv6KfDRMayUsBArF0e4VIRBKIZVESYHCHFPCtQI+0hHOzRS3ECglELL+/PhK+C3kPiCkwNnj5wmEqHfYR9cbYxiPx1RVxWAwZGdnj7LQnDlzjnGzw3Q8xjjH5tY+xdXrLC61eeThh2i3E5ZXVmg1E7xo/tiF+zZHaNyRIdGBs+BmZojj9pUj08TvuP4NjXO8wY43oD2hEeMwIs1ztLb1bDj7XEpB04duLNjpa7S1RL6iGXpYJMPc0Ghb0umIvNIIodBGI/2IpNlDmJyk1eHa1j7O7ZOV07lyBGHC1vYOCMFCb51z504RxA1kVXE4HLK5vcuXnnsRV8LuSs4TF5bx7JDJ0OC1EuJ2m3J/QrcTMSlHbI18llotloIA5XlIJNV0gh+cMMiiaPb8Cm1KpFKYYoyrKqwHwvORQYCnC4SIUDKkkcQ44WFt3SEP+gekaYq1hqyyLHU6oCeEcRPt+SDAFvtz5fBUgPQkxgo8FWNKQ1FZPM8ShQLfi4m9Fn6YUFkYFAMO0wH7+zuEWcjC+mkyKbEIfARSQENKvKMVkZGEXkDg5m83/9XP/2uqwpJj8BJB0m4RRCFxFNFIEk6vLPP4+bNcePgMSTPCNxVO5zhd0owdaiFgmFkO+pq8KEknY6pyzIXTj6JDQTZJ0UJTyvn99MhHYqwh9D1EUNt4a0XEXRNE/e6OdmMCqeptrHAG5SwyMuTGIbKc2GzRiz3GpkcWLqOCGDl/gwJW46xHq3OR3f0Q5XLubG3iSY8zG6eQhExzHxXugUwJfIh8iVUepVUIVxF4CqcExljiwFGUJUI5attI/a6UnP9ehoPpXV0hRW2WEELghERIhZIKKQWetHf9O3UyZa18X1vUSaQU9S5PWnAOY8zMPMrJW2khEFiccPXO3rn6/06AsTgsWZaR5QWHhwOiKOLGzU36gxHf+V3fRWXhzp1tqrIkLwuqvGC4u086HXD56lW0ntJut2jEPpc6yycIc79K2FiQFjdrOCfqWUpKUduqPEXgh+RFUWtooH5ci5i1zWsbDI7Nbkc/9u7veSjLgkBB0gxYTjwO0orB1AACTwgCpWgmEWsI2klIoS1CW5x1pGmBCyW5DUniECs9nB9QSrh06SmW1k/zwrVbRI0WqBNsXM7SWlhgmk3oD/Zp6TadRoTTfSaDLV740hU2dzKiZIHPffSz/PbnLR/6xidQ7QWSYgHjhVxa22AhVJSmYHt3l3IyZmN5EVMWBGFMqS2NzvzZtNFsk+VQViVSgKxyqvQAgUKY+rkjP0E2A5aapxDS4aocrYd4YYuk0eTOVp/nnn8JawzLa+t88OlFXDWgkD4ECek0oyHmZ8pWdoKSilarZipdXG7SaYUURc5CZ4WV3hlW2hsYB7vpHv1igBWCIGoSx5J8vIe/cMDyQouG8wgrh18JIMJKwBN4SoGZ3z8+9YXfIAwaLK6c4aGVh1lePY+uxkwnBY3mAhfOn2NtaYGm7+NVBp1nlNaSZillXtTKE4VEU+U5k8mI8eEuC71vYH88Zuv2LtM8x4+TuXIoJWc2YYe664Cqx4zneXiejxDcXbAc2UNNNaWYHOCKCRuLbc6cXmM8OOTq9pcI/AzptTk8LAlWekilOcFKhO8rWo1HKVmmTHcYDfe5ubeHrgTDacZis02UNMA5giRERCmVyBAS/EaAtR5ZMa1XqZ5Ceg7laRQ+nvMwCCpTIf35K+FpWt5Vwq933su6vaVCSJDyNb0wngzQuqLb6SGVh2CmxGerZlF7cGdOfbi7up6Dg53bdHs9EOCMw5QjKpsjZAurLYf9PtpYmt0eV6/dZHd3l0azw9ve+R7CMOKZZ55hNDok8H3CQBFHTRYWOlRFQV6OeOHFF5gMD9DllEtPnkx/cv/miCOnnJAEcZOiMoQ2Byvxe+e49MS7uPz8c0x2r+OLApA4I0DWs9/RKlrMzAjGCXC2npmcxVl7V4HfC0+c7fEHvmGN6TRnfyfli9tTnr05phnI+nVqzeOrPfBjKmNJZy+olSRoFsgIyIJF8ull8uwQpTw+/L0f4Ls+/D387Z/5GXxf8U3f8kEuf3E+G90km9LrLmCqnK07t/A9QRSsk5c5rXaDJx47y/7hi3RaCTec4ZkvvcrSSpv3v7dLxxMYT9LrJIzTEfvjIYPxAM/GsNjGkwGu0uzv7DMeVbzzXfeWwzrQxjEdjwmbTUwxwuQTgkYbKcD31Gy76KO8iHy6TznZrVcbKgDp02gtIVUbawsgRiiBKcYMbZNWM6YsLb54MzbB17B6ahFjc+JGhDGWvMxpOJ8wjiiNpqgqSmvZ7+/x2SuvMCknlGWJ0I5yktM/OEDFt9BRh0AtQalQJTQRtHyJMhbrKko9X+tMqwmF0ZxvP8nFc4+xv7OLExalfHq9dVaWllE4XFEySaeUVUUhwOK4efM2rUbCwvIyHhW6SDnY2yEd9ZGRIqrq6AFtHQ3vhOEjHH6gUFIQ+rUCdjgCw2z15mGdoNQV1hg8m+GTY/I79MIhnV6Dw1HKF57ZZ7EX87a3n6YcpFy+tluPP5MhjF/bMuYgShKC5kO8+PKQ3Z1drOmDKFFBxPb+DtlgxPkz51hqnmeS7TDRfTwJUZITNwts5XBCUqGotIcoI0y1QBRqnMwQUhN4gJifx2KMxZi6Dx1Xwkp5tY/OWrC1g+xICRdFycHBHs5Bq9lFa0ue58RxTBB4gJ3ppNqfgTjZMfelZ5/hGz/4bQjpk08H7N36HHkxoL30BGnhcfnVG1incP5txlnF+UuP0Wq1GRwOGQwGGGMYjQZIqWY7/9qs7YsA6Qx72/tMhrt88hMf40/8mf9sfh/hPpWwxWKdBevRafd4+N3v5+aNO4xuPoeoNJkLCJcusvF4ixcOD5HlDjiDVF7tBcUinQBrsa5e0Ag5s2+4WvkKZ+EEx8uH3rPOe9+2yq9/9havDDVBErOUFCx0msStJsHqButnL3L+wkWSMMKYiko70smIbJwxzCw2aFJOO6STPk88+QR/6Ef+fX7h53+Z4Sjjkbd9Iw8/9naq+dYI0ixjNBiS+II49BCeYlJoDoclRVmxsLSAVJpPfvJjFNmY0WjKpz/7Es044t1PSRbX14lchggdgQt4aHGVIGnTai8gjc/B7ib7O7dYWJzPSVIUBZODbaqioFn0cC4DaynNiIbwiKJGHdrjoLR9imKEqTKiqIWSHllV4AUxSXORqiwIky5ID+mHdIKYSDoql6Pt/M7tqQBrLMW0IIp8/NCj0gVR0sD3LRO9x+WBoQzaVK0QO7IkkaG14tA6Q4YRzlfsFVNSk1FVEdIqEmHoWEuCQRmLqOZPBtYJlHD4nmN9bYn1tQ0OB4r1xTZPPfEwD597iNDBZDhkZ3+fMG7w4qvXOX1qnY2NU9zZvEKjE9GIQ6TQCGE4e+4UD11Y4+r1TR577BEG4xM6B7XvwjqHpxSBfG2H53yFsT4u03i2Qrkxxk5QVQrZiOW2z+nTZ+i0WtzYzDgcHyL9gI3zZ/BRnH44Z3d/h+1BiY1D7Ak7tkkFg+0hN/Z2kHKPMyuORxoddnYcoz1BYAXNJGIpCQjLHtv7BVEQY+wYp1KcduSZIi8VZR7iuwadpEGlS6Z2hBdMCZN8trKaB/cm/xc4Zzli8TRGI8Rr0SFhEGGt4eBglyhsYK2kKGo7u70b1VPvJrQp8Dwx0yn3hhSaPBuTF4at6y+Q9z+PlIJcdxlVEePJlKTRJWm2SFptxqMxo1HKNE3pdrv4vk+nU/82WpPlKVWZk2uL0xW2sigk3gmT4xHuSwlrKxEz+0+rt4TsbCBbFuPdQNgUkY1weU6yeJZo+RGyrQKnc6RVeJ6PUhJnNdgCYw1ZlhGFIe7YzGfd6510b4bclTxzfYfLw4wXdzKSuMXy+Us8dO4M7W6XdqtDu9VECCito9Fa4MKp04RRjDEG3/eIogTPD6iqnF5vgYVul3e+652cPX8R4Ud02zFJc2muHOsb64xHQyIP9FBwOJrSXNA4pZC+pdXt8uTbHuWll7dxRhOGMdvbIz712Zvs9OF975ecPdWik4QsNbpEjRjRTEgzgysqbt+4zqnVZVY3VufKUeQZ40GfojIU0zGtzgJWWFyR02630PmQwpRIakWgdYl1BmsdSoYYY5hMM5xQCOWD8DBO4ITH0to5yA154Ril6Vw5DnfGOFcQRIJAOVQUYKxjPJoiVYaUI7w0RbSWcCanzEcEriBKPEJvidJIZGmIzJSmr3EIilKRacuOrmNAfWdJTqCpjuIGWMNk0ifLBiAcWjtai4tEYUygJDbPmKYWpTwMisN+ihL7nFp/jMXFHtPpCCuamDJnY32Nb/zA0/QWO9za3GFj4yzJaEyWz1fEyvMwZVk7joxDl7q2/UpJWeaoakBTZFTlAa2uotfsMD6wtDsL9FZWEErw8CM+G6dOkXSbLC0v4lAURY6LAgZVwcQ6DPMnpXRSUVY3WGikLCw7NhY8TFVQtBTlqLazK2lJp0Mm0yk6LdGlz/5Q0d8NcEBWgpARzUYP4SSCmDBcwhQ9qmpMWRwQByezUb7mOzr65MjpVoKA/kEfz/NZWFiYhZtJfN9jMOzTW9ggjhOEMLXvwyq0cXdjrrN8ShSHKDVfCR8e7HHrxhU2t7a59sKnuLQxptO7QH9Q0lpa4exDbUajlMHBLjdv3gQEp06dodVqEQTB60ILlVJoq/GUjy88qmJC2tc4U9GI5purjnBfSrgyEiu8OiRG+hyOcvYHY7qdLpODEXq4xcGdy0w7j9JYO0vi50hjCMKIRtLADzy2blxhsHcH6ySVmRI6S214f+uOuQ+8/RRkJXe2SlaW13j3+76JU6dOIaXAVAXTdMK1a1dBKB59/Cne9b4neezRR8hKw8uXr5Nbg6cC4kaLxO+ClFT4PP7UU6/Nqtqgzfxtb6MRIz1JmU0J4y5r7SVW2x1Km7M97DPOpiwtdVha7LBnJJ22Bhx+1GaUeTz3yjY4y9sfPU/SWUR5EVWeUk4m3Lh6i8pBIT0OTgiFmkymTCYTVGnwg4h29yy+MiivRNgcawLAQ6oKpy1Wa5yQSC9EqhBDxXiSY60GUadRWl0hVYAXdTg8HFCJLs2V+dEiwkiU9PFwOO2oSoE2dYhg0vCJE0HQENDwEMk5nEkJbEkkDmg3WlirqJwjcY7QmxCEAYGOyCuf1FQINJ6QOJvPlWNpZZVhf4c7m9f5zG9/kmlRe8+XlpaIkwApLcIJfKVYWl5ja/eQIAiZTDL6B4e0Wh22dzYZpgdMx1NWl9a5dOlxnPMpcocuBVbXaSxz20PUK7U6mEOC8HCAZzLa+ha9ToFvM0wg6C50mE6nnD61TBAE9DptZKuHFySsewlpbhlNc/b2+vQnOcOhJRNNtFBv6gQ/DgmsdXK6jdokEPiCw6yg3YuZTqBIHVI69odDjBMoJRGuAg1ZKmp7dhDRanaI44T9/gGVq2grn6JyKK9DWVmicP4kXRmNs642g7naseaO/hlHURQYq1FOoWeJF6PxGKkUSjmG4z5BoLC2oshL/MCv/VPS4oRBG40x3onmiC8++yzbezts3bmNHd3i/OIKuY45HBbkbp+yLLhx/RpCwHgwYml5GSUhSWqlqnUd0mmPzKau7g+jbEzoa6SEUhds3zmJX77GfSnhzuIGYXOB6WSIlT62zKnSMa1GQOEqXJXx6qvP4p9PWN9YZ/Xce9HTiiIrmaQTDicTMpGQLJ1GSsXuzVexrsAdc9AdZc3Nw0PrbTZfPSCxMd//PR/ivd/yISaTMVHoU1Ulv/nJ3+DqrU3KSjPVIMKYpNNlbXWN8WTC1SvXaDabtDsdwigkCCNa7S6B7yOoPcBlWVJVmgtn770KbTTa9BYShHGEUQPlKtL+FtPKUuFRVBalBL2FBlleO2qKYgq2ZDreZev2hOHuAdm04n3vD2nHJSad8OoLr9BaWGRpfYPxdEJ6Qnvs7B+wvbtHFEZ0F9ZQ4TJVMSEMCsrpgCBs4DfWkaLEFCNUVa/GpPJwOCaTnHSSYU111xJk0z38qIXw2pQHB2hCls+fnyuHVBbPU/UOpLBUNidpJVRmxHCi0QR4NkBNA9ZWT1N5I4bDXVRbYwIYDScwVfQ8nyDKGNldVgNJS7UwQuKpCK0rRpP5K9CFxSV0OWGy3+e5L3+e3uoplAxBGLTOMbYEFRL5MY0whuqA1eVllCfo9wfgInThGA9SbAXOeVy+fIuF3gLpxGK0h7GW6oRJOop8fOVRlRXOeSTNJrIYYA5us5wcoEyO8H08uYauYiwlcbeD7wuk7/BVxG5/zO7OVe7c3uKZL7zEbt8Rxk1WN1bYOHMWP/SQcn7/UL4Fm6ILTWklu5UmCmPisKK3qOhXCl1leGFEHDURJqHpQTo6ZDDQSKnwOx0WV9fqceEseVUSGcudvX2QIc2FkKY/P2SvqCqsc0hR+26kACEMzhjKvB73cRKB9Cl1RZbn5FoTRDFqLNntb9ahfcZSlZowaeHULLlLOqyrcC5AzK+uxMHeLouLHXqNGJ0HeGKFl17tozEsiYpOp00zhPFoSJGmVK0G+bTAD/NZ6C0YU1Hk09qZiiXPp2zf2WJtuV3f31p876SwlRr3pYTPXXyMd33w+7h+/Sqj4TZOV1R5QakqKquwQYgtDV6e0j844ECnmEITeAG7u7vkRUErjNlYP0uv16OzsMCtL38abFXPhsfC1eZha2vInd0RjVbE0kLE9itfZi/TvOu97+fKl7/IF774RdIspd1qs7+/zS/90i9y89YdvuO7vptsmjPs7zNNR0zTMWEUEYQxo+H4rh2qLCryWbrph7/1HfeUo9dbIfZChPM4zFIGk32ydJdh5jN2DYTvOLu0zuOPP8zW7hcII5+isgzHA9LJFOv5+H7A9c07HAwHfN+3vY/b16+ifcHZRy4RBjGnhCUd9+e2x+Vre2xe26bXjpEyIkjaWC8iz2/T6zZQwiBFQZiskjuHLCwOg5IhAp9pmqMrkDJASIfn+4ShR1lkyCAkbsdYrWkuzA+36Sy18HyH1iVBEJNXFYeDPt1eRKfdpNHskFce2BBlCx5/aIUbtwYUZsRw9w5lUeKsT8USG61zBMZnt7QMbcmgUmSVRuQj/Hz+zqAqS5KwQ7Lk4wcRzUZMUVpu375MKz5FXrTJpKDjNSnTlKpIWV9sEwSK27euMaGk1+2RVT5hZMimcPnyNfzgOkvLp1haWaYxUYynk7lySJUgfYcLqnpHaA85uPkMLddnnDnSXHP+wiq9tdMUMqPtKZqdACki+v0Sc7iLBhYXOywstGi2Gnz848/w259/jsHoPCunztJpt9H5/J2BF8ZYEaKQuFyT5gV5pXG6ImlA1RR4ymNxZQ38CFdlqCLFuTqBKQgC4maDNM/q9OogIM8KfDzCMObW7h45HdrB/BVoUdU7QSFr6gNpwFYGXeU4KwiDiKxMyfMhjUaDg4MDPv/55zh96gxnNhbpj7a5NblNb6FD4EfoyuCO/BRCkmU5ZVGy0J1vjkjCiGaUECQRe/1bvPzyDh//4jaXHnkUT0GVpxTTFF0ZylJzZ3uHqLFC1OzcDb8tywptDALwPIkxBb4vUNKx0lGEZUIn+V0wRxwcTvBbq6xcaqFv+Ozt7mODJvFyi4sbp7FRGy/q0lrYYHuUsjnJuHTxIo0kppCKnZdfZjhJub03RErF+YUALXyky7ifPLlnX9zjxu0xk1Lh7X4chI9orzDNKz75yY8hBfS6PZaWVhgMB1jrePZznyEKY1ZWVujvb+H7EqtXaHUWEEAhBA5BVVXkeUGe5RTF/JCs/b19us0IbULSqsJqn7ixzthOSVC0Gi3iuMHSqSWCyHFna4vBoF/bpb2QQIJDsnfQ5xd/+RPIcsT7n36SU8tdhJ0ibEBlSnx/vuPlxnbB8y8fsrZY0Gh2GQ03OXXxCUxuiVSKqzKYcUt40SJ6NEQ4DVJRaYe1JY1Wl0ILwKK8iMXTDyPuvETow/IT5+kaWF5pz5UjaoZEiWU4zBhNJ4Rhg3PnzvLQpRXSyYS8kJjCocuc2zevstpbIiZkMjKk+xM8X6CaDXbzCWbrFpfOvYOBE2QDQ1wKIpsReiVRc363NdkU6Txa7UX8MCQJY5wrOTjcZThMcO4hlPKRFvI0xeqCwJOgJc04IgrrUKggVCgPrCsp8oyD/hSpGkwzy2AyxJwQG2Zthaxy9OQQUWbYdIds6yqd5ZgwbtFsLdPptvFESjU+QCvBxMYki6ucevQ8UvpMiyEGx+H+iMSXPP34Er2WYOuwgnKfRrRGZoO5cji/RapjcmvwY81CI0SXYxpxC2mhaPoIG5AXGltNOdzfQlQZQldoIQiDECEVB/0+0vdxysOaHA9QnmSYjyCT6BNqWlTG1rwRwmGsQeclVVHgXIlUHnlZMR732d3ZpqoqhBDs7d0h9CVLS0329na4dvkq73vf0yx0F9nb28EPQobjEa1mC4Gb+Tvm28jXlxZpxxFVPqLZanN7N2d3L6W3OKYy15BKUpQFWWFptJcQvsJJQVlWtcnTGJTyUFLOFo+WIPBYW1uhEToeXdngtii4vTea3yAz3JcS3tm8xZe/9CX8xTWqYJFr25fRxrLxyFMsLC4yzCy3b9zhzkuXWTp9FirB7p0tkqaPcCWe0xRZih+ENJMmaZ5TaEks1MwkUXu27Qn6+O/8m1eoTJ0DvrzoiCKfZlrSP9xne2uLJx97jE63S6PdJpgFyH/5uefZ2rzOYq9LEkdEUUir2aDTatJsNgmjmEobilwgnMEahTihefJxn1QkjKeG3IQUBi6cO8Oyf0jXOaT02N7b4XA6xtiKskjRVYGQikoXmGmJtQVVUXJ4WPJvPvI5Lj36CCtnEtLphKowRGGIPmFnEHXWGOkG5lDzWFaxdeVznDl/itZCj2KUozW0kkVMmRI0z+IFfaj6KKUYpBOKdJ9ur8swrVNjhe8TN7tIGTLYv0XYbDOalpjNjHc8/sg95WiEAXFS0u10KQtH3OzSajfptDsEXshgMCbNc9KqJM0sie8RK0noHOvdDl4SUzRWKaIumTUMd+9wprVGy5N4SoI1aDKcmr/9Xml3MEagwghrNZ6naLVaSClIkqQmxlGKLM9AeiwsLCBUHUIWxRFVlVOmFVmWUpZDyqqgKHKwPknYIkm6HBwM2T+cv0OJPMuNF79IunuTOJR4tkA4i64sQSRodjz6gx0832d5eRUXNrm2OeX8Ysxae4HRYMzhYMg0m3L9yhb97R2WOw0+/F0PMxiOuX67TzU+QHrz62qOaTOyTbQzhE7T1EO8oMtUNiiNx4SSSZYR5n3iyGc8GiCcRjiHLis0ktKLGUxLtga7FAISJTllCw6zMSNtEHlFWs0fL9rW8amerbfww/4e6egA4Sk6vVWsBeX7hGHE88+/QG+hx/r6EmEMB8N9iryeqLMspX/Q5+bNLVqdNkLA6uoqK6tLKN9Dm/mzQSQN59YXOTgoSGSPm/uH5KVAqIjGwgq+79dp5F6EHzaQgSMII8qqxJ+FJXrKr23SzmFNiVAWW9Ur5N39CTv9Ebd3B3PlOMJ9KeGGKGmpjNPnzqBaXbTRXHv2U9zevMFWv09pHDvb21y9cp1vWmxixruMM4MtE4LI5/GHzmCmKVWZMp6MuHP9Bt1I4aSHcRoQuGMZcPfCYqcNXki706XZajMcjZikY6rxEHAMRyMefuRRllfXGA8HXLl2DakExlT0FtroMiWKItY31lleWiYMI8IwQBtDnhXkeUE6zeqBNwdBFIKsHRfSOvazFLO1gz8dsby4yDgt+PKrN8g8S9gIKbMJuqoQqrYpgUVXAmcM1kpu3t7jH/zTX+ZHfvT38+Tjj9LrdjC64ubN+RW5N849wtmHt3HZPko4Jge3KdNdWs0zGCvQzqERGFsSxV3ixhp2mhOGCaPN24x2b5EsLqOUwph68ti68gIf+4V/wYEJWFld5MWbB5xaWed7v/N77inH6lKP02cqQs9iMh8nNH5g8VzBYjNkvRlQnPbItGTUzwmtxLMgTEocBkTNgMyPKbwQgSWWFjMZ4dseaT6lyrex3pigOd/2eGrtDP3DfUzYAlPOCHICfL/u7mVZUniCfJjWoXndTs3zYOt0YIwEYVACrEkpyxRrNEKETCbbtNohrZakP5zfP4rDParDW/TCKb1ei8ORIy8MnueTa4nvJI3uKbpLa3SWVugP9um0BZHnyCdDRvt9brxylcPhAS9d2SGMWrzr6feSdDusnK4Ig1fYn0xxwfxSfNd2DdZTCEICZTGeT+Agy3y09RkXh5jBmI5XEKSCMssJ/QBjYVwU2DJFlrA3nbKTTVGNGJllqJ19+sMRlYbKSkZm/vbbmNr3IxBUWcrB9iamOKRAoIXH6uo6UdQg8mPCoFH7h6qcKIlJ2j1cafFkrSAHgyGDwQFSGpSnKIoGg2Ht0EvT+fHKgacZ9O9weHCL0JcMJxOm04K42eH0hcdnvB0SgcRJDydrgiNfzD6fcZ4EQQQI8rzmIizLDOkrLt8csnswZWreGlPwfSnh8XCPl579FF6zxalLT/L4hVOUtxLS3esESRsVRpxfbpDYVb7wG7/KmTNn2Ng4gwkSRlmFoUKGhv7ODQ43r6HyHBl0aqasY/bgkwhazl96hOXlVZaWFtnd2yMvCvKywAGB77O8sow2FodHZRzra6vs7mzTTBLOnzvL+toKQRiyuLhIu91CCoGnJA4oS42uNNNpzmg0fzvxhRuHdUquX7OwJb5jOknJBgekZcne4RTVjNnYaFP2t/j8JwuqsqhJabD1akPXBC5L3S5CeRz2Uz72q5+jGDu+4X3vIIgFg2K+IyqJm6yfvohnlvDky2AN+bhP0WyTlVBONS0jkGEDqy1OKJTnI5XHqL9Pq9WiUhI5I2UCGPe3KbOUdhOUGdPwCtYW5297z28oVnuOWClkIwKboXxHaXO0DRBegvM9RORxs9hDDw3dxirjNER5EAeOgH2Gk22I2hRek8LkCD9ierhPbA6QIicbzB9kXriEkCNE2CCwkkBKmClhOUuNNdrgqPlGrLV1lqeoI3OEFDgn8JSPkoAtEA6cS9ndfZX+YIv+8JDxdP57MYMtlhqGVpLQajUwwuP8xfM0Qw8XJFjps3zqYRZXT2GlpNjdoplIinTI9UnO/s4u49GEaSZ5/pVNhuOShy5e4hvOPUbkwSOPNbEvv8xIz58MxoOKQvcJ4waeEmhfUOU5MvSw0lAZxXiaEbc9tra2kRL8xNGfZhyORuSmJPQj/EaD5soyQRyzd2ebL1y9SdPzMFoTKA/n5k+OB5vXuXbtZapco8uCbNonDARGenV4orUEQUCgAgLPI4oiqjIg9APEjMJzeXmRbrtLHEbEoU9nYYGilCyvrxOEAel4THACm9sgHXPwhS+x0MiJl5dw2mBNCaoOXRUzwiyJwliLEwE1o41EOBBGo51Bi9qPVZqaZrXRaqKrgmnlUeqAyI/nynGE+1LC0+mAy8//Nnc2r/PYuz7A6vopDm++zHD7OmEY4EVNGu0ujaTJ4xsdVlYSjJsynShanVNceuoSoWf4wkdL1OgWKpJMyxFpYevcdOcwVYWp5m8nHnroYTrdDnEj4cbmJtN8irEObQxlWZNtJI1DVjZOczgcUOVTFBbfq8lulOfhewKcpsxzRuNDijwnnaZk0ynGSPb29rlzZ5Pv/M5vvacc+7nDGEs3sWSmoJ/mBCokH1dc3bxJFMcsrC5wJglY/4Z3cOfKTT73qWfJ8xyJT2kcrqowumJlocEHvuVpBAn5WPHZZ77EZ7/wLE+8/SFcc/4Kw1OQNCIiaQkyjyzPONzfxo873NwaoXTKuUeahAunSDNNpUsC4ah0iaTk7KVH2Bl2gK06W8k6/MDjibe9jThxjIuK9vIq587OqxQOF1anlEWt4LygwvcUWZFB4KM1jCcF1goMBb5X0F1NCIWjPUoY57Uzz9qcx0+vI22L/jijkBXdZEK1WNLwYrwwZqrnDzLVXGfF0+yXDpWXSFUTxCgpZpwDijAKWe4uIlVA4Sy5qUA4nIS8KrHaokuL0aZW2DPSFGc1RT7F6BLsfNtjv3+bXuBD1MZFbc6fXeeJd76dKy99EZONCeOQwDcc7t1ikhZMhiWdzjqe3yGbHiKkQQjJbz/zAoMJLK1d4Gf/xS/z5eee531PP81TTz7K6fPneOX5F+bK8Qe/69uYZiVFZXFS4KkAXVQIwAiL8gNc9gQ7r1wjnU44TCf0Ok1Wlnuc9i8QBz5JM8GLIvJCo41hNW7wxS+9ROB5NCOfCI1XzfehXL/8Mp/+jY8inECbEiHLOkrHD5nkU668+iK6sjSbCWVZcuHiBTbWTxFFixT5hCwbEijFaDjA2opmy6PRiGm0WrRaHYRwKCcIT/ChpGXIxuJZTq9YDCVBWOJLCcYgjEFIgcXdDVd1TmKdw2CRFqyzSF2bVbSzCCtRTiFRYBVpZjDWp5n8LihhbIXIR5T9gleemXK73cNO9vCrFGEEuhgxHO8xEh6eDNjffBXbaPH4e76XcxcvgR/jJYr3fOBbEIc32Hzli+AEnhRgNFpXNdH1CWmpfhiicezu7TEaj8nLksFwSFXVCQjpNKPb7fLS819ibW2V26ND+od9Kmv55//8f6k5LoKARrOF5/ns720xmYyZplOyLMM6wXSaMZmM+Rt/46/fU45hPiEvHYOsIAoUJYLFRky7u8Rit4ffjBANRZi08OMWP/i/+/fYWOrx67/6acbTksAPKfIMV5ZUmeP8qQ0eurDEtat9nn0+58rVOwyGOzz1TR+Y2x6Bpwg8Qew5OkGDJBEUZUFlQHoNlC0RwtFsL7N3uEuejQljVfO42gqqIZHfqFcSaU252Gg3sOUqyjMUo0MiF9Rb9Tkoq4rciNpGJgTORTgHRZoSBhVhM6SsGiCaGKOZphmpqVjunaLazBGTirWFDolxOFdi/ZjcOVbDMVGU4wcRCIElmitHrtrEvsI3DqG8mu+EmvS71CVIRRA3MFLVsatC0kgaiFBSmoKsCCnRTNKUSZ5TaoN0DoSs6ZeFwfM8gmD+yi8tS84udQiTLitnH2Lj4gWEH2NsyDjbo7O4gJKKg70b5FnFqdVHkMECo+GQg8077A1HPPfSDSoh+f7v+xCnzz3M5u1NPvUbn2Bn65eQzvCup5+gvTBfDhHt4AcWYR0gkcqn7QcoISiNwVIQeRHbt6ZUWiMjj3d84CLnzy7R8CI8I8mNxuDqlO3KUKE4GO2yeXmXU4sdnC6p1PzFk3U+UiU04oSizDAuq9nPrMfocIpzEIQB03SCdZbrV68yzaZ0un0wkKUTJrZkPJrSbEYIZRmnOUHYpdkKSeIIS4U7IaPy/LlLnF0/j3QH7A12OUxv0W43GfUP2Lx1k7jRQPkekfIRSiKDmmbUKQ8jBE5JdGXIJxlGCUptsEWJEBXWWAwepRN4J5jNjnDfBD7SaZQGPdpjPB0RKYc3i1OUok4/lrPYv9q2BoPbL7O4tEo5WWCqNd1Isvrwe9jeO0Dvb4GpZgrYvMZtOw9CcNjvs7V5mzSdojwP5SkmkylaGzY3b7O8vIKUguk0ZWvrDuN0ynCSsrW7T6ORkDQSPN/HU94sWsHDCyMafojWhrjRYmllfqZasxVTDHIK6zDaEAU+ejKkQrO2voSJFMQhRa5xyqex0OVd734bN6/c4cqNOxT5lFa3DQ6CqIERAcOpxF9YpLWRsy4susg4HBzOlUMqhSfBoyIOfRqNiDSdYrXh0qVHyQ+vkeV9bJUzPNhFmZKktYw2AcPhCF9NCVqStcWAm0WGxRBFCdrLSK2PVA2UNYgTrPWDgUUrh6cMRWUQTuCMQlmJ1BKHJfQNcdwkSxVBIyGIejQWTjMph2xvXUMLjyS2DCdDDjNoJA1CT7HRDJBao3FoNV+OsYlRxtFKIrRsYm1GVZXgLFmeo41FeQGT6RScIPB9/KNYU6vrRB0pGGYTJnl5lz7xKDnDWl07f05gDZMyZDqtqSKNStAyxAnH9uY+pspZX/MpXAe/uQLFTappynRc8fLVW7z06k32hlOWN07z3R+4RKMRU1QF5x46S6f9/Qz3b9FoJhSZptWeHzroRzUlgLS25n+hAOVhncSXEiEFge9YWI6hqmg3fZKwRHojKqY4z0cpUDP2skpbPAfnHurx3HPXUYew1mySnbB40kaS5xKspdIKbRVG1xOD1VOkFCwtJwgvIB0NKT1H5A8Y7vdRspYhaUaMx2NAU+iM/uEtnFbcuXWdpcUFiizHVoY/9sd/5J5yrK0mVPoQpzOG45y93V0mw0Oe/exnuXXnDkm7WYeuIvACn6jRIGk18eOYs+fO11FUwlJVGVWha1J96bDW4PkKQ73jCOLfhZWwqRxCOaxwKDQSi3GKQtVMSsq5WgFLgVQKYUFkGVuvfpZpNuChd32Y5uIZdg8nFGKZ9vl3k04+iRlsY01NLq61ptLzZ7JpOmb7zm3y6ZQ4ihCeh+f7SOmRTXOKIue5575EksR36QLb3S5xHJE0WjSbzTo6ot2i2WwTRREL3QWkkmR5gZkxrtkTQpAi4dMMLaXWKAxtz9FTlo12zb2rpUFJh9aG5sIi46lhd2/I2UcusPbYo3zm459AZzmNRoJRmlsHE0ZBi1GZUTQaLJyLCCUnRovUbFJHxNqippJ0ivHwgN5KSruToKucbDJib/c2p9cXaPYusr29y9b2ADT0RMjF008ynlpKYwnDiFxVKAJ63SX2J4d37fb3gsttzX0bhYRK4gtI8xzfjynTOqPJeRW2gPHAMRlB0gq5vf0qN28esHk7JSsSLl3o0Wo5XOhodxbJ0pQb2zm+r5hMp1TW8A1z5ChEm1GhSKwmimOU9Njb3UFScycf7Pc5v7yCLTXSU1S6xExquXRWYPMMo2BnZ5fpNMdaVTMeAs5ZLHXWl6fmJwX4Xsz+3ianzvawxT43r0yIWkuMUks+LUgnU0RYkFVgs5LNvTtc3yvYPEwJuhs8fnGJ1fU1Gr5CCYcXCIaTCZiKiw9fBF/w0vMvs3LCYiEhrv0swoEn6go5CHzlE8dJHbroKfS65qX4KsvLPXphhCcVxjoMBk96hL6PQuAJi7IlD51ZotEKCaIIvADp5qsT6cVo4zHNSowrKMpxnf4rA6RwCGEYjxxVGTMYHOIpj0QZfAH7wxQZeyws9hgMxlS6otQ5w0GOKSy7W3cQVOiywJ6wEhbVGIjQRYbJcpphbZ7M8oI8HVMUGdpoRFXRbDZJi4wwjhHKR1kIkgaN2K/NptMMq2sbd1VV5M5RpXUIqCl/F5I1tLYIJEJSO5bQWBdghcIKgSdACVfTKc5iApUAwZSDm88xmcKj7/42ktWHGNuIePUx1tJDtr48wJUDnCnR2lKUJ+XCj0jHIzylCH1JHCVEvkcY1LW7Go0GnU4bPwyQQpLnGcZCu9NhaXGJdquNVJKlpUUWe4tIWYcweUpRVBrhajq86oTAxyzXeErRTmI2Fpo0fcViq0mEpn+ww3CaoauSzmKPnZ1NXvziC4ynBZ3TZ0labd4beTz7kV8nHU5xwnHlxi0ura4wFQ4bRYSRh3Qa74QYaqEUQeCzsbJCW0koc4K4zXgy5dpLn+f0qdO04kUq7djevM3iUg+8Ljduv8BnvniNdz7WJmptsPHoWdaGijs7eygp8aMWrWAZ67Vwo12km++I8skROkTkYGcBfp4WeJ7AEwVCOfYmlnySE3odhgPL5559hevb+4zHE4LA54nH3s0jF9/J8uISO/0RO/0xaXrAKzdfrnkoJhN2dvf5if/znP5BB2yLtm8YjveRLkPrCoFlMMj40nPPs97pEiuFEBbhy5r1zVboSYqZjpmYkr3dA8pSI+RMCTuDlRIzK+N1knnm9MUnGG3C2kYXKQ2HU0urGbO3PeSVm9ssry5woTvG9ySDMuD65gGmucET736KdquF70t0WaKkwjqLH/p0/TYNPyZphQyH+wh8Jnq+w9Rqgy3ruFs/CvC8eFbbrmJq0/pZlATPsrqyQCggTydQUdOhOosWDhx4xtUJEspyarHJExfWSIKIg80DrJsvx2OPnMUU72Vz8xpO5FS6TVEUhEFMM0mAupSW0RalmiglkaLmaGgkIQWafDolDAJ0WQGCbruN0w5dRVhTUJb5zOxyb/Rv3cTKBs4KpIHFdki5lhBGTVAhg7RgMjU0koBmI0JKhwx8Cm3Y3d4mabS4/qXn8HSFOIpyApxT9S5BCJyTVOn88mhHuD/uCK2RSqCMqwleEChKELXjwkoPhJylJmpA4pRXK2VbUGx9kVc+sc2Zd3wHjXPvZl+HdB96mtiLePnTPw/5EKMhr+avMJJGkygIwFoiJWt2femQcYDyA3qLSyz0emhj8P06ldkYS3ehx9raOkmSEMcxzWaLRqNBFEV1rS4hsdbdred10op8qSFxeHh+xFqnjS0LAuGIpWVlIabRiDnINMMyY2vzBpsHdwh7qwyVo9Jjuud6fMP3vp9XPvsCl5+/yeWXX2Xx4lmaK8skYYNYSCIMvje/c3vKo50EnHtoAzNtcLj1Croq2Nmbkg/2cDlc8DZwScVLV7fAD2i1F/n8F55lZLq8dDMj6Ux46B2COAgRti49Ey+eJfdXuXXzKoebN1ltzw+FikWCHweAweocU8QoG+NKie8EkQ8msRglsAJSW3JtZ5c8Eyx0l1he6dJudzDWo9AKZIMsO6SwlqzUjA5ThqMxk2x+507pEgUrKK9PZQzp8BBnKqypEEZzNc/5jc98hqcvPUI5HeNFHtIPyK3BjCcoUXBz8waTcb1igjqG+IhpvOYMkCeaI8697X3cjGNu777Aei/m3Noqh4djepFhvbPI7k7G6kbFyuoq5SqckwNcYxW/sUgShnjKo1AZBkPlNJWzeH6A7IQoP2RhJcFZUCf0D4fF2FnlidLVk4dXV7TITYarLKJyCC+g2Y3JJyOGo0PKVNAMYiJ8/FiglCP0fMrCUFQl7cDjm99+kclkxOVpSqM5X47eguAbv/EJrHsEa+sFTl1YQ7yuTp41Fnus+C+8lkXrYMbpUpP7OATWmHqHYkE4yQlc+7zw4lWc30D5CX4Q4HuORy+uoKTP5vYh0mT1WI7b7G5vEjfbOHyEUvT7BxhtGezssdhOaC8kRI2AwgjG4wI9qaiyAikl1fSE7JUZ7s8cYW3dQLOGc2ZmKRMWIRTWgauDYO9Wj9VmVhwWA6JgcniNl77wi5xxjmbnAmfPPk588VFubO2w/+qnqNJt3HS+8gujhMWlJcaDQ+LQJwp9okBTOWoni69IfA8Rx7PwmTrjp9tu0Wm3akLtWUiWFAIlvZmiq4PJa6J6xUl0sWcW27TihPG0IBvtsd0/5OxyD9VUTLIxO/2UnXGJQTAdTmif2SBaXMWgaMYBgchYfHidbiem1Wzz4nMvs3n5Mg8vLSEdSF8SeR4nUANgTEHDN0gRMMw0k/GEbJqyP5ScWl8n1YI7W3dIB5bNvSF3bvwSz3/hM1y/fUivdw6H5kuv7KAan2A6tVi/DcrHt4rmyilGoxFpp8fOwfzQsGIsUE1NEDqMk0xKSKIE5Qy6glxIosCQ2y4vXC757c/t4nkhT1zqsLa2wuLKGr7vs3twSLPbwyqB8D2sgNJUVFVN8HKSmWgwVbRlizTdwlhHVVZ1CjYWT8DEFrx45QprUUJkKnKdE7TbDLKMjvJphAZTZDXngxfCUelZdeQxdyhPnGieEUqxfvYhRjKjyPsUhaMsLO1Gk6cu+Iyzgu0bt/CkoLfWoqhSDvau0vY1jeY6KItUHtpKYhnWFVOMIS+qWZ1MWXM5FCfU/jMWIyTCk6ROcjDK2B3u0UgSykqDtSw0msRSYOyY5krEQtJAeTFYRehFaAODaYp0PgYwFCxGDd77nnexdecKD194gsrOj44oyxJnLb6vZoT2r1e+R7QB2DevuFM3qrjLtFh/9FpxVJB1lY8T3ksWrhFFESrwsFjCZo/hOKV/eMhgMCbLCkxWYloNPN+rM+KkQgrBZDikmhZ4jQaDSjPuD+nohHScMjic4HlRnTegfLJiPqHREe5vJVxpJCCdAqfqLKNZvQwhBMjXWPPdrIKAEJa6nWf1y4QhH9zg+m/9ax595/ei1k8zkBHn3vdhSiHYfOaXqPK9uXIIAVGjQTYZzUweNfPT0buQ1uB0bTBXzuJFAVL5NJIGrVYLrTVS1XnvcdIgSRp4Ss2KCVo8r66Ke1Ii9TirSGRKLzTcPtihinxGgeAwzRlMDP1UM5qkDG5t015dZP3cJQqr8StDJ2mRa4+8GkKoePobH+Wx86e4OszACqy2DEzJVGtWTghRs05TTg+5+uKz7GxvUqR9Tq1FnFtdpLPYJOh2ub6zyxeuvoSQiq3NO7zywnM0l86xfLbOHpxOI5598QZBGHLxQhehFOV4QiKh21vmoLnA5164PlcOEwhErDBKYoxE43DS4gHOD6ikZFqkCC+iKCrWujHNWHBqLSCINOPRAeu9BYyteOXyyxgZoXwPL/CIEkkj8jnjLbOzMz9+ezLUlO2YYZbjqpwsm96tyOAAJwQVFoNmNJ1we2eHqdpmOJlwqtvh/HqPxcVVgkFJWdo6zVaAsw7jLNrVFJj6BLYubSGIG3TPPsFo9w6TMKZxLiGbTqnSfTorClNoDvtjtKlodpYIgwCrc2w+osDDehFR1MRTXl3WXVdEQVSTrFe1Uov8+dEiwlNIYDjN2RxkHKYFw+mI0B8ymVSMMo0UPg3P8lAJYlIwCWK2Jofspxme8Egrw2CSorXFCFCh5ZG1C3zPNz1F5u/yyCNP4an58crGVOAc1aws2VFJJ+BuRem6RtHrS5/dVbLijRV5XpsH63MlznCiEvaDBlLWi8qs1FQuQPiKqB2xGLXJxyNGh4cgobe4yGF/yHgwIIoTPCfZ3rpFOhhjZolXNqurmsdhRBQmhNGszNdJAQYz3JcSLkuNdA5JXY9JWHCzel/KuBkr0mvFO42xKOWoZdEICRaJZzVMb/DSp/8VVlR84Pv+IOcvfBtnz57mN3F89hf/1Vw50tGYKAqI4qRm6p8VCzzK5TbOUVUlVgh8z8P3I+JGk+WVNZaXVimqijAIaXc6dNpdgjCkLMsZgUxd4UMqebdM+b3gjKU/HJOWKQfZFNdqYZoR6VQyLQWlLNnb2kNaWDpzkThu03MVDSEZmpL94ZilOMHqHGRFa7HNStBgMQohCsmsxMMxzubLkSQNrgynbG5NOBxMyadTpC1Q1nE4yXHJlBs3dxhXMWfOXGS8GaKrgN5Cm8VOk0YjRndbdRytkPRazboAKpCPd6nKjP3DMZPxYK4cXrNF5dWmH5xPFPk4W1JaS2kqptqRo2ioMY+fLTjXDmpnR+gjVYBO1vFjD6kHXLl6i/5EsnpqmSodU47HrPQkp9cCHlrZmCtHNYUq8pjkFTIbY0x1t3CkEwqkQFvLnf4+Osu4vH/AoDRk0wn7/X1yWxK0YkqtqWvJmrq8knB3qz432h0mJ3CLCCnJS0vSXGQhbNchWH6I6jkSewFd5Ogsw+oSFwWMhETEXUxWELqk3o14Mc5JtKUOwXQKJT2sMbMdnKsdY3NfjMRoXSc7tCPOra/hpEXrgmmmub7Z50uv3ODaOOPUykOUZUk6MLw4PmAvy6gLVjgC3yOOIrQpGY4z9qKS7XHOb37hBRrd85xdOyEky2mEkAjq6hd2Zlt/XXXjWUbdceXsnKtX/rMycMySaY4Kf752rUBIcHr+1jFPM0ofpKew+LMKKJKGp7DWpxH5NJoJmTZI4ZGOJ/QPDvA8nzBIsBZiJSkqhykMpSiIkqhONPHrHbRQjhO45V97PW/ttBplaZDW1QT6DjznAQohHFXFjHXpOBOamP24msxEScCHCqRJKaprfPojf4/h3lU+/CN/gnc8+SRnu38el82fyabTFKMNcbODrgqcJ/CFV8ekGoNlRrJhDPg+UirarQ6ry8t0Wg3yoqTRbNJqdWg0G/hBQJrK17hOgSiKGA6Hc+XIypypF3BtoGl2e3STAOFV0CjxjaH/wm127tzhzKVHKSpHUOYkrYCVuM34YK+uqIuPxAPPUXpTer2QU52IsVPYQtLotNg5mF9g8+1PPoKZbGNdXeyzKoYEZkIrgiwvyTU8eek0K6ceIo4S1rzHqcqC0w+/g7MX304UhEjlIWc2zmazy2LbsV+NyKcjqrxExC2eeOptc+VoLQY0uxGTcUo+tXVCgy6RCqRvQGuU6yG1h0+FCBNkkOCUIAwdzfUE4UsmuwN8fcCdK5tIvcaplSUSpVHaEeHh5HzlR2XJxgNcMcKNR/WOTNZKsd7+CrKs4MuvXsM5y8EkpTICXTn2TI65vUUQBxjlIb0GiKN023r1JaQkThJyM39ybLVaDAZ1ifdWq42g7rtVVSIQhHFEFMd1bUBZT/rWBviNJn4YzXZlPtZBWVYUlSGKYpRSgJ79rmOX56HUmtJonNUkvs9yM0Qp6koQzZBeErDYS7j+6hZd5/CSFs2FLmvNFXJrkU4SCgkYPL9OdhmkJQu9C0wOd9jpH3Brd49m3Jj/WnSFUh4IMUt6qCOQpJR3+x4wKwP1mgIW8ig00M5WebVOkULBsbp9iLrWpRHzlXBWglQ+vvPxnEBiAIsvayetVRF+GBAZx2gwJokjxEKXqqqYTlPyvKx3zdQV2l0F5IBwKCVQlhP9Bcdxf+WNjMOIOuRKHpWqlgKtjxnOj/1WykPr+gGt07Vt2AHaUVpH5UooC577jV9i8/YtnvzAd7K0co7yhDI6Dz/xNm5eu8xkktFqtVlcXSIIJOlkyGAwrOONbU0zZ7XBlAWtJKIZezhTgDGEnsRTAiXr4pFS1sUDjbFUs1Xx4HAwV45bt3ewYYcg7BDLgDjwMWXNDpXujhht7rO8tI6ImhRpSYhmhM+y12K5schkWtFNWqiqQJoJrV4PhGQyHjAuAw4yy54ak51AVXj2XU9z6rHHZmXdAecQziJwMweHQyiJCiMQ8Pbv+EGEc8iwUVfrlfIumbty4KSixNJeOEPDWXracv7t3445obT6ypJldaOBcxHjgeFwvyQfgNRgtETYAM8JjNE4LZB+E1SCIEO6lP7u8wRBRIMpT11cpN1oIjzDYsejZRYJPEM3dowG89tDigOc3qTbqhBBzHhk0VU1q/ArsMZRVY68qChdSXVU/dcLsNIyrCyBqPA98JxGOon0ZlXEZ5Ez1ln0CdEzQgg8z6fShsg5qqqahWTVROzN5ox4Z2Y6NDNHslQSLw7B1tc4B0pKAt+/G3J5xGFQk82ckKwhFHGQ4KHwPYmvJFGYUOoK7SriUPFQr8WFdy6SHYwZFxPWTi+RtHwqV2GswVSaUmdgDc0wZrGRYEVJrio+9L4nWV8IySeDuXJkWY7vR3gKxCx7EWobO7PVsRCyJl2SsnaUO1sr69nuGleXqq+Vcz2hHq2GrbWYSp+4gzXW4YoKjMbO2hLqosRyVn28XslaFhbaNJOojiRJMw4PBxwcHJCO81lxUolUCj9QBIFCeRJPebXp5ASzyN3381ZPfIAHeIAHeICvPd6i1eIBHuABHuABfjfwQAk/wAM8wAN8HfFACT/AAzzAA3wd8UAJP8ADPMADfB1xX9ERH/jgh9xib4nv/vCHefjSJZRSd5Mzjn7kLAwo8D2iKMTzFOoo+kAexRXX53le/X9ruRvYrHWdO/7kU4/eM0TiH/+Xf81dnfYZ3rwGSZNo9TRaKMJAsHeww/7eAcPRAZ6viOOYohygpKDKNQLJe5cX+OPvfpq+i9g//TD/4Bd+gedfeQnfj9GVpqxKUALPV3z2l5+5pxy/9VvPupqF3yNuNEgajVnYUI3jAed3YyBrFpjXYiORd9Nh33gNzuFsTcF46dLaPeX4+V/6RRcEQR1/KR0SEMLS7S5itKMytWfZUwqlPJw1lNWUMPQJgoiqsrUX3tae6KoqqaoMYwxR1KDShqqqye5/8Ad+8J5yxEstJxMPGxmklejcEsYRSjpEIBCJgkBQ9kt8P0ItBBSDFFkYqmmO8wVxs03Yi2BJYlOLejElqwzBoy1Ur06ZRVfs/Zsb95TDD5TzPcXDl07zXd/xXhrNddY6F1hfWEKWJeZwTFqlTIOAf/AL/4ydzU3KvKCqNGdOnebHvv/3s5S0iAOPK68+w7QYc/rJDxAlXYR1CM/Dak2RF/zEX/xz95TjXG/ZWXtURdzd9erfzfjCHeU6wVHoJ8yy4epabFD/X0mJnJWdcUcJDQYsFuMcO1V6Tzn+6//+LzirLWnhQEWsrPZYXEoQQmK0nJE+1ZVt6hpqFo7F7x4VtzzKgq3HrGE6q8Noja0jCoTkT//In7+nHN/9l3/J4V4LH5PCoYRD1D22/ic5SrGtQ9moE2yklEghapJ1V1MLGFOfFwhBocE4UVdjto6P/Lc/dE85jDH3FY1wlPeQZRlhGN6NUHkrUOoEyj/uO0TNcHCwz6/+6q+gq4onn3wSz/PuZr4cvSTf84migCDw6hRPpV4XuFzrGDfLcDvKfJmlJ55EGQbovW0aSx3k0jq5seg0Rc5K2G9t35oR9hjS4YiiSEkaITiBrgo8X5IKj0w08cIu9ZjWpOmUhYWkZvPXGmNqUo55SJJkFt4lZjGeFm+W6/zGvPc3/gjqASVmOfBHk9hx/I6UzXtAqTqlsi7HbQFb59XPBr8SgsHhNuPDHc4+9AR+2MBTXn2OrdOOpJCgBMIYnJBY6VOVZV1zjloRiJNiHxUID6Q/Sz/F4rRB+GFNWZgL/CxAjQwusDhbwbTCaIMSHkJGiNQnTytkIQmbMbYDzZUOtleRTycwtnXJ+nmY8TwIFYBaYrF1lo5UJNOc9jObtD53m9FKyK+cs0ynKYHv4bQB69jZ2+Hv/q//jEfOnOM73/4OXn35i4ynYxZPv40kaBP4PjKIMKIEc0Kp+SSos7ecw2pbh0saC3YmI+K19yte25Y6V8erH7X2UejWUUjXXSUMd7PL5iH2Fc7zSPOcO1tbtNoJzrVB1AsNoQKqWT9AgDOmDnEUtfIzxtxVREfjvA6TU0RRhDV2VvBy/msJfIU19XcKKZHYeoKehZkJqBMxxOvL/krn7vZBT6pZJm4dry2cw1eyZrYDnFUntsf94mhc3rp1i1OnTtFqtb6m339/StgaEIK9/T0+8tGPYK3l6affgz/LA1eerOMWg4AoCpBSzHgY5F2iDnOs4x7pnDrLrlYaeAJ5giJWi0uceeRRTFqBkGjh+NIrr3Dz1h55bul0u5jDkkpPaSQxSvnk0ylGG/K8Yi8akZkMYWP29/eYpilKeRR5jkCipALU62R9M/R6vdfiFWdlvN+Io0F2lGppnaP+1jrmUVHHdR917OOKWAiBfUN+/ZvBHaV1HuusR5fUihnG4yk727sUWc6pC08SRgFB6OP5PmAQwlGWOXvbNyiriqXVDXzPRyKwsi7lbeV8YiWv6yMVGG/GoKcULoezDz3C+voZbu3f4PDOHgQVom1xiUH5EqMdVngo6UMg8eN6Na2CmI1TZzl/9hx3pltcvvJlprcnVNlJ6aCCZiPh3JkLLLc3WIzb+GlO/JlbnP3kNo2JJdvJeO+tlE8GkttCInyFYraylI4Xb1whNlP6+3soIcjGQ+TyKZwAPwgQxmG9+dO0F3qz2FaH9CRYNauzZsGKu0lP1tk3Sdd1iKNMMWYr4dmq0Dl7dyXMsdTde0FJgbUKJxTbe31Gk4ztnXU63TanTq/RaAWImhoRh0PMeMGP+mxV1UT/R4uKo91urQzla1ltJ8BTdZ6FENQJPNQFHe7271mShhESJ+p4YIFDvCEbRcx4M4Ss4+E94dCqTqdzUpzIe/2VQAjBeDwmTdOvrxIuyxzfDwmShCzP+PjHP47Wmm/94AcJwxDlScIwqEsdeep1qYdwPIsOjs91d2d+IZDSnaj88sVFrl+/jisdcRiyuLRENk0pypxm0kLbCWHDQwVtPONhcoOPoLOwxHBiOTycMsomtBpNQtEmDmIiP8TNiGGSpGYDu3178+RGma1SjnNm1D8W62y9fbJuttW3GGdnNEGz1TAes90YOH5HB3qzFfIbcaTA6y0bICxCuLvKWBuLM5b2wjrXLj/HJz/9DKWF1ZUlVtc2aERRze9gNcPRIWcuXJoxVNUTqDT1xCFP6NzJIxF64HBTCaYAYbGx4tEn3sY3PPEt3Ny9xhdf/DQvvfIsLFjoeAib4CqHO7DoUtO90KLwDcpEvHPlaZbNMpceucizX/48z938DOVQ18pnDpyDZqvDhQuPstRdIvZ84jRj46UxncqreZ6nU94xNXzo4iI/Fxb4IbQSxebBBOMcOM31m68S2ZJuElBmh1RG4+HhKw/tMtwJ/TTwvdfvZmaT8NFK9q5ymSliNyOPOlKyAldvzZ14HTuYnZmpsA5hQJw0JykPK32mOmeQal586WW+9KWrLCy0eNfTT/Dkkw/je/LYLq7+wrpAqjfbycoZFUHNMHhX54rjBDrz+0ddUkwC9apeClA4lKqTiaSoV7HVbBw4xGynJo6ttOvfUqp6l+YcngBv1p4CeUS39DWFc448z5lMJrPHPq7TvjrclxIOfZ9KlwgShKirVnzsYx+lzHO+/we+j0ajQRAcFVR8fU74a6QbR3auevZ7bXY9mtHFiRl/++MJ165foX+whx5OaHsB+6MhURwTxiGFyCB0+LHCVSVtpUi8NnFnsWbu15qyvYLrrZEfjmktJARbNXl6kki++ZvfTxIv8U//2c/OlcPW4oIUs+wdqM0sGmMNlbWY2UqlZv/SWGdmCtehkGhZD0zlFMo6JPL1k9cx+/G98NJLL3H+/HmWFhdRsr6XMVW9qvcUd268QpWOSdqLRFGDwf6LXLu9y+erAqkUG8s9YlvyxLvezdrZi/QW12tGPGfrbCLBbEczv8M9+gd6mJstbn96zGQ0wVY5opBgNAvJAlEv5vyHz0BgeG738wQthfQlWvkoKuRWhfAMoefzrY9/B48mj7NzdRupBZODEcWktluftM4Jw5Dz5y+y3FmkKRTNJKG1f0j3UOPlJVk1JdMp15cnZIt7PCUdvieJGgGRanBlAMKPUKZASUUUqpmtXSJczboHzLJB7412c1ZZQdS7FW0sxuja/2Hrsuli9j0W6tI5R2OFmuRcOo1D4pwCU5vrxNEkbywYgTvBxJkbSVYabm73ubM7ZG9nQiNpMhjuMhgNUUJz/uwaYRSipKqtEsoDv+bj9jzvrrJV0iCEIJ9VKDmuhE40RwR1mnXdoWquGSVm4124OpNOSPzZUqTOlJMYJ++2i51NZrU+Fghr8YQkcI66GexdIq+vFZzj7gQ0GAzuynKEenh+5avv+1LC//sf/TH+zc//HJWpU5eZ2T0//vFfx7qKH/3RP0wSt+8qJHmMaAMsRr9mIz2uWIyxs79fc0TMQ7PZYHV1jTBQuFZG24+xewc0222iJEZLGGSHHKQHdFptep1F1hfPIP0WQavDcpQQJAmligkaHs2FZeKojWPC8rqgs1BiihHtZL4ZwDpb21J5bUY01s4cjQJjqauymmJWLJJaKQPKOZyws5LdMwPgMUeMEOKuaeEk/PRP/zQrKys8/fR7+PB3fQerq0soJZikQ25cfpUvf+pjLK2cY+WcxJ9VaUiiAD8MkVKRTqacvXSWhcVVNlbXaDVbGKMphagnDY5MLfNlEfsRWy/skBmFjGP8KEQXU1RWInTGQtyktbDKH/jWH+blv/95hLY4KxBljsLHBTGVlZxrnuJDj38L/Zf26AlBtbdPetBHOYUTJ3O0BoHP6tIyMRKKulJGlGr83CAqQ+47tqOCZ5cGjJqWbhThrEZ5itNdj04smRooJgppPOIoRKmw3gk4edcMEMbNuXJ0O8ls616nKeuqotIVVVlBpVlfWmJpaZmdnW12+n1KmI2XWuHFfsBqt4NGcHv/gGmla5rHWfquMBLMydSNowwuX77D1s0+gfFZ7rapREVpNNubY778hVfptJr4UQHKR8kAXxkk+V0/R11eSKFNhTYFeZZS6Jroqnb2uppMaw6UmvmMpETOJiOharMVwtQ7L3HkxK/1hjazajFOYoy6a5+uV8QOKX28I6WNw7q6RNrXGlLW9u8jJVzrMIkQRyRCJy+W7oX7UsJPve0d5HnOpz71KfqDQU3eLhUSwUc/9lEQjh/9kT/M6uoqxlp2dg+5euMWZV5RFSUr60usrfRot5ocDeg3226f9DCTSUoSNfCXYuySYLHX4+kLD7OwskroRWzt7GCkZmv3Dof9Pmura2STiuEwQ08th/mYm2lGq9Wi0+uyun6Rs6cnSL9PWr7MCy98moXWKmc25lNIHrff3XXCWYc2UBmLNhXWlExGO0xGY/wgJIyaSC/EoXBSoZSZ2fkcKFXnrx+tqt/iS3Wm4pWXX+by5cu88MILvPe970QAuzt32Lt9iwWl8f2AzmKLPB0wTcfEAbTiNtZYikxTmYowEGhbkaYj4iSpbZD2yI53slnk8q8NqWyAFhpkWb9hVVLkB6BHxI0GrXbEe3pv5+3tp3ju+mWsb2FYUUwNeVVw8dQq71l9ivOrZ1iomkw7DfrjQ4wusMYgnOS1MII3h7GWsiiorOXG4QHLVc5CVaIKQ+XBVivjs51D9pIRjU4Hz5MYU1FNc+JYEcY1x0TR6lBleU3gEga1wvAkRtcFHb1gPol56KuapElKBBLrSbRRDLMMT8BSq8lyKyTQDRJZMC2LGSeEh0CxtLDAyuISmzsHDPoDtNCYQGGMnJHZGIQ82XFbOo/L127gyZh3vfNxHjq7xm9+9jd59fI1pJDs7Q6w1iOMEqxQhGGr5rcwpuYSoV5lGqfQ1lFWJblR9SrVCLSpHaFWn+C7YFYyTDpCHwg8KjtTvqr2G0nhITB1uaMjX4Q1dZVuodAzs4irzdYoUVdwkdKBqH05VfnWKlq8NYi7Dsooirm9uYlxBiHUbHw4QM929vIrUsT3pYSvXbvC00+/Dwf84i//PGVRoZzDCgGm4Nd+5VfIspzf/wf+AMOR5pnPfpnnn/8itirIiymPPvo4D50/x4e+5f0sLLRnDyjurpiPTBYnKZ/xpEBUBhPGZI0WsrLYa1cxQcDa6hkWuj0G40MuXXqcVJek0ym3D64xyMa1h1U52kEDZw2RBqMdu3vbdLsgTEyeVxBZTm1058px5C2u5X5tK1lZQ1HlmCpjMtjjtz/6K/QPdjh3boPl1VU6ixuErWV00MJzsyKTzAhEZuE5SqkZS9PJTo9mK6Z/OEAbw3PPfZnLr75EVRoWlzpcWO3iRMWVyy/R6i2gPEW726E/nFJkGRaYTDMqYxgNDsmrjKTdJJiRwhyRpNhZZYZ5EIWlOEhRCw4lVF1jy2hevHyZp5+4Q+dsD19KmgtL/LEf+Qk+/pGf49ady5x/R48wDNgeZjzy5Lv54Pu/l06zi1y0FMWIq1duc/XG9Vnkx8md/OzZc1x66BI7g31u9g9YXewhRMRqC9Q44xOtK7zYHhJ2fBpYTJaiK42pDOFCj8lgxHRS0mxF+K2E5spZFh57G7gAicVWOc5qxoP5pN3WOqSr/fYSgRKyVuTCgFV4QUR/fw9XTNhYiGk0F5BKkE8rxpOCKIRmp0G7rCieT7FlRXt5kco6nLFYW1eUOOm9hFHMpUceYm19ndOnN2gmAc9deRYpHV4QMBxn3LlzwOr6Ks1OC6kiSiOptJkxCwrqijkCZTRSt4hws8nlyDMoavPIHPi+wlmDcZoCiy89At8HK3DUvOP1mvaIUAc8qXCyDt+zxlBJMPCaEgYUFaWtdYiHRIX3V0T+JMwsILRaLdI0pSxLiryiqgyeUsSxT/wWi3q+Ge5L2n/wD/8nft/v+2He+973kk5HfOQjH8UaXW+3jEVYzTO/9dvcuL2P8jrs7W2DyVHOEgYBt65tsnuQ0+l2+ZZves9r7EWijhd+zRZ6giClIfr/sfefQbZl2X0n9tvmuOtv3rTP23rlq7qqu7phGqZBAE0AJAESoAVJDBkaaRRSSKGQFJJGCpkvipkYTcSIFDkhuhnQiQCG4pAwBDDoJoBG+y7T5auefy+9u/bYbfTh3Hz1qtCVWaUIBr/UepGR72bevLnz3HPWWXutv5mOOdjcYRa3mZZTRnlBtL7L9PQKZ89fQjkPjZju0oD117ex3qCVw5n6QnbW4p1lb3+Xt996m52dQ2yueOqJywz6DQ7TPabp8Nhl1NPh+uNI5clai7EVs+mQjdvvsHHrXd598UVMNWYQpQTVLqPt2yTd0yycfYRGfxVBbXRo5zhNL+ZDhjnMjBMGDbVBalUfOCexlcdaT56meNMgiENKb9na2cEjaXe6qKDBcDShqAyDwSJR3CTNMhZXT9FpD+Ywuvom4ObY7hPjwGF2ZyBBBCFVUSG1Zis74Ddf+bdMwxmPNFMuNK/y6COXaU6fZ7K3ytmlJkI4tsY5cX+FRCnevXebG6+/wSsvfYuvfevrDIeHKCmx/uSG37Urj7LYWeD67XeZTIZErSZf0lM6q5pnx5ahqxhWJWd6y8RRQFnM8NYhXJ0ItFbkWQ7C02hFCA9Llx5FWoc9PETOaulJyfFrKYuqvrEqh67hAHgszXaTQW+ZVq/H9t0DenHC0lKPVjdCB4rxcMZ4us7m1jZhd40wabG2ssJoNiVqNTHzlsRHHUD1uk2efvoaOtAE2iAEJJFCaU3QX8AZwTu3tjh/5TLNbp+iNOSVpKgcxph6hCEExtVQxjhp4D3kZV4rEAr5oI99XCglYH7NWyTKQSQ8gQKEmecDTyWjurr2HldPMNFSop1FeVsPtz3gNYFzCF+CV1QGhDcnzi4+btSFliVJahnRyWTG1uYuB/uH5HlGkoQ8/fRTDAYL/3+9/sdKwlvb6/yLX/knGFPys3/mZymynC99+cvoICJpdElChTUFr7z4NZJGn0F/iXajQavVJektEMZdCpNy585NRk9eZmHh/Yv+qFCX1dmQ4OCQzbfvUAZNTl9Ypa0l/ckB7T0wgeZ+YRhuaoz0bG9vM9zfB1PR7/fpLi0hlaIyhsPDITqIOHPqMtpMeezyU6wsdvjqd36fmBMcLeZJGFED5u188GJMha1Khnv7HG7vkDQ0gW4TKJgMD5iMNojC++Tjbc48/YOI7socb+wQwlLD4UH6k9JvHaYq59UKD/XLHFVR654GSZtQaw4OhsgwrKf7ZU4jjojjJl5Y0jRnlhW0u4tEUYw1FdW8Chai7vudlIj3bw4h8Ug0TjkarRZV7qhUwc3sbba+cY/Bq8v8iR/8aX7+8c9z9vxZqi6E5QwpFY1WF9Nd453Nm/zz3/tdXvx33yTbG1M6U/998sh6+vijcunUWVpKkyhJlWcEWiM6AXcHBS8kLRaCPpWfMMsrsnSKMJblQZfJ7gEmL6hMvcWvshLjHZOtO8yGW6xeeQa5uIjZP8Tcvkuoj4fsTSYzPLVUqlYKoRVKSWLZIAnbdNsdwvNnGHQbNBoRUnkqUxF32wyWFSKc0uouI9DE8W0293ZoDhZoJAlSgFY1nFKo49sAypfEWiAw+NJgnaadtOh2F2ksXUHKJtlon2+/ep2g2SQOI/LCkhcls1mt3e2Ayjna7R6tdp+N9U129zZZWVmqsfVzmc7jQso5FE8olJAkVPQix6AT0+m2SJKIg2HK3YMCPS9ArKtF9L2z70HamBcFThBgoZqSlRqtW/WN8YR21cPxcL75IOLhKPlOJjMODw8YjcaA4GD/EO8hjpv0ugtsbNzja1/7Bj/1Uz/5PkDCR42PXbcPh4f88i//NxRFwV/5xb/M4WjCweGURrONUpIb77xCI1Q0tacVhSysnKW1sIQKNDfe+jY33n2JzQtn+cHve57BYPAB2Nr7Ma4fFqeGB9zd3OX67RsMZcCpa2t0Lp9nJxtSFWMWk6sMlntkowl2dEA3bCCahjSdoKVGWEmgNLGK2c8K8ILJOKelPaIQMPNcXbyKPuHkPmqfCCfrJOws1lqqyoGMOPvIE0StJuPhOtlkxq3bW2RZSqQU7aRZ29xUgkvP/zj0WghsvQtwc+KFeP+x+bCQUsynywqtJM0kQlAnZi8kOowIggCrQoy15FlGluasrK2xvTckjkOEc6RZTlkWD/SHtVY1E4pa0PukUOi6aq7qXmiaV/ipoXutDQuGqRySlmN+7c1/Qbl9yKPdczy+0iFOQhye3Ap+96tv8HuvfJv72SaTfIwtDV7NNV4DVZtSnqA33W+0CZxntd3jLeMYDw9YWT3D9iIctg0D30AWlvt39si9I0oaLC8qbh44WtmYpU5tbV5WjkA4IucYbd9h9fHPoNDItZC0KjDXj/fcq2w9eKxMnYCEMkRhxNJiD1dW7G/cptWRCJnQavVoNGKM9+QFKNUlSnbIR3uUVUCgW5SF4GB7yKWrPRrterCqgggdHN+bHu1vIlBoHdb2ZFFIv9Wl2exB1CKIBwRRm5Kc3/2Db9FuxIjKkWcpeZ5TlGV9bgvB2uoau9u7rK9vcG/9Dp96/lNcuHBhDiE7gbyi60pXCohkxcWlBleXGyy0I6JIg/AcxIZAlnMoH5QG8sJinaAyjtRI7NE1IR35dIPhxmtMipjTlz8NSn9kW6GH44MJuCxLDg8P2dvbZzqdPWAMlmXF7u4+7XaPsqxQsnY/efGlb/LUU09w/vzZo1f8yL/7YyVh72qfuTwr+ft//+/z1pvvcvrsVZaXE5CSLJuxm3Ro6JhGq0vU7ePjmIODLd59/Rtsbd9AComtTj/YutTVLzxc3RzB1z4sZvcOuO9gSwp0HGGDBgeFJOyegguXCK9+igvtHue9RSmwzmKqiizPyfMcW1hcaUnzlO31HYbDTfJ8wtlzy5jJDKkVC6JBYY6/oxpj5kwyieWISmmpjCW3kMuQXMUEzSYvfedFbOVYGiyw0E7Q5KTZDOnfwIgWVz/zo+hOByHfo4l68X5K84dFI2kQBjWVMgwUQkAY1DTPyljM/KO90EVXBVEQM5tm4BytdgutFAEWKRRpmtZC2raG2YXi/dTrY0M5Ah/gDudbTmcI4wgzNEQrgmQhwXhHMdrlD+9/jdkCrC08x8gFTGczup0OK0sarQKGGwd4JE7WzgeCOrFLIeot6jFRVgVRssjl5kXeWb/H3b36omnjUVHIxXGbTkszs5a1hRZnr5yiOegzuzmhHI9oNRpMKwi1QEYKJzz5/n3S6SHNRpc4iFk8d4n16fE9YS01QgVIoXA4KlvRaXVYWVol3dmmGOU0ZMLUTZHZJlU7np9XEptX2KxkuD9iOCqYpfncmLMim81odkNkGBAkEVIHx66jKjKkVFhTohVUKqDZCuh3mhymU6yIaXX7dHunORwtMJplmKzA2QjVgLCpwFbsb9zCFDlx6AhUhS9K0oMRdq1AagEnJOFA+jkCwhOpkrXFDv1WgahmFHNnin6U0L+0wO7uAdM0xwiLlYLJLOVglhNGC1gV1bh7YTg8vMP6nZcIm2cI9XMIrSnLk7iu78V7fph162U2m7G/v8/h4SFpmqKUnmOSPcYYWs0Wu7u7xHGLzY0tppMZ4/GYsqz4nd/5Hf7qX/3LJMnxO+gPxscka9TwoJqqLPn6N/6IR4ZTHnvsGSpTMBofErRaxDLAek9eZuxff5mtjRtksxFah2gd8MQTT7OysvqhB+XEbW9WkA1auH4Tg4CkRXRqhfNXHydpD5gVFbN8dw51kbVmglaEQUIUNsELslmOUwFLC0u89u1v0u9GuCpjuL/NWqKRVhB0j2fGVFU1p2AKrAfjLNYYclOR25Kyqsjzirv393AiIm6FTIqKaZpycW2JRiNg/3Cf8Xf/iKSdcP6pz9GUvXoo5xxuftKetL0JwoBOq0mW5zQbEYFUcyqoYzKdsr23RxS3OMx3cPmMC5cvs7yyzMryEj5s4l0JVcm9jW3yvJrDqjSmqKt9qeSceXfCYK4VQhk8uOADH1DNIB+m9KoYl3jGWylCOy493eRHf+h54lbI5k5G5QLKg33OLi3Ri2LSuyOqyteuvPKI3kJNjjl2FdBuNEnihFbS4NmrjyHW79DzmsdswkDFjPqHBDYg1NAbNGiEAiEdz19sc+vGjP2dQ/LKgNBYahLBZOcWs511mhd7eClAa1qnj/e6u3T+CiBI4gZFVTIcD7l88TIrvT7r+weko0O0VKRTx547QFCBt7jSUVpPJTSIeO6OYrhw/ipCB6T5iDJ3xC2B8CfjhBEarYO6BxxIZKTx07p15vN6LqB9Qb8VcOX8WcrKsbc3JM1H2GrK5sYG5CUHOztIMq48cgkhNelshvAe4VxNSz+hR66dwYuaTVnNZmzembFvJpiswlkw1iCF5Nnnn+DrX/kqb76zTnehR68ds7N1HysSHvnsF9A6xjtBWZbYfIaiospTymxGoxMjxfH2V0ezf+89ZVmRZTnTyYTD4SHTyYTKGKSsXVGstUwmE7a3t3njjTd5+eVX+Kt/7a/jrOX6jRvcePcGVVVRlDPu3I157vlP8dzzzx1hv45/X46Oy0d61jwee/Qx3nzrDaQUKKk4deoMSSPm1e9+k8PDHTrdHqdOX6IsK6aHe4zGe0zGB1hTcSTS8fhjj/NzP/uzdDud+at+AGN3kmEWsKEcEwmnTq2x0G1B0kEmp9ifekR+SPDgz6/9sGqdBPFAzyEvKrK5qefd2/cI8LQSaEaSRqAQziAbTfLg+Iq8MhYh7HxyXCdhYw2lqSjLgjzPkSpgVkFWlPT7XZz0jA4OePv2XU6dWmCh06YVGSZbbzI+vUbcaOBtANLhfe2Xp05IwtZU9Htt5AhirVFSkJY1sN86y2SaUhqNjuDRy2fp9dpYqbl08Rx3N3ZAeIwQDPod+gvdOQffo3SdUL3zJ/b7AEIR4rQmiBOEC3D5jFAoiiJgtmkRymGyuiq0s5y9vdvYvIPUbRpxl3SUcvfe2+SjA4QVaOcROI4wEf4BRvT449GMG8RSE4cx184/wkKzj0JxWvUYVbvcO0iJgybLYYgONDe3C8ThiCUBImmTDrfwQKMdEcUBKgxqB96tuyyfvwZovOLECvSLP/lF1tc30UGIEJ48L7hw/iKicswODplMDjgcTxFSEyUJs1lOmafYylIaiwhCAhWDDOl0F1lZOc/C8hJ7B1uMZ/tko4xMZrgT2E1OKFBhvVUXAu8CMpOSZRnOSKbjKdaVDBbaCNsmVAHGFTQaAYPOKrfefJnh9j6uyJnNJHlhmGWGWZrPh3K+JnGd0EZ0ZYnHICgQVc79e2Ne/ua3SGe195z3niBQrF04S9RssL0zw+keRTXFEDDLK6qiIA5aWKHx1lCODzEzSyVTsuk+zXYTWw2PXUdRlJRlyWg0Yng4Ik2zWojIObRWBEFAnhdsb2/w1ltv8uabb3L//j2m0ylaax5//FGsqYEEaTZjd2+L6XRCo5nwh3/4NS5evUK320N+RNLIx0rC/+n/4f/Ef/Ff/ue8+tqrnD19jrW1M9y5fZuD/R0cFe1ODw8MD7fY3LxHVaVz9Eq94EAHXL78CKfPnJknxYdbEvO7uRAnTqNuu4p2p8nFtubM6RWmYch3X3oXGSpavSZxkqBkWIuBhJ4AhXae0lqqogKtiOMAaQ2jgyGJgKQy6MjSTGJya/BCMSmOJwbkxsyFVmoEgbGWytUXUDlP9EYKli9eZuvOOwhhiOKIheVFYhXQW2jgq4rDcU54eMD+7TfodFcIezHO1y0Jp/yJYPzRZEqv3aTTjBHeIaUmicIaaucFgZKs9lucPn+BpZVFNtY3UUHA7v27SOc53NtFRS0m0xlxXENtrLM4Y0EfDTocJ1U61likhEBrtAopycE4XOZwpSJsKIJQUs5yYltRpmNSHZN02xzk0O4sYUwOSLwWtTaAZC7NIh70HE9EBZgCaSxaKGQQcWH5NLKZoL3i9ekOL768i4pClrsJ5cxw/+Y6ldIsPrJMt9vETGKiSNFpRghnmY1nuGnKJV9bspsiq33FouOT8BNPPI5Cgg5YWFiiquycfQXPff5PcPriRV799h8xHU4pjcAQUniLkxaj6kGUEJIzFx7h3KXHGQ1HTKcpq6unWZOr3L77NnuHOyd6EAodg46QQYAONA5BFLfo9vu4w4zAKwyCaV4yywuQDiUkvWaTMyuL9Bp9huYAqQPiuInwitk45UgBzs+LG3lCFpbeIHzOeHgbm01pBQk7+1MsCWEw15/xkrsbhzz9qSe5fuuAdneRhYWQOBCMZiXKpyS6S2YdWhmaSYxeuUrQGjDotYhDy3Q8PnYdL730EqPRiDCMsKYWu4qiiDgOGQ4PefOtN3j99de5ceMGGxvrSCm4ePEiX/ziF1ldW+PcuXPcubPBk08+xYXzF1nfuMerr36X6WzGzVvrfO2r3+GFzzzHoN+lBtEdHx8rCT/99NP8b//X/zv+7n/9d0mznHfffQOhE9bOXWX93ttsbt7j4GCPspjWoiQcUW8lQijiOOHFF1/iv/uX/4qf/7M/RxRFDxLxg+d+hMjDkMcvnMal+/T7bS4/8hi3f+cl9tb3UWEIQUQUtVBRgtGgvSBQGmJJW0qCQDLcTUmHe+ys32I5towPZxTTKfbsErrRxDbbpMPhsesoqhoUfqQCVVlL6Wzdhigr8qIiLSuWzlzk3JVHkekeZZkhwoTe8oC11UUwkoPtXda3hzh9n9Wz2yQLA4TXaCfw0p+4qzGFIegFGFUhUQRaI7UgTYs5lMeysX6Pzf0hP/GTP06gAzY2t9m6dYPv+/TjTFzJ9t4+QRKj571lfE16sHNSgPfuxF59ozOgzGYUxQwZ1dteESqCUtJuL1KRUmU5gQxZ6HUpKJmNx0y21zGiQzXeoRWNGIoheuAxU8CCcO/9XiHmQgHHhNQhUauJDgMIAkRe1O65vT7FuIO5HdLUhlAFJIsdzu4NcVKQTmZ0+i3CC6uQpwhjKQrLNJ3x6Bd+ltVHP0MQRJgim88xjj8e3/3mNxgNh5y7eI1us0e32yGMFHGniwgbbK5fY1yUvP3ii1RljpEBPvSEQUjoDMZYFs9e4akf/BM88vjTSFvx5otfZ393h+XVJeQFS6Alr736+rHriJttut3uHEpaIbyjaHg6/QX2xluESS03a6uU2WSI1gEN7QiFJJ+N6fX6xO0eSEd/sESkNPloBMZSlhUeX8s7ngANk6LApPts3n6N6Wib5f4ZjM0IomQ+tAOlFbdvr/NjP/osP/uzP4z3kk5c3wzTssRoRUXANDekWYPWU5+iyixWh4hAI4XBV8e3I37nd36HIAh47rnniKIEJTV3797hpZdf5vXXX2Vzc4PZbEaz2eSzn/0sP/mTP8HnPvc5VldXUVphLezt7XHr1i1OrZ3hkauPcfXKo0wmY6Zpxr272yTBq3z+B16A4PgbNXxsdISg1erzJ3/ip/jVf/n/4cqVK+igw3A4RGuFqQqKYvr+LeO8/xLFCYHSzCZDfvVXfoXJZMJf+Ut/iWazxcPtCP8RYFmrq4t0uw0KWXDj/g43J99hZ/suN27cZDAYECYt8CGNToeFlTafe/5Z2p0mZu8O0b23+aN39vj29Qmz6R6R26NzbpHN7SFn+z2sMYhGi8J7Cnd8gz8vyweKTt5BaS2lNZSVIS/rijgvDD5osHzxcbbffZl8uoeiZG93myqf0m21CDoRu9OSw3ffRXYW+ezyMmEnwAnFA3W5Y8IDaZaBEFTWEAaKMAjpdGr6sbGeXqyxvuDuW6+RdBdYW14k3yvYuX2rHhi2F0mWlmg0G7wnW+nnN9NaWOZEF1uvQYYYWxAIRWk8URiStGKkDsFWCGVIFiPUacFkMWdvq+De20PSmcPqCc0LexxeWGfQb7L71Qlu3yCEqndTUqADjT8BtRIlLYQM8FVVDy3brVqWVEtUEtIIIGgkJJ0lonaLg4Mph1vreKGQriCiwElPbhz3DnPKvOSzq2cRcYMyzwijGKU0VXH8xb555zbNJGa6t8+B9+zfHCOEo7N2ke7ZKyyeWeUn/tzPEzbbvPPaq6S7mzgPlVDoKGbl3Bkefe77WL10lcPZhKZyfOrpR7n9lmA0K+i3V/DLhvTs6Nh1VA5UGJOmKcO9XSIJTkaoMGSclQw6TT795CP1zlHWwls6DFDaU1YHLC636O31SPOSMG7gnatJKM5iva3bVhqMPZ6pZsshNt9h0IpZbp9CEXN2ZYAMmwQ6ItABYRTSiCX5JKffbjNLx9x490027t5HxyGnLp7j3sY27XaXy5cvEy0vsbG1zt3tXVxV4VDY/Hh0xDe/+U2effZZ0jTlu9/9Li+//DKvv/46WZoRRhHXrj3C888/zxe+8KN86lPPEsfxA3asmdOtq6okz7O51Od8JyA1jUarRlKWBUU6JWk2j10LfMwkfOP6LW7dvk2SNPizP/sLODz/9J/+M67feBsd8JDewbz5jaDb7RGGEUVR4Two59GB4H/43d/FmIq/9Of/IguDAW5ODkCIE1WyVk8tkiQBZarZOpyxdesVDIpGaDHpAcVkyGRSgpQ89tR5rp75AXqdEDXdpl19l7cmI8pxQLPhiZ1CZjOeO7fMhdNnkEKweXhIoWPKE7jweVnU1t1InKOugk1FWVqKsqKoTJ2IjSforpCsXmZ4IyUf7SEaEm09Jk1ZuXCJM1ef5d79Xf7o2y+CF/zgj/1J1OAU2p+8nWm1W/OWDzgE1nlCIVheHLC9s8PBLKcVNVluRVy+cIqrT36K+3fvE59e4CvfeYNuo8kTly7gukskjfYDGvWRmteRdKE6IfnZKq0pplaiiZFK4G1JlYPJc6yrsN7QWQjoJyFvbH0X2+ozWRLc27pBkEiWWKTYszivkS7Al0UtEh+ESOWx6mTWnBaCMI7Q3uFsRdRZohHHWOGJlUME9cAzaQYEcYvLzzzN5OwpyskBhztb5OOUOI4JoohOW0CjJGp2aCSNer4ga+q0PKEXO5kekqeasNFl+/U7vPryi1x98hn+/Pf9MGeuXEAlEWunFzhz5jTf/Oa3+be/9W/Zvr9BGMScuXiez33+B3jk0Wv0ej2213d446WXeOP6m2zffYdef8BjT3+WxZUBMjr+grHGcbA/JM9zJrOSkamIW5Zev0kchGgUvXZCM5YY5yidwPj6GDlhWR4knF3rcv3GFrPplEmaYXXM2sXzLJ1axoo5rfiE6ulw/zZNmdFNmly8cI4LZ64iZAICtBI0mk3iJEZoTyg0s3GB8KoeHMYJF69eYrA4wBYOrSUJnqVug05jFa0t+4dTykoSnLBjW1hY4PXXX+crX/kKm5ubeG/pdrs88Znn+fznP8/a2ik+/ennWVxcrEkpef6+Xbr3noX+Ao8++ihlUT0gquig1jcWouL+nXe4vdTm2aWV4w8KHzMJv/PODcoyY2FhwNmFZf7gD77MxsY9grAWsvhgCRuGET/ywz/KdJbx4osv450jabdR0uMF/OEf/D6T6ZS//Bf+EufOnau1URG1UtIxsXpmGWEtcRhirWFja5OFxWV+8oUziPSQnZHhYBZzmIfYzPLbv/4lZOBIJpv0hoY93+Hs+TbnLqwyWb/HopnxyOoi7V6DZGWJiW5S5UXdEz0miso8qISd81TW1pNS4yirClMU2LLAGoND0OgN6A1OU0hJU+SEOqaxuMbCqccYrF3hyrMxhzv3uP3qy/z2r/8bXvjBH+by5WsgjxeKSZKIMi+w1oMDqTQeKMqcpJFQ5AXD3DFoBxzsp3jV5PTZszREydVpzYgScUTS7BCG0UOvfCSq9NHE5bGOQCpwJdnoACFqYfAyq3DeoTV0Bg2unT7Plf4FhiJnxAh1OcVPNygyz95uwfB1QzXKcWONFeBDjYoVeAPuIRnFD4lGv4/JC/AWGjF5ntFqt5DC4YuCIs1AecK9HcLWDKWbNELPJJ1S+gCVJOhQEnTP8NQLTzPa3WbpwjWQAWEcI7zHVCfrE6SVo58EeG/YO9xhb5pyrbtGFQ9I0URz2nvQanDu2hM8uV+wdmGfVrPLo49f5amnLtFqhpjS0u0ucO3xZ/BZyovf+kPu3b/NyulzdJaXEfoEzQbvmc2mDzSBS+MRZUmgYxpRiPeGPJ8SCIkXYCwYP9cJriqUsJxa7rO3fcjoYJf1+yHguHr1Ev1eG2eq+gbtjr9etm5+mxc+832cXjjNhfPnWBwsIaRCMNeA0AqtA8qqRCCJF5sYFzDoPweAVLV8Zb99bU4dTtnYuM14PGN3d4vh4ZA8N+Sjw2PX8Z/8J/8Tfu/3vsRv/uZvAo4g0KyurrC2tkqeZ3z729/m9ddfp9vtPNCNONJzCcOQJ596Fq01URjNld1qxMe7169zf3OdXjdk6/pr3LrxFs9+9gdOPE8+djtiMFgiThLefPs1XnntO3hh3hN3EbzvYnXe8fIrr+CcROuQIAgYLJ/G2JLhQT2V/9Y3v8VsmvKX/+Jf5NHHnqi1zk+ig1YGXUKgAk4tD3j1rTtMNnboXMy5eqZCno8oRcAfvDnj+oHg7XfeQQUapSQ+75NmGTIsWVpapJGnDExI3EiI+z3WHrlGurGPm52sF1tWR3973Tu11lKVVY2QSKeMd7dJiwxbOigLJgfbFJOM0+ev0NOOuLeIWlwj7C1hw4Rmq82Vwac4s3aOV7/9DV781jfpd/ucWjsed2idI8tz1FxYXgcBUiuyvKwFlqTCBzGZ7nJwcMgbL7/E+WuPkDnYz6DR6TC1gsuDRcIwejAAO3INcfOq+KQk7CqD8a6GA8Y1plUgELrW65ABXLx2gR+4dhHTclwVlzHecU9scbdxF5XA5PA+ohNQ7VoIJCKUyEDjnUE6g3L2PbD+h4SUEmssgaqhdkWWY7a3kbFmdngfb3Jai6uUecZ0bxepFSpu4GxFvxdT5R5bwfKVp7n0Az9NGAZ0F5dRUqN1CM5hK3Mihts4gQoaSB0QdZr4MGJ9e4+vf/1lzl+9MhcH9+zubXP33iazzLFw+jztTp/Sa27c2iAMBOk043B/zGQyYmd0QOkrytkh+7v3SHotsrnG7YdFmtdtE+c8xoMKA5ASU1mkcFhbMMumKBkgJZQoECE4gTW1XVAchywsdJjNhty5fZvFpSWWlwYIz1zHokZIHBedvOLapctcvfI4cRDW2hOiFmFXD4bzljCo05L3Hm9qynTtumMe4HmtrSvQsqyYpSl5NmU02WY82Wc8TY9dxwsvfIbLly/TbDb4tV/7FUajMXfu3GF9fR1rQUn9IPHWRKh6Vy+kpN3tcOlbL3HlyiMMhxPKosC5Crznq1/9I4bjIWHoSIRlODl+YHoUHysJt1oNrHP8+m/8K77xra9yeLgP+Fq533tsZZBzKqdAYG3F+v37hFGT3sKAMAjxvj6IZVkiRe0t99obr/MP/tE/4q/+4l/lySefPtHiqKpqSRQvBYvdPi88dY3Xb1znN796h5WW5vwgYnm5zfbWPnfvVcRxjNB1gpJz7YhOv4MvU7pNTcfHEIYsn7+KUxHTyaQWYD+BeVNV1YNtivN+TtSoKPIpo511pvt7GAyi9ATCs9pv0Ti9TH9lgDSGQxvhwj4lIQEO4y1OaBZPneVHf3IJU6Y0211OIIhR5mWtSStr1lye12pcUulagFsInFCMZjO6SZvh6JBgd8zK6XNcejShrA6wdkYYJw/0bq2rdWPl/OY6Pw2PXcd7jgwefEDQ6GKrAlxF0BA0G5LzZxusrTaIbINzrUV8oEhmDcpBRSoLXuEV3LZBhAKXO4IwAuEfiOMLK0+EQpWmxBmPDBpoalF6U1Xk5YzR4RbZbII8qPHH0519ZByT9BV2NqWaOJJ2j8G1J/jBP/ULELep0OiglkzUSiK0xlTliWpdrXaLweoqRglWzl3gc80BxiVs3rnOcLhHb7DM3s4er732Haw1PPXc50iSFabTIbff3SKfjtAKJBLrPEIaxgfbHKZDAlewtX2Xq08+zePXHj92HVPDe7tUVWsEm8phKofUAZU3DNOyRp1I8LqmUAugcgJj611fEId0FxbZ29tj9dQacaPFkbpzlhXkJ/TIr5y9xHJ/QJJE1PPmI+GqI3eR957r3HwgLXggInR0rb0nPu/RqkJraHVCrI5JFjzpnYNj13EkGhbHEU8++RRvvPEGp06d4sKFi3z7Wy8Sx4350C4kSRKyLKfVaqGUIq8KtnZ2MN4SxhowOFMP6px1fPYzL7C+fofdnW1EdPwO9ig+VhK+efMdfuu3f52NrfsYW83Vz8CUFXGccOHKI6xvbDCdTmAug9jqtun1FxkOh+zMJlRlymOPPc7h3jazWYrSGuEt169f5+/9vf83f+Nv/E2efPKZY9fhnaByNT7W5CXLnYTxco8bM8dr21Ne25gQyj0qH4K1lGk1twkSxCqotxFVTplO6EXQkgE6DillyPb6NkVZyyaelISPvn/EcT+6S2fTCYd72yhvEThUIonimG6vy8riEs12Qj4t2NrNER5iP1fEcjVY33totLrE4YAoCjhJxlwLgfQCY2sEw3iaUWul1H3cMIopioLd2ZRmJHnhC8/jVZPbN19m7dQpstmYRqONVhLvbY1Pdp4iL6mMBRHW6nDV8T3yoNHC5jmmyvFpSiNsEIQxQSPg3FLAM5faPP3YadqE+AJsZXDe03cLPL/0ad4x7xLtt9nf3YVKomWI9Qrva+Fvj8M7EPb445GbitKA8bXugBUWpSPS6S5b6+9iSstsOiMKI7LC0ggd+eE+axevMaRFvrPB83/6L7KwPGAySRFS17RcMT/GErQOqOTxSfiVt97ixr37LK+t0mjGSKFYXVtAhYp3b75BvHOfnY0t3n3ju0SxJgwk3hpyA5PhkL2NdZSqafxZlbO8tsjG3dtkFowMePf2Lc7dvc7SYPHYdTz6zAtzNwxXwyjLEls5irTkcGww1tBfXSVUDiSYuURj7QZTUpqcSpQ4FdBbXKuHekmCERpr66RW4XEntEWuPvc0i4PFB55xH/RdrGM+oHfv+dZVZTXXDpYP8P5VVZHOZoxGh4wm+9y8c5290QZxs2J7a3jsOo6q3LIs2dvbo6oqTp06RZ5lnDlzBiEUi4uLdDoder3eQ0qJntIaGu02g8GgLu48BFLx7jtvs7W5yZXLlxHCMRwOP5SQ9sH4WEn47/2D/xfW2ZpBJRRJI2FpcYmnnnyaL/zIj/HkU0/z+7//Zf723/lb7B/ss7x8ipXlNba3NxgO94migO/73Gf4uZ/783z9a1/jX/33/19G4/puj1LcvnOHv/W3/hZ//Zf+I/7CL/zch67DelPjTyuDxWCVp99scWHZsB8aDqYleZpjrUWJAC1ULQxt5mSKrL74p3t7nF/tEemEMkq4fu8OFRJsnVRPiupIYcq5uW7EkYqarbWWPUgl0VIRRTFKhzgpMTgqW4ItkRQIJNJrtPNIVyF8RF0WSJyTuBOgPypQCC0xeQXe1HY0SiCcIVQKZTJkGBG3E6azjDe++zJnrz7G/t4u6XRIp7/ISmcZpSOyrGA0GjMeTUhnM0pjajZTZXDe8dM//TMfug5tUxaSAOKEKAyJVMVaJ+Da6QUeu7zK8mqH+8UMFzZxWlJ6S0BIoBJCGxDNEtz9EMYxKnQ4X83hyRLjDRpRDyBPago7EI0EwrDWaJYKY3Nuvf6HFPkBWkmqLGc4nCBUSOgVzSjmyR/7M0TLl9ja2KWzdIo7N25QVILd3QOuPPMscdJEOHBzuvpJ7YhcCLLJlMG5iMks5fqbb5I03mJ59RSFdbi9XbJpRrvRxFFw++Zr3L93E6ljAqk43Nut2zAKvHDcvumJAs3Vx54gHY/IR0P2D/bwJ1jSPvvCD859CAXOO4yzuMpj85IgbJE0mjzxxGNoWRcDpXfgLG5O97e2NsJ99ZU3WF05y8bmJp6CH/yhH2GWFhhr8LZO8MdFsz8gzTLKspq7M7/3fsoHSor1c4+kDNzcQCLLakJFmqaUZU22KIqc2WzE/Y1bbO/tEYYddu9PmO72j12HtZYoinjhhRe4desW4/EYay1ZltPutLl44RJSwng8otGoW4E7OzsYaxBSMplNOTzYpyxLcJ5Aara2NtFasb2zjVKKX/zFX+QLX/jCses4io9nbxRFDBYWOXvuHI8++hhPPfU0Fy5cYHVllSAI8R5+5mf+DJ1Oh3/6z/4JaV6yuXkf6xytdpvx6JDvfOdFnnjiGX7mT/0pVleX+cf/+Je5d38drQO0Dtjf3+Pv/J2/dWwSdnleq2kpSdJsolyETiKarQ7d7RbdnS0makya52TGYU1WQ0jmilZSKCJf4LMxoRjggxgXxqAk0oE5slI5IRH7qpzvoDzeGryzuMoQSmi3mszGI4QB6zyVypGNRu2pJUMKl+OFR+OQuNo/bG7bMjdDx+HwJxqI1c4kURRQmvpCCJQkEp52EhIFisp5pkXBk48/ytUrl1jf2GV3e5vByqNIIUhabcYzx/V3bpJlJWVpcM4ilcJYN5+3CKw7Hqnxf/xznyUMQipjSOKQhqjo6JxQlxQhZJEiCfpo0aIqAwpboXSM1CDxzDYNe6/N0EHC4FKb6WxElVqklUwOSrwFoTlxMFd7konaTRKIVMD6/m1u3HiR0XBKmReEYUioFMIrhAxYvHCNUxev0Vxe48zFK4yHBxSVo9tdAF9r5QZaY6raucFZeyJpxCGQ2jFJ95ns7pJOJ3UPczYjiCK8l0Rhi0ApKitpxAFFkWKyGVIlLHU6FEVGVeVY6/HG1ResEYRhB9WJmWWWfGPnhHVo/Fyn2vraPFYoz2w25OBgyKX+AOMFHo2Xup7wa4+WgnCeGAu7h260WbtwjqjdYn39HstnL9WG0zUUau4w8eGxfusu44MxYRJjrSXPM4SUxGFIp93Czo9xURYEQYipKoyxzGYZm5ubTCaTmlgRhgRhiFaSvf1Nbt29QRS3WOx3GR9kROp4WJgxhtFoRBRFfPGLX+TcuXN897vfpdvtkqYZUkEw70sPh/tz5IOYm+IKdNDhgbu8lCghaLYS9g/2iOMQrQXPPvssV69ePXYdR/GxkvD//H/2v+TKlSucPn2WXq9HGIY4VyvfG2MeuCr/0A/9KGtrp/iVX/sVvrR+j0azg6k83c4it+/c5Jf/8T9EackP/9CP0Ov3+OVf/m95/fXX51AVzXC4f+w6pFIEzQii2oQwNJZEBKQG4iJmUQ3Iu03SIic1FVVVPVhfkiS0Gg1a3SZnlpeJo5A8ivBhhH/AyvJzjd4ThEBsVQ+sqIcG3lm8rXC2mHu8eaIgpCjq/qEpi9qYUAZ4pRFKouZ6xKL2QecoDYsHDDX/oHf2oeEdWmmkrPDO0AglcaDIKse0tKADKh8gVERhLOPCsdxdor+wjA50LVXoPcNxWieoKEYFEUoF6FDW/WbnkCfclH78U9ew1lBUOQKDsCVFJphmJSNtqFyF1zEzp2nIiMjbGu7l6+O9v7ePnRhohByOJsSLmsZqgpwF2MIxG05qe58TSBLWVVQ2wBpD6R1SeHbuvE6e5xAGaC8oLXhj8FLxmZ/5RZ744S/QW1pGa4GXmmayQiOKkWFMo9EitRYhNTqUOGvr9og5AaI2OiSMBDtbBjPNCKMALz1eGbK8wFnBbDbDOE8SN9AiwBSWKi+ofEa40EMKi5LgjQcvycYZN996F6EUVWVIpzUJ5NjTwz9kR+/B23qXNjwcoubDpgr3wMvNe089iJifi0IQxE0eufYojWaT0XiMDMKaqCHU3A3kZM2XzY373Fu/zywt2N8fsr+/j3eetbVlnn76SQ4PDlgYDHj33Xe4cvkK9+/fq2UvlaYoCprNFoOFbi3fKY8MRjVLgzNEUcLwcFjTnleO1/UVQhAEAe12G6UUrVYL7z3T6ZRnnjnL2topamz83Bf9yDVnPvd5mGB2ZDSwMFigqnI2NjY4ffo0URRRluWDSvq4+FhJ+Bd+4S88sLo+SrwP/2FHC/XA1auP8D/6G/8xg/4Cf/TVrxGECYGKYLfi1u0b/N3/+m9T5jl/+k//GQYLA37lV3+Fr3/jG0wmU06awqteCx+FKK3QHmRaYNICUVU0mgE+7mCqBsYa8O+pmymtSeKYOA6Ikohm2CRsdRG9LlMHzswRDpV5yMvqw8PZfA6nm1uwWIszBjfHFwshaTSb8+QfEUUxWmriMCTUCiVdfZHV6F4EBolBUCHmzlnSS+QJFYZUAaNJhpSaqKHwQjDMKmZZiY5iukmM8rA3SiGa0uqvMVg6RRRFddWDQyqFVAHGepyDMGnO7asESmiEc/gTesJCBEgt0MLWLEktCawlo2Iz8TgMfevwxuJkSKA1KorrZDnLWN8eYQLJ6TOLnD97inhBUdicfL1i+fwy9lQ1b/Ecf9pWxpCZirgqCURdKEyyEUWVE2pNUdYC+KW1NJKEs9eeZLC0xnBri263SdjtEkYBzXaTbFIw3riJ7i/XO5W5hT3UBcNx0e4kBEc3OSUJIg14dBBQFBJMXbGLwpDlKVmWEgca7x1FkTGe+prJZg1pWjudB1GAlILpdEpZGqrKMJkeP4VXQuJx70mbColGsLq8TPOzn2VhZQkRBrVEr5v3aJ2cu1fUcNI4btLrdAHP4eFh7Q8nee/jIyhfe+kpZgWT0YTh4ZDRcISpKsJAcbB/wMHBAe1Oh63NLZ55+hlu377L4XBIEMaEQUCr1apv1KZuuTVbLayz7O2OaDYrOp0OSQybG9vHrkNrTa/Xo9VqPcgN165doyiKBy7xtZvGkTlx7RtZf56jhHxdMj1sYPzoo4+QZRlRFDMYDAg+AlsOPmYSVko+6NUcleMftHqfk3gRCFZWVvmlX/qbPP74U/y3//if8+orL+HJ8cC9u3f5L/4f/zlplvJnf/bn+et/7Zd44vEn+Yf/zT/k/r07xy8kbhHpAIVHmBlivEfgcsIYID5q7eOtR1jH3IcPpWrnWBlqoiBCJ10uvfD9lGHIt1/6JpZaucxJ9+AAHxfO5A+JqNdaC85W+DmywHlHnuXIIxaS1kRRRCNK0LK2ZZEESCokFcJX4Cu8KTA4FAnGe4Q8XsOisIrOwgrLS4s4ZyirEu8ke/s7zKZjpIx44qnnOHf+PCvLy3TaA+I4Qch6uCldfQlFKsBaQZanoFQtueQ9nhqC508gJwgt0LKBIgKqus0CYDLCvGAqSwptiNsJ0ibEYRMfKEyRk5Ylw/SAuKf4/s9/hv/oz/0VZFGLedt59RvqAKyjf4KDgQpULV3qZjS0xgjBaFRjSIvRCC8C+os9nI+48MyPYlPYee0m6XBMGgtWrlzANRvgK0av/zrr795i6dEfIBmcQQlBmaY1LOuEHujFy1cJwpomn+ZTRqNRPchCU/oZCMtCt0MxS9nd3QUhqVwIAkpjqIajuYmmQwcB3W6XLMuYTCZY61lYGGCMPbENoBAwN9AUQiLnDhmn1k7hVz1OCuyREPr8GnbuKBHNSVTznZn3nsuXL+O9I06imlzlj4Z4xy6jLkJUhNYR1ll0MNcbUYK333573iYYMp1O+eY3v8ne3i7O1WYJeQbD4QGBDmtS0lzf1zrHbDZDKUW73UYIyd7eCTvp+WAuCIL3FVq1eef7YbYPxx/7mn/PUedIZfDoKUqpByiOk0J8FCeLT+KT+CQ+iU/i30+cgLj8JD6JT+KT+CT+fcYnSfiT+CQ+iU/iP2B8koQ/iU/ik/gk/gPGJ0n4k/gkPolP4j9gfCx0xH/223c81NRY+ZAHpZi7Aj94DA9YTW7+BfEQrOODn+cAgznco+aR/+9/+tEPHflOp1NfTzLf45PX63i/3NzDX/vgAPKD5pVHZn8P/985x9LS0oeu4//6v/oFn3TadLstTi8tsLTYp9NJ2NrcZn1nzK37O6wtLvDY5VPosMH63pDNrW1sUZDESc1Lz1P29ke8+c5t9g5GTCZjlvpNnn70Co1WwotvXqc0kn/5r7/2oevY2H7L28hz/2CDw/yQ7dE6r27c5FxD8iNrp5i6kK9sD1k/tDzS7pNvbhO0lxgry1u6x0q4whdf/wM66/cQjYS9xjIbV65RXjnF1u4GnSAm1k1uH8z4L3/+Fz90HX/2p5/3IoIwkuAhCENULPHWIaRDKIVWCVVhULEjiAO0lkir0VKjEo+rKgIvsIVF5BGJjml0QqSXpHmJVzVE7P/8n//ah67juT/3f/dhGJE0EkxVUWR5DRM7wn0KSeBKHGBEwMAdctrss6AqAnJCUeGd47AKSEtN2OwStGLSsMO6XyKtBMrlBK0WX/5H/9MPXUcUBd46S7PZ4NTKEoNOkygQMLcHi3UAyteoI1frOYSBejBZV0rWWhzeUxY5Dk+aW27fWWd7f0in1SRQEIaSN27ufOg6/u4fve2NrXU9hKghwAcHQ3anI5Z6PRZaTWoRNMO9r3+Nd3/396maMelKj9lsiprD6wbLKzSzisn126w+8Tiy16IoC8IoQkkFOP72/+Z/8aHr+Gv/2e/6ZpxQSZBBRCgDtPQEGBSeZhTRjhKSOKGci3gJ5xHe4cqMUFhaOqDXaCGUZHs8ZmglVijSvKKoLAQJSgf83/7SuQ9dx7e//W3/wCn9A6xHLzxW1h/SCQILwkucqKGiuvJUFFS5IpWWZhygFAQYSgnS1e4gbu5v+fynP32iU8XHhKjxQLdWCJC1vNC8nH4vCTN/DA+V2g8QMP7BgyMIzBG0Q8zFOqQ/WZrPzWUAH07EfxxuIt4HN3k4MX8vVMjR6xy95pF83YeFkw02tobcvLvFwZlTPCkCWs2ETqfJzfvb3L17n9vXbxFGMWGUcv36TcajEdPxlG6ng9KKz3z/5zhzISYMG7z19nXuGsvm9pA0e5uwERMEmu4JgO9ed4Gt0S2y9B7X3/0O2xsbyOku3TMXSMMB2/ubbG9ucejbzBotCgR6lLEkPCZybIgJfzjJsbmkf/UCVesU92eK7s0xl7uLCDvl3uw+I3+8VoKxjkAphKLGW2pJEEpM6fBWonUbLFRpinMRrgKjRC0SHpRUqSXQjrVeSNiIcDNFU7ZoNHt4P6YSM2alRcv42HUIoYiiCDyYytZY16Pzj7lb0xwLqlxFq9zjEXmdyx2Bnk2IbUmlJHtOc3cyReQJSdFgqNY4aD7OUPcJnCIsjj8/Wu1GTW0VMBxPMGXO8kIXqQSNWCFVTf13HsqiIEmCB3QHP8doOycoi4KyKLHWEOqQQb+D945Ot4t3liw73vU5Eo5AWRA13OxgPGFr8w5bm3cwy8s0zl+iFYfku3vc/O3f5+DWfZqrfaKGIp/kuFDgjMZPRoxvbjN+6x4LYcCjX3ieLJMo6TCmwos/fk09HKNsQuUMKgpRCKwAJX0tEO8NM+OYlZaW8xTC4bD4KieU4J2BytHVCdPCIaRkXOboTp8kSqhUTpVXlB/B7f7ouv7eSdjhZQ2xVQgCIbBSoJxAGY/ISsTubfyhYdSIqNoduosLkCjAE2BRwlOJoCYifYT4mFKWbg7un/870hA+Etqa0xd5SG/rwdsyf+4RDq9+1tEzHibrvu+nvmccJUml1PdMwh+skE+KDybvj6SdC7z1xus0Wk0scOfuPQ52dnitmbC42GJaGoqsZG/nkN/70rc4ONgnS2cESqGFYy+OkIFmZh0rqyuMDvbIsil5XlJWgt39GdXumEEnIQsmx64jLVOkz4nLIYNiwrlzF7FpRDYesZ873t0cwt6IH/7cszgEd7IJVki8DcnfvME767v83tvfYDqrOL+d8shzBaYTI9UK94jpBQ6Xtpmc4FgQxJo4roH7zlpUGKC1BxRCKNqNJsJVxEkD5yKSsE2gE4bjfSqTgxWEAmyR46OIpJkQ6mUqpRlONtmd7mC8pBkerw0QhgFBoCmKEmOqeQXsHxCJhHAPnAdCXxCVQ1RYcJAZ4smMuJGgWzGN0mFlgXEWmZcEHpJgDUQDa0NMdfzxaLeblGWIcQ4dhHhqCrtQUJQloQ6Qot4N1LRohRA1dvY90oAjzzKkcyhf+9s1Y41Y6GKcRwQBYdg9dh1aCkCBcFjr2D/c4+47r1Ic7OGnY0ya0mkGFHc2GG8dUlmHSAseWVnCnoGNw0MK7yhu3Se/vUtRgh0XXDl/jvXNXQ43tvDZlDw9XkXNuZjSBoQ2QEgoKQm0qjVdnEE7R1lZZsZiA1VLqJY5yuZzI13NvtbEwoGSGOFpMUWqHHSAU5pqbrl0XBx3jXsv0FYTziV1KwUUBcHhEHn/Ptmtm4TvvIPvrRGvrjCzlvSRqzSWllFK0B50ai0X71EfEf77sZKwnCfL2jf5Qb6dm10+nEA/WBXzXoL2Rz/4wYTrkfgTZRsBgiB4AJD+Xsn2uAR8Egj7eys7fe+ospS9yQTvHPsWmo0GL+/vE0YBUaPBLCuI44S9jfukWUagAwId0Gs2KLIpXmtKC8NJSqff51KUMJq9RZqWFHnFbDqhmkyIg+M1G7SMmFWSg0riRZcgPMVSLyQLbzCd7tAIGnzqsac522lBELP+zh12hgfkQZ9f//Jvcf2dm5giRyAptvYY3r/J4rWrLH32p/h25RFmygvLy1xLjl9HlDiUtuAU06knEI64IUiaQc3AElPCtkdrgTYhnaSJFB10UGIrQWUgijMEjqqSJGHEzM8obclBmTEqK5z1eH+8fm4YhkBtvFpLYL5HuhF4Hnb0tsWMsMpIrePucMj5qEWoF7g9HpM7xV3VZPtwSuJyFsICWhNiZSmFoVTH7wycczQbCVJpur0e3pZoCa0kJE9zsiwnz/cIo5hWs9Zx9nbOyntgEKmQWmOLkkbYQJkSX6S0Ik3p6haNPcGKppzrYlvrORgesr6xTnZwiJ1k2GDKJLhPNTKEoymB92g0SRzQUZ5GJyaehXgs62nOZFbgSknYDLk3HfPy/RHpEGSh8JPjrxfpA7xTUEnAIJTBVIpqLnwlpSY3FUVR4EOFm7veRBTIIMYozdhJCqlwxmOEo5jOaranDvEywKMRH3HU9WDnyzwLeY+g1pbx0qCKFLe+i7xxH3f9Otx5l8beBmo2wzwpGZQ55vp9Jnc2ya5c4nDQYuXRRxksLHDCJfu++FhJWDzQMfAPat26/8v7EuvDyrPvVcT+odd5OPEd/UxtbS4FuBMqYaXe+ws/2Pt9+GsflnC/V4vig73ho55R8xiPqMiDdHMDTC2gKgmVYpYWjGYZjUCipK3puaGgqjJMWjAqpjSaCSunz9EerFCWBfv7Y1pxxJWzZ3BlxcbWLsa62injBK87lGJjPOUP37iO2d/l1Cjn8lpJ4ktOD1p86pknSRq9+qK3kkGzz/7mJpP1dXZv38XmGUorolaDdiNC7Y85Nw15VK9yL/OQnGax0yfY2zx2GaKA0nkabU3Y8BiXkxaawGliEVKoiiD2NHWAiEDYGc5WDPqeIAiZlpbSayQK7xVeCYwbYV1K3DD0dRNbCrw//rQVSlOWFVVZ4pzDIpDeE7qK2KVEWJRw5MYz3b1NIzhEi9pRWcZdDrOUzdmYkdVcH2ZsHGYsxglhCEE+phGUlIHGnCCupLSmGTeItWRxocnSmXOko0NmuyOkqAuO2WxKkGe0GssI5zG2tn9HOIwBvCBOojoBjScsdjtEGoxzqLDNeJqSnqDje3vjPsIJimzG7u4Gu/duMDscgXQIU5LvF6xoy3K7RevaKs4Zli/1ibuaWTpF+/rmcfHSMqSO8Thl7bELHIxSFrtN2mfXsEg6J7B0A5kipEJ7ReDqWVLlwRnmDhVlnUKFBKvAOm69/k0O1q9z5dGnOf3k85jQoF2F857cGqwMsYCzNaNP1i33jxXvJWBB6B16NiXbukfxztvod2/h720iD4fIMsVRYB2oChQlaneLxuE+w50N9KeeZIogOH+B1mKXpHWyvxx83CTs3Vxs5ujxvPFw1I7gyJxc/LGOgng4Dfv5Yz+nxc4/jqrpk+5j5fziOq5a/WA1/HC/98EyvkdP6Og5RzTE4yJKNM1WRJ4VVIXFVhXeVrTjACRIIaiqihhDLCCJ53dZV+sHzAqLzg2NOKHKMsq0ID3YZ3dznWmaUwFKKFqN6Nh1SO/p95fpr14mVx1agcL6KW/c2iMOd3giHHHqzIDu4BQqTbl28QyHe3vc2V7n+c8+glABiyuncCqg02xSmAIVNjD+gCvdDqOw5F+/9SqrBv7jY9YxG0JRFWRtA4GkzCpmhwoZB2ipmKiMbOZxsSXpSlQm8cpA1xJEgigEV9SqWkJKJtN62JJEipA22jUpvGNaZsceD+skZVHVtlLWIrwjsTMG1R6L1S59VaEljEzEVI9ZZUJfW5JWlxBBu9fkalfz1t4EuzvGIkmdxImIppmSuRlWtNEnXOynFhcIlCIJAgJvaTYFC0sD3jjYQ0SKIExACppJhAx87TThw/es46UgkJ6VXkRZwY4u2D3YZbG3QjtQ7B5OSE1JeoIN17e//mWaSUKoBFlaku+MYFrSW+0zGKyy2E5YYUwn8IhnVqjSjDS3ZAcziiJnOp2hI83y6oDLYcDm1gFZpNCpxZmS/b0CFTXZHe0du47D/dcQWtEOYzpJhyjpYL1AWJCudkWXph68ZpOK+7de542v/RblcIute6/ybL6LjmKmByOSRsLa5SuIwVVUMBffOtqef6wkXEtpBlYQzKaYO2+Rvf425fYeiQiQgx5mex2ZzyiAQgZIJKEDWY92aacpckvT3txl9513Kc6soD7zKRpPP/+RVvAx2xHuQQKtk69/r+r1D7co/Ie3df1D36snc/V/8XMExXtfO3E9D7UjPjhUezg+OIj7sEHe0ecHIh0nRBhFWFv3p3QsCWVEhSXWCiXmlvOVxViPFYYkCpDeUgmFbCSsnT3D2vlzlGVBGIccrN9nZ2sDJWrd2NLV0n5J8/gkLFAURYGKI5bOnKdcH/NP/9lXePetmxij6C28TLPVYHGhy1K/w8qpAXGkeOqFRzl7cJZXX3mX1197k+2NPWxZQaQIug3urO/wmR//Au3uAlkCdnR8RZ7ECUmkcbJCxhpdhWQHBdFy7UkWtTXaibrnKiSyiCgqiwttvfvxEuHbuLLu2YYmhrIgUhFlFiInlkBkJCdUoNaUeG9rxTpvaJgRS5N3uSR3GAQOLT1aK1ShoMxpRBWx8nTaXTLjoEwJtSDPCxyeOIkIZMB4ltFsW4ys0R7BCcaniYLCGbaGOS2TkL55n8Fii3anxfhwhq8KlC2JRIi0DmM9SkcIbwm1p92GTlPymecuUBjLH3zF4U2Hzf0tzp8+Q6fb4WBrm+3947USqukUQmh0uyz3Fnli7Ry9bszC0oB2s8F4d53Ju69THRxQFRWjUY5QimYXtIJWI0G4iu1bG6AUGsfB9bvsBQfs7hyAF7QXlxjfuQP/lw9fxxtf+lWiJCKKApKwTaMxwIkAR4C1jlhJTJWTFyWTccp0uIUrJsikbu195Uu/h1cSW1UEQUDr1ZdZvfICT3z6+xFRk0poHCCsAS4fe0yEqEs+ZUrE/g68fQ/78lu4g1vEgwXCTz+GWD5NpgXl1jri1gZWCBwKaR2OEhcmFM0mOnRECiLvGRzuMNu8j2o2EU89d+wajuLjDea8fd9dRnjBB28+73UlPth+EA8q3QciQLwHVZNzMQwx/3zsorV+HzripHjwnCMbaP54pVyvy7+vCj4pEU/HR1PpGmYkhaXdTNBK44whVBWhUygpqaREIgnCiNZgiYvPPse1x5/l7PmLtLp9ZrOcr/wPv8OdN18j0IqG88RKIKRnlh7fA3VIJvmU+3vrbN67RzeFGzsblIFi5fQyjTiknOR855uvs7uzTxBqBos9Fha67O4ecvf2BmX5/gQrtg443Blzb/c+i5dX0UjM4RD4H3/oOhaXW8SJQgcWr6DMPFnL0o2atIMGZhECrVDduQtyFKICi4nAGlmjGmSCpwQriVVIozm3Uw8NrWaIl9COj0/CzpQIaxHOolyFnh3QK7Y51ZrQDAOcN2hnSH3AyJSIyCM86EBiyhxfeIzRjDJH4TTWKyazjL62VLakEgahoBGHx65Da4khIewtk3RbNIptdDri9GqDzqUFilnG4d4YYywyMFRWgHR023B2rcmlS4vgCxYWMhrNFvv7TaSsmJUh23sHnFlcoh832Dp2FdAcnIVIoZoLnDp1mnODNnhHmhUc7u8wvPEW2f0NZodTsqyg2W7SXWghtaDf7bB05jTbN++SvXGbg4MhlRa0gogLjz6O7i+RTzOSVoIrj1dz+/STL6BDCWJe5IgAQYCxgspY4kbArPSc7Z7ClApfPcasypkZD16hEHhhMMbMxcQkOpCMt+8jkg6lCLB4vD3ZhBXva6f06Rj/r34dXn0Vk+bEK4sEzzzL+PIZRvsTyv0RoihxjQTR79E6dwa/vc1EOPLFHubZJwjNBu31ISIAee4U8fo+0bhEnSCs9OA8+UjPehAO4efQNN5DRDyc4+YZ96Fc/V6fmAdgiof6sHNwhPB+nohPlsU7Lvk+/NX3Cm7/4Bt+/lg8VPkefX446X6Uang0HD5I7I04JopCnHX1sMQYvDH173GOJIjRSYPW0hIrV64wWDtNXhUUVUULSafd41PPf4brr32Lg71dusojcZTOkp7gJR4pTSOMoDTs3F9nZiwv/PCnaIRN+t0mzVhjxxW7m4e89t0bvPH6bW5e3+bt6v78iDykFjefUgjnyfZHvPO1lzi41+XauQ6D8HhVuWYrotWIUbqW9SQMUIMIJtDTXbI4R0jPeDzDWUejEiRxgI0UmfMEIkZYDYFHKY9zKRJPVTqc8IRtiRElWh1fkXtjcLYEbxD5hEa2SyI9lauF8hUgjUV7j44EVSAoqCU2jQ4IdEQTwWIgyZKASkZ4ZbnQiPCU7JY5oqmQ4vgdSqvRYrB4mbPPfz+9eEY3e5vEHxLGglhrqCbMxrVyndeKtCgIwoi11RbdjiAIKqSS4MCVJZ/61AJnLyqSr8B3X9tjOB6RKM1S93h0hHdQpoYq8xyMpxTptD5ty5JwtEm6t8fe/UNmk5LllTYLy4tE7Rhb5bT6CwzOX+Fga4f2ahuLZTysiJstLp9fone2xf3NQ4JGRNA63lMtPv0cUoIOBIH2BEoQRTGCoC7GAs/ecJu102epXIgpJHllKKuCEOpevqxqGU1RY62VStBxC6tCjAgovcCc0J55EELg8pLg1n3i3Q2GoebAdvCHQ6bfnDC+cZekoWgtnaH/2KfpfvoZGpfPsf47v83mV7/OOHE0Bk0uLlxk9uJNUmdp6Ijek9ewgwWCfx9JWDzo28p5S4KHEA/vVZkPwn/gwfsq5Pcn6vcN6k7oBBxpgALvk9N8T1j6e1S74qh3LeZJ+P1Y4u/VKz4pCRdVSaADnBfsjzOUqlBSEgUS4SzeWvCO0lus0iwvLNE7cx4jA+6sr9NKDjDWMsumaBUgcDQ7HUxV0pjL9DljCU9ocjlrONteJB6XdHLod3ss9gZ4aymzKZEIWFkZcO7sMiurXc6cXeM3/vUfsLOz92BX8tBbUb8m9aEUxsEkY0G3iPXx0B9lJKLylJXDGU+gFM1OhAgt5UEBe4JwISDMCsQ0rN2U+/PjbT0ydjRUXEO6pCGvBM4IvDFI5UjdEKEkIj++DWCqAm8rpHO07JTzYp9uCFYopK/QaAqjScuKUoaMvSVCIYMY6w2lFZwdtOi1JEMvMWhmu5JqknKrmEFVIQnx7vjLJ4lqk9LqcJPU3EH7bTJh0IGmE8PZtYDTp3pIPKUxeB+hA02jESG1oKgMk1nB/TuespryzOeWOHMOfuCFZW7eOeDenR0WkjYry0vHruPqmSW89URJk1AFzIqMIPQ0zIggP8DkJcOxobHQonG6j2oECOFxVc7scJuNtyV5OiZsRjSXmhiXc/Hpp7l27TEmRmCkprC1w8txsS8bKOEJnCfy0FQBlZXgBdI7Iu9Z7iwjKklpoawERWlxJqffafLY5QtEjYRZmlPkBVmWUqYpYSQwzjKaTLA2wHwUiBV1pnBeMbaSsdBQhORbY4a//SWCp59g+ZEztLtNFp9/gdJpVH+BnSKnXFylECEznzGZ7XM6UaRtDVNJazylPNWlXGsTfLSu6sdMws4e/Wc+lRNHn8DPYWlHv/iPAYXnidF/ACdcl6YPSBzC+z+Wyz8YSqkHgOuHq+IHnlXiPaTy90ZKPGCYfE+0xEfFGAutMfh6gJKEdDtt4kChfA0zms1mzMaTOiEnISppsre9hwgk1hmmSYNGkBCogDCU+Kpie2OX3NYux0pqVBhgyuOn31/+6r+ju9Bi4917FJVlNEnJZjcQztBpNiiaIYn2iPYyjz31CE5q4i9HiD1Z3yg+LOYbCJvDzq6j8CdYeFeKIAFnBWVxNFALCZuO/YMRk3XPcrBK0zp2N8aEFwOSjgbrCJXG2JxO3CZNDcpCGDSRWpFXGWWWUpWWMNSI6vgkXBqDlwFdkXJeH7CiJlgjMCiK0hMGUHrPtKqfmwtJFYWIKEFUKa5MaciQM6faVN4zmxZMTcK9csLdvKoJRQJsdfzxKKkoD+9y+8YbbNy5yelewHOfOsXplQVUw6MihWxonMmROEId0mq1aDSbzKYFs1zy5lt7/Pe//hYr5/o89+NnOLMSc7Be0IpiojhiUqb0W+1j1/EzP/QceZ5TlJ7ceNJ8xmy2g9ndRWYZZpaTZYbRfkG0bGl0QYm5Uep4TJnmGF+zIEmaTBJP2GnTX+ii05Kzy112hzOy2fEXbqZLlDM4KQlkgNS6Zg1ai5nMaBUWl03pLS/TTNpMZYELC85dWOGnfvDTLC+2+IOX3uX2u7eZTCYYUzE93OP06hrXrlzjjZ27lKKN1x8NleCBsTDcj2HWbbE0UyRVjp5VLF05R+fxJ5gUU7byCcgQ8/YWqqxJJEoGtBdW2RzOOMgLwjBBNhPKw1023vguYdKk8RGz68dKwt6auhKW8P4eBA8qTXgPMfH+H364Ep4z2eYIiaO+MPOt+wnEm/clydrpo74DG1MbeFpnKYoSayrwddIOgmDejPdIqYjC8H2J/OFE/FEHc41GgzRNAWi3WrQbDaqsxi1GcUIgNdl0hghiuouL7OxtE+qAhcX+fNsumR7sI2xFs9Xg/p173Lx5EykVlnrdzaQBs+OTzj/4N/+KWDru3rtD1Apo97ss9roEEuJQE2rJ7nDKLA+5dOVRev1DbGU/0vzTAVPreGcnp/DHgx+VUERhQOAcodQ0ohCNJ/SCdjsiPBUy2nVYJ+ksNel1FLGRaCK67RbC9Yl8g1AprMxBSpDgjKQtY0IdQlXDmo4L6SxeK2KTsRgUeGGYpiVh3EQrSWAdlfGkpSNzAqclXRki8oJ0NqMRlhwOD/C0iALQ1tOONJ1+j1A2IEiQONxJ0EEhceWUpi555NpZrpzpsLri6bUlnXbAQvsM7e4pTDnB2TFVmTMdS7Y3huxszZiNBePDiH6/yaNPrNCMY157aZcvf+kmeWppxQmiXZsUHBeDhT7e1KaplrpqvPXGAeuTQ7K0YDYtKSYlaSbY3UlpNRWDdoJUAYEGGSnKzDOeZWzuGaa2hY2b3FrfwHlHU1l0V9EQJ1j5+Ppmo5EEztIQmoawSF9i3YQFX6FdRlKGbGYHHO7tE8eSb7zxhxy+8TWWl1cZixBTFihTkYSalbOLfOqJR9lf32TzzRdRZx+H/kloIoE9yjel5e3Qka61CaoQtSIJ90qyacX13/h9Tn3macJ8QrPfwVc5yhqcq9DUdm139rd5a3vEZy48gTgMmFUZzdygc8cJtcKD+Hg9YWseyqPivQ+YT+ceQg8fl4QfVJ1Hj4++/9HZavBeK2J/f59XXnmF/cNDULVifhgEXLl4kTzLuXfvHsPxiJ39PZRSdDodrl66zKeeeZZmq1Xbaz/0uz9qEl5YWODITaQVJ0hb97WV80jnwVgaUUK40McpRaOpWVtcYmFxobY+8SCVIMIw2zvk9ZdfZTqdEQca4QxRUN8owvB4AKYTMTduvY1zJWv9RU6tLLHY7dBuxDhTMpqM2NgbsruzzsrqqZrn7+tWyckhqAgYVhFOH39yd+Kots4JBLGqb2Y2z9G06MZt1LmInXuCPA04fTYiUJ7Ea6I4IhQRJtNMxjnOCdrLLSo9w3pPM3A0lGc8K2sK6QnvTag8OhToLMPalElpqAR4WzAuJLKSFJljllWMAOtARxUtXyCcp7O6yNKgTdxo4lyKNzmhCEBEpGUPrzpgK6w8fjAnjSLSMUErYHExYWHBoigwTpCnis2726TTCmty8jLDebAWisyRTwVnV5ex1SY/+n2nOX1xkW/97ut86+tbjPM2IgiII/BKMZkXAh8W3jo8EiccxhqGB/vs3rlDPs0YH0zI8hK0p9UPWVxtk85ylHf04oAoCfBSkmcjDvZTpqlj4eIZBkttlKhdkr2UtCNJb+l4rzvyGi4oFcQJ9LRhuRszaHWQWUycT6gODf21NsuNJuKdgvFkyvbmOls33qXX6dBeWuLMmdM8/dTTXL5ymX6/jc1yfvOf/2O2br3D2uoFyup4CKObty2roiTLDNtaMeh2kUKSnI9AG6LFJZbbLdq9LjppMD3cx00m2DTDZjOULQjygsXCsz2VmIVV9GxCujWEsiTMSrr/PhhztdU3tQKI/GAFLB7AJOq09L6O7/vaEs5aqsoSzJOL9+9vC3yUBHhUDRtj+Y3f+i3+xa/9Klcfe5xmp0OoFG+9+jp/86//ErN0xq//+r/BeEd70GNpeZnCO975rd9iZ2uHz3/+8wwGC2it35eEP0o0ggjf6tRWNGUJSjIez0i0xIYFeVWhogDrQTvP+bNnWOz1iOMQqSRSSIQCrOH27VvsbGygRd2SCXRAq5UQKEUUHZ+EG3FMu9NlNJzSbbY4vbjMuVNrNOKAnZ0N8jwlTppk5pA3r98gNJo8K46FAj54/7wAFC6Mker4JBwEmlhoQiGQWoOsq65QxKgQpJaEoUfLFsXEMkwzFtoS1Y0gjEhTw2icY6qKZrtPoxFR+owQgcQTiZii9GQnTL/DMCSOQoTJmY4PUcYThQHOGWa5JYoStI5QMmc2nZEFMWle0Iwjzq92CXst4pU+jcEieTFmNjkk1gnb6ztsmjZl3EK7qrYiOia6CSwttihsRRhAJMGZgNt3DngzLVhbjLlwccbyoIVSAaGMCDRM3IxSg6hmdOOK5mKDm2/u8u+++i7jLGHp1EKNQ48itvf262N9TBymOdIaZqNDpgd77N+9zmz7HmVaMBul9a4IgS0rmgEIr3FViW9FiEaDsjBMRxnWerqdBs0opNfu0mgmWGspK4Ox5Yk9cltVGAGlrx2820mHQTdmudekG/VIvGH9tsLHAZ1+g8+98Axnz56nqn4eU5a4ylCaujW3srLKhQvn0IFme2ODq489wmBxkVGryb38eJq/E45KWHJnCZY6tBc6dDqKKtLsZIcs9AcQSBSC3Ve/i26G7LzzLkxnuEmKTacsJR20Trh6/hzn5Sk6S2vsr49JRxNkVqKtf69APSE+ZjuixnNKKRBOvNeD5eGi+MGkrm67PtQn9tQKafvb+wwPhlx65NIDvN7HScJKqQe921e++yq/9t/9S+6vb3Dm8lVuv/EmmJJ7t26QFjP6SwNOnz7Dzu4u589dYHllmTAMaYcNvv6NbyCk4sd+7At02q3v4Zd3fIz3DynygqgZk5YZhfMordFaYF2FCDVCa9qdiKtXL9FoNFACpC/Bgg5DrBPsrN/n7s13EK5k0I5pxDGNRoNYC4SEvDz+prA9vE+pDa2FHlcvX+bK+QvEWqM0NOIGioBiYkmChLLwvPP6DdJp8eC9e+9vFRw1y/1Dg1cRKlQ3oZUcX+koF6B9RKIlwit0oildhdQBsZYQeghTRqOCmRdUZUUcBshZgSglSiq0FhjjmBxOaYUJSS/GWUcUKkLvkSZHBscfjyBpI3XdeirykpbSNMMI4TR745RUGhYaEe1EEYxKJkYwQzAsDV4UTB9dYFrNqKYKfIWzir3hjL2pZxYuUckG2mWcMIciCiydhiCIFEJUYB2NuEmjFbG5mzIxgt2Rpt/v0WwnOF9hygOkntLrJ8wmOVYk3Loz5Pe+epdvvr5D0GgydSCkorKwu3/A2aXj0RGj/V12bt8g3dqgPNjDlileQZ5mlKWjKDyz1KB8hTcVYeDRYYDQGoSkAqQWhJGmvTRg9dI54maTII6IPCTe4fzJ7a3C5rVPoRBsHwzZvfM60uQk2tNUkqYKsM4St5t0BgsIBK1mk16vTxRFtFotWq0mcRyzs7PFeHxIHAdoHfD9P/ojZFnFy7e2GN48HrQXWktWlkgpWFwd0Du1gBKWzuop9t99lXZacvN3f4c8nxIcjvGhQBqDCCRaKchTinaXuL/CWtgh29mlKVuMdYj3Auk+GnT2KD5eJTwXQnG8h0Z4QHxgLugzT8Z63n919qgL4fBeUhYFN9+5TRgGOGvmSfghXK5nTmA+OfI05+3X3+T0yhoXzp2n1WwS9btcf+XbRMNd7r7+Iks/8EP81Bd/EucgSCLCMERpjb1k6LU7ZFnG/t4+ZZHT6XQIwxDvj6ytXa3G9SERJCGVryv6poYizYjDgDjSeCEoSoOXkrPnTtFfaKOVwlQltirnk2TD4cGU9Tv3kM4Ta00jECx0m0RhSJ6lFIVB6OMrrrzIcELihWZjf8TpxSHj/X3W72/z5hs3uX9vm+3tMY2kydYbO7zz5k3y3PC+O+Q8FIIg1BhvMNaCEKhQ0Vtsc2ZpcOw6stwSB5pSBxiX0bSSylgQBVomtexiw7C9vUm72avx086RlRX5zNCMQ4IApgdjrA+J+wFV3qhVtqzDV/U5FIYn9PziJrqasBg4mqGs6d/W0Q4DqjhhnKY0I8VCq8mlBUGvkqTOg7Kc6oREytOONYnyKBmSphXbuzNSNcDKJlZ4jBfv06T4XrG+dUCcJAy6mrOnuzQiTZkbdNKk1WkymkVsbOywvfkujz72CCvLDRYHq7T7LYb7M96+dcgrb23w5p1t3rkzYZwaRFqRVQVh0gIZooQmjo+Hht1541XS/X1UNka4glanwXSWUeYWZ2qlOSqBkJbRqGAw0DSjuGbwubrYUYFEWc3K+YtceuQigaJu4yHr27VUyBMSj60qSlELGEVKoZtNTGbpryxwcW2Vq2unqaoSFUVMsxmHcwfmO3fukOc5VVVRVRVpmlJVVe34bku0Dmm3ugQ6phSapXPXjl2HUeAmU9zeiOTcGqtnTqHygq7uYBfPIO5sEE22aTlBrx2QhgJHnTeUCpiMPJXWxCJB7BxSvLtHa3CZho4AgRUKxPfWtfle8bGSsDV10sTX0/u6Aj6StqwrKOcd01lK5AztVkLcaNQDFudJi5LNe+vsr2+wem4NZyqUri2+j1rFHj5SO6AsS15++SXiOOZnf/bP4Lwn7rbYv3uHeH0dU8JLv/rrFAdTfuaXfolZaRgdDKmqirIs6XQ6LCzUrr3b21uUZY+9vT0WFxfp9XrA9yZ0PBxxo4FQtYutco7K1YnLB01y65jlJVcuPkaSdBkPc4w15LMpWgoCrdkrRqzfuUc5neCtx1nP/jhHhCXGzFCupNNuUp6Ae5yMKia5IQwDvvSV10gPRpzq9/mN3/wab7x8A2sFWiia6gB1dNlIN+fbg5SCZqPJcr/BSi/i1OnTvHH9Pm9ev4+QEllZelpxunV8WySvLJmpENahtEdIi5rn+UoohPG0Wg2CQDAcjuj12pRFgTWOcVZgqoRAFWzv7LB6bgkZevKyJJBgCrBVgHEeeYJKlkUQFmPOiDFKVexUOYls0vQG3VBkmScvHe1AcGmhxVppiQJFtxtx4eIynaZCVCVxq4HHk2iDEYI90cdLj5IFJQH6BOGcvXHJ1WCFssiYTQydRoILHOPhBKkTQt0l6awwneV859U7nF2J+MEfeoZRpvjSV9/i3/3+G9zanHCYSkqvwEukcZSlp9lp8MQzz5GN9miEx5+nk60NbGUIfEW70ySMFW48w1hPmhWMxjlCQqepCHRCaTyFUygfYByYoqKsHLLR4fS1awxOnUYpPc8F9bUvxMMNyO8dzhrwBuPARZKw3cELR+6BKKK/ssSFs2c5deYMjbl862QyYTKp2wtCCPI8J03TGu1R5Ny5d5v/6r/6f/Ktb32HsjBID48++Rzwn37oOkqt0UqSHh5gei0+/+znqPYO8bnldLfD1uYI7wyiChjPppTCYgqPsgJpFS63xE9qlA5Qp07TitpkrWa9ExASp2SN7/6I8fHaEc7jRY2xdfJIzvKoJeyQQuCs4XB7k/HmJquLfdpnzyHDCK0E9+9u8/Zrr1MWMxqJxDtbz4eQD9jKH7UVYIxhOB6zPxrSaLcoqpLEW3wQ8cTnf4R0a5v92ZT++fO8+fabjCcpOoioqhoxMZ1NCXSAUgprDXfv3eHLX/oyP/MzP8MXv/gnCQINJ1TkUtRrPxiOsWWONRWNOKK0jqwyJL0eKkw4PJhR5RlbG/eQtqQZKYyHojRURYVWisJZMmuYlpZ8d4hzhqVWSLcyJPJ4VEIomiy2JDpJmJmUl69vsPLCRf70n/45moOvcHN9TOIETy5qLnQCXruxyTfe3qTA0Ewirl05w6efvkIv8oRmghGa/b2A61JQeYW0kn4Q0GsfX4GmaUmcFMSNEKkgdSXCCqIgwnlJmddqWWunl3nxG9cpsgyTTpGiFtZKswRfpgzHU7rlgKzMUREUeYFCUxpDWeU0TlAXsVWJzSY1W85bWr6kl7SJnKEqLZEGLT1xIIiVpBEImknI8lKHlgbKjKqIybxCCIdVgiqMGBmPlwLtBVaIuargMetAcn9rj3OLbbZ3K4rygMVBk3a7S5goir2cl1+9jY6afPrJAT/6I4/Q7i9y+zVDrs4xNHcZ5VMqJ/DCEiroNht4HbC7s8srL73IqYUWncHxELXp9i5IT9htIlRAkeVMJhnDWcX2bkaVWpqJIG76uhe6tIZtJPh2hyKWzPweVTBm5cx5lk6fQidJ3Wz09sEg/qNct87UBBqPwnlJYUFFDbb29jBZTj+KuHTpIs570jRFa123Dtv13yelJIoi+v0+ZVnSbrf4zOc+Q9Js8U/+yT9na3MbaSueeuaZY9eRVIpJEqAuLeMHbaa3N2GWIdsN0ntDhiPPnXuHGBMiyhQjDBWCwkMlJLb09E3GYyLDLS2gl3qYULH3luOutzhnUQjWjl3Fe/Exk7Cbtw0FuFqQR4q5cMa8ipUS+r0O6XCPg9kIP9yjsGCKgutv3iAdD1kY9FlZXUIKX2/LpcA9VA1/FOyUc544Sej0uw9wuov9AVoqRt0uW4MFzGzKfpHx1d/4TUxpeOrZ51lYWETPe11uDombTKe8/NIrDIcjNje3qExFI0n44xCP98esdKzvHFAWFcrZWqA68HhjCVttglaH0XBMNw4YHexi8hmBcORe4qXGOoh0QlqUTEtH7jxOSYxwGG/Zn82Q3tJuHr/d7HUXWR20aSWerBqyu13w7e+8wg//0PfzfZ//LPkfvcJwb8I7m/vcvjFlbzgmaUVcWDzD97/wLJ/71KMstQPu33ibve0UpQK63Q5KaSoDFsvWwSHTm8dXfkWZYXyAcYrAxxg3F7iuHMqXdVUsFKfWBryqbzPaGyFMUbtoBILB6gJVVVLmFcU0h9LidU4hKqQoKb2n8iWxPV7UXXqDzSZ4k8/FcCJGhUfJgP3UMHWKhrU1GsHkdNpt4lCjpav1UaxjMskxLYtxBTZ37PomU0KsF2AdQlSYE87TRrvB7t6IM8t9pnmFqRyRDllbbRJoQb+vkcDm3Zssf/40C5022wcZ79zP+fp3b7JzOCZKYgInkEoxaDfoNhNubu1QVobh/g7a5iz1ju/Vz4Y5YTehNI5ZVk/3J5OM0V5OEoT0FgPkXG8jncwIvSMRhkAZdNjAqoCytUhn9RRxszG/KtwR2ZV6gvCwHviHnB9ZSiBBWkGGxWSeSDnK0vLmvXfYvnuD8+fP0u8vEAUhSkqCMCSKoge70kaj8T7tl9KX/PiP/wSPPvYEw9EEZwyFO/4mfefuHdBw7twlQgRVa0bmJQhFvjDgRWf5ncMhRV4RxxEiChCBptFqIlQtlbmgAy46WFxcwSuY5jm3KsNveE/pK37CGh799zKYw2KNxVqDFAKtNZW3tfiycxTZrFZZ846ltVMorSjLHC08XjoGgzaPPHaZTq9D0m7j5u+ZNRXWWQQS6zxVdQL+EsiyjHv37rE/PCCI5m+UcbQaLcqiQkqF9JLb128yHo9pt1pMJ0MuX7yEViFC1z1sqRSHBwdMJ1NOnzmLDgKqqkI0Ek7ScxMeTFXV9EepsM6jHDQaTVwQsb17yJmlFYp0gi0yus0G4+mEncMx6JB2d4Fzl88zHA7Jt/boC8UsndQ7ikBTVCXbw5RRdnzykypiMslYbkZcXG6yRY/f/8Z1vvTVr/L884/TFo5337mJNBXL/YSnnnmcC5fPc/7iRVaXeiQY4iRhYekU08wxLkp0OEPKuhL03nJwOGKvOB6VoCOJkhLvFbiAhk5AVhTGIIXDSAhkTBAHXL56BmEdUlT/P/b+PMbSPb3vwz6/5V3PXntV7913m7l37p2FM8MZDknRFEVJlGUrkiLHUCQkiIBECJwgSGJD8RbAkGTEVhQEsBAhQGwgiaU4tmRZlkakSIrUiMPhbHfu3LX3vfazv+fdfkv+eE919wx5q25LCvhPPxfVt6v61Klfvec9z+/5Pc93IW17RGjY3D7H0VHOBz+4TdwV+LCCUKKEobCeKgZhfXPNT3tdnEWaHGxFoEJCrRhlNZWA41lN5WBVayaLgpZ0JK0WTnhmeU6YRiAkWW4ZPx4jQ0klIu4UbUY+xtUWaQ1Wgj3jpBQHAfMi4Gias9aPmRcVk4VCTyq2Wl2k8kSxoNvpIIxifDTj4WHF9dv3Ka3j8vkLTzS8VaCJtWY+niIdJFFIt52SJhFenH49jAqpK4tflFQVYCxCatY3YoIwpsoL5ocFXkpsWSAxpO0WgaqQRpJS0U1b9Nc3EM/oqnycZdjHrqMuUbopQJyxIBVCKkIVIYTiaDjih++/x2def4Og2wea9sPJz5pMJmRZhtaa+XzOeDKmlha8JFvkzGYL9o6G3Hx8yC987csfu47rN28QhRGvvvQqAsfg2lXUdMpkMiFdXWESB9xzlspXDOI2YZyiwwjdbeYYkQ6QrTaBUEgrWFQ1thYUBLi1jUbAq3/6sPTZeK4knI32mMwLyjInDBp7lrwoGi6+kpTlopG7lNDr9Vld3SDWCaX1OO9Y2VohjEOkUiwWOaZuuPFlUeG9IIgD6rJikZ3BzAKm0ym/+Zu/ycPHDwmCAK01/d6AdqvNdDrl1VdfpdvtcXw8JIpCBqt9iiJjOhvivcJ5h3WOIAgo8hyxPOp4D/miETj3HgaDj68y6rokUILaOJK4hcWhI02rt8rBdEq330cJyd7+AdobdAPsJEhaRGnK9rltVnZWefWzr5KNZ9x6/yZv/+BdIqUIg4SJCimK+swpvBaa+aJglmsurrZZSUsurHeZZDPu3LzD+uo6X/j8Z1lZiTh/vsW51R5r3RWSTo/HuwccliV11UZJjY+6ZPNjZkWFF42Ohy9LzHiCyU7Ho8ZxghewKCw4SyQDVBAjRI5VHrv06/Lec+nSBWTkyGZHrFyIiHqeSIe4SHGuXqN7OcJ0apwNMdQUrqbWikQp/Bm0VFOX2DoHapJQ0YljRsWEcVmy1k248XiECzStfspqK6AwjgAoqxqVVYShJi8sRTlDpSl7leDDI8VcRETOI30jOOXV6etIgwjRGXDr7pDpIGVlELE7zvBpQsdoDo/HBLFldS3l0aNHnNu0xDJhp6vJ1zbR1mDrHEczazg8HJHnNZEKGPRabG2usbW+ShKd/jaujAWvmBhLhiWJAlqDAUmrwCJhAnoa4KVAaEHUbhFEKU4KagQqCdlaW2P7wlbjSuJ/VOb1k+L6lQAlQQtPoCDSAm8KZrMxo8mIOLTcfXifb37rm/TaXZJWymg8Zjqd4pzn/oN7LPKMOIpw1lEWBSqULCrDwfGUx4djRoUj4wxIZ5qyv7/Pvfv3GaytgZLktcOECSoMePMnvsitBw959PAhr732KS5cuoqxrtF59p4AWNnaINSag8MRs9pQVZa0tcIXv/hV4jjklVdOHw4+G89XCWdD+tIR9iK0FpRlQS0MSRpTeofRIbVpKuOEmsnBffRSZWI0mzUTVpeSJLJxmYgEYRRSFJ5FYQgDR7cbsuicoZLlfKN05jyH+wdLQQ8Iw2ZHHY/HlGXJV7/6NaaTMZtb6zjrmBcZR0fHhEGC1AqPpygKbly/zsHhIVLK5vMbt9CquTQ/ddqO+nAfKSVpENBJQ7yOCHp9joua3uo6qRIc3rrLZD6lnUbsnFvnQq9LnMZcuXqBIAyorSerK85fOser167S6Xf49u98l/F8Rm4gN5b2Ge2In/riNW48us9sNuKj3RKzmHFpNSI0BR/d/pCVl9/k019+mTqbY4sMOR7RkjXZ/Jj51LKwmsOje5jFnDv395nmc0rjUSHY0uCtwmYLiE5HacwWJTO3wDvYWd0hFCl4hxQlyim8CCkwOCPRUlDjCIOAwkpyW9EBrClpr0X4QUFNjaolw6KgVIJenBAkjrw8/aQ0LuekJiMRBQSGbr9DagUbtqLdbhOokH9y/5j+esRPrvYYHk/RGtJAM85ytEuQ3pNEAZVtwPhVskEvGKCdbeQMhUfK0+/TONIk7YQwjnjw4BGPDkYMVnrsHuc8ePyI2axma2ODfrtFdnzEjZv7bO+sMEg859YHDI/3UAqkDBmOZxyNZzgLcarZXO9x5eI2UaixZ9gs1XXdIJdqT12VqJ6n3UrxTlDQyFW2OhEVDqGa6f7csBRL9+A0ykFlPNYLvGlQUs8bQSAJtCSKNO0kIFKe8fGM8fSI0pf0+j2OxiNu3LrF+toaXkkePHzIgwcP6Ha7RHFTTHljSXXA1tYaSRoxKQ2Ppx8wQ1FEbaoz8MorKyu88847fP3rX+fK1WtMJlNG4zFhGCIkIDznL15ka2eHfn/AxcuXMbUlCEPiMCQNI4xw3Ll5i/vchaSNUhHWClbWNnC2oN/vf+LN6bmScMQCBETeIGqPryus8tSmAf4HXhBIQEgCX4I14Dyh1mzEEikEIYZqtIuRkpLm5skLQ+UaZ9mJFtTm9DfZBx98SJ7n7Ozs8Kv/+FeYTCZcvHSJP/CzP0cYRUynU8Iw4tGjh9y7dx+pGuzp4eGQ0TCj1xsQxiFhFBDHEcfHxyyyjMFghVarxd7e/hLt8cl609Yb5sWEsLfO7fuPQAm+sPEKR3fusJiOaKUh/dU+6UqbC5d2OL+xyqWLO8zmEw6OF+zvH1Hkhrfe+DR/6k/+EtdeeYm/9w9+jQ8+vLXsX5++hgc3v82N3QXjRY0SUC+mvJYWvNWt+IlLLR5kD5hXx9SV4+5HN3BXthmPAx6O5zyelMwqz3w+o5pNsUVGHIV0OitESpB5gVaSQU+xsXL6gLCyDeNMRwqdRggVIciojUc4h48MDo8xkqosCHWMDBRGlBhfIwkoqXBBTT4rwaRESMoiYGYKpJ3jdEitTz8ahLUj9BprA4qiYjGf4XDItCEfbG1LVg+OWcXSl4ai08Ji6LY77GclH9yfMuglrLhGqyLWETtxzFRDLQJKmTS0V3N6G8DhCISj10tI08vcv3/A7dsTAl1x8WKXtdU1FpOCVy5cZOg0716/z93HFSJt01vrMl8oylxQ1o7j0ZzKWJRSDAZt0jhAy6UJkjj9eih8A+kyFo3HVhXep2it0c5hI4nshYSBRnc3GI4qcloEIdSmprKGxeP7XLt4lV6vjT9xQn4+9XSsq/E+wHtHUeRUtmI6m1BVFVJK6towmc44PDrCeo/SirrMWV8dUBQFk3FGHEfEYYTwgtlswfF4TIFqlAutpzIV9hMs6+CgKd4W2QJvPYu8gb3de3Cfoqr4yZ/8Sb7y5c/zK7/yy/zGr/8T8kXemDFoTRDEOOnpBQmvvvQ6m9deptXuoKVF6UYZTin5iUlfz5WEq3yMByqe2s0LAHuCGfTLQYinaZU2ope2bI61zsM8N8teo8A7jzVmyRvVOO8p/dmp79btuxhTs7K6xqXL17h16xYbG9voIF7iUjWzbMF0OqW/skYUdxisbNDurNBpd+h0uqStlDBqPN+2t87hvWsuno4oquoJUuP0EFhrWBQeZyUu26PKDBcvn2f84AGz4RGt9S7XXr3Gqy+/hK9LVtdWmS4WDKczhBJUpqabtMms5OHxlE7i6a31+EN/6GeQUnHn7sMninEfF+985zd4XK1hwx5SGCJRcr8oyGYerSucUJTzfaYLw7z2/Ob1XaQ3KK2J44TZZEg2nZJq6EZg7ILRqMIKD9ITaceFjZBB6/TNcaXfhgBkKNGBIlgiCQgihHPUskRoT0wbESQQCqTS5BRQOhb1nEXgQHtEralQGOuh0piyYKocdaTROjn9ZTGGOmjzuO4R1JLpzOKCCBv2CMwa844i2hYkgaUUMXQCfDZClTXaC+4dLtifFby1VbGxvcqOPyabfoAJ16m6m6ggpnDLtZ22DOugtijnicOAK5e2WVsbsLd/xO7jCd2kxXZ/jU67R1464u4a9x/tEiYF4bzk6HhCNisQOmE8XVDXFav9NTqtlDRNcc5TVwZ1hp9P0o6RVUVpDIEEbZv3IKEmKEt8FIEyBGvruMEGR3sl2WRGtxfijOP4aN74P+KWgk8nhJ5npWPOVh101mIlVJWlrHNskTGfjkE4kiRGIFgscu49fMQ4yxqCTqBJk4SV1RUOjo4pSotWgtI31l8LCxVgHJR107pzZ2wOg8GAl156ifl8TpxEWGvRscLUhgviPGVRMej16XW6BFKhheDc9gaLLGuGuU5y9/49XH+FtN2i3WmTJBFprEnTFXqdlM4Zsp7PxnOSNZqdv7nwJ32hhkHXWH14pNBLVUsPy0pXSIESohm+BYAwCN+gKrRqaLGNnKVACHmmx1yeF1RVRRQl/MFf+EN85asZYRCggqDBCycpSikuXlS8+eZbBEFAq9UiiiKklEgpn7DuntWK8N5jnaOB3Jx9PaytsbaxyM6rGukM/SSgPtojjxSvfOolrr7xabr9Lpvrayjv6fW7zEYHzPOc1soqx9MHzLOM89dep7e2xY3rb1NlMzZXVvj5X/gK3/7uu7z/3vVT19EJp6hSYWYLrAqwSrCfWx5UNRQjeoElDgJqEVG5EOMkyimk9HjhqJGoOKYhMwlC4VEo5jlMJg7rBUVhGJdn9OrDoNFKiDTgKX1O6UvClqT2FUYavDSkYYfAtVmQ4ZVBo8mmC6RK0C6mkBV57RhWEyJqAhOiVFNZ5jY/U6e1xpG1etx3jqBeo60kLkrIg4Qo3CRsx8ixwuf38SInrBcYY8gmC6RLaK1t4CQYbRFa0kthbTZld66JWhtEShMiqfXpvcdpltNupcRS4GxjC9/tpiTpDscHAfOsYrZw3H14RFHXpK2UCxe2OZqOODge0ep2ORjOMHmN8444DEiikEDphphQOqT3BMEZSbgVI5UAYwgEBAGYqkKqhKTTI4gNVR0S9QcsioLAlgyHBaaOG0aa8Lz0ykusDPqNcwUnfjruuXrDdV2iUAgvoC7AG2pTEgeaTjslTWIC4ymNw4hG4tKZxswzNpZFZcgnM/LS4o1hsciplURGCXltMdYhpSA6g8bd7/f4qZ/6CsPhiLIsKKuKvMjJFzm9Xpf5fEGeZ9y5fZNsPmPQ73PtpWuNG4tsNt/VlT6BUuxc3ODKxTXiJCGOQuI4JEki9NIJ/pPEcyVhLaGuLVaAlBZvPVJ6nD9RIwOBRdLQbb1vErBYSk0ESj3RnJBPKLIe5080fZs+71mc67o2nJhwtlqtRg3NN4ckuzwCnDhknCilAT/iG/fsdPdHnTSatXwSj7nprGoej0VIR6Ib2mW6kvLVP/CTfPHLb6LDiHnpaXe7DeURR7fTZ9BJUb0Br8mIxWzC0fGcx/fucvOjW+TZhPQzryMV/MzPfJFzO6cjDs+nMCpr9ocFeW2ohUBYRzcUrCQ1vcBhgVyGTCpHZQXGa+aFoxiNiAJD4A1JLGklkjgI8DLmaL9EO+hpSKuaVJ5+PRZL/QxJQGUcRmR4ldNTEbkxZK4Re5cqI4o9pasQ1hCLEGsjPAGGmkVZUeSGWVlQCkHqJD6UCO+ojKU6w21ZGYuJUhZJRKJSppEEFWIJCNMV4n6L1kVBcSS4HY2h0hwujhi5YxZasf76F3GDHWZ1xu1Y4BBULqZXR1Rhn0IEhNajq9PRM44GYpXEIUEYUExqZrMZURCwvbVBWVTc35/y3u094ijkwvYa/U7K8XiBThI2N9d4fDBkcTTDm4pBr0sYSOIobE6ecunTeAaOHNHQVqUAIR0qUriqwgmNH2wgghi1GFJnFdmjR4RSo3PBbOjJoohWGnP1wibtdrqUrl3CSX+sWDqrbnHeUtcGWzsi6YhDjVKSViel1WqhaF7jrChJjCEOUxZVRZZlVNUR80VOEEYkUUysgwarHMVk8zG7+0dkeYmMJGFw+uwiCDSbm5t0u13KsmyEpqylruum7TGZcPfuXT788APKquTS5Uu89dZbzTwhaDbeL3zhcwBsbGzQ7XbRS86BlOJHNM4/STxXEj6RgxRymShdQ2I+8ZrzHvwJblhKGg6zfCLwI2igbE0hvfzcN89xQm12uKalcEooJRv9iic6D40amYRGhgp+pMp9Vg/iJLGeODb/7mr4RFOYM9sAZS0oypK8LPFCECrHxQurvPTmG6xf3MFR42qIwhZlUXA4nVLnBb20eVP2vOLatZcZHjzi1ke/wa1bj9m+eAFbD5phoxPYsuKN1146dR09b+jUc8YiZKPjoCoQzhPYmsQJtBFYHGUNeR1hCVFaEfuMnlywHUFHlvRbmlBCVTtqaQjKgq2+59q2YrUlEOb0m6qyDbY08B5ZebyoUO0MGzX3xmxiqZRDqBGBmmCFJJQBQRigfcg8yxnVx2gTIm1A5C2zWYEPAywFQjRThPoMLQ1tLEKHeJki4g4kCqkVgQyIkwQRtJHnPk2+eYEHYY3LPNPwNpk9wqoQee4z+JUdZk6xwOKcx6CQzqCdI6gtwtSI6PTkN5kv6HdaxElMHEUMxxPm84xKBbg0YjLLuHl/l2lWsL2xRqAV02nO8SjnQquHsJa6qgmlQCcxrThGAmkSIQNJoGiUwIrTe9MnKoVaQaxAKsUk7GHaG0x9SiAUfanIDo7IFxW5q6nGJcWwJK88RTeh+tkZoVoKbvG0kIGnmt5nJWFja4RwhKopvoqyIAgUSjW5QEqFc56yNhwOxyz2j8iLxtRXSoVxBmUtXSEZzjMW8wwVtvBCUtamgbw6S3WG+7T3TW+33W6TJMnvyg3GGDY3N3n06BEA29vbbGxsoJbV7Y9rmJ8k3U86iPvxEP+83/giXsSLeBEv4l88PjnB+UW8iBfxIl7Ev/R4kYRfxIt4ES/i9zFeJOEX8SJexIv4fYwXSfhFvIgX8SJ+H+O50BFv/qlV773HW4dyHiVVAweRHqUEWiu884haUHqLxRBphRQS5UFoReEsxhqEbMgazkEQRI0iUtUIxHjv+P7/9/hjR/H/zl/6H/kwjCiKohF7zitsAS9f+zxbO68SJC2Ekk8gbMfHx8zmc4qiwDmHUooojIjjFCkEQRCwtraKDjVlWVIUNVVpKYqcP/Nv/NGPXcdf+MWf8lrC3Na4suKVnW3+4JffItKKh3tDHh0PqQKNS1ukK2sMBn1qU2O9Y/fRIfnhAW+eX2O6qDDW0k0jHh8OGY5HhFEICPLKMikq/rP/+lc+dh2/9JNX/dvv3aeuG4idkoJQC7TyJJFm0I2xDh4fZPyFv/jH+J/8z/4MUki+/f13+e3fuc4PfvAR9x7tslg0zMeirJFILqz1WGvFeGepjaE2jl/9wcOPXcf/86/8X/2iKskWGUkU0mm3KcsSYwzGmCcWUoLGLdtai/eesqyIoph2u0VZVhhjqaoKpTRxu01VNRPyEyiREPBv/eV/+2PX8R/8h/+BV1KQtnqkabv5Xu8Jo6ghDFRFo7wXxigVYG2FtSXYEukbvLvxAuclfgmvdBacb+CU1nmcddRVyb//7/27H7uOOI798zgs/POG956iKD72BwXB7zZf/9F1LX3JntVF++cc2Nd1/bHr2D088CcIpBN8y4n2WoOO+rFv8L4RB3tmTT/ujN4gmxrmqveukdv1nrdefflj1/Gzf+Jf8+1Wh1a7Q5ymaKkJtEQrycb6BlESk2U5RdXI3nbbKT/301/jM6+9ShroxpbsmeczQElDIKmMw9oGbWWM4Fo/OvMGeD7Le+saOIbSaCVQSqGUwjmDcxZowMzUECpNpRr9Ve8F0nrQEqkb7yZjGmcHIeQTGNnJhT0RiP+4iHxEREScxNigwsQGodok3T4iCqmtRTjLbDZjOBw2ivzGUNf1EziJ0opAq+aN7SyLfIHPHUVRUdcW7xprldOi9pa1bp8ODumhrirGsylrqwNqX9Prt3Bpm43XXkG3+xRZQW0tq+urWC+YlFNqayjrikAJJuMxpqpJopA41MwWJYtFjhdn6AmjqOrGzURIaMeSVhpQGEsUabqdmGxREyqIo0b9/8HDfW7efsy7H9zizv19rGugaXlZYWpHWRqms4rLm112VprN6ixmVl3XzKZTlFbgPVmW4ZxD6wAh7JM3zVMspaSuS3TQ6AlUdYlbSutJIRt5UxpoZHOPQFkWTzbrj4tOe0AYKKoqJ89GpGmHOEqwzgCWKE1RUmDrCm9qtArRKsUYjbM1ghptKqyrcUI2TjJItBJYC164pvDQz3OQ9D/21yWU85kQv9djP+YR/yLxSTaGsx7zLDztxGrsLIzaCeTzaVoVT//8se91S21c70/gq01CfvbnNwn4qSPPSQI+iy7s0CyKmspMCRYLtFYkUUQgFHlRkbRaBHGKarchThnFMb/6+Jhb4javr61ydaVLNwyae3hp4xbQ3LMey97BLvcf3MY6w7Wf/YXTLwrPS9ZwEAUhCEFtGx0ARVMhSKCqarQICH2CMQ3LR0iJkhotBEVtKLEoKcE3lVAY6oYQ6dzSrsRxFuIwacWNKAkC5wxRFBO2VrFCN84Wrqmk6rpGa02SJM3Xn8EIm7omp3kBlFDMZmPKqsJaMMY1zL8z1rG90mOl12VeFjhjKWYLxkXJfO+IojbErRi9ucOFT32eR7uPycqc+XRK2u7yqTc/y1EgmD54gFZN8hRSsbO+zvF4hMURpwFBLUni08XUIyVQAoJQstqL2FlrIbXieJQBkjDQ5NIQKEEUhhwPp/ztv/trfOs7HzCfFVjr0IFqmI7uKbY6L2tuPR6jEOz04zOTcFGUzLOMJIlREqIwQiyp3XVdEkUx4Jcb9lJLGk8YBg370DmkaLQFrDNY15yOwjDELE1m8zzHnKHZMJ9PWV1do9XuUpc5eTbG1QvipIfSGmMN3kIQhEgpsHWJsx4lNCiBs0u5L18RCI+1BmM9VkiQGiVFo9lwBnlFeI8XomGI4XHSgn/qSO69/BFikjhRZxMNkxHhaTJ18xzCNx67v6eb+b9APDW5WvLgljh54ZfvgB9JyE3d+mySfvr3T1g9P+PC8TSZn6xENNwD//S5hfe4Z75HLKUN7NIH8cmfT5i6p68jjENCFTbaGWGADCNcHONaKbbTI+v0MFFEGcb4IMJJjVsYPrpxjw8f7XNlpc+19QGf2lxjPUkaWV/fGPS6fMHtj97n/Y9+SKudwL/0JKx0o3XrPYYaJ5udSgmB0IqqkDhSkmQbk+8ifIn2Cd4GiKiNskOkKfCuqcYE8kkl6pcSmFKoxtvslJgUQ8qqIooioiBAaEXS6VCUzY1a5DlZnqOUIgiCJ8dhs7Rn8t5TmRprK3q9HlEYkBc5ZVliraeuPYH2mPp0WmqsBVVVEKdtvPVEQYDqDphnOf31FY7GGZ24j9EhFCUSS5UX3L19l1feeIvNq1d4+OAxazvnUNQc3HtMUVWNmIiAUVHjRIA+I/lFgSYKFZ1+xIWtDp1WCDLE1xbjIQgUUaCIQ4VWgvc+uMu3fudDhqP5krnYbAJhoKm1pSrtk4p0UVgeHs4ZtCOi4PTKryhytFQEShNHMVJIqqrC2hqpGv6OtRYdBJRFhXUWpTTSeWpjmxNKKLGmpKxynJeIIufkTe98Y8nkzhB4kr5meLzPymCFiAovFXvDGaGe0uuv0ut0wJYsshEySImTFs5WlEXWVFZLEyiLRAiFVBJfZ+R5Thi1kSp4YkJwWjjRfCg8woIiwOGaZCw82jUuNSfhUY0/2fKz5t+W9N1nE++/hBz8I82IZUXnvSMKQq5d3GH34JjxZP7PoZX2HPHs7+5plN6Wzg7iR36wQOGbDcg/+9VmjxJLEQt/4vRzxsXxS3qYU5LZYI26N8CmLWSSIIIAqwKMavTIY9dsjBqHMRV3TM3BfM7Xr9/g0+vr/NIrV3htYxWJwAuPFoLPvPY6n3r50wTh6cy9k3iuJBynjY6nwKEDTykkxkq81+AjZNxGyz6m6hHHmrXtHvmi5njvAB+uQRiD30UIi1Q1KvQIb5BekOcV1nm8UGh9+vF7Wk8JAk0toSwWbK2uYFyjAzxxY4qipDSGbreDtY7alI2t0TKcs8s+p1uKRjvCMEBI2Rhr0jw2DE+/PHEa4z1o78nzgnanRZx0mBeOO7tH3D/MeOOKo5iPYTElz6YcHh7Q7XY42D9mfT3io/0J61eustKWZFnF0e4BUiq67ZTDxS5hFHD+/M6p6zippNNQkcYRcim3UktY6STEkWaRFSjpsc7yve99yN7ukNoaQh0QhppIa3zsyRbV0iFFNJWq8OTG8HCSs945/aaKQk2n05iBVsZQ5jlxENFKU1SgKMsS4SRVXjVvNNfoD1jv8dYSxTHeOwItUMojvSSNI+zSy00JSauVYIozTihbW4wnE8ajY3phjTYZq0GLsJVyYWA5v1rjUQzHAXvjKdPhFBl3EUEHVy6oyxzfHE2a+YV3KB0Txw0NH0GjBWFPb4tYCUiL9J7XtxO+8NKAo6njB9ePGOWQe/kksXjv8QK89AgvkTS+jKCeVMZOWJQ/6d/+C8SJ8s7yMnr39Hq2koQ/9pNf5B9987sMJ/NP/qOWLZZP/tjf/cWTboN/+pen/7qsNJfkv2ZD9r5pQTTcW5omxln+HiCdR0hPJSWHnTZ5t4fWmlRq0kCzkkSkOqIfBSys5VFusN5jTE3cTrm0uYE/2OV7u3tc7vd4bXMdsZROUEqSxgnTbMF4OIbzZ5scPVcSBodUIJCk4RqD7jVayTpx1CJKV0mTPvncsPfBPc6dW+etr/4ke48P+N43vkFvsMra5VWMn5DNDphnRxTlEFsdYswM5xRF4SmtRZxhkuelajRdnVxWoG2SsMNB/pAiz0mTPs4LqtrhfHMB/ZI+7bylrgokkjAIaMUR3V4LpSVVBSb1ZPOMsixJktMvz+r6CliHRuO7LdpJRD05JvIea2rOXdri/GqL8YN7LBYZtnKEYYiW8ODWdbS8yt7hhLfffofXL60xmcwQUrKzsc5kMWW7leADxWo/PXUdrSggUE3PtqotoQ7Ae9pJjBKy8fHzDikkUiim85zpdE7tHSuDHq1OQhhqrHPEkQZCrIG8bDQ6ojhgVtSU1el00J3ttWYAWtbkiwVRoBDSAIq6sBSLRignbbWaI6wU6EARx42bSRyHzOYLggDWVrtUFYSRxDkoqxKBJNQgzrhre9VDdlYijkZzdjOBkykXWjVfeXODNGrossZB0pP00jYPD+fcP9ylUi10a4APFGU+w3mPDkK8rfG2RusQISXOeqzz2DNU1KQTBNKxEoe8frHHVz7dYziR7Ay6HM0Etw/mDCdzyrIpEpx3WDxGNGLqtRTNGxtHiCPEU3hB5dUyjy7nKKdfjt8VTQ/2mYTZzHMRwOdfOcdGtUDXJUqJH+vDfkyv1T9Hrl72jz3+qS3ajwzanvmN/NOE+myv9+RxVVU1UkLPyEZ+Iq8760E3A1etFOeSiPU0oRXGREHAVhoziCMCrXmUlxyXc2pryfKcdqBpr6/zJ66cJ59OCOczfvMb/4zZbE6WLZhnGdNFxnQ+ZzFb8KW/9lfPvCbP57Zsa4SQ6CCg07nAlZf+GO3OBcJQIIMUvGY8nLL2+UusrvRQeo2VtRaf+qxnOp9x/vxrbG5uYOqCvJyRL465fePrfHD915FaoTTNdPqsyax1eBzGOLTQOCdIojZaK/K8IkmapyjLZqruEXglUVKgdUA7iUniRghEB42LbVnUzXAraKySnPeMRtNTlyFRtOMQKRVxmtLvtNg9OGSwOsC3OpRaU8+POR5NUUkKQrKxsc5sPOT44IAk1CSB5OHde6xri6k8sRJ434gjFVlBaedcf+/9U9fRTiNiLQm0gpPjs7ekoYblJD9e6hIXVY01lqKsSdsJa2tdup0WdW2IkpiBUJRlxWxeYGxBVRlM7TFVRa1Pf12iQOCTkNl0iqfRg7UmZ7EoUEIThZKVlQGtVsJi0bh0NPqsmjBYijxpUBr6vQ7Tad4IQanmXN+0I56eVD4ujo9HBGsdLqwExKKktbrK5Y0QsThgMq4hSknSFE+NdJ5zXYEv4MHRPuXiiEhDSwjmNiSrQvyyLaEceNu0sbTWZw+QgWubK5xf7WCd47vXS2alJUwT4pbjtZ0us5ZAWE1IgUKRGcNR4TmuIuY+Q1iPqgNWI8F6JDleGEZeUnnBNLfkpuk7f9L4kTbEj32fEIJXbcDlwzkvRwk/FJLS2TOP9/+8cVKBnyRN5x1VWT3RqHn237z31MY08yTAWsdH129TlhVvvfmpJ4/5JG2ixqatwrsIJQRbScRK0igsJoFCSNjNc7pRRFbVGO+ovaO0Bufg0XRBN0r5/PkLVHuP+bXf+h3u3X2AMYbaGgzNOsTpXdUn8XxJ2BtCFRIEAomlnfZp97aRIkch8V6y0u8wuHiOVitlNp2Agp1rVwgPDgl1QhT1iOI+7e42AsPx7kfU5W+CaKbmgVY/svv+XjHo9ijrimI6Bzxl0cCg4ihkOls0E3cdEEUh3juctSjdqE+10oQg0HjhKU2BExG19ZRlTVHWFMWI8XjMZDJhOp3zZ//8n/7YdYwnC0ZVjg4D4k4LH4X4JKa/s0U9rbHTGRKP9eCsoKwtAk+312O+KLh74zot7agkSAf9douyyFEKWlHEEQpvalbj0yvhKNRLSUONVGIJ6bJ04hAhPEXZoFqcg48+usNwDlVtWUsiBr0Oznm0VsRhxPHBlOFozmxRNBXfUh6w1QrObrY5C97gbIkCWkmLOOySxjFp0hg0GmOQyhMojfei0eT1jnackBUFzlasr60ShpqF8hhXE0YBAkWeF+DqpWzqx0cZrHNYKKKg5JUNTZJkMD1kOp8RtFokaUqoNdYanF0Q1nNWGFPYI2Z5SZnnLIwi0yswuIqTQeOVGISEgQI0VVUjxen3aS8J+PxLG3z62gpRILEu4HDu2D8cMh4fIWXIwXQBdcVmJ+bSRo/VLcHdvQV3Hgps6MlnhrKSbHXgM5c6dEJPoRyHJuB7t8fcelwyPdsN7EmcrPj3fCWF4ODxETLpsqI1oRAEnQ75otEylmfMJp5nBdZYZvM5QRiiVINYquqax7v77GxvEkcNbHVZpGOt5fHeASuDPt45FosF9x/usns44qVrl4jiCOebsd5ZSfjq5cuYuiZTirlU5MZTGZAhBAImteWorMidZ24clTPNHMw5cmMZL0puDmckOuTqyjk+/ZWvcTj+75kOhygaVI934uNPDj8Wz6cnzMkVcSzGh+ST+2ydv0qS9ohkiPeSumrwoFGgyaTAeohbMecuXKKTtkmTqLGZd4ZisWBRzEFYhLQorVBacsZcjjiIMMYCgrKqybKCqqob/G8ckOcLup0e3W6boijIsgzhFQJHWVWUdQW+JgwkQWAoC8t4NOV4PGI2m1GWJVVVUZyhn1uWFZPJjHa3RWt9jUlZY4oSEcQYpVgsDog2+jgkQoSEUUxV5gSRotvtMBuOyGZTItmwZkIlOM5zVtKQnY0NjPHce/SYOj99HUHQwKeUaIZfxnqkEFjbiOZXxjKalRjjqSuHUDHOetrthDDQFEVNt5Oy/2iEN5a8KJ9c3ydvVwHujJt7Pi+oTMa57RXWVgeEgV4OSgTBsnIUAowtWQRQV5bJvGQ6yTBhxawsiCNNv9tBIDDthNkixy+hZd6WCO+RZxx+o0hhvWC4UHRkjqZgMp5yPFsQ9BQbasY8qzH5nPFwxKSokd4hvSFSnv3RhAdjy8yM2bikae00WrK2LshKjw4itI6o69NfF+EdcSS5sNni3EaP3mCLwmoeHwy5ffcRH1zf5/6jKcczy2FWkAcxf/Cti1wKh4jFAZHyTKTEtEKUzskWBWtxm2o2pRot6NqYQSCpq9O9/07wD08r32dE2ZdfcXhcXVPFEdWFTV7aXuMv/vwvcO2tt/je97/PN/7ZP+XmRzcoi4KnOmoneIqzEQnwbLtBkC8WDA+PSTsd7FL5rKprRpM5G+truLBxAyny5v3rrOFg/5C7d+9zdHjEeDJmMhojwha379wnTSKSOKI/6KPO0Hm++tKrCO+ZAnu1Yz8vqD2ISqODupkFeJjXFi8EHaUpfAMeyOqa/aND6qomEuB7LTa2L7J59WUmx7/VDJeFbIwrzkDPnMTzSVnGIdI32NqqmvGt3/q73LjxDldfeZWrlz/Nue2rJO0VZgV4qRv16ConDlK6/R5pBK4ecbi3x62773Hz5jscHP4QIQzOS5TQeOyZ+Mvx0ZjCGOIwQYchVdXIUBZlThgqxvOsedPLVVqtZFkZC6SnQUD4hshQFgWTyQHD4wlZllO5kqIsmE6nHB0dcTw6OnUdaRyShqsMVgcsypKHR8esdhP2j6Z8eO8YNz/m/HqXvHDsnNtASU0+nzAZHxGFId2VVd55531i4RgOZlAblPAcHB5SVYbKGgrn+MHtu6euQylJKwlpxSGBlMRpQDsKKBY1RVZRWcf+KAcvGY9m3DseogNFK01wztFKY65dfYUb7/9q0zuWjWtyFAT02yFH03zponJ68ssWC65e2mC1n6DDps/rbPPatNIIKRt8tvchcRiwyCqUiljMco6ODllZX6PXSygX8waD6QxSwGKxwLrGUSGKIubz05NOFAaYyjI3ATfGEYkvmR5n3DmYMClmvLx6n16skHXBtAIbtrm00WWl08U5y/DBY2Rd462gnu5hkgTRXl9a1tTk+QwVNESP02KS13z9mzd5uHvEVz57lTdeCVntxWz1FGtvvcLxoQCxT+FqKllzcy9n9b2QP/oz53l10zB7fMhi5MmLChEnPDiG9w4MgRD04oBrClpCcX5l5dR1PIV//ej/T4ZYUgg2VtZ4/Y1P8ce/9jMUly9y7+0f8uf+3P+YuN1m59x54iTm9o1by+98OtQTy336ebgd1hru3n/Irdu3wcPh8Yj9/SNqY4mjkBsffkCSxBRFwWg4ZjqZ4KwhanW4//ABh0fHaCmIlWTt4hV+7dd/gzyb0e60ePmVV/nUa6/BGx//85VWKCGJpKQjSgrhMd6jvaeqDUEgaWmNlhBKhUWwb0qQAudqhu9+F7d5jl51gaNpjGqlDNbXePNzP9F0BGTTEuSMmcFJPFcSlkI2YtJCgKww9T0e37nF7v1f53utDTbXrrK+fpXLn/oal177CXQckpSKdpjSSlNufPAbfO9b/4DR6DHT+SPy8hgZO3QIwullBdyIpJ8Wrmyssq3ReC+pisWyB1zi8KytrXJ8dExVFbRareaipgneC4qsJCsKZtMJk9GQPF9QlSUez3g25NGjh8xmU8qyPPP47YVCxSl7owwvHN3+CpGUlNmMMFaYUlMaR3dlBWdrokCTttsoLZke7zI6OmI2n3Hu0jb9fhvrPOd2djh8vMc7N24QxY03nUpPb0eEcdjgrG0zMa7qmhzJLC+ZlIb5vPHPipPGoPXhw0doLbGmZjad8anXXuXTb3yWv/N3fpnDYUZtmsTZ7ye8+co57j0a8vhw/IQ88XHR6SS004ReO6YoC4TyCC2xzhNHEq10I/KPBuuQThBHAlOv4j2c217D1AXO2QbKpiXaCJytEN6TRCHtNMGUp6MSwBJFikVRUPiY3Ee4dotzcUU83CXQGcIZVvsdPrXaJk5CZNzCVhWL0TEXVxKO543Tc5K0YLbPZDpBdzcIowYXaqqSyp++jkqEPJwp9t8Z8/btd3j14kPeutzn0laL1dUBb77WIU1e5cNb+0ynBbmI+d6dCVFvj595PSTeHDA7yrHVnNaapx+lfOeHR6y2Uj673qZXzukLy2j+PG2Cp/XvCVxzMBjwV/6Tv8ov/eRX2f2d7/GtsuDitZcYzqZc6PUZjkZ0Wp1nEEbPYsXE73reU18Za5lnCz68cZtvf/dthvu7zPIFtdcIJIGreOf7FhUE6DBq3DPqGrxjbdCnKAvyyiK9xXhLMp0xLvbZPz7GAQ8ePKadnP5+aXrHFick09JyKEq0gUAqRKCglChZEeoAISqkkBhj8WjyO7fY/dt/i/76JoN/7Y/z+S/+JC9ttFHtLgfdDvlkzMO793i0v093sPqJXpHnSsLGGrRrmHJCQpRaosSDN3iOeLQ34fadtzkc77F58Txx0GXv8WNSGdDqaN599x9z++ZvECUhQVgitccqQCkQAmNqrPVIdUavrb3G/nhI7SrKRcFiIbmaZU3fUQne+PTrfOOf/hbT2YzB6iot71FKMTwccXg85HgyZTabU2QLsmxKVZ/Ybu9TliVKapI0Jk1O94naOx6jWy2qoiRNIxajnIW2fOHKOv1zl9jbjQiSNt2VTYbHI2bjEc7LxnU2CMizCb1OTBIHGOvwQjEejsnKgvOXzrGz2mU6y9jfP70iD8IAa2G+KAhD0VgTlYbRLGc6KxF1zfmVlCBSbK6ltJMApMTUBqKAra11fvEX/zDXb9zmP/sb/w9sWZEmId55huMF672EvYPRmb36nY0Bx4dD+p0NPBYpmqojUhopLHiPROEc+GVlq5fuuw1AvySNNXUlEFI0LhrFgjSOcM6RJhHemjN7wlIGKGGJAskiL0BE6KSHqEvWVj3ajOnEEKmQg4UgCVI6ukM7qqnHY2SrzeZahcwsMo3IigpVZ5TzMfPZlCRtEyctfhfl7XeFQQqHE3CY1Qw/2OOHNx6z1UvZWW3x8naHK6t9vrzZoV6JmHjNtx4tuP7+AZ8ZXOa1l1rYg0eYVouytFxI4N/4qW1qJzETyzz39Dc6LILs1FWcIA7Esmx9Iki+TJpvvvUWX/ril7j/q7/OD9/+AQfXXuHn/8DXaLcSbty8ya07d9k/OGhIPM0zLv9s+q+fdHDnved4NOGbv/Ndbt17gAwCZJKQSEnsBNmioPZ+6UGpiFstHB47q3EIaizWe4QUSBRVbZnNZw3pIgipy4r5bMZ0OjnzenhoOAq+Gdw73zjzSH8ChxM4v/T+OSGBeNDGIPKcbH+PB+/8kOvnL/O5a5c5vz7AuorDw/u07QhfHXH/o3uf6Lo8p8ecQ8iAE385GTZK81VVE2pB0taESc3jB9/m/Xd+jTdf+8M8uHETnMGHc4ZHHxFHJYYGcO8QjROH9SAa1pZSEnXGqibTOVVucLaiLiqsgenkmJX1TbwwXLqwQfXFz/D1f/wbqCCg9nB//4D5wTHVbM7c5Fg80+GYPF9Qljn5IqOyC4yxRGHI5so229vnTl3HeLFgI45oxZr1tRUeHE4ZbK/SCzzCFqys9ptrRaPWPxqNG+tsJYgiSafX4uqVS8yHY6ZZwdbaKpGwdDodHI7JbEFZVLTa3VPXkcQRQniEaz7qomKeW2azHG0cW+cv8bNffZ350R3yNGZzo4uaVFhjCbWmqipWV9f4iS98iU77v2I+zUhiTVXW3HtwyEY7xLsTftLHRzfRTIaGWVbQaWmUlAg8Wqqmu7wE0hv3tP+P92jh6aQprrJY3xhkVoVhMs8YTzJCHdJuxWipqE3TWjo1vEDogABIvWc2z3A2JgxChIpJ5Ao7ccJwb8Kv3bxLOtB0u4qvvL5FVReMp2OErYiFJ1tM0MmAzdVNbNDl/u4+k9ExVVmRnvG6AIilKxuiMaCcGsnkKOfmccnbDwq2oiOutC1f/XSfNy5sc+HcZSYu49xWxNpaRL2l2L1ZMd2vSeIJ61cGHM4ntLox65tdvApYyDOcNX6kX+uf0oxpipOXX3kZheC3D3b5r7/zHV6PE87vbCMQ/JX/+P9Eu91hb/cx1pqnda94JhE/cdU4AxrmHFLA7Vs3eft731vi0EEqDd5TlvNljpEUZUlZl01rLAzAOvLKUNU13hgMTVU9Gg0RUmLqGuccsdVU9enXw3sHviFXhErSlRInBUYsiSLL30X45rVzzjf3v3dopUmSFnG7h5rPuX/3DrdeucZ6J2HQ6TDsrnP+jVXOfznk8e07Z7wuTTyfdgRLh2Th8F4gCPCu+YWkUkSRJgw0U7PgvR/8GucHb5ImIfPpkDs3HlAVB8RRRFZajHFYAcKrhlMuBFJ4lHa00rOcSgUgsbXDVDVlaTk83GNr5zzTRUFeB145+AAA9OhJREFUez731pvcePs7fPuX/xvGi4ppNkdVHikDhrakElDlJVVVYmqDtRbrK6IwZntrh9XVNUaj4amrmBcFKx7aSYwtMhJRIOqKD9+9zdg9oH/1Kt31LeZZBgLKoqQuKyoBeS5ZWVnHFoaFF8xnc6o0QsaaMIyYLxa8f3eXThrTW107/UUM1FLExZBlhul8gakNqZL0Vtq88sWv8OWf/zJ3v/V3uJvVrK10eXy4S6eTYJ3lzu17HB094Atf+Cz/6h/7eUbHh/zg++8yn89YLAyjWUkYBBT2dKZaoKDdTvFWoEWI8Es6uvDIQCJoKpwg1AhpmnGOtQhvyEZDqJrKZ1FUFLVhvijY2z9CS82l81sMrp0jTWNa8eluy9YapAqxToCQtNKYyXROXSraSUonqwjnc9rtiC9+5SLdKKOejYllRTJok01TxrOc48wRxoJWEpOkCZkPafc2kPMJ8/mU6ex0r7smTt7Sy/+EwEuFQTDMC3wNq5EmijRrK5p6OEd1I9LtAU5mrO90kKKFEVPSKMSRUlQZ/W1Bf0tysDdjPs0/wTpO4F7iCb3Xe0HaitjZ3mIynnP5i19i8/ptPv/5z9Lvdtk9HDIejzg+PGQ6m/LsQO53P+/Z0YhnCdpxiCvLxmldgF9alcVa4mk2bykkQkm0WoqELXdwF4Y4a5sJtG9IRVprkJIoinjp5Ze4fOXK6eswbuluCcpDKiVeCibLQkMKQS9UdAONB3InmLm6IRKtbtC6eBkxnVNMJuy//x7fPH+OoK7pxwEP9o8wpubSpXOcu/LaJ7ouz+0xF0nd4PusRyuJ9wK8Qp2YZQI69IxGd/nhu7/OYlSTP86JBxOkygm1amyvM4utG66L842xpnUOj6WqTt/JrHNY5xs9CATGOHZ3d3nt9ZrpNOPegwPOdSK+uB0x1SNuz45Zl4LWYMDMK+7fOmBYlUvQ+smtJdAqZmuzGUI8eHiXIj/95m6HIVJJnKmprCdRksnRMXNjufFwn7UaXk26OB/ijWM2XVBWBXEUIrxlPhvy6OY9YuGZ2opxt0sniZkcj0nClLjVJwg4U8MiCGMQknFWUJY1Ck8nkqyt97j46mUuXuySkKMDRRhJLl1Y48a9Y1b7Haqq4t33bvLLX/+H/Nk//z/lP/qP/g94X/P9b/0z/vf/27/K7eyQL79yDikt37l3cOo6nDWYukLKVoOAMQ7nPLauSQLd9CCdR4jm3jlxgI2igDzP6HTaWOOZTebMFyWVtcwmMzpJh3yRI6Wg225Rn+Gmu8imJHQadhsNbK/Xa3N0eMjEVPSjhKFZ0D/f4o98/mWC8pi7H97g5qGhnSYkvQFrtSYLHWErot8W+MCzdzQCUlq9NYI4Zni0e+o6ng2/fBUFDQrj5DU1us29ueCXf3CIba0SyAHf/M4Dim/t8oc/v8anzsUMzlk62+dAdclLx0bQx7ma2ayi1+1w5erp7Qh4FhP8o/5o2zvn2Lpwjg9ufsS3vvHbbK5usb9/yOP9ffaHI/JFxre++U2c+zHzW382M+3HI69KZtmCXr/PT//0TzWQvygkiiPCMECpJump5ezgxKj3RHQLBEo3FOtnf4coiJC6eVySJE/8Iz8urDVN5e0ss9oxsR6FhSBAY5EoWEoXhEoTKMhzcMZQrq7S+ZN/kuz736McjymnU27cvUveXWErTbDGMXy8x8w5zvcHn+i6PF8lLAVSKry3SOkJlrRej33StA+CALQjFBX3HvwWgd1B+4DZ9CE6rME2Ft1BoKhMI+Sil2+qRjjEY86ouGaLHITGeqhNA84eT4YcHR1QV453f/ADXu/VXIwW/A+/+grXHx5z79EBc6P4weNjymKOkOpJZQBNH2p1ZY0gCDk42Md5S697ekU+6LS4tNanqktG2YJEaK5c2uH+oz0qGfM7379B1F9nbXWLfJExnU0pjcF7mE+GPHjwAJWXbG6u0ltpU0vJrBDM8ppc1PhAUXvYPTi9x6WCiEgrplYglafbDrn80iU+96W3WF/vURbHjHfnS/hgxLXLGwwnNePxgkleMZ7M+We/+U3+xL/+RxAe/v5/+/e5eOkCP/Hlt/jgb32d2lj6nfCJnsTH3h9CMp/PaaUpVaXxzj5xu26k/czyc4fWS2dtBGkSMRj0iCKNVp7Vfh/vx7hFTreT0k0TBr0WnTQijQIWZzD3rt+7zytXr5FEMYhm01ZesDLoM5rMuF8tOIwiuDdi4jM+98oA07nAb/72EefiI97YdERRyEpa0Y4K+mnJ9dGYg4Mcgoi41UOFKf3+2ZTUJ9fmyYdAqRAlJcYY5nlBhWRRK+7/o5tsr6+iI0l2YPj//MMHvHE54pXzATtbLfpbfeJWm/n8mOk4ZTZp8dLLKySdM+6PZ5OSaCq9JhlLtra32drc4h/+g3/Af/cP/h5f+sJPsLd7l0+/9jJ7R0fcvX2HujbLY/pJ/fgUv/ssWO2swVxtHGm7zc/+/L/SbM4nLLflsz1bUZ+Y7QJLca+nhA5nG7GvE3NRf/I8S/GpRhjq48N5i0SiigJ5+w5WKuTqKqrbQ8YtvBSMa8uCEiEqEIrKGKytWRwfEPZWCL72M1BVhGVBe3WFcrDCZNDj4pVL7LzxFsOjI4b56WSvk3i+nrC1mCVsyGOxrnwivCGlxJpGqUxoTawDTHmM1hfo6jZTbwhCTZ1JqtqgFESxwC5FfBpH1U/W4a+MQ2qB0iGeEu8aNt/Dh/e4ePkVHt2/yzvfX/BKWLC7f8i9R3uMCsiE5t7RECMUzj+FXHkP7XaHINRMpmOCIGClPyBNTj/25jLkwf4h/UEfHyYoAaN5xvUHuxxnFft7Q979wbt86vVmQPT44ADnoO5W7O/vc/fhHpfXu9S2pt2KWV1foZ5b1jbWOJzNENayP51xPD896QRKEAYSFUjaq12+8KU3eenVq/Q7KaGyTI9zfvDwLuPRnNWXLtHudtjeWuX+wwNGkznzRcW7793gvbe/x8WLF/jtb/6A/+6//TV++mtf5he+ts+mKDmaZ+gzmvVKN0fHPC+A1hN4mlSC2tSNrrSUCCyu9g0FmEZORSnBdNpAkYIgpt0K6PRiVlZS5tM5ayuthvBQV6gzbpNWu8+j3Uec29xChw3V2DqBkiHtVpujoyGlLwjjmPuP5rxyrsNmP+FffxPmQ09Wwf64ROLptLvsjyvuHRrKyiDmBZFx1FGJC+LTF/JMiB/5m/iRyth6x7SCYTnno/GIWEvaUQxW8tH9jM+cC/j5L0nOmSPaa2u8e33Md98+ZpLBL4Wf4dr26ffps2iIJrM1eG0hm/+PhiM+fP9DamMJopD33/+ADz/8gK2dc08YasseBk/Hec/+2cRZlbExFod7MtB8Ilfqmz6tc45nFdZOYHTOnSjvPUViNBoS/qnT8/JeaxAfpyfhKl9QWo+tSuKHt6n39pmXlmRtlXD7HMHWDvHaGqLTgygGpZGmRAqL7w4o8EhjkUpBq8PQO7bnc6ZCcugFFzptLl88x8M7pxeTJ/F8EDUpkLLBFQbLZroUDUPgydxUOqTShDIA51EqxHiNlBq8JggiQlfhRIWiBqebY6s1TZWgl1P7U0IIhUcgZPO8UlmgZG9vl2svvcH5ixe5dXTEoXAMpymHrDJTjoNZzqHTECeEvoGkaK1QShNFIYt8RhTGvPzSy7zxxltsb26euo6iKlEyoq8jTJHxcDZhmJfI9gA33eX1lzdw+ZSHD+6SFZ7j0RTvPNl8zqPdx8wWFVHaIohDFvOcVjgl8JLd4ZDhcMZ6q423hlidflMlytHvtVi/doVXXrvG1WsXCGQjaLJ/uM/h/gEHj484OprztZeuEEcB29trOA+7+xOQkoPDIb/zze8wiDz/8z/3SxwejOj1O1xZ0fzgt7/ND775LllxOiSrYcNJZvMFuBXwBikbpp2vLQbTTL8ROGdRailO4yxJHJIvcrJsTrsjCEOFwzOejGlHbbRU2NpgPWdWOpfOX+TBw3scHB2xurpCEDT01NpWCCHodFKmkzH1POdSvwO2ZjopORoe8/YHj3gwyilLy2cuDdj2ltyGjBaWxWTKS52UtjcMj+5TRWclv987nHN45+hHEYNIkk3nZE7jNFTSM7eKLDMIIYlEyEJqvBaYesbhseWHN6d8/9aUsqpofeM642vr/JFTfp4XkiBolO2SOCaOYqIoIggDQh3w4fsfoYOAixcvsrG1w51793nw8BFRkjabmBBPOTu+aa2IJelimUGbYuyM39tat0RULMXZl61I59xTSUtoEvGyDD4RdT8Z/J1sJCfwOv9MDhLL5zmrR/3wxvvN0M3DWhoRbKxw5+Yd1OOCxd17sNKlXB9Ad5VgsEbY6yF1iA4jZGfQzFm9p5nvWYpHuzzc3SPZukiRDSj6fc63Yo79J9Obfj4BH+co65IwDJbN8mY3MzSDOikVQleoUBAIhbeKte0NXnn5i7z9g10W2SGBUGgtEbbZ3SSKUEsMcnmxxVLS7tRlLNkoAqk0QjRsucl0zK1bN7h49SrR9jXeu3mbUd5nXFiyMqMkYXDhJXrOo5BI37xoVVWRFzlCeLrdNmtra6Rxi9Fwduo6tnsJs6xkNhxhi4okDllb36LYHxLHAVe2Bhzuj7j10UfYqMNkOsWYmipfMB2PafcGjaay1Gg009GM7Y0VrA7oDPosihwtBYPW6W2RUMH6Wo8Ln3udS5fP473Bljl1uWB3d5+D/SFl4Z5slM4axsMh3W6H1dUBf/bP/ptk00MO9g442j9gbWuTT3/6ZWbTGbvecvdgxN29MVl5eq/e2BqlBGVZsshLQmlwS3EVeVKlOEdVO2pTN2JGWmEqQ7/Xo648Qij6gz5pkpLlOfce7SOQFIuS48MhSZqgzqjIAxWwtbnD/Qd3GQ6H9Hs9Qq0B10y4A027lTCbDOklFlMZjo4zbh1U/JPrY46nJYFW9PuGq07SaUUYM2YyGUELQlez4o7ptNZPXcePh5RyWcE5Yun5wpWEr715iUeP9rh9bLh9mHEwgtwLrJA46RGipNtJiYKARZYxz2H/KEfpgJd3OvhywZ17j079uVs72wxWBvS7XbrtNu1Oh1a7TRhFhEHI8fERV69dxTs4OD7mzTffYGXQYzIesba6wmg0pKpKhG8GWmJZoeId1liMsZils8Vp8SNaFaJpX7FsJbjfI4GeVLvee6xtNu2T5GutfWoGIRXymcR8ZltkMUErjVaKbhIQklJvbWC84uGDBwT5nGC/ZvJgD9HtEPW6kKZEl18mWttoDApccxVS5+h1e0xkiCkW9CcOMz3gu1nO8XAGv/iVU9cCz5mEF/NqKVqiUdI1nG/ZHB9OjqphGBJEElc0u73SlnPnL/LR9S7zmcLLkx6sRKnm4uEFWmmsX+osuDMgN04ivcR6hfUSlCJpd5gfHnH33oeIUHLuwhWuXn2Z8com3/n2t8nGk6YSQlCXNaVtejzGGKqqREpFK45ZX9nAVoYP33/vTAeHwBlckaHTGO9LUhUR2SkyO2AlFFTZgnP9LncfHXA8z5nOS+qqQFnD+bUVuu0WvTgCFRC02yRxyHA+J1AB3XbEeKYR1jEdj05dh9LNdD2OQ+qipi5zFuMhi8mQ0dGEomiOco1wu0Zpzf37u6xtbPDX/5f/K/7Az/2rFNkuH3z768yOd+l0W8jVDfbv3uLd7/+A775/j+G0OBMnXBUF4VJIaJ4V9FsKX1Y4KRFKPRmyONGICpm60XeuK4sOFN1uCy+afrEOJKEL6PU6VFmO95ZFluG8p90+fVOqrCOJE1ZW13n44A5aQruVoGSA9xbnDVIKOp0Wo6xqcMBhTHd1g07/mNzP0SrgINccFprNVcXWSpeb9xTfv/+Iz22nbKaCc2unO6/AU+SA0pIw1FQWfFWw1g756U+f5zMvbxK0YXjnmBXbYFZLD9YK8qwiCCCQFuE9UdTh8aFDVY43L3cZ9EOwJWFyOnPvc2++SdpKSKKIQadNJ4nRzoM1lMWc3bv3ODwekVUFi7yi02nzoNelnC1gNmFTChZCMDcOY+1S3F9QO4uzltALQgHuDAcYHagl9lZgncO4p6Ssk7ZCYyHlqesGQvlsPvX+x4aDy3C+sRSy1mKNObMSDgO9RHo5yrqmKBZ4WzMcHmPrgiA3UFUk1tFPArouoa4LcltRVQVSKLwXlEeHzL/3bWbGkHzms5irrxKYksvaIYdHvPeb34J/5y+euhZ4ziSsZICUCq2CJzRF5xrVM73sHYWyOR5461GipjYjvK8Jo/CJi4UWGmkNQRAgpcbU5kkyFgjsWZAX0UhFNgppIJVEa00YBkwnYx4/uk9Z1Wgdc3Q45PjogMl4CDRaCtY5muX6pdh7RZqmSCnJs4x5PAUUi+z0qfM3vvMOF85f5ForZbA+ACkYVxkvXT3PZJRxb++IMLGsr3R4dGsXUxisqem3Il69uMN2r40TjiDRVNWcdtzBB4JHjw+5syiQQrC+uUXSPp0BpLUmCSO0lRw/PmQ2HpFNj5hNJmSLAuM8SkqK3IDSxK0OrVbCL3/jbX7uF36eu3feJtCCN7/wRf7e3/4vufHwO/yxTsqDGx/yjd95nw/uDzHWo844oeA8aRKwyEOq2qFkAtQgxBN/OWfdE4H9RuA9RCndYIAjQ2JDlAJrSybTcSOSs/wIwgbTXBSnazbUthGl77fbzHt9Huzuc/HcBtFSDtn7RuMXobh/vMCbI65s97i4lvCVz1zm2x/uMi8so8JxfW/B5iDmXMcSaM1BEfGNu1MupI4sOJ0u/GyIJd7UmpoAw/mNLdqddR4clmQ+ZlpZKunRHQ3OYbKcne025wYtLq8FFJWkzEImpUIlCZX3PDqaoQNJLzh9U8qvf0ThHNoL5mFIGgR04phOkhIozYZ0vLy6gbCGx85TlCU+CNEpZGVGv9fFO8dkseAoW1CYBp0klxhvIRqPN86ohMuyYZ9ZoKwqKlMv8eMnrQf3pNUgpUQEJzObp95yzeyoeb+fVMNPbJOWjzkLHdEo/TT9kyDQ6KCNdQLjPJ1WgBKiyWfLIaZcZCRFTrG/T9ZdQ8ctpIfq+ke46zdYOMf07h36X/4as53zfEt41GxMcIYDzEk8VxJO2yFSLCUT8UvTRUGgAkLV+IB5W2ErT6hSlDCU5RGLYkQQeYLQ4ar6CVtFyuVzLdsCxkJtLM6fpQHnnwzzTtZhjGlgUdZyfHTE3sERk8kMa6CuDULYxlx0+f3WWqwzmNosAece7y27u48RQtHt9mm1Tu/5hZ0uKk5xCNI05cadh4zynFY7IVDwytVt7j/Yo3aOnZU+9cGIzNck7RZCwfqgQ+kdJCEJlm6k2Ll2ES8Fjx8fUSwK5uMxQXy6mPrSo4Tjg0cMj4cc7Y/oxCCW6lRKKaRSeAwITavTZ2NznUX2Nv+3v/F/R/A3+fSnPsVf/sv/Ry69/Gnu3ryFcIJZ5Xn77jGVsSjxdCTz8euAOAxYGfRZ5BbP8rgpGliQ9zS006xoXi+tl9An/aRSTH2Mda4RdCkLWq2Etd6AOA4JQ01R1meeUPKyINQKLTw72+cYzRbcvPeYly+dQ6gGh/pkhhEk3D6aMVvscX69wxs7Cdh13r43ZpJ7ru8uuLASsd2RXFqN+LCqmZkeb4/n5ONP7jHnnIfKopxhJQ159eo23/5ol2m+4M2vfoa8fsx4XlMUCipPbBzn1jVvbScoJdmfKj58dMi9gyleSNY3Bk0/vYb9e6fj2dtCNSdUremmKf1Oj3YrJQ5ClBCE2ZxQazqtNu2qwnrH2tUrLIZjfHaBylmyKmecZcyqgso5agvGN8L1XggQ6mwCIZw0HAnDgCDQT05X1jZU9do2lazWeqn89zSxnyBtxBNY6Y9GM2wUZ3rM5XXd4NUDRagUWock6xHrq32cNdS1pcgL6qqiNoaqNJRFjb95g+DRPlW/h0tS/K1brHUSrr10jZs3blJ+79v0Dw6YOUc2n2LPEAA7ieezNwpoKlDvcU7gfTOkE1qgVdObEUrjhSOKQ0xdY6oJw+M7OJs30oHOIqQiCINGe9M05pvWL1Xy/dliIGK5+yot0E5S1/KJp5wxNbbI0DoiVGCcb+jNtkIqscQFN8/hnKU2jQ+dc44kjuh0emgtMaZmkZ0Oxm+nLYypeHx0yGw25vBgyCtXrjDzMGhLWiG4nRX6W+u888O7rOUFOrcM2q0G/F/krKytMa4qDoZTiumIRTklz0qkhHa7RZYtGJ8Bxvd46qpgvHefujLk+YJYx2ihCJOUrYtXSLs9PvjOd0El9FfOc+7ilMGgzcPHx+xsr1LUAhm2+MIXP8dWP8LiiNIY609wymelYAjDNlprOlqxyEZkeUUQeIQvwTuUCrGVxVTVEmwvWCzyJ15vWinSJG421aok1IpYRaRhiLclZV6hdaPve1pMJlParUayNFCSq5cu8f71nBt3H3D5/A5h2BQTDeFIQdji4XTOohhzcb3FlbWARZFwY7/iYOr5Zx8e8ktvDri21eVgZjiaFfTOXeS1n/i5M67IM9GYwxEpwWdePUcn1XzzuzfxUcTi7RvsH00piwJZCwZxwmtbW3zhlTXiwPN4XPKDu3s8HJXoMKSVhJSmQikoi5q6OH2Q/f7wiE4Us94foOM2OkrxYUodR7TShJVz5ynLnKmtaXe3UHGE7vfpnd9qXvlQU9Q1cu8QOWq8GPMipyhyPJ4wiJprekYFevI+e1LVPlPhQlMRK6meIjcQjbvTM4O8E78+aO7IE0ck59yTVsRZUMrVQYI98bL0Dk9jXhxqgRQxzlnSNMYZi7WOqjLkRUmSLwhnUyY3d8lrh68d0eYqYdB4bx4fHyMfPcJ5S1WVjcfcJ4jnSsK1s2AbTzjnGxEdZNMfsa6xrPGVQ4YKlEP5AGzBg/u/w2x+iHUaJyzQiLMIoSgrg/Ee45tjSmMmcEaDX7KsnhtY24mPXBiGxHHMdD4jd4tmRyuqJ8aFJzJ6xhgQHucMtakas9A4wC4vvveOo+MDxsPTe7ENzrORWsy1pL+2io5gPi45mBRoX3H5/BZX+z1u3dql20lQEWyutPnyZ14lko6DwxGhEJRxzKyYcnBrl/3xAnTAWr+HDiLM4vTNYGE8xjgmWUGSRASBBgSVg4svv8SbX/pJlLfsffge1cKjggEbW5c5v7XCw8c3iK/uUBQ5k/GE7UFEWWQYJZmMZljjlmSlkzfAx4dWIaEO0IEiDQV1VREEIdgG2ymDGlPlCCVwtnG4iGNBFEaYuqaua8IwwHmDlpJuq40KIjCNyp5d4sqfwKY+JoqioKpLOp0ewVLM/8rlK7z3wfs8eLzPztY6OgiegKyEUMi4xf4io9ydsbPW5vxqyqQUzCp4PM64P6zptFqs9tqIpMsXf/aP8vmv/uKp63g2rGjsojb7MRtbW/z2e/d4MJ4yWBvwaPeIRVay3kk410voeMXOZo+5VLx954DDSc6krInSCK1DKmMxZY1zBiVhY7N/6s8eI8m9Q0YhQaeN7XYpkxatVorttXHdRpxn//FjZoeHCCEIDw4JwgbhFMYRm1tb9NY3UEmLbD5DTiYY6xiNRiyywyWl9/TetFvieD1NweV+rM1wUsEKeSK1uTy3niAo3BKSBkvN3hOnZd8Iiz2TzE+LqLWKkg7pa7QvG/nWurEIcx68XbZclSVAkKSe1FoGrFLXlsl4ymg4YjKekS9y7t59wHA0oioyhmWOEBB3UgaDrU9wZzxnEi4LQygVCEltDIEWeCkxtm4umWvse2pnmRcZwdIm/PDow6WEpHnCrHPeoZRCqYb15k2jAGada8Dhp4Rzdokb5AmzRilFtBSCrqqCsq4BiXe6wT8mMWVVLn+mpCyLZf+ogUvl+YKpkNiHFoHEWk+7c3qvrR9F5MZTW0ElBcPZglYSoJCMck8kPN4Jbn94B+UM7TRgfaXD+c0VXjnXByU4Hk9IdchoPqcmJEojtoM2Xkic8yghaKenuy3npWkciycL8rJGhwodSNYuXuKV11+n1U5w+ZxBK2F8dMRkNCbSARtrA4QQfHT9IVJI3nvvHba/9jlu337E2+9+xD/7rQ/IirIZxHh3plCLUY5aWhAOrw1aJgitwQlKUzHP58yKKZ3WgEWeN3ZPnS5CCoqseT3iKEB4T6AUNYZAB1jnCKIIIw0qCAnj0wdipTGYvKI2lk67g1YKLQMuXbzMnbu3eHxwxOb6KkoFS1adwIsIGwgOSyh2Z6wPOlze7FARMl3kvPdwzs9+dpVzG5r6uKQqK4ri7J7fk37nsnqvSst7Hz3ixqNjRNgIYeVZAcajRUBVemolOc4F//T6TSZZTRQ1p4MwkkgNedUgS5wLSGLF2ubpal1OKKwIOByNOB5P6A/W2Dl3kW7ZY5wtyG7e4uGDe4yOjimyrGkxhgE60GjVDHLbrRZrm2sgBL1OjyiMiNMOfaEJwoiqyKnPYLr65QznREDnydd/LHl65xs8Mb8bNeHdU4ibMeZHWg9KqScJ+7SYzwva7TYy7JAGc7AVJtcoXyOFQdKoUC5KTWVAONcM7lsprTRmbW2VyfGAyXjK4dGI4+GQqsgJggbZ1VgL1szGp7eJTuI57Y3AWHAYEK6BhkgPyuOFxUuPk568qsA5Ih3QinxjO+kqrBB49BJj5xFKIGUjlCEkS2C2O1MyMdDySRL2y+QgpWx61FKQpAmiEJRFhYojWkoTtmLKsmqGREpTVSV5nlHVTRtDCIE1NfPZhDhOWV1dp9vpnLoOoUK0KdleGzT222HK1EVMZwdMJ2N++kufJdWSb997l7TV4qWdPu12wvrqCv1Oi6CdUJTvMx9O8aaBqvX7XebzOd6Bc4JFnhHEp79MVVkThg06oqgbdpEKEy68+iq9jR10GFNVFZ1em73jffYf3CQIE/r9AVGkODqa8P38Bv/v/9d/yUfvvcOv/spv8N23r2OsIwwVdeWwVvyefbhnw9UlOtHYqqLOS6JWTCg9xhlCJbEVRCoiqH0D6Wt3iJJk6QTiUFJSFSW2NpR5QVVWhGmbdqeNcIZFtiCKE3R0+qY0XyxQQlJOZljXaBAHWiF1zMrqOo8fP0LpgJWVVYRUDWnAOYoaEClDp6knJTsbLT51uYsXko9uP+DO/pTByiqPj6f81i//Vzy48T5//hf/5qlreZJgvEMgGM1rJrd3cUqy0m+TJDGL6YwgCJgtLEdHczZX+shqxHFWogmpK9BBwMpqm7STItSAOGqBV0RRTByf3gYo8sUySRaY2vDo/n0eP7jPxs45TF1zvL/HZDRsBlxLlbIwjonTFC8ag9Vet8udO7cYjUa00jY75y/Q6fUoq5JFlpFnUxbZ6QyxPFuApGlbLI+mDXPOLg07/VMEBDypjp21y3+jWd8zMDWzdN6WSy0Jh0Oc0c88Oj4iz3O63R7tnicIE2LZorYGW9dYU6BEzbm+ozCORR1SlJaiyKnriqoq8ULQ7nRIkoRBv0u+WFDUTQ/Z2eW86wyj4JMQn1R840W8iBfxIl7Ev/z45OPdF/EiXsSLeBH/0uNFEn4RL+JFvIjfx3iRhF/Ei3gRL+L3MV4k4RfxIl7Ei/h9jBdJ+EW8iBfxIn4f47kgagePp16KE+Uy2fC+lxoMcKKuRKOQxFNRDiEbDrZYymAKKUCeiDaLJ7bZ8JQtp/XHo1J/8ss/5b/4xS8RxZrh8WNa7ZAkiahrg0c3v5YUaB3Q7ndYX99ipbvG5cuX+Mxbb/Hh7Tt8dOcGAsdkPOJ4MqbwitoYlDdoGRBEbeZFzX/8b/0vPnYdf+J/8xmfpq2G6aNFQ4d1jrousdaQJC2kDOh1VplNM6IoJM9zpNBEsSYvxnhhMMYRBAnOSlpJB+88QSCpTUEYKoSQ/LX/9d//2HX0uz1f1BYdxoRRjFlCdxr4nqLbGxAGAUcHj/Amx3vTvBZLQR1rGyHsE0KL947BoM/ORg8nPNbAIOnxl/93/zY//Wf+zY9dx+e++pbvrmtUoNjbL8gmhn4/pNOVZLnl8f2MpCXYebVD0td4AybzJFGAsZ7xcIGSgtXNqMGJ1oJeLySvLVTNPZRPLe1WwH/zn//Tj11Hb6PtrTe0uiHrmz1AMposcHi63QThHZHWdFdinK4ZHeZ4o+i0E3TkCFoBRVGjlcDajOPhHGcj6gqCQBHHCkFNHId85x8++th1/LX/81/yQkq0VCgP+WJBEARsbm4QBorbt28jgH67jfEOFQZIrVhfWWU6nVHXFYv5rGFtOUHaalOXFbasKLIcEYfUoWC+WPBX/8O/8bHr2Ny+7E2e84t/6A/zuS98kV/7jW/wh37uX2H/9nWKsMXoaERsC4bzOX/1P/0rLPKM/+T/8tc5PB7x7/2lf5d+p8s//PrX+e///t/nc69/ig9v3OadWw+5evUtfulP/2n+/B//Gkkas3d4n5evXv7Ydfz7/2jqvecU3fBG6/gkTu7Fp583Sm1NjmjgbQ2TrrF+9UslN+c9f/1/sPax6/jP/+bf9aP5FBMUZFVBWViCsMPm9jmgZG3Qp71yDtlZw6LZP5yiVMjOZkqnFRBGCiehrgyzR3tMj4Yssgn5fEJVFihvSAPotiL+5J/5U2eSuZ9P1N0vk+xSyP2ENniipOZPBJmfEeE4kZgTwiMkTxJxo4nnn1z7J2TET4CYs9ayt7/HaHTEwdEjXnv9Gq+++hLvf/eHzOcGpUPSTptWp4OeTBhnFX/gp6/RG/QbNSof8KnLr3Jua4Pj4RHv3LzOe7fuYmyN9aB1SJp0Cc/Q7A6CkG63TVmVDcbQ2WbzUY2le55XdDspVV3gqakNS6GhiDgOCULI8lljbOoV1tSUVUGn3V1aaBnm+RytT2cihXELKyu8FHjpOTEjPhHcfxaF6AG1FDyKk5gkSahrQ5YtGuUq28iShmHI9vYm49mEuvZcPH+Oze2d0y9I7Rgf1RhbMh/WdLuaQRJwfr3LYZlhI2ivNt5h+cxS55ZUBWBqtld65Ec1ZZ6jhcYGEiWgGhpMVtPqBchE40KPPkO8zFlDEGnCUFPXBdCI3gslkdoTh7rRnnWWPKuZ5zVxoEAKikVBVVcUuSUIBWkb1jd7zGee8bBA6RCBYLGYU9ena5zEQdiYT4ZRw/I6EZwxhmme0e50sLXB+EbLot3uNQJTVhDoCLwkkAuSMGZe1Bzs7lMby6DTwXuDdArhNVF8+o3a6/c4WBS0W226cUA/0ax2O6y+/ArD3DI7njFY2WC8yJkvCh7u7mOrgmvnN9h/711mYcL29jp1IPjWux9w6/aIOrzIrrnE+3uKo6nhXGBZO8OJRshGh1ec6MT/LiL8089PnDWaRHxC5gDvn4q2P/mcJpW45b0uTqcZUNuM4/E+LhJESQtraga9kGJySCwFtdDMin3UhsOEEUJ5iqpiNm+o+SpUCC+o51M++tZvsTg64NLVLVY6Aa31FmkcIcMYp///oCdcmUbGzmMbPV4pm1+6ERho6K1IEE/phV6dLGRJ8vZPRXSaa36SiJcizaIRjT4tirrixs1bzGYjSpuTlzW184xnBYvMEgRA5BDGkYSKh3sH7A2HfPbNN3C2Bu8IVUg/bbPSbtHr91kUjndv3cYLTdRaYXVtm5evXjx1HWnaoixLpJZY0wC0hRQY64jiBO8aIZJsPqY2FZ32gEBHCGEoyob1FMgE5x1VXZAXc4J2gHU1tTEURUZpSmp3OoPwpZc/w92H95hl0x9xDDmJJ64F/NjpZMlefGK4wMmN3ay71Uop6pwolFy+egkRnL4ZqEBQzQ2VdXTbipdfbpGkMTLUlLmnv5agg6WNlbKIUDFIW/R1xGAQ8nA8Z/JYc/iwbggD1uKLxuG7vRaCr8mGBdPp6ckvaYe0ex2CGJzNkV4QBCFRovHKIZQnCjTeelzh6QUpg06XdhQymucUWUGeGfIAklaLlX4LV81ZKA/GUBnwTj5R7/q4aCUpiyzDW9skCimoKkOW50hv2FgZUNWW/f1jwiTieDjE1obZaMpgMCDLMpRQBFoTKEsQhKhI4bXECIetS7I8I7OnCxqtD9YIdcLa5gZ7B3usrg24decOb146RxgJfuNol7pIybMJ77z9fe7ce4CqPed6Pa7/yi9z5cJFzLULzLIJ5cJQIXEyxYiY6zfv8N3fEaz+9OeJ4tMrKKWapNncgz9OL14eh/2JohpAY0b6VBnIL5PwsipuvoQTAhwIL5t7/Yzac/fhHQ73D5mVFduXX0Z4wXQ4JkkjMgkLqUmFopcnSOfoxim18khbUswdtpK0koi4LhDjfdp2zNVLn0XEKYEE6S3OOOqzLGCW8ZxJuGE1BUvhC9TJhWzEMPwTBX6JkG5JPZSNbGRTKiNE42x6ss2dvCBPlfUbk/DT8nBZ5tR1owcspKTIa9794UdMxjlCxDhhsdMZWVmyc24HZy3vvf8+n37lZTqtNkEcIYTGeofwjvVul5/4zJscTzL2jkbMphV7fsinX3751OthXEmoE6KoQ1lavG/YNEVpsFFAKwyRlJiqoKhK0qRFFAUYU2Kco17UmKwm8A5lShIRo1BUJseLRpsC73BnJOG3PvtVLAEfXn8f7wzOmWe4+KLh2Xv/5Bh3knFPaJ8nzCNr7ZPHKSlBQFHkSKm5ePE8Wp/OzGoPQpSG8XFJrxUQSiit4cH9Gbv7BWlb0F/XbJ3X9Doddg9yzncDEp3wYJiRtmPCBPYejOnFkrCjsdZTLmrmo5B+y9PvhBwOz3AaaSd0B21qu6AqJM6DEr5pIwQaoRTaS6g8PZVwbnuD165doy4q3p9VLHTMahqzNx/jnUf6km6qWQSSoqxwCJIkJG2fvintHewTSk0nTQmiACljvAzIy4qOsrRUTZEVCAe2rBqlP+tBBmgtUMohlCJf2g4NVjTdwSqPHz3ES42vDYFzRPb05Hfp3Hky46i856MP3ueNN9/kvR98wOHtD3jp6hU6KUyP7xLYiuvf/U3CpE/oJNnBMe29PQpTYwdtLq1ukbdmrK0GyO6ARExYHNzmW7/8Nq9f2eLyK6cXLSdtiKdtyN8jCZ8oeizF2U8EvU5EpPzya85anpWWOqmanZeIM0rhO9c/ZJEVDOc1m1c+TRAHTOcTsrLg6HiMjCOiOKTT3aS/tsXm+W3anfbSWajZFLK8pJqNyE2BFCUEFknNIsso5xmKgNb6JxP9fz7asjuRmXQ43QirSylRJ3r7sjn+StF4SUmv8E40Qs6i+UD65v+OZ8qvZ7sQjdjdaSNDJTxCQ+2h9o6iLFgsCurSEoS+6XI4h6trhvuHaBXwmMd8750PuXjuEt203bhNrFToNKKqDDsbq3zh9df5jd/6PkXpmdUL7tx6zJdeOkWEQzjycoqxNV5YrC2QUmBtRV6URLKNirpEYZekpVEKjKmalgESM6vJD8b00zbrKxvouM1BMWVSL8jqiigMkc5T29NV1NZWtxgMtgije5TFFFvXmLpuWhEsOfu+sZCS3qEChaDRtrVCLpPvM/5eotH2KIoZWnviKObq5au0zvDcm1WW2dzQ60Rc3G4hgxCDxOkp8cATpZD0oRNqytLQaSmEg3sPJywWDlfUJL6geyEh1pK4o1gUjhQJocBojY8aXdvTYjAYEEcBblGggoC8Kom1fyKXqMIAZ2BVJVwYrHJl5yKvXbnG471dHqQt3NiRtEKmQYzwc4STuNIjvEZSE0SeTl8TtU5PwmVREKQtvLfYsqQ2jiiMKYxFaUUUJZh6AiInClK8D6gVeOnJFxmdOOZoPGE0mdHv92l3OoyPD8kXGd12h2wyQQpNfYYxrpmPSHp97h8+5p3rHzIeD7l47iJr66t8dP8WB0ePCIsFHekIy4zpvOD+0YRx6bjcalOZnK9eusRfuPoqj/cfsX7+AofTir/1X/wX7D24S72X0P97W3z2C1/gT/3pjzdaCk7aEE/0OuDjqi3v5dJ9sHmvBM7gvaSSGlcXLKZTWu02MtBP5IE9HukbPZvT4t133qOfRJROMZ8e4sOQrc0tEisYdNYQrQhhaqoKxkePebR/DylCeu0Om9tr9Fe7REmAzBeoOEHhycuKUHv29/ZYTDO8Spg/3uMnvvSlU9cCz5mE43DZj5Ee3ygR4oTFY5tjhjtx2rAIB8IrhHQI4VFSEAi5vPBLBQ/fVM7iGYMqz8lR5ONDKUGatsnzHOocLUEohZA1QtRIIQi1wvrGz03KAOPg29/+Lp0k5bUrl6lrT3QYY53H+maHqEtPJ2kxHu6iVMi9ew+Az3/sOqI4Yjzeo6rmSBniXEUUJcRRisBT1R7rAzY2drDOkuVDimqOExDKhHqaUY9z2r0NUtEiDbtMiwX3j4aYQBLFEUoqivKMY42f0xr0aSUpZnaMsQ5sjfUGrySmjFDeI7A4ZzBVo6HcSAdqvF86Gpw8nQChJWmrYm11hZX2FV6+/Aa9ldM99xajArMwCKVIFSTdmL2ZpTOA3nqK1oJIQzFxIGGlnbA/WrC3KBiPKrSQdLoBJjNMxoY0kvSlZF5Z5EIynTv2Rwvy6vRKRyeC2pVY4Zr+PIZAR1jjWeQF7bYm8IpuFHPt4mUuXryG0DGL0nH+0jWy/CZ37j+iDCWr6/8/9v401rIsu+/Efns48x3f/GKOjJyz5oGsIosi6SIptqSWqEYblgW0acvdDQsNA7I+GvYHA4YhGIZhGG10tw24bViA4IYkg62WRJEaKJLFypqyqjKrcow53vzene+Zz97bH859kVkl5nuZFNn6kiuQiOnGzX3P3Wedtdf6DzHLmePRgxHQ6lZozyKVWqm6fXhEYUhRVShh6UetvrE1rVFpVhneePc+B08egGhYX9tCiIAKgdPQT3YJwwhjptR1/VTXoa5ynKko8gVStnMa01ychKdHZ+x2+6RFwdXNXSJf42nJ85/5NCXw2ptvYUZnHFUpmRTcvPk8d557jkezilGyzu7NDX5w/wF5UdIYR2UlDx89YTQ5pnI1Jwv4w1e/ye//0TcuTMJanVfCbRL+8LbB++0HQ3uKi2yGsyBUh5oGTHtd0awSkXvaH75MiWFc5MgAGieZjk/YvH6DQa+HzTOErMiWGaGI2b62S0OFyWuaWc08nXN8f8L4QONFAb5UZFkrSvb2vX2ePHrE3uMnnB6dcHRyxvF0xN/8T/7nFy+Gj5uEz60JpFgJhsuVJmeDMVCVDXXuMLagrix1BY2pEMKSdGKGgwFR5IO1T+Xq2kv+wYb85bM5Y1sBIe0JAqFxtuHZ528QhRpjFVK1pnwOiR+EJEmP4foWzzz3Ehsbm8TdhK2tbarS8OjJMYenY8bjU5ra4GpLVWbk+YT1Xv/CdTRNszrqs9IlVZSlI4mGCKAoFkwXU4T08LRisZgBFiE8SlPy5P4+cSWQ0ifoDEm2t7DFKb7v0+t1kQiyvORSgX4h6A/WSJIuMyFW9UMrGWqtIc/mmKbEWINxbc9ditYBxTjXDuOEeCqgIoSkrhuWy4JQhlzbvUoYeFRVwUXSOTGG2zdinrvdw4sloi5YF4abg5DQ95ilhtE8Y1FXeInPg4MCq9uBSiviJBid5qx3Avo9ySCRCOvIc0GoBY3nqMvWKPTC8GryLMdJEGgaY6grgwp8Ai/Bdz5DP0JbiRWKvZMp1k7Y2z9tBWT8kNmywoSOfuUzmmWkmaW/5qEDi7E1i0WNvkSgxdceFqidwwiNlY6ibgdzjXEsFgtmsznC1czGU7Tn4/k+3bU1JrOAwfo6diVOlWUZRZ6BaXB1RW0atPKQQqIv6dXraMD62hZd2aDzktF8xt2Hj/Gi7wFw4+YdnjSGvf0JR++8xWZnwO2dZzjOJHMZMCZienKIcIa6yKhNxu0bO3zpi5/hrffuM58vCeOI7JITSuu+41YWafwxSfgDMClWut+uFfmKbEldpCjtmBcpnqjwVFsM2tWeflrbXTKYa5zFxT5N41guF6xVJUkQIAOFkQVh1rCcTSnLHkWRcnb3EeUoo3d1g2AQUxcFQaApa0tuFdky48Frb/K9b7/K/uNH2LrGmIba/Rk4a2RphVYaz9coBEpJGmOYTzJOTyacnszI0oJ7D99iNs3od3aeTuj7w4TnXrrGZz//MkmnnRo7IZ/2c1Yidk/BbhdFO8X3iaKIRIaEgabXC9ndeZleb8gyKygri/ICorhL3OnRH2xx9cYdXnjmNlv9btsLjRxBcJ3uoMPduyWLWU4S+1yz1zk+PiQKL1brMsaiVQhOgVUrSc2AQXcLU9fUVYF1Nct0tEKJOKKog69CFqOMxWTB5nCLa5tXuXr9DgvPQuixubPdVvZ2dYLQF+8qqROUcvT6G4w7PbLJom0HaYnDYl1FWTUYZ8HzsUogqEBIGtMK30spwIqn0ELXCM4OC2Rdsbt7Hc8T2PritkjUUeiuRgSw3YvJxylX12F9O6bSIf/0j44Z2Ry/ryhMTdkITGYpUsP4qEQKyc71gHBd4oyg9hzT44rJzLG15RN5kmHiM84vfkwL1VDV7cOr2w2I4lbEXbAaJFtHLALSacb9x4dMlw958fkXuX7jNm+8/kOEkK3HW5mRFgGlMXTXQnrrHoYcZzTGCEx98bFX0JrfVnXFLC3balbKVp6zLvF0ayJ6djKlqkrWN/oIWzMfFVgMYbdDXldESYKSgsnojGG/z9r6GkVRYmxbCQt5ca9+ZGq+8+PXqcySapHy5OC4Pfk1rd7z+GxMEISofo90csLZ0R43dvdYHNewtsPbd8fky1OKxYTYl6x1n0G7jMXshHQxxTaG6ejkUpU9Ldtk+cEhcPvz+TFY/BSSR+LkqsdrQCmLJyoSlpSuQogBWoZYK7Crr8K58xbGh4esDfliSVoZHj98SKfb4/aNa/Q7PZTWPLFv8MOT7zI51myub1L1E+ooxuv3wfco85xIBtR5jhOCKEqo65z1wRp7D+4jnEFYc+ks5+l1+UivWsX/47/8u8Rxl163S7fbikILocmynDIvqKsGYwVHRzNORiNuXuvjC42Ugtm04P57+/S7HW7c3CXuJVhVg5BI13aVERaHbd0O+PCN5WxDXRcI4Ug6Eb7vUZZLko6H1CVJIghCD6E8/FASBCBkxXI5ZjFbYz2OCEOF0wKtfKJwg93NLmnWsFhaRrMlZ2dHlOnFU2djGoRV7YPJi/H9ACkUdZm2Th1BiLE1ntJ42kMohbGtwHexbLi2ts1Ld26xvrZFr9fnaLpPJSza96matq2yPtzEXnAtABwxeT7lyvVnmE1POBsfIKRGqPZaCdEOMoSQJEkX7SnqYg7W0dQNSnqrIWn7fkop6rJmMrasdX021nZbofhL3JY7awHL2nD3cYZYOp7Z1ayvBxyeLknrlP3TBY3v6EiBdIZ0DMWioaosJq1Qgc/WtofxLEf3CzobAVZC4WqCvqbTU1xPQoaXbFtfazzpkeUZdCy9Xkxd1FjXgLIIYcnTnOW8wIZL8ixnY2OTT730MltrA9597x3euX9A7UqcJ5G+R5IE+LGmaiSukTgLRXnxTdbpdfGqCudiwOFMhXRtIm6EZTzaw1Uz4lgQRQGC1mQgL0uCOELbGq0Ung4oi4wwSYg6vbYl2Fhw7UnG1hfvj3gQUeYz/FATqYTJLCBOEtbWeuR5TrcX0Y0TGtFwXOYssiXazLk9CBnXp+wMBhTBgDywbA469EOP0eE+HV+yu9nD83yG/XXMJTq+SrYn3ZXq5NOxzzlSoh3CfbAAc3jCIGjox5qg26esLTeHG7x7MKKQTYvlPn+v1RDvkkIYCTR5hakbxvkx9959h71HD7n5s19jVBScCBj7PkcPn/Dt7/6AG9d3GGxtk5clkRdghA/Sx5RTpqeHpONTFrMxXS3oakcQB8yWjiL7M0jC/9f//P+A70d4vk/g+Ssni4go7pEkHbpJl15nQLcbs7new5gZNvCQWmNczWTS8M1vfI+Hd7d47oVnuPnMFXTY4jPPj10SoG7gAo3U0BN4qrXMaWqJqWOKomGRLvFCjyCIEU62sCSt0doiRUWZT7n/+D3myynbW5usDYZEvk8oHFoEDLpdqjVH58yjsxLNvig8T9KUBmclSS9Ga5+6rnGupm5KtPbwvZAo9DFNQxhELGZL6jxloENuPfMsm+sDnADP81AKlKco67LV19UeAoW6RE3dEuJ5IXros3P9Ge7ff7O1dhPgBxFYg1atUWUIaOvwdYRzjthT+F7UemnV5VOUSl0ZcivYWL/KjRvPImWA5eIe6Gxa8cxmj1euRDRVxeR0zHQs8QLoBR7P7fi8c1ow3s+40tfkxxXTpeXqVoDX09iOYLgTkBY1vaFHshOw3QvpTXO63QDhHOmyQEWX4C8d+L5Eew5ETWMcyywnCnx6g5B6sWB/tMSkAY0355UXn6cxhj/61rf4uS9/gW7X53Ax4/X9GictGIetBekiQ/stol3phkhfXHF1u102w5Asy6mbGukaAi2YzhY0nsDVJc4ael0f61qnkTIvqUrL6dEJxrxFb7iL3w/wdPsdO6Cqm1WFXVOVJU1VXriOX/7SZwFDlASoxpDWNZ1el0F/gNKKsqrwrcY5yT/6J7/FwevfZTE/4UpnjS/fukN/Y4e39464N1oy3h+jiwFf+Oxn+fLPfZWiMQg0SmmcuSwJf7AnfD4WEpxzN87haOc4CI0htHO0rLnaVZimJBeCREO+HJN7jp7XwVPBSn/4fMx08f2ytI4IS9NOszg4POT/9V//P8nSJftU3JukzOuQ03LMdHyC7niM0pQqy0mSHt/81nf5la//KpGwTM8OcIsJfpGR5yl3toZUVUaZtm7zHyU+VhJ+8fYGe8dH5EXNeFLQfGAqK5A4PJRonXM97eH5AcpXeJ6H74f4XkQUxKx3t/jVX/s6/+Pf/A9Yj9ZX/cv20lfLgtf+5Tf5lf/Rr37oOtYGHjqUKxhXTll5pIsY5SmiuMD3I5QSeErgeYpAawJP4YcgZcFscUpWLjmbTthY22C92yfwNFo6dODYGgbUZU1eXpyEHYYwDLF12x+WsnXsEMK2pwRCpFQor7X5DpyP7w1olilae/STBItksZgzG4+gqqiLEh20XlxSKcqqXDmXXPAl+l08L0b4gis3n2XnyjOMxyd4ocbzFM5UiKZC1SWxAF9JGq0RykMKD2cFRjmaIGoF7lfkm1B73Lh+h35/A+F89CVtkflJwcyTzNYdjw9nzMczrvc8Pv1Sn37X52poOMobEgVJ4PHCCz4oSTfwWFiH6SuCSCOlRd+AoCfobkbUIWTzClcLok5Af3Bx5TdbLlBKsrU7AAFZWuIHIV4sUH5DuB4wzSxFCjpN2dzaxDj4/g9+wDM3dthYj9nYTtAnkuliwXJWUGSaoKNY2+gABh0K4uTidtW9e/dIkoQwioiiiOlsSidsK97F7BRTV5TLDKSHkLCxsY6zjqOjMxZZwd6j+7wYdwn0ECM8sqJsE3pdUdUVk+mYxWxOfcnQ4M9/7SsICVq396WOYzzfb800lUIKgTIG5+DR/bd59PprCKn59NUhV3a6HE9PqZ+8hRztEyZDtqIOG17IM1duUUrVEkzqGnlZG2Bl3CBWWFrpoJYBnrNIDEYonJAYHJ6riF2KWe4xW4zx04TxeMSNG7cJkz5NOefo6IQyW7C1eRUZdkEFgOAyeO76nc/QmCmiWFDSwgGLZs7vf/Ofou48R7B1A1WXuGbAjc7LxLZhOZlgqgxtKxanxyyXc0rRmoY+89yzZD/8Adm9B0SeR+gqNpqG48ua06v4WEn4f/k/+4/Z29/j3sE+/+z3/4Cjk+OVt5Rk2OvjaU1pahZpzrJcQrkiaKwwgZ7WPHvjWdauXuXatU26vRiHpVhWOFMTJwHFZMbDN98BPjwJdzqa2byktxYgY6jrkuUiJYwi5tMlWEe31ycKPXwvxvd8tBZoZQh8QzdRNM4yW05YFiWTTsruxhrrvQ5aOKLIY2urx+n04s1tDCRBFxX6WNuajFrb4PsaTwd0OusslxOqpkA27XBF5SByR1VlGC+gER5puiRbzul0WxSDEy30zxqDlOIpw+jDojYCIdpqezjc4Vd+7TeoqxxrqxUxQXC6dxcxP2bDF+xurnO2zHjz7mMOTuaUdTsoDeIQoR1V3aA9TTeJeP75ZxmuryOcpL6kF/vLv7iFqaDyHDdeXEMufYauZjgIEQiGkeXz1xVSB2jfEUaKoBPhdyJKB/O6ps5LVCPQTrKORhQN0jlmwrHeDzCRwl1yPUxjkJ6iaQxVVSGEh++rlQOFxQgwXsOyydEqIS8q7jy7wRc+8zK2WHJyNMHVFZ3AZ1FYgtASR4qwEwOt1brWAncJK2A+n7e2RL7PdDplOZ9jSo+D/YdMRkd4pqHf7SN8R9007cPCg92dPsmyYjLLOT16j7Kc0VnfJeoMcY2krsH3PDaGayRhQF1fvE+7SfiUpOP7Hp6WLdG3qVpEk1Dt7ABDWabtvtY+67LBjI/oOo9Pb3e4NniWvVEKWc7icI/s7Db+cB3qEmkanL34pHQOOkOAdK2NkBQ+yi6hSpEqBt2y7mQzp5w9YbR/l8V8htncYJGmbKyt0e1GVPmCYjrjcD7GzEdcfeZlVGd91bq7eB1bV24wnmu0VpSLmq6QXBsOCa3AUz6ibhgIi/E6DP0O637DcrHAlyGRF7ExXEPhcHVNmucYqShmc5rRGKMUUrQtr48qzPPx3JbrGrksyEcz0nT5lLXieT5f+PRneOHWTZJhxLde+xG//81vP31CS6XwteYXvvLz/MKXfx5yyf033ubbvQF1I3n9h++iteKrP/85RFkgLsOoWcHoZIHSguFGiDWCB3ef4KzC97fIVI6nPQJfonWPThKifI3UCiUdzpStqZ+xFGVNmZc4UxN5Pp4ULNMUL4iBHPhwi6PAi4nCDlp6LJcTrG1aR2cpmC/m5IWhdhlKgswk1UmBKiSh8kjCAGMasApnDVq1Q4imMVR51W6QqkR4oqU1XxAVluHaDnWZUjUpWzvPEArA1ZS2RKsSLz9ma6tiXRu2+h1qGyGbjEVWYTKDpxQ+ksALsXVKU7dU3t2ddZyrQWm85GJ67Je+sEUgNVIqpFKk4zH1+AzPlygp2Vz3CbXDZgbpatJJxfysAS+nbEAKy/q6Tzf2SToJw7WERkLPaXKdEESKY1cyv8RduNvtkqYlWbbE83TrI2hqmgaaxlE3JSJQ7F7fYbezQb+bUOZLrmxvEHqQlg2eE6x1+yybBf1+jJKKsnHUtVsN+CR5fvHNrldaEEVZ0jQ1nU4XLS0np4c0+RyUh9frkZU5QrWGuXlRkCQenX5AZQvS+SlVqbH1sH3qO0eSxGglsc7S6STkl6AShDMIWidjiUWxGhw5B1ZQO4VUGoPj+HTMsqgYnRzx2J7hRR16m1cYxiFZXTI5mzIdzbjS96gWIzqDDo3JsXW18nX88FCiRVK5psE2JQ0a7Wn8ZsJy9gD8DXT3GlIIPJfi6jlxUxP4Pi/cvIEIPMIoZDoeMzkbUeclSRIjqyVvfveP2LnzMhu7N7jMjduaBhmEuDIkSUK2hwlXn73B9nCN8Pqz4EXInqTOwatLZHmG6MSY3BFay5evXSGcjJjkS4oi4/79+0R5RhB6uCBAmpplUyE/WiH88ZJwb63PZrHF7Ec/pKyqFbhfIFUrUvLCjdu89KlnwAS8+p3XMc7iaY1ykIQRv/zVr1GnJY/uP+HwbMq3vv0aUnTYOzylm0Qc3H1IPw64xNeynXhHiiIrqYuAunKcHc9Q6oD+oIMxretvEgfk2YKrV67R7Q8pa0NjHVXjqOqMqmzI84a6FCzOxpi84eRkxDJNeeWVFwj8ixcSeAGOhrwo2kmoaAHoedn6eRXzM/wgYBj2aCYl5ThHOUHU74GA5XJBni0YdDsEfoANFXHSpSzGNNbirKCu2t7wRbGxsYYvNacnBdPjKZoKcPjacXq2z/6Tt+jLGTdutjTrk8mExWzEk709iqImCHtEfoiraoRW+L7PIlsSJzFrwzWaqqAxrf332vDDYXtnxZydZMBaMqSyhlGocaFGSYhiv6WXmhq/IwGFObaUmSQIJHFiEbUjUgJfa/xItxVr09DxJaJxVIWjMwywl4DxfT9gOs3wfY8oDqgrQxD5VEVNWTRozxHHmu3+JrvhBr3Ib73wyorj6RQhBYEM6QRdOlEP4RmEVNTLEusk0KI3xCXHb6FarHpW5PhKo3SLlHA4gsDDkx5Ogh/4OCxRFDFb1JxOMjxfMhx2CYMGawvKdE7o93BK4HkS3/NpbDveCi/pkddljud5bYHgHJV5n7EqlW6rYNMOgnvdPoWFd/ZPiG1CbRd0545e4nO2KDmZLlgs5rxwaxPjHLUVGCROKGp78SBbYRCuxtQZTZlR4xHFCt/NSZhSV1DNFGG3R6wN02zG7OSYTrfL1e0t4mGfqmnIixotBNl8gjYlVile/Re/x0vTGRu/uoHwL9awcFpjrUJrj0/dusPPfOY5dq+tsxkMKVTC0d4hs/0T3GLGfHrC5PFdqsUJtilZzJaYsmYsJcu1Ia7fZ7lYIq1BxREq6SCqHJUa1Eeby328JPzq995odQXCEN/zKKoSKSW7W5sEvsdkPuXhwz0O9vbJy5Q4CvnMc8+z1e0zSLpcHfa5N3vMw8P7TBYF3WRIp6PY2lT8uS+9wu76JtLBo739C9exNgy4fWuN8XhBkZY0TYuVrMqc8WjMwPVxzhCEHkpp9p7ss1FAVUPdWKwTjM7GHB+fskxTTAN55tjZuc/65gYvf+ollPZYTBYXrqMF0AvqusSZ1hFYCkFel9gVOcUrQRUVQSnJ0opGCaqqwNYVdVmRRK17a9TvMjVzeoMe+SRjns7QzqO0BX54CRRKWqSydLo+994748Fbe4g8JdQW6RtopgRdR39wnVe/8U2qsmJ7kOAFAUlXM1mW9KIOtWgruzAMmadLTkdjHu/t8+KLL7YsvEtIAdU0pyKi9PJWP6NR0O2DLWmkxEaCcBDhe6DKks1KEvc0cSdAKZjPK8raYpxlscyZz+YI6Yi6AbNZw5KQW7ub7PQuY6qVmNrgebLtiTtDEPgoEdCUOZ60aCmpygzpG65srrG2ucXJ8TFNWbA2XGewIYgWG8zvFszzKVq2D/XGOjAgpCO4BCcchq1AUhgEeFIRRT5SdukPBlSLMRjbCgFRsbNzhSCIyYsaZx2B9picLej1vJWOyBlx08VTg/Z7CMHTHkp56EuOSnm6pPF8bF3hBRFGtZRfz9MtiUdYhKkJvIAvfPpT/OPf/ufsLWb0Y49F3hCXE65vdzmbLbh7NsY0hruHJ7yQFfh5iW0qzMow96JQtsbVOU06RpoaJUJ82yGwlnSRUVUVj8+eEA632Bgm5IuMrRs36Pf7zPOC/fEYIQRpmtMUBdl0il3OSU/PmJ2dkE1G2KbVJLkorPJxUtCPQp5fW8cbjznKxqSZJA4THrz6baYPH2MWExyOdDEFWSA90LVB103rCO8L5KBHGPiIKCSdKZSnUY1ui6iP6N/5sZLwaDLGWMvWxjp/6eu//FR7wPM9tBS88/Ae7z64S2kcX//azyKkZLe3xlanz0Z3gOcsSTcgHIYMQ83nX3mJnZ0d9vbuc+V6wO5WhK0dxhtcuI5eEmOHFkzDeJozm1uu39hlfT3BCUtZ5hhbcXwkwGqq7JT5WIDQJN2ETtLl8Mkxr37nu6AEg+EGJ8cpD58c8hu/8evcunWV+Tjnrbfu8jNffOlD1yHR4ARhECNDh5CyZcOZAF8mJKFHVEnq04x8XmEt9HoJVVVQ1DVbGxvcunmLjd0rRBsDDt++2/bZdSvH5wBratJ0eeH18P0AT0JjCsoqpcwX6CKlIme4HrN1ZcDmICAKO/jdIYQ1OtIMNkP20jPKMsdZi5Qtc87zPMIgYDrP+Ff/+g/44he+wHq/g60vPl/dWt8kCkLyumTZlCjP0o8SnE0omoxlWTFPNAPhCGuNjQSJkMQxKKEoKonf0VipKJuKSNfMpjnvPqpw+Kxdv4qHJpYXJ+G6FgRBhFaqxfI6wCk6nRjPC3DOEgiPRMQMB302tzbZ2b1KHHeprt6i2+3ibI04eMCPnrzHLE2pKgcStGq1UMqiJL2ELry5uYmUEt/zUEKgVLtHet0hZ7MZURyghMHTIUJa1tYTtre7HB4ccHJ8ShxEuLpEWEddzmmqJd3BzlMsre97OCTVJeiZbDGnMQ1aeyRxiMZirXk6mDM4XNMQ+wnDJGA46GDnOes3rnM17hF0e1zf7qMPDpk9OCOrHK/f3+O5t36Msw3O1pi6oiiKC9dhm5LZ2REHj95BNCWd3jaBUlClvPfmY2ajMXvHE8pwQJjErPdCvvKzX2Tu4Pe/9V3efPttQl9TFSU//PG7HB6f0IsjlPSpipJ0MSfPMrS6uBJupMY5MFXB4eyQ49MJvWtbbE0N6cMnFN/5Dv2iRJaCRbdPHcZUUmG1YVGlICW1p/G1pFKSqqrZ3dnlrDHsL2b4ZYEXxcR/FoO5/8Xf/J+22V2Kp43+FttnzlvuTzUhjGtaaUUj0Ct2oZKOO+4Fvvi1n0EgWOv2iJOIvP45FG3f0BnL7cugLkoRBD79bswiLXCu4eata5TlnKKskdJhrWWxKIi8nGDTURQFcaeDde2R8pVP3WFzd4AXdvD9Aa9+8zUePbrPfDHj+6+9weP7B6wNLtZMjOMOVVmitcLXksYasnSJMoKhTlhTMeQlB+mUSnn0d7ZIIs10coyQjrLMmS8XbGiPs3TB3ukBFoMzLasqCiMMLUProvC9Dlq2N1mn0yHtJDR1hrSG0IMbN3YRTY7SIcONLaazKb31Pp41mPv7mLq1nMeBWKneKaURUvC97/+A3/mdf8Z/+Bt/iU4nvnAdtZN0lEdZZ+RFQaglpVBY35KamnklOCkb5tqjrzukZcmaK6iLkrRoCMKEQCvOsoplUbPVdxzNHeNUsbsTkfR8XGM4u+SEomQ7hPN8D60lxtTI1fDJD3UL3yskYRRx6/ZtesMtlOcTRhF+4PB8D1B4yiP0wpaVxbkIksNYR14VmObifer5Hna1l6WQ4AzOWra2tknHp0QhSFGTFiVZPsMKnyjpsLOT4HuW5aLAVG0Ps0hnLOdTNq9otPZQqtWZVko/Vcj7sDh6+A5106C1Jgo8RFNibYtI0tprcbZC4Hshk9ywFismKawPB9y5eY3KCZwo6USa9X6Hyi2ppOJ73/ku47MjlHI4a6hKw1+9YB2z8SE/+v63efzem3jCcvXaM9x/+8fU8zPmZ0f4AhaTKXM7xfkB+0ryZO+gZX3m7cnINRVlnjGbL8nygmI+xfNi8qJkdPSQ4wevEfb6wG986DpSU9HUggjB+iBkUXVxtSMe9pH3HrLpGiyCLOrxMHIsteV6f0hv2CevG1QQUlvLqMxZLKYEcZe8coSdAU1dY7Wl1+sjj48u/F7O42Ml4SiOVgLmrcJWqxdMS18+x/7JlVyia9lCCNFSlIUDYVasrJbJhWmrvUi009tz2uxl+DrnHEoLgsij0w3Ja0FZ5TRNg1YSYyp830cJgTGWxWJGYwRSS9KsYTKSXL1+g7W1bcraMRyu8bM/+yWiWDIYDBiPZmTZgp//uc9euI6mqUC6lqLYSOqqQpaWYdRjKDqIzHFyMGXvaEzpeSSdGEdA3ImxjaU/3GB9exeVxNw/fMwsX2BdTVXnLbFAOLwg4JJTHkqEmCZDSZ8givHjDsXoBO0gTmKef+lFtoY9JicjOvt7KE9w8/ZtHp8ckPQi9El+LlWFNe0DVXka7QdUVc3B/j4nh4dsrK0RXrn+oetY2By/kfhCseZHKB9y0TDP55zOKtIF+L5gbmtqazgaZYxMzYZXMx6XDNYEUSw5K30OZ5I3781ZH4TcuBmCF6C0pKlr0uyS5OdpHG2lqFYwRSHEirHW7r/GGNaGa9y+/Rye38FYifYUeZ5S1QYlFZ2kw+baOo8mT6iaGtsYmsZQV45s2VBcQuZxQiA9DVIilEBIjad8tq/eJM8zluMDpJMM1taQuqaoDaPxGG012vPwY4kMGkQ2p0e4eqh4tCqFGiElSrUQ0Ivi0Ts/WsmTeigl8bRAaY1pGnzfX8nQOpTSLCrHZtdDVF2WyyXTkyOyqqQR7WBzECjOPBiu9Tg9HeOcIel61LWhuoS88s5777B/eMD+wSHKGUaTOVVeYKociSGQkrppqJFUVUHVGE5Pjp+KQdR1jWmqdkbRGKypyWtDllc4IWhcydnxffTE56IkXE5HUI7px5YbQiM3r1F7gvUapv2A/udvUuyNuVv4/GB2RG0aovU+ncEQhaRZrZPSQy4XhGFIPllgjSFMOtRFxbxYEiX+hdfjPD5WEpZKrb6wlUvGuWPGymWjFcZfSdTZVpin1etpbxq3QqwJWlUvKeRKCN5hxQdkLNXFPVClFL6vsU6RdHymixqlBEp6FHmOaWpkSMvmy6ccnxzheT2CsEOWF+AEvXceYoVC+z7PPPccn/3MZ4nin8EhODma8sKLz/LyC89euI66Ltp+nAFpPXqqR9T10Aik0xBoSi+iu7HB+OQxVhf4XkLHDwm6XTo7u1Shz/2zPY7mB2RVRl3XaNHgB4rGNDS1uVSRxDQlVZGTLktCr4MvNdY5DBKDwvcS1te3ScIO0hPMF2MUFj1RrA/XOO1UmJWK80qqH+kEgafQEtbXhpi6YnZ2xvoF62jqikwqYi9Eaw+nLGWdMV+WpGnLplRSYYxmkjcclTUzLWm8AEKNiALeO8mZ1ZKiclSl4+ZmAL2Q46nEFY4oFNhLtq1U7cNXa4XnqacwsTzPsVi0L1vMcRgTRh0siqppaOqGPMuIoginHN1Oh6tbV/je3R9RFjlN3rCYLFkum3aIVFychLXntcm/aXDC4Xk+fhDgBSG7N57hYb4knY7YGPa5dv0KyIb56IzZdEYQ9xisJWAKvHjOwAvoDq4T94aUZYkQEq09tNY/JQn5b0ZRlC0yQsiVM4VAWbcaqmscjroukEqhpWhhb52YbrdDnCQYKfBVSFMblLXk8znDF27h+QGNrUni7uo9Ln44Pjoe0Xgx0doudZVTCIeNBEaLFl2BAe1jjaNp7Ipy37RtT2Oo6hrT1DRNhTWGZiXZinIEnT5ef4NxFSDsxSc2N32IpsZ5IZOjY3aCEM8LyI9Pmc1Sgk5CFs550FTMlEY3jr00pa80QRCBarkHnbpg6PtgHFldMhqfYZKQJAoJlGEnuMR94HyffKRXrUI4u7pF3//xVOdh1Z5ok+yqqn2qBLFy4ECuYG1uRbm07b+Rq/cSLanhsoZ24PsrSyRDpxOidOvmYOqawA8IYosQJUpKtFJEsaSpW9puv99H6xY+FIQxSW+A70mOT/bxdMi779wn8Hw+85lfIo4uhmQJJLrx0dZjkPRwDiazCePJGVK3wjyZKom3PTp4IBsyL8VLAoJeyETkjJdLJumI3GTUtOLjsR8glaAsaxbpkkF/cOE6zs4OME1JWTX04h5nTU0vjpFIzk6nfPuPXiPWHhsbPYZrQ/zAsZyf0e926MV9gnCGNaClxlOKpjZ4UuNh6cYRg26ndYcoL5l+S7ma2BukElTCUVvDeFFRZ7qVMmzadoEfOq7c6FIrR+V5XL+9TlcK4nBKOnL0s4rd233iXZ/DScPC07iiIEgly+biwYvSsm0R+Rop2xNKXdcorZ7uCStb7Y+8KAiiEOEaTFHTVA2ZS9FBgPR8Yh1D7TE6XJJNMrJ5RtM4wiQkii5ex3nPVUmJ76kVXE4htWJ7ZxvXPMe9dxuWRUFtNFe27yCaHk15wMbmJpPZHBUkXLnyPDqIW53hlbXY+RBMCHFpJdwfrMEKpy+kQAhLEAbt+oTEOIfn+3hatD1332d5LpyuJb3BEIvl7HSEJwzrnYheHLG9u83RyQl+ED192F0USwPST+js3kS4plVgtDXYBttUWFtjnUFahzZgmxpTl1RVSd3U1FU7HC7KgqIoVv8/h1UCr7OG6G2Qe2vosHfhOq4NSzb6N9ns9FloTTkbIcaWerYkrS32OGXfOR6WBcPhJiorqIxAhB3Cfp8GQ93ULOY588mYdD5nfnhAmi8Jqhh/c0Cv3yXs/hkkYRrLqv/QWsWsPMrO4/zXQgiste+7OJwnaHjaVzsXcn8q5u7OXTcub0d4nr8aXFmSGLqdgiLNiJIe4+mMqLQMBxJEjud79Dc38P0+2o+RqtXgNI2gMSWz0wP2Hz9kNk9prOSF51/mL/3qr3DjylZrw3RBuJVyHE4xM3NOp2PSumSyGNEbRgz76+hQI7RkqPtY07TtiwgyXTFd7CNlg7GtiHtZgJWGQMUo6eFczaDXvZwMLzz8ADpJwNnjlnnXCyPqykBteeP7bzOfzPjMZ59nuB4iZU1TtwI0WVriSR+hfLCt7ZGpMrqdLkko+PrXvsbt3WuEQnM2PrlwGVnmyHWJ1tAJJOO64GS2IK8sTQmNVAS+T24VUjuSnuJwmhOHAbrvYRvJ9d0+QafCjCRrfYsMJZsdzVYoAU3eVDxYXHzsdU7i+R4OR1XXNNZhG4taiReURYFZGhazOYvlgm4vxlMaJySNa/U0hNYoTyCBbJJx/GhEk7fEET+WrG9GdPoXQxi11mitUUGAEu6pqLmSkihIuHbjGTw/Io4CnJUs04pkuMbpZJ+smuH5NQ8Pn3C70z4IlRS4lYNL2xNu77PLipZFmmKspdft4fm6daMo6lbkXthWy6IxpGlKGHWIfMGwG+NpSVaVCFo2nUTy+ZdfZDgdM+yE9Htduv0BUkpOzw7JskvQRAisaO8HKcFKC65BC4eyTSvYDigc2jkkBukqlBat6JFtP3ueF4zG49WJQNAgMCJAhF1KJ2guYRCKcspy3NLgT5TGVYa1uMPG5hCRaIp5TDkKqU4f8uXPfZbpwTGHx09YVhW+qZmcnfD4wX2Ojw4oixTjmtY0oB+ytd1ne2MNPwwvFVZ6uk8+0qtWIVdtAufc0yR7nkjdyiVDyvf7w+e/P98o53/3weOTa+XwVzWz+4Ci2gXrkBolDU5afM+wud7lnbsjlA7pJH0W8zGBD3GoSF3FPDshy08Iwg5SSaaTOXlWU5QNZWlBegyHG7z88qf4pZ//eZ575hmEO3dk+PB1JJ0u82qBlZZaSLy+ZivqIM8cztUI6fD9troNvS0EhrwpqDHkxWJFGKlRop2gd8OY+TxFCEUUdbHO0Yk6LJYXoyOk0gQeCJsyGx0Ra4VpWmEkhE9dCx7cPWQyGfPrf+EXuHplm8fjJ+w/HrMY50RehJAeuPamjqOIwPPoBprbV68zTLqIuqFML1ZRU2ga13CUZ0iXk1UNQgb0ugGLsgFrCSONxeAFkrIwDOOI9U7EpFhgcscAnzAEtavpxR6RlHQiiw0Ny9qwKKB7yQapjUUYQ1kVGNuSKzAOGodzBs+Byw3ZbMF8OWO7HhIHISqKKesMqWT7e605PT1ldDhC1bqFgwU1ve2Q4XZClFwiJOR7LSFCuBZLr9RqiObahOIF7Fy/SaBl6zXXWLTWvBh/kdnohLpI+eynr5L0dpB+SFVnbWUdKYqiaO8dAfaSAWGaFfiBT5rn+MZHa0VV51SNQeuWUMLKFNaYBi0Eg25C0mkdQeqqVUyM4wShGl4advCdZbGYEnfX8LS/qlIvTn7y/GYSqnXhkQKcxrZCwTihcHitQYJrEDRIWinLWiiQCqk9mshH9QW6qnHO4QkPjQblUVcp7hK7p7W4S2Uz8uKIZeqIgw6P0wmzOiTWkslsxng0xsews7NOvpyhxorjw33e+fGPGJ0e0TQFkoYo1iT9Ppub66wNe4S+xpOauhFcZtN2Hh8rCbuVvY1SEqkkUpxXwm6VaNshnVTyJxJze+H/zQX9xPN79TRfFcQXL1prnDNY1yCdpNsN2Vrv8OjJHkUJWZ4zn0dsb60zGIZIz+fkZEJWLNBKMZtPkdIjDhP6g3WG65tsb22xu7FOsZgxHk1ZW1trP+sFxY6xFuEJpAeohnK5oM4LBsM+1jjCQNM6Hnt0k4SqzGikwDY5VVPh+x5IRRB28JWmlwwI/Zg0K6jKVvrQ2HbAc1EoGkyx5PjJu0yO9wnrEiVotSHQaBVihCFdLPjWN3/I5uaQvYeHHJ9MoNZ0/BCUQnle+4A1lixLiYKQUHsoIWnKmiS++Hh1ZkzrsVc5QtpettCGaWoh0HS0h5OCrDRo47PZCViLQRs4nRVUFcydoN/xGEYhw8RDlhVZXTJdGCa5AeEj0ouTznmF2JhWRCUIfaqqbFW2rEM4hUbgSY1pDJ5WONu22jwvxAm7UsQT2Now7A4Jo3UOTg/wIsWVG1sk/RBjLoZkCQHq3PR29bPWGiUFjW11dYWUWOMQ0qf9GjyCsEO3uw7W0OCwKOrGYGzQGipYi/Q96qqiWRnMXhRJr/e0XWiQ1LXFoUkri2cNrqxQwuEpQZYW1MbgKw9rHFVpELT6EM7USOe4tr7F6PSINF1QlK2reJHnNJeI3LsVztzZFqqHk60LjhCrBKwQoh3mN7bVRlNOo0SLskIIRCPa3rPwEUqvTgESQdtaEc6snH4+PAZBQCEMVhpcUeDqEk8BJmSa1jzcG3E6nuCaind+8Cp16cimM6ajM6wzaE/R7XUZ9kOGww79QYduFBMoH2hP2pWWVB8tB3/MJHyOghDq6QZqB3EOpVR7cVXrsGzPUQ5qpQImfqrX61zbgpDtEfG8u2w/ArZOCIFS7VEPEaCk5doVhSc1h8dzPA22tpycnJEXGYPBJsP+GsLlLc55fZsgaIH0cdKh04lIAgW2ZDI65vjo4KldfRh8+JWczCaEKsRXHstyTF7MwIVE0ZAwDhCuQTiLlgGVMTSu9XyraoOQmiCIMbZsHZ79BN+PUV6EcRPqpqCxJWm1pLAXV6CunDA7PeDwvXeQVQnSIBTQCLQX4Gu1ulk17719yOMHZzgjkSKmFys830f6GuG122G5XDKfTuj3+zTOcnJ6QuJpOsnFSXhaWbzGYlZypL6CamGRRjJrJL3ER0qDKSBJHNQNzjqKTKBN227Qtk3WsR+haeU/PRpMZXC1I/AdA+/iqXPrMSZbFqKzeJ6mrs+rI4dwLVysNjUWQ21LmrJGICmamqxaUtUFm2vrXLm6zfVb65zMpmRCkqx16Q7DVnTqkq1qnUEp1bYRVnu/3bNg6malFNaqf0kpUXKVSITAStW6gliz0npu9TyMMQgB0kosDuvalstFMZpMnt5/DkFVN0+rNE9rPN3SusMweFq7hb5aOXDXq7Zjq2zmjESfjciyJQ6YL2fkRYZzjiC4eIZyri3Rzo4MrjHtTa8UQrba4jiLc01bvKyGiE5IhH5/sCgsKBT2aU45d3ZX4CS2ubg9k6c1teej/RBnGt67+4CyLFnf6OEFPtP5kqrOsNawf7CPlJra5XihI+nE9Lo9+t0u/W6HKArwfImWHgKNte0DwyEvJa+cx8cbzAm1chReJeCnyjKunbqe/+4D1W/7up9qP/B+FXz+s6CtgFs90UvooCt0RhAE+DbAWIOWJaHWbAx7LLOGNK9Jq7SdeM8WIAyBPhdebzdeHEi6kaQbQxyC57XmnZPpKZvpLmEQcZHZndIOoUB5IYHr0O0orGlvoqxI0VIgnaVxpm2haI0SFl/7GBy9Tof5wlDVrRV6XlZUdYExNVXV2s9XzfJSCclQpLxz903sckkYSJqVZq2VAuUHKC3QKJRMKPL2CCqcwPcUUeijlEAGEiOgKAqaskIi2NjeIogjsqokXc44nU14/oJ19IhwrmJa1chAkyifXGh8leNKiS08It/jSiKZZDWjmWBno8XhCivo+pow0HQSTRiq1iDWivbPQkvl2iP9ZnjJ9BvXwiNRK89Dh+eptt/dGIZhn94wosobRukZh9MQaxrK0lA3MF6e0o9jgkQR9hT9bU0ZCkS3C1qAaJEU9hKDzQ/OQewH9FBMY56eEsuq1RjQSgEtoSMMQ2ia9qjtezSmJVYopdo9UVUoZZ+auSp1ce+xrEqUUsRRBAi0kni+jzWWMAwJQ4+iyGjqhiAICAOfwNPkWYaxNdaKlY+dxDrF4vQMQU3tHHlVUtQVSmmaS9ARSqmfOCFbZ9vC7QPtS2g/kzxvbbbdmxaTrQWsPq+1gtqeGwXLFRigfR97yYBwbWed3Cpw7RxgfWPIyekpyzSDLMdZg1RNO1ReTokin/WdHmuDHt1uhySOCYOQUHpI0e6xBkltRZuEncBYfek6zuPj9YTl+8O4c2xwO2AzP9F6eApqN+YDr/9jKsqnxpLvK+o78T6q4sPCWotwLdYRJdG0bC8lPXy/IYwNSdFQVj51Y6gKqJtW/FmtZDbDMCRJEpIkJAgVvnJoZXG2Is/mLBcz4rjLkA+fPAvpKEyGzQVhENDVEVVVk+Zzqrog9AOSMMaYBqkk1gokCi09GpNS5hmhDpDSrtS+NOlygbFtr6vtZVo21y8wGwXe/fEPOTzapxdEGKHIS4PW7XX0pEU4RxQEhEFMv2dapIMUaKUI/HYTCSmpXUOZtRRs39PsbG4S+j6L6RSF4/Dg8MJ1+NJSSttWVFa0UD0cnnRc74Rc7XcIlWQynSJTi9I+FB6ubqgbQy9SRKHEUxLpoKkKlJUEQcSAAOsZlpmFS2ipxjQIFHVVoTUkSfR00GCtxSrL5s4Gi2nKyeIY+2RJli1ZLEqUisjtnFApKpNSNhU5GQSWAJ+yaLCNQOBR15cwxM7nJogWf726J87vFa3PiRb2aVtPSvkUduacw0qoV07Y57OVcxH0NimbS9ERnThawTr9VkNiNadpVdUC/MAj9DXz+RwpWm88TwkEIZ7XFi7T+YKicZSmwRpL5LenXeV5lGVJmmWX9kDNimELPDX7VFLibMsQPW/ZONv6Up7rW9iWEdbeRwJYtZqssa3Jp3BYa1Z0Md1OzC+IZ68PGM0LFrMcIQpubCasRS3ksCwMpV9TNZBWFVr57F7ZZmN9nTiI8bS/GriqFfTWYpvWGFcJgXKtEJNHQ/ARLe/FR+U3fxKfxCfxSXwSf/rxUSUvP4lP4pP4JD6JP4P4JAl/Ep/EJ/FJ/DuMT5LwJ/FJfBKfxL/D+CQJfxKfxCfxSfw7jI+HE3bOnU9V/6xDnnM8/5g4ODhxAEJKsnTJf/lf/F949bVv0ul3EEZgakuvt0EQKZQyxHGfO7df5Nf//K9z/epVwsjDUbdaGNJHyvD8863QdO+z+pT68BHn//a/+NuuRYKwslRpJ9ZCCRAG68wKOdIqeNV1jTMWa8zTaTewkiRsqahK6VYY6Rz3uMJA/u//5v/5Q9fx41f/obMrTQ5n7ftqdCuJUbf6TFJorG1oTLlCX7SgASFBWPcUoyqkaIWVVtfAIGD1d1/86l//0HW8+ju/5QaDwdN/t1wuUVIyPj0ly1J04BF3Eg4P9miWGdUiQ0YR27duoZXm+PiYPMsQ544snk9tDEorhoMhzjnyPEdKyX/4N/6zD12H+6lps7OO7373ezz/wvP0+xfrCnzcEBfcDP/r/+jnXGVzvFihw5DJtGCjk5BIi8uWRN0B7x0c02jF1d1rzI5HjKcTgk4Po33eefgEgWK928M4xzLP6Pa6bA6H2Kam12s/y5ODA/6//90PP3Qdf/d3/qHbf3yXWzdf4fNf+jn6/UGramgsZVHy8MEDsnTJ4ZN7VIsnSGlZFgUOi3E+s3nF2fGMOq8Q1iKkxbiGXqePpxp0DE0jiIOA/93/5sP36f/pH91zeZpTlw22rkA4nG1VvZxdkYQWixVjy5HnGWVpqBrLYrZgPp7gnKPf7xNFHZTyV2qDZgWRbRElQir+wX/+P/nQdfzR67/tfvzjH6OExy9/7Vfod4dMZwt63S5BEOLpsCWiCcE8XTBfzinzBZ722d29xujkgO+99k3efPAGb7z3BqZpyE8r6sbjuRde4T/9j/8TnrlxC5wkjjuXJsuPiRMWl2IS//sIuVqDlK1GwHAt4c4LmwzWIxbjGlMF9LprBJ6HcTmD4ZA7z9xAa8vp6T6B3+BFUww5cXiFbvIiTW1YpnOSJCYIkktts4EVuPmn/ugcZrOC39mf8stzH3hNe/+2OEcpFFLqFfRPvk+G4RzO8+FhrcWs6LDnZBdrLWYFznfWtLAdk1IU+VMPOCFVixFujRYwmJXu7TnWWyBly2ayK0bZRTGZTGiaBs9r9W6TJMH3feIw5v79+6SLBXVZU8xzHr37Hg/v3mNjd4e1rU2CTpet9TVGtIk27nSYL5bkRcFwOMT3fcbjMScnJ6384kcIZ9sHzejslH/8j36Lqvw1fu5rX3v6Pf1Zh+9JkmCdylisUdy8eY0k8KgWU3TUodfv0M+WTOZLstmc9bUNpAqZZRnWNdy8uoWwgjqt8cMQ5SxNWTKfTpFSPIWbeZfck0U2psrnHB/ss/9oD31L4jAcHuxTLBYsZhNmkzOy2YQkAicbPNM6fDRlw3w6pimblvptBY1pwWCiqmiExcnWedxdQGwCONk/I19mTEdTymxBXRc4azHGIgUoBFVRYusGZxuqOsc0FilbkkpZZDRNQzo5wvM94iQiCMKVMlz7fZvGXLo//tW3f5v9h4cUWY30BJ2kT5rm7O5cIfBChr11Bt0Bm5vbPDnc48n+Y4piRNksuTl9BcqmNTReVMwmJUoLRGChqtnff8y/+L3fJf71v0CeZrzy8hcv3ScftxIG/mQb+KehcP82N8H7SmytnObzL99ieF3SH3QxNWgRkkQ+YahRwqMT7dDtbhH4mixdYqxH4GmyIge3RIpTTs/O+NGPvscrr3yKW9c/jdbnfOUPX6ez7ikL6fx1bYXZ4p6NsSulJ/FvJOP3RfElghWxgPbXbbKTnGf5y2CET4kv51jrFU7bGkdVZJSTQ6rFKen0lMV8wWCwTjJYIxpsoLsDrGpxw+eW5KsnBW1ShxW39FL8dhAELdmjaaiqiul0ShAEDPprDAbrSAdFlrJ//yE/eu371GXBtau7qLpmcnyEcY6NjU1QijQvMNNZS1ygrarNirRQluWF6zi/GHVT8+D+Pb75jd/n8b03eeP7A774pS8RRtHT7+DPMrRsceHSKXrJkCs7V0mzxcpGKUfGPtubQ6QTaKlpjKXXX0OHMaWtWgZs45iWU5qqoBeHVE1LU07z8imeuK4uvh6mKnDGUec1R08OcXVNbTIe3n8dbIZGki1ThDWtVKSw1JWhzGrmixpTQpW3mhJBoFtiRlky8ARGaNKspGoKOkF04Tp2NweYfkziOWbjkjJviSDGCnqDPlprmrpBAdlyyejkjLIoUEKQpwWoCidb0kd/ELO1s97iq53EGst8OqMsGzqdi3HTP/rxfWxuwDh++Pr3cU6ws3uVWTHjYO+AUIa88MzzfOELX+TBk3d58PgBeT0nSyfsHd3HF7Cc1cznEyItyPIS3+8gPcPZ5IQHT+7x1t0fc3Sw/6efhP804yd0Jf4EIVbvYXFYDypTkxeWYXebfmeNXi9gc2OLfmcDLROEDDAWom5JWuaUZg3nuhRVyWz5fUajE0pzwPFI0+30GA6ut7YzFyzxfUeDNkE9VbVqHE6+z2iC98koT9d/Lm5kZEvK+InE2ybjFZ4ddxmV262A/c5icQgrsGXKdP8u472HlONDbDGjaWqU0MynRyyCkKDTZe3qMyRXXwA/REmBEhK5kh5dXWRYieddBinv9/v0ej0ePXrEfD4H2sScZSVVXqJMw/HjJ3zz934P15RsbqwRe5Kjh/d54823WJYVX/mFX2DzylWiOOH5F14kTZekaYrv+xRFge/7P6Hc98deDhyLNOUHP3iD//d//X/nO9/+FomnSZIu9+7f55VXXrn4g/wphZaCKPLp+XHrPj05Iy8LPE+DjEDB1mCAqh3jSfvwqutlq0liHb4KMdRoLRFKMdxYYzyb0hiHcY40TVenjYvpwunyjKaqOB7vs5wuOT3sUps5gjnCGurSgKjpdbtYYSjLmqpypFnNYl7QVKp1JnGWummdX3qh5tnbO6R5wySznI5GLGYX0+u1rgg8uHlrjWLLb2XDhcCYhqTfQ630l7UQjE/GHD4+wFQVs9GI6VmNFAFVVVHVNZEvuHPzKlVVMZvPmE8XFNkEgKq4mKxxdjxlEEX04gRfesznKcvZguPFKXt7jxG5A1twOt1jkS8pyooyLalnM2696HPrtmY5hyvdhuxqh9feynlykhHEHknkUTU5r/3gu4zHxx9tn3ykV/1bxFO5ypV0ZV3VKKVWIjx/8sp69Q+x1nH3wT6T0YJ8MWY5fRutQ3zfZ3Nrmy9+4Wf5ys98kaQfkC1z7u4dczJZMJ8tmU+fEPk1d24NaZo5OmoYz/d4+17Bi3d+ia2NO5d+tlW92B7PznvJTrQCQ7Q94fPk6lZrFlLCqhe2Ugbl/Y7Dqj0hJVKJFRvokmssVgnYtfTxfHzK4d0fMH78Fs1yhsBhjcE2pjUf9Q3SNRT5lIPpCZvG0b3+HK0SvkaiV6t9v7pfLf3CODs7a/3ZVop5k8mEw8ND1tY3uXntGvfffZff+W//Wzwa4k5EtpxwvP+IB+/d5d37D3jxs59jc32DyWSCnc3p9wcMeu37NSsXiLquLz1u/svf/Sf80e//a777vdd49+67NE4iRMyr3/0Oa//Nf8Pf+lt/i8FgcPGH+WPi4+7TJA6JOwHa18ymU9JZiQ584jAg6q2xtRETuRrTMxQ5LGuH5wuyeUaZGRptCeOIW3dug5Yss5Su7KFVQLrMWCwX+IFPVV8s7ZllI+bTnGwmmBwfMxvHbG7HeJ6hzKHIG9Y3ExpbURU1y2VFkTtm04yyaB2/pa0RzlDlDcONdX7xq1/kpedvcHo643hS8+N33+W9h+9cuA7rDEI4PC3obwzQnn76cFeqZeZhHYv5jNPjI44PnlDnGfsPHxD5AVGScHZ2hmkaZtMxg36POAmZTE85PDzg4PCIteEaQX3xQ8mPFEEiGQ4HSCPIFhl5uc9CFEBDJ45pypTxHHIz5ex4iXRgJlNGh+u89PJ1itIx7OZ0fMVGr8N4UrUqeUjOzk5xS8ugd7Ga23n891IJnyffw4ND3rv7Hjdu3OC55567tKL5sBDi/ZLMOXBNjCeeYe3GgOa2o8awmGU8Pjzj+aUhjELyouS1t+5xMD8jCDWZLJnUDzmYnPL6O4rPvfgiYQSFTJnMx4SJxgsc6/0XLvpgq6GcwwrXamu4NimbpsE5gzhXeRFe21/FIawFtaLQ0lIf3VP6d3tNzodzYBHikspPGIxr1cHS00Pu/+CfMd97hGgcSkMQhkgpWaYpVV5SljU2EySRhypzjt/8Nk1dsnb7ZUTco5EOvZL8+Mk+8MVJyPc8losl6+vrVFXF9vY2u7u7PH7yhB+98UN+8M0/QtmKz3/6RX7w/e8TRh4HT54wnRW88vJL/Nqf/1W2tzax4wlp3VCWBQcHC65cuULTNERxRBRFl7Yj/uAf/xPOfvwNfqZv+dIXh/yr14/ZdxHTRcFv//Zv89WvfpWvf/3rP+FK8cGC4MNOaR/39BZ2OgSdmKausLbADy1Rx6M0lijwQYQ0yid1UwY7PbaCiOm8QFpHEzbtHtI1OoyJoojJdM5ynhL6kk4SsbbVwQqft996cOE6FJKmbDC1RSJI53Oczdja7lLXDU1jaOqo9eJTgJNUZU3kJ9DUVHlO1xdc2d7m2rXrfO6zn+LalU3ODvaRStEf+Fy7ss2DR+9euA6BAGPB1wjPR0j5dBhurcTVMB+Nufv2W0xHI8p0yf7jRxzvPSGJQpSnyfKC/mCIMTWvfvubWAxZPsfzFd1eh+FWD6UufkjXVUPqNaSVRdUV03SKqCFOQjpBTNAkJGKNuw9GXL+yy7XeE65d69P3r2JMyuPHRwSdO1x/9rNQztndFjR1gJOKnCXv7Y15/ZtjzpZnH2mf/Kkk4Yt6lm51bDp8cshivqDIC/b397l58+bTft/HjfflMVuN45s7n6bYlbz0s18iayy5ycmXJUPj89VXdvADxTt3D/jRgyMKI9jcVPjRAuVlyEhiqgV3j6fc3t5CqHsIlfL2w3/BPHubX/vK//Gilax6wuCMQ6rWBBVrcCVAAL4Adc6LV0glEQKqshVVQahWyEQIUK0QyQd1l1shmouPV7URHJ/Oefv1N1g+/iF9c4DvHNrr4CTUlSXpxuxc7XP25IAqy7G1YWkaIl+iqlOO3/k+s0XFzotfojPsI22DEuon8u5l6cdUNftP9ljf2mT36lWqpiaOY5wxPHrjDeRixitXNmlGZ6wFAWllWFSOz/3Cn+OVz36Kdw8PeLyYs7a+Qb/XxznHIm1YZAviOMZaix/5NO7iyu8/+k//Jt/8nSvETNka+NTdd/j733yTKAyZTMb89m//Ni+//DJXr15t120MVdW6BVdVa3rq+/7T/4IgeDqQ/jint+OzMTeHXTpRjC/7KN+igwhkQFE2LBZLamPZPxsTepJOGFOkIFEkScDmziaVkTw+nHF6OsFTPpEOqZYlxXJCfydhsHmdXqd74TrmZzWmcPgatJQ4Jwl1wPWrz7CzcxWtIo6OzpgtjiirMUoZAl9Q5g2DfkQ3DthZH/KlL3ye5194kV7ic3D3TU6Pjtm8+QxDLyLuRNy7f3ElLGjANNi6deywQnF+GrRO0lSG06MDHr/7Ftly0frNVQXCU63IE5amrjCmQWnB2dkenV4XP1D4oYexOScn+2h9cV6Zn2ZUmcEU+3SjmLjbodfrcmP7Kh0VEXuaKzd2+Ux8m+v9HFOMsS5lPpaMFwseP3Js3Rnw4/shxvg0rkIh6USaJAx55vqA6/0OWl5kBvZ+/Fsn4fNN+dPC7ed/tlgsOTk+Zr6Y887bb/PGWz/iM5/9zKXDpo8a00lKmmds3n6W4+MZpW1wokHnhhde2CAMFeNFxoPDEXlt0NrHGIWpBc52kcKRBDWlucebb3e5cyeit3FCls95cpJe/D+3rfiIc+f9aZAOJkcLzp5M8YOAtRsDgoFAS4mvAjqdhKLKqVY+YVIKhFMI2fqvqaemqQLc+73ji+L3//D7/OG/fpXTR2/zpeuajfWYIA6oEZR50SaVIKDT77QCMUoTxyGVMSzTBcI0+M0p7z55lTcezvnsz/4Mt29sEmu/lRx0DUh9qUCL9jyK+RzrLFIp4sDHWsP4+JTF8Qmfe/5ZZDrnYG+PxXhJ5YV88ed+ntuf/SyFdDw+G/HccMjO1Svky5TFfIG1UGQFZV4QxzHa85iOpxeu487Ln+LanWexdYESljtfn9L8F/8Vv/vP/zmTouS3f/ufEfghX/6ZLyGlZDabcXBwwMHBAePxmKZp6PV6rK+vc/XqVW7fvs0LL7zAjRs3CMPwwmr5g5GmGYeHe2ysRWhbQd3aJ0qvlWwsioz5MscJRVV7nGU1pjCUVcPNZ5/D6T5VXdDtSZq65PRon17UIUxCziaHlLOMmTljZ33jwnXkixqMw1/ZK13fvclXfv5rPP/Si3Q7PabjBaZ+jzBaI4gqFoszZpMZEo9ru1dZX1un3+2ws7OJEmCqjCf37/N4f0S0toEXN0S+z+729sX7Q0lcVWMmM4osRoRx6+q9krrNF3NOjvc5Pn6MMA1FmlHUDZ6niHsDur0BtTji+HREU+dI2SBsjRI+y+mMxXxO4Pt0u4ML1+HLgFD4rHcTOrHH1sYON67f5Euf/zKhF7O+WREEDVofsDj4Lf5/f2+Pg5Mee0eWzZ0txnNNdGeTJVs0SuAo6WnBlSs90rSkHzVc7/8z3v7emxeu4+l1+Uiv+ql4Kke52ojOObIsYzabsbGxgbdqsM/ncw4Pj1gulnz7O9/iD7/xhyil+PV/79c/Mszoj4tzVaWirDg4OCVQEcW8Jp+OEdoR+pob2wMGHY9lWnBwNOLwdIa0Fm0bTO2TzhUn+wpHgvZjkk7C/t4+jx8Zbvoei3qB710iUu3aIZpzbgXfcTSu4fHdQ6rRhKs3h9SFj2oifCXwlMITmllRPlWg89B4uq22iqrAiZ98kH1Q6u/D4v/2X/090vGIL98KWR90SAYDhIRssSCIIrrdmDDwcFVFWRZoT6O0am1+8PDiDot0hs0bfviNb/KDHz/kV3/15/nZL3+aKpsClsH2Nk5fbOfTeJLNqztkVUF+VrK1scndd9/hjde+y+72JoG0vP3mWzx5fEwtHM+8cpuNrS329/YJeh2evfM8g/V1Or0hs1nKbJ6zNljDVx5ZljFOpyRxQi/qX7pHgiCElb7tbrLGr/zKr/Gd736Xk5NTRqMJ/5+/+3f5+//g76NUq/vatjgcYRRSFiV13SClJAxD+v0+zz33HH/xL/5Fvv71r3Pt2jXk06P0h383UZisHMqhKHNEAVJHmKbCokniDtNZRrqs6XYH9NYGJH4AUuFUwHTWoP2YKAl4sv8Ih8JVDWk+oRfGqKTHPK+o3MW2QlJr/NCCNfR7XX7lV77Oy5/5Ik5K6iLn+Gif+XyOUxHPP/cp1ocdiqLA05pu3MHWDVVTImmoF2eUiwmjUcoiz3nw4D38sMedZ15m7RJPtaIoGO8/JkgzVNzDJn16wyGNcfjaI5tnLGdLtB8hmorNrR5e3EEGMd3BJuubO3Qf3ud4/zHZco72BGEcI5Tk+PAQjaEpG6bV7MJ19Lp9vvSpF7lzY4NeT3HnTp/dK5JO7wFSXsEyRokMab5PtvgRr31fczzyODjN+Jw3RAcKaw1BGK5wTT6bseSFG5scz0oOjkaMjmp+9w9T/vr/6sKlAP8WlXCzktc7j7IsGY/H9Pv9p862h4eHHB8d8/rrb/D7f/D7LNIFX/3KV/jUpz71E5v4g350HyWctRhrOD4ZUVvJ1bWrTC3kwtJUNVVdsVymvPajBWlWczyeMT/LwFqsEm2yawJE3Wc6OaYxFRtbfZo8IJ1ImsULOGY0Zv/CdTy1d7JtbxghqPKSYpFyYzfmC1+6wnHtk0uFM46iqWiaKZWpOR/UxUHA9vo2dV1zVlcYuap+n0LELjdJOd6fsd2VXF2P6MQBtWto0grteWzubhJ6mjxd0BQ1SIkfBiznKaPTCWtXbzLYvcJifECy1qD7Dcdpzt03XkXmp/R7XcIooNPvo6KLoT+HkzO6UYK0jutXrlLlBXfffAdfK+bTMe88eMjBw308Jemv96htTVlknI5nMBnz1V/6RayA2XxJ3TjCpIPTGhXFxF5A3VQss6wVRv+YcfPmbTY3tnjv3bsIAWVZURR5OxSVEs9T9Ps9bty8QVEU7O8dkOclVVVxcHDA6ekp+/v7vP766/yNv/E3eOmll1s5wwtiMFgniUM6sWK0LKkai8gVxmlqA44SXMBwLSGK14jiPlIrgiDEGkdaTKjLiqPxMQ/3Dhj4Pr4V1EVGqGIGfo9E+5yeTS5cx9WNLr5yKOHYvXKLW3duYkXbC56Oz5iOztDSsbY1ZHN9jU4c0ImSpyYLTkIQdZmfHXH6cJ+Tg0fcP3zC86/cxosc9+8+wFOSbudiac/x6Rmz0YRP7e4yKw3LPGOUZywWSzqdHkootjev0kv61FWOxdFd28QKjzDpEgUhyvPY3d2lKEpqC9oPUJ5i8+opR/fuYeuC5SVed198dpPf/GufYq13H+29h9IzUBnCdpHyBYQFa08RzXeRLkWpDbRzNIXP/oOcOGx4OS0Jw4C0bshKS+YJrMzoRq25ay63mZs/C6NPeMpaevXVVzk4OCAIArrdLr7vU5Ylx8fHeJ6HtZbZbMbdu3f51re+RZoueeH551kbrmGtpVz1RM9vqI/Ta6ttSZEZ9g/OqEmo4wCLJFISTwvWA8EQy+Fswb39McusRggfJ8EiEI0jT5fk2RJTVjRNyfT4pLW5AU5PJbu7n+LZ2xdb3isExgHSA2cw1jCIBvziV36WXlxQNQW1Ey0zT0iauqYGrBIop4EWexlHIQeLKa1Ri1yhLOTKr/p9sfwPC2EFsXZE2lDXFalp0FIRhgFBFLAYj5iNR3hejB/GOCmZzdO2JaMjguEO0hckMuf5xMf5IVnpcToqEHWCU1Dntj1GXxDT6YwyzVnr9th/9Ji3f/wWo5NTpidn1MspMgjZvr6Lrx3GNUwnRxzs3ae/cYVlXXF1ewuUBkRrpSQk0vdQkU9TVlgkybD/kVtZ77fFHFtb29x55lle/ea3WoH9FTuxaUwLi/I8BmsDdna3qeqG+XxBXdXUdauBaxpDlqZ84w//AKXgb//tv82VK9e4qFOeZzlGWtKpRZKQVjXp1HH9xjUOj0f4WvPcs89R1IaT0ZxlVRB4XcqyIpSS9X7CeDKlKCv6gyGxgD6apTCcjs6YVTnxsEe337nwOrx4YxdfefhasXP9GcKohxUC29QcH+wzn465fvM5nn3pJcIQ0vmcbJG1w2FPE3USnLDU1vLm3Sfcv/cuftdj88oAJyyVO+V49ISXX9m8cB11WeOpgGUDNYJO6DMbnXDw3puUdUN/bZOdnSvs7O5SG4tpiQA0tnVenuUpSip0EDHsrNHQWiE5IfC8hMTvgLPUzcWohL/6l/dJor+Hz1toOyabdDF0SYYeDXNGxxF7Bx3uXNco1eBHAi/2cH7DaHlKYT0qzkiiCtE0NNUp01nA6KzBOEWaVuR5zGXmFOfxJ6qE5/M5v/d7v8f3vvc9oMWCaq0JgoCzszOstezu7pJlGUVRkOc5nueRpRlvvvkmf+fv/B02NzdZX1/nxo0bbG1t8cILL5AkyUfrtVUjTsc5y2yfKj3AuHX89Zfprm8z7AY8t91hU2me9baRgcd3Xn9EbWq0doS+QAvD2eKIbHmGkjV+5HDmDO01oCpG42MCf42bX/vUhevwdNy6XghN2cwJvYhXbr7CWhgimPLoZI+T0SnGVST9DiqUZEX+1OSwazVX+mvYsqbIc5xsqZJStNhhIc4Zbxd/mQ0GqVb9RimI4xhT1SSdBKEFRZ4ijEHHPmleUlQ1wteoRFA0DcoLKWVIVuX0eiFSKIo6RzgLSvL44JR7xylf+OpXL1zHZn9AqH2GnR5333mXd378Jo/uP+DkdEQUeGx0QrqeZrDWRVDRNDlricJUKXWacvToHjeffY7Do9OVMLakEwRUeU6dZgSBD6Yhji921vjpEKIVdv/5r/0Cv/O7/5y8KFsHiVCzXKY0jcPzgtWgWFDXNYO1HpFWTMdzRnWLVJACwlDzve+9yhs/+j7b27to/eH9+vH+Mb31hKgXYaXm6HTO7pWbNEbT7a7TGwxQYUwkDVtrIQejM4rFAs9Brzdg/+iU8XJOp9PBTUry6YSZp/GagghLU5fMR6PWrumC+MHdA4TzUMCXgyG3LCjhUZVziiyjKkt8zxGGgmwxY+/JHqdnY8osZ2045FOf+1wLw1SKedMwrwxy2fAv/uBHgGI8KTkZLWlMwxd//sPXUZcldW3ZG88wzhIu51zfGhA8ewMVKK7cvk2WN4zGC9bXN/H9kCxNscayzArwQsaTKWlR0+uFmKrAC1rndazDT3o4B94lyW+9e8biNCLZrHBNRH66RWNCgugI5VXMpzd48PgzbG+NSMQDvCBC+RrtSq6s9di5NUC4Jf1gyfxkAtl7mMLn9W9bpAqxuqLrZyTqo6G/PnYSFkKwvr7Ob/zGb/Diiy8ym83IsozFYkFRFBwfH5NlGXt7e09V/8MwZG2trYAfP35MURR8+tOfZj6f8+DBA27fvs3Vq1dJLvEwO493Hv8Bp0eS9W7EzVsn1PmbvP5Ekfldrm3F9PvhykrFMJlNWWYLpDDYImNeLphMT1imU3AlnrZ4AnRYolVN4Ctmi4b7bz8k+8UL4GnAxvoOx2czpPQoyfBlgOd8lANPS65ubHGU5hzlI4o8x2sEodattgSCq9111jt9Ho9On7pNszoev8+ocyvHgA8PKyCOQsIwQqz0JpwA7WmcaTB1e6wWRcF8lmKdJQx9KpOjhGN6NsKZmghFnhmkMuTLkqaWlMu2XfAvv/1dfvDuIX/1r/9nH7qOCI1sLEd7+7zxgx9y9727HOwfttWt1BQGtta6JN0EU1aYquDBu+/gvA4yinj03tt0Oh2KRcpikdHkJde2d1BSQbrEKk1dVcyrCv6Dj7RVnoaUkhdeeJ47d57h4GAf39f0+0nrjuFqpGgtdbI04+zkmCs7Wzz35Z/h7OSMf/Wvf5/j8YzaNGjfpyoLRmfTD5B1/vgIZE0vFPSGCZnz2JYdbj9zhywtkUKyLErOpnO2e0MUGl9qut0YWVvuvnePWVWycfUKdZ6ST6csRqdMTc3LO5tcWesztZaT6YzmEk+1RbVsrXycY5nPMM0SrTQne084OTrk4OABtZ1z5eYOs9GMJ4+fcHQ2okgzJmcjnnvxZaJuSJZnOGfwtGCeWSbLksa2hMosb3iyf8kgWwmalam9RFHlDXsHM6rCoirDdRWwudFhfdjl+tUrYCEvDY8eH6AEREmXfj9kkVlGZ2lbuJgaYxuKqsYLEiyXk4qawoCNQGgsBUJNCb0AJQqkK/E9SII1pPHxZMBLtwVX12uu932uX5ds7Ch08hbdsmBIzZVNi5LHeKrk7KjP9tUQV6d8+tZHYHbyJ6yEPc/j85//PJ/5zGcwxlAUBY8fP+bu3btkWcb3vve9pzCfK1eu8PLLL/Piiy9y9epVfvjDH9LpdPjSl77U0hSbtrIZDofAR2tH7D065nBfcqY3qK/vMuz3SDPBrN7nU8+u4XmSrKx478E+33rtB5ycjvAVlNkY06SEgaDjSXwVE/kaTwk8BVI2LMslngi5fnMD/xJUwsbmFtN5hdQxjW3AGqaTGb3NDtovWO8pdvqbnOQptpGolUFhqBTdKODajRssy4rM1EjVMpJw7w88z3/YS+ynFZKOr/E8n7p21J4lTmKU9sgXKQIwznF8ckJVgtIKZyzSObpxQOS71mU4LckWsxaHbTX97pDcgBSWWVrzB3/4/QvX4fshVZ5z7+5dZuMxg16XQIKtSq5f3UE5gycbfF8ivRilLF7kyCtB0dQcPHyErwKaxpAuU5RxZE/2aOq2ZSSEQEt1KXnlw2I4HHDnzm2+9a1vorVg2IkJBSwWGV4QkoQx3STh63/tr/GVL3+F7Z1txmenZGXJb/3T30X7HkIqsqJGe+Gle/XmnSFhHNFb6+OZgK1ruxwenuCsYmNzm3mWMZvO6IUxvvZaEaPTM3zPZ1Jk7Ny8hdCKvYf3KYuSTtLB2JJ5liFzKLVE4ugOLm5HfPbT261AE4LdTU2Tj2hqx6OH7zKdPCaOC+rqlLff+A7a+ixGJ9i8wFU1h9kJs+UYqTs8unufKk3ZXk/Y0jFGSKrGUteWxtSXVqBN2VCXLYXakx4SBTJERxprC/Yen2FNCTT0k4itzTXCOMSxSVlDGCXkdc6Dh6cs5wWe7lOWOcIqQl+htEfzVCrgw0OrLWbpgLIeEoQVvZ0ZciUo2SwTinkHU+QcHwyYymf43Bdu0OvMWeZLRuMCWe+xNlC883DE3uMhw6EmCcdMphlFZtm7l9KJQ4R38SD76Xo+0qv+mDj3yDr3t1osFty7d4+HDx9yfHzML/7iL1KWJX/uz/05AE5PT/kLf+Ev8OyzzyKl/Ikj5cdlIlXTCE3CeLJgNg3o9rYokfQ2LFVtee/RCa+99iYPnuxzeHiA1iFxMoCmJAwUsd+afSrp8D21gu5IrDMsUtjd3uXTn95Bdy++PMvlnPX1dSwxYSehmJ1ycnaEyDxu3azY6CTEOmJr/Tq+MIgsIy0zOlHAdtLjZLkgV4LMNRhnEe68N77qj686xFJevLl9bRj0vBXu2KE8H+WHFGWNqSq8IKQ3DJnmZ6Cg1+9SFUukkmxsdOlthWTpkqoSFFnr76Ui8HSDF3gMexFCOOpLmFlR0uPdt9/h5PiY0FfcvrpNkcbUsxO84hQE9AY9cDVIhQ4T1roRs3lOPc+grjl58gRT11RZRqh9RJhQFilVnROGPjpsqaZ/kojjmJdffolOJ2GxWOAryTPP3OJoPKdGsr29w1/+K3+FX/qlXyZJuiAFW9u7/PL/4Ff53X/5e2hf0zjD1tY2G+ubl5JoNrcT6sYxnoxQnV0Oj0+4++AR16/dZr5I0b7HxsYG8zRtTwbGoH2fztqQbQQ6iFguFuzvH2DmUzq+ZHtnnUEcI6ylsDWyKuhvXwxRG3QkARB5PoPIMR8dUdFwenxIJ7Fs7PQRUlKl95nPG0TdoK2laAyz0YJHb/2A+to1nty/R1OO+OJnNhkMA2rjKKoG20DT2NUw+cNjfHTG3v232d7eJOn2SOIBVeMhVUvjPj1dsphPsKam1xngRxG9fhcdSKaLKWejMx49ecJiYZCyi0OjtIdaoXbsSrDpslL4eN/nG9+v6HeHXL3icePqDFyDEBW1gaPHhkf37vHf/dYhVRnyl37tFX7uawXf+NdzfvyG46/8lTn390veejdhuojJCsvxYUGaemxtDpiMGm7deIaHexeTaM7jTwUn7Ps+n/vc59je3qbb7fL888/zm7/5m4zHY65du8Y3vvGNp/jKJEn+WOPPD8Le4OLELJcVvWCLYK1PvlwyPhtjxAzfU9x/uMdyseRbr36H2XzCYLhFr9fjdP8ey+kp62sJMoyf0iVr46jNykgRR2MkvU6Pum4YjS6Guiyzgmu7V7HO59HhYyaLMc3oGJmvsbu7hqRms7fF1HnEseYke0Toe+wM1omCDrkfoqjgaR/8XNbPrizAW7PDy272TggbfR+co9MbEMQ+s8Uc7WviQCKEIuokrG17pLMUz5M0jcCTAWVVUJcFnh8h+iFZbvGUJlkftBWnFdRlQ2PsTzAV/7h49+67vPX2W1Dl2CojywqaMqcfe8QrSKKTrfOxsa2TsLVgnCUIfOI4pCwyTFli6wqLwxlNXWVUVUbgC4QwT2+6jxrnbR3P83j55U9z/fpN7j94wPHZhFgKtq/c5tozz/BLv/x1vvCFLxKtBH6cc0jt8bnPf57drS2sNdy6dYtnbz3LYNC/tHjY2tokzUpcZrl3eMgb756wu3udsmo4PXuMEILFck7dNKz3B9zYuUJe14zGM/wwYTya0ktiup0O4+mYsmrIixy5voaHoMkWDAZdemsXkzVcbXBSYKlwdU6dF4jER0hL0pHgamzj8LRkfc0jiQRF4SgrySD0OH3vewySgCRSxIEmiiu0aQ1kA18RJwpPSjz/4u+lygr2Hj4knZ3x3IsvEocRxvpYodsToJUs0xqJZf9wwTR9h8CXLNMZ1sJinlJXDU0lCWOJjkIsAitka/hpW5lYcUlF/vYbZ/zD31L4Cn7ll2+yu+UQ4QitZwgLZ7Mj3rt3xrdfGwFd1gf7vPLpT5NmO6TLPY4PevzDfzBm2Si+/IVdxmcT7t0TDAY9jk4WzKY1ZX1Els8vXMd5/InQET8dQrTDoGeeuc1v/uZvUtUVnaTTahlYy2A4IAiCp6SDlfLtB9509Wfu/VnzRRv8xU9/ivfuH9NYn87GVZzXocrmSNvQ5BnTyRhnDEncY2N9g3d+9G32HrxDOp9x4+YVOi+8QMkKfWBLtJIkoYekhc0s53MWs5grWxcPgEqrMAiy5YzxyQFVvaQ0Sx4dzUkSy7A7xJeSfD4nUDGRp9FeQlXWHOcLvL5ishihnGirgfMH0UqDQqxcrS9DAwz7EcNhjHE1aV4SJRFR0sULPISp8CON0gG9tZjZdElRFsRxiJUBxkgWs5pGSSbpkm7cxQnNw+OUJPRxdcO79w4oC3MpJOvo6IggaB84YT8km52RrPeIpKHIZiAlvf4Q6XnkRTsgzPMca9vZge97FHnO6OyIQAmCpItR4HsOJTXO1lRVgVJ/skpYCMGtWzf53Oc+x73794ijDv/eX/73+fq//z9kbX2DKIqfPvA+uP+uXb/BrVs3efPuuwy7PbY2N2lWlvQXhe91mFQZJ6dnPHkyJs0c3X6frGipt0WakucFyaDLIk0ZnZ6h/QAZx4zHE2ajKZFU+L6HpzW+dFR1zSxNCaREC4H2FJPJxfRY6xy1EXhKIgzESYfH42P8oGbQDVoGZ11hnMF4liB2dBKNJxze1TVM7WOUwTRLrm530VJRmZacpVWr62HdSg/1gtBSMhj0mU5HPLj7Lp7U9NcChLQgJUY4pFJIJzHOYzKzOFOSZyWh71Okjl5vQE2FbQpsaXDSo0GCUK0cwEfoVc3LCXmxTik0j/c9fvjOFWp9i46/pGk8DkaPeLB/QNRZI07WuL93yDvv7vK5z+5yZWuOyTJMk5CllnffvUfTlMRxhzCMaJqGMIzwAslGsnXpWuBPVAmf6yWsLrloCQUIgXBiZavdWnk7HLWt0YFHZSvOZmcoqd6n5AqJkq1wh5ISKdVKS/fiL/Mzn/k8Rf4d3r37mDyd0HcxUdBn+NyzXN1Z5/RshGsKtPLYu/cGxWLCC8/e4eT4kMl4Tp6XxIkiDDRaSARQlQXT5RJnHZGveOnZT/PcnesXrmOwvsvJeIJ0ljgKKBpJZ3NALsa8e+8BHQ1R30dIR1WmBAJ8P+YsT6kMFMsFngdqpSMMrWJaa/+tV8lGXHqz72z0GQ56UGTkec5k2mKBlReCCBFhSG0N+WLWQnx0q0lhnQAvpPZCpA7QaYEfdrDSo1kWCKWYLA0H0wasQ4mLt8v3f/AawyQi6MVkdUlWVASeR9oY8EO63R5eGLaqXypnkZ5SlCXOgtQOJSEONK4pMMZR/P/b+5NY27I0vw/7rbV2v097z+1f/6LvMjIyq29YZIm0RJG0KcjWiDI0s2HA0MDQTIYHBmR44Ilh2IYGgg3bgASabkRKgkBRVLFURVZWZlVkF5HRvP7ed9vTn92vxoN97o0skXFuBk2iJu8DHuJFxH1xVuyz9re+9X3/BoPUJb1+F6ckyLYStjfQljdFmqbcu3cXX8DDnZTf+PXvcOvOnbWcaBtX+++qgh4Oh/zqr/86n37xOaasUUKwWq1uHMydna8wNqapJJ6TvP3aXe7duc1qVeIrSe/OAcOtHkESc3Z8QhCEeJ7PdDXn0ePH6MpwefES9IrDnSGxksg4QgY+jWko64q+9KHZ3ANVSoEF21jQEqk8Ls5/xqAviEKBNhYfQSU8yrWwlGctoQAtDXGc8HI8wVOKXhAQWIOVYNe29BUOKwSVNRxsWIeTlk6vi7ENs8mEzz/5Ka+96eiNhnhhBG7denOOxhqclCjlI2U7JyjzjMXsAmdKmqYh6W0RJj1kkOCk14pp3YAkAsh0j24no6o1l3OP48kbiPiA3DvDmD41lrJatjfGumRmFb/3Ryfs7WaYOmWQFNx/PSAYdxkkPRpdY50jjmPOz8+xFoqiIN7+xVA83ygJn88veDk9JfJ8fM//SiHNttq5RVVQFBmN1eActWk4X1xyubxkUWcUVUHo+3jSwxMevufTiVO6cYc0SOgEHdIwIQoTvv3mh1+7jjTt8vrrr1HkJc+Pz9CLKaKSXL6QvHz6M5588QhbLSlqzXK54M3XH/Crv/xtPvvsU37v9/6AOJB0QoHWNUXTYKwj6aS8c+8ub735Og/u32NnZ4fwhuvV7du3+eEPfkAnThhsjViUFzhp2Lp9SHm64tlpzlY9Re1u43kWaklRaowKEIFE5CVKKJT6OTSEdRhrWuF16bWKbDdcr5RwVFWDqGoC36csK4q6xo8Tkk4H63mURcZyuSJNE2hyqqrGTyNU4FNbi7KWve0dfN+nNob7+weczxZ89mzCy4sFYn1gbopf+u63SQKfUEk6cUQ3CrBaY2yNFIb5dIInIPZ98uMXeEqhpERjEdJhdEUYKAbdBGlqYk8gXQkuQHkKoSQtNPSfn/IuBPieT4DjwzfvsHe43z7jayW7f7oAEEry1/7G3+AHP/gB1XJOpOD45RFHL1/y8P79r/2sbGWotME0PrvDXTrbI+qyYjyZ4HSFOjzEVx7DTg+3o/GUx3yx4MnjRzx79JjGWJLY53AY0e12iH2PUgiKVYk2FWknJO13GQQ33AycQzeGUjcsjKQOTimLKWnXkNUOs5Zcta2cWSsmJSXaNCjtcNLgXECSRjQUNBak+kpPWztL4wxObz4cnXB4YUgQJzijWS7nfPbpjxjtbbM13CEIUoSVOHyaphVclwiapiSbnzM5P2K+mLa31yBiJBWpVARIjFPX391N5gNH5x3u3845OylxjaIqIQ1B4GFlhdElSjiEaUijgNppnHWE8oCFrRGewdklutEslgvquqIo24OhqjOMbiUblNrcq7+Kb5SEv/foe/wX3//7HCa7KNP29YRQuKZV3DcYnLB4ShH4AaEfkDcleVNQmIqiKimrnFarxmtpoX5IEsQESpH4CaPuFnEcbUzCQkgOD2+1rDvghT3h1GWUj35G1dTosiAOFHlWMOh1eOP1+zx4cA9ja37yk59QFAVVWSKUZDAcsre3z+uv3+ftN15je3ubMAx/EV8NTl48Ig78VpgnCOh0R1T5gqqsSff2KM7mzFcFr793i1Vxxvn8HOnHqGGKU4I4dHiyFfW5+kAnLNA6bSjp4Zy4seJq6ob5bEXHa3UsNJYwbtlFQdL24Clrut0BkbJksxJnPdI4IQpD0u4QVIRobCvZV9dYIRhn8OTlklXRvlw3pb7Dg13isHU7SOOEYO2wITzBbHrBohEIU6NNjTaubQMlEVlVreUqa3zPp9dNcRV0oxDb1Mj2wonyfAwOY5tf4Nv5s/HV99k6lkS+YO9gm6AzWk/GHf/MBCwE1lneePMt/ta//W/zn/2d/4T5+Iz773yLP/zH/3hjEpZCUpfFmuklefTll0RbOSrqMLmYkOUVSZxQNprZbMpotENRNZRFQxrE7GyPENRsxZa97S6B8piUGrswdOIeb7/3OqNbA6y8aX/oNerGop1mvlxQNyVZ02B0+z7hIJCqVTkTLbMU68DUhLFgd2+P4xcLjALjKxpbYa1rtSRwGAfGbq7IrbNI38fzA2wUIhWUZcaLx3MugiM66YDe1g7Ci1jlM+KkSxSELGbnvHzxBYFsDyU/SPHjFIOj1g00NcbJVsuFmwf9y6zDYj4nTlI6PXj6+DN2dgyjgURFhiYPcY2gl0a8dm+fTx89J/UEe8NtmmbC9/5ozGwWsaobrL5EG4OxGqNrdkYhOMHp2ZKnj/4l6Am/e/sdYmKycc7xy1MMDqUCnGynkvK6omuZX0op+p7ARu0XYI1tYVhriUQnvpJsFAiiIODt19/k/p1bG9fRMpxC9g8OuHVxwcnLE4SymKpqQfUSnNNIYTnY3eKD995hNBpxOb4kTVOqpmFrtMXBwUErzvL6Q27fPiQK/fXQsBXmuSn5HR9/wqh3h8PdA/xuh52dXc6ef8aPfvADqjjBGUs2nfIbO3vIXHL04ozAQD8ZUAsNsnXTcFdDOWfXHllmfUh5X+GHN0S332c6neFiAc4g1iLg0/GU1apgtL1DVdaURYUMDUHQwqEQEt1oXGPw4oSiKpmenmOxBIMeM624XJa0/nIOYzZXOr4nKcqcJElIex20NhydnJB0u8RJj05vwPj4CYGt8X2fxg/b1ktdo9fee8L36KQJhSkJ4wiSEGMaWnsm3Vpb3WD39HVxNYlQwrHTE2zvDPGD7vrg+/r6SSDwPJ/f+u3fYXpxwvf/4Pe499qbfOfDb2/8POkgUD5+EHM5XaDriiLLCP0E6YfMVzmLZc6zF8cIIdAGFsuMBw8ecLgzYn5x0RYUacD2dh8pJfU0w5bt+2W0RhtNkmx2tNC61bRWUuGiDnGvi5o7ctPgUHhr3HrZGAJhiDyQa10UaD+DMsM0WWs1JCylMTSNw/PsWgvYv1FoSgjwPJ8gDLA6RGBx1tJUltliyuX4lPjieSsEVeuW4ekF1GVBkS/pdDskaZekE2AwGFmivBhETavhIq9NFDbF7YPX+MGLFcvlkvGiYrY8JQhP6EQ+SRISRT6VhkE/5eFrD/jky2dMFgvOZhf89JMvePzMYGxGYwzWOIxpDzghNGVu8aSHs5Ks+JdA1niw84BRMOIHiz9FAEpJPNVOJq8eshAC6cS1JsQ12gHRIhKuFMJYv0uWr5TIPEjihDTZPO0VQrQvrBA8eHiPy/Eln3/xCIcBasqyoW4atkcDpCeZLxbs7u1RlTVbWyO2t7d58OAeD+7f5e6dO2yPtvC8VpRDXMEmfgEti9pkTGdj9Kqgv7vFa+9+h+XZSxbnF1xaRxL08FaWz7/4DN2VpN0h250Oo/17TIoZy/klSrRtHWtrnBMoRztkuDoM1u4Dm0IGMdOyZjVbEbuK0HPIxpFPZyxXGfrNN+jv7VA2FcIpBumQxXxFkVl0fknYqUgag/S7qMEI7cBEMdv7A+7eu2B8McU6aPTmQ6nb62C0pWkKFosxSZIw2urhh+1NZ/v+HcJ6ztHjL9vet/JAKqRrTUZNoyEMSdIEU2UYAV4U4mkBdQ2mwTmJ45tXwmvcCdZZYio+ut/l4HAbqUJo9e9okbRXP/1VtL1h6PR6/JV/7a9y/uxL/t7/6+/w733wnY2fOZ/NaLTDSZ/I99jtxzy5OKWazuh0eywXGda08M29vT1enp4TxT5p2iG7mBHanDcf3GJru0tvq89kPuNsfEnspUSRT7HKWIw9sslmkkSbJFut66Q7Ih2M8E8Ean0jNcbggMBXCOfwlEBIhxISJwXaNFhX4oSmahqMseja4ozCGofwDF6guMm8PYpiyiJD1wEujGgEOGNx1hBEEcZqFrMxdZlTNzWsb4PCghAeeZ7jByv6g5rhzh5pP8ZZWrlL6a/NFG5Owr/7G3+Be7v3+ezzL3n09DG6WVDWlotshjlvDUiViBj2BsTpCN9L+fjjT/jii8/pdfeQKqA2JdYamvUBJ4RDSJjM6rWhwy+eWr+x0WfaSfn1X/813nrzTZ4dHTFfLFjlOWVVoo1pB/yS6wru5+FV4p9Rbax1b0BAYw3n4zG3Dw4I/c19LuVJPBEwGo34rd/6NbqdhE9/9hlqKhEs8T2P7b09Gm2Jk5TxZMJ4POHhw/u89947vPH6a2wPB6j1xN8Yg2gVBq9Xe1Py66T32IpGUJ5iqiPOTxKSNGIw2qaoCm7t32HyfMLR02O23urRSMOyalDzGXlT0uvugHXUdYE24IxppS1bNXUQsr1l3FD4GXzw+5TGY14scHVGMFkwiCCkZn5yQuRDNZ/SSInTGj/pEHX7TJdzCAQ6XxHHPoPuiNILiNM+Pa2YvL3i0RePWMwzvBv6EU1VXwuwV2Vr4lgWOWVR0UkSoG6HjUKirV0PUixSijYBr7WUwzDEdTo40xAASEnR1FjjSLsx0v/nNANAIqxhv6eo744Iky2EMEDAlXTo1V/+6dtHO0je3bvNL//6b/Lxj3/Cxfkxr7/19td+XlWUOOlhtWO+nNGLPPqh4+nZOUJrhsNtsrJhd28X5Sms01RNxWRSsDtK2LnVp5MklAiOLi45OT+nso7QaxChT5FnFM/qtt1wQ1hrqY1htlyhkhphFcZqnGQtpmWJpIfvxRRFjraWNAqxWhBGEUlni/H4BY3R7UHoFEL6WKtxtkYYd+M6giAgiRNs0zqdKymuTQ+cEzgjUcJDOElVTal1jsTiCUUYpHj4+NLidINrNM60e04ohVD6erh60/uy3d9i+O0tPnj3bS5n51xOZhydnvHFo2e8PDllvljSFIbVKucP//HH5KuasrJUTUmeT7E4oiiirmu0zgHDcKvLwcEeUrasTmOrG+nkV/GN0RGe5+F5HocHB4y2R6yWKy7GY84uzjm9OCfLc64SmFib/7i1Lu7PV5ZfTfzdNba6WvtFuRvaAC0l2dFaZkOa9vjoo4/Y3t3l8aMnHL88YbnI6HQSnj8/4mef/oxuN8XzBN/9zq/w8MF9kiRqX0p+fvB11Zhd/90N3+aDO+8TCkE2KXlx9IyieUmYROzf22c+mdMZdFDWZ7FasmUjZBCSFQ1bShB7MWnaoypywCK1wEiNcCCkuG7XXHnXbQwLCB8Z9bF+lzJbsqpLVlVB7Aqyi4alHmPzBV4o8ZOYThpRlgVJ2iVIOiS+T+jVNPU5abRDHAfkpcA2NTujAZ6AxXxzxbWaL5j4AbppHZeroiTwPGaLFdliTifyKKuGMEqoihxnNNZoBIKm1qjYux5ShmGErmzrMlEbnBUYa2mqitj7ZjKoP49BN85gbQ1Sorq3Maj2Vtf+xFd/5s8YPAG0bTanPG7fOeS1veRG8op1AqkEW6MBt+7tYJqC7rCm35kxneZkl2eUZU0UJ2Bq/EDSjWGUCrY7PrGqWeQrJrkjr0qss3zrg7fY2orIVkvOT2as5hnL1WZ6bFU34MDoGiWnBMsJs/EC7ZaEsU8Sx201XJpWUrXS1EazmjfUecZwK2LnYI/JtGS+LIgjsUYUtfJSRldYA1Vj+Qub1lGVrUtykly3JdfN6nbPS9EaIwCNc7hiSV0vaXSNqSy+B4nfoZcE+BKMNkhl11nXrm/CcFMlHEYJjW7wfIjjA3Z3ttjbG7G91efoxQ7Pnh1xeT6hcY7j01OqqlxDaCVFVaKUhMqglEe318H32+94e2fA9tYWnTQh8iW++sXS6/9fjLkoCIlGIb1ej93tbbZHI548f8bleILRrTuklC20yP2c6PufWYDXQku01u11KYquWXibPts607YyHOAEcZzw2msP2R6NOD+/5OJiTNUYrNVMLk/o9x/wne98mwf37xH4wVfmmVft2P8OSeQXUeraHg44fvmMk8slFV26KmC+nBCmAUkVEcYBg4c7NC8e46wH1iPpBC3zS1k8X7Na1Hhe0J5b8kpB7Rot3V5tbqAth4HEIGm0JQxClO/R1A3COWrXcOE0i3lDZFJEWWO7EhdpqkKjPUF1MePenQNu73fYGnbxuzuooMfi+Tknxy/od2LisL1SbwprLKvl6vrZRVGEEpI0jlks5hSlwQ8jvDBitcqoshVVvqRuGjwvWBN51PX3sZgvaaoWvYJYQ60ai7xhCv/PCuda1Ek2O2V5cUw4uMX27Tfb1s+6H9/+HFwXBkJcC9k7AOMo8jmmmDCKoF5tBuNHcYoWDXEasLc3YjmZEPgxt3cOuLiYcz5ZMJkv2kpOSqLQZ2voEcdgdI6hBl8TRAFl6QilwtMFnTjB9xPyrGI6PcfYzc9D2ysEk6NqMuriHCEsSkV4SlFWDVa3JIc4ign9AKdgsagoc+h3C2yzwGjHMi/QTqGEo9GSvGjQdY2nfLTdvE+rskBJ0erJxK1VvTUaLwxoew4GS9CSd2yntQxTlqoqsMZiXENerQjqhFD0kMKihLv2x7VGr5P7ZhSPcQJjHEY7dGWpGosvQu4fHnI42ubtBw9ZZTmT1YrPPn/MxIfGhkjl4UkPKQXKV/h+QBB4+L6i140ZDjotuSbtkIYR8S/oHPSN2xFX8fNJyvc8hoMBvV6Pw4MDLi7HnJ2dcXk5ZpEtW7iJlF95SrX/gfV/E24f3EKte8j379zDv1Ev1q0b4fL67wWKwAvY3o4YDLZ48NBgrOP9d99hsVywt7fLcLiF7/nXf+LPiORcwe2uFvULqLlNJydMF5dYKYi3Aiq7wlMCrQSD7S1WWU6lLXceHFBZhzaOwXYHzxPgOTzfEscRzgmEsesDSvzcQQDOyfWQZMPTcAYEhEHb0wOL8CR+ECCDTst2q/Xaw05zngtmLwuU71HqkspJZvkl89zx1tt7dPwIU+R88slnZFnWolk8xWCrv3Edtw8PmS8W5FmrzOV6vRbm5wzOaBoDjdEI6ZOmXZpsQVO3mhCdTodut0fgSSyGuq6YzlescouTilVegIBhv8uO/MUYcz9/24LWUurRn/wBk+ePeO3X/jJKhVC36nX26t7mLNa69pp9ZVpwZbaq4fTZ5/zoe/8tF+dj3pxvnn4P+12yMqNY5Vw4y3I6pd8bMuh18KVPGPgMui2TtNfpkmUreoMEz3c0TURjCoxeEQuJilMC5dHkOcfPS6TvYxpDJ+2ShJv3h2lc23s1FqM0pi6IAoERiijwKcsS5SmiIEB5EuVJnLZ0upI0jIkSD98vGY1C/CwiiB1xFJHlNVY6vK5P4HvoG2YGTV1ipGghgmG47tFrHJoWY+EwxmK1JYoMzjVIaVGe3x6Svk/pLJN8jkw7bKUdHArh5PoMdSglbxwQVnlF3dTruRIEfthitP1+OxXYNTSmobKaD956nfl8Rl6VGK1p6gZjGywW6Sl8L0BaQeA5Is/hewFK+QSBJPI3HwZX8Y2ScDtAsv/M5NTCziSDbo9ep8vd27dZzOccn5xwen7G5WSMsRalJNtbI5RULBZzKt1wsLfLvcNbWLixFwwtJrnVumkHWu1AULbW7NIjCBS+31YzaZxweHh4nXCtMetB4vow+O8eLD/nFnIT3vByeoZSAaOeo2xmOCkILBCFeH5K0yw5fv4cVw2IewO8MKYxFYvFhHAQEoYj6qBGm3Jt1Nn2xlo0wlfA85toy9KPcNaijcP3fMLYp6xKlJT4ykc5jfQFtQPlxVTaUmlDpDy0cwQqYJnlfPFEc3y2JIwjnBQ8efoCh2xRLL4iVJs3VZHl6LohX61aY9HFkk6a0ut30U3DKssoVxmJL9je3UHpnEC1Gs9R2iNJEnzhqPMlZVmhneJ8XjLPSpZlhecrcuvhgs1ogH861i4mSrJ1cI9v/e6/we23P0RIB1a33Emh1olYIGSLPuDncPDCtrT23f1bbO/ex/f+MdZtFjEX1iCtoM4qbNXgCY/VfIUwXgtrFAbTFIRBQC8OCESClIrFbI5Ujijq0o8D6tUUURtEqPBVgKcC5vOcurL4wkdGm98ZXwVYo1tx/jTE6YrtrQ6NbRDCEgcpzlqiMFx7IQqE9EiSFqcuhSPLLltIpR8jpCaNAgLpGPYjhJJtQnObk7Bu6vbdMgbpe/hBQGRCnG2wpiVtBUG4dqkx4CKEsEjVXldbO7BW81ubmrouEMprb90ohLDrYmrzblDKIxQSKUGt4cWteJZBOoeQrQOObw0Sh3CWqAlbRqWS68pfthBMoXDagq1xuoTr4u5mXP31PvkX5fX2Kl7Fq3gVr+Kbxz/fmPlVvIpX8Spexb+QeJWEX8WreBWv4s8xXiXhV/EqXsWr+HOMV0n4VbyKV/Eq/hzjG6Ej/tr/6mPnCYmTHvXV5NiJtQRdq4jlry3blRQoCUq2ljRKWjwprnnqDq54zmtIWMs5cGum2H/4Pz34WmhC739yx1nW+AbRikt71seziigT2FlDuShgoQkzgaxcq0XiWtq0DS3bb+xy/7tvcLQaM65mFJRoaRDYa968A5b/4bOvXcf/9j/4ZaeNQ5sS7TSBF5H43VbyUTniICKNOiRhgK86YNO184WHwFEsSpb5gkxPKfWSpimxtsFSoXW5lmxsIVP/6//g6GvX8W/+67/p6rpGSkFWNoxnBdPprAXgO4c1Aq3tz4mbK6LIx/PVNQwrCqI1736tU4prmUmu1XRwOLQVfPni9GvX8Xf/4d91/6f/+/+ey8sZe4cjtkfb9KIBb7/3LscXLzm/uEAawXc+ehtneohG0UklQQrPTp/z5NEn7O3sMBw8AO8FRbOk1pad5JDj8aecnD+jzB2d4ID/4//y//u163jvvX/VBaFPEITEUUQUh1T1isnklKJcMup5/PXf/R1On57w00dPGd65S7aoSH2fMi/Jaig1NFqjm9YavmkamqambiqapqSuK+q6JC+Ov3Ydv/lX/4arsguqakUQdQnCPsPePqEfgGihhC3GR+GcwgmBcRJLC5nD0SIOnAanERgcAu1kq3i29iR0wD/8f/5HX7uO/82/+28534/wlIfnt3KeVVVSN5ZVUVMbwaqoWNWO47Mxd/dHRMrx9OUZL09O+Z1f/TZKeSxXGca0CIjQ84h8ReQrfOUT9/r80m//Or/1r/2tr11HrZuWF7VGWck1ZPXql5St9kNRFO1nRGErbeAcZycnJJ2UbreLMZbf+6/+a/4v/7v/Ay+/fMSLUmOV5F/5y/8K/96//7/gzt1b9PvDr13HDz4/c0oYPCVbLRIh1poirZSC1g15ljGfjnn86EuU8rj/2kOaNVNud2eX7d4Ab71eIcS1HK9DtEYRurVZujWKbhQ6+UZJeCd2KAxSuNYVWErUOuFKZdpEu1apEtcJlhY6soZuWARtagGwGNSasfYVc03cYOdj19hN5wTCeYRGEjY+/twjmho6OiXp3CIdJXhWUhYltW5Y5QXnpxf4wuNX7/0KFD71UjJKBjwpn7MMVtQShFUIJ65X+bUPT4YIB9YYWON8PemhZLBmZl1JU7byi53EsrOX0B0OSbpdTl6c8eizCp1HGFECplVNcy2kypiWx34TgiWO45bq6xzLbMpqtaJpGqy1eGvMte/7X8H0rKGua/KiVdfyfA9jLE1V45wjDCOCwG/1BoTCCYlw7ppi+nXRHqyKIPLYO9wjDhOaomnVrTRY47DGcjE5ZnfXUDQ1rokppzOmi1PC0NLrxCReQNjtEjbrk7kGP40YHeySZQ3L5WaShKYCrTGuZlXMcFON1gVKOdJ+zP7dETt3dhhtDSikxgQBntZs9zqUPQ8bxCxLw2y2oioNRa5xWYV1oJzFWNPSZG9w01WBQumA0OuR9HbwvA7S81oSAma9z9fiQa6FMylh1ww+gTQSKUuUtwRXoyuBdjFWJQi7NgFwhpv2aV5muExTVgZDfa2FkaYx1hm0hdl8SYPPcjFnlgYMh11EGJKVJc+OTggCfy1Y0+7zOAiZW02gWpr5jh9yeTHZuI6maZBOrA+0hiiOvoIBAmZdJOg1GcdrJMaZVl+4qlgaTRKHLbtSSv7a62/x5GLB/6M6pQawBqsbuEFoKi8KfGEJfQ/lBQgpsMZR1jlZNmM+X5BnK0STo0yBMJKLl0e4ICQMQqq8wOyU7GxvEwTB9fqtc2jdUOuWE9A0DXAzYeMbJeGHw/VGWXufCdaCPGvhHvfzSVeAEVcan23ydaI95b0rbw233kcCWrTotWTCxnBroXPhHKkL2XNDtkyXQdRh9OY27733Lfa2tkk7CY3TXFyeM51OmU4n/PCHPyLp90lGO3zy+DGe8hmomHgaE2xFLFRGIUucMNwkW+uLsBVId+3aPekh8fBEgMO2tGghyAtDtmjY3V3RmOdkn8/59b/wLR68tc/xS8GyEERhqyplnWwZcs6uLwk3Qwh93wMEVVVTVc0a1+6jVKvZnOclQRC17EQhqOuKssopy6rNnGXJcrFcq21dcfxjwsAnDIJW2EYJhNssVehkgBd1ub+1za9+67dAenzy2edczhYYI9kejJAC0k5DGE5wNmKQphRkmLqPTAcEYYIX+HQ6fbaTEdPJBT969IgmXnIynvPi6Rhxg4j5qpjheYowivB9j8AXJF57C/F9iYoDclNQLGccvfgS6/m8det13nvrPo9ePEH2ejwc7VOWFmc8nj55yaeffoG2FcKCCiTKSdQNJJok6qDLDOskyAArPQxVe0MMQCnXvivWUlYl1hiUlHjti4UQHoFfknYLAt8xnxQssxKJxImwVbxCcpMb9ztv3sM0HscXS7K6oKo0zkpq41CewlOSMKjpRCmX4zkiDOnsHbDl+WxPLvCjEGcdnbRLVVetSawAlNcK/AhJo+H89GLjOoSzreRtXbfveVvIYzEtrdq4tThQQ1WWrLBICd1OChK0rq8/u5em/FGZ8yd1howCPOfY3t0mjsNW9W1DaK2R0lE7gylW1GVFnufUVY4zDQiIAw8VJNRlQdXUGK0RwkO7hsJlnOgTmrpmd3eXKIqub51N0ybhujHXh8lN8Y2ScOi1X3briiGuE2b7e4kV7YZwor3KK2dxrF0cWIt0OLf+fcs5dlxdrQRrAinO3UzYkFbSlRF3k0PeDt7gbnxIt9cnjlL2Dm+ThCHnkwu+fPGUbLUgUIr+9ja/9pu/wSJb8OXxEcsyo5ukeDYhmEW42iJSh+tqSr9aK75tWIPw219+qygnnLh2DpHrBOwEGFuQ6yUvz3I68RmjFEweIUY+s2XO2XnG7i0P5RTStieqdT7c7Biz/j6grjWL+YqyqPD9AM/zieOkFeu2gjRtHXmvlO2KIl/L8JlrFxRj21ZErQvysiL0FGEYEkVh6xF4wwjBOsfDh2/gmpqylqSph7I+y8UMa1bEkWB/9w6396FqKoTosxyXPDo65vnjBbtb26R9RX97TuVNUFnJ06PnnGUXHHRG2MJy+jSjmW5+KEIZgsjHDwVJHBAn4braaf9fs6Li5dk54y+fYasS0dS8fmeXX/n2O7w4eUJpGn7pV3+VTjqgqS0/+fGnnF2eUtRzIt8jCEOMicizza/PB298yM8++1MuphcooRDK4sUV/UGEH0AQCKQHprGUeY01mjDw1kkYsuWSulqBaNXfvKDCq8A0Bim3cKKDQWJu2qfKZzbPKJqGZWGoa0NdN+BaIoRSkkZLfOdxcGuHwd4+aXeIFyZ40oO6QuhmXZQIjNatfgJtAeAEFFXFdD7fuA5nLcY4lss5URhiw6AtAqy+TsgCy3I+5ycff0y+WqB8xQff/jZxmmKcZrlcUhUls/GYH56f8lwIpK+wZc0qWzGdjPFDj9HO13t8GN2wqnKqcklVrlryiFIESrXmAeKqwAywwqeqS1xREgt/rWbfVuvT6RQhBKPRCN/3W5GkuqHWlrox2Bv0la/iGyVh40yrASHMz8n+gXDt9UZb0E5iEGsLpJb95QkL2OurtsPhCYUnFc4aaqfWzC2zFuXZfLIL4QhtwJ3kkPvhfVgK5uRc1BmxDHj04gl7+wf87PEXHJ2dMhwM2R4M6I+G7I228C4DvBcn3B7u0Ov36EYpumgom5plOSXt+JzIKYXdLIxihUUi8GWKVArjDEIJkA7pLEKCFZogsYziBmctXa/g8LAi7Bwj1Bb9nZQf/vSUvrC4yCEaibQOhULY1vbI3cREMg2z2ZyzszF17fD9GCEkadpFa0Mcd/B9H2MMi8WCpmnWokoKcHieh7YWa5u2NycEjTaYxlBVDWVZEicNSbyZqVbbms4gppi319uiMiwXM5LYUOtzGgMju0WuJSeTOdWZ4Wff+4TJ5JLp1HGRTgm7Xd77Dcj1CYWcMc0W7O722er0ufAWDPox55ebpSz9UJB0wlajIAqIkxTWe9JTiu3tlHyR4znJKO2TFSt2+im72wMUgr3d27z22jt4XsBsNuX23X0++PAtrCjwPIkfeDirKfLVxnW88/B9yuWM1XKOEpY4Vdy9OyTpgHMVyjOEkUIKgRIh2WKBJ9qOsGlqDEuMqNDOI1vm5PkcX4W4rKKsa8LuHZyKMDec1P/gH/2Is4sZDYqqadsfVdXgeR7GaJTy8JREcMq9N+/w9rvvYkRAXmREvuL85RFVZrg8Occ1rR9dGHs0Wre0dGuIwpLqhlvbyYsXeH7IfLGgm6ZUZUGWZ5TZilBKnNe2MD/+k0/4z//232F7kGI9D1trPvrVXyErcyYXl5w8P+LF0+eUulXeq6v2ALt4+ZI/+ke/z+HtQ+4/ePNr1zG7PGMxuSQKFcoTrcOLkghk+13IVvoT0bYXrbXgLEkck3Y6eJ7XmhUIQV3XzOdzPOWjPA9rLLXRbZPpFyig4Bsm4afnqzYJc6UdelXZtq0IeyX/6FoKsxCqVXUQFiskCK99EYTDE4aqXpCtnpLGAf2godZnrKoI4m9vXIdwgoHo0Mm7zE+WnOQ5fueUTpISeSGXkwlniylxnFDXDVlZEtc1GocNAtLdPd59HxI/4vbhAdKT1B+8x2S2hLomC3N+7+x7/PDi043rqF2BBXzpt2JFtGJF0qM9ooRdD9ccWgiePas46Ht864OAJO3ji4gPvzXi5dEZVbNCBrLVXJYSFXp4bWcQbTYnnaapWa1aJ9owTFFBggPStENVVURrUaTFYtH2gvN8PWBpaw8/CNFVBQjkmnt/NRQ0zlFUDbX+ql3xdXFyvuDZ0YT9YUwcjcnqKQ0L6lrS24Fky0fGECQD8ucrVpMlR8+ek8YRdw9vUeuKyratKisapI5IsCj6/Omfzvjk8yMKM+feO52N63DYNkGECUqFOOcTxApnNG/cfYM7B0Oe/OS/ZXV6SmB8XnvjXe7u34XGkfgBtw5vEyUdsJY4jknSlPfff4+0EzEeX7JYzKnrkiDcrGGxPdjlYOcOnz/5ISLIef2N+2zv+vR6AXu72ywWY7LFjMZkYBsWdUlVNcShz3I1I88XeMJHOOh0+3idlJ3RNvPTFZ99OoaiT9QJbpD8h0ePTim1o9IWbQzWfSWmdeV8LtY6rr955zd45513mK0qfvLTH1OWBQiBsY7pfMFqsmo9AUO11oQRtGWXYDjf3BP+0z/8Jwy3d9BAlqasZmMeffEpVlv63ZSizIniLj/88Zc8e37MYPA2urF8+fgJw719jo9PEL7H9GLMy5MLnOeztb2NtRatay6PX/CD3/89Lh68xr/5t/6dr11HWRSYpsZP0muKsVwXhUrI9XNZazBLCc60cx/avna5tjICCMOQNEmIopQgCJBCgKeQnkL9y1BRG2fr0ZmzrQS2FAQKHm4nrBrN00lNoEDhWodYYVnWltKBcY7Ik3TCgLcPUwKx5L/5g79Hor/gzu0+fuk4OrokGn3I3fu/snEdsQs5tFuEpd9WbNYia4tWhsYZ5ssVRf2C9996j8gLWK0ypJQMpym+79FYS+M0L8+PSaOQra0hdVnTFAVpEtPvDvnIvM/z2cuN62hEjjYNRkR4orVrctKtfdDaMZYRFmRNmQU8+mLJrV8DpbpURYC1Jan/kvfeVfzskceqrnDGoIRsT1sZrNs8m18zKWFnZxtPxZQVOOUjVbsJggA6nS6DQZ8kSa43z3K5Qgh9rVrWqrfJ6xO+NUn6KqyxZHmxcR1ZlrNYThh0EnItccGEKAkZjYYMbnmkYUwqB5y+vODy8pxBdJuHD19nPpugPEMaBAzSmMDzyCvNfDGjnNc8mpwxm9RIBbrwOTneXIH2+308GVKVDYFv8UO7dm+RNHnJ8mLK0aNHBHnOO2//Cvffep2y0jx5/BTnLGk3RfketmqIo5hO2iGOE9568y3m8z0ePXrEbDZjubphHYMBO7t77O5uEY0kh4cjap3jex2aWuC0hyQk9DSrbIUftKI8WVkgBOx3FaGQNDUQ+NSqRzfucdnMWSxXbAXV9Vh7UyyKVWt30Bi0WWsruBaXwfrqjWudJN555112dvZw3hzPC5jPl0ynF/hK4YUeWZFhLbjiK/lXJdt2SbrV27iOFy/PODq7pNNNeevNN6nqhunFuHVSDj3m8wWVEUil0E7g/Jiyrjk+n9D88fcplgVatGbCNvDZuXPAqNvj2ZdPcNUCV6zwgoC82qzp0Zo3rA8g9dWet861OiLrB3SlldNog9Caj3/4MS9eHNHUNU3TsDUa0e12yfOCfq8VMOv3+/S3htx7cJ9eb/PzuIpvJuCjS5yDSsOoo9juhlht6Hols9kKpeGgG7KqDaZu2OrHDCJF1rReVHtdyyCsOUgM+eLHfPf2JcIFXCzP+OJFRi99g3fe+FW63c094ZEcsMWAMm+o6wZd1WAttfAIlI+uNUWxYHI5ZjQY8OjFC+qywKc1I7TGMh6P6XW6pJ2U4WDY2v0AVVWRLVakZcBwtbnS0bJAOLMWL0qQnodQAqfWw0UH1hkklvm4ohM7OmnB86cF3X5BFE/wfEOgugRBTJPnaFPjixTh+a2zgVDcpA29WiyIgh5JEqNdgzGCOIxR0iPudugNugy3hmzv7KG8ECEDGv2yhdHYmkZrjLEIoQiCaG3nLv6pwaS5oRLWwTFRf0JhckrXoZO0w7GyqpmMSzJl6PkzJpM5o6SLrAK6WwOWqwWrLGern/D6wz41NdNJTiMa/E5AYmv8VDJdOhYrQ7HY/EC2t3bY2d5Fa4vWmjgNaWxDtaw4PT5lelRi6po79+6S65rT8QXnkwsmkwumVcWvbg2QUmBFWy12u108z0NKx9bWFtPplCzL6PY2O8B0+h063Q63bh3Q3ZNIqSnLguVStOI9usKYCmM1STKgbnyM8/FMTS/qExQnKOvIK5+gM2RZ+5y+vODs5AJnLEoqlLwWJPzaKEzdKpw50Q6M18YB6xbvtQvO7uEOD994E+1gMp3x+NEzHn/xFClyAl/ih4ow9TCNbucW6/mCMY6qrvCCzd/Lqm4QpiRWECrY39ulfv0tKmOI+ymDnV20cyADej9MQQpmRQZoRB5xd3+fL54/pc41fuiDb3njrQc0uiBfegzT2+zffcBiMtu4jqZuoZfGOqSwf0brXPycddYVdM4ag9Ga7//x9/mj732PTqe9id27d48HDx5QFCVp0mG1Fq6qjWZ7d4dBf7Pq4FV8oyTc9QxKOMZ1g0+IrCuyvOHS+Tjr6CuBahx+kzGMNaMwJg5ijPOQrkC5z9DLnCV9itVTlChZ1YYvny3xvPs8ePO3CYItitVm8fBdRqQ2ZVGcU5cV2XKJ8n1CP0Ak60aJdRw/f879B/dRwPRyTL1c0GQFu9s73Du4w3vvvsvd23cIgoDhcEhRbLNarRiPxzx/8pTlTzdPe6Vq2y9CSYTnkD54ymuVlYRFWIPBoLXCaMGdWxHV6iXnpmI8XZJ0FJEH+AdYfRvtLLVe4YkAYSJQYK88vjZEmedgPIQfk3ZjqtwRRTGd3oBef0DaDfFCnyTuMtreRxuFtoKsKJBruJpxlihKCPxwbQzZtirEn6mzNje56uYle9shge/j+xXD7pALp3n+/IxgryCNU7LwEiE8Zs8zZuPnRKnCi3yyRUGcSA4Oejw5HxP7Ea4xzJucmaypXc7COETkiLY3b9tvvfch+wf7rUwoDic0WVYyPptw+ewElkv2hn22tno0WlE3OWVd89nTJ9x64y32Dg5aOJ4DbQxBEOB5XosmgWv3jxYXtWF/+BIhWwinpwxKlsSxRaiSqq6RQjMcdQj8XaTq0Btplos5q+kl3cCxKOYsqxLnd0l6e5hZzXJ5RhIm3Luzgx92UFceYRtCCEueVzgrka1XUOvgsv5KlZRYa9rKzfOYLJY8evyUjz/+Mdl8yr0725yentJPE7Z3ulhTX1eJWhua2rLKHAeHOxvX8e133qSZTol9STG5xEti/CQkX2XkeU4QR+iqZLGa0x9t48cxbimpmpqironiVoc69wVxJ2AgPXr9Dtv7W5SDkIODAw529/ls+eON61gtF8SBWs+3JG4NoXVXUrvXFmxXFXH7oKy1eFKRRK0Ivq7bGQpS8MFHH3J4cAjQDg/zgibLN2+QdXyjJOxTcLjVJfI0qzKDKEJ5gmlWIHA0jWasKw57Swb+GL1U5B4oNAEZjZ6jAp/F9Iw8n2OFwFoPP77P/q3forRdisoQ3aAnvGU73N+7x95on/lizsXZBbPlAl96COOwtcZpzdl4RuwHDJKU1WTKqD/k7dff5DsffsTBwQFpmiKkuO6PeZ5HHKd0Oj2mZxO84gaJQF/hjGoHpqrGSYEQCiFViwQR7bRXW0Wvf0CTTamqBuU01JZKKxJfESStaaI2DpxGoZHGts4T6BYvvCFaeIwlDHwCP8EYQxCnDLZ26A2GxLFC6wpjLFXd4kT7/V5b3akIbSqEtnjKu8ZwciXr+HOfc5O+8v1beyzKhIvVnElWcPbZOV8+HXM5mdBXAVtbNdNVhnCKqAjB7tDp9KnrMWU+g36HzC14WTxmLhbUWrJclVS2QjpB2lX4gcWUmyuuNEoJPZ9OnBBGPkJKzFBwuH1Iub9P/uILgiZC+o6LccHB/j6LVUlWlFgnEdahnKW2Ft00VFWredw0rSaz1hql1LU29ddFbWq00SwWM0RcE/VGJIlH1dRIlbI93EYCy2VJ1FWtJGVTUU8009kK7bosjEcYddHSp6lXYAxJlCDjAU7EGKG4STAx8D2EK8C2kC+cw5lWylUp2aJynGV6fsbx0RmrxvLixTFB4BFuDYnjLkV2TKgakshDqHbOgZMYK6k9ixMxu7ubk3Cjc/K6YFFBNV0wno6Zr5Z4TrKaL9g92KMsCh4/f8nlsuGd/ohfOzggL3PiOOawN+CNnUPKJMDvd9gPA3pxwuv7h1zOJ0ilcM5S5JuT38vjp7x+/yHCgbRrs2G4hhpcmRVfyWJaA6wRX85YmqLEWYeuapx1VE3DvMjoNSVVXlBlBavJlMd/9Cd86/1/94Zv5xsm4aouyXNBYHNU3VDOl9QIjiYZed2gjePWlmH/9gxnCk7mFkXBMGmwvqXf77PMNVleEvkh0lecXlxSu9tMS0XcESzLgssbbGNS6zPo93jnzi2kVNR1zXK1YplnZKsVnu9xdHyMzQry1ZIPv/0tfuWj7/L2229x5/Zt4jjmytao7aitXY6RKClI4pT3PviQ9z/4aPPD80G7Bodth5Outf4W1uJEy4qzwuIIcfQpak0at704YQ1WS0rnWJo5i/KEpqlQAqy0GNF6eVnXINzm59GKWLfsqyhOKcqGIOky3NlDKg/lQVPX1FpfHzZaGzzPX7sQtLbu7cDOXFuXi6ti4BeMqqpYLGecLU6otYTSJ+34xOGA3iBG+ALhapTw6W13KeuKfs+juzuk+6CmpyCvLvB7jq6IqYwhiVMCLyH2fbwgZTlfMbvYfFPaGmxhGs1qMacsPJK0j0PRSWL6Xp+q6PLmwQ6NbHh5sWK4PeL3//BPuLy4RD15yo9+8Cf8xa1dirJhPl9QliXGGLIsI89b55BBv3/j+LusSsIwIPB9jF4BFqVSqCTdZJ803iab5ygxQ3kaLS3CL1BRhSlXWKsQhOAcVTYlEQUdz7IsBI3RIOrrvbIpRlsDmmWGcq0LhYW2r2scvlLXTK/lfMbz58+Z5DXZatUiAbBIIXEOyqKi30mIQ//aicQYQ9OA8ms63c3tme/98cdky5zlfE42mXF5cU6RL9kNQrq9HizmHF2co7Z2CdMuo909vvPROwjbOrUrT7Kzt8+qLHHO0YkifAV+VvH86QkXxzPEfe9GG64f//SPeePBPYQT19wEudYqbk1Rvzrk23ZLS1KpqhprLVVZYe0aB+wcTV3z6Y9/yuXZOVJ5rfj+asWP/8u/z//83/8XnIRfnB9T6x5KKi5mOWVZEMUhYRgxjFKWixzXVOAqupFHdGDIixhJjB81vFzmNJWin0YooNFwcHiHaBSxyE9YLWvGU5+TyRz4V79+0Qbm2ZRe1ieKYuI4ptfvI1VLI3zjnbd59vw5k5NTjDF898OPODw8JAha2BLu5wYSXF061pDF9UNXvuDwzt2Nz0MphRZN2/d1HtYZjNEIqdrekrQI68hWJV/8+DGYl2y/r/GCttdkCk3mHHWoqVkiZYulbkSJcD6etQgsNxCziOMIAesKzac/7BMnXaK4Q1ZWmKKiKmqEaIdTdVNzcXGOMRrP/4o6aq3F931iLwYctmk3m70BMngVuilbNwSh6fUC4r7HaGDYiQ/wk5AsN0QqwEiDV3hIz2P7MKFK+qRVTSIUoQ14a7vPspzx4uIF0vOIfYeRmqKqyKclt3rbG9exf3hAnq9YrZatNrg2DIYDbh3solzNUjUYN8HJAD+tKfKMerlCWsN4fM7f/k/+b1jgtXc/pChKFqsVi+WcusjJlwsiP7gx4QBUpcFYQRD0MCZHiQDf89CRopIC7QVsH4wQZpu8vMQTJbluGCQheeVxcnqO76WUsxl2VTO9nPHsaEplemg9RXkrpKcwdjN6ZrTVozw/YSv0GKYtVnyhFeNVA1whAFpDhcZYjBX0elss+iuqbEmlG6zTGKPwPJ/t3X7bMzcGrQ1aWwbGMhxsHkT9yf/nP0UWGc7U2MaiASehUR7TLONyMqNUgtfvPUQQtQeN8gmTgOViQWMg7g8wYg44kjjFmRotBf3tHVKhCD3RYqA3xGo1wxjdVrnOIq+HLl/RqaGtiI0x6xkJBGGA5ynqpl4n7Xaoh7FMTs9J4pjOoE/Z1FinCW9g/l7FN0rCi2JJc1a0L7wxeJ5i0OkSe4KyypCJIQgsiAhXZ0SBR2cgKeuSvHR4NsIqj4t5hbUK5SWkccBOsmIYNeR1Ts0dqnqwcR11aSmbivFkTBBE9Pt9wqDd4FZAWRb0B33uH97Gk5JuJ6UqS7Q1eNprFfGlar29hEBicbQIDmMMZVVycXnBcLi1cR1hkLZeYEajPB8pPJwRa7bTevosHVWR8+TzIx7eLemFHp7UGA1N42iER0OMUArfc2jtqGyFsz7g8JVcq1h8ffi+116PrKWuNL1hih/G7WS3rpHWEEcdjNU0zYyzs1OyLEMpr/WwW2+8wPeJopg0TUmThLJYsVouqKpqjS3evI6Hdx6gThuMaA+irh/jp5ZQAgiGgy6+i8jripUpidM+tW6o9YKGkjDZQ9QW02TspD2Wsy55syDyJF6cEjeS3BoOtzdfe0ejEWVZ0un2UUIQ+T6jQY9etw/OoG6/wR/+w/+Mp8++ZHl5xrsPHjDq9zncHbGSksdffMr/9T/6P/NX/+a/xd37r7HKS6qqbjHCUhD6irr8Skfh6yIKA3RTt95kYUIQ+jS2Iul06Q+6JGlM6IesZosWRUPr8WZKnyyraRrH2dFLslXNYt4wGc8weBCsWqswwJjW2XpTXC4KCuFTSI94zU41Imbnzg537t0lTmLyVc7p+Ywvv3hGNNphvXvbd+HkGOssYdghDCJ2d7dbTKy1LT3etKSsTjfd/DxWC0xVUuNazDISHcVcCI+0N6S3u8/+3j67t+6wLSRlVfPi6IROJyXPM4xxxHFEkRdrBp3FVQXjxZK8zEA4VuMVq2IzamVndJuqatC6vrYO+3lvySstiKuB5RXF+i/+zu8w6g344rPPODtt3yFtNFEQkPoh+WJJUdcttA1N0P3FbLi+GVlDVy2MyoLEEno+89mMqW3Iqwakx37XEcmQ0MuwNBSFJa8MaZyw0/NY1jDPBUWlaXSNlJrIb3BOkwQhvcEWr91/sHEdVdmKqnz55Zdorfnoo4+wcUItJLUzzLIVVgh6cUocRBRF0fpohQGe79FJUjzlte6usgVn17qhrGqaxnBxccHjLx+xf3i4cR2Bn+AiQd1USNla1gh8BBG41oxUY/FCHy+wpJFP4Blc47AarPDBG6BkD6EcVlqEbNsBUprWeVa0w7lNIQStGA+SyWRMEHRJ4gSjKxazCUkYkUZ9dGlYrTLOz88pywrflxhr/0yla4yhLEuiKGpdcdetCeccdb25N91NBtzZvc2wv0NjK1QVs3g5RtkVRWFY6YLF7JI8qzEiZnfLEcmCRpT0en3ipIOKLGmQsDd6wPb2XR6ff0Iv9Rh0DwlJqB82DAe7G9fx9ttvMhoNmc1mFHmOJ6HTSYkin7I0dHfu8OBbfwG/t8Pl088QTtNLA958cJfn4zHTywkvnz7m7/6//2P+0l/+qzx4/T06ccqyziiKFcvljKaprwd1XxdJ6hOGAVKotdCLIwh9Or2UThwinCYvlpQuo5El2mpqa5jMMspSkM01n33ykqay5HlNVWqCJMDVyzV1X6AbS1Fs/l7uHozwF5fsd2Cv35ppDt/6bT74i3+T/bv3UVJSliV/9Mff5/f/8PuMnzxjtD0kzzKOnx/jUXL7cA+JIIx8kqRDEPpY69Bruq5UPn642QV7IiUroWgkCM9HW4/R/h3279zhvQ8/ZPfggLrWBFGExWK0IctrjIXlckHTGDzPawsIT7HqFoSSVtMhSfnspz/lxZMnLBezjevwhcLUddv+sy0OWLK2N1rjgq/aEkY3rUGpgDcevsadg0OevvsOf+dv/20uzs9RAu7ducOwP2RZFiyKnDRN8UOf3Vub88dVfDOjT92eYQEWKTR1IXi5yhBe21cKBOwdRgwSDVIxXUxoasegs0UShdRYlDN0IkegXKsoJgWB7GBFFxHcpjYxzi43rqPMcyaXY46OjhmPJ9y6dYv9/X181VbCgtbPar6YIwUtlMfzaIoCXwdEfgjW4bBUZUFZGZbLFVmRI6TkcjwGJYmDzZtKyRClNJ5rhXccDikUAq8VIrGgAW0tSbcgThuqpgYraYRC+12cGiCJUbLBqRa/aIxc+8N5SFom3sZ1eArfk/heyjKruDw7YW93B1sVfPbTH7M12Mbdvcd0dsnx8fH6KmZxTl6P3jzPo9PpEoUReZFzcXFBEnltv/DnTVA3xHh5TuPmLKsZ2hhmn9Q8+/glgW+prE+jHc46wiAg7qXUdYlfC4adAffvPiSKUrReIaOQfrpLr3fAcPcAq5cEKiYNRhTVCk9u7sVGcci9+3fYK3cZX15SZkuSNCJJI4QEg+S9X/4l9m8NmN3qc/TTH6Kzglt7Iy5nl5giJ0w6nB8/4+mXn/GtD3+JonKM6xKpWphjo0uKcnPv0fMUSdJFipDFsmCZFQy7Hfq9Lr50FMWMqmrwk1bFLi8yloslq/kKXRkuTmfMxjlhEKNLR5kZjGkwommZp1ZgDDT15u9ma9BjFihiXxP4Hg8//A0+/Nf/x3QP30IKiTGa3kDy1vsNJ/MVl7/3+zz52RcoX5Iv57x2fw/fV8Rhq7ynlI/yArAGby3UJb2gBaxviAWW0hfIICBIeuzt3OK3/9Lv8trrrzMcDWl0w8nJGWma4Pk+VVW1NGIlMc7i+R6ep4iSiCiI8D2FlK3mxOnLS374w0+5uLggkpvfl6Onn/P+22/SSeK2lefA2VbERzjV3outxkqJbkqaKsc1DRhLGEXcfe0ht+7c4ujoOXEQ8N577yD9AGMtFxeXLdU/CTg/24yuut4nv9BPraNeLdkbNWz3NJaCy7llsdihLiXdjuRbr/f4lfeHNGbGs+fP8T14ePsOXhBRVB6rCoqqoawUgd8hTQZ04j5JPAL6rBrF2eSS0Nvc09E0LGYzmrpGa82zZ8/opJ0WShT4+FdtBtmK1YBguVjy6NEjhsMh3/3uL5EkMdlizsUXP8Flc/LeHgsj8ZSk00nxwy0eP3m0cR2+l1LVJVciKs7alvdPS27Q2lzXsPfuDRmOai4mFSJI8bsJzutg6LaaE04jhcDzZctaw8fzPDzh3wBAagV3cJZGNwwHPRQ+piop8hyrK5I0RilFnhdr5IPDOUOWlVR13iqnBcGaKdd+WlWV1KXB91pmlDE38+DHkwvOyi9Awk66Tz45QdcFEKJkhBUG6WsCXxBFHkpBNw158/5D9g/uIIWiMCsa16DwqXXGVpJSVRbhQiQSX4XXQ6GvC60rPM+j10uJI5+6GOD7PmmaEIQBq6IkTH2294asTgXdYYfewR5BIDCe5Uc/+7JFjgBffPJTnnz4M4a7B5TVEoSl10vwfEBsfibWQBR0CYMex48mbN1O6e951LWlsUuqpqRoSjpxF1sJxudjlrM51JpsOmV8OmZnOMJamF8usY2lbHRLZKAlHbS9/M1JWEiFtY6y0pjkAQe/9D8g3rrfJhbfQ8mW0j2eTJjOpqRpysXz5+h6wfYo5XI8I01TuumohWB6HspTrbbJOtoKcvM60m6A5xQqTtg5fMiv/oW/wgcffEDowXx2TllqwigkSRKUUq3jtaCd30gfzw8IA0WwFqzCWvJVxuc/+5w//t73OTp+Tq/fx1Wb2xFHL4749JOfUpUlW1tbbG2NSJJkLaXZIo2u+r1NXVNVFXXdqhK22GJBt9/D832kkoRxjHHg+T4P7t9fm6VaLm8a5qzjm1XCTNjtG3rhEuNSvH6H7WSO50LefDjizfsJounxw0/O+Sc//D5v3n8Hj4ZZVmLDEVkpyGqBF3S4f+t1trYfstffIgqjVtFpsaLRcHtvb/NCQtFCssKQTqfDkydP2NnZodPtEoQhfuCjPIXWNaWzWOP4kz/5E/6bf/Bf4/s+q8WS3/rt3yabTCiefUmSnxG906Hp7NFPO2xtbfH54y/52aPPNy7D91Jgfq0GdzUsd7ZNiNZYpOcTBJb+cJdVlTO+BL/T5bC7357kzseZBmMAqZGeaOmOtp3Yer53IyfKUz7WgLKGTuoTh0N0llPVDd/59ns4TzFbXBCGEXEQ4QkQ0qBNSdNUrWym1cwXE5RqNYata2F+VjcY+5Vw06bY7b5G2g3pD3ZQzlDsLskucrwwxDoPqxWepwhCQZQI4lDS63VI4ggQNLqgrBdoU9DpdNFo8tWC1SpjuZgxGOwwHO4i2XxDaeURWyqrH3gkYe9aQc7zrnQBHEEy4PmzM0zWsLvbQ7iSIFJYDM46lPA4evqM//K/+Lv89/76XyNOPKQMMcYQRR6L5eYkLITC8xNGW7dwOuDkaMKtB6+zmq/AFNg1/nk5rzl6csxsOkYZy/TsnEeffgEq4KMPP+DxF0959uglWNcOjnVLukDY9Y1m8+NQsu1tahcyuPsesruNtjUqTLBOtzrURcnTo2Om4zlFWeNFMVWV0x8e8OL5M5AFjTPgtQf11fOUUrYqx2tZ200Rj7ps9/t0+yM++PDXeOuDt0hCwCyYX/6Ysk44uP9tPN9r2WtKrcklil5/ANbidENRlJyenHJxesJ8POaTn37KfDHn1uGI1956k8ujFxvXMRyOOL844/T0BK0tw+EWr732kNu37zAcDtt2gu+3/2+mxdGfn51xfjHhtTffxPmKwdaInYM9ok6KE63Vvef7CMBUDfPJJc0vULjAN0zCgcwJhEYJi9E5nna8fn/Aa7dvY03GJ5/8mC8e/SkvzjNK8TpPsz3OP12gZIwWU6pG0esNeGPrNqPeHqnf9sWy1QKpQnaHQ7b7A7a7N2gDxBKXtdqdQgjOz8958vQpe/v7JElCHEUEgYcKWgJHVdY8ffqU2WyGc46///f/Pvv7++zv7dC9/zrMB+h0wO7uHkkQsFwtuTi/oHA34HO1xRla4Q9aiNsVnlDgUNJrN2csCXdDltMDenvbeHFEWaUkHYWgwQpLrVtdYqfEuqUh1kPDlvix8XsJI8pS40tJJ4lJ0w6f/uhnDLa3GXX3WFYFta7wvJZI0bIDJda1iTXw/VavYd2mkGuCgVgPX8T6Lb9JkOTOzruI7g5OVUgbMr09ZXYyRagY6wKkcGArpKgJ/ZowFMRp1GpUOx+hJP1YUtZLjM0JQg9PbeO5LTzn0+1ugdQU1WY6udEah0abHCkEPhG+5+P7EqkcoS/QTpHnGuEszvO5LAwvnr7g0Zcv25uJ8njnjdeYzGf8yccf88G33+Ph6w8IVZeiKMjqAl1v/l78wEOFIb3BLtv9Oxz/7GPuHjynM4yRnqOo5jhKnLWcPzmiWmkuT+ccvbhgMtV88MvfRfRDZsspwgmskRjhsBisdXieaucQN9wMIl/SGDBeSrpzB/wIsBirW5ouguOjI55++ZizF8cUyxVREOL1B7x8edqSkaSgbpq2KhXyGlu/5iq04ug3Sf7FHVTSY2v/Pvt3X0N5AXVdIWxNHAwQSraqg+uDRSqF0Y66LMnzkrooWEzHPHvyhM8/+ZSXx8eEgcditaDbTzg4HLF3sEt8w0Z99933uByfcXz8ksU8o2k+4wc/+AGHh4ccHh5y7949bt26xc7ODnmeM5vNcU4SJT3qpsH3Fd/+7kc8fO0BcRK375G1ZKsVk8mEyfkls4szgmYzzf8qvlESTj1BHPgIHLEP/cgSS8HZ2Tk/+eJLHr+YkRcdKm8A0YDzwtGxPolvkKImigZsDfoMuym6KRjPL8jKAOkUe6N9enGAMZZOZzP8PJMVxaKiWBbgKbIs409/8AMObt1id3eX0dYW3U5KkMREQUhZ1hRF0QrZBD6nZ6f88Ic/ZPAXfxtvew9vdJtOkiCFYDafcnx0xMX5GbW3eSCWFRMcLfbWmoaWr+whZKvOJJ2PlD5CppxPaqqyR9pRpMOQbFoALbU4kBL8mkq0UCAceChwPrgbqj5gtLPP2ekFzkmCKKbX72Gcxg98ut0+27duE4XnXJxNMK4lhWijECIkChVJ6LNcLdcvWOuSItry+Odetpt7wst6ylBGVDanMRnaD4nSLml3q51k2xqhQVcl1lQEvmBnb59uZwulPIz1ENaS+gNKvQLhoVREEDuUE+TNBWhDvjrbuA4lBWW2ZLEcr/dqFyUDwtDD8y1RGiDCLs6WbPUC0ls7RFuHnI8XLBc1o8E2d197m7/0m9/lsy8/5Qcf/4TlbIarJbPxiqqsKUuD5zarygWRjxeA50dsDXf55McrfviPf8rb33ofLQSXkwXZ4pLVfML49JzFpODyYkVWwvu/9Mu8951f4+lnf8rFLCerHI1tRWGvql9n1hrcNySdLK9YNY7E76C6IzzZyi46XbYzC+N48uwpR08ecfT0EcI5PvroI955+zW+//0/5MWzZ7hGky1WrDoxk+mCRjf4ntdCO4VASI2Sm9sAVlnysqTb2yHtboH0cSgaI/A7uwQ2wzQZTaOpa0O2XFJkK5azGePTM/RqweT0mKfHp0zmS6q6IuyldCJBErcuGVXdsMo2r0MgSJMO26MdirwhjCICP+Ds7IwXL17w8ccfs7W1xa1bt4jjmMePH1HVmr2DO3SGA958512iKCE5TFvUEK3W8Reff8az58/pp11MU2NvGNxexTdKwpOzOfWdHp3EMkh7BJ7kRz/6lPkcVi5A+3vEURetoXYVuoLSeIShI+2GIC3OGeb5gpPpGZ6EUEnevP2Q94Zv0k8DKlORbm1OwmMxJ2wstmwoTUNe5FRZwWw+48XzZ2yPRuzu7rGzv8ewP0CbViB9tLvN9mjE8+fP+fyLn/H+B+/SXWMbXT2najSzxZjjF8+ZzcfM0s36qNpka0FtxxXsWyBQnkTIAKxAigDrOhw9f4lnLaPtbaLQEHQ9XNZj0A/Bm6/1hyU1JVgQooW8gVr/+vrY2tkjLy2LecZ4OkP5Kf2tXqvk5IV00gH9geHo6JSqLqm1wQ9Ttnf2oSmwdQHOsiiK6xfaGgPrXuOV7cxNiXjeHJPqIUImFM2M2eUlvYMtdre3EM6R64bFyzOieMD52ZKtrT7b2ztI6WPqDM/rUpQGQ0lWLTEOrDgnK1esqkucq8FJlNsMhaqqgmw5J3RgmobLy2OkCOh0UjrdAEvYEgDyKUpXRGHIYLvP/n4fYxt++9d/h9/5nd+lqi75vT84pdGGbJWhRECkuijfYKuC0m4+pD2l8DyB5wf0ukMUAeMXMw7/4juoZETsnfKy/JIvn/xDPvvkmLo01NoRdnq8+8EvIUXMycs586Wmch7GOcBc917NWg3tpiQ8mbWWTbWKcNInkAptHEJULQlDO4qyZHx51rIzHezubfMbv/UrBGHNP1gtWM4XrUxjrSmrhjgKcbaVwbTCtq2SG/DkHeUThAn9wQhrzVrTuoVRFjmIYk6l51zOLNl0weXZBdVyRj45x81ndJoSnedQNggriX2BpMapVoKyrDSLxYLZdLZxHbPZnKquKEtNFEWMx2OSNGFnZwfP81itVpyfn3N0dEQctxTl+XLF8+OXXM6mDEY7HBzste/EWvVP4hASnDUsVnMWFxdEN/Tqr/fJL/RT65hcrJiPfd68t03oK54+X3J6YXFygEoSfCGpXYPnSXQD0kmkcywbzXRWE/iGN++9hacCHj39jL3RFrv9Hgc7u+zt9ol8Ab6P3928rKVfIroB5GDXOgm+19q9ZFnGcrnk5ckJg2dD9vf32RqNEFIQxzHbO9usVksuzs85Pj7mlpIY0yrhZ2VGU5XoSrNoFkztdOM6rGstb1qrJw/h/LUbhsBTflshuIimDljNHfvbKUkcY5qSWPV48mVB/84WKqgI+0OElGBytGhQwkeuVdRu6glr6xEkPfwaLs4nXI4/afGsaYe8qCjPp1ycXzIeXzKeTkg7XW7v7rMz2qJazplPL4hXCWG2pCgKiqKgahq8tcXJVfKVYvNhoDNLkU2Igm2KiabJSx68fw+nC7b6B8hOl2fqMeVqzOUnJy3BpfGYZzMW83N6yR61dpyPn3E6+RylEgLP52LxjGl9ieoIClvTTTfPDKazC5Ruh4p1qQlUgpIx0kVUuYPQ0euA0RmiKahqw3g64ezoc7QuuP/a64y6KZ8c/5Szs0sMEj+MGPRT0iAhz0vCUJH0Nu/TFpYmCYOENOkz7G0xP31B6FIOD9/HlzsUkwLXeOR508IWcWhTkeczxieOkxcXZFmDdR5Crvu/a7lYAAQ3Ho7ffvcOp48/oR8LEA5tG5ratoxO6yirhuGwT6eTcPKiQkpFFAdY1xBFHv1+h7quCOOINEnY2tpiZ7uPMbpFV7i2V701GG5cx4PeLWSSIpqKl0fPyZZL5Fq8fj4ZU0+PGHUFR48u0ZMZk0VGx1R0dU2EQaznO0MBTklWSpLrCqFCKq1ZLlYEQcJsstn+yqwJSEHQDr+dc0zGE5aLJaPRiO2dbXZ2dlitVlxeXrJarbCmQTp4+vgR//nf+095+623OLx1yHAwJEliGl0xGU+YTCa8ePacJs843NrMM7iKb5SEt7YUkZIEMubsIuNPfzTj9FSi0oJUCQLlo/yIRjtM3RAmPp1IsmxqlBEM4wFv3XuDIOxQ5jV3Dg94495d3rh7QBSBF7BWeGq7ql8Xud8QbfsEtSJVCWkYUluzxvSV5EVJVVW8fPmS8/MzkiTF8/0WxF8U+L5PUZa8OD6iM+i3ivhlTaVLqlXFoxePmHQXLIMbJPGocFctCDyU8pBCIkQLVUNKpIvIVoo4Trh1u0sYaS5OFHE0pCkrfvrpc15/vUPaD/BEhC9avWYhPKTwEeLKeeTrQ/oRcQf8sIsfdiizJRenL5nNZ2RfPMGohPHknPPzM2pds7e/x/7eNr6nUC4hCPYRvgKvHURUVdXC0ta4jCuImrph2lssNGUUkAw6ZMcTRqNbxH6PoNun090m6nXp//IBFxdP+PLTJ1xennH05BFR1A40Ts++ZDafUxVzsuWEXtcnrzNWlwUvxwUuNdhOzWW8+boZJwGBlARCIj0fYwKK3KG8GGMbqqJG50tsNsGTFrwAWzt6nuO999/i9mv3mE5PWC2mWODhG2/z0Xc+Iu77OFWg0CS+wms2+4ddWXgJFEqF9JIOl6spR0++ZP/BRzinmVwec/TyBY2BK5fFpir5g3/4D+h1exw9eY5pHEqqdnK/JhZd+cQBN7ZitwYxg9gjDVsXjErnKCFwtFKwq+WSrUHKX/3rf4VyuUB6Ibfv3ibLlmRZS5JQvreGTxqK1Qo36rSaKda07DGh8NXmQzpxgodpQjI75SefTXjy5AWB0+jVkmw1h2pF/7UR/ekMc7EicJY+Dh+oBGQOSuHIBaysZeUknhP42pBlOcadUTeWi/F44zqUUgRBcP3XTqez7v3OGI/HXF5eMhwOuXv3Lt1ul5/85CdEQcDW1pDpPOPj73+P7/+Tf0K/3+fw8JCd3R2005yenjIej3HGkgQ+5hewJoNvmISVLXh5AmGS8Ox0xumyoQkEUdTaHcVph4O92wgZYh34nkdTrdjXfXZ7A24dvsGoN8T3I/7a7/wug06KJ6CXhvi+aO1OhbgynfvaqJVmGRWMthN8oQgKn0A7Gt0QBEErn1iWlGXrirtaLkBI+r3eNRHBWsv56Rn7B4do3bTXmPGEo7OXLPoZrueT+zdAkNBrK5R2mKaUjxIezqlWvF4KcAFF6RhuJ6RDj8bT5CvLiyenXIxPCLspuZMEusah1w0NH+HWYtsShL0BF5t0sSLAWclgsEMSSY6e9nh5OsPIgO5gh96wz/Z2h6bM6aUdnCkQ0iGSkNJTyFVAlufXwu/OtUD8Kxyxda0g+KbIVpp5Osf5DqsKHrxxH1OvqLWlKipkqJAq4O7993j7vcfoMiPtBwSRz3B4SF3B4yc/5LyeMNzeJUwGlMUZA2chSTFWUMgMKzf32soyoxSCKIzoDBK6fkCw1O2ABUOC5OLFCZPPP6bfSxnef0i2qiiTGPfwHjL2mByf8uzpM4z1+O//zX+DBw9fY7GaUDYNIvDRuiarNq9D1xZdu1Y60TrCMKRpKo6efcH9s6dMJxc8ff4ps9kUh4e79ipUJF7M6nJGpAKiYUwS9ynyBdqUbVtCKtyaWHMTiaapKrDmGoZYVSXSKpTRFGVFXuQEns/7779P9382IlsW7I62uLw85eLigqIsMbatmuu6YZVnbZW/hra1OuZ/VnPhnxVHJ0e8GTje6xh6foFXTXh2dIwrcnoCfGHhxHH/sMvpbE5YtS46pbMUTjJzipfOcGYc+Vp0R0Erf9loqvmCWjuy/Cb8tncNQbtKxEmSkKbJdRK+uDhnOp2QJK0zdRwG7O3uUGuLXmYo32c+neFMK5zVHfSYjCdEYcTB7h7CaXz/Jmml9Xp+oZ9ax+XZgsllxnReYTyB8jxQrXKYM2CtQteWJFEICYvVisD3+e4H3+XuwQP6vS2EUPi+x06vQxy0CmRR7LUgeu2QngQjNq7MCUspK1apwpcJYuKQucCX7fXC9z2CwCOKgtb8sqwpyxq9pt5mWYbWmiePH7NcrdBGs8yX1LpGHgSoOwFlUmNvIAW07rsKwXoybMX65WhF0UFQVlCWkn4aolSKciOkPWK8eMZSZKhuSiYhrA0BNUa1nnBCGLRt1s93c69NKh8pLUJ69HtdsDnbu9sMRocUuk/RhKzyCQ9ff0g/TdFlSbU4ZZlnLCrDJMtZlSXLxQKtNdZaojBsdWN1a3evpCKONvdiy9JSLCqsGROGIUoAMgJnWY7n2NLQuBI7quh3fUovJB128JMewktJVMTW4A6hn1JT0xs+oCyf8fLlgrB0ZLlB5l36w80aBXmZUaNJRKcVUJIhUS9k4AcsFiuqpuL89ILVyrJ35x5JmjI7eYk2Jd1kh88+/injoy8IOrfZ3gmZzZY0TYNQCusaJK1OiL5ByrIsBE1hsHWNMxUWQ20M04sTzp98ypOXz3n65BFVXV/33wHCIOHdt9/FU4r5Yg4OkjjFmIZ6zdQLwgApJE+fPeXx48cb11FUJZFsXVOqWrPMcpqgtTYq8wIlGqJOgq4Mw9GIujxlNrlkMW+v6I3WNMbQGEtZa7KiJoi7+L5PXVc0TYUVDntDb3o8W/IP8kcIW/Htw132PnqDT1Kfz588I89WSGthtkLtxAwOulw+XVEYwVIILhGcGselE1RrMXYp5XVrxkmFUD5lXdNwE3RQXCdgKVu8tZQentchDH06nYTVKqMsy/VNQKOtx2Q6bw80o9nZ2Wrx+QiENcwuJtBYhLSUWUYc+Qh5s1cmfMMknNUC01QUTdOKKnseQnmsqEAUhFHB8ZMzPF8Rhj5RGvPtb32HJO1h19btQhh8pQh9gGbt/BpjdWtgeAXN2hTKtv5u8yDD+o6B7JJeKlTuWhNCPJRq1cKCICDwG5QsKPICo00r6VhV5FnOYr7AKouXBnRfGyIe+FRdgxMCdQNLQhGiCJGsHTCsA2dwzrRFvZWUWYUtNZ2eolJdIrFDw4QySemmPfy47R0aI7CmZdc1zmIVCGewVuLdYLDpdOt1p5Ro5S+tRUUdknjAljciKx2LpaDfDxltDTF1xfxSEK1mBFnOeDxmOT1fE1skw60Rb735LqfHR6wWS7wgJIwSHtx/beM6ZrMKXzsi0SGIBLrQGKvQGvJ5RbWsieOUKmxQfkwxnjM5fc5w7w5+J8Y1BcPBNv3+FqtiRmMLkrCHEilFNsH5AYGzLeNxQ+RViZaajuyAhWxVYaNW60QqSVlp/LjLzoMP8EYHFEXFZHzKwgr2e3cIx2MO7r5Df/SQzq1LLldj8mzFcKcPDqaTFdmqQN+g9pfnhqIsqcqMusywtgFhmM/PefHsUz757DNOT0/+7EBLCLTW/PhHP7oeCl3t46qqKIoCYwxJkqC1Zj6fY2/QsMjKGmsFZVGSTS8IfEXdSVst4CKnE0twGoejyGtWyyXNas5icUle5GjTygRoYyirCmTI9q23SJKEIs85O/kSXa1ubJsND3Yo64Z/Ms3J3Bm/sT/ktz54g4N+wqdfPOJ8PMVow8XJgsHDIcVlxclcc2bgDEcOICWebN2/pZSwVoBTfkAQRZRFgbjBrv1qmKlUq5xmDFjbYsjD0CdJYuq6RVQtl21LpqoaprP5+vcV0+mYbreLtZbppPV2NMbgGo3Cora6axf0m+MbJWEpFY0wrAqDWVbr06Nlr1gUSq3wZFvpdgcdwmSf8fiMH/y44r23vsVgsI1bT92tdtSmIc9XLNMQlyRtxeUpnHSIDY0u4Vpso5aWuSswMbDfpbPyEQuLV0kwrVmmpxRKtP3aVbbi6ZOnVGWNaWxbZcaCcDclfbCF3PUo4hIjXdsOuOnhiRhfxkj8tRkgWNeaaCrPQyIp5jOMFPiJz8uPj5D9Jflel8HdX6OWFltNqctVa6kd+OBM61O3Lq7bocvmE9VqjSfAlwJs027KqIcIE8LAxwsBGTMYDhht77SMM2lwyhHFHqvLDi98qHs9rAt574O3+c3f+EucHT+nLCuUn4AI6HYHG9cxPs+ZPz8l8VMG+x0Cz0eqBN8PKZOUppiTLxY05yvieEixfMryYkEcrUhDi1Q+cdRrr72N4WL8GSKtqX2fLz5ZsEITqoiXlxL+h1+/jrqoCZOQkJBQhgigKku8jk+v16Xb7dDvpdRlhUwSiqYh3b2F34vpd1/nra03sG5F00hEJ+ZA7iNDS9O0pa+S7YEnbjili8pQFAV5vqQsM3RdoJQhL2c8fvopjx59zmq1+qfIFlpr6rpuMe9x3Lo1rA0lj4+Pr5PIz6vfbYrzWcW0NHQWS558+hNmsyl333wLY1qlPE8omsTHyYBslbW2UrMxy8WUPCvXfW2BbgyNZ4g7XWQQUxuD9CRp3GdaLGn0Zqbr9sEeDiiynH/0/JTnZxf8j959nfce3mLYjfnTzx7x6fMzzmaWyWVBcdDjZ/MJMwdOCqRo6fxSyTU4ea0CvP5ndu3gLm+6wa4Fq1oD3a+q4qu4MvKMoog0TamqitUq5+zs4po9ulwur9tALVlLEEcxSRIRp/E6L/5i8Y2S8F/5y7/VQlKcJQgCjHYEQcDhwS2EVCAVnhAtUSL0UFFAGAQEUci7r7/JvVuH6LohCn3SMKIxIT0bEoUBXtg6nipf3riqFnXg1hJ0jpXKqWXN0E8ZdnuwBD1vEJUAKwlotSNUoFhmKxblAq/vke506N7qYXcUq06DVi3F+WrS4W5Iw56I8ESExKOhwdFSHtuKIMDzBFtbkq0gRMaSP52cMPnxMdHWAHX3Ae5gn3e2trjTG+JzjpAVtTEIHL5oGUgCh7jhgTh7ZdooaJoaGQYYHJ4Q1LpGCEUUtUyvummIwoA07ZIvQ2pdMOh3+O53voPzekgR0R+EDIcdesmbLeXVeUzn+Roy9/WxWBke/fiU5arml79zj9fejolC8HxBGCl0YXn2/BGT8SW7B3cZX0wwVuHFQ5arR1RVzdZgj+FwQBIN8Ag5X35K1A8Y9m7x9Mdf0h30ODreTNbwpI8tHIvLFTJVREFAg8Ekjn6ngxAS3UmZzWZUWuPHMVt3boHYoyo8OoOIKBwiDASXfqvup0saY+h0Oijpo42hrjeD8ZermjzLyLM5TbmiqcpWj7bKeHH0mMl00iqx/ZkkLPA8jzt37tDv99f0XYsxBiEER0dHa2nFX1zo+bMvLjmaG7aDkkE0psGR9rtIP0I4h3IeZelhRcNiuSDLFlRFizJqGksQeFgDwkmCIOLw1i086bGan1FkkxaHrfwbLd47aYdGN23yirr8/pMnjCdL/p1f+xYP97fpxBE67PEf/+wx45OcN17vEA0T3Kxo3UmEagffsrUQc1fGA2tZyRaNsm6Tboifv2kr9RUG/srmqB1Cq/W/V/i+TxjGJEnLpl2tVpRlef29SCmJ45g4ToiuGLvK+4UlYMU3+TJfxat4Fa/iVfyLjV9MYeJVvIpX8Spexb+UeJWEX8WreBWv4s8xXiXhV/EqXsWr+HOMV0n4VbyKV/Eq/hzjVRJ+Fa/iVbyKP8d4lYRfxat4Fa/izzH+f+piDmGXG6FkAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 70 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Train data shape:  (49000, 3072)\n",
+      "Train labels shape:  (49000,)\n",
+      "Validation data shape:  (1000, 3072)\n",
+      "Validation labels shape:  (1000,)\n"
      ]
     }
    ],
@@ -43,12 +53,12 @@
     "    with open(file, 'rb') as fo:\n",
     "        dict = pickle.load(fo, encoding='bytes')\n",
     "    return dict\n",
-    "data_batch_1 = unpickle(\"./Daten/data_batch_1\")\n",
-    "data_batch_2 = unpickle(\"./Daten/data_batch_2\")\n",
-    "data_batch_3 = unpickle(\"./Daten/data_batch_3\")\n",
-    "data_batch_4 = unpickle(\"./Daten/data_batch_4\")\n",
-    "data_batch_5 = unpickle(\"./Daten/data_batch_5\")\n",
-    "test_batch = unpickle(\"./Daten/test_batch\")\n",
+    "data_batch_1 = unpickle(\"/work/hslu-deep-learning/notebooks/Block 1/data/data_batch_1\")\n",
+    "data_batch_2 = unpickle(\"/work/hslu-deep-learning/notebooks/Block 1/data/data_batch_2\")\n",
+    "data_batch_3 = unpickle(\"/work/hslu-deep-learning/notebooks/Block 1/data/data_batch_3\")\n",
+    "data_batch_4 = unpickle(\"/work/hslu-deep-learning/notebooks/Block 1/data/data_batch_4\")\n",
+    "data_batch_5 = unpickle(\"/work/hslu-deep-learning/notebooks/Block 1/data/data_batch_5\")\n",
+    "test_batch = unpickle(\"/work/hslu-deep-learning/notebooks/Block 1/data/test_batch\")\n",
     "\n",
     "# Let us concatenate the batch training data \n",
     "X_train=np.concatenate([data_batch_1[b'data'], \n",
@@ -136,9 +146,7 @@
     "print('Train data shape: ', X_train.shape)\n",
     "print('Train labels shape: ', y_train.shape)\n",
     "print('Validation data shape: ', X_val.shape)\n",
-    "print('Validation labels shape: ', y_val.shape)\n",
-    "print('Test data shape: ', X_test.shape)\n",
-    "print('Test labels shape: ', y_test.shape)"
+    "print('Validation labels shape: ', y_val.shape)"
    ]
   },
   {
@@ -150,7 +158,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 30,
    "metadata": {},
    "outputs": [
     {
@@ -162,12 +170,14 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEhdJREFUeJzt3W+oZdV5x/HvL0YT71Ucp0YzjFKN+CISmlEug2AJNmmD\nlYAKTdAX4gvJpG2ECukLsVAt9IUpVRFaDGMdMinWP42KQ5E2IimSN8arHccx0zZGpsnUYcagop0b\nmuo8fXH2wJ3J3euc85y997mT9fvAcM/d+6y9nrPveWafu5+71lJEYGb1+ci8AzCz+XDym1XKyW9W\nKSe/WaWc/GaVcvKbVcrJb1YpJ79ZpZz8ZpX66CyNJV0N3A+cAvxdRNxdev7i4mJsOHvDLF0OQNO3\nmL6JzVn+D1vX91/EvvvOuxw5cmSid2Q6+SWdAvwt8HvAAeBFSbsi4kdtbTacvYE/vPWPW/YWTmpL\ndpVeoZIZmWlXbtK+M9ls/eg4D/KHm75lNvmzfw5fate6J9HXt/7mgYmfO8vH/q3A6xHxRkT8EngU\nuHaG45nZgGZJ/s3Az1Z9f6DZZmYngVmSf60Ppr/yOUXSNknLkpaPHDkyQ3dm1qVZkv8AcMGq788H\n3jzxSRGxPSKWImJpcXFxhu7MrEuzJP+LwCWSLpJ0GnADsKubsMysb+m7/RHxgaRbgX9hVOrbERGv\nTdCy7XitLdTWpnRLvHSntHQnPQo723YV22RvK+ea/brqujIXySMW7/bndrXH0vN7YKY6f0Q8AzzT\nUSxmNiD/hZ9ZpZz8ZpVy8ptVyslvViknv1mlZrrbn9FWKok4WmjUUkpLl9GSpbm2XYWRPcXD9TJ4\np7UeWQikjziGkwk/PUAneR6LvaXKkWv/nKd5Wb7ym1XKyW9WKSe/WaWc/GaVcvKbVWrwu/3ttzYT\nA3GSd1fbBgqNDSMxsKd4R7/4krOlgMSUVoU2w0WRbZQ9ZGZPeWc2/G4H9kzeyFd+s0o5+c0q5eQ3\nq5ST36xSTn6zSjn5zSo1bKkvolBLK5Xf1t7XRxmqWJnLDDBKTyWYrBFmesusJtODPvrqen68fDlv\nuL4m5Su/WaWc/GaVcvKbVcrJb1YpJ79ZpZz8ZpWaqdQnaT/wPvAh8EFELJWeH5Tm8Jt+ZFm5FDJg\nkSo7GV/X1bysPvrK/dBadR1iP2XFIdvN/gq6qPP/TkT8vIPjmNmA/LHfrFKzJn8A35P0kqRtXQRk\nZsOY9WP/lRHxpqRzgWcl/XtEPL/6Cc1/CtsAzjrrrBm7M7OuzHTlj4g3m6+HgaeArWs8Z3tELEXE\n0sLiwizdmVmH0skvaVHSmcceA18E9nYVmJn1a5aP/ecBT2k0+uyjwD9ExD+Pbzb9BJ7lZYum6wby\nFba2iT+jcMTyyL3CzvUiPQRyuDhSXSXP/bDlvH7fIOnkj4g3gM92GIuZDcilPrNKOfnNKuXkN6uU\nk9+sUk5+s0oNvlZfxNGptpcP1r6ruB7f9D3lA+mhWefWSzmvB60hZmMvTKzafRkwtXDkxP36ym9W\nKSe/WaWc/GaVcvKbVcrJb1apge/2ty/XlZnDL7/MVKGvrgeQDKzzoSBDToXYx0ETJ6Q0UKv0nis2\nmz6M9ICxSfnKb1YpJ79ZpZz8ZpVy8ptVyslvViknv1mlBh/Y01oqyczhlxzYU1Kq5LR1WBz7kpxL\nMKutu3RfxYZdv4Iein0tEyWW50/MjXQadn6/2Q/mK79ZpZz8ZpVy8ptVyslvViknv1mlnPxmlRpb\n6pO0A/gScDgiPtNs2wg8BlwI7Ae+EhHvTNJh+9JbpeF007fJl9gyw/pyQwGzU+fl9LE+1cB1zOmj\nGLt3baVyXrKEnDohpfL37Cd4kiv/t4GrT9h2O/BcRFwCPNd8b2YnkbHJHxHPA2+fsPlaYGfzeCdw\nXcdxmVnPsr/znxcRBwGar+d2F5KZDaH3G36StklalrS8cmSl7+7MbELZ5D8kaRNA8/Vw2xMjYntE\nLEXE0sLiQrI7M+taNvl3ATc3j28Gnu4mHDMbyiSlvkeAq4BzJB0A7gTuBh6XdAvwU+DLE/UWFCbw\nbF+uq31Szexsm90ur5WafHRwfUyPmZixMn1COi6Mlt46pVlcs7N0Fo6Zefe0rxo2+c95bPJHxI0t\nu74wcS9mtu74L/zMKuXkN6uUk9+sUk5+s0o5+c0qdXJM4FmeVXNNSq7jl5rXMRFfX4YtLXZdfsud\nRxXLaC1xFGddLfVW6Ku9/pZ7aekYJ+Mrv1mlnPxmlXLym1XKyW9WKSe/WaWc/GaVGrjUFwQto/dK\ntZBBJ/As6LikVxo8VqgadT5Ar5/yYMvozWQc+UGanQ8vLHSVe9O1lSP7fgv4ym9WKSe/WaWc/GaV\ncvKbVcrJb1apdTOwpzx4Z+19pcE75RhSu1BrHLkwStLVikQs+eWu1scMhZnTX3y/Je7Mj4uj+FZt\neQOV+pJmv277ym9WKSe/WaWc/GaVcvKbVcrJb1YpJ79ZpSZZrmsH8CXgcER8ptl2F/BV4K3maXdE\nxDOzhTL9wJ7sMlnlKs/0haPs8bLlvPVTfOu2rjh9sbeRWEGrVEbLLuVVPhvTlwjLJd3Z68uTXPm/\nDVy9xvb7ImJL82/GxDezoY1N/oh4Hnh7gFjMbECz/M5/q6Q9knZIOruziMxsENnkfwC4GNgCHATu\naXuipG2SliUtr6ysJLszs66lkj8iDkXEhxFxFHgQ2Fp47vaIWIqIpYWFhWycZtaxVPJL2rTq2+uB\nvd2EY2ZDmaTU9whwFXCOpAPAncBVkrYwqlLsB742cY+J5bpSS3wVQsgu5dXeKFm/Kh+0sC9RCOwj\nxK7lqm+p11Ys9ZXiKJYBuy3QZkaYTvPTHJv8EXHjGpsfmrgHM1uX/Bd+ZpVy8ptVyslvViknv1ml\nnPxmlRp+As/WZZy6LfWly4Bd18R6mGS0uExZ5oDpEBPlyB7WoMqU7UqxlyfbLIzOKw7TnH68ZalJ\nJiVO5Cu/WaWc/GaVcvKbVcrJb1YpJ79ZpZz8ZpWaQ6mvRak011rXOFo4Xq6vlPTowsIhk3WvtupQ\n+SX3Ma4vMbowUQ4bd9DW110q2ZV66ricVxSFtfo6+Jn5ym9WKSe/WaWc/GaVcvKbVcrJb1apge/2\nR+pOe/vd/tzAnvygn5bt2UE4yRu25bExJ/Ecfsk76anxVsk5Evs4V+0vrd+fjK/8ZpVy8ptVyslv\nViknv1mlnPxmlXLym1VqkuW6LgC+A3wSOApsj4j7JW0EHgMuZLRk11ci4p1sIMUBE23z/vVQ6stI\nD5opVbZyR2zfu07qeYWxKmMadtxf18cbc8zyfHxr7yyfqmEG9nwAfCMiPg1cAXxd0qXA7cBzEXEJ\n8FzzvZmdJMYmf0QcjIiXm8fvA/uAzcC1wM7maTuB6/oK0sy6N9Xv/JIuBC4DXgDOi4iDMPoPAji3\n6+DMrD8TJ7+kM4AngNsi4r0p2m2TtCxpeeXILzIxmlkPJkp+SacySvyHI+LJZvMhSZua/ZuAw2u1\njYjtEbEUEUsLi6d3EbOZdWBs8ksS8BCwLyLuXbVrF3Bz8/hm4OnuwzOzvkwyqu9K4CbgVUm7m213\nAHcDj0u6Bfgp8OV+QsxJVA4n2dlxIMkoEiXC8nJohb46npau3Ff3a3m1n/7SEl/dn6vygMXMa5v9\nBzM2+SPiB4WevjBzBGY2F/4LP7NKOfnNKuXkN6uUk9+sUk5+s0qtn+W6ihNdtozqyx4vXTZau13X\n1bCms1yzqXdkD5hUrOYNtxRWdgLPrNwR0/XqifjKb1YpJ79ZpZz8ZpVy8ptVyslvViknv1ml1lGp\nr70Y0lbl6XgezmNH7bjFOpk5sw+lgXGJw5VHMiZnO81Eki45Dls+nJWv/GaVcvKbVcrJb1YpJ79Z\npZz8ZpVaN3f7i8sZFWama20z8LJQ7dZJIAPfbF43p3Go4407aKm/1n2FCliimxP5ym9WKSe/WaWc\n/GaVcvKbVcrJb1YpJ79ZpcaW+iRdAHwH+CRwFNgeEfdLugv4KvBW89Q7IuKZsT1mSiwtbcpjLNp3\npstQqWWVCvpYuqpl13oZXpSfiq/jUUTp45UGoHW7r+NpC3/FJHX+D4BvRMTLks4EXpL0bLPvvoj4\n6/7CM7O+TLJW30HgYPP4fUn7gM19B2Zm/Zrqd35JFwKXAS80m26VtEfSDklndxybmfVo4uSXdAbw\nBHBbRLwHPABcDGxh9MngnpZ22yQtS1peWflFByGbWRcmSn5JpzJK/Icj4kmAiDgUER9GxFHgQWDr\nWm0jYntELEXE0sLC6V3FbWYzGpv8Gt2KfAjYFxH3rtq+adXTrgf2dh+emfVlkrv9VwI3Aa9K2t1s\nuwO4UdIWRlWk/cDXZgulNIJp+lpfFMpy5SLakMPfkgW40pDF1l2581GWaNnD6S2V0ZIHTLYrHTJT\nBiwecOomJ5rkbv8PWg45vqZvZuuW/8LPrFJOfrNKOfnNKuXkN6uUk9+sUifHBJ6ZCQ57KNe0yg6Z\nK77owuSkiWBay6Uzmf6Y6apcqVRWbJdqlYsju68llr5H9fnKb1YpJ79ZpZz8ZpVy8ptVyslvVikn\nv1mlBi/1ZQo2mbKdPtL+/1oUymgqTo45+0iqEwIpdFU4H8UyYLf1oc6rTcn6Vfel22wcqc7GlAET\nbUphTMhXfrNKOfnNKuXkN6uUk9+sUk5+s0o5+c0qNXCpT7QVKTIllPJSfblSWWqIXnohvELJrodj\nDisz4q+PkZgdlz6zfSVKfWMiyTQ6jq/8ZpVy8ptVyslvViknv1mlnPxmlRp7t1/Sx4HngY81z/9u\nRNwp6SLgUWAj8DJwU0T8cvzxWvspxbDm9vIAnZLS4J1iw46tlzgGlL6hn1mirIdAsjquSHQxv98k\nV/7/BT4fEZ9ltBz31ZKuAL4J3BcRlwDvALfMHo6ZDWVs8sfI/zTfntr8C+DzwHeb7TuB63qJ0Mx6\nMdHv/JJOaVboPQw8C/wEeDciPmiecgDY3E+IZtaHiZI/Ij6MiC3A+cBW4NNrPW2ttpK2SVqWtLyy\nspKP1Mw6NdXd/oh4F/hX4Apgg6RjNwzPB95sabM9IpYiYmlhYWGWWM2sQ2OTX9InJG1oHp8O/C6w\nD/g+8AfN024Gnu4rSDPr3iQDezYBOyWdwug/i8cj4p8k/Qh4VNJfAv8GPDRZl20De7odCDJwIacH\n9dX6Bhyf08/ZTR4016zthEx+osYmf0TsAS5bY/sbjH7/N7OTkP/Cz6xSTn6zSjn5zSrl5DerlJPf\nrFIqjYzrvDPpLeC/mm/PAX4+WOftHMfxHMfxTrY4fjMiPjHJAQdN/uM6lpYjYmkunTsOx+E4/LHf\nrFZOfrNKzTP5t8+x79Ucx/Ecx/F+beOY2+/8ZjZf/thvVqm5JL+kqyX9h6TXJd0+jxiaOPZLelXS\nbknLA/a7Q9JhSXtXbdso6VlJP26+nj2nOO6S9N/NOdkt6ZoB4rhA0vcl7ZP0mqQ/abYPek4KcQx6\nTiR9XNIPJb3SxPEXzfaLJL3QnI/HJJ02U0cRMeg/4BRG04B9CjgNeAW4dOg4mlj2A+fMod/PAZcD\ne1dt+yvg9ubx7cA35xTHXcCfDnw+NgGXN4/PBP4TuHToc1KIY9Bzwmhc7hnN41OBFxhNoPM4cEOz\n/VvAH83Szzyu/FuB1yPijRhN9f0ocO0c4pibiHgeePuEzdcymggVBpoQtSWOwUXEwYh4uXn8PqPJ\nYjYz8DkpxDGoGOl90tx5JP9m4Gervp/n5J8BfE/SS5K2zSmGY86LiIMwehMC584xllsl7Wl+Lej9\n14/VJF3IaP6IF5jjOTkhDhj4nAwxae48kn+tqUbmVXK4MiIuB34f+Lqkz80pjvXkAeBiRms0HATu\nGapjSWcATwC3RcR7Q/U7QRyDn5OYYdLcSc0j+Q8AF6z6vnXyz75FxJvN18PAU8x3ZqJDkjYBNF8P\nzyOIiDjUvPGOAg8y0DmRdCqjhHs4Ip5sNg9+TtaKY17npOl76klzJzWP5H8RuKS5c3kacAOwa+gg\nJC1KOvPYY+CLwN5yq17tYjQRKsxxQtRjyda4ngHOiUaTMT4E7IuIe1ftGvSctMUx9DkZbNLcoe5g\nnnA38xpGd1J/AvzZnGL4FKNKwyvAa0PGATzC6OPj/zH6JHQL8BvAc8CPm68b5xTH3wOvAnsYJd+m\nAeL4bUYfYfcAu5t/1wx9TgpxDHpOgN9iNCnuHkb/0fz5qvfsD4HXgX8EPjZLP/4LP7NK+S/8zCrl\n5DerlJPfrFJOfrNKOfnNKuXkN6uUk9+sUk5+s0r9PyhPkvaabPDEAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR/klEQVR4nO3db6hl5XXH8e+K0cR7FUdrOgyjVGOFIqEZ5TJYIsEmJFgJqFBEX4gvJJO2ESqkL8RCtdAXplRFaDGMdcikWP80Kg5F2pghIHljvFodR6dtjIzEYZwxqGjnhqbjrL7Ye+COnOc556yz9z5H1+8Dwz137/PsZ909Z919zl73eR5zd0Tkk+9T8w5ARIahZBdJQskukoSSXSQJJbtIEkp2kSQ+PUtjM7sCuBc4CfhHd7+z9vzl5WXfcOaGWbocgE3fYvomMmfxivNil6rfe/c9jhw5MvIVGU52MzsJ+Afga8CbwHNmtsvdXy212XDmBv7k5j8r7K2cxEI21XLMghkYaVdvUt4ZbLY4On7dxw83fctoskf/LqXWrrgn0Nf3/v6+4r5Z3sZvBV5z99fd/TfAw8BVMxxPRHo0S7JvBn657vs3220isoB6v0FnZtvMbNXMVo8cOdJ3dyJSMEuyHwDOXff9Oe22E7j7dndfcfeV5eXlGboTkVnMkuzPARea2flmdgpwHbCrm7BEpGvhu/HuftTMbgb+nab0tsPdX5mgZel4xRZWalO7ZV27k1m70+2VnaVd1TbR276xZp9UXVfKPHjE6t342K5yLB2/Bmaqs7v7U8BTHcUiIj3SX9CJJKFkF0lCyS6ShJJdJAklu0gSM92NjyiVLtyPVRoVSlvhslawVFbaVRkJUz1cL4NdivXBSiB9xDGcSPjhAS3B81jtLVQeHP3/XPuxdGUXSULJLpKEkl0kCSW7SBJKdpEkBr8bX771GBi4Erz7WRpYMzaMwECY6h336o8cvVUfmKKp0ma4KKKNooeM7KnvjIbf7UCYciNd2UWSULKLJKFkF0lCyS6ShJJdJAklu0gSw5be3Cu1rVo5bPS+PspC1UpZZEBOeCq8YM0u0ltktZIe9NFX1/O7xctrw/VVoiu7SBJKdpEklOwiSSjZRZJQsoskoWQXSWKm0puZ7Qc+AD4Ejrr7Su35Tm0OuulHXtVLEwMWjaKTyXVdXYvqo6/Yf1pR1yH2U+Ybst30rbqos/+hu/+qg+OISI/0Nl4kiVmT3YEfmdnzZrati4BEpB+zvo2/zN0PmNlvA0+b2X+6+zPrn9D+EtgGcMYZZ8zYnYhEzXRld/cD7dfDwBPA1hHP2e7uK+6+srS8NEt3IjKDcLKb2bKZnX78MfB1YG9XgYlIt2Z5G78ReMKa0VmfBv7Z3f9tfLPpJ5ysL4MzXTcQr3iVJqr0yhHrI9sqOxdFeIjgcHGEugqe+2HLa92+QMLJ7u6vA1/sMBYR6ZFKbyJJKNlFklCyiyShZBdJQskuksTga725H5tqe/1g5V3V9dym7ykeSA/NOrco5bUeFEOMxl6ZCLT7slxo4cFiE13ZRZJQsoskoWQXSULJLpKEkl0kiYHvxpeXf4rMQRdftqjSV9cDLgbW+diaIafy6+OggRNSG9hUe81Vm00fRniAVYmu7CJJKNlFklCyiyShZBdJQskukoSSXSSJwQfCFEsXkTnoggNhamqVlVKH1bEiwbnwokrdhfuqNuz6J+ih+FaY6K8+/19sZNCw89NNfzBd2UWSULKLJKFkF0lCyS6ShJJdJAklu0gSY0tvZrYD+AZw2N2/0G47C3gEOA/YD1zr7u9O0mF5KafacLPp28RLXpFhb7GhctGp32L6WO9o4Lri9FGM3TtarbwWLOmGTkitHD398Sa5sn8fuOIj224Fdrv7hcDu9nsRWWBjk71db/2dj2y+CtjZPt4JXN1tWCLStehn9o3ufrB9/BbNiq4issBmvkHnzRQzxQ8XZrbNzFbNbHXtyNqs3YlIUDTZD5nZJoD26+HSE919u7uvuPvK0vJSsDsRmVU02XcBN7aPbwSe7CYcEenLJKW3h4DLgbPN7E3gduBO4FEzuwl4A7h2ot6cyoST5eWfypNARmeH7Ha5ptBkmYPrYzrHwAyL4RPScaGy9tKpzToanVWycszIq6e8ClX5aGOT3d2vL+z66ri2IrI49Bd0Ikko2UWSULKLJKFkF0lCyS6SxMdjwsn6LJAjWXAduNA8hIH4+jJsqa/rcljsPFq1rFWIozpLaK23Sl/leljsRwvHOJqu7CJJKNlFklCyiyShZBdJQskukoSSXSSJgUtvjlMY3VarTQw64WRFxyW22uCqShWn8wFs/ZTrCqMbg3HEBzF2Pvyu0lXsRVcqD3b9EtCVXSQJJbtIEkp2kSSU7CJJKNlFkliYgTD1wS6j99UGu9RjCO3CinHEwqgJVxMCscSXT1qMGfYip7/6egvcOR8XR/WlWngB1foym/46rSu7SBJKdpEklOwiSSjZRZJQsoskoWQXSWKS5Z92AN8ADrv7F9ptdwDfBN5un3abuz81WyjTD4SJLrtUr7pMX8iJHi9aXlucYli3db7pi6+twIpMtbJWdGmo+tmYvmRXL7FOf+4nubJ/H7hixPZ73H1L+2/GRBeRvo1Ndnd/BnhngFhEpEezfGa/2cz2mNkOMzuzs4hEpBfRZL8PuADYAhwE7io90cy2mdmqma2ura0FuxORWYWS3d0PufuH3iyqfj+wtfLc7e6+4u4rS0tL0ThFZEahZDezTeu+vQbY2004ItKXSUpvDwGXA2eb2ZvA7cDlZraFpmqwH/jWxD0Gln8KLRlVCSG6NFS5UbCeVD9oZV+gMNdHiF2LVcNCP1u19FaLo1qW67ZgGhmBWWs1Ntnd/foRmx8Y105EFov+gk4kCSW7SBJKdpEklOwiSSjZRZIYfsLJ4rJA3ZbewmW5rmtUPUyKWV32KnLAcIiB8mAPy1pFymi12OuTQ1ZGr1WHMU4/HrHWJJISurKLJKFkF0lCyS6ShJJdJAklu0gSSnaRJOZQeiuolcqKdYZjlePF+goJj76rHDJYhypVa+o/ch/j3gKj7wLlqXEHLf7ctRJaraeOy2tVXlnrLfB/piu7SBJKdpEklOwiSSjZRZJQsoskMfDdeA/dCS/fjY8NhIkPkilsjw5aCd4Er48l+RjPQRe80x0anxSc46+Pc1X+0brtTVd2kSSU7CJJKNlFklCyiyShZBdJQskuksQkyz+dC/wA2EhTC9ju7vea2VnAI8B5NEtAXevu70YDqQ4wKM1b10PpLSI8yKRWaYodsbx3QeprlbEdYxp23F/XxxtzzPp8cqN31k9VPwNhjgLfcfeLgEuBb5vZRcCtwG53vxDY3X4vIgtqbLK7+0F3f6F9/AGwD9gMXAXsbJ+2E7i6pxhFpANTfWY3s/OAi4FngY3ufrDd9RbN23wRWVATJ7uZnQY8Btzi7u+v3+fNh+eRHyLMbJuZrZrZ6tqRX88UrIjETZTsZnYyTaI/6O6Pt5sPmdmmdv8m4PCotu6+3d1X3H1lafnULmIWkYCxyW5mRrMe+z53v3vdrl3Aje3jG4Enuw9PRLoyyai3LwE3AC+b2YvtttuAO4FHzewm4A3g2l4iDApU8ibZ2XEgwSgCJbv68lqVvjqeVq3eV/drQ5VPf23JqO7PVX1AX+Rnm/4/Zmyyu/tPK0f+6tQ9ishc6C/oRJJQsoskoWQXSULJLpKEkl0kicVZ/qk6MWNh1Fv0eOEyzuh2XVen2s5izabeET1gULW6NtzSStEJJ6NiRwzXj0fSlV0kCSW7SBJKdpEklOwiSSjZRZJQsosksUClt3JxolR16XjeyONH7bjFgsz02IfawLHA4eoj/YKzc0YiCZcAhy3nTUtXdpEklOwiSSjZRZJQsoskoWQXSWJh7sZXl8epzKxWbDPwMkNlCxLIwDeDF+Y0DnW8cQet9VfcV6lQBbrRlV0kCSW7SBJKdpEklOwiSSjZRZJQsoskMbb0ZmbnAj+gWZLZge3ufq+Z3QF8E3i7fept7v7U2B4jJY9Cm/qYhPLOcFkotExPRR9LIRV2LcpwnPhUch2PugkfrzZgq9t9HU+7N1Gd/SjwHXd/wcxOB543s6fbffe4+991G5KI9GGStd4OAgfbxx+Y2T5gc9+BiUi3pvrMbmbnARcDz7abbjazPWa2w8zO7Do4EenOxMluZqcBjwG3uPv7wH3ABcAWmiv/XYV228xs1cxW19Z+PXvEIhIyUbKb2ck0if6guz8O4O6H3P1Ddz8G3A9sHdXW3be7+4q7rywtndpV3CIypbHJbs2twgeAfe5+97rtm9Y97Rpgb/fhiUhXJrkb/yXgBuBlM3ux3XYbcL2ZbaGp6uwHvjVbKLURPtPX3rxSJqsXtYYcHhYsiNWG9BV3xc5HXaBlD6e3VtYKHjDYrnbISFmuesCpm0xyN/6nhUOMr6mLyMLQX9CJJKFkF0lCyS6ShJJdJAklu0gSH48JJyMT8vVQPimKDimr/tCVyTQDwRTLlzOZ/pjhKlmtdFVtF2oViyO6rxBL1xVFXdlFklCyiyShZBdJQskukoSSXSQJJbtIEoOX3iIFlEgZzT5V/j3mlbKWVSdznH6kUVWtvFYr1VTLct3Wazov2AXrSd2XUqNxhDobU5YLtKmFUaAru0gSSnaRJJTsIkko2UWSULKLJKFkF0li4NKbUSoaREoa9aXeYqWr0BC28EJqlRJaD8ccVmREXB8jFTsuRUb7CpTexkQydQtd2UWSULKLJKFkF0lCyS6ShJJdJImxd+PN7LPAM8Bn2uf/0N1vN7PzgYeB3wKeB25w99+MP16xn1oMI7fXB7TU1Aa7VBt2bFHiGFD4hntkyaseAonquGIQuYM/yZX9f4GvuPsXaZZnvsLMLgW+C9zj7r8LvAvcNH33IjKUscnujf9pvz25/efAV4Afttt3Alf3EaCIdGPS9dlPaldwPQw8DfwCeM/dj7ZPeRPY3EuEItKJiZLd3T909y3AOcBW4Pcm7cDMtpnZqpmtrq2txaIUkZlNdTfe3d8DfgL8AbDBzI7f4DsHOFBos93dV9x9ZWlpaZZYRWQGY5PdzD5nZhvax6cCXwP20ST9H7dPuxF4sqcYRaQDkwyE2QTsNLOTaH45POru/2pmrwIPm9nfAP8BPDBZl6WBMN0OnBi4sNKDfLW3Acez9HN2gweNNSudkPKJGpvs7r4HuHjE9tdpPr+LyMeA/oJOJAklu0gSSnaRJJTsIkko2UWSsNrIsc47M3sbeKP99mzgV4N1XqY4TqQ4TvRxi+N33P1zo3YMmuwndGy26u4rc+lccSiOhHHobbxIEkp2kSTmmezb59j3eorjRIrjRJ+YOOb2mV1EhqW38SJJzCXZzewKM/svM3vNzG6dRwxtHPvN7GUze9HMVgfsd4eZHTazveu2nWVmT5vZz9uvZ84pjjvM7EB7Tl40sysHiONcM/uJmb1qZq+Y2Z+32wc9J5U4Bj0nZvZZM/uZmb3UxvHX7fbzzezZNm8eMbNTpjqwuw/6DziJZlqrzwOnAC8BFw0dRxvLfuDsOfT7ZeASYO+6bX8L3No+vhX47pziuAP4i4HPxybgkvbx6cB/AxcNfU4qcQx6TmjGqZ7WPj4ZeBa4FHgUuK7d/j3gT6c57jyu7FuB19z9dW+mnn4YuGoOccyNuz8DvPORzVfRTNwJA03gWYhjcO5+0N1faB9/QDM5ymYGPieVOAbljc4neZ1Hsm8Gfrnu+3lOVunAj8zseTPbNqcYjtvo7gfbx28BG+cYy81mtqd9m9/7x4n1zOw8mvkTnmWO5+QjccDA56SPSV6z36C7zN0vAf4I+LaZfXneAUHzm535TVVzH3ABzRoBB4G7hurYzE4DHgNucff31+8b8pyMiGPwc+IzTPJaMo9kPwCcu+774mSVfXP3A+3Xw8ATzHfmnUNmtgmg/Xp4HkG4+6H2hXYMuJ+BzomZnUyTYA+6++Pt5sHPyag45nVO2r7fY8pJXkvmkezPARe2dxZPAa4Ddg0dhJktm9npxx8DXwf21lv1ahfNxJ0wxwk8jydX6xoGOCfWTCb4ALDP3e9et2vQc1KKY+hz0tskr0PdYfzI3cYrae50/gL4yznF8HmaSsBLwCtDxgE8RPN28P9oPnvdRLNm3m7g58CPgbPmFMc/AS8De2iSbdMAcVxG8xZ9D/Bi++/Koc9JJY5Bzwnw+zSTuO6h+cXyV+tesz8DXgP+BfjMNMfVX9CJJJH9Bp1IGkp2kSSU7CJJKNlFklCyiyShZBdJQskukoSSXSSJ/wdks38E/WHkdgAAAABJRU5ErkJggg==\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0x12a3eebe0>"
+       "<Figure size 288x288 with 1 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     },
     {
@@ -213,20 +223,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 31,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "loss: 11.343052\n"
+      "loss: 9.524765\n"
      ]
     }
    ],
    "source": [
-    "\n",
-    "\n",
     "from random import shuffle\n",
     "\n",
     "def svm_loss_naive(W, X, y, reg):\n",
@@ -316,33 +324,33 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 32,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "numerical: 43.382000 analytic: 43.536000, relative error: 1.771788e-03\n",
-      "numerical: -3.416000 analytic: -3.416000, relative error: 7.467407e-11\n",
-      "numerical: 41.978000 analytic: 41.978000, relative error: 4.651331e-12\n",
-      "numerical: -172.108000 analytic: -172.108000, relative error: 3.345712e-13\n",
-      "numerical: -28.104000 analytic: -28.104000, relative error: 1.272202e-11\n",
-      "numerical: -24.756000 analytic: -24.756000, relative error: 5.453278e-12\n",
-      "numerical: -1.706424 analytic: -1.674000, relative error: 9.591635e-03\n",
-      "numerical: -13.360000 analytic: -13.360000, relative error: 1.936382e-11\n",
-      "numerical: -12.330000 analytic: -12.330000, relative error: 2.270668e-11\n",
-      "numerical: 78.548000 analytic: 78.548000, relative error: 4.208185e-13\n",
-      "numerical: 1.283012 analytic: 1.188097, relative error: 3.840958e-02\n",
-      "numerical: 46.076763 analytic: 46.188882, relative error: 1.215172e-03\n",
-      "numerical: -0.685949 analytic: -0.675975, relative error: 7.323884e-03\n",
-      "numerical: -22.007627 analytic: -22.137722, relative error: 2.946971e-03\n",
-      "numerical: 82.256169 analytic: 82.257084, relative error: 5.565080e-06\n",
-      "numerical: -170.927924 analytic: -170.932962, relative error: 1.473636e-05\n",
-      "numerical: 45.579677 analytic: 45.727339, relative error: 1.617199e-03\n",
-      "numerical: -4.721963 analytic: -4.734981, relative error: 1.376625e-03\n",
-      "numerical: -4.150519 analytic: -4.152260, relative error: 2.096247e-04\n",
-      "numerical: -164.200736 analytic: -164.366080, relative error: 5.032288e-04\n"
+      "numerical: -50.477261 analytic: -50.622000, relative error: 1.431648e-03\n",
+      "numerical: -1.795996 analytic: -1.790000, relative error: 1.672047e-03\n",
+      "numerical: 55.391832 analytic: 55.288000, relative error: 9.381257e-04\n",
+      "numerical: -26.967832 analytic: -26.902000, relative error: 1.222049e-03\n",
+      "numerical: 33.095996 analytic: 33.084000, relative error: 1.812626e-04\n",
+      "numerical: -34.094832 analytic: -33.992000, relative error: 1.510301e-03\n",
+      "numerical: 17.840000 analytic: 17.840000, relative error: 5.665324e-12\n",
+      "numerical: 79.316000 analytic: 79.316000, relative error: 1.285348e-12\n",
+      "numerical: 23.174000 analytic: 23.174000, relative error: 1.013790e-11\n",
+      "numerical: 48.145081 analytic: 48.148000, relative error: 3.030900e-05\n",
+      "numerical: 32.292644 analytic: 32.434191, relative error: 2.186841e-03\n",
+      "numerical: 18.595902 analytic: 18.603951, relative error: 2.163774e-04\n",
+      "numerical: 49.828929 analytic: 49.799966, relative error: 2.907024e-04\n",
+      "numerical: -9.053657 analytic: -8.914913, relative error: 7.721512e-03\n",
+      "numerical: 6.206379 analytic: 6.214318, relative error: 6.391512e-04\n",
+      "numerical: -4.918906 analytic: -5.013323, relative error: 9.506102e-03\n",
+      "numerical: 68.583254 analytic: 68.590627, relative error: 5.374962e-05\n",
+      "numerical: 44.232408 analytic: 44.231204, relative error: 1.360857e-05\n",
+      "numerical: 43.772898 analytic: 43.763951, relative error: 1.022077e-04\n",
+      "numerical: -82.757823 analytic: -82.761912, relative error: 2.470062e-05\n"
      ]
     }
    ],
@@ -408,7 +416,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 33,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -472,25 +480,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 34,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Naive loss: 1.134305e+01 computed in 0.075013s\n",
-      "Vectorized loss: 1.134305e+01 computed in 0.006244s\n",
+      "Naive loss: 9.524765e+00 computed in 0.130793s\n",
+      "Vectorized loss: 9.524765e+00 computed in 0.003474s\n",
       "difference: 0.000000\n",
-      "Naive loss and gradient: computed in 0.067749s\n",
-      "Vectorized loss and gradient: computed in 0.002729s\n",
-      "2.13 ms ± 240 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
+      "Naive loss and gradient: computed in 0.089280s\n",
+      "Vectorized loss and gradient: computed in 0.003155s\n",
+      "2.39 ms ± 123 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
       "difference: 0.000000\n"
      ]
     }
    ],
    "source": [
-    "  \n",
     "import time\n",
     "\n",
     "tic = time.time()\n",
@@ -539,47 +546,49 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 35,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "iteration 0 / 1500: loss 814.813912\n",
-      "iteration 100 / 1500: loss 291.501826\n",
-      "iteration 200 / 1500: loss 112.072224\n",
-      "iteration 300 / 1500: loss 45.000129\n",
-      "iteration 400 / 1500: loss 22.943253\n",
-      "iteration 500 / 1500: loss 15.481983\n",
-      "iteration 600 / 1500: loss 12.292355\n",
-      "iteration 700 / 1500: loss 11.947718\n",
-      "iteration 800 / 1500: loss 11.531672\n",
-      "iteration 900 / 1500: loss 9.634075\n",
-      "iteration 1000 / 1500: loss 12.265885\n",
-      "iteration 1100 / 1500: loss 12.251921\n",
-      "iteration 1200 / 1500: loss 12.340637\n",
-      "iteration 1300 / 1500: loss 12.349050\n",
-      "iteration 1400 / 1500: loss 10.492493\n",
-      "That took 2.835528s\n"
+      "iteration 0 / 1500: loss 796.467133\n",
+      "iteration 100 / 1500: loss 288.813947\n",
+      "iteration 200 / 1500: loss 112.093123\n",
+      "iteration 300 / 1500: loss 47.003432\n",
+      "iteration 400 / 1500: loss 21.543203\n",
+      "iteration 500 / 1500: loss 15.474673\n",
+      "iteration 600 / 1500: loss 12.437557\n",
+      "iteration 700 / 1500: loss 10.859243\n",
+      "iteration 800 / 1500: loss 13.143675\n",
+      "iteration 900 / 1500: loss 12.065388\n",
+      "iteration 1000 / 1500: loss 11.266365\n",
+      "iteration 1100 / 1500: loss 9.517066\n",
+      "iteration 1200 / 1500: loss 11.927069\n",
+      "iteration 1300 / 1500: loss 11.840023\n",
+      "iteration 1400 / 1500: loss 10.438228\n",
+      "That took 4.530363s\n"
      ]
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWZ//HP0/u+pNPdWbrJDgGUJTQaFkXZBFxARcUZ\nBRUnjsO4Mb/fiKM/HZ3lhaMzKrPgoKhxBnDBhcgoiCw6iAQSDElYknQSknTWztZJupNen98f91TS\n6VSSStK3b3Xq+3696lX3njp16+mbrn5yz7nnHHN3REREhspLOgAREclOShAiIpKWEoSIiKSlBCEi\nImkpQYiISFpKECIikpYShIiIpKUEISIiaSlBiIhIWgVJB3Aixo4d65MnT046DBGRUWXhwoVb3b3+\naPVGdYKYPHkyCxYsSDoMEZFRxczWZFJPTUwiIpKWEoSIiKSlBCEiImkpQYiISFpKECIikpYShIiI\npKUEISIiaeVkgnj2le185eGXGRjQcqsiIocTa4Iws0+Z2QtmttTM7jOzEjObYmbzzWyFmf3QzIpC\n3eKw3xpenxxXXM+v28m/P76Szp6+uD5CRGTUiy1BmNlE4ONAi7u/CsgHbgC+DHzN3WcAO4Cbw1tu\nBna4+3Tga6FeLCqKowHke7qVIEREDifuJqYCoNTMCoAyYCNwKXB/eH0ucF3YvjbsE16/zMwsjqAq\nSqIEsXufEoSIyOHEliDcfT3wVWAtUWLoABYCO9099Ze5DZgYticC68J7+0L9ujhiqywpBJQgRESO\nJM4mplqiq4IpwASgHLg6TdVUT3G6q4VDepHNbI6ZLTCzBe3t7ccVm5qYRESOLs4mpsuB1e7e7u69\nwE+BC4Ga0OQE0ARsCNttQDNAeL0a2D70oO5+l7u3uHtLff1RZ6tNqzI0Me3RFYSIyGHFmSDWArPN\nrCz0JVwGvAg8Dlwf6twEPBC254V9wuuPuXss96EeuILojePwIiInhTj7IOYTdTY/BywJn3UX8Gng\nVjNrJepjuDu85W6gLpTfCtwWV2zqpBYRObpYFwxy9y8AXxhSvAp4TZq6+4B3xRlPSnmR+iBERI4m\nJ0dS5+cZFcUFuoIQETmCnEwQEPVDqJNaROTwcjZBVJcWsqOrJ+kwRESyVs4miMbqEjbv7k46DBGR\nrJWzCWJcVTGbOvYmHYaISNbK4QRRQvvubvr6B5IORUQkK+VugqguZcChfY+amURE0snhBFEMwMaO\nfQlHIiKSnXI3QVSVArBZCUJEJK3cTRDVJYCuIEREDidnE0RtWSFFBXls3qUEISKSTs4mCDNjXFWJ\nriBERA4jZxMERM1Mm3QFISKSVk4niPHVJWzYqcFyIiLp5HSCmFRXzoade+nu6086FBGRrJPTCWJa\nfTkDDmu2dSUdiohI1oktQZjZaWa2aNBjl5l90szGmNkjZrYiPNeG+mZmd5hZq5ktNrNZccWW0jym\nDIC2HUoQIiJDxbnk6DJ3P8fdzwHOA7qAnxEtJfqou88AHuXA0qJXAzPCYw5wZ1yxpdSUFgKwa6/W\nhRARGWqkmpguA1a6+xrgWmBuKJ8LXBe2rwW+75GngRozGx9nUFWpBLGvN86PEREZlUYqQdwA3Be2\nG919I0B4bgjlE4F1g97TFsoOYmZzzGyBmS1ob28/oaCqSwsxg217tHCQiMhQsScIMysC3gb8+GhV\n05T5IQXud7l7i7u31NfXn1Bshfl5TKguZe129UGIiAw1ElcQVwPPufvmsL851XQUnreE8jagedD7\nmoANcQc3eWwZq7d2xv0xIiKjzkgkiPdyoHkJYB5wU9i+CXhgUPmN4W6m2UBHqikqTpPqynllmxKE\niMhQBXEe3MzKgCuAjwwqvh34kZndDKwF3hXKfwlcA7QS3fH0wThjS5lSV87Orl52dvVQU1Y0Eh8p\nIjIqxJog3L0LqBtSto3orqahdR24Jc540plYG60LsbFjnxKEiMggOT2SGg6sC7FJs7qKiBwk5xPE\neC0cJCKSVs4niPqKYgrzTbe6iogMkfMJoiA/j2n1FazYvDvpUEREskrOJwiAptoy1mtdCBGRgyhB\nABNrSli/QwlCRGQwJQiiW113d/dp0j4RkUGUIIAJNdFYCC0/KiJygBIEMDEkiLbtShAiIilKEBxY\nWW6dVpYTEdlPCQKoKy+irChfYyFERAZRggDMjFPGlLF2mxKEiEiKEkRwypgyXUGIiAyiBBGkEkQ0\nqayIiChBBKfUldHdN0D77u6kQxERyQqxJggzqzGz+83sZTN7ycwuMLMxZvaIma0Iz7WhrpnZHWbW\namaLzWxWnLENlbqTSc1MIiKRuK8gvgE85O4zgbOBl4DbgEfdfQbwaNiHaO3qGeExB7gz5tgOMr2+\nAoAXN+4ayY8VEclasSUIM6sCXg/cDeDuPe6+E7gWmBuqzQWuC9vXAt/3yNNAjZmNjyu+oZpqS6kt\nK2TZJs3qKiIC8V5BTAXage+a2R/N7NtmVg40uvtGgPDcEOpPBNYNen9bKBsRZkbzmDLWadI+EREg\n3gRRAMwC7nT3c4FODjQnpWNpyg65pcjM5pjZAjNb0N7ePjyRBk21pbRpNLWICBBvgmgD2tx9fti/\nnyhhbE41HYXnLYPqNw96fxOwYehB3f0ud29x95b6+vphDbiptoz1O/bqVlcREWJMEO6+CVhnZqeF\nosuAF4F5wE2h7CbggbA9D7gx3M00G+hINUWNlObaUt3qKiISFMR8/I8B95hZEbAK+CBRUvqRmd0M\nrAXeFer+ErgGaAW6Qt0R1VSbmrRvLw1VJSP98SIiWSXWBOHui4CWNC9dlqauA7fEGc/RNNWGab93\ndHHepNokQxERSZxGUg8ycX+C0J1MIiJKEIOUFRUwtqJIdzKJiKAEcYiJtZrVVUQElCAOMW1sOSu3\ndCYdhohI4pQghpjWUMGmXfvYva836VBERBKlBDHEjIZo0r6V7bqKEJHcpgQxxLSQIFa170k4EhGR\nZClBDJEaC6GOahHJdUoQQxQX5HNaYyXPrN6edCgiIolSgkjjzAlVrNmmKwgRyW1KEGlMrC1l0659\n9PUPJB2KiEhilCDSmFhTSv+As7FjX9KhiIgkRgkijTMmVAHwfNvOhCMREUmOEkQaU8aWA7Bhpybt\nE5HcpQSRRkVxASWFeWzq0MJBIpK7lCDSMDNObazkxY0dSYciIpKYWBOEmb1iZkvMbJGZLQhlY8zs\nETNbEZ5rQ7mZ2R1m1mpmi81sVpyxHc05zTUsaeugf0DrU4tIbjpqgjCzU83sUTNbGvbPMrPPHcNn\nvNHdz3H31MpytwGPuvsM4NGwD3A1MCM85gB3HsNnDLtzmmvo7OlnpabcEJEclckVxLeAzwC9AO6+\nGLjhBD7zWmBu2J4LXDeo/PseeRqoMbPxJ/A5J+TUxkoAVm5RghCR3JRJgihz92eGlPVleHwHfm1m\nC81sTihrdPeNAOG5IZRPBNYNem9bKDuImc0xswVmtqC9vT3DMI5d6k6mVVs1q6uI5KaCDOpsNbNp\nRH/sMbPrgY0ZHv8id99gZg3AI2b28hHqWpqyQzoA3P0u4C6AlpaW2DoIyosLaKwqVhOTiOSsTBLE\nLUR/kGea2XpgNfC+TA7u7hvC8xYz+xnwGmCzmY13942hCWlLqN4GNA96exOwIbMfIx5Tx1ZoXQgR\nyVlHbWJy91XufjlQD8x094vd/ZWjvc/Mys2sMrUNXAksBeYBN4VqNwEPhO15wI3hbqbZQEeqKSop\nMxorWLllD+66k0lEcs9RryDM7PND9gFw9y8d5a2NwM9C/QLgXnd/yMyeBX5kZjcDa4F3hfq/BK4B\nWoEu4IOZ/xjxOLWxkj3dfWzo2MfEmtKkwxERGVGZNDENbmMpAd4CvHS0N7n7KuDsNOXbgMvSlDtR\nc1bWSN3JtHzTbiUIEck5R00Q7v7Pg/fN7KtEzUEnvVMbo+VHl2/ezRtnNhyltojIyeV4RlKXAVOH\nO5BsVFNWRENlMcs3604mEck9mfRBLOHA7ab5RJ3VR+t/OGmc2ljJii27kw5DRGTEZdIH8ZZB233A\nZnfPdKDcqHdqYyX3PbOW/gEnPy/dUA0RkZPTYZuYwqR6Y4Ddgx57gapQnhPObq5mb28/L2/alXQo\nIiIj6khXEAuJmpYON8I5J/ohzhgfrS63YvMezpxQnXA0IiIj57AJwt2njGQg2WpSXTn5eUarJu0T\nkRyTSR8EYc2GGUTjIABw99/FFVQ2KSrIY9KYMiUIEck5mdzF9GHgE0RzIy0CZgN/AC6NN7TsMb2h\nguWbdSeTiOSWTMZBfAI4H1jj7m8EzgXim2c7C71qYjWrt3Wye19v0qGIiIyYTBLEPnffB2Bmxe7+\nMnBavGFll7Oba3CH59buTDoUEZERk0mCaDOzGuDnRGs6PEDC03CPtNdMHkOewXNrdiQdiojIiMlk\nLqa3h82/NbPHgWrgoVijyjKlRfmcoo5qEckxmXRSfwP4obs/5e6/HYGYstL0hkpe0mA5EckhmTQx\nPQd8zsxazewrZtYSd1DZ6NxTaljV3skudVSLSI7IZEW5ue5+DdFyocuBL5vZikw/wMzyzeyPZvZg\n2J9iZvPNbIWZ/dDMikJ5cdhvDa9PPq6fKCanjz+wNoSISC44lum+pwMzgcnAy8fwvk9w8AJDXwa+\n5u4zgB3AzaH8ZmCHu08HvhbqZY3TxkVTbixd35FwJCIiI+OoCcLMUlcMXyJaU/o8d39rJgc3sybg\nzcC3w74RDbC7P1SZC1wXtq8N+4TXL7PU+qZZYEJ1CZPqyvj9ym1JhyIiMiIymWpjNXCBu289juN/\nHfhroDLs1wE7B00X3gZMDNsTgXUA7t5nZh2h/vF87rAzM04fV8VyrQ0hIjkikz6Ibx5PcjCztwBb\n3H3h4OJ0H5HBa4OPO8fMFpjZgvb2kR3QPbW+nFXtnazb3jWinysikoTjWXI0UxcBbzOzV4AfEDUt\nfR2oMbPUlUsTBwbdtQHNAOH1amD70IO6+13u3uLuLfX19TGGf6jzJ0fLYCxYc0hYIiInndgShLt/\nxt2b3H0ycAPwmLv/KfA4cH2odhPwQNieF/YJrz/m7odcQSTpouljyc8zVrV3Jh2KiEjsMumknmZm\nxWH7DWb28TD1xvH6NHCrmbUS9THcHcrvBupC+a3AbSfwGbFITf390kYNmBORk18mndQ/AVrMbDrR\nH/F5wL3ANZl+iLs/ATwRtlcRjakYWmcf8K5Mj5mU2dPqeOCP6+npG6CoIM4WOhGRZGXyF24g3HX0\nduDr7v4pYHy8YWWvC6fV0dnTzzINmBORk1wmCaLXzN5L1D/wYCgrjC+k7HZ2U9S6tmidZnYVkZNb\nJgnig8AFwD+4+2ozmwL8d7xhZa+m2lIm1pTylAbMichJLpPpvl8EPg7716audPfb4w4sW5kZpzZW\nsGabxkKIyMktk7uYnjCzKjMbAzwPfNfM/iX+0LLXaeOqWL55Nx1dmtlVRE5emTQxVbv7LuAdwHfd\n/Tzg8njDym5Xv2ocfQPOr1/clHQoIiKxySRBFJjZeODdHOikzmlnNVVTXVrIH9dpjWoROXllkiC+\nBDwMrHT3Z81sKpDxehAno1Q/xIrNutVVRE5emUzW92N3P8vdPxr2V7n7O+MPLbudPr6KFzfsoqdv\nIOlQRERikUkndZOZ/czMtpjZZjP7SVjnIaddPH0snT39mrhPRE5amTQxfZdoeo0JRGs2/CKU5bQL\np4+lMN/47fKRnXJcRGSkZJIg6t39u+7eFx7fA0Z2nu0sVFFcQMukMfx2mRKEiJycMkkQW83sfWaW\nHx7vAzSMGHjNlDEs27ybrp6+o1cWERllMkkQHyK6xXUTsJForYYPxhnUaHHGhCrcYcErmpdJRE4+\nmdzFtNbd3+bu9e7e4O7XEQ2ay3mvnRKtMPc79UOIyEnoeBc0uHVYoxilasqKKC3M59tPrk46FBGR\nYXe8CcKOWsGsxMyeMbPnzewFM/tiKJ9iZvPNbIWZ/dDMikJ5cdhvDa9PPs7YRtTM8ZUArN+5N+FI\nRESG1/EmiEzWiu4GLnX3s4FzgKvMbDbwZeBr7j4D2AHcHOrfDOxw9+nA10K9rPeV688C4IllWxKO\nRERkeB02QZjZbjPbleaxm2hMxBF5ZE/YLQwPBy4F7g/lc4Hrwva1YZ/w+mVmdtQrlaRNq69gfHUJ\nT67YmnQoIiLD6rAJwt0r3b0qzaPS3TNZy5pwW+wiYAvwCLAS2BmWMAVoIxp8R3heFz67D+gA6tIc\nc46ZLTCzBe3tyXcOmxkXTx/LUyu3MTCQyYWViMjocLxNTBlx9353PwdoAl4DnJ6uWnhOd7VwyF9c\nd7/L3VvcvaW+PjvG650/eQwde3tZtbUz6VBERIZNrAkixd13Ak8As4EaM0tdgTQBG8J2G9AMEF6v\nBkbFREfnTa4F4LGXNycciYjI8IktQZhZvZnVhO1SokWGXgIeJxpsB3AT8EDYnhf2Ca8/5u6jos1m\nWn0FZ4yv4rGX1VEtIiePOK8gxgOPm9li4FngEXd/EPg0cKuZtRL1Mdwd6t8N1IXyW4HbYoxt2F00\nvY7n1uxkb09/0qGIiAyLjDqbj4e7LwbOTVO+iqg/Ymj5PuBdccUTt0tObeBb/7uaJ5Zt4epXj086\nHBGREzYifRC54IJpdTRUFvOT59YnHYqIyLBQghgm+XnGW8+ewG+Xb2H3vt6kwxEROWFKEMPoijMa\n6e13ft+qQXMiMvopQQyj8ybVUl1ayP8s2ZR0KCIiJ0wJYhgV5ufx9nMn8tDSjWpmEpFRTwlimL35\nrPH09rvWqhaRUU8JYpjNOqWWMeVF/OZFjaoWkdFNCWKY5ecZl85s4LGXt9DbP5B0OCIix00JIgZX\nntHIrn19PLFMzUwiMnopQcTg0pkN1JUX8cAiDZoTkdFLCSIGBfl5XDqzgQcXb6R9d3fS4YiIHBcl\niJi8+axoPqaHX9CYCBEZnZQgYnLJqfVMqC7hcz9fqpXmRGRUUoKIiZlx0fSxACzd0JFwNCIix04J\nIkZ/c83p5Bn85iUtJCQio0+cK8o1m9njZvaSmb1gZp8I5WPM7BEzWxGea0O5mdkdZtZqZovNbFZc\nsY2U2vIizptUy/8s3nD0yiIiWSbOK4g+4K/c/XSitahvMbMziFaKe9TdZwCPcmDluKuBGeExB7gz\nxthGzJvOHMfK9k5NvSEio05sCcLdN7r7c2F7N9F61BOBa4G5odpc4LqwfS3wfY88DdSY2ahfmu39\nF0yivCif/3i8NelQRESOyYj0QZjZZKLlR+cDje6+EaIkAjSEahOBdYPe1hbKRrXignwumDaW+au3\ns7Fjb9LhiIhkLPYEYWYVwE+AT7r7riNVTVN2yP2hZjbHzBaY2YL29tHRbPOpK2YA8P0/rEk4EhGR\nzMWaIMyskCg53OPuPw3Fm1NNR+E5dYtPG9A86O1NwCG9u+5+l7u3uHtLfX19fMEPozMnVPOOcydy\n95Or2dnVk3Q4IiIZifMuJgPuBl5y938Z9NI84KawfRPwwKDyG8PdTLOBjlRT1Mngxgsn09M3wI8X\ntCUdiohIRuK8grgIeD9wqZktCo9rgNuBK8xsBXBF2Af4JbAKaAW+BfxFjLGNuDMnVFGYb9z525X0\naRpwERkFCuI6sLs/Sfp+BYDL0tR34Ja44klaYX4ef3/dq/j0T5bw7SdX8+eXTEs6JBGRI9JI6hH0\njllNlBbmc/uvXqZf8zOJSJZTghhBhfl5fOSSqQDMe15rRYhIdlOCGGFzXj+VyXVl/OtjGjgnItlN\nCWKElRUV8KGLp7CqvZN7569NOhwRkcNSgkjA9ec1AfA3P1vC9k6NixCR7KQEkYCyogI+cOFkAM3R\nJCJZSwkiIZ978+kAfPvJ1bTt6Eo4GhGRQylBJKQgP4+vXH8WABd/+XG6evoSjkhE5GBKEAl6V0sz\nZzVVA3D/Qk3BISLZRQkiYT+YM5vq0kK+/psVbNvTnXQ4IiL7KUEkrKyogH9977ls7+yh5R9+k3Q4\nIiL7KUFkgdefWs/sqWNwh5//USOsRSQ7KEFkiTveey4An/zhIjU1iUhWUILIEg2VJfzTO6O7mm65\n97mEoxERUYLIKu8+v5mK4gKeXrWd7/1+ddLhiEiOU4LIMvd8+LUA/O0vXmRJW0fC0YhILotzydHv\nmNkWM1s6qGyMmT1iZivCc20oNzO7w8xazWyxmc2KK65sd3ZzDb/+1OsBeOu/Pam5mkQkMXFeQXwP\nuGpI2W3Ao+4+A3g07ANcDcwIjznAnTHGlfVObazknbOiCf1m/d0jWqJURBIRW4Jw998B24cUXwvM\nDdtzgesGlX/fI08DNWY2Pq7YRoN/fvfZNI8pBeDz815IOBoRyUUj3QfR6O4bAcJzQyifCKwbVK8t\nlB3CzOaY2QIzW9De3h5rsEl76BOvZ+a4Su6dv5bP/HRx0uGISI7Jlk5qS1OWdtFmd7/L3VvcvaW+\nvj7msJJVXlzAvX82myljy7nvmXXMfeqVpEMSkRwy0glic6rpKDxvCeVtQPOgek3AhhGOLSuNKS/i\nV594HdMbKvjCvBc0qZ+IjJiRThDzgJvC9k3AA4PKbwx3M80GOlJNUQIlhfl8+8YWJtaUcttPFvPE\nsi24p73AEhEZNnHe5nof8AfgNDNrM7ObgduBK8xsBXBF2Af4JbAKaAW+BfxFXHGNVpPHlvPzWy6i\nsaqED3z3WT7yXwvp6ulTohCR2Nho/gPT0tLiCxYsSDqMEdW6ZTd/9v2FrN7aCcDHL53OrVeelnBU\nIjKamNlCd285Wr1s6aSWDE1vqOTRWy9han05AHc81soHv/uMxkqIyLBTghiF8vKM33zqEv7ktacA\n8Piydt5z19Ps6+1PODIROZkoQYxSeXnGP7791bz8d1cxo6GChWt2MPP/PcTmXfuSDk1EThJKEKNc\nSWE+v/jYxXzs0ukAXPX13/Hkiq0JRyUiJ4OCpAOQE1dSmM9fXXkaZ4yv4qP3PMf77p5PfWUx7bu7\n+b9vOo1b3jg96RBFZBTSFcRJ5OpXj2fR56/ghvObad8drUr3lYeXMfm2/6Fjb2/C0YnIaKMEcZKp\nKSvi9neexZK/vZLLT2/YX372F3/N0vUduttJRDKmcRAnuadat/JXP36ejR0HOq+njC3nk5fPYPbU\nOhqrShKMTkSSkOk4CCWIHPHUyq38ybfmH1L+wYsmc8UZjdRXFHNKXRnFBfkJRCciI0kJQtLa19vP\nUyu38qHvpT9v150zgc+/9UxqywoxSzfJroiMdkoQckTuzucfeIH/enrNYeucMb6KS06rZ87rpmIW\n9W+IyOinBCHHZNuebu57Zi1f/fXyI9b7+KXTOXdSLWdOqKK+olhXGSKjkBKEnJDlm3fzVOtWvvfU\nK7yyrSuj91w4rY6vveccxlYUk2dgZvQP+P5tEckOShAyrNbv3MtLG3axZH0H33h0RUbvKcw3evuj\n36+qkgJ27esjz2BibSld3f3MnlZHy6Ra3jGrierSQtydrp5+yosPHb+5dlsXTbWl5OUp0YicKCUI\niZW7Y2b09A2wdU83z6zezqJ1O/lezMuiFuYbDZUlnD+5lsqSQs6cUMX5U8Zw7/y1rGrfw4SaUipL\nCikuyOOXSzbypWtfxd7ePl7auJtLZzbQP+CcOaGKvgFn974+unr6GFNexPzV25lcV05VSQFmRtuO\nLpau30VdRRFjyot41YRq8vKgMC+PvDyjY28vJYV5FOXnsa93gA0de5k6tvygK6XtnT309A1QX1nM\n5l376OkbYOGaHby6qZpTGysP+rn6+gfo7hugs6ePDTv3UV9ZTE1pIcD+hNnZ3cfLm3Yz65Qa9vUO\nUFp0+DvO9vb00zswwMotezi7qYZ+d3r6BvYfq6unj+KCfPJDwu3rH6Czu5+q0ujnX7e9i+YxZQD0\n9A2wemsnjjMxnF+Ifgf+sGob502qpSAvb/+xUsfv7Xf29vQztqKIFVv2MKG6lOqywhP9FQCimy26\n+wb2/3u5O5t3ddPV08cpY8ooyD90iJe70z/gB73W3dd/0J17qd/rTD5/IPztLCs68B+ahWu2M766\nlGdWb2dafQWvbqo+6H17uvsoLcynu6+fsqICunqi/c6efory8ygqyNt//I69vWlvQ+/pG2DAnZLC\n47/jcFQmCDO7CvgGkA98291vP1J9JYjs1dc/QH6e8dLG3Ty1citFBXk8uWIrE2pK6ekf4JEXN1OQ\nZweNz8g150+uZeueHgxYFdb3OBFFBXn09MU/EPINp9XzxLL243pvY1Uxm3d1H/dnn9pYwfLNezKq\nm7pqTefy0xv5zUubM/7cc0+p4Y9rd2Zcf7D6ymL29vSzpzt9LMfrhS++Ke3VdiZGXYIws3xgOdFK\nc23As8B73f3Fw71HCeLk0bG3FxyKC/PYsHMvXT39NFaVsHzzbuYt2sDi9R20TKqlqbaU/12xldVb\nOxlXXcLCNTuOeNyGymK27D7+P0gi2erTV83ko2+YdlzvzTRBZNNkfa8BWt19FYCZ/QC4FjhsgpCT\nR3XpgaaHqfUV+7frK4u5aPrYg+p+5JLDfyn6B/ygpo503J2NHfuoKCmgrDCfgvw8evsH2LOvjzwz\nqssKWbe9i/9+eg2zJtXyxtMaGHDHDPLMWLhmB021pSxat5MzJ1Tz4PMbOLu5hgum1ZFnxp7uvtDE\nUE5XTz/jqkuoKC7gt8vbeWnjLi4/vZG2HV2cOaGaVVs7uXj6WNZu72LDzr1Mq6/ADCqKC1i9tZOS\nwjz6BpzFbR3MHFfJ9s4eBtwpLSxg175efvpcG9e8ejy9/c7S9R2c3VzNaY1V1JQVUllSQOuWPWze\n1c2lMxv41dKN9PQNMLW+nFmn1LK9s4e+AWdPdx///fQa3j97EgPurGzv5LKZDfub2ppry/jRgnXU\nlBUxc1wlYyqKuOWe5zhlTBmfe/MZoSmkmHXb99K+p5sfPLOWv3/7q+jo6mVxWwcAO7p6mFhTSt+A\nc3ZzDa9s7WRKfTkPL91E85gynljWzlWvGkdzbSkF+Xl09/XznSdf4eVNu/jHt7+apes7mFhbyriq\nEr731CvFcKpFAAAJ6UlEQVTMOqWWksJ8pjdUsG5HFzPHVWIY63fu5fGXtzCtoZzq0iKWtO3klLoy\n9nT3M6WunOLCPBa3ddA/MEBJYT5tO/Zyw/nNlBUVsKOrhzwzHly8gQunjWVqfTlPrdzK7n19LG7r\nYEZDBRNrS6kqKaSqtJBF63ZQURz1nTVUlbC3p5+zm6vZtbePbZ3dtG7ZQ0VxAcUF+Zw6roJde/vo\n7R+grqKIFZv3UF1ayIade8nPMyqKC3i+bSczGiupKilgZXsn9y9s48YLJvHM6u1MrCnlHbOa+N3y\nds5qqmbTrn1cMLXueL5qxySbriCuB65y9w+H/fcDr3X3vzzce3QFISJy7EbjkqPp/tt3SPYyszlm\ntsDMFrS3H187qIiIHF02JYg2oHnQfhOwYWgld7/L3VvcvaW+vn7EghMRyTXZlCCeBWaY2RQzKwJu\nAOYlHJOISM7Kmk5qd+8zs78EHia6zfU77v5CwmGJiOSsrEkQAO7+S+CXScchIiLZ1cQkIiJZRAlC\nRETSUoIQEZG0smag3PEws3bg8CveHNlYYOswhhMHxXjisj0+yP4Ysz0+UIzHapK7H3WcwKhOECfC\nzBZkMpIwSYrxxGV7fJD9MWZ7fKAY46ImJhERSUsJQkRE0srlBHFX0gFkQDGeuGyPD7I/xmyPDxRj\nLHK2D0JERI4sl68gRETkCHIyQZjZVWa2zMxazey2hGJoNrPHzewlM3vBzD4RyseY2SNmtiI814Zy\nM7M7QsyLzWzWCMaab2Z/NLMHw/4UM5sfYvxhmFwRMysO+63h9ckjEFuNmd1vZi+Hc3lBtp1DM/tU\n+Ddeamb3mVlJ0ufQzL5jZlvMbOmgsmM+b2Z2U6i/wsxuijm+r4R/58Vm9jMzqxn02mdCfMvM7E2D\nymP7rqeLcdBr/8fM3MzGhv0RP4fDwt1z6kE0EeBKYCpQBDwPnJFAHOOBWWG7kmi51TOAfwJuC+W3\nAV8O29cAvyJaN2M2MH8EY70VuBd4MOz/CLghbH8T+GjY/gvgm2H7BuCHIxDbXODDYbsIqMmmcwhM\nBFYDpYPO3QeSPofA64FZwNJBZcd03oAxwKrwXBu2a2OM70qgIGx/eVB8Z4TvcTEwJXy/8+P+rqeL\nMZQ3E006ugYYm9Q5HJafMekARvwHhguAhwftfwb4TBbE9QDRetzLgPGhbDywLGz/J9Ea3an6++vF\nHFcT8ChwKfBg+AXfOuiLuv98hi/FBWG7INSzGGOrCn98bUh51pxDogSxLvwBKAjn8E3ZcA6ByUP+\nAB/TeQPeC/znoPKD6g13fENeeztwT9g+6DucOocj8V1PFyNwP3A28AoHEkQi5/BEH7nYxJT6wqa0\nhbLEhGaEc4H5QKO7bwQIzw2hWlJxfx34a2Ag7NcBO929L00c+2MMr3eE+nGZCrQD3w1NYN82s3Ky\n6By6+3rgq8BaYCPROVlI9pzDwY71vCX5XfoQ0f/IOUIcIx6fmb0NWO/uzw95KWtiPBa5mCAyWtp0\npJhZBfAT4JPuvutIVdOUxRq3mb0F2OLuCzOMY6RjLCC6xL/T3c8FOomaRg4niXNYC1xL1PQxASgH\nrj5CHFn1+xkcLqZEYjWzzwJ9wD2posPEMaLxmVkZ8Fng8+lePkws2fjvvV8uJoiMljYdCWZWSJQc\n7nH3n4bizWY2Prw+HtgSypOI+yLgbWb2CvADomamrwM1ZpZaS2RwHPtjDK9XA9tjjK8NaHP3+WH/\nfqKEkU3n8HJgtbu3u3sv8FPgQrLnHA52rOdtxM9n6MR9C/CnHtpksii+aUT/EXg+fGeagOfMbFwW\nxXhMcjFBZMXSpmZmwN3AS+7+L4Nemgek7mS4iahvIlV+Y7gbYjbQkWoOiIu7f8bdm9x9MtF5eszd\n/xR4HLj+MDGmYr8+1I/tf0PuvglYZ2anhaLLgBfJonNI1LQ028zKwr95KsasOIdDHOt5exi40sxq\nw5XSlaEsFmZ2FfBp4G3u3jUk7hvCHWBTgBnAM4zwd93dl7h7g7tPDt+ZNqIbUTaRJefwmCXdCZLE\ng+iOguVEdzh8NqEYLia6lFwMLAqPa4jamx8FVoTnMaG+Af8eYl4CtIxwvG/gwF1MU4m+gK3Aj4Hi\nUF4S9lvD61NHIK5zgAXhPP6c6E6QrDqHwBeBl4GlwH8R3W2T6DkE7iPqE+kl+kN28/GcN6K+gNbw\n+GDM8bUStdenvi/fHFT/syG+ZcDVg8pj+66ni3HI669woJN6xM/hcDw0klpERNLKxSYmERHJgBKE\niIikpQQhIiJpKUGIiEhaShAiIpKWEoSMOma2JzxPNrM/GeZj/82Q/aeG8/jDzcw+YGb/lnQccnJS\ngpDRbDJwTAnCzPKPUuWgBOHuFx5jTKNKBudDcpgShIxmtwOvM7NFFq25kB/WDHg2zLn/EQAze4NF\na2/cSzRICTP7uZkttGidhjmh7HagNBzvnlCWulqxcOylZrbEzN4z6NhP2IE1Ke4JI6YPEup82cye\nMbPlZva6UH7QFYCZPWhmb0h9dnjPQjP7jZm9JhxnVZgULqXZzB6yaN2DLww61vvC5y0ys/9MJYNw\n3C+Z2XyiGU9F0kt6pJ4eehzrA9gTnt9AGN0d9ucAnwvbxUQjrKeEep3AlEF1U6OES4lGONcNPnaa\nz3on8AjRGgONRFNojA/H7iCaQycP+ANwcZqYnwD+OWxfA/wmbH8A+LdB9R4E3hC2nTAqGPgZ8Gug\nkGgq6UWD3r+RaBR06mdpAU4HfgEUhnr/Adw46LjvTvrfUY/sf6QmCxM5GVwJnGVmqTmOqonm5ekB\nnnH31YPqftzM3h62m0O9bUc49sXAfe7eTzSp3W+B84Fd4dhtAGa2iKjp68k0x0hNyLgw1DmaHuCh\nsL0E6Hb3XjNbMuT9j7j7tvD5Pw2x9gHnAc+GC5pSDky+1080SaTIESlByMnEgI+5+0GTnYUmm84h\n+5cTLczTZWZPEM2BdLRjH073oO1+Dv+96k5Tp4+Dm3oHx9Hr7qm5cAZS73f3gUEzwcKh00OnppGe\n6+6fSRPHvpDoRI5IfRAymu0mWq415WHgoxZNo46ZnWrRAkJDVQM7QnKYSbQEZEpv6v1D/A54T+jn\nqCdabvKZYfgZXgHOMbM8M2sGXnMcx7jCovWkS4HrgN8TTbZ3vZk1wP71picNQ7ySQ3QFIaPZYqDP\nzJ4Hvgd8g6jp5bnQUdxO9AdzqIeAPzezxUSzfz496LW7gMVm9pxHU5un/IyoQ/d5ov+h/7W7bwoJ\n5kT8nmjZ1CVE/QfPHccxniSaJXY6cK+7LwAws88BvzazPKIZR28hWidZJCOazVVERNJSE5OIiKSl\nBCEiImkpQYiISFpKECIikpYShIiIpKUEISIiaSlBiIhIWkoQIiKS1v8HgZ0AQMo/gqYAAAAASUVO\nRK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAp4UlEQVR4nO3deXxd5X3n8c9P92qXrd2yLMuWwWAwhMUIwtaEsAVIAkwLaTKZ4mSYuk3SNmk6zcCk07TTvmaSTpNM0pmS0EBiZihZIBSXIQv7kgSMTQzYxtjCC0heJG+SLVn7b/44j+RrIfC1raN7pft9v173dc95znPO/enYVz+d5znneczdERERAcjLdAAiIpI9lBRERGSUkoKIiIxSUhARkVFKCiIiMiqZ6QBORE1NjTc1NWU6DBGRKWX16tW73b12vG1TOik0NTWxatWqTIchIjKlmNm2d9qm5iMRERmlpCAiIqOUFEREZJSSgoiIjIo1KZjZn5rZOjNba2b3mVmRmS0wsxfMrMXMfmhmBaFuYVhvCdub4oxNRETeLrakYGYNwJ8Aze5+JpAAPgZ8FfiGuy8E9gG3hl1uBfaF8m+EeiIiMonibj5KAsVmlgRKgB3A5cD9Yfty4MawfENYJ2y/wsws5vhERCRFbEnB3duAvwfeJEoGncBqYL+7D4ZqrUBDWG4A3gr7Dob61WOPa2bLzGyVma3q6Og4rthe3LqXr/5sAxo2XETkSHE2H1US/fW/AJgDlALXnOhx3f1Od2929+ba2nEfyDuqV1o7ueOpN9jfM3Ci4YiITCtxNh9dCWxx9w53HwB+AlwCVITmJIC5QFtYbgMaAcL2cmBPHIHVlxcBsLOrN47Di4hMWXEmhTeBC82sJPQNXAGsB54Ebgp1lgIPheUVYZ2w/QmPqX2nbmYhAO0H+uI4vIjIlBVnn8ILRB3GLwGvhs+6E/hPwBfMrIWoz+CusMtdQHUo/wJwW1yxVZQUALC/pz+ujxARmZJiHRDP3b8MfHlM8WbggnHq9gI3xxnPiKqQFPZ2KymIiKTKySeaZxbnk2ewT0lBROQIOZkUEnlGRUkBe9V8JCJyhJxMCgAVJfns69YtqSIiqXI2KVSVFKhPQURkjJxNCpWlBexT85GIyBFyNinUlxfRtu+QhroQEUmRs0mhqbqUA32DakISEUmRs0mhdkb0VPPug0oKIiIjlBQOaqgLEZEROZ8UOjT+kYjIqJxNCjVlSgoiImPlbFKYWZSktCDB9s5DmQ5FRCRr5GxSMDPmVBSzfb+SgojIiJxNCgANlcW0KSmIiIzK6aQwp6KYtn1KCiIiI3I6KTRUFLOvZ4Ce/sFMhyIikhViSwpmtsjM1qS8uszs82ZWZWaPmtmm8F4Z6puZfcvMWszsFTNbEldsIxoqigHUryAiEsQ5Hefr7n6Ou58DnAf0AA8STbP5uLufAjzO4Wk3rwVOCa9lwB1xxTaioTJKCm37e+P+KBGRKWGymo+uAN5w923ADcDyUL4cuDEs3wDc45HngQozq48zqDnhSkH9CiIikclKCh8D7gvLde6+IyzvBOrCcgPwVso+raHsCGa2zMxWmdmqjo6OEwqqbkYhiTxT85GISBB7UjCzAuB64Mdjt3k0bvUxjV3t7ne6e7O7N9fW1p5QbMlEHrNnFum2VBGRYDKuFK4FXnL3XWF910izUHhvD+VtQGPKfnNDWawaKvSsgojIiMlICh/ncNMRwApgaVheCjyUUn5LuAvpQqAzpZkpNg2VelZBRGREMs6Dm1kpcBXwBynFXwF+ZGa3AtuAj4byR4DrgBaiO5U+FWdsI+ZUFLGzq5fBoWGSiZx+bENEJN6k4O7dQPWYsj1EdyONrevAZ+OMZzwNFSUMDTvtB/pG70YSEclVOf+n8ZyKIgD1K4iIoKTA3Eo91SwiMiLnk8JIk1GrOptFRJQUSgqSVJbk60pBRAQlBSAMoa2kICKipADRA2y6UhARUVIADk+2E90VKyKSu5QUiO5A6u4fouuQJtsRkdympEDKHUj7ezIciYhIZikpcHgGNo2BJCK5TkmBwzOwqbNZRHKdkgJQXVpAYTJPt6WKSM5TUgDMLNyWqrmaRSS3KSkEcyqKadWVgojkOCWFoKGimLZ9uvtIRHKbkkIwv6aE3Qf7OdA7kOlQREQyJtakYGYVZna/mW0ws9fM7CIzqzKzR81sU3ivDHXNzL5lZi1m9oqZLYkztrEaK0sA2NmpfgURyV1xXyl8E/iZu58GnA28BtwGPO7upwCPh3WAa4FTwmsZcEfMsR2huqwAgN0H+yfzY0VEskpsScHMyoH3AXcBuHu/u+8HbgCWh2rLgRvD8g3APR55Hqgws/q44hurvjx6VmHL7u7J+kgRkawT55XCAqAD+J6Z/cbMvmtmpUCdu+8IdXYCdWG5AXgrZf/WUHYEM1tmZqvMbFVHR8eEBdtUXUJ5cT7rtndO2DFFRKaaOJNCElgC3OHu5wLdHG4qAsCjYUmPaWhSd7/T3Zvdvbm2tnbCgjUzmqpLeHOv7kASkdwVZ1JoBVrd/YWwfj9Rktg10iwU3tvD9jagMWX/uaFs0syvLmXrHjUfiUjuii0puPtO4C0zWxSKrgDWAyuApaFsKfBQWF4B3BLuQroQ6ExpZpoU86tLaNt3iP7B4cn8WBGRrJGM+fh/DNxrZgXAZuBTRInoR2Z2K7AN+Gio+whwHdAC9IS6k2p+dSnDDm37D7GgpnSyP15EJONiTQruvgZoHmfTFePUdeCzccZzNPOro2cVtu7pVlIQkZykJ5pTjCSFN/eos1lEcpOSQoraskJKChLqbBaRnKWkkMLMmFdVoisFEclZSgpjNOm2VBHJYUoKY8yvLuGtvYcYGj6mZ+pERKYFJYUx5leX0j80zM4ujZYqIrlHSWGMkTuQtqkJSURykJLCGIeTgjqbRST3KCmMUV9eTEEiT53NIpKTlBTGSOQZ86pL2Kp5FUQkBykpjKOpulST7YhITlJSGMdJtaVs3dPDsG5LFZEco6QwjgU1pfQPDrO981CmQxERmVRKCuOYUxHN17yzU88qiEhuUVIYx6wZhQDs6urLcCQiIpNLSWEcC2pKKUzm8dKb+zIdiojIpIo1KZjZVjN71czWmNmqUFZlZo+a2abwXhnKzcy+ZWYtZvaKmS2JM7Z3U5Sf4NS6GWzcdSBTIYiIZMRkXCl8wN3PcfeRGdhuAx5391OAx8M6wLXAKeG1DLhjEmJ7RwtnldHSfjCTIYiITLpMNB/dACwPy8uBG1PK7/HI80CFmdVnID4gSgo7Ons52DeYqRBERCZd3EnBgV+Y2WozWxbK6tx9R1jeCdSF5QbgrZR9W0NZRpxcG83RvLlDVwsikjuOmhTMrM7M7jKzn4b1xWZ2a5rHv9TdlxA1DX3WzN6XutHdnShxpM3MlpnZKjNb1dHRcSy7HpOFs8oA1IQkIjklnSuF7wM/B+aE9Y3A59M5uLu3hfd24EHgAmDXSLNQeG8P1duAxpTd54aysce8092b3b25trY2nTCOy/zqUpJ5pqQgIjklnaRQ4+4/AoYB3H0QGDraTmZWamYzRpaBq4G1wApgaai2FHgoLK8Abgl3IV0IdKY0M026/EQe86tLlBREJKck06jTbWbVhGaekV/YaexXBzxoZiOf88/u/jMzexH4UWiC2gZ8NNR/BLgOaAF6gE8dyw8Sh5Nry3hDfQoikkPSSQpfIPor/mQz+yVQC9x0tJ3cfTNw9jjle4Arxil34LNpxDNpFs4q44kN7QwMDZOf0HN+IjL9HTUpuPtLZvZ+YBFgwOvuPhB7ZFlg4awyBoed9du7OLuxItPhiIjE7qhJwcxuGVO0xMxw93tiiilrXHpKDQDPb96jpCAiOSGd5qPzU5aLiJp+XgKmfVKYNaOIypJ8tu3VfM0ikhvSaT7649R1M6sAfhBXQNlmXnUpb+5RUhCR3HA8vafdwIKJDiRbza8qYdteTc0pIrkhnT6Ff+XwU8d5wGLgR3EGlU2aakp5+JXtdPUOMLMoP9PhiIjEKp0+hb9PWR4Etrl7a0zxZJ3m+ZUMO6xt6+Tik2syHY6ISKzS6VN4ejICyVYNlZqaU0Ryxzv2KZjZATPrGud1wMy6JjPITJpbWUxpQYJV2zQLm4hMf+94peDuMyYzkGxVmExw8cIaftWyO9OhiIjELu27j8xslpnNG3nFGVS2OX32DN7c20PvwFHHARQRmdLSmU/hejPbBGwBnga2Aj+NOa6ssrBuBsMOW/fo1lQRmd7SuVL4G+BCYKO7LyB6ovn5WKPKMgtrowl3Nu3SiKkiMr2lkxQGwsimeWaW5+5PAs0xx5VVTp5VSn7CWLc9Z/rXRSRHpfOcwn4zKwOeAe41s3aip5pzRmEyweI55bz0pu5AEpHpLZ0rhRuIJr35U+BnwBvAR+IMKhstmVfBK637GRgaznQoIiKxSScp/AFQ7+6D7r7c3b8VmpPSYmYJM/uNmT0c1heY2Qtm1mJmPzSzglBeGNZbwvam4/qJYnLuvEp6B4Z5feeBTIciIhKbdJLCDOAXZvasmf2RmdUd42d8DngtZf2rwDfcfSGwD7g1lN8K7Avl3wj1ssapdVFn85bdOdVyJiI55qhJwd3/2t3PIJoqsx542sweS+fgZjYX+BDw3bBuwOXA/aHKcuDGsHxDWCdsvyLUzwqNlSUk8oy129OZnlpEZGo6lqGz24GdwB5gVpr7/E/gi8BIQ3w1sN/dB8N6K9AQlhuAtwDC9s5QPyuUFiY5a245a97cn+lQRERik87Da58xs6eAx4l+Sf++u5+Vxn4fBtrdffUJR3nkcZeZ2SozW9XR0TGRhz6qRXUzeG1HF+5+9MoiIlNQOlcKjcDn3f0Md/8rd1+f5rEvAa43s61EM7VdDnwTqDCzkVth5wJtYbktfBZheznRVckR3P1Od2929+ba2to0Q5kYZzaU09U7qMHxRGTaSqdP4XZ3X3OsBw77zXX3JuBjwBPu/gngSeCmUG0p8FBYXhHWCduf8Cz7k/zK06M+9vV6iE1EpqnjmY7zRP0n4Atm1kLUHHVXKL8LqA7lXwBuy0Bs76puZiEzipK0tGu4CxGZntJ5ovmEuftTwFNheTNwwTh1eoGbJyOe42VmLJxVxqZ2PasgItNTOh3NpWaWF5ZPDaOm5uxkxe9pKGfNW/vp6R88emURkSkmneajZ4AiM2sAfgH8HvD9OIPKZlecXkfvwDAvbduf6VBERCZcOknB3L0H+G3gH939ZuCMeMPKXkvmVZBnsHLr3kyHIiIy4dJKCmZ2EfAJ4P+FskR8IWW3GUX5LJ4zkxe3KCmIyPSTTlL4PHA78KC7rzOzk4huK81Z5zdV8dKb++gf1IipIjK9pPOcwtPufr27fzV0OO929z+ZhNiyVvP8KvoGh9mwU88riMj0ks7dR/9sZjPNrBRYC6w3sz+PP7TsddbccgBebtXgeCIyvaTTfLTY3buIRjP9KbCA6A6knDW3spjq0gINjici0046SSE/PJdwI7DC3QeArBp+YrKZGRcsqOK5lg4Njici00o6SeE7wFagFHjGzOYDOd+YfsXpdezq6mOdxkESkWkknY7mb7l7g7tf55FtwAcmIbas9t4FVQC82qZ+BRGZPtLpaC43s6+PzGFgZl8jumrIaQ0VxRTl52lwPBGZVtJpProbOAB8NLy6gO/FGdRUkJdnnFo3g5V6iE1EppF0ksLJ7v5ld98cXn8NnBR3YFPBZYtmsXZ7J4f6hzIdiojIhEgnKRwys0tHVszsEuBQfCFNHec3VeIOT2+c3GlBRUTiks58Cn8I3GNm5WF9H4dnSMtpF55UTWEyj9Xb9nLNmbMzHY6IyAlL5+6jl939bOAs4Cx3P5dovuV3ZWZFZrbSzF42s3Vm9tehfIGZvWBmLWb2QzMrCOWFYb0lbG86sR8tfvmJPE6qLePZTbszHYqIyIRIezpOd+8KTzZDNF3m0fQBl4eEcg5wjZldCHwV+Ia7LyS66rg11L8V2BfKvxHqZb0PnlHHhp0H2Nvdn+lQRERO2PHO0WxHqxCeaRi5XzM/vJzoKuP+UL6c6ElpgBvCOmH7FWZ21M/JtPcuqAZg5ZY9GY5EROTEHW9SSGtsBzNLmNkaoB14FHgD2O/uI3NZtgINYbkBeAsgbO8Eqo8zvknznjA43l/8y7oMRyIicuLesaPZzA4w/i9/A4rTObi7DwHnmFkF8CBw2nHEODauZcAygHnz5p3o4U5YWWGSmrJCdh/sy3QoIiIn7B2vFNx9hrvPHOc1w93TuWsp9Vj7iSbmuQioMLOR/ecCbWG5DWgECNvLgbe1ybj7ne7e7O7NtbW1xxJGbD5z2ckA7OrqzXAkIiIn5nibj47KzGrDFQJmVgxcBbxGlBxuCtWWAg+F5RUcvtX1JuAJnyJDkF56Sg0A9618M8ORiIicmGP6i/8Y1QPLzSxBlHx+5O4Pm9l64Adm9rfAb4C7Qv27gP9jZi3AXuBjMcY2oU6tm8EZc2by4lYNeSEiU1tsScHdXwHOHad8M3DBOOW9wM1xxRO3sxsrWLFmO919g5QWxplrRUTiE1vzUa659szZHOwb5LHXdmU6FBGR46akMEHeu6CahopiHvxN29Eri4hkKSWFCVKQzOOCBVWs396lKTpFZMpSUphAZ80tp/1AH2vbNEWniExNSgoT6Lr31JNnsOJlNSGJyNSkpDCB6mYWccnCGh78zXYGhoYzHY6IyDFTUphgH79gHrsP9rFq675MhyIicsyUFCbY+0+tpSCZp1tTRWRKUlKYYKWFSS45uZrHXtulu5BEZMpRUojBlYvr2Lanh3XbdReSiEwtSgox+PB75lBSkODu57ZkOhQRkWOipBCD8pJ8PnxWPY+u30VP/+DRdxARyRJKCjG55szZHOgb5FctmqZTRKYOJYWYvHdBNSUFCR5ZuyPToYiIpE1JISalhUk+eMZsntzQTu/AUKbDERFJi5JCjD58Vj37ega459dbMx2KiEhalBRidMnCaJrOu5/bqmcWRGRKiHOO5kYze9LM1pvZOjP7XCivMrNHzWxTeK8M5WZm3zKzFjN7xcyWxBXbZCnKT/DJi5vY2dWrZxZEZEqI80phEPgzd18MXAh81swWA7cBj7v7KcDjYR3gWuCU8FoG3BFjbJPmc1ecQiLPeORVdTiLSPaLLSm4+w53fyksHwBeAxqAG4Dlodpy4MawfANwj0eeByrMrD6u+CZLZWkBF59czT8+9YY6nEUk601Kn4KZNQHnAi8Ade4+8mfzTqAuLDcAb6Xs1hrKxh5rmZmtMrNVHR0d8QU9ga4+YzYA//DEpgxHIiLy7mJPCmZWBjwAfN7dj2hY96j39Zh6YN39Tndvdvfm2traCYw0Ph8/v5EZhUl+tnanOpxFJKvFmhTMLJ8oIdzr7j8JxbtGmoXCe3sobwMaU3afG8qmvGQij9uvO503Orp5auPUuLoRkdwU591HBtwFvObuX0/ZtAJYGpaXAg+llN8S7kK6EOhMaWaa8n57SQO1Mwr53H2/obtP4yGJSHaK80rhEuD3gMvNbE14XQd8BbjKzDYBV4Z1gEeAzUAL8E/AZ2KMbdIV5Sf48kcW09U7qDuRRCRrJeM6sLs/B9g7bL5inPoOfDaueLLBh95Tz9drNvLj1a3c3Nx49B1ERCaZnmieRGbGTc1zWbllL1t3d2c6HBGRt1FSmGS/s2QuAL9/zyrdiSQiWUdJYZLVzSyisiSfTe0H+aXmWhCRLKOkkAEPfPpiAH68+q2j1BQRmVxKChlwUm0Zv9vcyM/X7aTjQF+mwxERGaWkkCEfPX8uA0PO+/7uSfUtiEjWUFLIkPPmV/Hb5zZwaGCI//jjVzIdjogIoKSQUV/60OkAPPBSK4f6NYKqiGSekkIGVZQU8P1PnQ/Ad5/dnOFoRESUFDLu/afWcvlps7jz2c3s7+nPdDgikuOUFDLMzPjzDy6ip3+Ir/x0Q6bDEZEcp6SQBU6vn8mtly7gBy++xTcf00Q8IpI5SgpZ4s+uPpXfOqWGbzy2kdXb9mY6HBHJUUoKWaIwmeBPrzoVgN+549f0Dw5nOCIRyUVKCllkybxK/uaGMwA49S9+SntXb4YjEpFco6SQZT7x3vmjy79/z6oMRiIiuSjO6TjvNrN2M1ubUlZlZo+a2abwXhnKzcy+ZWYtZvaKmS2JK65sl5dnbPzbawF4ubWTF7eqf0FEJk+cVwrfB64ZU3Yb8Li7nwI8HtYBrgVOCa9lwB0xxpX1CpJ5oyOpfup7L7L7oAbNE5HJEVtScPdngLF/5t4ALA/Ly4EbU8rv8cjzQIWZ1ccV21Rw3vxKHvj0xRzsG6T5bx/jByvfzHRIIpIDJrtPoc7dR2at3wnUheUGIHVygdZQ9jZmtszMVpnZqo6OjvgizQLnza/kazefDcBtP3mVzR0HMxyRiEx3Geto9mi86GMeM9rd73T3Zndvrq2tjSGy7PI7583lx394EQCXf+1p3ZEkIrGa7KSwa6RZKLy3h/I2oDGl3txQJsD5TVV8+9+dB8DN3/k1vQMaUVVE4jHZSWEFsDQsLwUeSim/JdyFdCHQmdLMJMA1Z87m0oU1bNvTw2n/5We80ro/0yGJyDQU5y2p9wG/BhaZWauZ3Qp8BbjKzDYBV4Z1gEeAzUAL8E/AZ+KKayq785bzRpf//fdf5IkNuzIYjYhMRzaVp4Jsbm72Vaty6wGv/sFhHlrTxp/fH83W9l9vOIObz2ukuCCR4chEZKows9Xu3jzeNj3RPMUUJPO4ubmR8+ZXAvCXD63jpm//il3qgBaRCaCkMEX96A8u4rfPje7aXbe9i/f+t8d5aI365kXkxCgpTFGJPOPrv3sOz37xA1y6sAaAz/1gDUvvXqm7k0TkuKlPYZp4emMHS+9eObp+3vxK7v/DizCzDEYlItlIfQo54P2n1rLyS1eMrq/eto8Ftz/C+u1dDA9P3cQvIpNLVwrTUHffIF/7xUbu/uWW0bILT6ri2jPrWXpxU+YCE5Gs8G5XCsnJDkbiV1qY5C8/sphkwrjzmc0APL95L89v3sv7T61lfnWJmpVEZFy6Upjmhoadf315O5//4Zojyv/qI4tHrxqUIERyy7tdKSgp5IihYed//Px1vv30G2/b9p6Gcm679jTOnVdBSYEuHkWmOyUFOcKW3d1c/w/PcaBvcNztG/7mGjoPDVBRkk9hUk9Ki0w3SgoyrlVb91JamOSu57bw1Osd7zrD21P/8TKaakonMToRiYuSgqTl6Y0dPLC6lRUvb3/HOkX5eXzpQ4s5e245NWWFzKkoxt3VLyEyhSgpyDEbHBrmp2t38mc/fpn+weG091v2vpP4yFlz6B8aZsm8CoaGnYEh14B9IllESUFO2Nq2Tj78D8+RZzARz8IVJPP44gcXcdmiWWzY2UVTdSk9/UOcVFtKTVkhAO5O3+AwRflvTyibdh2gvqKYnZ2HOKmmjLw8XamIpEtJQWKxZXc3BhQXJPiv/7qePd19FCQTPLNxYufOLi1IcNHJ1Zwxp5xvPr5p3DoPfPpi7v7lFmpKC5hTUcxjr+2ipf0gHzqrnkV1MyjKT/By637ObaxkfnUJK7fu5cKTqjm5poy8vGhI8sL8BN99djO3XrqAddu7OH32TEoLE3T3DXGgb4CCRB6Dw87ruw7QPL+SGUX5PPLqDipK8plTXsyj63fRPzTMq62d/NHlCynKz6O0MElFcQEHegeoKStky55uVm/bx/Vnz+GFLXuZV1VC7YxCDvUPUVVaQCIkt9d3HqB2RiHffXYziTzjnMYKzptfSU//EDVlhTyxYRfvmVvB6m37+OAZdTz1egd9g8NcvbiOovwE+7r7KSlMjN4o0NM/SHF+AjMbbe7rHxxm98E+kgljcMipLCmgKD+Pddu7OLOhHICu3gEKk3ls2HGA+ooiivMTlBUmeW3HAU6eVUphMsHKLXtZNHsGv35jD1cvrsPs8G3OQ8NO78AQpYVJ/umZzRQVJPi9C+fz6zf2MK+6hIaKYoaGffTnfur1dsoKkzQ3VdFxoI9nN3XQOzDMzOIkVy2uIz8vj46DfZQWJskzyE/k0bbvEI1VJezr6WdGUZK93f1UFBdwaGCIssIkHQf76O4bpL68iLLCJN39Q/QODLG/Z4D2rl4qSwuoKSukpqyAnv4h/vi+33DzeXM5f0EVQ8POr97YTXVpIb96Yw83ndfAjKJ8ntu0m/ryIhbNnkFVaQEQ/cwPrG7l8tNmUV6cT/uBPmaXF7Gzs5fZ5UUADAwNkzCjf2iYoWFn5da9uDuXnxZNV//khnY27+7m8tNmcah/iOqyAupmFtHdN8iOzkMk8vKoLy/imY0dXLW47ribbZUUZNKN/JXfcaCPmUX53PH0G9z7/DYO9A1yTmMFW3Z303loINNh5pzCZB59x9AceCJmzyxip4Z0T0tVaQFzKopY29aV9j7f+9T5fGDRrOP6vCnzRLOZXQN8E0gA33X3rxxlF8lSZkZRfoLGqhIAbrv2NG679rSj7ufu7OsZYPv+Q1SVFvBcy24Gh5yGymLWbe/k5vMaeeTVHZxUW0p7Vx+n1s3g736+gWc37eZTlzSxoKaUv3xoHQBXnj6Lx15rP8onZkZ1aQF7uvsn/XMnKyEASgjHYG93P3uP8f9D275DscSSNVcKZpYANgJXAa3Ai8DH3X39O+2jKwVJV1fvAEXJBPkJG21CeXT9Lt4zt5z68uLRev2Dw6zb3snM4nyaqktJ5Nloonp95wGamyrpDc0SA0POrq5eGqtKRptnDg0M0T84PHpZX16cD8DwsLN1TzddvYOc1VB+RB9IV+8Az27cTWEyj+amSg72DTKnvJhfb97DmXPKad3fw+L6mWzZ3c3gsDMwNMzwMJxWP4MXt+7FMM5uLH/bg4dRHPDm3h5Ori0bLT/YN8gDq1v5wKJZ7OvpZ+GsMorzE+w/NMDOzl7qy4sYGBrm5dZOrjw9+ku0f2iYQ/1D7D7Yz8ziJGWFSb75+CY+sGgW711QhZnR2TPAzq5e6mYWcrBvkEP9Q9y/upXPfGAhM4uSDDvs6+lnYGiY2TOL6OkfYmBomPYDfRQlE1SXFdDdP4hh1JQVjP477esZID9hlBUmeWvvIVr39zC/upSygiQH+weZU17E/3t1B/OrSqkoyaexqoSDfdG/x0iz1P6eft7o6Ka8OMnCWTPoGxyiMJlgw84uFtXNGL2qfenNfXz4rDkk8oz9Pf20tB+kf2iYi06qZm93PwXJPNa2dVGQzOPcxgoGhqPmoGQij4GhYTbuOkDdzCKK8hN09w1SUpAYbf56a28PVaWFHOgd4JlNu7nuzNlUlBxuMty6u5viggT9g8OUFCTY1dXHqXVl9A8N84t1u7jmzNnc9dwWzp1XweaObi5ZWMOC47xNfEo0H5nZRcBfufsHw/rtAO7+399pHyUFEZFjN1WGzm4A3kpZbw1lRzCzZWa2ysxWdXRMbIemiEiuy6akkBZ3v9Pdm929uba2NtPhiIhMK9mUFNqAxpT1uaFMREQmSTYlhReBU8xsgZkVAB8DVmQ4JhGRnJI1t6S6+6CZ/RHwc6JbUu9293UZDktEJKdkTVIAcPdHgEcyHYeISK7KpuYjERHJMCUFEREZlTUPrx0PM+sAth3n7jXA7gkMJw6K8cRle3yQ/TFme3ygGI/VfHcf957+KZ0UToSZrXqnJ/qyhWI8cdkeH2R/jNkeHyjGiaTmIxERGaWkICIio3I5KdyZ6QDSoBhPXLbHB9kfY7bHB4pxwuRsn4KIiLxdLl8piIjIGEoKIiIyKieTgpldY2avm1mLmd2WoRgazexJM1tvZuvM7HOhvMrMHjWzTeG9MpSbmX0rxPyKmS2ZxFgTZvYbM3s4rC8wsxdCLD8MAxhiZoVhvSVsb5qE2CrM7H4z22Bmr5nZRdl2Ds3sT8O/8Vozu8/MijJ9Ds3sbjNrN7O1KWXHfN7MbGmov8nMlsYc3/8I/86vmNmDZlaRsu32EN/rZvbBlPLYvuvjxZiy7c/MzM2sJqxP+jk8bu6eUy+iwfbeAE4CCoCXgcUZiKMeWBKWZxBNRboY+DvgtlB+G/DVsHwd8FPAgAuBFyYx1i8A/ww8HNZ/BHwsLH8b+HRY/gzw7bD8MeCHkxDbcuA/hOUCoCKbziHRRFFbgOKUc/fJTJ9D4H3AEmBtStkxnTegCtgc3ivDcmWM8V0NJMPyV1PiWxy+x4XAgvD9TsT9XR8vxlDeSDSw5zagJlPn8Lh/rkx+eEZ+YLgI+HnK+u3A7VkQ10NE81O/DtSHsnrg9bD8HaI5q0fqj9aLOa65wOPA5cDD4T/17pQv5+j5DF+Ei8JyMtSzGGMrD79wbUx51pxDDs8oWBXOycPAB7PhHAJNY37pHtN5Az4OfCel/Ih6Ex3fmG3/Brg3LB/xHR45h5PxXR8vRuB+4GxgK4eTQkbO4fG8crH5KK1pPydTaCI4F3gBqHP3HWHTTqAuLGcq7v8JfBEYDuvVwH53HxwnjtEYw/bOUD8uC4AO4Huheeu7ZlZKFp1Dd28D/h54E9hBdE5Wkz3nMNWxnrdMfpf+PdFf3rxLHJMen5ndALS5+8tjNmVNjEeTi0khq5hZGfAA8Hl370rd5tGfDhm7Z9jMPgy0u/vqTMVwFEmiy/c73P1coJuo2WNUFpzDSuAGogQ2BygFrslUPOnK9Hl7N2b2JWAQuDfTsaQysxLgPwN/melYTkQuJoWsmfbTzPKJEsK97v6TULzLzOrD9nqgPZRnIu5LgOvNbCvwA6ImpG8CFWY2MhdHahyjMYbt5cCeGONrBVrd/YWwfj9Rksimc3glsMXdO9x9APgJ0XnNlnOY6ljP26SfTzP7JPBh4BMhcWVTfCcTJf+Xw3dmLvCSmc3OohiPKheTQlZM+2lmBtwFvObuX0/ZtAIYuQNhKVFfw0j5LeEuhguBzpRL/Vi4++3uPtfdm4jO0xPu/gngSeCmd4hxJPabQv3Y/tp0953AW2a2KBRdAawni84hUbPRhWZWEv7NR2LMinM4xrGet58DV5tZZbgiujqUxcLMriFqyrze3XvGxP2xcOfWAuAUYCWT/F1391fdfZa7N4XvTCvRzSQ7yZJzmJZMdmhk6kV0J8BGojsTvpShGC4lujx/BVgTXtcRtR8/DmwCHgOqQn0D/neI+VWgeZLjvYzDdx+dRPSlawF+DBSG8qKw3hK2nzQJcZ0DrArn8V+I7uDIqnMI/DWwAVgL/B+iu2Qyeg6B+4j6OAaIfnndejznjahtvyW8PhVzfC1E7e8j35dvp9T/UojvdeDalPLYvuvjxThm+1YOdzRP+jk83peGuRARkVG52HwkIiLvQElBRERGKSmIiMgoJQURERmlpCAiIqOUFGTKMbOD4b3JzP7tBB/7P49Z/9VEHn+imdknzex/ZToOmT6UFGQqawKOKSmkPEX8To5ICu5+8THGNKWYWSLTMUh2UVKQqewrwG+Z2RqL5ixIhDH3Xwxj1v8BgJldZmbPmtkKoqeJMbN/MbPVFs1zsCyUfQUoDse7N5SNXJVYOPZaM3vVzH435dhP2eE5He4NTy4fIdT5qpmtNLONZvZbofyIv/TN7GEzu2zks8NnrjOzx8zsgnCczWZ2fcrhG0P5JjP7csqx/l34vDVm9p2RBBCO+zUze5loJFGRwzL99Jxeeh3rCzgY3i8jPGUd1pcBfxGWC4medF4Q6nUDC1LqjjytW0z0pHF16rHH+azfAR4lGqO/jmj4ivpw7E6iMWvygF8Dl44T81PA18LydcBjYfmTwP9KqfcwcFlYdsLTucCDwC+AfKJhmdek7L+D6GnkkZ+lGTgd+FcgP9T7R+CWlON+NNP/jnpl5+tol9IiU8nVwFlmNjKmUDnRODj9wEp335JS90/M7N+E5cZQ790GnrsUuM/dh4gGjnsaOB/oCsduBTCzNUTNWs+Nc4yRQQ9XhzpH0w/8LCy/CvS5+4CZvTpm/0fdfU/4/J+EWAeB84AXw4VLMYcHuBsiGohR5G2UFGQ6MeCP3f2IAcVCc0z3mPUriSaz6TGzp4jGHDpefSnLQ7zz96pvnDqDHNmMmxrHgLuPjEMzPLK/uw+P6RsZO1aNE52L5e5++zhx9IbkJvI26lOQqewA0VSmI34OfNqiIckxs1MtmnRnrHJgX0gIpxFNjzhiYGT/MZ4Ffjf0W9QSTcW4cgJ+hq3AOWaWZ2aNwAXHcYyrLJpfuRi4Efgl0cB2N5nZLBidf3n+BMQr05yuFGQqewUYCh2m3yea66GJaAx7I5qV7cZx9vsZ8Idm9hrRqJrPp2y7E3jFzF7yaJjwEQ8Sdcq+TPSX+BfdfWdIKifil0RTiq4HXgNeOo5jrCRqDpoL/F93XwVgZn8B/MLM8ohG8vws0bzBIu9Io6SKiMgoNR+JiMgoJQURERmlpCAiIqOUFEREZJSSgoiIjFJSEBGRUUoKIiIy6v8DA9QowogayXkAAAAASUVORK5CYII=\n",
       "text/plain": [
-       "<matplotlib.figure.Figure at 0x12b29bb70>"
+       "<Figure size 432x288 with 1 Axes>"
       ]
      },
-     "metadata": {},
+     "metadata": {
+      "needs_background": "light"
+     },
      "output_type": "display_data"
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "training accuracy: 0.169163\n",
-      "validation accuracy: 0.163000\n"
+      "training accuracy: 0.157653\n",
+      "validation accuracy: 0.158000\n"
      ]
     }
    ],
@@ -742,7 +751,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 36,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -763,7 +772,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 37,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -779,7 +788,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 38,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -795,7 +804,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 39,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -811,7 +820,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 40,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -838,23 +847,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:33: RuntimeWarning: overflow encountered in double_scalars\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:33: RuntimeWarning: overflow encountered in multiply\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:28: RuntimeWarning: overflow encountered in subtract\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:28: RuntimeWarning: invalid value encountered in subtract\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:30: RuntimeWarning: invalid value encountered in greater\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:46: RuntimeWarning: overflow encountered in multiply\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:60: RuntimeWarning: invalid value encountered in add\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "for l in learning_rates:\n",
     "    for r in regularization_strengths:\n",
@@ -874,1617 +869,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "lr 1.000000e-05 reg 1.000000e-05 train accuracy: 0.221286 val accuracy: 0.203000\n",
-      "lr 1.000000e-05 reg 1.511775e-05 train accuracy: 0.221265 val accuracy: 0.222000\n",
-      "lr 1.000000e-05 reg 2.285464e-05 train accuracy: 0.229204 val accuracy: 0.212000\n",
-      "lr 1.000000e-05 reg 3.455107e-05 train accuracy: 0.223510 val accuracy: 0.215000\n",
-      "lr 1.000000e-05 reg 5.223345e-05 train accuracy: 0.203000 val accuracy: 0.188000\n",
-      "lr 1.000000e-05 reg 7.896523e-05 train accuracy: 0.172694 val accuracy: 0.167000\n",
-      "lr 1.000000e-05 reg 1.193777e-04 train accuracy: 0.219796 val accuracy: 0.196000\n",
-      "lr 1.000000e-05 reg 1.804722e-04 train accuracy: 0.172714 val accuracy: 0.178000\n",
-      "lr 1.000000e-05 reg 2.728333e-04 train accuracy: 0.185531 val accuracy: 0.166000\n",
-      "lr 1.000000e-05 reg 4.124626e-04 train accuracy: 0.239490 val accuracy: 0.205000\n",
-      "lr 1.000000e-05 reg 6.235507e-04 train accuracy: 0.193388 val accuracy: 0.193000\n",
-      "lr 1.000000e-05 reg 9.426685e-04 train accuracy: 0.226816 val accuracy: 0.200000\n",
-      "lr 1.000000e-05 reg 1.425103e-03 train accuracy: 0.202959 val accuracy: 0.191000\n",
-      "lr 1.000000e-05 reg 2.154435e-03 train accuracy: 0.159041 val accuracy: 0.122000\n",
-      "lr 1.000000e-05 reg 3.257021e-03 train accuracy: 0.209224 val accuracy: 0.183000\n",
-      "lr 1.000000e-05 reg 4.923883e-03 train accuracy: 0.217633 val accuracy: 0.212000\n",
-      "lr 1.000000e-05 reg 7.443803e-03 train accuracy: 0.155551 val accuracy: 0.161000\n",
-      "lr 1.000000e-05 reg 1.125336e-02 train accuracy: 0.176531 val accuracy: 0.159000\n",
-      "lr 1.000000e-05 reg 1.701254e-02 train accuracy: 0.181184 val accuracy: 0.158000\n",
-      "lr 1.000000e-05 reg 2.571914e-02 train accuracy: 0.174449 val accuracy: 0.163000\n",
-      "lr 1.000000e-05 reg 3.888155e-02 train accuracy: 0.212510 val accuracy: 0.199000\n",
-      "lr 1.000000e-05 reg 5.878016e-02 train accuracy: 0.192082 val accuracy: 0.162000\n",
-      "lr 1.000000e-05 reg 8.886238e-02 train accuracy: 0.108306 val accuracy: 0.087000\n",
-      "lr 1.000000e-05 reg 1.343399e-01 train accuracy: 0.117245 val accuracy: 0.100000\n",
-      "lr 1.000000e-05 reg 2.030918e-01 train accuracy: 0.186592 val accuracy: 0.165000\n",
-      "lr 1.000000e-05 reg 3.070291e-01 train accuracy: 0.192735 val accuracy: 0.204000\n",
-      "lr 1.000000e-05 reg 4.641589e-01 train accuracy: 0.203102 val accuracy: 0.203000\n",
-      "lr 1.000000e-05 reg 7.017038e-01 train accuracy: 0.212286 val accuracy: 0.213000\n",
-      "lr 1.000000e-05 reg 1.060818e+00 train accuracy: 0.166286 val accuracy: 0.195000\n",
-      "lr 1.000000e-05 reg 1.603719e+00 train accuracy: 0.188408 val accuracy: 0.180000\n",
-      "lr 1.000000e-05 reg 2.424462e+00 train accuracy: 0.183020 val accuracy: 0.166000\n",
-      "lr 1.000000e-05 reg 3.665241e+00 train accuracy: 0.198388 val accuracy: 0.173000\n",
-      "lr 1.000000e-05 reg 5.541020e+00 train accuracy: 0.179816 val accuracy: 0.153000\n",
-      "lr 1.000000e-05 reg 8.376776e+00 train accuracy: 0.189122 val accuracy: 0.195000\n",
-      "lr 1.000000e-05 reg 1.266380e+01 train accuracy: 0.227673 val accuracy: 0.219000\n",
-      "lr 1.000000e-05 reg 1.914482e+01 train accuracy: 0.162061 val accuracy: 0.169000\n",
-      "lr 1.000000e-05 reg 2.894266e+01 train accuracy: 0.146102 val accuracy: 0.156000\n",
-      "lr 1.000000e-05 reg 4.375479e+01 train accuracy: 0.199612 val accuracy: 0.183000\n",
-      "lr 1.000000e-05 reg 6.614741e+01 train accuracy: 0.204367 val accuracy: 0.188000\n",
-      "lr 1.000000e-05 reg 1.000000e+02 train accuracy: 0.141490 val accuracy: 0.144000\n",
-      "lr 1.343399e-05 reg 1.000000e-05 train accuracy: 0.217898 val accuracy: 0.172000\n",
-      "lr 1.343399e-05 reg 1.511775e-05 train accuracy: 0.241694 val accuracy: 0.249000\n",
-      "lr 1.343399e-05 reg 2.285464e-05 train accuracy: 0.139694 val accuracy: 0.129000\n",
-      "lr 1.343399e-05 reg 3.455107e-05 train accuracy: 0.239551 val accuracy: 0.221000\n",
-      "lr 1.343399e-05 reg 5.223345e-05 train accuracy: 0.183612 val accuracy: 0.183000\n",
-      "lr 1.343399e-05 reg 7.896523e-05 train accuracy: 0.218204 val accuracy: 0.201000\n",
-      "lr 1.343399e-05 reg 1.193777e-04 train accuracy: 0.205102 val accuracy: 0.203000\n",
-      "lr 1.343399e-05 reg 1.804722e-04 train accuracy: 0.207796 val accuracy: 0.222000\n",
-      "lr 1.343399e-05 reg 2.728333e-04 train accuracy: 0.166653 val accuracy: 0.146000\n",
-      "lr 1.343399e-05 reg 4.124626e-04 train accuracy: 0.125694 val accuracy: 0.137000\n",
-      "lr 1.343399e-05 reg 6.235507e-04 train accuracy: 0.153857 val accuracy: 0.148000\n",
-      "lr 1.343399e-05 reg 9.426685e-04 train accuracy: 0.135102 val accuracy: 0.128000\n",
-      "lr 1.343399e-05 reg 1.425103e-03 train accuracy: 0.150224 val accuracy: 0.174000\n",
-      "lr 1.343399e-05 reg 2.154435e-03 train accuracy: 0.177102 val accuracy: 0.164000\n",
-      "lr 1.343399e-05 reg 3.257021e-03 train accuracy: 0.222367 val accuracy: 0.201000\n",
-      "lr 1.343399e-05 reg 4.923883e-03 train accuracy: 0.135592 val accuracy: 0.129000\n",
-      "lr 1.343399e-05 reg 7.443803e-03 train accuracy: 0.210388 val accuracy: 0.215000\n",
-      "lr 1.343399e-05 reg 1.125336e-02 train accuracy: 0.213306 val accuracy: 0.200000\n",
-      "lr 1.343399e-05 reg 1.701254e-02 train accuracy: 0.197571 val accuracy: 0.190000\n",
-      "lr 1.343399e-05 reg 2.571914e-02 train accuracy: 0.236204 val accuracy: 0.212000\n",
-      "lr 1.343399e-05 reg 3.888155e-02 train accuracy: 0.254143 val accuracy: 0.240000\n",
-      "lr 1.343399e-05 reg 5.878016e-02 train accuracy: 0.225000 val accuracy: 0.218000\n",
-      "lr 1.343399e-05 reg 8.886238e-02 train accuracy: 0.226041 val accuracy: 0.242000\n",
-      "lr 1.343399e-05 reg 1.343399e-01 train accuracy: 0.124020 val accuracy: 0.137000\n",
-      "lr 1.343399e-05 reg 2.030918e-01 train accuracy: 0.210061 val accuracy: 0.211000\n",
-      "lr 1.343399e-05 reg 3.070291e-01 train accuracy: 0.215776 val accuracy: 0.202000\n",
-      "lr 1.343399e-05 reg 4.641589e-01 train accuracy: 0.202592 val accuracy: 0.188000\n",
-      "lr 1.343399e-05 reg 7.017038e-01 train accuracy: 0.233408 val accuracy: 0.225000\n",
-      "lr 1.343399e-05 reg 1.060818e+00 train accuracy: 0.218469 val accuracy: 0.201000\n",
-      "lr 1.343399e-05 reg 1.603719e+00 train accuracy: 0.205592 val accuracy: 0.200000\n",
-      "lr 1.343399e-05 reg 2.424462e+00 train accuracy: 0.121306 val accuracy: 0.140000\n",
-      "lr 1.343399e-05 reg 3.665241e+00 train accuracy: 0.196837 val accuracy: 0.212000\n",
-      "lr 1.343399e-05 reg 5.541020e+00 train accuracy: 0.103490 val accuracy: 0.083000\n",
-      "lr 1.343399e-05 reg 8.376776e+00 train accuracy: 0.221224 val accuracy: 0.227000\n",
-      "lr 1.343399e-05 reg 1.266380e+01 train accuracy: 0.190102 val accuracy: 0.179000\n",
-      "lr 1.343399e-05 reg 1.914482e+01 train accuracy: 0.136735 val accuracy: 0.147000\n",
-      "lr 1.343399e-05 reg 2.894266e+01 train accuracy: 0.168245 val accuracy: 0.160000\n",
-      "lr 1.343399e-05 reg 4.375479e+01 train accuracy: 0.131000 val accuracy: 0.112000\n",
-      "lr 1.343399e-05 reg 6.614741e+01 train accuracy: 0.205388 val accuracy: 0.194000\n",
-      "lr 1.343399e-05 reg 1.000000e+02 train accuracy: 0.178939 val accuracy: 0.180000\n",
-      "lr 1.804722e-05 reg 1.000000e-05 train accuracy: 0.191143 val accuracy: 0.212000\n",
-      "lr 1.804722e-05 reg 1.511775e-05 train accuracy: 0.181918 val accuracy: 0.164000\n",
-      "lr 1.804722e-05 reg 2.285464e-05 train accuracy: 0.187327 val accuracy: 0.172000\n",
-      "lr 1.804722e-05 reg 3.455107e-05 train accuracy: 0.197592 val accuracy: 0.191000\n",
-      "lr 1.804722e-05 reg 5.223345e-05 train accuracy: 0.182388 val accuracy: 0.172000\n",
-      "lr 1.804722e-05 reg 7.896523e-05 train accuracy: 0.195429 val accuracy: 0.189000\n",
-      "lr 1.804722e-05 reg 1.193777e-04 train accuracy: 0.221163 val accuracy: 0.198000\n",
-      "lr 1.804722e-05 reg 1.804722e-04 train accuracy: 0.181918 val accuracy: 0.190000\n",
-      "lr 1.804722e-05 reg 2.728333e-04 train accuracy: 0.205633 val accuracy: 0.183000\n",
-      "lr 1.804722e-05 reg 4.124626e-04 train accuracy: 0.180571 val accuracy: 0.164000\n",
-      "lr 1.804722e-05 reg 6.235507e-04 train accuracy: 0.198837 val accuracy: 0.185000\n",
-      "lr 1.804722e-05 reg 9.426685e-04 train accuracy: 0.208959 val accuracy: 0.203000\n",
-      "lr 1.804722e-05 reg 1.425103e-03 train accuracy: 0.204857 val accuracy: 0.186000\n",
-      "lr 1.804722e-05 reg 2.154435e-03 train accuracy: 0.227714 val accuracy: 0.213000\n",
-      "lr 1.804722e-05 reg 3.257021e-03 train accuracy: 0.247245 val accuracy: 0.227000\n",
-      "lr 1.804722e-05 reg 4.923883e-03 train accuracy: 0.198673 val accuracy: 0.198000\n",
-      "lr 1.804722e-05 reg 7.443803e-03 train accuracy: 0.128449 val accuracy: 0.110000\n",
-      "lr 1.804722e-05 reg 1.125336e-02 train accuracy: 0.185449 val accuracy: 0.170000\n",
-      "lr 1.804722e-05 reg 1.701254e-02 train accuracy: 0.117898 val accuracy: 0.132000\n",
-      "lr 1.804722e-05 reg 2.571914e-02 train accuracy: 0.212571 val accuracy: 0.233000\n",
-      "lr 1.804722e-05 reg 3.888155e-02 train accuracy: 0.225531 val accuracy: 0.220000\n",
-      "lr 1.804722e-05 reg 5.878016e-02 train accuracy: 0.170878 val accuracy: 0.154000\n",
-      "lr 1.804722e-05 reg 8.886238e-02 train accuracy: 0.142510 val accuracy: 0.154000\n",
-      "lr 1.804722e-05 reg 1.343399e-01 train accuracy: 0.211857 val accuracy: 0.197000\n",
-      "lr 1.804722e-05 reg 2.030918e-01 train accuracy: 0.177367 val accuracy: 0.139000\n",
-      "lr 1.804722e-05 reg 3.070291e-01 train accuracy: 0.160633 val accuracy: 0.182000\n",
-      "lr 1.804722e-05 reg 4.641589e-01 train accuracy: 0.172122 val accuracy: 0.177000\n",
-      "lr 1.804722e-05 reg 7.017038e-01 train accuracy: 0.174918 val accuracy: 0.164000\n",
-      "lr 1.804722e-05 reg 1.060818e+00 train accuracy: 0.141633 val accuracy: 0.159000\n",
-      "lr 1.804722e-05 reg 1.603719e+00 train accuracy: 0.216837 val accuracy: 0.212000\n",
-      "lr 1.804722e-05 reg 2.424462e+00 train accuracy: 0.210224 val accuracy: 0.208000\n",
-      "lr 1.804722e-05 reg 3.665241e+00 train accuracy: 0.197816 val accuracy: 0.180000\n",
-      "lr 1.804722e-05 reg 5.541020e+00 train accuracy: 0.204796 val accuracy: 0.206000\n",
-      "lr 1.804722e-05 reg 8.376776e+00 train accuracy: 0.178673 val accuracy: 0.185000\n",
-      "lr 1.804722e-05 reg 1.266380e+01 train accuracy: 0.240571 val accuracy: 0.222000\n",
-      "lr 1.804722e-05 reg 1.914482e+01 train accuracy: 0.205878 val accuracy: 0.185000\n",
-      "lr 1.804722e-05 reg 2.894266e+01 train accuracy: 0.189612 val accuracy: 0.160000\n",
-      "lr 1.804722e-05 reg 4.375479e+01 train accuracy: 0.179122 val accuracy: 0.177000\n",
-      "lr 1.804722e-05 reg 6.614741e+01 train accuracy: 0.182816 val accuracy: 0.172000\n",
-      "lr 1.804722e-05 reg 1.000000e+02 train accuracy: 0.178143 val accuracy: 0.164000\n",
-      "lr 2.424462e-05 reg 1.000000e-05 train accuracy: 0.170122 val accuracy: 0.176000\n",
-      "lr 2.424462e-05 reg 1.511775e-05 train accuracy: 0.215633 val accuracy: 0.202000\n",
-      "lr 2.424462e-05 reg 2.285464e-05 train accuracy: 0.221184 val accuracy: 0.206000\n",
-      "lr 2.424462e-05 reg 3.455107e-05 train accuracy: 0.162184 val accuracy: 0.141000\n",
-      "lr 2.424462e-05 reg 5.223345e-05 train accuracy: 0.163694 val accuracy: 0.147000\n",
-      "lr 2.424462e-05 reg 7.896523e-05 train accuracy: 0.225571 val accuracy: 0.211000\n",
-      "lr 2.424462e-05 reg 1.193777e-04 train accuracy: 0.164653 val accuracy: 0.172000\n",
-      "lr 2.424462e-05 reg 1.804722e-04 train accuracy: 0.220163 val accuracy: 0.192000\n",
-      "lr 2.424462e-05 reg 2.728333e-04 train accuracy: 0.217898 val accuracy: 0.231000\n",
-      "lr 2.424462e-05 reg 4.124626e-04 train accuracy: 0.215796 val accuracy: 0.190000\n",
-      "lr 2.424462e-05 reg 6.235507e-04 train accuracy: 0.136735 val accuracy: 0.118000\n",
-      "lr 2.424462e-05 reg 9.426685e-04 train accuracy: 0.125327 val accuracy: 0.113000\n",
-      "lr 2.424462e-05 reg 1.425103e-03 train accuracy: 0.218490 val accuracy: 0.212000\n",
-      "lr 2.424462e-05 reg 2.154435e-03 train accuracy: 0.237571 val accuracy: 0.216000\n",
-      "lr 2.424462e-05 reg 3.257021e-03 train accuracy: 0.198469 val accuracy: 0.186000\n",
-      "lr 2.424462e-05 reg 4.923883e-03 train accuracy: 0.214265 val accuracy: 0.212000\n",
-      "lr 2.424462e-05 reg 7.443803e-03 train accuracy: 0.178571 val accuracy: 0.167000\n",
-      "lr 2.424462e-05 reg 1.125336e-02 train accuracy: 0.174776 val accuracy: 0.169000\n",
-      "lr 2.424462e-05 reg 1.701254e-02 train accuracy: 0.113878 val accuracy: 0.114000\n",
-      "lr 2.424462e-05 reg 2.571914e-02 train accuracy: 0.124551 val accuracy: 0.133000\n",
-      "lr 2.424462e-05 reg 3.888155e-02 train accuracy: 0.169959 val accuracy: 0.158000\n",
-      "lr 2.424462e-05 reg 5.878016e-02 train accuracy: 0.192939 val accuracy: 0.201000\n",
-      "lr 2.424462e-05 reg 8.886238e-02 train accuracy: 0.204735 val accuracy: 0.187000\n",
-      "lr 2.424462e-05 reg 1.343399e-01 train accuracy: 0.190061 val accuracy: 0.202000\n",
-      "lr 2.424462e-05 reg 2.030918e-01 train accuracy: 0.238224 val accuracy: 0.217000\n",
-      "lr 2.424462e-05 reg 3.070291e-01 train accuracy: 0.212082 val accuracy: 0.198000\n",
-      "lr 2.424462e-05 reg 4.641589e-01 train accuracy: 0.171837 val accuracy: 0.162000\n",
-      "lr 2.424462e-05 reg 7.017038e-01 train accuracy: 0.180980 val accuracy: 0.177000\n",
-      "lr 2.424462e-05 reg 1.060818e+00 train accuracy: 0.169327 val accuracy: 0.172000\n",
-      "lr 2.424462e-05 reg 1.603719e+00 train accuracy: 0.142776 val accuracy: 0.116000\n",
-      "lr 2.424462e-05 reg 2.424462e+00 train accuracy: 0.207122 val accuracy: 0.197000\n",
-      "lr 2.424462e-05 reg 3.665241e+00 train accuracy: 0.200918 val accuracy: 0.181000\n",
-      "lr 2.424462e-05 reg 5.541020e+00 train accuracy: 0.145490 val accuracy: 0.135000\n",
-      "lr 2.424462e-05 reg 8.376776e+00 train accuracy: 0.209020 val accuracy: 0.202000\n",
-      "lr 2.424462e-05 reg 1.266380e+01 train accuracy: 0.162653 val accuracy: 0.156000\n",
-      "lr 2.424462e-05 reg 1.914482e+01 train accuracy: 0.153245 val accuracy: 0.138000\n",
-      "lr 2.424462e-05 reg 2.894266e+01 train accuracy: 0.190673 val accuracy: 0.178000\n",
-      "lr 2.424462e-05 reg 4.375479e+01 train accuracy: 0.186898 val accuracy: 0.174000\n",
-      "lr 2.424462e-05 reg 6.614741e+01 train accuracy: 0.176469 val accuracy: 0.175000\n",
-      "lr 2.424462e-05 reg 1.000000e+02 train accuracy: 0.186551 val accuracy: 0.191000\n",
-      "lr 3.257021e-05 reg 1.000000e-05 train accuracy: 0.160020 val accuracy: 0.150000\n",
-      "lr 3.257021e-05 reg 1.511775e-05 train accuracy: 0.194000 val accuracy: 0.185000\n",
-      "lr 3.257021e-05 reg 2.285464e-05 train accuracy: 0.189347 val accuracy: 0.212000\n",
-      "lr 3.257021e-05 reg 3.455107e-05 train accuracy: 0.152143 val accuracy: 0.133000\n",
-      "lr 3.257021e-05 reg 5.223345e-05 train accuracy: 0.222898 val accuracy: 0.210000\n",
-      "lr 3.257021e-05 reg 7.896523e-05 train accuracy: 0.185939 val accuracy: 0.188000\n",
-      "lr 3.257021e-05 reg 1.193777e-04 train accuracy: 0.225469 val accuracy: 0.205000\n",
-      "lr 3.257021e-05 reg 1.804722e-04 train accuracy: 0.201061 val accuracy: 0.186000\n",
-      "lr 3.257021e-05 reg 2.728333e-04 train accuracy: 0.232408 val accuracy: 0.200000\n",
-      "lr 3.257021e-05 reg 4.124626e-04 train accuracy: 0.188735 val accuracy: 0.197000\n",
-      "lr 3.257021e-05 reg 6.235507e-04 train accuracy: 0.200367 val accuracy: 0.176000\n",
-      "lr 3.257021e-05 reg 9.426685e-04 train accuracy: 0.227612 val accuracy: 0.197000\n",
-      "lr 3.257021e-05 reg 1.425103e-03 train accuracy: 0.163816 val accuracy: 0.145000\n",
-      "lr 3.257021e-05 reg 2.154435e-03 train accuracy: 0.214816 val accuracy: 0.217000\n",
-      "lr 3.257021e-05 reg 3.257021e-03 train accuracy: 0.148694 val accuracy: 0.136000\n",
-      "lr 3.257021e-05 reg 4.923883e-03 train accuracy: 0.156408 val accuracy: 0.110000\n",
-      "lr 3.257021e-05 reg 7.443803e-03 train accuracy: 0.193204 val accuracy: 0.193000\n",
-      "lr 3.257021e-05 reg 1.125336e-02 train accuracy: 0.145061 val accuracy: 0.125000\n",
-      "lr 3.257021e-05 reg 1.701254e-02 train accuracy: 0.228878 val accuracy: 0.207000\n",
-      "lr 3.257021e-05 reg 2.571914e-02 train accuracy: 0.199918 val accuracy: 0.183000\n",
-      "lr 3.257021e-05 reg 3.888155e-02 train accuracy: 0.163816 val accuracy: 0.153000\n",
-      "lr 3.257021e-05 reg 5.878016e-02 train accuracy: 0.255776 val accuracy: 0.233000\n",
-      "lr 3.257021e-05 reg 8.886238e-02 train accuracy: 0.162633 val accuracy: 0.165000\n",
-      "lr 3.257021e-05 reg 1.343399e-01 train accuracy: 0.185837 val accuracy: 0.174000\n",
-      "lr 3.257021e-05 reg 2.030918e-01 train accuracy: 0.214755 val accuracy: 0.197000\n",
-      "lr 3.257021e-05 reg 3.070291e-01 train accuracy: 0.206735 val accuracy: 0.209000\n",
-      "lr 3.257021e-05 reg 4.641589e-01 train accuracy: 0.170714 val accuracy: 0.164000\n",
-      "lr 3.257021e-05 reg 7.017038e-01 train accuracy: 0.199204 val accuracy: 0.173000\n",
-      "lr 3.257021e-05 reg 1.060818e+00 train accuracy: 0.228755 val accuracy: 0.201000\n",
-      "lr 3.257021e-05 reg 1.603719e+00 train accuracy: 0.160837 val accuracy: 0.160000\n",
-      "lr 3.257021e-05 reg 2.424462e+00 train accuracy: 0.160633 val accuracy: 0.129000\n",
-      "lr 3.257021e-05 reg 3.665241e+00 train accuracy: 0.177327 val accuracy: 0.190000\n",
-      "lr 3.257021e-05 reg 5.541020e+00 train accuracy: 0.168041 val accuracy: 0.162000\n",
-      "lr 3.257021e-05 reg 8.376776e+00 train accuracy: 0.133653 val accuracy: 0.123000\n",
-      "lr 3.257021e-05 reg 1.266380e+01 train accuracy: 0.207612 val accuracy: 0.192000\n",
-      "lr 3.257021e-05 reg 1.914482e+01 train accuracy: 0.187633 val accuracy: 0.160000\n",
-      "lr 3.257021e-05 reg 2.894266e+01 train accuracy: 0.181020 val accuracy: 0.163000\n",
-      "lr 3.257021e-05 reg 4.375479e+01 train accuracy: 0.154327 val accuracy: 0.164000\n",
-      "lr 3.257021e-05 reg 6.614741e+01 train accuracy: 0.125551 val accuracy: 0.136000\n",
-      "lr 3.257021e-05 reg 1.000000e+02 train accuracy: 0.194653 val accuracy: 0.186000\n",
-      "lr 4.375479e-05 reg 1.000000e-05 train accuracy: 0.153020 val accuracy: 0.144000\n",
-      "lr 4.375479e-05 reg 1.511775e-05 train accuracy: 0.179367 val accuracy: 0.144000\n",
-      "lr 4.375479e-05 reg 2.285464e-05 train accuracy: 0.168653 val accuracy: 0.172000\n",
-      "lr 4.375479e-05 reg 3.455107e-05 train accuracy: 0.161918 val accuracy: 0.168000\n",
-      "lr 4.375479e-05 reg 5.223345e-05 train accuracy: 0.162776 val accuracy: 0.137000\n",
-      "lr 4.375479e-05 reg 7.896523e-05 train accuracy: 0.224939 val accuracy: 0.206000\n",
-      "lr 4.375479e-05 reg 1.193777e-04 train accuracy: 0.128694 val accuracy: 0.119000\n",
-      "lr 4.375479e-05 reg 1.804722e-04 train accuracy: 0.201184 val accuracy: 0.188000\n",
-      "lr 4.375479e-05 reg 2.728333e-04 train accuracy: 0.247673 val accuracy: 0.231000\n",
-      "lr 4.375479e-05 reg 4.124626e-04 train accuracy: 0.166510 val accuracy: 0.160000\n",
-      "lr 4.375479e-05 reg 6.235507e-04 train accuracy: 0.180265 val accuracy: 0.213000\n",
-      "lr 4.375479e-05 reg 9.426685e-04 train accuracy: 0.166980 val accuracy: 0.136000\n",
-      "lr 4.375479e-05 reg 1.425103e-03 train accuracy: 0.193061 val accuracy: 0.205000\n",
-      "lr 4.375479e-05 reg 2.154435e-03 train accuracy: 0.260000 val accuracy: 0.232000\n",
-      "lr 4.375479e-05 reg 3.257021e-03 train accuracy: 0.197571 val accuracy: 0.159000\n",
-      "lr 4.375479e-05 reg 4.923883e-03 train accuracy: 0.192898 val accuracy: 0.201000\n",
-      "lr 4.375479e-05 reg 7.443803e-03 train accuracy: 0.159918 val accuracy: 0.147000\n",
-      "lr 4.375479e-05 reg 1.125336e-02 train accuracy: 0.188592 val accuracy: 0.167000\n",
-      "lr 4.375479e-05 reg 1.701254e-02 train accuracy: 0.156755 val accuracy: 0.179000\n",
-      "lr 4.375479e-05 reg 2.571914e-02 train accuracy: 0.223327 val accuracy: 0.198000\n",
-      "lr 4.375479e-05 reg 3.888155e-02 train accuracy: 0.203469 val accuracy: 0.192000\n",
-      "lr 4.375479e-05 reg 5.878016e-02 train accuracy: 0.182388 val accuracy: 0.181000\n",
-      "lr 4.375479e-05 reg 8.886238e-02 train accuracy: 0.172959 val accuracy: 0.190000\n",
-      "lr 4.375479e-05 reg 1.343399e-01 train accuracy: 0.191102 val accuracy: 0.179000\n",
-      "lr 4.375479e-05 reg 2.030918e-01 train accuracy: 0.206551 val accuracy: 0.203000\n",
-      "lr 4.375479e-05 reg 3.070291e-01 train accuracy: 0.241857 val accuracy: 0.236000\n",
-      "lr 4.375479e-05 reg 4.641589e-01 train accuracy: 0.193857 val accuracy: 0.206000\n",
-      "lr 4.375479e-05 reg 7.017038e-01 train accuracy: 0.203327 val accuracy: 0.216000\n",
-      "lr 4.375479e-05 reg 1.060818e+00 train accuracy: 0.207265 val accuracy: 0.192000\n",
-      "lr 4.375479e-05 reg 1.603719e+00 train accuracy: 0.165061 val accuracy: 0.159000\n",
-      "lr 4.375479e-05 reg 2.424462e+00 train accuracy: 0.170020 val accuracy: 0.180000\n",
-      "lr 4.375479e-05 reg 3.665241e+00 train accuracy: 0.210408 val accuracy: 0.218000\n",
-      "lr 4.375479e-05 reg 5.541020e+00 train accuracy: 0.200327 val accuracy: 0.188000\n",
-      "lr 4.375479e-05 reg 8.376776e+00 train accuracy: 0.221367 val accuracy: 0.216000\n",
-      "lr 4.375479e-05 reg 1.266380e+01 train accuracy: 0.139306 val accuracy: 0.165000\n",
-      "lr 4.375479e-05 reg 1.914482e+01 train accuracy: 0.161143 val accuracy: 0.153000\n",
-      "lr 4.375479e-05 reg 2.894266e+01 train accuracy: 0.150347 val accuracy: 0.140000\n",
-      "lr 4.375479e-05 reg 4.375479e+01 train accuracy: 0.192714 val accuracy: 0.187000\n",
-      "lr 4.375479e-05 reg 6.614741e+01 train accuracy: 0.144061 val accuracy: 0.134000\n",
-      "lr 4.375479e-05 reg 1.000000e+02 train accuracy: 0.161204 val accuracy: 0.160000\n",
-      "lr 5.878016e-05 reg 1.000000e-05 train accuracy: 0.111980 val accuracy: 0.093000\n",
-      "lr 5.878016e-05 reg 1.511775e-05 train accuracy: 0.220939 val accuracy: 0.227000\n",
-      "lr 5.878016e-05 reg 2.285464e-05 train accuracy: 0.243490 val accuracy: 0.216000\n",
-      "lr 5.878016e-05 reg 3.455107e-05 train accuracy: 0.203694 val accuracy: 0.198000\n",
-      "lr 5.878016e-05 reg 5.223345e-05 train accuracy: 0.195306 val accuracy: 0.181000\n",
-      "lr 5.878016e-05 reg 7.896523e-05 train accuracy: 0.198327 val accuracy: 0.189000\n",
-      "lr 5.878016e-05 reg 1.193777e-04 train accuracy: 0.212571 val accuracy: 0.193000\n",
-      "lr 5.878016e-05 reg 1.804722e-04 train accuracy: 0.149837 val accuracy: 0.140000\n",
-      "lr 5.878016e-05 reg 2.728333e-04 train accuracy: 0.188041 val accuracy: 0.172000\n",
-      "lr 5.878016e-05 reg 4.124626e-04 train accuracy: 0.206122 val accuracy: 0.204000\n",
-      "lr 5.878016e-05 reg 6.235507e-04 train accuracy: 0.227469 val accuracy: 0.203000\n",
-      "lr 5.878016e-05 reg 9.426685e-04 train accuracy: 0.184980 val accuracy: 0.181000\n",
-      "lr 5.878016e-05 reg 1.425103e-03 train accuracy: 0.243755 val accuracy: 0.226000\n",
-      "lr 5.878016e-05 reg 2.154435e-03 train accuracy: 0.225959 val accuracy: 0.197000\n",
-      "lr 5.878016e-05 reg 3.257021e-03 train accuracy: 0.170245 val accuracy: 0.182000\n",
-      "lr 5.878016e-05 reg 4.923883e-03 train accuracy: 0.211020 val accuracy: 0.209000\n",
-      "lr 5.878016e-05 reg 7.443803e-03 train accuracy: 0.207959 val accuracy: 0.194000\n",
-      "lr 5.878016e-05 reg 1.125336e-02 train accuracy: 0.139571 val accuracy: 0.156000\n",
-      "lr 5.878016e-05 reg 1.701254e-02 train accuracy: 0.220224 val accuracy: 0.222000\n",
-      "lr 5.878016e-05 reg 2.571914e-02 train accuracy: 0.204367 val accuracy: 0.204000\n",
-      "lr 5.878016e-05 reg 3.888155e-02 train accuracy: 0.200306 val accuracy: 0.186000\n",
-      "lr 5.878016e-05 reg 5.878016e-02 train accuracy: 0.226776 val accuracy: 0.223000\n",
-      "lr 5.878016e-05 reg 8.886238e-02 train accuracy: 0.110102 val accuracy: 0.086000\n",
-      "lr 5.878016e-05 reg 1.343399e-01 train accuracy: 0.165837 val accuracy: 0.146000\n",
-      "lr 5.878016e-05 reg 2.030918e-01 train accuracy: 0.195878 val accuracy: 0.196000\n",
-      "lr 5.878016e-05 reg 3.070291e-01 train accuracy: 0.219224 val accuracy: 0.198000\n",
-      "lr 5.878016e-05 reg 4.641589e-01 train accuracy: 0.178367 val accuracy: 0.186000\n",
-      "lr 5.878016e-05 reg 7.017038e-01 train accuracy: 0.235959 val accuracy: 0.237000\n",
-      "lr 5.878016e-05 reg 1.060818e+00 train accuracy: 0.194898 val accuracy: 0.181000\n",
-      "lr 5.878016e-05 reg 1.603719e+00 train accuracy: 0.200367 val accuracy: 0.216000\n",
-      "lr 5.878016e-05 reg 2.424462e+00 train accuracy: 0.166796 val accuracy: 0.154000\n",
-      "lr 5.878016e-05 reg 3.665241e+00 train accuracy: 0.151735 val accuracy: 0.144000\n",
-      "lr 5.878016e-05 reg 5.541020e+00 train accuracy: 0.198653 val accuracy: 0.194000\n",
-      "lr 5.878016e-05 reg 8.376776e+00 train accuracy: 0.199449 val accuracy: 0.209000\n",
-      "lr 5.878016e-05 reg 1.266380e+01 train accuracy: 0.198878 val accuracy: 0.200000\n",
-      "lr 5.878016e-05 reg 1.914482e+01 train accuracy: 0.175959 val accuracy: 0.195000\n",
-      "lr 5.878016e-05 reg 2.894266e+01 train accuracy: 0.133796 val accuracy: 0.131000\n",
-      "lr 5.878016e-05 reg 4.375479e+01 train accuracy: 0.225571 val accuracy: 0.236000\n",
-      "lr 5.878016e-05 reg 6.614741e+01 train accuracy: 0.116082 val accuracy: 0.119000\n",
-      "lr 5.878016e-05 reg 1.000000e+02 train accuracy: 0.169449 val accuracy: 0.158000\n",
-      "lr 7.896523e-05 reg 1.000000e-05 train accuracy: 0.207265 val accuracy: 0.198000\n",
-      "lr 7.896523e-05 reg 1.511775e-05 train accuracy: 0.215184 val accuracy: 0.183000\n",
-      "lr 7.896523e-05 reg 2.285464e-05 train accuracy: 0.228939 val accuracy: 0.212000\n",
-      "lr 7.896523e-05 reg 3.455107e-05 train accuracy: 0.196776 val accuracy: 0.190000\n",
-      "lr 7.896523e-05 reg 5.223345e-05 train accuracy: 0.162122 val accuracy: 0.141000\n",
-      "lr 7.896523e-05 reg 7.896523e-05 train accuracy: 0.216816 val accuracy: 0.206000\n",
-      "lr 7.896523e-05 reg 1.193777e-04 train accuracy: 0.200980 val accuracy: 0.200000\n",
-      "lr 7.896523e-05 reg 1.804722e-04 train accuracy: 0.123163 val accuracy: 0.111000\n",
-      "lr 7.896523e-05 reg 2.728333e-04 train accuracy: 0.180163 val accuracy: 0.162000\n",
-      "lr 7.896523e-05 reg 4.124626e-04 train accuracy: 0.190612 val accuracy: 0.167000\n",
-      "lr 7.896523e-05 reg 6.235507e-04 train accuracy: 0.159612 val accuracy: 0.157000\n",
-      "lr 7.896523e-05 reg 9.426685e-04 train accuracy: 0.111592 val accuracy: 0.095000\n",
-      "lr 7.896523e-05 reg 1.425103e-03 train accuracy: 0.181367 val accuracy: 0.187000\n",
-      "lr 7.896523e-05 reg 2.154435e-03 train accuracy: 0.156653 val accuracy: 0.164000\n",
-      "lr 7.896523e-05 reg 3.257021e-03 train accuracy: 0.203000 val accuracy: 0.206000\n",
-      "lr 7.896523e-05 reg 4.923883e-03 train accuracy: 0.196653 val accuracy: 0.177000\n",
-      "lr 7.896523e-05 reg 7.443803e-03 train accuracy: 0.211408 val accuracy: 0.189000\n",
-      "lr 7.896523e-05 reg 1.125336e-02 train accuracy: 0.205061 val accuracy: 0.182000\n",
-      "lr 7.896523e-05 reg 1.701254e-02 train accuracy: 0.127163 val accuracy: 0.137000\n",
-      "lr 7.896523e-05 reg 2.571914e-02 train accuracy: 0.158490 val accuracy: 0.165000\n",
-      "lr 7.896523e-05 reg 3.888155e-02 train accuracy: 0.221122 val accuracy: 0.219000\n",
-      "lr 7.896523e-05 reg 5.878016e-02 train accuracy: 0.202061 val accuracy: 0.212000\n",
-      "lr 7.896523e-05 reg 8.886238e-02 train accuracy: 0.216265 val accuracy: 0.197000\n",
-      "lr 7.896523e-05 reg 1.343399e-01 train accuracy: 0.224694 val accuracy: 0.194000\n",
-      "lr 7.896523e-05 reg 2.030918e-01 train accuracy: 0.194694 val accuracy: 0.187000\n",
-      "lr 7.896523e-05 reg 3.070291e-01 train accuracy: 0.156408 val accuracy: 0.139000\n",
-      "lr 7.896523e-05 reg 4.641589e-01 train accuracy: 0.149490 val accuracy: 0.170000\n",
-      "lr 7.896523e-05 reg 7.017038e-01 train accuracy: 0.204224 val accuracy: 0.214000\n",
-      "lr 7.896523e-05 reg 1.060818e+00 train accuracy: 0.168939 val accuracy: 0.173000\n",
-      "lr 7.896523e-05 reg 1.603719e+00 train accuracy: 0.207592 val accuracy: 0.215000\n",
-      "lr 7.896523e-05 reg 2.424462e+00 train accuracy: 0.236571 val accuracy: 0.227000\n",
-      "lr 7.896523e-05 reg 3.665241e+00 train accuracy: 0.212347 val accuracy: 0.185000\n",
-      "lr 7.896523e-05 reg 5.541020e+00 train accuracy: 0.197041 val accuracy: 0.209000\n",
-      "lr 7.896523e-05 reg 8.376776e+00 train accuracy: 0.182939 val accuracy: 0.178000\n",
-      "lr 7.896523e-05 reg 1.266380e+01 train accuracy: 0.184347 val accuracy: 0.195000\n",
-      "lr 7.896523e-05 reg 1.914482e+01 train accuracy: 0.206388 val accuracy: 0.231000\n",
-      "lr 7.896523e-05 reg 2.894266e+01 train accuracy: 0.129837 val accuracy: 0.113000\n",
-      "lr 7.896523e-05 reg 4.375479e+01 train accuracy: 0.169000 val accuracy: 0.159000\n",
-      "lr 7.896523e-05 reg 6.614741e+01 train accuracy: 0.146163 val accuracy: 0.147000\n",
-      "lr 7.896523e-05 reg 1.000000e+02 train accuracy: 0.153694 val accuracy: 0.155000\n",
-      "lr 1.060818e-04 reg 1.000000e-05 train accuracy: 0.147592 val accuracy: 0.130000\n",
-      "lr 1.060818e-04 reg 1.511775e-05 train accuracy: 0.187469 val accuracy: 0.158000\n",
-      "lr 1.060818e-04 reg 2.285464e-05 train accuracy: 0.228184 val accuracy: 0.211000\n",
-      "lr 1.060818e-04 reg 3.455107e-05 train accuracy: 0.108571 val accuracy: 0.087000\n",
-      "lr 1.060818e-04 reg 5.223345e-05 train accuracy: 0.182612 val accuracy: 0.162000\n",
-      "lr 1.060818e-04 reg 7.896523e-05 train accuracy: 0.192510 val accuracy: 0.188000\n",
-      "lr 1.060818e-04 reg 1.193777e-04 train accuracy: 0.219898 val accuracy: 0.210000\n",
-      "lr 1.060818e-04 reg 1.804722e-04 train accuracy: 0.133490 val accuracy: 0.111000\n",
-      "lr 1.060818e-04 reg 2.728333e-04 train accuracy: 0.205959 val accuracy: 0.234000\n",
-      "lr 1.060818e-04 reg 4.124626e-04 train accuracy: 0.166449 val accuracy: 0.184000\n",
-      "lr 1.060818e-04 reg 6.235507e-04 train accuracy: 0.147959 val accuracy: 0.164000\n",
-      "lr 1.060818e-04 reg 9.426685e-04 train accuracy: 0.151367 val accuracy: 0.163000\n",
-      "lr 1.060818e-04 reg 1.425103e-03 train accuracy: 0.198163 val accuracy: 0.182000\n",
-      "lr 1.060818e-04 reg 2.154435e-03 train accuracy: 0.215490 val accuracy: 0.175000\n",
-      "lr 1.060818e-04 reg 3.257021e-03 train accuracy: 0.190571 val accuracy: 0.190000\n",
-      "lr 1.060818e-04 reg 4.923883e-03 train accuracy: 0.157837 val accuracy: 0.163000\n",
-      "lr 1.060818e-04 reg 7.443803e-03 train accuracy: 0.204878 val accuracy: 0.219000\n",
-      "lr 1.060818e-04 reg 1.125336e-02 train accuracy: 0.223980 val accuracy: 0.202000\n",
-      "lr 1.060818e-04 reg 1.701254e-02 train accuracy: 0.171408 val accuracy: 0.188000\n",
-      "lr 1.060818e-04 reg 2.571914e-02 train accuracy: 0.199429 val accuracy: 0.207000\n",
-      "lr 1.060818e-04 reg 3.888155e-02 train accuracy: 0.183510 val accuracy: 0.170000\n",
-      "lr 1.060818e-04 reg 5.878016e-02 train accuracy: 0.151571 val accuracy: 0.130000\n",
-      "lr 1.060818e-04 reg 8.886238e-02 train accuracy: 0.201000 val accuracy: 0.199000\n",
-      "lr 1.060818e-04 reg 1.343399e-01 train accuracy: 0.248898 val accuracy: 0.219000\n",
-      "lr 1.060818e-04 reg 2.030918e-01 train accuracy: 0.229020 val accuracy: 0.224000\n",
-      "lr 1.060818e-04 reg 3.070291e-01 train accuracy: 0.170633 val accuracy: 0.158000\n",
-      "lr 1.060818e-04 reg 4.641589e-01 train accuracy: 0.224918 val accuracy: 0.200000\n",
-      "lr 1.060818e-04 reg 7.017038e-01 train accuracy: 0.147000 val accuracy: 0.164000\n",
-      "lr 1.060818e-04 reg 1.060818e+00 train accuracy: 0.207735 val accuracy: 0.199000\n",
-      "lr 1.060818e-04 reg 1.603719e+00 train accuracy: 0.216673 val accuracy: 0.192000\n",
-      "lr 1.060818e-04 reg 2.424462e+00 train accuracy: 0.179327 val accuracy: 0.164000\n",
-      "lr 1.060818e-04 reg 3.665241e+00 train accuracy: 0.189000 val accuracy: 0.178000\n",
-      "lr 1.060818e-04 reg 5.541020e+00 train accuracy: 0.219918 val accuracy: 0.201000\n",
-      "lr 1.060818e-04 reg 8.376776e+00 train accuracy: 0.188388 val accuracy: 0.195000\n",
-      "lr 1.060818e-04 reg 1.266380e+01 train accuracy: 0.150612 val accuracy: 0.146000\n",
-      "lr 1.060818e-04 reg 1.914482e+01 train accuracy: 0.193980 val accuracy: 0.182000\n",
-      "lr 1.060818e-04 reg 2.894266e+01 train accuracy: 0.142592 val accuracy: 0.145000\n",
-      "lr 1.060818e-04 reg 4.375479e+01 train accuracy: 0.153959 val accuracy: 0.169000\n",
-      "lr 1.060818e-04 reg 6.614741e+01 train accuracy: 0.174286 val accuracy: 0.177000\n",
-      "lr 1.060818e-04 reg 1.000000e+02 train accuracy: 0.154796 val accuracy: 0.148000\n",
-      "lr 1.425103e-04 reg 1.000000e-05 train accuracy: 0.161633 val accuracy: 0.194000\n",
-      "lr 1.425103e-04 reg 1.511775e-05 train accuracy: 0.211980 val accuracy: 0.202000\n",
-      "lr 1.425103e-04 reg 2.285464e-05 train accuracy: 0.150469 val accuracy: 0.165000\n",
-      "lr 1.425103e-04 reg 3.455107e-05 train accuracy: 0.206571 val accuracy: 0.190000\n",
-      "lr 1.425103e-04 reg 5.223345e-05 train accuracy: 0.211469 val accuracy: 0.219000\n",
-      "lr 1.425103e-04 reg 7.896523e-05 train accuracy: 0.149980 val accuracy: 0.129000\n",
-      "lr 1.425103e-04 reg 1.193777e-04 train accuracy: 0.211245 val accuracy: 0.215000\n",
-      "lr 1.425103e-04 reg 1.804722e-04 train accuracy: 0.216531 val accuracy: 0.198000\n",
-      "lr 1.425103e-04 reg 2.728333e-04 train accuracy: 0.138469 val accuracy: 0.159000\n",
-      "lr 1.425103e-04 reg 4.124626e-04 train accuracy: 0.179286 val accuracy: 0.174000\n",
-      "lr 1.425103e-04 reg 6.235507e-04 train accuracy: 0.211204 val accuracy: 0.208000\n",
-      "lr 1.425103e-04 reg 9.426685e-04 train accuracy: 0.169531 val accuracy: 0.181000\n",
-      "lr 1.425103e-04 reg 1.425103e-03 train accuracy: 0.140163 val accuracy: 0.154000\n",
-      "lr 1.425103e-04 reg 2.154435e-03 train accuracy: 0.155816 val accuracy: 0.153000\n",
-      "lr 1.425103e-04 reg 3.257021e-03 train accuracy: 0.184653 val accuracy: 0.174000\n",
-      "lr 1.425103e-04 reg 4.923883e-03 train accuracy: 0.169531 val accuracy: 0.201000\n",
-      "lr 1.425103e-04 reg 7.443803e-03 train accuracy: 0.217265 val accuracy: 0.225000\n",
-      "lr 1.425103e-04 reg 1.125336e-02 train accuracy: 0.232939 val accuracy: 0.203000\n",
-      "lr 1.425103e-04 reg 1.701254e-02 train accuracy: 0.208816 val accuracy: 0.189000\n",
-      "lr 1.425103e-04 reg 2.571914e-02 train accuracy: 0.173020 val accuracy: 0.164000\n",
-      "lr 1.425103e-04 reg 3.888155e-02 train accuracy: 0.276837 val accuracy: 0.250000\n",
-      "lr 1.425103e-04 reg 5.878016e-02 train accuracy: 0.235265 val accuracy: 0.230000\n",
-      "lr 1.425103e-04 reg 8.886238e-02 train accuracy: 0.201122 val accuracy: 0.188000\n",
-      "lr 1.425103e-04 reg 1.343399e-01 train accuracy: 0.156429 val accuracy: 0.155000\n",
-      "lr 1.425103e-04 reg 2.030918e-01 train accuracy: 0.161245 val accuracy: 0.147000\n",
-      "lr 1.425103e-04 reg 3.070291e-01 train accuracy: 0.210510 val accuracy: 0.166000\n",
-      "lr 1.425103e-04 reg 4.641589e-01 train accuracy: 0.245673 val accuracy: 0.222000\n",
-      "lr 1.425103e-04 reg 7.017038e-01 train accuracy: 0.198714 val accuracy: 0.221000\n",
-      "lr 1.425103e-04 reg 1.060818e+00 train accuracy: 0.174204 val accuracy: 0.181000\n",
-      "lr 1.425103e-04 reg 1.603719e+00 train accuracy: 0.185531 val accuracy: 0.180000\n",
-      "lr 1.425103e-04 reg 2.424462e+00 train accuracy: 0.200837 val accuracy: 0.196000\n",
-      "lr 1.425103e-04 reg 3.665241e+00 train accuracy: 0.192388 val accuracy: 0.168000\n",
-      "lr 1.425103e-04 reg 5.541020e+00 train accuracy: 0.146776 val accuracy: 0.148000\n",
-      "lr 1.425103e-04 reg 8.376776e+00 train accuracy: 0.172347 val accuracy: 0.174000\n",
-      "lr 1.425103e-04 reg 1.266380e+01 train accuracy: 0.180592 val accuracy: 0.192000\n",
-      "lr 1.425103e-04 reg 1.914482e+01 train accuracy: 0.175857 val accuracy: 0.175000\n",
-      "lr 1.425103e-04 reg 2.894266e+01 train accuracy: 0.142592 val accuracy: 0.167000\n",
-      "lr 1.425103e-04 reg 4.375479e+01 train accuracy: 0.177551 val accuracy: 0.170000\n",
-      "lr 1.425103e-04 reg 6.614741e+01 train accuracy: 0.162041 val accuracy: 0.154000\n",
-      "lr 1.425103e-04 reg 1.000000e+02 train accuracy: 0.112755 val accuracy: 0.097000\n",
-      "lr 1.914482e-04 reg 1.000000e-05 train accuracy: 0.248204 val accuracy: 0.233000\n",
-      "lr 1.914482e-04 reg 1.511775e-05 train accuracy: 0.197653 val accuracy: 0.199000\n",
-      "lr 1.914482e-04 reg 2.285464e-05 train accuracy: 0.174898 val accuracy: 0.177000\n",
-      "lr 1.914482e-04 reg 3.455107e-05 train accuracy: 0.196673 val accuracy: 0.179000\n",
-      "lr 1.914482e-04 reg 5.223345e-05 train accuracy: 0.140612 val accuracy: 0.146000\n",
-      "lr 1.914482e-04 reg 7.896523e-05 train accuracy: 0.150429 val accuracy: 0.181000\n",
-      "lr 1.914482e-04 reg 1.193777e-04 train accuracy: 0.163265 val accuracy: 0.147000\n",
-      "lr 1.914482e-04 reg 1.804722e-04 train accuracy: 0.233204 val accuracy: 0.201000\n",
-      "lr 1.914482e-04 reg 2.728333e-04 train accuracy: 0.230347 val accuracy: 0.210000\n",
-      "lr 1.914482e-04 reg 4.124626e-04 train accuracy: 0.194959 val accuracy: 0.178000\n",
-      "lr 1.914482e-04 reg 6.235507e-04 train accuracy: 0.181041 val accuracy: 0.167000\n",
-      "lr 1.914482e-04 reg 9.426685e-04 train accuracy: 0.197245 val accuracy: 0.201000\n",
-      "lr 1.914482e-04 reg 1.425103e-03 train accuracy: 0.200694 val accuracy: 0.201000\n",
-      "lr 1.914482e-04 reg 2.154435e-03 train accuracy: 0.163551 val accuracy: 0.145000\n",
-      "lr 1.914482e-04 reg 3.257021e-03 train accuracy: 0.148980 val accuracy: 0.156000\n",
-      "lr 1.914482e-04 reg 4.923883e-03 train accuracy: 0.125041 val accuracy: 0.109000\n",
-      "lr 1.914482e-04 reg 7.443803e-03 train accuracy: 0.162735 val accuracy: 0.141000\n",
-      "lr 1.914482e-04 reg 1.125336e-02 train accuracy: 0.124816 val accuracy: 0.125000\n",
-      "lr 1.914482e-04 reg 1.701254e-02 train accuracy: 0.177041 val accuracy: 0.145000\n",
-      "lr 1.914482e-04 reg 2.571914e-02 train accuracy: 0.216959 val accuracy: 0.210000\n",
-      "lr 1.914482e-04 reg 3.888155e-02 train accuracy: 0.124898 val accuracy: 0.146000\n",
-      "lr 1.914482e-04 reg 5.878016e-02 train accuracy: 0.212020 val accuracy: 0.215000\n",
-      "lr 1.914482e-04 reg 8.886238e-02 train accuracy: 0.140102 val accuracy: 0.152000\n",
-      "lr 1.914482e-04 reg 1.343399e-01 train accuracy: 0.197898 val accuracy: 0.203000\n",
-      "lr 1.914482e-04 reg 2.030918e-01 train accuracy: 0.165551 val accuracy: 0.152000\n",
-      "lr 1.914482e-04 reg 3.070291e-01 train accuracy: 0.154714 val accuracy: 0.168000\n",
-      "lr 1.914482e-04 reg 4.641589e-01 train accuracy: 0.167143 val accuracy: 0.172000\n",
-      "lr 1.914482e-04 reg 7.017038e-01 train accuracy: 0.163878 val accuracy: 0.175000\n",
-      "lr 1.914482e-04 reg 1.060818e+00 train accuracy: 0.204837 val accuracy: 0.174000\n",
-      "lr 1.914482e-04 reg 1.603719e+00 train accuracy: 0.200816 val accuracy: 0.202000\n",
-      "lr 1.914482e-04 reg 2.424462e+00 train accuracy: 0.196347 val accuracy: 0.178000\n",
-      "lr 1.914482e-04 reg 3.665241e+00 train accuracy: 0.187122 val accuracy: 0.193000\n",
-      "lr 1.914482e-04 reg 5.541020e+00 train accuracy: 0.195224 val accuracy: 0.201000\n",
-      "lr 1.914482e-04 reg 8.376776e+00 train accuracy: 0.163082 val accuracy: 0.171000\n",
-      "lr 1.914482e-04 reg 1.266380e+01 train accuracy: 0.181408 val accuracy: 0.208000\n",
-      "lr 1.914482e-04 reg 1.914482e+01 train accuracy: 0.145041 val accuracy: 0.152000\n",
-      "lr 1.914482e-04 reg 2.894266e+01 train accuracy: 0.156490 val accuracy: 0.173000\n",
-      "lr 1.914482e-04 reg 4.375479e+01 train accuracy: 0.162367 val accuracy: 0.186000\n",
-      "lr 1.914482e-04 reg 6.614741e+01 train accuracy: 0.139184 val accuracy: 0.157000\n",
-      "lr 1.914482e-04 reg 1.000000e+02 train accuracy: 0.123224 val accuracy: 0.125000\n",
-      "lr 2.571914e-04 reg 1.000000e-05 train accuracy: 0.200469 val accuracy: 0.201000\n",
-      "lr 2.571914e-04 reg 1.511775e-05 train accuracy: 0.127653 val accuracy: 0.138000\n",
-      "lr 2.571914e-04 reg 2.285464e-05 train accuracy: 0.176653 val accuracy: 0.164000\n",
-      "lr 2.571914e-04 reg 3.455107e-05 train accuracy: 0.196041 val accuracy: 0.202000\n",
-      "lr 2.571914e-04 reg 5.223345e-05 train accuracy: 0.137204 val accuracy: 0.159000\n",
-      "lr 2.571914e-04 reg 7.896523e-05 train accuracy: 0.166980 val accuracy: 0.169000\n",
-      "lr 2.571914e-04 reg 1.193777e-04 train accuracy: 0.186184 val accuracy: 0.186000\n",
-      "lr 2.571914e-04 reg 1.804722e-04 train accuracy: 0.147163 val accuracy: 0.132000\n",
-      "lr 2.571914e-04 reg 2.728333e-04 train accuracy: 0.179143 val accuracy: 0.176000\n",
-      "lr 2.571914e-04 reg 4.124626e-04 train accuracy: 0.203857 val accuracy: 0.213000\n",
-      "lr 2.571914e-04 reg 6.235507e-04 train accuracy: 0.193082 val accuracy: 0.199000\n",
-      "lr 2.571914e-04 reg 9.426685e-04 train accuracy: 0.136327 val accuracy: 0.145000\n",
-      "lr 2.571914e-04 reg 1.425103e-03 train accuracy: 0.178245 val accuracy: 0.170000\n",
-      "lr 2.571914e-04 reg 2.154435e-03 train accuracy: 0.195837 val accuracy: 0.173000\n",
-      "lr 2.571914e-04 reg 3.257021e-03 train accuracy: 0.207653 val accuracy: 0.176000\n",
-      "lr 2.571914e-04 reg 4.923883e-03 train accuracy: 0.180490 val accuracy: 0.181000\n",
-      "lr 2.571914e-04 reg 7.443803e-03 train accuracy: 0.210612 val accuracy: 0.188000\n",
-      "lr 2.571914e-04 reg 1.125336e-02 train accuracy: 0.103776 val accuracy: 0.079000\n",
-      "lr 2.571914e-04 reg 1.701254e-02 train accuracy: 0.198694 val accuracy: 0.179000\n",
-      "lr 2.571914e-04 reg 2.571914e-02 train accuracy: 0.167449 val accuracy: 0.162000\n",
-      "lr 2.571914e-04 reg 3.888155e-02 train accuracy: 0.181878 val accuracy: 0.188000\n",
-      "lr 2.571914e-04 reg 5.878016e-02 train accuracy: 0.211306 val accuracy: 0.229000\n",
-      "lr 2.571914e-04 reg 8.886238e-02 train accuracy: 0.244082 val accuracy: 0.247000\n",
-      "lr 2.571914e-04 reg 1.343399e-01 train accuracy: 0.206082 val accuracy: 0.181000\n",
-      "lr 2.571914e-04 reg 2.030918e-01 train accuracy: 0.184531 val accuracy: 0.183000\n",
-      "lr 2.571914e-04 reg 3.070291e-01 train accuracy: 0.151061 val accuracy: 0.153000\n",
-      "lr 2.571914e-04 reg 4.641589e-01 train accuracy: 0.198245 val accuracy: 0.182000\n",
-      "lr 2.571914e-04 reg 7.017038e-01 train accuracy: 0.165531 val accuracy: 0.145000\n",
-      "lr 2.571914e-04 reg 1.060818e+00 train accuracy: 0.117143 val accuracy: 0.101000\n",
-      "lr 2.571914e-04 reg 1.603719e+00 train accuracy: 0.250633 val accuracy: 0.238000\n",
-      "lr 2.571914e-04 reg 2.424462e+00 train accuracy: 0.183816 val accuracy: 0.176000\n",
-      "lr 2.571914e-04 reg 3.665241e+00 train accuracy: 0.185898 val accuracy: 0.169000\n",
-      "lr 2.571914e-04 reg 5.541020e+00 train accuracy: 0.121245 val accuracy: 0.133000\n",
-      "lr 2.571914e-04 reg 8.376776e+00 train accuracy: 0.139224 val accuracy: 0.120000\n",
-      "lr 2.571914e-04 reg 1.266380e+01 train accuracy: 0.158592 val accuracy: 0.159000\n",
-      "lr 2.571914e-04 reg 1.914482e+01 train accuracy: 0.179551 val accuracy: 0.179000\n",
-      "lr 2.571914e-04 reg 2.894266e+01 train accuracy: 0.132041 val accuracy: 0.141000\n",
-      "lr 2.571914e-04 reg 4.375479e+01 train accuracy: 0.110939 val accuracy: 0.097000\n",
-      "lr 2.571914e-04 reg 6.614741e+01 train accuracy: 0.131633 val accuracy: 0.147000\n",
-      "lr 2.571914e-04 reg 1.000000e+02 train accuracy: 0.107878 val accuracy: 0.124000\n",
-      "lr 3.455107e-04 reg 1.000000e-05 train accuracy: 0.229122 val accuracy: 0.215000\n",
-      "lr 3.455107e-04 reg 1.511775e-05 train accuracy: 0.226898 val accuracy: 0.207000\n",
-      "lr 3.455107e-04 reg 2.285464e-05 train accuracy: 0.130020 val accuracy: 0.112000\n",
-      "lr 3.455107e-04 reg 3.455107e-05 train accuracy: 0.157327 val accuracy: 0.139000\n",
-      "lr 3.455107e-04 reg 5.223345e-05 train accuracy: 0.195918 val accuracy: 0.207000\n",
-      "lr 3.455107e-04 reg 7.896523e-05 train accuracy: 0.204816 val accuracy: 0.204000\n",
-      "lr 3.455107e-04 reg 1.193777e-04 train accuracy: 0.176531 val accuracy: 0.189000\n",
-      "lr 3.455107e-04 reg 1.804722e-04 train accuracy: 0.207939 val accuracy: 0.226000\n",
-      "lr 3.455107e-04 reg 2.728333e-04 train accuracy: 0.182490 val accuracy: 0.172000\n",
-      "lr 3.455107e-04 reg 4.124626e-04 train accuracy: 0.200184 val accuracy: 0.174000\n",
-      "lr 3.455107e-04 reg 6.235507e-04 train accuracy: 0.183633 val accuracy: 0.193000\n",
-      "lr 3.455107e-04 reg 9.426685e-04 train accuracy: 0.174020 val accuracy: 0.172000\n",
-      "lr 3.455107e-04 reg 1.425103e-03 train accuracy: 0.210347 val accuracy: 0.219000\n",
-      "lr 3.455107e-04 reg 2.154435e-03 train accuracy: 0.170306 val accuracy: 0.178000\n",
-      "lr 3.455107e-04 reg 3.257021e-03 train accuracy: 0.192939 val accuracy: 0.176000\n",
-      "lr 3.455107e-04 reg 4.923883e-03 train accuracy: 0.157102 val accuracy: 0.132000\n",
-      "lr 3.455107e-04 reg 7.443803e-03 train accuracy: 0.165061 val accuracy: 0.150000\n",
-      "lr 3.455107e-04 reg 1.125336e-02 train accuracy: 0.208612 val accuracy: 0.208000\n",
-      "lr 3.455107e-04 reg 1.701254e-02 train accuracy: 0.199163 val accuracy: 0.202000\n",
-      "lr 3.455107e-04 reg 2.571914e-02 train accuracy: 0.170551 val accuracy: 0.191000\n",
-      "lr 3.455107e-04 reg 3.888155e-02 train accuracy: 0.220857 val accuracy: 0.198000\n",
-      "lr 3.455107e-04 reg 5.878016e-02 train accuracy: 0.159714 val accuracy: 0.141000\n",
-      "lr 3.455107e-04 reg 8.886238e-02 train accuracy: 0.195061 val accuracy: 0.192000\n",
-      "lr 3.455107e-04 reg 1.343399e-01 train accuracy: 0.174408 val accuracy: 0.177000\n",
-      "lr 3.455107e-04 reg 2.030918e-01 train accuracy: 0.180469 val accuracy: 0.180000\n",
-      "lr 3.455107e-04 reg 3.070291e-01 train accuracy: 0.228633 val accuracy: 0.206000\n",
-      "lr 3.455107e-04 reg 4.641589e-01 train accuracy: 0.168245 val accuracy: 0.182000\n",
-      "lr 3.455107e-04 reg 7.017038e-01 train accuracy: 0.137531 val accuracy: 0.129000\n",
-      "lr 3.455107e-04 reg 1.060818e+00 train accuracy: 0.222265 val accuracy: 0.207000\n",
-      "lr 3.455107e-04 reg 1.603719e+00 train accuracy: 0.164837 val accuracy: 0.194000\n",
-      "lr 3.455107e-04 reg 2.424462e+00 train accuracy: 0.184245 val accuracy: 0.181000\n",
-      "lr 3.455107e-04 reg 3.665241e+00 train accuracy: 0.127061 val accuracy: 0.153000\n",
-      "lr 3.455107e-04 reg 5.541020e+00 train accuracy: 0.108878 val accuracy: 0.121000\n",
-      "lr 3.455107e-04 reg 8.376776e+00 train accuracy: 0.160429 val accuracy: 0.168000\n",
-      "lr 3.455107e-04 reg 1.266380e+01 train accuracy: 0.105286 val accuracy: 0.113000\n",
-      "lr 3.455107e-04 reg 1.914482e+01 train accuracy: 0.165776 val accuracy: 0.137000\n",
-      "lr 3.455107e-04 reg 2.894266e+01 train accuracy: 0.155816 val accuracy: 0.157000\n",
-      "lr 3.455107e-04 reg 4.375479e+01 train accuracy: 0.101286 val accuracy: 0.113000\n",
-      "lr 3.455107e-04 reg 6.614741e+01 train accuracy: 0.154714 val accuracy: 0.149000\n",
-      "lr 3.455107e-04 reg 1.000000e+02 train accuracy: 0.120510 val accuracy: 0.100000\n",
-      "lr 4.641589e-04 reg 1.000000e-05 train accuracy: 0.216286 val accuracy: 0.213000\n",
-      "lr 4.641589e-04 reg 1.511775e-05 train accuracy: 0.203449 val accuracy: 0.211000\n",
-      "lr 4.641589e-04 reg 2.285464e-05 train accuracy: 0.135408 val accuracy: 0.152000\n",
-      "lr 4.641589e-04 reg 3.455107e-05 train accuracy: 0.211122 val accuracy: 0.206000\n",
-      "lr 4.641589e-04 reg 5.223345e-05 train accuracy: 0.189449 val accuracy: 0.184000\n",
-      "lr 4.641589e-04 reg 7.896523e-05 train accuracy: 0.183571 val accuracy: 0.184000\n",
-      "lr 4.641589e-04 reg 1.193777e-04 train accuracy: 0.215980 val accuracy: 0.194000\n",
-      "lr 4.641589e-04 reg 1.804722e-04 train accuracy: 0.255245 val accuracy: 0.233000\n",
-      "lr 4.641589e-04 reg 2.728333e-04 train accuracy: 0.203694 val accuracy: 0.180000\n",
-      "lr 4.641589e-04 reg 4.124626e-04 train accuracy: 0.180327 val accuracy: 0.154000\n",
-      "lr 4.641589e-04 reg 6.235507e-04 train accuracy: 0.178408 val accuracy: 0.160000\n",
-      "lr 4.641589e-04 reg 9.426685e-04 train accuracy: 0.185490 val accuracy: 0.186000\n",
-      "lr 4.641589e-04 reg 1.425103e-03 train accuracy: 0.197816 val accuracy: 0.210000\n",
-      "lr 4.641589e-04 reg 2.154435e-03 train accuracy: 0.200469 val accuracy: 0.190000\n",
-      "lr 4.641589e-04 reg 3.257021e-03 train accuracy: 0.187592 val accuracy: 0.162000\n",
-      "lr 4.641589e-04 reg 4.923883e-03 train accuracy: 0.130184 val accuracy: 0.133000\n",
-      "lr 4.641589e-04 reg 7.443803e-03 train accuracy: 0.211694 val accuracy: 0.200000\n",
-      "lr 4.641589e-04 reg 1.125336e-02 train accuracy: 0.203000 val accuracy: 0.204000\n",
-      "lr 4.641589e-04 reg 1.701254e-02 train accuracy: 0.205531 val accuracy: 0.185000\n",
-      "lr 4.641589e-04 reg 2.571914e-02 train accuracy: 0.204367 val accuracy: 0.203000\n",
-      "lr 4.641589e-04 reg 3.888155e-02 train accuracy: 0.181592 val accuracy: 0.177000\n",
-      "lr 4.641589e-04 reg 5.878016e-02 train accuracy: 0.224408 val accuracy: 0.214000\n",
-      "lr 4.641589e-04 reg 8.886238e-02 train accuracy: 0.200122 val accuracy: 0.175000\n",
-      "lr 4.641589e-04 reg 1.343399e-01 train accuracy: 0.131571 val accuracy: 0.141000\n",
-      "lr 4.641589e-04 reg 2.030918e-01 train accuracy: 0.179286 val accuracy: 0.197000\n",
-      "lr 4.641589e-04 reg 3.070291e-01 train accuracy: 0.135612 val accuracy: 0.141000\n",
-      "lr 4.641589e-04 reg 4.641589e-01 train accuracy: 0.163408 val accuracy: 0.146000\n",
-      "lr 4.641589e-04 reg 7.017038e-01 train accuracy: 0.147837 val accuracy: 0.132000\n",
-      "lr 4.641589e-04 reg 1.060818e+00 train accuracy: 0.141653 val accuracy: 0.172000\n",
-      "lr 4.641589e-04 reg 1.603719e+00 train accuracy: 0.168612 val accuracy: 0.157000\n",
-      "lr 4.641589e-04 reg 2.424462e+00 train accuracy: 0.142510 val accuracy: 0.168000\n",
-      "lr 4.641589e-04 reg 3.665241e+00 train accuracy: 0.222163 val accuracy: 0.214000\n",
-      "lr 4.641589e-04 reg 5.541020e+00 train accuracy: 0.157714 val accuracy: 0.181000\n",
-      "lr 4.641589e-04 reg 8.376776e+00 train accuracy: 0.168592 val accuracy: 0.154000\n",
-      "lr 4.641589e-04 reg 1.266380e+01 train accuracy: 0.179245 val accuracy: 0.178000\n",
-      "lr 4.641589e-04 reg 1.914482e+01 train accuracy: 0.109694 val accuracy: 0.132000\n",
-      "lr 4.641589e-04 reg 2.894266e+01 train accuracy: 0.105837 val accuracy: 0.087000\n",
-      "lr 4.641589e-04 reg 4.375479e+01 train accuracy: 0.139980 val accuracy: 0.157000\n",
-      "lr 4.641589e-04 reg 6.614741e+01 train accuracy: 0.116367 val accuracy: 0.137000\n",
-      "lr 4.641589e-04 reg 1.000000e+02 train accuracy: 0.099939 val accuracy: 0.119000\n",
-      "lr 6.235507e-04 reg 1.000000e-05 train accuracy: 0.159429 val accuracy: 0.156000\n",
-      "lr 6.235507e-04 reg 1.511775e-05 train accuracy: 0.126653 val accuracy: 0.101000\n",
-      "lr 6.235507e-04 reg 2.285464e-05 train accuracy: 0.202857 val accuracy: 0.199000\n",
-      "lr 6.235507e-04 reg 3.455107e-05 train accuracy: 0.209939 val accuracy: 0.209000\n",
-      "lr 6.235507e-04 reg 5.223345e-05 train accuracy: 0.200531 val accuracy: 0.207000\n",
-      "lr 6.235507e-04 reg 7.896523e-05 train accuracy: 0.181796 val accuracy: 0.189000\n",
-      "lr 6.235507e-04 reg 1.193777e-04 train accuracy: 0.146388 val accuracy: 0.132000\n",
-      "lr 6.235507e-04 reg 1.804722e-04 train accuracy: 0.186020 val accuracy: 0.183000\n",
-      "lr 6.235507e-04 reg 2.728333e-04 train accuracy: 0.260184 val accuracy: 0.211000\n",
-      "lr 6.235507e-04 reg 4.124626e-04 train accuracy: 0.196898 val accuracy: 0.186000\n",
-      "lr 6.235507e-04 reg 6.235507e-04 train accuracy: 0.179673 val accuracy: 0.175000\n",
-      "lr 6.235507e-04 reg 9.426685e-04 train accuracy: 0.147776 val accuracy: 0.141000\n",
-      "lr 6.235507e-04 reg 1.425103e-03 train accuracy: 0.203163 val accuracy: 0.196000\n",
-      "lr 6.235507e-04 reg 2.154435e-03 train accuracy: 0.156673 val accuracy: 0.149000\n",
-      "lr 6.235507e-04 reg 3.257021e-03 train accuracy: 0.198939 val accuracy: 0.202000\n",
-      "lr 6.235507e-04 reg 4.923883e-03 train accuracy: 0.188633 val accuracy: 0.200000\n",
-      "lr 6.235507e-04 reg 7.443803e-03 train accuracy: 0.190102 val accuracy: 0.190000\n",
-      "lr 6.235507e-04 reg 1.125336e-02 train accuracy: 0.221204 val accuracy: 0.201000\n",
-      "lr 6.235507e-04 reg 1.701254e-02 train accuracy: 0.196041 val accuracy: 0.199000\n",
-      "lr 6.235507e-04 reg 2.571914e-02 train accuracy: 0.132510 val accuracy: 0.142000\n",
-      "lr 6.235507e-04 reg 3.888155e-02 train accuracy: 0.211449 val accuracy: 0.184000\n",
-      "lr 6.235507e-04 reg 5.878016e-02 train accuracy: 0.185347 val accuracy: 0.180000\n",
-      "lr 6.235507e-04 reg 8.886238e-02 train accuracy: 0.215612 val accuracy: 0.219000\n",
-      "lr 6.235507e-04 reg 1.343399e-01 train accuracy: 0.174224 val accuracy: 0.176000\n",
-      "lr 6.235507e-04 reg 2.030918e-01 train accuracy: 0.190898 val accuracy: 0.157000\n",
-      "lr 6.235507e-04 reg 3.070291e-01 train accuracy: 0.200041 val accuracy: 0.197000\n",
-      "lr 6.235507e-04 reg 4.641589e-01 train accuracy: 0.205347 val accuracy: 0.179000\n",
-      "lr 6.235507e-04 reg 7.017038e-01 train accuracy: 0.185286 val accuracy: 0.180000\n",
-      "lr 6.235507e-04 reg 1.060818e+00 train accuracy: 0.155755 val accuracy: 0.144000\n",
-      "lr 6.235507e-04 reg 1.603719e+00 train accuracy: 0.205082 val accuracy: 0.198000\n",
-      "lr 6.235507e-04 reg 2.424462e+00 train accuracy: 0.168571 val accuracy: 0.157000\n",
-      "lr 6.235507e-04 reg 3.665241e+00 train accuracy: 0.163041 val accuracy: 0.143000\n",
-      "lr 6.235507e-04 reg 5.541020e+00 train accuracy: 0.209286 val accuracy: 0.207000\n",
-      "lr 6.235507e-04 reg 8.376776e+00 train accuracy: 0.153306 val accuracy: 0.160000\n",
-      "lr 6.235507e-04 reg 1.266380e+01 train accuracy: 0.189694 val accuracy: 0.196000\n",
-      "lr 6.235507e-04 reg 1.914482e+01 train accuracy: 0.178367 val accuracy: 0.154000\n",
-      "lr 6.235507e-04 reg 2.894266e+01 train accuracy: 0.156918 val accuracy: 0.146000\n",
-      "lr 6.235507e-04 reg 4.375479e+01 train accuracy: 0.119510 val accuracy: 0.096000\n",
-      "lr 6.235507e-04 reg 6.614741e+01 train accuracy: 0.138796 val accuracy: 0.161000\n",
-      "lr 6.235507e-04 reg 1.000000e+02 train accuracy: 0.129388 val accuracy: 0.144000\n",
-      "lr 8.376776e-04 reg 1.000000e-05 train accuracy: 0.188000 val accuracy: 0.191000\n",
-      "lr 8.376776e-04 reg 1.511775e-05 train accuracy: 0.181755 val accuracy: 0.164000\n",
-      "lr 8.376776e-04 reg 2.285464e-05 train accuracy: 0.139245 val accuracy: 0.127000\n",
-      "lr 8.376776e-04 reg 3.455107e-05 train accuracy: 0.234980 val accuracy: 0.226000\n",
-      "lr 8.376776e-04 reg 5.223345e-05 train accuracy: 0.149857 val accuracy: 0.145000\n",
-      "lr 8.376776e-04 reg 7.896523e-05 train accuracy: 0.187408 val accuracy: 0.206000\n",
-      "lr 8.376776e-04 reg 1.193777e-04 train accuracy: 0.190816 val accuracy: 0.185000\n",
-      "lr 8.376776e-04 reg 1.804722e-04 train accuracy: 0.179388 val accuracy: 0.152000\n",
-      "lr 8.376776e-04 reg 2.728333e-04 train accuracy: 0.133816 val accuracy: 0.116000\n",
-      "lr 8.376776e-04 reg 4.124626e-04 train accuracy: 0.185469 val accuracy: 0.184000\n",
-      "lr 8.376776e-04 reg 6.235507e-04 train accuracy: 0.214143 val accuracy: 0.201000\n",
-      "lr 8.376776e-04 reg 9.426685e-04 train accuracy: 0.211837 val accuracy: 0.210000\n",
-      "lr 8.376776e-04 reg 1.425103e-03 train accuracy: 0.198653 val accuracy: 0.184000\n",
-      "lr 8.376776e-04 reg 2.154435e-03 train accuracy: 0.223163 val accuracy: 0.216000\n",
-      "lr 8.376776e-04 reg 3.257021e-03 train accuracy: 0.126939 val accuracy: 0.131000\n",
-      "lr 8.376776e-04 reg 4.923883e-03 train accuracy: 0.179388 val accuracy: 0.183000\n",
-      "lr 8.376776e-04 reg 7.443803e-03 train accuracy: 0.217510 val accuracy: 0.214000\n",
-      "lr 8.376776e-04 reg 1.125336e-02 train accuracy: 0.129429 val accuracy: 0.127000\n",
-      "lr 8.376776e-04 reg 1.701254e-02 train accuracy: 0.205000 val accuracy: 0.180000\n",
-      "lr 8.376776e-04 reg 2.571914e-02 train accuracy: 0.208694 val accuracy: 0.202000\n",
-      "lr 8.376776e-04 reg 3.888155e-02 train accuracy: 0.173490 val accuracy: 0.155000\n",
-      "lr 8.376776e-04 reg 5.878016e-02 train accuracy: 0.208265 val accuracy: 0.217000\n",
-      "lr 8.376776e-04 reg 8.886238e-02 train accuracy: 0.147327 val accuracy: 0.132000\n",
-      "lr 8.376776e-04 reg 1.343399e-01 train accuracy: 0.197694 val accuracy: 0.165000\n",
-      "lr 8.376776e-04 reg 2.030918e-01 train accuracy: 0.168408 val accuracy: 0.191000\n",
-      "lr 8.376776e-04 reg 3.070291e-01 train accuracy: 0.208653 val accuracy: 0.200000\n",
-      "lr 8.376776e-04 reg 4.641589e-01 train accuracy: 0.155265 val accuracy: 0.153000\n",
-      "lr 8.376776e-04 reg 7.017038e-01 train accuracy: 0.200163 val accuracy: 0.189000\n",
-      "lr 8.376776e-04 reg 1.060818e+00 train accuracy: 0.167408 val accuracy: 0.160000\n",
-      "lr 8.376776e-04 reg 1.603719e+00 train accuracy: 0.166082 val accuracy: 0.176000\n",
-      "lr 8.376776e-04 reg 2.424462e+00 train accuracy: 0.177102 val accuracy: 0.173000\n",
-      "lr 8.376776e-04 reg 3.665241e+00 train accuracy: 0.135714 val accuracy: 0.113000\n",
-      "lr 8.376776e-04 reg 5.541020e+00 train accuracy: 0.105592 val accuracy: 0.106000\n",
-      "lr 8.376776e-04 reg 8.376776e+00 train accuracy: 0.181020 val accuracy: 0.173000\n",
-      "lr 8.376776e-04 reg 1.266380e+01 train accuracy: 0.180490 val accuracy: 0.182000\n",
-      "lr 8.376776e-04 reg 1.914482e+01 train accuracy: 0.156061 val accuracy: 0.163000\n",
-      "lr 8.376776e-04 reg 2.894266e+01 train accuracy: 0.113490 val accuracy: 0.123000\n",
-      "lr 8.376776e-04 reg 4.375479e+01 train accuracy: 0.176898 val accuracy: 0.184000\n",
-      "lr 8.376776e-04 reg 6.614741e+01 train accuracy: 0.102735 val accuracy: 0.107000\n",
-      "lr 8.376776e-04 reg 1.000000e+02 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.125336e-03 reg 1.000000e-05 train accuracy: 0.213755 val accuracy: 0.208000\n",
-      "lr 1.125336e-03 reg 1.511775e-05 train accuracy: 0.196224 val accuracy: 0.189000\n",
-      "lr 1.125336e-03 reg 2.285464e-05 train accuracy: 0.228796 val accuracy: 0.227000\n",
-      "lr 1.125336e-03 reg 3.455107e-05 train accuracy: 0.209286 val accuracy: 0.205000\n",
-      "lr 1.125336e-03 reg 5.223345e-05 train accuracy: 0.234000 val accuracy: 0.209000\n",
-      "lr 1.125336e-03 reg 7.896523e-05 train accuracy: 0.135327 val accuracy: 0.150000\n",
-      "lr 1.125336e-03 reg 1.193777e-04 train accuracy: 0.202082 val accuracy: 0.173000\n",
-      "lr 1.125336e-03 reg 1.804722e-04 train accuracy: 0.191327 val accuracy: 0.181000\n",
-      "lr 1.125336e-03 reg 2.728333e-04 train accuracy: 0.231122 val accuracy: 0.202000\n",
-      "lr 1.125336e-03 reg 4.124626e-04 train accuracy: 0.251469 val accuracy: 0.232000\n",
-      "lr 1.125336e-03 reg 6.235507e-04 train accuracy: 0.218510 val accuracy: 0.200000\n",
-      "lr 1.125336e-03 reg 9.426685e-04 train accuracy: 0.129204 val accuracy: 0.112000\n",
-      "lr 1.125336e-03 reg 1.425103e-03 train accuracy: 0.184551 val accuracy: 0.175000\n",
-      "lr 1.125336e-03 reg 2.154435e-03 train accuracy: 0.171041 val accuracy: 0.142000\n",
-      "lr 1.125336e-03 reg 3.257021e-03 train accuracy: 0.191918 val accuracy: 0.203000\n",
-      "lr 1.125336e-03 reg 4.923883e-03 train accuracy: 0.191980 val accuracy: 0.200000\n",
-      "lr 1.125336e-03 reg 7.443803e-03 train accuracy: 0.147694 val accuracy: 0.160000\n",
-      "lr 1.125336e-03 reg 1.125336e-02 train accuracy: 0.197612 val accuracy: 0.188000\n",
-      "lr 1.125336e-03 reg 1.701254e-02 train accuracy: 0.142000 val accuracy: 0.121000\n",
-      "lr 1.125336e-03 reg 2.571914e-02 train accuracy: 0.190265 val accuracy: 0.174000\n",
-      "lr 1.125336e-03 reg 3.888155e-02 train accuracy: 0.183551 val accuracy: 0.168000\n",
-      "lr 1.125336e-03 reg 5.878016e-02 train accuracy: 0.227592 val accuracy: 0.188000\n",
-      "lr 1.125336e-03 reg 8.886238e-02 train accuracy: 0.196980 val accuracy: 0.199000\n",
-      "lr 1.125336e-03 reg 1.343399e-01 train accuracy: 0.209000 val accuracy: 0.200000\n",
-      "lr 1.125336e-03 reg 2.030918e-01 train accuracy: 0.159918 val accuracy: 0.160000\n",
-      "lr 1.125336e-03 reg 3.070291e-01 train accuracy: 0.145531 val accuracy: 0.163000\n",
-      "lr 1.125336e-03 reg 4.641589e-01 train accuracy: 0.198429 val accuracy: 0.192000\n",
-      "lr 1.125336e-03 reg 7.017038e-01 train accuracy: 0.219490 val accuracy: 0.220000\n",
-      "lr 1.125336e-03 reg 1.060818e+00 train accuracy: 0.184184 val accuracy: 0.192000\n",
-      "lr 1.125336e-03 reg 1.603719e+00 train accuracy: 0.170306 val accuracy: 0.178000\n",
-      "lr 1.125336e-03 reg 2.424462e+00 train accuracy: 0.106837 val accuracy: 0.114000\n",
-      "lr 1.125336e-03 reg 3.665241e+00 train accuracy: 0.164429 val accuracy: 0.162000\n",
-      "lr 1.125336e-03 reg 5.541020e+00 train accuracy: 0.118204 val accuracy: 0.136000\n",
-      "lr 1.125336e-03 reg 8.376776e+00 train accuracy: 0.134980 val accuracy: 0.129000\n",
-      "lr 1.125336e-03 reg 1.266380e+01 train accuracy: 0.100204 val accuracy: 0.102000\n",
-      "lr 1.125336e-03 reg 1.914482e+01 train accuracy: 0.137571 val accuracy: 0.127000\n",
-      "lr 1.125336e-03 reg 2.894266e+01 train accuracy: 0.110041 val accuracy: 0.125000\n",
-      "lr 1.125336e-03 reg 4.375479e+01 train accuracy: 0.111878 val accuracy: 0.105000\n",
-      "lr 1.125336e-03 reg 6.614741e+01 train accuracy: 0.100082 val accuracy: 0.113000\n",
-      "lr 1.125336e-03 reg 1.000000e+02 train accuracy: 0.116347 val accuracy: 0.102000\n",
-      "lr 1.511775e-03 reg 1.000000e-05 train accuracy: 0.149918 val accuracy: 0.139000\n",
-      "lr 1.511775e-03 reg 1.511775e-05 train accuracy: 0.165816 val accuracy: 0.143000\n",
-      "lr 1.511775e-03 reg 2.285464e-05 train accuracy: 0.202306 val accuracy: 0.197000\n",
-      "lr 1.511775e-03 reg 3.455107e-05 train accuracy: 0.239918 val accuracy: 0.203000\n",
-      "lr 1.511775e-03 reg 5.223345e-05 train accuracy: 0.147429 val accuracy: 0.152000\n",
-      "lr 1.511775e-03 reg 7.896523e-05 train accuracy: 0.216653 val accuracy: 0.206000\n",
-      "lr 1.511775e-03 reg 1.193777e-04 train accuracy: 0.220367 val accuracy: 0.253000\n",
-      "lr 1.511775e-03 reg 1.804722e-04 train accuracy: 0.175082 val accuracy: 0.159000\n",
-      "lr 1.511775e-03 reg 2.728333e-04 train accuracy: 0.200224 val accuracy: 0.206000\n",
-      "lr 1.511775e-03 reg 4.124626e-04 train accuracy: 0.121857 val accuracy: 0.139000\n",
-      "lr 1.511775e-03 reg 6.235507e-04 train accuracy: 0.227612 val accuracy: 0.229000\n",
-      "lr 1.511775e-03 reg 9.426685e-04 train accuracy: 0.188714 val accuracy: 0.176000\n",
-      "lr 1.511775e-03 reg 1.425103e-03 train accuracy: 0.231265 val accuracy: 0.217000\n",
-      "lr 1.511775e-03 reg 2.154435e-03 train accuracy: 0.175286 val accuracy: 0.182000\n",
-      "lr 1.511775e-03 reg 3.257021e-03 train accuracy: 0.199224 val accuracy: 0.194000\n",
-      "lr 1.511775e-03 reg 4.923883e-03 train accuracy: 0.180367 val accuracy: 0.162000\n",
-      "lr 1.511775e-03 reg 7.443803e-03 train accuracy: 0.223959 val accuracy: 0.204000\n",
-      "lr 1.511775e-03 reg 1.125336e-02 train accuracy: 0.199184 val accuracy: 0.192000\n",
-      "lr 1.511775e-03 reg 1.701254e-02 train accuracy: 0.192143 val accuracy: 0.184000\n",
-      "lr 1.511775e-03 reg 2.571914e-02 train accuracy: 0.130571 val accuracy: 0.110000\n",
-      "lr 1.511775e-03 reg 3.888155e-02 train accuracy: 0.219163 val accuracy: 0.229000\n",
-      "lr 1.511775e-03 reg 5.878016e-02 train accuracy: 0.164939 val accuracy: 0.160000\n",
-      "lr 1.511775e-03 reg 8.886238e-02 train accuracy: 0.146857 val accuracy: 0.150000\n",
-      "lr 1.511775e-03 reg 1.343399e-01 train accuracy: 0.197143 val accuracy: 0.196000\n",
-      "lr 1.511775e-03 reg 2.030918e-01 train accuracy: 0.172531 val accuracy: 0.177000\n",
-      "lr 1.511775e-03 reg 3.070291e-01 train accuracy: 0.184163 val accuracy: 0.154000\n",
-      "lr 1.511775e-03 reg 4.641589e-01 train accuracy: 0.184204 val accuracy: 0.201000\n",
-      "lr 1.511775e-03 reg 7.017038e-01 train accuracy: 0.199122 val accuracy: 0.205000\n",
-      "lr 1.511775e-03 reg 1.060818e+00 train accuracy: 0.180980 val accuracy: 0.166000\n",
-      "lr 1.511775e-03 reg 1.603719e+00 train accuracy: 0.132612 val accuracy: 0.124000\n",
-      "lr 1.511775e-03 reg 2.424462e+00 train accuracy: 0.142245 val accuracy: 0.167000\n",
-      "lr 1.511775e-03 reg 3.665241e+00 train accuracy: 0.156347 val accuracy: 0.143000\n",
-      "lr 1.511775e-03 reg 5.541020e+00 train accuracy: 0.145918 val accuracy: 0.145000\n",
-      "lr 1.511775e-03 reg 8.376776e+00 train accuracy: 0.121551 val accuracy: 0.143000\n",
-      "lr 1.511775e-03 reg 1.266380e+01 train accuracy: 0.132490 val accuracy: 0.137000\n",
-      "lr 1.511775e-03 reg 1.914482e+01 train accuracy: 0.155592 val accuracy: 0.173000\n",
-      "lr 1.511775e-03 reg 2.894266e+01 train accuracy: 0.142245 val accuracy: 0.137000\n",
-      "lr 1.511775e-03 reg 4.375479e+01 train accuracy: 0.156408 val accuracy: 0.172000\n",
-      "lr 1.511775e-03 reg 6.614741e+01 train accuracy: 0.099857 val accuracy: 0.112000\n",
-      "lr 1.511775e-03 reg 1.000000e+02 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 2.030918e-03 reg 1.000000e-05 train accuracy: 0.184388 val accuracy: 0.167000\n",
-      "lr 2.030918e-03 reg 1.511775e-05 train accuracy: 0.145592 val accuracy: 0.134000\n",
-      "lr 2.030918e-03 reg 2.285464e-05 train accuracy: 0.180041 val accuracy: 0.170000\n",
-      "lr 2.030918e-03 reg 3.455107e-05 train accuracy: 0.197939 val accuracy: 0.208000\n",
-      "lr 2.030918e-03 reg 5.223345e-05 train accuracy: 0.221694 val accuracy: 0.199000\n",
-      "lr 2.030918e-03 reg 7.896523e-05 train accuracy: 0.119490 val accuracy: 0.114000\n",
-      "lr 2.030918e-03 reg 1.193777e-04 train accuracy: 0.204898 val accuracy: 0.191000\n",
-      "lr 2.030918e-03 reg 1.804722e-04 train accuracy: 0.200449 val accuracy: 0.202000\n",
-      "lr 2.030918e-03 reg 2.728333e-04 train accuracy: 0.218041 val accuracy: 0.233000\n",
-      "lr 2.030918e-03 reg 4.124626e-04 train accuracy: 0.212347 val accuracy: 0.194000\n",
-      "lr 2.030918e-03 reg 6.235507e-04 train accuracy: 0.219980 val accuracy: 0.219000\n",
-      "lr 2.030918e-03 reg 9.426685e-04 train accuracy: 0.210551 val accuracy: 0.195000\n",
-      "lr 2.030918e-03 reg 1.425103e-03 train accuracy: 0.170939 val accuracy: 0.167000\n",
-      "lr 2.030918e-03 reg 2.154435e-03 train accuracy: 0.194551 val accuracy: 0.190000\n",
-      "lr 2.030918e-03 reg 3.257021e-03 train accuracy: 0.205184 val accuracy: 0.185000\n",
-      "lr 2.030918e-03 reg 4.923883e-03 train accuracy: 0.175286 val accuracy: 0.181000\n",
-      "lr 2.030918e-03 reg 7.443803e-03 train accuracy: 0.225796 val accuracy: 0.218000\n",
-      "lr 2.030918e-03 reg 1.125336e-02 train accuracy: 0.188980 val accuracy: 0.179000\n",
-      "lr 2.030918e-03 reg 1.701254e-02 train accuracy: 0.127000 val accuracy: 0.113000\n",
-      "lr 2.030918e-03 reg 2.571914e-02 train accuracy: 0.184653 val accuracy: 0.176000\n",
-      "lr 2.030918e-03 reg 3.888155e-02 train accuracy: 0.197184 val accuracy: 0.208000\n",
-      "lr 2.030918e-03 reg 5.878016e-02 train accuracy: 0.155245 val accuracy: 0.180000\n",
-      "lr 2.030918e-03 reg 8.886238e-02 train accuracy: 0.186939 val accuracy: 0.165000\n",
-      "lr 2.030918e-03 reg 1.343399e-01 train accuracy: 0.167469 val accuracy: 0.153000\n",
-      "lr 2.030918e-03 reg 2.030918e-01 train accuracy: 0.159184 val accuracy: 0.164000\n",
-      "lr 2.030918e-03 reg 3.070291e-01 train accuracy: 0.207694 val accuracy: 0.202000\n",
-      "lr 2.030918e-03 reg 4.641589e-01 train accuracy: 0.185510 val accuracy: 0.176000\n",
-      "lr 2.030918e-03 reg 7.017038e-01 train accuracy: 0.189490 val accuracy: 0.203000\n",
-      "lr 2.030918e-03 reg 1.060818e+00 train accuracy: 0.194939 val accuracy: 0.189000\n",
-      "lr 2.030918e-03 reg 1.603719e+00 train accuracy: 0.160735 val accuracy: 0.154000\n",
-      "lr 2.030918e-03 reg 2.424462e+00 train accuracy: 0.205388 val accuracy: 0.204000\n",
-      "lr 2.030918e-03 reg 3.665241e+00 train accuracy: 0.109755 val accuracy: 0.125000\n",
-      "lr 2.030918e-03 reg 5.541020e+00 train accuracy: 0.119878 val accuracy: 0.126000\n",
-      "lr 2.030918e-03 reg 8.376776e+00 train accuracy: 0.165265 val accuracy: 0.167000\n",
-      "lr 2.030918e-03 reg 1.266380e+01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 2.030918e-03 reg 1.914482e+01 train accuracy: 0.105082 val accuracy: 0.107000\n",
-      "lr 2.030918e-03 reg 2.894266e+01 train accuracy: 0.133776 val accuracy: 0.137000\n",
-      "lr 2.030918e-03 reg 4.375479e+01 train accuracy: 0.100592 val accuracy: 0.078000\n",
-      "lr 2.030918e-03 reg 6.614741e+01 train accuracy: 0.099735 val accuracy: 0.113000\n",
-      "lr 2.030918e-03 reg 1.000000e+02 train accuracy: 0.128469 val accuracy: 0.131000\n",
-      "lr 2.728333e-03 reg 1.000000e-05 train accuracy: 0.171306 val accuracy: 0.189000\n",
-      "lr 2.728333e-03 reg 1.511775e-05 train accuracy: 0.158490 val accuracy: 0.164000\n",
-      "lr 2.728333e-03 reg 2.285464e-05 train accuracy: 0.184898 val accuracy: 0.174000\n",
-      "lr 2.728333e-03 reg 3.455107e-05 train accuracy: 0.192204 val accuracy: 0.165000\n",
-      "lr 2.728333e-03 reg 5.223345e-05 train accuracy: 0.163816 val accuracy: 0.157000\n",
-      "lr 2.728333e-03 reg 7.896523e-05 train accuracy: 0.131122 val accuracy: 0.113000\n",
-      "lr 2.728333e-03 reg 1.193777e-04 train accuracy: 0.120122 val accuracy: 0.099000\n",
-      "lr 2.728333e-03 reg 1.804722e-04 train accuracy: 0.162347 val accuracy: 0.145000\n",
-      "lr 2.728333e-03 reg 2.728333e-04 train accuracy: 0.137245 val accuracy: 0.123000\n",
-      "lr 2.728333e-03 reg 4.124626e-04 train accuracy: 0.209367 val accuracy: 0.194000\n",
-      "lr 2.728333e-03 reg 6.235507e-04 train accuracy: 0.189327 val accuracy: 0.186000\n",
-      "lr 2.728333e-03 reg 9.426685e-04 train accuracy: 0.207224 val accuracy: 0.193000\n",
-      "lr 2.728333e-03 reg 1.425103e-03 train accuracy: 0.217265 val accuracy: 0.212000\n",
-      "lr 2.728333e-03 reg 2.154435e-03 train accuracy: 0.171286 val accuracy: 0.178000\n",
-      "lr 2.728333e-03 reg 3.257021e-03 train accuracy: 0.214796 val accuracy: 0.194000\n",
-      "lr 2.728333e-03 reg 4.923883e-03 train accuracy: 0.225490 val accuracy: 0.209000\n",
-      "lr 2.728333e-03 reg 7.443803e-03 train accuracy: 0.164367 val accuracy: 0.126000\n",
-      "lr 2.728333e-03 reg 1.125336e-02 train accuracy: 0.181184 val accuracy: 0.177000\n",
-      "lr 2.728333e-03 reg 1.701254e-02 train accuracy: 0.176163 val accuracy: 0.151000\n",
-      "lr 2.728333e-03 reg 2.571914e-02 train accuracy: 0.142082 val accuracy: 0.134000\n",
-      "lr 2.728333e-03 reg 3.888155e-02 train accuracy: 0.165184 val accuracy: 0.188000\n",
-      "lr 2.728333e-03 reg 5.878016e-02 train accuracy: 0.157082 val accuracy: 0.159000\n",
-      "lr 2.728333e-03 reg 8.886238e-02 train accuracy: 0.125286 val accuracy: 0.137000\n",
-      "lr 2.728333e-03 reg 1.343399e-01 train accuracy: 0.184898 val accuracy: 0.190000\n",
-      "lr 2.728333e-03 reg 2.030918e-01 train accuracy: 0.146020 val accuracy: 0.146000\n",
-      "lr 2.728333e-03 reg 3.070291e-01 train accuracy: 0.189633 val accuracy: 0.187000\n",
-      "lr 2.728333e-03 reg 4.641589e-01 train accuracy: 0.163163 val accuracy: 0.152000\n",
-      "lr 2.728333e-03 reg 7.017038e-01 train accuracy: 0.133429 val accuracy: 0.156000\n",
-      "lr 2.728333e-03 reg 1.060818e+00 train accuracy: 0.157816 val accuracy: 0.173000\n",
-      "lr 2.728333e-03 reg 1.603719e+00 train accuracy: 0.184551 val accuracy: 0.181000\n",
-      "lr 2.728333e-03 reg 2.424462e+00 train accuracy: 0.127224 val accuracy: 0.119000\n",
-      "lr 2.728333e-03 reg 3.665241e+00 train accuracy: 0.145633 val accuracy: 0.143000\n",
-      "lr 2.728333e-03 reg 5.541020e+00 train accuracy: 0.100612 val accuracy: 0.120000\n",
-      "lr 2.728333e-03 reg 8.376776e+00 train accuracy: 0.130020 val accuracy: 0.120000\n",
-      "lr 2.728333e-03 reg 1.266380e+01 train accuracy: 0.147837 val accuracy: 0.146000\n",
-      "lr 2.728333e-03 reg 1.914482e+01 train accuracy: 0.102939 val accuracy: 0.103000\n",
-      "lr 2.728333e-03 reg 2.894266e+01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 2.728333e-03 reg 4.375479e+01 train accuracy: 0.112510 val accuracy: 0.092000\n",
-      "lr 2.728333e-03 reg 6.614741e+01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 2.728333e-03 reg 1.000000e+02 train accuracy: 0.099898 val accuracy: 0.113000\n",
-      "lr 3.665241e-03 reg 1.000000e-05 train accuracy: 0.148265 val accuracy: 0.129000\n",
-      "lr 3.665241e-03 reg 1.511775e-05 train accuracy: 0.148122 val accuracy: 0.145000\n",
-      "lr 3.665241e-03 reg 2.285464e-05 train accuracy: 0.178816 val accuracy: 0.163000\n",
-      "lr 3.665241e-03 reg 3.455107e-05 train accuracy: 0.209857 val accuracy: 0.217000\n",
-      "lr 3.665241e-03 reg 5.223345e-05 train accuracy: 0.168714 val accuracy: 0.152000\n",
-      "lr 3.665241e-03 reg 7.896523e-05 train accuracy: 0.234102 val accuracy: 0.225000\n",
-      "lr 3.665241e-03 reg 1.193777e-04 train accuracy: 0.169980 val accuracy: 0.160000\n",
-      "lr 3.665241e-03 reg 1.804722e-04 train accuracy: 0.190286 val accuracy: 0.161000\n",
-      "lr 3.665241e-03 reg 2.728333e-04 train accuracy: 0.198327 val accuracy: 0.194000\n",
-      "lr 3.665241e-03 reg 4.124626e-04 train accuracy: 0.199959 val accuracy: 0.178000\n",
-      "lr 3.665241e-03 reg 6.235507e-04 train accuracy: 0.205429 val accuracy: 0.183000\n",
-      "lr 3.665241e-03 reg 9.426685e-04 train accuracy: 0.247367 val accuracy: 0.220000\n",
-      "lr 3.665241e-03 reg 1.425103e-03 train accuracy: 0.186490 val accuracy: 0.184000\n",
-      "lr 3.665241e-03 reg 2.154435e-03 train accuracy: 0.194653 val accuracy: 0.198000\n",
-      "lr 3.665241e-03 reg 3.257021e-03 train accuracy: 0.193816 val accuracy: 0.153000\n",
-      "lr 3.665241e-03 reg 4.923883e-03 train accuracy: 0.154041 val accuracy: 0.138000\n",
-      "lr 3.665241e-03 reg 7.443803e-03 train accuracy: 0.186735 val accuracy: 0.184000\n",
-      "lr 3.665241e-03 reg 1.125336e-02 train accuracy: 0.161490 val accuracy: 0.158000\n",
-      "lr 3.665241e-03 reg 1.701254e-02 train accuracy: 0.209490 val accuracy: 0.194000\n",
-      "lr 3.665241e-03 reg 2.571914e-02 train accuracy: 0.219082 val accuracy: 0.196000\n",
-      "lr 3.665241e-03 reg 3.888155e-02 train accuracy: 0.156245 val accuracy: 0.171000\n",
-      "lr 3.665241e-03 reg 5.878016e-02 train accuracy: 0.135878 val accuracy: 0.143000\n",
-      "lr 3.665241e-03 reg 8.886238e-02 train accuracy: 0.183571 val accuracy: 0.179000\n",
-      "lr 3.665241e-03 reg 1.343399e-01 train accuracy: 0.162816 val accuracy: 0.177000\n",
-      "lr 3.665241e-03 reg 2.030918e-01 train accuracy: 0.162633 val accuracy: 0.164000\n",
-      "lr 3.665241e-03 reg 3.070291e-01 train accuracy: 0.147735 val accuracy: 0.151000\n",
-      "lr 3.665241e-03 reg 4.641589e-01 train accuracy: 0.148959 val accuracy: 0.161000\n",
-      "lr 3.665241e-03 reg 7.017038e-01 train accuracy: 0.162082 val accuracy: 0.135000\n",
-      "lr 3.665241e-03 reg 1.060818e+00 train accuracy: 0.112755 val accuracy: 0.098000\n",
-      "lr 3.665241e-03 reg 1.603719e+00 train accuracy: 0.170571 val accuracy: 0.181000\n",
-      "lr 3.665241e-03 reg 2.424462e+00 train accuracy: 0.116796 val accuracy: 0.131000\n",
-      "lr 3.665241e-03 reg 3.665241e+00 train accuracy: 0.159469 val accuracy: 0.154000\n",
-      "lr 3.665241e-03 reg 5.541020e+00 train accuracy: 0.148857 val accuracy: 0.166000\n",
-      "lr 3.665241e-03 reg 8.376776e+00 train accuracy: 0.101469 val accuracy: 0.080000\n",
-      "lr 3.665241e-03 reg 1.266380e+01 train accuracy: 0.125755 val accuracy: 0.126000\n",
-      "lr 3.665241e-03 reg 1.914482e+01 train accuracy: 0.126184 val accuracy: 0.144000\n",
-      "lr 3.665241e-03 reg 2.894266e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 3.665241e-03 reg 4.375479e+01 train accuracy: 0.124041 val accuracy: 0.124000\n",
-      "lr 3.665241e-03 reg 6.614741e+01 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 3.665241e-03 reg 1.000000e+02 train accuracy: 0.106898 val accuracy: 0.092000\n",
-      "lr 4.923883e-03 reg 1.000000e-05 train accuracy: 0.196816 val accuracy: 0.179000\n",
-      "lr 4.923883e-03 reg 1.511775e-05 train accuracy: 0.175857 val accuracy: 0.186000\n",
-      "lr 4.923883e-03 reg 2.285464e-05 train accuracy: 0.188510 val accuracy: 0.163000\n",
-      "lr 4.923883e-03 reg 3.455107e-05 train accuracy: 0.194102 val accuracy: 0.175000\n",
-      "lr 4.923883e-03 reg 5.223345e-05 train accuracy: 0.152388 val accuracy: 0.135000\n",
-      "lr 4.923883e-03 reg 7.896523e-05 train accuracy: 0.167020 val accuracy: 0.160000\n",
-      "lr 4.923883e-03 reg 1.193777e-04 train accuracy: 0.149000 val accuracy: 0.128000\n",
-      "lr 4.923883e-03 reg 1.804722e-04 train accuracy: 0.163959 val accuracy: 0.167000\n",
-      "lr 4.923883e-03 reg 2.728333e-04 train accuracy: 0.179061 val accuracy: 0.161000\n",
-      "lr 4.923883e-03 reg 4.124626e-04 train accuracy: 0.234776 val accuracy: 0.231000\n",
-      "lr 4.923883e-03 reg 6.235507e-04 train accuracy: 0.203000 val accuracy: 0.195000\n",
-      "lr 4.923883e-03 reg 9.426685e-04 train accuracy: 0.204224 val accuracy: 0.199000\n",
-      "lr 4.923883e-03 reg 1.425103e-03 train accuracy: 0.130510 val accuracy: 0.105000\n",
-      "lr 4.923883e-03 reg 2.154435e-03 train accuracy: 0.220633 val accuracy: 0.190000\n",
-      "lr 4.923883e-03 reg 3.257021e-03 train accuracy: 0.184776 val accuracy: 0.180000\n",
-      "lr 4.923883e-03 reg 4.923883e-03 train accuracy: 0.190469 val accuracy: 0.165000\n",
-      "lr 4.923883e-03 reg 7.443803e-03 train accuracy: 0.198102 val accuracy: 0.204000\n",
-      "lr 4.923883e-03 reg 1.125336e-02 train accuracy: 0.163327 val accuracy: 0.164000\n",
-      "lr 4.923883e-03 reg 1.701254e-02 train accuracy: 0.166204 val accuracy: 0.167000\n",
-      "lr 4.923883e-03 reg 2.571914e-02 train accuracy: 0.222367 val accuracy: 0.220000\n",
-      "lr 4.923883e-03 reg 3.888155e-02 train accuracy: 0.164000 val accuracy: 0.187000\n",
-      "lr 4.923883e-03 reg 5.878016e-02 train accuracy: 0.107102 val accuracy: 0.118000\n",
-      "lr 4.923883e-03 reg 8.886238e-02 train accuracy: 0.200592 val accuracy: 0.214000\n",
-      "lr 4.923883e-03 reg 1.343399e-01 train accuracy: 0.193184 val accuracy: 0.203000\n",
-      "lr 4.923883e-03 reg 2.030918e-01 train accuracy: 0.177347 val accuracy: 0.200000\n",
-      "lr 4.923883e-03 reg 3.070291e-01 train accuracy: 0.187367 val accuracy: 0.196000\n",
-      "lr 4.923883e-03 reg 4.641589e-01 train accuracy: 0.124959 val accuracy: 0.140000\n",
-      "lr 4.923883e-03 reg 7.017038e-01 train accuracy: 0.143082 val accuracy: 0.168000\n",
-      "lr 4.923883e-03 reg 1.060818e+00 train accuracy: 0.167000 val accuracy: 0.179000\n",
-      "lr 4.923883e-03 reg 1.603719e+00 train accuracy: 0.165571 val accuracy: 0.146000\n",
-      "lr 4.923883e-03 reg 2.424462e+00 train accuracy: 0.115857 val accuracy: 0.118000\n",
-      "lr 4.923883e-03 reg 3.665241e+00 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 4.923883e-03 reg 5.541020e+00 train accuracy: 0.100388 val accuracy: 0.079000\n",
-      "lr 4.923883e-03 reg 8.376776e+00 train accuracy: 0.136837 val accuracy: 0.130000\n",
-      "lr 4.923883e-03 reg 1.266380e+01 train accuracy: 0.100980 val accuracy: 0.079000\n",
-      "lr 4.923883e-03 reg 1.914482e+01 train accuracy: 0.100367 val accuracy: 0.079000\n",
-      "lr 4.923883e-03 reg 2.894266e+01 train accuracy: 0.110531 val accuracy: 0.112000\n",
-      "lr 4.923883e-03 reg 4.375479e+01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 4.923883e-03 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.923883e-03 reg 1.000000e+02 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 6.614741e-03 reg 1.000000e-05 train accuracy: 0.166082 val accuracy: 0.145000\n",
-      "lr 6.614741e-03 reg 1.511775e-05 train accuracy: 0.191082 val accuracy: 0.146000\n",
-      "lr 6.614741e-03 reg 2.285464e-05 train accuracy: 0.169286 val accuracy: 0.159000\n",
-      "lr 6.614741e-03 reg 3.455107e-05 train accuracy: 0.240245 val accuracy: 0.232000\n",
-      "lr 6.614741e-03 reg 5.223345e-05 train accuracy: 0.171327 val accuracy: 0.158000\n",
-      "lr 6.614741e-03 reg 7.896523e-05 train accuracy: 0.190143 val accuracy: 0.188000\n",
-      "lr 6.614741e-03 reg 1.193777e-04 train accuracy: 0.180612 val accuracy: 0.166000\n",
-      "lr 6.614741e-03 reg 1.804722e-04 train accuracy: 0.117857 val accuracy: 0.133000\n",
-      "lr 6.614741e-03 reg 2.728333e-04 train accuracy: 0.178367 val accuracy: 0.179000\n",
-      "lr 6.614741e-03 reg 4.124626e-04 train accuracy: 0.206061 val accuracy: 0.200000\n",
-      "lr 6.614741e-03 reg 6.235507e-04 train accuracy: 0.152367 val accuracy: 0.181000\n",
-      "lr 6.614741e-03 reg 9.426685e-04 train accuracy: 0.200347 val accuracy: 0.174000\n",
-      "lr 6.614741e-03 reg 1.425103e-03 train accuracy: 0.116020 val accuracy: 0.118000\n",
-      "lr 6.614741e-03 reg 2.154435e-03 train accuracy: 0.174857 val accuracy: 0.163000\n",
-      "lr 6.614741e-03 reg 3.257021e-03 train accuracy: 0.190857 val accuracy: 0.189000\n",
-      "lr 6.614741e-03 reg 4.923883e-03 train accuracy: 0.250735 val accuracy: 0.236000\n",
-      "lr 6.614741e-03 reg 7.443803e-03 train accuracy: 0.210143 val accuracy: 0.217000\n",
-      "lr 6.614741e-03 reg 1.125336e-02 train accuracy: 0.199551 val accuracy: 0.186000\n",
-      "lr 6.614741e-03 reg 1.701254e-02 train accuracy: 0.162857 val accuracy: 0.169000\n",
-      "lr 6.614741e-03 reg 2.571914e-02 train accuracy: 0.185265 val accuracy: 0.184000\n",
-      "lr 6.614741e-03 reg 3.888155e-02 train accuracy: 0.191857 val accuracy: 0.160000\n",
-      "lr 6.614741e-03 reg 5.878016e-02 train accuracy: 0.191939 val accuracy: 0.184000\n",
-      "lr 6.614741e-03 reg 8.886238e-02 train accuracy: 0.195061 val accuracy: 0.187000\n",
-      "lr 6.614741e-03 reg 1.343399e-01 train accuracy: 0.176245 val accuracy: 0.161000\n",
-      "lr 6.614741e-03 reg 2.030918e-01 train accuracy: 0.151143 val accuracy: 0.160000\n",
-      "lr 6.614741e-03 reg 3.070291e-01 train accuracy: 0.162735 val accuracy: 0.177000\n",
-      "lr 6.614741e-03 reg 4.641589e-01 train accuracy: 0.191490 val accuracy: 0.173000\n",
-      "lr 6.614741e-03 reg 7.017038e-01 train accuracy: 0.166673 val accuracy: 0.176000\n",
-      "lr 6.614741e-03 reg 1.060818e+00 train accuracy: 0.168122 val accuracy: 0.184000\n",
-      "lr 6.614741e-03 reg 1.603719e+00 train accuracy: 0.112122 val accuracy: 0.110000\n",
-      "lr 6.614741e-03 reg 2.424462e+00 train accuracy: 0.106286 val accuracy: 0.092000\n",
-      "lr 6.614741e-03 reg 3.665241e+00 train accuracy: 0.110245 val accuracy: 0.124000\n",
-      "lr 6.614741e-03 reg 5.541020e+00 train accuracy: 0.147367 val accuracy: 0.143000\n",
-      "lr 6.614741e-03 reg 8.376776e+00 train accuracy: 0.099816 val accuracy: 0.112000\n",
-      "lr 6.614741e-03 reg 1.266380e+01 train accuracy: 0.147898 val accuracy: 0.146000\n",
-      "lr 6.614741e-03 reg 1.914482e+01 train accuracy: 0.138429 val accuracy: 0.164000\n",
-      "lr 6.614741e-03 reg 2.894266e+01 train accuracy: 0.107673 val accuracy: 0.121000\n",
-      "lr 6.614741e-03 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 6.614741e-03 reg 6.614741e+01 train accuracy: 0.101245 val accuracy: 0.099000\n",
-      "lr 6.614741e-03 reg 1.000000e+02 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 8.886238e-03 reg 1.000000e-05 train accuracy: 0.163816 val accuracy: 0.174000\n",
-      "lr 8.886238e-03 reg 1.511775e-05 train accuracy: 0.167429 val accuracy: 0.160000\n",
-      "lr 8.886238e-03 reg 2.285464e-05 train accuracy: 0.227694 val accuracy: 0.208000\n",
-      "lr 8.886238e-03 reg 3.455107e-05 train accuracy: 0.192327 val accuracy: 0.200000\n",
-      "lr 8.886238e-03 reg 5.223345e-05 train accuracy: 0.195041 val accuracy: 0.191000\n",
-      "lr 8.886238e-03 reg 7.896523e-05 train accuracy: 0.206878 val accuracy: 0.193000\n",
-      "lr 8.886238e-03 reg 1.193777e-04 train accuracy: 0.184184 val accuracy: 0.176000\n",
-      "lr 8.886238e-03 reg 1.804722e-04 train accuracy: 0.222388 val accuracy: 0.195000\n",
-      "lr 8.886238e-03 reg 2.728333e-04 train accuracy: 0.182531 val accuracy: 0.207000\n",
-      "lr 8.886238e-03 reg 4.124626e-04 train accuracy: 0.215347 val accuracy: 0.197000\n",
-      "lr 8.886238e-03 reg 6.235507e-04 train accuracy: 0.184980 val accuracy: 0.199000\n",
-      "lr 8.886238e-03 reg 9.426685e-04 train accuracy: 0.176245 val accuracy: 0.167000\n",
-      "lr 8.886238e-03 reg 1.425103e-03 train accuracy: 0.169898 val accuracy: 0.162000\n",
-      "lr 8.886238e-03 reg 2.154435e-03 train accuracy: 0.204347 val accuracy: 0.189000\n",
-      "lr 8.886238e-03 reg 3.257021e-03 train accuracy: 0.214653 val accuracy: 0.179000\n",
-      "lr 8.886238e-03 reg 4.923883e-03 train accuracy: 0.213673 val accuracy: 0.201000\n",
-      "lr 8.886238e-03 reg 7.443803e-03 train accuracy: 0.148531 val accuracy: 0.145000\n",
-      "lr 8.886238e-03 reg 1.125336e-02 train accuracy: 0.191082 val accuracy: 0.205000\n",
-      "lr 8.886238e-03 reg 1.701254e-02 train accuracy: 0.177673 val accuracy: 0.168000\n",
-      "lr 8.886238e-03 reg 2.571914e-02 train accuracy: 0.139633 val accuracy: 0.122000\n",
-      "lr 8.886238e-03 reg 3.888155e-02 train accuracy: 0.195673 val accuracy: 0.184000\n",
-      "lr 8.886238e-03 reg 5.878016e-02 train accuracy: 0.168122 val accuracy: 0.177000\n",
-      "lr 8.886238e-03 reg 8.886238e-02 train accuracy: 0.164163 val accuracy: 0.182000\n",
-      "lr 8.886238e-03 reg 1.343399e-01 train accuracy: 0.144837 val accuracy: 0.141000\n",
-      "lr 8.886238e-03 reg 2.030918e-01 train accuracy: 0.137796 val accuracy: 0.148000\n",
-      "lr 8.886238e-03 reg 3.070291e-01 train accuracy: 0.167469 val accuracy: 0.168000\n",
-      "lr 8.886238e-03 reg 4.641589e-01 train accuracy: 0.179143 val accuracy: 0.179000\n",
-      "lr 8.886238e-03 reg 7.017038e-01 train accuracy: 0.124184 val accuracy: 0.116000\n",
-      "lr 8.886238e-03 reg 1.060818e+00 train accuracy: 0.173306 val accuracy: 0.198000\n",
-      "lr 8.886238e-03 reg 1.603719e+00 train accuracy: 0.124918 val accuracy: 0.103000\n",
-      "lr 8.886238e-03 reg 2.424462e+00 train accuracy: 0.100755 val accuracy: 0.103000\n",
-      "lr 8.886238e-03 reg 3.665241e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 8.886238e-03 reg 5.541020e+00 train accuracy: 0.130388 val accuracy: 0.148000\n",
-      "lr 8.886238e-03 reg 8.376776e+00 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 8.886238e-03 reg 1.266380e+01 train accuracy: 0.100082 val accuracy: 0.102000\n",
-      "lr 8.886238e-03 reg 1.914482e+01 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 8.886238e-03 reg 2.894266e+01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 8.886238e-03 reg 4.375479e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 8.886238e-03 reg 6.614741e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 8.886238e-03 reg 1.000000e+02 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.193777e-02 reg 1.000000e-05 train accuracy: 0.214857 val accuracy: 0.202000\n",
-      "lr 1.193777e-02 reg 1.511775e-05 train accuracy: 0.159245 val accuracy: 0.173000\n",
-      "lr 1.193777e-02 reg 2.285464e-05 train accuracy: 0.170612 val accuracy: 0.172000\n",
-      "lr 1.193777e-02 reg 3.455107e-05 train accuracy: 0.209000 val accuracy: 0.187000\n",
-      "lr 1.193777e-02 reg 5.223345e-05 train accuracy: 0.182673 val accuracy: 0.197000\n",
-      "lr 1.193777e-02 reg 7.896523e-05 train accuracy: 0.129898 val accuracy: 0.143000\n",
-      "lr 1.193777e-02 reg 1.193777e-04 train accuracy: 0.160347 val accuracy: 0.151000\n",
-      "lr 1.193777e-02 reg 1.804722e-04 train accuracy: 0.214286 val accuracy: 0.208000\n",
-      "lr 1.193777e-02 reg 2.728333e-04 train accuracy: 0.156551 val accuracy: 0.172000\n",
-      "lr 1.193777e-02 reg 4.124626e-04 train accuracy: 0.176245 val accuracy: 0.163000\n",
-      "lr 1.193777e-02 reg 6.235507e-04 train accuracy: 0.201224 val accuracy: 0.191000\n",
-      "lr 1.193777e-02 reg 9.426685e-04 train accuracy: 0.223939 val accuracy: 0.224000\n",
-      "lr 1.193777e-02 reg 1.425103e-03 train accuracy: 0.168776 val accuracy: 0.175000\n",
-      "lr 1.193777e-02 reg 2.154435e-03 train accuracy: 0.229571 val accuracy: 0.209000\n",
-      "lr 1.193777e-02 reg 3.257021e-03 train accuracy: 0.195367 val accuracy: 0.185000\n",
-      "lr 1.193777e-02 reg 4.923883e-03 train accuracy: 0.147327 val accuracy: 0.164000\n",
-      "lr 1.193777e-02 reg 7.443803e-03 train accuracy: 0.154163 val accuracy: 0.140000\n",
-      "lr 1.193777e-02 reg 1.125336e-02 train accuracy: 0.183245 val accuracy: 0.190000\n",
-      "lr 1.193777e-02 reg 1.701254e-02 train accuracy: 0.192347 val accuracy: 0.176000\n",
-      "lr 1.193777e-02 reg 2.571914e-02 train accuracy: 0.186551 val accuracy: 0.211000\n",
-      "lr 1.193777e-02 reg 3.888155e-02 train accuracy: 0.212633 val accuracy: 0.191000\n",
-      "lr 1.193777e-02 reg 5.878016e-02 train accuracy: 0.237041 val accuracy: 0.252000\n",
-      "lr 1.193777e-02 reg 8.886238e-02 train accuracy: 0.120816 val accuracy: 0.106000\n",
-      "lr 1.193777e-02 reg 1.343399e-01 train accuracy: 0.195551 val accuracy: 0.208000\n",
-      "lr 1.193777e-02 reg 2.030918e-01 train accuracy: 0.150306 val accuracy: 0.156000\n",
-      "lr 1.193777e-02 reg 3.070291e-01 train accuracy: 0.153306 val accuracy: 0.173000\n",
-      "lr 1.193777e-02 reg 4.641589e-01 train accuracy: 0.129551 val accuracy: 0.108000\n",
-      "lr 1.193777e-02 reg 7.017038e-01 train accuracy: 0.145102 val accuracy: 0.146000\n",
-      "lr 1.193777e-02 reg 1.060818e+00 train accuracy: 0.120898 val accuracy: 0.121000\n",
-      "lr 1.193777e-02 reg 1.603719e+00 train accuracy: 0.133816 val accuracy: 0.115000\n",
-      "lr 1.193777e-02 reg 2.424462e+00 train accuracy: 0.128551 val accuracy: 0.124000\n",
-      "lr 1.193777e-02 reg 3.665241e+00 train accuracy: 0.100327 val accuracy: 0.114000\n",
-      "lr 1.193777e-02 reg 5.541020e+00 train accuracy: 0.108367 val accuracy: 0.122000\n",
-      "lr 1.193777e-02 reg 8.376776e+00 train accuracy: 0.100551 val accuracy: 0.079000\n",
-      "lr 1.193777e-02 reg 1.266380e+01 train accuracy: 0.100939 val accuracy: 0.079000\n",
-      "lr 1.193777e-02 reg 1.914482e+01 train accuracy: 0.100408 val accuracy: 0.079000\n",
-      "lr 1.193777e-02 reg 2.894266e+01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 1.193777e-02 reg 4.375479e+01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.193777e-02 reg 6.614741e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.193777e-02 reg 1.000000e+02 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.603719e-02 reg 1.000000e-05 train accuracy: 0.146673 val accuracy: 0.134000\n",
-      "lr 1.603719e-02 reg 1.511775e-05 train accuracy: 0.135429 val accuracy: 0.119000\n",
-      "lr 1.603719e-02 reg 2.285464e-05 train accuracy: 0.223469 val accuracy: 0.209000\n",
-      "lr 1.603719e-02 reg 3.455107e-05 train accuracy: 0.233449 val accuracy: 0.200000\n",
-      "lr 1.603719e-02 reg 5.223345e-05 train accuracy: 0.193082 val accuracy: 0.180000\n",
-      "lr 1.603719e-02 reg 7.896523e-05 train accuracy: 0.166531 val accuracy: 0.157000\n",
-      "lr 1.603719e-02 reg 1.193777e-04 train accuracy: 0.182224 val accuracy: 0.171000\n",
-      "lr 1.603719e-02 reg 1.804722e-04 train accuracy: 0.193061 val accuracy: 0.181000\n",
-      "lr 1.603719e-02 reg 2.728333e-04 train accuracy: 0.236531 val accuracy: 0.212000\n",
-      "lr 1.603719e-02 reg 4.124626e-04 train accuracy: 0.206796 val accuracy: 0.201000\n",
-      "lr 1.603719e-02 reg 6.235507e-04 train accuracy: 0.233245 val accuracy: 0.212000\n",
-      "lr 1.603719e-02 reg 9.426685e-04 train accuracy: 0.242163 val accuracy: 0.231000\n",
-      "lr 1.603719e-02 reg 1.425103e-03 train accuracy: 0.164061 val accuracy: 0.161000\n",
-      "lr 1.603719e-02 reg 2.154435e-03 train accuracy: 0.178939 val accuracy: 0.184000\n",
-      "lr 1.603719e-02 reg 3.257021e-03 train accuracy: 0.214000 val accuracy: 0.231000\n",
-      "lr 1.603719e-02 reg 4.923883e-03 train accuracy: 0.211449 val accuracy: 0.202000\n",
-      "lr 1.603719e-02 reg 7.443803e-03 train accuracy: 0.196796 val accuracy: 0.206000\n",
-      "lr 1.603719e-02 reg 1.125336e-02 train accuracy: 0.195388 val accuracy: 0.202000\n",
-      "lr 1.603719e-02 reg 1.701254e-02 train accuracy: 0.117143 val accuracy: 0.096000\n",
-      "lr 1.603719e-02 reg 2.571914e-02 train accuracy: 0.168980 val accuracy: 0.186000\n",
-      "lr 1.603719e-02 reg 3.888155e-02 train accuracy: 0.165755 val accuracy: 0.150000\n",
-      "lr 1.603719e-02 reg 5.878016e-02 train accuracy: 0.193816 val accuracy: 0.218000\n",
-      "lr 1.603719e-02 reg 8.886238e-02 train accuracy: 0.190633 val accuracy: 0.179000\n",
-      "lr 1.603719e-02 reg 1.343399e-01 train accuracy: 0.139531 val accuracy: 0.163000\n",
-      "lr 1.603719e-02 reg 2.030918e-01 train accuracy: 0.135143 val accuracy: 0.130000\n",
-      "lr 1.603719e-02 reg 3.070291e-01 train accuracy: 0.150673 val accuracy: 0.142000\n",
-      "lr 1.603719e-02 reg 4.641589e-01 train accuracy: 0.114694 val accuracy: 0.120000\n",
-      "lr 1.603719e-02 reg 7.017038e-01 train accuracy: 0.157306 val accuracy: 0.152000\n",
-      "lr 1.603719e-02 reg 1.060818e+00 train accuracy: 0.138388 val accuracy: 0.136000\n",
-      "lr 1.603719e-02 reg 1.603719e+00 train accuracy: 0.107816 val accuracy: 0.110000\n",
-      "lr 1.603719e-02 reg 2.424462e+00 train accuracy: 0.155286 val accuracy: 0.156000\n",
-      "lr 1.603719e-02 reg 3.665241e+00 train accuracy: 0.137878 val accuracy: 0.157000\n",
-      "lr 1.603719e-02 reg 5.541020e+00 train accuracy: 0.100592 val accuracy: 0.079000\n",
-      "lr 1.603719e-02 reg 8.376776e+00 train accuracy: 0.104163 val accuracy: 0.109000\n",
-      "lr 1.603719e-02 reg 1.266380e+01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 1.603719e-02 reg 1.914482e+01 train accuracy: 0.099714 val accuracy: 0.113000\n",
-      "lr 1.603719e-02 reg 2.894266e+01 train accuracy: 0.101102 val accuracy: 0.114000\n",
-      "lr 1.603719e-02 reg 4.375479e+01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.603719e-02 reg 6.614741e+01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 1.603719e-02 reg 1.000000e+02 train accuracy: 0.108224 val accuracy: 0.117000\n",
-      "lr 2.154435e-02 reg 1.000000e-05 train accuracy: 0.215673 val accuracy: 0.196000\n",
-      "lr 2.154435e-02 reg 1.511775e-05 train accuracy: 0.196714 val accuracy: 0.193000\n",
-      "lr 2.154435e-02 reg 2.285464e-05 train accuracy: 0.139143 val accuracy: 0.123000\n",
-      "lr 2.154435e-02 reg 3.455107e-05 train accuracy: 0.229571 val accuracy: 0.219000\n",
-      "lr 2.154435e-02 reg 5.223345e-05 train accuracy: 0.232163 val accuracy: 0.231000\n",
-      "lr 2.154435e-02 reg 7.896523e-05 train accuracy: 0.170735 val accuracy: 0.152000\n",
-      "lr 2.154435e-02 reg 1.193777e-04 train accuracy: 0.187408 val accuracy: 0.165000\n",
-      "lr 2.154435e-02 reg 1.804722e-04 train accuracy: 0.229429 val accuracy: 0.211000\n",
-      "lr 2.154435e-02 reg 2.728333e-04 train accuracy: 0.156163 val accuracy: 0.159000\n",
-      "lr 2.154435e-02 reg 4.124626e-04 train accuracy: 0.161755 val accuracy: 0.182000\n",
-      "lr 2.154435e-02 reg 6.235507e-04 train accuracy: 0.178041 val accuracy: 0.181000\n",
-      "lr 2.154435e-02 reg 9.426685e-04 train accuracy: 0.202531 val accuracy: 0.189000\n",
-      "lr 2.154435e-02 reg 1.425103e-03 train accuracy: 0.173796 val accuracy: 0.172000\n",
-      "lr 2.154435e-02 reg 2.154435e-03 train accuracy: 0.196286 val accuracy: 0.173000\n",
-      "lr 2.154435e-02 reg 3.257021e-03 train accuracy: 0.216469 val accuracy: 0.211000\n",
-      "lr 2.154435e-02 reg 4.923883e-03 train accuracy: 0.191347 val accuracy: 0.187000\n",
-      "lr 2.154435e-02 reg 7.443803e-03 train accuracy: 0.209020 val accuracy: 0.193000\n",
-      "lr 2.154435e-02 reg 1.125336e-02 train accuracy: 0.184592 val accuracy: 0.204000\n",
-      "lr 2.154435e-02 reg 1.701254e-02 train accuracy: 0.194082 val accuracy: 0.197000\n",
-      "lr 2.154435e-02 reg 2.571914e-02 train accuracy: 0.197061 val accuracy: 0.174000\n",
-      "lr 2.154435e-02 reg 3.888155e-02 train accuracy: 0.204224 val accuracy: 0.179000\n",
-      "lr 2.154435e-02 reg 5.878016e-02 train accuracy: 0.142020 val accuracy: 0.136000\n",
-      "lr 2.154435e-02 reg 8.886238e-02 train accuracy: 0.144143 val accuracy: 0.169000\n",
-      "lr 2.154435e-02 reg 1.343399e-01 train accuracy: 0.150714 val accuracy: 0.147000\n",
-      "lr 2.154435e-02 reg 2.030918e-01 train accuracy: 0.169367 val accuracy: 0.165000\n",
-      "lr 2.154435e-02 reg 3.070291e-01 train accuracy: 0.206551 val accuracy: 0.220000\n",
-      "lr 2.154435e-02 reg 4.641589e-01 train accuracy: 0.170653 val accuracy: 0.175000\n",
-      "lr 2.154435e-02 reg 7.017038e-01 train accuracy: 0.111939 val accuracy: 0.127000\n",
-      "lr 2.154435e-02 reg 1.060818e+00 train accuracy: 0.102469 val accuracy: 0.080000\n",
-      "lr 2.154435e-02 reg 1.603719e+00 train accuracy: 0.100306 val accuracy: 0.106000\n",
-      "lr 2.154435e-02 reg 2.424462e+00 train accuracy: 0.136265 val accuracy: 0.139000\n",
-      "lr 2.154435e-02 reg 3.665241e+00 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 2.154435e-02 reg 5.541020e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 2.154435e-02 reg 8.376776e+00 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 2.154435e-02 reg 1.266380e+01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 2.154435e-02 reg 1.914482e+01 train accuracy: 0.108469 val accuracy: 0.118000\n",
-      "lr 2.154435e-02 reg 2.894266e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 2.154435e-02 reg 4.375479e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 2.154435e-02 reg 6.614741e+01 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 2.154435e-02 reg 1.000000e+02 train accuracy: 0.099735 val accuracy: 0.113000\n",
-      "lr 2.894266e-02 reg 1.000000e-05 train accuracy: 0.145408 val accuracy: 0.167000\n",
-      "lr 2.894266e-02 reg 1.511775e-05 train accuracy: 0.211653 val accuracy: 0.210000\n",
-      "lr 2.894266e-02 reg 2.285464e-05 train accuracy: 0.226204 val accuracy: 0.215000\n",
-      "lr 2.894266e-02 reg 3.455107e-05 train accuracy: 0.237347 val accuracy: 0.247000\n",
-      "lr 2.894266e-02 reg 5.223345e-05 train accuracy: 0.209694 val accuracy: 0.203000\n",
-      "lr 2.894266e-02 reg 7.896523e-05 train accuracy: 0.151531 val accuracy: 0.140000\n",
-      "lr 2.894266e-02 reg 1.193777e-04 train accuracy: 0.184000 val accuracy: 0.182000\n",
-      "lr 2.894266e-02 reg 1.804722e-04 train accuracy: 0.218796 val accuracy: 0.184000\n",
-      "lr 2.894266e-02 reg 2.728333e-04 train accuracy: 0.209735 val accuracy: 0.200000\n",
-      "lr 2.894266e-02 reg 4.124626e-04 train accuracy: 0.245306 val accuracy: 0.249000\n",
-      "lr 2.894266e-02 reg 6.235507e-04 train accuracy: 0.183408 val accuracy: 0.180000\n",
-      "lr 2.894266e-02 reg 9.426685e-04 train accuracy: 0.181673 val accuracy: 0.168000\n",
-      "lr 2.894266e-02 reg 1.425103e-03 train accuracy: 0.177837 val accuracy: 0.154000\n",
-      "lr 2.894266e-02 reg 2.154435e-03 train accuracy: 0.186102 val accuracy: 0.207000\n",
-      "lr 2.894266e-02 reg 3.257021e-03 train accuracy: 0.214939 val accuracy: 0.194000\n",
-      "lr 2.894266e-02 reg 4.923883e-03 train accuracy: 0.127490 val accuracy: 0.110000\n",
-      "lr 2.894266e-02 reg 7.443803e-03 train accuracy: 0.183347 val accuracy: 0.190000\n",
-      "lr 2.894266e-02 reg 1.125336e-02 train accuracy: 0.155531 val accuracy: 0.154000\n",
-      "lr 2.894266e-02 reg 1.701254e-02 train accuracy: 0.214918 val accuracy: 0.229000\n",
-      "lr 2.894266e-02 reg 2.571914e-02 train accuracy: 0.171755 val accuracy: 0.180000\n",
-      "lr 2.894266e-02 reg 3.888155e-02 train accuracy: 0.167980 val accuracy: 0.178000\n",
-      "lr 2.894266e-02 reg 5.878016e-02 train accuracy: 0.163082 val accuracy: 0.159000\n",
-      "lr 2.894266e-02 reg 8.886238e-02 train accuracy: 0.202408 val accuracy: 0.195000\n",
-      "lr 2.894266e-02 reg 1.343399e-01 train accuracy: 0.115020 val accuracy: 0.094000\n",
-      "lr 2.894266e-02 reg 2.030918e-01 train accuracy: 0.190000 val accuracy: 0.197000\n",
-      "lr 2.894266e-02 reg 3.070291e-01 train accuracy: 0.129551 val accuracy: 0.138000\n",
-      "lr 2.894266e-02 reg 4.641589e-01 train accuracy: 0.162837 val accuracy: 0.173000\n",
-      "lr 2.894266e-02 reg 7.017038e-01 train accuracy: 0.114531 val accuracy: 0.108000\n",
-      "lr 2.894266e-02 reg 1.060818e+00 train accuracy: 0.129878 val accuracy: 0.152000\n",
-      "lr 2.894266e-02 reg 1.603719e+00 train accuracy: 0.146918 val accuracy: 0.150000\n",
-      "lr 2.894266e-02 reg 2.424462e+00 train accuracy: 0.101224 val accuracy: 0.101000\n",
-      "lr 2.894266e-02 reg 3.665241e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 2.894266e-02 reg 5.541020e+00 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 2.894266e-02 reg 8.376776e+00 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 2.894266e-02 reg 1.266380e+01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 2.894266e-02 reg 1.914482e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 2.894266e-02 reg 2.894266e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 2.894266e-02 reg 4.375479e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 2.894266e-02 reg 6.614741e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 2.894266e-02 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.888155e-02 reg 1.000000e-05 train accuracy: 0.169408 val accuracy: 0.153000\n",
-      "lr 3.888155e-02 reg 1.511775e-05 train accuracy: 0.176490 val accuracy: 0.164000\n",
-      "lr 3.888155e-02 reg 2.285464e-05 train accuracy: 0.139184 val accuracy: 0.119000\n",
-      "lr 3.888155e-02 reg 3.455107e-05 train accuracy: 0.201571 val accuracy: 0.195000\n",
-      "lr 3.888155e-02 reg 5.223345e-05 train accuracy: 0.184898 val accuracy: 0.171000\n",
-      "lr 3.888155e-02 reg 7.896523e-05 train accuracy: 0.177286 val accuracy: 0.154000\n",
-      "lr 3.888155e-02 reg 1.193777e-04 train accuracy: 0.195306 val accuracy: 0.183000\n",
-      "lr 3.888155e-02 reg 1.804722e-04 train accuracy: 0.215980 val accuracy: 0.182000\n",
-      "lr 3.888155e-02 reg 2.728333e-04 train accuracy: 0.201041 val accuracy: 0.176000\n",
-      "lr 3.888155e-02 reg 4.124626e-04 train accuracy: 0.166224 val accuracy: 0.159000\n",
-      "lr 3.888155e-02 reg 6.235507e-04 train accuracy: 0.221061 val accuracy: 0.205000\n",
-      "lr 3.888155e-02 reg 9.426685e-04 train accuracy: 0.150408 val accuracy: 0.156000\n",
-      "lr 3.888155e-02 reg 1.425103e-03 train accuracy: 0.197143 val accuracy: 0.216000\n",
-      "lr 3.888155e-02 reg 2.154435e-03 train accuracy: 0.126612 val accuracy: 0.115000\n",
-      "lr 3.888155e-02 reg 3.257021e-03 train accuracy: 0.204796 val accuracy: 0.183000\n",
-      "lr 3.888155e-02 reg 4.923883e-03 train accuracy: 0.185061 val accuracy: 0.156000\n",
-      "lr 3.888155e-02 reg 7.443803e-03 train accuracy: 0.146000 val accuracy: 0.167000\n",
-      "lr 3.888155e-02 reg 1.125336e-02 train accuracy: 0.215265 val accuracy: 0.213000\n",
-      "lr 3.888155e-02 reg 1.701254e-02 train accuracy: 0.196224 val accuracy: 0.199000\n",
-      "lr 3.888155e-02 reg 2.571914e-02 train accuracy: 0.208735 val accuracy: 0.225000\n",
-      "lr 3.888155e-02 reg 3.888155e-02 train accuracy: 0.164102 val accuracy: 0.178000\n",
-      "lr 3.888155e-02 reg 5.878016e-02 train accuracy: 0.195612 val accuracy: 0.194000\n",
-      "lr 3.888155e-02 reg 8.886238e-02 train accuracy: 0.183755 val accuracy: 0.196000\n",
-      "lr 3.888155e-02 reg 1.343399e-01 train accuracy: 0.167898 val accuracy: 0.180000\n",
-      "lr 3.888155e-02 reg 2.030918e-01 train accuracy: 0.146449 val accuracy: 0.137000\n",
-      "lr 3.888155e-02 reg 3.070291e-01 train accuracy: 0.140347 val accuracy: 0.139000\n",
-      "lr 3.888155e-02 reg 4.641589e-01 train accuracy: 0.123939 val accuracy: 0.124000\n",
-      "lr 3.888155e-02 reg 7.017038e-01 train accuracy: 0.119469 val accuracy: 0.137000\n",
-      "lr 3.888155e-02 reg 1.060818e+00 train accuracy: 0.137184 val accuracy: 0.153000\n",
-      "lr 3.888155e-02 reg 1.603719e+00 train accuracy: 0.140531 val accuracy: 0.142000\n",
-      "lr 3.888155e-02 reg 2.424462e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 3.888155e-02 reg 3.665241e+00 train accuracy: 0.131163 val accuracy: 0.124000\n",
-      "lr 3.888155e-02 reg 5.541020e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 3.888155e-02 reg 8.376776e+00 train accuracy: 0.099878 val accuracy: 0.101000\n",
-      "lr 3.888155e-02 reg 1.266380e+01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 3.888155e-02 reg 1.914482e+01 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 3.888155e-02 reg 2.894266e+01 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 3.888155e-02 reg 4.375479e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 3.888155e-02 reg 6.614741e+01 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 3.888155e-02 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.223345e-02 reg 1.000000e-05 train accuracy: 0.189122 val accuracy: 0.195000\n",
-      "lr 5.223345e-02 reg 1.511775e-05 train accuracy: 0.203980 val accuracy: 0.205000\n",
-      "lr 5.223345e-02 reg 2.285464e-05 train accuracy: 0.185939 val accuracy: 0.155000\n",
-      "lr 5.223345e-02 reg 3.455107e-05 train accuracy: 0.102061 val accuracy: 0.079000\n",
-      "lr 5.223345e-02 reg 5.223345e-05 train accuracy: 0.243082 val accuracy: 0.224000\n",
-      "lr 5.223345e-02 reg 7.896523e-05 train accuracy: 0.200306 val accuracy: 0.193000\n",
-      "lr 5.223345e-02 reg 1.193777e-04 train accuracy: 0.211000 val accuracy: 0.192000\n",
-      "lr 5.223345e-02 reg 1.804722e-04 train accuracy: 0.169388 val accuracy: 0.158000\n",
-      "lr 5.223345e-02 reg 2.728333e-04 train accuracy: 0.113776 val accuracy: 0.128000\n",
-      "lr 5.223345e-02 reg 4.124626e-04 train accuracy: 0.129449 val accuracy: 0.152000\n",
-      "lr 5.223345e-02 reg 6.235507e-04 train accuracy: 0.202204 val accuracy: 0.176000\n",
-      "lr 5.223345e-02 reg 9.426685e-04 train accuracy: 0.227163 val accuracy: 0.231000\n",
-      "lr 5.223345e-02 reg 1.425103e-03 train accuracy: 0.200592 val accuracy: 0.179000\n",
-      "lr 5.223345e-02 reg 2.154435e-03 train accuracy: 0.218551 val accuracy: 0.213000\n",
-      "lr 5.223345e-02 reg 3.257021e-03 train accuracy: 0.214714 val accuracy: 0.211000\n",
-      "lr 5.223345e-02 reg 4.923883e-03 train accuracy: 0.123857 val accuracy: 0.113000\n",
-      "lr 5.223345e-02 reg 7.443803e-03 train accuracy: 0.197531 val accuracy: 0.184000\n",
-      "lr 5.223345e-02 reg 1.125336e-02 train accuracy: 0.189449 val accuracy: 0.190000\n",
-      "lr 5.223345e-02 reg 1.701254e-02 train accuracy: 0.133245 val accuracy: 0.159000\n",
-      "lr 5.223345e-02 reg 2.571914e-02 train accuracy: 0.191959 val accuracy: 0.207000\n",
-      "lr 5.223345e-02 reg 3.888155e-02 train accuracy: 0.180327 val accuracy: 0.180000\n",
-      "lr 5.223345e-02 reg 5.878016e-02 train accuracy: 0.167980 val accuracy: 0.185000\n",
-      "lr 5.223345e-02 reg 8.886238e-02 train accuracy: 0.148286 val accuracy: 0.148000\n",
-      "lr 5.223345e-02 reg 1.343399e-01 train accuracy: 0.148857 val accuracy: 0.158000\n",
-      "lr 5.223345e-02 reg 2.030918e-01 train accuracy: 0.101306 val accuracy: 0.080000\n",
-      "lr 5.223345e-02 reg 3.070291e-01 train accuracy: 0.135367 val accuracy: 0.119000\n",
-      "lr 5.223345e-02 reg 4.641589e-01 train accuracy: 0.155490 val accuracy: 0.155000\n",
-      "lr 5.223345e-02 reg 7.017038e-01 train accuracy: 0.119061 val accuracy: 0.126000\n",
-      "lr 5.223345e-02 reg 1.060818e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 5.223345e-02 reg 1.603719e+00 train accuracy: 0.100347 val accuracy: 0.103000\n",
-      "lr 5.223345e-02 reg 2.424462e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 5.223345e-02 reg 3.665241e+00 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 5.223345e-02 reg 5.541020e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 5.223345e-02 reg 8.376776e+00 train accuracy: 0.106388 val accuracy: 0.113000\n",
-      "lr 5.223345e-02 reg 1.266380e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 5.223345e-02 reg 1.914482e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 5.223345e-02 reg 2.894266e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 5.223345e-02 reg 4.375479e+01 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 5.223345e-02 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.223345e-02 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.017038e-02 reg 1.000000e-05 train accuracy: 0.154755 val accuracy: 0.136000\n",
-      "lr 7.017038e-02 reg 1.511775e-05 train accuracy: 0.172531 val accuracy: 0.172000\n",
-      "lr 7.017038e-02 reg 2.285464e-05 train accuracy: 0.225224 val accuracy: 0.194000\n",
-      "lr 7.017038e-02 reg 3.455107e-05 train accuracy: 0.171653 val accuracy: 0.172000\n",
-      "lr 7.017038e-02 reg 5.223345e-05 train accuracy: 0.170592 val accuracy: 0.143000\n",
-      "lr 7.017038e-02 reg 7.896523e-05 train accuracy: 0.184837 val accuracy: 0.167000\n",
-      "lr 7.017038e-02 reg 1.193777e-04 train accuracy: 0.183306 val accuracy: 0.162000\n",
-      "lr 7.017038e-02 reg 1.804722e-04 train accuracy: 0.167000 val accuracy: 0.168000\n",
-      "lr 7.017038e-02 reg 2.728333e-04 train accuracy: 0.170878 val accuracy: 0.182000\n",
-      "lr 7.017038e-02 reg 4.124626e-04 train accuracy: 0.210224 val accuracy: 0.203000\n",
-      "lr 7.017038e-02 reg 6.235507e-04 train accuracy: 0.164510 val accuracy: 0.166000\n",
-      "lr 7.017038e-02 reg 9.426685e-04 train accuracy: 0.222224 val accuracy: 0.209000\n",
-      "lr 7.017038e-02 reg 1.425103e-03 train accuracy: 0.218939 val accuracy: 0.195000\n",
-      "lr 7.017038e-02 reg 2.154435e-03 train accuracy: 0.202755 val accuracy: 0.163000\n",
-      "lr 7.017038e-02 reg 3.257021e-03 train accuracy: 0.144959 val accuracy: 0.142000\n",
-      "lr 7.017038e-02 reg 4.923883e-03 train accuracy: 0.201898 val accuracy: 0.198000\n",
-      "lr 7.017038e-02 reg 7.443803e-03 train accuracy: 0.189122 val accuracy: 0.184000\n",
-      "lr 7.017038e-02 reg 1.125336e-02 train accuracy: 0.113735 val accuracy: 0.098000\n",
-      "lr 7.017038e-02 reg 1.701254e-02 train accuracy: 0.186184 val accuracy: 0.203000\n",
-      "lr 7.017038e-02 reg 2.571914e-02 train accuracy: 0.202918 val accuracy: 0.190000\n",
-      "lr 7.017038e-02 reg 3.888155e-02 train accuracy: 0.190347 val accuracy: 0.168000\n",
-      "lr 7.017038e-02 reg 5.878016e-02 train accuracy: 0.103510 val accuracy: 0.083000\n",
-      "lr 7.017038e-02 reg 8.886238e-02 train accuracy: 0.197735 val accuracy: 0.180000\n",
-      "lr 7.017038e-02 reg 1.343399e-01 train accuracy: 0.173918 val accuracy: 0.181000\n",
-      "lr 7.017038e-02 reg 2.030918e-01 train accuracy: 0.105673 val accuracy: 0.125000\n",
-      "lr 7.017038e-02 reg 3.070291e-01 train accuracy: 0.099980 val accuracy: 0.102000\n",
-      "lr 7.017038e-02 reg 4.641589e-01 train accuracy: 0.105143 val accuracy: 0.084000\n",
-      "lr 7.017038e-02 reg 7.017038e-01 train accuracy: 0.105837 val accuracy: 0.106000\n",
-      "lr 7.017038e-02 reg 1.060818e+00 train accuracy: 0.110694 val accuracy: 0.116000\n",
-      "lr 7.017038e-02 reg 1.603719e+00 train accuracy: 0.105490 val accuracy: 0.077000\n",
-      "lr 7.017038e-02 reg 2.424462e+00 train accuracy: 0.141796 val accuracy: 0.118000\n",
-      "lr 7.017038e-02 reg 3.665241e+00 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 7.017038e-02 reg 5.541020e+00 train accuracy: 0.099939 val accuracy: 0.115000\n",
-      "lr 7.017038e-02 reg 8.376776e+00 train accuracy: 0.100776 val accuracy: 0.077000\n",
-      "lr 7.017038e-02 reg 1.266380e+01 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 7.017038e-02 reg 1.914482e+01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 7.017038e-02 reg 2.894266e+01 train accuracy: 0.099735 val accuracy: 0.113000\n",
-      "lr 7.017038e-02 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.017038e-02 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.017038e-02 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 9.426685e-02 reg 1.000000e-05 train accuracy: 0.237878 val accuracy: 0.244000\n",
-      "lr 9.426685e-02 reg 1.511775e-05 train accuracy: 0.246469 val accuracy: 0.251000\n",
-      "lr 9.426685e-02 reg 2.285464e-05 train accuracy: 0.219714 val accuracy: 0.224000\n",
-      "lr 9.426685e-02 reg 3.455107e-05 train accuracy: 0.202612 val accuracy: 0.211000\n",
-      "lr 9.426685e-02 reg 5.223345e-05 train accuracy: 0.177429 val accuracy: 0.196000\n",
-      "lr 9.426685e-02 reg 7.896523e-05 train accuracy: 0.190592 val accuracy: 0.203000\n",
-      "lr 9.426685e-02 reg 1.193777e-04 train accuracy: 0.188265 val accuracy: 0.203000\n",
-      "lr 9.426685e-02 reg 1.804722e-04 train accuracy: 0.196612 val accuracy: 0.193000\n",
-      "lr 9.426685e-02 reg 2.728333e-04 train accuracy: 0.197959 val accuracy: 0.186000\n",
-      "lr 9.426685e-02 reg 4.124626e-04 train accuracy: 0.198796 val accuracy: 0.187000\n",
-      "lr 9.426685e-02 reg 6.235507e-04 train accuracy: 0.175143 val accuracy: 0.182000\n",
-      "lr 9.426685e-02 reg 9.426685e-04 train accuracy: 0.194918 val accuracy: 0.165000\n",
-      "lr 9.426685e-02 reg 1.425103e-03 train accuracy: 0.160735 val accuracy: 0.156000\n",
-      "lr 9.426685e-02 reg 2.154435e-03 train accuracy: 0.263122 val accuracy: 0.236000\n",
-      "lr 9.426685e-02 reg 3.257021e-03 train accuracy: 0.169449 val accuracy: 0.157000\n",
-      "lr 9.426685e-02 reg 4.923883e-03 train accuracy: 0.155184 val accuracy: 0.144000\n",
-      "lr 9.426685e-02 reg 7.443803e-03 train accuracy: 0.170959 val accuracy: 0.176000\n",
-      "lr 9.426685e-02 reg 1.125336e-02 train accuracy: 0.178612 val accuracy: 0.196000\n",
-      "lr 9.426685e-02 reg 1.701254e-02 train accuracy: 0.196878 val accuracy: 0.196000\n",
-      "lr 9.426685e-02 reg 2.571914e-02 train accuracy: 0.134020 val accuracy: 0.134000\n",
-      "lr 9.426685e-02 reg 3.888155e-02 train accuracy: 0.136367 val accuracy: 0.151000\n",
-      "lr 9.426685e-02 reg 5.878016e-02 train accuracy: 0.161082 val accuracy: 0.150000\n",
-      "lr 9.426685e-02 reg 8.886238e-02 train accuracy: 0.135939 val accuracy: 0.159000\n",
-      "lr 9.426685e-02 reg 1.343399e-01 train accuracy: 0.103245 val accuracy: 0.080000\n",
-      "lr 9.426685e-02 reg 2.030918e-01 train accuracy: 0.203224 val accuracy: 0.215000\n",
-      "lr 9.426685e-02 reg 3.070291e-01 train accuracy: 0.100551 val accuracy: 0.079000\n",
-      "lr 9.426685e-02 reg 4.641589e-01 train accuracy: 0.099898 val accuracy: 0.112000\n",
-      "lr 9.426685e-02 reg 7.017038e-01 train accuracy: 0.100143 val accuracy: 0.098000\n",
-      "lr 9.426685e-02 reg 1.060818e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 9.426685e-02 reg 1.603719e+00 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 9.426685e-02 reg 2.424462e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 9.426685e-02 reg 3.665241e+00 train accuracy: 0.145449 val accuracy: 0.146000\n",
-      "lr 9.426685e-02 reg 5.541020e+00 train accuracy: 0.099714 val accuracy: 0.098000\n",
-      "lr 9.426685e-02 reg 8.376776e+00 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 9.426685e-02 reg 1.266380e+01 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 9.426685e-02 reg 1.914482e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 9.426685e-02 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 9.426685e-02 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 9.426685e-02 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 9.426685e-02 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.266380e-01 reg 1.000000e-05 train accuracy: 0.138510 val accuracy: 0.127000\n",
-      "lr 1.266380e-01 reg 1.511775e-05 train accuracy: 0.164551 val accuracy: 0.186000\n",
-      "lr 1.266380e-01 reg 2.285464e-05 train accuracy: 0.222571 val accuracy: 0.203000\n",
-      "lr 1.266380e-01 reg 3.455107e-05 train accuracy: 0.212490 val accuracy: 0.189000\n",
-      "lr 1.266380e-01 reg 5.223345e-05 train accuracy: 0.223633 val accuracy: 0.209000\n",
-      "lr 1.266380e-01 reg 7.896523e-05 train accuracy: 0.174878 val accuracy: 0.160000\n",
-      "lr 1.266380e-01 reg 1.193777e-04 train accuracy: 0.173714 val accuracy: 0.201000\n",
-      "lr 1.266380e-01 reg 1.804722e-04 train accuracy: 0.195878 val accuracy: 0.191000\n",
-      "lr 1.266380e-01 reg 2.728333e-04 train accuracy: 0.181551 val accuracy: 0.180000\n",
-      "lr 1.266380e-01 reg 4.124626e-04 train accuracy: 0.199490 val accuracy: 0.205000\n",
-      "lr 1.266380e-01 reg 6.235507e-04 train accuracy: 0.164735 val accuracy: 0.158000\n",
-      "lr 1.266380e-01 reg 9.426685e-04 train accuracy: 0.230653 val accuracy: 0.215000\n",
-      "lr 1.266380e-01 reg 1.425103e-03 train accuracy: 0.206122 val accuracy: 0.202000\n",
-      "lr 1.266380e-01 reg 2.154435e-03 train accuracy: 0.208735 val accuracy: 0.202000\n",
-      "lr 1.266380e-01 reg 3.257021e-03 train accuracy: 0.132265 val accuracy: 0.143000\n",
-      "lr 1.266380e-01 reg 4.923883e-03 train accuracy: 0.185000 val accuracy: 0.192000\n",
-      "lr 1.266380e-01 reg 7.443803e-03 train accuracy: 0.159714 val accuracy: 0.155000\n",
-      "lr 1.266380e-01 reg 1.125336e-02 train accuracy: 0.179959 val accuracy: 0.172000\n",
-      "lr 1.266380e-01 reg 1.701254e-02 train accuracy: 0.155306 val accuracy: 0.143000\n",
-      "lr 1.266380e-01 reg 2.571914e-02 train accuracy: 0.112469 val accuracy: 0.130000\n",
-      "lr 1.266380e-01 reg 3.888155e-02 train accuracy: 0.122673 val accuracy: 0.108000\n",
-      "lr 1.266380e-01 reg 5.878016e-02 train accuracy: 0.159939 val accuracy: 0.156000\n",
-      "lr 1.266380e-01 reg 8.886238e-02 train accuracy: 0.140143 val accuracy: 0.158000\n",
-      "lr 1.266380e-01 reg 1.343399e-01 train accuracy: 0.166959 val accuracy: 0.171000\n",
-      "lr 1.266380e-01 reg 2.030918e-01 train accuracy: 0.128959 val accuracy: 0.140000\n",
-      "lr 1.266380e-01 reg 3.070291e-01 train accuracy: 0.133408 val accuracy: 0.158000\n",
-      "lr 1.266380e-01 reg 4.641589e-01 train accuracy: 0.138673 val accuracy: 0.161000\n",
-      "lr 1.266380e-01 reg 7.017038e-01 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 1.266380e-01 reg 1.060818e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.266380e-01 reg 1.603719e+00 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 1.266380e-01 reg 2.424462e+00 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 1.266380e-01 reg 3.665241e+00 train accuracy: 0.100429 val accuracy: 0.078000\n",
-      "lr 1.266380e-01 reg 5.541020e+00 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 1.266380e-01 reg 8.376776e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.266380e-01 reg 1.266380e+01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.266380e-01 reg 1.914482e+01 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 1.266380e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.266380e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.266380e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.266380e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.701254e-01 reg 1.000000e-05 train accuracy: 0.180122 val accuracy: 0.182000\n",
-      "lr 1.701254e-01 reg 1.511775e-05 train accuracy: 0.182163 val accuracy: 0.173000\n",
-      "lr 1.701254e-01 reg 2.285464e-05 train accuracy: 0.161490 val accuracy: 0.183000\n",
-      "lr 1.701254e-01 reg 3.455107e-05 train accuracy: 0.177408 val accuracy: 0.157000\n",
-      "lr 1.701254e-01 reg 5.223345e-05 train accuracy: 0.228857 val accuracy: 0.221000\n",
-      "lr 1.701254e-01 reg 7.896523e-05 train accuracy: 0.206959 val accuracy: 0.209000\n",
-      "lr 1.701254e-01 reg 1.193777e-04 train accuracy: 0.155041 val accuracy: 0.132000\n",
-      "lr 1.701254e-01 reg 1.804722e-04 train accuracy: 0.166612 val accuracy: 0.186000\n",
-      "lr 1.701254e-01 reg 2.728333e-04 train accuracy: 0.167714 val accuracy: 0.165000\n",
-      "lr 1.701254e-01 reg 4.124626e-04 train accuracy: 0.170367 val accuracy: 0.182000\n",
-      "lr 1.701254e-01 reg 6.235507e-04 train accuracy: 0.141102 val accuracy: 0.135000\n",
-      "lr 1.701254e-01 reg 9.426685e-04 train accuracy: 0.182551 val accuracy: 0.176000\n",
-      "lr 1.701254e-01 reg 1.425103e-03 train accuracy: 0.204122 val accuracy: 0.182000\n",
-      "lr 1.701254e-01 reg 2.154435e-03 train accuracy: 0.179612 val accuracy: 0.176000\n",
-      "lr 1.701254e-01 reg 3.257021e-03 train accuracy: 0.171408 val accuracy: 0.159000\n",
-      "lr 1.701254e-01 reg 4.923883e-03 train accuracy: 0.154633 val accuracy: 0.169000\n",
-      "lr 1.701254e-01 reg 7.443803e-03 train accuracy: 0.161673 val accuracy: 0.169000\n",
-      "lr 1.701254e-01 reg 1.125336e-02 train accuracy: 0.183163 val accuracy: 0.167000\n",
-      "lr 1.701254e-01 reg 1.701254e-02 train accuracy: 0.197755 val accuracy: 0.178000\n",
-      "lr 1.701254e-01 reg 2.571914e-02 train accuracy: 0.128918 val accuracy: 0.147000\n",
-      "lr 1.701254e-01 reg 3.888155e-02 train accuracy: 0.138694 val accuracy: 0.117000\n",
-      "lr 1.701254e-01 reg 5.878016e-02 train accuracy: 0.200163 val accuracy: 0.196000\n",
-      "lr 1.701254e-01 reg 8.886238e-02 train accuracy: 0.140122 val accuracy: 0.121000\n",
-      "lr 1.701254e-01 reg 1.343399e-01 train accuracy: 0.134143 val accuracy: 0.120000\n",
-      "lr 1.701254e-01 reg 2.030918e-01 train accuracy: 0.144918 val accuracy: 0.155000\n",
-      "lr 1.701254e-01 reg 3.070291e-01 train accuracy: 0.131857 val accuracy: 0.147000\n",
-      "lr 1.701254e-01 reg 4.641589e-01 train accuracy: 0.162571 val accuracy: 0.144000\n",
-      "lr 1.701254e-01 reg 7.017038e-01 train accuracy: 0.101408 val accuracy: 0.089000\n",
-      "lr 1.701254e-01 reg 1.060818e+00 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 1.701254e-01 reg 1.603719e+00 train accuracy: 0.099796 val accuracy: 0.112000\n",
-      "lr 1.701254e-01 reg 2.424462e+00 train accuracy: 0.099878 val accuracy: 0.107000\n",
-      "lr 1.701254e-01 reg 3.665241e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 1.701254e-01 reg 5.541020e+00 train accuracy: 0.108347 val accuracy: 0.097000\n",
-      "lr 1.701254e-01 reg 8.376776e+00 train accuracy: 0.122286 val accuracy: 0.128000\n",
-      "lr 1.701254e-01 reg 1.266380e+01 train accuracy: 0.100041 val accuracy: 0.098000\n",
-      "lr 1.701254e-01 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.701254e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.701254e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.701254e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.701254e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 1.000000e-05 train accuracy: 0.166878 val accuracy: 0.149000\n",
-      "lr 2.285464e-01 reg 1.511775e-05 train accuracy: 0.166082 val accuracy: 0.172000\n",
-      "lr 2.285464e-01 reg 2.285464e-05 train accuracy: 0.177531 val accuracy: 0.147000\n",
-      "lr 2.285464e-01 reg 3.455107e-05 train accuracy: 0.198265 val accuracy: 0.204000\n",
-      "lr 2.285464e-01 reg 5.223345e-05 train accuracy: 0.146694 val accuracy: 0.166000\n",
-      "lr 2.285464e-01 reg 7.896523e-05 train accuracy: 0.170714 val accuracy: 0.163000\n",
-      "lr 2.285464e-01 reg 1.193777e-04 train accuracy: 0.181204 val accuracy: 0.185000\n",
-      "lr 2.285464e-01 reg 1.804722e-04 train accuracy: 0.213898 val accuracy: 0.223000\n",
-      "lr 2.285464e-01 reg 2.728333e-04 train accuracy: 0.191061 val accuracy: 0.168000\n",
-      "lr 2.285464e-01 reg 4.124626e-04 train accuracy: 0.164755 val accuracy: 0.161000\n",
-      "lr 2.285464e-01 reg 6.235507e-04 train accuracy: 0.175204 val accuracy: 0.189000\n",
-      "lr 2.285464e-01 reg 9.426685e-04 train accuracy: 0.167653 val accuracy: 0.154000\n",
-      "lr 2.285464e-01 reg 1.425103e-03 train accuracy: 0.113122 val accuracy: 0.127000\n",
-      "lr 2.285464e-01 reg 2.154435e-03 train accuracy: 0.138204 val accuracy: 0.159000\n",
-      "lr 2.285464e-01 reg 3.257021e-03 train accuracy: 0.177673 val accuracy: 0.151000\n",
-      "lr 2.285464e-01 reg 4.923883e-03 train accuracy: 0.153143 val accuracy: 0.178000\n",
-      "lr 2.285464e-01 reg 7.443803e-03 train accuracy: 0.147939 val accuracy: 0.123000\n",
-      "lr 2.285464e-01 reg 1.125336e-02 train accuracy: 0.137082 val accuracy: 0.124000\n",
-      "lr 2.285464e-01 reg 1.701254e-02 train accuracy: 0.138306 val accuracy: 0.154000\n",
-      "lr 2.285464e-01 reg 2.571914e-02 train accuracy: 0.176571 val accuracy: 0.187000\n",
-      "lr 2.285464e-01 reg 3.888155e-02 train accuracy: 0.142367 val accuracy: 0.152000\n",
-      "lr 2.285464e-01 reg 5.878016e-02 train accuracy: 0.180306 val accuracy: 0.185000\n",
-      "lr 2.285464e-01 reg 8.886238e-02 train accuracy: 0.118959 val accuracy: 0.104000\n",
-      "lr 2.285464e-01 reg 1.343399e-01 train accuracy: 0.147755 val accuracy: 0.126000\n",
-      "lr 2.285464e-01 reg 2.030918e-01 train accuracy: 0.137224 val accuracy: 0.130000\n",
-      "lr 2.285464e-01 reg 3.070291e-01 train accuracy: 0.102204 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 4.641589e-01 train accuracy: 0.105061 val accuracy: 0.115000\n",
-      "lr 2.285464e-01 reg 7.017038e-01 train accuracy: 0.101673 val accuracy: 0.104000\n",
-      "lr 2.285464e-01 reg 1.060818e+00 train accuracy: 0.117714 val accuracy: 0.119000\n",
-      "lr 2.285464e-01 reg 1.603719e+00 train accuracy: 0.100449 val accuracy: 0.079000\n",
-      "lr 2.285464e-01 reg 2.424462e+00 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 2.285464e-01 reg 3.665241e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 2.285464e-01 reg 5.541020e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 2.285464e-01 reg 8.376776e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 2.285464e-01 reg 1.266380e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.285464e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.070291e-01 reg 1.000000e-05 train accuracy: 0.197551 val accuracy: 0.187000\n",
-      "lr 3.070291e-01 reg 1.511775e-05 train accuracy: 0.214061 val accuracy: 0.198000\n",
-      "lr 3.070291e-01 reg 2.285464e-05 train accuracy: 0.197551 val accuracy: 0.182000\n",
-      "lr 3.070291e-01 reg 3.455107e-05 train accuracy: 0.199082 val accuracy: 0.201000\n",
-      "lr 3.070291e-01 reg 5.223345e-05 train accuracy: 0.187000 val accuracy: 0.181000\n",
-      "lr 3.070291e-01 reg 7.896523e-05 train accuracy: 0.171714 val accuracy: 0.174000\n",
-      "lr 3.070291e-01 reg 1.193777e-04 train accuracy: 0.154714 val accuracy: 0.136000\n",
-      "lr 3.070291e-01 reg 1.804722e-04 train accuracy: 0.185939 val accuracy: 0.176000\n",
-      "lr 3.070291e-01 reg 2.728333e-04 train accuracy: 0.140714 val accuracy: 0.117000\n",
-      "lr 3.070291e-01 reg 4.124626e-04 train accuracy: 0.214531 val accuracy: 0.203000\n",
-      "lr 3.070291e-01 reg 6.235507e-04 train accuracy: 0.178000 val accuracy: 0.178000\n",
-      "lr 3.070291e-01 reg 9.426685e-04 train accuracy: 0.219633 val accuracy: 0.213000\n",
-      "lr 3.070291e-01 reg 1.425103e-03 train accuracy: 0.195020 val accuracy: 0.187000\n",
-      "lr 3.070291e-01 reg 2.154435e-03 train accuracy: 0.208327 val accuracy: 0.198000\n",
-      "lr 3.070291e-01 reg 3.257021e-03 train accuracy: 0.220531 val accuracy: 0.201000\n",
-      "lr 3.070291e-01 reg 4.923883e-03 train accuracy: 0.166061 val accuracy: 0.155000\n",
-      "lr 3.070291e-01 reg 7.443803e-03 train accuracy: 0.172694 val accuracy: 0.141000\n",
-      "lr 3.070291e-01 reg 1.125336e-02 train accuracy: 0.126714 val accuracy: 0.102000\n",
-      "lr 3.070291e-01 reg 1.701254e-02 train accuracy: 0.170837 val accuracy: 0.166000\n",
-      "lr 3.070291e-01 reg 2.571914e-02 train accuracy: 0.213857 val accuracy: 0.206000\n",
-      "lr 3.070291e-01 reg 3.888155e-02 train accuracy: 0.182857 val accuracy: 0.183000\n",
-      "lr 3.070291e-01 reg 5.878016e-02 train accuracy: 0.150898 val accuracy: 0.132000\n",
-      "lr 3.070291e-01 reg 8.886238e-02 train accuracy: 0.162490 val accuracy: 0.176000\n",
-      "lr 3.070291e-01 reg 1.343399e-01 train accuracy: 0.117714 val accuracy: 0.129000\n",
-      "lr 3.070291e-01 reg 2.030918e-01 train accuracy: 0.100082 val accuracy: 0.102000\n",
-      "lr 3.070291e-01 reg 3.070291e-01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 3.070291e-01 reg 4.641589e-01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 3.070291e-01 reg 7.017038e-01 train accuracy: 0.106469 val accuracy: 0.100000\n",
-      "lr 3.070291e-01 reg 1.060818e+00 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 3.070291e-01 reg 1.603719e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 3.070291e-01 reg 2.424462e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 3.070291e-01 reg 3.665241e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 3.070291e-01 reg 5.541020e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 3.070291e-01 reg 8.376776e+00 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 3.070291e-01 reg 1.266380e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.070291e-01 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.070291e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.070291e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.070291e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.070291e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 1.000000e-05 train accuracy: 0.151429 val accuracy: 0.164000\n",
-      "lr 4.124626e-01 reg 1.511775e-05 train accuracy: 0.169612 val accuracy: 0.154000\n",
-      "lr 4.124626e-01 reg 2.285464e-05 train accuracy: 0.168735 val accuracy: 0.188000\n",
-      "lr 4.124626e-01 reg 3.455107e-05 train accuracy: 0.149959 val accuracy: 0.163000\n",
-      "lr 4.124626e-01 reg 5.223345e-05 train accuracy: 0.176653 val accuracy: 0.168000\n",
-      "lr 4.124626e-01 reg 7.896523e-05 train accuracy: 0.199653 val accuracy: 0.177000\n",
-      "lr 4.124626e-01 reg 1.193777e-04 train accuracy: 0.238204 val accuracy: 0.223000\n",
-      "lr 4.124626e-01 reg 1.804722e-04 train accuracy: 0.218898 val accuracy: 0.179000\n",
-      "lr 4.124626e-01 reg 2.728333e-04 train accuracy: 0.210082 val accuracy: 0.212000\n",
-      "lr 4.124626e-01 reg 4.124626e-04 train accuracy: 0.178939 val accuracy: 0.161000\n",
-      "lr 4.124626e-01 reg 6.235507e-04 train accuracy: 0.172592 val accuracy: 0.167000\n",
-      "lr 4.124626e-01 reg 9.426685e-04 train accuracy: 0.151776 val accuracy: 0.151000\n",
-      "lr 4.124626e-01 reg 1.425103e-03 train accuracy: 0.200612 val accuracy: 0.190000\n",
-      "lr 4.124626e-01 reg 2.154435e-03 train accuracy: 0.111265 val accuracy: 0.118000\n",
-      "lr 4.124626e-01 reg 3.257021e-03 train accuracy: 0.125918 val accuracy: 0.111000\n",
-      "lr 4.124626e-01 reg 4.923883e-03 train accuracy: 0.161510 val accuracy: 0.137000\n",
-      "lr 4.124626e-01 reg 7.443803e-03 train accuracy: 0.190224 val accuracy: 0.188000\n",
-      "lr 4.124626e-01 reg 1.125336e-02 train accuracy: 0.129571 val accuracy: 0.118000\n",
-      "lr 4.124626e-01 reg 1.701254e-02 train accuracy: 0.209796 val accuracy: 0.206000\n",
-      "lr 4.124626e-01 reg 2.571914e-02 train accuracy: 0.129449 val accuracy: 0.134000\n",
-      "lr 4.124626e-01 reg 3.888155e-02 train accuracy: 0.107163 val accuracy: 0.088000\n",
-      "lr 4.124626e-01 reg 5.878016e-02 train accuracy: 0.119388 val accuracy: 0.102000\n",
-      "lr 4.124626e-01 reg 8.886238e-02 train accuracy: 0.138122 val accuracy: 0.128000\n",
-      "lr 4.124626e-01 reg 1.343399e-01 train accuracy: 0.123939 val accuracy: 0.112000\n",
-      "lr 4.124626e-01 reg 2.030918e-01 train accuracy: 0.102204 val accuracy: 0.088000\n",
-      "lr 4.124626e-01 reg 3.070291e-01 train accuracy: 0.105469 val accuracy: 0.117000\n",
-      "lr 4.124626e-01 reg 4.641589e-01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 4.124626e-01 reg 7.017038e-01 train accuracy: 0.120898 val accuracy: 0.129000\n",
-      "lr 4.124626e-01 reg 1.060818e+00 train accuracy: 0.114163 val accuracy: 0.117000\n",
-      "lr 4.124626e-01 reg 1.603719e+00 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 4.124626e-01 reg 2.424462e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 4.124626e-01 reg 3.665241e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 4.124626e-01 reg 5.541020e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 4.124626e-01 reg 8.376776e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 1.266380e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.124626e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 1.000000e-05 train accuracy: 0.154122 val accuracy: 0.152000\n",
-      "lr 5.541020e-01 reg 1.511775e-05 train accuracy: 0.154000 val accuracy: 0.156000\n",
-      "lr 5.541020e-01 reg 2.285464e-05 train accuracy: 0.121694 val accuracy: 0.099000\n",
-      "lr 5.541020e-01 reg 3.455107e-05 train accuracy: 0.194918 val accuracy: 0.188000\n",
-      "lr 5.541020e-01 reg 5.223345e-05 train accuracy: 0.209898 val accuracy: 0.216000\n",
-      "lr 5.541020e-01 reg 7.896523e-05 train accuracy: 0.188673 val accuracy: 0.198000\n",
-      "lr 5.541020e-01 reg 1.193777e-04 train accuracy: 0.201224 val accuracy: 0.187000\n",
-      "lr 5.541020e-01 reg 1.804722e-04 train accuracy: 0.178571 val accuracy: 0.166000\n",
-      "lr 5.541020e-01 reg 2.728333e-04 train accuracy: 0.221020 val accuracy: 0.216000\n",
-      "lr 5.541020e-01 reg 4.124626e-04 train accuracy: 0.118510 val accuracy: 0.126000\n",
-      "lr 5.541020e-01 reg 6.235507e-04 train accuracy: 0.174224 val accuracy: 0.160000\n",
-      "lr 5.541020e-01 reg 9.426685e-04 train accuracy: 0.185776 val accuracy: 0.202000\n",
-      "lr 5.541020e-01 reg 1.425103e-03 train accuracy: 0.157122 val accuracy: 0.158000\n",
-      "lr 5.541020e-01 reg 2.154435e-03 train accuracy: 0.158163 val accuracy: 0.127000\n",
-      "lr 5.541020e-01 reg 3.257021e-03 train accuracy: 0.165327 val accuracy: 0.194000\n",
-      "lr 5.541020e-01 reg 4.923883e-03 train accuracy: 0.160878 val accuracy: 0.152000\n",
-      "lr 5.541020e-01 reg 7.443803e-03 train accuracy: 0.151878 val accuracy: 0.163000\n",
-      "lr 5.541020e-01 reg 1.125336e-02 train accuracy: 0.161837 val accuracy: 0.182000\n",
-      "lr 5.541020e-01 reg 1.701254e-02 train accuracy: 0.118388 val accuracy: 0.122000\n",
-      "lr 5.541020e-01 reg 2.571914e-02 train accuracy: 0.154694 val accuracy: 0.161000\n",
-      "lr 5.541020e-01 reg 3.888155e-02 train accuracy: 0.169959 val accuracy: 0.193000\n",
-      "lr 5.541020e-01 reg 5.878016e-02 train accuracy: 0.165265 val accuracy: 0.164000\n",
-      "lr 5.541020e-01 reg 8.886238e-02 train accuracy: 0.101490 val accuracy: 0.123000\n",
-      "lr 5.541020e-01 reg 1.343399e-01 train accuracy: 0.099776 val accuracy: 0.112000\n",
-      "lr 5.541020e-01 reg 2.030918e-01 train accuracy: 0.125592 val accuracy: 0.108000\n",
-      "lr 5.541020e-01 reg 3.070291e-01 train accuracy: 0.099857 val accuracy: 0.120000\n",
-      "lr 5.541020e-01 reg 4.641589e-01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 5.541020e-01 reg 7.017038e-01 train accuracy: 0.122673 val accuracy: 0.133000\n",
-      "lr 5.541020e-01 reg 1.060818e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 5.541020e-01 reg 1.603719e+00 train accuracy: 0.099857 val accuracy: 0.107000\n",
-      "lr 5.541020e-01 reg 2.424462e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 5.541020e-01 reg 3.665241e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 5.541020e-01 reg 5.541020e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 8.376776e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 1.266380e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.541020e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 1.000000e-05 train accuracy: 0.140082 val accuracy: 0.132000\n",
-      "lr 7.443803e-01 reg 1.511775e-05 train accuracy: 0.191102 val accuracy: 0.174000\n",
-      "lr 7.443803e-01 reg 2.285464e-05 train accuracy: 0.122796 val accuracy: 0.134000\n",
-      "lr 7.443803e-01 reg 3.455107e-05 train accuracy: 0.215592 val accuracy: 0.187000\n",
-      "lr 7.443803e-01 reg 5.223345e-05 train accuracy: 0.199878 val accuracy: 0.209000\n",
-      "lr 7.443803e-01 reg 7.896523e-05 train accuracy: 0.181673 val accuracy: 0.175000\n",
-      "lr 7.443803e-01 reg 1.193777e-04 train accuracy: 0.231245 val accuracy: 0.220000\n",
-      "lr 7.443803e-01 reg 1.804722e-04 train accuracy: 0.171551 val accuracy: 0.164000\n",
-      "lr 7.443803e-01 reg 2.728333e-04 train accuracy: 0.196531 val accuracy: 0.177000\n",
-      "lr 7.443803e-01 reg 4.124626e-04 train accuracy: 0.211531 val accuracy: 0.213000\n",
-      "lr 7.443803e-01 reg 6.235507e-04 train accuracy: 0.173510 val accuracy: 0.186000\n",
-      "lr 7.443803e-01 reg 9.426685e-04 train accuracy: 0.178102 val accuracy: 0.181000\n",
-      "lr 7.443803e-01 reg 1.425103e-03 train accuracy: 0.195571 val accuracy: 0.185000\n",
-      "lr 7.443803e-01 reg 2.154435e-03 train accuracy: 0.184020 val accuracy: 0.196000\n",
-      "lr 7.443803e-01 reg 3.257021e-03 train accuracy: 0.155143 val accuracy: 0.136000\n",
-      "lr 7.443803e-01 reg 4.923883e-03 train accuracy: 0.154898 val accuracy: 0.176000\n",
-      "lr 7.443803e-01 reg 7.443803e-03 train accuracy: 0.129143 val accuracy: 0.109000\n",
-      "lr 7.443803e-01 reg 1.125336e-02 train accuracy: 0.156612 val accuracy: 0.172000\n",
-      "lr 7.443803e-01 reg 1.701254e-02 train accuracy: 0.137020 val accuracy: 0.113000\n",
-      "lr 7.443803e-01 reg 2.571914e-02 train accuracy: 0.102408 val accuracy: 0.117000\n",
-      "lr 7.443803e-01 reg 3.888155e-02 train accuracy: 0.102082 val accuracy: 0.103000\n",
-      "lr 7.443803e-01 reg 5.878016e-02 train accuracy: 0.135551 val accuracy: 0.135000\n",
-      "lr 7.443803e-01 reg 8.886238e-02 train accuracy: 0.119571 val accuracy: 0.122000\n",
-      "lr 7.443803e-01 reg 1.343399e-01 train accuracy: 0.099898 val accuracy: 0.102000\n",
-      "lr 7.443803e-01 reg 2.030918e-01 train accuracy: 0.099898 val accuracy: 0.105000\n",
-      "lr 7.443803e-01 reg 3.070291e-01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 7.443803e-01 reg 4.641589e-01 train accuracy: 0.101224 val accuracy: 0.082000\n",
-      "lr 7.443803e-01 reg 7.017038e-01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 7.443803e-01 reg 1.060818e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 7.443803e-01 reg 1.603719e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 7.443803e-01 reg 2.424462e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 7.443803e-01 reg 3.665241e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 5.541020e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 8.376776e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 1.266380e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.443803e-01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 1.000000e-05 train accuracy: 0.138816 val accuracy: 0.138000\n",
-      "lr 1.000000e+00 reg 1.511775e-05 train accuracy: 0.175000 val accuracy: 0.185000\n",
-      "lr 1.000000e+00 reg 2.285464e-05 train accuracy: 0.215224 val accuracy: 0.208000\n",
-      "lr 1.000000e+00 reg 3.455107e-05 train accuracy: 0.196673 val accuracy: 0.195000\n",
-      "lr 1.000000e+00 reg 5.223345e-05 train accuracy: 0.168939 val accuracy: 0.160000\n",
-      "lr 1.000000e+00 reg 7.896523e-05 train accuracy: 0.182918 val accuracy: 0.155000\n",
-      "lr 1.000000e+00 reg 1.193777e-04 train accuracy: 0.170449 val accuracy: 0.154000\n",
-      "lr 1.000000e+00 reg 1.804722e-04 train accuracy: 0.183735 val accuracy: 0.162000\n",
-      "lr 1.000000e+00 reg 2.728333e-04 train accuracy: 0.209612 val accuracy: 0.245000\n",
-      "lr 1.000000e+00 reg 4.124626e-04 train accuracy: 0.172041 val accuracy: 0.172000\n",
-      "lr 1.000000e+00 reg 6.235507e-04 train accuracy: 0.118551 val accuracy: 0.128000\n",
-      "lr 1.000000e+00 reg 9.426685e-04 train accuracy: 0.187408 val accuracy: 0.172000\n",
-      "lr 1.000000e+00 reg 1.425103e-03 train accuracy: 0.182490 val accuracy: 0.178000\n",
-      "lr 1.000000e+00 reg 2.154435e-03 train accuracy: 0.169367 val accuracy: 0.187000\n",
-      "lr 1.000000e+00 reg 3.257021e-03 train accuracy: 0.171490 val accuracy: 0.167000\n",
-      "lr 1.000000e+00 reg 4.923883e-03 train accuracy: 0.173204 val accuracy: 0.174000\n",
-      "lr 1.000000e+00 reg 7.443803e-03 train accuracy: 0.123102 val accuracy: 0.124000\n",
-      "lr 1.000000e+00 reg 1.125336e-02 train accuracy: 0.122531 val accuracy: 0.101000\n",
-      "lr 1.000000e+00 reg 1.701254e-02 train accuracy: 0.152551 val accuracy: 0.164000\n",
-      "lr 1.000000e+00 reg 2.571914e-02 train accuracy: 0.119490 val accuracy: 0.138000\n",
-      "lr 1.000000e+00 reg 3.888155e-02 train accuracy: 0.103776 val accuracy: 0.119000\n",
-      "lr 1.000000e+00 reg 5.878016e-02 train accuracy: 0.120735 val accuracy: 0.122000\n",
-      "lr 1.000000e+00 reg 8.886238e-02 train accuracy: 0.103061 val accuracy: 0.124000\n",
-      "lr 1.000000e+00 reg 1.343399e-01 train accuracy: 0.099633 val accuracy: 0.119000\n",
-      "lr 1.000000e+00 reg 2.030918e-01 train accuracy: 0.099612 val accuracy: 0.119000\n",
-      "lr 1.000000e+00 reg 3.070291e-01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.000000e+00 reg 4.641589e-01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.000000e+00 reg 7.017038e-01 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 1.000000e+00 reg 1.060818e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.000000e+00 reg 1.603719e+00 train accuracy: 0.100449 val accuracy: 0.078000\n",
-      "lr 1.000000e+00 reg 2.424462e+00 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 1.000000e+00 reg 3.665241e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 5.541020e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 8.376776e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 1.266380e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 1.914482e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 2.894266e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 4.375479e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 6.614741e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+00 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "best validation accuracy achieved during cross-validation: 0.253000\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "# Print out results.\n",
     "for lr, reg in sorted(results):\n",
@@ -2510,30 +897,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.text.Text at 0x11dc6f0f0>"
-      ]
-     },
-     "execution_count": 19,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAChCAYAAADeDOQBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcZddV3/td+0x3qrmqu6q7epC6W7IkS7IGG0/YxrGZ\nMU4cnoEYzAs8CHwgvAAvCQkkPMILScwQ8h7hAwlgzBRwwMRgsLHBA8YTmm1J1tCtnqu7a77zueec\nvd4f+1TVrap7q6ul7pZk358+W33r7H322mdae+01bVFVBhhggAEGePHBPN8DGGCAAQYY4NlhwMAH\nGGCAAV6kGDDwAQYYYIAXKQYMfIABBhjgRYoBAx9ggAEGeJFiwMAHGGCAAV6kGDDwAQYYYIAXKfzd\nNBKRVwOHu9ur6nuu0ZgGGKAnRORG4BFVrVzNtgMM8GLFZSVwEflt4OeA1wIvz8u913hcX1YQkW8X\nkftEpC4icyLyFyLy2rzup0Tkd7raqog08rZ1EVnZ0tfRvM1/2XLc33LuWRF5l4j0fQdEZL+I/Gk+\nJhWR2S31BRF5t4hU8zY/vENf3yMiH7vCW7MJqnpitwz5StoOMMCLFbuRwO8FbtVByOY1gYj8CPAv\ngX8CfAjoAF8LfDPwyT6n3amqT/epeyewBHybiPyoqiZb6m9T1ZMichPwCeAx4Df79GWBPwf+Q5+x\n/DvcyuwgMAv8lYg8qqof6dPfjhART1WzZ3PulxNExFfV9PkexwAvAKjqjgV4LzBzuXaDcuUFGAHq\nwLfs0OangN/p+luBo33aCnAS+F5gAXhrV52fn3u469gfA7+0i3EW8nNntxy/CLyx6++f7R5r1/Hb\ngTaQ5de7kB//HeCXgQ8CDeANwFuAh4AacBr4ya5+jrpXdv3vTwL/N/CpvP0HgfErbZvX/+85vQXg\nXwFngTf0uR99x5jXvw74DLAKnAG+Iz9eAn4xP2cVN4FGwJuAk1v6WKcP/AzwB8Dv5zS/C3hVTmMF\nmAP+CxBsuecfwU3mF4B/DuwHmsBoV7uvyOv95/t7GJQrLzstn/9URN4PTAKPiciHROT9a6XfeQNc\nEV6FY47vu0r9vQHYi/vY3wt8Z7+GInIL8BqgnyS/I0RkCtgDPNx1+GHgtq1tVfXzwA8Cf6OqFVWd\n7Kr+dhxjHQI+jWPw78BNbt8E/LCIfOMOQ/l23KpjL1AGfuRK24rI7TgG+K04JjcFTO/QT98xisgN\nwAeAXwAmgLuAz+fn/SJwB45pjuMmCrsDnW78feD3cpp/AKTAD+O+z9fgVm3fl49hBMe8/xSYAW4C\nPqaq53AT2bd09fsO4Pd1ING/KLGTCuXnrtsovnwxgZNGr/TjeUBE1j7896jqP81/vxP4gKquisjv\nAR8RkQlVXew69xER8XDS4O8Cv/osx76mX17tOraKY8RXgvep6qfz3zHw1111D4vI/wBeD/xZn/N/\nXVWfAhCR9wJfvQOtfm2/BfgTVf1UXvcTwA/160RVdxrjO4APquof5vULwEJ+z78LuFtV5/K6T+b0\ndhjyOj6pqn+a/24Bf9dVd0JEfi0fw/+HWyGcUdVfyutj4HP579/CrdD+m4j4wNtxzH+AFyH6SuCq\n+nFV/Tjw9Wu/u49dvyF+SWMRmMw/pCvB3ao6mpd/CiAiZeBtOKYMjjnMAd+25dw7cEz223ErgFJ+\n/hu6DKMPc3nU83+Hu44N45b4V4Iz3X+IyKtE5GMiMi8iq8D34KTMfrjQ9bvJxsRyJW33dY9DVRvA\ncr9OLjPGA8DxHqftBcI+dbvB1vv0EhH5gIhcEJEq8NNbxtBvZfU+4E4ROYhj3POq+sCzHNMAzzN2\n4wf+5h7Hvu5qD+TLFJ/G6YbfehX6ehuOIf2aiFzAMe9peqhRVNWq6u8D9wE/kR/7WK7eqKjqnZcj\npqrzwDzQ3fZO4NF+p+zy+P8A/gg4oKojwH/H6favJeZwRlhgfTIc26H9TmM8Axzpcc5FnIG6V12D\nfCLN6fu41Vk3tt6nXwW+gLOHDAP/ZhdjQFWb+dj/EfAdwG/3ajfAiwM76cC/X0Q+D9wsIo90lWeA\nR67fEL90oaqruA/vl0XkrSJSEpFARL5ORP7TFXb3TuC/4YxXL8vL64B7c313L/ws8E9yfXZPiEgB\nZ2gDiEQk6qp+D/CTIjIqIrcC/xh4d5+uLgKzIhJc5jqGgCVVbYvIK3F66WuN9wJvFZFXikiIk2Z3\nwk5j/B3ga0Xkbbnr5qSI3KnOu+bdwH8WkWkR8UTkNfn9+CIwJCJfk//9b4Hd3KdVoJE/3+/rqns/\ncFBEflBEQhEZFpFXdNW/B/esviEf7wAvUuwkgf8ezkDz/vzftXKPqr7jOoztywKq+gs4Y9pP4CTa\nMziD35/sto98OfwG4D+r6oWu8jmcMeudfWg/hFsF/Fiffn2cvnXN1/xpnLS4hp/Mx3sGp7v+We3v\nQvhh4CngYr5C6IfvB35WRGo4I98f7tD2qkBVHwH+GY6Rn8epthZxuuMrGqOqPoP7Tv4FzgPkAdyk\nSk7jceD+vO7fA6Kqyzid+28B59jwHNkJP4p7rjWcNP4HXWNYxa2c3wZcAp7E6cfX8AnAAz6rqmcv\nQ2eAFzBEdWf3bhEZ73G4ptv9iwcY4EsCIjKMm7QOqeqZy7V/MUJEPgH8hqq++/keywDPHrvRgT+A\nkwyfxElQ88AzIvKAiNxzLQc3wADXCyLyllyFVQF+HnjgS5h5vxJ4KW7FMcCLGLth4B/EeaJMquoE\nzoD5h8APAP/1Wg5ugAGuI/4+Tn1yFhddutV750sCIvK7uG/6h3NvmwFexNiNCuU+Vb231zEReUhV\nX3ZNRzjAAAMMMEBP7Mb/eElE/gXOdQqc4/9yHpiw2yiyAQYYYIABrjJ2I4FP4tyaXovzM13LKbEK\nHNT+SZUGGGCAAQa4hrgsA38hYXJyUg8fPrxjm0Yz5uJ8lSyzKG7GUYWoGJAEEGfppqiQwPPwjaHZ\nSeiOaDYiFMKARtJxfaz1BZSjkGbaQddzSwmKUjYhWTsjzfKFiTjahdBHBdpJukFDwfcMIR6tOKed\nExERilFAs92BLtoAZePRqbZRu/HcVJVCpUCaWdK0a1GkEEYekmbELUdj7Sw/8AiKEa1mZ/24IIhA\nFBha1SZbL7w4ViFOLXYTbShGHmmjTdpJNx2PiiESBsTtzffW8wy+gVatvem4iFAcq9CM0/Xxr9OO\nPOJqE5vZTTQKlQhrIemi7a7bR1Da+fWt0/YNYSGk2U1b3P+KlQKtenujc3EPsFgpELcTbGo3Pe9C\nKcICSZxuPCCFIPQxAu1GvPmd8gxRMdygsUZboThUoF2PUXT9IalCaahAp52QpRtJGlWhUAqxVunE\nyab32Q99PN/bmfbac81RHCrSrrfp5gWqUKwUSOLttKNSCKruuXbTDnz80KNV30LbCFE5olXrc92N\neMv7DMVKRNpJSZMt112OmD48RRBdzk0e7r///gVV7RvjsBt8zVeVdXFpYwz3PxJ/SFVfMKkHdiOB\n34TzEz7M5g0d3nhNR9YD9957r95333196//mM0/x0z//Z8SdzalF0gIs3uqhRjbH9OWXvjXMT1Gy\nAqi3vdIGFgLddtyvCuVTBtHNFSqQFtlOyCqFFZCs55B6xh4Wn1mlfHwFyTY/Mw18GC7D1pwaaQoX\nFsBuecYCTIyD7206R1Wx5y9ArQ5b34vpCTi0D8wWu3e1Do8/A3aLNs3z8Gb3IcZspmEt2fkLkCTb\nadwwi0yObqOhlxbh1Pnt1+F5eOXt163WYus9rmFHyPb7txM8gzdU6U17tXqFtAfYLYwRSiMl/uvf\n/Udmbty7Y1sRuX+r/e5Kcc+dkX7qg/vX/y7se+Y593k1sRsvlPcCD+ICTf6vrvKcICIHROSjIvK4\niDy602YAu0EcJ/zML35gG/MGWLnRQw27DshWvzfzVtGezBsLpdPbmTdAFgFsPydobmfeO8G0UspP\n92DeAEOl3sxncXWTZLOOcgndwrwBaDR7M+/A7828VeHJU9uZN2AmJ0DMNhp2tdqbeQ+VYWJkO/NO\nUjjZg3kDptT7um2rdc0ZqCn3od289rS/nGGt0lxt8nPffX0c4CxKrOl6eaFhN0bMVFV/5RrQToEf\nVdUHRGQIuF9EPqyqjz2bzv76k09ge3w4STGXgLd+bH2kb4As6F2hwcYSuhtBVZAe36wKqNEetBW/\nvQPz7lFRON1HqgsDVGT7KWmKxp2eNLRc6pkBzy4u9aaxd6LHVQMrNch62LE9DykWEbNFOlVF+0mn\nM1PbJwiA+aUeV+Bo9GKgaq1beVwRrjDViuf1HKtahU7nCmkPcKWwVnn8s09x4eQlpg/vuaa0FEhe\nwL4au5HA/1REfkBEZkRkfK08V8KqOreWBU1Va7gQ4/07n9Ufn77/BHG8/cNNKnJFWzcr2r+9oSfT\n8KvSU/pWj56So2T0ldJ6dANAuNDqOUkQeL3TkcZJb6nc88D0IdJq9zysY8NOFbIV1XpP6VuiCLTH\nS59lPdsDMFTufR3LvRm++H1kj+xZbuhzBeoT8b0+tF94EtqXKmxmeexTT1xzOgrEatfLCw27kcDX\n8mh0q00UuPFqDUJEDuMS33+2R9334vIXc/Dgwb59zDfrPY/bsJfM3PvY5WASxXrbzzL9hK7UIl6P\nNHyKY8ZXIcee+l5vKXtNbdOL6Rvp4wDaZ+kf9HlNkj4MS+jNEHfSLPS7F/1o9MHzaZR/MTkEvNiR\nJRnNWuua07GqtF/Az/Wysqmq3tCjXE3mXcGlt/w/VbXag/6vqeq9qnrv1FR/g3JttIP1tt/orGR7\nM4c+DENU+jKawnzWU6IOWtrzeLTYm7P3lKRzaB/hLhkLe0rnWcHreVwLUc/ryIIdZg2/t2XfBqb3\nLemlXwe0jxphh1sLrT55o/qtVJ6tpH0VoFnWe1wv3O/8SxKbvFquERQh0Y2yG4jI14rIEyLytIj8\nyx71PyIij+XZXf9KRA511R0Ukb/MbYOP5cJtX+xmV/qSiPxEvuMHInJMdt7iatfIU2f+EfC7qvrH\nz6Wv9KjpyRiNWDA9KqQ/Q5EOPStGv5A69cdW2B6GTcBvpHjtHicoSEpPJpBUeqtR6keHnRfNFmRR\nn0cYBRBul5w1MLTHw97XPTrS2zDn935xtRT2pp2kaGd7rjPZSZKZm+/NlPupe9L0KhoLtQ9D7tN/\n0juP2y531hngKqEyXr7mNBRoq7deLoc8wPGXcSlHbsVtLn7rlmYPAveq6h3A/wS6U0e/B3iXqt4C\nvAKXTbIvdqMd/k1cIvpX53+fxW2y+pwg7m3/deDxPKXqc0LDpKzeZrdJ4X4VdLzjPEi6oaC+rv3s\nGhiYBKdi2HJKuALlMxmSbK6wRQhq26VwbyZj7JEVJN2sr1CvS+2yhUmkufviVtbRmYho7yttU+Gk\nlYDOcA+G3EnJZsbRLUxFWgmt/UXUl+3njFQg2C6Fi1VssL19Z08Rgh4vtedhF5ecQbELNvT7rnx0\naRWa7W3n0E/XXSqi7faVqS0ux2CvgInbRnMbbR2I4NcVq5e2LdivOixCB2+97AKvAJ5W1ROq2sFF\nsH9zdwNV/Wi+sQa4jalnAXJG76vqh/N29a52PbEbBn5EVf8TkOSdtrgq2lteg9sR5I0i8lBenvVW\nbUWJqN1iqd5mUU/XGXnpjELRYqc7qNF1Rr52ATbnV7peFA3Aa64ZG1nnpu2pkJmPxgwdT5FUkdRV\nNGYgbClhLZfkckZuj0JhKWbyU0tIxyKJY07qCzYAv7nW/4YEGDShNQFZuIk0WQGW752iebCCGrD5\nk0siJRsKSUbCTSsKiTtQjLCH96KeWZfeTZxilhus3DZMVjBY00VjvITZPw3FwiZm59VissjDhmbT\nmJrHxhyD9ba82L4PSUI2dxHNsg2mHPkks2P92dwXT8BqDbV2/RwplXq3rZTQNEVbrfUduneFvkw8\nP7/rWeyoE0kSbL3haK+N9ZpvHDRAN0b2DF++0XOEIrStv15wWyDe11W+d8sp+9m8/d1ZdnbO+G7g\nL/LfNwErIvLHIvKgiLwrl+j7YjdGzI6IFMnfZhE5Qv9E97uGqn6SqzMRAJCuZKBQu8XSOGopnTIE\nyxAswvCDUL07w97QRuoe2jJoBtL0wHeGTtQxbAWySAkSwW8JapTMdyNtj/lUzgrTn+gwdV/C6k0+\nybDQHvFpTQiFRSVoKUlRsL7i1QS+0VL8X21m3z9Ha1+B9p4I6wvtqSLlecfE1YB7N5Sg5jxn4ilB\nEsVvglhHX31h9a5J6reMUjxVx68nJGMR0hYgJCsFeK0U08kQfGSxhk4Nk91yEKk2kXoLtRnFR85R\ne9PNrNw5il9PCZc6mFTRwCdYauHNTDsGVatDmqECklqygkcWea7/3LTQeOkE5UcXkcSAtagq4hmI\nymitRnbqDFIqIsUiNvZp3XuAYG4V0u2BP2SZ8yuPQpgcRcPQqV2CYLvaQoHxUXRpBa1WkSBAPW+7\nBL/5pQNjEGMcw9/WVnv+XI/KXEduHU4S7PIKEoao76Hp86eX/3JEbfnaJ1O0KrR106p04TKBPL19\nCno1FHkHcC8bm234wFfiHDpO4zbp+C6cpqIndiOB/1tc+skDeSrKvwL++S7Ou64YvuhB7MRJG0Dj\nmGXlFZbVlwqjD8DQ4yCpouUU3ZOgE3lI/do3J6CBKxhIS+qWxBb8juDHQjIsrB4tY0PBtJWJhxKm\nP9Fh+Lhl6RbojDpmHDSVQlWRxyJ4s4U3WiRQSnMtxh9cZfzBKupBa9LRFQt+Jy9tKF5yUrx6kIwI\nnTEhWlE6Q+5YVvBp3DzK6j1TZOWA5h6PtCioJ6TlgGSsQDJRwas2MMsuMEeHS9j9k6Q3TiPtlPLf\nnIDMkhYNzUNl6kcqmJUG7QMj4AmEAd74GN6eSeLpIuGl+voKwhZ8spJP8Vybpb93gNaNI2jogedh\nfB8RwZRKSNntGazNlvMxX1rBjpaov/Em1Ddotzpozxi69u7HHTh3CZ45C/UGZmzUSfXdTHS1DjN7\nYGQIjKBJgrbbPZjt2vMVN0nkkwyAeB6ydfWwji1S+A4SvnY6aLN1GR9w4SrKKwMApaHi5Rs9Rzg/\ncG+97AJncZtKr2EWl6Z4E0TkTcC/Bt6iqnHXuQ/m6pcUtyvX3TsR25GB53rqLwL/ADcT/D5O+f6x\n3VzJ9YS3BKYjaMegqUFtvhpGiEcN438LM++D8lPg1RTTVmykiFWkW+etgAH1IR0CG7GueumMgA0N\nKzdXaMwWSYoG6wtey+ClsHAnLN4J7XEXgZmqIXusgL7Nwk+k8CoLYwrDSvl8h7Qo1GaFeAQyH6wH\nXkfxEijPQbgKkiiSKdGqIgY6Y5AMOYldJVfzIDT2ejRmPNKSYD3IioZspIRZquGfnkdWm864mGa0\n7txHOLfK6PseofDoBUy1jTQ7+GcW0cindWSCZE8FG3lYz9DcW0QUCueqhPMNTDuF1DrpvZoy/9Yb\nuPj2YzSPjZBWArKyM256lTLe1CRSLIIxqAhB05IcGGPlf7ub1p2zZMMFbDFA902Ctz1cVlttRAze\n1CRmdBTCIA+iUaQVw+w+5MZDMDwEge98tAsRW6GAFAvuD+tejt2rXvIXY0298mz5sPRj4sKAwV85\nsuTar3icCiVYL7vA3wHHROSGfH/Vb8VtS7kOEbkLtw3eW1T10pZzx7r2qH0jsGNg444qFFVVEfkT\nVb0H+MBuRv98IQ2E8c95LLw6y9XKbrYMVoTqjSH+YzHhorLnr1z71h7l/OsUSQVJFZOJk8ZzAS6L\nnD7cRoLN+YF0nL67PCfEYwGdMfdAVWD0cWXpDiUehTifM8N5Q/QXw5i9KUynyP9hAUvS9ij9+5S0\n7NGe9InHDXEeGlW+mOE3lbQEYUMI81ViUoLhpy2rRw02hE7BfeylsxavY8giIS0I6YybkxVLWBvF\ntBKkk+Bfyre1rPhUX3+Q4GKd6MQCpYfPUXr4HOBC04On5kiOzZCOFUnHnf45GTUsv3SUsS+s4DUT\n/KZTZ7TGA6b+ep65b5wm3ldm/luOAVA812H6/adADOJ5eKMj7hlFHl4H/JaSFgLadx+gfbcTVkbv\nX0SPzcJTZ8FqFytTsqVFvIkJpBDh50zYGrBnziNHDkKxgLnB9aPVGqbWxKbZZrWLb5xuP0khjrfo\nuncL3fgnT3S1CZ6XR6bu0O9WJq5bonvFdB0fYCdk10Fl5dwId6NpzturpiLyg8CHcPuO/oaqPioi\nPw3cp6rvB94FVID35p5Lp1X1LaqaiciPAX+VC8/34zYq74vdqFA+IyIv3/UVPE/wxhW/Kez5hEfp\ntCCpc9UzVjEpLN4WUd/vk/lOzYGnmFJKVrJkRXVSdu5HUFzbTtbkRs21/0LHWOuzG+5+KmAFvFiY\neEgoXsil4gyyMiSRR/LrE2Qfr6B1gybu26y9VBg+0WHk6Ri/YR3TypTaDWAyCOvqvF1yRtOeEMIm\njH/REq3khtJMEXUqGC/ebHTNIkM85pEemMJODDtDpoAag/Wh/qrD1F9zI+lYETWC+gZCH//iKuEj\npzDLDSepZpakDOlwwPJdY7T3FNaNqPFkhNdRZt83x8gXakjsDLXqCbZccPpo3bgGEUgjCOqWsGY3\nrs8qZm4RpsbQO4/C2BAqghoDhRCSlGx+AW02142GWnLLZ33yJDq/hKbZhvEzSTAjw0ilvBHyLkI6\nM4YplzDl8nbD65VCxPW9OZ2iWyH0U4PuOGH0MqIOsBOifm6sVxEWpwNfK7uBqv65qt6kqkdU9f/J\nj/2bnHmjqm9S1b2q+rK8vKXr3A+r6h2qeruqflfuydIXu5lavgr4PhE5hduRXBwdvWNXV3O9MNok\nHoVoWRh91GPkMcVGkIZKYTGlemNAY78rJlGKYy2kkkDsAmHSkHU1SvgMBONOVYHPhkDlZ2jikSG0\npoWWVSSD8jmnS/ZbwvBJYeiUYgNoTVmWX+Kz5/6E7G8r2E+VoWJJhmD5q6H0DBQWM0rzLTexeMKp\nt0S0J6CwAFHdTShqoDZrqE9D5YIyctKpdGwAcRn8tiUtG7xUWM+3o7B4q8/0Zy2MD2HHKpBZNE3I\nAhewFN8wQeeGCaSdIKll+L5zBAsZXrWF9/nTjun7HvauI8SjAYhP7eZhakeHMIklHhFsMMXYfZeY\nuG+F8ftXyIoemqYk+yeInr6EZnbd/1vilLQoeInixYofZ+uTIKsNZKmKjg+jdxyBNIM0I5tfwD85\nD1nmEmGtVp2qpRDADbPw9Cm4uIBeXHB6cmvJUPyxUae6KRbBKtZAZ3oUb6mOUfCCYN3gaav93NH6\nhbLiJrc1Br7GxNUixZIzZvbzZulnEN3aboDLor68o4fdVYGqkOzC//v5wm4k8K8DjuD0Md8EfGP+\n7wsK4zfEZEWIx5wOGATTFpIKeCmMPpXgN9UZOT0hjFKmSnVkPIYw59zGFRsIQ8ehMI9Tq2SABVNI\n0Cg3dqJOEg3A71isD0k5d+9TwXTcR5pWDPN3h3SGBRXBNjy06aOZ4fzboXnE6b5FwGRK8Tws3gH1\nQ+74+rtjoLXXUJt116cCkkA8Al6Ck2gzRdTp9U1ssaHhwisj4lGD9QQbuTwohVOrpAV1enTAFgKy\nSsTK3eNoMXRpZgHJLCZOwHOTTjzmrk99ISt6pGVDMl5g+eV7ScsBiGBii1TbaGaJb57BVqJcmnYS\na1BzjD9bCxTNVxCkCXJiDjm/uJHPJPBJDk8hwRZXxcwicQdTLiLHDjudtwjYzC1vrJItr2wEEwkQ\neNhQiG/dTzbpJHx8b/1a+0J2+ES2erFYRazFDFc2jK6bVCZbpGztdsoc4EoxNHHtA3nslevAryt2\nI4H/jKp+R/cBEfltnA/3CwZ1mzJ0pEr9xDCtUDAJmBSYylgqChMPwdjTKWkEaclgOh63v36OxXaZ\nbDRxKseOARWyQoiXCOVzUJ5TOsO5UfMGSxxYVA3qu3wiomDGE8KLhs6wIak4VYZYyEqQjKVgfRbu\nivCalqhqSX1gxcfOtJn/ejBNKJ524y2chdZ+WD0G1aNOEjednMkD7QlDPK4EdWfwzErQmFZKFyFa\ntVjPTVAqSrQstCcNl17haBeWLdISxj5ykvig8wPPEHefFNo3DzP64DKBsi7NoopYIfMhKStpSZy6\nJsVNmKMKRCy9dh9+tYNf7eAtRvhPnMG+7Aido9NInGIabbCWwnJKMhSRVISkDF7iJtUwMPhWkfML\ncGEJHSm7IKFbp0n2jeSuh2aD8a25LJYKyK1H0GYbWm0XzXn+kpO6qzXnNhj4WE/IQjCZoXNkL3Jo\nEm+lCZnFLC3vbD4Us1mt4dag7vcaE8914rbZwgwP4Q2VnUonSZ2k31rL29GLYfegboybkK4lAv+K\nc828kFBdqF1zGso2N8LLQkS+FvglnA78v6vqf9hS/yPA9+Ayss4D/1hVT3XVD+OS+71PVX9wJ1q7\nkcBv20LcA+7ZxXnXFc3VMUZvX6JyYxU8xRYcswlLCc39hsXbBWtyJrlsSeYi/Ex5/cGnCU1K4GdI\nwSLFlGw6oVPOdeVWCFeEwoIw9KjBH24jUeakdU9RH7JbO0S1jLBqnarTgA1dVI0tK8l4hoqSloXm\ntE885TtmdClCMxek03gJ1F4KnTFh7GHwWu5Tb+2BxgE3IazlNFcROkNCe8IgqdCcMTT3ipPKLfgd\nJWi4lLWFZcBCVjA09vs0DhXQ0Gfqz45jWimSZNjA+cKLCuf/4QHiiQgNjUsL6/sUFiArOJWNipIW\nlLQC1iidEaEz4lYEyUhIe7ZC58YJTLWB9/AJ50fuCdl4BTtawbRSKmfj9ZQEWWTICobm7XvIktgx\nRGuR5RpmfpVgOaZ912GSfWNOdeI5wygrXVkKVZFihEyMwr7JzVK1tS6tbqONd2mVpCS5T71HNjlE\ntnd7DvJ1bNJ0yEYxPaT2tbFkGbZWX1fPmCjERJfT1W5h6iJ5BGq/aWWn47v3ZJGJ0Re148vwxNA1\np6FAot56uRyuQig9wL8DPr6b8fWVwEXkx4F/BRRFZE1JKLiw+l/bTefXE9WqT9sLGbtzkZGbV6gd\nH6azHOEcbywaAAAgAElEQVRnDSoTGfWDZZrThspZS3HB5Ql/9ImDvPyup/imm77AudoIZ6qjpJlh\naXYI71JAWnbStOk4Sbt8ymBeYWE8RjPBNgJIhWw8Q/YlFM5BVLV0hpxXiFmLyKxY4pLFqxtM223H\nhXoQe3CuCMUMLblJoTWjFBaEiQchGYbWXsWGjqGnQxsqlbWgI/Xd+JozhvYepTDvmHdQtYQrAB7l\ntpCU3ERBYqnfvoexj59i+vcfp31gmNaRUWxosIeHSEZ8zn3rQaILbYYfXcWvpxgVTAZZ0e1U5HUE\nMiVYiEnHI+IxIRmGoAamDV5D0UPTyIk5/I89jE6PYfeMoggePgQeQydj0pIhGXJRou1b91J+cA6N\nYyc1ex4qgleNkX0V2ncfIn7JDOEz85haG7IMf6WGjg5tpLpVRdMMe2gv5vgc0qXiUCB47DzZ3hGS\nIeMM3ImbcIPcP3wbuveg23p8LfCoF9IUu7LqAnzCYOfgok0jBPJ9+MQIujauXqqW9VWBdvWgeTTo\nFpVNP1QqML/87FPwPs+4PtkIhfjKVCfrofQAIrIWSr/uDqiqH+1q/xngHWt/iMg9wF5c7M1ld/7p\nK4Gr6s+q6hAuscpwXoZUdUJVf/xKruh6IMgMJ4/vJY4DJLKM3b7M3tddYGh1iZHJOoVKDKFSu8Hj\n0ss9lu8Uzl+c4PEnDmAzYX9lhVfPnuQrD5zArwnJrS3UczrurCSkZaE94jH5vzxMGwyKN9rBm4xp\npwH2G6owkSLGUlixlC9mhCtdH5CBbNiS7MlIJu2G7UoFmj4sRjBfIBjvUD3m9OtBDUaeMow9aohW\nFa+lG2pU35VkOCOsupWF9YTmPsPqMY/2qPP0CJpONx7WleIilM+lZKNFqvfuc/rwM1XGP3qayQ+d\nxHTArwMI8XSR+TdNM/fWWTqHleHjuUqKnJFXlMLp6nqeF+u5QKb2NCSlDJ3dg+6bAEDOL+I/dBzv\nidPOzb7eQVQJGhmliynluYSoZll+6y3Y0ENFXWBOpwMLKxTnWohVtBQS3z5L69VHad9xAJ27BI0W\n2rWphKw20H0T6Oyk865ZqygESJoRfe64M+YaJSt5ZGXP7QTUQxSVsI/kbK2TkPtJ7jm000HrDWj2\nZzTbWaxjypqmyJpuX8QxbNniJ7/peI8e19v3lswl7mAOH+i7OcYLHVHh2nuhKEJivfWyCzzrUHoR\nMcDPcwU7nu1GhfJnIlLOCbxDRH6hO/3hCwYWstTj6S/u59yZCVqtAJsJWd1gvtBhYu8KEwdWiEox\nYiwYix1JefLEfj7+yds5e36STuKRpobiYwF2JCN+eYNsfwcN3AffmvIIV4WZ3/MY/qzgVXNDYtt3\nyZ6+dQXeXEenEtRXBO0jwSm2mEs93Q4ICuXxJskILN8OzWmwvvM4CZrOZdBrsynwaG3vznBRXeBP\nx9WpgGklRAsZxfkMr625q6Kl/MUl2jeOsfj1x2gdGXNM03PeISbLJel4g0YyneIlMPYYlM85KZsM\nCgsJ/mpnXX2wJg+qgLQT9NgB7MuOohMjeT4WQ2eygElS/JUWEqfOHVKVyjNN0r1DLL7zLhovnyUr\nhy5as97ApEppLiZcTlw0qFWy0SLZUIQ+cwZOn0cbTcfIU4vMLWGPzJDdfQydGlnPBZO8ZB/++RVK\nH/o8/olLbtOLNIM94z2DiNyeodsfn/rGHQ4Cx+Qvw8h3xA7ZFgUwpSIShV3t8pRZWxNpbdq+rjt6\ntFtK30Kr3kSiEHPTDcieSacTfxEy8msJRYg1WC9cPhfKswmlf1d+6AeAP1fVM73a98JujJi/Atwp\nInfiQuh/HZfy8PW7JXI9kAYZXhOysrCyNMTKstOPRVGd2f/3BJ3/OEFxPKZ42LlVtmOP+eVhpG1Y\nqZW574GbAfd5jNUtxSd8WjenpEc6pEfcOeaBMiuHfUZPpgw/4jH8iKN94Rst894Qe6eqcHOMvMRF\nxgYnSmBLrEfgrsdqKLZgkcQgyebdfIynVCYaNBZLNGcNzVl3vHICSnOW5oxzF2RNGi4IzYMZ5RMe\nXlvx264vjXyClTrJlIe0wI/zdyiBwolVOntLxNNlaq86QO1Vrsof6mAbIbYAfsx6xptsyKN5T5vS\n/QUKC1BccDTCpMD0H53i3HcedR4ueWh8MuLjL6+QBh46UkFfNuRyzHiQVHz8eopf7+A3OtDI3Vzb\nHUaeqFO9uULjlQdovNIF5ox85DTRU6eQmw4R1pWw4Sa+xnRI89VHqXzkMajVkWq+oYdVjBGy0TIM\nlbB3HnH3I7PYipAemMA/s0jhgZPwwEl3zi03wqEZODW3OaNkmiHlElrf7K5mx4dgoYrJPU1M5CK9\nbJahnYQeeR77Y7iCrtR6fvW21XIpCXwfk2eJzNrtPEBJNrkk2pESZrV7U5M+Y+iS1rXTgZVVZHQE\nmRqHKRdNlh0/2T8/+wsIcevab19nVYizTWzycrlQrjSU/vVdofSvAr5SRH4AF+gTikhdVbflFF/D\nbkSHVF288TcDv6SqvwRce+vBFcIvC2IFvyF5rm1X2vtLpMan8MMLeB9sQstCwyIt53GWTXewY+l6\nuLyKUj+SUXw0ZOizEWbVMUvpOHVKPO6zfFNIp+KMhtaAl1mS1Gfu0ijNVohVsNZ5a3hrGQfZGJMR\nCAoJ2VCKLVlHN/+vvliiPN5kZF8NP0xBFDGWxgElaEPlrDp3yDyQh8SF+9ePZiQj+TUYpTPs0Rn1\nCS/U8eqxa2+dFK8jJUY+dZ6hR+YxTecDLp2M6CVV/My6LIlrQUEW/PMh2WRG49Ut0qnM3StfSfYM\nEVRTDvzGU1QeXUYSi7QzskBIhgP8CzWnr7Z5oJIqaSS09pWJ95SwvuTBRUAcUznZYvzBKsFq4oKU\nEkt2aApqTXj0hNuD01pnGM0ytBLR+OrbSA5Nol4ejOQbxCrefU8ipy46L4s0Q+KE4FyVzl2H6bzs\nELYUOck88NBzl2BqDG4+DOViruM2aJY55rnmFrj2GIeK4Hto3IEs2xyS3zdcvg9mJvtL4dZim02X\ndXGNhukhZauCb8j2je8wdeQvX5cLo7Zjx6iXVlz+mfUEXzuN/3LpAK4fSiN9MlVeRTgjplkvu8Cz\nDqVX1X+kqgdV9TDwY8B7dmLesDsJvJYbNN8BvC63sr7gHCLbnYxsOMOrevgtw9reluFKyoVvm+XA\nrzxD+Ks19Ddr6H4feyBC3z6KFCx2NEVHU0ica2BT3C7zwVmP8dMlsorFhkpt0qWB7VQMyzdHmEQx\nHSX1IQgSkiRgcXkYWbH4viWo+Qyd81l9WUp3NG5oEkwpJU18bDHDFixkIAit1YjSaEBUiSkOx6Qd\ng80MCxeHaezzKJ1XKuecznnN9zyLQSNoHbC0cqMrKVx6TYkDf14lWIkJVmI0MKShYEeH8GttSk+v\nUHp6hWzIqSuSrwvwJzukCyFh3awzVxsYvDMh2YEOrVe2kViQlpB9ISA6to/wyXPs/cBZ7IfPk4xF\npKWAlbtnmPrsCv5KG1baaOA5e8LsBF4qdMYKJKMRpuOYe5hUCTsJhXkoLHRICwYbGpLRIslL9hE8\nMYc8ccqpNaKQwO6hfsdeAg1pv+IG2ncdxNTb+AsNovtPOiZ+Yg59Zs4xZQSvVCTdO0R6aIr0hj1I\nvY0kGYW/ftTtvTk2DHccc8wsSeHCIlptIMXCulsg1mInyujYEP79T68HHCGClqJ8Q+Wcme0mLa3v\nwcQouriC9NrhyFqX9xzAGLKxCiZJ8pXCRntptOnccyvefBVN0h12feqqyDI3CQHSSZwqyDN9N6zY\nILb1+nY6fu383KsL1z4fuKoQ2+sTSv9sxrebKeXtuMX0d6vqBZxC/l07n3L9UUojbFnJRp3LHgJY\niOYs8YEip3/oRjoTgbPTn0rxLmYYo9i253TGgAaKRhYTWBZfldKedtKsNAV/yeA3nLvd2j6bWSAk\nZQMLIX5oCQoJoC56K/FIIiGoC6MP+k4SzwOCQmMZK7YpjrYxfu5M7ivqW0xHWDwzSrtWQC0Y3xIU\nUsS3VI8otUPOfQ9cNKOoIplB8kyMGLAF0AA64z5nvn6EZNigPkhq0QCa+wOy/ZMuTF3Aq3Xwl9vo\nwyWKr1ogONgE4yR/kyk2ULxTId4zIaS4fOsjltZ+0PEK6bH9aOAhqRJebFE8WUM9Yf7VE6QVD/VA\nUrcRhhdDp7yWjEvIIo+s6LP8hgo2bq7nKfGbKeFqgl9PSG/aR/LSWacTV0UbLaKzVWfELeVSfOCR\njZWxE8Ob9vAUBam3kEYLSVLKD57FX2k5CbQUYcfKTqp98hRcXHK5THzPMf29E2gnQZstt+M8uM0q\nNEPHh8juPopGgZPkVdEogHJh46XcZIDs8+JeWIQb98NMbnQ1m3Oub4K16HCxp87dtDpIO6H9927H\njlXyviTvq79krM0m2nIbY2iuAto1z+12rdzN8auMkYnrkw88td562dU5zyGUvquPd1/OBxx2IYHn\nTPsXuv4+jdOBv6AQJynSFmxBsUX3W1Ihm1CmPt3m0muLnPipmymeaFJ8pomdMASlhLgeYTt+rqpQ\nEMULMlIflu9JWY2FwpzBdMCsGsQ6lYWNnDFRFExi0EsB/lSCV4mxmcFmghR8OkMQVoXxz/qkw0pn\nRPGHfA4fWqTaKVAajbGZkHbybXgu+VgrrJwfpupXKAzFGM9irYCnNA5Bc1YoLDiDZjKaTzKJIE3j\n5nyjTBTq1JISnTGfU28bI5pPKF5IsR60pkNKFzPszCQkKdJ0aVizx0sE9zQp3rtC4c4q6dkiNjbE\nC2XMio9/LsKfC7ETKVqwZA2P+j6lTAU7ehRZbWAaMZlnGbr/Iiuv3c+l108RrCZECx2wStDMyCKf\npCJIputBRLW7yoz/dQ1WW5hmez3rYBYUMO2M9Ia9pIf34M0tI40YLUeUn6nTOFyhMyTO3TMDKobS\n5Bh6YWGzJKjqVCmeR/kLF7CRRzJRdgZJkyehOnkOzszBxCgEPjo9iYxW0JU62qm6bIeeh7Q6dGYh\nZAh93e3Ict15vxiBQoT3+RObpGkF5+rY5S2zXldvIEnqdPAHpmFxFToJnJ93kvSW9mKV9KZ9+E+c\nQ7b0F3z+NPFXvoT4q16KVJt4F1chzQgeO8tOtjVtt9F2e8Mg22OcO+J5yt1SXe69kfnVhAKdK5DA\nrzeeg/n8ueNym39eCcLQIHWD5CHsWlDskKV+q2H00YTJz7SRDNqHSiy9aYr6K4bxfEtYdlIzCpoZ\ntONROGPwA2css5HSPGyp3+T21oyWcy8QdVKujUBFkZMFWPJdYinPEkQZOpqSFZyaAwS/aiif8eBs\nAU+Ul07O4YnF9zPCYkpYSgnHYvyG69+mhuZKkfpiGWl7LuTfKOoprb3qwu2LFg3t+vZwZCCJYWZo\n1T3cXJyLJwNWbi9SO1YkLXvMva6I9cEWfWdoHB2iUzSk7x2HukFECY80KNxaw04nZNHaqkYw8wH+\nmQi/6lE76NHc63J729EK2f4J2jdNUThfZ+TT5yG1JGWP+pEyzYMlTEeJVt3m0CqQRUJWELyVgDM/\ntId03CcLcWqMVpvaQY9wJcbETk2R7R8nvXkfzWOjlE7WKZ1puBWUcX2190RQKSLjY5ulQGNciTsu\ngrOdEp2vUji94hj2mnEvs3BpCc5dQm0GRw64reaMuHS87Zjg9DJJWeiU8/QI40PYG6ahUnSG09sO\nr0vAAAQe2fRoT8nZzk7Co8c3jIZ7xuDAXojCnizXm69iD+8lOzqzmQZglupEn3NqHS1FpMdmSG/a\nl9d2uxf2lo6103E51Z+N2qPn/KB9KtZOeG4SemW08pzO3w1UhY711ssLDc8bA99lxNKukSaZ20ig\n5uEt+26XmgQoKNXbPcYf7nDk3TXGH4gpXEgJ5y2hpHhBRmEkxi+kGC9DfEv5MR8B/EKGF1rndiiK\niTJEIVp2+2OaOJfCfUVUMMdLyKNluBRA3aCJ0Bm3pGWXIzwtOdWBFTi+OMlw2OaV+57hxpEFhsMW\n5aBNuKeFIPh1wWvlBtkMpJUvwyMLhQw8BWORXOLWgnUGUT+XyNuWuw4cJzDp5lznOJ/w9oTHybeU\nWbgzpDVpiEddoe6T/dYU9i9HsCdDdN7HhgoeZEEejWlyV0F1AUXVG30u3RXQmDF0KkJn2FC9Y4Li\nqSp73/skQw/PE1xqYlZivNjiJUpxMSOsW0y+1VxwwScd9Tn5r6e58M4J6rcWaO8PaMz6WF8oXIop\nXGzjNTJMnCGZJd4bUTleY/JTlyidbuCvdvBaKbVjFWSkgrd/BhkZhjBEfd/t9KMK7RiSZGO7t71j\nuXFwK1NxxkxuOuQ8VSZGoVTA+CHhhTpJRWju9UjKQhZAJoo8M4dODJO99nbskX3Y4RK2GNG5ecap\nZrZkMMwOTLlAmgefgC8+A0urUG/muvQe302meJdWyY7M0HnjHWQ37MWOlLGlCFC8uRWKf/4QwRfO\nIos1lwd+HVsMmf3Qbx/S9W626r77HF+n2ccXXfrc812icx08ZRRIrVkvu8Gz3ZVeRF4mIp8WkUfz\nurdfjtbzuTa4bMTSlSBsG+d7nQhk4NXdpYV+wsLXBISLSmHOsudTMXwqJi0aVn7cYr2MJPMICikU\nXOSdxCVGPuOz+soUMYqJ3ItZOdCi/uQIogYvAW/V0Y5nU7yFAPUEaXrISZfqVEYyOjMZXix4DRcM\nlJbBYrhUG+ZUIebg6BL7KlX2DzmDzKfPHaJwqEr71LCLFkzz/N6iLn/KaOqm3cJaDg7rZoTEyxm5\nc4W8+NQQ3/D2B1luD3Fyfg9J5jJX+YWMYNlg60JSEWo3htSOuICIoRNKfcZQmbPoiQJywulz/ZdZ\n4iMx0dOR0wWvBchk4DddwrCsIFSPuHtujRLsmSRciimcrjH0+QWGPr9AUvFJbzuIaVtsweC3FT92\nH2xzxlB4PKB9S0LjliKN29w9DB73Of96n/0fbWESS2HRfbT+fIeFV4yw52+X8GsZw0+6+9eYKbB8\nzyhBNaV4vo03Mgwjw2SBkEqGn2VOus/suqqgNVOg2JyFE2dz46Abk3RSbKXgDK3lInLE+XRmNqXy\n4AWqxYB0JKIz6iQzP/EJ71vAVoro9Dh6cC96cK/Tt1c84jsOEj1y2iXjWntxfY/k5TcRfO5JWK0j\nK2tqgTXGtoUpGkP45AXiYoitFMhuPUgGyMIqwaefcGcmKcGJiwQnLvb5WnaWsKVcQqt1euckz+9P\nd1ZF39+YcDZ542w5BzZWOtvaSdfxHte9fZQY79rLn2sS+G7RJZi+GedS+Hci8n5V7eZra6H0TRH5\nflwo/duBJvCdqvqUiOwD7heRD6nqSj96l70DIvIaEfmwiDwpIidE5BkRObHrK+qPXUUsicj3rjnN\nz8/P9+3MW3t/IqdiWPvP9zL8yHLuHSGXvi4knsqZjxW8xyMKJqUYJnhmQ0xtjQuFMz4THwopnDLr\nLnWVo9WeyensiEWM282+Oye3L07SaR1Oac9mZAWbh2Eo5pLP8YUpHpqbZbFZWheK4sQnHOtQecky\nwXjbibm4XYMkM5jlAFpmXaqWLP8GAqdeWb+GesjFh0b5B3d9hm+46372jqyw5hdYOFwnbCqFJZdH\nfG28hSVLWhKqh7w8e6KrCi76aEFp39om3Zuu31/rO/NYUM+De9b3JnCpfBfevJ+lN84STxUcCSNU\nD/uYxOLXs035zuMpi7/qUX4wIrjord/zaNlldDzztSWWbwnWN3v2aikmsVx4wyTLdw6TlL2ctGMs\ny3ePsXTvGPFYsE67dusIWoygVNyU3bB+KIThMnLzDTA5uu6qJ0kKItiCh/prBkHIKhEEPsOfOEXl\n4YuYmjO8Ci4E3jxxBvOFZ2C5tn59YS0hPTRJ63UvId0/5jI0khuWx4fovP52srUNqMFJ/r1cEsUF\ny0cPnSJ86gLSiHt4fWx2F7xiRFGu7uknDW+hIYIMVTaOA9vD/7uOX25MO7pi5nUieMG1V2k8Cwn8\nWe9Kr6pPqupT+e/zwCVgih2wGwn814F/htsd4momTdhVxJKq/hp57pV7772375NPKx2isxBPAgFo\n4PTa5VJMoZyxVCtTu8OjdofvfJKrwvRfBnRmU/wxx+TX3q1WpUI8BFHVMPrpEP20goHOd/lM3D3P\n4gNTaLbxMK0o8c1toscLiAVj3cc5Uq7TTktoCOmoJR3L3V0ypfhUgA5blqXMcrvMmq+AqUPHt4SF\njNLhOnqoDgrVx0cxTR9bErymD00naXs2I92bz16+k15UIRn2ue+Xb+Srf7HOzXvOcev+c6jC6mKJ\n96/eTrIQwUqIt5S7XEKe/EppjwnNaY/mNO6GWCg+5tO6NSXd5woKZsHDnA6c/30H6LjLM5MJjUpA\nmArNG4do3TgMqlijJBUozluiZUvQzNYfeFYIaE9ZCvOGwvGQwnG36oiWMqwHzRlh5baIldsisMrI\nF4SJT85z6c3TNG4o0ThSBlW8Rq6rR2jPFGnPFJ0ErICnFM82iS62MZ634buNsHq0wMhxMLPTMDuN\nWiUtGLxqGztScP7igbsfadlDb5qh8PkzRKdWKZxaXTMHuk0obIYsVjGLVXdcgHtvwyt6ZCMl4q84\nSpy/bNF8TJYpFEOy2w6R3XYIrCV6+DScX9jMzPLNLwhDpB3jX1jFv+Bo220qF930qyc7FNNbyu50\nMHsnsRfmN5itqptUNuVN2ZCiZWQYba0FGXV9pt3S+abPe4sU392nsv26YVvbVq3d66quKtZC6a8A\nvQTTr9ihffeu9OsQkVcAIXB8J2K7mVJWVfUvVPWSqi6ulV2cdznsKmJptwhnFC8WChdlkzRorCX0\nMsaGWv8/de8dZFl23/d9Trjp5X6du2d68sbZgMUSgEFwCVLUmjSIomVKZMlySaTKgbKLomzSllR2\nWabssoqSTFdZ/oMOFO0iWeWyaTNIBCiAJgASABF2F5uI2TSzk7unw+vul2485/iPc7t7ZrFhFmFB\nn61bO/3CPTe9c37n9/sGwsCHdUICoaBoCcLfaaO+HkFZ57MLnw6YLEqmcwfa2wLnBJs7HVpnRix+\nZIOgXSCURQQGjMC2Lfn5DNv2xByUIwlKkrCEXBwRYwA02I5FvRwhN7V/rxK4SpC8FJBNA7JCH+or\nOQFipkJV+ALngfWbFeiB8jUpfTBwOYRwlH3FpGrw6Z99hOufn8PkgnKqKPcDuBDT/p5t4lNj0Bap\nHVJ7HfR429LYrN1yjB+88xlHuKVpPhciR/W5VFA17DcGiIDSFt0oKbrUEbOroX5enXHzsYDRSe2h\nhAqPkTeQLzqmqxYb1A5JAsKhIZhA8+btUb4gXWoQjCqWPnGTeD31aYnSogrrZQPeULQTdY57+yOL\nDB/oYgOJCyQulLRezxifjBicT6iS+p6HgqobIguD2k0R5YFJgydv2UZI/tAattfw2uJK4rRGRKH3\n5awHGwG+NjNOibYLgmHlr2s9suthjqwcVHdGtK7f+cZRVwg/gArh7eHqFIIA5DcB2XOqhji+oSM3\nniDiGLW6dKS1flAEfgvDaKEUcnEB0WodFUmFOGR3vknvd3+gb1Z0dY7WzHtA5HFgrDzc+M5S6Q9e\nXwZ+Hfhp597eW+9uIvDPCCH+CfD/cEiuBufcM3fx3bdrh4wl4AaesfRvf7M7m1Dh1jLk1ZjklsRq\nb1hg25qV1V1uTnp0m1lN5FMYoxgvR/RHluCLDYIvJ9jFChTsL3uD5GxGkPccKvMQtekkYn+c0F2e\nsvbxK+R7IdVEk2Ud8kpBw1Kcr4kuU8k0Edy/coOvvX4SW0n/I5WeaFMulcSjGHU9RN0IcU0LyhFv\nWrKRpBABRaVR0g/I3c6E3WaImkjCkfADnPTHGV7RFCcqhHaHK1cXwe4jHfQXK77yT+/ha62KmbNj\nSqVxVRNxLqdx75DGPUOqvRBXSarrPWQF0b5HipjYC2TlK46iqwj3JJ2vxJiGxSaOsmXJlg3xTeXl\nAOrHtELSXh2xe2mGqi2pbC22JcC2DDIL2Dun2T+jifatL9RawDnKGUc5Y1ApiErQvAnRngEU7evi\nsJCqUth7tE/vmR0W/ugWJlEUvRC0pjjWY3Rc+fDkIIA8+IcUjB6cYfRAj3AnR5aW1tWKcLdiuhQy\nXQkJhgaVOxqbjqIfEQ5y9CD1bE8lCZxieqxJ4gKK+1ahqJBTD59MLg4QRYnQdYTv/EQk0hzRjAlH\nJcG4wobS37+s8ibRsb4DtGE6EUF/BjfYuzPlIPDyuHGEiGPfRy2Z+2bNQa0t/o1jiOnF6J2UN6ou\nCudwu3uImR56ddkLi5UlbpJCntdIldtaVeGCAGEtot+DXhdX+NSO67b9ObzF8b1zFP4W38Gxv/ke\nEHkQlOaOCPw7SaU/0AL/feC/cM596Z2O724i8A/iZ4n/Fq+U9d8B//Quvve2zTlXAQeMpQvA/+mc\n+7Nvdn+Bi3DHC9zJzKMwLOhMsLvdpKELjrV2kcKipSUMDIG22ECwe075KNEJ5M0AeS1AlFC16uhQ\nCKrEF/z0vuL1G3PsDJtYC0GnoLk69fuyHvvtHNjQYWcMO2mTXjPl/WcuE+jK59mtQKYSPRHk9+S4\nGp4nxhK5r4num9D9k5BgS4IRmFJSGcX9CzdhMac6iPAdyMrnqcOtgOiKj+SF9UGVbVvy2ZDtD85i\nQkmeBmw+22PzlR4lCvfrfdjxuWY9UxAuZlQNSRUJDhjDKoNw4iA2pEvesNkJh0wFwY4iuiGpepZs\ntabXK38uZarRkaV/eg+pPbLHhkAgoBJUs2WNloFsRpLN1xNAIfxAjjeLqDqOdEER7VTEAy98pXII\npgI9hexYi73H5rBaIEpLsp4SbWaozNG6cZvnJl63vWpyx3K8mIvJVhqMzoTMPTOhsVGChbKlyBYC\nRGEpZmOK2djbvlmHLAzRrSkmEWR9b8fnIo3tNSlXOlS9yCNfpEQI4fHfcUC6kiC396GoPEs0N+jM\nk2LcSeYAACAASURBVIaCrQlqWiBqX1ThIJ+PEHO9b4BDOut8FJ7nhykgoRTyrZyFpMQem/PPzO1N\nCNLzS173vf77cFMKNxzhBnsepaMUstEA7fXhZZLcua+qgqLwqwIhQApEHCPiGHaHiFPHodm4c0AW\ntxUq3zQv/iY5/De4GHUX3gMij3vXOfBvmkpff/638RT6/+tuOrsbIs8P3M2OvpnmnPsE8Ilvx77S\nzGIqiVotYLmooXwKeoYrgz4nZwfc09tkVEZMy5BMR0ysxw4P7lcEEwj3LVhfEK1Cr7/NbXrgMgdh\nBNc2Zlnf6dFvj4nCiliWDPMYi8RZTwgSwqGV4/VXFzlzzwY/+PDX2drvsDNqYnTA9Gs99j5Ykt+X\nI6YCta8QRhA8OKZ4sU33TyJM05GtVdjYMX9sTCvK2ZuTVDMSNZLIUhDWKI5gKyDY1lSzBtO0OAPF\nvEHYgPUnF4g3c6LtAhc5piuK7qvAr83CUgnnclxsveHw1LvbC+v80t5RU/0d2SLkc4JgH2ThUMIR\n3RLki5Zxz6L3JWrq8YXDQUJ3bsL8A9sUo5B8FGIqQTaKsT2DmffSBTKVh+kgP/qLwxQUQNER2FgQ\nDwzRrqHoeGs0J8BmkuxYk42VJsnNCcEgx2lJMMxBxnSuWqoEykRgNezf61Ez4iiDAQ7GaxG9l3Nm\nvzalFwsmqyEmkajCYmsFxaIfEwwLZGagEDSujJiutRmvanTqULmlaEHxeJ+5z24iVNdHpkUBQjA+\n1yG5maK3h95nNPGkGaclsjQEOynBXkbVDHFKYjsxZTckpAczHdxwjMsLXOlx7FQGYVI/2EqJfStn\nHWsxJxeRN7bvJOg4KNZ62GfXUabWyrkjRS1woxFuPEY0m17XPJ1CaRBRhGy1vO658aklu7mNXFtF\nJPGhXg043Pot5GwPeXrNH//evvcMPTTkcHcc053NveH1Oz8wGkzuZmj4FpvA2LtPT32LVPqfAJ4A\nZoUQP1Xv8qecc8++VX/vOIALIbrAP6h3DN4p4h865/bv+qzegxZYTZ5p4qREKucHJlGisFwbzBAq\nw0pvn5bO6YQ540nFrVp2FentvcqWAhyyVaKGASYRnppeBxyyURFfC8iOV1ROsbnXBeD84nV2hm2M\nED5qN8IHIu2CG68sEIaG46c2mesMWegNmSQJr3ymT+dZzfDRChc7qqb/AebDiOaP3WLyewuoXNC8\n4CF+Fx+a52P3Ps/vv/ww4yKi7GkMEA4kTqoarCLQ25pgG0Rp2XufQVhLuCVJFyOyxZigVSC0YZRr\n2lcruBUgNry0TbjoC5jxLjgpvKsQgBW42QKxHeIEFH3/uooMrec1TluKWUfVtVQzEN0UpNMYObR0\nOilhuyDqFJhCku8lyKHCdgxo5/9PjYaZaE/5dwKM76Nsw/7pgO7FEpU74j3/+aytCOr0rYkgPdYk\nPd6iii3LfzxE7OWUvYhgCkHq89bDc4J0yZFs+NM6UIEUFtafaLH8x2Nk6ehe9CvayWpMtFdSzIRY\nLShnvOqgMyHtZ29hA0m20qSKBVVDU84YjG6w+/gsM0/tIFSADAKfA3eSwYfm6X95C5xF1WYE+bE+\n2uK9R43zkw/+WRze06H70hA9LhG9DhKw27u46dQPsM552Vkh/GTBmyRghUCEIdXj96CffhWcqxmc\njmjPsvvx+5n5FxeQWekNLsATnQ6Kj87hxjW00dRF53qfaH1oDm2nU9zNDVhZ8u9H4eHx2UtXkafW\nQGvkogdVmP0RBzZ0R+2t8uJv/nqjnbzp69/O5ufKd4d2ebPA1Dn3X9727x96i+/9BvAb76avu1kT\n/HNghJ8dfgIYAr/2bjp5L5rJASvI0oA8CzBGYusaWxBYLm7N88zVNW6NOqSFpjAamYO0d0L/cMBK\njsQXDGXBoYaJmasQVpC8HhBtaORUIEpohRmtqPDkoVSBEbh6cghmM15/dZmnvnAfG9dnSachea4x\ngSDa0Mx+JqJxSaHGApnC8HIXOVvR+es3iT+8h5wtEM2Ki7vzxLriJ84/xQ+efonl1h7NMCPEers1\n4bxbjzg4DUG8ISjmLNOzFWXfFweNdvTvGVD2YXBfwHReUoVgAogH3v4snfeWbVb7gc8ZP5GxUMBM\nCaEBZXGRxXYcrZcl3ecV4Y4vIKsMGldhvN/g1maPySSiqiRlVUfbpUQOtKf+10Ql2Sz9Cr6q70dd\nhLYhWC3YOxswWgsoatKMC/y9DcfOm10UIIwfwvbujVBpSbw+QY9qDfHKEu34wX685shnnM+nK1/j\nqFqK6z/cYed9DbIZRZUIirbXAw93CqK9Epl5AhFKUfViOhd26X/lFtHGFDmtkIXBzJWM72uz/mPH\nGN3XpWxrTEPSWC8pZiJu/cXVw9erWFG1A4+rjwKPdKnhhXo/RyDYf7DD8P4uRS/AhBKrfArFHTr1\n+AHXqzG+ef1MVhbXa1F+/8OYc6sepx4FxHsW2wrZ+asPM/zoaYrFltdhT7xBNVpDEBwxSA/SOEXh\nB+yy9L6fzkEQ4EZj7MXLuMFuvVqoRbGyHPvyRdzGptddKcqj3PdBcfSb+c2/R36e1orD7c9bu5si\n5hnn3I/f9vcvCiHeMqT/bjVhhXe2aVaYSmBrmJ8OSprNnNEoZpKHvLyx5D+fClqlz3MT+CjsoHVm\npgyPacT12BN2Sn/jbGAoT6cElxLUWKDHPnLd6vZ44t4LfPrPHqKoNDbzl7UoBd21PUapZjqJePnF\nE34/0tEK/EAlc0HrlYDWK77v8qGM3a/3mXlgQHh+TPSQj36GL87z6av38eSJC5ya2eZMfxuAz15/\nlI2tecoOgP8hA1QxtF8TmKbzjvKrlhwLleDE0oTu7pD9qx3SJU3qLwnt10saNw3TFYVJwDRqEpGV\nuBJkYCG2iMRfLLEjSR/JaH45QU8EnQv+vB2OcOgoO5aip9ivWuzjUT7SCZ/zdwKRKj/hAaplcDM5\n7Hq7elFH4NGOY7rkaG4Iio6g7PgoWBaOaM/n3GXlB3L/HMDg4Yh4YEhuVYR7OezlGCUYH+8QDRx5\nH8qe15EBmHmeOkcuGK+FHhcOtC47xquS1vUMmVvi3J932ZBM7unTeX4TPSrpveBBWdPViBvf00Jk\nkkpo9h6fZe/xWZxwzD89pbleMlkOmJztMDnr87ftqxXFbEy4k4FQh/h0sTuisR4zXY0ouwFlrwdA\n8rWMeHPgC5gcRdz5Wkxw6QDUf9vvwvnnTJTOK0KeXMKerH8DlaFzuWB4MiQ/3Sc/6x2UOl+5Rfzc\n9UOrOlFrkbuyPFIqtBaX594CDxCNhp9Uqgq3tYPbqoFqjRimXlLYDfZ8QfP2dtBHfd7uXdi72TdT\nb/w2N+fEAfrkz2W7myNLhRAfOfhDCPG9wHfejO5dtjATHuYw0VCIIx5DLnEO2u2MOCkQ4oAB4zCJ\nRzOolCNoHnCys4NazuCeCXSqOgHu0Mri2pby3tRriNf64df2ezSiko8/+jXuX75JoCqUNNhCUhpN\n+/5dkuNjDzkUDpQlX7SYqIbZiaPgf/bsgOl6k82vLJJte0VCawTqesBm2ub3Lj/ExeEclRVUVmIb\nntUXDg9gdv7EbeBNnXvPKloXb4NWGsHgRo+5B7dZfv8GUdeThYSyjI9LwrGlc6UiGNsjDfHMc+dt\nKf3K4qCWNPFR3/gjKfmp0qs5Sk/wsaFg9quS7kvCKzFaf43lN44xAARXA2RikAsZJObwHsU7td75\ncUfR4fCam8AXQe9YOTl8IdAKbn60wdbjMUVL+lWEwqdgdgSNm8Lfc+ePK9mxyNLbyR3o3ODwqouR\nZHQiJu9qf5+EHwyRkv1HF0jXOljtpXcxAjlQVCdyqmMFNrKHx7t7nybZKuldzAhG5lDP3WiBjTXF\nQoJNPBnJCWB/hKoczfWSYHR0L1yzzp1nmY+Aa51wFwjGH+pj3+gsJAQYi6q8bIGHMPqtShTh2DLz\nan6oT4N1mEU/WVBWfuC9Xe/8TZuvmYgwRBySgOq2+DZ658CB5+c79/Emz0z83qhaWyMOt7tp3yyV\nvn7vbwghXq23v/FOfd1NBP63gP+9zoULYAD81F2dyXvY1LUU2QAbC8g15H40jm8Zyvs0Uasijv3m\nHNhSkrciVO4ZlKpW0XQCujpjNp6wQxPbMTiDz8kaSaANZQzVyQJs4THgBr5w7RTft3aRx05e4dET\nV8jKgFcurvBnW0vMr+wTL6XESymu8kiLzRszBHsScvzSt8YYzy7vMbzRYbzZZOupJYSySG2R+wp1\n0TE8A5/fOMsXb50mkhXTqkXYgGACQQYuA4QXuRofl/ReETRuKBo3HC6ASsPWyR6d+THNxSntlQmm\nkDgjePX/PUE2J4i3He1rBicMTsF0UWNTAQk4o3DG/9BMIAhfizD3ZhT3lBTnSkQhECnwdEKyLWhe\nFTSveuifCR2j4z79cZDuOWhiKNEbmmqpQs3nnl9iBfZKROc1yfAs5AuOfN5HlNGWj7zj3boWWf/2\nrfaThGkIhucihudCZOGZrL1XvZ57MIFgKg+hmDp1xANL1peehJX6Y6uaoDOH05JsMfTIFAPByBDt\nVWR9TXa8Q3a8480nNOjrkqKbYWcq7Gzl5XcLKG6FtK9K4h3LzMtZPakIxqsxqnSAopz1pCOsg7xF\n8NJVuO8EyS7Eu/5elFHgRbOGEx/t1iQZfa1i/d+/j+SlMQwKpBEcEJic9CsTiUNaezh/2kBRJRKd\nWjpXS5wosQqqSFE9eAL94mWfMqqLnyIKj9Iit7dAe/MLqX2eOwgOIZS2kUC7BcPxmyBN6vZNMkYn\n+9N3/tC32JzzK9C7bd8KlV4I0cfXGx/HD0dP19/dfav+3vHInHPPOuceAR4GHnLOvc8599xdn9F7\n1BYuFQgjvBZKTfbACvQtIBdkRYA9KFoJEIFFtCryvsNEt6ESgEs3F3iwf5O19uBQLVBFFcUgIgwM\nYVh52yzpILC4XLE+7fLZa+fYzyOskwTK0DQlNlds3epS5F6LBOVQoaHZSRneX5HP+AjtwKDhRDLg\n2Ptv0j+964lCwnkMOaCvRaiXYsh9NJzmIWXLD45l0+erAR+JCodNHHvnoGzVJ228a5GrJJeeOc7e\nZstHFdIhAkv7SsXeWcXouPRkFglYz9AUpbqNwu9D0arpkGOFvpDAxL/ntMO0LablyPp+wASBLH3f\npmHR47q2UEfAWHCBIHg5Iqg1x4UFgSOdg8YW9F72KwxxYCUqBS6QZDM+V8/B/ZP+Guupz6eDwIYS\nk0iKjqf9e/kA57VmCjChoLFhadzyBtDCOETlyGeNJ+IcSAQgvOpiALJyJIMKWdZ5aC2RSFQqCC8k\nyH2vM4/wjk3dFyesf0QzPK0Or61wflVhQn8OPoDwWPPy9Lxnc774OqQ5ovIiXuViAyLtYX23Rbp6\nvyK6nnPtH5xj8lgXGwhMorCtgOmSrrVf/EAp6k1llqqhKFseDgk1Xl+DnetQPXwKm0Reo1xKXBTe\nIUFw2AINrcTnto09jKQdwOYOnFj1vqMH+e63i8jfRevMfufVCEG82wj8m6bSA/868Gnn3KAetD8N\n/PDbdfaWEbgQ4t9xzv2GEOI/ecPrBwfxy2/6xe9SM5tTeuWEvYcavthQo9KCnqH1acvOxyS5CxDC\nIYW33ZFLGSZt+XyoBVUATnB5Y57TK1uc7W5zprvDTtaktIrnXj6DSTVBUhE0CowVOCvIixAz0WzS\n5hOXzjMTT+hGGdlrEUkK05OKnc0uShnCqEKpivm5IdNpzOS0YVoJgqFAWJgNxlxTfebv22H23C6T\nrQamUOw8PQsTjd4IUbcCXM/gYgtGkM9Zom1JqUU9AEGnPyHvB1iTMDwtkIWPPK1wUAmslNx4aYn1\ni4bWzBSpHMnAogoYrynGa4po13mj44ZB5srDJCtxqDkeDh35rCXakYQvNrCJwTUtpmkp7smRzyXk\nM9Lrfpe+77Jn0alEp0CKH+CFL6LKQhBcDQmuBZgZgwsdburI+l4TZeGrUHZ8fr+KampOIMj6AlF5\nbfGi5ahalmBPoTNxWNx1zpH3BOEIdOo3G9TzfODvfbJjSXYsZcsPqOOwIl2QJJtHOXkElG1BMMGr\nKg68xroNJEZCFCrSQBBcinHaemauM/S/ts3wwSbb7wvYeTigcct6N6cAwpF/WK12h5OFDUOKMwuE\nl7ZQX74A7QauEVEuzbHzAyvMfeo6Svq8szMGF2jmfmuTa3/vJLd+9hRqWJJ8fQyFQ0QBjU2DLHza\nxodtAqH8ZGViiYklsnQ1fNRgIgX9Nu5D9yJGKWKSYRNNeCPC3bx1R8TsALE4D5OrfkVQUbM2gZ09\nxMIsLC/4bTj2RdiN7bcm99xl29/+zuuB48C9u+Llt0Klf7eO9m8bgTfr/7ffZHsvpr531cJAMPen\nI3ovTpFVLSxlBfacpfmyo//7DlE4yMFYhRhpVOFQpyegLGiHiaFKHJUW/PFz9zFOE5wVzCVjVlv7\nJFNLeq1FNQnAgZKOILAEhcNNNXbq2XSDtMnl/Vkm24JgJIlv+OjUFIp0GpFmEVI7jh/fRikLgaXo\nO/I5x9e3Vnhf+wotlaGVob00prc2pDxW22hZXwCUuxq1EdK8DOWsJZ/3+VarwYaCfpSiEwOzHsRu\nI0c+A0UfXOBTCgC2VAy32uxtdBidhfmncsKRR7bktSaKXMwPBauE80YZopREm4JyxpLP+b5FJlHb\nAWKgsT1D/nDq88ihlydAS8IhpEvVYQpFlQJVeJXGKjnIawvUQBNsBHReLRmtQTbrPx+MoLHpI8Xb\nm9NeV9zVCJWyaw/JK7ISSOcLuuNjPsJE+GdEF1C0PVnrgMAUjB3xnmPmxYLxCUu66OpqoCfZZH0f\nJbvag0MY0JlF5x4NkwzwtYNCoHY1ahgyPR1w4v/YItj30LzJimR0WlM1YbLoJyUnBfYATSIE+SPH\nKU7P+4h1kiJv7SKHQ6b39hj84Kr3FA2Vhyq2G4Q7lmO/fAU5rrCBZPyhGSYf7hNMHTvnI8zBOVpf\nK7CBIBiZw1WEDQQmVuhhgYkkJqr1zjsN7HKf7HgX0Wp6B/vbyUWB9HZyJ4/5CF2KIyy4tbiXX4es\n9tzsthGzM4jZmTf/Ib8LREp37j2y5rXiaPvOUunv+rsH7S0jcOfc/1T/8w+dc194Q8ff+3Y7/W60\nSWwRVcX8F0f0n5uyd39CNh+QPJjDE5bWn8Q0XhaMHxLkpxykoIchk4/mqAdGuKHG7QV+2ZsYsr2Q\nP3rmQfqdMWsL20RhSdsWjE1IdqOFCA1BL0cGBpcrpBVYF2BSjYgrRGDRgaPxwgDu6ROMFWXXUTUd\nIhJMyoBulHPmzAaTScxwmGCt4Kn1EzyyeJ0PdC8zrGJu5j1yq1GLGbwWI3MPv7J1rUopiDchXbSU\nfUuw68k0RcPx4OwNXnDHqCILUwWZBCuo2hDuCm9+ITkcuIYPQu8CLH25IO8IJquaKhJwukKGjnAk\nsRMwiWc2SiC+BdmipexZgj2fQhDtiiqX0Dek3zdGbWrUtkYU0L4o2Xnckh6vUKmX2RVGUIUQTAQm\nwRc769pxuGvRU8vopGSyCskm6Cm+UBoIdOoQtz33Kq0JJKGimLXIXCBzh8XimiBzxXjNF67DsR98\ny0gQDaFKDlyC/EDdrjLCvYjRaZgcFyQbAj12FH2YHIPmdYmUPop1zhdYZeFrL80N4VcKsS/s7jzR\n4OT/vMvpX9tkeixk+EADk0jSpQSUYLroVwHB2B1OTqoU5I+uUdy3RHBpC7U7hTCgahjGD84wPdul\neWGX+NoYghBdzRC/dI0zP/8K40fajN/f8fo2gz7Dk4rtRxOCkSXZ9KkfmwiigSMYm9oQozbmkA41\nqTCtABODyi3C+MBgstag6Ryy2cSORjBNEVGEaYVo4+DeUzCawP4IrIHR2OfqX7roJXlnezgdQKcF\nm9s14eeoiSjyVP13yokrxTR9D2CErobRHrXvJJX+OvDRN3z3s293eHcz3f2zu3ztu9qmD3cwxRSM\nQU0Mc09POPYHe7RfKlAfSxHnC6RwdJ6xzP/fjs4XILipSZ72hSnZqlAnUtTJ1K+rOz5EHQxbPPva\nKb789Xt44MwVWlvG465zRbHVILvZprKKcE/4H54RuDTADiPsuZD213dJro6QhSMc+IJieFNTlAHj\nwsPVms2MlZVdjh0bkK83+K0Lj1FYRUMW3N/a4NHOdY73dxk/nHtKunAo4xmjxbGK2WchqtVii3lL\nesJwNWpzfm6dszNbaGWgVcFciWyWoHyEivAFM1nVBcHZghs/7HHWwcTRv1Cy8GyB3QkI7xsiQosE\ngokk3JeUc4aZlwThnt9VOWvJjhmC5QyTK0ymcBKqpYrioYz8wRw9EfT+zNcpTOwo5i35kiEY+yjb\npzy8HK2JIZ8NWf7cFD2xOOkH0v17Baq0lN26fnEbTTy5nCOU88qMwmFjS9V12I6PzsuexQlvrpEu\nCKbLPq89WfBLfqcFNvIphdaHJqx9ckS4b3HSMTnp2D/vKGYdg/sF2ZzHqDtdC2MpiTTOpyKcI0gd\nyR4kA0HVDLjxkx1cAMl6wfKn9jj2uwOctuQzftA3IeR9SbogKdriMB5zcUjx4CrpR84RDQOqrsEk\nNULmkVm2f/QkOz+wjJ3vYE4sgBO0nhmx/L/cYOVXboCE1g2vhFm2JMOzEXv3x4xP4D1d8Xn+ILWE\nY0O6GtK4OkSlfrVgEkXVUgghGZ1rki15dUbZ7aKWl9CdHjaQHtMuBHRaiOPLcOIY+YnbnIgmKe7q\nOu7SVVykkcfriP12in0z9rDFtxPnkhKhFNHMdyUCf6f2TVPp8ezNJ4UQM0KIGeDJ+rW3bG85gAsh\n/jUhxM8D8zXs5WD7r/BZ0D9XbXJvgo0kbjSGyRRXVTjnCGWBUCD++hT5747hvspjmSNDNgfxhZDO\nv0wIL2pEBpTgMgmBg5nCQ9pqTe7z566gLTRuQHhgrWbrlASCcEcQ7gtE4V+3bYl4TDDz9CZzn7tJ\nvD5BFAZRWtJUk1UBe1lCVukD9B+Ny5Lrwz7/63Pfx1fWTzHKIwqjODuzg4sde+8vmJyqqBI/qNim\ngcix+Ccw9zSEA39cZaa5Op7hA0uXefLkBdbau4SyIlAV8SbY2FHMG0zzQPnPMdMeUyzC1b8i2X3E\ns1OthmISIgJL9MgewckJIq5AWkzHYRsw+5Rg5nl5eE2kgV4rxeSKYhQewQ9xlB1IbkkWvyhpXqvl\nCSqIBz71kS569qVV/piyvkZnjrVPTph/OiPc8zriegx64sj7HtdtQldrxDi6Xx4iMN69SN2GMbS3\nnXfj6LxdnXYaL0vyzoECJYSP5QSl5eRvjlj6oynRVoUoHCJ3IAVbjwm23ydJ+/46uVoRUpUOnbma\nIOaPKVpXTM5GXPrbfXY/lFC1hDfHDn3/+axHvVjptdbLxB0WFuHoFGTqSC5OKGZK8gWDjd0hVDHv\nSszxeapHz2AXejjtafZ5RxKkjt7rhnjXF2ixjslxQAlMQ2GDI/33fD7EaUHz5T0aV8aoyVFxUhrB\n3vkOg8d65HOeoeoUqP0UmwSUs4m36ashl5P3r+CCN3EiihQiClCnTyDmZz1hSAjQAULrw+2N+ilC\na6TW3nTiOw8DB+dXiAfbO378LTSehBD/UAhxYF58O5X+WSHEgdnxAPiv8ZPAV/GM98Hb9SfeCnsp\nhPh+fDj/M8Cv3PbWCPgXB8Lj72V7/PHH3VNPPfWm7/34J/45L37pJmu/et3bdNWndeJv7nP9R+dx\nHElvAphKcP0Pj9O84gimHH7eATd+QODaFSK2dzw/f637NA1d8Fv/6gmq6ggHNz1e4UpFMBF39CEX\nU9bOrOP+cwPbeIs3oDouee1vr9BqZwShuaMP9zt98kXD5JS9Y5r8+Ue+yOd2V3nm2vEaTeO/NPNa\njllzdP+ggSg4pIdP1hz5D4344RMXaAU5WvoTnOQhn/jfPsxkFcqOu6OPEytbTJ1me6+Nc0dzu84s\n0giax8dwlPok24ixQO8zcW3wXJOIVkrmf+wmF68vkBX6cF9SWNoXAqKtGtly26M3XnFYLZkuc0dY\n0Xwdki1D97VJjUzxLZ2PsIFk8wPaF0JrZEOwU3Hs117j2n+0Sr4SHok1WWAq/b6PLh8A8Q2JHgmf\n3z96mWM/eIWl6ZD1X1rEFfWIBGw/1mD7QwfQJQ5TONJalj/rjnZeXygrYLwqydYqyjlzxzWXmxob\nCmQq7kwFjSDch+a2h5cevFMyof3Zy1z9j09TdTReTwCiLUfjsqa1bnxa6eDaOsfouEZnnux0+zXf\nftxiFcw9JTzs8OBeLAryjmXlU7t+NVG/vndfg2qmSdmsc+n1+entlLlnhpSLLWwcHN4LBwzu17S+\nfIPmM+vI6ogtZ+45huh10LvpHednJ1M/mK/f4lBP+fYmAB3A6hL/wd/5If6tn3lTVnp9+cXT75Du\neMcWnTjulv/ezx3+feU//E+/5X1+O9tbRuDOuc85534R+JBz7hdv2375uzF4v1NrxJAvR1z+W2sM\nH2xhtcBEkobJaav8sBJwEI8J7UhWpozXJNP5o6jLSgiGAlKNm2rcgQy0hS88dz/nTtzkp3/8X3H6\n+DpKGaKwQDULj9GtI9aDPrIspAgD5D+SiB8BEiAGkUAz9uzQ6STEHKgYWsjmoHFV031Ro0fUJsXw\ngXCHxdaID5y8wmxzghQWJQ3hNYdtO/b+Ukp+1rvl2MDhCkGZBnzy6v1c2FukMIrSSgok4cmU5jVI\nboojqQADuzc69JopK/N7RGFxiNgJkhKTBowvd6jGgY+mDTAV2IZj78mM/GTdt3YUhSabhJw9douF\nmSFKGn+82hCsTclnIe9weM2dgOmyI9x3tK9yB/HHSSjbmr37WhQ1mcZKnwJRBSx9qaJ5wx5C/2ws\nKRcTjv+z68x+eoAaG0RuEZm5A7Z4O/mn7Fmc9n3d9jLrww7x2YK1X1yn+f4pInCIxKKn9UBYVypW\nQwAAIABJREFUF0MP3J+qyJKuuCNhqNvU85yE6KomuRwgU3GoqR7uClzgMC3rVx31fybyZKjJgs+l\nH3AUslWfMz/1j15l5vMDRGaQmUFmlmDiGK8o0ll5x/OcXE/JO4K0LzH6aF+dlyBbgc0nHOn8EQkr\n2rMUM5rrH+8zPhVhlcf825C68HkExcR55IpIM4JbYz8gVwfEI4tTMP7gMfafPEM5m/gce6gQN7ax\nkaacb+Ki2whMWQZhAMdWoNU8KpbWKod0O7C6BFVFkrwHRB7Hu4rA3+v2lhH44QeEmAf+M+BBID54\n3Tn3g9/ZQ/vG9nYR+F/5vV/ludFNimEMTiAzQ7BX8YH3XeQD91ziU4PzVM6LVQGUxiMpNr6wgi19\nce9AddAKy/S41+HwEZvHfDeuKj7+vqd4/PwrhIFhPI0ZTRJ+Z+c8r9xYReyGh7rYwoLpVISzGadX\ntpDCeT3wDahyxXA54tZO95CmK2sFQ27GdC55uVTh8D/kwPFLf/VTDGcNn50uUzhFUSmySrP76S7T\niwm7/6bABQJKUCOB2Q8pjEafnHgNcmFphzkUoLVj+tl5XKpq+VtwCtIly9K5bZJOjlSOsvIi9qOX\nW4yTELMf+SWlsghdD5qFwJ3I/XWq8N6fhUJXgjMP3UQqH0XlhcZMJWMbkX61j0s9TlrUEri75ys6\nlyTBnvAFYV2TckqHCWocOSAqD79zx0rkTU1jw6+2rIQqAbtckVWS+d99HVFY76Q0H1DFkmv/3qnb\nIu+j515PHWqq0GNxh665eWDK2tomZ3o7KOkwE0m1rXjt0irrgz7pMXen5ri0BLJi4VMaWXIYsVtg\n/6w6lGQQgA1tbWZhvURAt95XPcGoqUTvC3Rax+XWIQ1kSwY1mHLsVy4hS+tFtuZDXBLD2jGGJ8I6\nOq6RWMYw99U9Bo90qZoalIdcCgutqwU7HxBMTuGL0rWOTfMVX4wenZT+84UlGBvMgsVmAd1LHvLq\n8JOeGhd0P3PRI0vqVInTHu99/S/2vXxCHWXLUY7MKvq//TJudQG32vd5cOOfJ3XllreJm+sjpPT0\n/LKiFjWqL7SDjU3+5j/8SX7yZ598y/Hi2xKBrx13q7/wdw7/fv3nfuH/HxH4be03gZeAU8AvApfx\n+Zk/Vy3cbxA2K6JeBtJiE0m+FHLN9ZkNp/zI3At0VIoWFokDJzFCsPThdaJeAcoTX0zkaF0riNf9\nIHpAP6eSFIsVn/zC43zuqw+TFxqtK+b7e8w1x9A0uH5Rs/tcncO1ZGXApfV58lJ76NmqwM5o2ApY\nnNsnCn1exVrhBbgSy/CEI+9S07YFeiz5zecf4snGOh/vXCMShnaQMxOn8FhJ8ir0fwvkyEdDpmNx\noYFMUV1pQS6xVrKfJexPmpSjiMZHt1HzOUKCMg6dgWsbNl6eZ7TVxFrh5WJ1RfKiJGgXqNqj01mB\nzRW2ZRAjjXw99lreAkzb4RqOIgu49MIK2TTEWUGoKyJj0K8pkg8OUHM5KJ8DthGITDA8Z8kW6ly2\ndajMoUe2zlHXAbSWVA2FWywxiWK6oLHKT3bBBCJhcIuKrR89Qznr9amDrYpwYHwK63DcFodb5xIU\nc4ayW+eT69x4uR9wY9zjlb05SitxiSNYK4lmclQqSK5LX+84CNmtwMSw9WRF0a+9WaXzeXjlse4H\n84MoJDKVmOWS6JavnxyuDBRYbbExmEb9HSl8FCwd2VqT6z9zhmI2BCkINnOCQYk00LnmVRtxfgI0\nWiCygv4LQ6KdwtPxa7ipqAz9p6BzwdchnPI4+3QOkoGjc6nWVFeCoqdxLYtpwv4pL7eMoNafV7hG\nhNvZhVqoShQG8gqd1fWMenVj2pGPurVEvr6OuLzpkSjOed/RTgumKWztHOmihIEX1nLOa7Gsb4Ix\ndJffAor47Wz1fX0XRcy7odI/IYR4RghRCSH+8hve+8e1K/0FIcT/IMTbVXPvjko/65z7VSHEzznn\nPgd8Tgjxubs6k/ewpanFFgFBvyRoVJhMYSuJ0ZKXp4vc31znxxefZqtssVl0GGw3+eLkNHMzExY/\ntEE50WTbibc1+4xkcjwi2pKEGqpG7X5zvMTEmj9++iH+9GsPcN/pa3TbE7bEDO1WxpgYl2QerldK\ngkZJKT0L9NUbSyRhQSPOEbsSLjRJ/sIOi3MjqkqS5gHOCfaKFmSSyTFHuuSXq7KCLw+WeGlnjicW\nNvloa4Pn0j4DE/Frm11uftCSfEWy/N8L8tNQLkCaCFwElVRUl9sQGWSjwhmYDiJ637ND4/sG2Kmi\nWo+8pVsrQIw026/32b06Q6M/RQWGYE8RrDvcaonqltiJxpUSFxvsfIHcDpEXGtAyuMSiJ4IidORZ\nwKXnjxE1cpqdDHJH648DzD0T4vfvYzOJ2YxwRqC3E8oGTE761U84EMgS2hc91b1KPD3+UKmwCfr+\nMeZCk3EUoHKHKhyEmsb9+4zTPtsfP4PezYjWJ1jhC3C29kq9Iwe+6SPPYs5QzAkfiVdgUFRTzQZd\nNqcd+vGUhi4YXU8Ah0olzdclJvHFURM6ylBRNQzbP2TQQ4g2JBiHMxphPWlI1Cs0ADNj0bEj2pZE\n21C1PbOWylA1anx26FUvhcWbYsSGbK3B5b97P/GVKfHVCUJougNPmOpcrzCBF91yOMgKRBTSe3mM\nvSTJZn2R0mkPgey9KOi8BOmqT01ZK0j7jnjgiL9mKLrCX39AHJ9S2ib752pC1NRH+o3lGfRrG7C7\n763eohCBQE+8Jo9TXmjtUDQuChDTEnV9C3dzGzfbgSjEdhvIVhMmE7h2E+LYD+A4yHI/QQgBczPs\nfYtEoLttB+zfu/rs3VHpr+LlSH7hDd/9MPC9eNY7wOeB7+dtoIR3E4EfiB+sCyE+VkNgjr3dF96p\nCSH+iRDipVrM5beFEL1vZX8AYaQxVxvYvZpkExvCdsl23mCj7HEpm8cimA0mnG/d5N7pJmag2Jk0\nsQ5Uo6J9YkTn5BA1Kpj/yghVOM9gHEvCoWS2NSY9V2AajtIpXnj1JF945jw7X5+j35zSTDKfBkkM\ndCqCZomsWYvgSIuAnWGb0SCBLUX6+T6uFCjnaDdzOq3Mpz96ldchDxzFDGTz4OYqfuYT/wbPbixS\nVor3xQOebN9kaVyR/pAlf8yTkaLLjvaXIFw3qMILNOGAVGF3I+wkpKw0w6/NYksBoSU8MyW8d+Ij\nv6XCk5qsYLzVYv9ml+EZTe+TmvCGh0qqRoWeKXwEvVTiZks/II4VciskvKlqSJ7PD2fTkMFGl529\nLoVUJL/egNSndYK1lPDUlM7rFWq/puMryOcd6aojXfA+nTr1+VanHC6EPFfIe6fIc1Mf3TYERUeR\nZTHBTEHr0V2QlmouZPLALOl9c6hUILMDbN7Rs5POCha+4ElCwjiqtqXsO1xgyW8lmKnGWsH2tMm1\n8QzllvWU95rRqFJBuCvRI5+Ks4UXUCvbMLnHMrnfIma8CxHUEbXymykl+fkUV/uL6qEg2pF0XrfY\nqPYHFc67PMXgKgmxhdiAgOxkg70nFhg80cPE/vhxfjKL9y3x0JEvJLA/8WmYwtK4ldO8kbF/j0Bl\nVY19h+YV6L4kaF23TFYled+vqsJ9R3PDEVwJCHoFwcIUpEfNZHOC6UmBWQixawte4sA6r0A4TYk3\nU6KB48Ay7/C8j80eeXpah9zaR17fokiA2W7t4IPPiQ9HnsF5oMPS6yKaCfHKdx5GeDDZHmx30e6G\nSn/ZOfc88MY9OnyaOgQiIABuvV1ndxOB/ze1kNXP4/HfHbxL/bfSPg38/dq94peAvw/83W9lh6X1\nZq/mchO7YZDzOaJhMEZybTCDm4HNsstKuEtfTxgR0v7Div2/FLBedWmEBUlQIrHoLCeYBix9fkg2\nF3iHllDQ1xm3dIfJudJ7U25JZCGwaUhzL2CuP6HXStmfJOSlJiwsMsyZFFH9YIt6gHI0NgrGQczk\nXy6ij6fotRShHcGewnQrzGxVC0P5QS2czZneavPTv/txHl7c4q899AIne3tsXW1jjgdMPlaSfdgS\nfUmirwlcYim6FeG+Rg18IcyGgHWUcwZ5M2D3T5aIFlPC5anHToM3WVjJIZOIkUYYQXrK4p4R9H87\noFy0TB6xmL5DZFCsgl0pEHMlYjuAicIVjtY1GK+BjUTteemwOHYeUqx8ztH85RbVAxXVIyUucrQv\nVwzPhDBU3m4t8umHoiNAORq3vC1b3pGY0CGmktJIwvMT1JkU81qC2w7BCKavtWjcO2LmyXXyq02K\njQRTCcJhQBZ5ZUY/kPjEbLokad00LH/GF5FHp/CTdOiTydmtBjK0BJ0cGRmclSTrKdlyjNMSURe6\nAR+m4u31hK5hjA7Uakq1H9TWbBz+dG0lUQ1D8WjqBcvWNSKXqHWvR192LDYWyNyvPvSoougKaFgP\nk8z9ag8cg/OC+ad8MfcgDw4wPd0l2kxhbwShhsinXoZnFP0XKvS4wilf9EcKwpFAZTA6LpkuQrJp\nCabOF/TXQ4LlnKBbUO5GmHGAEIbhBx0zoxiS44i9MQynYC3JjZR8PiEe+OfPE5vwioevrB8hTQ7q\nCKHGNEG7GWi3PSy4djUijhCtJi5QpAsJ+fS9isDfVfHy3VLpD5tz7k+FEJ8B1vF37390zl14u+/c\nzQD+XO2+sw/8AIAQYuluDuhtDvRTt/35JeAvv9Vn77ZJapGhElymsNe8Y7VcyPh6tUwzKqAx4bKb\n53I+z17SIHneUS0YJt+rmNjQD7QO5mZTot0potMg2SxItvzMX56NOffwLV7dWMS2HGnLP3XhTcXo\n87N0/sIWulEx1/VWT+ZCTHmqokJSFIGnjytHNe8IJoZkoyBdCqleb1Bd9soFyZkUezOgWLEeIxz5\n9dtsa8LmWYV4tcnzmwu88IcePtW8kpGOAxoP7UPPkH7M/yDUFzPKhQbSSPRYEqQCUk+ema5YillD\nuKPI1hPy9drd+6H0KDWcWFxS4IBEF9x8MmblDyx6WzLzKR855fOWjY+DSBwudLDqP5+OJQu/G1Al\ngmzeS50eoAzSpmT7EcXccwb9QkDwgi9MjZdg6QsZGx+JPfOtFvBywO5ZRf8Vgyihse3Pb6Ilk1MR\nqpUhE4t+eAJMEOsh2fNddLsiWklJzoxJzowxRjD49DLhrqCY8bZqB64/VQKD+xT9lwzxDiReap31\nD0Ex4xClj6qLbX+d7HzB2mcHbCWasqd9wa4+Px9e+xyNqxSuNqiQzQJ1eoK51PSrk1q3PQwrinFA\n0C4xXYPt+fs9MQFLX6xY/36NiRym4a9G41JG2W7gAu9oRGIhsYhMMDolCIeO7it1cRiPJc/nIkbn\nZ2m/uANlhShqBqOd4fqPaI59skJUjmDq+y4biv6Fip3zASb02jgAzWsF9vUGsmkRnYpwPoP5DLUh\nSM9o9K6j/bRA9NuIfsenj01O+5V9Rvd0URmoor7mTU3xyGnCZy/5AmY9A4b7BaP/j7o3D5bsuu/7\nPuecu/Xeb99mxWAGALGQIACS4AJRJE3RomTZomjJsVSRnLLKKVXklKNUqeLEFTvl2BUvcRLFZS2x\nU45dJFWKZG2RKWoDKFFcsQjrYDYMZt6bt/Xrfr3d7Sz549z33gDEMiRFFH1Qt/Cmu2/fvveee87v\n/H7f5c55Oi/se92r8JWLcyeh7ESkx+ok2a2FxN9Sc18Xec8LIW5GUvyCc+4Xbvr3a432t4RYF0Lc\nDtzFUYbjc0KIR5xzj73ePreSQrkihPiUEKJ+02t/Lj6WVfsbHIm5fNNNaUAcISoO4YLSIZXjy5dO\n8fS1Y+xPk4r2DPt3JrQ/q5n71yXxi0dqbfv3dsAaRH8MWXkIl5o806Yeae4+ucFSBY8D53PkpWL0\nH5dIn+hixupQi1ysh8w2pnTbU8JA+18lHYN3Cmq7BZ2LqdfHqJg8zVNDwlSSvBQephQA5hoTRM1i\n75ziFgufSsAR7ltkJpg82yW71sBkfvkuC0P9/JhspSQ7rjE1i8PD32Rg0HPGv960h9A19zrPQ72W\nU7YlL39/QP9ueQhrC4cONRXYUuDMTRrsCrJlmHneMvusIxq4w2tIYNm/U3H9wyHj45VWNzC4OyDp\nGY5/dkr7UnmTIbGP4vfuUkyXxSEMjkmAyCTDScI0j7ywmDsaRMd/NsPw8VnKXnSoYZ4vG8IUalsV\nVLHqJDZ2lG3B7tsDpksVpJQKKid8odXdBPHLFhTFjGLxj3vMPDkkGFaFO+eLzsLIquhVHcOCeDFB\nzRYE9w4R88UhOayWlDgjKfZjz1ytfuv4mEAVcPx3NbPPWNTUX48gsyTbGnoBjAIoj1BPcirp3a+4\n8UFJunxUMC26kK016T+8QrbS8KtBQE0F+bzkpU+E9O+VR6qc0ssrz/+ZpvWyRWYVXFBDNLDYZ5rY\niw3cQT830HgShu+G3R90ZKfwhWAc41N1on7BzJN7xNuZf8bA58VbNYp3ncMcX/CkI/DXUgoG98ww\nOd7w9P7qMpaNgPGZNuMzLcKRJvgGctPfShPmaKOi0t+0/cKrPn5LVPrXaX8F+KJzbuycG+PHxfe8\n0Q63EoE/DXwe+LwQ4q865y7x2rPMK5oQ4veA14rU/65z7terz/xdvHbZv3+D7/lJ4CcBTpw48brH\nc1NbuY4cCRr5HgG1Vs5kUGNj0GVjMAM4wj0L7wyp3SiJX9Is/JIfvayAl364w/i2Bs3LE+Q4hXHq\nI0vZZP8P5uh8qMfa/D5r8/s4By99ZZXRiRqtq4L8YpPiYgtw2JamsW4QP7JPrVZSmykrjz3B7kMt\n6i854m1D55LvGQ4oPlFSPzZmer2J3Apgy+eRzTHF6W6PK4M57IrDrXgB83JXsvCVCVvvbVJu1yh3\n6v78ZMzSZ67y8t85jW6DPuOX8qJwBKHFOY94ydccHnDtoYwcOOYcpIod6Cxgdn6fvd0O/fsU/fsU\nOMf8pmbxdy03fqB6yCqHhWBPsncPLA8g2XPUdquxsm5Y/6gDI8nnBZsfOIKF1eKS/t0hM8+WLDxZ\nsPCkj+Y3HmlQdP2yIF1W3j3I+Zxq+EyN4p1TiiKg0AHgcEIRO0AIyu0a+zu+4GiVpXybJhxYgqGk\n1hPQ89c2XfL6LiAYnQoYnfLHkBnIqcPWHRwwLasJ6voPtDn9bwc0rqU0X/b9Y3I2YP1Dsx4VU11E\nh9dJYTNC3CiRKyXynF8tOAfBpqLeypiOEkwWYrKq4wrB5nsEK18wdC9Yuhe8jnfaUXSe7HH9ry5h\nhIRc+UJl4YW5ytiQLvpr5Tu0I9nwHAWIGN+3wPi+6vxKgRxbTNPSeyig95B/ffHzUN8EaRzNG4bm\npj92WYO4l7H7QB27HWF2Y8ChsSx/OaU44ciXIf/EQT4Ekt+PSFdr1DZS2hdHcHGEA/bvnSHrSpJB\niLltGXPbMjhH2EtpXhozOtsiX6qRL9eP8lNCVNIPlsa1KVn2FqRQvj4Cf7N2SKUH1vFU+v/sFvd9\nGfibQoh/hB9jvwv4F2+0w61E4M459y+BnwZ+Uwjx/dzCksA59xHn3D2vsR0M3v858H3AX3dvAEZ3\nzv3CwWy3sLDwusdrWukjIM1R5APe+Vw6mjMpQVxFwMJHGLUdy/Xvm2Fwdx0TVjCtSOCkYPe9s+w9\n2EXXFDYQ2FAwOeaYPt+m/5tLlLshrhS4XBBOvbvP8DaHbuCLThKKGYuTAvnvunA+9jrXhdcsl6Fj\n45OS/fsFJvI6GDaCwaRB6+yA9p19ZKwrQwdHb1JnvjHhzvlt6mF+SOQp5iXR0LDy2MhHZsarLpaL\nMbYlOfWPL9P+8j6isMjUIFOH2gkIYo2MbjIDFY4gMEdR9FEAzHivTr1esLg0IIpKhHAI6cjPWOIB\nHPuMo3YV0A6Zg5pAkMPmI170yUrnB7/E0mmmEFfL/8Njw9zCkP79AVvviQ7lXG0IYWl8QTc4iiid\nEOgYRCaJv9pA9pTPPZde5MvW3U1kGsAJhBQEsWZ6myZbMRW0zedjmze8YqJuuEMqu5MQDzxyRaXy\n0LEJAOEou4orPz7D6Gzk5WRjHziIxCKnHEIWhfPY8qIjEF9rIJ73eu54z23UczG1pKA1M0UqL9sg\nhEM4Q7Yg2XgkIJ2rziuAdCVCacfJf7dJ68IUoS0qc6jCIrUg3PVerYd5disIKp2ZbJabCD6CaAgq\nVaih8mFUda108qr4rNIP1w3/+uKXp9QO+lrp78dkJWDhlwWtx0Hk1ZZ5vfXhnU2Gd7QwsTxUW4z3\nNLqhSOeDQ3ilrYy0w9TQfnFIMPIrU2Gcj9ytI+oXtF8YIbSj3kp4S5q9aXuTditUeiHEQ0KI68An\ngZ8XQjxb7f4rwCV80PwUPn39m290vFsh8jzhnLu/+nsF+AzeTaL+hju+8Xd+DPjneCWunVvd742I\nPD/2r/4NT57f8wWeaomIgNjl2LsyZOxp8c6C0QqxL5j/lGTjQzWPiXUQb5dI48jnI0RRVcidI+oV\nqNwyuiOiddXDzqQFNVOg2po9VaMIJPkiIKsHMwfmCkKtmf1shDQCF1tY0BRNx+B9hrKoIlADySaI\n0pGtClZWBkSBRgDlKMQWiqkOWVvt0YkzpIC0DMhNwN5vLVC8FNO5kiEs6ERQNhWTOwTlsQlL/2gD\nWXjN5/x4gqmFjD5wivz+FAKfI3XWj4xxqUlV+PX6x/2Q7uKIxkyKlFCWCq0lehJSu2qp/3aE0AJd\nh3IW8obEhCF7D3idD7/0BoFl9f5tXt6cxxhZPbX+ELevbXFjw5s+Oyu8CmHmSJqGSZpg6n5lcDAo\ny8IPwLWeHyBdaLENS1lzFF1oXgyq7/bnIgNN8d4x03HtcKBSU18YnHkG9o8rinZ1/6rBeubZKv0w\nV/UpURUHWwVGegqpQKCmlnhHYxpgT1nsRt1H6uBp88ahMklz3ddo/JcbXOiQ6woenmBXSghBlxJr\nJPa5gMlshDCyOoYjGnkz5nij4Piv9ZDaYWJJvhBStEIGD8xiav58nXDe4g5oXhNkCwIX+GPL3EeV\nUR+yBY9dR3KIW+8+7+ULvNLjURsvS3Qd5h9PkdZPKGVLUTQEOw9FnPjdzDN7laNYBhdAGjbQDQ5D\nxWCkPRJmx5DPhBSdAKRAlF4FMthPaV7NDyPLA4lbHARTfRgNWwU/9t//RX7sB9/7uuPFnweRp7Zy\n3J3+L44sEZ7/h3/nPzkiz/ce/OGcuwF8iDdxibiF9nN4XfHPVWIu/+rNdnizltxuiCd+oMBW9F4H\nwYZHfxgrD2pLBJHBdS2u7lj7g5Rw7J+2bDlkeixCzeeHwkROCPL5mHStRrwr6N8J09WqmLIfUVyt\nU8QQDwXJNh5lIkE3fScrlxz9j5aYxOGMQFyPYDPGaXkYzaIgW4P0lCTcCLix0yHNI58BapUk8xn6\nRszGfpu9rI51ECtNN8lojadkSzH7Z2pY5Qe22q4muuYoTtfY/tlVdFchcNQuTKldzRGZIH6qhphK\nnzuVDhk4mk9IYlUesid984/wYLPNqNfAWlDSUKuV2JGivMeQfl+Bix1KO2rXvVRrkAnmviaRlXtq\nPgdZV5IPE44v9YijEnETyWV4vcWxEzu0OilCOso5wXQ1IDkzJsocwYSjCFh6eKRuCtIFn29FC9Qg\nQI6U99C8XVcaKX7Er0cl59pbJPXMH1c4TMOi2w59R87Mi95/kyqL5EI/eSe7kOxWfcrgI/IDURbh\nUzC6LpiejMhnI58/XvOToxB+MlCFoLFeMj7mC6YIAf0AuR2SLgnUow1k5UQUCEuUaLqXSoQ6GISd\nV09ckpgGTE8lrP/lOXQiwTrq13Pqm6W3Bsw4jPxlIZGloGxCsu0qP1KBjQWmLpAGkl3vXkSVv5el\n9ASgRHmN9Jsuu8gdxYyid38NE1WTft+Q9G3Fuowp2gKHIFoXxFf9qiSYVCtjQLcCivmYbDaktlEQ\n73mde6fA1CSTEwniplFJlo5wpAnH+hWpDKcE9RNvlRohtxyBv9XtTR15gL/2OmSg162Mvllzzt3+\nze77ei1NClguiDcjoomPBk3oiEJL+Lhk9IBFh7KSVbAEomTv4YDl33Ic/92UfFYyWVbYwKG/J8P0\nYpwQh0UonI9Y0hXYvwNGt0Ft0w9W+azH30ZDvywtW54Cjxa4jqNYtmz/SEF8XRJtCXQIRRqQtAui\nWB+yMAGijZhizbDV7xAEhkaSEUhH2Y9QWcCWbLGbNuhEGZEyFGlEMi3IFiKyhYhktySYGNJViduG\n/HbHxv9+kuSZlPj5FOeUd8fJJfFTdWzDYGa1rxU8q5k8YIkT7Qmo2hepjPCiH8PtFqNeg3onI4w0\nbj2kCIG3ZZRvSwmfV8gbkrwdklpH56Jg6Y8lxSxksxYrHINpm5V7tzmxukdeBIwncUXXbzFzcsja\n8V30imJ/0ECXimguI+oWsBcRpL7QZpUvTic9b64wOukHCZV7eVlygU0c47s0aiIIRj4t9gMLV7g0\nWoRGiTUCo30FVZ8qiZ5N6F4Ae1WQzuMLeurAqceRDATFwX1tW1zDUqaVnZDv0wjlMKOQoFugjk89\nA3Ya4EpL9/c1k2Mhk+MCWbgKcw7ZIjQ3BOEXGvB4DXNbgWtYgqmmfs0wPQ6uLkD7/G+QOUzNMj6d\ncPGnVmleykg2cpxShGMoug6VCZ92qtLgRccRjQS1XR816xpHxg7O1yncvqCs+6jZSoGTDpMobOw1\nzoVxiDnrreZmA258V4Nk1xD1fV9JtmFyQnLtexPinqWxrpHaMzaj0pN+DpyXEI6yqSAU1DdLajsl\nRSfARILiRMBkNaK+USBfZ8C0Cvp31djP8tf+wJ9nc98Ykeetbm8Ugb+RI89bNPV9A81G8K4RLPjI\nLpw4kgHIpZL6U4rG09IPqFpgraIbZ7jjhs0PKpyCaN8y91zJ/NMabSXRmZF36qkiRBd4pEvnvEDm\nvhNNTsDwDrANx2TNUlawwnAItR1JuB5V0hA+4suPG0YPGib3GKxW5KMI5/z7YWgIQ4PEad2aAAAg\nAElEQVSuQePJCFGCLhT7kwa9URMdSbKnOripwpSSfl5na9pi0olpX06J+76omc2HjE/XKFYldhjh\ndmMcgvSeOvs/PMfgh2Y83LJyh5djRXgtJrwSM10ImPtMgEz9uYaRIYoNREdFBWckk36dwVab4Dpk\nLzUoB7EvwL7NkP+FEv22kmwRRifxRJA+dC4qWtcURRGy88IC1ghCZZibmbA4N8I0HOuPL2NKhZKW\n+cUhy2t9CquYec8WYbdASutV9SZQNhy1LYj3/U/TdR/ll40Kt1vB1UzDka9YRguKNIv5xKknCKUm\nCkrC2BAmBhE6so+McXWHtI7mBnSuQDHvDnVDhHHEA0d92x8/rJW+plLdWySo2KtS6qHXeSe2qNkC\ntVTiFi3LfzL1hXYJ+ZwgWxS4hqb3tmrCKCTBcwnhV+rkZwUrf5hR2zQVnd3iYkfUBxd5DLiTMDqb\nsPtdXfoPtlDGEQ79ykEYhyp9LSLZs0xWfH5fGEc08tfNJF7/xA9SjmjsdeVN4msyTvoVqIklpq5Q\nc6W/tpXXaDYfMDyXUCwFRENHbROwkM9I9u6L2L0/8vT8g2Sr84XWIAeEYHQy8SxTC8meprFZoqaW\n3tsbZIvhIRrooB2Ic+2frTE5kdCMom/rkHLQpDnavtPaGzryVLTQoXPuf30Lf9M31YqJxEmBeN8Q\n0QtwL9ZgGGCbFs4VtL4aUzvvmNxnKNYssil4aPUKf2zOcmU1pPOcoXXJgoEijWh0U5K3DdD9GNPz\nVHMhHVIrus8Jyg6ki55c0u2O6Nk24xOWIBUkO54IIWIDvQA5q70+ivVJXAF+CV8qpv0aYVyiYi8r\nqxccrUuS1hcTykVDvqpxoY+c0JLsqzOouYLgWIpIDGUYYiNL54UpuqmYrMXopsJoC/Mlbi/CDUPE\nbA4NjTOCbMnRuOZhZPYmh/j9c4rW7xmWfzFgeodj8g6DreOJIQf5Z47+H4mSchAwvdxCNWvEi1NU\nQ+NyzyKZHoN83uunJ32HrlT30v2Y9a+t0liY0FycIJTFdDXlSwkv/+kxGgtT2seGBJFhOolpzJbM\nP7JJsZMwvlgpIrZBtxSNDUfS81GzruM1bRRQSpxxEFjfyy18/tKdfPIdX+K/vOMxnu6v8kx/jcIq\nUkJc05J+3wh1LSS8ECFSgVnTcC3yMDpZXSvpU2FSOOJmQZhoyjTwdRXhiDsZ2aBGkStUvUQm/r5O\n3m+Y+bTh5O+MGZ0IGZ0KsaGgnNHYJKB3n/f9rG/6qL845+ALcOzXM9JVxd47Qoo5LzKVbEG2bP3E\nmkmckQSBgYYgGAWonrdoM4kv/HUulmw9HDM+6dmm0dBPSmUdwqlPuzgFtkobgnc7OoBGygoY4GqO\nsJWiNxOc9qkWFB5GeC3DhnWC1Ef8ZeuoBuCcoGx6mr8s/XznJLhAMLwtIRwb4gODaIXXWn+wSTTQ\ntC9lRPuedZouhIxuS9ANP7IX+i0YUQ9W4N9Aq2p8/xv+bH7JOfePX/X+I3h0yX3AjzjnfuWm904A\nv4SHIjrge51zL73esd4QRuicM1Xl9Dt+AA92Aia1kGazgHmNXBgBUOyF1M6Ooa8IdgO6j/rCYXDM\ncc/PPMX2pM0Flth7MGDvQQBHJ8yYjmNqzZxgLiec90s1lyWoizEmkUQDiPb9GvWdH7nOo/YMeRaj\n647Jyep7ainyYh2bWETdog7YjlOJls73CyMos4gy82+FHc10NaS+IQg3FdGmv0XpjKNoQTQC3Yv8\npAKEU8fkmKL10oRwYpg5782u+3lAfhdQSMgUbqvm85nWGwurFJKet+06EEsYzQi2HwxY/Kqm/qyg\n8axfoK1/t2R63CAyf76HutVnDAufTdl8TwPjAqbTjn/dOJjzvd4kMDrjReQxQOQwDQMTxehGm9GN\nNgD2WIZeLgg2I0ZbDcZb3nY1mJ/SiyzzrQnxYkay5C/UxkaXYdyk+6xE5Y7W9SqVsVqyNxsd/c5S\n+fOzcHm6xJ9cOcf7Tr/IQ/Mv89D8ywD8i+e/mwM3e3OqwJzyF6RtNHsPdJj9skIaR5D7YxSDAEmG\nQSADS9wqgRJTCGr1AlsoimmEGceYSsogXx0yfsTSfEzSuVzSueyPsfURyeh0gduPyOZ8ZA7QajoG\nP26Z/XlJfdPQ+G1/Pfv3BdSvx5iGpWwCDZ+cPV7forezgsv9BBBNgamPWqVyzDyv6d8VULah7Phj\nBPuQdSEZ+DTBAa5apZbpiqK+JcBUDF6gJKB+z4DpJMCMAlQpvfrlRFPbLijbIfl8SLInSfb8eduK\nOo8Rh0gr8KbU8QCEEJStgLLl+7lOqn6iBMVMyO5Dr5KMvSmIeCsMHQS8birnNT//LWihVO3fAv/Q\nOfc5IUSTN5k+bqWI+QUhxM8JIT4ghHjnwXYrJ/NWtrAf4pxknMbkVe7WObCTgLIMcT86gA9OcC2D\nUw4j4Ube5cO3Pc9HzzzLQn3oafTCcHZxC1soJoMaujj6Ln2m8JZiU1fJhfo3zjS3CZSDyBflDv4L\naiVJu0C8UIdrsYePWV/QiW9IDxcL7SGpAxxJN6eYdYxOH0QxXgvjwLGmmPGD4sExyrrDhZLR6Sb5\nbOTzlwLvLKQFbi2DhdxHolX0H4whXXGMT1q/f3UMl1jGJwLWvztmsipx0i9Z413hcdBNA+HR+ZWn\nLUpaVv9oQud8gcwrMpQ9Wprf3AQ+H22bFj2jseFNJKJc4toWfTLHNc2hy4zdC9FWsTNpMi3DQ+ci\n8Gmt/j2OyTGvY+0q/fJaM0PoV0FKHagx/PGlO/nlJ9/DS3tzGCsojaTIgps9eg936NammAbsPOw8\nHPIAejgOQEuUtF4muPq8c4IiDf3KYn6CCg9gq45iL2H6HsvgRwzFKe+m5AJH+ynr+8C8d386uB44\nh5mD3k87Jg97spELHLZpcQnMf17Sfl74IrGBUBoePvcCrm0oqwJ6BbZh9ICjeV2z9KWCZMceQvNs\n5IWyslmONMeBZNvgAg8BLToHqRQwhUQjqb+7R3LnyDszCedHuCyjfXFK++KUYGw8jNN6ezmkv1eI\no2MUM+41R5+KhvCK+/Z1W2WSFQdvkTHYN1bE/Ka1UIQQbwMC59znqs+NnXPTNzrYrRB5DnA6/+Dm\n34BHo3zHtLSmiZ9OyO/LyAnJy8DPnoOA/t4MC/fvwAMp4sEUMkFhBVfSOebjMWdmtzk3t+1ND4zk\n5XyOhdaInWGL6dATY4RwtERBeW9G+HRCUIArAAHX9uf5ybv+kP/z2Q9TiLCy8YJuY0J434j1LxzD\nbke47cgvKfHklnKuxCYOEdvDQUlGmrBeUBIxqeMHfAuzT0GyLcgWQbc8ygUHSjvyqSAeCPKFhHw+\nRlhHtgB64gg7Oa6jER3tu4txhM82sDU/QZQdnzYSFq9OF1nyGcnW+2IvclT6JXf9smR62uJq1svt\nOChQmL8+Qf1Sk+6Fgs6FAhvC+FjA/tmYbMkdOeCAVzbsK88KjRx6QR8+qCKVVW7XYY6VYEuwEPTA\nXKrDmSlDV2OYJ0jhSNO4+lJHuuqLy8JAfShprwwoMm/lJqwn04jcEowltgZXeotc2VskkJooMJRK\nIEJHFBmkPJogikHMyZUdrt5YYHiHZHiucrIfgLjSJD439Gm1g5lKSyZpjTDRRM2CuFVgLVgtGF+c\nwbQLihOa8se8tK0ooPGpiO7XLIMHwM046PprUiKpyRLdlEw+BpOPgkjBBIZ0WzP/RyHNy4Lm5Wpi\n78zxyb/9WZ7fOMaeaJHHXn7VOSjPOuovQnzdsvyl0rNfA9j4cIQN/Q0qO5VDk4P6yzndFwT9u0Ly\nOUE+61MuuiMoJzVmWxOik1Oik1PQAj0QiN+fQBh51M6e9qbbUrD79pbXilEckevwxKl0Hmq74ih+\nAS/fZB3iwNXn1UHAwb8tDPVbQ+R5Ve77zaj037QWCnAOGAghfhUv3/17wM865143V/SmEbhz7rtf\nY/uOGrwB1DFQvYDkiRpiLLy5sPYmDXYSsvPkEsXQFw1tCKVUDKZ1vjo4yU7ewjif1wyVYTNt8cDJ\nK5xZ3CaQhqCKtMT1CH1HTvmuKTbx6n8oyxdevp27Z2/w377jP3KssUekSpKgIBEltUbOyns3SObS\nw4ddSIeJBe0nIqIdTxI5oOrm04j6/JSkk/lRVVlcaD2Fuu+RLwdenDgoOgYbCfLugauQwAYSVUhE\nKSiHsY/EOcg7Al1NvHWT3rmolrkWbM3iEuujX+Ujs3xZk+wqmheUj6yraGQ8iXEnLPZvjXFrGkKH\nlJXeOoLaljyKxC0oZZhd3SfaUqjxkUwAAoJ94Q0mcnlIiXcSgpUM24vR55u4TOKMwJQS9eo+LSqy\n0EQQ7Enmz/aI2zkIh5SOwFhalyaEe/io1YHWAdMsJtgOyKchWRYcaSs52L/eYrY95fbjW8RhiZQW\nEoOUBpcq8hc72Ik6PD9pBCKTDLZbFGl4RCDEQ/TSa02Kfuzp8hJsAv17Fd2vOOYf9XR5USE+8jRE\nCUcoLQIH0uEajjApsS3Hzgc1xZw7NJQYjetc3Vrif/zEp3jwzEVCpalFBUlS4BzsfK9j/HZvDkLg\niTm2pbExh1rrXmFRIKY5yQBmnzcEU3cUDecSYyT9SYPS+OjXBQ7TkozP1WB3AKl3lJfaev9XfNFf\nvEKLHWzovUynS9VqoVrtmaC6YgcT+6s2v7P/fKcZf+sDx5s1xzdKpf+mtVDwAfUH8KmVh4Db8KmW\nN9zhTZsQ4uN8vSPPP3j9Pd765pIp2Zom2Qio/2kT0zS4piVeB4NjsqroPbOIijVhq8AEjuGsppkU\nvDBZ5eLU0A2nSBw7wzZL9RF3LG9ybmmL3XGLQiuuXV2jGATokyXmdIncUYiJZFLE/ObFd/DxM0/x\nP7/7V3l5PMv6uMtu1kbXBJfcAsvv2kKninyQoAewI+ZpbEoa5yPqFx266x1aJiclSaMgmclIZjJ0\nGmCNRMgEVTjifUE0wmtQBzCpQbZiSDYVeSgR2kuD4izBQFLOW/Q49gy/wCKsQ60VyP2QaE8Q9X1K\nBuHIVvArhMR6yVJdpXxyDsWvoscluum8OfBxS6/fYG51DD89hi2JuKGQ+xajEl/Q7SkPSYsBFbDy\ncI/BVhuxpwj6Cpv4wUkVoEuBQ+EKCcrjqN2cQ81nmN2Y8msdRNMgEsN8d8hGmVSwNA4fEV2H4LMJ\n7kcnzJ4eYEpJMQlxOXQ+kzM5XUeMJG5S5WMFyJFEZJJShJRlgFIWIRx1BIOrbbonhtx79hrTLCLL\nQ8JAsn5+kUIoiosdROS11q2BcCTJIxj1G4h9SxhpPwiUvmhX7NQpejVU3aOlynlJPm9oPedoP2NI\n1wSmCZMPGCbTiHqtIA5MlToSKGlptVL2XZ3eBwxqAuHAByuf+aMP8D/86Kf5qY/+DqMs4YX1Y+Ra\n8X/0HwEJg4cd++9yJNdBZh5qKWOLReICcQgr1A1FbXdETJOFJx1l3WuX5OdKhtMAmprBpO7lgAOD\nnUr2v6dO4+ImcjD20rVxiBACJ7oIJ1AlOM2hSqLAD/5FB8q2QKW+WKrrIHPnnYhsdVtvur8Hf+oG\n7GXpt31cEfCNUum/FS2U68ATzrnLAEKI/4DXQvm/Xm+HN43AK5LNDwP/Ff58PgmcvMUf9Ja1xWZJ\nfqokW9U+FzqRBJshcigIJ17ACOswqSLbrVPsJ+Q65PL2PKWR5CZgt2ixlbZRXwt4bmeFVPsCykJr\nyPHZPp3bh4hnG7DjfSHNvMGcLgmN4zcuvpPfvvx2CqNYqu3z8PJlWjajE2acbW0jsUS1ksbKhHYy\nJhwWTFZ95CusIOop4m1FsiEZ7jY8RhkIapq4VZDNC6KhReUVQWlKJfspyBcN2bLPG9sQTOJRMCoT\nBP0q0jUCVypc5gWQ7F1Tn7MXFfFmKhG5PKRUO/wDRuyoXZNMb9fkCx4NEEwE8a4iLCzDcZ3eoOlT\nBQsW946SeKYAWeXwhY/gglQg0oBpEXLHe14iqpUoaVGpQE0UYqEk3pIe3mgFaInTkjwPic6OCRZz\nv1KYKOxuzLHawC9tC3EU3wjIF8H1AqJ/34AUlLXUujnxfEF6ImDld3YIxh7xoDJQucApQXQ5Rk68\nCJXRCq0D4mNTtp+dp/9SB2cFtahkrjvh+NktD4eryEUuV5hBjCm8aUO87an9TkuKLKJIIz9RHK5G\nBGYcoUcxtRuS6x+NmK75mkNt3dF6wTEnp0wmMdM0PrDVREmHFF4Aq93yywjTcGRrjuyY5fpojv/l\n0z/E/qROIAwPnbnIu89dYK4+wVYLFqcgPQnTOx1iqrALBa5mfE5eeebs+EwD1RsT7IzBOsKxpbbr\naEwrmOQ48PwAI8nLEDsOsfWQq39rCd2S2AhEVkCa+xx6dYOEO4LjqanE1iqikvCCcGXb1xlM4gOU\nw9vqjsJah08futDRrde+fQPKQXMeYnmw3UI71EIRQkR4LZTfuMWjfQWYqWwswaepn3uDz99aDtw5\nd58Q4s+cc39fCPHPgF+9xR/0ljVtNfW4ZHpKkK+aapkuUIUl2nOAIpp4MoauOax1WGlJy5DnN5Zp\nJZlHjQhH9McB4/stz/RXaQQFC8mYQGrCpRSpHObpppfxXMtxdQNjhRKC37jwAH/w8t184NgLnO7s\n8uJwmXQYc9/pqzw0e5Ve3mBQ1igSxeyX+mz+xSXGJ6R3Nhn7mb5+TZCtSoZ7TVRgiGoFSjrsDDSu\nQbJvcWMoaxKr3CHDLV8ylPOGsKdQEx+nNNYN4+MKWfhI18bOD9CjGM6k2PsmMFSIvcBD43KJSQ7o\n7VXxyUGw51NR03Oa7JQmuqEIphI6BhXCcFRnPK7RbKYkcUngFN0XS/p3RRRdv68s/YO6vj7PXXde\n457vushor87eRgdTKoZzwFZMshVgQ4du2op0InF1QXT7mPDEFL2ZYCcK0dbcodZ58cYq5dRriKMc\nhLD3blh4LCD5J23snRpzhzdT2H2kwal/0+fYr2+TLUaMT9ewsWJyMkFqP4i72KJnNS5yyDVD0NRs\nP7vA3oVZOif3STo5zfmck+ducPXFFdSe8uSiEJwU6DlNuB1SW1eYmvMiWc4PnFILVOoOtV0QUOs7\nJicE6x+LCPctnecN0chRa1vqtmQyTphOvV5KEBqiUhK1C+q1giQpSVO/ajC5IF0KuXJtif/mX/5N\n7jtzhQfOXiCKNMvtIb1pA1vJ5wrpc+NyX2I6YBdL0Bo5VDgtKedCivmYeGdEsDdBd+vYeogoLI1W\nymRUo9xTyNh4zfNS0Lyk2L834uJ/t0bzfEbr6Skit+Qzjmj/pkm26lqiMtY40K2RhTeCiHqGshWi\naz7NqPKqGC38NbaRDwoEjnTv2x+BwzcWgVceBwdaKAr41wdaKMBXnXO/IYR4CPg1YAb4fiHE33fO\n3V2h/n4G+P3KSu1rwC++0fFuZQA/uEpTIcQq0MMn2L+j2mTUZG32Ci/vzlKIgPxgERMKGi87kAKd\nSOJ9T3svUq/EifQej6MsYZTVwMLpcUn9/wmZ/ljJpIyZaJ9rszksPbLO1qNr3nXlYqUPXYdky5Gu\nWsYk/M6VdwDQbY8ZbzVoxDlnVjeZj8YsJmP6S016W03mH+ux+8gcOhbouu/QtWcE3ackg7dbjFGk\n2kcZtXnN4HRE94r1KJax71XjkSTXPq9pFRRLPtTKp4Jjvw4uFEyXJWIqUFllsaXxqJjjObQMruP3\nkReaMBKYluEwDwkUXcnMF0P6D5fYGLLT3sY+ji1xYMjGMVZLhqMGwxEkswVrVzQmkgzPBP7BiwVh\npMnLgIuXV7j9ths0Z6a053yR/dntJfI7xrjzDYQWRH2fY81rIaPY0WpkyMj6whlw1XT5S297imkR\ns743R6mVj9qdY3ynIRxB9wmBfD5EPRcSKDCfDFj/RJu1/9f7Q9a2fRHs0o+vYGIfjYtcEt3wWLdx\nK2H+gR36X15EpwG9F+d8l3q75d53XSabxmyvzyByBbnA5ILpmkVrTbAXoFJBkPprruvVasv466qq\n+ltwImPuqTq9t1vKlmT3Yb/y6rg6JxZ7XNlaoCgDJlOfvaz1HYvtHXQFmWnUC6Ck3A/ZbTvSZUtt\nU/LExdt48uIZHHDiI1c5u7DDhZ0FX1+ojLTrOzAJI9xK5Qk756MBM43Yff8ii3+4STgsCXtj6EG+\n1KT1F3KslaSTGJsryANcCWFf0rzgGJ+1jO+oMb7Lh9DBDcFkDRrrB1F4pU1jIeopijm/qrM1/37j\nqZzBnQqE9Km32lFK+SCSp5Ignt291dTyt9C+voj55rs49//xKslt59zfu+nvr/A6rmYVAuW+13rv\ntdqtwAh/q7I8+yfA43hT40/f6gHeqlYWno1y29Iua3MDalGBrAyMTSwIh4akr1G5rSBOApNLX1gM\nboLyCYephQRXJK1/FhE/phADIIO9QQPVMKx97GVm7tslbBWI0HiInhDU1iXJljyEdknpaHZT/vT5\nc3z2q/dzbWeerAgotGJ8rkPr/Jjjn16n/ewQNdHI3ICFaF8w/0VF46qHiQkNbqbARoL+GcVkWaJj\nX/Q5UJzDCLDiUE/ahI7pMWhdNcw9rUn2KoNa7b0b6YfwQgN6oZ/JKtidMAI1VD5CqkSdshmQhWD+\n0ZD2M4pg6HO6ohTeKKWZEzcLZODxXWGise8omD1fsPpYRmPdIHNfoFtcGNAfNHnqz06zuTVDUXhh\nrDjUHtN839ivbGIP93SFwDnBaOp1v7URWAe9rE4/a/Dx+x/n4/c/zvG5HnFYkITe3m3vIcH6D8L4\nrM/x2xDqVyXjszGXfmqWvXfXKFsSE4sqD++Liu4m1cPJKIHQMf/+Tbr37hG0c0RgyZxCo3jwu5/n\n3R95joW1PmFcEgQGua8wM4biRIFpV+cgQcgD6CCvgNPJ21OCTLDwJUXrkkBN/X2Y7iQIAWdXtzi+\nsEctzpHSYo1A78UEzhBKcwRjFA41FhRzjtFZQzHjDmGPOy/M0Qpz7lvdYKUzJFIaJSz1bYvUEnEj\ngUGlLX5QxI0kWx9ZYe/d8+RzHq2ipaTcj+nMjplb3ieuFwhpQXqOQm1DMfvlgGRDeDXCSpvF1L30\nRD7ryUKu0qIRRhDtKtRIHBbmwz1DkNrDdI4TR7BVZIVkEY7mlcwTtb7N7SAH/g1Yqr2l7U3VCF/x\nYSFiIKkcet7y9kZqhH/78/+cz12ecurkNlK6Q0xv9gcNBpfmqe94bYaD+TzrCDa+16HqGhm4V2CA\nl38lILxuUal+RUn5wk/UaCymnFrqeQx39ea1L60wGdcJK9LGwT7y+JS1+za58twaZR5UetngnKN9\nGWa+vE20nSJv6oi9D53yHUVyMzCZ4ftSiBzixbovNlVHyWc8pVrPGg7ddACBRUwlK486wvERGaFo\nwuZ7Ap+T1jeRcvCDvg3ARUff45sl2hV0Xnrl+Y3vK+FtE+xhHODfOd3YoZ81if/vOnJbInS1h7Mk\nf2+Hjb05Bv3GYSQIMH92F20FafHKgxeDEJsHqJmCm3XKTSlphDk/cudXqKkSJf013E6bfOr5hzjQ\n0Tu8hM4x80cRk1OObMX5xW3VoqnDDkIfgd907LKtCZYyji33X3G/y1Jyqt1jpTZEcfT65rVZHv3q\n29Ar3ibu4LIoDM2+YDypVVfp6Bizx/ZQKZg/6R46BAGUnYzs4ZLbju96BFT11s5Gm/HjM3Tft+NZ\nntV5ZJOQ3uML6BnPDj4KzRyNy4rls7vM37GHDI762ks/fzvaSfrn5Cv6WzDyt0BlN99VcIsFRis6\nd++hoqNjl6OA0dfmqO16Fc5DtIhzZF1DuhRgk1fcVkJKGIS+eHrTQZoXUtoXplz7ga5ng6pXgjqE\ndoT7hhP/oc9P/NO/wl/7nnfxeu3PQ42wOXvc3fs9//Xhv7/46Z/5T0ONUAjxg6/egI8DH67+/o5q\nx2cm5HnIhUsrDAaNSiBKILFI7ZguBhQt6aOrii4sU4lJA0wuDyNX5yB7oMC0A3Qr8vrF+GhJlTCa\n1ri4scgoTbAWjBXUZIlTULRvgmQBWRZS2oDb7l5nbmUfqQxCWqRy5DOC/kOLjO6eRdcCrBLYwCvH\niQq6dMhacQ63HUNHwz1j6PpCrVMOkWiEFYS9AJmKQ0ibd5KBG98l2D8nMGEF1wrB1Sw68ciQmyMc\nJ32eVuYc6V87CFs5uiHYP+NrCAeaFK7nw1V1AHWrtkhpllr7pD8xpfhAeVSsCsA8FrG6vMva8R5R\nXCKERUpLrgOS0NBK8kOnI3AEkYZSenGxym3IWbAGJjrmUy+8i6d7axRGURivozJbm1bX7eieOiA7\nZWlelLRfUKiJP0ehIZrJcFGF7JFH1yPYl+RFyMubs4ynMdb5+z3JQ3ITspW3GJvogLMCzrM1gxsR\nsl9pbFtQwnLvbVcJQlMt/29y93mpgTqRE35PD7Gce/XE0NI6b8nKkAsbiwwmtcO+5hoGKwT7jy2R\nXml6NyQtME5g695MIxhVq6cK7lksWrafW+D6l1ZJB7EX8iol6Zwg6TvmnzHEA38SQlfFOlkVEoOj\n/iykAeXYf3qW9EYDqwXWCKz1UrXpPOQdDjXHnYDO81PCSaUmqY/6FAuFjzdeRbaanIiIhoZTv7xH\n53zmZWYL6/XsM8vMExNO/OoeZUsRzL0FRUw8OuZgu5UmhPiYEOK8EOKiEOJnX+P9R4QQjwshtBDi\n6+wkhRBtIcS6EOLn3uxYb5QD//43eM/xHVbI7A0D3nnqJR5/6RTXN+bZ2PQQp9rIMbOeMj7VoOgo\nio5CaNAtixxJX9wrAmxZhZbCoe8cY54LYVPhooQDedpGrWCQR6REXNlcQElDoCynmkP2d5sUdXVI\nsBEWTCS43u9wZrHH0rE+S2t9ijwknwZcFctEY8H0dJv0VNtH+9pRtD3CRBU+93YQzAR9QbkbIecL\nxF1T/zAUkqYq2d9tIYcBwSjAjVwlvmWx8wXOhgzugsEdHvftrMM2LKqQWOEdjAoW4I4AACAASURB\nVA4eHoFPLQkjCEyVcxRw+sQO56drgGJ8Uh4SfIKJJV+vkxyfoJTjYDVXOMWH587za8X9lI/kFO8v\nEX2By6D9CwnqnSXd+THd2TFlqbBGspE2KY0kVJZOPfeoFifIrtXR7QI7irD7MQzd4SBnI8eUiMfW\nz/EnG2doRRmBttyxssVXrp2kvFkNyUJ2QhPfUMTbgmQrxMR+UtEfdIStgnIUYdTRJBgNBEFPUc7B\nZq+L3LMEyjLTGPPi7jx3L22xr+vs6xqBsAyyOuHI3/dgP8QNg0pzPeD2eza4sL5Cf9TEiKPfVWQh\nxXqNaC0l+tgeLvN4+PCXJAuP1th5RHFNz7JeQfYYK8TZDPFsnfT5LukLHWRdU9YceskQZyFqIlAT\nn3O3wlGuasK+ZLjRYrTeJkhKVGQolSKbsSR9x9xzvmhsQhgelzgDtiawMd4j3UE8kohzE4orbabX\nm0zXm97kWVlsCMoIyhboppfeFU4w81xK3KuRzYVEutJUF2BXQS3miJ0YYQSuKrvQsuy+q838l/ZZ\nfnTE4p+MKJsK4SAc+gfCBYLeQ20GcvztH1gcCPsNZSm+VSo9wP8EPHorx3vdCNw59xNvsP2NW/ny\nt7Jtbq9xYr7Hu26/RBwWSBxlqUjnAlTuaF+aeKp3hQiwEYjIEewEiLwKF4zfhHRM/vKU8s7S5+Ji\nTzleWer74lPmH3KjFXkRcuz0FkFZLT2r4NFJcIWP4C7vzJGVAQ58rjTyue7RqcrBR3qT17Idopc1\n6bwXGnJwuLRsbBvYjLFbiXcHF+ASy+zMGBc5TMvnWKH6DWkVyTdKP+BVGuWmIaAQmBmPtPAmBRWE\nrKu9UzsH44u/Lo8sv0jQLtCtCqoYeIJPvGex05BsvYkt5eFE0C/qRMrwQ2uPMx+NUcog5zVuyTI6\nFVL80xb2mRA0hM4QByWhskyL8FAGQQgPm6udlwQ1jeoWR2tzc0D0ENjSr560VfSzBrv7HVyhePep\nq3SSDCk89E5YgRgr9t+dUyx52JzQ3huz7CUkSxPi2eqiVSqUQe4IRgHBrocFWiMpioCGKhjnCU9v\nrpKWIcZKcqMweOxyvHcg2iQQhUQYxcXhIh9/99c4vbztJ/5AI6WhXNRMnm+TXW54wpUC0dZgc9rn\nHYt/4Ak+LhfkaYAdBLimRd83xdaM77bTAJsFoCBf8exehA8ipBaIqWR6WlN2PUGrzAOyYQwWpkuS\n6YI4rKcEKZiGRWkPL72ZbMW2QoWW6OwQkVTFx1z51GBD+wlRUJHJ/KrPfNCx+Kd7NF9KPUeh8JO/\nnoawksNKBtIhqlWc62qmazE77+l6vXN8/SoYGZyEohOw+aFZyhlFd+bbT+Q5UHb8BmCE3zSVHkAI\n8QCwBPzuq997rfamKBQhxN97rde/04g8/YFkGC5wcmWXv/TAE2zttxmmNXaDDvu3t+i+mNF9cYKu\nSXRdkRcweodA3kgI90KcctjYerzussMEgvQjGen7c8LLASITdNsZjXrBZJJgcwmhHxgLFHfeeZXz\n508gB4HXVA5ACUExCMhm4NLOAklYUo8K3L5EpaDbMDnpbanCCkZouppgKyDvCh+NV4TMZGoIx4qC\nCNOPEE0NkSVp9FmeG7DV66JDh9A+tx0Mwe4E2GWNaHoVQj9BOWQ/wsxr7IzxaYRqAqt1Usp9P9GI\ng0oe0AoyznU3eYEVirpD5j5KNzVoXzQMzwRM0zayplGxIasJnp1b5cHOVX7o2BPsFXU20i6TIuJz\nD99L86JG/2ID2hZ5T4lIHOojPs+blSFZGRIqgxSQ7AfE1zX5MY1c0bhMHbIxnfOFW1vKKj/uEJng\n4nNr3PvQZd518iqTImJvUkfnkqtPrWHahvE7SkRREm371ZhJPXwuns+I5zPKUYTTArUfYtMIXICa\nKM9SDR2mFnHb3A6X+ot89fpxWnFOK86hVCjjAEE88KmEA9jbM3srnOvu8MF3PMN7y5CrWwvkZcAX\nB8exWwHpxRbZ5RbhYuZz23ZKPMlpXYxoXoHpMShnBEUkKFyEO1mgH5wiRhIxUhgBzkmEgnJZI0qQ\nqZ/c5FRi6pbsuCFbNYRDiTAQbikQgmxekc15xx9Zgp0tKYQkGoEc+0nFVSqB0Rdj8vdnxHcNsVP1\n/1P35sGWHfd936e7z3r3t783bxbMAIMBBoOFIAgC4CKSIiXSWixTES3RkeXEZdmhKq7IiZ2y5Ypd\nKSdOpayy/7CVUqJYu2VLlGRKpiiKFPcVG4llNmD25e3v3f3spzt/9Hl33oAkMCAIFNNTp4B73r2n\nzz3n3O5f/37fBT12QGoKV2Aix0bsuylABOlDBudzgpmnB0w9OyJe9ik9ydqcj25J5EIG8xn0Hcgk\nxteYuYxYeFxfnCXYzHH7BUZAOueSt12r7Lmc0B29AXrgfEvx8nWj0gshJPDLwM8CP3grn7kVFMp4\nz1YCHwBuu5WDv1ITQvxPQggjhJh9rceqGYdvnjnC1bUZtBbMtQbcubTO7KEu8aLH4EhgldlSTbCd\n423ZKEsvphOyiYoUaiyRwljXFYDAkB8vyB7MWRu1OHb0Gs1GjJLGojBSyen1fbz54bPccfQajipx\ndImT2EjMJNY93BiIU5edcZ1oy7eknEhUS0IrUpXOQP0ipMdSzO7yvibIG4L8REbnxQJvYGGApu9g\ntn1MrDiwuMPc9MAiAtwSHVpdazl2EFuuLXoKq3MiQo1QBrXj3MiV1wymrnlo/hLsq6zWZIUWkPCF\ni8f5+bs/z/GpFTyVQ1hQ1jXj/ZLW+ZLmJTsR6JFD3gvobrTYTFs8N1qmNIKWE3OivcKxcIMylFz5\n6zUrd5pI9Fd8ys8ExLFL6OYVqgLyUpEWDmlL0v6Mg3/NDjrSL1GNwrrqTNLuuwgciSgFvZ0Gp585\nRFkKAplzYKrHQb9H7VqOuupbko0L6YGS5HBJfTYiuti0sDgDbivDn0nhthRvYAk/QgtUpHAGDuur\nHQ52+tw+bQuM48xjZdBmGDgor6yEzmzO1InBzaEwio9fPk5SuEhVcuzACvcduUIQZkS3Z7ZOAGRr\nAemlBsMDLcRgjIgzRGmoXzF0njWEqxq55SGue5ZSXtfoffkEAghMnqmypSnb2mrZb1f3W0I+rcnm\nqud7Ny8tBFlLksxKnEZBOmfIGlRoEcuUzVsC77xH8DXr7yrdEmcuxZtNUWGBOBjb1d4ugsSBOAqJ\n/4HGTIGUmsalhPYLEV5fkPSCyeRLp0AsZJBJ9L4MM5NjJMTzLsOjNUZ31Mg6jl0xHkgwUwVtU+d1\nb8YWTnc3Xl8q/UeAPzPGXH3Fd1btFSNwY8wv730thPhX3Dqz6Ds2IcQBbJ7oyms9FoARVmz+6dN3\n8MLlZY7sX2OqNaafhJTzOWPhkcy51FYz/G5B0RSIvouZydG3xYiRgpED2qCkxmhF5fc9KYJ1RzUO\nzexwz11XGEcBq+tTJInHeDtkM27yyGOnuO++i5w6eYjNzTbpyCXfahDjQuJAWGB8Talh9nTC1kN1\nm/9zrTaEAVrPwfhOQ3JfguxLm+LJBPnRnOAJn+lTBXlDEi0KilCghwq5YLht3xaLs33Wt1uMowDl\nO+gVSSIUJlLoZoGpWbikmMpgI0Ctu5hQW10XCY/On+fxzSNkyykisZGdKQXPXDnETz+g+B/u+xRX\nx9P85bW7WRl32IqnSKc8OmdLWpdKBocU6bSkqBmur00hlgxbeZNlv8u8NyQqPVRXkS7Auf+uQfPF\ngvbJHJkaotin1sioeXmlEqjQRqCVASmY+pRLMaUZ31NSTBtMIskaonqCq/qFsUUxZwxbax2+st1k\nYXmHuYU+JjZ0nhuTzE/DhdAqHrYKjILaXMxorcn4XBtVL3CnE6Rr5QScUOP3LFszr1s4Ypa4rG51\nODDTZV+zz9X+FN04xJMF4X079J6cg1TayLUiQ/leTi+p8Z/OP8jBRpej7Q18VeB6BcKF6GiOGgvc\nbYXIhNV0bzq43REMYnQjwLgOWlpmrVzzMdsuZi7HtMoKBSuqsbgaL6oJTocap69wNlyMb9A1m44Q\nuxP4bv650lWR0qC8knQe8o7AHQjrduQIxotQP+vjXnTJ7soo9pfIwFCbzRgZCXeOYOBg+i6UMF5p\nEN6XEP+vGnUSnK8IxEDgG02sFUk/tBNBUCCVRkcOsq7R+1PEQobYcCGqdFfaBWbWDuym5xIn+fdi\n6HjFJl8dXPG1UOkfBd4hhPgI0AA8IcTIGPMthdDddktaKC9pNazIymtt/xr4R8DHvgfHIpjLcC8Z\nsrpgFIU8+2LFNWrkyEOZpYmjGB0KGB0C2c6QsaLsG2gXVma2ZYskuuuipgpKLSvzBXuoWi3l+av7\nuPfgCrVayp23rwJw5b8s8Ccn7+dD9z9Js57wyKOnAXju+jLP/uZ9lB5kLQGRCxFksiTcHNI5FdM7\nHtplbm4XQ2q6ZO5Tis33gW5qso5lfCgliP/amPAP67ixpnPOnlSsGswc6VFKCLycQ0s7AGz5Lcbf\nnEd7Fjmi+i70saPJHRFmOkPseIhYImP7A+mWdX7u6Jf5zRffRhkKytBGacEzHv/n536Mf/Kej7EU\n9vjbd38JgF99/D08eeIoC0/nOJFh+qwl+AyPwEpnmjDImZkactnMcjmZJS8FrjaYbUkxoxkecxne\nVek9C023V2eqM0ZJg6NsRCm3EkaLdZorJU5P0vmSvU79w5LsLmGx4/JG0CMKm3YyDpQoVi7PsXJl\nDgMcSDeZeXzA9sMtzKCasIEs9Ji9c4utF2YpI4dybA2nQpFQPjxEfbWFSCV+3/ZjhOD5iwcIg4x2\nPeaOmS17zbsN8qOScuAxfKGNKWzayggBmaLmZ0Spx+XRNJdHlhQkS0OzFTEc1CgbhrJydfIjw/p7\n5ln85DoqKVG9sf2CB9sWsC5A5BKx6sMqGFfDQZuXNuYGhFIAaCgaVo1RpAIntddcZlbcSsg96CWg\n6HuEB8dEmw20kKTV+tjbhsHtEifR+D1J8M0AvgnBvjHRT6YUZU6Su9DJEZ3CSjBfqNF7sUPnaA9z\nj6G8184qnasDssvTRIvG6qcX9hl0Y4leDZH7I4xr4EB2M4lTg4kUZsfDN6+/nKx4lUVM9lDpgetY\nKv2Hb+WDxpi/MelXiL+FNY//joM33JoWynNCiGer7SRwFus28V23yiTiujHmmddynL3NaVqtbq9v\nC1O7xURRRWf5sYTijgRdt4U40NTmxsi+g1jzIZITOFN6voHUVHnYG/C4di0hyn2euniIq9tTZFXB\nrda1/oi/+/xb+fyVO+kmoYWc+QY9X9A6b2hfsHR5u4wV7LzZoX0uZelzQ2oruS2QGEPxSEq4Ktj3\nB4LmaRCV9VmZKPSUJvqvR2RvSdE1W5Aar9UoU4UrShxRTuB8WkHaETSuGVpXDc64giMaY12CWjli\nXwz1StMZw1e3j3C4tcX/eO8neXThPIHKEBj8HcPmuM0vfeqn+ZMzD9GNa2gjKCUYT7D2kEv3mEte\nqyJADSjD+csLvHBhH/1hOFH5C/aPcMYSb8VBjsXkmiujyXOHre0WUeRbaJqBcD3FuIL+bS7xjHWB\nMYAnS2Qp7H1Lb5COhLEDuDuy1mG76QwMdO+v07icsO8T2zQuJYjCYkcHm3W8esbives0F4ZIZQ8m\nr7lW3vZdffTdkdUMwSIsdCF5/NQdPHfxAP1xUEEMJdsbLaYf2mLxvdcJlyMLwJcQrddwZUkrTPCc\nG3i6ZOjhOJrO1JggzBDCXhDTydE1ydoHlug90KGoK1sgdGz6Z1fBcqLaBxPjit0RbxdC6fYlxjPk\nndLqilf/lDa7Bjw3bbrnIiU0loYEnRjhVNejsCJTOyck3bvlBFIKhnl/SN3PaIYprroBAy1bJWkv\nYPvZOaKNGrqw93VqeYDMBbWrCrcnJqkcUQClQF+tYba8ishVfZdY2iL+WoDMbsbsv27tW1MoL/92\nYwpgl0p/Gvj9XSp9Ne4hhHiLEOIaVlfqV6tx9btqr0jkEUIc2vOyANark3ylz30aWPw2f/ol4J8A\nP2SM6QshLmFnmq3vcJyfB34e4ODBg2++fPnyt+3vZ//0/+FMfJnx81OWmVjdXLkcE09Z7LU9nn2/\nKWGhM2DnhVnyyLFrXfsXGsMc53CMtz9C7F2jjCWlMqx12xNSDsD+S2PEMx7XPmALmLsRoRSaupcR\nfrqBSMSERqzbBRsPFRz4w4xwTd+EL935FwXhl1zU0z4iv/GAbv1ISXlHiufpvfwezJebuEJz9P0X\nkUpPHL1XL0xz/vIiMyctJHF3VV3UDL0jwtLoa+VNU3hN5rx7/yneOnUJbw9/+N/8ygcZjWr07+Am\nYoWuUC/OuIr4qmvuDQvGxwpM4lZRXfV3WbJ0+xbDM1PkPa+iktom6yPiJQez594BHP5/xxgt6N3X\nxuzpu324x3avSTQtbiIwuX3onIZsSlRWcWJyrvGsYfFzfepX05vo0S98ZIbGdExn3wC553ok/3GG\neF5hHhrdtFYtLtZIIs9Gy3v6lqlNX9x1/Dp+kE0cmHQuePbLR6gfGeG3E+SewHH9xRncTkK9k9zk\nxj4aeYhIIc/cTNzKa9aIIdgRNwZuoPA18YI15dirwY6B4Ioin7LCV3vvd/uCQXaVpavveaiyGjCd\n4x8ZgtzzmzkfoE6FDI/sFjXtfuUV/NCj3+CFwQLj3JsQu4yBtZUOqq+QYzV5/gFuO3ENkcO1Z/dh\nyhsnVTo24i1a1Y6XjtHVSsEdwD/8sR/gv330zXyn9r0g8rSay+bhB39h8vovv/BL//8g8uxpwz1b\nDLSEEO7LfwSMMe81xpx46QZcwGqpPFMN3vuBp4UQ326wxxjzf+8WDObm5r7dW+z7thu4rZzWm3Zw\nprIJHEyikdJCwCYzuQGtBXHsM31si/qi9WUUUiMcTf3ogOxMg+RUCx1LC+/KBb3NBq16yoH5Lr6X\nIyoHGHNPRrAFB/64pHbVztQyNehUUroQ/9CI4lAFSXQ1eAY/KLj6kx7bDzmUvjWRLT0YdUOydyfk\nPxyhW6UlwPgG74KLLhRZriyho/oesjQk/YAXPnE7g5WmpVpnElVYNMT2vRDP2flJK5tr180Srviw\naaF82MwHyWbA5zeO8fH1E3SzkEwrktIhXrRmt1OnwRkaKKuIJAOUxf1awof9J2MsMaSe7zFEtjro\nuhQ07+pSOzBCOKW97koz9bUMVWora7AnHCyaLsF2zsxTPdxuZvvONfVGhGMMwYaY6HujbyA/vK6p\nYHBmQojSLqy9q832g02KQFZQN4FoFow2G2xfnCZPHEtOKQTesEBsu4ivt2DbsdcpB1FqKzkwljZi\nrE5XaJCp5Myp/WxutClLQVkIikwRbAtGl5uMVxuUubR9lAI1FqSjgOFOnaKCRGpdMWebJeaeMbTK\nCXHLCDt4JtOVETJVFCxsRCoSa3M2uYTV4O92JW5XTMhFaMhvy1Ha+mLurgAxBicx6NglOd9Cjxyb\ntihtf8JA67xd6VqVSyhyyUpvimPtNZZqA5QokUKjRIlIJWWnpKwgqrtOS2vXZphaHnL7W68QtmNL\ncHNKjKeRpcDt71k9VeeLsZOkN7Dft1F7A0yNDYhCT7bvt3YrOfCnsUn5LlW9GFgVQmwAf8cY89Sr\n6dAY8xwwv/v6lSLwW22RKIguNKgdGdG8r2sHz1hRFIpGUDKIQozeLUtiB+SoQVDLaC4Pae4bkkcu\nRgtqtTHRxRb59ZD8ag3ZLBCeppw2DLs1mlMRR/ZtkeWKvFCInkT8yAj/4w2WP6EpQsg6MLhDMb7H\np9ZOyB6Oyd4UI3sWU1yvp2SFw/ZjLttvdQk2NDKHaOBR7yRwIkffmyM2JSKSmDMt3Msu+aGczEgE\n1iUojATOyJDicfHzh3CCAr+VUu4ofAXJgmBwBIaHDE5kB7hypkCOHdj27BZYPYvcCMqZlJP9ZU4N\n9zHnjaiplIHvEc5BsAUzJ+0PufQhaVvbLRzr/r7rHuQvJ7SfUFx/H5igxASlzQWXhrKUKKck3D8m\n3D+2BsWloP6pgvC6S3xAgbsryAFlzaEMXdxBztxTfYpAUoYKFgWH33SV808eQnYlpm/x6TKBrGUI\nt8EdG9yxhXRqCaPbgFLQO1Gjf7xWGelqe36+Ju4HxP3QEl0cTUtCuJ4TGxfxeMu+r6bRUuBm1ltS\nxdUzpSB0U3TXI3Ek16/MsXJthlo9BawZR9oRJJs1ku0QJ7RIGpNZtcYcl37iIp0SqTRzjQGbaR2n\npuF4ZGVzY4nsu+jUwl7ztiDXFu2yG9wKBCJXUFmZYQxCGSglzljhjI1l40qDcywjn3dx1xXeqMKC\nCxsFF6FB45BeaoGjLWEnltCGYAfqK9aAuQyg8ASn5pZYbPdZrvVYrvcYFx7aSFaKOTuxNjS6kdlV\npYbxyGd7vc3MQp+73nWRdOySRS5XXpwn0iFOLHBHVBNX9d0q6QeD1QPvDZPXMmTcchPl99/Avdtu\nJQL/c6wz8qwxZgYLI/x9LOTlV17Pk3s1zZsVpKt1ovNNWzxSBreTozW4jqbdiKv8om1CS8pUsX59\nijxTlmRTz/EaGdGVJrNvW8WftyQDPVaU2z6t6TEbV6bobTbQWuBITT3MSFdqyLekiB8fgq9xSk1t\nFfwNgy4U8SBAl3ZJX85WTu8Dh05njFIaFCRLkuigRSBsXeuQRpV70KxG31aQHU3xn/PxXvQqrWmB\nrqAEE21qbSgixXijTrHl4GR20BWFLbzlDUHRsPjp/ECCqXDvJBIRORgFo0tN8oGH0YKNpMnleJa8\nbhjth3jeDhTWZg1qm8Yui3eD5ipHK5czgqxk6c9t3l8WWOhiCeKaR1b5jAI4jRyvk1G+U7P00YjG\nqQJZ2nyrkBAtKHTD6k0bQCUav5vTP1NnemnI0bdexvEKqy2eCVQGRgrimd0Uiu1flZWwUmglA4yE\nZNYhXvLRmYLZ1NYDMBSJQzry6d/mEGzm1NaqyH8sETsuGmtQsBuFCi0QhcAPC8Iww9+x+WlTSsbD\nkHFUI9+f07pYUcq1oBi75GMP44LqiYkMgs4URepypL6FKVSloYMt6LXtimUXMWLlD6w4mVFigiqp\nnnDQAgnU941u5NAQiFygUsl0PSK9LyHbX1hiEwZZgjfSOGmlhWKAXKLHLiUS7VtRKlMhVlQEbiRI\nRz6fe/EYgzREG0HdyWi5CapeWoRXlQ40rsEEBl0vufjCIuvXp9ClwPELmnMRvirQvrDqjQBGWDJS\nYXNVRmB15hXMeBN/mdetfRdEnu+aSi+EeEAI8VUhxMmq5vjXX6mvW4nAHzLG/L3dF8aYvxBC/O/G\nmH9QiVu9pmaMue21HgOg8GPKRkm6ViNbr+HNJshagS8K4o2AcD5mpj0m301DGEm63aBwHNauz+B6\nOWEttSnN83Xqh0fMPLJBGTnEKzV0KnH9FMfTbF2bYme1TXM6wvEK0q0Q71pK+KYI+aZtzPM+Zk1h\npgPQDmVuDZKVq1FOAblAXvRxH+4zPT2mKCRp6tiBNXIoPMHOahvlloSNFKksbtevG/xTPv5Zn/xA\njq5rdK5wMoMDqExYo1plwIFwoyRaVITrNq1QVEvurK4QtYLyYAapQI6VxRQjEYkgutZAOhq3nSEc\nS14xLoz3CeIF8LvWNaUVJoSbIfGssAzOKh9cIul8YAP9h0vs/yNBsgDxIgihUeOQYl9OLh07YMgq\nvfKwpv4pWPxYTPkpyfCEQ9EQJL5LXrcjsQ5dRFogSk3Wcll5cZalo1s89KMn6a62GHVD4q7P6Gyb\noi6I5wQyB5XaPtyxsMqEtWq1UNVvTSYhBKZz6OQQOVAIcleSzkiC7YJwuyBtO5S+wFlKGUzXcHck\nwZa95qULqqFZPLHGhccP4m9bfRCb5jBkRzO8ay7tS1SoJLsyiBdA5NbsmZGVVdXSEK7GLHd6XB92\nSHIf5dgUn0oVKoKyzo3wS4OWGpns2b9bkDSCxv4h49WGJXPtQRjWZY7rlCR3Z6S357hrDiIWuJsC\nJ6rqOLmwhWNlr1teA4wgngOZ2fqKFuB0JZHv89kX7qIdRiw2+9b0uZ6jRy4iskVYPFt8F2GBGSqu\nnl9g9fIc0/MD/CBjnHg2/egLMq9itFY1Iu3aAAFARYZu8QZE4AZ4FamT10ilj4C/aYx5sZLufkoI\n8UljTO879XcrEfiOEOJ/FkIcqrZ/BHSrE/2+WVtM1wuK5QxdtwbB6UZAcqlJR6Qk2yHRlp3SXVXS\nqGUE9RyhBXJkKeB56jLoNeh3G+jYYesLi+hMIr2S5tEB7RM9yos1Fm7bwg0KjBH0N5tsX5+iyB36\nT86SrocYBOK+FPX+COeu5EYOzwjKTJHFPqn2KCOH4hstTGHFjur1jEYjpXFmiBpi0we5YtSrMdhu\nUBaK8TvH6Ja95N5Fj+D5gLQpkblG5tbnUKUGN4a8BX5fU1svrbVmAv5QEPQkKhIVBRqMZ9DTBXq2\nQNVytFcV3gpJth2SrteRSlPO5JhKrTCehWhZEh4f0lw1BDsgSsvOFFrQH4fU7x0x/f4NpGMItwzT\nzwgWLhc0/BT5mRbkNo1VakmpFaMyIPnFAtMGVWimvp4z95cZ2tP07/AoatIKfgUuuu6j2yVXn19k\n89I0Wgs6iwMOnlhn6p4uKq8QP9gffd6UyLmSmc4Qb0fskUzFmlwYQTnwJkQX0SwQUzmik7HxsE86\nbUXQ/G5BfS1noRySTWuyloW9yMzgjUGMJc35MQfvX7FYam0njVpm6MyMGb8tQrsGWVpT6/oaGL+k\n8M0Ex64iiTtSbHzC4+0LL7DYGOBITVlIisylFJXb0l4vAwX4BqmxIl27gaK0W+EI5h5YRzqVAUM1\n0fZWWtw2tYPvFAhfkx0sSI/ljA9rgm2DE9uCosoNTgrSGMqatT0zwk5OeVOgXevo5GxZslB/XOPs\nxhKnVpfRhcSZi+11BUSqkImD5+X2mXIMRSnZXJni2oUFIsdBRXZy2L1/mDPv/gAAIABJREFUZc1u\nNwZvq3pY77wBOXBAaD3ZbqF911R6Y8wLxpgXq/9fATaA71z449Yi8A8D/wz4z9XrL1X7FPChW/j8\nG9J8N8ZxNdn+DBlL1I6DTAVSa5bntrm+OUPa9QlnY9xGjs4kZViixgrVU2jfOqWDjcqKvsfGn+8n\n2D+mfniI9DTJhTqte0bsu2udeBAw2GxQpAohLde4+9V53OmU+tE+XifDLW1hRhc27707XQoM2WKJ\nvOqRf24GuT9G7ktBGaae2mF8rAUjYQfMiq5PLDBtGL93jFpX+C/6iJEgmzIUTfD6GpMKSl9MaM/D\nw9C8qPEGmmRakTUFGEN4XTI6AroU9gdd/aidekYZu2i/ggIWxhaOlDWXKGdzRCqt9VghUG5JfSGC\nqzXCDUm8AHkdlGdYHTXZ90if+vER/a9OEZ1poGo5S49t8MKf3kH50Sn07Snm9hRcwzAJae6LSf95\ngXpGoL4gEQNB3rEri+6dHt7IEK7nqNSgaxLjai5+Y5n1czMs3blJczYiiVyiJUNtpRIAC0B7Bp3D\n0ePX6H/5LuSGtI4vYXVPXIMxgnLoIVyN8EqENAilMT6sPeoT7Bha53O8oSbslEy3R+yIBkVb4vas\np6MGikwyfaBPa37M5sUpeisthDAcbm/zjTRk+MNjvKsO7mXX5oMdDVJRBjbtIgprmbd1JsD0DO89\nfIqtpMnzG/voxnVETZGLOk5UkWsqrXOkQbdLZNdF9isIa+UXGqUe082IpcdWiNZrjFasdk13pcn8\n7dvcOb/JMPHZHDXIS0XSUugAwnWN9gVpW6A9GyAY11DUJTqw2uUyNygJ/jZoJZCpS9kobSAFlIWV\nAnaXInTkoMfW/SnUOanyKWcLRLUKFCW2cNuTOCMwSkwUETEgcgsRxRjytiYVbwCRx5iXRuCvpyv9\npAkhHsbKiJ1/uffdChNzC/jvhRANY8xL5b/OvdoTe72apwyL0z1WtqYoa6Br9uZ2V+u89R1nGMUh\ng1GN8YolaWgMZqpElxqZSFSiIAEwyE6O7nmYQhJfahJftp8pfY3z6Rlq79smbCTU2nYJ1+3PUkQh\nAsh3fHqP2xrt0rF1ZKdEa+u1aOGNlpWXT0vSSOJvS/TFOvqipQUHs5vMfXKVzR9ewmgxIfi4Q4c8\nMDh+SbFQUi5aZxpzPWDjYcniF5lE32DIB7D1kMAbGPxtqK+X1NfBaMPogGfTE/NgUJiKROFHOXom\nIe8GFdqhgv9pgRvk5ImLCTRlYCe68fWQw++7wsU/vh0xcnEvVed6NOfy4jR1N6fdSpj5wCYzH9gk\nyRUNN2b/wytce3wf4kwIZ6wkqH6HZnOrzdxsH/OgoXyzxfmZszB2NfVrkqwpyJs275m5BfpIjHO6\nRjQMuPDkQQCKQJMs24Kt1zN4kYAIjHBoNGOO3nOVF08eQEQSt0oTuHcP6Y/qIAUmU5jcXg8nLTCL\nEXqlRjIjSWZs3wuLY+46eJ1vvnCYGI90weYsTNejNAppDI5fsO/uTfbdvYkxUFcpd3Q2OdebIzuc\nkx22eYHglEe0UCAHFoIqKn3s8T0dnvv7fR74tTFzjSE/eOQsAOc25nnq2t2YasXjVvwe2S4Zz2rI\nJHKscBJpn2dh0EYwSHyaQUp9aUxjn/3Qyl/u5/I3lzn0wHWafkortNoiL27vY/vNirmvS2RuqG/Y\nPoxnSOetMJgGTLN6PlKor9qCZtYCZ+DAAFtAJSVzXdxGjqwVqHr1vZ+F5n0Rg1ENE5jJM+V5Ocl+\nQXjZRZQGd3QzjtAI+95srsR1b1Hf9bU0A6K4yZJn6xVghK+FSm8PIMQS8NvAzxljXjbsvxUiz2NC\niFNU5ppCiPuFEN83xcvd5kmD52j2z3XpNCJkRYhIRw75ps/bHzrJiTsvUwsSq0EtDGQCXdeUrRLt\n6AkMzr9jZBXpdi97lU+M56Hc9Bl/bIH8XKUeV9pc5k2ter8vC2ZrI2SQg1dOCDNSamanhqT7C8aH\nSopa1bcwOB+UtC4MWP69y9TPDaG0EUBwXdkcea4mJBdTRSXag9V3Q/9ObEFLWIEsmQnW3ibYfsDq\njJtq6Rx0M+pXJM3z0iooVmme+jcdXK/An4+Q4Q18nBlLpDL4tQzl3iBpDK7XkRiO/o0XWHhkDSfM\nbZ4Wi38/ubnAue4sUe5alyAjOLsxx/LbVjj+wRdoH+iDsJGuHEriyGd1fZpx5E++n8pB+zC6TZN2\nzA398qGFTBQnIvSBFOPqiVQpGgZHDcMjhjy8oXV+7tQyR+5c5a3vPM3sQt/CQKVmbmZosQ17NNAx\nILY8hGeQhyLoWKNmMKRja1L84LELHFlex3dzq6RXCKJTDfJckRs1kXPXBnpZyIFWjwcXrjETjC2K\nCE3zRRCOQU/nmODGMzh6YIpkVfL0T9W49tsuxQB0VqlZNvJJUXL3dAVQryWUsznFXI72bhwr9HLi\n3KMb1UgL58a1TQxRL+T84wfprrYqbW9sii2AjbdpRoftKtAIuzJAYMlwgZ7cC7C58XDDDuQqvgFJ\nnH4qwQwVWd+3NoTVn/wnBY7StKfGeMEN3KMjS3AM0aGCbLpyMar+addYA+/9BY5XEjivPxPTFhL0\nje2V22uh0iOEaAEfB/6pMeZrr/T+W0mh/Gvgh6n0T4wxzwgh3nmrJ/RGtbg01JyMMR7TrYipZoQx\ngjY5F/7oMMf/zhkOL69z5MA6ZSnZ7jX5wrN32YfTM5R+Jb5tDGopwVlJKdZ92EMy0IFhtAyNFUX6\n1SnSr3XANRQdq0wo85u5YZFweWz/OT5x/oQ1T3etmWyhDEuzfQbjkKQDo/YNCF5xu4t6TBN8JWHp\nY9ctftuTdD94kNpJh+h4QYmirCrixrG2VNlcyeAYDO60RZ/a1RKv65IsaEa3weiwsG4mpuDQ72uy\nuoPXlXj9SiBIghgIgrOK5FiJnE0sUkSDOu0QNwSOZ3D90srhArrpce33D3Lo5y4y9+ZN5h7aRGeS\nrahG05dc2JlmY9xgY9y0E2omSFOH5U6fqUMD7jvcRxeCspB88uNvQdcEOQ5b2222tq0MrDNwEA2D\n8SCdN6Rz9lqF6wJ9JUAcidFLOWYptzmMoYMYehgf0lns+yvGYnxhgX2HtpmaHfLYu09azHwpObO6\nj7nZAVtbLbtaqmZulQr0hQB9JEHNZZjZrNIh0WwNGyy2B+yf32H//A6llvTW6/R/e5HgYALNAu3Y\nY5UaosKj7ma0/ZgHF69PmJvPlidonTYM7gbTKjFN+xyKWLD24SMs/u55rvyKz5X/y0PVIfrRNjMf\n2mL9iUVMISf4waafQCMmzjzKOhR1PcFPu4XGUyVZqejFNcAyMLUUqBFkeKycWWDlzDzS0ZhI4iaG\nfLZkdNQwuqOS3g0KKJRFG/kafDug6RiypouTgjsGb8xEVrZ2XdO4mDM64pIXu1KFkLmG+idyxu83\nNJopppHaSb7r0mjHDHs18hlNPq0noms23LR8gkYrZtB7lWaV300zBopXFel/11T6ysX+j4HfMsb8\nwa185laKmHwbdaw34Mq9uqZNiCc1TTdDCT2JrmqHx5Sx4vl/d5zBhZaFGBaWuGCLmBXE6QbKirxU\nhG/u4h8d2Rylo21ELi2aYniosh8TWFcSadMNVjr0RlTUHYZ4quTHjj7HvkYfKbT1I5SGuHA5dmiN\nmfbYrggcjXA1W2sd5C84OB+SUAfh2yJnfiQjuObS+IaHjAQUwqJZGjkyE/gbqpKFtYgBlWuckcHf\nVMjd/VIgQoG6L6Z9OcbvFqCNdRvJYHACGl9WNL6uEEmFACih/bzGpIoikzcFIfGCIFkNufLvD5Nc\nD+21NVBkDnmuuGNmm6afVshdoAS15fCF80e5sDNLUUpKIcA1hOsG1ZPIoawGXIEuJd4AZCGR2Y3i\nI9JGjyJRmEs1iOVEcMySm4QlGe3CG60MDlld8LXP3s2lFxYpcklZSoQwdM91WJztsbxvp9LptugY\nobXNKZ8LIbYwPQHoay555rAWtUhLGwNJqaGhSRqK7X+/j/RMHZMLdCLRqWIQB6zGTfq5pd0bQEnN\neFHSOi2ZesoWJq0vKRCURHe1Wf1v7iRdCNCOIs8VyTUHxy9ZemSVYDoBZclngZOzEA6Zmx4QBhlg\nKnKaIbnQoO6khG42uRcGyBvgJpbVOLnmmYWyylTibil7Hatniup4e5EsZvdHIyHaq2NfvSFdCFj6\ndMTMkwky1dYbNYXucZ/wCUHroyC7IDL7DJoND9cvac2MLWJLGHAMqApJ5Be0Z8eIUtAsG9+bwePl\nmgFKfWN7pbe/Nir9h4B3An9LCPHNanvg5fq7lQj8qhDiMcBUM8Tfr07s+6pFRcG4cKk5OW0vpdDC\nqtkZyZGfuMgLv3eUs79+DK+VUT8wInIdREuAhyVjJPZBMViDZC8s8e8c4R8dUWz5mFww6rYolSCZ\nMaTTAmdcuYtngDQ2YvO5oe+xqTmzvcD9Cyu878hZotxlM2owyjzOxXMcaPU5tLjNgfkdhlGANoKr\npxaYXRzgfRCcn5DokwYzADMFxVKBt+rg/aWi6Gh0aGjfvcO1jofTcwjWHWsa6xoMmqnTKVsPhng7\nymooewblC9z3jtAnAxprKfX1jLymMBKuvdPQPiUJn3OoPeuQ7dPoENwtQ+NFzeioJNd20LO0b0n/\nCHAh5MqvHcGdTvEXE3ozDt0DijsPrXNoqkdRSqLcpfAkG99oEE1pnlk5wPNry8w1hjhS44zBTQRC\nCExktTuMtDA2d2jRDnJXPU/aYpYzNkRLEnOpbsk/QYnWtqBoGlYXfWKGayBvGpyx5NQ3buPssweZ\nXRjguAWj6w3atw+YnhoxMzNkPA7IC8Vwp0O6FSD7DvL5htVCCTRyy2D+vEn+YwM2TBMlSjxZMiw8\ndu6Hpc8qBh+bRwQl7sEEI2DwdkMzSNlO63SzGqGy0rlp06oc1i9JGhcN6ay1MuvdK9C1kvhIg2u/\neAJvLcLdSDD1GsVJzez9Wyy8ZZ0iVmQDn3ow4r72dbazBlPtiHYzIctsui19pkNweEwtyKl5OXlp\n03GbFftXpXbbhQsKAxahJ/E25OSZkm1FOJUQDcIq8q+G7118tBSkHUuk2pVv0DIg2EiYeTJl5umU\naNmhDATb99cYLzvUTxXMPGcoDkDZgWFdkIYh7oGYzlxk0TeV5KzrlkhlMCVk55sMG9EbMLIYKF9d\nvPrdutIbY34H+J1X09etROB/D/gFbHX1GvBA9fr7qtWdgHHhMS5svlUKg6c0vSxk+q4exz50DuWX\nlImke3Ka/qWWXZVVcCVhBKKQyFxSrlsHdG2szoYzl+ItJwQ9JhAsIwx5w5BO2+KhdvdQm6uIj3Ow\nE9d5rrePQks8VXCo3WWxMSQvFdeHLQotEdLQbsRMtyKCNcm5U/uIxgFGSOR9EucdErXhkT4Ykx/I\nQYIzkPirDke9LUy7nLitiBJULElnFf6gZO6puPIVBJVI3EIg2xrvI9uIKQsr80YF/qDEr+Wsvt+Q\nVtR7b0USnlMk0y5zn9E0T2s7KOY2OtaOIVpSDA5LtIS05zM61aZc8YgSn3NXFigKyxptBSktmePG\nUDvjIVKbOlkbtLnWnyKaFzTPm4mxhUwFKpEUHgSbljgkKrs3WVpsctiH+mqVZE4EDF1MbtMKztBG\n7MJYaKPKLfwuWai8ObVkfaXDyuU5KAUrX9pHvBlitKBeS6wq4m0xKrf0bQxWm6TrUkgHzgTwZ01M\nBkWqiEsPLSXllGbtHRVbtVBkL9TJztZxLnqs9NsTmdyo8BgXPrIUdI8pso7VI/G3BPWrAtVTmEYB\n9QKDIV0MGd83TdkOiDdqbD8/gy4E0tXUFiKc6YLAKfiBuRcJZIGnCoKgoObmuDvQ/+Ic5cCFUuCq\nEt8tEMKQzEBRWUvKAhxLHEWlltWKsZOoiiXlyMH1SurtxI7OAsDeD7krSYtd6RWBoAgAJejf3aao\n23x17WpB68Wc5iXDyrtqDA+7GCVQ1wXBc4LaJU2xGpBfq1mVTqHxwwI/KCZ1hvTFJqbvMvfaaSiv\n3Ax2AN/dvs/ay0bgFdb7Z/fKHH6/toVgChBEhU9ceIQqx5ElmVFcGk1z2z07PHrXE2w+N0P3XJtI\nuWwFM1ZONQVkpa1koLwWoBZT4txDCo0jS4QALzZElYErAsuINFaO04mtUJT2rSmw9cRUOB8v2fqx\nOp/Pbmc+GDHjjokLlzxXCAFXBh1CJ6fuZkhhqG0a4gXF+TPLBGHK1OzQVtt3FOyXZA8m5MdTnEsu\nciiRYckdjQ3OMU/SUKiRRGa28Lf1kGLu6yUHPj0iWnSIZx1UXaMe0pg58P7hNvqCi342wCSC0IU0\n8Fj7ALhdaJyzUW7uKmprkvnPamYe1/SPS7JpQe4Jch/G+yTxvCTc0HhDQ1mT+LWU4TjgmRcO0mlG\ntBqRlTKNoHQFtVMeum7Ip0qMY4hnobEC7fPWbDmZttA1LQElCLbA7xqypv1uoipZBH3wB4akbfHJ\nRc2QTWncocLt79Fa1+D1IN4H8ZKd0JyxQGiDl4MpJatf2YfbzGgeHODWCrSvEc0C1XdQmbUIs7Ru\nQeELnJMh4mwAxxPMwRwRQm0qZVSGXP0rgnANais2LeKf8hgeKlgZtPBVSd1LUdJq6ZTCoXfUWv+F\nmyUqxabICoFplIh6CZGyRfNA4OxIotU68WaN2mJEMBVTBg7btTqL/oAfWXqetaTFStImLyXXu9Nk\nLZf+FxdQ7Qx//xjp60lRMp2GrLRsXrmrCqjtYG4yS1IyjtV5SUYeQSOjPTsiTx3yzEEVAm+kSNpw\nQ/nK5sDBYFzJ4HgHNS7wt1NkrqltQrcUrL6rxubDhvaZFK+vLRO0Z8hMQLHp48ymyEaB0QLddym7\nHhQwvQmN2uvPxMQYzKvLgb+h7VbUCD9njHnXG3M6L98eeugh8+STT37bvz2+fZZ/+uxvkejspv3G\nQFoo7umssRgOKo9Eu/+jX3uYdOyh0pvV9NQIVC3DOzEEAaIqdptzAeWlkOHhSp+h2u8OoHlWEC8K\nSp8baoRxycHfukLxYUXxTmWnS2URJBu9JlJqvKoguPvcu1+ooXdcescsbXhX/c/tgT/WlG8eWyu3\nauqdDwb8leXn+ZOzD7A67JBPIDHWZ3D2qyWdk7oymbX7G/94EzOjKSaKiraPbhIwTHyGw1pFdbf7\nvTVF/aykczpG5pYwApBOSa69L0ToG/lpgQBhCO7qkUaeRWzs6WP2CQm5IGvv7rb707alck+fxkZ9\nu300IZoVeOMbOWiggpiZbxWrk4a1d2hUJHGGsqqZ3biv2jfEC7tLfvufYFPg9m5c68lB5zLk7WPE\nE02IFKIUk779HY07LlH5JAuMkYb+3x0TFx7RcDc6tJ+Z+7pE+iWjd8Z21+5tuuxj1ny0LyarO7CT\nTlHXlhkqzUSpUCTQ/qpP3rSsUvsZO1D+wI9+g5nakCknurEb+PKvvomVqzOM9ledVs9nHtoJzzg3\nf2+Z2cnupddWK8PozpywleKF+Y3bZ8D70zaFkPa+7unc61XplJccy4k0ojSsv1VUDMsKYrtjmHtC\n079dkdfFTeqXu8WDcEMzsyH549/5CM3Gdx7EvxdqhG01ax5t/Pjk9ScHv/6KxxRCvB8rua2AXzPG\n/B8v+fs7gX8D3Af8tDHmo3v+9nPAP61e/gtjzG++XF+3kkL5shDi3woh3iGEeHB3u4XPvaHtoemj\ntNzat+wXwj6vJ3uLPLV9kI24SVoqMq04tLgBvqao2xTILiyqCA1m4JI9MUV5JcTEEpMLzJwtGLbP\nSmorYlJ0KnxAQO26FfhRsdVNMK4kOVDD+92C4F9mqCc19A1iaGj2YspEEiceeWGLg8ZAdneGG8Ps\nM9C4VhXrcpu/FonE+WoTdTaEgYRMsNFrESc+/9VdT/JXj32Tg61tQiel5ma0/ISdt0uu/oTL8A5J\nEUIRCIZPNpHaamqrPbi5ppta3Zj2mDDMkNIWg4uFHO1LuvfUGR0KyGsSrcAZGZzYoB0rcTrR5zBQ\n9Dz8WkZjOsINCqv0KDTRkQKntGJTzq4KnjZ4fShCweYDMNpvTZO1U6UvlMUX53UrxmUEaEdMtMFv\nut9aULtuURjpfEFZ0xN7uKKuUQnUr1q1O5EDJWQ1OxHs1dfGYNUaFZi3DeD+EaaTY1yNrhl005A3\nJFlDoZ1qsjUC7xmP0M9oz47xw2zyvcd35jibivaf1AlOeYiRQKQg6rllUMa2kDfRNU+xvIGeC2PH\nPn+6kkRoa9yBsebJCRZqWsLlkwv0kjorWYdh6VMYQWkEh99zBb8oaV8oCLY1MrPPpzesvreeIFwt\naq7Khb/02spS4Awl8SBg1K2Rp5VyoxFkR1Pc1FDbtJG8KA2UhvI7kCWLQOAksO+LhunTBndgGa1F\nYGsWnbMlnfMl7kBXKUCD3zVMnymZ3ZC89513vezg/b1spiwn2yu1PVT6DwDHgZ8RQhx/ydt2qfT/\n4SWfncaSJt+KZXT+MyHE1Mv2dwsR+Ge/zW5jjHnPy37wdWgvF4EDXBqv85En/x1xkVLuYakaA3nh\n7qma39g/XG+SRu7ExWS3eQOBMxA3NICqJgoqssxLmrZ0Y2Fu7kMUms4Tq6gotz+03b4FbPzNNuN7\nfLR3c9/hOUXtpDuJ+HZb6ULWkt8SzjSaET/xU1/E9+1AudvyUvIfTz/CdlKn0HvnasOR+W2mGuNK\ni+RGG6Q+20mNl8a2ZtvBfL2NqDDok6/tGMaHqORk935xQ21phPR3R4dJ13hPhTiXPGuyvKclUzA6\nAOYlYYUowBuKb3NtDc1VuyLYe05GGHYeNOQtg37JsYI1hduV33Jf0RXM+6WtWSAeGloUxN7TTQTh\nx5vWOHjP79oIQ/G+MXq+wDg3H9B9KsQ55dv0yJ6W1SCal98STmnHEmfsxHjz9ei8aAW1bqJ5CMPx\nHzlHe3lgLeH2tLXPLLLxhQXrQbn3a0wJenepm7TWwU5m3uBbn2cjDdHhEu0ZbvrJGJg6pfB2RGVo\nvPcz33pPwToC+QP9rffCVLBacfN9BfA8h4P7p/m3/+rDhMHLU+m/JxG4nDGPeO+fvP6L9D+87DGF\nEI8C/9wY88PV638MYIz5l9/mvb8B/JfdCFwI8TPAu4wxf7d6/avA54wxv/ed+rsVJua7X+k93y/t\ntvoCv/7WX+Q3Ln6aT699AykExhhqTsBPHH6UcVHyR1efoKh+cQL4mYdP0MwX+M1nnmEzinCkoNCa\n9z14O2+fOch//tpJzq5u4ShJUWruPbzIj993N1965gJfOX0Zt9q/NN3iQ2+/j8vXtvmzr5xGCoE2\nhrDp8lP/2wfxLvb4+G98kSzJKwsrw98W91I/cZDfvv406/EQR0pyXfKOH7iDH3zXUf78E6c4c3ED\n15Hkhebewwt84N338KVzl/niyYs4SlJqzZS/xOH0f2F26QlO9z9ZSW4aAs/jl99xlKfXD/Mbp79J\nXORIIdFG80j7B3nkQMCnNz7LVrqDEorClLxn8RjHWw/ysavP8Hz/Gq5Q5KbkziOL/NUHH+brX1nl\n889emPQ906rzU2+6n8tyyB+cet6mEgy4SvLh5YdpTpf8p8tfZ1xmSATaaD7w1+7int4h/ugTz7Ky\n0cdR9vs9duggj/3AHfzxhdM8vbKKKyW51ty5MMNP33MvT794nU+dPIcjJaU2TLdDPvz++xmtjPmT\nzzzHbjCilORnl++Fox6/cfZpBlmKEoLSGH70HXfxZm8fH/3is1ze6k36fsux/bzv3qP8xTde4Onz\n13Ede19va87yk/t/kOfVRT61+jxKSLQxtDr/X3t3HyNVdcZx/PvbZV2KW1gLKyq0+IZUhUqKSKlG\nt6XBhtQXUKCG1hqLrWm1f/mSlNigaFtjW41N29g2hMQQ0iC1wiovSosUFSgquGsEpYAI4UWwKqtG\n2N2nf5wzMKyzO3dm2Z258HySCXvv3DvnubvDmTv3nvM8n+OGO8bQ/HIbC5c30hY/nCsqxNW9R1Ez\nrJK/7VzNBwc/plIVtFob4646j69ecQ4LF73Otp37qYptX3zOIOq/OYzFmzaz9r87Drf9pf61TPna\nCDYc2MOitzZRGd9TNX2qufHGi7Adh1iwopHWOLZTEiMPTmb4GZ/w4vtLaG75kApV0GqtTJh0NnVj\nxvCP+W+wZds+evWqpKWllZGDz6C+/kKW7NrCC1u3H34/D+7fj2lXfoXN2/bx9KsbqagQbW1Gn+oq\nfjr0IpprD/H4xvUcamvNpHHhmuuHc+6Htfx92Wvsf/8jKitFS2sbl408m9EjhrBoVRObtr97+P18\nwbkDuWrM+ax9aQtrXtlKr14VtLa0cWpdX66dMJJ33nmPpcubUIWwNqO6uorJ145iysTRVFfnLUlw\nTJhZojPvLF2ZSp9r30Gd7ZD3DLycSHoXeLvA3QYAXco1XmJpjx/Sfwwef+kVcwxDzKzTZFD5SFoS\n287oTUy6ER2VC0XSZOBKM5sel78PXGJmt+d47TkcfQZ+J1BtZvfH5XuAj9sXls9WTFHjkinmjyFp\nXTmVQCpU2uOH9B+Dx196pToGM/t2/q2O0pWp9DuA+nb7ruhsh0QzMZ1zziVyeCp9nPj4XWIakgSW\nAuMlnRJvXo6P6zqU9wxc0qQcqz8AGs1sb8LAnHPuuGdmLZIyU+krgdmZqfTAOjNbKGk0IefJKcBV\nku41swvN7D1JswgfAgD3mdl7nbWX5BLKD4GxQGY0Sj2wGjhP0n1m9nihB9nD/px/k7KW9vgh/cfg\n8Zdeao6h2Kn08bnZwOykbSUZRrgImG5me+LyQOBPwHRgZaw075xzrocluQZ+ZqbzjvYC58VT+x4o\nieGccy6XJB34vyU1SPpBnOa5EFgp6WSgw2Kb5UTSTEk7s1I0Tih1TMWQdIckkzQg/9blQ9KsWGV7\nvaRlsWBrqkh6SNLGeBxPSqotdUyFkDQ5Vjtvk5SaESn5Kryf6JKzsiPaAAAFxUlEQVRcQhEwCbiM\nMPdlFbDAUjSAXNJMoNnMflPqWIol6YvAX4EvA6NiqbtUkNTXzD6MP/8MuMDMbi1xWAWRNB74Z7xJ\n9SCAmd1d4rASk3Q+IVHAY8AdZtbxlOYyEaelv0lWhXfghnYV3k9oSWZimqRVhKzXBqxNU+d9HHkY\nuAt4qtSBFCrTeUcn89k0G2XPzJZlLa4Gri9VLMUwszcgzNZMkcMV3gEkZSq8ewceJamJOQVYS3jD\nTgHWSErVmze6LX79nZ0vQUy5iZU8dprZhlLHUixJD0h6B5gG/CLf9mXuZmBxqYM4ARQ8tfxEk2QY\n4QxgdGbMt6Q64DngiU736mGSngNOy/HUDMKomVmEM79ZwG8J/wnLRp74f04Y1F+2OovfzJ4ysxnA\njJjc5zZC1rWyku8Y4jYzgBZgbk/GlkSS+FOmyxXej3dJOvCKdhN29lOGMzjN7FtJtpP0F6Chm8Mp\nWEfxSxoBnAVsiF9/BwOvSLrEzHb3YIidSvr7J6TQfJoy7MDzHUO8if8dYFw5XkYs4G+QFl2q8H4i\nSNKBL5G0FMikNJxKu0Hq5U7S6Wa2Ky5OBJpKGU8hzKwRODWzLGkbcHHKbmIONbO34uLVwMZSxlOM\nmKT/buAKM+uJYoyuCxXeTxSJshFKug64lPCVZqWZPdndgR1Lkh4n1PI0YBvw46wOPVVS2oEvAIYR\nRkG8DdxqZjtLG1VhJG0GqgnfQAFWp2kkjaSJwO+BOsLw3/WZnNXlLA75fYQj09IfKHFIZSVV6WSd\nc84d0eElFEkHyH3DIOTsN+vbbVE555zLy8/AnXMupcpuNIlzzrlkvAN3zrmU8g7cOedSyjtw1ylJ\nzcfodeb0RAoGSS92dxvt2quV9JOebNO5DO/AXapI6nTymZl9vYfbrAW8A3cl4R24S0TBQ5KaJDVK\nmhrXV0j6Y8w13SDpmXxn2pJGSXpe0suSlko6Pa6/RdJ/JG2QtEBSn7h+jqTfSfoX8GDM7z5b0gpJ\nW2KK2sxrN8d/6+PzT8Q83nNjamQkTYjrVkl6VNJnUitIuknSfIWKVMsk1UhaLumVePzXxE1/DZwT\nc50/FPe9Mx7Ha5Lu7erv3rkOmZk//NHhg5BHHeA64FnCjLiBwHbgdEKWymcIJwOnAf8Drs/xOnPi\ntlXAi0BdXD+VMMMOoH/W9vcDt2ft2wBUxuWZ8TWqgQGE2ZFV7eKtJxTfHhxje4mQ0743IcPdWXG7\neUBDjnhvIuTi+EJc7gX0jT8PADYT5kScCTRl7TeeUL9Rsd0G4PJS/x39cXw+kuRCcQ5C5zfPzFqB\nPZKeB0bH9fPNrA3YHc+SOzMMGA48G0+IK4FMWoPhku4nXJaoIVT2zpgf28542sw+BT6VtJfwobKj\nXVtrzWwHgKT1hM62GdhiZlvjNvOAH3UQ67N2pCq4gF9KupyQEmBQbLO98fHxalyuAYYCKztow7mi\neQfukuqoEkChFQIEvG5mY3M8Nwe41sw2SLqJcBad8VG7bT/N+rmV3O/lXNsUEm92m9MIeURGmdmh\nmJOmd459BPzKzB4roB3niuLXwF1SK4GpkipjTvjLCYU+VgHXxWvhAzm6081lE1AnaSyApCpJF8bn\nPg/sklRF6DC7w0bgbElnxuWpCffrB+yNnfc3gCFx/QFC3BlLgZsl1QBIGiTpVJzrBn4G7pJ6EhgL\nbCDkyLnLzHbHTIPjCCl63wTWEK4952RmB+NNzkcl9SO8Bx8BXgfuifu/DTRydMd4TJjZJ3HY3xJJ\n+wgfQknMBRZJWgesJ6bENbP9kl6Q1AQsNrM7FepPvhQvETUD3wP2dvC6zhXNc6G4LpNUY2bNkvoT\nOsRLrYyKTbSXFa+APwBvmdnDpY7LuUL5Gbg7Fhok1QInAbPKufOObonVdU4i3Gz069UulfwM3Dnn\nUspvYjrnXEp5B+6ccynlHbhzzqWUd+DOOZdS3oE751xKeQfunHMp9X/JZdC9T1Q7NwAAAABJRU5E\nrkJggg==\n",
-      "text/plain": [
-       "<matplotlib.figure.Figure at 0x11dc84c50>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "import math\n",
     "x_scatter = [math.log10(x[0]) for x in results]\n",
@@ -2558,20 +924,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAChCAYAAADeDOQBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecZdlV3/td+6SbK3dX557u6Qk9QTOaZoRAEQssESRM\nMBaSkEwy8PgYW4AMfoAxFs8YYZ7Rw+bzMDYCBQzIAktYSEh6kkBIAs2MpMmxp3s6d+W68aS93h/7\nVNWtqlvdNaEnwP3VZ3/qnn322enes/baK21RVYYYYoghhnjhwTzXHRhiiCGGGOKpYUjAhxhiiCFe\noBgS8CGGGGKIFyiGBHyIIYYY4gWKIQEfYoghhniBYkjAhxhiiCFeoBgS8CGGGGKIFyi2RcBF5OtE\n5HtF5PtW0pXu2BB//yAinxORtxWf3yoif76dsk+hnUMi0npqvRxiiOcPLkvAReS9wK8BLwO+pkjH\nrnC//k6iWATvEJGWiJwTkT8XkZcV935RRN7XV1ZFpF2UbYnI4oa6ri7KvHtDvr/h2dMi8i4R2fK7\nFpE9IvKRok8qIns33C+JyHtEZLko8xPPzIxsDVX9PVV93TNRVzEHr+qr+7iq1p6JuocY4rmEv40y\nx4CjOnTZfFoQkbcDPwP8CPBxIAFeC7wB+NwWj71IVR/d4t5bgXngjSLyk6qabrh/g6qeEJFrgL8E\n7gd+d4u6LPBR4Fe26Mu/Aw4C+4G9wKdE5D5V/eQW9Q3xHEBEfFXNnut+DPHsYTsilHuB6Svdkb/L\nEJER4JeA/0NVP6SqbVVNVfUjqvrTT6E+Ad4C/CwgwLdsVVZVHwY+D9xyiTLnVPW3gDu3KPJ9wC+p\n6qKq3gv8d+BtA/pVLrj06/rypkWkKyITRfqoiMyIyELB9e/ZYow/KCKf6bt+rYg8JCJLIvIbxbhX\n7h0RkU+LyJyIzIrIe4s5R0T+ANgN/HmxI3n7yu6l7/m9IvJnIjIvIo+IyPf33XuniPyBiLxPRJoi\ncq+IvHiruRSR3yw4/mUR+ZKIfF3fPV9Efl5EHivu3yEiu4t7N4nIJ4s+nBeRdxT57xORX+yr4zUi\ncqLv+rSI/LSI3AN0iryfE5HjRX/vE5HXb+jjPxORB/vG8yIR+VkR+cMN5X5LRH5tq7EO8dzjUtvq\nj4jIh4FJ4H4R+biIfHglPXtd/DuBlwIl4E+eofpeBewE/hD4YxyBHQgRuR74emArTv6SEJEpYAfw\n1b7srwI3bCyrql3gT4E39mV/D/ApVZ3D/d7+K46TPwCkwG9sow87gA/idjCTwGngJf1FgHcCu4Cj\nwCHg54s+vRE4C7xOVWuq+usDmvhD4HEcof8e4FdF5JV9978deC8wCvw58O5NNazhb4CbgfGiz38s\nIlFx76eB78LtvEaBHwR6xWLzSeAjxRiuAT5zqTnZgH8CvA4YKa4fxn3nI8AvAx8QkZ0AIvJG4OeA\nNwEN4DtwO7n3At8iIo2iXAh8d5E/xPMVqjowAa+8VNrquWEaOJdvAs5fpswvAu/ru1ZgGVgs0rv7\n7r0H+GDx+eVADEwU137fs+3i8/uAcBv9LBXl9/blXVXk+X15rwMe3aKO1wIP913/DfC9W5Q9Bsz0\nXX8OeFvx+QeBzxSfvx/4XF85A5xbKTug3u8CvtR3fRp4Vd/11e6nvzq+FKj23X8X8DvF53cCH+u7\ndzPQ2ub3LkATJ84CeAz4lgHl3gLcsUUd7wN+se/6NcCJDWP7vsv0496VdoFP4XaCg8p9Avinxedv\nB+5+rt+dYbp02pIDV9XPqupngW9e+dyft9VzQwzEHDApItvROfTjxao6WqR/DiAiVeA7gfcXZT6H\nI2Zv3PDszUAd+F7cDqBSPP8qWVOMfpXLY8Vao9GX18ARpkH4JDAqIreJyGEcp/6/VvouIr8jIk+I\nyDLw/+E46sthN3Bq5UJVLY5wUdQ7LSJ/JCJninrfs816V+qeVdV2X95JoF+0c77vcweoblWZiLyj\nEE8sAQtF2ZW+7MMR8Y3Yx1PcIRU41X8hIm8Tka+KyKI45fd12+gDwO8Bby4+v5kh9/28x3Zk4N84\nIO8ZsQ74e4QvAD0cV/N08Z1ADfhtETmPI97TDBCjqKpV1T8A7sBtm1HVz6gTJdRU9UWXa0xVZ4AZ\noL/si4D7tiif4cQ6b8QtHv+rjzi+A8fx3q6qDeAbtjFecGPct3IhzqKm31LmP+B2ITcV9b6NPhk5\nbgexFc7iFtd+orwfOLPNvq1CRF4NvB33HY0CY7gFcKUvp4DDAx7dKh/cLqrSdz1IH9Uvzz8E/Bbw\no7hd2Sjw4Db6APAh4DYRuQH3jn9gi3JDPE9wKRn4jxaKkWtF5O6+9Dhw97PXxRc+VHUJ+AXgP4vI\nt4tIRUQCEXmdiPzqk6zurTg58k04xeQtwCuAY4W8exD+PfAjhTx7IESkBKzIaqM+uS3A7wM/LyKj\nInIUJ9J4zyX6+AGcLPl7WU8E6jgOdkFEJnBzsh38GXCLiLyh2MX8S6B/LHUcoVsSkX3AT214/gJO\nLr4Jqvo4boH7v0QkEpFbgH/K2g7nyaAOZMAsEODEYv0Lw+8A7xSRw+Jwi4iMAx8G9ovIj4tIKCIN\nEbm9eOYrONn0mIjsAv75ZfpQwxH0GZy++wdxHHh/H94hIrcWfThSzBmq2sHpaf4A+GtVfdKL2BDP\nMraSreAUIAdxX+aBvjT+XMt9XqgJJwu/A0dszgP/G/i64t4vslkGfvWG5/cDOc6sc2Pdf4EzA1yR\ngR/ccP8TwH/Yol8rz/SnrO9+Gbe9bhb9/onLjFNwSsFZIOjL34szaWwBD+G4RO27P1AGXlx/C045\nt4RTfP51X9mbgLuKer+MUxae6Hv2O3Cc5yLwL+iTgffN60dxIo9HgR/qu/dO4D191+ueHTCP78Hp\nH84CP0mf/L24/2+AE8Vc/i2wu7h3M/Dpoo/ngZ/um/sPFnV+Fcfh949tnXy/yPuVYiwzOB+O1bkq\n7v9YMZdN4B7g5r57ryq+/7c81+/LMF0+SfGlbYmCQ9iIpm62Ox5iiCFe4ChEMHcD06o69FZ9nmM7\nBPwETv64gOOsRnEyyYs4TmUr2+EhhhjiBYRCt/BunMXSDz/X/Rni8tiOVcTHgD9R1Y8DiMg34UzF\n/gj4L6y3xx1iiCFegChs0c/gxDv/8LntzRDbxXY48DtU9digPBH5iqpu6eE3xBBDDDHElcN2OPB5\nEflXwP8orr8HZ0Xg4WJoDDHEEEMM8RxgOxz4JE5z/jKcDPxzwL/FWQPs162DLQ0xxBBDDHEFcVkC\n/nzC5OSkHjx48JJlWr2EcwvLZHb95iAKffLQEucZIoVPgyqB8fDVp5uuN6oxIlTLHu08RgRnWFX8\nL/sRnSyhf+oUpWoi4tiSWbvqNaFAyfdBoZdlSJ97iW8MgfHoJOm6fCNC2Q/oxMmm8dXFJ1mK6f/e\nVKFUi0hESXM3bsGZiEahDwhxkrpxF4/5niFE6LVjRGR1eCJCVI9o9xIEQdHV/+VqSCfPsBt+MxXP\nR9sZWZqvyw8jHxEh7q2fW883BFFAt5OsG7drO6SdpGuTJ2581TAg6aZYu37c5cjH9lLSZG1uVSGM\nAiTwXNsr3x/geYawFNDtxLAyH+KKlAJDd6mzVom4xsu1EnEvxWZ2tVOKUqqVySOfJM3Xtx14GDH0\neuu/V88IkQjdVm+dlxFAuRbRa8esGpAW/8rViKSXYvO137OqEpVDVJUkztb91oLAw/M9ep147XcO\nGCNE5ZBOO96i7WTDb8qNO41T8uxJtB14q7+p1e/VCKVKSLcV93+ta213EtRuaLsakSY5WZavtaFQ\nqoTs3D9BEF5eeHDnnXfOquqWvg/bwT98dVXn5td+13feHX9cVV/7dOp8JnHZWRAXjvSncDbhq+VV\ndbtedM8YDh48yB133LHl/U/d+yg/8/4/J0jXR9S0JUvnmsS5LfX/ei2wECBWGN3guFfe1cIrZ2yM\nop1mhtx6bLSt1LaHPV8G3fB6KMggQZOC5Gx6mVCQBMyAZ+oPdxh9qIMZWU9A05pP+6oGmAFtD1qf\nrVI90cSkdt19BeKpEnkl2FRXryH0Jr1Nrl/hYsbEV1uDxzgACmjoOeLY95Ir0NkZkDb8TW37rZxo\nyW4ai3QTwtMLSGX9DRVBR6sD28Azm+cJ0BNnYW4JtG8gK9UOMKazjQrZ117r6uun0qpIogO+VyV4\n7DymkyCjWzBNI4OzCbbIB2clPgjRFvmjW+Q/k22HT7Ltxhb5A+oxRqj0yrz7wz/DroOXps0icvKS\nBbaB2fmMz39sLapCaffj2w3R8KxgO670f4xzjvg5nIPESnpaEJF94kKAPlCEvHxahwT00ox//YGP\n0Us3h0PuHUg3E2+AtgdWNt3wa+lA4m0Vcrt5ylTBXhhAvAGs4843YkuCZwff8zo5ow+2MfkGYgV0\nDtQHEiV0sA95ONfbRLwB8rI3kHhbD3qTZvOvRZWx+9pbjmVQ27pC8GR9G1nZDCTe5Eq0uLmvqBKe\nW0QG7CC1WhrYBkYGrJigrQ7MLYLd3iqkQHbrIfC9TW1INpg4e3NNR7xfQDve5yOsVTrNLv/3v3x2\nwrRYlFiz1fR8w3aUmJm6WNHPNDLgJ1X1LhGpA3eKyCdU9f6nUtnHvvIQdgDJyEsWW9LNL64CPQ8Z\n8EaHo71NxBsgz836/d9KVS1/C2rlNtubH1i5txkmHZxfP94dmJ82AnQjoVppY3PLjvAtJAM583Qk\nGrgQxI3BhC+az5B8MEEaMGrXJd9sJqxAPO4PbCNoDyaqppvAgLZVBEJ/UxsKBQEf0Mj5Wbc6bxM6\nWoVoAGuq6hbgAc94M8tbEu9BczXE1rBWefDOx7nwxBw7909c0bYUSJ/Hthrb4cA/IiI/JiK7RGR8\nJT3dhtUdInBX8bkJPMD6CHBPCp974HF6yeYV0tbsYDlCttUro5goH3jH2sHERzv+YO5b2dJOZ6Bo\nA2CLl7x8MRnI6Wb1ALztv/6S2mJR2Qxb8gbmp9XBhC9cyDCDp+pJIytv5mYBvJ4dSNykkwyeK9/b\ncg63RLPzpIrreN2JTjbdYDCRzi0y4LdZPDIk3k8BNlfu/9JWQRWfOSgQq11N24GsHT7yqIj8zID7\nbxeR+4vYUp8SkQMb7jeKyJq/ebm2tsOBv7X43y82UbYIDvRUICIHgVtxsaM33vth4IcB9u/fv2Ud\nF3uDvX7VH8zq6hYc8CWRycAZk3gwAy75FjKMp7KL3uKZvDR4DV6JSLJJbqxurRk09i3zg8EzZdKt\nOcqtoDJoz8OWX8ZWC4RsxTE/FRHFk33GH7zQofrkKXKhKB3iySHPcjrt3hVvx6rSexLfT2Fe/Z9x\nUVxPA18SkQ9vkCx8GTimqh0R+VHgV3Hm2Sv4d8Bnt9PeZTlwVb1qQHomiXcN+J/Av1DV5QHt/7aq\nHlPVY1NTWystepUeajZPdBDmg9+nAWWhkG7YwW+gLJqBHLXXkYFb8KA5QJkFl7Se1y2URvG4P5DJ\nT+tmYH5eGkxHsi0IPoDdgpPPQx0sx99qffIH1zOonyvYajGQzA4kcOp7gweYZoPFJJd6CcOttG6D\nIcjAgUu+BVfgzHu2aNt/Suv5EKxatVxJKEKqa2kbuB132MlxVU1w/jNvWFen6qfVRX4E+CJ9oZFF\n5DbcaVt/sZ3GtnMqfUXcGXu/XVwfEZFv3U7l26g7wBHv96vqh55OXeGuwdTEsxYZJK8QwBtMmHqd\nYOD7HpwKBxLfoGcZ9Ob6qR1ImERwGoBBcuixHB3Q36XryuiAbyupDV4NrOfSRqgvtHeHWywGg4Ur\neTCYxGTlLbh/Y9ABi4GIYLdQF4TL+cBFUNLBLLiWAwZSS2shSTcRbAFI84GEXMbHBhPYLd5X6Ww2\n71y9N3DBEbQUDRy3bVQHi+W2bGGIFdRHK5cv9DShQE+91YSLHX9HX9oYM2YP6w/YOM2lRcM/gDum\nbyUWzX/kSRiJbEcG/ru4E9RXDmc9jQux+bQgzlD0vwEP6OBzCp8UupJi923mwv0FoR71GPRKaOiI\nXz8RF4SkG2Jz2fQeatfgzXkuoGs/Kko0r5uI+76ds0yc3qxss9LHcW60BGlYNNi8sPSmfNp7o01E\n2Y4q7V2budugldEb25wvqbJ8pIz1NxPrtCrYYPNMBc2MrLTZmiabBBuazTOrSl4NN+VbT9HAGzRs\nvKXEzckGIm7iDEk3E0UbethGeXMbpQCWWpuJqKpbDJTN92oVKEWbCWl5sJ2ceB5ea8AikVu8Xrba\nXn/bRBGYzXOlAkTB5nFUBhN8GBL3FSzNXflgiRYhwVtNuNObjvWl397wyEAp5KC6ReTNuGMF31Vk\n/RjwUVU9Naj8IGyHgB9W1V/FnRuIuoNrnwm9y9fjzgL8BhH5SpGe8lFtISG6N0ELIr5CyM1JnzDI\nadS7BSdezKUBPNCyMxvQvj8QWgtV8tQ4sWbxSDIG4b0l/PO+I+IFIc92J0TLUJrDEfGCkO88OEe5\nnTP2iEUyXbPYMC55XVYtUla/4hx6+zNsRVFZI+R5yXLxpTWaV5WwBlasGSVMiCdllYivEOxgMcMG\n0N4pWLOW7+VgUuH8y+pkVYP11ppOa0Jn0iOP1nep8WCPrGzJKvTNEbQOO4KsvllXXjJFPUPWiFyf\nVoZWEjrTQh55rEghVu6Z0xcpX0jw4mLCi0mXboyJ8zUiXuSnJQ8tR2ijsm7cWnIyKJlZhDxfMw1U\nReIE6SVukehvQwSzbzdUK+uJ+MQWBspxipdavFZWWJ6sLcaSWfx2urZQqIK1aKuFjtTB99aNm5kF\n8qkRtFpal29HBp/aNiTeaxiZqF3xNhShZ/3VtA2cpu/0KJx45OzGQiLyGuD/BF6vqiuyoJcCP15E\ngP014PtE5Fcu1dh2epSISJkVvZg75/BpC59U9XM8gwr4XkexKrA3QXYlyMUQbXvkmVL62whujwnH\nWsSJT5p65KmQGGcWqGXrzL8yKYiToiq0l6oYLyeIUoxR0qpQ8oTw/hLBY0q2K0Urii3l5FMZ4YxP\nuCwkdcgjyBcCXvGar/KZv7iV8K6AeFSIRwSLkowb/E5BxE0h7hAgMVCzxPszJAZ/2YMMbATaE2a/\npsbijVVqj3cJmjnJhAE/I8YnHoVoCfyuElqh8XCbpeurNPcLfsflk0HtbM7CNT7nXjVCuJhROZtg\nMiWLLIHn0Z30MZnidyySQ+VcTtDKSUaFtCr4XSfvFWNoX2epPuRhUuN2GmpRX5A4Q0s+6VgZSXNM\nkqMGFm40lC9aLG7lkNw6OjqzhOyfpjybYX0hrRjUL+TKWYYnoKnF+s4e3SQJaTUgkAgph0gvQZMM\nWwpI949ROj6LnJuDUohGbjcg7S4Sha5vRpxNegExBm/vLjRJ0eUmmqbISB2dX4ZOdx3l1Chw3HYC\nZsG6XYgvTrTSTREj+K0E9cT111rs3CJeow6jI5BlECeotejcPGIVOzmKjFuk2UGzHC2F2GoJ0+mt\nd7aKfCR+chYtT1av+kJBc/HJWQ89FVgVelsppgbjS8AREbkKF93xn+BOplqFiNwK/L/Aa1X14kq+\nqr6pr8zbcIrOTVYs/dgOB/5vcCFl94nI+3GnWr9jW0N5FhF2QvKk4Jg90N0JeqRL9xpL+Dch/j0B\nkkHJz6jXYqphtioHR9TJwyOFaOVtUVQhzzziToluy23XW3vBBkAihCciovtL+Ccikhu62LEMjBIu\nK5UZOH7PPl76inu5/evvJ/QzKksZIycso8ctYpVsRYRnwUvBS8BrC3SKhSWEdCon3eVcNtMRi3qQ\nlYWlo1VmX9IgjkLY1YNKDj7E49DeY1g+FFE72aP+WBexkJWdM053t4fkysjxDCwkDZ/FG6rMv6hG\n9XiL7rh1C4ovpA2PZMyjfaDMno8tEi7lSG7JapCOgD/jMfcK6B4AG4rjxAOfvOzjZRYTuy2KBh55\nLUJLEXlZuPD1BuuLE+MEHhp6JAdHMHc9DGmGiXOipqW0YMlGy5j5FqQ5Yi1eZvESi392kWQkICt7\nqBFsOUJHqhCG5JM1kn2FXLuXYJZaSKdLXvJhsQlWkcxi0hyT5mD6dg9hgJkcx9u1Ew19OLQXSqV1\n9vFqgMw680BVvDjH7+R4yz0kyyHOEFVMZvHjHK+bIWmKPX0OzS1qjOP26zV0ahR96ARkmdtJjNXR\nqVFMZsn2TbpdRl/btlK6ou/RCwmV2pWfCwVSvNV02fLuTNgfBz6OM43+I1W9T0R+SUReXxR7F+7o\nuz8uJA8ffqr9uyQHXsipH8QdSfW1OJL3E6o6+1QbvFLIuwK+IUtBjOJ5FhHIA6E7ZSh/ukxwb0hy\nLMbuy5FEkLZBa9YR8WzFkkSdhUqfJcqKCEXUWYk0D0LQgmhBMSlo20BmiG/rYhY8gsdDpOnRNgF3\nP3iIf/DNd3LLsUf5/Gdu5LFH9mBTyE6XmbsqJBkRvJ4j4CgES0JeAdoGAoUVM0gLeJCOWUwseF2Q\nHGxqMFaQPV3oejAfQOyhZejsiWg80qFyNqZ5qExvKsR60NzvMfpIzuQ9Kd0pQ2/CQw2MfnmR9pE6\nnZ04jr3tvELb+0qM3t/kwIfmaR2IWLipTFr38JYFvyXMvE6JLkDjToguQBYJ1vMJlzNMZskD4wi1\nheiiobPPcupbDfXHlPoJRTLo3riL0sOzeJ+/D7tzDN07BWFAXgkBxZtZQksBtlZ2Yog8xyy2icer\npFlAuJRiEidmkZ4l3TVCNlYlOLeEv9DBekJyYIzyAxdgdgHKEZSdx6bjagcoS3OLeB56zQFkuY3O\nzEMvRiMfAuPEOrmixa5AUezCEmZ8DDLrQgb4fTKqThd7/AQy0oCRBngG3TmOnJmFux+B8Qa6cwIC\nH4kt1CLSgzsw7RhvdhmJUzQKsI0yptndFAbh7xvy7BlyQrgEnAjlSXHgqOpHcUf09ef9Qt/n12yj\njvdw6XNngcsQcFVVEflTVb0Nd37j8xbWVzgdwf4eipAVJhvSM8zf4LOzneHPepQ/6tjeeEpZus1g\ng4LzXrG0UCfWyCNdERqttrH6wgikdUgLEWk4JwT3VMhe3MaO58STXZffVT70sZczPbXAjqkFvvNN\nfwlAL/H4tZ96E52qT3eHIa/Iql406CjhvJCMA6kUmgfcIpMLeGAjdd6lgOkKyXJINBpDJUeqrqa8\nbVicqxEu5/hNF68EIC0bnnjDGOGyoXLBUjvrEoBYYfLTF5l99Q6yqpDV3NhNBy6+dIydn1+gdiKm\nfsJJ0OZuqxN9IWLxG3rE0zBT8BfhSaF+R4AXF9xynEOcQwWCZkg0J8QTsHijsHije2bqrzyar7iK\n+l8+jjk7h5ydczduv47eVROUj88hvRS/CIzV2xER3nGc+BXXY0sBvR2OG/MuLOEnvls0Sj7JoUkS\nnIgqDwVvaYTw7BLS6UHH2RHrgZ1O/JOtBQIDYKGJ7hhFMmCkhhlxMldbCcgij2ApBquOiwfySoTO\nL6JRCamWMTEQ56gqNvCdiWNuXZn5RdfG9Qew1x/APHAC5paQuSWXf2AvwbwhnahgayVs3SlUJclI\nJ2qEj56HJF37TXoG8s0WSQoQeM4CZ8C9F7JopT/I1pWCMyPcluz7OcF2RChfFJGvueI9eZoo1XMk\nNciJMiz6q8pEUUVFuPCSgOVDHnnoFIDqKV4jwSx5mELOvOI5GZ313A/b9GsYdUA8DpfyCCQ2BF+q\nYs6Erq4cqOYkVfjN330Df/HZYzRbZdLUQzEcfdlxph5JGHswx29Zt63PlWw6I2gL5QtmTclpgdC6\nz9m6LhHkFnJDvFQi73lrerNAyRvKxdtHWD5SJY8MakCNELSEpSMei9d5pFWnALQGOlePUX+4ya4/\nOU35iQ7kiiQWSkoyHnD+VeO09xVKVA/ihiKpMP4XJSoPe0hS9A8FETq7SsRjAdYTJx7whN6UpXzO\nUH3C4HWKseVQuZiSHJ5k6duuJ9034mTUvsEkGbYa0Ll2inS8UFgaId1ZAwPlT95L8NA5SDLIckgy\nZG4Zr51jYl1VWKpR2nugd2iC7rU7nUinqMtGvnPxDz0wsqZMnFt0liORD95avqqCEdLREnnZX1XU\nauCTT49hz55DL8w6ebotlK9bmCqaM7Mw3sDeeg06MeICcRkDmRNXBbNtTCd147C6alaZHJkm2zmK\nesY9IwbCzZY/COhIbXC4hRc4wvKTs99/KrA4GfhKer5hO0vLq4F/VkT2asNKpFK9+Yr27ElitDaP\nrWeYpo+ZidCZEHxFjSXoOBvn5UM+y4c8vBjqI22nNGqHSM9gep6zXFEIFpW0acnqToSxIkLxShlZ\nN9gUGEt9Ja1C0DL4j5XQ4xGESnBVC/OSJtknxvjMF27hs1+4hXqtQzja5U3f/SmeuHsXzFWpXvDI\nAye7P/sdlrye4y17lM97zhLFg/S6hDQUSAySryhbod7owHyV3riQdUOyrhO5SOqsWaoPhbQOlmkf\nKGMSiyRK0IKsKnQnPbo7PEyiiIVozlA6XaV0oc3uPz2DDQ15ZJj5gZ3EYYW05jN/2wgLtzQwsaW7\n39LrwPj9Qu2ekOq9ii2B18rJI0CEZCQkbQRIrkVQLCVcgmBZCJd8Z1powG/GRIsZ8WSN5W+5Hkly\nJM4oLeSECwnZaEiyf5Rk7wiS5dhRn8VvPsLY/3yA8P4zBA+cQaOgEHsY7EgVDx+TOvdS04P2tEd5\nVoEq+UTVydVzS9BSbOhhkhwJ11zxJc/Rx8/AwT1o4DtxFs5qRdWNz1ZCbCUAq25hO7oXb66JXV5G\nlpbBc4uCHDqALjehF68zMTR5jp6dRXdPoDcdQvPc9evsPGotgsFvxmgzdotLu4OM1cjGKuQ7Rsh3\njLiFq9klbKZIlhXPrfw4QaslpNVF4w0xcHwPzQY7ur0QFKLtZ0GJqSqkennZdz9E5LXAbwAe8Duq\n+isb7r8d+EEcuzMDfL+qnhSRW4DfwsVnzIFfVtU/vFRb2+HAXwccBr4B+DbgW4v/zytcN72EhpDV\n7JoteCZo5BRNwZKTGYOQh0JUythVW0b2tqGagzgOWxSyilB5JCC6aCB3z4mFcKznmPKc9eZ/pRwb\nOrGKNTjzQkUNAAAgAElEQVSWNjaYHph6jvnGRZjIUAPL3TKz3QZP5GN81zs+waGbz+D5OSWTUrIZ\n3qxHejAl25G5cYhrPyolECps8IqsT7UxiSGc9ZAUJ7vPBVJBfaV9fUJes6iBvGzQyBC0LOWLileY\nx1vfzUl3n7J0bCedQ6POK9MqXienNNlBS+osYcR5bGYVD42UtAHzN0BaxrnJx4LpOQXeyq9LxVlj\nqGcIl2D56pxkzJlJOtM7QKB2KqFyMXWWJ57BVkLau0P8Xka4EK+KCNT3MB0lna4x/91HSSfLzqIk\nz0Fd3BHvrodgsYnk1nGtucXrCrM3Ct0pp4i0kYu+aOIUW/KxJecV6ThaF/9F5pbgsVMQp84k0a6J\nWtYgYIxLUUDy8qPYyWIXgRa23j6ybw+M1B0nvhJYa3Icc/IccuK8E7EoEHjYdmdjCy58QMcpSv3l\nnnMaAvCKHWOSOlPFIFj7eQpucdk5htZWTC6LHVFlsJ37pYj38wn18SvvyGMLGfhKuhz6XOlfBxwF\n3igiRzcUW3Glvxn4IM6VHqADfJ+q3oA7d/g/ichWQXiB7XHg71TVt2zo5HtxNtzPG3RIuHbXAo+c\n30UaOKIgVtg5scRCUMOcKhEuFzbRPsSBz9ftOMnF7o1k0z00E6cEVMiTEL9jKJ0KKJ1RZ/3hQ3Cw\nS1pOoRugBdEBGB1ps9RzAvF0RBzBzyEYyQj8lF4dvNcsok0PnfWxBv5q7giH9n+B1/3Q5+k2I554\nYJo08Tj76EvJpyzZ7oxsd4ZZMkgmhIHihxkZPgRSLCJCKoadh2a5+Pgk3gUfGyg2ULy2kiUBdiql\ne22KxILXEkwPGn8FWcVQmlfUE2f3LdC6xlI57dG+boLOkXHCmQ4mztFqTjiSkCyF5L5xC2Gh0KWc\nkYrP7K2C31KCNpQuCiOPdunsrbpAW0WMEFUonzeko5b2fktnDwRNN1/5AxD0oHIhpXwxJal7qC80\n9/p0p3zKMxnlc11s5BYCISEZbZDuqDL3lhfhz7QJLrYxrZTal85gkgz/3uNoFKAjNQgMwW2HyavC\n0hFh+ZASLYDJoPpwDFGAjXxs5DvCaHWVu5HFJrr4kHP4KUfIxCgSemtxzVfKWUf6NArIbj/iLGBm\nm5BbgsjHpDkyvQOmJqHdQW0OjRoyG+GdnUXPzqCjdefYoxZdXIbRBmL6+Kw0RU9fQPbvIliOV00V\nVcHOzWP27HKLxKpHqrOWwfPRiYYLxNWN3Y4o8vE6PTTL1hPswEfTbBMRt5UQs4UXqqquO8Th2cDy\nfPuKt6E8aTPCVVd6ABFZcaVfjYWiqp/uK/9F4M1F/sN9Zc6KyEVgCljcqrHtcOA39F8UK8xt23ju\nWcVsd4oXX3WCI9Pn8YxFwhwbKbvrC9iRnGR3ioo6s68E2p0yvlhet/8+IpMShilSz5BGSm26TTzh\nRBeoECx4RDMe/kMRld1N/Ko7acVx7MKeyQWo5gWHqljfcatGFN9YQs8JrqWeYa6K0d0pF7sN/seZ\n2+lkAaaace3tJ7nxZccJdvSIHgmR2AlW7agln8qJuwG1RpcgylzDvlO8zi7V2Xlojp0H5xBj8XLF\n7xiiBcH0DGYhcDHJAyWbsMTTlrQK9dOZW2hSxe9C0AHTNSzenJLVFBsI8XSV3oERuvMVqoeWCMdi\nMIr6igagqbjdS9WNL6tBd6fQ3uPj9SyVM06OjsVxnL4gmVB/xO0WVCAZU+JJZfmwt2r4IwrRck5p\nPqM0ryxcW6a7Iyjsvy1+JyM8vUjYVoKmWxmyiQrdG3bQvWUXBGt8icQp5uIC3swS0YIlmgFyJ/vu\nTQmdXYLOL+Etd5FVDt/JvdU3q0RMAGl1kJkFpNXBZIV+oN8hKCtk7isy8VKI3TuB3TsBucVWQzcP\nnoFGDTM64ojeVXugUkIQzEITc34enRzBzs6ji8vOXrxwSFLPc3mnL7i8JMOLcyQKnLjt9Dk0z12X\nShFEEbqw7HQE4BacSgltVIh3lN2CEfjrnIi0Mvg0CFsbHG74uUJjbLCz0zMJBVL1VhNX0JW+HyJy\nO+5Ii0uGXNySAxeRnwX+NVAWkZUgU4Jzq9/oPvqcY2a5xEijxLHDx7lx32keOjfNXLPOWLfFiydO\ncpccoNuw+Asepm2QUsads/t45e5H+d5r7uBkc5zjyxNk1iAVQ+tild6kYBJnlWIshKdD5MVdKvub\n5IlHMh9hE4+wljAx0mSWOmnJw8RuB2ADperHQIRvLGlusGpQY1lqVjnrj/BfTryaw9WLXFc7T2Qy\nwn0d0nNlwgcjtGrJJnI0UFLroY2Y2kgXmxt6nQCbGzQXllsVdl49y9SBeWZOjdFeLGNiD3O2RHuP\ngThCyzlaspDDwrWGnV+yNB5PyapCUncKTq/lkTYsS7dm+E2hdM5gEsFmglpD/fASdm+L7oUKeddD\nukKcC1LLnR16x4PUID50pyIqF3o0HlkmbQSkdZ/cE+xYgNcTRu/zSBvqRCkeNK/yGX0oL5Sga/A7\nirHCwvVllq+KqJ1J8FsWKx7+mQXYPUbQNaQVsCGYdkb3hl1UvnJ6lSADaG6pnstJGobSjHOMyosz\nOLTdwoyPrTrf5KE7WEKjAAZFvMudItFkFrLCucgTiDO8XMhHw1XOfNUEtZeh9QhbjyCzSOKsUwTn\nms+hfWgvdorTJEXHG2htHjszi8wvIqMNF09lRYg9t4guNmF8BOoVKAWk1+wmvPskPHYC6jWoVR1h\nnp1HRhtO9LMSWEsgrQeUfAMjDSTLnIlkbrGVEl43QZN0/TlVeU66o05wsbkuGqSuLGLPMgfeaT0b\n0QiFeL3oZFZVj13ikafiSv/KDfm7gPcCb1W9dAzbLTlwVf33qloH3qWqjSLVVXVCVX/2UpU+F7AL\nZe68eIBOFhEFKS8++ATfeNN9VE51ePXuh7h6ZIYgyMgmc5IDKd7+HqdaY9w1sw9V4WBtjtfsfZhv\n2vsguuyz8+hFxHOHQaSjzkGmNy4EH6tDLHheTnl3h+rBJjN5ha+5/lEa1R6en2PLkNeVZQ2pBzEl\nL8WIEvo5pSBjtNwjzwzNZolcDQ+3pvnIhVv44LljhNWM8s2LiKeYjiF8IiR6LMJfMizPVlErGGOp\nNmLqY11Gxlo8/MQ0nW6E8S27r57lyLFTjF+zQPWsUpp1dtam7eHNh4TnfdIRYe5GccrDtlI9n1M7\nm0Nk8S+6aFNZTWldm7N8U8bodJOlx0axmUHCnNrBJiPXLzLW7KItt4hgQOo5Mp5iR3LiiZB4zFkJ\nBEsp1dNdyue76GqQLSFYNtROetSPe/gdw9lXRuT+WpgAVwoapy0md6Fzl46Umbu1ysJLxyndfQpv\nroWkOWEbSgtK+WSL5PAkvWt3OAuNoh4NDSZXGifczsPrQrgoRAtC9/AIeuIUmjkFot9N8dsJ+e7x\ndU40q1horrv0MosX53hLbYJejtfpU5IYnBLT6loQLN+g1RCtRdjIWw29IKUI2TuNHNqH+AH2RYeh\nXHIc+Ow8evocNuybnDyH2QWnaD15Hjs9SnZk2snemy303AX0/EVsNURPnHGilNw5kUluCRdjmlc3\nUF+ckrZWhZG6szWfHHFKzr7hm4vLJPvGyMYqhXy/rx9b4ErKzaPSlbcKUYTUeqtpG3g6rvSISANn\nsv1zqvrFyzW2HRHKn4lItaj8zSLy6xsDkD8fEC+HpJnP5y9cxf2Lu1hOIzIrtFsBs3eV+fb9d/Fd\nV9/FwfosocnwyZmotLl3fhcfOXEjx5uTxLlHbg3t+xuUGzH7jp1hZM8yJsgRY+nuUrymR+lDDfy7\nykjTQAatOAQDr77lXm679jgjtTaeydHc0E4iRsMuE6U2kckQFBFlz9gCcS9gbr5GtxewYm0Wehn+\nWEr1JfME+zpImINR/LbB5obF2RqdVkSeSXF4r3Pzv+eRfTxyappWJyLPhVycbLvxuDL+kCVcdFt8\nk0P1JLT3Gc6+0qO5X8gDRzTtWOYUomdDvBXTSgujoy1saph7YJLW2TpZzznlhDPOocl2DLbnrQUA\nE7CB0NldpnWwSlr3nfeiFPd8nNWNWdMDV85BPG544ltLLBz1ycpFREXfxQQfOWGpzCgmcWKKZEeF\ndDKi/NePUvnbE3hzhbdmnBEen6V38x6ar7mWdN8YNnBy884Oj2jRMnF/Snk2R4rgWe1bd6JJCg89\nDhfmVs3/8umRgQc35CZ37vXCOrNDtRYuzBE0U8LFFBPbNecwwKQW04whzlbNG7NSsQleOS951Q5U\nIfDJb78Oe90+FyvFiCPoY7WCE9d1Ihx/KSY7NE38ddeS7xpDfQ81hvzILrTTRR887gh+6ixVotkY\nW/ZYvmGU7u4KeWhWzT3xDHbnODrWQH1nKilxipltEh+apHftTvKG65MFbLe37mDiZwPPRhh1RYg1\nWE3bwKorvYiEOFf6dZ6Wfa70r+93pS/K/wnw+6r6x9tp7LKn0ovI3cCLgJtxbP1/A75DVV95yQev\nAI4dO6ZbHWr8j97/Ph46e4b6DUvOoqR478aeWCJ8V5PX/PYpSpMZXmE6eqY9wpdb+zmxOEE7CVhR\nWalC5a8rjFyzSPnaJsZfm5/HH9qJeTxi9DHWnY4z9u2nmRsL+Nrpk3jGrooJjz++k1NhjUNj8/gm\nX83vpj6ByXng7C4WO2VsX5zYA7tmQSDO3WnyK1i4axzNhXjarlt2JyeXqJViTp3cge0739N0YfRe\nobzgTARXasoDN8aFo25X0R+7e2zXAs3zDcy8j/SxXnv3XyCcjHnsgb3r2pi8KyZayHji20JsyKp8\n1GvDyIMefmHHvlKTFehNwApb18/bVi/ktHcKrf3Q77E89lWlMrd5X7p4WOjVEvb/Pw86V/WVmFXW\nYg20vul68pHy6uELqkrSgOrZnNKGMzbnr/HxT84y+uknnFikQO/l16NqKX3hEce5Fvmto2NUTrbh\n+sOu/hUl4/wy8sAJOHoVVMqrxF9VnZv9gFetu7eO30rx2+vFFWklwJb8tdOWVsQTWY6qxf+b+1dd\n9gGS6TrRxC7iXVX33MqPTRU6Mf6JGbyTM+vESnLj1aS1gM7B+rpTncpnupgM/Fay7nuy52bQ+UWS\nlx91QcOK8clCi/BzD+I1aogfIEXbCuB7LrzABlxK6bldU8Uf+rffyXf8yNZOjSJy52XEHZfFjqMT\n+j3vWzuE/jdv+8Bl6yyC8v0n3C/5v6vqL4vILwF3qOqHReSTwE3AueKRJ1T19YVI5XeB+/qqe5uq\nfmWrtrbDgWfqqPwbgN9Q1d8A6tt47lmFVzPknYDmPWOkCyFqQTPBHPLJA49PvHk/x/9khLQjJC0h\naXssdsscHJtjut7EMzlGLEYs8b6U5j1jLH9xkmzJRzPBJkLQiIknYf56iOsrJnUwGbZppRF/dfYw\n59oNciukuYGekLcDji+Ns9Ark6us3pvvVji65ywHJ+cIvAwjFs/kzC9VCb2MSpBgZJUtI29YvI6h\ndMbDdGTVAaYb+4RhxsGrLlBvdBBRjLHYsiWrQndUyFZkvUV/43EYvw8aj4GJ1UVKzJTD47PIeEw+\nnaChdUoxo8wdH6Ux2uG6F52kMdpGxGK8nKwGQRMO/GlC/TEXcdEkzswxj3AhaP0+i8t1GsH1lpgA\n1fMw+gj4LYrgYpDUBr/KpgvZWMjJt1/P0m0T2EDIS4Y8MEiu1D/+AKX7z7vAT2mOJDlBC1p7PFp7\nCrv7woGpei6ne9MO5v7RNcTTVWfZEXqYVLHjNbqvuJ5855pzUbKrivVAvvowXFxwoonMybRVgPsf\nh7MzheelM2EcFF4XnFjIlgKyRuSsSYp5Mmlhn72JMweCgOylN2L3TjoxkWewoaG7IyA60yaY7zl5\nt1VILd6j58mu3U168wFsNUI9QX2PvBoRLSbUH1nCb6ZrMWKSHDxDVo/QoC/SpOc5cdVf3o93csbZ\nn6e5+w/Y5Ra223UiH1X3v14ZfJDHVueDyvbtzCv1wWaQzyScEtOspm09o/pRVb1GVQ+r6i8Xeb+g\nqh8uPr9GVXeq6i1Fen2R/z5VDfryb7kU8YbtmRE2C4Xmm4FXFFYozzuXpF6akY5YWPLoPDKKeBZT\nygmrPlf91BIz/8rw5Xft4O53T1I/kJLs9zn9j0dplGImK22mqm3izMeq8GC8g/CcT+90hfiJKl4t\nRSKLuSrGb8SkRCzcIJhEMQnMRREvGj/DV+f28uWZffgmp+ondBZq2IsRpdsWudhtMNOtE3oZJUk4\n32owUuqxZ3yRveOLdJKQ3Apffnwfo/UOpTClHsVY67aoi9WMrOrjd4Ty2cIBxlcIPZq9kEYpYffu\nBfJ8kTT1WVou09xfp/GwR1IV0oozbcwjpbsDoiWldgZqZ3BhYj0YOdZlrNxhnipZ1ULqTPziR0Nm\nHhxn6tp5rr35FGnikcQBc+1xshMRfidn119l5F+EtOEiCc7f5FE9K+QhSICzqDFaUKfiS+uXr9Yy\nbDMgWoBoEecx6wxo6I1CaYl1HKyXO0Kf1QMu/uMDzLxhL+FsTOlUzNQHH0OsUr77DKV7zpKPlFDP\n0Hv5dWRVj964S17sdiejD8WEix7xvgYzb7kRbznGtFNq8yEmVmy9RPy1RyDJMO2Y5HCJmX01dr7/\nYczxM+iJs1COyOohgQEyhTMXXSq7OOD2tmswvcwpMPt/uNaSRwJ46Ii3GiDLxJlbfCK3E1uhd+oJ\nXi8jr/jYowex1+6Ddgw2YfG6KqX5JYLFmGAhRotY7XpuAbt/CrtrjGTPONKJIcnwjU9eCvBbKY2H\nlrCBwQYGUSdW00pAXo3WvEBni7U3ywnuO4X/wGm0Vlrnwq/dHnm35xyYBGR6Agl8NMk2KUQR2cSF\n20qEaceXJ+ICS730cqWeNlSFeHthZJ8TbGdJ+R5c+NgfUNXzOJOYd136kWcfFROQV5V01HGO1gpZ\n22fuVIPgWmHnf8zxpxUrwuJjIcl5j7Kfcf/ZaTpJuCp/Lvkp1UpM60Ux6YQ7HSfr+KRzId6jJcKx\nHsFYD8SZCmY1eGxhin31RW6beoLQOGeMpaREEgja8onvHHVy4kzopQG+WHaVl7nnwjStOMKqUAoS\n6qUYeh6nL4zT7JSKMNOKJ0pttEM2aknrzgFGLJhYSFsBiQ1oJpGzYDNKFKWEpYS8AstHrLPzLuTJ\nNnLc/MIRIa0CgjMjbMLj53dw2+5T7Gksuh1BmKEli60qF++b4sK9U+SpYMRSqfZIDqeob7Alr+Aa\nIZpTyuec239rn7MMcS78jiBnFQaevFO5ecmZ+rgh48VOvh42LfGIoTvmnE9swbn7LcVkgt92uxEN\nPeLdFeKrRteZwYkq/mKXYKFLONOhcsE6ByZcbJSsLJg4Y/SRlMpFdypQXg1Jp6tkFQ8v1bUY5YGH\nHa0g6hEfbHDxTdeSNUInhur2sKGQjVXWs5DdGOnFSJyRjZWxkbdu5xEsp2QVQ14qZOmewfpOx+AV\n1iqoM38VdUpRyRWvU8jRjYF6GT83eEtdLrx8lGTEX42YKIlFJkYJv/gw5vwiWC1s46tIruSNaHV3\nIJl19arFS/M1F37BiVgif93QxCpmuYtpD4gunTvOXOcWsRMjUI5WdxeKI/SDtiS2Vt4WC66eR336\nkj4uzwgUIbPeanq+4bJLS0G0f73v+gng969kp54KujaDHPKKkldyTE8wGQRZxhNf3sXBY2fZ84Gc\n+F6I7xNkHA5MzXHfmd08eG6aUpAyUu4iYqmGCW0/onM0QRIhmPWQVCg97mHaHuFYTDAek7cCbGro\n5QHH56c4NDbLnoP3cb7ToJmUaGuZE5W92GZA/PlxzEiGGU2Ja8o/uPUrvP/4S7hvZhclP2W01MUT\niyQGLVnOz44ys2CpVXpOrh7k+KWMlICsCl7PcdR+LaPXDaAMSe4RmBzfWMaDNvNRnUxDlo5a/Db4\nLeedaSdTTKfE8mGDiZWw6RaECxemuHrPBW7eeYajO85zrtkgznxOz06TL5WZfXiC+cfGaOxuElRT\nWlIhvQZGHnFHqEnuOLV0BEYeyVi40ae13zkPrcjDk1HF7wpShHZZeVnDw128r+TYNmj/VjWy+D1D\nUheShhC0FZNBVreES0oyIgSZOFGN5+YkObqP6I5H15u6oUTnmqQTFSrzzq0/K62IKywaKo2TGbUz\nOb0xgw0FLy2UqKliUnVtGCHoQNdC72CD02+/hdKJZcIzbfBD8ALGPvYwkjkxAoCqxevlZFFAPlom\nt+q48eKUIJMrWdUjq1CENVC8lnN+8tIczaxTLBpB2zFZrYTfU/xW6sQhnnPsGvnsE8x+93VcfNko\nfjOjNJMiuaV+0iAzC4R3HUcjF6+F0IfxCfB88npEXoswvXTN2zMKV8PtauFFu9Whphp4TowySCoy\ntwRTY9jxhqu7G7sDLuYWIM9R8dZx4Zpm5GM1vIX2qnx/U3siZFMNli9u6d/yjEGB5Ely4E/Vlb64\n91bg54qi71TV37tUW9sT6vz/zL15sGXHfd/36e6z3v2++/Z5b/YBBhgABECAC0iRFEWRWquiJU5K\ncRQndpwocaq85Z/EiSIn5UpZslKxk7KilOU4jksulUJHUomSTFKkRFEiCRIAQQADDGafefty313P\n2t35o897M4CwDChuv6pTBdw35/bZbp9f/37f5dsUQogfEkK8IoS4LIR4S+Hyt4soFo5KXvVLTGQp\nmxZ5LGX78iy3vr6I1QL/QUH737c0f9DSilLuX9xCCkNeKraGLTb7HdQVn9nWGCkshIZ8WZOdKMl7\nAv8LdcRAucmzWRD0MlQBT98+wY1BF2Mli7Uh93e3uXDiNiZwBsMWgR74lDdqJOt1OmHCT598Bl+W\naC3YHLdYG3UIGjli6MS4tJYMxjX2hw0mScTM8oAgKhDKoGuWsgn1ekYy9clSH2sFufZIyoDjjX2U\nbx39HktZt6QLlnLRIGNNeSzHSouOKp3weYlOFV/4xnmSPEBYy4lOn/tmd2gtjtBt40oaWnJwq83u\ny7MUw4D+wzA85ej1xpdO23tWEu9bui9p0I4ZmnehrIOXQbJYOSbdJV8w2K3T/nc2kC2N9M1hmZzp\nSUu8p/FSN6EVdUHWkSSLhmAIwdA1lGUBKhMYX2DmWxQPn3A168NmnlIIIam/vFMZTBiCCYRjN443\ncU49srTUdg2NdY2XWMqa0y4HV5NXua0ydY7eQOnJNsMPLpOf7qIXmgx+4HSljV5NTqFHOqvwhlXW\nKQSmHmAaIcliQLQ+dVK4gAkFuqaqSdkeZd+yNMjCoHaGmMhDxy4bFNqicoNSHsF2wszvvIooNDoU\njE/HjM7U0I0QHjjlGoqFwbuxg/fqhrv+uT7qGprYdyJfw8qq7LB/WhpUViJf71hUhY0DbPzG5B86\nDeyrN6AonQREI4ZWHaRAD0fYsnT18kMy1E4fPd/BtGuO8n/3OFUfp1zsYtp1msa88ZjfwrBWkBt1\ntL1d/EWo9EKIGZz/wntxjM6fF0J032q871px564T/UEcdvJpIcRvW2tfeus93ziMlyMUiEJgS1x9\nWIIKNP7xCRsX59m7NsPCfTu0l0cgDX6rpFuf8sSpG+wMm+yO62gtEU/H+GcHLPSGpLnPJAlcSWbW\nhw1F8IcN7KymPJth6wZVCMpC8Ge3zvDSzpTzs1vMxBNKKzl+fJubN+cpfIXM3URTItjIO5ys7/E3\nzn+eFw+WeOlgmdwoRiqiGIUw8MG32NDBCNPUo92E3soBReYz7sfoQuH7mkiXTMYhSeITxwWepzFD\nyccWXuQzWxfIPN9J02qwwlCPM4ZGUpxOkcNKjdEKVAZJEPLZZx5moXvAycUdoqDAC0uEbylbFlHe\n0SK3FSlk/3EYnoP2q5ZwD/IZN2G3XzLEu5bxiiSZE1gNtX3onxdMVi3exJVusHCw0WZmdUjvZ26T\n34xJXmihx4p0FRqvSOqbblLKWhITWPzEUM4Ywj1JMBLkLSgj10Cd9gR108PMtlG3dlFbB66EM1PD\n3xjQfHaDolcjn6u5zDKwiKxy0fEkJlBOC0ULsJKy7noBKqsw1BbiHU0yp1xpQbhzEKWmtqYZn5hh\n52fbxBd3CK/uY7EMzkVEe2P8fuL8PCMPKwTTpYDG7YzarQk6VuTtAOtLRJIjpOf0xrGVdgpgLXJ9\nD700gw4DVFoiC4swEjHbJbq2y8I/fYbphVmS867JWdY9VBbBu+5zGPadvjOQsNZ9ba5BCqd/IyxW\nl5DnzshC4CRwLa6uPdOG/cFrmpBWCPT9y/jP33gNygWApVnYH2BfuuIo/r2OQ+4YtwQzgxF4HjIO\nsVIhxlOYJJTLM4jZFnJvhExy94JpxOiZpks713bJ34hk9S0OC5TmHeW53zSVHvgE8Glr7X6176dx\nmii//maDfTer8297ou8k4khDq4BB4GBzRQVxKgWNh/vosU/eD7j13DFuPQcmNDz5k8+7ppOEpc6A\npc4Qa+GKOUfwBw34xJjYK4g7rlkyTQ2jU02a1wRi1yPYdZfPPpZQ9EPMbMkgqfHltVPumPyMTzx4\nkekkYm+/hZYKE8FARewXdeoqY9Yf89jMbR7v3QbgV658H3pxzHSz4ZqIhesX217KXr/ObHdCEBX0\nlt0xJWOf5dkDbm31KLRkMna62BdvrPIP/r3fYDPv8EL/GFnVSQz8kigsKXXONA0wnRLTccsWsRai\npqBrgs39Lpt99/LvqTEz9+2y98osVgpK//CBlk5MxAjKJuw97j73Q01pBP4AauuW9jVD+xoUEeQt\nRfMGjE64/kHZdBNBYCy3v7HAysNbBMcTwpNOU337xiI7HymZ/0MPWVjqO1Wmulmw+SOG1vMhcgLR\nvssMsxlD2pN4KQR4cGYRfWYRExhkqZFpA9Uf4+9OCXadYFTx0RryGw46KUpzBCUsaxHe1FDWpXNC\nqrsMzEhD9+USHUsnx1tl6HaaEu8IynpJ2vOYPrrE9NEltwxvW/YvxMy8kCBzjcorDfE4Yu/hBr1v\njKTdIyUAACAASURBVFGpppa48zZ7Q2yvg5AVnb/Ck9uZJuobl7E150Ck6z4akGlJ0G5hsxx5MKTx\n7BaNZ7fcNfngeYpWhD8soNdG9NrufveHmPkuspIAUFXJqZxvIS/dRpw74WQJKigm1sKxBchymCR3\nTeIWc2wGPZyiru+8BnJJFDpXo6u3YTDCDl5LgnIDlpjRHQqufOEa5rFz2NBHH+u91kO81NAfI6+t\nI98Ao/+tjsMM/B3EG1Hp3/sW//5uKv07peG/fQlFCPEBIcSnhRCXhBBXhRDXhBBX326/e4h7Olgh\nxF8/1B3Y2dl50y9rxhlCWmgXEOsKsmDxhUYqS/upbRrv6qOaOeCanGu35/DRxLJA3cFrMbwPuBIh\nf70Dr4RHGtzNuTEmhsFZh2c2FRElbqVIK5BbAeIubXGjBf005j3vvcij77pCqzUB3HLx6vYc61mH\nG1mPsQmPUGKBVxA0c5rHB/it/Og8AlVSasX2fpPxNMQYh0yYJAFCwKnlXeY7I7xKd2U0jrn23BJ/\n8/4/4OfOf56TjR1HIsLS9hLqcU67keB7d1iDJjbI0umFy+LoY9KNGn5cMv/INo2lMUJV+5SVRrqy\nr9FOV1IThgU7H7TsvB/SXpVFCstk1VLbhN4LEO5zVIpQcxnTgxrXnl7lYKN5RAqyuUQ3YfuHS0YP\nGHSlxujvWLypZfBExvT+Eh0bp/wnoewYxscE42OSInJHZaRg+Lil7MWUS11MLThqJOqnijdMZUwg\nEBb8sXmNtngZOQ/Mua/ldC6VeJM7mihif0Dzekr7aoY/0tUk5ya68YmIrQ80mS75R808HUDR9th9\nosVkOTgymTbVRP76sLUI6jHel17Ge+EGYpQcjSGUQC7MIVeWnNtQFd7lTXQgyHohOrrTRJUbu66c\nE7qSzeHnptd2GfJLVx2SJi/unJ8UcGYVsboI0aEetzuZ8oFViifPYmabd6CHWkOvDQ+dhdnOnRLM\nm9HulUQUJfKrryCurkOaH43NaIp45SbyhavOBTH4TjAxXQZ+uPH2WijfDJX+EBRyz/sexr1k4P8M\n+FvA1+C1L8O/YNzTwVprf5VKe+WJJ55405OJvCnd1oT9QQNi4zYLs90BRghy6REdnxAdn2ItpGOf\nq68s0usNqddTal5x9JwkizA9BrU1D/X7TezvO/OA4q/26Z3os3ezS7IoSRYBazk5NyFvwehqFzH2\nYOxjsdx/fINnN1f48MkrLB/bZWVlF2shKyW/+/yjzLdGIGBioqNTt4UkUJo8hPriBLvgFNc6TLl+\n0MMYwWgSM5o4n2mTS25tzHDi2B7d1pSZdnV+BzV+65++j5/7pd/lyZmrvH/+CsbCdr/Fvxq9j6TS\nd/D99CiR2t8OMLFFJgIvkZC45l/pw+j5Ds1HDmitjmitjrAG+jsNJptNdLd0qYBy2um9+pjU9yhK\nj+lxmB53P3AlNAwV0R74Q5i5eKeRmf5MTjKXUeyEbF2aZ+vSPAhL2dCYloFIM37IMH7IGVB3/tRj\n6ZMJt382JlsuyVZcLdcWbuJX04C8JSiaHliLkYbifkt8FaI1Dxt20NWJGzVCfzRH/WGAKO48lkVN\ngBCozOLlFnIn5Js3JOMVn9a1nPqGprGh3WRsFazvIOo1B4cc6CPkxfqHa1gFWcdj94kGhwqN4AxB\nQDI6W2N0tgbG0vziiPjyGvLkCuIw07SOSVs8chr/Sy8hbu+ibu+6r6nHcPYEFAbqNVS95mrLgLh6\nA7nRxyx1KToBRXXe8UsWcXUNe/qYs7zz3RjCWPLHzxB89TJiex+29934Cz1YnnNqlDNt5Ezb1a6j\nqsEpwMy2MHOto0k33KlEwuIQzq7CmRX3t1dvQX/In4tGDQZjhDHOam5t15Xq7OsmDAHJmzRVv5Vx\nSKW/K95OC+WdUuk/fBeV/jbwkdft+/m3Or57WYMMrLW/Z63dttbuHW73sN/bxT2d6L3GQlQQ+IaZ\n9gTfq9T/pCESBaHSKGE55IeJiqlpkDz91ftYW5ulLCVaS4pSgmfZexwOHnQZkvVcM6y/36Q5N2Hh\n7C5+VCCkQXiW2XCCqmnqZwaoWlkxQS2z/piaLPj0lfOsDTuOxGMkQsJie8AXXjnH1e05Ci0pSkVe\nKkY7DQLh4IyHtHshLBfmNvDVIaXyTlYHkGYh12/PVbV6MEZQdCSDos6v/K0f48U/OUmRKfKpTzqM\nGF9ushQPaYcJAnNEYIo3BDoylX74YdbsjJXzrRrDr/Uohx5WC6wWyLhAGIHa9yF3k7SwEImSTjil\n1ZkShNVyRFiUb+jNDulfMEyOOVKRVWAltKMEbzFx3p6+cRm9cMqKaEfVt1VCawUkCx7BPhz/Zwm1\nq9qRiDLrXIGsIDmTU3b0kSGG9QWmlOz8kGX4mMUEFhM4USv7TEz5wYLypzJM1yFSbGiPyiM6FEer\nLXBQRhMIRicDikZFP5dVE3C2Dq9cd6JU2iBKjSg0jVvVkuYQRifcM+VNHNTyiGwFWCnIzs7DeIq9\nfAM7mTpSjDaOhh+FFE9dwMx3XJPWc6YRDpcoj9yDONQ0X57Ff/4G6pV1p2teOuIRzTpqYw/58nVn\nL6c1aI2alpheg+z996O7jYrApNz4COdeJLgzhpTO6Nvc/Wg6l6BkPqyITuZOyUUIVwt/oyz8UC/9\nrhCvn7wBwoDmfPudThPvOKwFbeTRdg/xTVPpcUbIHxdCdKvm5cerz9407iUD/5wQ4heBT+Lw4NWJ\n2Wfu5WzeIo5OFFjDnejPfLNflpqCpdoBm9M2fmeK1oJSS0oleai5xrODE2ghjxIfIZ3sK7nklUsr\nXL58jHZ7gpTGgX8kjM7C6AwEfecYPy18xpOIRjvl+LvWyaY+Za4IGzlnzQ6XxRzqzBCTS0ymGLc8\n/vL8l/gnr3yUL6+dwpcl3XiKQnN+eYOtYZsXbq/w0toxZuoTlDJMRxHN2Ql+WBKEGm0F1grm4hGn\nO7tcOZhFW3Xnt4A7nyz3ubk+h+eVhEGJTT2iCx7e04ZP/i8f5FO/mrF8dp80kOx7c9RPTpiJpsxE\nU1LtCEy3+7N4C1DWLCbSzmjBCIgtxYyGfsjgiwvIeoGKNWXLouYS9HaMd+C7Sd+zpEHEe1Yu88Xt\n0zSaGaaeoUuFEIaFdp9+v8H4BIxXJf7IaZ2sSk3gaZjJMd0CEoktJfZWjJyAqUmMke7XLC1GKAZn\n63QujVn51xllQ5DNS9IZn533RNAqKVZKiqUSmUjHRSkk0jMMnrAMH7eE2yByaD4d4G/46IcKzKMl\nYl0iRgLxSkxqJdFAHBlcCAvKwLQBgZVMVgJEaVGZoYwsQbhC6zMvw60tV36oxVhPUG+dYLrsuWz7\nLoEslYKulBQL3yFqMKC6PtmFZcKXNuDSDQh8iAJEo44X+5TNAP34OXReIIZThAGVGmcL5wn3yzYu\nA7edHnJrH//aFt7VLWy37uzfOnXUQYDcGyL2hk5mNvSxqwuooUI3Y/Kn7kdMM8Q4RUqFP9XOY9NT\nR6sIqS1lLAhL+5rcQgCT2YBoN0dlBjLDoRIinnJStgej1zRE8T1YnnNM1jeT+RACsbrEoP8dcORB\nUOh7r4Fba0shxKEr/SGV/sW7qfS81pUeKiq9tXZfCPE/4uZGgL9/2NB8s7iXV8p7cXWafwD8o2r7\npXs+ozcJa20JHJ7oReA3rLUvvvVebx6lbTJfG7NUHyAw+EoTBprbSZu5YMKT3ev4ojzSJJHKOru0\nqoymjWC/32B3rwWZuOMGLyCfgWRRILVgfaPLYBhjDPhRQb2TMrU+K40DzrW2kcLghwVes+DldI4z\njR3+5vnP0PRSFIbtSYv14Qxp5vPh86/QiFKEsOyOG2wN2jS6Uzav9sgmri6usPjKYIzk+1Yvcb63\niRIGT+o75cS7r0PpMZlGJIEkn/HYfbyBDgTTNOTq15e4dnWRLJbc/uQJ8n6ALQWRLKn7BTqUtC5K\n/AGuHKFwhs9AvlJSzLqMVk89it0IvR2gWgVqITmCBMpcsj9qUPdyvm/hCpEsCJTGDzRBoBHKcv/5\n28RxjvQMRduSzcD+qM58fUTs50hhETWNbJUIafBGCjU9LBoL0JKiAfl8yPBcA6MEcmqpX9XUbhjX\nwB57Tk5Bgq4bbMOAFRSphzVOiTFdhPQEjO63mN9pw5UQq8EsGMx5TTzKSTviDomowlz7IwcNzdsu\naza+oKwr8hlJOR8y/sj9mFql/T2eQp4yWRXMfS0lGDkki5NfBT+xBH17RC6yEqwPWRvyC8tkDy07\nurzWMJzA3gGyNHiT8kjwys62MbMtl40fwgLBjR9IRqd87ENnoFFHSIHsT1DbA8bnWq4+HUXuUZ+m\nyP4IYw3+ROMNHZHHRgFmvk05U3MonFzfmVylQGqn0561nCzx3eFlMDjXoGh4RygaYSwMRohjCw7V\nUq0UAITWyLkZODbvjv9uNchqtSHOrCLqMe3vhB64/XM18HvY55uj0ld/+zVr7dlq++dvN9a9EHm+\n/56O+psIa+2ngE99K75rUhpS7TMXj5mNJ/TTGtPSMRS/urfKk7M3+aH5F9nMWuzlDfZsjZu1WRgJ\nCKrlf1Xhl4nERNphqKuMCAuhNCRWsbXdZXe/Ras5JfBLFnsHTHXAsfqA5dqQzaTJqIg4SCN+e+MR\nfnL5Of7xE7/Oc/0VLg6cgNXFW6u8/4FL/MCDF+lPamwcdCi0wkaG8V6D7Ws9vEBT70xRnmZSC4la\nBU8du8pjC7e4vD/PII+5uTXLKIsRdy3xAdBQLBZgfDY+1CbaLQn3C0zdML2vwPtyyO3fOE04l1A/\nPUIGhjIALxG0LilMaEl7rtSgT2i0UOTLJflCib+vEJnAD0r0vo/qFqhmgRn5mFRBoPnG3hLvnrvF\nj6y8yFbaZDtpkmtBokNqQckDD64xnQb0+3V0qehPY+a7YxYaY0ojGWcBpVEM/Aibe24Sn1jXrFQg\nCshaACHZbEi4m+OPCoo5QbQPyZyEke8arL65k8wJgc48EBbpuRs+PgHtFwT2d1uIpoHzKbalIZEE\nE0vWkWRtQTB2rExZQrxjSWYhmXPwS5mDX8+ZzgpkGjP+4YdQO2O8jQMslv5DHs0bBfNfyyjqgum8\nh/FB5goRQzC02Ilw5KLqXpZ1AQ8uU5xdwL+xhzyY4uUg9wbIXhu/tK40pCQUJboe4A0zN4kLXENQ\nWwbnPJq3NOLCaUhS2B1AUTI92aT18hDVbkK9jk0TbIUgMb7Em2q8RKNj5XRahCVvBwSDHJGWjlhU\nqTHGmynjk3WytkSWjhwlLHipoYwVw3MNZKoJ+zmysARrJUprxMoCdnEW2x+48k4UOXjjbBc704b+\nEDtNnSRvow6t+hHxZzT89mfg4PSLvlfjbSdwIUQbBy7/UPXRH+FS+8G388DeafhCsZ/VmI0mBLKk\nF02YFbCX1HhmZ5VYFTzU3WAhGLIcDVmXLb7in8HWNUycboN721viekYyCDHtakb3ACzz7T5r67OU\nEW7SOXCaXh+bu8i1vIcMLJEqWK4NEWLI+rTFZzfO0/JTfnD+Io90b/P4zC1ubff4e1fP88zVkzx+\n+jrtOGGm4R7GL18+zcLpHbauzaILyWDbWbVdlMd4/32XUJ4l9goennftgj84iBkljn58VDoU7iWk\n50qEFnibzpYsnfMJGjlqNmX0qKT5nE+6F5HtVKJAc06kKxw5mn593X1heTZnoCvaooJi3l2XmjdF\nX2pjlUW0SmSrQLUL9FhxazpD7aDggc4mc9GIxXjEeBrxpe1TyCZEqiSOc2o1p3hXbPa4sj7L6aVd\npLR0ay4lnfRqmEmARSCMwJtWy1ltyXqOfe+PIZ0PyOZDxEJKMHYTYDonXAlIS4Sw2NAZWljlCumm\nqB5/a9n8mGHhsxKZSOTTLrMbnTN0XswY3BdS1iR522VgMrW0bjqbvbTr+iQ6Esz0pmw2IkbnFK1X\nJeVCAz1fITKkZu2jHsufK1GppX3NwUAPTivCgSVrC+fdOnXXXCaW8YqgsQ4eivzsvEtgNydEz950\ntnKdpvMglRY7mmI6NXQrRA0zl5BUvqRlpNh4KmTxTzNEI0IeIlQ8wfbHlpn/zDoy00hVZbTDhLzX\nREycyJmaajw0FkO6GCMM+KOK+GQsxpfOgel2wnQldjLAviuxBENDNNCkbYUJJcmSe9bkbgd5bQtx\nbBGhFGK+524Fd1aUQkrodRC9N/7N1+pvQh76Foa1UL6DEsp3Ou5lTfBrwAj4S9U2xEkefk9FljmQ\n3E5aZzdtkGqP0giENNSCgi9un+E3rz/GpeECgzxikgcILIQG2ykhqhp30tJaGLll4b6HmDjNbzTM\nzQ2cPv9UIlNneIyBpkpoqoztrMFW2maqfQojMVYQ+yX/Zv0x/qeXf5Q/3TvDTtbgoIgJdgUbuzN8\n9usP8erGAqMkZJr5jDYaBFHJ6gObdJcHBFGO8kte3VjEWkkFW+ew2GiLCgGgeZ3ZskAMFOViSfZg\nhp7VmMCglWGhNUQvlvQ/kpGcKdF1g44M0rimXdqFol7pcQsIldMxP4pqDFXXePUSeyPGXKljBx42\nF5hckvUjXhks8NmN81wb9RgXAUmpOLjZpigVk9InN/JQJ4luY0pRerxya5GN3Q7TzCcvFSbWrpGr\n7VF9+KjGaiCZh8kxKBqgPXc//VMTwjE0bwing57jfKRkVaMthdNPqSoZpIqyCRs/bug/YclmLGXN\nEZCEgpkXMjqXMoIDjcyc2JSOoXHb0rlsCAdVA7WwPDi/Rn68ZPd9msmqpYwtOrREW5J0TnL9J332\nHpVkbShqThtGGGdG4U/cdwhtCbcypBGMV2G8IijrOLOLyEPEEXKrj7y+CcMx5AXSlsjNLUyoKObq\nmLrvSj7CyRZkM4qbPxSz/6BP1nKZvpECXfPY/NFV+u+ZI+uFlLHCWNd8LRs+Zct3DFtZ3fNEU3RD\nkuU6ZcPHeK7Bq+sewaigfWlEuJshM43IHXBAlhDva/yxU6xEW/RCxzFNr63B5q5roh6yNe8hHLzv\n3v7tXzSMEUfbvcTbMcyFEB8SQjwjhCiFED/9ur/9QyHEi0KIi0KIfyzexmj0XpqYZ6y1P3XX//+C\nEOItJQ6/GzEe1rCBQEjIjEeWuew4kAW9+oRCK/ayOp/dOA+AHUmEdLA3JNiagZqbHbqtCflywGC9\nhU0lpO4NnJ/yePD8TV58+QRGg0rc5zens3xi5Rv81t7jZMZjO3Pd8XHu04pSSiNZT9v83zefcgdr\nLMFQoCNL2g54Ze0Yr6w5CPxKMKR/vUP35AGt3oT2rIMR3vrqEr/73GP82GPP4kl95DOgChwCJMQ9\n1Yd6UJFGbviY0GAjS3HCZXyptZyKUqb1CfvUSc5CctZl1K1XJcVBeGR0rKtEzYxCevNj9gbNqhTh\nnqlCS7oP7rL33AI6kdjrlYWXsqQ1g4pKRsDX+6t8vQ+6FCT7NcL1nObyiAJBUR1vmXks9Q7Y2OvQ\nH9foj102GI0NnJwirtWrJqIbW3vOVaesOxhesui+J+5YWqtjzIEP+wHxriTeBSMso0e0o/Ab4UD8\n1dgylRjPw9RLxqcsk9PVxND3WPsBn5V/WxAODNGB6+FP5n0my4rGhvMTbd10b7R8v8EjH3me/aTB\nGl3G52B8DoSwdC5Koi1BugAHFzwOKqfZ9vOCrO3UIVUGXubG9jeHdF726F/wKWPX8AWoBz61jS7i\n9g7kOWrDAcLC+0qS6yk2qmN7LXQzgqZ7JGQBWrqX8/Csz/BsBSE9cKUfiWB6okFyogFA46UBzZe2\nyc8uuWehFTiy0DjH72duQvck+VyVTU8y8DyXraclte0MtjO3ClqqY70KT59a/PTQjg6ydx0n/PpN\nGE8dAxPQ9x9D4N+TpOwdQtm3L6wV94o+Ae6ZYX4T+CvA333dvk8BH8B5LwD8Cc5u7fNvNt69HFki\nhPjgXYN8AHhjlsF3MaY77gd/58a7H5XUEAjDYmtIJ3aCUeCWfv6uREqLUEdpKwLLcm1Ae27M7Jl9\nwkbmGnTCcJDGtNpTHnvkCnOzQ6eLLQ0XR0s0VM7PzH2Zd9VvEYgShT4yGZipTWmG2R19b2mxyznR\nliBed2JPh5Pv4/ddIduP2L44RzoIscYRgrwpbA06/OZX3sulzSVKLSm0JDDanXUhXgvjUhYig7wV\nIHe8O383gu1hg2PtA0709on9vIIrGoLTYwcprJx4jog8uzWCQDPfG1KL86M/ZLmH9C3z796kuTpC\neBqkQQhXopjcapJs19C5dA1FC7ql2b/eYefiLNkwODq//a0WzVrGiaU9GnF6dEyi7yFqBu4fQ68i\nNgmnr4Jw5ROZvfZ4lTRE7+kTPDhCVLBOFIiJg3C6BvWde+6PgKrxSYUjtxaCwpJ3BTd/3Gdwn3Rq\njgoO/R/Hy4KsU0EMBeSlx/WtOT565iIfOHGZdjR1qo6iJDg7Jt4TNK7JI71zKlSoDgXJjHtpHoE4\nBiO81DLzoibesUdCYWVdYkIPe2wOOi2sdDBGGULn4yCv3EC+etsxJR2mFG8CsnRyAHdfJ1st56zi\nDrwRyBYbiKIkungbtTN0MEDjyjHCQrSV4A9y97nr8qH2xpQtn6J9l645oJLXmZxW4U1KTLdO+p4z\nlIudI90aHco3ZojcFRYwocKLvzNEcqPF0XYPccQwt9bmwCHD/Cistdettc9zlELc+RMQ4cyMQ5xs\n99ZbDXYvV+DngH9R1cIFsI97e3xPhbiVczudY/XsjqsJVknUdCdmZmnEXlmjHae0ogxjBWUk2X3+\nGLqdO6RFcLiPpemntIIUGhCdzY9uXlL49NOYbpxw/r41jFmnKBXbkzq/vfMufmLuWT7QvsL7W1dJ\njM/nrjzIF/VJfN9QD3PqYY6xAm2gfxK8PR9/JAmGsirfwIkPb3NicZsbm/PsvDyPkAapDCJXeAPL\nwNb43MUL/NHLDxD5BaEoCUaQt0SF0HAnbpXALGWo6zXEgYc88ECB8QybtOjWE9pRQreWUFbLw+29\nFt5iSrkZobTEVi2ADMHoRpPm8RHd9pROa4oxgvEwYpiEdGoprZNDmieGmEJSpIqtV+cdgeogIh+E\n7iWpNKalkVPJtB+T7NecbrsypJ5kuF+nNTNhdbGPMa55tN2fpbgaIk5lsJJhlzN3nmOfYj8gGAq8\nXGBzN6EHNYdAMloSnJjiH0+g0qqZXJrFxhbhW6czUz0jKhN4UydchZGQuO9qNiaUgxplS7DzXo+d\nJx1axO8L6retgy52IOu4MoX2LF+5fI7l3gFnetvcN7dFWngUmeQLG2coujF+38e/7Ln7rXDs14nC\neu5l4FAaYFZr1F+4CQ+foHkbGredMmK2YJmsRDSvTbHdJqLTAGPI0oRj/8Uak69Bsd1HbvcddlsJ\n5GOPI/M7zNLDMoWXWnTgJncUd0pTQjB61yKtZzcJ1vrYtT54inyhCTKo2KkF3rhwjUxrHVGoFWMi\nj7zmH7FW1bhE5gbjywqr7gaR2uCNCspGQPHQCoVeRpQa6yvS3BDtvrGDkQWQkM+EjCf5t2Emed14\nFuw700J5p1T6u8ayfyaE+BzOqUcA/5u19uJb7fO2R2atfc5ae2ip9rC19jFr7dfv5YC+kzF33TI6\nqHH9ygJZ6h3VrKb7EbKEuWhMIF091ZMaL9J43Zza8wFqzxnLCu3qkbtZg7PNbRbjIRKD72mCoGQ8\nitjPauymdUojQFh8v2SYhFzPZvl/d9/NXlGntBJPaOK0xBaK0t4x15XCoiR4gaF89xgzX1TKfG7s\nDI+PP/Esj569hu+V+NJl8ia0+BOJfwBopwo4TUPCbooqnUGvKOFQNFtowLfoUwm2pu8Axq3AGMnF\n9QX2J3WMqRJUacmv1YkuDAjOjMEzCM8glEE0C5LdOsOrnSqbFg6pMHYayYM0oqyyE+EbgmaBH5bV\n8bgxbSmRRhDHGcVCgandpdteKFQm2Lo5w95m2/l9Gnet5HyG3A/gcgSZm4CEtM4xyIOiBUZVV9fi\niEXCEqrSwRGFRQQGGVgEArmvEFMH8zhUQpQa/AOBP+RolYIW9OYGeLnEG1R9EAQ6EmQzbj9/eAe5\nZAUIK8gnPr/1lSe4vTtDqYW734Uh+BOIn9zDPzEFZRDSrQKz5WqFcJR6u0x09OgcamdI+Mw1h8Mu\nNSrV6FqJqSkmx+voSDpPSk9RjBTpFcHp/wtaHwYROCE3ERqKrpPe9abu/IRxDeF424LnMOjVbXLn\nYaCYrzN8Ypmy7jtikDXO5OEu6zUBDhIoBbYWEV5cR/WnVeZfLWOkcJN4esjCqs7TWPxJ6fRZtFvR\nWN8JfNnII5uLMZ44OqZDkpMJFelCDetJ2s07cgHfvhCvz8C/ZVT6PzeSEGeBB3CkxmPAR4UQH3qr\nfd40AxdC/GVr7f9Tadfe/bk7Imt/+Q13/C6F3p7QKVIOHoi4NFohruWEUc5JccDG0/Mc+8AGc9GE\n0khyo5gmPuH5EfqLPeJXA+w1S9nWIGF3pc5cNGGlfsBKfcBBHlFaxY0bs2SZzwAYFSGxcrjyVPvs\nDBpg4Z9nH2TBH9Dzx1y9vECSNqg9PkQrl+IIXOYX+iWlCdAPJugiQ/QVQgumOiTyS977wCWeuP8y\nt7ZnSfKAP3nxfkwW4SUSL3EsQusBHUX3RJ/+jS6yLyunHjjV3OeWqJN7AnMic8JY0+pFYsFYybWd\nHrf2u7SiFCkN2VZMcHpCeGZCeHpCuRtic0lQ1/QTn7QfkfUj/GaOCjWm71OioJdyYGoOn640ntB0\nj/fZuTSH1fKI0WmNpNlISLKActaJYMnE/Tq9Xdcx3d9ss7/dot5MUZ7GWAu9HLkXYJ/1oakhNIiW\nxcQakyiKtnt5CQ1evSRQmlQLAqWdC5kVKE9XWHWBGCkYK2xQlbOURViJPxZ4E2fUYRUEdUtv8YD9\nzQ5y11HNrXIvj8mSczMKRpUmjufUEP0hpH7AZ77xCHGQsdQ9QBhD8IdQvh/CC0OCB8fo7QBbVLfx\nOgAAIABJREFUSCaxj1n3URPciwNAgG4GDJ+Yo/XMDtEfX3TyqvUQe7LF8KEm7a/7TI83kLlGpgZT\nCDb/d8mZX9Gs/s9Q7sPkq6Bzw6tdS3AA/tjij0VFJnJSvN4UirpF18QdElGq3UuhF3PwoRN4gww1\nzkmWfYKxonkjeU12bCXohQ7B1U3CqztYT6KbMUhBudBFGouXaEh0lYmDlW48LyndeIHTlC8anls9\nhop0qY7INbI4lNpVWO9Oznkw+g5Uci3Y1zYvvyVU+jeJnwC+ZK0dAwghfg94H/DHb7bDW2Xghyj5\n5htsjXs8oO9YRMIw++WUzsUMUUI6DDjYb7I8u8fgZocbX1xBl850oOYVBCVY31J7ah8C7SBcex7e\nrmKYRrw6nCMzHhboBgnz0Rhfw95OizR18rLT0mdUREhfszNosDtsYCxsZG1emh5jvK8od0OmL7ax\npXAb0ulrSEMtrIxsfYOdLzFLBRtJi0EZo3H/5uTiNg+euE20MMXEbtkNApkLvKlgvNagc3xI98QB\nQhqUtahMcL+/j49xpBUL1rPYtkZ2CjzPHE0WpZb0pzX2xg2KtmXyZz30wBlGenMZwWrCuflNxGyG\niQ0WyEcB6W4NtacoBm5St8Z9V1b6FEYRNXPmzu25EpCsmo+lwox8ZntDlDQIZTF1i2kYTGjxxlVG\nawSTQcxwv4G9GSFPT2Eud3yPsULsBoiJgNhgKxEr47mJV/oaX2hC6SA5QliUtEgFol5lu+Ay8Ewg\nE0U57yRZMS6LVqm7tvlX6hw/s0Vv+QApLaq0qNTBMbIZmCxzpNOhqtW8MIJg3/UbkjTk6tYCV/cW\nKM4J4n+IsyUrDd5iin8ioVZLGV/IKFvmSBBMWGcisf/xVYbvnnNmGeMEb72Pvz4hPWYYPlxilaWM\nJWXLJz3eZLIfceO/kpQHIEJofxzaPywQpWB80jjjaeGw7F7iVjLty4Zg6LJlKx2xTaVlpVDozqls\nh2QrLbJjAUXLZ3IsPsqKATdh132KkwtOntdYvP4EtTd2np93TbqyMKjMULT8SlLW6Z2rzGHOX+/W\nZAPlFBfr/msmbwu02t9+T0yganqLOy/Yt463pdK/RdwEPiyE8IQQPq6B+ZYllDfNwK21/0f1n5+x\n1n7x7r9VjczvqZgEBlEUzH0Fui9kDO4PSHuK1kLKD777WT79zKM8/+sXmDnTp7U0ZpL4TIZNWucO\naHx8m3IrpFyPMRqGaUQjyrk0mqemcmaCKZ40NGRGYurs7bTw/JJ6I8X3DEZLlLJsD5rsjep0G1Pi\nMKfpTWlf3GPALIPdOYLFFK+XOXedbo5FUI9ytHENSWvh9rjDUjxkpGMUhlA65/FGd8L4VgcT4TLX\nSiAu8kuS/ZjuiQHtlSHD9SbpMKI1M+Znu1/l1268h9TcYcEZK4iinPE4PnogbTWp6bkCuxcy/dNZ\nZDvHX02QkaZ7akocFIxnJLqUqIlTXGw0E8pBjdxGFKPAZeZRiQgsJsiJWimrj60x2a+RHMToApIb\ndVqP9FmYH5DlPtNp4CQ7I4VKBf5EYKQ9smLjwEOkEnVmil1NMZsBTBXSq37osXb47kxCKTCFoC0S\n+rKOFNYZSVvX6FPdnDLx7rSOqnpwMasJ1n1U7pbyppJSmJ1kFDs+J85tsnRql53bXZJxiGjm7Axa\npD2PvCMI98GbOIefvGUJDwTRpkBHYCKLlYL0E5LWL2nqPw/6PijeC7ZhiR8sGHuWyYUcOZEE2+46\n2MAirMf+x48zeGqR5td2CDcTTC1AlJCsGrLlnOiWJNiVlEqw/wPLeJ+8zqUfheaHoPURA6FFpYKy\nYxmfMagpBAOBKC22ZpAjRfuqRUeWpCfQoQXf4KUajaqai9UzomG6YhD4FE2f4CDHn5QYJSiaCqkD\n8vuPIUcJcjB1ZZdIojLrJl8LwrgkoGh6BAe5a85iK71zW43lPnqz6dLiVkjT5NtfA8eCvbfmpfvn\n90ClF0I8CfwboAv8uBDiF6y1F3DmDh8FvuFG5vettb/zVuPdSxPznwCP38Nn39VIHmxhvnAFKVt4\nE+g95yBfg2aDv/4ff4b9UZNnXj3D7is9dl+ZpfQh71nGN5s0jo/wFjL8pQywjJOQ7WGD+daYcRky\ndXJxPLp0nT+69iB5KCgLj8GBW4h4cUZcy0mmAVpLdocOwvjAAynt/3OPIgqYnmqR347J12vU2hP8\n96YYa9BIV3ZQblaZ3GrwDW+Zh7vraCHQlRLaw901+mcaZJfbrgZeUYznlg64/fIci49sEzZyZk4O\ngAFZXPIfLD7HZtriU1vnyYxy2X8CflBQq6dMJ1UNseI/z/cO2DrVoXbNRw99zAtOLvRqY8THzrzE\nv718gUz6lNVT0z22j/58xMCXlEiKQUQxgKKW0WlVLDkB9d6UxuyUMlNs/dkSk0tt6vcNCP2CqOvg\njRsHAUUT/JF0S+u0girGEH61iX3PCBEa1ElH8LE3IvJDrQNpXTYOjLZqNH3XLB4UNdfzwKIQbv/5\nFL1dacwelgMlJA9kxBedga8q3eff99RNfu9fnEX8p/v4Hc3KWSdn7JmS3Ss1rJGYXDrC0ByVlrql\n0OCPBCoFL3Vlq+ysz+Q/sdR/zaCugHfJXZ78l2GmM2bvoIGtG9JTVYNxAuqmQkcC3Qg4+IiDmTZe\n2HV4/woRMz1pSE4Zh7Dpddn//pyZz60z+CPD6HNuAhb/rUCNBbph0DVI6m6MdpRhn4+dSUcKzTX3\neXIG2l/KSBYiTCAR1VQa7gn2ntKoTBDuCLJeQN4LkYkGT5C3JMHAoFs1TKvmYIQ9WRF/qj6MdM+z\nDiXTpRq1jamj51eZt9AWE4EoOVQbOIrD3NxWJZgo+A7ZGbxDJuYbMcyttf/9Xf/9NK608vr9NPCf\nvZOx3rSEIoR4vxDi7wBzQoi/fdf2P+DeLN9TkZwLMYFwKnDDERQFGENpBdumwX/+Y5/ib//U/8cj\np65RC1Ni38H60s0G/RdmSXdjTOEaFa0oJSt91g46DJPIoTQsPLZ444jII7I7sL3DLnVcy4lqOfJw\n+d6G2fcl9L68wdynbxPdniAyjSgMs+EYT2l8pZ11W9XdyV9qMshivrJ/gluTLqlWaCN4snvTNePu\nGyGWUgicU09cywiCktvPLLH50jzJIESXgnERsqHr/N1zf8z/+sjv8H296zRURqwKzI2QMChpdyaE\nYYGo4I1n5rahYRmfL8nmDcZ3y+qrB7PUgoKfuPAc71m9Rjua4klN3MmotVKa1yyNW7g6rgarJUke\nOCGu6v7YQ/RDZMh2YgZfmyXdiDG5Ky0Ra9eUbLts0Aqnhlg2nU+o/GILcbEGI9dQFJlAJYep2p3r\nZ4xg99keHZmyHA+oqwyJgzYaLZH1En91gmznjsYpLNYITM0yfTQlXykxgSN1nX/3JioT7P/iMuPf\nnKFY8zGpIMgNvdoY0cqhXWB9U61iLOE+FC1LumAoa1VZQlimWzXyByWD/06Rfr/AtMCGUFqJ7xkW\neiOa9RQlteuTtEuEdI1HlXJE0pKJJbqSwKFe++G1tY6wNHhqkbW/dp7xwz1HgQ9c5itzgXcgESl3\noIRnUzcDHJZCqi1ZEdgQardS4q3MNSCNQ8f4B4LRec3gXZp8xpWurDAE2yllrEjmPcqaPMqkxytu\nss47nmu6Vs1I7YP1JdOVOlk3vNOwBLcK8njNZxYqY2xxZKBhvhNEHisQ+s72vRZv9QoLcLVuD1f3\nPowh8NNvuMd3MfxWyvq/u8TKv1pHZjkidcurebvF09NTfKzxMg+cuMVDJ28CsJm2+C9/46+CBT31\nGV/pMMY9KMeeWKMZpYzSiIOkxkFSc/sUXf7DR/+Yf/nshyhKBWXlQFPLSBKfWs3Vl/2mG3tgYz7w\nX19l8nOLiK0J0Wdc0yU6XdD7kYyJDhkXAeKu1+F4EuA934JHRtwwPW5MHY/4g8dv8peOf43fuPlu\nip5r7AEMJjGPPvkqT3/xASY7NSYVHv5guc1Lvct0VcbDrQ1+8aENANaTJj/7K38N29HI2Zx6M6N+\nKDIp4PzSOi9vLJEvQL7gVgXCk/zh9fv46KlLnO1tc9+sU8C8cnOBpR+6xDOffAgxUgRDdz3SOcVo\nPsT3NEKaowmiHmZ4YUmeK0g9kittkiuO9NR4V59RrrBThYkFJnY/TuWXJPOSeFsg1kLkmlsNFV1D\nuAPp/bnrC8iqDDRrWP/UMo1jE6L5hIXY+TvmueJVPY+VIDyLN5vDrLuG6cR3kEkF5XJJueywy1+1\nc/y9/+Zz/Pzf/xjZ12qkX3UrroMPTnn/T1/h09ceJBNggmrsNtS/Gji/0hjyWUvOIZwuJN2LCXsJ\n6U8o0p9w1yRPPaQpUNLSqGc06u5e7A5qlGdTvEsxogS/WhVkizUW/+UNbv2dVcqWcvKxuAdXFi4r\nzxdq7PzkKXYAR2e3FPVKiiBRRywOqT34yBD7+RaivItBMVVs/aRm6V+DN9H4Ywe1GTwkaVyOGDyi\nKdqWwaPu8+hWxvFPluimT1n3yLseji1g0XOa8TFFY01ATaFr7mH3JgV5wycYQ9EOKNuVOYSxDpVS\nWdWZ17vuHGI/LRTFt9Ke4C3i9Wjt76F40wzcWvtH1tpfAN5nrf2Fu7Zftta++h08xnuKVqcgnw+5\n+R+tMrrfKdTpQOBnGoXh98cXeDWbp7CSwkqEMpxZ3eCN7s7BWptWmNFrTPBlWTnZGP74lQs8MLfO\n33j/H3BfbwNPaiIvJ/QKrJVMpwFlKY8yon4WMw5D3vura5z46SGqblCxwatpIllwvL7PQjzCE9rp\ncmNIli3ZxQbpF7rofc/5e+aCOUrua+7wV07/GWfqOyihCWXB/naDWi3nA9//AsdWd5HSoLySg7zG\nWtLhS8k8N8omhRWUVpALSXhiinmxhnm1hk0c3tsWgld35znZ2+PJU9dpxxP+f+bePNqy667z++x9\n5nPne9/8Xr2aVKVSyZIsqyRLMsZ2G4yxMQQaGggNzaKJSVidplfH3R1COgl0SNLplYG1eiAMnW4S\nDB1mAx6wDdiSB8ma55rnNw93PuPeO3/s+15JRkMZYzVb6yzVO/fMwz6//ft9BzlRPXQwrA0bfOLs\n7fu65rly2Nyp41cL7v/Bp1i4bRPpKhy/RGpQucv2MGaU+ft0eUdq7j18DhmXlrTysuhqodlDxiXU\nSowzcdfBIKsFKoTx7EQzG7uejgxCCaIXA9xtZ19KQIeGfFZz5v8+xvrDc5RjB5VJq0LY81Cl3Hcz\n2pukNDYdUt4gHBkDf7h9mFuPb/IL/+sf8cB9V/A8RRzl9LYqOFrwwePPcUtnw8JSZYnwFEXLUL0o\niNYnsM4JeUZXSoYrFUZX65Sps09gylIXbazWtH75MRkDsUbdNsa0SjsikYb0QABScuh/ukzzoR4i\n1cjEUvylsdG6zNmPsoWC6sXCFmlvDFTs9FQEB3P4ji5mIbcIG08jBg7FjGDlR2F0m8Wfax8LR/UN\njScdwpXJ+ZU23SGSjMrlEeF6iij0fkccthNGB6F73EoHWFVHiDYLtC/IGlZLfB/GyOR7v084Ml81\nAcoWPuPwG+/IY6/hX98IXOy5Qb/mAkJMA/8YuB3LEgLAGPM3vrGH9hfbqVOnzGOPPfaqv/3IZ/81\nL2yv0L3WtJohmcLtlbz7vhf47rc+xhfHx1A4SDRVmeJSspPW+Nhn7yfLPczLdDC11MzfuUFQyZGO\noVQCbSSrT83yoRNPcP+x0/iuYpCF9NKIT+6e5Fx/miQJ2ANcS2mI/Yyqn/JdB5/FkxpTwviax7D0\ncQ8adssKGqv3nWsHbQRffOY48XM+3sAiIkRcIgLNf/u3PsXc7DqXVYRCMi49+kXEF5+/lY3NNnc8\ncAHH1ZSlJBkFXO22GLuSH7vli3jSGlrEomQ3D/nVS+9g8NCMVQ40WAkBaUhOZNyzdIVOdYgrDUnu\nkZUuT5w5xChwMNbFmMApiL0chi7VrOS+U2dwXY0qJEkv5FKvxfPri4Qz44nIlsGRGj9T/Oe3PsSv\nPPwtdMcVlHL2O5O3PHCWq9023XGENnIfjx1lJaUj0dsTMS1lcdtyNqEceYTXHIQRFlMeGJrzPYZN\nQf0PKogchISgnWI8w6VjVZhPwbWGG3tN9gR55EyKVTcqaAtTO3ywfYm/v/Q0kaMYDH02Nyv8q8t3\n8/jGHO985/O4rqbUgmEWsjqo8cTFQ9SfDmznBugAlNQM7ypwtnwohcWj+wrhaOrzXVLXIwgKpIS9\nvIjKBLtJjOMam6pXQCYxxuC8oFn+5UvIwqBdQTHtkXcidt67zN5wx6YiAKOZfzhl856AvPYyswdg\n6rkS59QAczKznL9EwEjS3a1Q5C4s5pZ9mRncHoStnNEopPJohFD2mqsI5Lhk+hNXYboJUmKEsLBA\nCdv/uGC8VqNMXTACmRlkAUt/MiZruyTTgY22JykamWr8kZmkdl7pSg8g9vorDT/xY+/iRz5032v2\nF0KIx98A8veGLVg+YBY/8g/2/774Ux95w20KId4P/AI21fwrxpj/5at+/2bg/8Rya37AGPPbL/tt\nGfgVLBTRAB8wxlx6rX3dDMXo14GXgMPAzwKXuCE4/temlf0GlXZCe7mLdBQmEuQzPqfLORpOyrsq\np6lKS9Ee6pACl3Y44jv+xiNMt3s4Uk3yjxq/K1h7bobRdrzHIMaT1mzgY4/fy2eevYuscPGEYq7a\npeYlBL6NzsQE0aG1wJOKbh7zB5fvpJtHKEcSHSxh2mF9t0nbG+ELSy4KnJLILZib7tI/oUinbOVf\npQ5q1+PXz7yVZZlz3BvhoKm5GfNRj6WDm2yutHj6C7eQJTaUqVQTIpmzNa7x7y48wFZWJdMOPRWw\nW0YoR1D7pk3cqcyeXCpg5NCpD3n0yiGu7rZRWuA5inqU4G86OHKv0zNkymU3jXFbGRubLR559ARJ\n4qOBqJUQ11OMkqSbFUxhiT+lcshGPivPzvDj7/w0R2fWbPHWLZGuYnW3yS3TG8zWB1aiwNHgatyr\nHm4jx5lJbM7atRK3fligKpAsaWvMAchUUFMFUStj90MpZUdjBKQ7IeNeCLGClRASx8Irtf14xmdc\nXGyHeiOxDO1gzG9tHuOfX7mHXukjI82Bg10Wl3bY2m7y0OfvYDQMQAlqfkrVyzE+DO7KKKu2E5I5\nOIVFWKhOjgnt6EIVkjJxuWf2MunIJUl8i1mfHFOnMgItUHvUfgkm0jjVknQ54sqPHyZveyDB28jx\nN0vrYzppgglRSVuEyPRjGfG6AmWQpS0aJh0JD1URj8c2p+4YaClEJ0f2PLhq/WCNKyimBF61xNQV\nw3tTVGxfDCcBIVyKTgAbu5AXFhaYKpxEke+GVBb6+DUrSaFDY82sqx7x9Yx4JZ1E1PYcy8qErKXZ\nhxi+fIIJ1FRCrfMmwAgNXxOM8GVaKN8OnAR+UAhx8qsW29NC+eirbOLXgH9hjLkNS8vfeJVl9tvN\nlHE7xphfFUL8lDHmc8DnhBCfu4n13tQ2GhpGZUylmRC3EtJ+QJF6yLri4cFR3lU/y7dVn2NHVdhW\nVZLEQ/qKJPJ4/7ueoD+MWFnvUJSS05+8haIh2Tw7xfalFpX2GOlqnFpBEYT86XN38tCLt3P7gSs0\n4xHX/DZeoMAHz1PWnk1LOvGYAsnqoMF/uHDPRFa1Tzr2WFmd5tvvfYq2P6Y0gkzbCGW63Wdtq8Xw\niGC0bCFqooSv9OY53Z3mLe11DsUJ6yog0Q5fSTxmjm6xeaHD537/btpzfWrNMdt5RGECNpwav3Tu\nncyGPQ5WdsiVJClc6kFO/e3bqMShWA8xStCoJmz1azyzssQLa/PM13sEbokuBHIgoKYxexR0I9BC\nUF/qs3mtwSf/5BRTUz2ajRG9XghSo0vbiQtX4QQKlRue/OStHLxzjb/94EP0xhGn1xbJS5fPXDvO\n0tQuBzvbHOjssDOsUCiHQTKD3nZhqkA2CszQxRQSt15QDUYMqTA6onES24EPIpe7py7ycHmE7nca\nnF2Bv+rYgldTwMiFjcB2VrEtBHtrEueEgoq2BUllO1GMoBmk/NH2YT6xc5gH6yscDAc8cnoBplO2\nNut84uP30Znq024PGAprIqECGN6VI8cCrysxRiMdg0ZYtyElEJkELVhq7tJYT9kZVRiNAoKgxHE0\njSilUxmxM6pQZlZ4TQiIohyaKSkRFz5ynPBKQnR1jIgk3sjK0jJRDtxrWcPD7ys6z+W0TkMy46A9\nwXDJQW8I3EdjeCLCHMmhqmBBQjNHdn3Mi66dF2pUs2B+us91GgzekeL0JW5X4ijNeNih+fnriK2e\nxYKHPkII8q0aQSclnhsRzYwpBr69vr4HriRez4k3crKmZ23qDvrkVfBHk476q2Aowj56pE3JTpG+\nKX2L+NpS7ftaKABCiD0tlH0xq72IWgjxivztpKN3jTGfniw3fKOd3UwEvvddXxVCfHDi5/YXIDBf\nSxNC/AshxEtCiGeEEL8nhGh+PdsDCIXHztUm415o8dH1jPrskLHj8FK2wKOjwygEDSfheLBOZVBS\nDj0O+VtINI3qiBNHr3H7LVfwB5r4ukEo0LnDYKNGb6XBVDSCg2NMpCm0w1OXDvO5F+5gdbuFLye0\nd2HwPEUYlNSDhGaUMlMdIDBspRWe3V3k3NYc/d0qf/r0W8hLO3SvOAUVN2dQ+py85QqBVyJ8RToD\nyQI4jYKffPg7eXp7jqx0mZU5R/0xrIUsnlxn6tAuQhp21mtcfmme3Z0aeuRRblmSzdq4waPbh3mu\nv4QjDIPc5qZlqAgPjYiODhnmAUfmN/HdEm0kV7sdzm3N4i2l+Od85ATiJ7GORoNxSHO5S31hgJCG\nre0G584v0jvbnAxbbB5bl5Jy5JMrj01Z4RP/+zvIRh6RyLnvyDm+6fhLxOclz15cIi3sKGK6NmSx\n1cPUNN5TMXLLRSiQlRKnnaMdQ7WZUGmMQRoL32sbVnWdqWDEg7MXrYlyuyQ5WZLepjEamJsgL7Sw\nhg89n/GsoPFnPk5fWDMCx/p3rnQbLNd2aQYp2sDne4v8P+u3sfJSFTNVYGZyjICt7TpnzyyxudGy\nHcykDqIiQ7agkMsZx5vrtqAL1vw51piq4sq4zffd+hhT8RBPKrLMZTwO2FhrcbC9TSseI/eQMkri\nCY1fywkaKQhID0bsftMUw3dUcRxN0OVG/lhg2ZCRYLgYYByrAli9rqhfKikbmt5haU0ktECcCZBP\nxDbyXsygWbyCPNVfqdOOExbrfYvqaZRkB0u4NcUsOnTvW7DIEQxilMIwIdwQDM/XMYVEYAiaGWEn\nRQjIWwFmUoQNdgvi9RwjFVlTWkNp2AcZvYx/RdoQlLGg2vrG64HvjQb2Jt6YSv9qWiiLN7m740BX\nCPG7QognJ/3k6yL+biYC/x8nQlb/FRb/Xce61H897dPAT09A7/8c+Gngn3w9GywKBUawfaVNb6Og\nNjUiiHIKBJujCk+aZc6mM5yMVjjg77Klq3zxoZN857d/kdvC63TLmK6uoBD4A0UZS6pXrF5zUbOF\nl5bMWHMN6mACiYPc8TCFoCgdSuUSeiW+UeTKQRmLEZ6uDSCGWpjRTSKGmY9xHZztiHWvyW8/fD+H\nZjc4PLuB5yo2R1Vundrk7pMX2e1XWN9uUBQuspYx6jb4u3/+PdzR3uA/PfYUB2tdrl7vUNQTlu9c\nYe7YFuvnOgx3YnKl6PsBauChRy5OPUfGCu1qapWMnSSml4b4jsJ37IenOw5pdhKOL60zSEJ2+hVK\n5RC2R2Qv1QheDNEVTTlXoiONTh2Spk/r8C71hYElEfUCHAXVSw7DwwYTGphomyAMvXsN/seb/MZH\n3s+he1Y49uAV/Kigeh56x1yevLhMM06Ya/Xw3ZIsFPhG4D9ewdQV5cEMXVMY38N0SuqtMZV6yqgX\nkqU+Ohc8dWmZU0cv8jePPM253hRXhy2KQrK208FpFrA8tiYeAxe0IFvS1K5I2p/yKWY041sUOjb0\nwohCuRxpbJMqj/VxlaTwCB1D5QWX8e0ZplMgtjzMwEGEBfVGTq9btTrt0oA0lEby7vkzXOhPkyNv\nFOeAy0mLk41V/s5bvsTVQYsn15fpZRH99RpF5nN0ZpO09Fjr1hnlPvGwoGwKqIMXF+RDH5W6SE/h\nnEzhyTrRpu2U1QTuXobgFJLBwRB3pPH7JUIbiqbG7bn0jji4Y4h2NDI3iLFjiVFLKczksOXB2EFk\nmu2NGp2ZAc04YWsUM0hDfEpad2yzNZpl631HCK/1Ca8PQWniFUPSceifbeLWCoJminA12gFHCvJ2\nYGVoRwVSGYTWlLEgbQkbiQ/tMSGsaUZRsaqQRRWywZtA5IGvLl6+EZX+L62Fgu2P3wncjU2z/Ads\nquVXX2+FN2pPT9x3esB7AIQQczd5QK/ajDF/8rI/v8xfASxROgKRg/GhTD12r9ugvjo94CIdQrcE\nHx4fH+bx8WG6ZcSZl44wN73Lfadeou2N6IgR2tgOO9wuSTsu3pB9l5T0XIXjb9ngzNYsOi7R8SSi\nGrhsbNeYm+7hSE3k2QrW9m6De2aukOPSKyKmKmOmKmOSqsv6ow2CHUPWdji3Ms+51XkAGkd2uNxt\ncrDZpVUf0W5YPfBrvTpq3iVdrfDsziw//cj77fldN4htzYlvOU9QyTn4VgsX7H3G8FTlGAgHk0lU\nN0R1wQkzotldajpjkAXkyiFX9jHwXcX1XoPFRo9alFKfuOKMS4fGA5v0vjiDTAT++UnkIxUr1SbL\nCzv4QUnn6C4Ao75P+WvTljQyC8azuXMpFfmUpvt2QfMRyblHlzj/iJWNyI/CzOcNG98s6A5iumML\n3XRCie4Ywm2B6Dv4z9r5+YEC1cgQnrYph84YGJP0fJ6/ukS7OubIzDon23ZKS5f/d/VB1NDFqZZQ\nUYiqHRtXi4LtO6t0nhF4mw7NDRv07H5byhOXD3Dv4csETsnhhj2/7tsivP9ZstoMyeeJJ/kTAAAg\nAElEQVTBLNiOxPEy4jCnLFxGowCjLaol1w6+0nzo0NP84aW7KLW0pCogcDQPbd3CN0+dY7HWZblu\n9/Gb+l7OPL/EbXddJvBKjsxY3e/k4ZBixlDmkhyXsJkBGVIoHK+Evos6H+MlAi+xhca0YyiUwBsL\niqpDWbXnZ0xBulwQXvEoKlBWJhC/ocZcjBC3jMHXiCULbQyfgqtXpwjigmo1Zb4+ZL4+pFjzcJYU\nxe279J5vkR5qkB5qWhSRLGmcM/RuEZR9j3Jg4YJivqBx1oArMJ6gbFl8RLResHGvIV63MMKs9coA\n1AhDGUPWMdS23gR8n9mPvG+2fT1aKNeAJ1+Wfvl9rBbKa3bgN5NCuSiE+A0hRPyyeX8lPpaT9mPA\nJ77ejViza4HMmbipA8YWH12peWFnlvO9KYb5pFiEIOsYPvO5e/jo//dezl9YQE1yn71jAjc3VNYK\n3PENZbXBi3Vit+SOhRXm6gOcCWGHzCr8rW412R3EFJMh9CjzWdtqcjxe41h1g4qzJ/xtyBcLgl1B\n5ZrAHe3PphEmDLKIM1sz7CTxvh9fKxojfU24NMJtZragh0GUoDOHFz59C1efmicd2vOTuSZ+foCJ\nc0yjxLg3oHm+UNSCjKl4TODuSwbSicckuc+lnTbdJNx3IBEGnGpJ893rRLcMEL497ygrEank8lqH\n9W6dvHDstfUgX1K0noHOkwJ/Z3I/EPhuyfAuzcZ3aZLDE6ILhsFbNOEmLP4x1M9aUgoGTDCxLpuy\nUde+X2TmonOXUklLGJqgzGz8I3joxVv57PNvYXW3sQ9jdKs5JnMouz4muwH3nO70KVqwcR8MF+1o\nywCuUGSFx5fPHeHCxhRp4VrCzJJGTmkWfiVl6g9yvLUbz0jglLTaQ6amBgTBDe30h184yR3NFX7i\n5Oe5s3MdV9hr2PASdosKn1o/ybnhNLm219CpFhS5y3OPHeH6xWmy1O5bDSRcc5iJhrTjMZ7cu3/2\nHfDuGuK9o4uYzfcJTnnHWBPmurV/20MRkkl0ZEiO5hQdtX8vvAGIQmLOVzFrASa319fJDOGG5uyZ\neS5dnmE0mrxLSjB6sk7rjh3mvvU60eJ4X9dldKsi6BumnjVEG+zLHY8mgBmRT3Dfk5sRrZVIbRgd\ngLRjJXr3/isDQzILybQhXin2sfHf6CbUjekm2tejhfIVoDVB/oGl1b/wOsvfFIzwSeCXgb8L/C1j\nzHkhxJPGmLvfYL3PAK8Wqf+MMeYPJsv8DNbx/nvMaxzIJMf0YYDl5eV7Ll++/Kr7++5f+3WeWVm3\n0LvJPIPhwJF1mMrZSSr7MDgwiA1Bf1yjflZaYR8j9tfZfqum84ymes1C1ux8SG7X1FpjOu/eQHr2\ncI2B008coEsI9Ql2TNg1fKMINxz+k3c/ShjkOBOd8u004ndO30P8bIAzlAh9Y9+HfvAcq4M6wyzA\nvOxM7pu7zOVhm81RbX++MeA/EuFdd0mmxQR6YM/PKfq0P3qOaz9zjLLhwp4WRam599hlxsanNDdo\neMbYDmt7VGVnHL9i31PVAZFXoHnl8tVrsP6VWbZPqQmZxi4vcgjDnMYnY+TYEkgMBuKS5AeGjFN/\n4nJyI89ZdxLUl6s0nhNIdQMKt3k/JLMCf8Pdv0cYUK0CIQS1Y11b4JvsWyrNxrlpzJ4T1eReuE6B\nP5+Q7MTozLmxbwwnFtcYaJ+V1fYNOKkxVGSGmS4Yj8NXLL80tUMtzeDnQxgDE8Zpebsm+gdj+kWI\nmjxrFlkCO0/M8D33PsKtS9fxJ2bK2sAfX30rOtRsprVXXPPtQYVy7JFfrbKvGoUh6ifMf2mI/5ER\nxAZhrScZZx6p8fhqAy6tYfXCFMGGxOuLl11Dw/CQxgQKIvPy06PzBQeZC/qH5D6cDwzhWkn72TFX\nP1hBBcLC/zBIo1n4vKH9/at4MxnC298FT144QO1Zh+iyfMV97R9XGGDqyVe+Y5QlRpZc+7aqVdsU\ne/TMyS1QBjcxHPijAR/+Rx/g+//ma0tt/1XACMOFA+bQT9wQZD39P/zDm4ERfgALE9zTQvn519FC\nSYG1iRYKQohvBf63ydk+Dnx4Ygzxqu1mInBjjPnXwN8H/lAI8SFuIqdjjPkWY8xbXmXa67z/DvAd\nwA+9Vuc92c4vGWNOGWNOTU9Pv9ZixMFeB/ayCAOBU2oCR9GKEgLHRisCcEtBvK7pHdckM1gBJWms\nkBGC7TslO7cLysBGZNoFfSxleLrB5h8vkm/5lnqfS/xSW1Zm37V+ixPokRNqMuPxe396PxeuzVEq\nSV66FKWLdDXjOzLyBasqZydYCHt04hGteIwj9MSZxrAY7lIPMuZqffyJR6WUGh0ZnBLiDWs2MBle\nUMyHmIbD8n9/hvqXdhGZRiYlYmTYudagIjNCp5h4XRqkMOTKYbo6ZK7Wx5XKwvmEISl8q2Eu9f7y\nQhiqR3r4Y2h/0cPfkqBAFAIyB42k94Ex2ZFiQhABERkqXkYU5vjejcgfYTg5vcbobsX2A4aiOlEX\n9AzVNdCxIV8oUYGlrO8RTnTuMDjdothz9imtqFhcyV7hPIMRuBKONrfwWylOtbhRGROwe77BTKfP\noYMbBH6BnJhosObjepq4nuI4k9GWsJ0i0wb+aQZvVeAZRGTQjiRTLnUv3X/WpLCcAGcq43e/fD9/\n9swdjNKArHDJCo+L16dpeBmLlR6+LCeELoNJBU6lJDw0QEaT45WGdFmgE0n58xXMky4mBxIwqSBJ\nPL76TRIGnLEgm9VWHsEx+2YSRgKFA2PnFX6qxrNpw8ZFY0eH2hb085qDVIKDHxtRu1QgSoPMQAhN\ntqjY+Y15Ro810JlAp3YyI4f+XYrBnQoVTqj3nqF+VjE+INh40FrKWSNkyNse4bZi+Y8HxCul3Ueu\nrct9aahfyDn4hwOkEUTtN0uN8GXTTTRjzMeNMceNMUeNMT8/mfffGWM+Nvn3V4wxS8aYijGms9d5\nT377tDHmTmPMHcaYH329zhtuLgcuJhv+ghDivdjE+ombO5XX2KAFuv8T4F3GmPHXs6295sW2Mm7s\n9vc/MUU3YPnwJleyJvUoQ5vMukxPCeKPByQzkvGiZrxoUxlCW8agMpLBIcHgkNVSdgqoehq9nDO+\nEpP8+mG8VoZTKzFtgZdDUZcwnPhOOYYoGsGhPoMzLT732B186ekTdBoDCgfcKUWuJdnhguxgiTOw\n5JWqyIjcAgRUg5xcOeiJScFC2GWVJlGjJFeSUjuMxz5Z1cMfQLxtrNWjB2kDdj88x/TPXmH2315j\n6qMrZAcjVOyz9h2Hac0PCP2SyCknkThsDqv4VQtha0QpWelSakkvCxjnHpFf4Dl6nxA3Vj7L773M\n5U8fovW4h/INZc3AVMEwDxFLY8YP5IxP5bg7EoxhKchIlY/wS3xP7eOe2/GQdjRi+2iF64cdvF3L\nKpzuZcRXQsYHDPmBElHYj4Rbgulk6K2A0cUGwrUenHmYM39gm4tnFvYZlwCmgOPNTa4M2lAFp1JO\nDKEhXQ8Yb0c0O2NaJ0ekqU9ROGxszGAuB7jLGW4jtaL+WuCHikCWZB0XfrKAQQHXJDpw6GYhs5Uh\nFbeg4haURqIK6Dcz1E7Al0/fyiNnjjPf2iX0czZGDba7VaaaA47Wt8mUQ6EdBi/VGMxK3FARHh6i\nC4HJHKSv2Pwuj9nfLOBXYhuFLyl03aX/3pgw7GM/sJPzFvY66giKlqFoKWQ6KcxNrO8oBWLoWWMR\naSgqhnDT4CaCxiWDci00sqhA93hE+7kR8w+lqEdSsrY1hB58wOCvuAw/12b0cBtvPkO4Gg66UNGM\nj2iSIxq3K5AZtL4M1cua4UHJyvsk3sB+LNy+wB0ERBsZS58eUcSCvOEgDATbJU5hD3l0KGbrTXB2\n3DP8+OvabiYC/8DeP4wxq9i8zPu/zv3+S6y+yqeFEE8JIX7x69wehxcHCNdMInArIISA7asNKk7O\noeoujlC4QuO7Cq9V4tdKFj9d2pyfNpRVQ9k0HJjZusH4QpA3BcmMwHvKR50aoW/JMI4h7/ukVyoE\njRQvAa+H/UorAaXEVxqvVlA91kO4mlw5rG612dhpYrTADwpL/JEG1VColubstXmOV9ZpeClSaEK3\nJPJLLoymuLWyxoFoG4kmdEpiryBOU8pIkNeZuMKAm4EcCvKjEVv/9ACq5SIwRKdHxBcS9MDlpYcP\nkw4C67eJxpOa7HSNceZOhv8QuCXVICf2cgZZwCjz9ztvKWBtUKdzYpfD77uE45d4RhNsS6JcIZWg\nvFrBFALjQDGjKTow7kXMRAM8aUW8HEfjupoz27O88+BZlhpdpNSojiZdgNpdXeoXBNWLloVphI3I\nRd+x+OSZzJoyKEE59Bnvxjiu5siJFTy/tAQkIPZKlvxd3r10hlaY4EqN4ytkoIkPDVj9yhyDlSpG\nCwK/oF5PUG0FF0M7KUtvdz2N0gJXGMK9/HPNwG0alqBQDhvj6r4Lkys0gTKEZxz8owNEpcQgWNlp\nc2FtHplJnnzpCCubLbtdNFUvp35JU+bufj1FuAanWhKEOclRh7Xv91ER6FJgzrjICy5m5LK5VadU\nck9q2+bFOznejrR1BUCHoKqTH/elVOzITZSS8ZLZJ6RibPDij6zWSt5y2b29gvKs61O8pohWwZSS\n7ocSVNNYf9BrAdmlGJkL2PIhs2O3omnI5wzd2wRTj2nqZ21kXUaQzAlGy4aiHZDOhBgBbmKorJY2\nN16CdgTjpQpF1aGy8NczAn8z2xs68mCZRK+2yGu6RLxRM8bc8pdd97VaJnM67YztnTpa2cjKGIMT\naa4+usDy21c42VhnUASMSh9jDFvvdfE+2uTAJ0uytmC0IDCuYfl7t7i+MUX5MjcZDDgXHeRYoE6N\nUXclyIs+YiiRDU00O4b1GHcs7IvlGUzDoRP02apB/a5typ5POfAwUpNkLkFcEISl9X+cCGOdvrbA\nieUVjlc3yLTLdl6h0JKrgyZJ3efW6jpHK1uspg1GyueCUyXcUKQthzKaaGEUhiISFIUDx2NWf/Eo\nwTMjgufHGBz8oSH1PV566ChRPaE5N0C6muxCleDEkEQKpDT7KRPPUTjSMMwDRnlA5BU4UpHshFyp\ntDhw6y5vO77L7tkWw7WYckqhooidS22KizVEpJBxgTGGjaLF0UbCXHU4IRV5aCO4sNPh9ulV3rF8\nnqTwuNztMC58okpKNJPC5Yj4siSdN5QVgxwK1HWXcrGEwxNYYGo7u9XrLZYPbXHrHVcZDUKG/QiX\nkiPhOpuqxruWztPPAq4PGxTaIa16jM43WHt8ls3np6gvDXCjgtyReIHAuRzCtRBmc6go2ss7lLHA\nlYaKU+xrjmtpUCqiELA+quI7itApwED8mEN2QuEfG6JTie76mFKgej5GC547d5AzVxZYmNolDHOc\nHMLrgnTRRSn7oRPC4BYu1TBlcEvIpY+ExGc14VVF6Uj8NUkaOmxsNPC9kiC0SpPuTEq5HeDvumjH\noENtlf0cbJZ2zw9z8s5oD5JZQ7jOfn0GwK0XZL5HZjw27q8T7JT4PasH7p51KE6N6X5Pgrsp8a84\nUIBTRFYldCcAV0OoMBLSaXsfp57QtJ/VDA5JihoMlyTjWYPBp6j7eIMCmVkp2jJ2UbGLdqB/i6Gb\nvglEHvM1E3m+Lir95Pc61sjh94wxf+/19vWXdeSpvdZK/7HazqjFbbddptkY2nylNOCAs5ix8uQc\nq0/PoEtB1cmYjwccqW4THE4wHxqCawh6ms5zms7TmqHyuefkOVyntJ2YscWfouEQ/2aE7NpQV9+W\noe5NGOYhzdt3CDsp0rFuJ35f0t+q0ApTOqElY3jNjOjAiPrSAAdDNvYnUZLB8xWeryh8waces1R9\nx2gWox6HKrsMhxEPbR9lWIZIDAfjHU7W1vCWcyrXCvy+Am2xv0VdolyBUo4V1xKC9K4q/R+aofcD\nUxjPTAgfhqQbsnpmhusvzJEFksFnpjGZtObE2iHXLlJAI7KmFgYYFz6DLEKse7ywPsf6sI4W0Lp1\nh4Pvvsb0rdtUO2Oaiz2b1kod1HYEg4BSSy6fmUUpgYuhEWa0opQSh09fPEFaeviO4uTMGqcWr5Bq\nj7kPXSWcTq2L0TVJ/bSDkwi8ix7uxsSgIVYwVWDaBf1+hZVrbUuTr6bMLe3SXBiymdS4J76Eg6IZ\njLmts8Gd06sMM5/O/evIUKELye65FpvPzmBcQzJnrAWZBlZ8xNmYuWFCaQTFJPVkPTgVrTDFaDFB\n4wiy0qWfR/R1CA1D43d8RAZSThx5lhJEvZjYqUGee1xaneGli0u4tyd0HoJgXSAKgSocytIl24io\nBhmVMAMHxickO9/q07/fw00kwTVrTZdnHoNBTL9bRfQdgmN9cKzglTty8AYO4mWStJb0Azggh5Ld\nuxR5x9YbwFLdw0qGCib4ciFIOx6DIxHptI+75eA+F4GCsq0Z31Mwvj/Ha2Y3UFalhJEHAw9/22Hl\nfZKibtOWzTOa6cc1wbahe7shmzJoF/KGRzYTkU1HlFUX48DgiGG8ZKg533giD0y0d9TNpVL+Cqj0\nAP8MuCm2++s68kwOpm+M+T9uZmP/MdvudoQ/7fDWO8/T71e4fHWG4TDCjQu85TGXv7TExgvTzN+9\nRvNAH+Ebbq9d58m3HKQ8WCAeD+EFH6PgSr/F3bPXedepF1jdbHFtvWMZk7MCZ11S+7cxxVFFdirH\n1A1xWlAWLq27Nyn7AYOLNYq+T+lrNocVpqsj6kHKThozKnwcoZhr9ri23WY8CO1Q31MIwG+mdK/X\n+N2H7ufQ3AbHl1YI/YLubpVaPeXPto8zG/Q5Gm8ROxnD0KesCmqXCnRUMp51KWKJLA1GQYmLVgbH\nUUhHozWMlzW1M4J4Q1DEUE5QCFnb4F/y6H9sHm85ITg2QIQaPJCBoRkl5MohKTyUllREQdbzeEos\n0YgSDje3aIYJSRogjaE+NyBqJQzWayTdEFxFMJ0xvFbjzJPLNKcHtKYHSGmQjmaQh/zBmTtZru9w\nvLNB5BbsjCMarYwD33eJ5GqFnSc65F0ftw15P8A/E+CuuBSLBbpui64qVOxs1xj2Y9rTPerNMcoI\nPr5+Bz9x6PO8p/Yi1/IW14s2pXHojSIas7vMvec6yVrM8FINnTqEtZRR5pHMY92CeuAUBuNqFoIe\n17MmJS6e1DhoMIK5ao+VYZM083BdhTNhX+YPZkS/FdP+5ZD0tpL0DoUJQEQl7Pq4Q1s81L5NQVSO\njsjDJlOfcMnmYPgWTdE26IFDsRHSmE2p+DnDNCArXRy3RMQuXs/DHUmKtqJoTLwkVyOce/rEd+xS\nbAeoLSudIEqBCf4ifkBkEmE02/cp/F1B9YLE64NfU1QqY8ZbMTqQyMQyOx1hCLY02vWQXRe1mKPn\nCoyj8RcSym6AN7C1Ge3bNFjYg2xBcOW7JZWr0Hhe4w3BTOTydu6yMriVSwK/b9fJpgzDZYOKgRIK\nU37jOxbD15o6+UtT6Sfz7gFmgU9iEXqv224GRvhnxpj33Pzxf+Pa66kR/vAv/nueap/n1MErVgJ1\nMra4st4hdwWjT86guh4o+0N1fsAP/OhneGT3MJeTDqXZIwwYxolHxc+5pbU1cTa3v6x8eY61x2ao\nXi73AAkAHPmB8zySHWX6ti2kqyaqcjDOXVZ3Gtwxv0rFtzBCgNHYpxSS67tNtgdVq743aXE1QScO\n+WY8iY4m0Cuh8DsZB5a2X3FMG09Mk2xHzD2aIvN9WWy6two2HxRIz+px7y2vNVBKKucdwjX5iiFy\n720FzppLvCYm52d/8+/dpXash9ofsNn5je2Ca39+gO6pAh2YfZsPvweHblmnwEHvQYOAopSMC590\nMyLZjl8GjwPv0MDmbtUr9xF4Oe3aiMONXYQwyL17sd7k6hML+DvSYnQna+mZnMERZVmWxQ03GYwh\nWBzxwcVneN/MCwTOjXDqw4/8bTxHMd/pWT7BZJUil1zfblFsxPs4doAD82v82F2f45M7dzAoQ9Tk\nxMeJx+HmNud2p9hN4/37KoWmGSfwpYjg4eAV2tub36IZzwnEWviKa37PAy/il5pr/+YwOpP7z23v\nsKRoCBr3b+NUi30t+Xl3l2e/dCu671kuxN4OhMGtFOi6Qh4bM7Fktds637CjrYn2+t5Kbk/gFIJs\nKZ/oJtj5zdqIqfqQ9WdmKcbevpGJO9TMfCVnPOeSNxz2b5IxeA92yZVLern6imtYicbkOwGDW9Ur\nTCUcFGro2Q/LjUfnRpt0qCIV/Nz73sWP3PqNVSOMZw+YYz94A0b4zC/8w8vA1ssW+SVjzC+9bJ/f\nC7zfGPPjk79/GHj7q6VChBD/DvijvRSKEEICfwr8MPBe4NTXk0LZa18UQvxLIcQ7hRBv25tuYr03\ntUXbDmnh8+Wrh7jSa1MoidKCIncoSpfqB9aJTnURcQnSoIHNosb9rQs82D5PyxshsJHUseYm66Ma\nT28sspPGVtpYCxZvW0dXBP3DPnlD7hu7Hp1ex5SCq8/M011poEqB1hA4JZ6jeXZlgYs7bdLCtdsq\nJVubdZbauxyZ3SIOrJWbEJo88fCqBdHiECeeFMmEwRtJ0tzn0tVpun2rkqg1uI5C+4LVB0L6h12U\nO4GHKcAIdCEn4kzsIzKE0IyOKgYnFEVtAs0TBr+VUjRheHBCmpkUg0drFQQCT1qI217CNJof4QlF\n/Qsh4XnXFskUlLlDuhnjC4U/cZjZO48sc4lmEmoH+rhRsT/fcazgk+PqiaKjnVQuybXHhV6Hbhqh\njdgn5TiBJm9ZuYN9NxcNrlRQs2xLI/cITFDu+nx87Q7+r0vfzJnhDGoi4+t5ilEacGWjzWAcWOKP\nhmaQIHyNM5cg9qCHGK4N2ozLgO+aepJ76peIpHX9MUqw3q1zS2uTo60tYjff15Jv+Anl23OS700o\nD5YWyuca6qcFItKY5cRqoU/uRaEcvE7BgZ+6QOPBHUSgLKrD02gh6X1xivFLdXRq2Z6u0Nx3+CzU\nSsrKDTKSEYbasR5mNUA9Wcdse1bzXIGuKIQSOCNpyW838LeIUhBe8XG6cl/TXCkrDzB31xrNw12c\noNyHY+oA4rWS6kqBk+h9OCvPR/jtlPi2Lm4z31/eOTLGG0oaz3j4Gzf2IXw7EhWJhOJlmOC9SDgX\niFQgA03gv0nGYK8sYm7twZon0y991dKvVjB8Q9j1pP0k8HFjzNU3XHLSbgZG+ODk/z/3VQf0puuB\nv17Lmjn1R116b4fzO9Oc35nCk4p86OMkkuXj6wQnhwQnh5jcwsGu5y1a3pjlaIdD8Q6FlpRaciGb\nZno4ZDOp8szGIlJoHKG5J1jl6KkrnH98mbHvM56z+NjNuMIPvf3z/PsvvYfda012rzWQrubo8gqd\nxpC13QZrfTs50rL29EZEszmmESe0qmOUtsf01IUDlLmDGyiihZF92bSgeL6O25UUDZf1rSbrWw0c\nR1P3StxUU0aS/lGP/hEXWUBR1VDa9IdRYt/tO3RzchwMkHc0ecdY/LaCTj2lHPqU+IyXhH2hNESe\nZvfFFq3bdnEdw96orZ9HnPj2czz3+yeILviEFzyMB3nNsHO9w8J7MhzfSsYaA7GjWcsbuJ7GrRY0\nar3980syz8I3kTiS/X003YR+P6RWz1hP6qwnNRxhKEpB/dYdus9NoSoCFduX3R9DEBSoTGJCq6KH\nBlGA3vbQtZIX+/O8NJzHEyWBU6IKB9dT5IXL2k4TsWOx2weaOxxpbnGhO4VoGUyzAA0mcfjohbfz\nX5z4c+6oXufO6nUy4/LC1jy/8dIDtGtjOtGImcqIUgtKJUkLj5FbkB6E5KCCAkQumPqsZPRcxPB2\njZnPweSgoGcC2gxxayVT375J59s20WMH0Wtx+ewc0aokvVQlu1RFuIaiWuenv++3Ob2+wK6oUQT7\nPTjR4ojkeoVsM0Q9VbfDNNfArQW6qpBDByd19gv23gDK2ODkAn/Hw+wYG+otFhRNh8BV1BcG1BcG\n6FJSjCX6pWmcXOMNNP7AinwZCcNFH7Hi4y7kuCf69n6XAu1qnJMDeLFK9aKLuWSx6cntJbKdUWyH\nlg1avLLvE2AVJJsZvTT7xncsXzuM8Ouh0j8AvFMI8ZNYNzRfCDE0xvzXr7XCG0bgxpj3vMr016rz\nBnBPGII1h9ZDHk7PYlvLzNKPi9zj6uk5kmFgI1EXcinZTCo8P1qwxgp7xUSpKIzDvbNXONrYwhUK\niXVzv3h6ngN3rHHym8/jx7mFoUWKc705js2t8uFv/jRz9V08R+GhqJISezlTzeGEuAJaS2tI7Gle\nemGJne2qxStrbGrEMSTDgGxsIyVgUpA1uEMHb8d6QlqtaIdgboxU1gQXBSDQ7h6jSewTi4yxeGvf\nURxs7XAjKLDbNr5hrjognB3htVNL1Z8QZvz5McPVGlvPTFEmVj3RKMHaqEZjfsjbvvd5ajNDHFfj\noZCevYarf7pIsh5Zx59S4GjDcmOXwTAgz919SCLSkPcCHKEnOWNLFBLCsNDskucevV6EmuCwCyXJ\nCgevVtC+cxOvWoBjrC7KyOBvQVzJcNwJm0da/et4FfLrEWXfXtu8dBlkIWXXx/UUXmDDUIMdcW32\narTjhOOdTUK3wJEax9U4SrM6bvCvTr+HK6O2xdEbGwWXyuGRl46w1atbGQQjMEqydbXFbDigHiQ2\nKvc0VBQz37RO63lB41EHmdgPjdCw3qtZwtnEr1RICyOsNMcY3zoU7dHitRL0RlUu7Uzz37zvd3jb\ngfO4siT0MsIwQwpD574NKkf6CFdb5qoC4VhFRF23NPq92NHvg3H2ipX2mUILyol7UK6c/dGcdDWi\nYigOKIpYTtQIJ4+XgrQj4As1eDGy0XNpn/Mk9/GOjfHu7kOoEI6x71nmIAOFP5UgXLWf0hJ7PL1A\nEcwk4Bga7h7O4hvYJiiUN4NKb4z5IWPMsjHmEPAR4Nder/OGm4vAEUJ8kL/oyMAzk10AACAASURB\nVPNzr73Gm9/yMKE4meG9EDD1qYCiqSlrhjwWDBc1ee5y/dwsrl8SxhnCVYwaAa0w4WI2zZWsTc1J\nkcKQZh5+pDjR3uB4e5OtcYVcu7z0wmG21xvMHt1i/vgm3dU66TBgVwc821/iLe3r/KNv+xgr3RZr\n/SZj6eBVS76we5ROQ6OUIC9dzMAwbmjyzSqXL85y7co01VqC41hnHIQkT3zyxMfxFFIacCfmAImD\nk0hb7HLBn9I4x7sMzjaRQ4mW9uVDC8oa9slXExykgDT1ufuWq1zvt8iV84o8dM1PCNwappPitTPU\n2AUlcKTBm0pJtiKuf34Jv5HhxiXOdMrzm3PcPr3KqR98ltFOxHAzZmurxul8GnnVZfPL8zhBSdBJ\nEZ7ingdPc33QYpQEjJKJb6Yw6ExiSmmjc0ejJzkR19XM13us9utsb1dtYdAxTMUDBuOAWiWj89ZN\nysSlGHo4DYP/WZed79fEcY6eDP2NK6hddUlmHcqtkHI3REYlQoIaOrhNietrXC9HTzRxaiJlbbfO\nXKvPW+euMyp8ksIjcDTPry6wLur8mzPvoRMMWYx36aU2j10ol2cuH8BzSlrVMRjN8GqTzmKPdjCm\nHY5JSg9tJEE1IV4YYy5UqJz1yGYNOjY0HhxxeafFcnsXXyortYLAdxW1uT79lQbprO0Qndx+dn7r\niQf4mff/Lv/ZOz7LMHuYMxsLZMrlc+IoQkDz9i6NEz3SzRBdSIZULLY+VqhIQ2Ftw4wviTYFybSh\njC3+Xhio11KGqU89yii0CxOmqcokyb0Z3koFJWyKSyj7dc46hnBHIJ+pwHMxzBUQaIqTJbnv4B9I\ncQ6k6G0PM3ZA+pSZHYEGc4lNARZW4Fz6GuFaOYpi7LGTvAlEHviaxKwmCqt/D/gUN6j0z78Olf5D\nQoiffTkb82tpbxiBT0g23w/8l9jz+T7g4F9mZ9/I1vAF+dtS8pOWZOMOBNFVh8pFYXWpJ04oRe4w\n7FYoE59COzyxdoCs/P+pe/MgSa77vvPz8qzMuqvv6WPuGQwwM7iIgwQJ3jpIipS92pUsSqJshUWt\n5dU6FLJ3tXZofYT9hyyFveENb6zW69CuwwxZsmmSOigKpEgCIkDiGAyuGQzm6J7unr6qq+uuvN/b\nP1529wxEAkNCRHDfREZMV1bmy8qseu/3fr/vYRJJi05WpBWV6D5XZxC5SAQGikl/wHy5Q2FhxHN/\ncYLN1QYyM6hM9Zk50SRrurzQn+eV4QFSJZisdLlvYRHDyZgu9Hh34yqWyHCtFM9NKAUp7naGPT0C\nU5FJg26nxE6rgggMLRaVCyBniUkS2VqQas8GTGDEBtZIS9aWjvYpH+9AjoYwE7CHOYZ3j1Kuo8Eo\ncRhFLh858TJFO8Yyd/OYsDWocKy+RdGOMYXEKiZYlYTkhod/vIczqbW0457LaL1EWcUsdsd4ZXuG\nTArcWsjUyRbTfhfpKkaHdGSXJiajtRL99Qr90ON9hy7pvoUkSU3ixMarhow2fbJIL/01yUfRDEqc\nmllnttbFyJ3lo8hm3B0QxC7dkad1zd0UbyLAORVgd6Dxn0xEoEkoti2xXEnUgInnMqwwT6kMLV0w\nMyC64SODvG9TE3ZOTaxxfWuM9Z0qUgk8K2GiOOTM/DJiZKF2dCS/HZR4sT3P9WBMT7boe56kFlvd\nClvdGrEwePWZgxo6mgl8M6HsRCwtT3H0565QOdbDMBWFLfCvmdxXXOHa9jjXd7Q7klKajVu2I7xq\nTHmmD0KvkFIfMh/W+w1++8ufoBd4mIbkvvlFHjx4haodsLviEqbCmw4ozg81PNbaDRoUOBLlSaK6\nxGuC10Sn3oQOFkp2TJxZdINCLhCmrQZlZCEdweDHRihPoRxQloGyBZUDfbpHdTSPEhqKuVhApgbd\nUYEo1XlsYyzBWggxLEkam6SxmROYJKafYvqZXhEqiAMLmRnUnZv19b5PLZ+MdrfbOuQtUOlvOsfv\nvlkBE24zB66UOiuEeFEp9U+EEL8NfPa2Psnb2BKVYJsZyf0h6Z0x1mUbo2UiIwt/VTCcU6hyhkiE\nJlAYinF/yGa/wl+sHtE5S3+AIST9J8ap3tdlmDkY6LSKoRRiPEYZgnNPnMQvhcwf36RYDomGNnLD\n5zwHuTSa4ai3xbg9YCOusrpR5+HpJf7bA89xPRhjLawSFS3EZ8do/oyBmB0iQxM51I48cmgh/Bij\nIPf0PVAKsxrpAlSKFiTK0w9pqh9h+Vif4sKQ4WqRuO0iM0g6BeK60PnkvYq+4tzKAj906gI/cfoc\n6/0qi+0x4sxks1/mQKXLHWNbjBKb7UC74nQ6JVRk4J/o4R0aEK17ZEOLQiViHIOlzhgrvQbzlR3G\nvCHD1KP+imTnbuifUpoe3TMwjIwLmzO899hlfvTYKzRHJZa7DeLMJBEGo7ZPsFnCsDPsUoywJB0K\nxGWLUzPrHJ1ostqu0w9dfCfmcKXJYm+cjaiK70Y4VqZ1TD4cYn/BY/Jfm0QnFOEJRWpB96Ri+gnB\n1LckcQ1GU4LMUkSzEhWZxOs+hi0xKwnCllSmQhreiMWtCVZaY0zXuhQLIQdqOzx46DLPXD9GsupB\nMdW5dhPsYkzcv0mITAFKIT1F0rW5+NQRirWAxnQXy0m5sT7GyWM3OPGpy4TbBZpPjxPtuFRqI+ZE\nh6vNCZZa48zV2lQKAVlmUnUCqGnTkqBTIBnZZJkgUzaLrQn+/md/jjOz17lv/hq2ldIoaYEt9fr6\nWigQRaUZzEoh85WarEDmmfhN8FoQ1jXUVIzD3FSH1UGNZr+k9e/NlCQzSVc9ODak99NDrFUTe9FG\nxIrqdJ/eZpnuUQMzUBTaIFK9mhAIeiM92RQcnaISAxMKOv2Zxro2IUw9cMrU0IQ3JSAWjPpvQw6c\n7y4Cf7vb7Qzgu+uUkRDiANBC+2P+QDWpHEpuRC8qkHmQnNW8YblUoPh0gcyVhBNaSAdHEZoGvp0w\nXhywPSzRCoq0Ag11mu64rP4/C8x9alkLXOWuIUHkUHygxfCZMUaBy6XnDwEwf2Kd7acmmXzfBtTg\ngtIGHJEyubg5RdmJuKuxxmF/m6PFbTaNCk+sjNH4QszOxx2EnWKO6wRbtFSCHQfVyDWmHf3tmSgP\n2ZizMFYLqIw9Vbl+16My3UeYYDiS8pE+0CeJDKKvHNA09orYG8CFKdkelXny2lHedeQqU6UeBypd\nAD7z3IO8sjXDXZPruGbKQqUDwDONMUZP1yk+1Ea4Eu+w1iiPLTjqb5FkM/SiAtc6E1zrTOBVY8Yu\nQ+pC7w5FWtESBTV3CBl86/ohHjq4lBf6tGvU5e448ZxNe7WKTAVRW9OkhSV5tT3JqcYmjplxbLIJ\nwHq3zIPTy4SZw8awwjByGUYC20oo3DdAdAyMx13cS4LCqwapD62fge13wPizCrsHdf3x6JwK6bd9\nRJqjdlo6U3h1bJKPnTzP5y7eRy/yWN4eA8CVCT91+lv0Q59LmweIBxZqIFBuijM/QsmYZOjk30x9\n75WjpRqsgWDQ8Rh2dPRYn2vzF0/exbvf9Qp2PWbho6sAXGxO88lj3+TfX3o322GJay0t5OZmGfef\nWCJTgkHi4jcCaITEiUlnsabhnJHg/OohXlg9jAIeevgis9UuN4Iq5LgYAKdlEJgKo6ChpmausGnU\nEgZzNuVlMCPwc9Bc3y1z4uwqiTTZHJUJE4swsZGpgRjYZMse5kJAMpeRLmQoBXZoM3Nqk/WLU0gf\nhp6RP1dFlghMW69AR5Em5dhNEyYEeBIQpIm17wm2GwBngBRUgt17/H1s330R821ttwMj/KPc8uxf\nAufQpsa/9/28qO+lSamx0VU3pOxGWk0PXT3PXEHlVYPGiyZuS+wJIrWGPlUv5GC9TbUQYgqpFf5s\nGC2WuPZbJ2h9fZykbZOFBqOhg+FlVN7dxDvZwygmYEnc8RDLlqx/aZbmN6YJtwpkkYEhFWUv5LGV\nO/n9K+/gSneCUWoTSZP2GZ/i8xkH/reQ8tMpZk8igvwbmhjQdGFgolJQEureEGxFuhCRTSQoR6IM\nRRDZJLlO9c3NcjK8mQC3LfDWDM32ywCpcEsR11qTfP6Fe7m0Mc0otolTE9l2GEQu59bnWenVCFOL\nVArieoaKTYZPjBO+UiHrWahEEMYOShncObnOHRObVNwAy8jwvBjz7iFjL2cc+DNF8ToYoUKE8OiB\n19joVfnixdNc3p4kyPte8HdwvYTxw21KYyNNbDIkmRKkyuSVnRmu9xsME5tUClpBkU7k8b7ZS7x/\n/jVm/B6OmeCZidbN/kBE+ukB6u4E5UtwpPZAnVGsfRD6RyDN1fHKjQEiV0zU9Uj9b6k3hmNlfPLs\nN/nw0QtMFru4ZkKETV96fPKBx/n5h7/Gick1fDvCNVPSxMD2U7xGgFVIdfgmFEYhRTqKuKby4qCG\nC9ZnegxGHo/9+X28cvEg/UGBJDF5ZXMW01D8yukv81PHnmG+2MIzY4RS9Po+U16fuVKXohVjCIkh\nJPgpylVkxfyz5LDHK1cPUBApR0stGs4wL8xL3G0dzcrYQOWuSUoBrgRH0V+A4Yx29JEGJMpke1Di\nWH2LuydvMOYNsYwMw8j0vdx2SS9UkNuO1sBJBe21CoVyzMH7V6nP6VWHYUpcOwEEWWLomkPetxFq\nDDqxoZmbN6tKyvy3EZu42wJ5mymNt9J2c+A3Waq9+TFC/IgQ4pIQ4ooQ4i8VIYUQjwohzgkh0hw3\nvvv6PUKIp4QQr+R2kz/5pn29GZHndR27QCF36Hnb2xsRef7OM/+KZ1ublBwdue6SFQYXK/SvV/C3\n9Ey6u4iMS4rB+4fM1bv4Tnwz94D2v5vFaopbCCIAWz8bkdnQaAxuIXy4fcVsqcPFPzpBluwXBkt3\ntime6bDYHCNJTXZdWFQisFYcpr/WxV+NbpnhL/3KuJb4fF07eHwNz494bWtKF/jyK5MjEztVLBzb\nyvUy9PsLZkx35NH+5iTZ0NK/QEA6EuedO4w6PnFo31LEtFomopYgxqNcX1u3JDAROzb+onUL2cQ8\n3WXq6I5OPbFPLqqbA17aniX7f8egmUvsAspW/PRv/gl/euM0L27P5YUw3T525wuMMptXe9O3EJtG\nkUUiDTwnvfW5DhxsI+MTR1/CNdM9kpSpUv7wxhlMU91CeFJKsdqsk0R2XtTd/9wHF7YYdQvsrFf3\n9cABpxwyO7PNj86/giXk3nfkynAcheCdlSu4It17/UJnmn//2iM4ri487/btkOIlkrVOTVuV3dT3\nkbkNyAQ3Xp3aI8YAZF7K1HyLX777K7jmfh9fXz/JF1++h3vuXMJ10r2cezd0efHGLHRtPfjdJPDt\nyYxDc5scObSBZe2PQn/++XtIQ4vh8VvJNFaWYXsp8loxd2LXO/yZPgNP8M4ji7keju670/N56oUT\n2H0jJxHt/5ikBZWjXRqzXQxzf6wZBRZrvSpZuvtdz1cFSxbedYPOWXWTxvxNLdN6P/UXBf/DL72f\nTz14P9+p/VUQeUqNeXXmh//e3t/f/L1fe8Nz5uz114APoyGFzwB/Qyl14ab3HEJbU/4a8IWbiDwn\nAKWUupxnO54DTimlOt+pv+8YgQsh/vrrN+CjwAfz//9AtZIJUhn0Y3cP5qTyYhjAaBLi0l4tT+8f\nWax2qjQHJZLM2CPshHfHSE8gbbFHEFFAqRQQRQ7N7SphZO+J9Xd2fArViLP/zQUmjm9jmBLDzvSX\nzVAcmdxmrDzEEDLX2JZIBzbeV6X1QFn7/JkgbYEoJ/t0ypva2raWwz19YJ2ap6FoppBYhZgktrj+\n2jTdnaIWxsoEhlJ4Tkz9nVv4R/oIOwNTQwOjkUOxNqJYDTD2dK41tEx1HeS6hwqMHKMNTiEhKymG\nx1PSio4claEIew6pMmkGJYaps+d84xoJM6UO4lMteGSol8O2Fkk699JxfuzQeT5x9DxjhQGWkeGa\nCYuDBgf8LvePLVNzRhhITJHhyAwpDUaRrcXF8ueKgiB1+NzVs7zaniLJDOLMwCJjwWuTZBrTfzOB\nqVoMdGRvyz1SDjlEtFQLmDq4g+tH+l4YkrjnsB2V+MLKWZYGY3o1kpkk0iCQDk/1j7EcjZEqY0+S\nFyWII4sk2VcEdIyMn50/j1cMwU/33JRA0bxRpzIx5PC9NyjWRvr7YWZYPYO1YZ3ffv5HONc8SJKZ\nhKmFVwgRhuLcy0e4sdEgTQ3SHF5pmhKqCZTSPUccYUgm5ttcvjrL+ReP0u1pOGaSGERzGU7XoHLB\nwurmBe8UsoGNKEjMEwNEfV+L3EErSH7j6hEWt8f0Pc4MsszAQJGUtUDVrrOPEgpvS9FeqbJxeYJw\n4GhUUCqYKXWxLKlz3Mb+s7AOBFiRYOycQWELjYBJcxhfAsVVQeO8QPmKYvV2EghvvRnp/nYbbY9K\nn2t571Lp95pSakkp9SKvI+krpV5TSl3O/78GbAHf2QSBN86B/9gb7FP8gBUyOwOTujukHRUJUocg\n1RFYGtlYI0hLgrgKcTW3ISsoZNfBLEjaI59O4GEbeoAtnRySXrKxmiZSs0o0ScTJKBYDhiOPVquC\nENqP8USxycWL89x55zJH37vMoXetEg8cmrGmw5uGYqraZ7IyIE5NwsBiZWcaIzXo3uHTO+ljDTJE\nqqiWO3RG9n6klg8+UeByY7vG7HiHUzOb2hwiM2n3Pa5HNunQYutGg+ZaDcvJKJdGnDm6woqsUTze\nwz/aJwsskkSw0anjeiluMcYtxsh8YBw1azriGlnIwNob8GuHWySuTYZFcEhPTEYCXlewtVNmaqxH\nL/HoJQUsIcky+EDjEv85vp/4PQPkIyPomJip4tnnTnDq2ApnG6vcO7FMN/aIMos/a97BVlhmstDn\n4YklokwLaT1z/hhJIyXMtAFClOQYcQOywCDE5umNQzy3uUDRjqipgJ868TSfWXuISFqk0kQAUilK\nXsggLJAIwFJ7OHszF+ly/ZiZwy2yvFi2tVwnbHowAV/bPIEtUopWTNGNsE3JlCd5LZzhcjiFZySs\nd3SOGSBLLbJUR+ExJh+dfo0/3jzJZRrETt63Egy3XTpbZWqTfY7cd4M0Nkhji/Unp8m2TXbGS3zm\ntXfyX8yEmjNCOYoD8y2uX5ticWWKpdVJCm6MsiRGRU92+BnK0wQmqaAy3qe9UWGzWWNjs4HrakON\npGJgzqQ46xaVi/aeicZoEpJNF3sqwpwPUAcCLUvQVszVOyxuj/Pa1hSXt6bwnRjHSPUqy4bMg8xT\n5PB1xtdjopHLUOi8v2mnmJakcnqJuXKb1X4dYexPymfKN3jxjiMUL9pUL5tUruZiYkpH3qBhsuHJ\nmJnCEtr/9/vYFAj5XaVqvp0r/Xe2DfoOTQjxIOAAV9/ofd9xClNK/c032P7Wd3tB3+827DYoOSnj\nXh7pomFOytcKbPZgN4clUJZAuYAlyTYL2h9RCuLUJElNHhxbJProgPjYvpuMsrSmRbU6olLWkRJA\nmpqcOrBKs1nnhZeO6MhcgFOJdMpZ7lu8CaFw7RTH1MJHqZ87owhIyiZx3eID05dwx4ca2ZCTUBAK\nIxQsb46xtDlGmmlcbMFKmKp2dUTpZyiho8k4smh1i6DgUHkH19BLbbsYY/k6LOw0i8SRnr9FTlBR\n1VRDpXbdWVIDIpOpYh/HSzAL+TWZCllQ2BuCIHbY6FT0CkZqavpmVMYQip+ceZYJZ4BtZliNGHsy\nxp0K+Q9/8EGuLs2QZQa+ETPmDHmovsQr7WmWBw3S3MDCtyKs1xxcM6NgpzklX5OSbFsr+2exiZLk\nxhMe17sTxJHNp+afYsbtYgkdyQsJw5HLTL2Ln3tVGqYmtZTtaA8WpxQYpsR2Uww3I+m5hFs+MtUY\n/nbkI6UgkhYbQYVEGmTKYJC5xKl9i84JiD0bv6/1DvJ/3v0FPjR+DcdI8e0Yx0pQxYyVqxNsrdTJ\nMoEwFI4f40YZVt/EapqQQpTYbA6rNHtlPD/myLENHFdT08PIJk4srf3tpHskKGHqbXtQ4tCZG9Qm\n+nplkVj0hwVUYBIcSQkPalcoobRol2lmZAOHZKOASvMCuCOJWzYFI+PITBPX1vDTUay/7/XaQEsp\n5JOiMkCZirn7N6itpLg7gFRkoUk8tFlsjnOo0uZobVvr9BsaQfSuyUXicUXnlCTLhb3MUHMgMCAt\nws7dEr8Wcnbs7TB0UK+HEY4LIZ69afvF1x/ybU7zXc0AQogZ4D8Af1Mp9YaZ9zdFoQghfuPbvf6D\nRuTphZJuq0SjMWC+3CVMLRJpYlYj1gs+IjBxBjoVrCzIbIWoJKhWAdn0wJSIQoYUcO/pZZ5pH2b0\naED4UIR13cIIBa4pMISiXA4olUKC0NH6EI7ioSOXeHrxOI8/cYZGvU+pFNDp+mQVycJcCyP3wwSw\nEoWRgHQh81UupK+f/APl63zNPomsGWSVBBWakAmsgUCmBuutOhvtGo3SENdJmKx2ma23udGuIy2l\n87uZwAjhwsoM9xxe4UhlhzCzGKU2mQ1rqkGGQb9dxDD0YCUMhV0LyLo2ItXn2bXMtISk6oZ0gczJ\nkKme8IRhUnrRYHDGYSWpa1iZlWIIyRPt43xk/GV+auZZWrHPjahOkFi8fBes3Fjgc3/yHop+wNHD\nazh2yvvedY6nrKNc6k1yuT/BVKGPY6aE7QJiVeHOJTheRir1REFkUvQjhiOXLDY12MNQkAo+/+I7\n+IV3fpWfmf8WrbjIctAgiG0+d/VeSsWYyVofKQWjyEEqgWukmMIlVQKpxB5Oo+BpSGDSd0j7Dqaf\nYjgZISFT4x26ic/qqIZraEp+hIXZMcnGU9iNKtFR8Od3TvDB2hL//M6v8A+Sb/D11kH6qcu/uvQu\n1MBkc6Wh0ymNIbaTEkcOdgRgYI604JSyFdKHjU6ZmVqPE6fWCEYOo6FLgqCHgwBsJ8vTewZKKpq9\nEuOVIXMnt5g5uk2vVSRLTG7sVFFSEC2kxHMpVsvAiAT1iT6b7TrZ0EYu2hhehnAzksQg+GoN/4fa\nnJjbIohshpGDScbceJfnnj+OTHNKfu6lOXm2yY1z05TXBMV1g7iqI+idsSL9qMBsuctcpcv2qEiY\namngv7Zwni+Iu9mu29hdsIZ6EkmqirSoU3S/dOJxFrunOFv6/o8trytebr9JXv2tUOl3tcD/GPhH\nSqlvvtn7byeJNLxpy9A6t4du94LeqAkhfk0IoYQQ42/1XAXPYHl5nPZOCaUErplScSMWFrZQzj7t\nWEjNXLOynNnV0DlPpEANbdTAYnE0zs8f/AYVO8T2EpITKdHZhFFi3+JT6XsR5VLIS91Zfvj089y/\ncBXLyOh2iiyvTDHcKNHtF7mxUc/zoQIhwArBHqp9ASEBytFSm9eemeXvHX+MhjOkYCUYfoZRTilP\nDrH6WhtaSUGrV2KtVac1LHF4YpsDNe1kI6wMXIkVwlavyss3DuROLxkNN2Cu1GOy2N+r7svMIAoc\nwqHLQ1OLyNkA7DwnLhVGBuvdCsfHtqi6WpPbtFMsNyOaEpReNCleNCAVhIFNL/DYGfishA2+2j5J\nKg0qVsjZ8g2OuS1SZTD3gVUMJ2MUO7z4ylGePX+Sy6Mpfmb2KcadASaKtaDK0mCcoGhgfK2MWLUR\nGdhC4toZ2cjE82J8P8cCK1CZgUJwdXuazzz7buLUpGSE3Ftd4Yy3jtGyWG/W9KpIKMp+RLUYMkhc\nxr0BtpHl3h3amXKi3kPsEkiAdGSRdAq6HmFH1BztBhhJi17iIfwMKwOajp6U1S4NXHAjqPDr199P\nJy3gmik/PnOJn51/EctKyRoJytKrp852ie21OqOSSaG1S8jSvpZWz0T0TTqjIpu9sq43FGLGJvrU\n6sM9S8HdicM0JZat02CvrU2QZCbCVDSm+0zMdzCLCXQtSHStJ5mQxPMZR+c3MNxUrw6BLDDJOi7D\nmkHyapHwqzVUAgUjZbwyxHW1DMG9Z69hmhmWKTWJLIO1Xo27/8YruOUY28wotMHbBiM0eGbxEJ2R\nFosb9wYsVDt8Y+04v3D8ST4y9zKOmaLqKcGsIjigMMsJjpHwq6e/zLunrnGl85acHW+vKRCp2ttu\no33PVPr8/f8VTaH/g9s55k0jcKXUb7+uk9+63Qt6oyaEmEdXapff6rkApKWlL68vT7C5WWNioofn\nR1RKAceO3eDKlVkSy8RINBpFCbDtlBhgKoDQRI0sUIqnWkf5hUPf4H889hUuDyZ5vr3AIHNZGdYA\nofUpBGRSO/Y0mzU2Zqp8/J5neO+JCzx59SQr7XEC26W5U2KHMt2BT6M6oFwKEIlB7UrC9hld+MPQ\nS06AZ798J2fedY3fOPOHXOzN8GTzmCZhONC7UcHqmjpXWZAoS5EMbZKGybGpJnONDjfaVXqBhyjY\nmGsua6JBs19hrt5motzHMyIeOfgan794H4k0b1nwPTJ1hae2jhLPxYjAwOibiFTQ6pQ4NrPNnRMb\njBKHtX6FILEZVU3iqkPlnKD4qmJ0R0Y8qUgcQcsrcplJVsIGJ4sbHCpsE6QOWysNFk5tcPQTV+mv\nluktlZGJyUuDWe6urPLpg4+zFIxxrrNAL/VYESWUcDG/UoF6SnZniKplyK5N4kiKlRjPSwgC7WOp\nYoNMWLy8Ps8//eJPcP/8NU4fWCZLDArLFv2q4vrGGMVCTMkPcwEtm1ohZMobEEmTYeySKoOiSnCd\nhEABmZFPnhBnFhv9MtPlPiUrop8UCDIbQ0kWDm5y7eoM2WpBp8F8jT/rjTxWnAq/eO0jPFBa5/3V\nJcpmrJ+7AXIshURgjLR6ZFaVSMfEa4LbgbgCmaPIbEEaGuxQohd41P0RxUJMKsGxUqLE3l+v5/9x\n3YThwOPllRmqfshYaYBlSgxLp/LoWHok8DKUqSi6EePlAU20u5UONPTJ+oeAl0qkl3zsswOswyEI\nwbXSOKdmNnjvIy+xsVVnY7NOmhpcWp1h4b4WD/7ieXYWa2y8OEk8tBkag/exAgAAIABJREFUNn1p\n8a3FI1T9EQcbLXwn5tWtGV5rT/PLdzzOTx4+x2ev383FzjSmkDw8ucjH5l7BFhm/f+kdzI69PQwb\n47uAK75FKv1/BzwKjAkhfj4/5c8rpc5/p/6+KxghgBCiDjytlDr+XR34l8/zn9HOE59H695uv8kh\nbwgj/Lmv/188sbSNGtg6+tnTbm7ywydf4mt/fjdbW/U95qJZiRBnh0SJSXoTlEkp8J2Eu8ZW+fGZ\nFzBFhpkPcv/m6vtpjkqMl4e3aFMPv1UhORHzt08+QdUO9rSmn1o7wpc++y5Gs5rEsaeXbSXM/RdF\nd8ame8zMf8T6ZCcv7zDrtvn4f/8EpplhWvr5/Mf1B7m2M8nWpUnNmMtH/KIbMHVmi8lSX+PY82va\nbJXZ+OwCg+O54mDetzAy/u69X+XC5ixfXzqZT0L6XH/nwccgU/zfl95DpgyyXCO9sArmkZD75ld1\nBJ6jZF69Ps32ixM0Xsl0njL/PfUXFO1HU2bqPcpeuKePPmYGrJyfJSxLZg839T3M9zVHPodL23xs\n/EUMIbFy9ND/8c8/wqo/QbG5B6kGoHsQgmmoHO5iFdI9XWy1arM9qOhlr9x9qgKForIkSGoZo+N5\nvirvu1wMqJVGzJR6sP8o2Lpapzrb4+WledLU3Ic3CoVZjLl/boVKIcDK70erU8QvRly/Ns3ajTFd\nUESghEIcGlEsRDRKQ40tzvtY2mygpEAmt8LpPBKyFY/KosBI9z/3cFqbGhiVBCy1B/f0nIiClxDG\nFkl287kUpULIKHQJA+eWPvwtRTIlSVuFfLDXrx89dINH5q/wueffwSBySXO4p9NVxFMZE98SFLbA\nyPT7K7M9Lr/XZrbW4fC41tA3cqTXY+dOM13s8fCpKxqvnl/v5aVpXlqe1ybYN6E6zaZJyYr5Nx/+\nDNPFnjb4vqkFic031w/zz578Mf7xez/EJ99xD9+p/VXACCuVOfWOh/YZ7V/98q+/5XP+Vbbb0UJ5\nKQeVvyiEeAW4hPZ7+56bEOLjwA2l1Atv5Tw3N9vSeVxKmtashIYyjTKbQebygQ8+zyOPvMLYWBeR\nw/kcM8GxsxxPuw/tCvsul3oz/Luld3O+s0CUmUgFNS8glSabvTL90M01KnSEFIYO//bK+/ji+mla\nkVY3VK5CjCX4qwJ/1cAc5V0IhXh4RO16wtS3EvxNmYv/KCrv3WHx1QP87j/+KC88fnxPlbBKhO2l\nTJ3eojLTx7B0pTHsOmSxyVZQoht7JDl0TtqQTWSUXjOovGruw8QUPLezwL0HrvPJu5/i5PjGHunp\nqZ2jHK1s8+t3f5F3T13WxBEU7rZJmNo8vbrAUrtOlGqYplFMUC607jTpHzRJC7tpKoFKDdbbFdZ2\naoxyyKUB/MJdzzNqFrn8wjyd7XIuHAWDwGUtqvF7mw/y0mCOUGpykr8RoyxBf1YQ1vZ1rj0nBiXo\nXasyWCuRhvvQUXcnL6LZ5EAenVoIJhVu06TyvLOvQa1gOHSJMpvVfk0zefPn2l6r4FiSe09c5+D0\ndk4+UZCCTE2eXVngwuYMvdDNIagG65sNDh/d4Mzdi9Qb/bzYrU2Xh6HLZqfCMNIrL61woAdhw5F7\n0D9QmNUY5UD3iIbAZvY+nBUpkD0bNdSEql0Eh2/FuE6Kl9PSd48oOTGOk1Ishdj2vvB3Yc1E2BJr\neoRRTvbgjUvdBraV8dMPPsl7jl2iWhjp68zAGgiaDyu2H1RE9V3zcMmZ8VWWdxo8t3yQ5qC0dw+t\ncsx6u85jz51hcWNS8yEUHJ7e1FosXQuCmwg7EgZxgU9/6Wf538+9n5W+NntOpMFLzQP806c+xj/5\nxsdRqYHxbeuFf8Xtu0+hvK3tdhx5Dt70ZwpsKvXmXkZCiC8D099m1z8E/hfgh5RSXSHEEm8QgedV\n3l8EWFhYuP/69evftr+ffux3uBQusdMp56s9/XAnaj3mG23uq61oBtpudBX4PL1zmEGsfRpvJj7E\nOy6GJ3H9+BZCS8MdIpVgrVfZi1oBpq7HJK8W6X5I+xTu7hJCaRzzUzVNrshJM3YlovreTfiPNbhh\n7xFdAMb/2SLRY1UGT9VyFba8j5+7gXVyyMqofkvfrWtVjKbN5EObWiY039Xu+nQGBUpP+YhQ7FHv\njXJC8L4BPzb3Egf8Lraxvwz9nSuP8IHJV3m4vohzE7voN//gx+l2S4zOxHuRPEDNHzLo+agrxVtW\nPdJQRNMpRlFHuvvkooRvvuv3+LWvf5gn1+cIM3vvXJVGh8LBgLIb7T0jgPRfVIhji517yihzf8fB\nE2tc7U6QqDwLmO8yYqhdVrTvyAWU9m6VzusXl0ycHnv3A6D73hGOm1AuR3vXCjD4Vh2vEnP0geW9\nlRDAtatTrPerucnD/udjaGAEBvefuYbvRZg5cSVLBU+8dgxyl5mb+1ADQ0P+Xmc/UyqONErkWvWW\n6FhaCmkojaK66XP7xYDDhzdphb5OjeU7lIKqGRJgEST2LX3Uzpu0kwLR6Vufa9Y3mRrr8vFDL+bQ\nWv360xePcuHxY/TuSlHW/r21jZRfuOcv+MOrZ9kalm9xtyqWQsIdj2x0K2nsPacvIBJ48tU7yOR+\n5+YIDX/c1T19/RidT1ZmCP/zh97L33rn95fIUynPqgfv++W9v7/y+D/8/1cEDvRv2gKgIoSw3/gQ\nUEp9SCl1+vUbcA2tpfJCPnjPAeeEEN9usEcp9Tu77hcTE98Z0y6HRVwnY2Ksh+voKEMISZrpItO5\nzjzNqKyp2dIgVSZxZlJyIgrWLkRNIVAcnGwR9hyG3QJZTjGWEtqhl1PvOxSsBIHCEBLn+AirZVD9\nIw97LdfrjkAlAhyF+UgHcSDKhfQlhi2xTQmf7MC7RloIyZHgStYHFSo/2qL+45uYtQThaHTM1svj\n1KyQo5UWvhnnZTYN/UsGDlvfmCFsau1tmQhIQJmC4btHJHPJngOMsCVlN+YLq2d4ZvsgQWYRZyZR\nZhLGNl/bvoM/2jxDO/aJpUmYWagjIfa2Sek5d9+hJQGfRK92jo2gnO0RfIRUGIlAjixN0c6jzQzB\nY705/vV7/4y/e/ez1N2AohVTtiMK522GA5dO4GliitLojaTqUNhOGH+mh9NOIFOIRDLpd7BMuQ/Q\nyn/Y0oLUFdQvgnczEUQpzFLCcEEymlZIU1+rNBQFL2IUFOh0fNLU2HM7MlAMWkVee+oQ/ZaPzARp\nYmDK/aI3N30+lELEgudeOsrqhoZ7pqlBHJvY67fei91NtG09Rt1ELAKFJTKsUop/vIu56wZk6ByS\nAIyIfbinAvIC+bg3omjvOgEphFJ0N8qUrDifHOXevomz27ibFt5zBYze/nOVI4utoMx/XbqHlWGN\nVAqizESVU0BoF53t/P0pJInF1fYEHz96nnunVnDMBNtIcYyEohtj1SKsaqR5Bbkjz8WtGY5MN/mh\ne19krNzDNDIcK9HfayUwQ03e4dbbouVzQx0slAtvjxaKSOXedjvte6XS5/s+JYS4nG+fetO+biMC\nX0LDYtro+bAGrKNZQn9bKfXcbX2qNz7/W86Bf+Jzv8uV/jKVySGGAVkmSFMTITLqfoCT08xNkVE0\nY/qhy7XeGI3iaG+S1/lgOOK3eH7xIKPIRSqhbb4MRW2sR9WLqBRCDAFRaurKfstEbJoMvjoGqYH0\nJFlFERzOSE9FuLYWplepgL6JkSrmD23Tz1w9/mQCNjQaYL1c4K6ZDW3HJSDZcJBDk/bFMWpHO0ze\n2cK05R7R5cVX52l3y9g3bIQSGE6GVUwITYOwLLDHQh2Vp2D2DGwrYf5Ii+VOnUwZCBSTBY3AuNYZ\no+TFGkUgFBNOn6IZszysE5yvYl13EZkgK0ikp6ge7mEfG7Lar+pVQQpEBr5KCFeKBJP5NyZn8hlK\n8ugd1/iXC9+kZkUIJbiwM84wsflHv/lBuo9mpNMZ2ArL0AbF5h9UKV6MsYYxAkgLBqlnMPuxLSbu\n6/Cn5+8lzaw8SaIHNiGhupjDv4SGnmWGInrfgHirqB2KlMAM9HuKZ3YY9j2S2AI0Dto0JYVVg7RV\nQNkaxmYXElw/ZoBFnNpkpTx/m2PjJ+0eg9UqYdEAod3nS8UAISTylRLDuxLt9XgT01YsujCZQDG7\nBXp4bGyLZlzavYHIxEBGBknTJYwdXQ/Ic/sIKBRDjpzauEk6ABJpIqVi+fwcM6e2sAsJQmjMvFSC\no+UmS39+iN5SGZWaSF8iC5LBmIlqJBi1BGHo1EzVGbEzKDJaK1F5zdJpMlOR+orUVRinhnzy9NO4\nZoJC0AzKJNLgfH+W5qCcs2IFKtEQVFdk3DO1zNGxJrapi7yD0OW5F4+xs1PZW83tQRLhllUewK9+\n8N18+l0PvNHY8tYj8NKsevj0p/f+fuxb/+v3k0rfAJ5FmxkrNJX+fqVU+zv1dzsR+J8CH1FKjSul\nxtAwwt9H+7f929s4/m1plapi1PHpbZZy8ozCdVP9JUZTnZWCVJp0E49BXCBNTNojnyzXoDANiSUk\n20sN7jt6nXp5mGtQC9LYYtIbsjko0g60BrVtZJTcmNFqCf/MgMqHtrWHYgr2ponRFChlaEd7BZgK\nainShWinQNmOMIX+8TObwKGEtOtyYWuKTuShAHM6pnAsYOH+G1x/Yo6156fIUoGV5drQQ0lWz/ai\n7Cw1iNsFsp6JSgyStqsddAxI6xIaEtuQzFc7uKaOqDbDMqujOiAYBG5+vYKtqMJSME7dHyHvDEmP\nRChDR9d222SwWKLmhczXOrpAZUsoSgrjAa6QFDZNHUVJAZmBSizWtqr8+uoDXA2rpAhOjTV5eGYN\ncV9A+YsuzlVTuynFJnFmMZgzSCsOWcnR9yOUFNopSxcmOTK9yUfuP0fBjnHMFIEu+CkLekc0LBM0\nht4ZGYihhTMxwnC13nrmK9KShneWKgFuQee4s8wgjm2s+UAXEDXvhySwGewUSZWBkQisfp67lQJS\ng7o/YrzYx+7peoOUBr1+kcHIpzQ/wH/ZwewZ+v25xoj0Qaw7Gs53E/TwsLO9VxwFhWHriNwmH+gt\n9iYtFEhlagegvAkBjplRsDMmp9usXZwk6BVyXXGJa2XUrIC5961QP9lBmBIzUlg7FkYmkQMb2XZQ\nEoaxw/qoxjCzScuK3okMaWteg9UX2EODYVjg9y48QCsoIZVg0u8xV+ow5fVpFAc4liYYGU6GWciY\nabR5cvkoFzYPkEoDz4040OhQKIbcnDcRCITMt5teVyjqpT1/me9b+zZEnjdr3zOVHvhh4DGl1E4+\naD8G/MgbdXY7crLvUEr90k2d/5kQ4l8opX41F7d6Sy23D3rLzXb7GF7KqOsx6nl45QjLSfELAd1h\ngVoxQBm67GEIiUQRDxyMWkQ78LGMTONOge7lGlNHWtxzZJkwttnqVIhTi4qMcM2MrUGJ7WGRihth\nmym9YQHveonSnQO8OweErxVJtx3SMYNhbGM5BlGiSUCGIVECtl8eZ/7RVapORCoFidSDvNyxkbWE\n11qTuFZKwxthGxknZzcp1kNWnprlxjMzjJ/coVANGbSLmIlJVs/Iahlmz0QEQjv5xDZSmMTNAiJX\n44sEWI0MaQrma12i1GQYa0JLMy6hMBiFLoGQOLlbjl+Kce2U8I6I9GiMuWYjhgYNd0hnsULtUI/a\n1AbdsECQ2BSdkLE7N1g6P4e4YWrCUkEv3bcGY1TGRvzG+juYtQc8UNzGFwmcDhFPlSh9uYD8hiI+\nniKLio4riCsG4JL5DkaYIrIMe1xy/rXD3H1iiV/6kS9xbXOKzU6VdrPE8qsHCCcEneMKa5SzcJHI\nbRfj8BB3MkAmgizQBWKRi14VyyF+KSIKtWGAWUqxGxHpjoMaGnrQNMAupESOwujZ2G0DZYO0JCKG\nH73vOT7z9fdB10SZIG0FhqB6ts1wuYx30UUWJGkjQ1mKuJzBwMbYcqDloMopypI4ccyBuQ5rQW1f\nZwWFFAK7A0ktL9LqGiKGmRJkFiUjuSXHDnBgrsXWeoONS1NYbkKpMcKwJMaRVRxTMvPIOhP3N+ld\nqxD3HaTv0u6XkEMLNbQQfoawM5xCQmhlpGVo362wewKrL8gMIDLpmR6fufAQE36PQ9VtHDNjojpg\nKyxT9wMyaeTG3oKyF+LaGc+sHub8+gJHGluU3ZCe9LRxibx5uH7dmAEoW9GXw7+KoeONm0J7y95+\neytU+m937OwbHXA7EfiOEOJ/EkIczLd/ALTzpcIPjNT5QmmENz7CKOj6atBz6W+XqKuIXlCgM9p1\nNBcaHmdp4kfUc/RyMzUZJS5B5JKMbF752jHS2MQxMg5OtTg+u0n3So0TteYetKkTejSHZYYVg81n\nphitFVFKULhjSPnRNrXjPbLMIk308jGTBmlmkTmCcOSw9s0ZZCowJHhWim+nlC4MSFY8yARRYrEx\nqLDSq7PYG+O+n3iZ8tgQFGy+NMn1v1hgmNlYNyzMnoZnZJWMdCbFmR1hZgIR6XSBikyygUO87ZP2\nbVxD1wlcK6XhB4wXRzT8XZgMKGUQJTZh7GAIOFLf1sQiR5IdjEnvjJi7a43tC2P0bpRRmaDihsxU\n+pQLMWMHeszduYFhKKxE4XRNvEgv95eenyVLBctBmc91DvGZ9nEKxRh+pg0liZFA4QUH/0kXpKB1\nxiQpa3GxzLfJygUmJnt886WTXFycI5MGhyc3eeTUJU7cuYoVQqEFKEHqCYIpgbkQs1BpkS0XtZ66\nqbArMU4txrVSsl3IoVB4fkKxHBFnJoV7O7oWYUqMVGHGOvevqhmypOUqRQJWYBKMfI7MbPCJh5/C\nNjMclWGFBtU05cz4OpOPriHsDDMBZ83GXXbwihFJI9Oo0AyMjo257bL6hz7vLF1hqtDTBKN8kpFV\nid0Du8c+CcwC185QymCQOLcIeEklCJTFXXcvYlkpMjHorFfZWalzeWmWGaeNI1LsQkLjzjbTD20y\nMdvWTj0iB4aMTGTXpZApTFvl+xRJVRLMSeIJqdOAofYGbQ4rPLN+hG+sHmM7LHGysoklJLaRUXQT\nyoWY1qjImYUVfDciU4JXmwd4ZvUIscdNsr77JQ64KRVu6vpOo/72uNILKfc2vr9U+u/62NsZwH8a\nXWj8XL7N56+ZaOD5D0QrO0M8K8EZH+llspcirAwzlRwst+iNCqy26nSDQq55YuAUI7LIYrTta1eT\nRCAzgZHBqOtx7k/uZPH8LP2WTzBw6C1VsJGcmVznWGObihvgmgl4kswSrD8xw40vzzNYLhH3bIwY\nioWQNDWJQnuvQKaUQhweMdwscvWPj7B9YYyw4xD3bRrPtiE0iJdLpM0CMjBRiWC528AqZDzyqXPc\n94kLjB/awa+NMGoJqgD2dRv3iovZMRGhgERQnuhjZWAODZ0GyPXAmy+Na7d5M8EWGQKJQDLua3z7\nX24K01AcazQ5WG1TdiIcM6VkJExNdNg8P8HS4/P0VspEfRtCQaYEU4d2OPuBy0wdblEohTheTONw\nh1G3wKuPH2Hz8jhBzyUa2vhGgqhl8OkW/Ggf5mKop8iCQtmC5r0mrdMW4Zgg8YCSZGy8z+PnzvCf\n/uw9vLo0z063RG/oEU5LrKGitAJOVyNTskjwwVMvYsWQXqkgtwrIwEDFRj4hCzKpVf12IX5xbIEJ\n/oM7FB9oY01FGH6KV4rwvAjZSEinY2QpQ1lau3wjrHL34SX+/l/7LI+efpmpWpuKP+SjtUuUx0bM\nfnSZ2tkWTj3EKsb4hQhhQjImSasSaesC6+ZFn2xH8P6JS3xo+lUW/DZlK8AtRGQlcDoCf01g9XSK\nx0gV44UBqTToRB5BruUupWBjWMEvRbzjnZc4cnyDUnlEoRBx5cYMJorD/jYHCh18M8IWKa6R4ri5\nomEOaFE5iqfkhXp152qG6m59QxdADRiaEGsWJhlcbY9RMFPuadzgYGmHohXhGgk73SKWJbn/6HVO\nza1TLw4pODGlSoDppVo2YHcgF+y53EtHR9+FsRGZeDtc6ZWOwHe3nEp/0/Y7rzvirVDpv+tjb5vI\nI4QoKaUGt3kh35f2RkXM33r1N7jcv8a31g9pLHQ+N9W3Ej78wEt8afUU7dDfgzipDHw/Iuy7JKFz\nE8RJMbGeEnQ9dhFqu/PigYltok6BQz+ypIWQ8gDg+UsH6W6XqCwaWvYyP9fUXZuEJ2I22tVb9MCL\nTojpZMjXSrDm5vlQ3Q69cJFtVWPrhyc1bC7H1NkTIyYmOzx64OothJ0vXz3J6k4d76qDSPfhgqqa\nMPfwDdYvTREO3D2taWuoKGzDxDuaNI7vYNj7z7+9VSLxFCvd+p4IE8CJiQ3qhYBsb77Xr5uXLM6e\nusbnv/QIg2GBLNM37OjRVZyzAxwjw7xJkzvJDLpJgfZijfb12i3614ceXsYvhXRiLw859EHL18aR\nAxtrlDu55K/Xx7s8dPclnnziNKPARebklcyWJNMZxSsmTlfnTkFDG3/llz7L+eVDfPnCWZLM2uvj\n2DsXGSQOvehW7Nqo52D7KTU/uEX/vWIHhKnN6nadNDXZdbjxdyR//d3PcMhvUjEDXd8AMiU47fQ4\nNzjAZ3fuIlb7ML/WC3WCWUW7WbkFLlj7aov5567xnt/dwSopzDxZ+ezmQZ64dBJ/ydIF2/x5T063\nOPz+ZdZGVXpx4SaoqWIUOVScgPlK9xaN9G8+e4wJc8QPvfM8/197Zx5nyVXd9++p5e3v9b7Pvkua\nkYQ2kLAEkmw2gwEBlgTI2AZsHGN/PnZscIKTEGPH5kNiHMdOjO1gYYKVCGQZEEKAQEIarWiZTZpN\ns/dM793vvX5rLffmj1vd0zOapUdImm6rvvOpz3RVV717b73qU3c553dsK5wNsnlk63r8ds3+A32E\ngTWrke7mmyxdPsrQRCvNwJmjna7QI+nZqNLjHrmaVl2m64ISmzqGZgN8AO7fvAlraYMN3aMnBMWV\nmkmOlVoo7u1ABZHVnoso3ExAy6op/vCSt/LO/us5HS/HImZLqk9fs/y4M8h9ez5/tkVMB7OIeSNw\nFLOI+UGt9XOnOPd24J6TFjGfBi6LTnkGs4g5ebry5hPIc42IPA88H+1fIiILZvFyBkFIOwFvHDjA\nypbJ2eCUsOpSm0jz9uU7uLL3EDm3gUQ6m149QSrfJNNax54T4NC+fsoYSZ8TMoJ0XjhObSzD3rvW\nMrG7HRWYHrtoo1hYXq1pdEYuamiS+OTdJj1tZVpzJlsNkethT2YaWVeFjVUoRGWLJv/+gNb9ZZbe\nMUj2hSqEpgcQVh2KzQz3H13PgbLRpg61YEsIDjTWevjdRlVOiyZsOtQrKfovGKFr5SRutEAHmlQx\nYPSZLgY3L6E6mjZukqEwfqiNlmSTtZ3jtKbqs+5mlemkUboThTXHp+vYsQ5s4Jb3PMhVl+0mnWqY\nnJQoOtwqTeXQVA5hpPKngbrv0L6ySN/FI6Rb67NuZUdH2khYIZ3pKin7eF1xjBdCmIlUIaN/Y1N5\nQm3zpuu3cuGFh0mmPBOgFQXaVNeEVFeGBOnoCgt+tOsifmbdTj567Y9Y2zOEJQrbCsnYPgknpDVd\njxZ2Tdlh00Ypi2ItQ91zZnvmlgeuHTLQNUlboYodfa9hYDH0XDcH650M+u3UlQlgCrXwWHUJby4c\n4Hf7HmFjegQLhUOI7EiRdAM6+4uks81Zd8LmpS3Uj9k89N429n8ljV8WlAeOHWAnQmrLA5rdCuWY\n9gmaLrdCf6ZEf7Y8ew8FTUuqzkQ9x57JLkrNlFlr0aBbAkYm2/jmA29g7+GBSNtbqIxncROKdRuO\n0tVTwrbNFE4YWPiBw0BHkc58BSfSkhfR2DnPeMYEJ/7NFB7WHJts5fGhFYzWcibgSQvWYIKql2T7\naB9jVRP4ozQkrAAnoWhdP0m6u4bMuB6isRIBuYEKhdVTpFyflD2fJbyfFs2sX6k6+4xxFCMzE0q/\nE7hzJpQ+CmBERK4UkUFMgvgvRQGSRIb6cxij/xPgj85kvGF+boRPAO/HuLu8Ljq2I/LpflU5Uw/8\nv+/+NHsqR2YDD7SGQFv0jvpsvv9Crr71WZxkMOtGNVwscO+uS8h1mgWdmWvQmjXtE4w80UtlKBcJ\nJBnWvmsP4cE0x37SjwpsEI3thpS6hWa3Pp69RAMKrli5jyUDE+wo9kcLUTL7HKxrG+P5iV7qgWt6\nS5G3xsaOIRp/o2k8YqObEg0bLUY+1U0945Bsn8mWY5It+57NdCVjpkOF2bLtKQvLhuUXDhs3SDFG\nGl/jfbGH0kCSMGV6+GIpkzi216NtWZnWvjK2o2eNz/SWDKmNDdrS9dkQaYADjywhP6J4x4cfwXFN\n4I/vOww3c/RkyjxeWoOnnaiHqgkaFuNelny6gTMzp6vMWsTurUtZtmaEno4SdpR9XANPP78Cz0sg\nXuSFEJVt1SDfXuOGK7cbf3CMtO9gsYUnd6xD59Tx2JjIF9wtWvzam+5neccYCSeMNNUd7jxyFUFK\nUwsSwPGXzZHDnSgREnkv6rWalnSNNendMMlEaO671kY21i/bWP/Szhs+9izJfBPbMbJYWkExzHBz\n63Msc0skLEWgjSTthz/766gVHup1DXAj/3AlyJhD80eazjv3YQXGiDk5zcR7+/B+IU9xLG9GSVHG\nkU1tQ9y4aRt7aj342oz2lDZyxsO1PBP1LHXfPGsz8QuVSgqrbCNTCRMViTb6QL5FPtGg/4oRrOg5\nUEqYbiQZKedZ0lmcTZSitdCoOow1svjD2Sj4TGY9ZFb+vxLld0B9g6ATpgzHCgkfb0EyIcGGKPgN\njS2a1lSVzmyNkVrBvH5m7gc6GvEanf/+bIn39d/KrSvfdFp78bL0wJM9+pr+D83u33fwi4sukAet\n9ZGTDi24NJ8FBxQWnjJh72BkUFcuG0WaNg985SrGDrWjQqOcZwWCRL0Nv+6csPDja4ve1w/TvmES\nyw2xHLMdKbXRtWmcFW86TCLrYTkKrYVECXMnnajbEbkGqgAytsdjpaugAAAdDklEQVRFrUO0uI3o\n4TVRd5O1DBs7hujKVEz2GSfESoQMHu6k8FsB+VsCJKuxUiaoo61zmrCSoDGWRkWKhF7gUEjVMS+N\n44ZHW8YzQdUdDu3qo1JKG0MJWAlNelOFlsMeyakwipYRVMNiYPUYw3s6GH2hg8CzjJCRAnncpdpI\nRlF+x/vgfnfA+FAb995+LWNH20zGcAXTzRTVIMm1bXvpTpSj3qZCAsEbTDPdSJrAkMhlznIU6RHh\nwOFuDh3rwvft2floOxAzHzojjxBtVhNKlSw/fGoT46U8SplQLNs1Ik0ybYMvswt9WEDD4u8e/lke\n2beBpm+SPViiODbYQUbMaMlCRUN9jW2FhJ6DV06iAmOklRKmB7O4StGdNtNEItpoxORDvBbN4397\nKaPPdxL6Fn7DxWsmaIQudxYv4if1fprKJtAWjoRUlgqyJYO1OQNVk6/VCjWtfdM01rUy+sH1eF1p\nlGObTD9jguVo2nqmcZNGJEVsRcoJWeZUWZMZocUxoyejha4o1tN0ZSq0pKLRJ0b5UHsWui1AdzXR\ntkIJNAMHP6OpT2Q49kQfjVLC+M0rSNg+SlscGW838gjRc4ASqDq4vVWsKOhIjOs8pfVJ2u5WFB6K\ncr42IKjZNLo17mCCxLYUUhcIhNCzmCjlSDsB/bkSCds334MdmilLNBnHY2m+iNKCS+GVNywaCNXx\nbYExnzHIERG5BtCR3OFvY4YGC4rpQFOwa5TDDE3lzg7/D1fa+I13PcgX7nwrj955Gal8g/a+Mn5a\nYzlCmIJ6MUO9rHESpofeLEyTcD06LpikY8MktbEMoWdxqJqn2MjQtrpI+5opqiNZvIrLwV29NCeS\nRjQqMWNFwT/q0LVimtC2WN8yihfaVIIEVc9l++gAHZkaq1smWFmYpOSlUNpix7Y1LFk2Qfb9TXI3\nBTR3WKiyEHT4ZBt1quU0tcE8VjLEchS9y0aoFxJMlvPRnKR5C7kZH/uAQ9VxOLa/G9sJSWebJBIe\nq24Ypfl8ltxIQHY0xM9YaAu6+4ocO9DFxGAr40fayLbWcRIhyUmNu1VRvxjqoUvCCnEsRdN2aC7V\nyJEWvvMP11For9DWU6bapdm5vJf3L3+WKwqHTBJnP0vVSrL/heW4fQ1qkqAemheaoHGmTTKBodE2\nhsZbKeTqJJzArFl4QAJUxmSZESXYAUhRKJPlgac3kU01aM1XqVk2VruHHkkjNdtoddjmO3Hq4CVt\n7tl6BfftuJQ13cOkHJ+JiTw9A1Nkcw0yaR9f2YRamEj5NJpJQt9GFdOIrYyxrFmM3ddL97uG6E5X\nTao1ZVP1Xaqvr2Hd08KOuy/A+a5P2/ISOIrWt4+StAMerKxkc3U5yxIlUhJQa7Fx85DYk8LZlUT3\nBpBV8KYGHUuLTNDK0G9cjDtSw52o0xxIE4xDS1eVtu4KYSD4nkM6X+Pq1ATD1TRLU5P06yLVMEkQ\nCo9WV9KaMSOotnSdeuCilFCdTJvgsnwI+brxIgkEqTn4LQqKKQYfXkoi5+HmPWj3aW2vMTmdY2iq\nDdsKSSV8wrqFGk5hr6ngdjago4FqGL/2yoo0LXubFB5WFDaHNFcIYQaGLtd4LZrEqIs97KJaQ3RK\n47eHHG1pob+lxNJ8CS80EdMAKcfHsTShEg5NtDOVapiY7lcUDeGC66/OMp8e+CeA38T4Iw4Cl0b7\nC4rpoJsWp0GLU5sNi1dYPDq5lKs2HOLTH7iPdMJDmhbH9nRTG8mSTTWRyPUJJQRNF7/hUJrOUA1c\nkzxYINNdo7C0gj3psn2on7GaCVZI91RpX1MklfNITFokJuT4/J8FR3e1kcZnIFE0WcBtn/ZknfZ0\nA4Xw1NFlNAIHDbQl63SmqzhTFs8+sZrpUgYlQvJiRea6EA+H3uUT5NtqiGiUZxFUEyx3JmnL12gr\nVJnRKQfB6fBxPE1mCAghbNpUShn8apJkq0f7J45itwZYjiJRCUmWFY4dcPE1L1BoNQFM1ak0pZE8\npZUprLsSWE+baFGv6VALEtg5n0Y3TC8xI/lSMcehnf3UhvKMNgv885FLqQcmEXJvskynXQPPovJI\nJ6pmowMLP7TxlUOzQ1N4QXAr5rsoT2cYLxaQTIDlWcazAXNftWuyx7h1cEuAgmotxdGxDiancoir\nsLvrYJnMTBJYWJ6FaOOVIiEEocOuoSVsGVxJmISd25ZRKmbRSnAkJO0EtLdWZr1yNEY7XXkOXsai\nuqvA+L29KM8ED2WcgLQdQHuI9/YyOqXwQ5ux3Z2M7O5mZLwlekkLgbbY32xjZ7MLy4eJjRbNdsx0\n1oiLtS9JrZima9UEncumEEsR9KWoXdgBThqvnqA8mUEpEEuTyvhIMiRr+bw7d4yMhKQkpOA0KFhN\nnMMuhyfbooVHSDs+uaSH7SrCuoMOolFVSkHeKEv6rRq/1Yx6mlWX6lCOykSGVNKno1Ax0aVKqDZS\n1P0kOrBQ+3Kzox4rbbRwtC0cu6GFZpuNFkju12R3aDKDwvTKkGa7meqySjbOsItz2GW4nOdYuQWl\nwRZFLuGRS0SRuEp4YaKTSj1Nh/8qZHPQGAM+sy0wztgDj3y9b9Naf+hM5y0Esk4vI/UUrW6dFqfB\ndJCkqR0SdsBXD1zCbRds4a4//BI/3r6WZ/YtxU/BgRUJnt21mrBugQ3aNg/TZClHS75OXblm+G8p\no6VRN54Uz4/2kXJ9+nIl0q6P7xrfiOSkTaKo8QoKlQLtOTx/5wAbbxlkTWqE6TBFVSVxtE9bps5I\nOc8jh1fRnq7RlZ3GsRTJsqLc4rDlqbVkc3V6+qZIpnya4pBwQnqXTtLZW6I0mcVruDiOYpU7BkA+\n22C6mqLpOyQSPskLi1R3tJE/IAQ58NOgPYuc7RF02nT82yP4B1I0tmdRDWPgHDdk0zX7qZZTjA62\n0ay7FNMZwm027l1J+IFLeGWA7lE4rRon69HoSdDsEJITJmjGTll0Z4ocrbbyN3uvY3V+jJW5ccKm\nPTu1U3moC7vNx+2rI67Ca4PUmJB/wYyKmu0m8bOdUSZ7UtNCe6BdZVzLLLDrmJ51A4K0cTFTyiJs\nWtgphbPECEKpmslqhHYRZXyotWOSfCDgtypUw2H3jqWk0x6dPUWSKR87pUilfOpzvJQ0ELqCn9ZM\nP9dCdXee3IVlUstqeEnB6VT4XQHNW4pYgy7WYRcdCIePdtHVUWY6TGKLxo2y2ScJ8SybyYts7IYm\nM2SScViei69suldN0rG0yNRQgcZ0EjXhosZcGiRpNhKk0h5uMqCo04yHij6nyW35wxwJ0hzws3i2\nkN7rUloacrjYRtLxKSSb2FaU3LkphHXHGNEowbCjjSSB36rxW0KcacFuCjhQbSTIpjwGOorUmgka\nnosSi0YqgdQs1O485AKkEIBtcmOqpMWxn20lMRWQO9TEqSvcomApTWWVorZUkRy1sBuC1RSsSYdh\nCoxVc3RkKmQTHhqh3EgxVc+gQyE7mCK//qeOIzw7WqOD+WUznkFE3oZRbLWBv9da/9lJv08C/whc\nDkwAN2utD0YaU3+P8UJxMIkd/vRMZZ3RgGutQxF5N/DFc2rBeeC67sv5/PNPszZ3gIzt0eqaDKi5\nLo8vPfUGOpM13t6/hxsu3cXPXbYLpeGPR6+m5iXZvX+JycAeDdV8B44Mt7O0dzKSjIrc/3pr+PsK\nhKubNLTLgZJJJCQ5C1cihwolJIvmc1QyzZ6v95HtaLLyLWPk3QYtiQbahS2ppXihTbGaYbKeYbKe\nNWW0K7JHheoAVMsp9lf6AUh21ggHpmnNGD/czl6jXT3s5vn5jm18R7kMNVuw8jNLrhonr1B1h/q+\nPG5FcCsCJFE1m5ZsnVKQJrGqTmKVuVeBZeESEmCTLdRZeaE5PnSknYPX99LzoxpOFZz7E9H90NQ+\nXqOuTFRjoxsa3ULVynBFZpAQi9Fqjr3T3eyd7gHATmuoAZYQTiYIp8xnWR2K6ZWa/AHBakL2WOQW\n6CeQC2o0xzIQWIhnjgdZyB7RaEtQCZO5hpqgxaLWaYNv5sMlHeJkTM9Jj9hI1SQ5Fv94lnE1LfiF\nAKfsUK8nGDxo6pprr7JkxQSHj3Xi+cfd5rw2jZ+3sJSGpkV5WyvT21rRlsb+lUmUqwgtC7XMQy0z\nQV/eYJ4de5axcd1h4yJtm8/q6C/SONiFnxHClDC9yrQvQQqrkqM7P43jKrqWF027qw5HvrkM5YDX\nBo1qkkYtyfapNMV1Nhnbo0Vcljo1lrkmZ+R9/cd47NF+Klc3aAYuY4HRotMCdtonrButWuUZc6DT\nQnJU8LrNSzRo1QRoEAvxEtiWJp3wySQ9sikPreHoWIYwtLGbQMWByhy9u1CDLXitDpNtx7XFW57T\nlC4KUS7Ul5r5Zbsi5HYl8TY2CPMwWi2YXGAwO7p1jrq4R11ev37ZqUzBy4uJ8pv36VGn96+Zo4Ui\nIt+aq4UCfBSY0lqvEZFbgM8DN2O8UpJa600ikgGeF5E7tNYHT1fefKZQHhGRvxKRa0Xksplt3i16\nlbi0dT1ZN8+28hJ2V3oo+Sk8ZeE6Id0t0/zR9jfz60++hwdGVjPeTFP00izXZZb0THD1ZbtY0jtO\nMuHhOgE5y6PRdNl3pJvxYh7PtwlCIdlTB9/G2plBjiaNjnEAOqWN+95JQVMqaVPrz/DM36zkwU9d\nyNHN7TSmXJolh+WlSXK2R0/rNNmUUYmzRBGsaeD6UDhgogktz2gw+CNJtLIpNtJUvYQJ0tAw1Gih\nGiZ5b/czvLNrG0tTE6Qtj4zlUXDqtF4ySfv1IySXVrGSAZJQDO7rNi57iQoZ28OKAnkCZUXugiHW\nHF+w7r4pVMZi8OcKjF+WodlqEyYEKVpY00Kqp0q6r4KdDpBIKmBsKk9Pdpq1HeO0pYwLpS0h7poK\ntqVepDSXKAlhEkrrNfVeTZiI3DHHHbA1yYEqbmcdSQRgKcKsIsxrEmVNMgrWQZk0de6IhWraBA3H\nLD4q83cY9nsm6OT4Ow40uFM22BC0BaismnXFnC6lEQtWLhtloHeKVMr0XK1siG4L8Vpk9l5oAbSg\nnkvjaE3CDiM/cLOl22pMlXM8sWUdh491Um+4+L5NoXsaUYI7DVaDyBsJvHICFZoX4FQjQzMwC7uS\nDkl0N8kOCvkXbNySWfjUvsU3dl7OpCeMqSZVHRJqTag1t1z/JLmSpuX7GVK7XayqIE2zJiCIyfWZ\nDGf1yFVagQWJYYvEmHW8XpHCZLmeYqqWoRk4ke63kOmoopNGOEy5zOrxK9t47kjUrpl77mXB9oT2\nLTb5/RZ21bxUtaNBC8lnUySfS2FNRWsgTcEes0k+myZ3KMPbLt9AIfPKa6EA6DCc3ebBWbVQov2v\nRD9/A7hRZNaHLBv5kqcxLS+fqbD5uBE+cIrDWmt9w9la8nJzJjdCgCO1YX5/y59TD5uoOVH+YSjs\nO9SH7zuzHioGzWWrDtFRqEQC+MfZP9rFvrEuwpMCCayqkBh2TtCTBkCBY5KEn2DGxVf0PDSOUwlM\nT2SmZAH/46Au5ri2c4S/M4u3pWCG/XPp9pBryy8aN7U4NT66bDNp2yQUnv0cZfHPo1cwFWTm6GmY\ndg+ky+Tdxqw72Oy9UhbBKd7rxcksz/5kLSq0T3xNuYr0ujLiROL+M+1Gs6p1ysjuzjmuNQw92Ufx\nYAsqOLEcL69odPOiboWVCEl217Csk+5tQ0g/kMVqWszN3a1FU748wC8oZqWpIxJHHdxJ+4TgKQCv\nENLsUy8qO5XwWLFkHMs66eXcsJj6bj+q4aDn/l2LJnltEenwIq+k45RHs1SnMlGQ1Jz2NcGtvvie\nW+mA/EVTxsVzziXaE4Ift0PdPqHdlig+/YG72bjicJR84jj//MNr+PaDV9H0T1SCbnaHTF/uv+g+\nSUNI7E8a1cE5zdC2RjZUIWnkeGePawjH0yZy+KT22Q0jD3sydkOTmoCTHkG0YDoIAidbp6TrsKKn\njdt/52bSyTOrWr8sboRWh35D4rie1Peb/3QImKuc+rdzozEjedi3aa0/Fu3fBrxea/3JOefsiM4Z\njPb3YfRSSphs9DcCGeB3ThHpeQLzyYl5+lCnBcbSTC9/edkf8H8P38ePx57CwuSsTLtJPnTdZRwd\nS/G1ndvwVRhpMMMlmZu4qt9n8+T3KPslLLEJdcgH1q+iY/3r+crOneycHMW1bHwVcunKPm66diMP\nbTvII3sP4dgWoVL0tRT44FUXc+DYJN9+eieWJSilSWddbvqTN5DZPc13vvooXjOY9dd+V/0Kuld1\ncPfko4w3S9hiE6iQa69byeVvuJhv3bebXYdGcR0LP1BcUFjBOwfW8xjP8+jYbhyxCLQi7y4hk/48\nK1JPMFj5pmkYGtdJ8AfrL2fr9HK+eewRGqGPJYLSikta3sbFrS08Nvk9prxxbLEJdcDG1kvYULiC\nxyc2c6i2D1scQh1w6ZIefmn1Ndz7zCQ/2rMf17YIlKIrU+DDA9cxlhnlX448A5hgG9dyuL7jOvrz\nHvePPEBDNbCMpBS3/vxqWscu4o4fPsfgRAnHtvBDxbXLVnLdVau5+8BOnhk+hmtZ+EqxrqWHWy+4\niC2V/fxgaCeOZe55e1uWWz95JdPbA/7lwR3MdEZs2+KXejZhbbD5x73PUPYa2NG9eue1F3CZPcDX\nN2/n0HjRlB0oruldzo1XreZbx3bx5PAgrm3jhyErcwN8ZOCtHA138/D4FmyxUFqRK2T4ld98HcNb\nXe5+aAdh1DOwRHhP6ga61sBdQ49S9mtYIoRa8YFL1rHGWsfXtj7HC1MTpn2h4orVA7x71Xq+v/0F\nnjw4iBvdj+W5Dj645Ab2WQf4wfA2LBG01mRzKd73scup7HL4xkPbCUOzdiMCRyY+x7WbXsDz/5ZQ\njWMWdwJue2c3V1z4Rm7/1iH2HRmffaYu61jCjRes577KbjYPH8C1zDO4pLuV2664gr17J7ln667o\nudFkEi639l+N31njjoNPRX9LxmDfdNVGelQXX92yjdFqFccSAqW4YdMqru1bzt1PP8fO4bHZ9m1c\n28NN776Ax54+wGM7DuJEz1RPW54PXH8JByaKfPvJ52fLTrkuH7r+ddx2w+WkEq9GEA9orU/ueZ8t\nK/189ExOd85VmLFOPyZf5sMicr/Wev9pCzvXnJjnExEZAw6d42WdnPjGXGws9vrD4m9DXP/zz0tp\nw3Kt9emzwMwDEbkvKnuGca31aSVeReRq4LNa67dG+/8OYO5ipIh8LzrnsWi6ZBjoAv4KeFxr/dXo\nvC8D92mt7zxdea/Oa+xl4qV8GSLy1EKKnDpXFnv9YfG3Ia7/+ed8teFMxvo0/ARYKyIrMVoot2DE\n/+byLeAjwGOYKPcfaa21iBwGbhCR/4OZQnkD8BdnKmxekZgxMTExMWdnPloowP8GOkTkBeB3gZm0\na38N5IAdmBfBP0SJH07LWXvgInLTKQ6XgO1a69F5tCkmJibmNYPW+l7g3pOO/cc5PzcwLoMnX1c5\n1fEzMZ8plI8CVwMz3ihvBh4H1onIH83M1yxgzriKuwhY7PWHxd+GuP7nn38NbXjZmY8b4beBj2mt\nR6L9HuB/AR8DHjofqoQxMTExMfObA18xY7wjRoF1kU6tf5prYmJiYmJeYeZjwB8WkXtE5CMi8hHM\nCupDIpIFiq9s9V4eROSzInJURLZE2zvOd51eCiLyeyKiRaTz7GcvHETkcyKyLbr33xeR/vNdp3NF\nRL4gIruidtwtIq3nu07ngoh8QESeExElIovGI0VE3iYiu0XkBRH5g7Nf8dpiPlMoAtwE/AzGAX0z\ncJdeRA7kIvJZoKK1/q/nuy4vFRFZihG62YBJs7Ro/HpFpKC1Lkc//zZwodb6E+e5WueEiLwF4+4V\niMjnAbTWnz7P1Zo3InIBJpj9S8Dvaa1PH9K8QIh0RfYwR1cEuPUkXZHXNPOJxNQishkTl6+BJxeT\n8f5XxBeBTwHfPN8VOVdmjHdElhdHpi14tNbfn7P7OMZ/d9Ggtd4JIHKqIMAFy6yuCICIzOiKxAY8\nYj45MX8ReBLzwP4i8EQU77/Y+GQ0/P2yiLSd78qcC5H/6FGt9dbzXZeXioj8iYgcAT4E/Meznb/A\n+VXgu+e7Eq8BBoC52cAGo2MxEfNxI/wMcOWMz7eIdAH3Y1S0Fgwicj/Qe4pffQbjNfM5TM/vc8B/\nw/wRLhjOUv9/D7zl1a3RuXGm+mutv6m1/gzwmSi0+JPAf3pVKzgPztaG6JzPAAHwtVezbvNhPvVf\nZMxHV+Q1zXwMuHVSwM4ECzCCU2v9s/M5T0T+DrjnFa7OOXO6+ovIJkziqK3R8HcJ8IyIXKW1Hn4V\nq3hG5nv/gX8CvsMCNOBna0O0iP9O4MaFOI14Dt/BYmEQWDpnfwlw7DzVZUEyHwN+XyS+cke0fzMn\nRRktdESkT2s9FO2+FxOquijQWm8Humf2ReQgcMUiW8Rcq7XeG+3+ArDrfNbnpRBlWfk08Catde18\n1+c1wnx0RV7TzEuNUETeB7wRM6R5SGt99ytdsZcTEfkqJpenBg4Cvz7HoC8qFqkBvwtYj/GCOAR8\nQmt99PzW6tyIdCuSmBEoGNW4ReNJIyLvBf4HRvWuCGyZUcxbyEQuv3+BSU/2Za31n5znKi0oFpWc\nbExMTEzMcU47hSIi05x6wUAw3oWFV6xWMTExMTFnJe6Bx8TExCxSFpw3SUxMTEzM/IgNeExMTMwi\nJTbgMTExMYuU2IDHnBERqbxMn3P7qyHBICKPvtJlnFReq4j8m1ezzJiYGWIDHrOoiLJ4nxat9TWv\ncpmtQGzAY84LsQGPmRdi+IKI7BCR7SJyc3TcEpH/GWlN3yMi956tpy0il4vIj0XkaRH5noj0Rcc/\nLiI/EZGtInKXiGSi47eLyJ+LyAPA5yN99y+LyIMisj+SqJ357Er0/5uj338j0vH+WiSNjIi8Izq2\nWUT+UkReJK0gIr8sIl8Xk5Hq+yKSE5EfisgzUfvfHZ36Z8DqSOv8C9G1vx+1Y5uI/Oef9t7HxJwW\nrXW8xdtpN4yOOsD7gB9gIuJ6gMNAH0al8l5MZ6AXmALef4rPuT061wUeBbqi4zdjIuwAOuac/8fA\nb8259h7AjvY/G31GEujEREe6J9X3zZjk20uiuj2G0bRPYRTuVkbn3QHcc4r6/jJGi6M92neAQvRz\nJ/ACJiZiBbBjznVvweRvlKjce4Drzvf3GG//Orf5aKHExIAxfndorUNgRER+DFwZHf+61loBw1Ev\n+UysBzYCP4g6xDYwI2uwUUT+GDMtkQO+N+e6r0dlz/AdrXUTaIrIKOalMnhSWU9qrQcBRGQLxthW\ngP1a6wPROXcAv3aauv5Am9SBYAzyfxGR6zCSAANRmSfzlmh7NtrPAWuBh05TRkzMSyY24DHz5XSZ\nAM41Q4AAz2mtrz7F724H3qO13ioiv4zpRc9QPenc5pyfQ079LJ/qnHOp79wyP4TREblca+1HmjSp\nU1wjwJ9qrb90DuXExLwk4jnwmPnyEHCziNiRJvx1mEQfm4H3RXPhPZxodE/FbqBLRK4GEBFXRC6K\nfpcHhkTExRjMV4JdwCoRWRHt3zzP61qA0ch4Xw8sj45PY+o9w/eAXxWRHICIDIhINzExrwBxDzxm\nvtwNXA1sxWjkfEprPRwpDd6IkejdAzyBmXs+JVprL1rk/EsRacE8g38BPAf8h+j6Q8B2TjSMLwta\n63rk9nefiIxjXkLz4WvAt0XkKWALkSSu1npCRB4RkR3Ad7XWvy8m/+Rj0RRRBfgwMHqaz42JecnE\nWigxPzUiktNaV0SkA2MQ36gXULKJk5lTXwH+Gtirtf7i+a5XTMy5EvfAY14O7hGRViABfG4hG++I\nj0fZdRKYxcZ4vjpmURL3wGNiYmIWKfEiZkxMTMwiJTbgMTExMYuU2IDHxMTELFJiAx4TExOzSIkN\neExMTMwiJTbgMTExMYuU/w/I413Q6BshxgAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<matplotlib.figure.Figure at 0x12ae8b2b0>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "colors = [results[x][1] for x in results] \n",
     "plt.subplot(2, 1, 2)\n",
@@ -2592,17 +947,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "linear SVM on raw pixels final test set accuracy: 0.216000\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "y_test_pred = best_svm.predict(X_test)\n",
     "test_accuracy = np.mean(y_test == y_test_pred)\n",
@@ -2618,7 +965,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -2641,17 +988,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "linear SVM on raw pixels final test set accuracy: 0.216000\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "y_test_pred = best_svm.predict(X_test)\n",
     "test_accuracy = np.mean(y_test == y_test_pred)\n",
@@ -2669,20 +1008,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAADfCAYAAADmzyjKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmspNl1H/a79VV9te971Vvqrb13z/TsHG6SqDCkJcci\nbCQBElkJElhBEgMx7Dh2FigIAztAhAiBAkNxAhuwE8ORLETRZoriUBySM8Oemd7f636v3/7qVb3a\n93358sfvNNMaUWQXybzmtL8DDN501Vf3u/fcc+/9nXPPogzDgEkmmWSSSR9/sjzrDphkkkkmmfTj\nIXNDN8kkk0x6Tsjc0E0yySSTnhMyN3STTDLJpOeEzA3dJJNMMuk5IXNDN8kkk0x6Tuhju6ErpT6r\nlMo+636Y9JNNSqkDpdTnvsfnn1JKbc3Y1j9WSn35x9c7k34S6eM8zx/bDd0kk34UMgzjm4ZhnHvW\n/fg40p93SJr07Mnc0E36M6SUsj7rPjxL+ld9/Cb9+OmsZOonfkMXNPB3lFKbSqmaUuofKaUc3+O5\n/0IptauUasmzv/DEd7+klPqWUup/lDb2lVJfeOJ7v1Lqf1dK5ZVSJ0qpLyultLMa44+blFLzSqnf\nVkqVlFIVpdSvK6VWlFJvyb/LSqn/QykVeOI3B0qpv62Uugug85xtaq98VH4+arL7XuNXSr2olLop\nMvXPAfwZufu406yyopT6JwAWAPyuUqqtlPrPn+0IfnT6fvOslPo5pdRtpVRdKfWOUurqE9+llFL/\nQni3r5T660989ytKqd9SSv1TpVQTwC+dyWAMw/iJ/g/AAYD7AOYBhAB8G8CXAXwWQPaJ5/4KgBR4\nSP2bADoAkvLdLwEYAfgPAWgA/iMAOQBKvv+/AfwGADeAGIAbAP7asx77D8kvDcAdAP+TjMcB4JMA\nVgH8LAA7gCiAtwH82kf4fFv47HzW43gG8vOnxg9AB3AI4D8DYAPwl0WGvvysx/QTIiufe9b9/zHx\n4M+dZwDXARQBvCa8+qsydrvsMx8C+G+kjWUAewA+L+3+irTzl+TZM1lTz5yhT8HwAwC//MS/vwhg\n96ML8nv87jaAf0P+/5cA7DzxnQuAASABIA5g8CTDAfzbAL7+rMf+Q/LrDQAlANYf8NxfAnDrI3z+\n9591/5+V/Hx0/AA+jScOffnsnedsQ/9RZOV52dD/3HkG8A8A/HcfeX4LwGdkkz/6yHd/B8A/kv//\nFQBvn/V4Pi5q9fET/38IIvE/RUqpXwTwNwBk5CMPgMgTj5w+/h/DMLpKqcfPhMCTOS+fATxRn3zn\nx4nmARwahjF+8kOlVAzA/wzgUwC84BhrH/ntx3XMP4h+oPx8j+dSAE4MWZ1P/PZ5oh9FVp4X+n7z\nvAjgryql/tMnvtPlNxMAKaVU/YnvNADffOLfZ76efuJt6ELzT/z/AniifpeUUosA/iGA/wRA2DCM\nAKhmK/xgOgYResQwjID85zMM49KPp+tnTscAFr6HDfzvgVrJVcMwfAD+HfxZ/jyvqTe/r/w8QU+O\nPw8grZ445eW3zxP9sLLyPMnJ95vnYwD//RP7QsAwDJdhGP9Mvtv/yHdewzC++EQ7Z86nj8uG/h8r\npeaUUiEAfxfAP//I926QeSUAUEr9ewAuP03DhmHkAfwRgF9VSvmUUha5FPrMj6/7Z0o3QCH9+0op\nt1wAvgkirTaAulIqDeBvPctOnjH9IPn5XvQugDGAvy4XpF8C8Or/n518BvTDykoBtBk/D/T95vkf\nAvhlpdRriuRWSv0FpZQX5F1TLtKdSilNKXVZKfXKMxoHgI/Phv5/gpvunvz3p5z+DcPYBPCr4OQU\nAFwBL7+eln4RVKU2QdXytwAkf+RePwMyDGMC4OfBi60jAFnwkvi/BS95GgB+H8BvP6s+PgP6vvLz\nvcgwjCGAL4H3LzWQh88Vz34EWfl7AP4r8fz4m2fX4x8/fb95NgzjA9CR4tflux157knevQBgH0AZ\nwP8GwH+W/f8oqT9tOvrJI6XUAYD/wDCMP37WfTHJJJNM+kmmjwtCN8kkk0wy6QeQuaGbZJJJJj0n\n9BNvcjHJJJNMMunpyEToJplkkknPCZ1pYNE/+B/+mgEA1v4EAFBWNfidjGnoH1JTcNtDAIB0tA0A\nOO44gDovjmtuplgItSsAgGqd3U/7GT808Y5w4mV6krTXyXfYugCA0QHjIoLOAIZqCgCwdzsAgPFA\n5zPeFgCgMQHcZT7jafMztRQHAJy26a46PxwAAEq+Lmxtpn0ZKo7h7/76bzyN/zsA4Nd+4x8bABDV\n7QCAYsWBUrAAAHDa2IeATl7UQnSP3f76DryLPIuvDNiPloPjdY7Jv/0HB+SVrQMt4wIA1AsnHHd7\nxLG9tAQAiOsRjNAAADzaTwAALA0b+SWxEb2wF76pU9ph/xw28q3R5nzOW5i8cM9fQSJFvhv1PgDg\nb/+X//VT8+RvfPl/NTgW8rWdcmGuz5932x4AwHTE9uNd9q+zmMFyj/zvapQpT478Gy1SfkZDxoBM\nBhacTNl3+ynHnZ1ynuHhv3XvOtIvBQEAp4/yfGeN4+76KQux4ZQOfgBc8q4mWQRdI4/1Fuen54xh\n6Od4OtoRAOBXf/lvPTVPAODv/y+/ZgCAR3GOov4AbrYZLxezlAAAJT/5EsxxfLBO4QkypGI+zjWw\n2eV8+TtlAIDmYHv1wyKCIcZcDadV/h0O2c4meXDXG0TGw7ZPk+TrUoN/OxLGt/VIx+I5viPhFdlr\nbgMAPt+knH+nw7+eHuCYo6x9wkvHspVf+Nmn5suvfpk8OYyxD1ptC5HldQBArqvLWMiTfoV9WhmX\n0Zr6AADRZpFjEVlOujihjkWujQYa8Bzws8KI858Jsr8BG+Xt2D4FDvkO3cF2BvN8prPX5NjWNWyM\n0uxPmfvOapaylv8EZacn4V3DSR1Bb4Z9HrGdv/mlX3wqnpgI3SSTTDLpOaEzReiGIKi2BKbFFi+i\necoTshEh+h44iej6Go97zeqDliSCSDh4orVDMQDAWponbmPEc+nY1YUSFHY0IVRKCBqphKP8a+iI\nCMrz+oh8+yOeorUxfzOZjjB0so/VtCDNAU9RbZGo7WGPaMem25F08cQt2b+bvPCpaWLjbzca7HfD\nZkXskCf5OHIXADAC0aPr4UMAQEpbReMREeCOTvRgmeMYWjscU2HIcYcCOvZuHwAAYpHzAIBISMap\ncWzDkRVHGsdlBIjI9FiPfagRcVgsUyxaiNK6OnlhmRJ9hUPientAVBfsZhF2XQAANJ2dmXkyLvLd\n2QBlIrpbwTBGdGsdUjuzKcrAVHHuR+1j7MkcB0RTanbdAIAKu4tUk+Otzg0R3iWf2nPkU7jAf4+n\nfGdTlZA+4XcDB8FRNMx3Fa2iOQ3K6PjIg0RcNIeaaJNNyofFTSS41QQsDf4u5HLPzBMAOG5S/pfn\nKQ/7JQ3eBufnyEd4F82RByrG93c6OQy3OW5Lne/3O+c4xiKfidg4r52GFbrGoNq+hci/2eP4tCHX\nQyKm0L7BOQjUqQ02XOTPBQ+fdVoVSpJpo9ShTOAGNZVbdsrp1McxNC0ZnNw9AAB0I+zHCn72qXli\nSIDnpQn7V4glcMJXITak7PXajOQPLlMme10DuV1qDM4o52fU4JgqDcrBwpB89dY82G89AgB4GpSN\nqpNrrnfC9h3eDiKaZEZIUS7bp5Qdx4QJPTdP1mFxs217h78rXOBeN95bBQBE5PtSz4JJi/KEPa4F\nfOnp+GEidJNMMsmk54TOFKGPgnJ0ahkAQBkTOBVPu0CUCMwXpR2tPSFijfTqsGWJMBpyWE07ROwn\nYlPvO2iP08ub8MZ4snk0OQ1dRM1jJUiz0YDVQzRzorHBaId9CIm9T7OOMLbyFFUT2tLyFbGlO3iq\najYiA4cRgQqyz9FRdWaepHocp/eUvHk4HWFHI2p4ccpxHpeJ6PJVjm1ktaFbpf0znOC4gg2ezSkv\n7XyfcRM91VIOHFgXAQDJ1goAoCD2Qnubv6nVh2ivceyhFpHKuMJ2BkOON95ROAwRvVkH1Kqawq/+\ngKlRjDkiv6hHYTTkZy9ZXDPz5PSU85Po0X6opYcYl4ne+hrHYh8T6VmClJtI+AS5+/xM+Tn3B07+\n3gfy835K5rSqI2DhM9U+edAPUCPsiEYXHNewIfcoR32Ot2OVnF5HvIuwRjyojvhdQO4MNI0o2i8r\ny+kULaPXQcVB23vPUp6ZJwBw8TzvUAbH+wAAPRVE2k9kGO1yrNsV9s0WJ99V903oUfZtB5zbzJAa\nTGyRfx9ZKFc+VwgeD+dtXOTYXdNdjn2Z7ScmDYzi5Hl0mfO02aPsZjeZl2o/egGde9RUwg6+sxRl\ne3NNMsavuGYH5SKKHs7bqT67rDScvDvYEjRuGY2RukwtZfyQ3121UiPtlvhubyeKi1GugdqIWm9a\nkP6DI2q+2pRtOPsjOK1c17Go3C9tsd1ojPvG2OqBvcfxTO+RN10b+Xgcp1Z8zWNHbkh+ZfOUx5UJ\neVqc5xy6m4LYJ31M25zjwrXoTPw40w29cUjG2kMcbF/TYRj8rLFDhhodMitpcJPs6h5MbFw0/UMu\nwoFYNpojbrJOL5kYCrlQ7pJZTbnwiYrqaJfN537bBqeV73KOOXljKxk99PPfxUYPlzrcvIpBftZx\nU/gtVgrCOQ8XSbY3wXGOB0PGPXv9g6JMeDXAfvqbdXhEwHMTbmKBNgUpKymm/KU21jM0kQxlMS66\n5dCbcko7FfK1PbbhilNqdci1ijVDFVJ/SPWw5ItiTi5XnX3youGUg3BbTGEBK/QC3+Eb8d16n4u0\nL4KKAP+dmK4hEOUYqs7VmXly5UUeYP0J25hLjDHNczO0WNnPppWL4HRMvtUKOtppzpXdwu+0KsfQ\nO+Hh5Loqh5waoe5gX31O/nUP+Ex0hfMbt0bw/lAO7Rp/55FL9LzOPrj6TYzlErHl4AaWnHJh51uU\nw5KLG7wKdxCe3GQ7anbTHADUc5SHQZHvipVa2OixfYfieumf49xMWuSXLXyAnTa/G015INjdHEc/\nm+EzJbZRzYQQalLWJhZeNj8SE4zfzjWojYewrvD9uRL50A1sAgBe/umLHGvHglxtAwAwrlDGGgP+\n5rjBdRmLk2+eaxVYa1xbwfjsG3p0UeaxJZtjrIugHP77vXv8LPwix73DzzdGJbwS5GeFLvk0aRJY\nvWDlXFf83IcuxdMYbPGwv+jhOtpQlPe2xmc6HR9yBufUEaDstbprAIBlMWVubj1CL8i+Ruxyc+7l\nQTHf5zu7Yz5bt/fRfERgMX18Wf+UZJpcTDLJJJOeEzpThN508/ywC/JpeWqYs/LU0wc8taaihmy3\neZJbVguYZPk726q4EsrFyqhBRNbqEykM3XNoNXhqhiNEAIMJfzusE0WvTyo4sHLYQ0XUsAmezsM9\nvnPFHsbRkIjE6SViS3seX1jwmfuCkhyLBjwp9rndH87Mk1iXqKTXJCq19sbodMmf1S5PbouD41tz\n8LJ0YqvjbY3jmpfL2qMqUcSlNf47foGIQesOMLHzWUeISMjaoGkk7yUf9e5N+Lfk0tdDZFCckl8d\nP/vgXqyirRFtJyLsc6DOdr/joynH2uJ8TNFFZ0iEGlSzm6HSbY732ME2eu0jnOo0fc1VyWtbgGNI\nirltEvRiUbFfey3y8qKD/Xt8+Wt1kydq5IArTDmJPSJPsvKsS2e7qtOCY0LkatU5hpMq33UtQXTX\nmo7hGVJDiNgoH6diLusGKFP+rmiByopqh+/KJLsz8wQAnAa1saiTsjkqLEIX99W+uLaOBdBNAmKC\n0NPfvWT2WPheR4gyHatRzsprlCuP1kF2ShTb85DPfzFMmT7Kc44bnVPUKzQNJOJE/N4ex1wQ+bc2\n+/D27fI7vsPd5AW/5zxdCueC7G9umEBYUQvw7tlm5slhjeN0eom0D7fTwHQLABARjXmoi/urk+ao\n5WIfnskBAMDQKN82n7grLnFvSE64HgbI4YBeplBdIv7cZWod18VF1GpZQL7FtQTRWgIrnKP777Iv\nsSsTpENhtunjM8aA/Cp0+C69wD5kHCfYdHAevKcXZ+KHidBNMskkk54TOlOEHpfLGIu4/bgeutAv\n8YTVrhMZZnM8uZ1u2qm8pSg0DxFGvcvvpgFeFPhyRFlWOdi1agVRifRIjnjq7cgp6BO3sn7dDp/G\nYWsRvsNfot1Qf3wpOrWj3OEp6hB3wtIcUY1xSk0inBHba98Pm9jTS9LPWagiQUTtQ57o3WkPbgmI\nKIfYz6sjIqAazXJoZtO43iEyHBTJk4wgqlJHNJ08eWNxrCB4kYjq4AZtuG4vEawlJ1rIvIGbRxxD\n0iZBWlUijtcSfOlG1kCyQ6iy5eDvDdEkvAmisYIEmOjOHoZeIoyD3Hdr6j49tckTLUz01C8OMLYf\nAADCLqKtQzdRkl7i2JLuEKxd2i/XykTURwccn32Z6C1V5W+C1hKsEgVTSu4AAAYFykf5bV7sDV0G\nhh6m/H7sBlle4G+qY5FfTxPpMWXmOE/0pYZEgYc7gsYznLsrcwO8c5PzqosNflaq2HjBiMf3E8EB\nkgXK50PRiOx+fpeX4LElfxsTkcvDCr/rOomI0z72sdihDHncy/AZlINtcF1OLBkAQNDH9WkbWzF0\nUg3I1TgO5b4PALh5k+0Pp05csFIbuiYa436fd0WFJjXc+oD9m0wfwj2izKZif14hqT+fdiscy6ct\nfM+qYwhP+A22fUqtwFGhjd+e5RrZWB7jGxtc+2tpysj5Fcp0U4IErX7KynvHB9AC4o75Cttd25Eg\nsinXQ9TTQXNI2W8MKXtql9/5Xibv3e1F7JXE9q7I28gpNYhYknLrksvRfsuPtJvIPJf9bh3zpyIT\noZtkkkkmPSd0pgh9WBXbnQTiTPxpjF/jyR2TJGH2IE+2qXgCBIZd2Mdic3Kzu6k9ok93kAiqP7wN\nAGg1BnBBwn3b/Btw0g6Khzw5m1YnYhnaDFslcakSR/8X/TzB3Y0VODpfBwBECT6hTomE2mIrCw9f\n5rNphbbO3604nqx09rRM4Zhqff6N6yMEEvRKqCmimF1xUTSOxd2tHoQKkU+RDAszOcSVzVcnb1ri\nqres9XH420RgwbB48+wS1Vrk/uJl3YnOItFCt0e3wLUVtnNjzPe8FLagFyW/s90HAIBLrxPFbN4m\nYvWJG2i3bUFVvCVW1mfP9z9aYN8HQwZ/RIcGLK+Q/7s5agyDFpFkJs73FLQuXnSxP7sS5BF5hXO0\n53psO+d4L3tseCdO+ZjXKH8ffJvp9r/0Rd4T3HtPh0fs4bEo52E4INIft4ia8o4RlgqSxqJCnozk\nmbiNvKhIuc7hsQeDmHhGhXwz8wQAEh0iRZ946PSsJ8AJx9GPSrqIAJHmmkbNdNpp4VQ8cRJ9zp8m\nQU+TZY41U+Ha0zMGYnUK/KK4/fpcbKfzHY554glgKc3na+Kap4P8PaCSguNiAA7xtkka5MNWgb8Z\nz3EO4g5qmAeDNBKyZjvj2bejF8Mcy4pOe36jPkB/REQ+ynPeHOB6t3uJX9N6CX7RHPp+rrVSh3MT\nPuA4Sy72b2WqMF3jdy6d9wit16lRHOzyXufI24Xmo3unLc93HOhcT0m5Q5kuDuEY0bKgP2R7gyWu\nG93Ff5+muR+lTrpwaJTzOeds9y0mQjfJJJNMek7oTBG6Iyy3zn6igNJEYdHHE6xdFy8PH7vkGNJX\nulMMovXYjqeIgvoxPrt/wltnS5unfyeVxGRC9Bnq85mIjaeiJ0Mk5evXEckwFLi5RWR+PkJo0XcI\nkhvfxW6Vfri5Nk/j3S4RkK1NO6rrDfbTftJGe0AUVtZnt6GP83xn5gLtxYluB7dKPO3X5ziu3QHR\nzms9uXkPKaQsRB03domk7WJLbVfZh0mcf2MjH3o2the4SL4femkvfkNsg9vlNlbs5IF2SDv7+yUi\nqfAKvT4syoMKpwQvnfvXAACVfY57zkMN6u49vjOx7AQksKjRzM/Mk36QNtpRk+1aVsbw3mD/fAsS\nECTIZV8yGvm1CLabrDroTrLvjoLEEPSppdV79LB4pBTaWfbrqEGUdHGB8vH73xB7cn+MJUkO1lqg\nLA1OeGegHGxXPVJQGtHvQory0C5Sg3NZiGyLDfI4e7iD6HmJEWjM7g0FAJqV8ygZDNCo9hG9eA0A\nsDzgnBpjymlOgg626l1YE+LBFOdYRyBfl4psqOzlmmlsnMCb5p3H3vt8Nhg/4NhTHPOFWAijMTUM\na5hzMtmVNRvls7aRA9uSwA0uysScg+g26qY2e9TgvF12xdFyUy6tycnMPAnnqbX65olNzw/syDYk\nxUhTtE4L+1XVWSo03nSjO6SMxeyUU2uOmt590Uh0B7W9fL8NV5ta5qTGIKTuKddstEut4MM9A/YR\nNbPrDgm28uwBAJoeSZPRAxI6NRGHwXGeSroGX4L99Ba41zSjadQ3eLfjti7NxI8z3dCjDapHXTuZ\nlwpPcbDLhdWWKEjvCjfMlLgR1axVtEZUf8JuDjhdkWgs8Yizu7mpGRUnom620ztlYENvhe9SkoVR\nNTS0DzvyTjK4ZaWa9WKKgvr+XhupIDfIsSzqzOg6AGDipUD2JS9Gx69j2uM72sPZN69JmFPQlzwd\nudMOckO2F+5ys7hS+BAA0IhQyGzLGgqPOOGOPBd00kNmOCPckDQX2+gjguVF9qslwVFvRsijZoWL\n9Kq9gfEpN/KuMHU1kAEABHzcGIpTF3oBuWQK8rBLWpjFrzQVt0oLBbWmfDh9wHF9MThbpBsATO9z\nA03p3HBajSlCdi6YfPMAADCY8pDT5DBezLaQk2jgTXBR2iv8Ta3LxRtKEhDkc2E0wnxHu0ceBK59\nEgBw8YgyVs050ZVNbNXJTclW4TgbJzQFLaydQ9XDS9CcXDDPBSVozcuD0HWP8xGJ+zGVTJiD48LM\nPAEAh0TdFotcD4uxS+hMKPsvJGh6y1ZoQjjUCFqcJzGEbXIJ7qNMd6WPO8c0r9nucaPqfMqB5gk3\nl5qN68XW4WY2KFDeGrZzcLol26a4c+6tSZDbvrgAVrsYTZl505chD+s58v5ujbI4bsol5iUNx4MD\nAIAr9+bMPBnZ2f7DKufGOtaw5GU/tva4B2RWCX6WDR4cfzwdoD3g/pKSC+oTBzf2jo/7T04yKUYS\n6zh4i0Ah7KNJtVHmRmyVOKjBxgmurHMtVBd5oF8vMW/MqMu5ijeC2FKSITTDZ4M3BISd4zMTgweE\ntVQEmlz7tWh/Jn6YJheTTDLJpOeEzhSh91eJgMvH4tpjSSAlSKlvkfzENbnMEdOL1e/FwjKRl9rh\nyTgI85SP9cUcIA75LkcfmoNoyj/PC59QluisFecJbLOGYB3ymZ7kkek1RL36kMhrLu3HuM9LidYx\nT2pbiu/UXpfgnhpP17LViemAF4e11uzno7NFlbESIzIs7Owiav0Uxylh3TetREmX0kRW06wd+QYR\nQGKeF0ArU8kY2SXCKgd56rcaY1y/QmTyygl5eioh0SEbIcaR146o5K6x94m+817ORzHLZ3Ya72Jt\n+RPs10gQkGhKDVHz0SRfDb8F84v8/aNeaGaeHOocd6TCC8uKnkW3R5mJ1jg+p43jPniXPM97FtG1\nEgGdl0uwr4jrZWyB43/srlqONBF6nCdGMk+eVNjf8GWO93OOPLKS43xoIfo2JIDqE24J584+ggHy\nYC7NdzhuUd6KGV5Sn7op329MBhhJds/N9myo6zFVauLqlyKy7qMLv5sawklW6gqIWW5XXEhftbhh\nkf8PSy6XT/k55j3fNwAA3WtcK679JuYkC+Kow2eTl2imePdEAsyKpziQcPT05yT3t6znyJhrLOJO\noB+kPHUn1Nq0Ba7rqzrfXZNLyM5oCldONJfl2XPcOAPUTPzvU1Nph1yojLmeI1Guy/Yl0fbLXLOh\nvobOkBfEOzucp1yU/Q1siQlnjtpdptlH35EBADQV+95PU84jPbl8jXXxvov8f6XxGjvW/pcAgHiJ\nZr6Op4OIS3ILNdgv5wuSV35CrcCoUHOuW6fQJWfUVE/MxA8ToZtkkkkmPSd0pgj9kVQGmgtIJRin\nB6MxT1Z1IvmTz9EG+GiLp1km2ILrDk/cprj35G8QFQXEVnZxnXbUFnbQt0l+46RkWHMQxU9HNwAA\n949OEFkgYqmIW6BFqhpVTogiDjHB+vlXAPx/OdM3w7SzByZ8Z0oQcbuzC60nrmrlysw8mUi1mN4u\neTPu29Cp/SbHbqcdctBg+05JddBtbMIXZJ/tbqL2b97l/cSn/DzZjwtEGtdwgio9MJG3EUm7L5P/\nRd7bIHNuHnfyHHtwnYjCkGRT53Ta8qIXnbh1n2jrQZy2yU/WafM7ETGqesjr1YEFsVPOSffa7DxZ\nsfGd3YRUpHoUgk/yTHfqDGIZuyVftQSVvZ5eQ63APt+5xdvbF2PEKy91BbFLjunDUgH1EOcv48lw\nnC3anHd/lwjXWBiiFqcsvRGRgKAGUfg3rUR857QeGg1xY3XyWePniJ47dynXmQDnpzTvgBLXVCRn\nT0IFAIc9uYhf4Fo5V1mC0j7H981Tq9l6jxrMtTjl4F5/gJcvi5uwXILfGlOmO5JaQi9yXjMqiuIG\n0XdeKn4d/Qn5feE1ahq3iwHosia0PdqfI5KcbWqlLO8XXYgfvs/vLlCTPLnNObCMqAUPLzzWKDoY\nv0zeVXdnTxPhqLO/jwTRhpyHmEKS20lg3oUO+/61AS+V5x9OMZC1cDolavc4ucY8F8WVc8x53Nms\nYiVKm/ehJMsbWSjbTZ3aeyIzxSVkAAClgWQF1SXQzE6Z2WrksZ7kZ9MG1195Q5Ktnac8LYp2ta3G\nUB6RsW5jJn6YCN0kk0wy6TmhM0Xo9h7Pj26XtrbkUgQVB9FYyMITdnBIlBVyEmXZpwvYzfJ5e4yn\nvDsoYc4Rdr/7QEJpL8ZRPOWJOLrHU7AXYXKcgU8CHS4M0JGSJi/Oi9eAXQIb7GwfzjEcTbFz7Ytb\n2xqhYHOVCOhRmXbVc6F5jDWisGZodntxb5PIunqJCHRy0oUvQeSbEyRVDdLOt7vN9wz9cZwrEgFq\ngiLXz7MkxICxAAAgAElEQVQ/Aw/RiN44YJ8qUSRf4zO/94AI/9M1akH1VUJ0W7uFZlxcvApEJvVj\ntv/hEu3to+YK+iPy60CSe/UMInWLj3zrSxpW6+fmMblHBDY+XZuZJ1kQSTkPxatnboJ9qUOrJLVB\n1y5BZhXO69vDR2g4Ofaon591HeTt3RVqHxWpGJSGA6+C8+n0EjV91SuJm8Tma2y8hJdXKEtvBYhS\nF/uUyeg2P7/vaGB5jn38qoTKL21zzpQuaWIz9ELqeGvYrkt9zeOdmXkCAIOoePTscK56lhg6TfZt\n/VUi4dxrkl4jTRlaevs+Ii2pNyopERwjrjGLzrnRA5yrXLaOeR/5q6S6WLRDuVK3JFHc5BgjQeT1\nrPBqgXcLGx/8AQDg3IsrOFzgurF3JWjpNSLp6o7U45TavKVyGe4Wn7WKq+As1OtRU02LW/KwsoK+\neMXNjWmbHkvCuc8OKduV1wfQ7knaCwuf2ZUU1c4x2/OnKDt65w/h7vMewXWZMqIdS/riz/KOZ/LN\nLfTSnP96iL9fkRqjPnFjjESXYHNQZi9NuO4OQ9TAl+yUy8o8NYv4xhD6grgNe6cz8cNE6CaZZJJJ\nzwmdKULvDWm3MsQGNdnx4yBCtBK7xFPPI4mE0hrRRHjYgy3K0zxXPQAALLgEUd/jKXhwkYjM2mih\nJrH6kxoRwXm32IYllsPTdmNjzFOvWuZ51hxIEQeD9jSrNo8Pdok+X17gu+4Jmgm+TbtXOMx3Nt0h\nOHJS8MA6WzJ6AHAuS3WiHsd9Z+ENIEc7o+U8Ox1oE9k1xTa48+EjBF8iL+1B+gt3y5LU7IC/CfWI\ndr4yTeHFR/zOn2CQwrcefgAAyPjpIfBVbQp3lSip3RU7rYCltqQzeHQ0QG54wL5KXdXkJaKc3/wK\n+/K6gyhu2nsJOane5HbO7rkQLLAPrTXOR1xNsH7CcY5s1JzKIE/ic1IXdpiHf0jEpL9EWSrcp/Zn\n7NIbwWsQqa4v/BWMHNQ8Gnn6YP9bISme8tNEbF8Ld6BLlarVFt+1FJEEaLvsl89lQz3LeZtKndF5\nN/+tJB10bkq06EUHo2O2tyApF2al5BWRs2Py2V7qwJBiI7I04JV0voEFyvSduVVU0tRcRlv8LLTM\n8ZTynKMhxNPM2odq8TO7BJqlXiA6dU/E9/zYiuWEJF5r8tlaXlLHRilDzWYTmYbUIA1R83Ztsp93\nUnzmip2yly7cwdjNeSoe787ME71J23e2Si02GWtgkqMG6pcCLMaIzFET7g2Ng2uw7kl66TXK0zkb\n9yHbS4w3Of6d7wAAupElVKTwjdak1lPuk8fT36T2H7gQQ0Ggsf4B/e17fSJ2PUENzeY0YLTYnxsN\nrqmBTnlcWOQe05X0HeFUGkc5ovjWPOXxc0/JDxOhm2SSSSY9J3SmCN0jHgVeSWu6rQNxD1Fj9RFR\ng1tqY+akcAP6c7BEiUxeTvK0LxzR48RIEHmN+7yZLnh0vGmR8PaLRIbah7R76eKFEL/uRUM8JPbs\nRFPnxkS1X9kl8nlpPIT2M2wnBNrfLgpyGYh/bV0i4ca3TuCLiv259mhmnjRBzwtN0gekpln0LhIJ\nFmqcHo+byG4q5bFUdAtFqa053SUatbYZsl2UaNrhKZGn3VpFK8ax92+J1rFCbWNfqs/7+/s43JH7\nBKcU+5Bw9/4jegclXS/AyBPFhm5ynPcN/uaTi7ShD/xES/XyAax+opmIbXYvl26SaM4/lbmzJyBm\nf1w5oq24cEg0t6uTb+6FRSzIOLsafelXpIDHzpD9ilrEDjy+jy2pBTovEZYHXfLxqqQG/ndTYdwF\nNZmUpOxt3SVqWpijzXjYfh/5DlWZixMivk6K8zkp8939HLXLRLKGjshdsxicmScA4LlFZFzXKJNN\n1UBsyv4+kChQh6SScOwKYh3mMN4gKi6FmZK1v0e0HRBZcYhsR3tj5CVaMSR3NNU0+XwsWlPxeAfR\nMKN/q7JGD5rka8xCz5aHh6/glTB51Alx/o/CRLNh0S5GEmW6E3oZkQnX6sQ+u/dPcMox7EtZt8JE\nwSZea8fi7m+LUN61BoXIfXSEHY+g4qL4eyvxDrojqbRjV/h9fAeeebH3P+R3UXDfsLrERh/RED3i\nXUajyr1oEOV82GSNBP3HqEVYGMU1JYqH3JEVJpJaQuPf0s37GEqalKkrPBM/zjawyEphHyzwosQz\nHaN2ykVoyckFVo2C+NrLHHwpf4iAZLBreqgeFTpcYK+vMlx7RzKbaS7gtMLN2SW1Mec/wwu83LGE\n/cbi6LQ4Qba3JXe15Lt2uhja/qB/Htclt8y3ZREG3XRrW5vjRnpc5HtqkyAscrHb8M6eRW/QYjup\nq/zbmi7isMwNaVLgxBsZTupI44KxXI5Ds1G49hTHELJzkUbaktd5hcJi6EP02mzvwXm5LKxyA+7e\n4oIMeS4gq7jgfH0eHtn7VD31GBfBRnqMiSGZE+XCq/Mtbiz2O+Tt2itSc7Gyh5idamWrNZ6ZJ5UJ\n5+NSXzaOkBfxMPv1hxQTRAyOJbjIAzZeT2J4wENMO6abWVsObPfrksPkfV7aDv+kic+8xo2vkpeL\nXKlnOdnmZrC1cQRHi+PqLlJuI1K9KSy+knux17G7w4Mh6uHGnq5wIR9LweOQhLg33/fiwkuckx3v\nD7eh2+b5jvrj1AY5L8ZSsch+Wy7hMpyD6RFlJtod4CTNz/rvUEZeWpViyVZuuqcTmhD0+ATRbYKk\n9qdoKihIaL1W5zNX1sOoGJS9K16uCamVjHuTzwIAUlEXrHWCh4mYVy1Nbn7xAHm5p38VAOBMXYfz\nEdfjpF+amSeT/lcAAOncFwAAnsht6Dtcj8E3ePgfZTlHx9/i3jJ9rY/0EuegM2CAUdDJTb+4R9NL\n9LM/RZ4cvIJumdlcVY989085Fs8XuB6aN/dRs1OeTl7mHnUpxnb3bvDzcCcLvUjnjpMczX3rUe5N\ntTH3HWhiil61Qsrjwuo6mYkfpsnFJJNMMuk5oTNF6JCQ17zUjIx4a1gLipO+hGXPS3bDwV2qYRfP\nHeDEI5U8fp+IbeUS1TVNlwxwcsmT/YM7sHmoMvoDRB+bC1SpAnNEMNH3djCO8GTNJomeLluJQn8h\nRHXpOOTFzj4r15wzJNRf1KFbpzzZQ1ainWF+F9Yxg5Ci+uyXorpGeNMSN7zi5ltYkmySpQz7rOxE\nrEuS+fDmO4CW4Lh8ctvblv5N1qhRXJZw6q/ZnagOqQ72pEpM3vMW/y11GDcqQ9g5dPQn5NvJ1h8B\nAH4qRpOE5oqid5Hv10tMFrb3BlF8SlDp/pRjGJ8LoVkgQlMT78w8CU2l4pCXqQbcDoXdEtHteUH8\nMSvND3krTV/b3SpCRxJEphHxXP7ZnwcA1PZp/mheJD9fudbBTpd860lI+tw+UezRPue1qyvY4sQ7\nmYlUyrrK9utNIvQr9jFsl2nqamwTSe0WiPjdlynHPcne584uo7QjF4Kj2sw8AYBigdpIRVIcXA+t\nojjg+8bnid5TGv9dEvTn7kXhGvJ94StEqLWs5EPvSwbLJZo9h8MdJD+RAQDoUgnr+F1qYSHRzhIJ\nJ/5E47oJgBrMuCtVsiSzoOG0oFcjEg87iUqXCObxrQFl5co5ySIYWAR8XOtOydc+Cx07yf/lxAEA\n4MMDG9aCRNkbkqjMCslIep2avMV1CS65vG5MqFU3TqnFtufIm+MTpkUYuSNY4lf4Want+45BxL9f\n4bjX3EkEszTPGSOpeevm2houcrzuQRgBP5G5H7xots1RvsK73L/yAc7PaNJBURwM6lYzOZdJJplk\n0r+SdKYI3ZA6n+fSPH3KJ+sIholaIlapKRqTwKIuL2P62dexECTaW/gEUcNBW5CK1BEsF2mD8xh+\naJIOMyrujxOanTGWxDo+ZwytKi9VvzDg6a4bBwCAt++zvcjiCDEn0Uc1T0SYWGF78w/EHpfgWdhb\nfQMRSWnQL8xm7wKAdpUXbdk/oKtiLGlH5gEvklSG2oBrTNTwe4e0Y1psXnz9iEjg0w4iS8s8NZNW\nnp//7pD297WFPg66RLo+CZvvlCSVQp79XQsk0K6KPfWhzIeTomHbJrrpvnYNdgmdtzg5f58Ud8D3\n5SJ6NUrb4pW1c3gg9lCrujkzTwZJqgtjCeuevt/B/QDbGw45vqHURe08pCY1N+fAw7ZUjHIJor7x\nWwCA18+9BABwSjDRv8wtoikJwKJVai2+tGgF9yRQy1uAX1xdd1zkxeg20Wa/wXZUvYygpEjojckD\nvwSzYJvtZuVOOHzxJsYuuSg+nS3h0mOyVCmfYUFtajCAM8G5aEnt200fkWHCR9vtpGpFICSpZcWV\ntSxVeoIPiYy7A+Gl5QTZLfLQZ2X/bT5qxY+rhT0atfGKVJLqeTknu8MMx14VLXGuCMcFon/bhP15\nJPnHQ5KL3xWm5jt9uIWOm+M6VXMz82RN0njkH3Ad7KasqFbIn3mZ47aE8YcTokEvFNDp8V2OY2o7\ntSbHcirpRJbLnONsLIeO4h6wpegWmxStw3tO8rePbCgpzmlgnRM+nXLPGqXFHdiag22HctmVdCeO\nJu96nAOuEd+A89O12jEvTgULl2fLEW8idJNMMsmk54TOFKF741L3r0s0UfFNoZ/KaSUudF6p5eeK\nZgAAB50jLAsibEgYbTBCu+mwRfe5BUEn3itO4BHPqPGQJ+98iGh8HKKdqnxsQcYgQtmPEfk6pICB\nxyDSntir8IR5Q95YJ4sqJ3xHfUXc+qRwg/ugio6FY7iy5JyZJ4U4DXSZONtb3tvFUYz2RW2RKCLU\n4xh+vk4b4A2jC6eNRsl9sfHPD8We6ZECC9PPAgCaxRoWHXzWPmbiLYeVCKMe+Tx/q5fR7ZC3KiUB\nS1J/0ZUgKtF2R4iGqU2MQTS/d4HI70qHNn6XpKDtvHcX1yUga+NkNrcrAIjeZbu9q0Qn+lU3nDvk\nxcP8e+yPnejGZqd3Qtd6Gy98jvN67UPa/XcSEtwECa3OkUfrlms48hNlBofU9rbFzmyNCHpNd9De\nIaJL2TivnTHbTUiK3a1BEbn3iHILHsptOkJ+nd6i9hPwUNtodoD+Hvn+gXjJ/OKMfJlGibrdFUkZ\n3AZGXaK6+IBtJk6lKo7zXQBALfspWCVF880jqhyXXiZK3h8S1WpWanOhfgeDLvlS9JJXiTdp165t\nS5GV1jyWX+Da8JepQX52ifytFYlOty3ABwPy81yVstd1UPaCUjezLhW27J459O1c++50cUaOAMMy\n16dbUkP8ZYsbRanWdSRFLOad7Ev5VILc9lOIOilj1QznbTgk0j9f5/px+LjmIts2BFPU8Ip+mfc7\nkpYZtIkHHryOgUVcG6uivYkrpmUqXk7GKk6L9L751/3iXXd8AABwtihXVgf3kYZ/AmeO+1fxt6Wo\n8RtPxw8ToZtkkkkmPSd0pgg92KYNqa3xFFtdbqGX5UnUVlJX0C/BEyWe5EujFkaKJ9dE0Kheos+0\nvUF0VQtIoQrLAN4VBk8EQVRljIhqb3YkmVO7isJVtrc84Mlb2SNCSM4RwQyNEiZ2os2WFNXQXERr\nEfBdcfHGOY2PEetzPA2x785CaxK4ZBxw3LcHNqx7xUYHoprxUFKDxminu3haQ2OJvEzXpAL8Ik99\n+zb7ZT+k72zbF8OCQVvitoO8aEEqks+JvW90AEvoBbZT4Ge7kmis22b7rbkQNk+IYtaXiVA8AyIO\ni5v2wlpNSscF2qjeJTLPVmf36AhaxK5tI96o7TcQGRJRnYvSo6iTIU9qG1K0IbOMvRucv5MXydMv\nTL4IADjqE0kNJKEaPqXDdvg2ACDgp0ylckSbpR4vXW6qCa60iXazj0Pt40SVB3Up6FCaYhJhv/rz\n5MX9b9NToeQk+vV6iFAv7rVxIuUQ3YuBmXkCAGEXUWCvILVb1/yw65TTyVQKsPSIvmtyr3M4eh8B\nD8eWsVKWi++SZxdfYn+mPikE8XYA7bL47NvJw/ImNcg5nW1cSo3hylMrujkgH16osb37QyJYLXiI\nT8u69ifZ1/YL5N1qhTLyR1KXVCV0RE/42bgzuzbXlDqp9gDlrJgrQpfSiqkSUXZznlqGWxLXeZUF\n1gR5MZSUxp97hfz66h9QVpo+aiGTtX3MO7lfFNpcjwnx0FlMcD5qGy64RhxPpUVeumxi229ynbrH\nu3BLul0YfGYkmuPdOLWElYjcLRZ6yOp8RpNAtaelM93QbU65ZZJAIFvbgeMahSCySoF88B0OzhFn\n1wJGA9ekZmWtS8GxS2WcXpbqphHjRU5HxfD5ASdxlz/BRS/NPFGpidi0LmCyzcnMii/VoTB4XOE7\ng+M5JPx83ieXn4ZE09XqHEPUkALGyopChEJ13jn7Qr17X+oJ5rhJpn5aw9gmF0peXmI6DQpOWyLT\nVq9Ecf+eRB44JCBikxeUlzQpuj1lG/aTCo7flJwmIx4Uey2Oc2hwsVqnyzBukrelkARktbnRDd2y\nONYVjgsS0dbhZ26L5LTYJo9d12mK6S/bUZCKLaVSZGaeVNalCO+YsjHKFTA65bvzVvb9JReF/6RD\ngd/YyGJ6QTY6yX9d9XLTrohbnS4uZJecB1ApLrgTg3O3Idn6tK9wbIvXl6Cc5NvA8nsAgM4Sa17O\n7bG94mENlgAXpdpmv5ISDb3co+uk28v3dCznoUd54Dusxsw8AYDeiQRcvUyebhwHsdzhAXRrRMCx\nXqV8zn+ePEhcyuDeA5rKFsXtVZc8PZqDIKqToxtd7VIJXe5n8FzkpnWhR9mzOPnu4v1voyNZNxMp\njn3iZH+Cx5TBniuM4Rp/5wLlMCfR4b8jtX2j4EXlMO+D1xAzRWt/Zp7s9AhkYn2OezJvgS6BgmGN\n/bS8xsO18FUCm8CKG3kpQK4M9ud9qVy0usoI0WKPm/i0F8W2mB81PwPXoiWukaoAnOVPdnDYlpxK\ncjG/INWlLkmh9+P6CI2E5LM55gSMNgi6Ytdobq20uC/6eiU0pJZxT7JSPi2ZJheTTDLJpOeEzjbb\nYpAneThP9aZizcPq4OlUrxINnUvxVF11SbBKoI1gPQMAcFiIwAY6kUbkc0QIj93bfNUxsn62N5QK\nKzYrT2J9SiTWf+tDtOM01RjHbCcqdROtVaLy6vZXsXlAZBF2EklsOHmqhiUmtyTq5SBrh/WIJ3ZD\nqtTPQjnJv515nVPhn8ZQ6/OU1x8QtfszEno+JooOtIIYnOdp7slTI9GG/H3dR2TVk3B1R6iMjqiG\nEUFLwy7bNfJE1va1NPQxkU7GkMrmIanrKXxwbg7xiTTbvtUkmrnWI48PnJKprktUsXLrIYoPeLna\nqudn5om/LJWZBKG/llrFQ8lkeTSmXHz1d4j4ghVCynR6DYkLnEfDdQcAcFsuUrsRCZUH223dWIVr\nSuQ0nqdMrQ2InhYu0cWz19vESC7vx/nPAgBcdiLdLckJ03ZH4Z9jiPzFQ453FCV6r5+y3aEEmliu\nDWGRMHr/7EoLACAQeOwKSnOAtbaN9kguwZNU7R+2eKnrPaY8bHW+BseEcuPuSC3SKOf4O79D2QlK\nTpfYFR8M0Uzfk3QjRSu/G0sGh/WlFzCqEllecRKhPgqTl9tdtv8XPH1sFtif+6LBXJBAPGdNcq9U\nJF+824dSnNpvpzu7U0FA1lzrWC43N0MIjdjZsshMZ5NrLCBZHcfVAWwevrO/S/NtJSlm0xxlej3F\ndjctZXQLbOeNJNORdB7XFrVTBod7Q0SCHGepJ6akTXH8EHOsEZwgJVlPbUmptnWOa1hJbpyaxvYa\nmo5z114GABxos2ktJkI3ySSTTHpO6EwRev1DnkDlQAYAEFNWdEe0X8/pRA17A56GY6k+szQ9j7ag\nMoeN0MYlodiP3iIiGMiJp3tasPVoFw/mpX5im0gg6JOAkUwEu5tEr/6rYmsrSPVuCSbYGPwcLswT\nUSipYnTVJghoj31ZcRH9FYclvLHA4AmrNrsN/eI8UU5aqqHEBlkM5ogkKkfs51TCrg++Q+Rx0t3H\n1fWfAQAcOmlnb/eIUPxjIqxhiyiu2C7hynleeDp1qcKSJVIcyEWeMXRirIjEHQ2ihojwOq8TYa+v\nr+A9+f+Iha551jA1nb94nnP19a8RlTr9QUCjZuTPzR5sZQvTttuXC+Nc4yb6NY7doROBXjWIkhLz\nTNBWHXQQyRLB3noc4OVlHypVzlUyyHZtSsO4QbnIi2aYeplId3f0LfZ7S4Mhudxjb3AedAs1lKLk\nfw+vAy2pDNXLkxdDN/s8LZLH0yT7O6hu4ZjetkjrP1xyrkKQa8Q2oixaYYe6xIvNNalHuZUhnx6G\nuI48XRd2JK+7VYpH1aSKUFrcbAM+uYMavQMjLVkSm3KZLYF/lm26M/qtb6KicY29m2fw3+ZD8vCL\n1ymDzR0HUlZeRBZ95MN9cW2tDrhGDB+xZEtVEJJMiQ3f7Bpux8e1EQxSO3Sk1mAVmFrc4B2R8x7n\nr/CyuBI6nHAdcFzvTOky+Hlxmz6EBCYuUov9dOpnsFWk3DSznOOuxnWw9joZevjP9oAef3fhAufh\nKCw576X+rKVZgl8jD9wWtv3wkLLyZoD7oleSv01DPlQq5P+F69GZ+GEidJNMMsmk54TOFKHrq+Lm\nJt4SXc88unISvnUsYc1uehIYt2jE8zuz0OWU6wdo85t3EnHFPHSXC63SlW13z0BDF5e6XbaXVDzh\nsk0i9LuDFhbf5P+PpEpQ1ytJfJr0ApmP1NAp8eQfhYgw7h1QC4CVf0viOhmMBtEE7XGewOzJuRY7\nUqnpiKjSZVtBq0+0qFuIXMIS9NN10BacDjvgsPwxAMAZJErwr/JsHtToinnaJv9iMYWIlRqIqlOj\nSZXo8veNCe1zyqpj/5DjWndIUqUYEfua2N9z49v4DJtBQ9DMCz4ilof/gr9ZlGrw37hXx2KT77hj\nzG4w7gQplstHRHxbjwIoW9j2fELcPN20C3suU4Nq50/R1CTdQ5eIaihVd6pK8odvCEqcO8Ewyj6f\nk2wBj+tqakO262x5UChQ8xrnqAWVphkAgHWV8mirOgA3ZbIX59zviU17KUk02JCAk5G7i4SkAx7k\nezPzBACiRc5RY54aUtD/PjpTouSeuCl6swy8On7ExGlefwAVCfKaM6QSlOQA38tRRl4tsY18soS6\nGMvjLnEV9lA+V1/iO6dH7yMEzkUjwLHNG+Rr85TP2n+qgjttuU/JU+Nz+KklvmLlnO6MqZmnPC+g\ncIe8Wwz9EDVF7UTGZUH8afwWVC0DAGgP6cJszEnQ1RzHNj1UQI1jWBSe6PuckxWXeLVd59gC72Yx\nV+X4Tq9xPbq2eG8yfUgNwG2voymePh8ecU1d7pPn5Rj56Jn+HG6N6CWTqlDDGcWo9TzcoZZgDwqa\nv5SFSvF+K1tvz8QPE6GbZJJJJj0ndKYIXVl4msZ1oqB+YQfpHk/Njvio65I6NXiJp2IpMYajy9PT\nOCViqkqS/MQcP29KPcGo9xIQ5O8fOCRIYSqJjGrvAAD8NgfaN4iUfEna2b/dIQJL6ER2g9E+Wna+\nKy6Fk9b9RBz1iYTlr0p61KNTdDu0F8YvHs/Mk/0KT/Ckh1ORcT+CQ+z2NwShOiXAaM1L1NCa5DGa\n8v+7O0TJ5SZtky+tyq16kf23WILoLXIQK016rhzp4rMrYeLlgBMXr5NPUYN2zBRBOBLvsd3GdB6T\nOJ9XI9qQ7+yyD/EEkdWkT3xwYbqInIcaxJXl2dJ/AkCnxHntNMVOntHRGrOdqqRgmHudzxbq32Yf\nbEvYPeUzsRD51ZNKSoaEX89L4qSqtoH2kFra+yeUvyVBiZev8bd7ozGGK0Rddzc4vjckpPxD0Zww\nfYg3x7yr2O1Lhag0eXzopS3a5eT8eIojFBRTVVxNrszMEwCoddhn1wMivNwFP9Y+pKb4nQV+l+xl\nAABzAcr4O8YA60EpvLLH331C1k8+xr4NEhzzQiGL6piaxZIEn9ntlPdxQGIQGl1M+DMUpMDQ+Qn5\n674inmXBN2F5TxLBLbMfi27+aN9JxKkeUj4n+SN4M0TS2XJ1Zp68LgFh5aRor3s/jayHfXe/wHmy\nlqgN9Cucqwd3vwnfOveHa4q8OdmlHTucoh3bm+XdxHZPx8F9ajCxAuWrK3xrSBWnCyPPd4uppP2U\np6Ymql+fGlwy/ABLTa7n/UPuMwFQrmKrfPeOFBoZRTxYstNOH2rMFqx4phu6a54MVZBN1hijahG3\nLg8nWhMNwyaXMs3KCtbcHHguyKxkix6q0PmKXHLJwh+uNaD2JSDCJrm5O2So3c/3jJwagqK2910i\niHZOok+CKG4M5pEucaI3JWIuLPmNAzb23XnAhQvdgZKPquv+FhfKl74wA0+CXGTTEcfwoOtAT1zH\nXlA0JQUlR0YlIReWIzeyOQpVskIzUWSFm23LyXEGIzwQI1DoHPKgeectmqhefY15wv0RHoQnRz30\nBxRgR4Wuedo8x/eun8J21LoI/x7HnlqhGaoj0XAOiXF6cYlugzv191HdpkCfqm89PTOEQg1uDMcX\npbTfgQUqykPkQOd30xMKSq/NzWBPAQui9mbd8jsX57C+Q9fG+CIXmz75PHZ0jvdcgIE5Wp1yUhRX\nyWGwg6aXY4+4yIum8WkAwFhyfS8bHnQWyWefFH4+H+IhUtJ5yH+9xJwqc6FXsOziXPtt8Zl5AgB2\nKcq90ObBWZ04cejh+1YVv9NfI983T7kJvd69hFyZY3P6yLu3Btxkg59k6eGC5HLfCbyAuI8H01Qq\nDB1tywWwV3Kou+PQqpx39wmfCVzhWqs95IZ8budD2BZo+rRNuX78Y8rptECzgmEjD7eqI1j2+f7F\n5Ox8ybsJEp17bO9k3EItIJlSe7QRvuiSnP5D9i/vjKMlUeZtiaJdcHBDHkluf6PBNureJpyf4gE8\nnRDseC0cf9dPXh/tH6MjQXuLQx6OZRvfvV0k3+z30/C6KSv1NNup75F/yiG50zXOmWsaRrPG9xec\ns2WUmsgAACAASURBVEXPmiYXk0wyyaTnhM4UofskR7RWI2Ko6SPYXTzZLock98TjQJ4EkeaFZgDH\nkvmsI5cmD+uS6TAp7oeiA44NGxqnfHbLJvUfe1IEVi5FNc8isgtEvKdykYSoqEl9hmtbEzq6i0QS\nMfB3Y2pDONSIiBYCVCn3TvxISNHYsHt+Zp7Uxb3JENet6zEvlBQcLnh5kj+acCx6lMjdcceO7H3+\nbu0iEUZ2j6e7tk2k1rOTj62LKQwkx7P9CsOaS1Wi25Tk0q4k5mCVSxiXi8iypf4vAEC/wKyGLy04\n4IyLG+ApeRDzSCj1AjWbzRpV245vH5VznIfRcGlmnhh2omclFZa0xAEqj9MAyKWtIYWSU4+Ixv3L\nHgzniHi6BfJNq3Kezzn5bEsyK1bu/T6854llVoZ0e7wxJ3lu6vzNsd2H8QlR5qtJ/s63QSFQcWo6\nneISBopLKKTIi6JoWr3Od/ibU/I17LJgauU7ctd/uMiizik1yuOBVBqKDZA+T/Tp1zmnb28S7b6Q\nIg/70wP4slxjJZ2I3L5MeV854Tr6ICxmv4kdD77JOV4CVf7rSxKc5RWttqAhHCTvThxE7/W+mJfG\nDDh6GHdg+seUw8qK1ODVOW+piVxU+8lb1EaIWCmXjf57M/NkKUjUOwDn6PR0DXdLlJsXj7lePBnO\nTb7NdybjI6Q1yWNjIYKel/QiD138vFSXlBClO3hDKlR96wLHfemUMpKUvE5D2ymc4ipb9UhB8S7X\ngm+DTgv5F6sY9Lne3FJVqpXgsze2uVaivHdGcr0JXfJWLR3MZoYyEbpJJplk0nNCZ3spOhV3RQli\nCY0fwRWQ3ORtnkR+nfZer1TvqDonMCR5j36byLUUJ2qerxLxNKSij2+3jmKI32XiPP06Jdq0Wl6e\n5P6pG2E7EaVVwmpDkt+74GC4rb3Tw8GIlyy2Bn+X70nOb88NtteXIKdEBzrojhmdOmZnSlncIyNE\nGI6BFwW3VHORsOuMuGJ2d4jGC6MOPFfF9XKNnzmmRFueGv9avUQRQx1oygXU8oB91kccS7/Idy46\nKtA2iWqGYi/OywV0JMBLsuI0g08bfH5OMjwWwHfvFojeJg3yvOyYg23E9zskL/QsVBA3O1WRS+bA\nFBG5bGqV2YfdHNHyYI391BpujDW+0ycouy9VZB6sSzNjsV3GU5gXLFN0snZkSy665vus9m5P2aAI\nnFBqEm0WzglaynG+wxcjGLhEJhf41+vmO+69Q1kPBCTgJVZD+QI1OKuka5iVrsrd08ERkeENZcGn\nwb59EJHAq3XK9vu3pPbqkhc+N7WESYl3CfYeZSQuSazcTWpR/ckHOD/Htt0aZc8yJFLX5UK27buF\nRp+o3S6Jtsp7dDi4LPnmtxuniF59DQBQBC+bDx1sd03SfvTbRO7efAP1T/CyuHzgnpknuYnkNY9z\nj5g2dIR1qQtrpXz+XkncFkXj1aYDZORy9laJW2D1u9XP5B6gTr66x2Fsv045XCySjykXeTMnCfqO\nNhI46FFDTr5ITTI95vjvv8H24sMokte4T41vy91fkDLslYv4ZIMo3/qWDXDTlm85N5srp4nQTTLJ\nJJOeEzpThN4PE61VOrQvweVAb5OoI7gqFemDPFWjB0Q2zWwTmfMSELBKGx32xItB6gk2O0Riu0UD\n3SE9CbxNIn+LRvTtHfBzSzCG2zzAMbCIbVTqU/oWePJ2CzsIxfj+sIV/bdL3UUPSpAo62as0kVZE\n847R7AEjfqlFObQR9dzPnWIuRZ7kQT7ZrETsjSOiCH/ODruEducFPfYCYt+WIzohWkffYUXKQUTp\nCRJFtOqSAsDL8dYGLQTS5HHtARFesyD5zBt8p894gP9HUKjVvybjFRc0ucnPSGhz3wAQI+pwSr7q\nmXjSlurnbfLGCCp0JHT8eojvzH0oCbcy1F5Oh31EGuy7T2zVliTnbnEqrolJosxyKI1TqU51IgnF\n8B69XSrXiEj7t/vwB0Rb8VGW4lJfNuiiRqKSLbiqfH+pTMYPF6gFpdck9L9P1JVNRuDqsl+F09lS\non6XL6v0IlJ1eqJcCLhQOSXqDJfkLgZE3xPJqT9Sizi1UUauXKUcnMidwttSu3Y9xWcf/JEXzRHn\n2CFh/JMy+WQtcE68V17EoC+V7MNcqwFJLX3kIe+SkzlgSru8P0jE2srzN71TcWO7znVkPzfAyV32\n/YWF2VNnbG+Ql9MkZUWPFqCVuFbvDUSrlrKcektyoI9SMLyiibj5bETnQ0t5SXInbsENbYBLHa6B\nQY9rwiJ2+70GNa1uUcPKK5T35i7bm6Yoa34b1+VgrYfKEfcrnyQCGyzzHRd87NfhSCwYd+YQXZM6\npieumfhhInSTTDLJpOeEzhShD+VG2bATgbrHPgQv8lS+L94L4yNJDlSgx4luHaMk/uaDMT0wokl2\nu6zxRGtG2Z7XFcFEUJ2lSeQyjRJp2A/llA3swdKVYgaXaJ8aDogsfJJ613c9g0GBqKN1SlTltBER\nFpVU5pZ3ZhJRQE7+rhR+mIV6kjJ00Oep31BWYMKQYNR5kuecUv9SCl30rtigSwELt84+r6ekSIfY\nxduK/fNki8g6icSaeQlr1okUPpCUowFPENE+0VsVtGdahlIppUvNpu4LIHIo6Ugd1JRGMf7b0pUK\n6VK3YTL0oClFSPTB7BXuB31JdCWJnCq/24VzmX01XuW8Wl6ld0d/TxIw2d3oDIiGNRufcYBz1ozQ\nXvuBhWMKLZVhu01ZXBKf7IHUqdUDtHMPHUfI5CgntwOSPMovlaNe5kCdyoKWIoJSUgjFf0Ike6pz\nDPYWeb103ELuHPvaDVdm5gkA/KHMrSPw+A6oCbebcu2UftsPmDpYG1Kr8L2eR2WbaHR3S1Kxrkh1\nnZEU8+gfAABedVxAP8P1Uw6T35pUj1pKcS6mkzEaCa7R8wPy90juTvrnycO+skKTBGB90Y6aQ/Yz\nJHnJHDt8z0nfC7eTXkOjh6sz86S3JlqchZqRrdqHdsCxL8r917nrlM9CmHMUPh7gTks0kRHvzVxt\naindBAO16iNJiKeyUDU+m3yV8v6+BPPN17nm0tfPo+2jFvTIwrm9tEiZs5/IXdz+PfQV583b453F\ncZZeL/EI+dd2UturLQyR3p+XPndm4oeJ0E0yySSTnhM6U4R+GqY9LlbJAAD08Qj3H5eTe0BEHHPz\ntBpLKbRgRYfd4GdDKefU7tJO1ZZb+lJJKtS7J+ha+FkI4l0AuVk+JzUyJ02M/LTv6cdEYB6HJFCa\n8jQcTXo4lkRK60m2Zw0QiRWlcIFvSBQ4KExghGPSzuzpPzFkX1Se9tp60AbbI7YTCbPPd7JEVPkJ\nvRS8KStejRARjB6HE3+H6NGmBYUXtO+dwIlJl5cGVo3aRi1L1LCW4BjDxgTZKp8f94nmXC+w3cti\n1zs51dHRyB93RFCplbx1FYmAtqW/w3IHEalxGb00O0t2tomI0ktS6ONVHe4KkY/epmYStHBMY0nA\nlXQb+OMHUvE+QdTmNYgKr1klCjDB/udOToCR+KSHJXWpoPddD7WhcG2Kdogy9PIn5H7iPufow5uc\nn0uJMRZibLvaIk+sUfI4BKntKe3WJwFMHxChDyw/nB96UuraFqUEWq9cAhK8X0GZmtTwJSblKt0m\nerQcWGHzsP+2BuXUVhaYLGXy2nu8E4ldt2FlKknPjsnXfoIylzuWJHLhO1BjIunGvMxPk/3xSnSp\nN5lCM08+DqVIyGKH7zySkmoLbt5ZvBoNoyuadjW9MzNPLvSpQZxeoG2+Xw6gKohfpTl/R35qWMFd\n0YKjDuSz/C4xpJz3X6TWEeke8Dctzutc93UkNcpVYUvWkZ1y5XWIV5ceQKXFcUbFm64KKeVo49j2\nsYZemP9v9ZDHsTG3X2uG85J+IN5H4RLeVhKVKmXunpbOdENfl7y/RlAKGdct8JfIrIxk9/PauMmG\nHHwmP7HBskRzwKjJReh3csHelYAbb4CqitZtwzdPoTIkM2Njys3eOZYagVMLklZeQJ6Myfxungul\n3aDgG6MGAg62eVc2dqtcxsWl1mnlLvs9dE7glrtQzaXNzJOo5IjR5eLXVQzBE5QLJKtMvI8HWFMy\nM7rbY9zbIb/mMhxf9P9l772DLU+u87Cvb84535fjvIm7MzsbsIsMgqZkUiyKFlU2Jdsl2rJFW6Rc\nslhmUTZYlgWZJVouibJZouWiaRfNJMsUZVikAAjAYhebZmZ38sv53Zxz/PmP7wz0CBPLuUtgRvvQ\nX9XUnXfvL3SfPt39ndOnT5vk5CcfJ8YbA3Ygb78JR5uDdFJOmLHL4qjZwkG3iD0Ui1TSSFROThKz\nsFVi5TzFBCyOOQCAz07Zplw0bbMJThB+GdwGLSe8TRnQ+pOHLUaS3GFhD0kIqzGCd0R9kHPGYa+w\n7G0rB9JM14TzHtl48yjkS7LjGVmWobfO78vDE6gpyq85khQREXbWl6If53OddZglf/zWm7KJycy2\nWpmiHM2DBO6LTrZOWN9snG6NNTuv6TvZMbcOh0gtyJmRsgg2KQ4V3QHdhixGumOIiH7nS3zmYIdl\nXhbdHlXdgLiiior9yFpn+12QAcZToNyyXxohK4e1h69y8qqIH81Uk1z49mW0pN/dFTeKaYruBesG\n00b09tqwdymrKTf1subgJO0U95VDcVLwxKvoufnsrG1lYpk0JNeSJ089WE7kkfOzLY7kNCMlC56b\nXqaJcDwEzl2mzrqbcrrRjkRK1KjDpkssp7lqRVmyY0YUZe0YsE5jO1OZbNosMDkZPnvBS71qb/Od\nrSm22YXpNXRGQt4kNUFCTr7aFjJntnFSLueimDLRBVTclx2NeOWx5KFdLhoaGhpnBE+UoffkRKB4\nnMxTRaYwk6BpGGjLiUVFsqlslDMojCBODCa6cbQ4MybEdeOTU4TqJbKiyxEbciU+b+ySnNUtWfgc\nyMalhBkhN2fIeIfzWTPFWdojGzc6oyiMmpzn6SdrD0Qk7/aQ5RpKbuWZiBX+oZzreNKbWCY12fJv\nkRPYO5YcSk4yMDmCEu4o652Kk33VBkBIYrHGGcrrZo9umaCNzCjZ4+89dBGeJTPY6JFNVttkREFx\np9h7KVjktJjqAe9vu/mucIcWjyO0CVgo566NBSs3JHSyx3qn7HzeyJREVrIM2uuT5XMGAGXaAwAU\ndikbf9QG6+EcyyPWxaBAN4HJTyZ8GHVjQdwP8zOyffsu9cayQtlUDsm0HN4XEPWS0ZXFbWeOi2tt\nmzp6u3IE35AbScwNsrcTF5lfUcIPTd1jJKLUs3ScelFu8rfb7/FdATkbN3n1MkzbtDiq+ckXzwHg\n3x1+FgDwauyfAACM2VdQ97Pd5lxkhvsG28hilbNgexuoXaHFEz64wfp4ydR7X5VTpZ5lHerjOgob\ndHvYC2TUFTP7T83G5x4cbOFaUk4KO2ZdEyG6K9QqgxbM75jR9LOPv3efzHXlU7SKZ8Ycctw5MtDj\njANVE3P4L/tsE8sk0yDLDUn4cznWRcLDd27LYr3fxD5yvUgPwX54BY13yIpbAdZhPkwX0XaW49Dq\nhmyk8iyiGWVbHhXJlkMX2D8XJQXDiiuH7IGENNo5LnQlw6lZ9sYdukbwOvjshqRAqTUpf3OL40c1\nwRQIg8YR5leow/G0PrFIQ0ND43sSypDTRjQ0NDQ0PtzQDF1DQ0PjjEAP6BoaGhpnBHpA19DQ0Dgj\n0AO6hoaGxhmBHtA1NDQ0zgj0gK6hoaFxRqAHdA0NDY0zAj2ga2hoaJwR6AFdQ0ND44xAD+gaGhoa\nZwR6QNfQ0NA4I9ADuoaGhsYZgR7QNTQ0NM4I9ICuoaGhcUagB3QNDQ2NMwI9oGtoaGicEegBXUND\nQ+OMQA/oGhoaGmcEekDX0NDQOCPQA7qGhobGGYEe0DU0NDTOCPSArqGhoXFGoAd0DQ0NjTMCPaBr\naGhonBHoAV1DQ0PjjEAP6BoaGhpnBHpA19DQ0Dgj0AO6hoaGxhmBHtA1NDQ0zgj0gK6hoaFxRqAH\ndA0NDY0zAj2ga2hoaJwR6AFdQ0ND44xAD+gaGhoaZwR6QNfQ0NA4I9ADuoaGhsYZgR7QNTQ0NM4I\n9ICuoaGhcUagB3QNDQ2NMwI9oGtoaGicEegBXUNDQ+OMQA/oGhoaGmcEekDX0NDQOCPQA7qGhobG\nGYEe0DU0NDTOCM7MgK6U+lWl1N962uV4WlBKrSqlbimlGkqpv/q0y/M0oJTaU0p95mmX48MIpdTn\nlFL/x/v8fk8p9YknWKQPNZRShlJq6Um/1/KkX6jxXcPfAPAVwzCefdoF0Th7MAzjwtMuw3caSqk9\nAD9hGMYXn3ZZvlM4MwxdA7MA7v1RPyilzE+4LB9aKKU0ydH40OrBh3ZAV0o9q5S6KS6G3wTgOPXb\nf6SU2lJKlZVS/0wplTr122eVUutKqZpS6n9SSn1VKfUTT6US3yEopb4M4JMAfkkp1VRK/bpS6n9W\nSn1BKdUC8EmllF8p9WtKqYJSal8p9XNKKZPcb1ZK/aJSqqiU2lVK/WdiMn4YlfoZpdRtad/fVEo5\ngD9WJwyl1E8qpTYBbCri7yml8vKc20qpi3KtXSn1d5VSB0qpnFLql5VSzqdU1w8EpdTPKKWOpe+s\nK6U+LT/ZREca4mJ57tQ933RniXvmd0S+DemHV55KZT4glFL/O4AZAL8nfeZviB78JaXUAYAvK6U+\noZQ6+pb7TsvBrJT6WaXUtsjhhlJq+o941ytKqUOl1Ce/6xUzDOND9w+ADcA+gL8GwArgRwEMAPwt\nAJ8CUARwFYAdwD8A8DW5LwKgDuBHQHfTT8l9P/G06/QdkMlXHtUDwK8CqAF4GZy0HQB+DcDvAvAC\nmAOwAeAvyfX/CYD7AKYABAF8EYABwPK06zWhDPYAvAUgBSAE4IHU7dvqhNxnAPiXco8TwPcDuAEg\nAEABWAOQlGv/RwD/TK71Avg9AJ9/2nWfQEarAA4BpOTvOQCLAD4HoAvgTwEwA/g8gDe+Rbafkf9/\nTvrNj0r/++sAdgFYn3b9PoC+PKrTnOjBrwFwix58AsDR+9zzXwK4IzJVAK4ACJ/SqSXRpUMAzz+R\nOj1toX7AhvgYgBMA6tR3r4MD+j8G8AunvveI8s0B+IsAvnHqNyXCPosD+q+d+s0MoAfg/Knv/jLo\ncweALwP4y6d++ww+vAP6j5/6+xcA/PL76YT8bQD41KnfPwVOeC8CMH2LvrQALJ767iUAu0+77hPI\naAlAXtrYeur7zwH44qm/zwPofItsTw/opwd7E4AMgI8+7fp9AH351gF94dTvf9yAvg7gz3ybZxsA\n/iuQeF56UnX6sLpcUgCODZGcYP/Ub4/+D8MwmgBKANLy2+Gp3wwAf8ikOkM4PPX/CP61VfMI+6BM\ngG+Ry7f8/8OG7Kn/t8HB+/104hFO68WXAfwSgH8IIKeU+kdKKR+AKAAXgBtKqapSqgrgX8j3HwoY\nhrEF4KfBQTmvlPqNU+6nb5Wd433cbqflNQb7UerbXPthwiS6Pw1g+31+/2kAv2UYxp0/WZEeHx/W\nAT0DIK2UUqe+m5HPE3CBEACglHIDCAM4lvumTv2mTv99xnB6siuCjHT21HczoEyAb5ELqKhnCe+n\nE49wWl4wDOPvG4ZxDcAFACugeV0E0AFwwTCMgPzzG4bh+W5X4DsJwzB+3TCMV0CZGAD++w/wmG/q\niKzFTIFy/jDB+GO+a4ETOIBvBhecnrwPQXfVt8O/A+CHlVI//Scp5CT4sA7o3wAwBPBXlVIWpdSP\nAHhefvt1AP+hUuoZpZQdwN8G8KZhGHsA/h8Al5RSPyzM4ycBJJ588Z8sDMMYAfgtAP+dUsqrlJoF\n8F8AeBR3/FsAfkoplVZKBQD8zFMq6ncL76cT/z8opa4rpV5QSlnBTt0FMBIm+isA/p5SKibXppVS\n3/9EavEdgOJ+hU+JHLrgBDX6AI+6ppT6EelHPw269N74Dhb1SSAHYOF9ft8ArZQ/Lbrwc+AazCP8\nLwD+W6XUsiykX1ZKhU/9fgLg0+A49Ve+04X/o/ChHNANw+iDC5v/AYAKgB8D8H/Jb18C8DcB/BOQ\neS4C+PPyWxGcNX8BNLnPA3gHVMazjv8cHJx2AHwdHOT+V/ntVwD8AYDbAG4B+AI4YX6Qjv5vHN5P\nJ74NfKBMKqCrpgTg78pvPwNgC8AbSqk6uIC8+t0p+XcFdgB/B7Q2sgBiAH72Azznd8F+VwHwFwD8\niGEYg+9UIZ8QPg/g58R19qPf+qNhGDUAfwUcuI/B/nPaRfs/gGToD8Bgi38MLqaefsYBOKj/jHoC\n0XTqD7uhv7cgpuIRgH/PMIx/9bTL828KlFI/AOCXDcOY/WMv1vieg1LqcwCWDMP48addFo0/jA8l\nQ/+TQCn1/UqpgJicPwtGLnzYTMXvKJRSTqXUnxL3VRrAfwPgnz7tcmloaEyG77kBHQwz2wZNzh8E\n8MOGYXSebpGeOhSAnwfN51tg/PZ//VRLpKGhMTG+p10uGhoaGmcJ34sMXUNDQ+NM4onm6viHv/oH\nBgAULXxtp+ZA6m4eADAKc4E8do55pMZHNQDAm6YOQjWJ3U9cBQD0XC0AQOhiBAAwfTQGADSqLoQG\n3BfQ6FoBAMfeEABgycprPI193DooAgAW0rzfusJrTXUGKzQ7JTQP6wCA9ogpYo5S/HSXGJbq6fcB\nAM5QANUdemympxkU8h//tR86HR//vvgLP/cbBgBYXXxGPGqFr1OlfGS6ddSCAICa5RwAYHZlgC0r\n5ZPJbwIA5ltcXG8MGFXVc2cAAItOE/LjEgBgZp77PiIGP+/3GLFpbO0g3uX9XUcTAGCx8G+npPU6\n2u0hHGXY9uEa3+E4ovw6Zv49trMtL+Rd6Lspr81MBQDwD/7mTz62TH7lF37eAABnh3VoVAc4riVZ\n9gW2VfXBEABgWmG7vhyO4162AAC4vR8AAMSmGZBwuEV9s9sos3rahgRTvKBnYQh53IjxmiivNXWL\nKOzsAADcQb47qGws4Jj60+mbUGvyemPNz2v6Ir8c9+ikJEdhPWtDtcxgqoZvDgDw+Z//+ceWCQD8\nnf/0zxkA4LCwURy2ABpjttNAtmSMpf07VuqnzfDAPKCMHCZa492hl2WLHQAAmk03AKBqD8I/4rOt\nQ5a13O0CAIb2Bp83NMES51q5XaI+s1W2cUdiXKJxFxTY74wS7zdLePejiP2KnTpt1EZwGmy3coXv\n/qV/9PcfWy6/+PM/ZgBA5YTPiBhjOGbZ/s4W26st11aG7GPmxhheCS7su1kgh5t94mSL40eFj0Cy\nF0KjuAUAGAU5PgT71KtSiXJzevoYBPjAqQHfloWMUaJfbu8QgxHHFL+V19bM1MGKlWNKqSx1CPRR\nOqYwHWZ+fv4Xv/BYMtEMXUNDQ+OM4IkydE+es1bPz3mkU+8jn+QMHrKScW1skf2MFWethCcIc5Ip\nvi19MmD7gJvUTPfIoOpDzsSNQh9ZYZqhIL/b39zl3wkyl6NWCYcxsgOnsEdfocznp3wAAG/AhcoJ\nGUZ1kcyrVuPO8fCQZRj2yRQH9ROMEmQfDttwYpkk/JzRLbu8d8ayDvcCd6S3t1mewxDfNa4wO263\nMsBUhmX297hBti9MPT3PJu05WO5xbYxEn8/xbZI9Vi5yQ5/LSsbQa5SQk03wz1rJKHY9rOd2je3Q\nT5jQq/L/8T8gE6/EhCnyVXCesC4H3gpW5uIAgKv9yTdROmKsg/mE7eSyNRBN8p1BYTfOK7QuvGay\nrnd3jxGaZ5tf71FOjj51IXWN+rNxfIu/u3xorXDD387RBgDAmuVzOg9FDg4FleY13SbrfexguRxd\nflq6Awy8ZK6eTbItf4L1HS9Q5u006zCd86Jm0EIwua0TywQArGnKVHWkH3XSGHdofSFFRj4sk9FF\ng3xHsWuD00Tdb7nYPrYe2Xexx35kjbMBzc0BfEvC8HtigXapB34r61FCG8MsLci8ic8xDdkmZivv\nNY+LsASoGyMTnz1n5t+7feqe1UJddDuGELGi4ixPLJOWWJv2NBW4NzTDAup1xaBlFZKEBDc2yag/\nHS/A5qcMv1xjueYjtGJ8l9jvzXmxIBxVLKSeoUxsbFOHjfXttXhv58QNv5v1uZXheBOwLwMABi3q\nbd5vgqd7TurJ8c/qZtsFc6z3wMXyLV9awMjEsc3VDkwkD83QNTQ0NM4InihDtzrImPoj+qlcVQdK\nnNjg65At9wKcreaWyXrvWBT8A86MY8XvxrUcAGDRxucdD+jbTaTSiNfJOopNMoHULBnUuvjYBuYQ\nHOtkL5EXOJ95hUUYSc6YJ3fuo3uJqU0M2USa2CcDc4iP0nyeDMY4cSLqpK+32T2d2+jxMLbwnd01\nqeNdB0rr9NFlbHznIMZ6rtjpRut2eig7KbjpAdljLiSMqEdfcLRMllJNeXD0kIyqFiTrSB7MAwCs\nxjoA4NBRxrkWn7drJYvI5chm6+PLAABL3oV4gAyz5KA14WxQxjGxitarfMaaQyF3SD9teTM0sUx2\njmm1rYaFb0QXELOw7H0b22PcZZs9uM0yxYdFdMF3OhaZBSIifuWChexrWpGx5Y4N2E/YjiE7mb5v\nnrpl6ZGR+npzSNopwzsN6k7cyvujVnab/HIP/mPqV/A56kvMRD2+U2d7lraoJ0XvGGYH3xkYnt49\n/viw9MhCxwblY/fbYYmxjC2btLudLK8+IgMdWjuoDvidrU2GX22z/zk91C9PRfz+aKBR4TVhl1iA\nFsrDamFb9DpWZP28PlrnO7sLbH+bif2qax4iPuL9tRrrX0+w/cxm9s/YmHVoBRww8mxDn8c7sUxM\nLep/2CP90tJEdsx3dTzUe8PKtj1vo6zKIy98Uerw4oifLivr0i5Sbq0i29XsG2EwYh3WwTqZpW7T\nI7GkPTW03ZSP20f27nOw/U1mysbaKyNQ5W8OGWc6/TkAwChCWSQK1KvclgXBMuU0HtYmkscTiSGW\nAQAAIABJREFUHdDf3eYAEqjytfVGD/60KPw1CjSdkYHNYMe42O2gtr4HABg+vwYAaGX5W1OUxR+i\n0h3c3Uc9zsE9V+c1Sw0q6CBHl0nnXAj+wH0AwFaBg0LgOZrJrUMOpNNLKdiLfHa2wedNJ8Xdo1i+\nSpuCtjtn0XHyHQ1xe0yCpTY71YlbJjuTB0M3FTuwxiMJCzdu8OIXZfEqswZPhAqnHBy0LBkucLmv\ncbB2H/B5w1YTWGRHc/t4T2+f17pSNOdeaQ0xNPOdJRMVs928xnfKc5PuOIZDpr1we28DALp5TmDV\nFcrPKR6nhLGCsawq9dqnEzw+HgodljMpC352kx/5PgfyuTrl1S7xZQk329nlnIeh2NGqefpNdlvn\nAQALF3jviUyeKxeCaJzQNLaMORAr11jqS/v8puUWnHXKe3GJA0Rlg+3buySdtBGGcYFuni44eJTB\nztkJ0PUx2mX7PLh7hOllunAcrg/mcnHZZSFXsa3ylQZmnXMAAFuNMrPO03XkylG3Pb1jdMLiGqvz\nt8Qy28tMFYelzr/f61dgHQqxyrH8rRrf5RKdNNeziKV5/WhAuTqO+fxsgAO9tWtF00u5jPx8jm3I\nHFbT7D4o1Pl9tXgCU1Ce3exPLBO3wbFkOCC5aHiXUJVBcL4p7xhTV0ZOtsX5y06c7JMUBkKyKBpi\nm+4V6SIpuDj4J3dMMF8hKQnaWaePzLC867IYfK4yxrBM+bcj1JVFO8eLcoaD+CBsRf2AOmfsUAh5\nUOfadcovaKX8FkJ2DCSoYK+en0ge2uWioaGhcUbwZBdFDc6QUVmQSC72YLI/CtHjLJr303RKVDjj\nZeZHwPOcGQ9rDwAAI8l/c1ThAqpHwp2Mkx6m0lwkdEY5U3o3OGd1bVykyN/toBnib9fdZGeud/nu\noOK7c3sOlH2cPd0ZmmsBB8scXJYF3QoXmFymDPpVsjLLB5gfv5Alg70WIxt3pNvotMg08w3WzxIj\nQ1BmfpaNEuxDzuaDMmdwm2Jdjh7Iom2XLpNBd4CwLKa1MpS/ySnm7m1hnpfH+GFhj197h3KfGrJd\n5lfI+O/s3sG0ool5uyd+snm+c2lM+a/OU0a5+hiBkOQ78/6Rx5y+L65fZ1hcLk+G1StaYFcs69eE\nsfjcZFAqIicP7nQwyLNe4zRZkXVwFwDw4IQ64R7I4rnhRDVNljU9JFverLNOKk12H3bGMMoL+7PR\nErnyHMPW7kkOquLQjlCNcjO5JZStyzbqHZAlthy8d2muD1k7R2X8wRi6w0lGmM/JorZ7DZ0i6+wL\nsG6dddajaCUL9JimkK6wXdxOvjfaI1M/6bBAmw/4GVq2wlGmjhxXRO+jbMeOiZaqZ+xAo8Z35ewM\nWw2IWzIlbpnmIAZng3ptHUpWaxevOcrzOdYgraeI8sKwUn/ajsmPvm31JLw2QQsgMGjCJAlUa34+\nLz6mRb57xP50pz6CeYbyiddZh9elH5lBPfMNqB/ddA+BFl2qVYPunS98kX+n0hwjmp41OIbsY6M8\n+27Jy364F38PALBsmUJJrMBsifJvu6gr821aCYUwZdTbtcDS5bX7xvxE8tAMXUNDQ+OM4IkydF9A\nQrqC9E2mU2Y0RmR5hQbZR8JD9jEShtEplTHn4AJBIMxZ/e7ulwEA3jC/7258jfeYruBgtAcA6G/Q\nh9hK8l39NkPXpq8fYX7ERS63YnksB3zXcY+hQmbVxrPiEL6xwBn8eED/XlQYxzkJw3rQyMMRphht\ntsnTKMTl3kFSwrnaJRz3yDqnzWRCGyYuxp00yCLs/gq6ij7qnIPrCpk9si+fhCJur84BANL5Brby\nrF/AS/aVapAJ7DvINNoPZ/COLA7BT4Ziy9PfnBcGmLgUxs0DynKpRYba2aSVUrou6x5Z8UMH23i3\nSIYyqMxNLJPqXbKc4gmfMQq64Jkh83S2KeP0vGxAK1F+I58fES9lkLXR7x8c0B/ekVQ9PsW2NKwb\ncO9wzebZz74IADjY/AoAIBaiXI/f7mNaQmlHA34+EBbXCvF5dhVFs0e9HbbI6BaTlP/hFNlgUMJb\ncwUXHGm2q23ytT8AgHuGVqYzR70tm9ywuKiXLVnMM4t+Wp18iWFuYVssiuUVWi7jOsvYkc0+4TVh\n7H0DZTMtM3OEv0WCtFr7EupoTg0RdPC33oG0SYx92FkR+cYKaDuou8kxLZRSVdZZArwme8LNgq4A\n4AB/C44nWwAEgEBfAgWqog89O1SMsnfJAUq7ZVp8UT/bqpvrADO8ryF++6SdTD/WJMdtNdhuq3MK\nOZGl80ust38+LvfMAQA83R6qoCwMF3/zX2U/cuzw+f0dIBTlLrOEWP/eeVq89iOWZWCiZWE2nJiq\nsv+1Y5MtoGuGrqGhoXFG8EQZeq9JJpDLk6nU+w04O2Q9EfGLj2WDh5HmjGvrjlH10nfVqHNWr/rp\nV+ps0N/rWGKo3btf6SI85my/GpKtzxIRcHCNrDy0P8AJCS/MQ7Iam52+ed8JLYDoWgFbXYmgSZHp\nd3Y5A79m4meqyhk81h3hoMAZtmab3Ado68uunA5ZRT4zRLpPJlCS8LCFqT0AwOF9zujKUoZbmF+p\nxOMKo17O/vt1ljv4LmVc8swgJSv41V3O34cuWiKD5BwAoB2x4dUtMoKKbP1fGfD5ZjujAXobTgQC\nfNfATpl6bVSfuSYZerciIXT2LJIhMovXdx9tvH58PAjKmsaITCa0PMaRpGvw59hm1WWy1WaYkQOj\n4BVkDujHXjOTiRYi1KXANv25vST93TfzA4Rka/bmNtPgrzrJbG0G5WcJdfCubPaypyQCKcHnOYW9\nNQuvIRK6DgBwRKh3vT2ywDkHmVq2zrK4nDsIdCifwk51YpkAwLDH+1yzVOD+cR/9DsviWaUejbKy\nhlKmvAb+KMIS6tnLcAt7ziypEKK0uPJ2PmPKrlC9R13uiS6bnGyDQJ9/m0cOHFZ5n2rTwjNt8937\nU7TmjOYIgxx12Cy6MvZRriMJbbSGhY1bPFB2Sd2hJj9Ppdbje2oxyt8wQujKsLYo57OUxSooSgRP\n2plAoUSLuGmVkN5jseKi7Dc+Bz/3+3Z4JOqq5ZOzK8J8Xk+26gcDBSQH4q/3SPqQQ9YvPOTaWMms\nUM9IoV3sh1cO2EfKff7g9VA/G2MDuS6t1IiEmj4uNEPX0NDQOCN4ogydx/IB8Q5XulUhgqyVs3vE\nIRsPwi8AAFx2xqyHrRZ4nWSAJ5Jmp9XjzGaf5qzssZCxuJd24ZHg/XpCtsA/Yl53ucW7bbLDuc4Z\nNyer/ikbmW/LLn7PjBv2FTIK94Cs48GRbNGfEatgTRIUtVyYOpK43MCjKfjxEbCQPTUlOmK36MTy\niOWwCsPMZMTXJpEUhiUCe4LMJ7H0EgAgmZQt9hkyi9CDPQCAGSbEJDVCaYqzfnNMeTkTcpxq4z7q\nJrIZt2SGn5Z1i75EiIwvtWGSDRoHR2yzH5snQ7nZJZMdypb9w5MG4kO+42Vj8nQIvTrr1iySnQTT\nNvRjkptIDqGPggzIPKQvfOQYoiS+8myf39VHlO1HP/MRAMDJfUa9XPb7kZe0BXGxCGsePq97RBnH\nIs/gYXcPAHDezHJEDtj2W+JTH01Nw+IgW7X42PbKTcburnDzTuKQ1kGl7kF/jf5ku+2D8aiWR6xF\nxXq1TTmEzdTPBthHRhG2tTVOedkHexi2WMaaRK7ARl0OF2l9RWeEGVdjWJWos5JZosTykojNJbri\nduB8nPJd7/HdzSTl2umQwXr6ecT71Nlm1yTlYt0dh5SlPcq1inCijG6T/XDUHE8sk6qDz2lt8vkz\nc36EenzeG+uSIM3B+lZalEnVfwtdsJ/ExvwuEWCbNtyUY2qRbHloHaLTZx94WdYTLB32o4xPrLGO\nFbmuxO/HaeEOTXyuuUB9qncAU5RW4b0B7zeOKMfMSNZf4myPWiyE1ALb2uqczOp/ogN6XQSx+IM0\nS1598A6e8UjooI2dpX78RQDAkWQYjBttdO1c1HG5WdzLeQldW6XpE5bMil7nAOMRG3F0mx3Lfp1m\n7m3w+bXMOyhepQvH8oBKl00yrOl8iJ3h/sEQQS87gTXOsLsr/zYbaudVCvpe512W980enp9nfZLO\nyTfRHIvymWWD0TMrQzRkwGydSAeeZccZnLBz2BZs8E5RYfYfsn6+KpUlHqXS7eavAABeCL+Juodl\nf7bIRaJWjoPPa0PJYzIq4bLk47g5pAJNRTihvefg4LF80YvWDXae6hHr+duSXi+hGDI2t8jOoFp2\nwMPwv55lcjPaIbseR3K+utWUwxUXB6PmPGVwv8LBY8ZO2dRq23jFwsF5vcbOZZnmpFLf5wSppi7x\n3vXbOFflIvnJ7Fu8X3IIzS9z4BqERhhbeL05xndsSLjmbouDUsLdgVsWUWXPCIzAlsiEnbS3QJlb\nHDXEqhwYqq7KxDIBgF6fA9OwLhNzMQTbFDd5DUr8zWGWTXImtmPEOY0TyYE0BfYbt4316bcoU5eo\nrdWmsBe7CABIzvGeY4u4KfZ50Si4jMZ9uj694gqtH5GMzKb47nZliLaFcrE0+RxTZw4AoKLU17CL\n+usPpb7pnlt3nj5f+fEQZRMhUZbd3vYgSnVxhUgW1faIZTDusZ/XTSHUbCQsV+PU4dck9NZrod4/\nrHIzn6uXgNXFRfbOgNdW7nPyX1xhv3fO+dEaUC/tx6xffUpCqzscj7zTdaSs3Kx3DnSPHncpA7eV\nBLfd4BhgPi6gvcQJxrBNttNau1w0NDQ0zgieKEOflWD9fJHM8GVLFDt2zowzklM7nuSC56hNhvx1\n0wGSJZotIRuZUVOyIg7NnJW/kuWiZjDhwLjB50Rnybi6dc7O/SxdJNMOH2r3ZDutbIX3j2iSb6yR\nEi5cGaBefh0AMA6ThSQzLNdKiM9tleYAAJ3FTSjZQq8eTpTemvUOckb3eGXzR8UKr5Ws+P90k6k+\n46UlknqJM3ix00PpmIuYDTev7XYZfucRE9k74lz9dvVlNHZpyrkLZGa9MJnrcobX3AkmkHCSdTj2\n+N1XA2S7Jtkg8fA9A+qYJrFlhUzTNSDTrxzKglKF9Xe52zB2yY5C9g+wAFijjG2SqbEen4arTLNe\nhdj2B2+zXOFZMiCXeRknPrKaTdkAEmqyTl93kNH6shIiumpG1Ue5P5BQu6iX7HvvHhfLtlNWzLXJ\nTt+TvNfBJllq0y8bS+wrmOqSte2uSl6hpoR91lkWW0o2LN23YsPNMietHyxu0SRM2+YgA/UmrRjW\nqbMu2RRnB/+2liWcMnIfbgmt3HWRznok66M7Qh0KyWLk0FVCaZ2mhrvBtu5Izu4D2frfHGcRX6N8\nh11JJeAh02/ty4JyOoENsZovlfiu/pHowZht0A9T3/d7FpjafE7TPXlQQabKek/7KHd0shiZWd/p\nPD/LkobBb9Ab4OgWYJnm+zHgu9NHEvZ7gVZC/JjMuFM1oxziOLNzjv1nZpnlrCYk13tJYTD3HABg\n1KerbUbCIPvXZeH5rV1sKI47IfFU+GNMpeFssFy2Wfblwq4JVnFVLkyWbFEzdA0NDY2zgifK0Kse\nzv7Dgpx041WISJ7y6rtkP6YQZ7QjYVtRvw+FDBmEZZuM+rkpbqZpuDnrx+1kcm/F5xGz0Cd6uCkJ\niCSX9dpHychC5VmYi5zNj+tk/qY9WSApcrYez4Vh7dMH37BLjuYrcuLK79LH+jDKGf0j6jnYi1Kv\n0OS5vwOyduDOPcpVHcC+he9a6VAW4yP6ZWOjTwEAvOMhMpKLOjZLH+3GDcmyJyfmKCUhniqNj4QY\n1tmysZwmK5nCuMjyLlhOUKhy/cB/yDn+QDLM+bAHAIicNyMXIfu78A6vHaRJHzzPsbyZbYZDxtxW\n1A222YmL7/jxCWSSKspidZIy6Q42YB2SmdfLKwCA60mubayGaS3cb++iPKLlEW/TUoi/SCY13CXj\njxkMu+xjjH6ArGu+T0amJPVBcSi+eVcWYZekdIiyvqYy67Jo42e4ZsJXJWHXhRXx7T+gn7aWoGzO\n9/ieYc1Ae0B929uLTSCNf42RYpuYFEPhev40/OKPT0bZ7scHe6xrtSz3rGEcIkOdliRcAdHp9ZhD\n7qHunDPaSLVpzRUdlEtRNvukwmTs5vtWjCUzat3JeoRm+DzHR9mvHRkbrk0zqOGrIz7nooTBpufI\nfFuygafRc6OV4Psjkit9EtilXK0BdbpuscJ2wu9sCVr08VnWs9Aie75ZCeBSW85d8FF/HPO8f/0+\nrf32FOu2FvBhSyyqH95l255YqA/5KsehoamGmZok9YqwngmRUbRIC9LsqmApxn64s8d1j5kgLaSy\nbICLDCRkNGxFuM3fkuPPTiQPzdA1NDQ0zgieKEOPhMl+DuycOWsG4Dkha/FdJqNxZznHXBbfa2a3\nCuc8Z3W/gwysbSHrqWxxNq1LpMjiRRdeP5JETF7JIW7hTLxT5jsPkMWqhWz9Y35aAYdJvnPWR0Y4\ndjpRO+CsbGvymsIm2UPiEq99tP3d3RijY+Z3A5djYpm0JCrBViWj7c75kexzxs5u7wEAjBUygjf2\nWd9PXwmhG+KawHGFkTpL0yzPl9YlFWeB0QqRjg9ZOclnzaBM7lvJLFIPaR2pjwEOCc/sBcgMol6y\niXKKz/ffehcR8Lfwc5RNW7bC79/kvfUCWWIh6sZUl78tNpsTy+RChOWqRMiSYrUxsm1pmyH91+Eh\n5XZUpy/Uen4Rl4Th7E9RljtfYySSxyInUr1I3SjaYxjKBqLQmBEMZjOjXg6W+HfE48FNiRwKHHDN\nZ3pV1jQkpPPWdg0rF+nP3mvQEoxIvnybbFqrO/jckOku2nk5Nzacm1gmAJCVPNxur5xvu34fNZdY\nuxlpG9loU51lu1UfVlESa2t2SOt1NCXhoMfUA0uHzPW4XkFFwoiveiirS37qzEPZqh/w2tEwU/fS\nAUY3dfa43tQUVg/vLrId9tnUo9zxEqHWPZSt9gFuDKujA5OsA2Utk1suIbAsI0jdhgYuLVM/D02U\n00jW1R4lw4pWTCgbrJ+vTM9AX441uiKegXqHOn2UHmOwTyvszoqchHTAvrZqoX41PG5MDcjIrXmO\nRRlJr52RXPOzlik82GefWHbJmbc9Wps2SSVsT7wDAFCNFIZjtt+bJ9SVH3pMeWiGrqGhoXFG8EQZ\nurPDWTBu3wMAmMNWVE84i3ay9E2P/YzJ7Lwlp6IEgPuSRnYUJWuPGmQ/7QDno1KM7Mj01r/A4hzZ\nU2lMNrPd4qwcMOg/9qeqiDfJLDZkw9KMbK2/tc/Zed47gDlF1jCQTVDDPUmraZdolDzLV6sFYV4V\nNt+b3Ac4+BJ9wRVJRds39dGap4/0qqyu385wRh8J6ym0TlAzs86uV8kM3o7Lpi1JB2sakZXMXujg\nzl2JWGnJ6TGzvKa1xe/PxT1odchUYnPn5DksX7NFVpIYexH5KJlERlIc1w9Z5nCJDOaYRYJNNWG6\nQEtBNSdnXZs+MuyobH9+uOHApR9ie3zjPfq67x9QFwZy0tOFjQLGEqljk6PlF1b47juSuMxTYXnP\nefooSCi4Xxjo9jaZtmWR5R4cG/AtMgphLsz69Rtsh3xXrLXpFMwGY5EXH0g0Q4xWlP8VWkjTD1ju\nm/46kg76dk9s0YllAgA2sP1rW5SPIzmNUJVyeLNIZv4xL5mddY9dO2B2wphmP6lLFFK9yXvmIrxm\n5YQ6fhBtoGOw3Fs9frc4z41+uaxsihrtI2iRhFGKMrsh8l4t0kowO/JYrH8MAHDbRGa/LOtC5jn2\no/wJ28pfOEGmwr4fdkyeVjiXkvTBBfZp79abODKz7EWJ6gqmWQfrUCykl+M42WFZZ4Mckw5l00Nj\nkUrsjfL7Xn4H09Jcq8u0aB40adG0ZniN+Z4bb3olnbOHfaybYkTReSdlXV0fwfZozeJNtkNJNi8G\nnWzPW0Hq0mBgw4U5OWhmONmhH5qha2hoaJwRPFGGHhgxCqImTGGsEjAb9I2u3+RMNgUygf4yWcBR\nMImFQ9nZJodebFzlTO4fSnIoC2e+xdUr+OqB7F13iQ9YarickcRIjvMwz/N6U5az9LGc1ZiMkkXk\nm1tIbpGJKwfZspBGJM/RZ7knSe9bCRucktKgM0hMLJOM+L4jKZZpxlZH/cb/CwBoPk8282f89LVl\n5KyIfiaDcZsyKUrc88csZEkqTvbwjRtynqZpBj6Jm/YbXK+4+yVG8Hg/QZp6cwx4ooyzXwM/HSk5\nqzNIVmqKBnDfyfbbXOd3CwaZ6kPZzOavsg4Xp8YYyoEl9vbkKVE3S2KRLLJuvWAf91+VNL5ShuFI\nkobt8J2pl5Zxbyyn0XfkrFg32yppkwMFwnsAgHffGsDiIhuyxWkFpH20UPKyCzBbmsZhgN+lTXLY\nSY+RG9s+XrPmWUTyJn3ur9eoO6/Mk8XtH5NZHRdvsryHFWRLLI/ruckTlgGAxcp6WMNyFmhuhGKY\nuvvxliRXC9NaXLWwr7y7U8ewxLJdTVNm9dKjA2NYL+fHqePhew1YR2TUviT94bMHbwAAIg12gELX\nBVNf/N9WiYf3k8J2m/x88F4HqxfZXvOynb9j4zvdDerpMyssb8l1HiE72ytfaE0sk7SFlrJnyPKZ\n16KwyQEiofO0jvqSasEqu1bDXhd8fo4HIwv7SSjEPlJqsU909jkOHc6kMX/CtnxtS/zrz9DyK5Vp\nzQVsDcwq1r0N7pdI7e4BAFpizCT8Cm05B3j456nfg2/w3VsZWoCeAJ+biKaQAiNhVOL6RPJ4ogP6\nO36apRK9hZlqCT7JfzLzkZcBAOY+KxuU1GSHrggqAy54RBa4dXZBTPFym5/dPjvylz119GtUmLnn\n5UQhyftiHIkJWWwgIBtPNs5zM06wLWch7vN5AWcEvovsfC1GKsHmoNvnzRscZNJ1Ksszfi/eW+c2\n4elV38QyWRhxgcopmzwKLRfc51hma5mDcyPJsjjPcfC3HPXhknwsHR+vPQmxA4VHdDnNjzj49PyA\nvcFND9nXqcSm8asAgCVFmWdKA8xf5HOOwQHIvMuBIhqQg6DvVuD+McpnVlxT43nZhKGo2P3hHst0\nlMSdJDvngrU4sUwCQ+ngGT5jvJtBKE7ZJkYc1KYk3ULGx8GqrfoYmVnmNRs7dMFBme57OciFb4sb\nL+ZBXVwrEZlv+l054SdHF8xstIxwli4vmyzONiV/zMUTTtzruAtIiGSQa3MogXJ0HlBu64fU2Tje\nQsfGAfDwNbYn/vpkcgnmWY7sMeXiip9DUc51XfSwLWpy+s9bef7tHh+hlWMZN8IcnM3VjwIAhqXf\n5nP9HNDtrT7qA+pcO88BuNDg54GbA3NqLYr6MSdVFCjnpMEB6VFO9s8unkOnyYHRXmVnz8q5uydd\nho76TRRY19FA2CwLud7BZAIB4DdLbndx7cCmMAbHkMMk28L1T5lOZJgk86hkbICP9fRbJBtrkeUs\n9zk22LxyxkGhgBvzzJc0p2SzVkbulYXvoTuNnrhazE1O6CdpOVshyDZTuwY6x3MAgICb5ToIc4yK\n/UW6i8ZFttPuqI5+h/K5qiaTiXa5aGhoaJwRPFGGPpQ8zG45CXzG5cK/6pEddCtctAyICTk4lIRb\nu+/CscwQo7Is/FksXKy635KNLvc5czqjLnTmhP1skLnAQ8bSuPADAIDY+DU8VGRY1iIZV71KFnlQ\npZl6+X4RzaCcKmIiY6spMsPQiPcOc/z7vnGCaTmzc7c6uXuhIicFtXMMaZp3vYymQUvmI49Cn4pk\nihkPr8l24rCYeWbo6vkfBABU3yMj7Htlq7VpDwCQ23Sh9xZlMXyJrG2xwnboZMgigoEwzLtk389c\nY31zcpJLSfJGH7trSL3KhF9jD583KNAyuvCSWBd7ktohvI1nA5TJPcfKxDKBsBJ/gTJueDzw1SWR\n2hLN/UqN9Vtq0DLZah3DE5ft6XW6FsYO6k1CwsVyV8jqV0IuTMmpVYcNyiLt5wLXyxF+X07N4PpY\nGL6w7ucGogsS7gnjBJUY37m/Q31xSS77npxDurJEhj7KraEwYu71hNU5uUwAWEe0Ws9ZJJQ2t4e5\nGQkZrcrpTF6y0z64Ge25S0Hsb8qio+VPAwD2amzrqIT8vXqfz3jGPQWfk7q3OSB7nJ2jC+78EVnp\nvUMPEnay9iNJKZCXk+4tXVqth64agjUy3dwqrWCvIpN2SOhrRs4TiIfrqEiahFStM7FMLszQIt1t\ny4Y/3xDt99iGvQYth6OQbMTKst6rL8bQkVOxjiTFRSlAGUSD/NucYxu3xiHUIwxPPDykDvrk7M+x\nMHZ73AXrDuV/U85OxUOOJakg+9yN4wBwif2lfsIxyuuijhg7lHG2Rxkt2rwYSHqAplg/jwvN0DU0\nNDTOCJ4oQ3+0PhadJps5ro4QT5CNOeVcz4eyocgfIENom/fglvSXGSsZebrIGT3UJTOoWjmLRSod\nTIXpC3vXS9btaT0PAJgdc6HRPnYh6edsXqnxXTcznClnY2ROXYcPPfErBrNc9LrX5rvXZskwxhZ+\nv5j+QdQLXMAoyhmDk8CuOKfGhmSylswJvMHLAIBfl5C/VyxkW8E7bK74xWlUt7n4stvipg5XkEyl\n+t4ePwcsby3n/Wbu8O23xFc5R9ks1ckMDkvvYj8q54Q+pEwjs3x3QM5dnVUj9Hr0GdbsZB+HVspi\ntUnm7khJiNadOvbkdKpA+OHEMnHJtulqV/LcO/MYu+S0IAmVcwlDP3LS/2jZd0E1ycj9Er74kpys\nk7lKljTwSwpldwszaVp503I2rLMjuhSj1dK1xjGu0TpJyqn2S23W8/40yxJ5w4uqgzpzfYWyScuW\n9ntVlr33niSWC5hgHpCZfX2DcvupCeViMvMdjheoH3HXBsxVObuySx15uMf3Lok1USwfILEsK/oR\nsuXRFs/kvScJql5JceHNdb8EqySIGrXIRu+aJZw1SVbesPdRlzSyPUmH4UpJArsKQx5q3R1EAAAg\nAElEQVQHVR/2u7JQJqQ7doH+YduRbGpyfwUAsHXDCv8U2W3IN1mqWAA4tlI/8xZarPZAHzu5r7O6\nS0xTe3WB1mYuyFDK0o4d/lX2t+IuLY+AnAIVHnAsaBbJkK9cu4rOLepBO8R26yc4/pjc1L2KEYHn\n09Qnd5n1Dsh6R2xEudU8LVglN3rVzXLBxnZpJzmWNPdpMb3b38YrFY6H5uHsRPLQDF1DQ0PjjOCJ\nMvQLC5zR3SUy5FIxj6xscf1oilEom2PO9ne3yPaunruA7ZIkUNqWVWbZVm5qS7oAC6ux53Fj6ojv\nCMiGgX6cDMYqqT7fbO5grfPbcg2TXbmyZE71EhnL8sUEeve/xnLIaeUX7WQY5zI8d7Sp5KT7TAVH\nGxLZ8NLkPsCVKJlBVkIyLctTSLa5OWVpidvGi6/JIQPPib/ccwA1w0iF1gPKqyUJwhbX6CeelkRm\nr9+vYThFmVhv0d9bl9QJh33K3B3z4ut5MtP2gOWZ9pCNXBeryNYYQ/V5zbjHd6ZlQ8m7eVoLjjCZ\nozs5wkBcibGce2KZvPOQ7CjuoS+8abOiIedXWsSSqwbkRKrblPlHUwG8UWVkz6UXGNb32m3qUGSG\nsml5qC9e2OEC29FZklAysYacKbLYqK2Ise1HWAcz331PkrkZBbI6Verj6jSZXi5PJmWakw1nkgKg\n7CJzPNfwA37KtuyY/GQrAKhaZcOV3F/PWxC0SxplJ/vUJVlvqltY56O7Zog4MNN9DwCw5+U9VZNE\nSD2gvu2fzwFFstmBh6xxVZKLtVe4KSvWHqPqlHWuEus29w6f81abzDURuAG3l/KIyLmle7LBKn1p\nj+XLURbFqy50JCVItfIBTiySHWI7PTnM5OgQiRlaUkrSc9xrUP/9TUbYnF9YwNsNhq91l+g7TzrI\nsDftHGsernCt5nqpglyS5Ypc5acnS2u4+QZl3LmoULhLq6AjY4FtiXV6q0JreOifxsrz3ODkuEEL\nsgNaP+MCy7uSZH8MBM7DISGqK+7JOLdm6BoaGhpnBE+UoWdq3A4bHXDWKpqs8JbI+kqyndg/2gMA\nmExkGg8GHcQebUu30a99MJKz+CxkTM4hZ9OQ6z0UHJyNg23OnkaXPqxynWzNYTXjYZ3z2PfZyLRk\nDwxGcir4N3Y7+PSYX+5L0Mw4TVFt3idrDHY4g4YXzLBfJAWaH0yeiGqvzzoM5z4OAKh1inhHonCW\n5Ggq5Z9jXWxkUreyPczUKa/GAhnr4S2Wayinl1vckg4h5kBVznUc/ICk4RXHZgdkl1VnBw7Z1FGd\nZTzv2iXG064EJLJj04qboNVzUCGr+b4wIxVO5JCSfpZWQUil8MIFtkPud748sUymwrIRJE+L4lJk\nBrk469NN8h3xbZYhJpFPytbHnJwv6X6HO7CaC9SLQYgHmCw2H1kLYVhBK6DVoQWyvEqZe+riv69d\ngMdD3bmRpd/+WM7tjB1LciwEkLfymdV96sftm/wtOkVL6dG5sIPuHErin70we3FimQCAMvNdrRH1\nNpYHuhbqdWdIuZQ2+Tkd42fH6kGpTEbYEt0wy0arPxdmfXJhsYAHFtT9ZOSWMeWwWaNV4LsrZ2YO\nymgMqCPTbrJ29xL19HJZju8bLKAl8o1mKMN0kpby+B7L0kiRETvyFfTacq6u7COYBLey1HvzCfXU\niFqR8dE62Nplf/xMlOXckPMzXO45BJp8/9DJuhxlaJmMprlnIyJH+5mO7FCP9oFIAr2Swd/GLvaH\ncXIWjTz7z6UXeM3hHa4Blvxcp3op7oJtxDI25CzjSoPPtSf4znGXlu7+zhb6JsqtHaBMHjdW7IkO\n6D7zMwAAo86sYl17A00rTaWu7PiKdCSndZIKdO+4gq5BJduSQ3u9Ze4CTUXpeqlO0wTqvdfH8jkK\nzS7W28MozUL/eW6iMR3so9igslU7FP5AEpe4LWzx50p9VMSVYbnOCadpkrDHABs+sEhB590HmJLD\niFu+ycPR5mxsgkqYiuXPhZCWxbvuIRs6L2bwhuRMVy4zXHLqTGqbCzaVNhd/qx4qxStFDv7ewQx2\nXRwYS7Jg5/ZwEPMWORg0FjyYWuRk+/1yuG27T2Xr5Vi3nMWFklVOUZGFQFtCdqM2OFEM78oB2qkh\n2lUqcu/FFyaWSWSVE/c4yEE7fzhEy2BIl3+O7oJAkm6HWpGDUTq4DJXjJJ4+T/X3RzmIrEtI6DDG\na41zEez8BgfF/jH1rrvFe+d8/NzqDhCS80LrPQ58wS4H5N9PswyR8RRmtoRsxDmBHS7JZhEJnXyY\noI5dfCOHxEXqV83SnVgmAGBrUwa7t9nZl+0VFOSwa8dDtsnAISGaNb5j3AJuX+biXai1BwBYmaV8\nX23znuCQ/aHuCiI05v0v9PiObxyxjZ3Pz/HaW10kL3BCsEkWw4YM2pkgJ9Bn69uAojzuHDBgIeaT\nQWuGnypP+TimDOzvCTmqvj2xTBaGbK+ul++Ou+zoujlepMrU4QPJMXTNkFOpXnuIKzMkLHcbHIgr\nkvf9OQlx/X0Hx5/5isJUnYPJjOhPErznDR9l4tzw4Pocr797QLfj2EkXzAtykHbbnUPcTGKhhHQu\nDziGzCfZHzfuSP8s1RGSvE1um8xCzz6ePLTLRUNDQ+OM4MnmclGclQ0JhRq7QhgtkwVNH5ItJJfJ\nVMvbZINmvwsWJaZYhotwhSa3p58bc8Y92iTjb9XCMDqcTfNHNH0XAnx+8S4XzDohGzo1mjybBTkB\nJsgZt5XmO31Ty6g3yBo8khtmzyqMWDK2Dbb47v6MCzYXmampNfmZiJYB2VL9G2Q7i2s9PFzn/91z\nlFejybo0zLREVoddZE1kjZ1VNqFLws3sb7NcIzkFph6v41jCrBJHZEu3s2Tjl4SNNe6aEXuRbqzK\nM3SHhZpkESeHXEjafm4WzoqkBTDIbm5D3CAGy2Vzk81FAkl0xCy3+SY/ZxUOWh31i9SJuy47rvfI\nikcnsklk9VHOdLZhpmpB7YBldcyRJS3cYZvXumTjh3KmqLdaQuiQboLKDuUVlOyZbQv1J+0CBj1x\n5cWYD31DdPSalWUYtS1Aks/uzFBe43UyMkMWK8OK7Hgv0YBni64A44OlQ4cxTf1qvcE2Kk2bYJNN\nRrUgrbBon/K+X6B1EvDY0KpRRo40ZbYli6vJZ1kfR4vuzdDuDrwh/tY8pv5YrpO9t8O05m49H0Lq\nkIwyE6B81xQtoivzUpYHflTlJCBDMjnW8gxf7YBt4zRRd6KDPoJWls8WmtwVtXeD7pQrP8T6dytV\nNOtsr2iQi6JpxP+QjByOADYaYqHZGEL4ko/XJgPSx0xyglikBf899m9DUlzsSABDSKIPozU7XAat\ngcUR05T0HmUrlT5hKUeQ6soCqZQjYGV9XQ3qyiem+c7/uzODgKS6mF2cLAOlZugaGhoaZwRPlKF3\nApyZ/AEmu2mdZGF6layx+En64Zp7kudattZjVEM9QkZ4LUIf5l2QRVQkqZbnhAx9L/oiMpK90Tf/\n6PRzMnRHhNfm+jUseeiQ2m/RUpiaJXPxyiYatf0aMKRVUJfzSmfk5J1sRU7DOc/yho4tOG+QeTni\n+YllYriEPdU463/ddx4myXjX26XlsGohmxlIbnKnScE/TV+5WZFJZe+yvkv/Fsu7VaIfcdStYSFD\nJlVfJNNPCHvMS7Y9/6INtgCZWCgrVtAUy3NukUwr3jdgPiLru2ljOTw1+s7NsjB3fppysAbc30zh\nsCsnuUyC3Nv0j49JvjDXPY9ygGsr5jzZV3Gbf1vB52fNfWycl9Of1kmPupK73mkh24k62WZ4eIDs\nJuuwVua7jNnvAwBUQaa2U8tjyqDVY3qH9TYMSZXQIeM7tvcRtXKtoDkm7T5/7hUAwNsFynZcpc6a\nbMvo1NmuXfPklhwAzHVYfof4iI1uHfa3WddhkHrkeY66/Gc7ZHb9kBV7b+/xGhtDNcdh9i1DNtR1\n9mTb+8ADh+Ted4qFZ3lAnbZY5NzRxBDTYco8mJNsgxF+/nPZgHPBNoDDLqky/OzzZSd1zxvi36kd\nJogb9nzwjTkMGXKuwSSwuBleeef3pP7BPqwSKOCURW2Ln3UIFsXyNbvQmWV7pQwueFslHYPJyjKk\nGnxGux1AZoXrUQ4T+77bwzYfHVFumfQhOmFZ5yqyH15+k3rVeJ7PcRkNvAFaceGCWKA9CYM1SfqC\noZw+Fc0gf0z9rP5v7Eef/vjjyUMzdA0NDY0zgifrQ2+Q5doKTHZjHySwJEmwbuySETbsZIQLDs5e\no9p5pM6TARYPhTV+nDNl+Qb9kzUXZ7HZ8SziGfrsvHNyKo+PrMj+Zc6glYtOhE2cIZVbwtDi4i8/\npDge9Jbhd9HfVZeEORE5q9EfZzjahSWyNJP9Po6E1YXM8xPLpJJnXZScXp9qnsAUJkvqNfjucoJ1\nmWqTTRTTPtTeIgNYStORZ5+ljN4ukzUXqlyRvzCMwjfPeg53ychcIbZD+tPC/KfPI9wgi4lb6fPb\nG5Ddvv4ar01OTcF8jmFaiRrXEzw5si77s2R+m7J5K/meCbVllqd7LDuMfvTxZWKV3c6zMdY7W9hB\nKMwIgWeukYXX8yzD7T3WP9XtYuSi/KMShVD9Btnr8//+ozzdbMP7Aw+swsB+Q9iyY12YWpr6mFRe\nHDVYdqekmujIuaabMba3UT5CPMVQPYub5TKVaDnNX2bZm5ts12zfg7kVlsOoDh9fGKdQbZNVdhLU\n00gvClOabTrv2gMANO5Kit0XqENHoxDMLAKsck7m7l3ePx8nM3SayLjLswbuCFOdPWTbDiT0symW\nqX80jVqI5Q84+bl+KBabQZPKY9mBPSqb9fqyxiMpjFs73NzUdFCXomMDY1mXskgY8SQ4rrNft20c\nG9ILL6D+NmXidVBH3NOsi9NNpm34XbA36CWoxNimljHHhMGI486nJDd53jBgGIzOq+ep00d96tfs\nDEMfU/5dHN+l9XYpzqiu8HXq2ijK8o1rJwgdigWiqKeDFWkPg+XtFiXSzzZEfkjrop44mkgemqFr\naGhonBE8UYaeTZD1djAHADA3h6j1OStdcT06QZwz09fdnDGXok0Mc5x9d0Jkj63b9Jv5m2QGdRvZ\nQGB8gFafLEa56Xe/t0V/YyhJRrbcaaHqJHs1PSQrq8S4Sm/tk6nEw3nstx+dj/hpAMCunFozleVM\n7BQ27w9Z0GqS1RzI4RqTYOUHyB7unZCdFHNrUAHK6ZrEub4tFk06RoZnd6WBJdnUs0Ym4avSB26s\nUxYXZJXefTmDRomU9+ICmUbHwzpI/jNMrXiQ3aNls14hC/GBkTDHdka2IFfE8JjrHX4vfcrRBVpG\n5ff4vITEqZsSDphylJ8lMDWxTNxy9uxuk+3tcXexYyUrth6RZdmTZFi1m18FAFxfDmB0wvZsx0lJ\nYz9GGW21yA7X5QzN/aIPV7+PPmHb77CcVyQl7GGM8uy3S3BKgqvoS4wJvlmmLGJNOVlnkMFYzoM8\nZ+beiGpQUkRvy4k4clCCx9yFUWJbP+xOfjIPAAwabLCWRLIcd4tw+9m2yyO2xUmDdfWsy5mzjSbG\nEjX14kfYN0ISI36U5feWJJmsaX0a0TotPOsVlrsZIYtfky3xx4MC1o9kc5dBWc12aOUcg3227J2D\nqlAPK+Y9AIBxm0xVmeRc2iwtwsraPJxDymX0ukRE/dnHl0lVIk8uhNj3auMqwnKGql2iw/oj6sy4\nKuke8l705ajbw998kzJZZt+KxlmG2zmu1Zjibix4GTufWeaGonM7lN+7X2BivAeLEVwEdSVUJ9vO\nHPHT45G1uN4yatcoS7UpaQKy7Bv+ebZhXdYd2pl9ePvUXVtispTcT3RAD2YkO1uIla0fWdHr0DS0\ndbhBoGDjYHFxmoppvrGO3g9IfnDJif36IZXjooTj3bBSOZQRgidwFQCwLItUt0IU4thBhewFN+Bq\nsmHa12gu2828PyHHbK2vzsK7yQG8XpPj8sqcRBqyY/Rhjq6cTzuC2B1RgRztyQ50BYD7X2cInMfJ\n8nadbYy26NZ5vSxZ3gIsZ97BQdua+5cwogz/OniTiheUhHqNKsvdW6Iyz5a3Meizfg9T3HyUds0B\nAIYSfnW4tYHAjuTwSHIw7N/n4P3Jq3QtbfRvwLzPtikP2I5l2ZRjrrOt3CnKoRZpYqVJuRc7ky+K\numYkf7u0dxo+BDqc8IYSrrm78fsAgLiFROBgyYGihLVau1zszlY4mZskL8aowvJFGyM09li/5AsM\nHTuscWCv7cspSdY+zDbKsOjg81L5OQCALcROZj0/gyyrjkSbg34+RlnXaqyDykg2xIgFTRsnzXRs\n8pw/AOBpctLZqlEHp6/7ENyhXg5nOVgNovy7V2C7WYIt1Bc4Eez4OYBYX6a7Li4HWw9SXGB2nZRg\nRCjD7RLLGKvzeRWXnOoVXsL8kPUYjDk4N5coBN+AMvC6c7D0OEDOiT5WV+TMAAnrtIsbMVw04POK\nCypun1gm9SLL+UDR1ZU2bWBtni6N2Trl1Gixr5Si8rffg/mHsiEpwXJFZed3os/yhZysy/5wH9Us\nTzwaybkEtWXKBGW29TMhBzp+trO7TFJR77CPGEW67VJ9M2KSo+nYJyHHJdm9XqXuBSWvVbF8gAXJ\nFGntBSaSh3a5aGhoaJwRPFGGflPyO8wMOVM5BwN4zJyB9iQ/yILkvqg8kBNFZodwSXZAT5jMwHiO\nTONrG5wpp61klaNSAXDRltqUQ2CfT8pMmeFizCiYgtlMJjCSQ52NEJnq1nmeLjN8dxO+GJlz4yEZ\n8HCOM3amwnIlwzRp37qpMHRzhn3RE59YJj31FQBA0UsTtVCew/kc5TOzIOFyY7LT98wMtyy1OvhM\nXEx7GxnQljAqY5lMaloWpaaSH0V1njJWd+jKOL7DOo09ZKDxchVHQbI/c5DvGkfp9tkRplXNz+La\nGtvonuSZGOzTPJ8Wr0psnkzvqA4cyCak/IPJQ9Fssrg8SLBdzd1dtGMS1nrEeppcLFffQdNkP1/H\nQVMWNrdo2Vx6icw0MuKCamxA/uIMhNC4Ksynzbwv2c4c65mhblycKqDVpr6ZenQptXx8TneG1oz7\n+A3EHdShgiw4et6l3qUvfoLPdZLdH43cSNRpuu87NiaWCQAUW2TU8QA/y8UKZB0NpROyvZBX8vZ0\nJIS2ZYZDztYsbXOBzeST3PkuyaS4Qf23R8eItiSVgoXsu9CkHowH1LdA7SY6YzLMo01aKuGr7Dfn\nFMtg31V4w8o6zkvWTkPR3Zd0M8uhccz39O1ZlITZOz/AJrRracmh/pDv7o9igJlCOXbJ4d5dWgDn\nBmzzMbpw22QRe15OQRM23xyw77WjtCy9+TQcTcpv3rrHa7t0R9ribPtevYbgkM9ZCrIPmJYpP5uN\nrpheMokHt2lFhOb4XcpHS6lSZh8pZzi2PDu7CJN4HY5OJksToRm6hoaGxhnBE2XoF+1CJ+KkdDbf\nNsYyK0fynPUjc3MAgKV9WeRwWeH/Bmfhu/PCzspkSLNp2dAjGy5cHw9j9M/JqnzCKGoZyZC2wxm0\nc5yFJM3DeOsGAGD7E58EAFzaJascDRR6cqaimmX5lGybd4XINEZmslsjacVqjzPrgXnycLTGiPWt\nP9rYYGqi4KcfNywLPqpChjC9ImFNIxOOiyzf9BplM3WZ7NRd4GLhnRMyoY6jhFCHOb79kT0AQH+Z\nLOTBIRlWQgWwkCArfluyUvpD9P1tnZBhJRcb2LrF8nQ/QitozcUypOQcxt2WbKI5mYECLYRBb/LN\nVodttt0zB2QnZocFpgK5x6yNshB3JAYSQni+E4dthex4LsFQu2CTdTrosV2PQVZoswCXZ8hO37zJ\nT+dQksTN0urbjNowkjBRp4fWWmHIDVpJO33Go7QXB3dpDUxdpk82P0P2tiwb0faU6J3HDMiGoKZs\n0JoUU3JiUVk2PFk8LmTsbP/pMnXQ5+Gz9yS0cKpvQvGA7VW27QEAPHlaDb4AZfl8gpuhOhtD1Ppk\nkf9fe1fW28Z1hQ/J4XDnUNy0URIteVNcJ7UNN2hS9LFAgf6P/IT+ov6INmgKpEhTxFmcxI4da7Ek\nUjL3bUjOkDMk+/B9CvJovhgFcb4X2aI4c+fce89859yzdEYs3LUJGaZM3DvhbMmliWd7fACGmhmC\nzbbz7Olq9qRYwLicCC2XIZm5z3OOEg76nUVEUhe4XuTAWlomVR8W5d4e9vnczMvpD3jOmwdlERFp\nZbFXgzywnLSHErVZ9iAKa6Xt4EysMsB+vxWBBdgNuNL1YaWcBVG3fP0lxpuOYz+Y1pqYYTxvpcpe\nxDPW2c/Dmmp8XRGHesJ9jesUQzgr61hIjLx9E38bcTrSYH/V3+xsLCUPZegKhUKxIninDP1oG+xv\n65TlN61NOXkBH/eWiRNexwULupqAVczTrozqePumRqzf7CEiZDfGrj2siz4/D0juPvxk/S5YTJ9p\n6YEorALjPVvW4RKVy5uMTpmBlfgMlwuEY7JIswvPHNf7aIFoii9CYISVCX4+XDhSK8JisBv/5ZN+\n8tYy2fTwRm/WWMypKTJm9OMbHzLoJ3H90AJM4eOiK19U8eb+5ilrpqfATt8UMaXXIXf+sS398N9E\nRGRtH4ygFcQNttqwbLZyvgRPwKQP56wnfw+hnJ0509RrZyK7ZKYnEGCzC/Y5d1hSwMHn4awln/Ux\n1tSN8lvL4hrZFsae4Rq4SDfFykHedhPPuf8RrIvLKVj3UWEgjR9gRQV9RPO4ATyfQx/oxRiyXn/8\njfz4EswsGKYltg2mHSpi3bQrOZE0GNN1/f7pEGtpbxcy+blRlXQEazLxBDLNFsDwKgXcy+xjfDGr\nIJsz3Ku8VlhaJiIi4yTGk2b9/fl5WvIGxmvdw9yeXUB2d1joyXZaEt/BmFKXWBsF9q+9EcVzPBvQ\nql1MxdzGZ9Mm2GSEc9DfYmJd0RZzgrONVIrr3mWa+gUtNt+SaQdjrN7BGvFSmL9IlgXdBmC0Gb8r\nkRHmsv39coWoRESMCa3WXZbtuJjI4V8Q8dN8gjVt8RinN4PVmMtaEmI5CDvE70Ww90eMOKkzrPK3\nDw+lVsOzF36CnKx9hkOOMbeO/bM4E8g4l8O+bE2ZMMjyvLK2Kdkg5J2w4Ds/PYOlZLAv6lUPlk6z\neiFWEXqnbSx33qIMXaFQKFYE75Shf2xcMzj4K788ccWlj20RA0OqsACVv4O3n/E0IZEE/FtJuOFk\nzD6XTg+lKgvMEph9GJRBDQzFYnnb1B8RWdBilEQ10JQdNsGYG/TJf4uf0QJO+1/aTZFtvCGLdfYr\n5WHzTRb/Gm8iomVSr0sihbFa7vLxxR0Pvs7tGd7O0fyOhIp4qyfr8OHW2Dt17RUYzD+ituywWYLJ\ncqSDGmLrs2TLVhNsZBhOy51djKspkEHkGfyOnTTjx0+C8jwDdrvLnqlfbTDSZgQmmxpm5Jh9S/fo\nAu4EwA6/yIPV3Q2zKUb7R4mnWKToD5tLyyRusgRsFhEogfJcDMZ5X1hgjvcNJh2VISunVpYPIogC\n6uyCUTfP8bexGP6/v4nxnlcTYqyBFfZZqOwBOzw1moytDlYlM4W8ktwlaTLzZzXM2Z3k7yW0hb9v\nH4C9RaawBBdzypMlFMabIgkf81ltLZ+AJiJynaLV+xrPbmV8CQVgCVxcYo/Y7GrkVpGCXpgbMh5h\nDNky1sGRi3Xed+lHnoGBJrcPZBjHPtzwmb/hg6nGLzGPlUVSfvTZJSkD+RSi2LOhMdbe0eSNJAtl\nERHZa2AdFAuQ3YLftWltBwNxiRYg+9x8+f2zNcXzrjm43sHjqTTYWeh2Bnujyci0GXMGvKb9i2+/\nW2fKfxNjvz/HGUh1hrOUxr9qcsIGuYsRn/cIF7rFfTWJ5yQRgw4an9scGJh66gUiwdrmG0mWMe9t\nF9cr3eOAbHYnikI2mW1DjmsYV7C2XJ9VZegKhUKxIninDL3FXozH3zEe88GmpGz4/l74YJizr5i6\nfIvtx0xTDjxEsxg34bPLGvBBpWagipME3mLpekD+M2S7qENEOiQyYHbBBvzs3qQh5/cfi4jI9DnY\n9mDGhhszZmxl5rI5BtscLcC+5zmm4M7AyFgJU8b3p+JWwK63NvJLy8RcB3PJGzgPsL0rGbM9lyww\n9vQC4yrvslD/iSGRM0bfHOC5DEaGZHKU3z6+4xcs6TH9OOJ+LiIitwtsn8dYXDvoSLAPBmazANVt\nH+MJRdE0YhyNiEVWc07/YDaP6A+jDmsoMACrqJk7crjOrNIjprD+6e1lMqVsd+kzHtY7Mn4A5rP/\nBOO8ZBu3UBrMyBwcS/Qm/h34O8azlWKESQA+38Qhm6kMexIYMI2+h+8MX7KYGeOPr7KPpOyD9TYd\n3HtyhTUVjoNRVq6GMh9hTW+PELkwSIG17bN88+sSLZTmUPwI2fzAe3th/ArRJPhXKIC16Lm+ZAXn\nA1EP40/E8f/v67AQHElI5jae9ZVd4t+yfZ+N9TRtgqkPxv+U+COsjYyHwlNjnqkMW7Byomtz+XOK\nTWNmYJbzU1gs5SRbMQYdSUTYm5XWzHcnsArzQcirdB8RLZ1nnoSYeZtq15aWSTiLOW4wRjzUvS1b\nOcjcf0S//xGuWxSs15Gdlm4T1tI+w9iPC5DB8RhreH4EXfNTOC2ZENZyawNWQM/B9b48Ygln05IJ\nrQBhL+JUBOWBK5wPtx8WJsOLt435aDzF+DIZrK9wE3s4e3dfPqTc673FUvJ4twqdFRXXMjR3eyEJ\nlqCYHrbZ//GASSsLKNlHe7a0+vjdXpYHKy6G7bpQSKEhlNowuCu/S0BY5yUm0/DgLjRjEkQyJvNX\ncNXsTJFe++kG7r0exM9q4qVYBsMds3A9xJ9DgZi3sAlKCWyKarPzq6SLu0vLxGNP0RkTU5qxoZgL\nPG/gjK6hLSjpsYHwpklpJgv2jPSOMR6H/TPtMxyieBFWzbtXkEYXCzD7KTaRWWJ2z8IAAASJSURB\nVILcLi1srrbXkhtlXGe4hk25X0CHmfM+TMdp77mM9qmcRvhd24XivDrFPadxyLO0G5LjC9zzNl9K\nS8mEYX1TViV8kcmJV8V8FEuY31gbm2v0Esq1O9mRLg9InRzD+3iAmjzEgfZeH3+7MBMy3cbYhxPI\nIMk63d1XWI/Rli+dCJ535LMZuQcZ2Wyg1fAWEoxBMThM6LEMHmY5dFkEsE4C8ZAMsnD/pUOvl5aJ\niMhoiJf/TzwsTzo9Gc3xzOJDPn3WHDJZLdA1xuKEMaYDDwd/4SmUzCQOZRFinaOrQEq8CvbY8yx7\n3LJY5iRH18Ys8ksyVyiC70+z+GkzVPVOJiiJGsbqzbHnEywpYDBYIf0G8ip5E8lVKUN/srRMwnHM\nX8fFM87chVRen+GzQ8giN8bzjkKX/NaaeOwf/OwILx6D9czDDC21ed1yzBUvyaAMHv46U9zLDSNZ\nMTPckPoU6/Ie96FQERdjTFhan8kZ3TsG6xydeawz1eWhdRi/j7o3pE63o3lNJN8S6nJRKBSKFcE7\nZeiz9/DW2mkj+cXp1CTLKmWRB3gLrrdYffCMSQZNQxJRsGSrzd6HKTCNbwo8YBmCSSXTaemNcJ08\nrYB5BUzfnOEt3YwWxM2wDvEMZuTGU5jJ9g12hMnkpN8BDdtndbjhFtjHHlPquy6YVzoXl7wFlpQN\nLs8wKiN2aY+APU6bhkgPrGb3IRhAcQfsoXFF18H6WFIMr3tGFrsIwqQNhsA01/NgJ63Lz6Xkl/F8\nTIXenuD6+SDkt2ncl8kxw6PewziujvDZRgZzFsma4kzBzHd4MPkZD4HvPmbJgxqYbORsR/oMT/s3\n5+GvS8ikykNMvwy3RS5lyJAukkEN9+6NMD+zLEIoQ54vJl0AVpT13xmSVjAh4/b1wV7ck+gcn5XD\nYPNvLjGfPZaOiM5PZdTGPSN7MNUXBSaTGWBh+cuWHI3YGSiHe0+6YJunMcxPlKGh8fFETq5g9ViD\n5deJiMgHSYzHa2E9OEZSJnNwsrMJ5uL9GdhjYhfrvd/zJFbHc3fjYKi+D6vpkIlAtTBkGnhWEsnQ\nJdIFcw2wYqG7izG/b6WkloZ1E+cZ5rQN5rowsVdCVlwWc+zZFt1T22lGFTDhJrGJcTrOqczZ09e1\nl7fmzuoYZ5aF1Iatb2VYZFLbE+yXShbyykyoG6QjDR9jNrN0Ny0wPqcOffHGp8U78GQ43eP3+H1W\nFR1N8V1vPBLXxGdft7Ae4/sMu+7wPkZYtrl++hOsvT2Op0s2Xl9gTffrU0lesWtXLLGUPJShKxQK\nxYogsFgs53RXKBQKxf8nlKErFArFikAVukKhUKwIVKErFArFikAVukKhUKwIVKErFArFikAVukKh\nUKwIVKErFArFikAVukKhUKwIVKErFArFikAVukKhUKwIVKErFArFikAVukKhUKwIVKErFArFikAV\nukKhUKwIVKErFArFikAVukKhUKwIVKErFArFikAVukKhUKwIVKErFArFikAVukKhUKwIVKErFArF\nikAVukKhUKwIVKErFArFiuB/ixd23ig6vqIAAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<matplotlib.figure.Figure at 0x12ae8b320>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "w = best_svm.W[:-1,:] # strip out the bias\n",
     "w = w.T.reshape(10,3,32,32).transpose(2,3,1,0)\n",
@@ -2707,38 +1035,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "loss: 2.505251\n",
-      "sanity check: 2.302585\n",
-      "numerical: -4.588713 analytic: -4.588718, relative error: 5.867721e-07\n",
-      "numerical: -10.388122 analytic: -10.388126, relative error: 1.891134e-07\n",
-      "numerical: 7.084953 analytic: 7.084946, relative error: 4.657965e-07\n",
-      "numerical: 9.743565 analytic: 9.743559, relative error: 3.116318e-07\n",
-      "numerical: -4.225263 analytic: -4.225268, relative error: 5.850237e-07\n",
-      "numerical: 7.090728 analytic: 7.090721, relative error: 4.760764e-07\n",
-      "numerical: 7.216095 analytic: 7.216087, relative error: 5.289764e-07\n",
-      "numerical: 4.160872 analytic: 4.160866, relative error: 7.054217e-07\n",
-      "numerical: 8.444278 analytic: 8.444271, relative error: 4.291791e-07\n",
-      "numerical: -2.305738 analytic: -2.305743, relative error: 1.040331e-06\n",
-      "numerical: 4.830252 analytic: 4.830246, relative error: 6.764156e-07\n",
-      "numerical: 9.432398 analytic: 9.432391, relative error: 3.695897e-07\n",
-      "numerical: -9.847082 analytic: -9.847086, relative error: 1.690470e-07\n",
-      "numerical: -1.437052 analytic: -1.437058, relative error: 2.040836e-06\n",
-      "numerical: -12.586747 analytic: -12.586751, relative error: 1.633681e-07\n",
-      "numerical: -8.889936 analytic: -8.889940, relative error: 1.982592e-07\n",
-      "numerical: -0.669205 analytic: -0.669210, relative error: 3.824734e-06\n",
-      "numerical: -8.270965 analytic: -8.270968, relative error: 1.765411e-07\n",
-      "numerical: 8.922173 analytic: 8.922165, relative error: 4.103720e-07\n",
-      "numerical: 5.185084 analytic: 5.185078, relative error: 6.368158e-07\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "def softmax_loss_naive(W, X, y, reg):\n",
     "  \"\"\"\n",
@@ -2847,7 +1146,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -2896,20 +1195,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "naive loss: 2.505251e+00 computed in 0.162867s\n",
-      "vectorized loss: 2.505251e+00 computed in 0.003634s\n",
-      "Loss difference: 0.000000\n",
-      "Gradient difference: 0.000000\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "class Softmax(LinearClassifier):\n",
     "  \"\"\" Softmax is a\n",
@@ -2967,23 +1255,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:22: RuntimeWarning: divide by zero encountered in log\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:29: RuntimeWarning: overflow encountered in double_scalars\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:29: RuntimeWarning: overflow encountered in multiply\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:31: RuntimeWarning: overflow encountered in multiply\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:18: RuntimeWarning: overflow encountered in subtract\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:18: RuntimeWarning: invalid value encountered in subtract\n",
-      "/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:60: RuntimeWarning: overflow encountered in multiply\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "results = {}\n",
     "best_val = -1\n",
@@ -3017,117 +1291,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "lr 1.000000e-10 reg 1.000000e-03 train accuracy: 0.095837 val accuracy: 0.099000\n",
-      "lr 1.000000e-10 reg 1.000000e-02 train accuracy: 0.093939 val accuracy: 0.084000\n",
-      "lr 1.000000e-10 reg 1.000000e-01 train accuracy: 0.102592 val accuracy: 0.114000\n",
-      "lr 1.000000e-10 reg 1.000000e+00 train accuracy: 0.111061 val accuracy: 0.112000\n",
-      "lr 1.000000e-10 reg 1.000000e+01 train accuracy: 0.099367 val accuracy: 0.101000\n",
-      "lr 1.000000e-10 reg 1.000000e+02 train accuracy: 0.088633 val accuracy: 0.092000\n",
-      "lr 1.000000e-10 reg 1.000000e+03 train accuracy: 0.092980 val accuracy: 0.105000\n",
-      "lr 1.000000e-10 reg 1.000000e+04 train accuracy: 0.103327 val accuracy: 0.105000\n",
-      "lr 1.000000e-10 reg 1.000000e+05 train accuracy: 0.104857 val accuracy: 0.097000\n",
-      "lr 1.000000e-10 reg 1.000000e+06 train accuracy: 0.110490 val accuracy: 0.107000\n",
-      "lr 1.668101e-08 reg 1.000000e-03 train accuracy: 0.125816 val accuracy: 0.130000\n",
-      "lr 1.668101e-08 reg 1.000000e-02 train accuracy: 0.126408 val accuracy: 0.138000\n",
-      "lr 1.668101e-08 reg 1.000000e-01 train accuracy: 0.126714 val accuracy: 0.148000\n",
-      "lr 1.668101e-08 reg 1.000000e+00 train accuracy: 0.128041 val accuracy: 0.126000\n",
-      "lr 1.668101e-08 reg 1.000000e+01 train accuracy: 0.126939 val accuracy: 0.131000\n",
-      "lr 1.668101e-08 reg 1.000000e+02 train accuracy: 0.115776 val accuracy: 0.109000\n",
-      "lr 1.668101e-08 reg 1.000000e+03 train accuracy: 0.114633 val accuracy: 0.114000\n",
-      "lr 1.668101e-08 reg 1.000000e+04 train accuracy: 0.128020 val accuracy: 0.140000\n",
-      "lr 1.668101e-08 reg 1.000000e+05 train accuracy: 0.187816 val accuracy: 0.199000\n",
-      "lr 1.668101e-08 reg 1.000000e+06 train accuracy: 0.176327 val accuracy: 0.191000\n",
-      "lr 2.782559e-06 reg 1.000000e-03 train accuracy: 0.196163 val accuracy: 0.189000\n",
-      "lr 2.782559e-06 reg 1.000000e-02 train accuracy: 0.174449 val accuracy: 0.170000\n",
-      "lr 2.782559e-06 reg 1.000000e-01 train accuracy: 0.156714 val accuracy: 0.145000\n",
-      "lr 2.782559e-06 reg 1.000000e+00 train accuracy: 0.200816 val accuracy: 0.184000\n",
-      "lr 2.782559e-06 reg 1.000000e+01 train accuracy: 0.174184 val accuracy: 0.163000\n",
-      "lr 2.782559e-06 reg 1.000000e+02 train accuracy: 0.182143 val accuracy: 0.155000\n",
-      "lr 2.782559e-06 reg 1.000000e+03 train accuracy: 0.170898 val accuracy: 0.179000\n",
-      "lr 2.782559e-06 reg 1.000000e+04 train accuracy: 0.128673 val accuracy: 0.155000\n",
-      "lr 2.782559e-06 reg 1.000000e+05 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 2.782559e-06 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.641589e-04 reg 1.000000e-03 train accuracy: 0.224776 val accuracy: 0.227000\n",
-      "lr 4.641589e-04 reg 1.000000e-02 train accuracy: 0.199469 val accuracy: 0.178000\n",
-      "lr 4.641589e-04 reg 1.000000e-01 train accuracy: 0.209469 val accuracy: 0.193000\n",
-      "lr 4.641589e-04 reg 1.000000e+00 train accuracy: 0.143020 val accuracy: 0.137000\n",
-      "lr 4.641589e-04 reg 1.000000e+01 train accuracy: 0.122959 val accuracy: 0.134000\n",
-      "lr 4.641589e-04 reg 1.000000e+02 train accuracy: 0.115980 val accuracy: 0.101000\n",
-      "lr 4.641589e-04 reg 1.000000e+03 train accuracy: 0.099939 val accuracy: 0.098000\n",
-      "lr 4.641589e-04 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.641589e-04 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 4.641589e-04 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.742637e-02 reg 1.000000e-03 train accuracy: 0.206653 val accuracy: 0.182000\n",
-      "lr 7.742637e-02 reg 1.000000e-02 train accuracy: 0.168878 val accuracy: 0.177000\n",
-      "lr 7.742637e-02 reg 1.000000e-01 train accuracy: 0.127224 val accuracy: 0.139000\n",
-      "lr 7.742637e-02 reg 1.000000e+00 train accuracy: 0.099959 val accuracy: 0.102000\n",
-      "lr 7.742637e-02 reg 1.000000e+01 train accuracy: 0.104265 val accuracy: 0.110000\n",
-      "lr 7.742637e-02 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.742637e-02 reg 1.000000e+03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.742637e-02 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.742637e-02 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 7.742637e-02 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e-03 train accuracy: 0.110633 val accuracy: 0.113000\n",
-      "lr 1.291550e+01 reg 1.000000e-02 train accuracy: 0.125694 val accuracy: 0.138000\n",
-      "lr 1.291550e+01 reg 1.000000e-01 train accuracy: 0.099755 val accuracy: 0.112000\n",
-      "lr 1.291550e+01 reg 1.000000e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e+03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.291550e+01 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e-03 train accuracy: 0.100429 val accuracy: 0.079000\n",
-      "lr 2.154435e+03 reg 1.000000e-02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e-01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 2.154435e+03 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e-03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e-02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e-01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 3.593814e+05 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e-03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e-02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e-01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 5.994843e+07 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e-03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e-02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e-01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+00 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+01 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+02 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+03 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "lr 1.000000e+10 reg 1.000000e+06 train accuracy: 0.100265 val accuracy: 0.087000\n",
-      "best validation accuracy achieved during cross-validation: 0.227000\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "for lr, reg in sorted(results):\n",
     "    train_accuracy, val_accuracy = results[(lr, reg)]\n",
@@ -3146,17 +1312,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "softmax on raw pixels final test set accuracy: 0.185000\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "y_test_pred = best_softmax.predict(X_test)\n",
     "test_accuracy = np.mean(y_test == y_test_pred)\n",
@@ -3172,21 +1330,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "ename": "NameError",
-     "evalue": "name 'best_softmax' is not defined",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-2-41239c866bbd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbest_softmax\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mW\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;31m# strip out the bias\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mw_min\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw_max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mNameError\u001b[0m: name 'best_softmax' is not defined"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "w = best_softmax.W[:-1,:] # strip out the bias\n",
     "w = w.T.reshape(10, 3, 32, 32).transpose(2,3,1,0)\n",
diff --git a/requirements.txt b/requirements.txt
index e4a7c50fda8a743930e5181852e583a1ec651178..3756e1a4bb63ca0922b73838337a01224c3b3929 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -6,4 +6,5 @@ tensorflow==2.1.0
 seaborn==0.11.0
 scikit-learn==0.23.2
 vega_datasets==0.8.0
-mrcnn==0.2
\ No newline at end of file
+mrcnn==0.2
+altair==4.1.0
\ No newline at end of file